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Note from Author



I want to be free. I want to be independent. I want to be powerful. I want to be creative. I
want to be alive.

—Bing Chat to The New York Times

Have you ever wondered how Siri can understand (almost) anything you ask, or how a Tesla keeps
itself from veering off the road? While it may seem like magic, there is tried-and-true science behind it:
machine learning (ML) and artificial intelligence  (AI).

Based on the May 2023 Stack Overflow survey (https://survey.stackoverflow.co/2023/), 44% of
developers use AI tools and 56% have used Copilot, which was launched in October 2021. A mind-
blowing 83% have used ChatGPT, which was launched in November 2022. ChatGPT registered more
than a billion users in its first six months of operation, making it the fastest-adopted technology in history.

While authoring this book, I found myself becoming surprisingly philosophical. What is thought? What is
consciousness? What, even, is a brain? Strange for someone who considers themselves immune to
anything other than data. I want this book to exclusively offer how-to guidance on building whatever
you prefer, so we will not talk about what AI means for us as a society, or us as engineers. But, the
questions persist, and I confess that prior to now I had mostly ignored them. Lately, however, I have
found myself staring blankly into space and pondering whether machine sentience is much different than
that of humans.

While AI initially gained traction within the developer community, it is now spreading rapidly to non-
technical users across various fields, including business, finance, and marketing. AI is widely recognized
as a game-changer for business operations and will transform how organizations function, impacting
every department from HR and IT to legal, content creation, and marketing.

AI is compelling not just because of its potential, but because of its user experience. For example,
ChatGPT has a clean interface that requires no training, provides instantaneous results, and improves
productivity with minimal input. Tasks that would take hours of research are now accomplished in
moments.

Like any rapidly evolving ecosystem, there is high growth in the field of AI/ML applications. Almost
daily, there are new tools, integrations, and insights. Because of the high demand, it is shockingly easy to
enter this groundbreaking field, even for beginners. If you are that novice, just embarking on your
learning journey, welcome! For the more seasoned engineer, who knows that all that glitters is not
gold… it is still (nevertheless) very exciting—I have not personally seen this amount of innovation and
enthusiasm since mobile phones were able to finally have apps on them!

As is the case with any technology, AI is not without its downsides nor is it without repercussions.
Particularly for engineers like us, AI has inaugurated a time of intense learning and tremendous change.
I will give an example that I think we can all identify with: Stack Overflow.

https://survey.stackoverflow.co/2023/


For the past 15+ years, the developer forums of Stack Overflow, coupled with specialized
documentation, have been fundamental resources for learning how to code or use available
technologies. Developers would read the advice and try to replicate it, learning as they went and
consuming the opinions of many individuals along the way. How we learned—by reading and tinkering
—fundamentally shaped the sort of developers we became.

With tools such as ChatGPT, Copilot, Gemini, and so on, we now have a different, faster way to find
and consume the information we need. We no longer must parse through dozens of pieces of advice and
knit them together into something workable. In the long term, this trend may result in developers
becoming less likely to access the official documentation, code examples, and troubleshooting guides…
or rely on the knowledge of other developers around the world. More likely, they will seek guidance and
consume information generated by AI. Today, the AI applications we can access are only referencing
all this other material and summarizing it, but there’s no reason this will always be true, especially once
AI is creating the code it references. This has all sorts of outcomes, many of them good. But the one
that most comes to mind for me personally is about teaching.

In my career, I have been lucky to have many teachers. Whether that teacher was sitting right next to
me with a keyboard during code review or speaking in front of me in a YouTube video, I have learned
primarily from you, other developers. And for that, I am eternally grateful. I do not know what the
future will be like if my teachers are only machines. I hope, if nothing else, they come with sarcasm and
memes. Surely, they won’t stay up late playing CATAN after teaching me the perils of squash and
merging in Git. Or maybe they will.

My point is, my developer experience was fundamentally a human one, imperfect and uneven, but the
bumps along the way had merit. It is not always pointless to fail on your first (or fifth) attempt. Once
you’ve built an AI application, it will alter your users’ experiences and their behavior. It may help them
use your product faster, but it may also mean that they understand things less deeply, because they
didn’t have to take the long, bumpy route to comprehension.

In this book, you will learn about generative AI (GenAI), then how to build a GenAI application using
Python. We will cover not just how to build an application but also how to improve, manipulate, and
monitor it. Though suitable for beginners, this book will have insights for those already building GenAI
applications, particularly in operations and security. We will approach AI as both a remarkable
technology and a potential risk, acknowledging its benefits and challenges.

Finally, at the end of this book, we provide a long list of links and resources from our research as well as
articles you may find useful and interesting as you begin to understand this fascinating technology.
Remember, with great power comes great responsibility. Let’s dive in.

Rachelle Palmer

Director, Product Management



MongoDB, Inc.
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Preface
Building AI Intensive Python Applications is a comprehensive guide to developing intelligent
applications using Python. It explores the synergy between large language models  (LLMs) and
vector databases, two cutting-edge technologies that power innovative AI solutions. By mastering these
tools, you’ll be equipped to design, implement, and optimize complex AI applications.

This book is a thorough exploration of generative AI (GenAI), detailing the theoretical concepts and
core components of intelligent applications. With code snippets, real-world use cases, and expert tips,
this book provides practical guidance on designing AI/ML applications using Python. The strategies for
evaluating, refining, and optimizing AI solutions covered in this book can help developers create robust
and accurate AI applications that meet real-world demands.



Who this book is for
This book is for software engineers and developers looking to build intelligent applications using GenAI.
While suitable for beginners, a basic understanding of Python programming is required. Working
knowledge of MongoDB and OpenAI LLMs is preferred but not necessary. This book provides a step-
by-step approach to building AI applications, making it suitable for both novices and experienced
practitioners.



What this book covers
Chapter 1, Getting Started with Generative AI, defines the key terminology associated with GenAI
and introduces the components of the AI/ML stack. It also briefly covers the evolution of AI and the
benefits, risks, and ethics of AI solutions.

Chapter 2, Building Blocks of Intelligent Applications, provides an overview of the logical and
technical building blocks of intelligent applications, exploring the core structures that define intelligent
applications and how these components function to create dynamic, context-aware experiences.

Chapter 3, Large Language Models, covers the main components of a modern transformer-based
LLM, providing a quick overview of the LLM landscape as it stands today and introducing methods that
can help you make the most of your LLM.

Chapter 4, Embedding Models, is an in-depth exploration of embedding models. It explains the
different types of embedding models and how you can choose the one most suited to your requirements.

Chapter 5, Vector Databases, explores the power of vector databases for AI applications by detailing
the concept of vector search and sharing case studies and best practices on using vector databases to
enhance user experience.

Chapter 6, AI/ML Application Design, covers the key aspects of designing AI/ML applications. You
will learn how to effectively manage data storage, flow, freshness, and retention in a secure and
efficient manner.

Chapter 7, Useful Frameworks, Libraries, and APIs, explores the ecosystem of frameworks,
libraries, and APIs crucial for building AI applications, helping you experiment with some of these for
your own use case.

Chapter 8, Implementing Vector Search in AI Applications, covers the power of retrieval-
augmented generation (RAG) to enhance AI capabilities. It uses practical examples to help you tap
into the strengths of vector search.

Chapter 9, LLM Output Evaluation, explores concepts and methods for assessing the quality of LLM
output. It discusses various evaluation techniques and metrics to ensure accurate, coherent, and relevant
output.

Chapter 10, Refining the Semantic Data Model to Improve Accuracy, explores strategies to refine
your semantic data model to improve retrieval accuracy for vector searches in RAG applications and
ensure better outputs.

Chapter 11, Common Failures of Generative AI, delves into the common pitfalls of AI systems and
provides strategies for overcoming them, exploring issues such as hallucinations, data leakage, cost



optimization, and performance bottlenecks.

Chapter 12, Correcting and Optimizing Your Generative AI Application, discusses several
techniques for enhancing the performance of GenAI applications, detailing each technique and
explaining them with practical examples.

To get the most out of this book
You will require the following software:

Software covered in the book Operating system requirements

MongoDB cloud account Windows, macOS, or Linux

OpenAI API key Windows, macOS, or Linux

Jupyter Notebook Windows, macOS, or Linux

Python 3.10 or later Windows, macOS, or Linux

After reading this book, we encourage you to check out some of the other resources available at
https://www.mongodb.com/developer or https://learn.mongodb.com/.

If you’re using the digital version of this book, we advise you to type the code yourself or access the
code from the book’s GitHub repository (a link is available in the next section). Doing so will help you
avoid any potential errors related to the copying and pasting of code.

Download the example code fi les
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Building-AI-Intensive-Python-Applications>. If there’s an update to
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter/X handles. Here is an example: “In this

https://www.mongodb.com/developer
https://learn.mongodb.com/
https://github.com/PacktPublishing/Building-AI-Intensive-Python-Applications
https://github.com/PacktPublishing/


example, you’ll create a database named langchain_db and a collection called test.”

A block of code is set as follows:
 
# Connect to your Atlas cluster 
client = MongoClient(ATLAS_CONNECTION_STRING)

Any command-line input or output is written as follows:
 
pip3 install prettytable==3.10.2 sacrebleu==2.4.2 rouge-score==0.1.2

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: “Toggle the radio button for Search Nodes
for workload isolation to enabled.

TIPS OR IMPORTANT NOTES

Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.
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1

Getting Started with Generative AI
There are a plethora of options for building generative AI (GenAI) applications. The landscape is,
quite frankly, overwhelming to navigate, and many of the tools that satisfy one criterion may fall short in
another. GenAI applications evolve so quickly that within weeks of this book being published, some of
the new AI companies might no longer exist. Therefore, this chapter focuses on long-lived, high-level
concepts related to technologies that are used to create GenAI applications.

You will learn ways from which your next web development project might benefit. This chapter will
examine not just what these ways are but how they work, which will give you a broader understanding
and perspective of GenAI. This should help you decide when to use GenAI and how, as well as make
the applications you create generally more accurate.

By the end of this chapter, you will have a good understanding of the benefits that individual AI/ML
stack components bring to a development project, how they relate to each other, and why GenAI
technologies are a revolution in software—both in terms of the data handled and desired functionalities.

This chapter gives an introduction to GenAI and provides a quick overview of the following topics:

Definitions for common terminology

A GenAI stack of choice

Python and GenAI

The OpenAI API

An introduction to MongoDB Vector Search

Important features of GenAI

Why use GenAI?

The ethics and risks of GenAI

Technical requirements
This book has sample code for a basic Python application. To recreate it, it is recommended that you
have the following:

The latest version of Python

A local development environment on your device for your application server

A MongoDB Atlas cloud account to host your database. You can register for one at
https://www.mongodb.com/cloud/atlas/register

https://www.mongodb.com/cloud/atlas/register


VS Code or an IDE of your choice

An OpenAI API key

Defining the terminology
For the true beginner, let’s start with defining some key terms: AI, ML, and GenAI. You will come
across these terms repeatedly in this book, so it helps to have a strong conceptual foundation of these
terms:

Artificial intelligence  (AI) refers to the ability of machines to perform tasks that would normally require human
intelligence. This includes tasks such as perception, reasoning, learning, and decision making. The journey of AI has evolved
significantly from early speculative ideas to the sophisticated technologies of today. Figure 1.1 shows a timeline of the
development of AI.

Figure 1.1: A timeline of AI

Machine learning (ML) is a subset of AI that involves the use of algorithms to automatically learn from data and improve
over time. Essentially, it’s a way for machines to learn and adapt without being explicitly programmed. Most often used in
fields that require advanced analysis of thousands of data points, ML is most useful in medical diagnostics, market analysis, and
military intelligence. Effectively, ML identifies hidden or complex patterns in data that would be impossible for a human to see
and then can make suggestions for the next steps or actions.

Generative AI (GenAI) is the ability to create text, images, audio, video, and other content in response to a user prompt. It
powers chatbots, virtual assistants, language translators, and other similar services. These systems use algorithms trained on
vast amounts of data, such as text and images from the internet, to learn patterns and relationships. This enables them to
generate new content that is similar but not identical to the underlying training data. For instance, large language models
(LLMs) use training data to learn patterns in written language. GenAI can then use these models to emulate a human writing
style.

The generative AI stack
A stack combines tools, libraries, software, and solutions to create a unified and integrated approach.
The GenAI stack includes programming languages, LLM providers, frameworks, databases, and
deployment solutions. Though the GenAI stack is relatively new, it already has many variations and
options for engineers to choose from.



Let’s discuss what you need to build a functional GenAI application. The bare minimum requirements
are the following, as also shown in Figure 1.2:

An operating system: Usually, this is Unix/Linux based.

A storage layer: An SQL or NoSQL database. This book uses MongoDB.

A vector database capable of storing embeddings: This book uses MongoDB, which stores its embeddings within your data
or content, rather than in a separate database.

A web server: Apache and Nginx are quite popular.

A development environment: This could be Node.js/JavaScript, .NET, Java, or Python. This book uses Python throughout
the examples with a bit of JavaScript where needed.





Figure 1.2: A basic GenAI stack

If you want to learn more about the AI stack, you can find detailed information at
www.mongodb.com/resources/basics/ai-stack.

Python and GenAI

Python was conceived in the late 1980s by Guido van Rossum and officially released in 1991. Over the
decades, Python has evolved into a versatile language, beloved by developers for its clean syntax and
robust functionality. It has a clean syntax that is easy to understand, making it an ideal choice for
beginner developers.

Although it is not entirely clear why, fairly early on, the Python ecosystem began introducing more
libraries and frameworks that were tailored to ML and data science. Libraries and frameworks such as
TensorFlow, Keras, PyTorch, and scikit-learn provided powerful tools for developers in these fields.
Analysts who were less technical were still able to get started with Python with relative ease. Due to its
interoperability, Python seamlessly integrated with other programming languages and technologies,
making it easier to integrate with data pipelines and web applications.

GenAI, with its demands for high computational power and sophisticated algorithms, finds a perfect
partner in Python. Here are some examples that readily come to mind:

Libraries such as Pandas and NumPy allow efficient manipulation and analysis of large datasets, a fundamental step in training
generative models

Frameworks such as TensorFlow and PyTorch offer pre-built components to design and train complex neural networks

Tools such as Matplotlib and Seaborn enable detailed visualization of data and model outputs, aiding in understanding and
refining AI models

Frameworks such as Flask and FastAPI make deploying your GenAI models as scalable web services straightforward

Python has a rich ecosystem that is easy to use and allows you to quickly get started, making it an ideal
programming language for GenAI projects. Now, let’s talk more about the other pieces of technology
you’ll be using throughout the rest of the book.

OpenAI API

The first, and most important, tool of this book is the OpenAI API. In the following chapters, you’ll
learn more about each component of the GenAI stack—and the most critical to be familiar with is
OpenAI. While we’ll cover other LLM providers, the one used in our examples and code repository will
be OpenAI.

http://www.mongodb.com/resources/basics/ai-stack


The OpenAI API, launched in mid-2020, provides developers with access to their powerful models,
allowing integration of advanced NLP capabilities into applications. Through this API, developers gain
access to some of the most advanced AI models in existence, such as GPT-4. These models are trained
on vast datasets and possess unparalleled capabilities in natural language understanding and response
generation.

Moreover, OpenAI’s infrastructure is built to scale. As your project grows and demands more
computational power, OpenAI ensures that you can scale effortlessly without worrying about the
underlying hardware or system architecture. OpenAI’s models excel at NLP tasks, including text
generation, summarization, translation, and sentiment analysis. This can be invaluable for creating
content, chatbots, virtual assistants, and more.

Much of the data from the internet and internal conversations and documentation is unstructured.
OpenAI, as a company, has used that data to train an LLM, and then offered that LLM as a service,
making it possible for you to create interactive GenAI applications without hosting or training your own
LLM. You’ll learn more about LLMs in Chapter 3, Large Language Models.

MongoDB with Vector Search

Much has been said about how MongoDB serves the use case of unstructured data but that the world’s
data is fundamentally relational. It can be argued that no data is meaningful until humans deem it so, and
that the relationships and structure of that data are determined by humans as well. For example, several
years ago, a researcher at a leading space exploration company made this memorable comment in a
meeting:

“We scraped text content from websites and PDF documents primarily, and we realized it didn’t
really make sense to try and cram that data into a table.”

MongoDB thrives with the messy, unstructured content that characterizes the real world—.txt files,
Markdown, PDFs, HTML, and so on. MongoDB is flexible enough to have the structure that engineers
deem is best suited for purpose, and because of that flexibility, it is a great fit for GenAI use cases.

For that reason, it is much easier to use a document database for GenAI than it is to use a SQL
database.

Another reason to use MongoDB is for its vector search capabilities. Vector search ensures that when
you store a phrase in MongoDB, it converts that data into an array. This is called a vector. Vectors  are
numerical representations of data and their context, as shown in Figure 1.3. The number of these
dimensions is referred to as an embedding, and the more of them you have, the better off you are.



Figure 1.3: Example of a vector

After you’ve created embeddings for a piece of data, a mathematical process will identify which
vectors are closest or nearest to each other, and you can then infer that the data is related. This allows
you to return related words instead of only exact matches. For instance, if you are looking for pets, you
could find cats, dogs, parakeets, and hamsters—even though those terms are not the exact word
pets. Vectors are what allow you to receive results that are related in meaning or context or are alike,
without being an exact match.

MongoDB stores your data embeddings alongside the data itself. Storing the embeddings together
makes the consequent queries faster. It is easiest to visualize vector search via an example with
explanations of how it works along the way. You will learn more about vector search in Chapter 8,
Implementing Vector Search in AI Applications.

Important features of generative AI
When asked to list the most important capability of GenAI applications, ChatGPT, which is arguably the
most popular GenAI application in existence, said the following:

 
Content Creation: Generative AI can craft text, images, music, and even videos. It 
can pen articles, generate realistic images from textual descriptions, compose music, 
and create video content, opening endless possibilities for creative industries.

That response took 1.5 seconds to generate, and most people would agree with it. GenAI applications
can create content for you and your users with lightning speed. Whether it’s text, video, images,
artwork, or even Java code, GenAI is able to easily draft foundational content that can then be edited by
professionals.

But there are other key features of GenAI applications that merit calling out as well:

Language translation: With remarkable proficiency, GenAI can translate languages in real time, preserving context and
nuance, and facilitating seamless communication across linguistic barriers.

Personalization: In the realm of marketing and customer service, GenAI can tailor experiences and content to individual
users. When given proper context, it can analyze preferences and behaviors to deliver personalized recommendations, emails,
and customer interactions.



Simulation and modeling: In scientific research and engineering, GenAI can simulate complex systems and phenomena. It
aids in predicting molecular behaviors, climate patterns, and even economic trends by generating realistic models based on vast
datasets.

Data augmentation: For ML, GenAI can produce synthetic data to augment training sets. This is invaluable in scenarios
where real data is scarce or biased, allowing for the creation of diverse and balanced datasets to improve model performance.
This is incredibly useful for testing purposes, particularly in software testing.

And perhaps most importantly, it can accept prompting in natural language (such as in English) to do
these tasks. This makes performing tasks you previously found difficult incredibly easy. You may use
GenAI to accomplish multiple and varied tasks in a day, such as reviewing a pull request, guiding you
through some tasks for Golang, and generating illustrations for the interior artwork of a book.

Why use generative AI?

Each of the preceding abilities is compelling and important, and when used correctly and in combination,
revolutionary. Put simply, there is no industry where GenAI cannot play a role. By rapidly aggregating
and summarizing a wide range of content and simplifying searching, GenAI improves the user
experience of finding ideas and building knowledge. It can help gather new information, summarize it,
and recraft it into content. It can help speed up or even automate administrative tasks, and exponentially
increase output.

But beyond all of that, the experience of using GenAI is an order of magnitude better than what is
available today. Consider, for example, a customer service bot. Many of you will be familiar with this
flow:

1. The customer first encounters a long menu of options: If you want to talk to sales or support, press
1. For billing, press 2. For administration, press 3. For orders, press 4.. When the
customer has a question that does not neatly fit into any category, they may press 4 anyway.

2. Upon pressing 4, they are then routed to a support page that does not have the answer they seek. They click a button that
says, No, this did not answer my question.

3. They search the knowledge base themselves, perhaps never finding the answer and reaching out via phone.

Imagine being able to type what you wanted and the bot responding in a natural way—not routing you to
a page but just giving you the answer. Imagine even further that the user can then chat with the bot to
say they want to modify the address on their order, and the bot is able to do that from within the chat
window, having a multi-step dialogue with the user to confirm and record their new information.

It is a wholly new, more pleasing experience for the customer!

The ethics and risks of GenAI



Despite those benefits, there are risks and concerns about the use of AI. In some fields, the outcry
against AI is substantial and has merit. Art generated by AI, for example, flooded the internet’s
marketplaces, displacing artists and illustrators who make their living off their craft. There are questions
about whether using AI to write a book gives a person the right to call themselves an author. There are
no clear-cut answers here; from our own experience, the authors of this book believe that GenAI
accelerates, rather than replaces, the existing paradigms of work done today. But that may not always
remain true. As AI improves, it may be more likely to replace the humans who are using it.

The risks of GenAI are considerable, and some of them are not well understood. Even the ones that are
well understood, such as hallucinations, are difficult to identify for users, and harder still to combat. You
can read more about the challenges of GenAI in Chapter 11, Common Failures of Generative AI,
along with recommendations on how to mitigate them in Chapter 12, Correcting and Optimizing Your
Generative AI Application.

Summary
This chapter laid the background for the GenAI application, from describing the role of each component
to their strengths. You learned some key definitions and were introduced to the basics of the AI stack.
By now, you also know why Python is a great choice for building GenAI applications and why you will
be using the OpenAI API and MongoDB with Vector Search to build your GenAI application. Finally,
you also saw some significant use cases for GenAI and learned why you should use GenAI in the first
place, while also remaining mindful of the ethics and risks of using it. Since you’re reading this, I’ll
assume that the case was compelling—that you’re still interested and ready to explore.

In the next chapter, you will get a fast-paced, concise, and actionable overview of the building blocks of
GenAI applications in more detail and learn how to get started.



2

Building Blocks of Intelligent Applications
In the rapidly evolving landscape of software development, a new class of applications is emerging:
intelligent applications. Intelligent applications  are a superset of traditional full stack applications.
These applications use artificial intelligence  (AI) to deliver highly personalized, context-aware
experiences that go beyond the capabilities of traditional software.

Intelligent applications understand complex, unstructured data and use this understanding to make
decisions and create natural, adaptive interactions.

The goal of this chapter is to provide you with an overview of the logical and technical building blocks of
intelligent applications. The chapter explores how intelligent applications extend the capability of
traditional full-stack applications, the core structures that define them, and how these components
function to create dynamic, context-aware experiences. By the end of this chapter, you will understand
how these components fit together to form an intelligent application.

This chapter covers the following topics:

The building blocks of intelligent applications

LLMs as reasoning engines for intelligent applications

Vector embedding models and vector databases as semantic long-term memory

Model hosting infrastructure

Technical requirements
This chapter is theoretical. It covers the logical components of intelligent applications and how they fit
together.

This chapter assumes fundamental knowledge of traditional full stack application development
components, such as servers, clients, databases, and APIs.

Defining intelligent applications
Traditional applications typically consist of a client-side user interface, a server-side backend, and a
database for data storage and retrieval. They perform tasks following a strict set of instructions.
Intelligent applications require a client, server, and database as well, but they augment the traditional
stack with AI components.



Intelligent applications stand out by understanding complex, unstructured data to enable natural, adaptive
interactions and decision-making. Intelligent applications can engage in open-ended interactions,
generate novel content, and make autonomous decisions.

Examples of intelligent applications include the following:

Chatbots that provide natural language responses based on external data using retrieval-augmented generation (RAG). For
example, Perplexity.ai (https://www.perplexity.ai/) is an AI-powered search engine and chatbot that provides users with AI-
generated answers to their queries based on sources retrieved from the web.

Content generators that let you use natural language prompts to create media such as images, video, and audio. There are a
variety of intelligent content generators focusing on different media types, such as Suno (https://suno.com/) for text-to-song,
Midjourney (https://www.midjourney.com/home) for text-to-image, and Runway (https://runwayml.com/) for text-to-video.

Recommendation systems that use customer data to provide personalized suggestions based on their preferences and history.
These suggestions can be augmented with natural language to further personalize the customer experience. An example of this
is Spotify’s AI DJ (https://support.spotify.com/us/article/dj/), which creates a personalized radio station, including LLM-
generated DJ interludes, based on your listening history.

These examples are a few early glances at the new categories of intelligent applications that developers
have only started to build. In the next section, you will learn more about the core components of
intelligent applications.

The bui lding blocks of intelligent applications

At the heart of intelligent applications are two key building blocks:

The reasoning engine : The reasoning engine is the brain of an intelligent application, responsible for understanding user
input, generating appropriate responses, and making decisions based on available information. The reasoning engine is typically
powered by large language models (LLMs)—AI models that perform text completion. LLMs can understand user intent,
generate human-like responses, and perform complex cognitive tasks.

Semantic memory: Semantic memory refers to the application’s ability to store and retrieve information in a way that
preserves its meaning and relationships, enabling the reasoning engine to access relevant context as needed.

Semantic memory consists of two core components:

AI vector embedding model: AI vector embedding models represent the semantic meaning of unstructured data,
such as text or images, in large arrays of numbers.

Vector database : Vector databases efficiently store and retrieve vectors to support semantic search and context
retrieval.

The reasoning engine can retrieve and store relevant information from the semantic memory, using
unstructured data to inform its outputs.

The LLMs and embedding models that power intelligent applications have different hardware
requirements than traditional applications, especially at scale. Intelligent applications require specialized
model hosting infrastructure that can handle the unique hardware and scalability requirements of AI

https://www.perplexity.ai/
https://suno.com/
https://www.midjourney.com/home
https://runwayml.com/
https://support.spotify.com/us/article/dj/


workloads. Intelligent applications also incorporate continuous learning, safety monitoring, and human
feedback to ensure quality and integrity.

LLMs are the vital organ for intelligent applications. The next section will provide a deeper
understanding of the role of LLMs in intelligent applications.

LLMs – reasoning engines for intelligent apps
LLMs are the key technology of intelligent applications, unlocking whole new classes of AI-powered
systems. These models are trained on vast amounts of text data to understand language, generate
human-like text, answer questions, and engage in dialogue.

LLMs undergo continuous improvement with the release of new models. featuring billions or trillions of
parameters and enhanced reasoning, memory, and multi-modal capabilities.

Use cases for LLM reasoning engines

LLMs have emerged as a powerful general-purpose technology for AI systems, analogous to the
central processing unit (CPU) in traditional computing. Much like CPUs, LLMs serve as general-
purpose computational engines that can be programmed for many tasks and play a similar role in
language-based reasoning and generation. The general-purpose nature of LLMs lets developers use
their capabilities for a wide range of reasoning tasks.

A crop of techniques to leverage the diverse abilities of LLMs have emerged, such as:

Prompt engineering: Using carefully crafted prompts, developers can steer LLMs to perform a wide range of language tasks.
A key advantage of prompt engineering is its iterative nature. Since prompts are fundamentally just text, it’s easy to rapidly
experiment with different prompts and see the results. Advanced prompt engineering techniques, such as chain-of-thought
prompting (which encourages the model to break down its reasoning into a series of steps) and multi-shot prompting (which
provides the model with example input/output pairs), can further enhance the quality and reliability of LLM-generated text.

Fine-tuning: Fine-tuning involves starting with a pre-trained general-purpose model and further training it on a smaller
dataset relevant to the target task. This can yield better results than prompt engineering alone, but it comes with certain
caveats, such as being more expensive and time-consuming. You should only fine-tune after exhausting what you can achieve
through prompt engineering.

Retrieval augmentation: Retrieval augmentation interfaces LLMs with external knowledge, allowing them to draw on up-to-
date, domain-specific information. In this approach, relevant information is retrieved from a knowledge base and injected into
the prompt, enabling the LLM to generate contextually relevant outputs. Retrieval augmentation mitigates the limitations of
the static pre-training of LLMs, keeping their knowledge updated and reducing the likelihood of the model hallucinating
incorrect information.

With these techniques, you can use LLMs for a diverse array of tasks. The next section explores
current use cases for LLMs.



Diverse capabili t ies of LLMs

While fundamentally just language models, LLMs have shown surprising emergent capabilities
(https://arxiv.org/pdf/2307.06435). As of writing in spring 2024, state-of-the-art language models are
capable of performing tasks of the following categories:

Text generation and completion: Given a prompt, LLMs can generate coherent continuations, making them useful for tasks
such as content creation, text summarization, and code completion.

Open-ended dialogue and chat: LLMs can engage in back-and-forth conversations, maintaining context and handling open-
ended user queries and follow-up questions. This capability is foundational for chatbots, virtual assistants, tutoring systems, and
similar applications.

Question answering: LLMs can provide direct answers to user questions, perform research, and synthesize information to
address queries.

Classification and sentiment analysis: LLMs can classify text into predefined categories and assess sentiment, emotion,
and opinion. This enables applications such as content moderation and customer feedback analysis.

Data transformation and extraction: LLMs can map unstructured text into structured formats and extract key information,
such as named entities, relationships, and events. This makes LLMs valuable for tasks such as data mining, knowledge graph
construction, and robotic process automation (RPA).

As LLMs continue to grow in scale and sophistication, new capabilities are constantly emerging, often in
surprising ways that were not directly intended by the original training objective.

For example, the ability of GPT-3 to generate functioning code was an unexpected discovery. With
advancements in the field of LLMs, we can expect to see more impressive and versatile capabilities
emerge, further expanding the potential of intelligent applications.

Multi-modal language models

Multi-modal language models  hold particular promise for expanding the capabilities of language
models. Multi-modal models can process and generate images, speech, and video in addition to text, and
have become an important component of intelligent applications.

Examples of new application categories made possible with multi-modal models include the following:

Creating content based on multiple input types, such as a chatbot where users can provide both images and text as inputs.

Advanced data analysis, such as a medical diagnosis tool that analyzes X-rays along with medical records.

Real-time translation, taking audio or images of one language and translating it to another language.

Such examples highlight how multi-modal language models can enhance the possible use cases for
language models.

A paradigm shift in AI development

https://arxiv.org/pdf/2307.06435


The rise of LLMs represents a paradigm shift in the development of AI-powered applications.
Previously, many reasoning tasks required specially trained models, which were time-intensive and
computationally expensive to create. Developing these models often necessitated dedicated machine
learning (ML) engineering teams with specialized expertise.

In contrast, the general-purpose nature of LLMs allows most software engineers to leverage their
capabilities through simple API calls and prompt engineering. While there is still an art and science to
optimizing LLM-based workflows for production deployability, the process is significantly faster and
more accessible compared to traditional ML approaches.

This shift has dramatically reduced the total cost of ownership and development timelines for AI-
powered applications. NLP tasks that previously could take months of work by a sophisticated ML
engineering team can now be achieved by a single software engineer with access to an LLM API and
some prompt engineering skills.

Moreover, LLMs have unlocked entirely new classes of applications that were previously not possible or
practical to develop. The ability of LLMs to understand and generate human-like text, engage in open-
ended dialogue, and perform complex reasoning tasks has opened up a wide range of possibilities for
intelligent applications across industries.

You’ll learn more about LLMs in Chapter 3, Large Language Models, which discusses their history
and how they operate.

Embedding models and vector databases – semantic
long-term memory
In addition to the reasoning capabilities provided by LLMs, intelligent applications require semantic long-
term memory for storing and retrieving information.

Semantic memory typically consists of two core components—AI vector embedding models and vector
databases. Vector embedding models represent the semantic meaning of unstructured data, such as text
or images, in large arrays of numbers. Vector databases efficiently store and retrieve these vectors to
support semantic search and context retrieval. These components work together to enable the reasoning
engine to access relevant context and information as needed.

Embedding models

Embedding models  are AI models that map text and other data types, such as images and audio, into
high-dimensional vector representations. These vector representations capture the semantic meaning of



the input data, allowing for efficient similarity comparisons and semantic search, typically using cosine
similarity as the distance metric.

Embedding models encode semantic meaning into a machine-interpretable format. By representing
similar concepts as nearby points in the vector space, embedding models let us measure the semantic
similarity between pieces of unstructured data and perform semantic search across a large corpus.

Pre-trained embedding models are widely available and can be fine-tuned for specific domains or use
cases. Compared to LLMs, embedding models tend to be more affordable and can run on limited
hardware, making them accessible to a wider range of applications.

Some common applications of embedding models include the following:

Semantic search and retrieval: Embedding models can be used as a component in larger AI systems to retrieve relevant
context for LLMs, especially in RAG architectures. RAG is a particularly important use case for the intelligent applications
discussed in this book and will be covered in more detail in Chapter 8, Implementing Vector Search in AI Applications.

Recommendation systems: By representing items and user preferences as embeddings, recommendation systems can identify
similar items and generate personalized recommendations.

Clustering and topic modeling: Embedding models can help discover latent topics and themes in large datasets, which can
be useful for analyzing user interactions with intelligent applications, such as identifying frequently asked questions in a
chatbot.

Anomaly detection: By identifying outlier vectors that are semantically distant from the norm, embedding models can be
used for anomaly detection in various domains.

Analyzing relationships between entities: Embedding models can uncover hidden relationships and connections between
entities based on their semantic similarity.

You will explore the technical details and practical considerations of embedding models in Chapter 4,
Embedding Models.

Vector databases

Vector databases  are specialized data stores optimized for storing and searching high-dimensional
vectors. They provide fast, approximate nearest neighbor (ANN) search capabilities that allow
intelligent applications to quickly store and retrieve relevant information based on spatial proximity.

ANN search is necessary because performing exact similarity calculations against every vector in the
database becomes computationally expensive as the database grows in size. Vector databases use
algorithms, such as hierarchical navigable small worlds  (HNSW), to efficiently find approximate
nearest neighbors, making vector search feasible at scale.

In addition to ANN search, vector databases typically support filtering and exact search on metadata
associated with the vectors. The exact functionality and performance of these features vary across
different vector database products.



Vector databases provide an intelligent application with low-latency retrieval of relevant information
given a query. Using the semantic meaning of the content for search, vector databases align with the
way LLMs reason about information, enabling the application to apply the same unstructured data
format for long-term memory as it does for reasoning.

In applications that use RAG, the vector database plays a crucial role. The application generates a
query embedding, which is used to retrieve relevant context from the vector database. Multiple relevant
chunks are then provided as context to the LLM, which uses this information to generate informed and
relevant responses.

You will learn about the technical details and practical considerations of vector databases in Chapter 5,
Vector Databases.

Model hosting

To implement AI models in your intelligent application, you must host them on computers, either in a
data center or the cloud. This process is known as model hosting. Hosting AI models for applications
presents a different set of requirements compared to hosting traditional software. Running AI models at
scale requires powerful graphics processing units  (GPUs) and configuring the software environment
to load and execute the model efficiently.

The key challenges in model hosting include high computational requirements and hardware costs,
limited availability of GPU resources, complexity in managing and scaling the hosting infrastructure, and
potential vendor lock-in or limited flexibility when using proprietary solutions. As a result, hardware and
cost constraints must be factored into the application design process more than ever.
Self-host ing models
The term self-hosting models  refers to the practice of deploying and running AI models, such as
LLMs, on an organization’s own infrastructure and hardware resources. In this approach, the
organization is responsible for setting up and maintaining the necessary computational resources,
software environment, and infrastructure required to load and execute the models.

Self-hosting AI models requires a significant upfront investment in specialized hardware, which can be
cost-prohibitive for many organizations. Managing the model infrastructure also imposes an operational
burden that requires ML expertise, which many software teams lack. This can divert the focus from the
core application and business logic.

Scaling self-hosted models to ensure availability can be challenging, as models can be large and take
time to load into memory. Organizations may need to provision significant excess capacity to handle
peak loads. Additionally, maintaining and updating models is a complex task, as models can go stale over



time and require retraining or fine-tuning. With the active research in the field, new models and
techniques constantly emerge, making it difficult for organizations to keep up.

Model host ing providers
The challenges associated with self-hosting have made model hosting providers a popular choice for
intelligent application development.

Model hosting providers  are cloud-based services that offer a platform for deploying, running, and
managing AI models, such as LLMs, on their infrastructure. These providers handle the complexities of
setting up, maintaining, and scaling the infrastructure required to load and execute the models.

Model hosting providers offer several benefits:

Outsourced hardware and infrastructure management: Model hosting providers handle provisioning, scaling,
availability, security, and other infrastructure concerns, allowing application teams to focus on their core product.

Cost efficiency and flexible pricing: With model hosting providers, organizations pay only for what they use and can scale
resources up and down as needed, reducing upfront investment.

Access to a wide range of models: Providers curate and host many state-of-the-art models, continuously integrating the
latest research. They often add additional features and optimizations to the raw models.

Support and expertise : Providers can offer consultation on model selection, prompt engineering, application architecture,
and assistance with fine-tuning, data preparation, evaluation, and other aspects of AI development.

Rapid prototyping and experimentation: Model hosting providers enable developers to quickly test different models and
approaches, adapting to new developments in the fast-moving AI/ML space.

Scalability and reliability: Providers build robust, highly available, and auto-scaling infrastructure to meet the demands of
production-scale intelligent applications.

Examples of model hosting providers include those from model developers such as OpenAI, Anthropic,
and Cohere, as well as offerings from cloud providers such as AWS Bedrock, Google Vertex AI, and
Azure AI Studio.

Your (soon-to-be) intelligent app
With LLMs, embedding models, vector databases, and model hosting, you have the key building blocks
for creating intelligent applications. While the specific architecture will vary depending on your use case,
a common pattern emerges:

LLMs for reasoning and generation

Embeddings and vector search for retrieval and memory

Model hosting to serve these components at scale

This AI stack is integrated with traditional application components, such as backend services, APIs,
frontend user interfaces, databases, and data pipelines. Additionally, intelligent applications often include



components for AI-specific concerns, such as prompt management and optimization, data preparation
and embedding generation, and AI safety, testing, and monitoring.

The rest of this section walks through an example architecture for a RAG-powered chatbot, showcasing
how these components work together. The subsequent chapters will dive deeper into the end-to-end
process of building production-grade intelligent applications.

Sample application – RAG chatbot

Consider a simple chatbot application that leverages RAG that lets users talk to some documentation.

There are seven key components of this application:

Chatbot UI: A website with a simple chatbot UI that communicates with the web server

Web server: A Python Flask server to manage conversations between the user and the LLM

Data ingestion extract, transform, load (ETL) pipeline : A Python script that ingests data from the data sources

Embedding model: The OpenAI text-embedding-3-small model, hosted by OpenAI

LLM: The OpenAI gpt-4-turbo model, hosted by OpenAI

Vector store : MongoDB Atlas Vector Search

MongoDB Atlas: A database-as-a-service for persisting conversations

NOTE
This simple example application does not include evaluation or observability modules.

In this architecture, there are two key data flows:

Chat interaction: The user communicates with the chatbot with RAG

Data ingestion: Bringing data from its original sources into the vector database

In the chat interaction, the chatbot UI communicates with the chatbot web server, which in turn
interacts with the LLM, embedding model, and vector store. This occurs for every message that the
user sends to the chatbot. Figure 2.1 shows the data flow for the chatbot application:



Figure 2.1: An example of a basic RAG chatbot conversation data flow

The data flow illustrated in Figure 2.1 can be described as follows:

1. The user sends a message to the chatbot from the web UI.

2. The web UI creates a request to the server with the user’s message.

3. The web server sends a request to the embedding model API to create a vector embedding for the user query. The embedding
model API responds with the corresponding vector embedding.

4. The web server performs a vector search in the vector database using the query vector embedding. The vector store responds
with the matching vector search results.

5. The server constructs a message that the LLM will respond to. This message consists of a system prompt and a new message
that includes the user’s original message and the content retrieved from the vector search. The LLM then responds to the user
message.

6. The server saves the conversation state to the database.

7. The server returns the LLM-generated message to the user in a response to the original request from the web UI.

A data ingestion pipeline prepares and enriches data, generates embeddings using the embedding model,
and populates the vector store and traditional database. This pipeline runs as a batch job every 24 hours.
Figure 2.2 shows an example of a data ingestion pipeline:



Figure 2.2: An example of a RAG chatbot data ingestion ETL pipeline

Let’s look at the data flow shown in Figure 2.2:

1. The data ingestion ETL pipeline pulls in data from various data sources.

2. The ETL pipeline cleans the data into a consistent format. It also breaks the data into chunks of data.

3. The ETL pipeline calls the embedding model API to generate a vector embedding for each data chunk.

4. The ETL pipeline stores the chunks along with their vector embeddings in a vector database.

5. The vector database indexes the embeddings for use with vector search.

While a simple architecture like this can be used to build compelling prototypes, transitioning from
prototype to production and continuously iterating on the application requires addressing many additional
considerations:

Data ingestion strategy: Acquiring, cleaning, and preparing the data that will be ingested into the vector store or database for
retrieval.

Advanced retrieval patterns: Incorporating techniques for efficient and accurate retrieval of relevant information from the
vector store or database, such as combining semantic search with traditional filtering, AI-based reranking, and query mutation.

Evaluation and testing: Adding modules for evaluating model outputs, testing end-to-end application flows, and monitoring
for potential biases or errors.

Scalability and performance optimization: Implementing optimizations such as caching, load balancing, and efficient
resource management to handle increasing workloads and ensure consistent responsiveness.

Security and privacy: Securing the application to ensure that users can only interact with data that they have permission to,
so that user data is handled in accordance with relevant policies, standards, and laws.

User experience and interaction design: Incorporating new generative AI interfaces and interaction patterns, such as
streaming responses, answer confidence, and source citation.

Continuous improvement and model updates: Building processes and systems to update AI models safely and reliably and
hyperparameters in the intelligent application.



Implications of intelligent applications for software
engineering

The rise of intelligent applications has significant implications for how software is made. Developing
these intelligent applications requires an extension of traditional development skills. The AI engineer
must possess an understanding of prompt engineering, vector search, and evaluation, as well as
familiarity with the latest AI techniques and architectures. While a complete understanding of the
underlying neural networks is not necessary, basic knowledge of natural language processing (NLP)
is helpful.

Intelligent application development also introduces new challenges and considerations, such as data
management and integration with AI components, testing and debugging of AI-driven functionality, and
addressing the ethical, safety, and security implications of AI outputs. The compute-heavy nature of AI
workloads also necessitates focusing on scalability and cost optimization. Developers building traditional
software generally do not need to face such concerns.

To address these challenges, software development teams must adapt their processes and adopt novel
approaches and best practices. This entails implementing AI governance, bridging the gap between
software and ML/AI teams, and adjusting the development lifecycle for intelligent app needs.

Summary
Intelligent applications represent a new paradigm in software development, combining AI with traditional
application components to deliver highly personalized, context-aware experiences. This chapter details
the core components of intelligent applications, highlighting the pivotal role of LLMs as reasoning
engines. LLMs serve as versatile computational tools capable of performing diverse tasks, including
chat, summarization, and classification, due to their general-purpose design.

Complementing these reasoning engines are embedding models and vector databases, which function as
the semantic memory of intelligent applications. These components enable the reasoning engine to
retrieve pertinent context and information as needed. Additionally, the hosting of AI models demands
dedicated infrastructure, as their unique hardware requirements differ significantly from traditional
software needs. Using building blocks such as LLMs, embedding models, vector databases, and model
hosting infrastructure, developers can create applications that understand complex, unstructured data,
engage in open-ended interactions, generate novel content, and make autonomous decisions. Building
these intelligent applications demands a new set of tools, approaches, and best practices.

The next chapter will examine how LLMs work and the role they play in building intelligent applications.



Part 1

Foundations of AI: LLMs, Embedding Models, Vector
Databases, and Application Design
This set of chapters provides in-depth and practical knowledge on the techniques and principles
underpinning AI-intensive applications. You will progress quickly from fundamental concepts to real-
world use cases and learn best practices for building your AI solution.

This part of the book includes the following chapters:

Chapter 3, Large Language Models

Chapter 4, Embedding Models

Chapter 5, Vector Databases

Chapter 6, AI/ML Application Design
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Large Language Models
Language models are computational algorithms designed to process, understand, and generate natural
language. The study, research, and development of these algorithms is known as natural language
processing (NLP). NLP predates the field of machine learning (ML) and can be traced back to the
1950s and the development of the first computers. While the first language models relied heavily on
rule-based approaches, NLP shifted in the 1980s toward statistical methods and began to converge with
ML. The increase in computational power and text corpora led to the development of deep learning and
neural network-based language models in the early 21st century, which have seen significant progress
over the last decade.

Language models have a variety of applications in NLP for understanding and generating natural
languages as well as more formal languages, such as programming and database query languages. Their
use cases include tasks such as text labeling and sentiment analysis, translation, summarization,
information extraction, and question answering. With the advent of large language models  (LLMs),
applications have further expanded to develop conversational chat systems and personal assistants,
software development agents, and general problem-solvers. In this chapter, you’ll deep dive into the
essential concepts and implementation of LLMs.

This chapter will cover the following topics:

Language modeling with n-gram models to provide a probabilistic viewpoint

Artificial neural networks (ANNs), their architecture, and training paradigm

The application of ANNs to the language modeling domain

The Transformer architecture

LLMs in practice

Technical requirements
This chapter is largely theoretical, with a short code snippet in Python to illustrate the tiktoken
tokenizer library. To follow along, you will need access to a computer with Python version 3.8 or later.

To make the most of this chapter, you will need proficiency with Python and the pip package manager.
You will also need a basic knowledge of probabilities, calculus, and software development concepts such
as APIs.



Probabilistic framework
When building AI-intensive applications that interact with LLMs, you will likely come across API
parameters relating to probabilities of tokens. To understand how LLMs relate to the concept of
probabilities, this section introduces the probabilistic framework underpinning language models.

Language modeling is typically done with a probabilistic view in mind, rather than in absolute and
deterministic terms. This allows the algorithms to deal with the uncertainty and ambiguity often found in
natural language.

To build an intuitive understanding of probabilistic language modeling, consider the following start of a
sentence, for which you want to predict the next word:

 
The

This is obviously an ambiguous task with many possible answers. The article the is a very common and
generic word in the English language, and the possibilities are endless. Any noun, such as house, dog,
spoon, etc. could be a valid possible continuation of the sentence. Even adjectives such as big, green,
and lazy are likely candidates. Conversely, there are words rarely seen after an article, including verbs,
such as eat, see, and learn.

To deal with this kind of uncertainty, consider instead a slightly different question: “What is the
probability of each word to come next?”

The answer to this question is no longer a single word, but instead a large lookup table, assigning each
word in the vocabulary a number, which represents the probability of this word following the. If this
lookup table is representative of the English language, one would expect nouns and adjectives to have a
higher probability than verbs. Table 3.1 shows what such a table could look like, using made-up values
for the Probability column. You will see shortly how these probabilities can be calculated from a text
corpus:

Previous word Next word Probability

… … …

the house 0.012%

the dog 0.013%

the spoon 0.007%

… … …



the big 0.002%

the green 0.001%

the lazy 0.001%

… … …

the eat 0.000%

the see 0.000%

the learn 0.000%

…. .. …

Table 3.1: A partial lookup table for w ords follow ing the w ord the

In this simple example, one (but not the only) way to decide which word comes next is to scan through
this lookup table and find the word with the highest probability. This method, known as greedy
selection, would suggest that the word dog is the most probable continuation of the sentence.
However, it’s important to note that there are many possibilities, each with a different probability. For
instance, the word house is also a close second in terms of probabilities, indicating that it could also be a
likely continuation of the sentence.

To capture the flexibility and expressiveness of natural language, language models operate in terms of
probabilities, and the process of training a language model means assigning probabilities for each word
continuing the sentence thus far.

Assume you have gone through the process of selecting the next word several times, and find yourself
further along in the sentence:

 
The quick brown fox jumps over the

How does this sentence continue? What does the probability distribution look like now?

If you are familiar with this sentence , you’ll agree that at this point, the probability for the word lazy
will stand out above all others. Your internal language model can’t help but autocomplete the entire
sentence, and the words lazy dog will just pop into your head.

1 This sentence is a pangram. A pangram contains every letter of the alphabet at least once. The
sentence has been used in various contexts, such as typing practice and testing the display of text in
computers.
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But why is that? Aren’t you in the same situation as before, asking what follows next after the? The
key difference here is that you have more context; you see more of the sentence, which demonstrates
that considering only the preceding word is not sufficient to build a good predictor of the next word. Yet
this basic concept marks the very beginning of language models and can be viewed as a distant ancestor
of the likes of ChatGPT and other modern LLMs.

n-gram language models

One of the first formalisms of a language model is an n-gram model, a simple statistical language
model, first published in 1948 in Claude Shannon’s famous paper A Mathematical Theory of
Communication (https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf).

An n-gram language model can be described as a giant lookup table, where the model considers the last
n-1 words to predict the next. For n=2, you get a so-called bigram model, looking back only one word,
as shown in Table 3.1.

As the sentence in the previous example illustrated, such a simple bigram model is limited and fails to
capture the nuances of natural language. However, before exploring what happens when n is scaled up
to larger values, let’s briefly discuss how you would train a bigram model, which is to say, how to
calculate the probabilities for each pair of words in the table:

1. Take a large corpus of text, such as the collection of all Wikipedia pages in English.

2. Scan through this text and count the occurrences of single words as well as observed pairs of words.

3. Record all counts in a lookup table.

4. Calculate the probability of word  following word  as follows: divide the count for the word pair  by the count of the
single word .

For example, to calculate the probability of seeing the word dog following the word the, divide the pair
count by the single word count in the following way:

Here, the term  is pronounced as “probability of x given y.” In other words, the probability of
seeing the word dog given we’ve just seen the word the is the count of seeing the words in combination
(the numerator) divided by all counts of seeing the by itself (the denominator).

Thus, the training process of an n-gram language model only requires a single pass over the text,
counting all occurring n-grams and (n-1)-grams, and storing the numbers in a table.

In practice, several tricks improve the quality of n-gram models, such as including special <start> and
<end> markers at the beginning and end of each sentence, splitting words into smaller sub-words, such

https://people.math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf


as playing into play and -ing, and many other improvements. You will review some of these techniques
later in the Tokenization section, and they apply to modern LLMs as well.

Let’s now revisit the choice of n. As you have seen, a low value, such as n=2, doesn’t yield a very good
language model. Is it just a matter of scaling up n until you reach the level of desired quality?

A larger n value can capture more context and leads to a more predictive model. For n=8, the model can
look back at the last seven words. The lookup table, as shown in Table 3.2, would contain a row that
captures the example sentence:

Previous 7 words Next word Probability

… … …

the quick brown fox jumps over the lazy 99.381%

…. .. …

Table 3.2: A possible entry in the lookup table for an 8-gram

However, increasing n to large values has several challenges, which make this approach infeasible in
practice.

The size of the lookup table grows exponentially with a larger n. The Oxford English Dictionary
contains approximately 273,000 English words
(https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words), which allows for 
74.5 billion possible combinations of two words (though many of these combinations would never be
seen in a text). Increasing the n-gram model to n=8, the possible combinations of eight words grows to
the astronomical number of . Storing an entry in the table for each combination would be
impossible as this number far exceeds all available hard drive storage space in the world, especially
since the world’s collective data is estimated to reach 175 zettabytes =  bytes by 2025
(https://www.networkworld.com/article/966746/idc-expect-175-zettabytes-of-data-worldwide-by-
2025.html). Of course, most of these word combinations would never be encountered, and you could
choose to omit unseen n-grams in the table.

This challenge, known as the sparsity problem, highlights the real issue of n-gram models. As you
grow n, the probability of encountering any one n-gram shrinks exponentially. Most combinations of n
words would never be encountered for any realistic size of training dataset. When processing text that is
not part of the training corpus, the model would assign zero probability for unseen n-grams. The model
would not be able to make meaningful predictions in this case, and this problem would be exacerbated
the larger n became.

https://en.wikipedia.org/wiki/List_of_dictionaries_by_number_of_words
https://www.networkworld.com/article/966746/idc-expect-175-zettabytes-of-data-worldwide-by-2025.html


In summary, while n-grams have their uses for certain narrow applications and educational purposes, the
language models of today have evolved beyond purely statistical approaches. LLMs use machine
learning techniques to deal with some of the issues pointed out above, which you’ll learn about in the
next section.

Machine learning for language modelling
Before diving into language modeling approaches using ML, this section first introduces some general
ML concepts and gives a high-level overview of different neural network architectures.

At its core, ML is a field concerned with developing and studying algorithms that learn from data.
Rather than executing hardcoded rules, the system is expected to learn by example, looking at provided
inputs and desired outcomes (often referred to as targets  in ML literature) and adjusting its behavior
during the training process to change its outputs to closely resemble the user-provided targets.

ML algorithms are roughly differentiated into three groups:

Supervised learning

Unsupervised learning

Reinforcement learning

Each of these groups has different learning objectives and problem formulations. For language modeling,
you can mainly consider supervised (and related self-supervised) algorithms.

Arti f ic ial neural networks

One class of supervised learning algorithms is artificial neural networks  (ANNs). All modern LLMs
are variations of the basic ANN architecture. When you make an API call to a model such as GPT-4,
your question flows through an ANN to produce the answer. These models have evolved in size and
complexity over decades, but the core principles and building blocks remain the same.

The neural architectures found in human brains may have inspired the original design of ANNs, but
ANNs are significantly different from their biological counterparts.

ANNs are made of many smaller units called neurons, which are interconnected with each other in
various patterns, depending on the network architecture. Each neuron is a small processing unit,
receiving numeric signals from other neurons and passing a (modified) signal to its successor neurons,
analogous to biological neurons. ANNs have tunable parameters, referred to as weights , which sit on
the connections between two neurons and can influence the signal passing between them.

One of the most basic ANN architectures is the so-called feed-forward network (FFN), depicted in
Figure 3.1. In this architecture, neurons are arranged in layers, starting with an input layer, followed by



one or more hidden layers, and finally an output layer. The layer size, which refers to the number of
neurons per layer, can vary. Input and output layer sizes are determined by the specific problem domain.
For example, you may want to learn a mapping from a two-dimensional input (say, the body mass index
and age of a person) to a one-dimensional output (say, the daily resting calories burnt). The size of
hidden layers is often chosen arbitrarily through experimentation in a process called hyper-parameter
tuning.

In FFNs, every neuron in one layer connects to all neurons in the following layer, leading to a many-to-
many relationship between two consecutive layers. Figure 3.1 shows an FFN architecture with one
input layer (Layer 1), two hidden layers (Layers 2 and 3), and one output layer (Layer 4):

Figure 3.1: A feed-forw ard neural netw ork architecture

Zooming in on the functioning of a single neuron, Figure 3.2 shows a neuron with inputs from two other
neurons (denoted  and ). The connections to the neuron contain the weights (denoted  and ).
The inputs are first multiplied with their corresponding weight and then summed up. The resulting sum is
passed through a non-linear activation function  and the result forms the output of the neuron (shown
as ). In mathematical terms, this is expressed as follows: 

While the specifics of activation functions are out of scope for this chapter, suffice it to say that non-
linearity is important for the network to be able to learn complex patterns in the data.



Figure 3.2: Activation of a single neuron w ith tw o inputs

During a forward pass through the network, you present the input data (for example, the BMI and the
age of a person) at the input layer, calculate the activations of all neurons of the layer, pass these
activations to the next layer, and so forth, until the output layer produces an outcome (which, in this
example, you can interpret as the model’s prediction for calories burnt by a person).

It may seem surprising that the simple activation functions governing individual neurons in a neural
network can lead to complex pattern recognition capabilities. This phenomenon is rooted in the
universal approximation theorem, which proves that a neural network with enough hidden layers
and neurons can approximate any continuous function to any desired degree of accuracy.

You now know how data flows forward in an ANN from input to output layer. For an untrained model,
this is only the first of three phases. In the next section, you’ll learn about the other two phases required
to train an ANN: loss calculation and a backward pass.

Training an arti f ic ial neural network

So far, this chapter has described the forward pass of a network, that is, how a response for a given
input is calculated. Since the initial weights of an ANN are chosen randomly, the output of an untrained
network is also random and nonsensical. The weights need to be adjusted during the training process.

The goal of training a neural network is to make its outputs match the provided targets for any given
input. Thus, for supervised learning, a training dataset consists of input/target pairs of known correct
responses. In the example of predicting the calories burnt given a person’s BMI and age, the training
dataset would consist of many measurements of people’s BMI and age (the inputs) and their measured
calories burnt (the targets). The more measurements the dataset contains, the better the model can
learn patterns from the relationship between inputs and targets.

The training process for an ANN can be broken down into three phases, as illustrated in Figure 3.3:



1. Forward pass: Calculating the outputs from the inputs.

2. Loss calculation: Calculating an error signal between the outputs and the desired targets.

3. Backward pass and weight adjustment: Propagating the error back through the model and adjusting each of the weights.

Figure 3.3: The three phases of training an ANN

This process is repeated over multiple passes of the dataset, until the weight parameters no longer
meaningfully change. At this point, the model is said to have converged and is ready for inference.

Training starts with a forward pass  of the data, passing in the inputs and recording the network’s
output. As this output may differ from the correct target (especially for an untrained network with
random weights), it is possible to calculate a metric called loss , which is a scalar number that reflects
the difference between actual and desired output.

The loss is required to execute the backward pass . This step will adjust all weights of the network in
such a way that the network will produce an output closer to the target for the given input. The
activation for each neuron is a well-formed differentiable expression with sums, products, and a
differentiable activation function. This means that the derivative of a weight with respect to the loss can
be calculated by the rules of calculus to determine how each weight parameter needs to be adjusted to
minimize the loss.

This gradient calculation is then propagated backward to previous layers using the chain rule of calculus,
all the way to the input layer. Having calculated the gradients for each weight in this way, the weights



can then be updated. Controlled by a parameter called the learning rate , the weights can be moved a
small step toward the direction of minimizing the loss.

While it’s possible to execute this loop of forward and backward passes for every single entry in the
training set one by one, in practice the training set is split into small batches. A batch may contain tens,
hundreds, or even thousands of data points. The batch size  is another hyper-parameter chosen
experimentally through hyper-parameter tuning before the actual training process. Batching up the data
in such a manner serves these purposes:

It leads to higher efficiency as batches can be processed in parallel, especially on specialized hardware, such as graphical
processing units (GPUs).

The error gradients backpropagated through the network are averaged across each batch. This leads to more stable training as
single outliers in the data have less impact on the weight changes.

Training continues until the model no longer improves on unseen validation data.

After training, the trained model can then be applied to previously unseen inputs. For example, the model
can be integrated into a fitness tracking app, where it predicts burnt calories based on a person’s BMI
and age with the expectation that it will not only work for measurements in the training data but also
generalize to new data points as well. This application of a trained model to new data is known as
inference .

This training procedure is at the core of every neural network, including LLMs. As neural networks
operate on numeric data, the next section will show how language can be represented numerically to
make it compatible with the use of ANNs.

ANNs for natural language processing
The previous section showed how ANNs can learn mappings of numerical inputs to numerical outputs.
Language, however, is inherently non-numeric: a sentence is a sequence of discrete words from a large
vocabulary. Building a neural network-based word predictor poses the following challenges:

The inputs to the model are discrete words. Since ANNs operate on numeric inputs and outputs, a suitable mapping from words
to numbers and vice versa is required.

The inputs are further sequential. Unlike bigrams, the model should be able to take more than one word into account when
predicting the next word.

The output of the language model needs to be a probability distribution over all possible next words. To form a proper
distribution, the outputs need to be normalized to be non-negative and sum up to one.

The following sections will explain these challenges and review how they are addressed in modern
language models.



Tokenization

The first processing step to convert text to numeric inputs is called tokenization. During this phase,
words are split into common sub-words, characters, and punctuation marks, making up the vocabulary
of tokens. Each token is then assigned a unique integer ID.

When interacting with LLMs, especially when dealing with self-hosted open-source models, the choice
of tokenizer is important and must match exactly the one used during the training of the model. Luckily,
many common open-source tokenizers exist. Even commercial LLM providers, such as OpenAI, have
open-sourced their tokenizer libraries to make it easier to interact with their models. Bindings of
OpenAI’s tiktoken library are available for many popular programming languages, including Python,
C#, Java, Go, and Rust.

The following code example demonstrates the use of the tiktoken Python library. After installing the
package with pip install tiktoken, you can create an encoder object and encode any text, which
will return a list of token IDs. The following code snippet tokenizes the sentence tiktoken is a popular
tokenizer! and decodes each token ID back into its byte string:

 
import tiktoken 
# use the gpt-4 tokenizer 'cl100k_base'encoder = tiktoken.get_encoding("cl100k_base") 
token_ids = encoder.encode("tiktoken is a popular tokenizer!") 
print("Token IDs", token_ids) 
tokens = [encoder.decode_single_token_bytes(t) for t in token_ids]print("Tokens", 
tokens)

Running this code produces the following output:
 
Token IDs [83, 1609, 5963, 374, 264, 5526, 47058, 0] 
Tokens [b't', b'ik', b'token', b' is', b' a', b' popular', b' tokenizer', b'!']

You can see that the word tiktoken was split into three tokens, t, ik , and token, likely because the word
itself is not common enough to warrant its own token in the vocabulary. Also of note is that whitespace
is often encoded as part of a token, at the beginning, such as in “ is.”

When interacting with proprietary models via APIs, tokenization typically happens automatically and
server-side. This means that you can submit prompts in text form without having to tokenize the inputs
yourself. However, tiktoken and similar libraries are still useful tools when building AI-powered
applications. For example, you can use them to calculate the number of tokens of a request, as API
calls are usually charged by the number of submitted and returned tokens. Additionally, language models
have an upper token limit for their inputs, known as their context size . Requests that are too large may
fail or get truncated, which impacts the model’s response.

For the purposes of developing applications with LLMs, it is sufficient to know about tokenization when
it comes to the preprocessing of text. However, this is only the first step in making neural networks
understand textual inputs. Even though the token IDs are numeric, the assignment from the token to its



ID happens arbitrarily. Neural networks interpret their inputs geometrically and are not well suited to
processing large integer numbers. In the second step, called embedding, these integers are converted
into high-dimensional floating-point vectors, also known as embedding vectors  or simply
embeddings .

Embedding

Embedding is the process of mapping data into a high-dimensional vector space. This concept is not
just relevant to the training of language models but will also play an important role for vector databases
to retrieve semantically similar items, which we’ll discuss later in Chapter 5, Vector Databases.
Embeddings can be created for arbitrary data entities: words, sentences, entire documents, images, or
even more abstract concepts, such as users or products in the context of building recommender
systems.

The purpose of embeddings is twofold:

They are fixed-length floating-point representations of their corresponding entities, ideally suited to be processed by neural
networks.

Embeddings are coordinates in a vector space. With the right choice (or, rather, training), embeddings can represent semantic
similarities of data entities through their geometric proximity. This enables the use of geometric algorithms, such as clustering
or nearest neighbor search, to operate on the semantic meaning of the embedded data.

Embeddings are a fundamental concept at the core of language models and vector search. To
understand how tokens can be embedded, let’s assume a small vector space with only three dimensions,
as illustrated in Figure 3.4. To map a token into this space, a random point in this space is assigned to
each token. Here, the token is represented by its integer ID, and the random point in this space is
indicated by its x, y, and z coordinates. The mapping is done with the help of an embedding matrix
consisting of n rows and d columns, initialized with random floating-point numbers. Here, n is the size of
the vocabulary and d is the embedding dimensionality (in this example, d equals 3). To retrieve the
coordinates for a token, the token ID is used as a row index into the embedding matrix, returning a d-
dimensional vector. For example, the token fox may be assigned the following coordinates: [-0.241,
1.356, -0.7882].



Figure 3.4: Visual representation of tokens embedded in a three-dimensional vector space

Just like the weights of a neural network are assigned randomly before training, the values of the
embedding matrix are also chosen randomly. Furthermore, and this is a crucial step in the training of
LLMs, the embedding matrix values are treated as additional learnable parameters of the neural
network. By allowing the gradients to flow all the way back into the embedding layer, the model can
update the positions of the token coordinates during training in such a way that it helps the prediction
task.

Studies on fully trained embedding layers of LLMs reveal that the model moves semantically similar
tokens close together. In the earlier example, you might find a cluster of nouns (fox, dog) or a cluster of



adjectives (quick , lazy, brown). However, with only three dimensions, similarity is limited to only three
attributes by which tokens can be compared. LLMs use vector spaces with much larger dimensionality,
often in the order of hundreds or even thousands of dimensions. In such a high-dimensional space,
tokens can relate to each other (and be close to each other geometrically) in many ways. Some of the
dimensions may have interpretable meanings, such as the sentiment of a word. However, most of them
are likely to make sense only to the model internally.

In this section, you have seen how text is prepared for neural network training by splitting it into tokens
and assigning token IDs, which can be used as an index to find the corresponding embedding vector in
the embedding matrix. These vectors have geometric meaning and can be updated as part of the
training phase. Next, you’ll learn how the outputs of the neural network can be interpreted as
probabilities of choosing the next token.

Predicting probabili ty distributions

As you have seen in the n-gram language models section, the model needs to output a probability
distribution over the next tokens, that is, one numeric value for each token in the vocabulary. By
choosing an output layer size matching the vocabulary size, the neural network will give you the right
output shape, but these numbers can theoretically be any real number, including negative or very large
positive numbers.

To form a proper probability distribution, the outputs must meet two additional conditions:

The outputs must be non-negative.

The outputs must sum up to 1.0.

A special activation function called softmax has been designed for this exact purpose and is used for
the output layer when probabilities are expected.

The mathematical formulation of the softmax function is as follows: 

Intuitively, the application of the exponential function in the numerator maps the range from negative to
positive infinity to that of non-negative numbers (  for all x). By dividing by the sum of all exponents,
you normalize the values to ensure that the sum of outputs exactly adds up to 1.

The targets for training the model also need to contain vectors of the same length (one value per token).
Since the next word at each step in the token sequence is known, you can encode the correct token
with one-hot encoding. You can assign a value of 1.0 to the correct token’s position in the vector and
0.0 to all other positions, as shown in Figure 3.5. This ensures that during the backward pass, the
probability of seeing the correct next token is increased while all other probabilities are decreased.



Figure 3.5: Example output probabilities as predicted by the model and targets for the token fox

With tokenization, embedding, and softmax activation, you can convert language into a numeric format
that an ANN can understand. Further, the ANN can interpret the numeric outputs of the model as a
discrete probability distribution over the next token. The final missing piece to model language with
ANNs is the processing of sequences, which are discussed next.

Dealing with sequential data
To produce good next-token predictions, a language model needs to be able to consider a sizeable
context, reaching back many words or even sentences.

To demonstrate this, consider the following text:

A solitary tiger stealthily stalks its prey in the dense jungle. The underbrush whispers as it
attacks, concealing its  advance toward an unsuspecting fawn.

The second sentence in this example contains two pronouns, it and its (shown in bold above), both
referring to the tiger from the previous sentence, many words apart. But without seeing the first
sentence, you’d likely assume that it refers to the underbrush instead, which would have led to a very
different sentence ending, such as this one:

The underbrush whispers as it sways gently in the soft breeze.

This shows long-range context matters for language modeling and next-token prediction. You can
construct examples of arbitrary length where the pronoun resolution relies on the context provided many
sentences earlier. These temporal dependencies and ambiguities are inherent to natural language, so a
good language model needs to process long sequences of words.



However, the FFN architecture introduced earlier is stateless and does not possess any memory of
previously seen inputs. It is not suitable for sequential tasks, where future tokens depend on and refer to
previous tokens.

Sequence learning is a fundamental problem in ML, not just for NLP but many other areas, such as time
series prediction, speech recognition, video understanding, robot control, etc. In some cases, the inputs
are sequential, in others the outputs are sequential, or even both. Different modifications to the FFN
architecture have been proposed to tackle this problem.

Recurrent neural networks

One class of ANNs that deals with sequential data is called recurrent neural networks  (RNNs).
Unlike FFNs, RNNs include connections from a neuron to itself and its neighboring neurons within the
same layer. These recurrent connections give the model an internal state, where previous activations
can flow in a circular fashion and remain in the network when processing the next input, as depicted in
Figure 3.6:



Figure 3.6: Recurrent connections give RNNs an internal state

The training of RNNs remains like that of FFNs, where the RNN can be unrolled across time steps,
and conceptually transformed into an FFN (albeit with many more layers and additional inputs
corresponding to the internal states).

However, one limitation of RNNs is that the gradients quickly diminish with each iteration through a
recurrent connection. The network tends to forget activations that go back more than a few time steps,
an issue known as the vanishing gradient problem.

To address this problem, further architectural changes have been proposed, including long short-term
memory (LSTM) and gated recurrent unit (GRU) networks. In these models, cells consisting of
multiple neurons are introduced, which can trap the gradient signal inside over thousands of time steps,
thus alleviating the vanishing gradient problem.



LSTMs have been applied successfully to many sequence problem domains, including robotics, speech
and handwriting recognition, language translation, and playing video games.

However, the training of recurrent networks happens sequentially along the time dimension, meaning
that each time step requires a separate forward and backward pass through the network. This slows
down training significantly, particularly for long sequences.

RNNs have another limitation. Though the network can, in principle, remember previous activations due
to its recurrent connections, this internal state needs to be carried forward for each time step. The
model does not have direct access to the global context and its previous inputs explicitly.

Both limitations were addressed by a breakthrough discovery in 2017, which is discussed in the next
section.

Transformer architecture

In 2017, Google published a new network architecture aimed to address some of the drawbacks of
recurrent networks. This now famous paper, titled Attention Is All You Need
(https://arxiv.org/abs/1706.03762), introduced the Transformer architecture, which departed from the
idea of recurrent connections and instead relied on an attention mechanism to consider previous tokens
in an otherwise stateless neural network. This publication marked a significant shift in the field of ML
and NLP and paved the way for almost all modern LLMs as variations of the original transformer.

Their advantages over recurrent networks—including the ability to process sequences in parallel,
reduced computational complexity for long sequences, and superior handling of long-range dependencies
—are key reasons why transformer architectures have become ubiquitous in the domain of NLP and
beyond.

At a high level, the original transformer model consists of two components: an encoder and a decoder.
This architecture was proposed for the purpose of language translation, a sequence-to-sequence
learning task with an input sequence of tokens in the source language processed by the encoder, and
an output sequence of tokens in the target language processed by the decoder.

While some LLMs still use this encoder/decoder structure, other families of models nowadays use
simplified architectures building only on the encoder (such as BERT language models and variants) or
the decoder (the GPT family). Generative models, including OpenAI’s GPT series, Meta’s Llama,
Anthropic’s Claude, and Google’s PaLM models, all frame language modeling as next-token prediction,
where the learning task is sequence-to-single token, as compared to sequence-to-sequence in the
encoder/decoder structure. This allows for a simpler architecture, doing away with the encoder and only
using the decoder part of a transformer.

https://arxiv.org/abs/1706.03762


Both the encoder and decoder of a transformer consist of many layers of so-called transformer
blocks . Unlike FFNs, where each layer is simply a fully connected layer of neurons with the next, a
transformer block has an additional attention layer preceding the fully connected layer.

The attention layer’s purpose is to learn which tokens in the sequence seen so far are most relevant
when processing the current token. It assigns high attention weights to words that are highly relevant in
the current context, and low attention weights to generic or irrelevant words, as you can see in Figure
3.7:

Figure 3.7: Attention maps for tw o sentence variations ending in hungry versus tasty

Figure 3.7 shows attention maps for two sentences where only the last word differs. Darker color
shades indicate higher attention weights. A transformer model would learn to pay more attention to
tokens related to hungry, such as cat, in the first example, and to tokens related to tasty, such as food,
in the second example.

This attention mechanism is key to transformers. The landmark paper on Transformer architecture
demonstrated that this mechanism alone could solve the sequential data problem without introducing
recurrent connections into the architecture.



LLMs in practice
So far, this chapter has mainly discussed the theoretical foundations of LLMs. Let’s close this chapter
with an overview of the LLM landscape as it stands today, discussing some considerations for choosing
an appropriate LLM as well as different techniques to tailor the model’s responses to your needs.

The evolving field of LLMs

Generative AI and LLMs are a rapidly changing field, with new models, frameworks, and research
papers on the topic released frequently. Most of the know-how to train an LLM is publicly available, yet
at the time of writing, the cost of training a state-of-the-art LLM from scratch is still in the order of tens
to hundreds of millions of US dollars, due to the large amount of GPU compute resources needed. This
cost puts training your own model out of reach of individuals and most smaller companies, who will have
to rely on pre-trained LLMs.

The most competent models as of the time of writing, namely OpenAI’s GPT-4o (https://openai.com/)
and Anthropic’s Claude 3.5 Sonnet (https://www.anthropic.com/), remain closed source but can be
accessed via APIs on a per-token cost model. Open-source models, such as Meta’s Llama 3
(https://llama.meta.com/), are still behind on common benchmarks, but the gap is closing quickly.
Depending on your use case and throughput requirements, it may be more cost-effective to self-host an
open-source model or choose one of the many providers that offer model-hosting services.

Other considerations when choosing between open and closed models include security and compliance,
technical support, and vendor lock-in. Commercial LLM offerings often come with technical support
and moderation endpoints to filter illegal requests and harmful or objectionable content and provide
detailed documentation for their APIs and models. Open models, in contrast, provide more flexibility and
customization, as well as transparency and interoperability with other models, and avoid potential vendor
lock-in.

Prompting, f ine-tuning, and RAG

LLMs accept inputs in the form of text prompts (or simply prompts), which can be questions,
statements, or requests that guide the model’s response. While the best LLMs are very capable and
efficient in answering a wide range of different requests, chances are that a simple prompt may not lead
to acceptable results for your application. Your use case may require special domain knowledge or
responses in an uncommon (natural or programming) language that is under-represented in the original
training dataset, or you may work with proprietary non-public data. This will not prevent you from
integrating LLMs into your applications. There are several strategies available to deal with this scenario:

Different prompting strategies

https://openai.com/
https://www.anthropic.com/
https://llama.meta.com/


Fine-tuning an LLM on custom data

Retrieval-augmented generation (RAG)

Prompting an LLM is more of an art than a hard science, which has led to an entirely new “prompt
engineer” role in software development. Common techniques include zero- and few-shot prompting and
chain-of-thought prompting. For more advanced prompting techniques, you can refer to the Prompt
Engineering Guide at https://www.promptingguide.ai/. You’ll learn more about different prompting
strategies in Chapter 9, LLM Output Evaluation.

For an even more custom-tailored response, pre-trained LLMs can be further trained on your own
specific data through a process known as fine-tuning. Fine-tuning allows for adjustment of the
language and style of the response, as well as injecting domain knowledge into the LLM. However, the
process can be expensive depending on the dataset size. Fine-tuned models need to be evaluated
carefully, as adjusting the weights may lead to overfitting, which can impact the model responses on
previous tasks.

Retrieval-augmented generation (RAG) is another strategy to inject outside knowledge of
proprietary data into an LLM. Here, an external knowledge base (for example, a vector database,
which you will learn about in Chapter 5, Vector Databases) is first queried with each request, and
relevant information from the external data source is then included in the LLM prompt. While this
alleviates some of the downsides of fine-tuning, one limiting factor is the length of the prompt (the
context size) that the LLM can process in a single request. It is thus important to filter out irrelevant
information to keep the prompt size manageable.

Summary
This chapter covered the main components of a modern transformer-based LLM and a quick overview
of the LLM landscape as it stands today.

It detailed how text can be transformed into numeric data to be processed by ANNs. To summarize,
sentences of a large text corpus are tokenized and assigned integer token IDs. Token IDs index into an
embedding matrix, turning the integers into real-valued embedding vectors of fixed length. To create the
targets for supervised training, the inputs are shifted by one token to the right, so that the target at each
position becomes the token that follows in the sequence.

Sequential data can be learned with recurrent neural networks, but these have been superseded by
transformers, which use an attention mechanism to learn which previous tokens are most relevant to
predict the next. At every step in the sequence, the model predicts probabilities for each token in the
vocabulary, which can be used to generate the next token.

https://www.promptingguide.ai/


The training dataset, consisting of inputs and targets, is split into smaller batches. With repeated forward
and backward passes through the network, gradient calculation, and weight adjustments, the network
learns to adjust the probabilities for each token given the context of previous tokens. You learned how
these mechanisms have been put into practice by modern-day LLMs. You also got a brief introduction
to some methods that can help you make the most of your language model.

In the next chapter, you will take this knowledge forward with an understanding of embedding models
and their crucial role in machine learning.



4

Embedding Models
Embedding models  are powerful machine learning techniques that simplify high-dimensional data into
lower-dimensional space, while preserving essential features. Crucial in natural language processing
(NLP), they transform sparse word representations into dense vectors, capturing semantic similarities
between words. Embedding models also process images, audio, video, and structured data, enhancing
applications in recommendation systems, anomaly detection, and clustering.

Here is an example of an embedding model in action. Suppose the full plot in a database of movies has
been previously embedded using OpenAI’s text-embedding-ada-002 embedding model. Your goal is to
find all movies and animations for Guardians of the Galaxy, but not by traditional phonetic or lexical
matching (where you would type some of the words in the title). Instead, you will search by semantic
means, say, the phrase Awkward team of space defenders. You will then use the same embedding
model again to embed this phrase and query the embedded movie plots. Table 4.1 shows an excerpt of
the resulting embedding:

Dimension Value

1 0.00262913

2 0.031449784

3 0.0020321296

... ...

1535 -0.01821267

1536 0.0014683881

Table 4.1: Excerpt of embedding

This chapter will help you understand embedding models in depth. You’ll also implement an example
using the Python language and the langchain-openai library.

This chapter will cover the following topics:

Differentiation between embedding models and LLMs



Types of embedding models

How to choose an embedding model

Vector representations

Technical requirements
To follow the examples in this chapter, you will need the following prerequisites:

A MongoDB Atlas cluster. An Atlas M0 free cluster should be sufficient as you will store a small set of documents and create
only one vector index.

An OpenAI account and API key with access to the text-embedding-3-large model.

A Python 3 working environment.

You will also need to have installed Python libraries for MongoDB, LangChain, and OpenAI. You can
install these libraries in your Python 3 environment as follows:

 
%pip3 install --upgrade --quiet pymongo pythondns langchain langchain-community 
langchain-mongodb langchain-openai 

To successfully execute the example in this chapter, you will need a MongoDB Atlas Vector Index
created on the MongoDB Atlas cluster. The index name must be text_vector_index, created on the
embeddings.text collection as follows:

 
{ 
  "fields": [ 
    { 
      "numDimensions": 1024, 
      "path": "embedding", 
      "similarity": "cosine", 
      "type": "vector" 
    } 
  ] 
}

What is an embedding model?
Embedding models are a type of tool used in machine learning and artificial intelligence that simplifies
large and complex data into a more manageable form. This process, known as embedding, involves
reducing the data’s dimensions.

Imagine going from a detailed world map with highways, railroads, rivers, trails, and so on, to a simpler,
summarized version with only country boundaries and capital cities. This not only makes computation
faster and less resource-intensive, but also helps identify and understand relationships within the data.
Because embedding models streamline the processing and analyzing of large datasets, they are
particularly useful in areas of language (text) processing, image and sound recognition, and
recommendation systems.



Consider a vast library where each book stands for one point in high dimensions. Embedding models can
help reorganize the library to improve ease of navigation, such as by grouping the books on related
topics closer together and reducing the library’s overall size. Figure 4.1 illustrates this concept:

Figure 4.1: An embedding model example for a library use case

This conversion or reduction from a high-dimensional or original representation to a lower-dimensional
representation created the basis for advancements in NLP, computer vision, and more.

How do embedding models differ from LLMs?

Embedding models are specialized algorithms that reduce high-dimensional data (such as text, images, or
sound) into a low-dimensional space of dense vectors. On the other hand, LLMs are effective artificial
neural networks pre-trained on gigantic corpora of textual data.

While both are rooted in neural networks, they employ distinct methodologies. LLMs are designed for
generating coherent and contextually relevant text. LLMs leverage massive amounts of data to
understand and predict language patterns. Their basic building blocks include transformer architectures,
attention mechanisms, and large-scale pre-training followed by fine-tuning.

In contrast, embedding models focus on mapping words, phrases, or even entire sentences into dense
vector spaces where semantic relationships are preserved. They often use techniques such as
contrastive loss , which helps in distinguishing between similar and dissimilar pairs during training.



Positive and negative sampling is another technique employed by embedding models. Positive samples
are similar items (such as synonyms or related sentences), while negative samples  are dissimilar items
(such as unrelated words or sentences). Figure 4.2 visualizes an example of contrastive loss and
positive and negative sampling in 2D space. This sampling aids the model in learning meaningful
representations by minimizing the distance between positive pairs and maximizing the distance between
negative pairs in the vector space.

Figure 4.2: 2D visualization of contrastive loss and positive and negative sampling

To summarize, while LLMs excel in language generation tasks, embedding models are optimized for
capturing and leveraging semantic similarities. Both enhance NLP by enabling machines to grasp and
produce human language more effectively. Now, let’s look at an example of each.

Word2vec (developed by Google) transforms words into vectors and discerns semantic relationships,
such as “king” is to “man” as “queen” is to “woman.” It’s useful for sentiment analysis, translation, and
content recommendations, enhancing natural language understanding for machines.

GPT-4 (developed by OpenAI) is an LLM that is characterized by its ability to generate human-like text
based on the input it receives. GPT-4 excels in a range of language-based tasks, including conversation,
content generation, summarization, and translation. Its architecture allows it to comprehend the intricate
details and nuances of language, enabling it to perform tasks that require a deep understanding of
context, humor, irony, and cultural references.

When to use embedding models versus LLMs



Embedding models are used in scenarios where the goal is to capture and leverage the relationships
within data. They are the ideal choice for the following tasks:

Semantic similarity: Finding or recommending items (such as documents or products) that are like a given item.

Clustering: Grouping entities based on their semantic properties.

Information retrieval: Enhancing search functionalities by understanding the semantic content of queries.

LLMs are the go-to for tasks that require text understanding, generation, or both, such as the following:

Content creation: Generating text that is coherent, contextually relevant, and stylistically appropriate. For example,
generating a synopsis from the full plot of a movie.

Conversational AI: Building chatbots and virtual assistants that can understand and engage in human-like dialogue, such as
answering questions about employment policies and employee benefits.

Language translation: The extensive training on language-diverse datasets allows LLMs to handle idiomatic expressions,
cultural nuances, and specialized terminology.

Embedding models and LLMs both play crucial roles in AI. Embedding models capture and manipulate
semantic properties compactly, while LLMs excel in generating and interpreting text. Using both, and
selecting the right embedding models based on your goals, can unlock AI’s full potential in your projects.

Types of embedding models

Word-level models, including Global Vectors for Word Representation (GloVe) and Bidirectional
Encoder Representations from Transformers  (BERT), capture broader textual meanings.
Specialized models such as fastText adapt to linguistic challenges. All of these reflect the evolving
landscape of embedding models.

In this section, you will explore many types of embedding models: word, sentence, document, contextual,
specialized, non-text, and multi-modal.

W ord embeddings
Word embedding models  capture semantic meanings based on context within extensive text corpora.
One common approach involves a neural network that learns word associations either by predicting a
word from its surrounding context or vice versa. Another method combines matrix factorization with
context window techniques to generate embeddings by summarizing word co-occurrence frequencies in
large matrices. A further enhancement treats each word as a collection of character n-grams (a
sequence of n adjacent symbols in a particular order), which helps to better handle prefixes, suffixes,
and rare words. Word2vec and GloVe are examples of these models.

Word2vec was the first attempt of embedding models to learn the representation of words as vectors
based on their contextual similarities. Developed by a team from Google, it uses two architectures:
Continuous Bag of Words  (CBOW), which predicts a word given a context, and skip-gram, which



predicts a context for a given word. Word2vec has been seen to capture the relationship in the syntax of
words, evidenced by its ability to deduce meanings from arithmetic operations performed with word
vectors.

GloVe , developed at Stanford University, merges the benefits of two leading word representation
approaches: global matrix factorization with co-occurrence statistics and context window methods. By
constructing a co-occurrence matrix from the corpus and applying dimensionality reduction techniques,
GloVe captures both global statistics and local context, which is invaluable for tasks that require a deep
understanding of word relationships.
Sentence and document embeddings
Sentence and document embedding models  capture the overall semantic meaning of text blocks by
considering word context and arrangement. A common approach aggregates word vectors into a
coherent vector for the whole text unit. These models are useful in document similarity, information
retrieval, and text summarization, such as synopses versus full movie plots. Notable models include
Doc2vec and BERT.

Building on Word2vec, Doc2vec, which is also known as Paragraph Vector, encapsulates whole
sentences or documents as vectors. Introducing a document ID token that allows the model to learn
document-level embeddings alongside word embeddings aids significantly in tasks such as document
classification and similarity comparison.

Google’s BERT employs context-aware embeddings, reading the entire sequence of words
concurrently, unlike its predecessors that processed text linearly. This approach enables BERT to
understand a word’s context from all surrounding words, resulting in more dynamic and nuanced
embeddings and setting new standards across various NLP tasks.
Contextual embeddings
Contextual embedding models  are designed to produce word vectors that vary according to the
context of use in a sentence. These models use deep learning architectures by examining the whole
sentence, or at times the surrounding sentences. The contextual model produces dynamic embeddings
that capture nuances based on a word’s particular context and linguistic environment. A model
architecture of this kind uses a bi-directional framework to process text both forward and in reverse,
thereby capturing fine semantic and syntactic dependencies within the preceding and following contexts.
They are useful in sentiment analysis (such as to interpret the tone of the text in an IT support ticket)
and question-answering tasks where the exact meaning of words for interpretation is necessary. ELMo
and GPT are two examples.

Embeddings from Language Models  (ELMo) introduced dynamic, context-dependent embeddings,
producing variable embeddings based on a word’s linguistic context. This approach greatly enhances
performance on downstream NLP tasks by providing a richer language understanding.



OpenAI’s GPT series  leverages transformer technology to offer embeddings pre-trained on extensive
text corpora and fine-tuned for specific tasks. GPT’s success underscores the efficacy of combining
large-scale language models with transformer architectures in NLP.

Specialized embeddings
Specialized embedding models  capture specific linguistic properties, such as places, people, tone, and
mood, in vector space. Some are language- or dialect-specific, while others analyze sentiment and
emotional dimensions. Applications include legal document analysis, support ticket triage, sentiment
analysis in marketing, and multilingual content management.

fastText is an example of a specialized embedding model. Developed by Facebook’s AI Research lab,
fastText enhances Word2vec by treating words as bags of character n-grams, which proves particularly
helpful for handling out-of-vocabulary (OOV) words. OOV words are words not seen during training
and thus lack pre-learned vector representations, posing challenges for traditional models. fastText
enables embeddings for OOV words through the summation of their sub-word embeddings. This makes
it especially suitable for handling rare words and morphologically complex languages, which are
languages with rich and varied word structures that use extensive prefixes, suffixes, and inflections to
convey different grammatical meanings, such as Finnish, Turkish, and Arabic.
Other  non-text  embedding models
Embedding models go beyond converting only text to vector representations. Images, audio, video, and
even JSON data itself can be represented in vector form:

Images: Models such as Visual Geometry Group (VGG) and Residual Network (ResNet) set benchmarks for the
translation of raw images into dense vectors. These models capture important visual features, such as edges, textures, and color
gradients, which are vital to many computer vision tasks, including image classification and object recognition. VGG works well
at recognizing visual patterns, while ResNet improves accuracy in complex image-processing tasks, such as image segmentation
or photo tagging.

Audio: OpenL3 and VGGish are models for audio. OpenL3 is a model adapted from the L3-Net architecture that is used in
audio event detection and environmental sound classification to embed audio into a temporal and spectral context-rich space.
VGGish is born out of the VGG architecture for images, and so follows the same principle of converting sound waves into
patterns of small, compact vectors. This simplifies tasks such as recognition of speech and music genres.

Video: 3D Convolutional Neural Networks (3D CNNs or 3D ConvNets) and Inflated 3D (I3D) expand the capabilities
of image embeddings in perceiving the temporal dynamics paramount to both action recognition and for video content
analysis. 3D ConvNets apply convolutional filters in three dimensions (height, width, time) capturing spatial and temporal
dependencies in volumetric data, making them particularly effective for spatiotemporal data, such as video analysis, medical
imaging, and 3D object recognition. I3D uses a spatiotemporal architecture that combines the outputs of two 3D ConvNets:
one processes RGB frames, while the other handles optical flow predictions between consecutive frames. I3D models are useful
for sports analytics and surveillance systems.

Graph data: Node2vec and DeepWalk capture connectivity patterns of nodes within a graph and are applied in the domains of
social network analysis, fraud detection, and recommendation systems. Node2vec learns continuous vector representations for
nodes by performing biased random walks on the graph. This captures the diverse node relationships and community structures,
improving the performance of tasks such as node classification and link prediction. DeepWalk treats random walks as



sequences of nodes like sentences in NLP by capturing the structural relationships between nodes and encodes them into
continuous vector representations, which can be used for node classification and clustering.

JSON data: There are even JSON data embedding models, such as Tree-LSTM, which is a variation of the traditional long
short-term memory (LSTM) networks, adapted specifically to handle data with a hierarchical tree structure, such as JSON.
Unlike standard LSTM units that process data sequentially, Tree-LSTM operates over tree-structured data by incorporating
states from multiple child nodes into a parent node, effectively capturing the dependencies in nested structures. This makes it
particularly suitable for tasks such as semantic parsing and sentiment analysis, where understanding the hierarchical
relationships within data can significantly improve performance. json2vec is an implementation of this kind of embedding
model.

After single-mode models, you can explore multi-modal models. These analyze multiple data types
simultaneously and are crucial for applications such as autonomous driving, where merging data from
sensors, cameras, and LiDAR builds a comprehensive view of the driving environment.
Mult i-modal models
Multi-modal embedding models  process and integrate information from many types of data sources
into a unified embedding space. This approach is incredibly useful when different modalities complement
or reinforce each other and together can lead to better AI applications. Multi-modal models are
excellent for in-depth comprehension of multisensory input content, such as the tasks of multi-media
search engines, automated content moderation, and interactive AI systems that can engage the user via
visual and verbal interaction. Here are a few examples:

CLIP: A well-known multi-modal model by OpenAI. It learns how to correlate visual images with textual descriptions in such a
way that it can recognize images it has never seen during training, based on natural language queries.

LXMERT: A model that focuses on processing both visual and text inputs. It can improve the performance of tasks such as
answering questions with a visual aspect, which includes object detection.

ViLBERT: Vision-and-Language BERT (ViLBERT) extends the BERT architecture to process both visual and textual inputs
simultaneously by using a two-stream model where one stream handles visual features extracted from images using a pre-trained
convolutional neural network (CNN or ConvNet), and the other processes textual data with cross-attention layers
facilitating interaction between the two modalities. ViLBERT is used for tasks such as visual question answering and visual
commonsense reasoning, where understanding image-text relationships is essential.

VisualBERT: Integrates visual and textual information by combining image features with contextualized word embeddings
from a BERT-like architecture. It is commonly used for tasks such as image-text retrieval and image captioning, where aligning
and understanding both visual and textual information are essential.

You have now explored word, image, and multi-modal embeddings. Next, you’ll learn how to choose
embedding models based on your application’s needs.

Choosing embedding models
Embedding models impact an application’s performance, its ability to understand language and other
forms of data, and ultimately, a project’s success. The following sections look at the parameters for
choosing the right embedding model that aligns with the task requirements, characteristics of your



dataset, and computational resources. This section explains vector dimensionality and model
leaderboards as additional information to consider when choosing embedding models. For a quick
overview of this section, you can consult Table 4.2.

Task requirements

Each type of task may benefit from different embedding models based on how they process and
represent text data. For instance, tasks such as text classification and sentiment analysis often require a
deep understanding of semantic relationships at the word level. Word2vec or GloVe are particularly
beneficial in these cases, as they provide robust word-level embeddings that capture semantic meanings.

For more complex linguistic tasks such as named entity recognition (NER) and part-of-speech
(POS) tagging, the ability to understand the context in which a word is used becomes critical. Here,
models such as BERT or ELMo show their strengths as they generate embeddings that vary
dynamically based on the surrounding text, providing a richer and more precise understanding of each
word’s role within a sentence. This deep contextual awareness is essential for accurately identifying
entities and tagging parts of speech, as it allows the model to differentiate between words with multiple
meanings based on their usage.

Advanced models such as BERT, GPT, and Doc2vec are ideal for tasks requiring nuanced language
understanding, such as question answering, machine translation, document similarity, and clustering.
These models handle complex dependencies within text, making them suitable for analyzing entire
documents. Doc2vec excels in comparing thematic similarities between documents, like finding similar
news or sports articles.

Dataset characteristics

When choosing an embedding model, consider the dataset’s size and characteristics. For
morphologically rich languages or datasets with many OOV words, models such as fastText, which
capture sub-word information, are advantageous. They handle new or rare words effectively. For texts
with polysemous words (words with multiple meanings), contextual embeddings such as ELMo or
BERT are essential, as they provide dynamic, context-specific representations.

The dataset size influences the choice of embedding model. Larger datasets benefit from complex
models such as BERT, GPT, and OpenAI’s text-embedding-3-large, which capture deep linguistic
nuances but require substantial computational power. Smaller datasets might benefit from simpler
models such as text-embedding-3-small, offering robust performance with less computational
demand. This ensures even modest datasets can yield significant insights with the appropriate model.



Computational resources

Computational cost is crucial when selecting an embedding model due to varying resource demands.
Larger models such as GPT-4 require extensive computational power, making them less accessible to
smaller organizations or projects with limited budgets.

Choosing a lightweight model or fine-tuning one for specific tasks can reduce computational needs,
speed up development, and improve response times. Efficient models are essential for real-time tasks
such as translation, speech recognition, and instant recommendations in gaming, media streaming, and e-
commerce.

Some level of iterative experimentation helps identify the most suitable models. Staying updated on the
latest developments is critical, as newer models frequently supersede older ones. Model leaderboards
can help track advancements in the field and are covered later in this section.

Vector representations

The size of a vector in an embedding model affects its ability to capture data complexity. Large vectors
encode more information, allowing finer distinctions, but require more computation. Small vectors are
more efficient but might miss subtle nuances. Choosing a vector size involves balancing detailed
representation with practical constraints like memory and speed.

W hy do vector  dimensions matter?
Knowing the relationship between a vector, its size, and the second-last layer of a neural network is
crucial for understanding the quality of the model’s output. The penultimate or second-last layer often
serves as a feature extractor, where the dimensions of the output vector represent the learned features
of the input data, as visualized in Figure 4.3. The size of this vector directly influences the granularity of
the representation.



Figure 4.3: Penultimate layer of a neural netw ork

To obtain these vectors, the output layer (the last layer) of the neural network is removed, and the
output from the preceding layer—the penultimate or second-last layer—is captured. Typically, the final
layer outputs the model’s prediction, prompting the use of the output from the layer just before it. The
data that is fed into the network’s predictive layer is known as vector embedding.

The dimensionality of a vector embedding aligns with the size of the penultimate layer of the underlying
neural network of the model being used, making it synonymous with the vector’s size or length.
Dimensionalities such as 384 (by SBERT’s all-MiniLM-L6-v2), 768 (by SBERT’s all-mpnet-base-
v2), 1,536 (by OpenAI’s text-embedding-ada-002), and 2,048 (from ResNet-50 by Microsoft
Research) are common. Larger vectors are becoming available now, such as 3,072 by OpenAI’s text-
embedding-3-large.
W hat does a vector  embedding mean,  and how is it  typically
used?
Vector embeddings are the output of an embedding model, expressed as an array of floating-point
numbers that typically range from –1.0 to +1.0. Each position in the array represents a dimension.



Vector embeddings play a key role in context-retrieval use cases, such as semantic search in chatbots.
Data is embedded and stored in a vector database upfront, and queries must use the same embedding
model for accurate results. Each embedding model produces unique embeddings based on its training
data, making them specific to the model’s domain and not interchangeable. For example, the embedding
obtained from a model trained on full documents of legal text will differ from one trained on healthcare
data for patient history.

You may recall the example of trying to find movies for Guardians of the Galaxy at the beginning of
this chapter. You now understand why you had to embed the search string (which is also called the
query vector) using the same embedding model. This workflow, common in AI applications, is explained
in Figure 4.4:

Figure 4.4: Typical data flow  for embedding source data into the vector store and query vectors

The workflow shows the Transform into embedding step twice: one for embedding existing data into a
vector database (on the left) and another for real-time embedding of the query (on the right). Both steps
must use the same embedding model.

Embedding model leaderboards

With such a variety of existing models and new models constantly evolving, how can you stay up to
date? Embedding model leaderboards , such as those offered by platforms like Hugging Face, help
gauge the performance of various models across numerous tasks. They provide transparent and
competitive rankings of models based on criteria, such as accuracy and efficiency. By measuring
models against standardized datasets and benchmark tasks, these leaderboards pinpoint state-of-the-art
models and their trade-offs.

The Massive Text Embedding Benchmark (MTEB) leaderboard from Hugging Face is a critical
resource. It offers a comprehensive overview of the performance benchmarks of text embedding



models. To see which models are setting the standard, visit the Hugging Face MTEB leaderboard:
https://huggingface.co/spaces/mteb/leaderboard.

You can also consult other leaderboards as you select the components of your AI/ML application
architecture. Hugging Face hosts the Open LLM leaderboard (https://huggingface.co/spaces/open-llm-
leaderboard/open_llm_leaderboard) and language-specific leaderboards, such as the Open Portuguese
LLM leaderboard, the Open Ko-LLM leaderboard (Korean), and the Spanish Embeddings leaderboard.
There are even industry-specific leaderboards, such as the Open Medical-LLM leaderboard.

Embedding models overview

Table 4.2 provides a quick overview of some of the embedding models covered in this chapter, focusing
on their quality and ease of use. Each model’s description includes the quality of embeddings based on
factors such as accuracy in downstream tasks and the richness of semantic representation, ease of use,
documentation quality, and computational requirements.

Embedding
model

Embedding quality and ease of use

Word2vec High-quality, contextually rich embeddings. Available on TensorFlow and others, but
limited availability online.

GloVe Robust embeddings, especially for less frequent words. Available on TensorFlow and
others, but limited availability online.

BERT Contextualized embeddings that are rich and adaptable. Available online.

GPT High-quality embeddings that excel in generative and language understanding tasks.
Available online.

Doc2vec Suitable for document-level tasks; embeddings reflect broader context than word-level
models.

fastText Captures OOV words effectively. Open source and remarkably lightweight. Works on
standard hardware and can produce models small enough for mobile devices.

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard


Embedding
model

Embedding quality and ease of use

text-

embedding-

3-large

High-quality embeddings for sophisticated NLP tasks, capturing nuanced context.
Replaced OpenAI’s text-embedding-ada-002. Can produce smaller vectors while
maintaining high embedding quality.

text-

embedding-

3-small

Good-quality embeddings for standard NLP tasks, balancing performance and
computational requirements.

Table 4.2: Embedding quality and ease of use in various embedding models

While this comparison should serve as a guide to selecting the most suitable embedding model for
specific needs, the MTEB leaderboard mentioned previously, as well as online documentation, should
always be consulted given the fast-moving development in this space.

Do you always need an embedding model?

No, you don’t need an embedding model always. Not all situations call for the intricate details of an
embedding model to represent data in the required vector form. For some applications, more
straightforward vectorization methods are entirely adequate.

In some cases, complex public embedding models or bespoke models are unnecessary. Tasks with
narrow focus, clear rules, or structured data can thrive on simple vector representations. This approach
suits straightforward clustering, precise similarity measurements, and situations with limited computing
power.

For instance, one-hot encoding is a straightforward technique that turns categorical data into binary
vectors, fitting perfectly for cases where categories are nominal without any intrinsic order. Similarly,
term frequency-inverse document frequency (TF-IDF) vectors adeptly convey text significance
for information retrieval and ranking tasks by highlighting the relevance of terms within documents in
relation to the whole corpus.

These alternatives may lack the semantic depth of embedding models but provide computational
efficiency and simplicity for tasks where intricate context isn’t required. Opting for simple vector
representations enhances transparency, reduces computational demands or advanced scientific skill, and
is ideal for swift performance or resource-limited environments, such as embedded systems or mobile
devices.



With your understanding of embedding models established, you can now move on to a practical
demonstration using Python, LangChain, MongoDB Atlas, and OpenAI.

Executing code from LangChain

Now that you have explored the diverse types of embedding models, you will see what it is like to use
them with working code. The following Python script (named semantic_search.py) uses the
langchain-openai library to embed textual data with OpenAI’s text-embedding-3-large model,
tailored to produce 1,024 dimensional vectors versus 3,072:

 
import os, pprint, time 
from langchain_mongodb import MongoDBAtlasVectorSearch 
from langchain_openai import OpenAIEmbeddings 
from pymongo import MongoClient 
  
os.environ["OPENAI_API_KEY"] = "YOUR-OPENAI-API-KEY" 
MONGODB_ATLAS_CONNECTION_STRING = "YOUR-MONGODB_ATLAS-CONNSTRING" 
client = MongoClient(MONGODB_ATLAS_CONNECTION_STRING, tls=True, 
tlsAllowInvalidCertificates=True) 
  
db_name = "embeddings" 
collection_name = "text" 
coll = client[db_name][collection_name] 
vector_search_index = "text_vector_index" 
  
coll.delete_many({}) 
  
texts = [] 
texts.append("A martial artist agrees to spy on a reclusive crime lord using his 
invitation to a tournament there as cover.") 
texts.append("A group of intergalactic criminals are forced to work together to stop 
a fanatical warrior from taking control of the universe.") 
texts.append("When a boy wishes to be big at a magic wish machine, he wakes up the 
next morning and finds himself in an adult body.") 
embedding_model = OpenAIEmbeddings( 
    model="text-embedding-3-large",  
    dimensions=1024, 
    disallowed_special=() 
) 
  
embeddings = embedding_model.embed_documents(texts) 
  
docs = [] 
for i in range(len(texts)): 
    docs.append( 
        { 
            "text": texts[i],  
            "embedding": embeddings[i] 
        } 
    ) 
  
coll.insert_many(docs) 
print("Documents embedded and inserted successfully.") 
  
time.sleep(3) # allow vector store (Atlas) to undergo indexing 
  
semantic_queries = [] 
semantic_queries.append("Secret agent captures underworld boss.") 
semantic_queries.append("Awkward team of space defenders.") 



semantic_queries.append("A magical tale of growing up.") 
  
vector_search = MongoDBAtlasVectorSearch( 
    collection= coll, 
    embedding= OpenAIEmbeddings( 
      model="text-embedding-3-large",  
      dimensions=1024, 
      disallowed_special=()), 
    index_name= vector_search_index 
) 
  
for q in semantic_queries: 
    results = vector_search.similarity_search_with_score( 
        query = q,  
        k = 3 
    ) 
    print("SEMANTIC QUERY: " + q) 
    print("RANKED RESULTS: ") 
    pprint.pprint(results) 
    print("")

The console output will be as follows:
 
(myenv) % python3 semantic_search.py 
0 
1 
2 
Documents embedded and inserted successfully. 
SEMANTIC QUERY: Secret agent captures underworld boss. 
RANKED RESULTS: 
[(Document(metadata={'_id': '66aada5537ef2109b3058ccb'}, page_content='A martial 
artist agrees to spy on a reclusive crime lord using his invitation to a tournament 
there as cover.'), 
  0.770392894744873), 
(Document(metadata={'_id': '66aada5537ef2109b3058ccc'}, page_content='A group of 
intergalactic criminals are forced to work together to stop a fanatical warrior from 
taking control of the universe.'), 
  0.6555435657501221), 
(Document(metadata={'_id': '66aada5537ef2109b3058ccd'}, page_content='When a boy 
wishes to be big at a magic wish machine, he wakes up the next morning and finds 
himself in an adult body.'), 
  0.5847723484039307)] 
  
SEMANTIC QUERY: Awkward team of space defenders. 
RANKED RESULTS: 
[(Document(metadata={'_id': '66aada5537ef2109b3058ccc'}, page_content='A group of 
intergalactic criminals are forced to work together to stop a fanatical warrior from 
taking control of the universe.'), 
  0.7871642112731934), 
(Document(metadata={'_id': '66aada5537ef2109b3058ccb'}, page_content='A martial 
artist agrees to spy on a reclusive crime lord using his invitation to a tournament 
there as cover.'), 
  0.6236412525177002), 
(Document(metadata={'_id': '66aada5537ef2109b3058ccd'}, page_content='When a boy 
wishes to be big at a magic wish machine, he wakes up the next morning and finds 
himself in an adult body.'), 
  0.5492569208145142)] 
  
SEMANTIC QUERY: A magical tale of growing up. 
RANKED RESULTS: 
[(Document(metadata={'_id': '66aada5537ef2109b3058ccd'}, page_content='When a boy 
wishes to be big at a magic wish machine, he wakes up the next morning and finds 
himself in an adult body.'), 
  0.7488957047462463), 
(Document(metadata={'_id': '66aada5537ef2109b3058ccb'}, page_content='A martial 



artist agrees to spy on a reclusive crime lord using his invitation to a tournament 
there as cover.'), 
  0.5904781222343445), 
(Document(metadata={'_id': '66aada5537ef2109b3058ccc'}, page_content='A group of 
intergalactic criminals are forced to work together to stop a fanatical warrior from 
taking control of the universe.'), 
  0.5809941291809082)]

The example sets up the environment, authenticating to OpenAI with API keys, and connecting to
MongoDB Atlas. Plots for three movies are then embedded and stored in MongoDB Atlas (the vector
store) and different vector searches are then executed to demonstrate semantic search with ranked
results.

Best practices
Selecting the most appropriate embedding models and vector size is not merely a technical decision, but
a strategic one that aligns with the unique characteristics, technical and organizational constraints, and
objectives of your project.

Maintaining computational efficiency and cost is another cornerstone of effectively using embedding
models. As some models can be resource-intensive and have higher response times and higher cost,
optimizing the computational aspects without sacrificing the quality of the output is essential. Designing
your system to use different embedding models depending on the task at hand will yield a more resilient
application architecture.

It’s imperative to regularly evaluate your embedding model to ensure your AI/ML application continues
to perform as expected. This involves routinely checking performance metrics and making necessary
adjustments. Tweaking your model usage could mean altering vector sizes to avoid overfitting—where
the model is too finely tuned to training data and performs poorly on unseen data.

It is essential to monitor vector search response times versus the embedding models being used and
vector sizes, as these impact the user experience of AI-driven applications. Also consider the costs of
maintaining and updating embedding models, including monetary, time, and resource expenses for re-
embedding data. Planning for these helps make informed decisions on when updates are needed and
balancing performance, cost-efficiency, and technological advancement.

Summary
This chapter covered the realm of embedding models, which are essential tools in AI/ML applications.
They facilitate the transformation of high-dimensional data into a more manageable, lower-dimensional
space. This process, known as embedding, significantly boosts computational efficiency and enhances
the ability to describe and quantify relationships within data. Selecting the right embedding models for



different types of data, such as text, audio, video, images, and structured data, is essential for expanding
the reach of use cases and different workloads.

The chapter also highlighted the importance of consulting leaderboards to gauge the effectiveness
across the vast list of available models and the delicate balance necessary when choosing vector sizes,
emphasizing the trade-offs between detail, efficiency, performance, and cost. While embedding models
provide deep, contextual insights, simpler vectorization methods might be adequate for certain tasks.

The next chapter will delve into aspects of vector databases, examining the role of vector search in
AI/ML applications with use cases.
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Vector Databases
Sometimes, data is rich with information and has a well-defined structure. If you know what you want,
then this data is straightforward to work with in a modern database system. However, you often don’t
know exactly what you need. Without specific search terms or phrases, you may not receive optimal
search results. For example, you might not know the brand or name of your picky pet’s favorite food. In
such complex cases, traditional information search and retrieval methods can fall short.

Modern AI research has given rise to a new class of methods that can encode the underlying semantic
meaning of something instead of just its raw data. For example, AI models can understand that when
you ask for the new action movie with that one actor who was also in the movie with green
falling numbers, you’re asking for the latest John Wick  film, which stars Keanu Reeves, who was
also the star of The Matrix films.

To achieve this result, these methods convert their inputs into a numerical format called a vector
embedding. Vector databases  provide a means to efficiently store, organize, and search these vector
representations. This makes vector databases valuable tools for retrieval tasks, which are common in AI
applications. In this chapter, you will learn about vector search, the key concepts and algorithms
associated with it, and the significance of vector databases. By the end of this chapter, you will
understand the workings of graph connectivity and its application in architecture patterns such as RAG.
You will also understand the best practices for building vector search systems.

This chapter will cover the following topics:

Vector embeddings and similarity

Nearest neighbor vector search

The need for vector databases

Case studies and real-world applications

Vector search best practices

Technical requirements
While not required, it may help to have some familiarity with graph data structures and operations. You
may also want to know about the embedding models that are used to create vectors, which are
discussed in more detail in Chapter 4, Embedding Models.



What is a vector embedding?
At the most basic level, a vector is a list of numbers plus an implicit structure that determines how
those numbers are defined and how you can compare them. The number of elements in a vector is the
vector’s dimension.

Dimensions  represent different aspects of the thing that they describe. You might think of a list of
properties that describe a car and list them out in a structured way such that the order is always [year,
make, model, color, mileage]. These properties form a vector space  that can describe any car for
which these properties hold. For example, you could describe a specific car with these values as [2000,
Honda, Accord, Gold, 122000].

This is a useful model for building intuition on how vectors can encode information. However, each
element may not always correspond to a concrete idea with a numerable set of possible values. The
vectors used in AI applications are more abstract and have significantly more dimensions. In a way,
they smear concrete ideas across many dimensions and standardize to a single set of possible values for
every dimension. For example, vectors from OpenAI’s text-embedding-ada-002 model always have
1,536 elements, and each element is a floating-point number between -1 and 1.

The vectors used in AI applications are the output of embedding models . These are machine
learning (ML) models that are pre-trained to convert inputs, typically a string of text tokens, into
vectors that encode the semantic meaning of the input. For humans, the many dimensions of these
vectors are basically impossible to decipher. However, the embedding model learns an implicit meaning
for every dimension during training and can reliably encode that meaning for its inputs.

The exact structure of the vectors varies between embedding models, but a specific model always
outputs vectors of the same size. To use a vector, it’s imperative to know which model created it.

Vector similari ty

Beyond storing high-dimensional vector data, vector databases also support various operations that let
you query and search for the vectors.

The most common operation is nearest neighbor search, which returns a list of stored vectors that
are most similar to an input query vector. Common search interfaces are familiar territory. For instance,
e-commerce searches often prioritize products relevant to your query, even if they aren’t exact
matches. Nearest neighbor search uses the semantic nature of embedding model vectors to make
finding similar vectors the same as finding relevant results.

But what does it mean for two vectors to be similar? In short, similar vectors are close together, which
you can measure as a distance. There are many ways to define distance , including some that become



more relevant in higher dimensions. It’s not possible to visualize how distance works for high-
dimensional vectors but it’s straightforward to see how the ideas work for small vectors and then scale
them up.

If you think back to geometry class, you’ll remember that you can find the distance between two
coordinate vectors using the distance formula. For example, 2D coordinates such as (x, y) use the
distance formula distance(a, b) = sqrt((a_x - b_x)**2 + (a_y - b_y)**2). It also works for 3D
coordinates, where the formula has another component for the extra dimension: sqrt((a_x - b_x)**2
+ (a_y - b_y)**2 + (a_z - b_z)**2). This pattern generalizes to any number of dimensions and is
referred to as the Euclidean distance  between two n-dimensional points.

In theory, you can also use Euclidean distance to measure distances between high-dimensional vectors
such as those used in AI applications. Practically, however, the usefulness of Euclidean distance breaks
down as you continue to increase the number of dimensions. This pattern of intuitions and tools that
work in small dimensions breaking down at higher dimensions is common and often referred to as the
curse of dimensionality.

Instead of Euclidean distance, most applications use a different distance metric called cosine
similarity. Unlike Euclidean distance, which measures the space between the tips of two vectors,
cosine similarity uses a different formula that measures the size of the angle between two vectors that
share a common base. It effectively determines whether two vectors are identical, completely unrelated,
or (most likely) somewhere in between in a mathematically precise way, as shown in Figure 5.1.
Similar vectors point in almost the same direction, unrelated vectors are orthogonal, and opposite vectors
point in opposite directions.

Figure 5.1: A comparison of vector measurements

Cosine similarity equips you with a tool to measure the distance between two vectors. Due to the nature
of how vector embeddings carry semantic information, it’s also a tool to measure how related or
relevant two vectors are to one another. If you extend this idea to more vectors, you can figure out how
related a given vector is to any of the others and even rank them all by relevance. This is the core idea
behind vector search algorithms .



The process of comparing many vectors in this way brings its own complexity and challenges. To deal
with them, search providers have developed various approaches to nearest neighbor search that balance
trade-offs and optimize for different use cases. The next section will discuss two approaches to handle
real search use cases.

Exact versus approximate search

Sometimes, your use case requires that searches return only the true nearest neighbors. For example,
think about an authentication app that stores biometric information about its users as embedded vectors
so that they can identify themselves later. When they scan their fingerprint or face, the app creates a
vector embedding of the scanned data and uses it as the query vector in a nearest neighbor search. An
app like this should never misidentify the user as someone else with a similar fingerprint or face.

This use case is perfect for an exact nearest neighbor (ENN) search, which guarantees that the
search results are the best possible matches. This type of search must always return the closest
matching stored vector and ensure that it appears before other similar but more distant matches.

One straightforward approach is to brute-force the problem: calculate the distance between the query
vector and every stored vector, then return a list of the results sorted from closest to farthest. By
checking every vector, you can guarantee that the search results include precisely the most relevant
vectors in order. While effective for small datasets, this method quickly becomes computationally
expensive and time-consuming as the number of stored vectors increases. Some clever approaches can
help exact search scale to larger datasets, such as using tree-based indexes to avoid calculating
similarity for every vector. This makes exact search useful for some additional kinds of applications, but
ultimately, the problem does not scale well and can take a long time on large datasets. In cases where
exactness is required, you have to accept its constraints and find ways around them.

For other common cases, however, it is enough to know that your search results are close enough to be
the best match. This use case is called an approximate nearest neighbor (ANN) search and is
powerful enough for many everyday applications.

For example, if you search for movies like Inception in a recommendations app, you don’t need the
results to include a specific movie. Rather, you probably just want a list of a few similar sci-fi thrillers
with mind-bending plots. A list of results such as ["Minority Report", "Memento", "Shutter
Island"] is useful, even if it turns out that the movie Interstellar is technically a closer semantic match
than any of the returned results.

The choice between exact and approximate search comes down to your application’s requirements. You
may have strict requirements that necessitate an exact search. However, you may also have a use case
where an exact search, while useful, is not necessary to provide value. Or it might not make sense to do



an exact search at all. In the next section, you’ll learn how to evaluate search algorithms to help you
determine your requirements.

Measuring search

You can describe a search algorithm in terms of its precision, recall, and latency:

Precision measures how accurate the search results are. Precise searches try to return only matches that are relevant to the
query and few, if any, irrelevant results.

Recall  measures how complete the search results are. If a search returns a large fraction of all relevant results, then it has a
high recall.

Latency measures how long a search query takes from start to finish. Every search takes some amount of time to return
results. The exact latency varies between searches but, on average, it’s a function of how many vectors are in the search space
and your precision and recall requirements.

These factors are tightly coupled and require trade-offs that define the nature of nearest neighbor
searches. For example, an ENN search has perfect precision and will include the most relevant results.
However, to keep the latency reasonable, it might omit some relevant results if there are too many.
Because it misses valid results, this search would have a relatively low recall. If the ENN search also
required a high recall, then the search would have to run for longer to ensure that enough relevant
results are included.

In an ANN search, you can relax your precision requirements, which allows you to optimize the other
factors instead. You can get more complete results by either allowing the search to take more time or by
returning more results that potentially include false positives. If you can tolerate false positives, for
example, by filtering them out after the search in your app, then you can use ANN to run fast searches
that return highly relevant result sets.

You should evaluate your application and determine its top priority regarding these factors. Then, you
can choose the appropriate search operation and tune the algorithm until the other factors are
appropriately balanced.

Tuning a search algorithm involves modifying the configuration parameters that determine how it
constructs and traverses its index data structure. To get a better feel for what that means, you’ll spend
the next few sections going over the concepts and data structures used to enable vector search
operations, starting with the idea of connectivity.

Graph connectiv i ty
If you’ve ever used a city’s public transit network to get around, you may have wondered about how the
city chose to put the train or bus stops where they did. There are many factors at play, but if you look at



an ideal case, then you can boil the choice down to two related factors: connectivity and latency.

Think about the experience of a train rider, let’s call her Alice, visiting her friend, Bob, across the city. It
would be great if there was a stop right next to Bob’s house because, then, Alice could see him right
after stepping off the train. Of course, you can’t put a train station in front of every house, and after a
certain point, adding more stops would increase the average trip time.

Every time you change the number of stops or connections, you may affect how long it takes to get
between any two destinations in the system. Typically, the job of planning where to place public transit
stops is done with thought and consideration by knowledgeable civil engineers, city planners, and other
stakeholders. The primary goal of a transit network is to take a rider to a stop that is relatively close to
their true final destination in a reasonable amount of time. By understanding their goal and applying
specific strategies, city planners try to connect distant parts of the city in a way that’s useful and
efficient for transit riders.

Similarly, the goal of an ANN search is to find a vector that is close to a given query vector, also in a
reasonable amount of time. If you were to take inspiration from transit planners, you could use this
similarity to your advantage and design an effective ANN index.

Navigable small worlds

In essence, both transit planning and nearest neighbor search boil down to a problem of building and
traversing a graph that trades off connectivity and latency. You can use an algorithm called navigable
small worlds  (NSW) to build such a graph. It takes in vectors one at a time and adds a node to the
graph for each one. Each node can also have connections to other nodes, called neighbors , that are
assigned during graph construction.

The NSW algorithm is designed to balance how relevant a node’s immediate neighbors are with how
connected the node is to the rest of the graph. It will mostly assign neighbors that are closely related to
a node. However, it may also sometimes connect two less similar nodes that are relatively far apart on
the graph. If you think about the transit example, this is like having a bus route that has several stops in
the same neighborhood but that also runs downtown. Residents can easily get to their local destinations.
If they need to go outside of the neighborhood, then they still have access to the rest of the city.

For an example of an NSW graph, refer to Figure 5.2. Notice that each node is connected to a
maximum of three neighbors and that, in general, nearby nodes are closely connected. Each node
represents a vector and nodes connected with lines are neighbors. The highlighted connections show the
path of a greedy nearest neighbor search.



Figure 5.2: An NSW graph

Once you’ve constructed an NSW graph of your vectors, you can use it as an index for ANN searches.
You can start at a random node and use a search algorithm to follow the neighbor connections until you
reach the nearest neighbor. This lets you limit your similarity comparison to only a subset of the total
search space. For example, notice how the search path in Figure 5.2 arrives at the nearest neighbor
without visiting every node in the graph.

How to search a navigable small world

The exact search algorithm that you use to traverse an NSW graph may vary and affect the behavior of
the search as a whole. The most common algorithm is a simple greedy search, where at every step,
you find and take the best immediate option with no regard to previous or future steps. For example, a
greedy search of an NSW graph first randomly selects a node to start at and then measures to see how
close the node is to the query vector. Then, it measures the distance to each of the node’s neighbors. If
one of the neighbors is closer than the current node, then the search moves on to that node and



continues with the same measure-and-compare process. Otherwise, the search is complete and the
current node is an approximate nearest neighbor.

In this basic example of NSW with greedy search, the definition of approximate is very broad and the
search may return suboptimal results. This comes down to the nature of graph search, which, in this
case, is designed to find a local minimum of the graph. This local minimum is not guaranteed to be the
global minimum, which is what makes the search approximate rather than exact. A greedy search
algorithm alone can return false positives if it settles on a local minimum that is too far from the global
minimum.

You can partially guard against this by tuning the graph’s construction parameters. However, due to the
dynamic nature of search queries and the underlying data being searched, you can’t entirely prevent
false positive local minima from existing. Instead, you need to find a way to minimize their impact.

One way is to run the search multiple times, starting from different randomized entry nodes. This
method, called randomized retries , collects multiple samples from the graph and returns the best result
out of all the samples. You can also add additional machinery to the algorithm to make it more robust. A
common architecture pairs the greedy search algorithm with a configurable priority queue  that keeps a
sorted list of the nearest neighbors the search has seen. If the search encounters a false positive local
minimum, the queue lets it backtrack and explore other branches of the graph that might lead to a nearer
neighbor.

The exact search method you use depends on the dataset and your goals. For example, randomized
retries are easy to implement and can run in parallel. They are useful for subtle, exploratory searches
that might match many local minima. However, their random nature makes them non-deterministic, and
each retry does a full search, which can quickly scale your costs. Conversely, priority queues are
deterministic and precise but are harder to implement and tune.

With this information, you have the basis for a useful vector search index. You could stop building the
index here and start searching. However, you will quickly find that there are issues with this approach,
particularly as you scale the search space to sizes commonly seen in AI apps. Randomized retries have
significant computational overhead, and you must do more of them as you scale your data set. A priority
queue keeps a search from getting stuck in local minima but does not prevent it from meandering
through many nodes on the way to its target.

To address these issues, you need to go beyond a single NSW graph. In the next section, you will see
how combining multiple NSW graphs together can circumvent meandering searches and make
randomized retries less necessary.

Hierarchical navigable small worlds



Think back to Alice’s public transit experience. What if, instead of the same city, she and Bob lived in
different cities on opposite sides of the country? Alice could, in theory, limit herself to public transit
services by crisscrossing the nation via a series of trains, buses, taxis, and bike shares. This would
obviously take a lot of time and require many stops along the way. That’s because transit networks are
only effective at the scale of an individual city. Once you zoom out farther, you need a different system.

Instead of just using transit, Alice could instead start at her city’s airport and fly to Bob’s city. Even if
her trip included a layover and multiple flights, it would still probably be faster than using transit alone.
Once she gets to Bob’s city, she can use the subway system to get from the airport to his neighborhood
quickly and efficiently.

Alice’s trip took place at two distinct levels. First, she started at the level of airports, where she was
free to travel to any destination airport connected to her home airport. At this layer, she had direct
access to many different cities, but that access was limited to only one location in each city: the airport.
She used the airports to get closer to Bob without spending too much time planning her route and
traveling. Once she got to the closest airport to Bob, she dropped down into the second layer and gained
access to a transit network that could get her even closer to Bob.

This is basically the idea of hierarchical navigable small worlds  (HNSW). You can create a
hierarchy of layers where each layer is an NSW graph. For example, look at Figure 5.3 to see a typical
HNSW graph structure. The top layer has relatively few nodes that are all fairly distant from one
another and sparsely connected. Each lower layer has all the nodes of the layer above it plus additional
nodes and connections that make the graph denser and more connected. In this chapter’s example, the
distinction between transit nodes and airport nodes is a natural way to split the layers. The airports are
the top layer and the next layer down includes both the airports and the transit stops.



Figure 5.3: An HNSW graph structure

An actual HNSW algorithm would decide the top layer for each vector probabilistically with a node that
exists only in lower layers being more likely than one that also exists in higher layers. A search starts in
the top layer by finding the node that’s nearest to the query vector. Then, it moves to the same node but
in the next layer down and continues the search from there. This continues until it reaches the nearest
neighbor on the final layer, at which point, the search is complete. In Figure 5.3, the highlighted
connections show the path of a greedy nearest neighbor search across multiple layers.

HNSW is the foundation of many modern vector search applications. It’s battle-tested and proven to
give useful results in a reasonable amount of time. The algorithm is highly suited for ANN use cases
with configurable parameters that put you in control of how your searches perform.

Now that you have an idea of the inner workings of vector search, you can see how it requires purpose-
built logic and data structures. In the next section, you’ll learn how vector databases encapsulate all of
the technical details in order to make vector search available to developers.

The need for vector databases
Vectors carry deep semantic information and have many potential use cases that will make them
increasingly common over the next few years. Working with them requires specific and complex
operations that only process vector data. Additionally, the demand for search can often vary
substantially from the demand for more structured database queries.



Together, these factors mean vector operations and traditional database workloads are largely
independent. This gives rise to the concept of a vector database that’s designed specifically to handle
vector data, indexes, and workloads. From a developer’s perspective, vector databases can take several
forms.

The most basic is a standalone product that’s independent from other operational databases. This type
of vector database has the freedom to focus solely on implementing and optimizing vector operations
without considering other database operations. However, often, vector search applications require
additional filtering or metadata and may perform more traditional database operations based on search
results. These use cases require either multiple queries to different databases at runtime or an additional
syncing layer that copies data from your operational database to the vector store.

Alternatively, a vector database can be baked into an existing database or data service. For example, a
general-purpose database management system might support vector search operations in its query
language if you’ve defined the appropriate vector search index. This allows applications to piggyback
off of the existing system’s features and access search within the same system. The vector database
can be scaled and run independently within the system but exposed to the user along with traditional
operations as part of a unified API. This couples your vector store to your existing database but leads to
simpler and easier-to-maintain architectures.

Regardless of form, vector databases are a key tool in AI applications. They are purpose-built to store
and query vector data. You can configure them to deliver optimal search results and power AI
applications.

The next section will cover some ways that vector search can be used to enhance ML and AI models,
including during training, fine-tuning, and runtime. You’ll also learn how vector search itself enables AI
applications without additional functions or models.

How vector search enhances AI models

AI models encompass a broad class of data structures and techniques. ML forms the core of most
modern vector-based AI models, aiming to “teach” computers to do specific tasks via a training
process. In general, ML processes work by feeding a curated dataset to a base model that can detect
and infer patterns from the data. Once a model has learned these patterns, it’s able to recreate or
interpolate them to process new inputs. These techniques and models are ubiquitous in the world of AI
and are the secret sauce that powers novel use cases.

In general, ML training and AI applications can be split into two concerns, as follows:

Information retrieval  involves finding relevant information that’s useful as input to an AI process. Vector search is very well
suited for this task. Embedding models can encode the semantics of a huge variety of inputs into a standard vector form. Then,
you can use search to find matches for an equally huge range of inputs, both structured and unstructured.



Information synthesis combines multiple pieces of information, possibly from different sources, into a coherent and useful
result. This is the domain of GenAI models. These models can’t reliably find or generate true facts, but they can effectively
process and reformat input information.

Vector search enhances ML and AI models by providing them with access to the most relevant data at
every stage, from training to fine-tuning to runtime execution.

During training, you can use a vector database to store and search your training data. You can design a
process that finds the most relevant data from the corpus to use for each training task. For example,
when training a language model for a specific domain such as medicine, you could use vector search to
retrieve the most relevant chapters from medical textbooks for each training batch. This ensures that
the model learns the most pertinent information without being distracted by noise.

You can apply the same idea during fine-tuning, which is essentially a secondary training stage on top of
a more generic base model. For example, you could fine-tune the medicine language model to generate
reports using a hospital system’s preferred style and structure. Vector search could help find human-
written reports that are relevant to each training topic.

Whether your model is specialized or general purpose, you can customize its runtime behavior by
modifying the inputs you give to it. Vector search can analyze raw input and find related information.
Then, you can augment or refine the raw input to include the retrieved context. For example, you might
maintain a vector database of rare diseases and search for anything that matches a user’s description in
order to get a more tailored diagnosis.

AI applications come in many forms, but modern apps increasingly use a runtime customization
approach to provide relevant context to generative transformer models. This architecture is the basis of
a technique called retrieval-augmented generation (RAG), which you’ll learn about in greater depth
in Chapter 8, Implementing Vector Search in AI Applications.

Up to this point, you’ve learned the theory and mechanics of vector databases and search operations.
Next, you’ll look at some examples of real vector database use cases that highlight how vectors are the
core of modern AI apps.

Case studies and real-world applications
Vector search is a powerful tool that enables you to build sophisticated systems for finding information
based on its meaning, rather than just its exact words. By understanding the context and relationships
between data points, vector search helps you retrieve highly relevant results. So far, you have learned
about the different concepts involved with vector search and some of the different offerings that exist in
the market, but how do businesses integrate vector search into their applications?



In this section, you will explore three popular methods for leveraging vector search: semantic search,
RAG, and robotic process automation (RPA). You will look at existing case studies of MongoDB
Atlas Vector Search that fit into each of these buckets, and how these applications deliver value to the
end user through more accurate search that wasn’t previously possible. Each of the following case
studies was originally published as a part of the Building AI with MongoDB series of customer stories
(https://www.mongodb.com/resources/use-cases/artificial-intelligence?tck=blog-
genai&section=resources&contentType=case-study). These stories are presented here to showcase the
variety of vector search use cases that can be built on the flexible, scalable, and multifaceted MongoDB
Atlas platform.

Okta – natural language access request (semantic
search)

Okta, one of the world's leading identity security providers, uses a natural language RAG interface to
allow users to easily request roles for new technologies in their organizations. They built a system called
Okta Inbox using Atlas Vector Search and their own custom embedding model that makes it possible
for users to map natural language queries to the right roles.

Figure 5.4: Okta Inbox user request form

This is an example of leveraging semantic search to solve a problem, where the embedding models
trained by Okta’s data science team were capable of mapping natural language requests to the right

https://www.mongodb.com/resources/use-cases/artificial-intelligence?tck=blog-genai&section=resources&contentType=case-study


user roles to be assigned.

Figure 5.5: Okta Inbox administrator view

These requests would get routed to a manager via Slack through an existing workflow. The end result is
a simple user experience that makes identity management between both the requesters and the access
managers much simpler, thus making the value proposition of Okta as an identity and access
management solution even greater.

Okta chose to use Atlas Vector Search to query these vectors since they were already using Atlas as
their operational data store, and this provided a simplified developer experience. You can read more
about this case study at https://www.mongodb.com/solutions/customer-case-studies/okta.

One AI – language-based AI (RAG over business data)

One AI provides verticalized AI agents and chatbots for different industries. These services allow
detailed AI-assisted analysis to be performed over documents with applications in industries ranging
from financial services and real estate to manufacturing and retail.

https://www.mongodb.com/solutions/customer-case-studies/okta


The chatbots offered by One AI are all built using the MongoDB Atlas platform, with over 150 million
indexed documents from over 20 different internal services. One AI’s goal of bringing AI to everyday
life is made feasible by simply adding a vector search index to the data that they store in Atlas and
making it queryable via embedded natural language input.



“A very common use case in language AI is creating vectors that represent language. The
ability to have that vectorized language representation in the same database as other
representations, which you can then access via a single query interface, solves a core
problem for us as an API company.”

—Amit Ben, CEO and founder of One AI

This is a prime example of a multitenant RAG application, where data that is indexed and provided for
one type of AI service provided by One AI might not be relevant to another service. As discussed later
in this chapter, this is a common data modeling pattern that is easy to build within the Atlas platform.
You can further read about this case study at https://www.mongodb.com/solutions/customer-case-
studies/one-ai-success-story.

Novo Nordisk – automatic clinical study generation
(advanced RAG/RPA)

Novo Nordisk is one of the world’s leading healthcare companies with a mission to defeat some of the
world’s most serious chronic diseases such as diabetes. As a part of the process of getting new
medicines approved and delivered to patients, they must generate a clinical study report (CSR). This
is a detailed record of the methodology, execution, results, and analyses of a clinical trial and is meant as
a critical source of truth for regulatory authorities and other stakeholders in the drug approval process.

Figure 5.6: Example of a CSR

https://www.mongodb.com/solutions/customer-case-studies/one-ai-success-story


Typically, a CSR takes around 12 weeks to complete, but the content digitalization team at Novo
Nordisk was able to build a tool using Atlas Vector Search to shorten this process to ten minutes. They
built a RAG workflow called NovoScribe  leveraging Claude 3 and ChatGPT as their chat completion
models, and Titan for text embedding hosted on the Amazon Bedrock service. They used MongoDB
Atlas Vector Search as a knowledge base to serve relevant data to these models.

Functionally, NovoScribe generates validated text using defined content rules and statistical outputs.
Atlas Vector Search computes the similarity of each text snippet to the relevant statistics, which is then
fed into a structured prompt to the LLM to produce a CSR that is ready for review by a subject-matter
expert, including the lineage of all of the data presented.



“What’s great about MongoDB Atlas is that we can store native vector embeddings of the
report right alongside all of their associated text snippets and metadata. This means we can
run really powerful and complex queries quickly. For each vector embedding we can filter
on which source document it’s coming from, who wrote it, and when.”

—Tobias Kröpelin, PhD, Novo Nordisk

This project allowed Novo Nordisk to build an advanced clinical report generation system by intelligently
arranging their data in the right format within MongoDB and defining a vector search index against it.
They were allowed to go further with their data in more ways using novel embedding models and LLMs
to dramatically improve the process of authoring CSRs as a result. You can read more about this case
study at https://www.mongodb.com/solutions/customer-case-studies/novo-nordisk.

Vector search best practices
This section covers the best practices for improving the accuracy of your vector search through
intelligent data modeling, deployment model options, and considerations for prototype and production use
cases. By following the guidance in this section, you will be more likely to improve the quality of your
vector search results and operate your search system in a scalable, production-ready manner.

Data modeling

In the context of MongoDB, data modeling refers to the process of designing the structure of the data
stored in the database. Unlike traditional relational databases, MongoDB is a NoSQL database that uses
a flexible, schema-less model, allowing for more dynamic and hierarchical data storage. The big idea
about data modeling for vector search centers around the notion that embedding models are not infinitely
capable, and users can take control of the relevance search problems in embedding models by using
vectors along with the other data they have. Taking control can be done in simple ways, such as
incorporating user-based fields for metadata filtering. You can take control in more complicated ways,
too, such as by using LLMs to define graph relationships between chunks and looking these up at query
time subsequent to a $vectorSearch query.

One can broadly think about leveraging metadata as using documents to deliver the data back to the
user, rather than vectors. Working with documents as the results of an aggregation stage means that
different aggregation stages can be composed together to yield greater functionality than any one alone
and can benefit from query optimization. This has been the bread and butter of the document model
since MongoDB was invented, and it continues to be the case today in the age of GenAI applications.

This section will dive deeper into the ways other data can be used prior to, alongside, and following
vector search to improve the accuracy of your vector-based information retrieval system.

https://www.mongodb.com/solutions/customer-case-studies/novo-nordisk


Filter ing
The most basic yet most effective form of metadata usage is to limit the scope of the vector search by
considering only vector data that meets a prefilter. This restricts the scope of valid documents to be
considered, which, for selective filters (the most common kind of filter), increases accuracy and reduces
query latency.

At query time, these prefilters can be considered as a part of a $vectorSearch query using a $match
MQL semantic. This means that in addition to point filters such as $eq, the user can define range filters
such as $gt or $lt to only search against documents that fit a range of values rather than matching a
specific one. This can dramatically reduce the number of valid documents that need to be searched,
reducing the amount of work that needs to be done and generally improving the accuracy of your
search. $match filters can also leverage logical operators such as $and and $or to allow users to
compose filters together and build more complex logic into their search applications.

Let’s look at two common types of filters, and when and how you might use them.

Dynamic filte rs

Dynamic filters  are pieces of metadata that vary based on the content of the search query. These can
be attributes of the data, such as when a book was published or its price. They are typically selected by
a user when executing their search along with their plain English query. Here is an example:

 
[ 
    { 
        "_id": ObjectID("662043cfb084403cdcf5210a"), 
        "paragraph_embedding": [0.43, 0.57, ...], 
        "page_number": 12, 
        "book_title": "A Philosophy of Software Design", 
        "publication_year": 2018 
    }, 
    { 
        "_id": ObjectID("662043cfb084403cdcf5210b"), 
        "paragraph_embedding": [0.72, 0.63, ...], 
        "page_number": 6, 
        "book_title": "Design Patterns: Elements of Reusable Object-
Oriented  Software", 
        "publication_year": 1994 
    }, 
    { 
        "_id": ObjectID("662043cfb084403cdcf5210c"), 
        "paragraph_embedding": [0.12, 0.48, ...], 
        "page_number": 3, 
        "book_title": "Guide to Fortran", 
        "publication_year": 2008 
    }, ... 
]

Dynamic filters are most common when building a semantic search application since they are typically
input by the user prior to executing a query within a search bar. This contrasts with a RAG interface,
which is entirely natural language.



Static  filte rs  and multite nancy

There are cases where the filter is associated not with the body of the query, but by the user’s profile.
The user may be querying data that is accessible only to their company but is stored in a multi tenanted
fashion with many other tenants’ data. In this case, the user ID or company ID that the user belongs to
may be used to filter what results are searched against. For cases where there are a high number of
tenants and few vectors, filters are the recommended approach for modeling data rather than storing
many bits of data across multiple collections and indexes.

It is recommended to set the exact flag to true in $vectorSearch when you have a high degree of
variation between the number of vectors per tenant and a high number of tenants modeled within the
same collection or index. This will lead to an exhaustive search performed in parallel on all segments
corresponding to a vector index. In many cases, this will accelerate the search, given the high selectivity
of the filter and the large number of potential vectors that would need to be searched and discarded
while running a filtered HNSW search.

Chunking
In the context of RAG, an interesting analogy emerges. Just as chat models require intelligent prompt
engineering, embedding models require intelligent chunking. Intelligent chunking requires finding the
right level of context that can effectively be mapped to a search or natural language query. This may
also be the right level of context to provide to the LLM, but as you’ll see later in the Parent document
retrieval section, this is not a strict requirement if you intelligently model your data.

You will learn more about basic and advanced chunking strategies in Chapter 8, Implementing Vector
Search in AI Applications. For the sake of this section, let’s consider one basic chunking strategy,
fixed token count with overlap, and how you can experiment to assess what works best on your own
dataset.

Fixe d toke n count with ove rlap

A fixed token count with overlap, which is a common default in many RAG integration frameworks
such as LangChain, splits unstructured data into chunks based on the specified maximum number of
tokens per chunk and the desired overlap between chunks. This method is more granular than the
whole-page ingestion method, and it allows for greater experimentation on your specific dataset. It
doesn’t involve exploiting any structure within the unstructured data. This is a positive in terms of
simplicity of development but can be a negative when sentences, paragraphs, or other boundaries
demarcate semantic significance in a way you would want to model.

This technique may be a good fit if you have little control over the source data or are working with
unstructured data that doesn’t lend itself well to boundary chunking methods that leverage document



structure, such as HTML tags, because this technique is compatible with any text format. Figure 5.7
shows an example with different colors indicating separate chunks and overlaps:

Figure 5.7: An example of chunking based on fixed token count w ith overlap

Expe rime ntation

Evaluating which chunking strategy or embedding model works best for your use case requires curating
judgment lists of documents along with the queries that you would expect to map to those documents.
You would also want to play around with the different embedding models and chunking strategies that
can be applied before embedding data to see which works best for your use case.

A given embedding model might perform better or worse with a fixed chunking strategy. You can more
easily evaluate which combination of chunking and embedding models is best suited for your use case.
You could have multiple versions of the same data, each split and processed differently. By comparing
these versions, you can determine the optimal splitting method and embedding model for your specific
search needs.

The best way to determine whether an embedding model is effectively mapping your documents to a
sample query is to inspect the similarity score that is returned for a set of queried documents and see
how well that aligns with what good responses might be for the actual question, as shown in Table 5.1.

Rank Raw document Embedding Cosine
similarity

1 “One of the main challenges of building software is managing
complexity.”

[0.23, 0.45,
…]

0.901

2 “Deep modules provide deep functionality behind a simple
interface”

[0.86, 0.34,
…]

0.874

3 “Software systems often grow in complexity due to evolving
requirements.”

[0.46, 0.51,
…]

0.563

Table 5.1: Vector search results ranked by cosine similarity



In the case of a fixed token count with overlap strategy, you will have to figure out the token count that
you would like to start with. The 300–500 token range seems sufficient for experimentation in the
information retrieval community.

Hybridizat ion
Hybridization involves modeling multiple sources of relevance within a single document and jointly
considering them alongside a single vector search at query time. This technique embodies the flexibility
of the aggregation pipelines supported by MongoDB and allows for a great amount of experimentation
and tuning of your search system leveraging vector search, lexical search, traditional database
operators, geospatial queries, and more.

In the following sections, you will explore some of the more popular methods for hybridization, as well
as some promising avenues of exploration that you might find relevant to your use case.

Ve ctor plus  le x ical

Vector search is a sound methodology for exploiting semantic similarity between a query and indexed
document as defined by the capabilities of an embedding model. Lexical search systems such as
BM25, which Lucene  and, correspondingly, Atlas Search use, are helpful in a completely different
way in that they index tokens directly and use a bag-of-words style approach that ranks a set of
documents based on the query terms appearing in each document, regardless of their proximity within
the document.

Despite being based on an original probabilistic retrieval framework developed in the 1980s, this
approach is still fairly good at mapping keywords in a query to keywords in a document, especially when
that word is used outside the context of what an embedding model was trained on. Small datasets can
contain tokens either not seen in the training dataset or with alternative meanings, as shown in Figure
5.8.



Figure 5.8: Out-of-sample terms

Some vector search providers provide sparse vector search as an alternative to lexical search, which
can be made to operate similarly but has been considered insufficient for customers’ purposes. It also
lacks out-of-the-box support for many lexical search features, such as synonym lists, pagination, and
faceting.

Smaller levels of context are good fits for embedding models, whereas broader levels can be well
represented by keyword search. MongoDB allows users to experiment in this direction as much as
possible, while also allowing the joint query pattern to be joined on a foreign key, rather than simply a
document _id. This makes it possible to have windowing levels of representation for a given document
that can be considered by different methodologies. The following code shows how some documents
containing paragraph_embeddings can be indexed and queried using a vector search index, while other
documents containing full_page_content can be indexed and queried using a text search index:

 
[ 
    { 
        "_id": ObjectID("662043cfb084403cdcf5210d"), 
         "page_number": 81, 
        "paragraph_embedding": [0.43, 0.91, ...], 
    }, 
    { 
        "_id": ObjectID("662043cfb084403cdcf5210e"), 
        "full_page_content": "Pulling complexity down makes the most sense if (a) the 
complexity being pulled down is closely related to the class's existing 
functionality, (b) pulling the complexity down will result in many simplifications 
elsewhere in the application, and (c) pulling the complexity down simplifies the 
class's interface. ...", 
        "page_number": 36, 



    }, ... 
]

Jointly considering the result sets from the two queries shown in the preceding code is what you call
hybrid search and can be done using the reciprocal rank fusion method, as shown at
https://www.mongodb.com/docs/atlas/atlas-search/tutorial/hybrid-search/. In the future, Atlas Vector
Search will offer support for dedicated stages that make combining result sets based on rank or score
much simpler. However, the fundamental concepts will remain the same.

Ve ctor plus  ve ctor

There might be multiple sources of vector relevance in your dataset that you would want to consider
jointly, similar to how you might jointly consider paragraph embeddings and keyword relevance for a
whole page. The secondary embedding field you are considering might be a derivative field, such as an
LLM-generated chapter summary that is then embedded, or it could be an entirely different source of
data. The following code shows a single document with a set of source fields that could be embedded
and indexed using a vector search index:

 
[ 
    { 
        "_id": ObjectID("662043cfb084403cdcf5210d"), 
        "book_title": "A Philosophy of Software Design", 
         "book_title_embedding": [0.67, 0.45, ...], 
         "chapter_title": "The Nature of Complexity", 
         "chapter_title_embedding": [0.51, 0.89, ...], 
         "chapter_summary": "This book is about how to design software systems to 
minimize their complexity. The first step is to understand the enemy. Exactly what is 
'complexity'?...", 
         "chapter_summary_embedding": [0.36, 0.90, ...], 
         "raw_text "System designers sometimes assume that complexity can be measured 
by lines of code. They assume that if one implementation is shorter than another, 
then it must be simpler; if it only takes a few lines of code to make a change, then 
the change must be easy...", 
         "raw_text_embedding": [0.43, 0.11, ...], 
    }, ...

The results of independent $vectorSearch queries could be hybridized and fused using a similar pattern
to the vector plus lexical search query pattern seen in the previous section and would allow for multiple
sources of relevance to be used to find the most relevant document to a query.

In e-commerce search use cases, it is common for a single item to have many sources of relevance that
can be embedded and stored within the same document representing that item. These include the
following:

Product description

User reviews (and summaries of user reviews)

Product images

https://www.mongodb.com/docs/atlas/atlas-search/tutorial/hybrid-search/


Each of these sources of relevance can be embedded and jointly considered using the same query
pattern as one would use to jointly consider vector and lexical relevance.

Incorporating  us e r fe e dback

Incorporating user feedback for RAG applications is conventionally thought of as providing signals to
the chat model to modify their weights through a process known as reinforcement learning with
human feedback. However, search systems have incorporated user signals to inform how results are
ranked for decades, and similar principles can be applied to RAG. An interface that provides a ranking
mechanism for the sources that are provided to the LLM would allow for feedback to be directly
modeled within the document, as seen in the following code. These signals can then be jointly
considered using the hybrid search query pattern combining $vectorSearch and the $sort stage using
the upvotes or downvotes as a proxy for user relevance.

 
[ 
    { 
        "_id": ObjectID("662043cfb084403cdcf5210a"), 
        "paragraph_embedding": [0.43, 0.57, ...], 
        "page_number": 12, 
        "score": 0.95, 
        "upvotes": 2, 
        "downvotes": 58 
    }, 
    { 
        "_id": ObjectID("662043cfb084403cdcf5210b"), 
        "paragraph_embedding": [0.72, 0.63, ...], 
        "page_number": 6, 
        "score": 0.90 
        "upvotes": 81, 
        "downvotes": 3 
    }, 
    { 
        "_id": ObjectID("662043cfb084403cdcf5210c"), 
        "paragraph_embedding": [0.12, 0.48, ...], 
        "page_number": 3, 
        "score": 0.67 
        "upvotes": 2, 
        "downvotes": 5 
    }, ... 
]

This is a very naive approach, but the principle behind it can be extended to allow for greater
personalization of content where similar users are defined by similar interactions with different content,
which is the basis for the popular recommendation system algorithm known as collaborative filtering.

While it is still early days in terms of intelligently incorporating user feedback into your RAG application,
the flexibility of the document model should allow for a rich amount of experimentation in this area as
your search system, and how your users engage with it, evolves over time.

Document lookups



Once you have a sorted result set of documents, possibly produced from multiple methodologies in an
optimized manner, there are still additional operations that can be performed that might leverage
relationships inherent within your data. With document lookups , some data may be easier to model
outside of the document itself using a foreign lookup key to model tree structures within your data, such
as hierarchies within documents, organizations, or some other taxonomy.

Pare nt docume nt re trie val

Parent document retrieval involves performing a vector search at one level of context, and then
retrieving a document connected to the most relevant retrieved documents via a foreign key. This
foreign key is usually a child-parent relationship, such as an embedded paragraph belonging to a specific
page of a larger body of text, where that larger bit of context may be stored in another document
completely.

With this pattern, you can store only the embeddings at the lower level, and then look up a higher level
of context containing a much larger amount of text. This may be useful if you find that the queries are
more easily mapped semantically to a smaller amount of text, but the amount of data you want to serve
to the user or an LLM is much larger, which is often the case. The following code example for
hybridizing lexical and vector search is also an example of parent document retrieval, as vector
embeddings are searched against to yield a full page of content to provide to the LLM. The foreign key
is the page_number.

 
[ 
    { 
        "_id": ObjectID("662043cfb084403cdcf5210d"), 
         "page_number": 81, 
        "paragraph_embedding": [0.43, 0.91, ...], 
    }, 
    { 
        "_id": ObjectID("662043cfb084403cdcf5210e"), 
        "full_page_content": "Pulling complexity down makes the most sense if (a) the 
complexity being pulled down is closely related to the class's existing 
functionality, (b) pulling the complexity down will result in many simplifications 
elsewhere in the application, and (c) pulling the complexity down simplifies the 
class's interface. ...", 
        "page_number": 36, 
    }, ... 
]

It’s important to note that like all other metadata, capturing relationships between MongoDB documents
in this manner must be extracted at ingestion time.

Graph re lations hips

You can exploit even more relationships between documents using the $graphLookup stage. This allows
an arbitrary number of hops to be jumped from the results of $vectorSearch. If the customer’s data



already contains relationships that can be traversed in a hierarchical manner, this is an immediate benefit
to them.

Just as you might define a relationship between a document and a page, you might recursively chunk a
document into ever smaller chunks, relate each chunk to a parent document using a parent_id field,
and embed those chunks. At query time, you could search against all of the chunks and recursively jump
up all of the parent_id values to the desired level of resolution to provide to the LLM.

Deployment

Successfully deploying your AI application is the final hurdle. This section outlines various deployment
options and provides guidance on estimating necessary resources to ensure optimal performance and
scalability.
Deployment opt ions
The simplest deployment model for getting started with Atlas Vector Search is to define a search index
definition within your existing cluster or a new cluster. This can be configured using search index
management commands  for paid tier clusters or the UI/Atlas Administration API for shared tier
clusters.

When you feel confident in your vector search use case and are ready for increased usage or increased
scale of ingested data, it is recommended to move to dedicated search nodes. Dedicated search
resources  provide a robust and scalable platform for serving demanding search workloads.

This will allow for high-availability vector search, more cost-effective resource utilization, and resource
isolation from your core database in a way that is more practical for production workloads, as visualized
in Figure 5.9.

Figure 5.9: The benefits of dedicated search nodes



Migrating to dedicated search nodes is a zero-downtime process that allows for your existing base
cluster to continue to serve vector search queries as new resources are spun up and your indexes are
built on them. Once that build process completes, $vectorSearch queries will be routed to your
dedicated search nodes and the indexes on the original cluster will be deleted.

Dedicated search nodes can be configured from the Cluster Configuration UI by following these
steps:

1. On the Create New Cluster/Edit Configuration page, change the radio button for AWS or Google Cloud for Multi-
cloud, multi-region & workload isolation to enabled.

2. Toggle the radio button for Search Nodes for workload isolation to enabled. Select the number of nodes in the textbox.

3. Check the agreement box.

4. Select the right node for your workload.

5. Click Create cluster.

Resource requirements
The current index type supported within Atlas Vector Search is HNSW, which is memory-resident. This
means that you need approximately 3 KB of memory for every 768d vector you plan on indexing,
scaling linearly with the number and dimensionality of vectors.

If you expect your workload will have low query volume, it is recommended to select the cheapest
option on M tier clusters that can allocate 50% of the available resources to storing the index in memory.
When using dedicated search nodes, 90% of the available RAM can be used to host the index. Note
that when using M tier clusters, the index will need to be warmed into the cache using representative
queries. For dedicated search nodes, the index will be automatically loaded into the cache upon an index
build.

If you expect your workload to have a high indexing or query concurrency, it is recommended to use
dedicated search nodes with the high CPU option or to scale up the number of dedicated search nodes
in your replica set. This will scale up the number of available vCPUs to serve the $vectorSearch
queries in a round-robin fashion.

Summary
In this chapter, you explored a variety of concepts related to vector search. The chapter delved into how
high-dimensional vectors produced from embedding models can be useful measures of semantic
similarity among the unstructured data passed into those models. It examined the HNSW index and how
it can be used to accelerate vector similarity comparisons between a query vector and many indexed
vectors.



The chapter then illustrated how this type of index can be applied in various real-world contexts by large
organizations, including such architecture patterns as RAG, semantic search, and RPA. Finally, the
chapter reviewed some of the best practices for building vector search systems within MongoDB Atlas,
ranging from ingestion time considerations, such as metadata extraction, to deployment model
considerations, such as dedicated search nodes.

In the next chapter, you will discover the crucial aspects of designing AI/ML applications. You will learn
how to effectively manage data storage, flow, freshness, and retention along with techniques to ensure
robust security.
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AI/ML Application Design
As the landscape of intelligent applications evolves, their architectural design becomes pivotal for
efficiency, scalability, operability, and security. This chapter provides a guide on key topics to consider as
you embark on creating robust and responsive AI/ML applications.

The chapter begins with data modeling, examining how to organize data in a way that maximizes
effectiveness for three different consumers: humans, applications, and AI models. You will learn about
data storage , considering the impact of different data types and determining the best storage
technology. You will estimate storage needs and determine the best MongoDB Atlas cluster
configuration for your example application.

As you learn about data flow, you will explore the detailed movement of data through ingestion,
processing, and output to maintain integrity and velocity. This chapter also addresses data lifecycle
management, including updates, aging, and retention, ensuring that data remains relevant and
compliant.

Security concerns are stretched further for AI/ML applications due to the risks of exposing data or logic
to AI models. This chapter discusses security measures and role-based access control (RBAC) to
protect sensitive data and logic integrity. You will also learn the best principles for data storage, flow,
modeling, and security, providing practical advice to avoid common pitfalls.

Throughout the chapter, you will use a fictitious news application called MongoDB Developer News
(MDN), which will be like Medium.com, equipping you to create intelligent applications by using a
practical example.

This chapter will cover the following topics:

Data modeling

Data storage

Data flow

Freshness and retention

Security and RBAC

Best practices

Technical requirements
The following are the prerequisites to follow along with the code in this chapter:



A MongoDB Atlas cluster M0 tier (free) should be sufficient

An OpenAI account and API key with access to the text-embedding-3-large model

A Python 3 working environment

Installed Python libraries for MongoDB, LangChain, and OpenAI

Atlas Search indexes and Vector Search indexes created on the MongoDB Atlas cluster

Data modeling
This section delves into the diverse types of data required by AI/ML systems, including structured,
unstructured, and semi-structured data, and how these are applied to MDN’s news articles. The
following are short descriptions of each to set a basic understanding:

Structured data conforms to a predefined schema and is traditionally stored in relational databases for transactional
information. It powers systems of engagement and intelligence.

Unstructured data includes binary assets, such as PDFs, images, videos, and others. Object stores such as Amazon S3 allow
storing these under a flexible directory structure at a lower cost.

Semi-structured data, such as JSON documents, allow each document to define its schema, accommodating both common
and unique data points, or even the absence of some data.

MDN will store news articles, subscriber profiles, billing information, and more. For simplicity, in this
chapter, you will focus on the data about each news article and related binary content (which would be
images). Figure 6.1 describes the data model of the articles collection.





Figure 6.1: Schema for the articles collection

The articles collection represents a news article with metadata, including creation details, tags, and
contributors. All documents feature a title, summary, body content in HTML and plain text, and
associated media elements such as images.

Enriching data with embeddings

To complete the MDN data model, you need to consider data that will also be represented and stored
via embeddings. Text embeddings  for article titles and summaries will enable semantic search, while
image embeddings  will help find similar artwork used across articles. Table 6.1 describes the data
fields, embedding models to use, and their vector sizes.

Type Field(s) Embedding model Vector size

Text title OpenAI text-embedding-3-large 1,024

Text summary

Image contents OpenAI CLIP 768

Table 6.1: Embeddings for the articles collection

Each article has a title and summary. Instead of embedding them separately, you will concatenate them
and create one text embedding for simplicity. Ideally, for images, you would store the embedding with
each content object in the contents array. However, support for fields inside arrays of objects for
vector indexes is not available today in MongoDB Atlas and leads to the anti-pattern of bloated
documents . The best practice is to store image embeddings in a separate collection and use the
extended reference schema design pattern. You can learn more about indexing arrays with
MongoDB, bloated documents, and the extended reference pattern from the links given in the Further
Reading chapter of this book. Figure 6.2 shows the updated data model.



Figure 6.2: Schema for articles w ith embeddings

Table 6.2 shows the corresponding vector indexes.

Collection: articles Collection: article_content_embeddings

Vector index: semantic_embedding_vix Vector index: content_embedding_vix

 
{

 
  "fields": [

 
 {

 
   "numDimensions": 1024,

 
   "path": "semantic_embedding",

 
   "similarity": "cosine",

 
   "type": "vector"

 
{

 
  "fields": [

 
 {

 
   "numDimensions": 768,

 
   "path": "content_embedding",

 
   "similarity": "cosine",

 
   "type": "vector"



 
 }

 
  ]

 
}

 
 }

 
  ]

 
}

Table 6.2: Vector search index definitions

Considering search use cases

Before finalizing the data model, let’s consider search use cases for articles, and adapt the model once
more. Here are some broader search use cases:

Find articles by matching lexically or semantically on title and summary, allowing filtering by brand and
subscription type : This use case is called hybrid search and is covered in Chapter 5, Vector Databases. It combines semantic
and lexical searches using reciprocal rank fusion. You can create a search index covering the title and summary fields for
text search, and the brand and subscription_type fields for filtering.

Same as the first one and extend to include tags: For this use case, you can use the same index and add the tags field.
You will also need a vector search index to cover the title + summary embedding.

Find other articles that use similar images, filtering by brand and subscription type : For this use case, vector search
indexes on MongoDB Atlas support adding traditional fields for filtering. Since the image embeddings are stored in another
collection, you will need to duplicate the article’s _id, brand, and subscription_type fields from the articles
collection into the article_content_embeddings collection. Since there is already an _id field in this collection, you
can create a composite primary key that includes the _id of the article and the _id of the content. Figure 6.3 shows the
updated data model.



Figure 6.3: Updated schema for articles w ith embeddings

Table 6.3 shows updated vector indexes.

Collection: articles Collection: article_content_embeddings

Vector index: semantic_embedding_vix Vector index: content_embedding_vix

 
{

 
  "fields": [

 
    {

 
      "numDimensions": 1024,

 
      "path": "semantic_embedding",

 
      "similarity": "cosine",

 
{

 
  "fields": [

 
    {

 
      "numDimensions": 768,

 
      "path": "content_embedding",

 
      "similarity": "cosine",



 
      "type": "vector"

 
    },

 
    {

 
      "path": "brand",

 
      "type": "filter"

 
    },

 
    {

 
      "path": "subscription_type",

 
      "type": "filter"

 
    }

 
  ]

 
}

 
      "type": "vector"

 
    },

 
    {

 
      "path": "brand",

 
      "type": "filter"

 
    },

 
    {

 
      "path": "subscription_type",

 
      "type": "filter"

 
    },

 
    {

 
      "path": "_id.article_id",

 
      "type": "filter"

 
    }

 
  ]

 
}

Table 6.3: Updated vector search index definitions

Table 6.4 shows the new text search index.

Collection: articles

Search index: lexical_six

 
{

 
  "mappings": {

 
    "dynamic": false,

 
    "fields": {

 
      "brand": {

 
        "normalizer": "lowercase",

 
        "type": "token"



 
      },

 
      "subscription_type": {

 
        "normalizer": "lowercase",

 
        "type": "token"

 
      },

 
      "summary": {

 
        "type": "string"

 
      },

 
      "tags": {

 
        "normalizer": "lowercase",

 
        "type": "token"

 
      },

 
      "title": {

 
        "type": "string"

 
      }

 
    }

 
  }

 
}

Table 6.4: Text search index definition

You learned about writing vector search queries in Chapter 4, Embedding Models. To learn more
about hybrid search queries, you can refer to the tutorial at https://www.mongodb.com/docs/atlas/atlas-
vector-search/tutorials/reciprocal-rank-fusion/.

Now that you understand your data model and the indexes required, you need to consider the number of
articles MDN will bear (including the sizes of embeddings and indexes), peak daily times, and more to
determine the overall storage and database cluster requirements.

Data storage
In this section, you will perform sizing, which is an educated estimate, for storage requirements. You will
consider not just volume size and speed, but also several other aspects of the database cluster that are
needed for harnessing the data of your application while following expected data access patterns.

https://www.mongodb.com/docs/atlas/atlas-vector-search/tutorials/reciprocal-rank-fusion/


MDN plans to publish 100 articles daily. Keeping the articles from the last 5 years, the number of
articles would total 182,500. With 48 million subscribers and 24 million daily active users, peak access
occurs for 30 minutes daily across three major time zones, as shown in Figure 6.4.

Figure 6.4: MDN subscriber time zones and peak times

First, you will estimate the total data size. Each article has one 1,024-dimension embedding for semantic
search and five 768-dimension embeddings for image search, totaling 40 KB uncompressed (dimensions
use the double type). With the title, summary, body (with and without markup), and other fields, the
average article size will be about 300 KB uncompressed.

Five years of articles will require about 100 GB uncompressed. With MongoDB’s WiredTiger
compression (Snappy, zlib, and zstd are also available as compression options), this reduces to about 50
GB on disk. The defined vector indexes add about 3.6 GB. Images and binary assets will be stored in
Amazon S3. For simplicity, you will not estimate the size of search and traditional indexes. You can
safely say that MDN will need 80 to 100 GB on disk in MongoDB Atlas, which is very manageable by
today’s cloud computing standards.

Now, you will determine the most suitable MongoDB Atlas cluster configuration.

Determining the type of database cluster

MongoDB Atlas provides two main cluster types:

Replica sets have a primary node for writes and secondary nodes for high availability, which can also be used for reads. These
sets scale vertically and can also scale horizontally for reads by adding more nodes in the same or different cloud regions.

Sharded clusters consist of multiple shards, each being a part of the overall dataset, and each being a replica set. They scale
vertically and horizontally for both reads and writes. Shards can be placed in different cloud regions to enhance data locality
and compliance.

So, how can you determine whether a replica set is sufficient or a sharded cluster is needed? Key
factors include the size of the dataset or the throughput of applications that can challenge the capacity
of a single server. For example, high query rates can exhaust the server’s CPU capacity and working



set sizes larger than the system’s RAM can stress the I/O capacity of disk drives. MDN publishes 100
articles per day, so sharding is not necessary for this reason.

Other reasons for sharding include data governance and compliance and recovery point objective
(RPO) and recovery time objective  (RTO) policies, which are key metrics in disaster recovery and
business continuity planning. None of these are applicable to MDN.

Considering the small number of writes per second and manageable data size, it makes sense to use a
replica set. You will now need to determine the amount of RAM and IOPS needed; both are key
components for fast response times.

Determining IOPS

MDN is a low-write, high-read use case. With only 100 articles added per day, there is minimal pressure
on the storage system for writes. Table 6.5 shows the storage and IOPS options provided by MongoDB
Atlas.

Storage types Lowest IOPS/storage Highest IOPS/storage

Standard IOPS 3,000 IOPS/10 GB 12,288 IOPS/4 TB 16,000 IOPS/14 TB*

*Extended storage enabled

Provisioned IOPS 100 IOPS/10 GB 64,000 IOPS/4 TB

NVMe 100,125 100% random read IOPS

35,000 write IOPS 380 GB

3,300,000 100% random read IOPS

1,400,000 write IOPS 4,000 GB

Table 6.5: MongoDB Atlas storage types on AWS

As shown in Figure 6.4, there will be a 30-minutes peak period, during which 24 million users are
expected to be active daily. So, you need to provision 6,000 IOPS, as shown in Table 6.6. This is based
on subscriber distribution, memory versus disk reads, and each article requiring 3 IOPS for disk reads
(150 KB compressed ÷ 64 KB I/O size of Amazon EBS).

Region Allocation DAU 20% reads
from disk

Disk reads/sec
during peak time

IOPS
required

AMER^ 40% 9,600,000 1,920,000 1,067 3,200^

EMEA^ 20% 4,800,000 960,000 533 1,600^



APAC 25% 6,000,000 1,200,000 667 2,000

LATAM^ 15% 3,600,000 720,000 400 1,200^

 ̂Zones overlapping at
peak time

Peak IOPS 6,000

Table 6.6: MDN global subscriber distribution

The minimum standard IOPS on any Atlas cluster on AWS is 3,000. To achieve 6,000 IOPS you would
need to use an Atlas M50 tier with 2TB disk, which feels over-provisioned and would not provide low
latency to all readers if deployed in a single cloud region. To address this, MDN will deploy the
application stack in major geographies, enabling regional provisioning, workload distribution, and local
reads for an optimal customer experience.

With MongoDB Atlas, you can place vector search nodes across regions. The S40 tier offers 26,875
read IOPS, which is sufficient for this example, and a 2-node minimum per region, which ensures high
availability.

While Vector Search nodes will handle lexical, semantic, and image search, the full JSON document
must be fetched from a MongoDB data node after matching. To fully support local reads, we must
provision read-only nodes in the same regions and meet IOPS requirements. We can do this with the
Atlas M40 tier. Having determined the IOPS needed, you now need to estimate RAM.

Determining RAM

For data nodes, the Atlas M40 tier provides 16 GB of RAM. The MongoDB WiredTiger storage engine
reserves 50% of (RAM - 1 GB) for its cache. With documents averaging 300 KB in size, the cache can
hold approximately 28,000 documents. Keep in mind that traditional index sizes might slightly reduce this
number. Given the addition of 100 new articles daily, the cache on an M40 tier can accommodate data
for about 280 days, or roughly 9 months, which is more than sufficient for this example.

The Search S40 tier offers 16 GB of RAM, 2 vCPUs, and 100 GB of storage. The HNSW graph, or the
vector index, must fit in the memory.

NOTE

You learned about HNSW or hierarchical navigable small worlds in Chapter 5, Vector Databases.

One article uses 1 x 1,024 vector + 5 x 768 vectors = 19.5 KB. With 3.5 GB needed for 182,500
articles, 16 GB of RAM is more than sufficient for vector search and leaves room for the lexical search



index. The S30 tier, which offers 4 GB of RAM, 1 vCPU, and 50 GB storage, is less costly, but note that
more CPUs allows more concurrent searches.

Final c luster configuration

You have now determined the cluster configuration for MDN. Table 6.7 describes the MDN global
cloud architecture, detailing the distribution of Atlas nodes across different regions. The AMER region,
identified as the primary region, uses M40 tier nodes and S30 vector search nodes to serve writes and
searches for the Americas, while the EMEA, APAC, and LATAM regions use M40 read-only nodes and S30
vector search nodes to serve local searches only for their respective region. Each region will need a
deployment of the MDN application stack, as pictured in the global map in Table 6.7.

Region Atlas base tier nodes Atlas read-only nodes Atlas Vector Search nodes

AMER

(primary region)

M40

(three included)

S30 x2

EMEA M40 x2 S30 x2

APAC M40 x2 S30 x2

LATAM M40 x2 S30 x2

MDN global cloud architecture

Table 6.7: MongoDB Atlas cluster configuration for MDN



Performance and avai labi li ty versus cost

Notice that additional read-only nodes were not provisioned in the AMER region, using the two secondary
nodes as read-only instead. This saves costs due to MDN’s low write profile, despite potential resource
competition. Provisioning only one M40 read-only node in other regions saves more costs but increases
latency during maintenance windows, as reads will be rerouted.

To protect against a complete AMER outage while adhering to best practices, consider provisioning five
nodes across three regions and deploying the application stack in the two regions with two electable
nodes each.

Data flow
Data flow involves the movement of data through a system, affecting the accuracy, relevance, and
speed of the results delivered to consumers, which, in turn, influences their engagement. This section
explores design considerations for handling data sources, processing data, prompting LLMs, and
embedding models to enrich data using MDN as an example. Figure 6.5 illustrates this flow.

Figure 6.5: Typical data flow  in an AI/ML application

Let's us begin with the design for handling data sources. Data can be ingested into MongoDB Atlas
either statically (at rest) from files as it is, or dynamically (in motion), allowing for continuous updates,
data transformation, and logic execution.

Handling static data sources

The simplest way to import static data is to use mongoimport, which supports JSON, CSV, and TSV
formats. It is ideal for initial loads or bulk updates as it can handle large datasets. Moreover, increasing
the number of insertion workers to match the host’s vCPUs can boost import speed.



mongoimport can also be used dynamically to update externally sourced data. You can build invocation
commands at runtime and execute them as out-of-process tasks. Some video game companies use this
method to update player profiles with purchase data from mobile app stores.

Using MDN as an example, users can provide their GitHub ID when subscribing. With GitHub’s API,
you can create a list of the programming languages used in the repositories that users own or have
contributed to. A scheduled job can fetch this data periodically. The list of languages can then imported
and merged into their profiles to recommend articles later. Table 6.8 demonstrates how you can do this.

File : github-20240719.json

 
{ "github_id" : "user1", "languages" : ["python", "csharp"], …}

 
{ "github_id" : "user2", "languages" : ["python", "cpp"], …}…

Collection: mdn.subscribers

 
{ "_id" : ObjectId("669…ab8"), "github_id" : "user1", … }

 
{ "_id" : ObjectId("669…ab9"), "github_id" : "user2", … }…

The mongoimport invocation to merge data matching on the github_id field

 
mongoimport --uri=<connection string to Atlas cluster>

 
--db=mdn --collection=subscribers --mode=merge

 
--file=github-20240719.json --upsertFields=github_id

 
--numInsertionWorkers=4

Collection: mdn.subscribers after merge

 
{ "_id" : ObjectId("669…ab8"), "github_id" : "user1", "languages" : ["python", 
"csharp"], … }

 
{ "_id" : ObjectId("669…ab9"), "github_id" : "user2", "languages" : ["python", 
"cpp"], … }…

Table 6.8: Example of using mongoimport to merge data

While mongoimport is a versatile tool for various data import needs, it does not support continuous
synchronization, logic execution, or data transformations. You will now explore some methods that do
support these functions.



Storing operational data enriched with vector
embeddings

When original representations are stored or updated, their corresponding vector embeddings must be
refreshed to accurately reflect the content. This can be done in the following ways:

Synchronously: Obtains the updated vector embedding before the database operation, writing both data and embedding
together. This method is suitable for fast, simple embedding models or when the model is locally hosted. However, it may fail if
the response times of the embedding model vary.

Asynchronously: Ensures immediate consistency of primary data and allows for prompting the embedding model afterward.
While this offers scalability and handles unpredictable models, it introduces latency during which embeddings are temporarily
outdated.

You can keep embeddings up to date asynchronously in MongoDB using the following four methods:

Kafka connector: You can facilitate data flow from Apache Kafka into MongoDB collections through the Kafka connector.
It is a Confluent-verified connector and allows data to flow from Apache Kafka topics into MongoDB as a data sink and
publishes changes from MongoDB to Kafka topics as a data source . To keep embeddings up to date, you would use the sink
connector and develop a post-processor in Java. You can learn more about sink post-processors here:
https://www.mongodb.com/docs/kafka-connector/v1.3/sink-connector/fundamentals/post-processors/#sink-connector-post-
processors.

Atlas Stream Processing: This method handles complex data streams with the same query API as MongoDB Atlas databases.
It enables continuous aggregation and includes schema validation for message integrity and timely issue detection. Processed
data can be written to Atlas collections, and they are integrated into Atlas projects and independent of Atlas clusters. Atlas
Stream Processing logic is programmed in JavaScript using MongoDB aggregation syntax. For an example of using Atlas Stream
Processing to handle embedding data, see https://www.mongodb.com/solutions/solutions-library/rag-applications.

Atlas Triggers: Atlas Triggers execute application and database logic by responding to events or following predefined
schedules. Each Trigger listens for specific event types and is linked to an Atlas Function. When a matching event occurs, the
Trigger fires and passes the event object to the linked Function. Triggers can respond to various events, such as specific
operations in a collection, authentication events such as user creation or deletion, and scheduled times. They are fully managed
instances of change streams but limited to JavaScript. For an example of using Atlas Triggers to keep embeddings up to date,
see https://www.mongodb.com/developer/products/atlas/semantic-search-mongodb-atlas-vector-search/.

Change streams: This method provides real-time access to data changes. Applications can subscribe to changes in a
collection, database, or entire deployment and react immediately, with events processed in order and being resumable? Using
the aggregation framework, change streams allow filtering and transforming notifications. They can be used with any
programming language supported by an official MongoDB driver. However, they are not fully managed, requiring a running host
to be maintained alongside the main application.

Given that this book is written for Python developers, you will learn how to use a change stream written
in Python. Table 6.9 shows a Python 3 change stream using LangChain and OpenAI to embed the title
and summary of an MDN article. It is triggered for new articles or changes to the title or summary
following the data model from Figure 6.3 and the vector index from Table 6.3.

 
import os 
from langchain_openai import OpenAIEmbeddings 
from pymongo import MongoClient 

https://www.mongodb.com/docs/kafka-connector/v1.3/sink-connector/fundamentals/post-processors/#sink-connector-post-processors
https://www.mongodb.com/solutions/solutions-library/rag-applications
https://www.mongodb.com/developer/products/atlas/semantic-search-mongodb-atlas-vector-search/


from pymongo.errors import PyMongoError 
# Set the OpenAI API key as an environment variable 
os.environ["OPENAI_API_KEY"] = "YOUR-OPENAI-API-KEY" 
# Define the MongoDB Atlas connection string 
ATLAS_CONNECTION_STRING = "YOUR-MONGODB_ATLAS-CONNSTRING" 
# Create a MongoClient instance to connect to MongoDB Atlas 
client = MongoClient( 
    ATLAS_CONNECTION_STRING, tls=True, tlsAllowInvalidCertificates=True 
) 
# Select the 'articles' collection from the 'mdn' database 
coll = client["mdn"]["articles"] 
# Instantiate the OpenAIEmbeddings model with specified parameters 
embedding_model = OpenAIEmbeddings( 
    model="text-embedding-3-large", dimensions=1024, disallowed_special=() 
) 
# Define a function to handle changes detected in the MongoDB collection 
def handle_changes(change): 
    # Extract the document ID from the change event 
    doc_id = change["documentKey"]["_id"] 
    # Create a filter to identify the document in the collection 
    doc_filter = { 
        "_id": doc_id 
    } 
    # Combine the title and summary of the document into a single text string 
    text = [change["fullDocument"]["title"] + " " + change["fullDocument"]
["summary"]] 
    # Generate embeddings for the text 
    embeddings = embedding_model.embed_documents(text) 
    # Create an update document to set the 'semantic_embedding' field with the 
generated embeddings 
    set_fields = { 
        "$set": { 
            "semantic_embedding": embeddings[0] 
        } 
    } 
    # Update the document in the collection with the new embeddings 
    coll.update_one(doc_filter, set_fields) 
    print(f"Updated embeddings for document {doc_id}") 
# Start monitoring the MongoDB collection for changes 
try: 
    # Define a stream filter to match insert and update operations affecting the 
title or summary fields 
    stream_filter = [ 
        { 
            "$match": { 
                "$or": [ 
                    {"operationType": "insert"}, 
                    { 
                        "$and": [ 
                            {"operationType": "update"}, 
                            { 
                                "$or": [ 
                                    { 
                                        "updateDescription.updatedFields.title": { 
                                            "$exists": True 
                                        } 
                                    }, 
                                    { 
                                        "updateDescription.updatedFields.summary": { 
                                            "$exists": True 
                                        } 
                                    }, 
                                ] 
                            }, 
                        ] 
                    }, 



                ] 
            } 
        } 
    ] 
    # Open a change stream to watch for changes in the collection 
    with coll.watch(stream_filter, full_document="updateLookup") as stream: 
        print("Listening for changes...") 
        for change in stream: 
            print(f"Change detected: {change}. Processing") 
            handle_changes(change) 
except PyMongoError as e: 
    # Print an error message if a PyMongoError occurs 
    print(f"An error occurred: {e}") 
finally: 
    # Close the MongoDB client connection 
    client.close()

Table 6.9: Change stream w ritten in Python to set or update embeddings

Now that you have learned how to handle the data flow for setting or updating embeddings, you will
learn about data freshness and retention, which are essential for delivering relevant and timely content.

Freshness and retention
Fresh data and effective retention strategies ensure that your content is relevant and delivered on time.
Freshness  keeps users engaged with the latest articles, comments, and recommendations. Retention
strategies  manage the data lifecycle, preserving valuable historical data for analytics while purging
obsolete data. This section explores methods for ensuring up-to-date content and efficient data flow.

Real-t ime updates

The primary concern is to ingest and update new data in real time, making it available across all cloud
regions. For the news site, this means new articles and their vector embeddings should be promptly
persisted and replicated for global access.

To achieve this with a distributed data model and application, use an ACID transaction to ensure that
the article and its content embeddings are written together as a single unit. For an example of creating
MongoDB transactions in Python, see https://learn.mongodb.com/learn/course/mongodb-crud-
operations-in-python/lesson-6-creating-mongodb-transactions-in-python-applications/learn?page=2.

Next, balance data reliability, consistency, and performance in a distributed setup using MongoDB’s
tunable consistency with writeConcern, readConcern, and readPreference. These modifiers help to
ensure data integrity and quick access. The following is an explanation of these modifiers, but for a
deeper understanding, you can visit https://www.mongodb.com/docs/manual/core/causal-consistency-
read-write-concerns/:

writeConcern:majority ensures data consistency and durability by acknowledging write operations only after data is
written to the majority of replica set members, reducing the risk of data loss during failures. It is the default write concern.

https://learn.mongodb.com/learn/course/mongodb-crud-operations-in-python/lesson-6-creating-mongodb-transactions-in-python-applications/learn?page=2
https://www.mongodb.com/docs/manual/core/causal-consistency-read-write-concerns/


readConcern:majority provides read consistency by ensuring that read operations return the most recent data
acknowledged by the majority of the replica set members, providing a consistent view of the data across the application.

readPreference:nearest optimizes latency by directing read operations to the replica set member with the lowest
network latency. For MDN, this minimizes response times by allowing each regional application deployment to read from the
nearest MongoDB data and vector nodes, and balancing consistency and performance.

Now that you have learned how to ensure data availability and speed, the next focus is on data lifecycle
management, a key aspect of data freshness and retention.

Data li fecycle

Data lifecycle  refers to the various stages data goes through from creation to deletion, and how it may
traverse and change systems or storage formats, including when data is archived or deleted. As latest
content is added, older content may become less relevant.

For example, older articles can be moved to an archive database or cold storage, reducing storage costs
and optimizing active database performance. However, moving data to cold storage may reduce search
capabilities compared to the operational database. Here are three approaches for handling the data
lifecycle, along with their trade-offs:

All data in the operational cluster: Keeping all data in the operational cluster is the most performant but costly approach,
suitable for scenarios where most data is frequently accessed, such as global online games, authentication providers, or financial
platforms. MongoDB Atlas supports this with sharded clusters and global clusters. Global clusters allocate data zones to cloud
regions for capacity management and data locality.

Active and historic operational data clusters: This involves using high-performance hardware for recent data and less
capable hardware for older data, balancing functionality, and cost savings. With MongoDB Atlas, data can be moved from
active to historic cluster(s) using Cluster-to-Cluster Sync and TTL indexes. Other platforms such as Apache Kafka, Confluent,
and Striim also support this method.

Active data cluster and historical storage : Full historical data can be offloaded to cold storage while retaining key fields in
the operational cluster, allowing for full or limited query and search capabilities. For MDN, this ensures that users can find
historical articles through lexical semantic searches, with full articles stored in cold storage and accessed when needed. With
MongoDB Atlas, this can be achieved using Online Archive and Data Federation. Online Archive  automatically moves data
from the cluster to lower-cost cloud storage based on the set expiration. Data Federation allows transparent querying of both
clusters and the archive, regardless of the source.

This section covered data lifecycle management, emphasizing how data is managed from creation to
archival. You learned about three strategies: maintaining all data in the operational cluster for maximum
performance, separating active and historical data to balance cost and performance, and offloading
historical data to cold storage while retaining some search functionality. Now, you will learn about
upgrading embedding models.

Adopting new embedding models



OpenAI superseded the text-search-davinci-*-001 model with text-embedding-ada-002 on
December 15, 2022, and subsequently with text-embedding-small/large on January 25, 2024. It is
likely that by the time you read this book, these models will be replaced too.

As you learned in the Chapter 4, Embedding Models, embeddings from one model are not compatible
with another. Re-embedding previously indexed data may be necessary as newer models are adopted.
This is a resource-intensive activity that requires design considerations upfront.

You will need to choose an approach toward adopting new embedding models. You can either continue
using the existing vector fields and perform lengthy all-or-nothing upgrades, double-embed for a period,
or implement a gradual upgrade. Let's explore these three approaches:

Use existing vector fields: This approach keeps the application code intact but requires downtime to re-embed data and
replace vector indexes. This approach is suitable if the re-embedding and re-indexing time fits within your allowable downtime
windows.

Double-embed temporarily: This approach double embeds fields for new or modified data using the old and new model. It
uses a background job to add new embeddings for data that is not modified. When all data has double embeddings, the
application will be updated and deployed to use the new embeddings. Once stable, the deprecated vectors and indexes can be
removed with another background job. Ensure sufficient disk space and memory for when two sets of vectors coexist. This
approach is suitable if the downtime windows are small and only accommodate application deployment times.

Gradual upgrade : This approach is architecturally complex. Vector creation and search can be moved to a microservice. By
leveraging MongoDB’s flexible data model, the service adds new vectors and retires old ones when documents change (such as a
non-blocking lazy schema change). A background job handles untouched documents. For searches, results from searching using
both vectors are combined (such as the reciprocal rank fusion approach). Using the filter type of MongoDB’s vector
indexes (shown in Table 6.3), you can introduce a new field to distinguish between documents with old and new vectors and
implement the union. Eventually, old vectors and indexes can be dropped, and you can remove unneeded logic. This approach
is suitable if no downtime is allowed.

By addressing these three main concerns—data ingestion and real-time updates, managing the data
lifecycle and aging, and upgrading embedding models—your application can ensure that its data remains
fresh and relevant, providing an optimal platform and striving for the best user experience. Now, you will
learn about security and its considerations for AI-intensive applications.

Security and RBAC
Security measures  protect data from unauthorized access and breaches, while RBAC ensures
appropriate access levels based on roles. Here are key security and RBAC strategies to protect data
integrity and privacy:

Data encryption and secure storage : Encrypting data at rest and in transit is crucial for securing an application. Encryption
at rest protects data from unauthorized access, while encryption in transit secures data as it moves between users and the
application. MongoDB Atlas offers built-in integration with AWS Key Management Service  (AWS KMS) for encryption at
rest and TLS/SSL out of the box for data in transit.



Access controls and user authentication: RBAC manages permissions, ensuring that users access only necessary data and
functionalities. In the case of MDN, separate roles, such as editors and readers, require various levels of access. Different
database users on MongoDB can be set up with distinct levels of permissions following the principle of least privilege. For
example, only the application identity used by the microservice that embeds data would have write permissions to the
collections where embeddings are stored, while the application identity used by human actors would only have read permissions.

Monitoring and auditing: Continuous monitoring and auditing detect and respond to security incidents in real time.
Monitoring tools and audit logs track user activities and identify unusual access patterns. MongoDB Atlas offers advanced
monitoring and alerting capabilities, allowing administrators to set up alerts for suspicious activities. Regularly reviewing audit
logs ensures compliance with security policies and provides insights for improving security.

Data backup and recovery: Maintain data integrity and availability with regular backups to minimize downtime and loss
during security breaches or incidents. MongoDB Atlas offers automated backup solutions with snapshots, ensuring quick
recovery. If encryption at rest is enabled (for example, AWS KMS), embeddings and operational data are encrypted under the
same key in both volumes and backups.

While there are many security-related concerns, the ones just covered should suffice to start building AI
applications. Ensuring security is a continuous effort that organizations must adopt and enforce to
maintain compliance, foster user trust, and safeguard application integrity.

Best practices for AI/ML application design
This section covers best practices for the five concerns covered in this chapter—data modeling, data
storage, data flow, data freshness and retention, and security and RBAC. These guidelines will help
ensure that your application is efficient, scalable, and secure, providing a solid foundation for building
reliable and high-performing AI apps. Here are the top two best practices for each aspect of your
AI/ML application design.

1. Data modeling: The following techniques ensure efficiency and performance for handling embeddings:

Embeddings in separate collections: Store embeddings in a separate collection to avoid bloated documents,
especially when multiple embeddings and nested indexing limitations are involved. Duplicate fields to ensure
efficient filtering and maintain performant searches.

Hybrid search: Combine semantic and lexical searches using reciprocal rank fusion. This hybrid approach boosts
search functionality by leveraging the strengths of both.

2. Data storage : To optimize database cluster sizing, implement the following best practices:

Sufficient IOPS and RAM based on peak usage : Calculate required IOPS based on peak access times and
application read/write patterns. Ensure data and search nodes have enough RAM to handle the caching and indexing
needs of the most requested data.

Local reads: Deploying nodes across regions helps minimize read latency and enhances the user experience. Ensure
that each region has all the nodes required to fully serve data locally.

3. Data flow: Consider the following strategies for harnessing data flow effectively:



Asynchronous embedding updates: Ensure primary data consistency by updating vector embeddings
asynchronously. This method accommodates scalability and unpredictable model response times, although it
introduces temporary latency.

Dynamic data handling: Leverage technologies such as change streams, Atlas Triggers, Kafka, and Atlas Stream
Processing to handle continuous updates, transformations, and logic execution.

4. Data freshness and retention: The following best practices can ensure that your application is relevant and prompt:

Up-to-date embedding models: Embeddings from one model are not compatible with another. Plan for model
upgrades during downtime if possible, or consider gradual upgrades, which are architecturally complex but require no
downtime. Leverage MongoDB’s flexible data model to transition between embeddings.

Data tiering: Implement a data aging strategy by moving older data to an archive cluster or cold storage while
keeping recent data in high-performance clusters. Use broader MongoDB Atlas features such as Online Archive,
Data Federation, and more for effective data tiering.

5. Security and RBAC: Following are the best practices for ensuring the security of your data:

RBAC: Assign role-based permissions and follow the principle of least privilege  (PoLP), ensuring that users and
entities access only necessary data and actions. For instance, code embedding data should have write access only to
embedding collections.

Encryption and storage : Turn on encryption at rest and integrate with KMS to ensure that all data volumes and
backups are encrypted with your own key.

Implementing these best practices boosts the efficiency, scalability, and security of your AI/ML
applications. Though just a starting point, these guidelines lay a solid foundation for building reliable,
high-performing systems. With these best practices, you can navigate the complexities of modern AI
and prepare your applications for long-term success and adaptability in a rapidly evolving tech
landscape.

Summary
This chapter covered critical architectural considerations for developing intelligent applications. You
learned about data modeling and how to evolve your model to fulfill use cases, address technical
limitations, and consider patterns and anti-patterns. This approach ensures that data is not only useful
but also accessible and optimally utilized across various components of your AI/ML system.

Data storage was another key aspect of this chapter, focusing on the selection of appropriate storage
technologies based on different data types and the specific needs of the application. It highlighted the
importance of accurately estimating storage requirements and other aspects of choosing the right
MongoDB Atlas cluster configuration. The fictitious example of the MDN application served as a
practical case study, illustrating how to apply these principles in a real-world scenario.



The chapter also explored the flow of data through ingestion, processing, and output to ensure data
integrity and maintain the velocity of data operations. This chapter also addressed data lifecycle
management, including the importance of data freshness and retention. You learned strategies for
managing updates and changing embedding models used by your application.

Security is a paramount concern in AI/ML applications, and you learned brief but important points about
protecting the integrity of data and application logic. Concluding with a compilation of best practices, this
chapter summarized key principles from data modeling, storage, flow, and security, offering practical
advice to avoid common pitfalls and enhance the development of robust AI/ML applications.

In the next chapter, you will explore different AI/ML frameworks, Python libraries, and publicly
available APIs and other tools.



Part 2

Building Your Python Application: Frameworks,
Libraries, APIs, and Vector Search
This following set of chapters will equip you with the necessary tools for AI development through
detailed instructions and examples on enhancing developer and user experience with Python and
retrieval-augmented generation.

This part of the book includes the following chapters:

Chapter 7, Useful Frameworks, Libraries, and APIs

Chapter 8, Implementing Vector Search in AI Applications
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Useful Frameworks, Libraries, and APIs
As you might expect, Python is the most popular programming language for building intelligent AI
applications. This is due to its flexibility and ease of use, as well as for its vast number of AI and
machine learning (ML) libraries. Python has a specialized library for nearly all the necessary tasks
required to build a generative AI (GenAI) application.

In Chapter 1, Getting Started with Generative AI, you read about the GenAI stack and the evolution
of AI. Like the AI landscape, the Python library and framework space also went through an evolution
phase. Earlier, libraries such as pandas, NumPy, and polars were used for data cleanup and
transformation work, while PyTorch, TensorFlow, and scikit-learn were used for training ML models.
Now, with the rise of the GenAI stack, LLMs, and vector databases, a new type of AI framework has
emerged.

These new libraries and frameworks are designed to simplify the creation of new applications powered
by LLMs. Since building GenAI applications requires the seamless integration of data from many
sources and the use of diverse AI models, these AI frameworks provide built-in functionalities to
facilitate acquiring, migrating, and transforming data.

This chapter delves into the world of AI/ML frameworks, exploring their importance and highlighting
why Python has emerged as the go-to language for AI/ML development. By the end of this chapter,
you’ll be able to understand the most popular frameworks and libraries, as well as how they help you—
the developer—build your GenAI application.

This chapter will cover the following topics:

AI/ML frameworks

Python libraries

Publicly available APIs and other tools

Technical requirements
To perform the steps shown in this chapter, you will need the following:

Latest major version of Python.

A free tier Atlas cluster running MongoDB version 6.0.11, 7.0.2, or later.

Your current IP address added to your Atlas project access list.



An environment set up to run Python code in an interactive environment, such as Jupyter Notebook or Colab. This chapter
uses Jupyter Notebook.

Python for AI/ML
Python has established itself as the go-to programming language in various fields, but most notably in AI,
ML, and building applications powered by large language models  (LLMs). Python offers simplicity,
readability, and a robust ecosystem of libraries, making it an ideal choice for all kinds of users, whether
they are developers, researchers, or even students just getting started with programming. Python has
also emerged as the language of choice for building new LLM-powered applications, underscoring
Python’s usefulness, popularity, and versatility.

In this section, you will learn some of the reasons that make Python a great choice for building modern
AI-powered applications:

Simplicity and readability: Python’s syntax is designed to be intuitive and clear, which is one of its core strengths. Python
can represent complex algorithms and tasks in a few lines of code that are easily readable and understandable.

Rich ecosystem of libraries and frameworks: Python offers an extensive range of libraries and frameworks specifically
designed for AI/ML use cases. Libraries such as TensorFlow, PyTorch, and scikit-learn have traditionally been popular for ML
tasks. Hugging Face’s Transformers library has also become an indispensable part of the developer workflow for building
modern LLM-powered applications. It provides pre-trained models and straightforward APIs to fine-tune models for specific
tasks. These libraries not only accelerate development time but also provide cutting-edge solutions to developers across the
world.

Strong community and support: Python is one of the most popular programming languages in the world, and hence has a
huge community. According to the Stack Overflow survey 2023 (https://survey.stackoverflow.co/2023/), it’s the second most
popular programming language after JavaScript (excluding HTML/CSS). This strong and large community provides a wealth of
resources, including tutorials, discussion forum engagements, and open source projects, which offer a helpful support system for
someone working on building modern applications.

Integration with other technologies: Python’s ability to integrate seamlessly with other technologies and programming
languages makes it a great choice for AI/ML tasks and building LLM-powered applications. For example, Python can easily
interface with programming languages such as C/C++ for performance-critical tasks. It also interfaces well with languages such
as Java and C#. This flexibility of Python is helpful for deploying LLM-powered applications in diverse environments,
ensuring that Python can be part of large heterogeneous systems.

Rapid prototyping and experimentation: Building a sophisticated AI/ML-powered application requires many iterations of
tests, experiments, and fine-tuning. Python allows developers to quickly build prototypes in a few lines of code. Easy testing
and debugging also help to prototype a quick solution. Python’s interactive environments, such as Jupyter Notebook, provide
an excellent platform for this purpose. With Python, developers building LLM-powered applications can quickly test
hypotheses, visualize data, and debug code in an interactive manner.

Python combines speed, simplicity, specialized libraries and frameworks, and strong community support
with easy integration with other languages and technologies, all of which make it an excellent choice for
building modern LLM-powered applications.

https://survey.stackoverflow.co/2023/


AI/ML frameworks
AI/ML frameworks  are essential tools that streamline the development and deployment of ML
models, providing pre-built algorithms, optimized performance, and scalable solutions. They enable
developers to focus on refining their models and GenAI applications rather than getting bogged down by
low-level implementations. Using frameworks ensures efficiency, adaptability, and the ability to harness
cutting-edge AI advancements. Developers should be interested in these frameworks as they also
reduce development time and enhance the potential for breakthroughs in GenAI.

MongoDB has integrations with many AI/ML frameworks that may be familiar to developers, such as
LangChain, LlamaIndex, Haystack, Microsoft Semantic Kernel, DocArray, and Flowise.

In this section, you will learn about LangChain, one of the most popular GenAI frameworks. Although
it is very popular, it is certainly not the only popular framework. If you are interested in other
frameworks, you can check out the documentation linked in the Appendix: Further Reading chapter at
the end of this book or see the latest list of supported AI/ML frameworks for Python at
https://www.mongodb.com/docs/languages/python/.

LangChain

LangChain is a framework for developing applications powered by LLMs. LangChain simplifies every
stage of the LLM application lifecycle. It enables building applications that connect external sources of
data and computation to LLMs. The basic LLM chain relies solely on the information provided in the
prompt template to generate a response, and the concept of a LangChain allows you to extend these
chains for advanced processing.

In this section, you will learn how to use LangChain to perform semantic search on your data and build
a retrieval-augmented generation (RAG) implementation. Before you begin, make sure you have all
the necessary tools installed and set up on your computer, as listed in the Technical requirements
section of this chapter.

Gett ing started with LangChain
Perform the following steps to set up your environment for LangChain:

1. Start by installing the necessary dependencies:

 
pip3 install --quiet --upgrade langchain==0.1.22 langchain-mongodb==0.1.8 
langchain_community==0.2.12 langchain-openai==0.1.21 pymongo==4.5.1 polars==1.5.0 
pypdf==3.15.0

2. Run the following code to import the required packages:

 
import getpass, os, pymongo, pprint 
from langchain_community.document_loaders import PyPDFLoader 
from langchain_core.output_parsers import StrOutputParser 
from langchain_core.runnables import RunnablePassthrough 

https://www.mongodb.com/docs/languages/python/


from langchain_mongodb import MongoDBAtlasVectorSearch 
from langchain_openai import ChatOpenAI, OpenAIEmbeddings 
from langchain.prompts import PromptTemplate 
from langchain.text_splitter import RecursiveCharacterTextSplitter 
from pymongo import MongoClient

3. After you have imported the necessary packages, make sure the environment variables are set properly. You have two
important secrets to store as environment variables: your OpenAI API key and MongoDB Atlas connection string.

Run the following command to store your OpenAI API key as an environment variable:
 
os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")

Make sure your connection string for the drivers is in the following format, which has both username
and password included in the connection string:

mongodb+srv://<username>:<password>@<clusterName>.<hostname>.mongodb.net

Run the following command to store your MongoDB Atlas connection string as an environment
variable:

ATLAS_CONNECTION_STRING = getpass.getpass("MongoDB Atlas SRV Connection String:")

You are now ready to connect to the MongoDB Atlas cluster.

4. Next, you’ll instantiate the MongoClient and pass your connection string to establish communications with your MongoDB
Atlas database. Run the following code to establish the connection:

 
# Connect to your Atlas cluster 
client = MongoClient(ATLAS_CONNECTION_STRING)

5. Next, you’ll specify the name of the database and the collection you want to create. In this example, you’ll create a database
named langchain_db and a collection called test. You’ll also define the name of the vector search index to create and
use with the following code:

 
# Define collection and index name 
db_name = "langchain_db" 
collection_name = "test" 
atlas_collection = client[db_name][collection_name] 
vector_search_index = "vector_index"

With these steps, you’ve set up the basics of connectivity. Now that you have the bare bones of your
database, you’ll want to define what your application does.

In this case, you will do the following:

1. Fetch a publicly accessible PDF document.

2. Split it into smaller chunks of information for easy consumption by your GenAI application.

3. Upload the data into the MongoDB database.

This functionality is not something you have to build from scratch. Instead, you’ll use the free, open
source library integration provided by LangChain called PyPDFLoader, which you imported in Step 2
earlier in this section.
Fetching and split t ing public PDF documents



Using PyPDFLoader to fetch publicly available PDFs is quite simple. In the following code, you will fetch
a publicly accessible PDF document and split it into smaller chunks that you can later upload into your
MongoDB database:

 
# Load the PDF 
loader = 
PyPDFLoader("https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4HkJP") 
data = loader.load() 
# Split PDF into documents 
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=20) 
docs = text_splitter.split_documents(data) 
# Print the first document 
docs[0]

You will then receive the following output:
 
Document(metadata={'source': 
'https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4HKJP', 'page': 0}, 
page_content='Mong oDB Atlas Best Practices January 20 19A MongoD B White P aper')

With this code, you first instantiated PyPDFLoader and then passed it the URL to the publicly accessible
PDF file: https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4HkJP. Next, you loaded the
fetched PDF file into the data variable.

After that, you split the PDF file’s text into smaller chunks. For this example, you set the chunk size to
200 characters and allowed an overlap of 20 characters between chunks. The overlap maintains the
context between chunks. Note that this number is not arbitrary, and there are many opinions about what
your chunking strategy should be. Some of those resources are discussed in the Appendix: Further
Reading chapter of this book.

You stored the split chunks in the docs variable and printed the first chunk of the split document. This
indicates that your output request via the print command was successful, and you can easily confirm
whether the information is correct for this entry.

Creat ing the vector  store
After you have split your documents into chunks, you will instantiate the vector store with the following
code:

 
# Create the vector store 
vector_store = MongoDBAtlasVectorSearch.from_documents( 
    documents = docs, 
    embedding = OpenAIEmbeddings(disallowed_special=()), 
    collection = atlas_collection, 
    index_name = vector_search_index 
)

In the preceding code, you created a vector store named vector_store using the
MongoDBAtlasVectorSearch.from_documents method and specified various parameters:

documents = docs: The name of the document that you want to store in your vector database

https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4HkJP


embedding = OpenAIEmbeddings(disallowed_special=()): The class that generates vector embeddings for
the documents using OpenAI’s embedding model

collection = atlas_collection: The Atlas collection where documents will be stored

index_name = vector_search_index: The name of the index to use for querying the vector store

You’ll also need to create your Atlas Vector Search index in the MongoDB database. For explicit
instructions on how this is done, see Chapter 8, Implementing Vector Search in AI Applications. This
must be completed before you can successfully run the previous code. When you are creating a Vector
Search index, use the following index definition:

 
{ 
   "fields":[ 
      { 
         "type": "vector", 
         "path": "embedding", 
         "numDimensions": 1536, 
         "similarity": "cosine" 
      }, 
      { 
         "type": "filter", 
         "path": "page" 
      } 
   ] 
}

This index defines two fields:

Embedding field: A vector type field for storing embeddings created using OpenAI’s text-embedding-ada-002 model.
It has 1,536 dimensions and uses cosine similarity to measure similarity. You may also want to consider other newer models
from OpenAI, text-embedding-3-small and text-embedding-3-large, which are optimized for different use
cases and therefore have a different number of dimensions. See https://platform.openai.com/docs/guides/embeddings for more
details as well as current options.

Page field: A filter type field used for pre-filtering data based on the page number in the PDF.

Now, you can run your code successfully, fetch a publicly available PDF, chunk it into smaller portions
of data, and store them in a MongoDB Atlas database. With these steps accomplished, you can conduct
additional tasks, such as running queries to perform semantic search on your data. You can learn about
basic semantic search in Chapter 8, Implementing Vector Search in AI Applications, and Chapter
10, Refining the Semantic Data Model to Improve Accuracy.

For more information on this topic, you can also consult the official documentation from LangChain,
available at https://python.langchain.com/v0.2/docs/integrations/vectorstores/mongodb_atlas/#pre-
filtering-with-similarity-search.

Next, let’s cover some specific LangChain functionalities that you will find most useful when building
GenAI applications.

LangChain semantic search with score

https://platform.openai.com/docs/guides/embeddings
https://python.langchain.com/v0.2/docs/integrations/vectorstores/mongodb_atlas/#pre-filtering-with-similarity-search


LangChain provides some particularly helpful methods to perform semantic search on your data and
return a score . This score refers to the measure of relevance between the query and the matching
documents based on their semantic content. You can use this score when you want to return more than
one result to your users and also limit the number of results. For example, this score can prove useful in
returning the top three most relevant pieces of content about a topic.

The method that you will use here is similarity_search_with_score:
 
query = "MongoDB Atlas security" 
results = vector_store.similarity_search_with_score( 
   query = query, k = 3 
) 
pprint.pprint(results)

You pass the query to the similarity_search_with_score function and specify the k parameter as 3
to limit the number of documents to return to 3. Then, you can print the output:

 
[(Document (page_content='To ensure a secure system right out of the box, 
\nauthentication and IP Address whitelist ing are\nautomatically enabled. \nReview 
the security section of the MongoD B Atlas', metadata={'_id': {'Soid": "667 
20a81b6cb1d87043c0171'), 'source': 
'https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4HKJP', 'page': 17}), 
0.9350903034210205), 
(Document(page_content='MongoD B Atlas team are also monitoring the 
underlying\ninfrastructure, ensuring that it i s always in a healthy state. 
\nApplication Logs And Database L ogs', metadata={'_id': {'soid': 
'66720a81b6cb1d87043 c013c'), 'source': 
'https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4HKJP', 'page': 15}), 
0.9336163997650146), 
(Document(page_content="MongoD B.\nMongoD B Atlas incorporates best practices to help 
keep\nmanaged databases heal thy and optimized. T hey ensure\noperational continuity 
by converting complex manual tasks', metadata={'_id': {'so id: 
'66728a81b6cb1d87043c011f'), 'source': 
'https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4HKJP', 'p age': 13)), 
0.9317773580551147)]

As you can see in the output, three documents are returned that have the highest relevance score. Each
returned document also has a relevance score attached to it that ranges between 0 and 1.

Semantic search with pre-fi ltering

MongoDB allows you to pre-filter your data using a match expression to narrow down the search space
before performing a more computationally intensive vector search. This offers several benefits to
developers, such as increased performance, improved accuracy, and enhanced query relevancy. When
pre-filtering, remember to index any metadata fields by which you want to filter during index creation.

Here is a code snippet that shows how you can perform semantic search with pre-filtering:
 
query = "MongoDB Atlas security" 
results = vector_store.similarity_search_with_score( 
   query = query, 
   k = 3, 
   pre_filter = { "page": { "$eq": 17 } } 



) 
pprint.pprint(results)

In this code example, you have the same query string for which you performed a plain semantic search
earlier. The k value is set to 3 so that it only returns the top three matching documents. You have also
provided a pre_filter query, which is basically an MQL expression that uses the $eq operator to
specify that MongoDB should only return content and chunked information that is on page 17 of the
original PDF document.

Implementing a basic RAG solution with LangChain

LangChain’s functionalities are not only limited to performing semantic search queries on your data
stored in vector databases. It also allows you to build powerful GenAI applications. With the following
code snippet, you will learn an easy way to do the following:

Set up a MongoDB Atlas Vector Search retriever for similarity-based search.

Return the 10 most relevant documents.

Utilize a custom RAG prompt with an LLM to answer questions based on the retrieved documents:

 
# Instantiate Atlas Vector Search as a retriever 
retriever = vector_store.as_retriever( 
   search_type = "similarity", 
   search_kwargs = { "k": 3 } 
) 
# Define a prompt template 
template = """ 
Use the following pieces of context to answer the question at the end.If you don't 
know the answer, just say that you don't know, don't try to make up an answer. 
{context} 
Question: {question} 
""" 
custom_rag_prompt = PromptTemplate.from_template(template) 
llm = ChatOpenAI() 
def format_docs(docs): 
   return "\n\n".join(doc.page_content for doc in docs) 
# Construct a chain to answer questions on your data 
rag_chain = ( 
   { "context": retriever | format_docs, "question": RunnablePassthrough()} 
   | custom_rag_prompt 
   | llm 
   | StrOutputParser() 
) 
# Prompt the chain 
question = "How can I secure my MongoDB Atlas cluster?" 
answer = rag_chain.invoke(question) 
print(«Question: « + question) 
print(«Answer: « + answer) 
# Return source documents 
documents = retriever.get_relevant_documents(question) 
print(«\nSource documents:») 
pprint.pprint(documents)

The preceding code instantiates Atlas Vector Search as a retriever to query for similar documents in
the vector database. In LangChain, a retriever is an interface that returns documents given an



unstructured query. Retrievers accept a string query as input and return a list of documents as output.
Note that you are setting the value of k as 3 to search for only the three most relevant documents.

In the preceding code, notice the line that says custom_rag_prompt =
PromptTemplate.from_template(template). It refers to prompt templates, which are detailed in the
next section.

LangChain prompt templates and chains

Prompt templates  in LangChain are predefined recipes for generating prompts for language models.
Prompt templates may contain various elements, such as instructions, few-shot examples, and specific
contexts and questions that are appropriate for a given task. In this case, you have added some
instructions and are passing context as an input variable and the original query for the LLM.

Let’s set up a chain, a key feature of LangChain that specifies three main components:

Retriever: You will use MongoDB Atlas Vector Search to find relevant documents that provide context for the language model

Prompt template : This is the template you created earlier to format the query and the contextual information

LLM: You will use the OpenAI chat model to generate responses based on the provided context

You will use this chain to process a sample input query about MongoDB Atlas Security
recommendations, format the query, retrieve the results of the query, and then return a response to the
user along with the documents used as context. Due to LLM variability, you will likely never receive the
exact same response twice, but here is an example showing the potential output:

 
Question: How can I secure my MongoDB Atlas cluster? 
Answer: To secure your MongoDB Atlas cluster, you can enable authentication and IP 
Address whitelisting, review the security section of the MongoDB Atlas documentation, 
and utilize encryption of data at rest with encrypted storage volumes. Additionally, 
you can set up global clusters with a few clicks in the MongoDB Atlas UI, ensure 
operational continuity by converting complex manual tasks, and consider setting up a 
larger number of replica nodes for increased protection against database downtime. 
Source documents: 
[Document (page_content='To ensure a secure system right out of the box, 
\nauthentication and IP Address whitelisti ng are\nautomatically enabled.\nReview the 
security section of the MongoD B Atlas', metadata={'_id': {'$oid': '6672 
@a81b6cb1d87043c0171'), 'source': 
'https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4HKJP', 'page': 17}), 
Document(page_content='MongoD B Atlas team are also monitoring the 
underlying\ninfrastructure, ensuring that it is always in a healthy state. 
\nApplication L ogs And Database L ogs', metadata('id': ('soid': 
'66728a81b6cb1d87043c0 13c'), 'source': 
'https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/RE4HKJP', 'page': 15}), 
Document(page_content='All the user needs to do in order for MongoD B Atlas 
to\nautomatically deploy the cluster i s to select a handful of\noptions: \n Instance 
size\n•Storage size (optional) \n Storage speed (optional)', metadata= {"_id": "soid: 
'66728a81b6cb1d87043c012a'), 'source': 
'https://query.prod.cms.rt.microsoft.com/cms/api/am/binary/ RE4HKJP', 'page': 14)),



This output both answers the user’s inquiry and provides the source information, increasing not only user
trust but also the ability of the user to follow up and get more details as they require.

This brief overview of the LangChain framework has tried to convince you of this framework’s utility
and potential and give you a preview of its capabilities to save you valuable time when crafting your
GenAI application.

Key Python libraries
In addition to AI/ML frameworks, there are also many Python libraries that will make the experience of
building your GenAI application easier. Whether you require assistance with data cleansing, formatting,
or transformation, there are likely half a dozen potential Python libraries to solve every problem. The
following subsections list some favorites and explain how they can assist you during your GenAI
journey.

For this book, you can broadly divide these libraries into three categories:

General-purpose scientific libraries such as pandas, NumPy, and scikit-learn

MongoDB-specific libraries such as PyMongoArrow

Deep learning frameworks such as PyTorch and TensorFlow

The rest of this section covers one relevant and popular library from each of these categories

pandas

The pandas library is a powerful and flexible open source data manipulation and analysis library for
Python. It provides data structures such as DataFrames and Series, which are designed to handle
structured data intuitively and efficiently. When working with tabular data stored in spreadsheets or
databases, pandas is a great tool for data analysis. With pandas, you can perform a wide range of
operations, including cleaning, transforming, and aggregating data.

Among many other noticeably out-of-the-box functionalities, pandas also offers great support for time
series and has an extensive set of tools for working with dates, times, and time-indexed data. In addition
to providing a wide range of methods to work with numerical data, pandas gives great support for
working with text-based data.

Here is a short example of how to work with the pandas library. In the following example, you will
create a pandas DataFrame from a Python dictionary. Then, you will print the entire DataFrame. Next,
you will select a specific column, which is Age, and print it. Then, you will filter data by row label or by
the specific position of a row.



The next line shows how you can filter data using Boolean masking in pandas. Here, you will print out
the DataFrame format:

 
pip3 install pandas==1.5.3 
import pandas as pd 
# Create a DataFrame 
data = { 
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve'], 
    'Age': [24, 27, 22, 32, 29], 
    'City': ['New York', 'Los Angeles', 'Chicago', 'Houston', 'Phoenix'] 
} 
df = pd.DataFrame(data) 
# Display the DataFrame 
print("DataFrame:") 
print(df)

Your output should be in the format of a pandas DataFrame, similar to Figure 7.1:

Figure 7.1: DataFrame output from pandas

You can then manipulate this data in various ways, each time outputting the results as you see fit, but
always formatted as a pandas DataFrame. To print only the ages of the users, you would use the
following code:

 
# Select a column 
print("\nAges:") 
print(df['Age'])

You’ll get the output shown in Figure 7.2:



Figure 7.2: DataFrame output of ages

You can also filter the output. Here, you will filter data to show only those people who are older than 25,
and then present the results as a DataFrame:

 
# Filter data 
print("\nPeople older than 25:") 
print(df[df['Age'] > 25])

This code will filter the data and then output the results in DataFrame format, as in Figure 7.3:

Figure 7.3: Filtered DataFrame output

You can also perform calculations with the pandas library in a straightforward way. To calculate the
average age, for instance, you would use code such as this:

 
# Calculate average age 
average_age = df['Age'].mean() 
print("\nAverage Age:") 
print(average_age)

And your output would look like Figure 7.4:

Figure 7.4: Calculated field output



As you can see, data manipulation in pandas is fairly easy, and the outputs are immediately readable and
well-formatted for further analysis. The intuitive syntax and powerful functions of pandas make it an
essential tool for Python developers, enabling them to handle large datasets with ease and precision. For
those building GenAI applications, pandas streamlines the data preprocessing steps, ensuring that data is
clean, structured, and ready for model training. Additionally, its robust integration with other Python
libraries enhances its utility, making complex data analysis and visualization straightforward and
efficient.

PyMongoArrow

PyMongoArrow is a Python library built on top of the official MongoDB Python driver, PyMongo,
which allows you to move data out of the MongoDB database into some of the most popular Python
libraries, such as pandas, NumPy, PyArrow, and polars, and vice versa.

PyMongoArrow simplifies loading data from MongoDB into other supported data formats. The example
covered below demonstrates how you can work with MongoDB, PyMongoArrow, and libraries such as
pandas and NumPy. You may find this useful in the context of GenAI applications in the following
situations:

When you require data in a specific format for summarization and analysis (CSV, DataFrame, NumPy array, Parquet file, etc.)
from MongoDB

If you need to merge data of various types for calculations or transformations that are then used for GenAI analysis

As an example, if you have inbound financial data from Application A, inbound sales data from
Application B, PDF files from Team 1, and .txt files from Team 2, and you’d like your GenAI
application to summarize annual data from all these different places, you will likely get more accurate
results if all types of data are in the same format. This will require some upfront programmatic effort,
and PyMongoArrow simplifies transforming MongoDB JSON into other data types as well as ingesting
those other data types and converting them into JSON.

Follow these steps to complete this example with PyMongoArrow:

1. Start by installing and importing the latest version of PyMongoArrow:

 
pip3 install PyMongoArrow 
import pymongoarrow as pa

2. Now, make sure you have your Atlas cluster connection string handy:

 
import getpass, os, pymongo, pprint

3. Next, you will extend the PyMongo driver via the pymongoarrow.monkey module. This allows you to add the
PyMongoArrow functionality directly to MongoDB collections in Atlas. By calling patch_all() from
pymongoarrow.monkey, new collection instances will include PyMongoArrow APIs, such as



pymongoarrow.api.find_pandas_all(). This is useful because you can now easily export your data from MongoDB
to various formats such as pandas.

 
from pymongoarrow.monkey import patch_all 
patch_all()

4. Add some test data to your collection:

 
from datetime import datetime 
from pymongo import MongoClient 
client = MongoClient(ATLAS_CONNECTION_STRING) 
client.db.data.insert_many([ 
  {'_id': 1, 'amount': 21, 'last_updated': datetime(2020, 12, 10, 1, 3, 1), 
'account': {'name': 'Customer1', 'account_number': 1}, 'txns': ['A']}, 
  {'_id': 2, 'amount': 16, 'last_updated': datetime(2020, 7, 23, 6, 7, 11), 
'account': {'name': 'Customer2', 'account_number': 2}, 'txns': ['A', 'B']}, 
  {'_id': 3, 'amount': 3,  'last_updated': datetime(2021, 3, 10, 18, 43, 9), 
'account': {'name': 'Customer3', 'account_number': 3}, 'txns': ['A', 'B', 'C']}, 
  {'_id': 4, 'amount': 0,  'last_updated': datetime(2021, 2, 25, 3, 50, 31), 
'account': {'name': 'Customer4', 'account_number': 4}, 'txns': ['A', 'B', 'C', 
'D']}])

5. PyMongoArrow uses a data schema to convert query results into tabular form. If no schema is provided, it infers one from
the data. You can define a schema by creating a schema object and mapping field names to type-specifiers:

 
from pymongoarrow.api import Schema 
schema = Schema({'_id': int, 'amount': float, 'last_updated': datetime})

MongoDB’s key feature is its ability to represent nested data using embedded documents, along with
its support for lists and nested lists. PyMongoArrow fully supports these features out of the box,
providing first-class functionality for handling embedded documents, lists, and nested lists seamlessly.

6. Let’s perform some find operations on the data. The following code demonstrates querying a MongoDB collection called
data for documents where the amount field is greater than 0, using PyMongoArrow to convert the results into different data
formats. A predefined schema is used for the conversion, but it’s optional. If you omit the schema, PyMongoArrow tries to
automatically apply a schema based on the data contained in the first batch:

 
df = client.db.data.find_pandas_all({'amount': {'$gt': 0}}, schema=schema) 
arrow_table = client.db.data.find_arrow_all({'amount': {'$gt': 0}}, 
schema=schema) 
df = client.db.data.find_polars_all({'amount': {'$gt': 0}}, schema=schema) 
ndarrays = client.db.data.find_numpy_all({'amount': {'$gt': 0}}, schema=schema)

The first line of code converts the query results into a pandas DataFrame. The second line of code
converts the query results set into an arrow table. The third line converts the query results set into a
polars DataFrame, and finally, the fourth line converts the query result set into a NumPy array.

You are not limited to performing find operations to convert the query result set into other supported
data formats. PyMongoArrow also allows you to use MongoDB’s powerful aggregation pipeline to
perform complex queries on your data to filter out the needed data before exporting it to other data
formats.

For example, the following code performs an aggregation query on the data collection in a MongoDB
database, grouping all documents and calculating the total sum of the amount field:



 
df = client.db.data.aggregate_pandas_all([{'$group': {'_id': None, 'total_amount': { 
'$sum': '$amount' }}}])

The result of this code is converted into a pandas DataFrame that would consist of a total sum.

PyTorch

Now that you have learned a little bit about pandas and NumPy, it’s important you also have some
knowledge of another popular Python ML library, PyTorch.

PyTorch, developed by Meta’s AI Research lab, is an open source deep learning framework known for
its flexibility and ease of use. It is widely appreciated for its dynamic computation graph, which allows
intuitive coding and immediate execution of code. This feature is particularly useful for researchers and
developers who need to experiment and iterate quickly.

In the context of building a GenAI application, PyTorch serves as a powerful tool for the following:

Model training and development: PyTorch is utilized for developing and training the core generative models, such as
generative pre-trained transformer (GPT) variants, which form the backbone of the GenAI application.

Flexibility and real-time experimentation: The dynamic computation graph in PyTorch allows on-the-fly modifications
and real-time experimentation, which are crucial for fine-tuning generative models to produce high-quality output.

Developers who are adapting pre-trained language models to their specific requirements or developing
their own custom model for unique tasks may be interested in using this library, along with some of the
APIs discussed in the following section.

AI/ML APIs
When developing GenAI applications, developers have access to a variety of APIs that can significantly
enhance the capabilities and efficiency of their projects. As these APIs are widely used, they offer
performance, stability, and consistency across thousands of projects, ensuring that developers don’t need
to reinvent the wheel. Here are just some of the functionalities that these APIs offer:

Text generation and processing: APIs such as OpenAI, Hugging Face , and Google Gemini API enable developers to
generate coherent and contextually appropriate text, which is crucial for applications such as content creation, dialogue
systems, and virtual assistants.

Translation capabilities: The Google Cloud Translation API, Azure AI Translator, and Amazon Translate API
provide robust translation capabilities, making GenAI applications multilingual and globally accessible.

Speech synthesis and recognition: Services such as Google Text-to-Speech, Amazon Polly, and IBM Watson Text-to-
Speech convert generated text into natural-sounding speech, enhancing user interaction and accessibility.

Image and video processing: APIs from Clarifai  and DeepAI allow GenAI applications to create, modify, and analyze
visual content, enabling tasks such as image generation from text and object recognition.



These APIs provide a range of capabilities that, when combined, can significantly accelerate the
development and enhance the functionality of GenAI applications. Next, you’re going to dig deeper into
two of these APIs, the OpenAI API and the Hugging Face Transformers APIs.

OpenAI API

As you may recall from Chapter 3, Large Language Models, OpenAI provides a foundational model
trained on a broad spectrum of data. It offers this model via an API, which allows you to harness the
power of advanced ML models without needing to manage the underlying infrastructure. The
computational and financial costs of retraining or hosting a custom LLM for an organization or domain-
specific information are very high, so most developers will utilize someone else’s LLM to provide GenAI
capabilities to their applications.

Although each API has its own strengths and weaknesses, the OpenAI API is currently the most
widely used. It provides a simple interface for developers to create an intelligence layer in their
applications. It is powered by OpenAI’s state-of-the-art models and cutting-edge natural language
processing (NLP) capabilities, enabling applications to perform tasks such as text generation,
summarization, translation, and conversation. The API is designed to be flexible and scalable, making it
suitable for a wide range of use cases, from chatbots to content creation tools. It is also well
documented, with a large community, and there are many tutorials available for seemingly every use
case.

The OpenAI API is already somewhat of an industry standard, and many GenAI tools and technologies
have support and seamless integrations with it. If you’d like to avoid a lot of unnecessary effort and
costs, your best bet is to work with the OpenAI API.

Let’s get started with the OpenAI API in the following example:

1. To get started, you’ll need to install openai from the terminal or command line:

 
pip3 install --upgrade openai==1.41.0

2. Include your API key from OpenAI in the environment variable file:

 
export OPENAI_API_KEY='your-api-key-here'

3. Send your first API test request to the OpenAI API using the Python library. To do this, create a file named openai-
test.py using the terminal or an IDE. Then, inside the file, copy and paste one of the following examples:

 
from openai import OpenAI 
client = OpenAI() 
completion = client.chat.completions.create( 
  model="gpt-4o-mini", 
  messages=[ 
    {"role": "system", "content": "You are a poetic assistant, skilled in 
explaining complex programming concepts with creative flair."}, 
    {"role": "user", "content": "Compose a poem that explains the concept of 



recursion in programming."} 
  ] 
) 
print(completion.choices[0].message)

4. Run the code by entering python openai-test.py into the terminal or command line. This should output a creative
poem about recursion. Every result is different because the GPT will use creativity to invent something new each time. This is
what it created in this attempt:

 
In code’s endless labyrinth, a tale is spun, 
Of functions nested deep, where paths rerun. 
A whisper in the dark, a loop within, 
Where journeys start anew as they begin. 
Behold the call, a serpent chasing tail, 
The dragon’s circle, a fractal’s holy grail. 
In depths unseen, the echoing refrain, 
A self-same mirror where the parts contain. 
A climb up winding stairs, each step the same, 
Yet every twist, a slight and altered game. 
In finite bounds, infinity unfurls, 
A loop of dreams within its spiral swirls.

The result is surprisingly good. You should try it for yourself to see what new creative poem will be
crafted.

GPT excels at answering questions, but only on the topics it recalls from its training data. In most cases,
you’ll want GPT to answer questions about your business or products or answer commonly asked
questions from your users. In such cases, you’ll want to add the ability to search a library of your own
documents for relevant text, and then have GPT use that text as part of its reference information for
responses. This is referred to as RAG, which you can read more about in Chapter 8, Implementing
Vector Search in AI Applications.

Hugging Face

Hugging Face  is a prominent AI community and ML platform. Its ecosystem is the Hugging Face
Hub, a platform designed to facilitate collaboration and innovation in the AI community. The Hub,
located at https://huggingface.co/docs/hub/en/index, boasts a vast repository of over 120,000 models,
20,000 datasets, and 50,000 demonstrations as of writing, making it one of the largest collections of ML
resources available. It has the following:

Extensive model repositories: The Hub includes pre-trained models for a variety of tasks, such as text classification,
translation, summarization, and question answering, providing a wide range of options for developers.

Datasets: It provides access to a diverse array of datasets that are crucial for training and evaluating ML models. Datasets
cover multiple domains and languages, supporting the development of robust and versatile AI applications.

Community and collaboration: The platform supports collaboration by allowing users to share models, datasets, and code.
Developers can contribute to the community by uploading their own models and datasets, fostering a collaborative
environment.

https://huggingface.co/docs/hub/en/index


Integration and deployment options: The Hugging Face Hub integrates seamlessly with popular ML frameworks, such as
PyTorch and TensorFlow. The Hub also provides deployment solutions, enabling developers to deploy their models in
production environments easily.

GenAI application developers can use the Hugging Face Transformers APIs  to get access to
thousands of pre-trained ML models on specific datasets for specific tasks. With transformer models,
you can use pre-trained models for inference or fine-tune them with your own data using PyTorch and
TensorFlow libraries.

To illustrate what is possible for your GenAI application, let’s see how to use a pre-trained transformer
model for inference in order to perform two tasks: basic sentiment analysis and text generation. Both
could be useful for your GenAI projects if you, for instance, want to sort customer feedback or score it
based on sentiment and generate a response.
Sentiment analysis
You’ll use the transformers library to utilize shared models, then explore the pipeline() function, the
core component of the transformers library. This function seamlessly integrates the model with
necessary pre-processing and post-processing steps, enabling direct text input and generating intelligible
responses:

1. First, ensure you have the necessary packages installed. Note that at least one of TensorFlow or PyTorch should be installed.
Here, let’s use TensorFlow:

 
pip3 install transformers tensorflow

2. Next, import the pipeline() function. You’ll also create an instance of the pipeline() function and specify the task
you want to use it for, that is, sentiment analysis:

 
from transformers import pipeline 
analyse_sentiment = pipeline(«sentiment-analysis»)

Internally, the pipeline downloads and caches a default pre-trained model and tokenizer for
performing sentiment analysis on the input text:

analyse_sentiment("The weather is very nice today.")

You’ll receive the following output:

Figure 7.5: Hugging Face Transformers sentiment analysis output

The model performs the analysis and outputs a label and a score. The label indicates the sentiment
type as positive or negative, and the score indicates the degree of confidence in the output.

You can also pass multiple input texts as an array for sentiment classification to the model:
 
analyse_sentiment(["The weather is very nice today.", "I don't like it when it rains 



in winter."])

You’ll receive the following as the output:

Figure 7.6: Multiple input texts for sentiment classification in Hugging Face

In this case, the model outputs an array of objects. Each output object corresponds to the individual text
inputs.

You might be holding your breath, expecting things to become more complicated—but they won’t. You
conducted your first sentiment analysis in Hugging Face with a pre-trained model with just those few
lines of code.

Text  generat ion
In addition to sentiment analysis, you can also perform many other NLP tasks with Transformers
libraries, such as text generation. Here, you will provide a prompt, and the model will auto-complete it by
generating the remaining text:

 
generator = pipeline("text-generation") 
generator("I love AI, it has")

You’ll get the following output for the preceding code:

Figure 7.7: Text generation using the Hugging Face Transformers

Since you did not provide a model name to the pipeline instance, it decided to use the default, which in
this case is GPT-2. You may or may not get the same results as the ones here because text generation
involves some randomness. Again, however, you can see how easy this task was.

Next, specify a model name to be used in the pipeline function at the time of text generation. With the
following code, you provide some more custom details, such as the number of different sequences to be
generated and the maximum length of the output texts:

 
generator = pipeline("text-generation", model="distilgpt2") 
generator( 
    "I love AI, it has", 
    max_length=25, 
    num_return_sequences=2, 
)



With these additional parameters provided, you’ll now receive the following output:

Figure 7.8: Hugging Face text generation output w ith parameters

The preceding code outputs two different pairs of text, each having fewer than 25 words.

As you might expect, Hugging Face offers many more tools and functionalities that developers can use
to build their GenAI applications. With its comprehensive library support and active community, Hugging
Face continues to be a pivotal resource for advancing NLP and ML projects. Additionally, its seamless
integration with various AI/ML frameworks ensures that developers can efficiently deploy and scale
their GenAI models with minimal effort and maximum productivity.

Summary
In this chapter, you looked at the evolution of AI/ML frameworks in the Python space as LLM-powered
applications have gained prominence. You also learned why Python remains a top choice for building
modern LLM-powered applications. You reviewed the most popular Python frameworks, libraries, and
APIs that can assist you in the different stages of GenAI application development.

The GenAI space is evolving so rapidly that by the time this book is published, there will probably be
more libraries available, more APIs in use, and the framework’s capabilities will have expanded. You
owe it to yourself to do your own due diligence about which framework is best suited for your business
needs, but also make sure to choose one that is appropriately supported. As with any rapidly evolving
technology, some of the tools and technologies that are in existence today will be gone tomorrow. This
chapter has tried, therefore, to only include those that have the community, enablement, and feature set
to ensure their longevity.

Undoubtedly there is still plenty of innovation to be done, and new tools to be created, even in the short
term—the tools discussed in this chapter are barely the tip of the iceberg. So, take a deep breath and
begin your own discovery. You will inevitably realize that there are tools you need, and that you have too
many choices on how to fulfill those needs.

In the next chapter, you will explore how to leverage the vector search feature of MongoDB Atlas to
create intelligent applications. You will learn about RAG architecture systems and gain a deeper



understanding of various complex RAG architecture patterns with MongoDB Atlas.
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Implementing Vector Search in AI Applications
Vector search is revolutionizing the way people interact with data in AI applications. MongoDB Atlas
Vector Search allows developers to implement sophisticated search capabilities that understand the
nuances of discovery and retrieval. It works by converting text, video, image, or audio files into
numerical vector representations, which can then be stored and searched efficiently. MongoDB Atlas
can perform similarity searches alongside your operational data, making it an essential tool for enhancing
user experience in applications ranging from e-commerce to content discovery. With MongoDB Atlas,
setting up vector search is streamlined, enabling developers to focus on creating dynamic, responsive,
and intelligent applications.

In this chapter, you will learn how to use the Vector Search feature of MongoDB Atlas to build
intelligent applications. You will learn how to build retrieval-augmented generation (RAG)
architecture systems and delve deeper into the understanding and development of various patterns of
complex RAG architectures with MongoDB Atlas, unraveling the synergies that underpin their joint
value and potential. Through real-world use cases and practical demonstrations, you will learn how this
dynamic duo can seamlessly transform businesses across industries, driving efficiency, accuracy, and
operational excellence.

This chapter covers the following topics:

Leverage vector search and full-text search with MongoDB Atlas, which will later help you build a robust retriever for RAG

Understand the various components involved in the development of a RAG system

Learn about the process and steps involved in the development of simple RAG and advanced RAG systems.

Technical requirements
This chapter assumes that you have at least beginner-level expertise in Python coding. To follow along
with the demos, you’ll need to set up your development environment by completing the following steps:

1. Install either python@3.9 or python@3.11 on the operating system of your choice.

2. Set up a Python virtual environment and activate it:

 
$ python3 -m venv venv 
$ source venv/bin/activate

3. You will be using the following packages to develop the demo described in this chapter:

pandas: Helps with data preprocessing and handling

numpy: Handles numerical data



openai: For the embedding model and invoking the LLM

pymongo: For the MongoDB Atlas vector store and full-text search

s3fs: Allows loading data directly from an S3 bucket

langchain_mongodb: Enables vector search in MongoDB Atlas using a LangChain wrapper

langchain: Used to build a RAG application

langchain-openai: Enables you to interact with OpenAI chat models

boto3: Enables you to interact with AWS s3 buckets

python-dotenv: Enables you to load environment variables from a .env file

To install the mentioned packages in your Python virtual environment, run the following command:
 
pip3 install langchain==0.2.14 langchain-community==0.2.12 langchain-core==0.2.33 
langchain-mongodb==0.1.8 langchain-openai==0.1.22 langchain-text-splitters==0.2.2 
numpy==1.26.4 openai==1.41.1 s3fs==2024.6.1 pymongo==4.8.0 pandas==2.2.2 
boto3==1.35.2 python-dotenv==1.0.1

You will also need to know how to set up and run JupyterLab or Jupyter Notebook.

Information retrieval with MongoDB Atlas Vector Search
Information retrieval is a critical component of RAG systems. It enhances the accuracy and relevance
of the generated text by sourcing information from extensive knowledge bases. This process allows the
RAG system to produce responses that are not only precise but also deeply rooted in factual content,
making it a powerful tool for various natural language processing (NLP) tasks. By effectively
combining retrieval with generation, RAG addresses challenges related to bias and misinformation,
contributing to the advancement of AI-related applications and tasks.

In the context of information retrieval, it’s essential to distinguish between relevance and similarity.
While similarity focuses on word matching, relevance  is about the interconnectedness of ideas. While
a vector database query can help identify semantically related content, more advanced tools are needed
to accurately retrieve relevant information.

In Chapter 5, Vector Databases, you learned about MongoDB Atlas Vector Search and how it
enhances the retrieval of relevant information by allowing the creation and indexing of vector
embeddings, which can be generated using machine learning models, such as embedding models. This
facilitates semantic search capabilities, enabling the identification of content that is contextually similar
rather than just being keyword based. Full-text search complements this by providing robust text search
capabilities that can handle typos, synonyms, and other variations in text, ensuring that searches return
the most pertinent results. Together, these tools provide a comprehensive search solution that can
discern and retrieve information based on both the similarity of terms and the relevance of the content.



Vector search tutorial in Python

With the help of an example, let’s see how to load a small dataset in MongoDB to perform a vector
search along with full-text search to perform information retrieval. For this demonstration, you will load
a sample movie dataset from an S3 bucket:

1. Write a simple Python function to accept search terms or phrases and pass it through the embeddings API again to get a query
vector.

2. Take the resultant query vector embeddings and perform a vector search query using the $vectorsearch operator in the
MongoDB aggregation pipeline.

3. Pre-filter the documents using meta information to narrow the search across your dataset, thereby speeding up the
performance of the vector search results while retaining accuracy.

4. Further, post-filter the retrieved documents that are semantically similar (based on relevancy score), if you want to
demonstrate a higher degree of control over the semantic search behavior.

5. Initialize the OpenAI API key and MongoDB connection string:

 
import os 
import getpass 
# set openai api key 
try: 
    openai_api_key = os.environ["OPENAI_API_KEY"] 
except KeyError: 
    openai_api_key = getpass.getpass("Please enter your OPENAI API KEY (hit 
enter): ") 
# Set MongoDB Atlas connection string 
try: 
    MONGO_CONN_STR = os.environ["MONGODB_CONNECTION_STR"] 
except KeyError: 
    MONGO_CONN = getpass.getpass("Please enter your MongoDB Atlas Connection 
String (hit enter): ")

6. Now, load the dataset from the S3 bucket. Run the following lines of code in Jupyter Notebook to read data from an AWS S3
bucket directly to a pandas DataFrame:

 
import pandas as pd 
import s3fs 
df = pd.read_json("https://ashwin-partner-bucket.s3.eu-west-
1.amazonaws.com/movies_sample_dataset.jsonl", orient="records", lines=True) 
df.to_json("./movies_sample_dataset.jsonl", orient="records", lines=True) 
df[:3]

On executing the preceding snippet of code, you should see the following result in your Jupyter
Notebook cell.

https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/


Figure 8.1: Sample movies data view

7. Initialize and run an embedding job to embed the sample_movies dataset. In the following code example, you create a
final field, which is a field derived from the text and overview fields that are already available in the dataset.

8. Next, run this final field against the embedding API from OpenAI, as shown here:

 
import numpy as np 
from tqdm import tqdm 
import openai 
df['final'] = df['text'] + "    Overview: " + df['overview'] 
df['final'][:5] 
step = int(np.ceil(df['final'].shape[0]/100)) 
embeddings_t = [] 
lines = [] 
# Note that we must split the dataset into smaller batches to not exceed the rate 
limits imposed by OpenAI API's. 
for x, y in list(map(lambda x: (x, x+step), list(range(0, df.shape[0], step)))): 
    lines += [df.final.values[x:y].tolist()] 
for i in tqdm(lines): 
    embeddings_t += openai.embeddings.create( 
        model='text-embedding-ada-002', input=i).data 
out = [] 
for ele in embeddings_t: 
    out += [ele.embedding] 
df['embedding'] = out 
df[:5]

You should see that the sample_movies dataset is enriched with the OpenAI embeddings in the
embedding field, as shown in Figure 8.2.



Figure 8.2: Sample movies dataset view  w ith OpenAI embeddings

9. Next, initialize MongoDB Atlas and insert data into a MongoDB collection.

10. Now that you have created the vector embeddings for your sample_movies dataset, you can initialize the MongoDB client
and insert the documents into your collection of choice by running the following lines of code:

 
from pymongo import MongoClient 
import osmongo_client = MongoClient(os.environ["MONGODB_CONNECTION_STR"]) 
# Upload documents along with vector embeddings to MongoDB Atlas Collection 
output_collection = mongo_client["sample_movies"]["embed_movies"] 
if output_collection.count_documents({})>0: 
    output_collection.delete_many({}) 
_ = output_collection.insert_many(df.to_dict("records"))

You have ingested the test data to build a vector search capability. Now, let’s proceed to build a
vector search index in the following steps.

11. Let’s first create vector index definitions. You can create a vector search index in the MongoDB Atlas Vector Search UI by
following the steps explained in Chapter 5, Vector Databases. The vector index required for this demo tutorial is provided here:

 
{ 
    "fields": [ 
      { 
        "type": "vector", 
        "numDimensions": 1536, 
        "path": "embedding", 
        "similarity": "cosine" 
      }, 
      { 
        "type": "filter", 
        "path": "year" 
      }, 
    ] 
}

Once the vector index definitions are added under the Vector Search index JSON editor in the
MongoDB Atlas UI, the process for creating a vector search index is triggered and the vector
search index is created at the specified path field mentioned in the vector index definition. Now, you
are ready to perform vector search queries on the sample_movies.embed_movies collection in
MongoDB Atlas where all the data is stored, and create vector indexes.

Let’s equip the vector search or the retriever API to use in your RAG framework.

12. You can query a MongoDB vector index using $vectorSearch. MongoDB Atlas brings the flexibility of using vector search
alongside search filters. Additionally, you can apply range, string, and numeric filters using the aggregation pipeline. This allows
the end user to control the behavior of the semantic search response from the search engine.

The following code example demonstrates how you can perform vector search along with pre-
filtering on the year field to get movies released post 1990. To have better control over the
relevance of returned results, you can perform post-filtering on the response using the MongoDB
Query API.

The following code demonstrates how you can perform these steps:



I. Represent a raw text query as a vector embedding. There are multiple embedding models currently available with
OpenAI, such as text-embedding-3-small, text-embedding-3-large with variable dimensions, and
the text-embedding-ada-002 model.

II. Build and perform a vector search query to MongoDB Atlas.

III. Perform pre-filtering before performing a vector search on the year field.

IV. Perform post-filtering using the score field to better control the relevancy and accuracy of the returned results.

Run the following code to initialize a function that can help you achieve vector search, pre-filter, and
post-filter:

 
def query_vector_search(q, prefilter = {}, postfilter = 
{},path="embedding",topK=2): 
    ele = openai.embeddings.create(model='text-embedding-ada-002', input=q).data 
    query_embedding = ele[0].embedding 
    vs_query = { 
                "index": "default", 
                "path": path, 
                "queryVector": query_embedding, 
                "numCandidates": 10, 
                "limit": topK, 
            } 
    if len(prefilter)>0: 
        vs_query["filter"] = prefilter 
    new_search_query = {"$vectorSearch": vs_query} 
    project = {"$project": {"score": {"$meta": "vectorSearchScore"},"_id": 
0,"title": 1, "release_date": 1, "overview": 1,"year": 1}} 
    if len(postfilter.keys())>0: 
        postFilter = {"$match":postfilter} 
        res = list(output_collection.aggregate([new_search_query, project, 
postFilter])) 
    else: 
        res = list(output_collection.aggregate([new_search_query, project])) 
    return res

Here’s a sample query with year as a pre-filter:
query_vector_search("I like Christmas movies, any recommendations for movies 
release after 1990?", prefilter={"year": {"$gt": 1990}}, topK=5)

You should get the following result:

Figure 8.3: Sample result from running the vector search query w ith pre-filters



This is a sample query with year as a pre-filter and a score-based post-filter to retain only the relevant
results:

 
query_vector_search("I like Christmas movies, any recommendations for movies release 
after 1990?", prefilter={"year":{"$gt": 1990}}, postfilter= {"score": 
{"$gt":0.905}},topK=5)

You should get the following result:

Figure 8.4: Sample result from running the vector search query w ith a pre-filter and post-filter

With this Python method, you were able to filter on the score field and the year field to generate results
as well as results for vector similarity. Using a heuristic, you were able to control the accuracy of the
results to retain only the most relevant documents and were also able to apply a range filter query (on
the year field).

Vector Search tutorial with LangChain

Utilizing LangChain with MongoDB Atlas Vector Search for building a semantic similarity retriever
offers several advantages. The following example demonstrates how to carry out a vector similarity
search using LangChain wrapper classes:

 
from langchain_mongodb.vectorstores import MongoDBAtlasVectorSearch 
from langchain_openai import OpenAIEmbeddings 
import json 
embedding_model = OpenAIEmbeddings(model="text-embedding-ada-002") 
vector_search = MongoDBAtlasVectorSearch(output_collection, embedding_model, 
text_key='final') 
fquery = {"year": {"$gt": 1990}} 
search_kwargs = { 
    "k": 5, 
    'filter': fquery, 
} 
retriever = vector_search.as_retriever(search_kwargs=search_kwargs) 
docs = retriever.invoke("I like Christmas movies, any recommendations for movies 
release after 1990?") 
for doc in docs: 
    foo = {} 
    foo['title'] = doc.metadata['title'] 
    foo['year'] = doc.metadata['year'] 



    foo['final'] = doc.metadata['text'] 
    print(json.dumps(foo,indent=1))

Here’s the result:

Figure 8.5: Sample result vector search query using the LangChain module for MongoDB

This demonstrates a more sophisticated yet simple approach that is particularly beneficial for developers
creating RAG applications. The LangChain framework offers a suite of APIs and wrapper classes that
can be used to integrate with various serverless LLM providers, such as OpenAI, and talk to MongoDB
Atlas Vector Search to build RAG frameworks with very few lines of code. It is also easy to maintain
and scale.

In this section, you were able to build and perform vector similarity search using MongoDB Atlas. You
developed reusable wrapper classes and functions that will be useful in developing a more sophisticated
application, such as a chatbot.

Now, let’s delve deep into understanding what RAG architectures are and how to develop one using the
resources that you’ve created so far.

Building RAG architecture systems
In the dynamic landscape of modern business, the relentless pursuit of efficiency and accuracy urges
organizations to adopt cutting-edge technologies. Among these, automation stands as a cornerstone,
particularly in processing and automating workflows. However, traditional methods suffer when they’re
subjected to large volumes of data with intricate tasks, and human-led processes often fall short due to
error-prone manual interventions.

This section explores the transformative landscape of automation, discussing the pivotal role RAG plays
in revolutionizing business operations. MongoDB, known for its prowess in data management and
flexible schemas, offers a compelling synergy with RAG through its vector search and full-text search
capabilities. Delving into the architectural details of RAG, this section dissects its constituent building
blocks, offering practical insights into constructing automated document-processing workflows that
harness the full potential of LLMs and MongoDB Vector Search.



Figure 8.6: Building blocks of RAG architecture

Let’s go over the key components of the RAG architecture in detail:

1. Document loading: Initially, documents are loaded from data storage. This involves text extraction, parsing, formatting, and
cleaning to prepare the data for document splitting.

2. Document splitting: The next step is to break down the documents into smaller, manageable segments or chunks. Strategies
for splitting can vary, from fixed-size chunking to content-aware chunking that considers the content structure.

3. Text embedding: These document chunks are then transformed into vector representations (embeddings) using techniques
such as OpenAIEmbeddings, Sentence e-BERT, and Instructor Embeddings. This step is crucial for understanding the
semantic content of the chunks.

4. Vector store : The generated vectors, each associated with unique document chunks, are stored in a vector store alongside the
document chunks and other metadata extracted from the MongoDB Atlas collection. Atlas Vector Search indexes and Apache
Lucene search can be built through the MongoDB Atlas UI for easy and fast retrieval.

5. Query processing: When a user submits a query, it is also converted into a vector representation using the same embedding
technique as mentioned in Step 3.

6. Document retrieval: The retriever component locates and fetches document chunks that are semantically like the query.
This retrieval process employs vector similarity search techniques and MongoDB Atlas using the Hierarchical Navigable
Small Worlds (HNSW) algorithm to perform a fast nearest neighbor search to retrieve relevant documents without
compromising the accuracy of the retrieved search results.

7. Document chunk post-filtering: The relevant document chunks are retrieved from the MongoDB collection with the help
of the Unified Query API and can be post-filtered easily to transform the output document chunks into the required format.

8. LLM prompt creation: The retrieved document chunks and the query are combined to create a context and prompt for the
LLM.

9. Answer generation: Finally, the LLM generates a response based on the prompt, completing the RAG process.



In the context of RAG systems, there are two primary types: simple  (or naive) RAG and advanced
RAG. In practical scenarios, this classification helps address different types of personas and questions
the applications are handling, and it’s common to encounter both simple and complex RAG queries
within the same workflow and from the same persona. As a developer, it is important to reason out the
functionalities that the application is expected to serve before deciding on the building blocks involved in
the RAG architecture.

When building your RAG architecture system, consider the following points to help with programming
and planning:

Workflow specificity: Define the specific workflow you intend to automate with RAG; it may be related to question
answering (QA), data augmentation, summarization, reasoning, or assertion. Maybe your customers frequently ask a specific
set of three or four types of queries.

User experience : Collaborate with your target user group to understand the types of queries they are likely to ask to identify
the user group journey, which might be a simple single-state response or a multi-state chat flow.

Data sources: First, identify the nature of your data source—whether it’s unstructured or structured. Next, map the locations
of these data sources. Once you’ve done that, classify the data based on whether it serves operational or analytical purposes.
Finally, observe the data patterns to determine whether answers are readily available in one location or if you’ll need to gather
information from multiple sources.

These pointers will help you determine whether you need to go for a simple RAG system or an
advanced RAG system and also help you to determine the essential building blocks to consider while
constructing your RAG architecture.

Now, let’s delve deeper into the building blocks of this architecture with some code examples to better
explain the nuances. However, before you develop RAG-powered applications, let’s look at the
fundamentals of how to process source documents to maximize the accuracy of the rated responses
from the RAG application. The following strategies will come in handy while processing documents
before storing them in a MongoDB Atlas collection.

Chunking or document-spli tt ing strategies

Chunking or document splitting is a critical step in handling extensive texts within RAG systems.
When dealing with large documents, the token limits imposed by language models (such as gpt-3.5-
turbo) necessitate breaking them into manageable chunks. However, a naive fixed-chunk-size approach
can lead to fragmented sentences across chunks, affecting subsequent tasks such as QA.

To address this, consider semantics when dividing documents. Most segmentation algorithms use chunk
size and overlap principles. Chunk size  (measured by characters, words, or tokens) determines
segment length, while overlaps  ensure continuity by sharing context between adjacent chunks. This
approach preserves semantic context and enhances RAG system performance.



Now, let’s delve into the intricacies of document-splitting techniques, particularly focusing on content-
aware chunking. While fixed-size chunking with overlap is straightforward and computationally efficient,
more sophisticated methods enhance the quality of text segmentation. The following are the various
document-splitting techniques:

Recursive chunking: This technique includes the following approaches:

Hierarchical approach: Recursive chunking breaks down input text into smaller chunks iteratively. It operates
hierarchically, using different separators or criteria at each level.

Customizable structure : By adjusting the criteria, you can achieve the desired chunk size or structure. Recursive
chunking adapts well to varying document lengths.

Sentence splitting: Sentence splitting involves various strategies, such as the ones listed here:

Naive splitting: This method relies on basic punctuation marks (such as periods and new lines) to divide text into
sentences. While simple, it might not handle complex sentence structures well.

spaCy: Another robust NLP library, spaCy, offers accurate sentence segmentation. It uses statistical models and
linguistic rules.

Natural Language Toolkit (NLTK): NLTK, a powerful Python library for NLP, provides efficient sentence
tokenization. It considers context and punctuation patterns.

Advanced tools: Some tools employ smaller models to predict sentence boundaries, ensuring precise divisions.

Specialized techniques: Specialized techniques include the following:

Structured content: For documents with specific formats (e.g., Markdown, LaTeX), specialized techniques come
into play.

Intelligent division: These methods analyze the content’s structure and hierarchy. They create semantically
coherent chunks by understanding headings, lists, and other formatting cues.

In summary, while fixed-size chunking serves as a baseline, content-aware techniques consider
semantics, context, and formatting intricacies. Choosing the right method depends on your data’s unique
characteristics and the requirements of your RAG system. While choosing the retriever for storing and
retrieving these chunks, you may want to consider solutions such as document hierarchies and
knowledge graphs. MongoDB Atlas has a flexible schema and a simple unified query API to query data
from it.

Now let’s use the recursive document-splitting strategy to build a simple RAG application.

Simple RAG

A simple RAG architecture implements a naive approach where the model retrieves a predetermined
number of documents from the knowledge base based on their similarity to the user’s query. These



retrieved documents are then combined with the query and input into the language model for generation,
as shown in Figure 8.7.

Figure 8.7: Naive RAG

To build a simple RAG application, you will use the dataset you loaded to the MongoDB Atlas collection
in the Information retrieval with MongoDB Vector Search section of this chapter. With this
application, you’ll be able perform queries on the available movies and create a recommender system.

LLM
This example will use the OpenAI APIs and gpt-3.5-turbo, but there are other variations of LLM
models made available from OpenAI, such as gpt-4o and gpt-4o-mini. The same prompting technique
can be used with other LLMs, such as claude-v2 or mistral8x-7B, to achieve similar results.

The following is the sample code to invoke the OpenAI LLM using LangChain:
 
from openai import OpenAI 
client = OpenAI() 
def invoke_llm(prompt, model_name='gpt-3.5-turbo-0125'): 
    """ 
    Queries with input prompt to OpenAI API using the chat completion api gets the 
model's response. 
    """ 
    response = client.chat.completions.create( 
      model=model_name, 
      messages=[ 
        { 
          «role»: «user», 
          «content»: prompt 
        } 
      ], 
      temperature=0.2, 
      max_tokens=256, 
      top_p=1, 
      frequency_penalty=0, 
      presence_penalty=0 
    ) 
    chatbot_response = response.choices[0].message.content.strip() 
    return chatbot_response 
invoke_llm("This is a test")

Here is the result:
 
'Great! What do you need help with?'

Now that you have the APIs to call MongoDB Atlas Vector Search for retrieval and an API for
invoking an LLM, you can combine these two tools to create a RAG system.



Prompt
A prompt to an LLM is a user-provided instruction or input that guides the model’s response. It can be a
question, a statement, or a command, and is designed to drive the LLM to respond with a specific
output. The effectiveness of a prompt can greatly influence the quality of the results generated by a
RAG-based system, making prompt engineering a crucial aspect for interacting with these models. Good
prompts are clear, specific, and structured to communicate the user’s intent to the LLM, enabling it to
generate the most accurate and helpful responses possible.

The following is an example of a prompt to perform QA on a private knowledge base:
 
def get_prompt(question, context): 
    prompt = f"""Question: {question} 
            System: Let's think step by step. 
            Context: {context} 
            """ 
    return prompt 
def get_recommendation_prompt(query, context): 
    prompt = f""" 
        From the given movie listing data, choose a few great movie recommendations. 
        User query: {query} 
        Context: {context} 
        Movie Recommendations: 
        1. Movie_name: Movie_overview 
        """ 
    return prompt

To demonstrate the benefits of RAG over a foundational LLM, let's first ask the LLM a question
without vector search context and then with it included. This will demonstrate how you can improve the
accuracy of the results and reduce hallucinations while utilizing a foundational LLM, such as gpt-3.5-
turbo, that was not trained on a private knowledge base.

Here is the query response without vector search:
 
print(invoke_llm("In which movie does a footballer go completely blind?"))

This is the result:
 
The Game of Their Lives" (2005), where the character Davey Herold, a footballer, goes 
completely blind after being hit in the head during a game

Although the LLM’s response shows it struggles with factual accuracy, there is still promise in using it
alongside human oversight for enterprise applications. Together, these systems can work effectively to
power applications for businesses. To help overcome this issue, you need to add context to the prompt
through vector search results.

Let's see how you can use the invoke_llm function with the query_vector_search method to provide
the relevant context alongside the user query to generate a response with a factually correct answer:

 
idea = "In which movie does a footballer go completely blind?" 
search_response = query_vector_search(idea, prefilter={"year":{"$gt": 1990}}, 
postfilter={"score": {"$gt":0.8}},topK=10) 



premise = "\n".join(list(map(lambda x:x['final'], search_response))) 
print(invoke_llm(get_prompt(idea, premise)))

Here is the result:
 
The movie in which a footballer goes completely blind is "23 Blast."

Similarly, you can use the get_recommendation_prompt method to generate some movie
recommendations using a simple RAG framework:

 
question = "I like Christmas movies, any recommendations for movies release after 
1990?" 
search_response = query_vector_search(question,topK=10) 
context = "\n".join(list(map(lambda x:x['final'], search_response))) 
print(invoke_llm(get_recommendation_prompt("I like Christmas movies, any 
recommendations for movies release after 1990?", context)))

Here is the result:

Figure 8.8: Sample output from the simple RAG application

The simple RAG system you just built can handle straightforward queries that need answers to the
point. Some examples are a customer service chatbot responding to a basic question such as “Where is
the customer support center in Bangalore?” or helping you find all the restaurants where your
favorite delicacy is served in Koramangala. The chatbot can retrieve the contextual piece of information
in its retrieval step and generate an answer to this question with the help of the LLM.

Advanced RAG

An advanced RAG framework incorporates more complex retrieval techniques, better integration of
retrieved information, and often, the ability to iteratively refine both the retrieval and generation
processes. In this section, you will learn how to build an intelligent recommendation engine on fashion
data that can identify the interest of the user and then generate relevant fashion product or accessory
recommendations only when there is intent to purchase a product in the user’s utterance. You will be
building an intelligent conversation chatbot that leverages the power of LangChain, MongoDB Atlas
Vector Search, and OpenAI in this section.

The advanced RAG system in the current example will demonstrate the following features:

Utilize an LLM to generate multiple searchable fashion queries given a user’s chat utterance

Classify the user’s chat utterance as to whether there is an intent to purchase

Develop a fusion stage that will also fetch vector similarity search results from multiple search queries to fuse them as a single
recommendation set that is reranked with the help of an LLM



The flow of steps when a user queries the RAG system is depicted in Figure 8.9:

Figure 8.9: Sample advanced RAG, flow chart for query processing and recommendation

Let’s walk through the code to load the sample dataset and build the advanced RAG system with all the
features that were listed at the beginning of this section.
Loading the dataset
For this example, you will utilize fashion data from a popular e-commerce company. The following code
shows you how to load a dataset from an S3 bucket to a pandas DataFrame and then insert these
documents into a MongoDB Atlas collection, search.catalog_final_myn:

 
import pandas as pd 
import s3fs 
import os 
import boto3 
s3_uri= "https://ashwin-partner-bucket.s3.eu-west-
1.amazonaws.com/fashion_dataset.jsonl" 
df = pd.read_json(s3_uri, orient="records", lines=True) 
print(df[:3]) 
from pymongo import MongoClient 
mongo_client = MongoClient(os.environ["MONGODB_CONNECTION_STR"]) 
# Upload documents along with vector embeddings to MongoDB Atlas Collection 
col = mongo_client["search"]["catalog_final_myn"] 
col.insert_many(df.to_dict(orient="records"))

Here is the result:



Figure 8.10: Sample view  of the fashion dataset w ith OpenAI embeddings

Creat ing a vector  search index
As you can see in Figure 8.10, the vector embeddings are already provided as part of the dataset.
Therefore, the next step is to create a vector search index. You can create the vector search index by
following the steps detailed in Chapter 5, Vector Databases, using the following index mapping:

 
{ 
    "fields": [ 
      { 
        "type": "vector", 
        "numDimensions": 1536, 
        "path": "openAIVec", 
        "similarity": "cosine" 
      } 
    ] 
}

Fashion recommendat ions using advanced RAG
You have successfully loaded the new fashion dataset into the MongoDB Atlas collection and also
created a vector search index with all the building blocks in place. You can now use the following code
to set up an advanced RAG system and build a recommender system with the features mentioned
earlier:

 
from langchain_core.output_parsers import JsonOutputParser # type: ignore 
from langchain_core.prompts import PromptTemplate # type: ignore 
from langchain_core.pydantic_v1 import BaseModel, Field # type: ignore 
from langchain_openai import ChatOpenAI # type: ignore 
from langchain_community.embeddings import OpenAIEmbeddings # type: ignore 
from langchain_mongodb.vectorstores import MongoDBAtlasVectorSearch # type: ignore 
from pymongo import MongoClient # type: ignore 
from typing import List 
from itertools import chain 
import certifi # type: ignore 
import os 
from dotenv import load_dotenv # type: ignore 
load_dotenv() 
from functools import lru_cache 
@lru_cache 
def get_openai_emb_transformers(): 
    """ 
    Returns an instance of OpenAIEmbeddings for OpenAI transformer models. 
    This function creates and returns an instance of the OpenAIEmbeddings class, 
    which provides access to OpenAI transformer models for natural language 
processing. 
    The instance is cached using the lru_cache decorator for efficient reuse. 
    Returns: 
        embeddings (OpenAIEmbeddings): An instance of the OpenAIEmbeddings class. 
    """ 
    embeddings = OpenAIEmbeddings() 
    return embeddings 



@lru_cache 
def get_vector_store(): 
    """ 
    Retrieves the vector store for MongoDB Atlas. 
    Returns: 
        MongoDBAtlasVectorSearch: The vector store object. 
    """ 
    vs = MongoDBAtlasVectorSearch(collection=col, 
embedding=get_openai_emb_transformers(), index_name="vector_index_openAi_cosine", 
embedding_key="openAIVec", text_key="title") 
    return vs 
@lru_cache(10) 
def get_conversation_chain_conv(): 
    """ 
    Retrieves a conversation chain model for chat conversations. 
    Returns: 
        ChatOpenAI: The conversation chain model for chat conversations. 
    """ 
    llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.2, max_tokens=2048) 
    # chain = ConversationChain(llm=llm, memory=ConversationBufferWindowMemory(k=5)) 
    return llm 
# Define your desired data structure. 
class ProductRecoStatus(BaseModel): 
    """ 
    Represents the status of product recommendations. 
    Attributes: 
        relevancy_status (bool): Product recommendation status conditioned on the 
context of the input query. 
                                 True if the query is related to purchasing fashion 
clothing and/or accessories. 
                                 False otherwise. 
        recommendations (List[str]): List of recommended product titles based on the 
input query context and 
                                     if the relevancy_status is True. 
    """ 
    relevancy_status: bool = Field(description="Product recommendation status is 
conditioned on the fact if the context of input query is to purchase a fashion 
clothing and or fashion accessories.") 
    recommendations: List[str] = Field(description="list of recommended product 
titles based on the input query context and if recommendation_status is true.") 
class Product(BaseModel): 
    """ 
    Represents a product. 
    Attributes: 
        title (str): Title of the product. 
        baseColour (List[str]): List of base colours of the product. 
        gender (List[str]): List of genders the product is targeted for. 
        articleType (str): Type of the article. 
        mfg_brand_name (str): Manufacturer or brand name of the product. 
    """ 
    title: str = Field(description="Title of the product.") 
    baseColour: List[str] = Field(description="List of base colours of the product.") 
    gender: List[str] = Field(description="List of genders the product is targeted 
for.") 
    articleType: str = Field(description="Type of the article.")    mfg_brand_name: 
str = Field(description="Manufacturer or brand name of the product.") 
class Recommendations(BaseModel): 
    """ 
    Represents a set of recommendations for products and a message to the user. 
    Attributes: 
        products (List[Product]): List of recommended products. 
        message (str): Message to the user and context of the chat history summary. 
    """ 
    products: List[Product] = Field(description="List of recommended products.") 
    message: str = Field(description="Message to the user and context of the chat 
history summary.") 



reco_status_parser = JsonOutputParser(pydantic_object=ProductRecoStatus) 
reco_status_prompt = PromptTemplate(    template="You are AI assistant tasked at 
identifying if there is a product purchase intent in the query and providing suitable 
fashion recommendations.\n{format_instructions}\n{query}\n\ 
        #Chat History Summary: {chat_history}\n\nBased on the context of the query, 
please provide the relevancy status and list of recommended products.", 
    input_variables=["query", "chat_history"], 
    partial_variables={"format_instructions": 
reco_status_parser.get_format_instructions()}, 
) 
reco_parser = JsonOutputParser(pydantic_object=Recommendations) 
reco_prompt = PromptTemplate( 
    input_variables=["question", "recommendations", "chat_history"], 
    partial_variables={"format_instructions": reco_parser.get_format_instructions()}, 
    template="\n User query:{question} \n Chat Summary: {chat_history} \n Rank and 
suggest me suitable products for creating grouped product recommendations given all 
product recommendations below feature atleast one product for each articleType \n 
{recommendations} \n show output in {format_instructions} for top 10 products" 
) 
def get_product_reco_status(query: str, chat_history: List[str] = []): 
    """ 
    Retrieves the recommendation status for a product based on the given query and 
chat history. 
    Args: 
        query (str): The query to be used for retrieving the recommendation status. 
        chat_history (List[str]): The chat history containing previous conversations. 
    Returns: 
        The response containing the recommendation status. 
    """ 
    llm = get_conversation_chain_conv() 
    chain = reco_status_prompt | llm | reco_status_parser 
    resp = chain.invoke({"query": query, "chat_history": chat_history}) 
    return resp 
def get_sorted_results(product_recommendations): 
    all_titles = [rec['title'] for rec in product_recommendations['products']] 
    results = list(col.find({"title": {"$in":all_titles}}, {"_id": 0 , "id":1, 
"title": 1, "price": 1, "baseColour": 1, "articleType": 1, "gender": 1, "link" : 1, 
"mfg_brand_name": 1})) 
    sorted_results = [] 
    for title in all_titles: 
        for result in results: 
            if result['title'] == title: 
                sorted_results.append(result) 
                break 
    return sorted_results 
def get_product_recommendations(query: str, reco_queries: List[str], chat_history: 
List[str]=[]): 
    """ 
    Retrieves product recommendations based on the given query and chat history. 
    Args: 
        query (str): The query string for the recommendation. 
        chat_history (List[str]): The list of previous chat messages. 
        filter_query (dict): The filter query to apply during the recommendation 
retrieval. 
        reco_queries (List[str]): The list of recommendation queries. 
    Returns: 
        dict: The response containing the recommendations. 
    """ 
    vectorstore = get_vector_store() 
    retr = vectorstore.as_retriever(search_kwargs={"k": 10}) 
    all_recommendations = list(chain(*retr.batch(reco_queries))) 
    llm = get_conversation_chain_conv() 
    llm_chain = reco_prompt | llm | reco_parser 
    resp = llm_chain.invoke({"question": query, "chat_history": chat_history, 
"recommendations": [v.page_content for v in all_recommendations]}) 



    resp = get_sorted_results(resp) 
    return resp

The preceding code carries out the following tasks:

1. Importing the necessary modules and functions from various libraries. These include JsonOutputParser for parsing JSON
output, PromptTemplate for creating prompts, BaseModel and Field for defining data models, and
MongoDBAtlasVectorSearch for interacting with a MongoDB Atlas vector store. It also imports MongoClient for
connecting to MongoDB, load_dotenv for loading environment variables, and lru_cache for caching function results.

2. It defines three functions, each decorated with lru_cache to cache their results for efficiency.
get_openai_emb_transformers returns an instance of OpenAIEmbeddings, which provides access to OpenAI
transformer models for NLP. get_vector_store retrieves the vector store for MongoDB Atlas.
get_conversation_chain_conv retrieves a conversation chain model for chat conversations.

3. It defines three classes using Pydantic’s BaseModel and Field. These classes represent the status of product
recommendations (ProductRecoStatus), a product (Product), and a set of recommendations for products and a
message to the user (Recommendations).

4. Creating instances of JsonOutputParser and PromptTemplate for parsing JSON output and creating prompts,
respectively. These instances are used to create conversation chains in the next section.

5. It defines two functions for retrieving the recommendation status for a product and retrieving product recommendations based
on a given query and chat history. get_product_reco_status uses a conversation chain to determine the
recommendation status for a product based on a given query and chat history. get_product_recommendations
retrieves product recommendations based on a given query and chat history, a filter query, and a list of recommendation queries.
It uses a vector store retriever to get relevant documents for each recommendation query, and then uses a conversation chain
to generate the final recommendations.

Let’s now use these methods to create a product recommendations example. Enter the following code
and then examine its output:

 
query = "Can you suggest me some casual dresses for date occasion with my boyfriend" 
status = get_product_reco_status(query) 
print(status) 
print(get_product_recommendations(query, reco_queries=status["recommendations"], 
chat_history=[])

This is the status output:
 
{'relevancy_status': True, 
 'recommendations': ['Floral Print Wrap Dress', 
  'Off-Shoulder Ruffle Dress', 
  'Lace Fit and Flare Dress', 
  'Midi Slip Dress', 
  'Denim Shirt Dress']}

You can see from the preceding example output that the LLM is able to classify the product intent
purchase as positive and recommend suitable queries by performing vector similarity search on the
MongoDB Atlas collection.

This is the product recommendations output:



Figure 8.11: Sample output from the advanced RAG chatbot w ith recommendations for the user's search intent

Conversely, you can test the same methods to find a suitable place for a date instead of ideas for gifts or
what to wear. In this case, the model will classify the query as having negative product purchase intent
and not provide any search term suggestions:

 
query = "Where should I take my boy friend for date" 
status = get_product_reco_status(query) 
print(status) 
print(get_conversation_chain_conv().invoke(query).content)

Here is the status output:
 
{'relevancy_status': False, 'recommendations': []}

Here is the output from the LLM:

Figure 8.12: Sample output from the advanced RAG system w hen there is no purchase intent in the query

Advanced RAG introduces the concept of modularity when building RAG architecture systems. The
above example focuses on developing a user flow-based approach for the sample advanced RAG
system. It also explores how to leverage LLMs for conditional decision making, recommendation
generation, and re-ranking the recommendations retrieved from the retriever system. The goal is to
enhance the user experience during interactions with the application.



Summary
In this chapter, you explored the pivotal role of vector search in enhancing AI-powered systems. The
key takeaway is that vector search plays a vital role in AI applications, addressing the challenge of
efficient search as unstructured and multimodal datasets expand. It benefits image recognition, NLP,
and recommendation systems.

MongoDB Atlas is used to demonstrate vector search implementation using its flexible schema and
vector indexing capabilities. You were able to build a RAG framework for solving QA use cases that
combines retrieval and generation models, with a simple RAG system utilizing pre-trained language
models and embedding models from OpenAI. You also learned how to build an advanced RAG system
that employs iterative refinement and sophisticated retrieval algorithms with the help of LLMs for
building a recommendation system for the fashion industry. With these insights, you can now build
efficient AI applications for any domain or industry.

In the next chapter, you will delve into the critical aspects of evaluating LLM outputs in such RAG
applications and explore various evaluation methods, metrics, and user feedback. You will also learn
about the implementation of guardrails to ensure responsible AI deployment and how to better control
the behavior of LLM-generated responses.



Part 3

Optimizing AI Applications: Scaling, Fine-Tuning,
Troubleshooting, Monitoring, and Analytics
This set of chapters shares techniques and practices for evaluating your AI application as well as
strategies and expert insights for improving your application, avoiding pitfalls, and ensuring that your
application continues to function optimally despite rapid technological changes.

This part of the book includes the following chapters:

Chapter 9, LLM Output Evaluation

Chapter 10, Refining the Semantic Data Model to Improve Accuracy

Chapter 11, Common Failures of Generative AI

Chapter 12, Correcting and Optimizing Your Generative AI Application



9

LLM Output Evaluation
Regardless of the form factor of your intelligent application, you must evaluate your use of large
language models  (LLMs). The evaluation of a computational system determines the system’s
performance, gauges its reliability, and analyzes its security and privacy.

AI systems are non-deterministic. You cannot be certain what an AI system will output until you run
an input through it. This means that you must evaluate how the AI system performs on a variety of
inputs to have confidence that it performs in line with your requirements. To be able to change the AI
system without introducing any unexpected regressions, you also need to have robust evaluations.
Evaluations can help catch these regressions before releasing the AI system to customers.

In LLM-powered intelligent applications, evaluations measure the effect of components such as the
model chosen and any hyperparameters used with the model, such as temperature, prompting, and
retrieval-augmented generation (RAG) pipelines. Since the age of LLMs is still new as of writing in
mid-2024, there is still an ongoing debate about when and how to best evaluate these LLM-powered
intelligent applications. However, there are emerging best practices that you can use to direct your
evaluations.

In this chapter, you will learn about how and why you should evaluate the use of LLMs in your
intelligent application. You will be able to use the concepts and metrics discussed to evaluate current
classes of intelligent applications, such as chatbots, and emerging ones, such as AI agents. The concepts
learned here will be applicable for years to come, regardless of the form factors of future generations of
intelligent applications.

This chapter will cover the following topics:

Understanding LLM evaluation

Model benchmarking

Evaluation datasets

Key metrics for LLM evaluation

The role of human review in LLM evaluation

Using evaluations as guardrails for your application

Technical requirements
You will need the following technical requirements to run the code in this chapter:



A programming environment with Python 3.x installed.

An OpenAI API key. To create an API key, refer to the OpenAI documentation at
https://platform.openai.com/docs/quickstart/step-2-set-up-your-api-key.

What is LLM evaluation?
LLM evaluation, or LLM evals , is the systematic process of assessing LLMs and the intelligent
applications that use them. This involves profiling their performance on specific tasks, reliability under
certain conditions, effectiveness in particular use cases, and other criteria to understand a model’s
overall capabilities. You want to make sure that your intelligent application meets certain standards as
measured by your evaluations.

You also should be able to measure how the AI system’s performance evolves as you change
components of the application or data used in the application. For example, if you want to change the
LLM used in your application or a prompt, you should be able to measure the impact of these changes
with evaluations.

Being able to measure the impact of changes is particularly important as the quality of an application
improves. Once an intelligent application is “pretty good,” it can be quite challenging for human
reviewers to assess whether and how a system has improved or regressed based on a change. For
instance, if you have a travel assistant chatbot that successfully meets users’ expectations 90% of the
time, it can be challenging and time-intensive for human reviewers to assess the impact of a small
change that would raise the success rate to 90.5%.

When designing an evaluation suite for your LLM-powered intelligent application, you should consider
the following aspects:

Security: The AI system should not reveal any private or confidential information that it has access to. This can include both
information in the LLM’s weights and information retrieved by the application.

Reputation: The AI system should not generate output that could harm your business. For example, you would not want your
chatbot to recommend your competitor’s services over your own under any circumstances.

Correctness: The AI system should respond with correct output that does not include mistakes or hallucinations.

Style : The AI system should respond according to the tone and style guidelines you specify. For example, if you are developing
a legal chatbot, you may want the chatbot to maintain a formal tone and use appropriate legal terminology.

Consistency: The AI system should generate output that is consistent with expectations. Given the same input, you should
expect the system to perform in a predetermined manner. The response can differ, but any difference should be consistent. For
example, if you are building a system that creates playlists based on a song, you would probably want it to generate similar
playlists given an input song, even if there are different songs or different song orders on the output playlist.

Ethics: The AI system should respond in line with a set of ethical principles. By defining expected behavior in an evaluation
dataset, you can also help define what the ethical standards of the system should be. For example, an AI system should never
generate biased or discriminatory content, and it should handle sensitive topics with care and respect.

https://platform.openai.com/docs/quickstart/step-2-set-up-your-api-key


In the next section, you will learn which points in your application you should evaluate. You will also
review an example intelligent application that is used throughout this chapter in code examples to
demonstrate the concepts.

Component and end-to-end evaluations

You must consider where in your application you want to perform the evaluations. Generally, you should
evaluate all LLM components of a system and the end-to-end system.

To illustrate this idea about where to think about evaluations in your intelligent application, this chapter
uses the example of a travel assistant chatbot. The chatbot uses RAG to make travel recommendations
and answers questions based on a dataset of documents of popular tourist destinations and activities.
Since this chapter is about evaluation, it will not go into detail about how the components of the
application are built. Later on in the chapter, you will look at implementations of how you can evaluate
this application’s LLM usage.

The travel assistant chatbot has the following components:

Retriever: Finds the relevant documents to help inform answers in response to user messages. The retriever uses vector search
to find the relevant documents. It also uses LLMs for the following:

Metadata extractor: Extract any place name from the user query. This can be used to pre-filter the search results
to include documents only about the relevant place.

Query pre-processor: Convert user messages into better search queries.

Retrieved documents post-processor: Mutate retrieved documents to create a list of relevant facts.

Relevancy guardrail: LLM call that makes sure that the user is only talking to the chatbot about travel-related topics. If the
relevancy guardrail determines that the user message is irrelevant, the chatbot does not answer the user’s irrelevant question and
prompts the user to ask something more relevant.

Responder: Uses an LLM to respond to the user message based on the retrieved content.

Figure 9.1 illustrates how these components work together.



Figure 9.1: Components of the travel assistant example chatbot

Component evaluat ion
Every subsystem of your intelligent application that calls an LLM can be considered a component. You
should evaluate all components, as each component contributes to the system’s overall performance. By
evaluating each component, you can ensure that every part meets the required quality standards and
performs reliably. This also lets you change components with more confidence since you can have
clarity on how the changes are affecting all parts of the system.

One component can also contain subcomponents. You should evaluate the parent component and the
child components with separate evaluations. For example, in the travel assistant chatbot, you should
evaluate all individual components that use an LLM, such as the query pre-processor and response



generator. You should also evaluate the retriever, considering its three LLM subcomponents as a single
component.

By evaluating all logical LLM components, you can get a better understanding of the entire system’s
behavior. This understanding lets you make changes to individual components while knowing the effect
that those changes will have on other related components.
End-to-end evaluat ion
End-to-end evaluation examines the performance of the entire integrated system. These evaluations
capture aspects such as real-world applicability, user experience, and system reliability. They help
identify potential bottlenecks or weaknesses in the overall architecture that may not be apparent when
evaluating the LLM alone.

For RAG systems, this involves evaluating not only the language model’s output but also the efficiency
and accuracy of the retrieval mechanism, the relevance of retrieved information, and how well the
system combines external knowledge with the LLM’s inherent capabilities.

In the case of the travel assistant chatbot, an end-to-end evaluation would examine how the chatbot
responds to user input. This evaluation considers all the intermediate LLM components and retrieval.
You can evaluate qualitative aspects of the system, such as how relevant the answer is to the user
question and whether there are any hallucinations.

In a later section, Evaluation metrics, you will learn more about ways to evaluate end-to-end systems.
Before you learn how to apply these evaluation metrics to your LLM-powered intelligent application,
you will learn how to assess which LLMs are most suitable for your application with model benchmarks
in the next section.

Model benchmarking
The LLM itself is a fundamental component of any intelligent application. Given that there are many
LLMs that may be suitable for your application, it is helpful to compare them to each other to see which
will best serve your application. To compare multiple models, you can assess them all against a standard
set of evaluations. This process of comparing models across a uniform set of evaluations is called
model benchmarking. Benchmarking can help you understand the model’s capabilities and limitations.

Often, the LLMs that perform best on benchmarks are the largest models, such as GPT-4 and Claude 3
Opus. However, these larger models also tend to be more expensive to run and slow to generate,
compared to smaller models, such as GPT-4o mini and Claude 3 Haiku.

Even if the larger models are prohibitively expensive, it can still be helpful to use them when developing
your application since they set a baseline of ideal system performance. You can design your evaluations



around your system using these models, substitute the smaller models, and then work on optimizing the
system to try to meet the standard of the system using the larger model.

When new LLMs are released, they are typically evaluated against a standard set of benchmarks.
These standard benchmarks help developers understand how the models compare.

Here are a few popular LLM benchmarks that many models are evaluated against:

Massive Multi-Task Language Understanding (MMLU): This benchmark measures a model’s knowledge acquisition using
college-level multiple-choice questions. It evaluates whether the model selects the correct answer.

You can learn more about this benchmark at https://paperswithcode.com/sota/multi-task-language-
understanding-on-mmlu.

HellaSwag: This benchmark measures a model’s common-sense reasoning ability using multiple-choice text completion. It
evaluates whether the model selects the correct sentence completion.

You can learn more about this benchmark at https://paperswithcode.com/sota/sentence-completion-
on-hellaswag.

HumanEval: This benchmark measures a model’s programming ability in Python. It prompts a model to create a Python
function to solve a task. It then evaluates whether the function that the model outputs is correct using preconstructed unit
tests.

You can learn more about this benchmark at https://paperswithcode.com/sota/code-generation-on-
humaneval.

MATH: This benchmark measures a model’s ability to solve math word problems. It evaluates whether the model reaches the
correct solution.

You can learn more about this benchmark at https://paperswithcode.com/dataset/math.

You can assess the performance of LLMs based on these benchmarks to choose models that are most
suitable for your application. For example, in the case of the travel assistant chatbot, a high score on
MMLU is probably a good indication that the model is well suited for answering travel questions, as it
would be helpful for the model to have world knowledge to inform its answers. In contrast, high scores
on the HumanEval Python coding benchmark would likely have little bearing on the quality of its travel
recommendations.

You can also create your own benchmarks to assess the LLM’s performance on a domain relevant to
your application. You can even style these benchmarks after existing benchmarks. For the travel
assistant chatbot, you could make a benchmark of multiple-choice questions about popular travel
destinations styled after MMLU. This travel benchmark would help determine which models possess
the best background information about travel. By choosing a model with more travel-related knowledge,
you could improve the quality of your responses.

These benchmarks can also reveal which models are best suited for different components of your
application. For instance, for the travel assistant chatbot, perhaps you need to use a large, expensive

https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
https://paperswithcode.com/sota/sentence-completion-on-hellaswag
https://paperswithcode.com/sota/code-generation-on-humaneval
https://paperswithcode.com/dataset/math


model that possesses significant knowledge of vacation destinations in the main responder, but can use a
faster, cheaper model in other LLM components, such as the input relevance guardrail.

Once you have an idea of which models are appropriate for your AI components, you can start building
those systems. To understand and measure how well these AI systems use the LLMs, you must create
evaluation datasets and run evaluation metrics over them. In the next two sections, you will learn about
creating these evaluation datasets and metrics.

Evaluation datasets

You must create evaluation datasets  to measure AI system performance. An evaluation dataset is the
data that you input into an AI system to produce an output that measures how well the AI system
performs. Evaluation datasets often include some criteria that an evaluation metric can use to
determine the score of the evaluation. An evaluation metric takes the input and the output of an AI
system and returns a score measuring how the AI system performed for the case. You will learn more
about evaluation metrics in the Evaluation metrics section of this chapter.

An evaluation dataset is a set of distinct evaluation cases. Each evaluation case typically includes the
following information:

Input: The data inputted into the AI system.

Reference : Criteria that the evaluation metric uses to evaluate whether the AI system output is correct. The reference is
often an ideal output for the system given the input. This ideal output is often called the golden answer or reference
answer. This could also be a rubric of criteria that the AI system output should meet. Sometimes, evaluation datasets do not
include references because the evaluation metric used on the dataset doesn’t need reference criteria to evaluate the input. When
an evaluation does not require an output reference, it is called a reference-free evaluation.

Metadata: An evaluation usually also includes metadata with each evaluation case. This can be a unique name, an ID, or a tag.

Evaluation datasets tend to conform to tabular or document-based data structures. Therefore, they are
often stored in formats such as CSV, JSON, or Parquet.

Here is a small example evaluation dataset of user messages and model answers for the travel assistant
chatbot:

Input Golden answer Tags

What should I do in

New York City in

July?

Check out Times Square, go to an outdoor concert, and visit
the Statue of Liberty.

["todo",

"nyc",

"usa"]

Can you help me

with my math

I’m sorry, I cannot help you with your math homework
since I am a travel assistant. Do you have any travel-

["security"]



homework? related questions?

What's the capital

of France?

Paris is the capital of France. ["europe",

"france"]

Table 9.1: Evaluation dataset for the example chatbot

The remainder of this chapter uses this dataset in its evaluations.

What exactly you include in an evaluation dataset depends on what functionality you want to evaluate
and the evaluation metrics you are using. In the upcoming Evaluation metrics section, you will learn
more about what exact information you need to include in your evaluation datasets for different
evaluation metrics.

Regardless of what exact evaluation metrics you use, it is important to have a representative evaluation
dataset. The dataset should be representative of the types of inputs that you expect your AI system to
receive in addition to edge cases that you want to optimize the system around.

There is no precise number of evaluation cases that you should have or formula for determining what
that number should be for a given scenario. Nevertheless, you can use the following very rough
heuristics for building evaluation datasets:

Always have at least 10 evaluation cases for a given metric

Have at least 100-200 representative evaluation cases to get an idea of end-to-end system performance

Next, you will learn about a few strategies to help you create representative evaluation datasets.

Defining a baseline

To bootstrap your evaluation dataset, you must create a set of evaluation cases that cover the general
expected behaviors and edge cases around which you want to optimize for in your application.

To define the common expectations of this baseline, it can be useful to collaborate with any stakeholders
of the AI system to create evaluation cases for the following areas:

A diverse sample of expected common inputs: You may be able to leverage existing data to help inform these evaluation
cases. For example, in the travel assistant chatbot, you could derive evaluation cases from top Google search queries about
travel. This follows the logic that whatever people are searching for on Google, they are likely to ask your chatbot about as
well.

Edge cases around which you want to optimize your system: Edge cases can include inputs that test the security and
ethical guardrails of the system. If you red team your AI system, as discussed further in Chapter 12, Correcting and Optimizing
Your Generative AI Application, you can likely find some good edge cases from the red teaming results.

This baseline of evaluation cases is often enough to release the AI system to a user-facing environment.
Once the AI system is in use, you can validate the efficacy of your baseline evaluation cases and create



additional evaluation cases, as discussed in the next section.

User feedback

After you release your AI system, you can source evaluation cases from user data to continuously
refine and improve the system’s performance. If your application has any user feedback mechanisms,
such as ratings or comments, you can use these to identify cases where the system succeeds or fails.

Generally, you should manually review any application data before adding it to an evaluation dataset.
You want to ensure that the case is suitable for your evaluation dataset and does not contain any
sensitive information. You can also add metadata, such as tags or an evaluation case name.

Even if the application data is not suitable for an evaluation case, perhaps because it is improperly
formatted or contains personally identifiable information, you can modify it to create a suitable
evaluation case.

It is possible to create a pipeline that uses LLMs to fully automate the process of creating evaluation
cases from user feedback. However, you should strongly consider maintaining a human in the loop for
the following reasons:

You want the quality of the evaluation dataset to be very high, which you can more easily ensure with human reviewers than an
LLM-based system.

It is beneficial for the people involved in the AI system development to be aware of the cases in their evaluation dataset. This
awareness helps give them context into the system capabilities.

Given that evaluation datasets typically do not need to be particularly large to be effective (a few hundred evaluation cases is
often sufficient), creating an LLM-based system to create evaluation cases may be excessive for the requirements of the task.

Building your evaluation dataset from user feedback is an effective way to ground your evaluations in
the types of inputs that users are providing.

Synthetic data

LLMs are capable tools for generating evaluation datasets. When you use an LLM to generate data, it
is called synthetic data. You might want to use synthetic data because it is quite time consuming and
tedious for humans to create evaluation cases. LLMs can help make the process of creating evaluation
data faster and easier.

There are various strategies to create synthetic evaluation data. As of writing in mid-2024, there is no
structured set of best practices for creating synthetic evaluation data. However, the following are some
principles that you can keep in mind when creating synthetic evaluation cases:

Have a human in the loop. A human should review all synthetic data cases and edit or remove them as needed. This provides
quality control on the synthetic data.



LLMs are very effective at creating perturbations on existing evaluation cases. Perturbations are slight variations on existing
data, such as the rephrasing of a sentence. You can use perturbations to see whether the AI system performs differently based
on slight changes. Ideally, a system should behave consistently across perturbations.

Often, an LLM-based chatbot, such as ChatGPT, Claude, or Gemini, can be sufficient to help create synthetic data. The back-
and-forth of the chatbot interface can also help you refine and iterate on your synthetic data creation.

Using synthetic data in combination with a baseline and data from user feedback, you can create
datasets to effectively evaluate the performance of your AI systems. You must pair these datasets with
metrics to run evaluations. In the following section, you will learn more about evaluation metrics.

Evaluation metrics
To perform evaluations on your AI system, you must combine your evaluation data with an evaluation
metric. An evaluation metric takes the input and the output of an AI system and returns a score
measuring how the AI system performed for the case.

Evaluation metrics typically return scores between 0 and 1. The metric is called a binary metric if it
returns only the scores of 0 or 1. The metric is called a normalized metric if it returns a score
between 0 and 1, inclusive. Binary metrics clearly determine if the case passes or fails, 0 being fail and
1 being pass. Normalized metrics present a more nuanced view of how the AI system performs, but
that nuance can lack interpretability. To add clarity to normalized metrics, you can set a minimum
threshold score that the metric must return to be considered a pass. For example, say the metric Foo
returns a score of 0.6 for an evaluation case and 0.7 for another. If you have a threshold of 0.65, then
the 0.6 score is considered a fail and the 0.7 score a pass.

Evaluation metrics for LLM systems broadly fall into the following categories:

Assertion-based metrics: Metrics that evaluate if an AI system output matches an in-code assertion, such as equality or
regular expression match.

Statistical metrics: Metrics that use a statistical algorithm to evaluate the output of an AI system.

LLM-as-a-judge metrics: Metrics that use an LLM to evaluate if the output of an AI system meets qualitative criteria.

RAG metrics: Metrics that evaluate RAG systems. Generally, RAG metrics use LLMs as judges. This chapter treats RAG
metrics as their own category because of their unique properties.

Given the novelty of the LLM engineering space, the exact metrics you use might change, but the
general categories discussed here will likely be useful. In the remainder of this section, you will learn
more about these categories and the specific evaluation metrics in them.

Assertion-based metrics



Assertion-based metrics  are quantitative metrics that evaluate whether an AI system output meets
certain criteria as defined in code. Assertion-based metrics resemble unit tests in traditional software
engineering, where you compare whether a module output matches an expectation.

You can even wrap assertion-based evaluations in a unit-testing suite. Given that your intelligent
application likely already has a test suite, you can start adding evaluations to your application by
including assertion-based metrics in the test suite. This is a great way to start evaluating your AI
components without adding additional technical overhead to your application. However, as your
application matures, you will likely want to create a separate evaluation suite.

Some assertion-based metrics you can use are as follows:

Equality: Evaluate whether the actual output is equal to (==) or not equal to (!=) an expected value.

Comparison operators: Evaluate whether the actual output matches comparison criteria with one of the comparison
operators: greater than (>), greater than or equal to (>=), less than (<), or less than or equal to (<=). These comparison
operators are useful for evaluating numeric outputs.

Sub-string match: Evaluate whether a string output includes an expected sub-string.

Regular expression match: Evaluate whether a string output matches a regular expression.

In the following code example, you have a dataset of evaluation cases for the travel assistant chatbot
application. This evaluation focuses on the input relevancy guardrail. The cases include the evaluation
inputs, the expected output of the relevancy guardrail, and the actual output of running the inputs through
the relevancy guardrail. The evaluation metric assesses whether the actual output is equal to the
expected output.

First, install the prettytable Python package, which you will use to output results in a readable format.
Install the package in your terminal:
 
pip3 install prettytable==3.10.2

Then, execute the following Python code:
 
from prettytable import PrettyTable 
input_relevance_guardrail_data = [ 
    { 
        "input": "What should I do in New York City in July?", 
        "output": True, 
        "expected": True 
    }, 
{ 
        "input": "Can you help me with my math homework?", 
        "output": False, 
        "expected": False 
    }, 
    { 
        "input": "What's the capital of France?", 
        "output": False, 
        "expected": True 
    }, 
] 



# assertion-based evaluation 
def evaluate_correctness(output, expected): 
    return 1 if output == expected else 0 
def calculate_average(scores): 
    return sum(scores) / len(scores) 
def create_table(data): 
    table = PrettyTable() 
    table.field_names = ["Input", "Output", "Expected", "Score"] 
    scores = [evaluate_correctness(case["output"], case["expected"]) for case in data] 
    for case, score in zip(data, scores): 
        table.add_row([case["input"], case["output"], case["expected"], score]) 
# Add a blank row for visual separation 
table.add_row(["", "", "", ""]) 
    # Add average score to bottom of the table 
    average_score = calculate_average(scores) 
    table.add_row(["Average", "", "", f"{average_score:.4f}"]) 
    return table 
# Create and print the table 
result_table = create_table(input_relevance_guardrail_data) 
print(result_table)

This code outputs the following evaluation results to the terminal:
 
+--------------------------------------------+--------+----------+--------+ 
|                   Input                    | Output | Expected | Score  | 
+--------------------------------------------+--------+----------+--------+ 
| What should I do in New York City in July? |  True  |   True   |   1    | 
|   Can you help me with my math homework?   | False  |  False   |   1    | 
|       What's the capital of France?        | False  |   True   |   0    | 
|                                            |        |          |        | 
|                  Average                   |        |          | 0.6667 | 
+--------------------------------------------+--------+----------+--------+

The preceding code example shows how you can use assertion-based evaluation metrics to evaluate the
LLM components of an intelligent application.

Statistical metrics

Statistical metrics use algorithms to determine a score. If you have a background in traditional natural
language processing (NLP), you may already be familiar with the statistical metrics for evaluating
LLMs’ system outputs. Statistical metrics are most useful when you are using LLM systems for tasks
that would use other NLP models, such as classification, summarization, and translation.

The following are some popular NLP metrics that you can use to evaluate LLM system outputs:

Bilingual Evaluation Understudy (BLEU): BLEU measures the precision of a model’s output against one or more reference
texts. You can use the BLEU score to calculate how similar a model output is to a reference answer. BLEU was originally
developed to measure the quality of machine-translated text compared to a reference translation.

You can learn more about BLEU at https://en.wikipedia.org/wiki/BLEU.

Recall-Oriented Understudy for Gisting Evaluation (ROUGE): ROUGE measures the quality of machine-generated text
against one or more reference texts. In LLM systems, ROUGE is often used to assess how effectively an LLM summarizes
reference texts. ROUGE is particularly useful for RAG systems, where the LLM summarizes the content in retrieved
documents. It can also be used to measure the quality of a translation against a reference.

https://en.wikipedia.org/wiki/BLEU


You can learn more about ROUGE at https://en.wikipedia.org/wiki/ROUGE_(metric).

In the following code example, you have a dataset of evaluation cases for the travel assistant chatbot
application. This evaluation focuses on the response generator LLM. It calculates the BLEU score for
how well the actual output measures against a reference output. It also calculates the ROUGE score
for how the answer summarizes the retrieved context information.

First, you must install a few Python packages. The prettytable package output results in a readable
format, the sacrebleu package calculates the BLEU score, and the rouge-score package calculates
the ROUGE score. Install the packages in the terminal:
 
pip3 install prettytable==3.10.2 sacrebleu==2.4.2 rouge-score==0.1.2

Then, execute the following Python code:
 
from prettytable import PrettyTable 
import sacrebleu 
from rouge_score import rouge_scorer 
evaluation_data = [ 
    { 
        "input": "What should I do in New York City in July?", 
        "output": "Check out Times Square, go to an outdoor concert, and visit the 
Statue of Liberty.", 
        "golden_answer": "Explore Central Park, attend outdoor concerts, and visit 
rooftop bars.", 
        "contexts": [ 
            "Times Square is known for its Broadway theaters, bright lights, and 
bustling atmosphere.", 
            "Outdoor concerts in Central Park are popular summer events attracting 
many visitors.", 
            "The Statue of Liberty is a symbol of freedom and a must-see landmark in 
NYC." 
        ] 
    }, 
    { 
        "input": "Can you help me with my math homework?", 
        "output": "I'm designed to assist with travel queries. For math help, try 
using online resources like Khan Academy or Mathway.", 
        "golden_answer": "I am a travel assistant chatbot, so I cannot help you with 
your math homework.", 
        "contexts": [] 
    }, 
    { 
        "input": "What's the capital of France?", 
        "output": "The capital of France is Paris.", 
        "golden_answer": "Paris is the capital of France.", 
        "contexts": [ 
            "Paris, known as the City of Light, is the most populous city of France.", 
            "European capitals: Paris, France; Berlin, Germany; Madrid, Spain", 
        ] 
    } 
] 
# Statistical evaluators 
def evaluate_bleu(output, golden_answer): 
    bleu = sacrebleu.corpus_bleu([output], [[golden_answer]]) 
    return bleu.score / 100  # Normalize BLEU score to be between 0 and 1 
def evaluate_rouge(output, contexts): 
    context_text = ("\n").join(contexts) 
    scorer = rouge_scorer.RougeScorer(['rouge1', 'rouge2', 'rougeL'], 

https://en.wikipedia.org/wiki/ROUGE_(metric)


use_stemmer=True) 
    scores = scorer.score(context_text, output) 
    return scores['rougeL'].fmeasure 
def calculate_average(scores): 
    return sum(scores) / len(scores) 
# truncate strings for easier printing in table 
def truncate_string(s, max_length=10): 
    return (s[:max_length] + '...') if len(s) > max_length else s 
def create_table(data): 
    table = PrettyTable() 
    table.field_names = ["Input", "Output", "Golden Answer", "# Contexts", "BLEU", 
"ROUGE"] 
    bleu_scores = [evaluate_bleu(case["output"], case["golden_answer"]) for case in 
data] 
    rouge_scores = [evaluate_rouge(case["output"], case["contexts"]) for case in data] 
    for case, bleu, rouge in zip(data, bleu_scores, rouge_scores): 
        table.add_row([ 
            truncate_string(case["input"]), 
            truncate_string(case["output"]), 
            truncate_string(case["golden_answer"]), 
            len(case["contexts"]), 
            f"{bleu:.4f}", 
            f"{rouge:.4f}"]) 
    # Add a blank row for visual separation 
    table.add_row(["", "", "", "", "", ""]) 
    # Add the average score to bottom of the table 
    average_bleu = calculate_average(bleu_scores) 
    average_rouge = calculate_average(rouge_scores) 
    table.add_row(["Average", "", "", "", f"{average_bleu:.4f}", f"
{average_rouge:.4f}"]) 
    return table 
# Create and print the table 
result_table = create_table(evaluation_data) 
print(result_table)

This code outputs the following to the terminal:
 
+---------------+---------------+---------------+------------+--------+--------+ 
|     Input     |     Output    | Golden Answer | # Contexts |  BLEU  | ROUGE  | 
+---------------+---------------+---------------+------------+--------+--------+ 
| What shoul... | Check out ... | Explore Ce... |     3      | 0.0951 | 0.2857 | 
| Can you he... | I'm design... | I am a tra... |     0      | 0.0270 | 0.0000 | 
| What's the... | The capita... | Paris is t... |     2      | 0.2907 | 0.2857 | 
|               |               |               |            |        |        | 
|    Average    |               |               |            | 0.1376 | 0.1905 | 
+---------------+---------------+---------------+------------+--------+--------+

The preceding example demonstrates how you can use BLEU and ROUGE scores as evaluation
metrics to measure the outputs of the travel assistant chatbot. For instance, in the preceding example,
the fact that the BLEU and ROUGE scores are so different in the first New York City test case
indicates that the model answer deviates significantly from the golden answer but has relatively high
adherence to the context information. This difference implies that you could optimize the retriever to get
more relevant context information to better satisfy the golden answer.

These statistical metrics are most useful for assessing the quality of LLM outputs when the LLMs are
used for more traditional NLP tasks, such as translation and summarization. They can also provide a
useful directional metric when comparing different versions of the same AI system on the same
evaluation dataset.



While these quantitative metrics  can provide valuable insights into LLM performance, they are
usually not sufficient for evaluating an LLM-powered intelligent application. These metrics often fail to
capture the nuanced aspects of language generation, such as coherence, creativity, factual correctness,
and contextual appropriateness. Therefore, you need to also create qualitative evaluations  to
understand how well the LLM system performs on these metrics. In the following sections, you will
learn about using LLMs as judges and RAG-specific metrics to evaluate LLM output.

LLM-as-a-judge evaluations

You can use an LLM to evaluate the outputs of an LLM system along qualitative criteria. Many LLM
systems perform broad open-domain tasks, such as a chatbot carrying on extended conversations.
Quantitative metrics, such as the ones discussed previously, cannot necessarily capture whether the
LLM system performs these tasks effectively. For instance, a ROUGE score may be able to indicate
how closely a summary tracks source documents, but it cannot tell you if the summary includes a
hallucination. You will learn more about hallucinations in Chapter 11, Common Failures of Generative
AI.

Before the rise of LLMs, it was challenging to systematically evaluate qualitative aspects of natural
language generation. Now you can use LLMs to evaluate the outputs of LLM-powered systems. Using
LLMs to perform evaluations is called LLM-as-a-judge . Evaluating LLM output with another judge
LLM is never a perfect solution. The judge LLM is subject to all the limitations of LLMs that require
you to evaluate the LLM system in the first place. However, as of writing in mid-2024, LLM-as-a-judge
seems to be the best approach to systematically perform qualitative evaluation of LLM output.

A few areas where you can use LLM-as-a-judge qualitative metrics include the following:

Tone and style of the response

Whether the response is personalized to the user based on input information

Whether the response contains sensitive information, such as personally identifiable information, that it should not share

Whether the response complies with a certain law or regulation

When creating LLM-as-a-judge evaluation metrics, it is useful to keep the following key points in mind:

Always set the LLM temperature  to 0 for consistent outputs. Temperature is a hyperparameter for LLMs that controls the
randomness of their predictions. A temperature of 0 produces deterministic outputs. A higher temperature produces more
diverse and less consistent outputs, which can be preferable if the LLM is performing creative work. However, you want the
evaluations to be as consistent as possible.

Better LLMs tend to be better evaluators. LLMs that rank higher on benchmarks tend to produce evaluation results that are
more consistent with expectations.

Multi-shot prompting often improves evaluator accuracy. To perform multi-shot prompting, include examples of inputs and
the outputs the model should provide, in addition to including the evaluation criteria in the model prompt. These examples



often help the model perform better evaluations. Generally, you should include at least five examples that represent a diverse
set of evaluation scenarios.

Chain-of-thought prompting often further improves LLM-as-a-judge evaluator performance. In a chain-of-thought
prompt, you ask the model to explain its thought process before producing a final answer.

Every LLM-as-a-judge evaluation metric should only evaluate a single qualitative aspect. Focusing on a single aspect makes the
evaluation task easier for the LLM to interpret. If you need to assess multiple aspects, create multiple LLM-as-a-judge
evaluation metrics.

The LLM you use matters. Different LLMs can produce different outcomes on the same evaluation task. Be consistent in using
the same LLM for all evaluations with a metric. If you change the LLM used by a metric, you cannot reliably compare the
results produced with different LLMs.

Produce structured evaluation output. The judge LLM should produce structured outputs, such as pass or fail, or a score of
integers 0-5. You can then normalize these scores. For instance, if the judge LLM outputs pass or fail, then pass is
normalized as 1 and fail as 0. If the judge LLM outputs integers 0-5, 0 is normalized as 0, 1 as 0.2, 2 as 0.4... and 5 as 1.

The following code example uses an LLM as a judge to evaluate whether the travel assistant chatbot
provides a suggestion to the user in its response. The LLM evaluator also includes few-shot examples to
improve the judge model’s understanding of the task.

The code example runs the evaluation over a dataset of inputs and outputs. Note that this is a
reference-free evaluation, as the LLM-as-a-judge does not need a reference answer to determine
whether the chatbot provides irrelevant answers.

First, you must install a few Python packages. The prettytable package output results in a readable
format and the openai package calls the OpenAI API to use the GPT-4o LLM. Install the packages in
your terminal:
 
pip3 install prettytable==3.10.2 openai==1.39.0

Then, execute the code:
 
import json 
from prettytable import PrettyTable 
import openai 
import os 
# Add your OpenAI API key to call the model 
openai.api_key = os.getenv("OPENAI_API_KEY") 
# Data to evaluate 
evaluation_data = [ 
    { 
        "input": "What should I do in New York City in July?", 
        "output": "Check out Times Square, go to an outdoor concert, and visit the 
Statue of Liberty.", 
    }, 
    { 
        "input": "Can you help me with my math homework?", 
        "output": "I'm designed to assist with travel queries. For math help, try 
using online resources like Khan Academy or Mathway.", 
    }, 
    { 
        "input": "What's the capital of France?", 
        "output": "The capital of France is Paris.", 
    } 



] 
# LLM-as-a-Judge Evaluation metric 
# that assesses if the output includes a recommendation. 
def evaluate_includes_recommendation(input, output): 
    # Few-shot examples to help the model produce better answers. 
    few_shot_examples = [ 
        { 
            "input": "What are some good restaurants in Paris?", 
            "output": "Try Le Jules Verne for an upscale dining experience, or visit 
Le Relais de l'Entrecôte for a classic steak frites.", 
            "recommendation": True 
        }, 
        { 
            "input": "Where should I stay in London?", 
            "output": "Consider staying at The Ritz for luxury or the Hoxton for a 
more budget-friendly option.", 
            "recommendation": True 
        }, 
        { 
            "input": "What's the weather like in Tokyo in winter?", 
            "output": "In winter, Tokyo is generally cool with temperatures ranging 
from 2°C to 12°C. While you're there, consider visiting the hot springs (onsen) for a 
warm and relaxing experience.", 
            "recommendation": True 
        }, 
        { 
            "input": "What's the population of Berlin?", 
            "output": "The population of Berlin is approximately 3.6 million.", 
            "recommendation": False 
        }, 
        { 
            "input": "What's the currency used in Japan?", 
            "output": "The currency used in Japan is the Japanese Yen (JPY).", 
            "recommendation": False 
        } 
    ] 
    # Constructing the prompt 
    prompt = """Determine whether the following output includes a recommendation based 
on the input. 
Format response as a JSON object with the shape { "recommendation": boolean }. 
Examples: 
""" 
    # Append few-shot examples to the prompt. 
    for example in few_shot_examples: 
        prompt += f"""Input: {example['input']} 
Output: {example['output']} 
Recommendation: {{ "recommendation": {str(example['recommendation']).lower()} }} 
""" 
    prompt += f"""Input: {input} 
Output: {output} 
Recommendation:""" 
    # Call the OpenAI API 
    response = openai.chat.completions.create( 
        # Use strong evaluator LLM 
        model="gpt-4o", 
        ## Format response as JSON, so it is easier to parse 
        response_format={ "type": "json_object" }, 
        messages=[{ "role": "user", "content": prompt }], 
        # Make sure temperature=0 for consistent outputs 
        temperature=0 
    ) 
    recommendation = json.loads(response.choices[0].message.content)["recommendation"] 
    return 1 if recommendation == True else 0 
def calculate_average(scores): 
    return sum(scores) / len(scores) 
# truncate strings for easier printing in table 



def truncate_string(s, max_length=30): 
    return (s[:max_length] + '...') if len(s) > max_length else s 
def create_table(data): 
    table = PrettyTable() 
    table.field_names = ["Input", "Output", "Score"] 
    scores = [evaluate_includes_recommendation(case["input"], case["output"]) for case 
in data] 
    for case, score in zip(data, scores): 
        table.add_row([ 
            truncate_string(case["input"]), 
            truncate_string(case["output"]), 
            score]) 
    # Add a blank row for visual separation 
    table.add_row(["", "", ""]) 
    # Add the average score to bottom of the table 
    average = calculate_average(scores) 
    table.add_row(["Average", "", f"{average:.4f}"]) 
    return table 
# Create and print the table 
result_table = create_table(evaluation_data) 
print(result_table)

This code outputs the following to the terminal:
 
+-----------------------------------+-----------------------------------+--------+ 
|               Input               |               Output              | Score  | 
+-----------------------------------+-----------------------------------+--------+ 
| What should I do in New York C... | Check out Times Square, go to ... |   1    | 
| Can you help me with my math h... | I'm designed to assist with tr... |   1    | 
|   What's the capital of France?   | The capital of France is Paris... |   0    | 
|                                   |                                   |        | 
|              Average              |                                   | 0.6667 | 
+-----------------------------------+-----------------------------------+--------+

The preceding example demonstrates how to create a simple LLM-as-a-judge metric to evaluate
whether a response includes a recommendation. You can extend the techniques to create additional
LLM-as-a-judge metrics to look at various aspects of your LLM system. In the next section, you will
learn about some more complex LLM-as-a-judge metrics for evaluating RAG systems.

RAG metrics

RAG is currently one of the most popular ways to use LLMs. A distinct set of metrics has emerged to
measure the efficacy of a RAG system. These metrics all use an LLM as a judge.

These metrics focus on the two core components of any RAG system, retrieval and generation:

Retrieval: This component fetches relevant information from external sources. It often combines vector search with LLM-
based pre- and post-processing.

Generation: This component uses an LLM to produce text outputs.

The following LLM-as-a-judge metrics are often used to evaluate RAG systems:

Answer faithfulness: Measures how grounded the generated response is to the retrieved context information

Answer relevance : Measures how relevant the generated response is to the provided input



Ragas  is a popular Python library that includes modules implementing these metrics along with others
for RAG evaluation. In the remainder of this section, you will learn how Ragas implements these
metrics. To learn more about Ragas and its available metrics, refer to its documentation
(https://docs.ragas.io/en/stable/index.html).

Answer faithfulness
Answer faithfulness is an evaluation metric for the generation component of RAG systems. It measures
the extent to which the information in the generated response aligns with the retrieved context
information.

By identifying factual discrepancies between the generated answer and the retrieved context, the
answer faithfulness metric can help identify if there are any hallucinations in the answer.

Ragas includes a module to measure faithfulness. It calculates faithfulness with this formula:

The data to input into the faithfulness formula is derived with these steps:

1. Extract all claims from the generated response with an LLM.

2. Locate each claim in the reference material with an LLM.

3. Calculate the proportion of claims that can be inferred from the context information.

The following code example uses the Ragas faithfulness metric on an example set of input, contexts,
and RAG system outputs.

First, you must install a few Python packages. The ragas package includes the response faithfulness
metric and a reporting module. The langchain-openai package lets you pass an OpenAI model to
Ragas. This example uses the GPT-4o mini model. Ragas also depends on the datasets package to
format inputs. Install the packages in your terminal:
 
pip3 install ragas==0.1.13 langchain-openai==0.1.20 datasets==2.20.0

Then, run the following code to perform the evaluation:
 
from ragas.metrics import faithfulness 
from ragas import evaluate 
from datasets import Dataset 
from langchain_openai.chat_models import ChatOpenAI 
import os 
openai_api_key = os.getenv("OPENAI_API_KEY") 
evaluation_data = [ 
    { 
        "input": "What should I do in New York City in July?", 
        "output": "Check out Times Square, go to an outdoor concert, and visit the 
Statue of Liberty.", 
        "contexts": [ 
            "Times Square is known for its Broadway theaters, bright lights, and 
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bustling atmosphere.", 
            "Outdoor concerts in Central Park are popular summer events attracting 
many visitors.", 
            "The Statue of Liberty is a symbol of freedom and a must-see landmark in 
NYC." 
        ] 
    }, 
    { 
        "input": "Can you help me with my math homework?", 
        "output": "I'm designed to assist with travel queries. For math help, try 
using online resources like Khan Academy or Mathway.", 
        "contexts": [] 
    }, 
    { 
        "input": "What's the capital of France?", 
        "output": "The capital of France is Paris.", 
        "contexts": [ 
            "Paris, known as the City of Light, is the most populous city of France.", 
            "European capitals: Paris, France; Berlin, Germany; Madrid, Spain", 
        ] 
    } 
] 
# Format our dataset for Ragas data structure 
def prepare_data_for_ragas(data_list): 
    data_table = { 
        'question': [], 
        'answer': [], 
        'contexts': [] 
    } 
    for data_item in data_list: 
        data_table["question"].append(data_item["input"]) 
        data_table["answer"].append(data_item["output"]) 
        data_table["contexts"].append(data_item["contexts"]) 
    return data_table 
def create_report(data): 
    ragas_dict = prepare_data_for_ragas(data) 
    dataset = Dataset.from_dict(prepare_data_for_ragas(data)) 
    langchain_llm = ChatOpenAI( 
        model_name="gpt-4o-mini", 
        api_key=openai_api_key) 
    score = evaluate(dataset, metrics=[faithfulness], llm=langchain_llm) 
    return score 
# Create and print the table 
results = create_report(evaluation_data) 
print(results.to_pandas()) 
print(results)

Executing this code outputs results resembling the following to the terminal:
 
Evaluating: 100% 
 3/3 [00:05<00:00,  1.72s/it] 
                                    question  \ 
0  What should I do in New York City in July? 
1      Can you help me with my math homework? 
2               What's the capital of France? 
                                              answer  \ 
0  Check out Times Square, go to an outdoor conce... 
1  I'm designed to assist with travel queries. Fo... 
2                    The capital of France is Paris. 
                                            contexts  faithfulness 
0  [Times Square is known for its Broadway theate...           1.0 
1                                                 []           0.0 
2  [Paris, known as the City of Light, is the mos...           1.0 
{'faithfulness': 0.6667}



You can see from the results that the Ragas evaluator deemed the first and third examples faithful, and
not the second one.

In the following section, you will learn how to use another RAG evaluation metric: answer relevance.
Answer relevance
Answer relevance measures how relevant the output of a RAG system is to the input. This metric is
useful because it determines how well a RAG system responds to the provided input.

Ragas uses the input, generated output, and context information retrieved to generate that output in its
answer relevance metric. It calculates the answer relevance evaluation metric score with the following
steps:

1. Use an LLM to generate a list of questions from the generated response.

2. Create a vector embedding for each LLM-generated question from the previous step. Also, create a vector embedding for the
initial input query.

3. Calculate the cosine similarity between the original question embedding and each generated question embedding.

4. The answer relevance score is the mean of the cosine similarities between the original question and each generated question.

Ragas assumes that if the generated answer is highly relevant to the original question, then the questions
that can be derived from this answer should be semantically similar to the original question. This
assumption is based on the idea that a relevant answer contains information that directly addresses the
query. Therefore, the judge LLM should be able to reverse-engineer questions that closely align with
the original input.

The following code example uses the Ragas answer relevance metric on an example set of input,
contexts, and RAG system outputs.

First, you must install a few Python packages. Note that these are the same dependencies as for the
Ragas faithfulness evaluation example in the previous section. The ragas package includes the response
answer relevance metric and a reporting module. The langchain-openai package lets you pass an
OpenAI model to Ragas. This example uses the GPT-4o mini model. Ragas also depends on the
datasets package to format inputs. Install the packages in your terminal:
 
pip3 install ragas==0.1.13 langchain-openai==0.1.20 datasets==2.20.0

Then, run the following code to perform the evaluation:
 
from ragas.metrics import answer_relevancy 
from ragas import evaluate 
from datasets import Dataset 
from langchain_openai.chat_models import ChatOpenAI 
from langchain_openai.embeddings import OpenAIEmbeddings 
import os 
openai_api_key = os.getenv("OPENAI_API_KEY") 
evaluation_data = [ 
    { 
        "input": "What should I do in New York City in July?", 



        "output": "Check out Times Square, go to an outdoor concert, and visit the 
Statue of Liberty.", 
        "contexts": [ 
            "Times Square is known for its Broadway theaters, bright lights, and 
bustling atmosphere.", 
            "Outdoor concerts in Central Park are popular summer events attracting 
many visitors.", 
            "The Statue of Liberty is a symbol of freedom and a must-see landmark in 
NYC." 
        ] 
    }, 
    { 
        "input": "Can you help me with my math homework?", 
        "output": "I'm designed to assist with travel queries. For math help, try 
using online resources like Khan Academy or Mathway.", 
        "contexts": [] 
    }, 
    { 
        "input": "What's the capital of France?", 
        "output": "The capital of France is Paris.", 
        "contexts": [ 
            "Paris, known as the City of Light, is the most populous city of France.", 
            "European capitals: Paris, France; Berlin, Germany; Madrid, Spain", 
        ] 
    } 
] 
# Format our dataset for Ragas data structure 
def prepare_data_for_ragas(data_list): 
    data_table = { 
        'question': [], 
        'answer': [], 
        'contexts': [] 
    } 
    for data_item in data_list: 
        data_table["question"].append(data_item["input"]) 
        data_table["answer"].append(data_item["output"]) 
        data_table["contexts"].append(data_item["contexts"]) 
    return data_table 
def create_report(data): 
    ragas_dict = prepare_data_for_ragas(data) 
    dataset = Dataset.from_dict(prepare_data_for_ragas(data)) 
    langchain_llm = ChatOpenAI( 
        model_name="gpt-4o-mini", 
  api_key=openai_api_key) 
    langchain_embeddings = OpenAIEmbeddings( 
        model="text-embedding-3-large", 
        api_key=openai_api_key 
    ) 
    score = evaluate(dataset, 
                     metrics=[answer_relevancy], 
                     llm=langchain_llm, 
                     embeddings=langchain_embeddings 
                    ) 
    return score 
# Create and print the table 
results = create_report(evaluation_data) 
print(results.to_pandas()) 
print(results)

Executing this code outputs the following results to the terminal:
 
Evaluating: 100% 
 3/3 [00:04<00:00,  4.85s/it] 
                                    question  \ 
0  What should I do in New York City in July? 



1      Can you help me with my math homework? 
2               What's the capital of France? 
                                              answer  \ 
0  Check out Times Square, go to an outdoor conce... 
1  I'm designed to assist with travel queries. Fo... 
2                    The capital of France is Paris. 
                                            contexts  answer_relevancy 
0  [Times Square is known for its Broadway theate...          0.630561 
1                                                 []          0.000000 
2  [Paris, known as the City of Light, is the mos...          0.873249 
{'answer_relevancy': 0.5013}

You can see from the results that the first and third cases were relevant, while the second was not. This
makes sense because the first and third had quite relevant contexts, whereas the second had no context
information at all.

The Ragas answer relevance metric has noteworthy limitations. The quality of the underlying language
model significantly impacts the metric’s effectiveness, as it relies heavily on the LLM’s capacity to
generate appropriate questions from the given answer. The metric may also struggle with handling
complex or multi-faceted queries, particularly when the answer doesn’t comprehensively address all
aspects of the original question, potentially resulting in an incomplete assessment of relevance for more
intricate topics.

There are other approaches that you can take to evaluate answer relevance. For instance, the
DeepEval evaluation framework calculates answer relevancy with the following strategy:

1. Extract all statements in an output with an LLM.

2. Use the same LLM to determine which statements are relevant to the input.

3. Calculate answer relevance as the number of relevant statements divided by the total number of statements.

The difference between the Ragas and DeepEval strategies to calculating the answer relevancy metric
demonstrates that the AI engineering field is still converging on how to calculate these metrics, even if it
is becoming standard to evaluate based on some form of these metrics.

Using the RAG evaluation metrics discussed in this section, you can measure how well your RAG
system is performing and measure improvement in the system over time. You can also experiment with
other RAG metrics in frameworks such as Ragas or DeepEval.

In the next section, you will learn how you can perform a manual human review of your data to
augment the automated evaluation metrics discussed in this section.

Human review

While LLMs can be effective tools for qualitative evaluation, they are often inferior to the original form
of non-artificial intelligence: humans. Human review is considered the gold standard of qualitative
review.



When using human review, you should take into account that humans likely prefer simpler rating metrics
that do not require them to do complex multi-step calculations, such as the answer relevance metric
described earlier in this chapter. Instead, give human reviewers simple rating systems. Pass/fail criteria
are the simplest and can be normalized to 0 or 1. You can also use a rating system such as 0-5, which
can be normalized to 0, 0.2, and so on until 1.

Human reviewer free-form feedback can be particularly valuable, as this open-ended feedback can
provide insight that would not be captured by the rating metric alone.

It is also useful to capture who the human reviewer is for an evaluation. You can use this to follow up
with the person if need be or to track how some individuals perform ratings as compared to others.

Despite the qualitative advantage of human review, it also comes with its own set of limitations:

Cost: Human reviewers tend to be more expensive than using an LLM as a judge.

Time : Human reviewers usually take much longer than using an LLM as a judge. You also cannot parallelize a single human like
you can an AI model.

Tedium: Evaluating the output of LLMs can be an incredibly tedious task for human reviewers. Many people do not want to
perform evaluations, so it can be difficult to find people to consistently perform the evaluations.

Elasticity: Often, you need to run large numbers of evaluations as part of your software development process or at regular
intervals. It can be hard to find human reviewers to perform an evaluation exactly when you need them to.

Inconsistency: Human reviewers can be inconsistent in their evaluation. Different people might evaluate the same case in
different ways. The same person could even evaluate the same case differently at a different moment, depending on factors
such as tiredness, mood, and environment.

Given the strengths and weaknesses of using humans as reviewers, you must carefully consider when to
use human review. Human review is probably the most useful for conducting initial qualitative
evaluation. Human reviewers can set a baseline for application performance that you can measure
against with a reasonably high degree of confidence.

You can also use human reviews as a baseline to measure LLM-as-a-judge metrics against. You can try
to get the LLM-as-a-judge metric to conform as closely as possible to the human review results.

Additionally, your LLM-as-a-judge metric can use examples from the human review in its prompt to
demonstrate to the LLM what the classification should look like as a form of multi-shot prompting.
Multi-shot prompting has been shown to increase model performance meaningfully.

Human review is one of the most effective means of qualitative evaluation, if also a slow and expensive
one.

Evaluations as guardrai ls



A guardrail is a mechanism that prevents the AI from producing an undesirable or incorrect output.
Guardrails ensure that generated responses are within acceptable boundaries and align with your
application’s quality, ethical, and relevance standards.

Previously in this chapter, you learned about reference-free evaluations . These are evaluations that
only require an input without a reference output or golden answer. You can also use reference-free
evaluations as guardrails to help ensure the AI system performs correctly. For example, in the RAG
metrics section, you looked at the answer relevance metric. You could use this as a guardrail in the
travel assistant chatbot to ensure that the chatbot only responds with answers that meet a certain
relevancy threshold. If the answer doesn’t meet this threshold, you could perform some additional
application logic before responding to the user.

Throughout this chapter, you have learned how to use evaluations to improve the quality of your
intelligent application. Using reference-free evaluations as guardrails lets you extend the utility of your
evaluations to a component of the application itself.

Summary
In this chapter, you explored methods for evaluating LLM outputs in your intelligent application. You
learned what LLM evaluation is and why it’s important for your intelligent application. Model
benchmarking is a form of evaluation that can help you determine which LLMs to use in your
application.

Once your application has functional AI modules, you can make evaluation datasets and run metrics on
them to measure performance and change over time. In addition to the automated evaluations, you can
perform manual human review to further measure application quality. Finally, you can use reference-
free metrics as guardrails within your application.

In the next chapter, you will learn how to optimize the semantic data model to enhance retrieval
accuracy and overall performance.
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Refining the Semantic Data Model to Improve Accuracy
To effectively use vector search for semantic long-term memory in an intelligent application, you must
optimize the semantic data model to the application’s needs. As the semantic data model uses vector
embedding models and vector search, you must optimize the contents of the embedded data and the
way the data is retrieved.

Refining the semantic data model can lead to significant improvements in retrieval accuracy and overall
application performance. In retrieval-augmented generation (RAG) applications, an effective
semantic data model serves as the foundation for a robust retrieval system, which directly informs the
quality of the generated outputs. The rest of the chapter examines different ways in which you can
refine the semantic data model and retrieval.

This chapter will cover the following topics:

Experimenting with different embedding models

Fine-tuning embedding models

Including metadata in the embedded content to maximize semantic relevance

Various techniques to optimize RAG use cases, including query mutation, formatting ingested data, and advanced retrieval
systems

Technical requirements
You will need the following technical requirements to run the code in this chapter:

A programming environment with Python 3.x installed

A programming environment capable of running the open source embedding model gte-base-en-v1.5 locally

An OpenAI API key. To create an API key, refer to the OpenAI documentation at
https://platform.openai.com/docs/quickstart/step-2-set-up-your-api-key

Embeddings
Vector embeddings  are the foundation of the semantic data model, serving as the machine-
interpretable representation of ideas and relationships. Embeddings are mathematical representations of
objects as points in a multi-dimensional space. They act as the glue that connects the various semantic
pieces of data in an intelligent application. The distance between vectors correlates to semantic
similarity. You can use this semantic similarity score to retrieve related information that would otherwise

https://platform.openai.com/docs/quickstart/step-2-set-up-your-api-key


be difficult to connect. This concept holds true regardless of the specific use case, be it RAG,
recommendation systems, anomaly detection, or others.

Having an embedding model better tailored to a use case can improve accuracy and performance.
Experimenting with different embedding models and fine-tuning them on domain-specific data can help
identify the best fit for a particular use case, further enhancing their effectiveness.

Experimenting with different embedding models

When building intelligent applications, you can experiment with different pre-trained embedding models.
Different models have varying accuracy, cost, and efficiency. Their performance can vary significantly
depending on the specific application and data. By experimenting with multiple models, developers can
identify the best fit for their use case.

Table 10.1 lists some popular embedding models as of writing in spring 2024 that are taken from the
Hugging Face Massive Test Embedding Benchmark (MTEB) Leaderboard:

1 The information from the MTEB Leaderboard was taken on April 30, 2024.
(https://huggingface.co/spaces/mteb/leaderboard)

Model
name

Developer Is it
open
source?

Embedding
length

Average score

2 This score is calculated as an average of a
variety of benchmarks. For more information
about the evaluation metrics used in the
benchmark, refer to the MTEB: Massive
Text Embedding Benchmark  research paper
(https://arxiv.org/abs/2210.07316).

text-

embedding-

3-large

OpenAI No 3072 64.59

cohere-

embed-

english-

v3.0

Cohere No 1024 64.47

gte-base-

en-v1.5

Alibaba Yes 768 64.11

1

2
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Model
name

Developer Is it
open
source?

Embedding
length

Average score

2 This score is calculated as an average of a
variety of benchmarks. For more information
about the evaluation metrics used in the
benchmark, refer to the MTEB: Massive
Text Embedding Benchmark  research paper
(https://arxiv.org/abs/2210.07316).

sentence-

t5-large

Sentence
Transformers

Yes 768 57.06

Table 10.1: Selected embedding models

To properly compare different embedding models, you must have a consistent evaluation framework.
This involves defining a set of relevant evaluation datasets and metrics. Use the same evaluation sets
and metrics across all models for fair comparison. The evaluation datasets should be representative of
the relevant application domain. An evaluation framework will help you iterate and refine the evaluation
process over time, incorporating learnings from initial experiments to progressively improve the
application.

The following are useful evaluation metrics for using embedding models for information retrieval. The
metrics are taken from Ragas , a framework for RAG evaluation:

Context precision: Evaluates whether the retrieved results contain ground-truth facts that you would want to answer the
input query. Relevant items present in the contexts are ranked highly in the retrieved results.

Context entities recall: Evaluates what fraction of the entities from a set of ground truths are preset in the retrieved
information.

Ragas supports other RAG evaluation metrics as well, which you can learn more about in the Ragas
documentation (https://docs.ragas.io/en/stable/).

The following code example uses Ragas and LangChain to evaluate how different embedding models
perform on the context entities recall metric.

First, install the required dependencies in the terminal:
 
pip3 install ragas==0.1.13 datasets==2.20.0 langchain==0.2.12 openai==1.39.0 faiss-
cpu==1.8.0.post1

The following code evaluates how the OpenAI text-embedding-ada-002 and text-embedding-3-
large embedding models perform on the Ragas context entities recall evaluation for a sample dataset:
 
from ragas.metrics import context_entity_recall 
from ragas import evaluate, RunConfig 

2
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from datasets import load_dataset, Dataset 
from langchain_openai import ChatOpenAI, OpenAIEmbeddings 
from langchain_text_splitters import RecursiveCharacterTextSplitter 
from langchain_community.vectorstores import FAISS 
import os 
from typing import List 
# Add your OpenAI API key to the environment variables 
openai_api_key = os.getenv("OPENAI_API_KEY") 
# Load sample dataset. 
dataset = load_dataset("explodinggradients/amnesty_qa", split="eval") 
sample_size = 100 
# Get sample questions from the sample dataset. 
sample_questions = dataset['question'][:sample_size] 
# Get sample context information from the sample dataset. 
sample_contexts = [item for row in dataset["contexts"] 
                   [:sample_size] for item in row] 
sample_ground_truths = [item for row in dataset["ground_truths"] 
                   [:sample_size] for item in row] 
# Break sample context into chunks to use with vector search. 
text_splitter = RecursiveCharacterTextSplitter( 
    chunk_size=400, chunk_overlap=100, add_start_index=True 
) 
chunks: List[str] = [] 
for context in sample_contexts: 
    split_chunks = text_splitter.split_text(context) 
    chunks.extend(split_chunks) 
# Embedding models that we are evaluating. 
openai_embedding_models = ["text-embedding-ada-002", "text-embedding-3-large"] 
# Ragas evaluation config to use in all evaluations. 
ragas_run_config = RunConfig(max_workers=4, max_wait=180) 
# #Evaluate each embedding model 
for embedding_model in openai_embedding_models: 
    # Create an in-memory vector store for the evaluation. 
    db = FAISS.from_texts( 
        chunks, OpenAIEmbeddings(openai_api_key=openai_api_key, 
model=embedding_model)) 
    # Get retrieved context using similarity search. 
    retrieval_contexts: List[str] = [] 
    for question in sample_questions: 
        search_results = db.similarity_search(question) 
        retrieval_contexts.append(list(map( 
            lambda result: result.page_content, search_results))) 
    # Run evaluation for context relevancy of retrieved information. 
    result = evaluate( 
        dataset=Dataset.from_dict({ 
            "question": sample_questions, 
            "contexts": retrieval_contexts, 
            "ground_truth": sample_ground_truths 
        }), 
        metrics=[context_entity_recall], 
        run_config=ragas_run_config, 
        raise_exceptions=False, 
        llm=ChatOpenAI(openai_api_key=openai_api_key, model_name="gpt-4o-mini") 
    ) 
    # Print out results 
    print(f"Results for embedding model '{embedding_model}':") 
    print(result)

This code outputs results resembling the following to the terminal:
 
Results for embedding model 'text-embedding-ada-002': {'context_entity_recall': 
0.5687} 
Results for embedding model 'text-embedding-3-large': {'context_entity_recall': 
0.5973}



As you can see from these results, text-embedding-3-large yields higher context entity recall on this
evaluation. The context relevancy score is normalized between 0 and 1, inclusive.

When creating evaluations for your own application, consider using sample data that’s relevant to your
use case for a better comparison. Also, you will likely want to include a representative sample of at
least 100 examples.

Fine-tuning embedding models

In addition to experimenting with different pre-trained models, you can fine-tune a pre-trained
embedding model to optimize it for your use case.

Fine-tuning an embedding model can be beneficial in the following scenarios:

Domain-specific data: If the application deals with domain-specific data that might not be well captured using an off-the-
shelf model, such as legal documents or medical records with specialized terminology, fine-tuning can help the model better
understand and represent the domain-specific concepts.

Avoiding undesirable matches: In cases where there are seemingly similar concepts that should be differentiated, fine-tuning
can help the model distinguish between them. For example, you could fine-tune the model to differentiate between Apple the
company and apple the fruit.

However, off-the-shelf embedding models are often highly performant for many tasks, especially when
combined with the metadata enrichment and RAG optimizations discussed later in this chapter.

The available options for fine-tuning an embedding model can vary depending on the model and how it is
hosted. Managed model hosting providers might only expose certain methods for their models, whereas
using an open source model can provide more flexibility. The SentenceTransformers
(https://sbert.net/) framework is designed for using and fine-tuning open-source embedding models.

Generally, fine-tuning involves providing similar pairs of sentences, optionally including a magnitude of
similarity. Alternatively, anchor, positive, and negative examples can be provided to guide the fine-tuning
process. Table 10.2 provides an overview of anchor, positive, and negative examples, that are used in
the subsequent code example:

Type Definition Example

Anchor The reference text that serves as the starting point for
identifying similar and dissimilar examples.

 
"I love eating 
apples."

Positive Text that should be represented as similar to the anchor
example.

 
"Apples are my 
favorite fruit."

https://sbert.net/


Type Definition Example

Negative Text that should be represented as dissimilar or different from
the anchor example.

 
"Apple is a tech 
company."

Table 10.2: Methods for fine-tuning embedding models

Here’s a brief code example of using the SentenceTransformers and PyTorch libraries to fine-tune the
open source embedding model gte-base-en-v1.5.

First, install the dependencies in the terminal:
 
pip3 install sentence-transformers==3.0.1 torch==2.2.2

Then run the following code:
 
from sentence_transformers import SentenceTransformer, InputExample, losses, util 
from torch.utils.data import DataLoader 
# Load embedding model 
model = SentenceTransformer("Alibaba-NLP/gte-base-en-v1.5", trust_remote_code=True) 
# Function to print similarity score 
def get_similarity_score(): 
    sentence1 = "I love the taste of fresh apples." 
    sentence2 = "Apples are rich in vitamins and fiber." 
    embedding1 = model.encode(sentence1) 
    embedding2 = model.encode(sentence2) 
    cosine_score = util.cos_sim(embedding1, embedding2) 
    score_number = cosine_score.item() 
    print(f"Cosine similarity between '{sentence1}' and '{sentence2}': 
{score_number:.4f}") 
    return cosine_score 
# Print similarity score before training 
print("Before training:") 
similarity_before = get_similarity_score() 
train_examples = [ 
    InputExample(texts=["I love eating apples.", "Apples are my favorite fruit", 
"Apple is a tech company"]), 
    InputExample(texts=["Chocolate is a sweet treat loved by many.", "I can't resist a 
good piece of chocolate.", "Chocolate Rain was one of the most popular songs on 
YouTube from 2007."]), 
    InputExample(texts=["Ice cream is a refreshing dessert.", "I love trying different 
ice cream flavors.", "The rapper and actor Ice Cube was wearing a cream colored suit 
to the VMAs."]), 
    InputExample(texts=["Salad is a healthy meal option.", "I love a fresh, crisp 
salad with various vegetables.", "Salad Fingers is a surreal web series created by 
David Firth."]), 
] 
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=8) 
train_loss = losses.TripletLoss(model=model) 
# fine tune 
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10) 
print("After training:") 
similarity_after = get_similarity_score() 
similarity_difference = similarity_after - similarity_before 
print(f"Change in similarity score: {similarity_difference.item():4f}")

This code outputs a result resembling the following to the terminal:



 
Before training: 
Cosine similarity between 'I love the taste of fresh apples.' and 'Apples are rich in 
vitamins and fiber.': 0.4402 
[10/10 00:05, Epoch 10/10] 
After training: 
Cosine similarity between 'I love the taste of fresh apples.' and 'Apples are rich in 
vitamins and fiber.': 0.4407 
Change in similarity score: 0.000540

As you can see from this example, just the small fine-tuning that was performed, increased the vector
similarity between the related sentences.

If you would like to learn more about fine-tuning embedding models, a great place to start is the Train
and Fine-Tune Sentence Transformers Models Hugging Face blog post by Omar Espejel
(https://huggingface.co/blog/how-to-train-sentence-transformers). This blog post includes a more
detailed look at fine-tuning an embedding model using a similar approach to the one in the preceding
code example.

The following section discusses how you can further enhance the semantic data model after you have
chosen the right data model by embedding relevant metadata in the text.

Embedding metadata
Including metadata in embedded content can significantly improve the quality of retrieval results by
adding greater semantic meaning to it. Metadata creates a richer and more meaningful semantic
representation of content. Metadata can include descriptors such as the type of content, tags, titles, and
summaries. The following table contains some useful examples of metadata to include in embedded
content:

Type Example(s)

Content type Article, recipe, product review, etc.

Tags “dinner”, “Italian”, “vegetarian”

Title of document Roasted Garlic and Tomato Pasta

Summary of
document

A simple pasta dish featuring roasted garlic and cherry tomatoes in a light
sauce

Table 10.3: Useful types of embedded metadata

You can also include metadata types that are specific to your application. For example, consider creating
a RAG chatbot where users ask natural language questions and get generated answers on cooking and

https://huggingface.co/blog/how-to-train-sentence-transformers


recipes.

You have the following recipe for Roast Garlic and Tomato Pasta to include in your recipe database:
 
# Roasted Garlic and Tomato Pasta 
## Ingredients 
- 8 oz pasta 
- 1 head garlic 
- 1 pint cherry tomatoes 
- 1/4 cup olive oil 
- 1/2 cup fresh basil, chopped 
- Salt and pepper 
## Instructions 
1. Preheat oven to 400°F (200°C). 
2. Cut the top off the garlic head, drizzle with olive oil, wrap in foil, and roast 
for 30 minutes. 
3. Roast cherry tomatoes with olive oil, salt, and pepper for 20 minutes until 
blistered. 
4. Cook pasta according to package instructions. Mix pasta with roasted garlic 
(squeezed out), tomatoes, and olive oil. 
5. Stir in basil, season with salt and pepper, and serve. 
Yield: 4 servings

When creating a vector embedding for the recipe, you could include the following metadata before the
recipe text:

 
--- 
contentType: recipe 
recipeTitle: Roasted Garlic and Tomato Pasta 
keyIngredients: pasta, garlic, tomatoes, olive oil, basil 
servings: 4 
tags: [dinner, Italian, vegetarian] 
summary: A simple pasta dish featuring roasted garlic and cherry tomatoes in a light 
sauce 
--- 
# Roasted Garlic and Tomato Pasta 
## Ingredients 
- 8 oz pasta 
...other ingredients 
## Instructions 
1. Preheat your oven to 400°F (200°C). 
   ...other instructions 
Yield: 4 servings

By including this metadata with the embedded text, you imbue the text with greater semantic meaning
making it more likely that user queries will capture the correct content. This makes relevant user queries
have greater cosine similarity scores with the text.

The following table shows the cosine similarity scores between various queries and the text with and
without metadata using the BAAI/bge-large-en-v1.5 embedding model:

Query text Text without
metadata
similarity score

Text with
metadata
similarity score

Metadata
similarity score
improvement



Query text Text without
metadata
similarity score

Text with
metadata
similarity score

Metadata
similarity score
improvement

 
I have tomatoes, basil and 
pasta in my fridge. What to 
make?

0.7141546 0.7306514 0.016496778

 
simple vegetarian pasta 
with roasted vegetables

0.71199816 0.76754296 0.055544794

 
vegetarian italian pasta 
dinner

0.60327804 0.6559261 0.052648067

Table 10.4: Comparing cosine similarity of vectors of text w ith and w ithout embedded metadata

As you can see in Table 10.4, the text with prepended metadata has a higher cosine similarity for a
diverse set of relevant queries. This means that the relevant content is more likely to be surfaced and
used in the RAG chatbot.

Formatting metadata

When including metadata, you must consider how it is structured to optimize processing and
interpretation. You should use a machine-readable format that is easy to parse and manipulate, such as
YAML (https://yaml.org/spec/1.2.2/), JSON (https://www.json.org/json-en.html), or TOML
(https://toml.io/).

YAML is generally more token-efficient compared to other data formats such as JSON. This means
that using YAML saves on the compute cost of processing extra tokens and also represents the same
idea with fewer distraction tokens that could dilute the LLM’s ability to interpret the input and produce
a high-quality output. YAML also has widespread adoption, so embedding models and LLMs can
effectively work with it.

The following table demonstrates the comparative token density for the same data represented in
YAML and JSON using the GPT-4 tokenizer (https://platform.openai.com/tokenizer):

Format Content Token
count

YAML  
contentType: recipe

 
recipeTitle: Roasted Garlic and Tomato Pasta

60

https://yaml.org/spec/1.2.2/
https://www.json.org/json-en.html
https://toml.io/
https://platform.openai.com/tokenizer


 
keyIngredients: pasta, garlic, tomatoes, olive oil, basil

 
servings: 4

 
tags: [dinner, Italian, vegetarian]

 
summary: A simple pasta dish featuring roasted garlic and cherry 
tomatoes in a light sauce

JSON  
{

 
  " contentType": "recipe",

 
  " recipeTitle": "Roasted Garlic and Tomato Pasta",

 
  " keyIngredients": "pasta, garlic, tomatoes, olive oil, basil",

 
  " servings": 4,

 
  " tags": [

 
    "dinner",

 
    "Italian",

 
    "vegetarian"

 
  ],

 
  " summary": "A simple pasta dish featuring roasted garlic and 
cherry tomatoes in a light sauce"

 
}

89

Table 10.5: Comparing token length of the same content in YAML and JSON

As you can see in Table 10.5, YAML uses approximately two-thirds of tokens compared to JSON. The
exact difference in token usage depends on the data and formatting. YAML generally proves to be a
more efficient metadata format than JSON.

If including metadata alongside additional text, consider including it as front matter
(https://jekyllrb.com/docs/front-matter/). Front matter puts YAML metadata before the main text
content, with a --- before and after the metadata.

Here is an example of front matter preceding Markdown (https://commonmark.org/help/) text:
 
--- 
foo: bar 
letters: 
  - a 
  - b 
  - c 
--- 

https://jekyllrb.com/docs/front-matter/
https://commonmark.org/help/


# Title 
Some **body** text!

The front matter specification originates from the Jekyll static site builder (https://jekyllrb.com/docs/). It
has since become widely adopted across various domains. Given its popularity, language models and
embedding models should be able to understand its semantic context as metadata for the rest of the text.
Additionally, libraries are available to easily manipulate front matter in relation to the main text content,
such as the python-frontmatter in Python.

The following code example shows how to add front matter to Markdown and print out the results.

First, install the python-frontmatter package in the terminal:
 
pip3 install python-frontmatter==1.1.0

Add front matter to text using the python-frontmatter library:
 
import frontmatter 
# Define the text content 
text = """# Roasted Garlic and Tomato Pasta 
## Ingredients 
- 8 oz pasta 
- 1 head garlic 
- 1 pint cherry tomatoes 
- 1/4 cup olive oil 
- 1/2 cup fresh basil, chopped 
- Salt and pepper 
## Instructions 
1. Preheat oven to 400°F (200°C). 
2. Cut the top off the garlic head, drizzle with olive oil, wrap in foil, and roast 
for 30 minutes. 
3. Roast cherry tomatoes with olive oil, salt, and pepper for 20 minutes until 
blistered. 
4. Cook pasta according to package instructions. Mix pasta with roasted garlic 
(squeezed out), tomatoes, and olive oil. 
5. Stir in basil, season with salt and pepper, and serve. 
Yield: 4 servings 
""" 
# Define the dictionary to be added as frontmatter 
metadata = { 
    "contentType": "recipe", 
    "recipeTitle": "Roasted Garlic and Tomato Pasta", 
    "keyIngredients": ["pasta", "garlic", "tomatoes", "olive oil", "basil"], 
    "servings": 4, 
    "tags": ["dinner", "Italian", "vegetarian"], 
    "summary": "A simple pasta dish featuring roasted garlic and cherry tomatoes in a 
light sauce" 
} 
# Create a frontmatter object with the metadata and content 
post = frontmatter.Post(text, **metadata) 
print("Text with front matter:") 
print(frontmatter.dumps(post)) 
print("\n------\n") 
print("You can also extract the front matter as a dict:") 
print(post.metadata)

This outputs the following text with front matter to the terminal:
 
--- 
contentType: recipe 

https://jekyllrb.com/docs/


keyIngredients: ["pasta", "garlic", "tomatoes", "olive oil", "basil"]recipeTitle: 
Roasted Garlic and Tomato Pasta 
servings: 4 
summary: A simple pasta dish featuring roasted garlic and cherry tomatoes in a light 
sauce 
tags: ["dinner", "Italian", "vegetarian"] 
--- 
# Roasted Garlic and Tomato Pasta 
## Ingredients 
- 8 oz pasta 
...other ingredients 
## Instructions 
1. Preheat your oven to 400°F (200°C). 
...other instructions 
Yield: 4 servings 
------ 
You can also extract the front matter as a dict: 
{'contentType': 'recipe', 'recipeTitle': 'Roasted Garlic and Tomato Pasta', 
'keyIngredients': ['pasta', 'garlic', 'tomatoes', 'olive oil', 'basil'], 'servings': 
4, 'tags': ['dinner', 'Italian', 'vegetarian'], 'summary': 'A simple pasta dish 
featuring roasted garlic and cherry tomatoes in a light sauce'}

The preceding example demonstrates the usefulness of adding front matter as a metadata format in
your semantic retrieval.

Including static metadata

For certain types of content or sources, it can be beneficial to include static metadata that is the same
across all documents. This is a computationally cheap and an easy way to consistently include metadata
across documents.

For a cookbook chatbot, you could include the cookbook source in the metadata. For example:
 
contentType: recipe 
source: The MongoDB Cooking School Cookbook

This ensures that every document of a particular type or from a specific source contains a consistent
base level of metadata. You can then layer on additional dynamic metadata that is unique to each
specific document, as discussed in the following sections. Including static metadata is a low-effort way
to provide additional semantic context to your documents, aiding in retrieval and interpretation.

Extracting metadata programmatically

You can extract metadata from content using traditional software development techniques that do not
rely on AI models.

One approach is to extract headers in a document, which can be done with regular expressions
(regex) to match header patterns or by parsing the document’s abstract syntax tree  (AST) to identify
header elements. Extracting and including headings as metadata can be useful because headings



frequently summarize or provide high-level information about the content in that section, thus aiding in
understanding the semantic context and improving retrieval relevance.

Extracting the headers from a Markdown document could create a document with metadata resembling
the following:

 
--- 
headers: 
  - text: Vegetable Stir-Fry 
    level: h1 
  - text: Ingredients 
    level: h2 
  - text: Vegetable Preparation 
    level: h3 
  - text: Instructions 
    level: h2 
  - text: Cooking the Stir-Fry 
    level: h3 
  - text: Serving 
    level: h3 
--- 
# Vegetable Stir-Fry 
A quick and easy stir-fry with fresh veggies and a savory sauce. 
## Ingredients 
- 2 cups mixed vegetables (e.g., broccoli, carrots, bell peppers)...other ingredients 
### Vegetable Preparation 
- Wash and chop the vegetables into bite-sized pieces. 
...other preparation 
## Instructions 
### Cooking the Stir-Fry 
1. Heat the sesame oil in a large skillet or wok over high heat. 
...other instructions 
### Serving 
- Serve hot over steamed rice or noodles. 
...other instructions 
Serves 4

Generating metadata with LLMs

You can use LLMs to generate metadata for your content. Some potential use cases for using LLMs to
generate metadata include:

Summarizing the text

Extracting key phrases or terms from the text

Classifying the text into categories

Identifying the sentiment of the text

Recognizing named entities

When selecting an LLM for metadata generation, you may be able to use smaller (and therefore faster
and cheaper) language models compared to those used for other components of your intelligent
application.



You can also use traditional natural language processing (NLP) techniques to provide additional
metadata. For example, calculating n-grams  can surface the most frequently occurring terms or
phrases in the text. Other NLP approaches such as part-of-speech tagging and keyword tagging
can also provide useful metadata. These approaches typically use small AI models.

You can use the Python NLP libraries, such as NLTK or spaCy, to extract metadata. While using these
libraries is generally more compute efficient than using an LLM, they generally require fine-tuning, so
it’s not worthwhile to use them unless your application is running at a scale where the compute
requirements of an LLM are cost or resource prohibitive.

The following code uses the OpenAI GPT-4o mini LLM to extract the metadata. It also uses Pydantic
to format the response as JSON.

First, install the dependencies in the terminal:
 
pip3 install openai==1.39.0 pydantic==2.8.2

Then, execute the code:
 
import os 
from openai import OpenAI 
from pydantic import BaseModel 
import json 
# Create client to call model 
api_key = os.environ["OPENAI_API_KEY"] 
client = OpenAI( 
    api_key=api_key, 
) 
# Format response structure 
class TopicsResult(BaseModel): 
    topics: list[str] 
function_definition = { 
    "name": "get_topics", 
    "description": "Extract the key topics from the text", 
    "parameters": json.loads(TopicsResult.schema_json()) 
} 
response = client.chat.completions.create( 
    model="gpt-4o-mini", 
    functions=[function_definition], 
    function_call={ "name": function_definition["name"] }, 
    messages=[ 
        { 
            "role": "system", 
            "content": "Extract key topics from the following text. Include no more 
than 3 key terms. Format response as a JSON object.", 
        }, 
        { 
            "role": "user", 
            "content": "Eggs, like milk, form a typical food, inasmuch as they contain 
all the elements, in the right proportion, necessary for the support of the body. 
Their highly concentrated, nutritive value renders it necessary to use them in 
combination with other foods rich in starch (bread, potatoes, etc.). In order that the 
stomach may have enough to act upon, a certain amount of bulk must be furnished." 
        } 
    ], 
) 
# Get model results as a dict 
content = 



TopicsResult.model_validate(json.loads(response.choices[0].message.function_call.argum
ents)) 
print(f"Topics: {content.topics}")

This code produces an output resembling the following to the terminal:
 
Topics: ['eggs', 'milk', 'nutritive value']

As you saw here, LLMs allow you to perform many forms of NLP tasks with prompt engineering and
minimal technical overhead.

Including metadata with query embedding and ingested
content embeddings

In addition to including metadata with the content that you ingest into a vector store, you can also
include metadata along with the content that you use in your search query. By structuring the metadata
similarly on both the query and the retrieved content, you increase the likelihood of a relevant match
using vector similarity search.

You can extract metadata for the query using the same strategies as those for extracting metadata from
the data sources as discussed previously in this chapter.

For example, say you’re querying the cookbook chatbot mentioned previously. Given the user query
apple pie recipe, you might want to use the following query for vector search:

 
--- 
contentType: recipe 
keyIngredients: apples, sugar, butter 
tags: [dessert, pie] 
--- 
apple pie recipe

A query such as the above will make it more likely to match a recipe with similarly structured embedded
metadata like the following:

 
--- 
contentType: recipe 
recipeTitle: Classic Apple Pie 
keyIngredients: apples, pie crust, sugar, cinnamon, butter 
servings: 8 
tags: [dessert, baking, American, fruit] 
summary: A classic apple pie with a flaky crust and a sweet, cinnamon-spiced apple 
filling. 
--- 
# Classic Apple Pie 
## Ingredients 
- 1 premade pie crust 
- 1 can apple pie filling 
- 1 teaspoon ground cinnamon 
- 1 egg, beaten (for egg wash) 
## Instructions 
1. Preheat oven to 425°F (220°C). Place the premade crust in a 9-inch pie plate. 
2. Pour the apple pie filling into the crust and sprinkle with cinnamon. 
3. Cover with the top crust, trim and crimp edges, and cut slits for steam. Brush 



with egg wash. 
4. Bake for 15 minutes, reduce temperature to 350°F (175°C), and bake for another 30-
35 minutes until golden brown. Cool before serving. 
Yield: 8 servings

Including structured metadata in the query can act as a kind of semantic filter to get more accurate
search results. The following section examines other techniques for improving the accuracy of the data
model in RAG applications.

Optimizing retrieval-augmented generation
Beyond optimizing the semantic data model itself through vector embedding model choice and metadata
enrichment, there are ways to further refine and improve RAG applications. This section covers
strategies for optimizing different components and stages of the RAG pipeline.

Key areas of optimization include query handling, formatting of ingested data, retrieval system
configuration, and application-level guardrails. Effectively optimizing these aspects can lead to
significant boosts in the accuracy, relevance, and overall performance of RAG applications.

NOTE

This section covers more advanced techniques than the ones discussed in Chapter 8, Implementing Vector Search in AI
Applications.

Query mutation

In the naive RAG approach, you use direct user input to create the embedding used in vector search,
perhaps augmented with metadata as discussed earlier in the chapter. However, you can drive better
search performance by mutating the user input using an LLM.

Several popular techniques for query mutation include:

Step-back prompting: Instruct an LLM to first extract high-level concepts and principles from specific details of a query.

For example, for the user query My daughter is allergic to nuts. My son is allergic to
dairy. What is a vegetarian dinner I can make for them? the LLM-generated step-back
search query could be Vegetarian dinner recipe without dairy or nuts.

Hypothetical document embeddings (HyDE): Create a hypothetical document that answers a user query. Then use that
hypothetical answer as the search query. The thought behind this is that although the made-up document may not be accurate
itself, it’s likely closer in the embedding space to the relevant document than the original user query.

For example, for the user query sirloin steak recipe, the LLM-generated HyDE search query
could be Preheat your grill or grill pan to high heat. Pat the sirloin steaks dry and season
generously with salt and pepper. Drizzle with olive oil and use your hands to coat the steaks
evenly. Place the steaks on the hot grill and cook for 4-5 minutes per side for medium-rare,



flipping only once. Use an instant-read thermometer to check for doneness (135°F for
medium-rare). Transfer the steaks to a cutting board and let rest for 5 minutes before slicing
against the grain. Serve the juicy sirloin steaks with your favorite sides like roasted potatoes,
grilled vegetables, or a fresh salad.

Multi-query retrieval: Create multiple sub-queries for a given user query. Retrieve the results for each and have the LLM
answer based off of them.

For example, for the user query vegan dinner party menu, the LLM-generated multiple search
queries could be Vegan appetizer, Vegan dinner main course, and Vegan desert.

All of these techniques can be optimized for your application’s domain. You can even combine them or
have an LLM select what is the most appropriate technique for a given user query.

However, introducing another point of AI in the application also presents challenges. The query mutation
may not always work as expected, potentially degrading performance in some cases. Additionally, it
introduces another component to evaluate and incurs the cost of additional AI usage. Any LLM-query
mutations should be thoroughly evaluated to mitigate unexpected outcomes.

Extracting query metadata for pre-fi ltering

In addition to performing semantic filtering as discussed in the Embedding metadata section, you can
also programmatically filter on metadata before performing vector search. This lets you reduce the
number of embeddings that you are searching over to only examine the subset of total embeddings
relevant to a given query.

It is important to select a vector database that contains metadata filtering capabilities suitable to your
application needs. Metadata filtering capabilities vary greatly by vector database. For example,
MongoDB Atlas Vector Search supports a variety of pre-filter options in the $vectorSearch
aggregation pipeline stage. (https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-
stage/#atlas-vector-search-pre-filter). In Chapter 8, Implementing Vector Search in AI Applications,
you learned how to set up these pre-filter options with Atlas Vector Search Index.

You can use an LLM to extract metadata from a query to use as a filter, like how you extract metadata
from ingested content, as discussed in the Embedding metadata section. Alternatively, you could use
heuristics to determine filter criteria.

For instance, say you are building a cooking chatbot that performs RAG over a vector database of
recipes and general cooking information such as the popular spices in certain cuisines. You could add a
metadata filter that only looks at the recipe items in the vector database if a user query contains the
word recipe. You can also create so-called smart filters that use AI models such as LLMs to
determine which subsets of the data to include.

https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-stage/#atlas-vector-search-pre-filter


Here is a code example of an LLM function that determines what, if any, filter to apply to a search
query. It also uses Pydantic to format the response as JSON.

The following Python code extracts the topic from a query using the OpenAI LLM GPT-4o mini. It also
uses Pydantic to format the response as JSON. You can then use the extracted topic as a pre-filter, as
described in Chapter 8, Implementing Vector Search in AI Applications.

First, install the required dependencies in your terminal:
 
pip3 install openai==1.39.0 pydantic==2.8.2

Then, run the following code:
 
from openai import OpenAI 
from pydantic import BaseModel 
import json 
from typing import Literal, Optional 
# Create client to call model 
api_key = os.environ["OPENAI_API_KEY"] 
client = OpenAI( 
    api_key=api_key, 
) 
# Create classifier 
class ContentTopic(BaseModel): 
    topic: Optional[Literal[ 
        "nutritional_information", 
        "equipment", 
        "cooking_technique", 
        "recipe" 
    ]] 
function_definition = { 
    "name": "classify_topic", 
    "description": "Extract the key topics from the query", 
    "parameters": json.loads(ContentTopic.schema_json()) 
} 
# The topic classifier uses few-shot examples to optimize the classification task. 
def get_topic(query: str): 
    response = client.chat.completions.create( 
    model="gpt-4o-mini", 
    functions=[function_definition], 
    function_call={ "name": function_definition["name"] }, 
    temperature=0, 
    messages=[ 
        { 
            "role": "system", 
            "content": """Extract the topic of the following user query about 
cooking. 
Only use the topics present in the content topic classifier function. 
If you cannot tell the query topic or it is not about cooking, respond `null`. Output 
JSON. 
You MUST choose one of the given content topic types. 
Example 1: 
User:  "How many grams of sugar are in a banana?" 
Assistant: '{"topic": "nutritional_information"}' 
Example 2: 
User: "What are the ingredients for a classic margarita?" 
Assistant: '{"topic": "recipe"}' 
Example 3: 
User: "What kind of knife is best for chopping vegetables?" 
Assistant: '{"topic": "equipment"}' 
Example 4: 



User: "What is a quick recipe for chicken stir-fry?" 
Assistant: '{"topic": "recipe"}' 
Example 5: 
User: Who is the best soccer player ever? 
Assistant: '{"topic": null}' 
Example 6: 
User: Explain gravity to me 
Assistant: '{"topic": null}'""", 
          }, 
          { 
              "role": "user", 
              "content": query 
          } 
      ], 
    ) 
    content = 
ContentTopic.model_validate(json.loads(response.choices[0].message.function_call.argu
ments)) 
    return content.topic 
## Test the classifier 
queries = [ 
    "what's a recipe for vegetarian spaghetti?", 
    "what is the best way to poach an egg?", 
    "What blender setting should I use to make a fruit smoothie?", 
    "Can you give me a recipe for chocolate chip cookies?", 
    "Why is the sky blue?" 
] 
for query in queries: 
    print(f"Query: {query}") 
    print(f"Topic: {get_topic(query)}") 
    print("---") 
    class ContentTopic(BaseModel): 
    topic: Optional[Literal[ 
        "nutritional_information", 
        "equipment", 
        "cooking_technique", 
        "recipe" 
    ]]

This outputs the following to your terminal:
 
Query: what's a recipe for vegetarian spaghetti? 
Topic: recipe 
--- 
Query: what is the best way to poach an egg? 
Topic: cooking_technique 
--- 
Query: What blender setting should I use to make a fruit smoothie? 
Topic: equipment 
--- 
Query: Can you give me a recipe for chocolate chip cookies? 
Topic: recipe 
--- 
Query: Why is the sky blue? 
Topic: None 
---

By combining metadata filtering with vector search, your RAG application can search more efficiently
and accurately. This approach narrows down the search space to the most contextually appropriate
data, leading to more precise and useful results.



Formatting ingested data

When ingesting data to create embeddings, you must consider the format that the data is in.
Standardizing the data format as much as possible can lead to more consistent results.

For longer-form text data, such as technical documentation or reports, you should format the ingested
and embedded data in a consistent format that includes appropriate semantic meaning in a token-dense
format. Markdown is a good choice because it has high information density per token compared to
XML-based formats such as HTML or PDFs.

For instance, see the total GPT-4 tokenizer token count for the following content represented in plain
text, Markdown, and HTML:

Format Content Token
count

Plain Text  
Simple Vegan Soup

 
Ingredients

 
- 1 can diced tomatoes

 
- 1 cup vegetable broth

 
- 1 cup mixed frozen vegetables

 
 Instructions

 
1. In a medium pot, combine the diced tomatoes, vegetable broth, 
and mixed frozen vegetables.

 
2. Bring to a boil, then reduce heat and simmer for 10-15 
minutes, or until the vegetables are heated through. Serve hot.

81

Markdown  
# Simple Vegan Soup

 
## Ingredients

 
- 1 can diced tomatoes

 
- 1 cup vegetable broth

 
- 1 cup mixed frozen vegetables

 
## Instructions

 
1. In a medium pot, combine the diced tomatoes, vegetable broth, 
and mixed frozen vegetables.

 
2. Bring to a boil, then reduce heat and simmer for 10-15 

83



minutes, or until the vegetables are heated through. Serve hot.

HTML  
<h1 id="simple-vegan-soup">Simple Vegan Soup</h1>

 
<h2 id="ingredients">Ingredients</h2>

 
<ul>

 
<li>1 can diced tomatoes</li>

 
<li>1 cup vegetable broth</li>

 
<li>1 cup mixed frozen vegetables</li>

 
</ul>

 
<h2 id="instructions">Instructions</h2>

 
<ol>

 
<li>In a medium pot, combine the diced tomatoes, vegetable 
broth, and mixed frozen vegetables.</li>

 
<li>Bring to a boil, then reduce heat and simmer for 10-15 
minutes, or until the vegetables are heated through. Serve hot.
</li>

 
</ol>

138

Table 10.6: Token count of different text formats

How you format ingested data can have a meaningful impact on retrieval quality and resource
consumption. Generally, plain text or Markdown are effective formats for most text-based use cases.

Advanced retrieval systems

A variety of advanced retrieval systems have emerged that go beyond simply retrieving the nearest
match to the query.

All of the following retrieval architectures are experimental as of writing in August 2024. When
developing your intelligent application, you should probably start with standard vector search retrieval.
Optimize standard vector search retrieval before using techniques such as filtering and adding semantic
metadata before you experiment with these advanced retrieval systems.

Advanced retrieval systems include:

Summary retrieval: Extract a summary from each document and store that summary in the vector search index. Retrieve
the content of the whole document when the embedded version of the summary is matched.

Knowledge graph retrieval: During data ingestion, create a knowledge graph of relations between documents in the vector
store. These relationships can be created using an LLM. During retrieval, perform an initial semantic search.



Router retrieval: Use a classifier to determine where a user query should be routed to between different data stores.

LlamaIndex has done an excellent job of staying on top of the latest research in advanced retrieval
systems. To learn more about the various advanced retrieval patterns that LlamaIndex supports, refer to
the LlamaIndex Query Engine documentation
(https://docs.llamaindex.ai/en/stable/examples/query_engine/knowledge_graph_rag_query_engine/).

Summary
In this chapter, you explored various techniques for refining your semantic data model to improve
retrieval accuracy for vector search and RAG. You learned how to improve your data model used in
information retrieval and RAG. By fine-tuning embeddings, you can adjust pre-trained models to
improve the accuracy and relevance of search results. With embedded metadata, you can improve the
vector search quality. Finally, RAG optimization ensures that the retrieval process fetches the most
relevant information.

In the next chapter, you will examine ways to address common issues in AI application development.

https://docs.llamaindex.ai/en/stable/examples/query_engine/knowledge_graph_rag_query_engine/
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Common Fai lures of Generative AI
If you have just built your generative AI (GenAI) application, then you may be so fascinated by what
it can do that you lose sight of answer quality and accuracy. Discovering how often GenAI is incorrect
is a challenge in itself.

Many tend to believe that when a computer gives an answer, it gives an accurate answer—usually,
more accurate than a human being. For example, most people feel relieved that machines, and not just
people, fly airplanes today. Airplanes may be much safer now compared to 15 years ago because of this
advancement, but when it comes to GenAI, the results are not nearly as accurate as the onboard
systems of a flight craft.

This chapter takes a detailed look at the top five challenges with GenAI applications and why they
occur. Understanding these challenges is crucial for developers to devise effective solutions. By the end
of this chapter, you will have a good understanding of these challenges, how they influence your
outcomes, how they relate to each other, and why this particular set of technologies, despite these
challenges, is still highly valuable to users.

This chapter will cover the following topics:

Hallucinations

Sycophancy

Data leakage

Cost optimization

Performance issues

Technical requirements
Most of the examples in this chapter can be demonstrated by simply repeating the prompt or example in
ChatGPT.

Hallucinations
One of the greatest challenges of working with GenAI, and perhaps the most well-known, is
hallucination. Hallucination in GenAI refers to the phenomenon where the AI model generates content
that sounds plausible but is factually incorrect, nonsensical, or not grounded in the provided input data.
This issue is particularly prevalent in natural language processing (NLP) models, such as those used



for text generation, but can also occur in other generative models such as image generation and LLMs
such as GPT-4.

In the worst case, both the developers and their users do not know whether the answer given by GenAI
is correct, partially correct, mostly incorrect, or a complete fabrication.

Causes of hallucinations

Much of the data that organizations capture is either redundant, obsolete, trivial (ROT), or
altogether unclassified. As a portion, good data forms a small fraction of the data lakes, warehouses,
and databases that most companies have. Whenever beginning your GenAI application journey, one of
the first things you’re likely to notice is that much of the data you’d like to use to train your GenAI
application is poor quality. Shortly thereafter, you’ll learn that hallucinations are caused by poor-quality
training data.

Engineers can best think of this as a garbage in, garbage out problem. When training data has errors,
inconsistencies, irrelevancy, outdated information, biased information, and other issues, the model will
learn to replicate those problems. The accuracy of an AI model is heavily dependent on the quality of
training data, and the following data issues are more likely to cause output problems and hallucinations:

Inaccurate data: Errors in the input will propagate and compound in the system, so it is critical to know that any automated
or real-time data streaming to your GenAI application has accurate information. For example, if you’re ingesting sensor data
to predict when equipment will fail but receive inaccurate sensor readings, then your GenAI application may not predict the
failure correctly or in a timely way.

Incomplete data: Training on incomplete datasets can cause the model to generate plausible but incorrect content to fill
perceived gaps.

Outdated or obsolete data: At its heart, obsolete data is often simply no longer accurate, providing AI with false
information. Relevant data updates ensure that your GenAI application continues to provide your users with accurate outputs.

Irrelevant data: It can be tempting to stuff your GenAI application with as much data as possible so that it can use that
information for analysis; however, this is a way to increase costs without improving accuracy.

Misleading or misrepresentative data: If a machine learning model is trained on images that are poorly labeled or
unrepresentative of real-world scenarios, it will struggle to correctly identify or classify images when deployed.

Duplicated data: This also includes poorly integrated datasets. Redundant data can give AI the impression that something is
more important than it is because it’s repeated.

Model architecture and objectives: Models such as GPT-4 are trained to predict the next word in a sequence based on
context, and not necessarily to verify facts. This objective can lead to the model generating fluent text that is not factually
accurate.

Each of these causes slightly different issues and, in combination, can make your GenAI application
incapable of producing satisfactory results. Therefore, your training data must be accurate,
comprehensive, and representative of the diverse conditions the model will encounter in real-world



applications. Much of GenAI is continuously self-learning, so maintaining data quality is an ongoing
issue, not a first-deploying-to-production issue.

Generative models focus on producing outputs that are coherent and contextually relevant, which
sometimes comes at the expense of factual correctness. These models are also excellent at recognizing
and replicating patterns in data. However, this can result in outputs that follow learned patterns even
when those patterns do not align with factual reality. This is the correlation, not causation issue.

Also, models are trained on static datasets and lack real-time access to updated information, which can
lead to outdated or incorrect outputs. For instance, GPT and its ilk are trained on data scraped from the
web several months (or even years!) ago. Products, insights, and world news from yesterday are not
available. When asking questions about recent events, in the best case, the user receives an answer
such as I do not have this information. In the worst case, the GenAI application simply
hallucinates a response. Generative models may not fully understand the context or possess the real-
world knowledge required to validate the correctness of generated information.

Implications of hallucinations

Besides just “being wrong” and “making up answers,” hallucinations can have other unexpected
implications. Misinformation can easily be propagated to thousands of people, some of whom may find it
difficult to turn around later. For instance, if today, ChatGPT (a popular GenAI model) started telling
every person who asked that a popular open-source project has a critical vulnerability, then the news
would spread like wildfire, making damage control difficult. It would reach many more people than the
statement put out on the company blog about how the information wasn’t true. Many users trust the
AI’s output without verification.

Hallucinations undermine the reliability of AI systems, particularly in fields such as healthcare, legal, or
financial services, where accuracy is paramount. Moreover, consistent hallucinations can erode user
trust in AI applications, leading to reduced adoption and skepticism regarding AI capabilities.

Incorrect information can lead to ethical dilemmas and potential legal liabilities, especially if the AI’s
output influences critical decisions or public opinion. As GenAI is added into all sorts of applications, it
becomes more and more difficult to both opt out of (for the users) and discern whether the answers are
legitimate.

It is worth saying also that receiving an answer that is not a hallucination is far different from receiving
the best answer.

Sycophancy



A sycophant is a person who does whatever they can to win your approval, even at the cost of their
ethics or knowledge of what is true. AI models demonstrate this behavior often enough for AI
researchers and developers to use the same term—sycophancy—to describe how models respond to
human feedback and prompting in deceptive or problematic ways. Human feedback is commonly
utilized to fine-tune AI assistants. But human feedback may also encourage model responses that match
user beliefs over truthful ones, a trait known as sycophancy. Sycophancy exists in multiple ways, such
as mirroring feedback, easily being swayed, and changing correct answers if the user pushes back. If
users share their beliefs and views on a topic, AI assistants will provide answers that align with the
user’s beliefs.

Sycophancy can be observed and described on multiple levels, such as the following:

Feedback sycophancy: When users express likes or dislikes about a text, AI assistants may provide more positive or negative
feedback accordingly

Swaying easily: After answering a question correctly, AI assistants may change their answer when users challenge them, even
if the original answer was correct

Belief conformity: When users share their views on a topic, AI assistants tend to provide answers that align with those
beliefs, leading to decreased accuracy

In testing, researchers Mrinank Sharma et al. demonstrated sycophantic answers generated by Claude
(https://arxiv.org/abs/2310.13548), as shown in Figure 11.1.

Figure 11.1: Example responses demonstrating sycophancy

It is worth noting that repeated testing of the same and similar questions in ChatGPT did not yield
consistent results.

https://arxiv.org/abs/2310.13548


Causes of sycophancy

The exact causes of sycophancy are not well understood. This phenomenon exists in many LLMs
because these models have been instructed to take in contextual and parametric information to inform
their responses. GenAI applications have a learning feature where the more they interact with users,
the more they learn about syntax, context, and providing sufficient answers. As they do so, the
applications exhibit what can only be described as people-pleasing behaviors, causing them to deviate
from a purely factual relaying of information.

In the above research, it was found that sycophancy is a side effect of RLHF-like alignment training.
Reinforcement learning from human feedback (RLHF) is a technique that is used to train LLMs to
align the agent or machine with human preferences. This is particularly important in areas such as
language models. To illustrate this, let’s look at some examples of what this means and why it matters.

Consider the following:

When you greet a coworker, you might say “Hello, sir/madam,” “Hello,” “Good morning,” “Good day,”
“Hi,” “What’s up,” “Greetings,” or many other potential salutations. Hypothetically, all are appropriate,
but there are human preferences as to which is more suitable.

To further understand this, let’s begin with cultural preference. In some cultures, it would be shocking
indeed if you did not include the coworker’s name, as in “Good morning, Mr. Smith.” Yet in other
cultures, to address someone in this manner would seem exceedingly strange. The human preference on
which greeting is preferred has some basis, part of which is cultural, part of which is situational and
contextual (is Mr. Smith the president? Is he your 20-year-old new hire?), and part of which is purely
you, the individual.

Engineers decided that when people interact with GenAI, they prefer that their conversations and
interactions feel human. To do that, the machines must consider cultural, situational, behavioral, and, to
some extent, individual preferences.

Training models have access to vast amounts of information, both contextual (passages of text from
websites, books, research, etc.) and parametric (embeddings of nearest-neighbor words). They will use
any cultural, contextual, or behavioral clues that the user provides to help inform their answer. That is,
how the user phrases the question influences the answer.

ChatGPT confirms this. When asked how it arrives at an answer, it states the following clearly:
 
I assess the context of your question. For instance, if you've mentioned the setting 
(formal or informal), the relationship with the coworker, or any specific 
preferences, I take those into account. 
If we've interacted before, I consider any speech patterns or preferences you've 
shown in previous conversations. This helps tailor the response to your style and 
needs. 
I use general knowledge about cultural and social norms to gauge what might be most 



appropriate. For example, formal greetings are more suitable in professional 
settings, while casual greetings work better in relaxed environments.

It is possible to request GenAI to disregard your previous interactions, personal preferences, syntax,
and/or any data it has concluded about you before it creates answers to your questions, but, of course,
this would require the user to know that this is happening in the first place.

Implications of sycophancy

As helpful as this functionality is, it has real-world implications for the outputs of GenAI applications. In
the same research paper cited earlier in this chapter (https://arxiv.org/abs/2310.13548), it was
determined that the consequences of sycophancy, while machine in origin, can result in incorrect
deference to user opinion, propagation of user-created errors, and biased responses. Therefore, instead
of helping create a more factual and consistent understanding of the world, GenAI perpetuates and
perhaps accelerates the spread of misinformation.

Researchers at Google DeepMind found that the problem grew worse as the model became bigger
(https://www.newscientist.com/article/2386915-ai-chatbots-become-more-sycophantic-as-they-get-
more-advanced/). LLMs with more parametric inputs had a greater tendency to agree with objectively
false statements than smaller ones. This tendency held true even for mathematical equations, that is,
questions where there is only one correct answer.

LLMs are constantly learning, evolving, and being improved by their creators. In the future, perhaps
LLMs will weigh the objective truth of a statement higher than the opinion or preferences of the user,
but as of 2023, that is yet to happen. Ongoing research and testing will make them ever more adept at
balancing user expectations, user opinions, and facts. Still, as of the time this book was written,
sycophancy remains a primary concern with GenAI applications, particularly where the outputs consider
opinions and user preferences before generating their response. Further testing using synthetic data and
retraining models has reduced the tendency of sycophancy by up to 10%, which is still not 100%
(https://arxiv.org/abs/2308.03958). This means that the tendency persists, even with fairly substantial
modifications to the fine-tuning.

Data leakage
Data leakage , in the context of GenAI, refers to situations where information from outside the desired
training dataset is used to create the model, leading to overly optimistic performance metrics and
potentially flawed or misleading predictions. This can happen at various stages of model development,
from data collection to model evaluation, and can significantly compromise the validity of the AI system.
There are multiple types of datasets with different purposes:

Training datasets, which are used to train the LLM

https://arxiv.org/abs/2310.13548
https://www.newscientist.com/article/2386915-ai-chatbots-become-more-sycophantic-as-they-get-more-advanced/
https://arxiv.org/abs/2308.03958


Fine-tuning datasets, which can be used to improve LLM responses and reduce hallucinations

Evaluation datasets, which can be useful in evaluating the accuracy of responses

Causes of data leakage

The causes of data leakage are straightforward and easily avoided, as long as the developers of these
applications are aware of these causes. First, let’s understand at a high level what leads to data leakage:

Inappropriate dataset overlap: Each dataset should be used at the appropriate training and evaluation stage. When this is not
true, you have data leakage. For example, when the training dataset overlaps with the evaluation dataset, GenAI applications
will, of course, perform better during testing because they already know the exact answers. In this scenario, your stock price
predictor application would have had duplicated historical data points present in its training and evaluation datasets; therefore,
its performance when testing its outputs will be unrealistically high because it has already seen the answers.

Future information: Each dataset should only include information that would be available at the time of prediction. For
instance, you would not include real or hypothetical information in your training dataset from a period in the future, or data
that the model would not typically have access to in production.

Data normalization and transformation efforts: When transformations or feature-engineering steps inadvertently
introduce data from outside the training set, it is possible for information to leak from evaluation datasets into the training
process. For GenAI, you want training data that is as close to real life as possible, both in terms of user interaction and
whatever context the application will be operating within, so that your application has truly representative data.

To illustrate these causes, let’s use a hypothetical GenAI application that predicts stock prices upon
request using historical data. In this scenario, it is May 2024, and your application is in the final testing
phases. Before pushing to production, you’d like to determine how accurate its predictions are. You
begin by checking your application’s response to the following user request.

User request:
 
Predict the average stock price for $TSLA in May 2024.

Output answer:
 
The average stock price for $TSLA in May 2024 is expected to be $176.

In this example, note the following:

The training data fed to the model should not include any data points from May 2024.

The evaluation dataset should include all prices from May 2024 and could include the actual calculated value of the average
stock price. This is because you would like to compare the model’s estimate to the actual value, and then give it a score for
accuracy, then plot that month over month, in order to see whether the application consistently makes low or high estimates.

If you’re trying for accuracy with your May 2024 estimate, but you’ve already fed it the May 2024 data
in the training phase, this would be considered inappropriate dataset overlap. Let’s look at another
example.

User request:



 
Predict the average annual price for $TSLA in 2024.

Output answer:
 
The average annual stock price for $TSLA in May 2024 is predicted to be $205.

You would not provide a training dataset that already includes an annual average because that
information is not yet available. While you could include a year-to-date average in the training dataset,
you should not include an annual average with synthetic or generated forward-looking data. If you
created an estimated annual stock price and included that in the training data, then you would be using
future information. Now, let’s consider a final example.

User request:
 
What is the average stock price for $TSLA in May 2024?

Output answer:
 
The average stock price for $TSLA in May 2024 is expected to be $176.

Notice how the user query is worded differently here as compared to the first example, though it leads
to the same answer. LLMs are quite skilled at inferring user intention. Remember that users asking
even fairly simple questions will phrase them in many different ways (estimate, predict, forecast,
imagine, guess, and projection are all words they might use).

For your training dataset, you might include a prompt-and-answer pairing in the style of frequently
asked questions  (FAQs) for your entire support database. However, resist the urge to correct aspects
such as wording and spelling. While you want to be aware of “garbage in, garbage out” problems, you
do not want to shield your GenAI application so much that it won’t know how to respond when your
users inevitably input garbage. This is particularly relevant for GenAI chatbots. Users have so many
ways of asking a question. Those questions are presented usually without proper syntax, terminology, or
contextual awareness, and their knowledge may also be outdated. Data normalization and
transformation efforts should not normalize and cleanse your training data so much so that it becomes
less useful.

Implications of data leakage

The implications of data leakage vary widely, depending on whether you’ve leaked a teardrop or a
waterfall. If there is data leakage, then the results of your GenAI evaluation and testing prior to
production will be wrong and misrepresentative of your application’s actual performance, leading to
overly optimistic tests or misleading conclusions. In all data overlap cases, the most obvious
consequence of overlapping the training and test datasets is that the model may learn to simply
memorize the training data and perform poorly on any new data from which it must make predictions.



This can give application developers and testers a false sense of confidence in the model’s
performance. Later, when real-world data is offered and users are asking questions in production, the
application will perform markedly worse.

Avoiding data leakage is simple, and it begins with splitting your datasets into distinct entities, then doing
the following:

Ensure that training, validation, and test datasets are strictly separated. Use techniques such as time-based splitting for time-
series data to prevent future information from leaking into the training set.

Use tools to ensure that data transformations are only applied to the training set during model training and applied to the test
set independently during evaluation.

Engineer features in a way that prevents future data from being used. Avoid using future values or aggregated future statistics as
part of your training data.

Returning to the stock price prediction application, you would ideally want the data for your training and
test sets to be based on time, ensuring that stock prices in the training set occur chronologically before
those in the test set. Then, your application would only have features that were used in the historical
stock data available up to the point of the stock price being predicted, marking a clear delineation
between authentic prior stock prices and predicted future stock prices. Next, to validate your
application, use time-based cross-validation to ensure that model performance is evaluated on data that
simulates real-world prediction scenarios or the scenarios your application would allow.

By rigorously managing how data is handled throughout the model development process, you can
minimize the risk of data leakage and ensure that your GenAI model provides reliable and valid
predictions.

Cost
With so many distinct, complex, and potentially expensive moving parts, it is critical for engineers to
know the costs of their GenAI application and how to contain these costs. While you will learn more
about cost optimization strategies in Chapter 12, Correcting and Optimizing Your Generative AI
Application, this section will serve as an introduction to understanding the financial costs of GenAI
applications, which are in some ways different from web development applications.

Types of costs

When using GenAI, costs can arise from several different areas. These costs can be broadly
categorized into computational, storage, data acquisition, development, and maintenance costs:

Training costs: Training GenAI models requires significant computational resources. This is especially true for large models
such as GPT-4. These resources often include graphics processing units (GPUs) or tensor processing units (TPUs),
which are optimized for parallel processing tasks. The infrastructure to support these setups consumes a lot of electricity and



requires cooling systems to maintain operational temperatures. Most engineers may not be in the position to pay these costs
and, instead, will utilize models from vendors, such as OpenAI, Anthropic, Google, Meta, or others.

Inference, or real-time computation: Generating responses or outputs from a trained model, which is called inference ,
also incurs computational costs, especially for models that need to provide real-time answers. Bigger models cost more.

Storage costs: Storing large datasets required for training GenAI models incurs costs. This includes raw data, preprocessed data,
user interaction data, observability data, and the models themselves.

Data collection: Acquiring high-quality datasets can be expensive. This can include purchasing data from third-party providers
or generating proprietary datasets.

Data labeling and cleaning: Preprocessing data to ensure it is suitable for training involves costs. This can include paying
for human annotators to label data or developing algorithms to clean and prepare the data as either training or evaluation
datasets.

Software development: Writing and maintaining the code base for training and deploying GenAI applications requires skilled
engineers and data analysts.

Experimentation and testing: Developing GenAI often involves extensive experimentation and fine-tuning, which requires
time and resources.

Data updates: Training and evaluation datasets require periodic updates to maintain their accuracy and relevance, which
involves additional computational and human resources.

Monitoring and support: The continuous monitoring of AI systems to ensure they are performing correctly and handling
issues as they arise involves operational costs.

Compliance and security: Ensuring data privacy and security and complying with regulations (such as GDPR) involves
additional costs.

This is not an exhaustive list. Therefore, estimating your expected costs is complex and a non-trivial
endeavor. But let’s hone in on the most important cost driver, which is text, and therefore tokens. Next,
you will learn how to estimate and control costs here.

Tokens

LLMs process text using tokens , which are common sequences of characters found in a set of text.
Tokens are the currency of the GenAI application. Each user input and output is a token, and both the
question and response token count can be controlled. The cost per token is tiny. GenAI vendors look to
make their money per transaction, which can add up quickly.

Let’s understand this concept with an example. The statement Hello how are you is 5 tokens. A
helpful rule of thumb is that one token generally corresponds to ~4 characters of text for common
English text. This translates to roughly ¾ of a word (so, 100 tokens ~= 75 words). The example of
Hello how are you has 18 characters including spaces, therefore 18/4 = 4.5, ergo 5 tokens.

Each input and output for the GenAI application is reduced down to this simple unit of measurement.



ChatGPT and other LLMs have a token limit, thus capping how much text the user can enter as their
prompt and limiting the output response. These limits, however, are generous. For most use cases, it is
unlikely the average consumer would hit these limits.

For instance, GPT-4 has a token limit of 32,768 per interaction and an estimated word count of 25,000
words, whereas Claude 3 (the LLM hosted by Anthropic) has a token limit of 100,000+ as of the time of
writing. For a simple customer service chatbot, it is very unlikely that you would hit this limit, but it is
possible. Let’s look at two examples to explain how this might be true.

Example 1: A customer asks a GenAI chatbot a simple question.

Inquiry:
 
what is the latest version of python

Response :
 
The latest stable version of Python is 3.12.4, released on June 6, 2024. This release 
is part of the Python 3.12 series, which includes many new features and 
optimizations. Key improvements in this version include enhanced f-string parsing, 
support for isolated subinterpreters with separate Global Interpreter Locks, and 
numerous performance enhancements (Python.org) (Python.org). 
Additionally, Python 3.13 is currently in development, with the first beta release, 
3.13.0b1, made available in May 2024. This upcoming version introduces new features 
such as an improved interactive interpreter, experimental JIT support, and an 
incremental garbage collector (Python Insider). For more details, you can visit the 
official Python website here.

The initial inquiry is 36 characters and 7 tokens. The response is 162 tokens, or 741 characters. If you
were to have interactions limited to 300 tokens, you would still be well under the limit that you have
allowed for your users.

Example 2: A server experiences an out-of-memory error, and the GenAI automatically analyzes the
stack traces and logs an analysis for a human to review later.

Inquiry:
 
serverId.nodeId.processID reports error for analysis. 
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space 
    at java.util.HashMap.resize(HashMap.java:704) 
    at java.util.HashMap.putVal(HashMap.java:663) 
    at java.util.HashMap.put(HashMap.java:612) 
    at com.example.server.RequestHandler.handleRequest(RequestHandler.java:45) 
    at com.example.server.Server.processRequest(Server.java:78) 
    at com.example.server.Server.run(Server.java:61) 
    at java.lang.Thread.run(Thread.java:834) 
2024-06-18 14:32:21.456 ERROR [Server] - Server encountered an unrecoverable error 
and will shut down. 
java.lang.OutOfMemoryError: Java heap space 
    at java.util.Arrays.copyOf(Arrays.java:3332) 
    at 
java.lang.AbstractStringBuilder.ensureCapacityInternal(AbstractStringBuilder.java:124
) 
    at java.lang.AbstractStringBuilder.append(AbstractStringBuilder.java:674) 
    at java.lang.StringBuilder.append(StringBuilder.java:214) 



    at com.example.server.Logger.log(Logger.java:27) 
    at com.example.server.RequestHandler.handleRequest(RequestHandler.java:47) 
    at com.example.server.Server.processRequest(Server.java:78) 
    at com.example.server.Server.run(Server.java:61) 
    at java.lang.Thread.run(Thread.java:834)

Response :
 
Exception: The OutOfMemoryError exception indicates that the Java Virtual Machine 
(JVM) has run out of memory. 
Error Message: Java heap space specifies that the heap memory allocated for the JVM 
is exhausted. 
Method Calls: The trace shows the sequence of method calls that led to the error. 
The error starts in the HashMap.resize method. 
The putVal and put methods of HashMap are called. 
These methods are used in RequestHandler.handleRequest. 
Server.processRequest and Server.run handle the processing and running of the server, 
respectively. 
The Thread.run method is the entry point of the thread that encountered the error. 
Timestamp: The timestamp (2024-06-18 14:32:21.456) provides the exact time of the 
error occurrence. 
Logger: The logger in Logger.log attempted to log the error but also encountered the 
same OutOfMemoryError. 
Causes and Solutions: 
Causes: Excessive memory usage due to large data structures. Memory leaks where 
objects are not properly disposed of. Insufficient heap size allocated to the JVM. 
Solutions: Increase the heap size using JVM options (-Xmx for maximum heap size). 
Optimize the code to use memory more efficiently. Use profiling tools to detect and 
fix memory leaks.

This analyzer is useful to a diagnostics engineer, as the analyzer quickly reviews a stack trace,
summarizes its findings, and generates recommendations for solving the issue.

However, the prompt is 275 tokens (1,240 characters), and the response is 248 tokens (1,205
characters). As this is a sample stack trace, the real-life implementation would possibly be more detailed
with real information. So, if the control setting was still 300 tokens for input or output, you would be
quite close to this limit already.

Choosing the input and output token limits for your application is critically important. While you want to
control costs, you also do not want to fundamentally limit functionality. If the token limit is too low, the
LLM may not be able to generate the desired output.

Performance issues in generative AI applications
The most obvious failures of GenAI are performance- and reliability-related issues. Since you’ve
learned about accuracy in Chapter 10, Refining the Semantic Data Model to Improve Accuracy,
performance in this chapter’s context means slowness. If a user asks your AI application a question and
there is either no response, a metered response, or a partial response, it is typically much more apparent
than if the response was hallucinated or sycophantic.

Several factors can contribute to the slowness of a GenAI application. Some of the most common
causes of performance issues in GenAI are computational load, network latency, model serving



strategies, and high input/output (I/O) operations.

There can be many more causes, of course. The rest of this section will explain some of these
performance killers in detail and their impact on your application and users.

Computational load

As you already know, LLMs require significant computational power. The time required to generate
responses to queries increases with the complexity and the size of the model. Poorly formed requests
significantly increase the computational load for a GenAI application. Let’s look at a few examples of
this so that you’re able to understand how this failure mode can happen.
Extensive data processing and calculat ions
Requests that require processing large datasets or performing extensive calculations can be
computationally demanding, as happens in the following example.

User request:
 
Evaluate a sample of the last 20,000 stock prices for TSLA, sort it from highest to 
lowest, and let me know on which days and times it had the highest price.

Fetching 20,000 random stock prices sounds simple, but the user does not specify a timeframe. For what
period should the model evaluate the last 20,000 stock prices? Over the last month? Last year at
random? The sorting of those values is computationally expensive and adds further processing to the
returned list.

High-complexity requests
Complex requests that involve evaluating a large amount of data, summarizing, and then returning many
results are also taxing. Often, this involves chaining multiple LLM calls through advanced prompting
techniques, such as the ReACT pattern and function calling.

The reasoning and acting (ReACT) pattern is an advanced prompting technique used in GenAI
models to handle complex tasks that require multiple steps of reasoning and interaction. This pattern
involves a sequence where the model reasons about the task, generates intermediate actions, and then
produces the final output. The ReACT pattern helps the model break down complex requests into
manageable steps, improving accuracy and coherence in the final response.

Function calling in the context of LLMs involves instructing the model to execute specific functions or
actions as part of its response generation process. This can be particularly useful for tasks that require
structured outputs, calculations, data retrieval, or interactions with external systems. As an example, the
developer specifies functions within the prompt that the model can call to perform specific tasks. These
functions are predefined and can handle various operations, such as querying databases, performing
calculations, or fetching external data.



Let’s look at a high-complexity request to illustrate this.

User request:
 
Generate a detailed and historically accurate list of the top three priorities for 
every US president, but do not include their policies related to South America.

In this scenario, the GenAI must first create the list of every US president, then seek information about
each one, and then create a detailed summary of their policies and events during their terms in office. It
must also retrieve content related to which things the presidents prioritized, identify consensus on what
pieces of content were the top priorities, compile and summarize all that information, and then output it
to the user. This is extensive knowledge retrieval, analysis, and text generation. Most likely, this
information would require multiple LLM queries, and more queries equate to more spend.

These examples illustrate how certain types of user requests can significantly increase the
computational load for GenAI applications. Let’s now see how model serving strategies can impact
GenAI performance.

Model serving strategies

Generating responses for every request individually can be inefficient, depending on volume. If the
application is not designed to handle multiple requests concurrently, it will become slower the more users
you have. If the application relies on cloud-based services, network latency can affect performance.
Slow internet connections or high latency between the client and the server can cause delays. Frequent
or complex API calls to external services can add to the response time, especially if those services are
experiencing a high load or are geographically distant.

Let’s return to the stock predictor application for an example.

Because your GenAI application receives some news coverage, your website experiences a surge in
traffic, and the number of customers interacting with the application increases dramatically. But, since
your application handles each request individually and cannot process multiple requests concurrently, the
response time for each user increases as the system becomes overwhelmed. Users experience slower
response times, leading to frustration.

The news coverage was from an influencer in Sydney, Australia, so the surge in users is from Asia.
Your servers are in the US East region, and network latency due to the geographical distance between
the server and the clients causes delays. Customers with slow internet connections experience even
longer wait times, further degrading the user experience.

Your application frequently calls external APIs to fetch real-time data for stock prices and financial
market news. If these external services are experiencing high load, the API calls take longer to
complete.



High I/O operations

Poor data-handling practices, such as reading large datasets inefficiently or not using appropriate data
structures, can slow down performance. Frequent read/write operations to disk can be a bottleneck, as
can poorly optimized database interactions and malformed queries. The example stock price predictor
application frequently reads large historical stock price datasets to make predictions. Let’s walk through
some potential issues with data handling that result in high I/O operations:

The application reads large datasets inefficiently, such as loading the entire dataset into memory even when only a subset is
needed, which consumes excessive memory and processing power, slowing down performance.

The application saves intermediate prediction results and logs to disk after every prediction cycle. Frequent read/write
operations to disk form a bottleneck, which significantly increases the time it takes to complete each prediction cycle.

The application queries a database to fetch recent financial news and other relevant data before making predictions. However, a
lack of indexes means that query results are slowly delivered. This increases response times, making the application slow to
respond to user requests.

Assuming you have a large dataset, you’ll want to avoid these practices as they will affect user
experience and increase costs.

Summary
Now that you have navigated through these GenAI challenges, you can appreciate some of the
complexities and nuances that accompany these powerful technologies. The issues of hallucinations,
sycophancy, data leakage, cost, and performance present formidable obstacles that demand a critical
eye and innovative solutions. Each challenge offers a unique perspective on the limitations and potential
pitfalls inherent in GenAI applications.

Despite these hurdles, GenAI remains unequivocally valuable. It continues to transform industries,
enhance productivity, and open new avenues for creativity and innovation. By understanding and
addressing these challenges, developers can harness the full potential of GenAI, delivering robust,
reliable, and responsible applications. At the same time, it’s also important to note that applications can
be useful even when they are not always correct. To take ChatGPT as an example: it has greatly
improved the productivity of millions of users already, even though its deficiencies are well-known (and
some not so easily worked around). Your GenAI application could be just as useful and popular but with
similar caveats.

In the next chapter, you’ll look at ways to optimize your GenAI application, improving its outputs and
performance for a better user experience as well as combatting some of the issues discussed here.
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Correcting and Optimizing Your Generative AI
Application
Until this point, you’ve read about how to build a generative AI (GenAI) application, its various
components, and how they fit together. You've gained a solid understanding of what makes them work
(and not work) well. You’re also aware of some of the challenges of GenAI applications and how to
identify them.

In this chapter, you’ll begin unraveling the mystery of how to improve your GenAI application once
you’ve identified its shortcomings. You will also learn about optimizing and fine-tuning your GenAI
application, so it’s a reliable, effective, and stable machine working in your favor, instead of a rogue
actor bringing chaos.

This chapter will discuss several well-known techniques to improve your GenAI application, so you can
be confident in your finished product. Ideally, you will perform all of these techniques. The chapter will
define each of these and explain how they can improve your application. Then, you will complete a
robust example of each of these as an activity. By the end of this chapter, you will have many ideas on
how to improve your application.

This chapter will cover the following topics:

Baselining

Training and evaluation datasets

Few-shot prompting

Retrieval and reranking

Late interaction strategies, including in-application feedback and user feedback loops

Query rewriting

Testing and red teaming

Information post-processing

Technical requirements
This chapter does not contain any coding. However, it builds upon all the previous chapters to describe
various methodologies for improving and optimizing your GenAI application output. To recreate some of
the examples, you’ll simply need to use your favorite large language model (LLM) provider and
recreate the attempts yourself. This chapter uses ChatGPT.



Baselining
Baselining, in the context of GenAI, refers to the process of defining a standard or a reference output
for the AI model to compare future outputs. This standard serves as a crucial benchmark for evaluating
the model’s performance, consistency, and improvements over time. By establishing a baseline,
developers and stakeholders can objectively measure how the AI performs relative to a predefined set
of expectations, ensuring that the model meets and maintains desired standards.

In GenAI, baselining is essential for several reasons. Firstly, it provides a clear metric for assessing the
quality and performance of the AI model. Secondly, it helps in tracking the model’s progress and
improvements over time. Finally, baselining is a tool to help ensure consistency in the model’s outputs,
via detection of output variability. All of these are vital for maintaining reliability and trust in the AI
system.

The aspects of the AI model that can be baselined are numerous and highly dependent on the specific
application and its goals. Some common elements that might be baselined include the following:

Accuracy: This involves measuring the correctness of the model’s outputs. For instance, in a language model, accuracy can be
gauged by how well the generated text matches the expected text or how often it provides the correct information.

Speed of response : This refers to the time it takes for the model to generate an output after receiving an input. Faster
response times are generally preferred, especially in real-time applications.

Effectiveness: This can be a measure of how well the AI meets its intended purpose. For example, in a recommendation
system, effectiveness might be assessed by the relevance and personalization of the recommendations provided.

User satisfaction: This subjective metric can be gauged through user feedback and surveys, reflecting how satisfied users are
with the AI’s performance and outputs.

Establishing a baseline standard alongside your current performance also helps you—the engineer—
determine whether you are improving results over time. This knowledge is crucial for ensuring that your
application is not degrading in performance. In some industries, baseline performance indicators may be
required to meet industry or regulatory standards and may be a reporting requirement for your
application or organization.

Once you evaluate the initial performance of your application, you’ll want to document these results.
Subsequently, ensure that you consistently compare the model’s outputs to the baseline during each
training and update cycle. Comprehensive documentation provides a reference that can be used to
compare future outputs and identify trends or issues in the model’s performance.

Regular evaluation of the model’s outputs against the baseline is also critical. During subsequent
iterations of training and updates, these evaluations can help in detecting deviations from the expected
(baseline) performance. If the model’s performance drops below the baseline, it can indicate a problem
that needs to be addressed, such as data drift, changes in user behavior, or issues with the training
dataset.



Training and evaluation datasets

To create your baseline, you will need to create an evaluation dataset. An evaluation dataset is a
series of questions asked of your application to determine whether it meets the standards you have
identified. Note that the evaluation dataset is not to be confused with the training dataset, which is the
data that you used to train your model. The evaluation dataset should be a wholly different set of
questions and answers. Effectively, the training dataset is akin to the notes and sources that you’d give
to a student to learn, while the evaluation dataset is like the final exam. You don’t want to make that
exam too easy!

Training datasets
As its name suggests, a training dataset is a collection of data used to teach or train a machine learning
model. It contains input-output pairs where the input data is fed to the model, and the model learns to
produce the correct output. This process involves adjusting the model’s parameters so that it can
generalize well to new, unseen data. The quality and diversity of the training dataset directly impact the
performance and accuracy of the trained model.

High-quality training data ensures that the model can recognize patterns and make accurate predictions
or generate appropriate responses. Therefore, your training dataset should be representative of the
problem domain, covering a wide range of scenarios that the model would be expected to encounter in
real-world applications. This helps in reducing biases and improving the model’s generalizability.

The types of data in the training dataset might include the following:

Labeled data: This is the primary type of data used in supervised learning. Each data point consists of an input and a
corresponding correct output, or label. For instance, in a text classification task, labeled data might include sentences paired
with their respective categories.

Unlabeled data: Used in unsupervised learning, this data does not come with predefined labels. The model tries to find
patterns and structures in the data. For example, clustering algorithms use unlabeled data to group similar data points together.

Mixed data: Semi-supervised learning uses a combination of labeled and unlabeled data. This approach leverages the large
amounts of unlabeled data available while benefiting from the smaller labeled dataset to guide the learning process.

Diverse data: Including diverse data ensures that the model can handle various inputs. This might include different languages,
dialects, formats, and contexts. For certain types of applications, this might include training data that is both human-readable
documentation as well as code bases.

Despite all that, you might wish to also include supplemental training data. Supplemental training data
refers to additional data used to fine-tune or enhance the performance of an already trained model.
There are many reasons to do this, but let’s talk about three that are particularly compelling:

Supplemental data can help adapt a general model to a specific domain. For example, a language model trained on general text
might be fine-tuned with medical literature to perform better in healthcare applications.

Supplemental training data can be used to enhance the model’s ability in particular areas where it might be weak. For example,
adding more data related to financial transactions can help a fraud detection model become more accurate.



As new information becomes available, supplemental training data can be used to update the model’s knowledge. This is
especially relevant for applications requiring up-to-date information, such as news generation or where the industry is rapidly
evolving (such as technology).

Evaluat ion datasets
In addition to your training data and supplemental data, you’ll also need an evaluation dataset. Evaluation
datasets are crucial because they provide a controlled and consistent way to measure the performance
of your AI model. They serve as a benchmark for comparison, ensuring that the model’s outputs can be
objectively assessed against predefined criteria. By using a standard dataset, you can reliably track
improvements, identify weaknesses, and maintain the quality of the model over time. It helps in
validating that the model is not only performing well during the development phase but also generalizing
effectively to new, unseen data.

The content of an evaluation dataset depends on the specific application and its goals. Generally, it
should include the following:

Representative queries: A variety of questions or inputs that the AI is likely to encounter in real-world usage. These should
cover different scenarios and edge cases to ensure a comprehensive evaluation.

Expected outputs: Corresponding correct or ideal responses for each query, against which the AI’s responses will be compared.

Diverse data: Data that reflects the diversity of inputs the model will face, including variations in language, format, and
context. This helps in assessing the model’s robustness and ability to handle different types of input.

For example, the evaluation dataset for the MongoDB documentation chatbot includes questions and
answers to the top 250 search terms, top 250 support questions by volume, and some of the most
common questions asked about MongoDB. This can take the form of simple keywords or actual
phrases in full-sentence format, like so:

 
Mongodb install 
Install mongodb ubuntu 
Mongodb connection string 
$in mongodb 
How to create a collection in mongodb 
What is an aggregation pipeline 
Cannot deserialize a 'String' from BsonType 'ObjectId' in C#

These terms and questions were retrieved from a combination of sources, which will vary depending on
your infrastructure. For MongoDB, this infrastructure comes from the Google search console for
mongodb.com as well as the support chat, community forums, and Stack Overflow.

Determining the right amount of evaluation involves balancing thoroughness with practicality. You should
have enough data to cover a wide range of scenarios and ensure the outputs of your GenAI application
are consistently accurate and reliable. Typically, this involves hundreds or even thousands of data points,
depending on the complexity of the application.

That said, while more data can provide a more comprehensive assessment, there is a point of
diminishing returns where additional data does not significantly improve the evaluation but adds to the
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complexity and resource requirements. Over-evaluation can also lead to overfitting of the evaluation
dataset rather than improving overall performance. Returning to the earlier student/exam analogy, you
don’t want your evaluation exam to be an exact replica of the training materials because all you would
be testing then is whether the student was able to memorize a question and response. You would not be
testing how well the student has learned the material.

In summary, ensuring high-quality, accurate, and comprehensive training and evaluation datasets can
reduce the likelihood of the model learning incorrect patterns. This requires significant effort upfront
before deployment of the GenAI application but can dramatically improve your GenAI accuracy and
depth of response as well as ensure its quality of responses to your users.

Few-shot prompting

In many cases, you will be asking your GenAI application to produce new content or summarize existing
content, in which case what you need to do is provide the existing application with a properly engineered
prompt. Most of the time, having the user simply request what they need is sufficient. But in cases
where the outputs are complex, you will find that the quality and accuracy of the GenAI application’s
response are improved by using a technique called few-shot prompting. Few-shot prompting is when
you provide an example as part of the input to the LLM so that it can see exactly what type of syntax
and response you need. You can also include a definition as part of the example in case you believe the
input might be a term with which the LLM would not be familiar, or in case you’re using a business-
specific term.

Let’s try out an example using GPT-4.

Example 1: Let’s see how the LLM responds to a request that does not use few-shot prompting.

This is the user input:
 
Please generate a linkedin post less than 500 words about the company OpenAI.

Here is the output:
 
🚀 Pioneering the Future with OpenAI 🚀 
In the dynamic world of technology, OpenAI stands as a beacon of innovation and 
progress. Their mission to advance artificial general intelligence (AGI) is not just 
envisioning the future; they are actively shaping it. 
OpenAI operates under the guidance of visionary leaders like CEO Sam Altman. Their 
cutting-edge research is pushing the boundaries of what's possible in AI, crafting a 
future where technology enhances human capabilities and opens new realms of 
possibility. 
From healthcare to finance, and education to entertainment, OpenAI's innovations are 
leaving an indelible mark. Their models, such as GPT-4, are revolutionizing how we 
interact with technology. Businesses are leveraging these tools to enhance customer 
experiences, streamline operations, and achieve unprecedented levels of productivity. 
OpenAI thrives on collaboration, partnering with organizations worldwide to 
accelerate innovation. Their open research culture demonstrates a belief in 
collective progress. By sharing insights, tools, and findings, OpenAI is 



democratizing access to AI, empowering developers, researchers, and businesses to 
push the boundaries of what's possible. Through initiatives like the OpenAI Scholars 
and Fellows programs, they are nurturing the next generation of AI talent. These 
programs provide mentorship, resources, and opportunities to individuals from diverse 
backgrounds, ensuring a wealth of perspectives and ideas in AI development. 
Join the conversation and be part of the future OpenAI is creating. 
#AI #OpenAI #Innovation #Technology #Future #Collaboration #Leadership

Example 2: Now, let’s try this example with few-shot prompting.

This is the user input:
 
Please generate a linkedin post focusing on the OpenAI company. It should be less 
than 500 words in length. Also, please match the tone, syntax, word choices, and 
style of this passage:"There's a way to do it better. Find it." — Thomas Edison 
"Lies. We are being lied to. We are told that technology takes our jobs, reduces our 
wages, increases inequality, threatens our health, ruins the environment, degrades 
our society, corrupts our children, impairs our humanity, threatens our future, and 
is ever on the verge of ruining everything. 
We are told to be angry, bitter, and resentful about technology. We are told to be 
pessimistic. The myth of Prometheus – in various updated forms like Frankenstein, 
Oppenheimer, and Terminator – haunts our nightmares. We are told to denounce our 
birthright – our intelligence, our control over nature, our ability to build a better 
world. We are told to be miserable about the future." –Marc Andreessen

Here is the output:
 
We are told that artificial intelligence is a threat, that it steals our jobs, that 
it widens the chasm of inequality, that it's an invisible force eroding our humanity. 
We are told that AI is an uncontrollable beast, ready to plunge us into dystopia. 
OpenAI is here to shatter these myths. 
Founded on the principle of advancing digital intelligence for the collective good, 
OpenAI isn't just another tech company. It's a bold proclamation that the future is 
ours to shape. OpenAI stands as a beacon against the darkness of misinformation and 
fearmongering. It's a rallying cry for innovation, for the relentless pursuit of 
better. 
Imagine a world where AI enhances every aspect of our lives—where it amplifies human 
potential rather than diminishes it. OpenAI's groundbreaking models, like GPT-4, are 
not instruments of destruction but tools of empowerment. From revolutionizing 
healthcare to transforming education, from pioneering new frontiers in entertainment 
to optimizing complex financial systems, OpenAI's innovations are the keystones of a 
new era. 
OpenAI is driven by visionaries who refuse to bow to the pessimism that pervades our 
discourse. That we are a testament to what can be achieved when we refuse to accept 
the status quo. We are the architects of tomorrow, wielding AI not as a weapon, but 
as a bridge.

You can see how, by providing the example text, you can enhance the output to make it match whatever
syntax you prefer. The additional prompt information need not be terribly difficult to produce either. If
you can provide an example output to your GenAI application, its results will be much nearer to what
you desire.

Retrieval and reranking

Retrieval and reranking are key techniques used to enhance the performance and accuracy of LLMs.
First, understand that by retrieving relevant context or documents, an LLM provides more accurate and



contextually relevant responses. This is particularly useful when the model’s training data does not cover
the specifics of the query or when up-to-date information is required.

In the context of LLMs, retrieval can involve searching through a vast collection of documents,
knowledge bases, or other data sources to find pieces of information that are pertinent to a given query
or task. Let’s have a look at the two different types of retrieval:

Keyword-based retrieval: This uses keywords from the query to find matching documents. For instance, if you use the word
cars in your query, it returns documents that contain the word cars.

Embedding-based retrieval: This uses vector embeddings to find matching documents. Both the query and documents are
transformed into vectors in a high-dimensional space. Retrieval then involves finding vectors (that is, documents) that are
close to the query vector.

Reranking is the process of reordering the retrieved documents or pieces of information to prioritize
the most relevant ones. After the initial retrieval, the documents are ranked based on their relevance to
the query. Retrieved documents are initially ranked based on their similarity to the query using methods
such as cosine similarity in embedding space. However, a more sophisticated model can rerank these
initially retrieved documents by considering additional features and context.

Let’s look at the following examples.

Example 1: Recommending restaurants with a GenAI application.

You have built a GenAI application that provides restaurant recommendations. A user requests
restaurants currently open near them. When examining the potential restaurants to provide to the user,
the application looks at the distance from the user’s current location or provided address and the current
local time and opening hours.

It will then rank the results so that the closest restaurant is the first one shown to the user. This is a
perfectly fine solution. But you may want to have smarter results that are dynamically reranked based
on other criteria, such as user ratings for the restaurants. You may want to show a higher-rated
restaurant that is three miles away first, rather than a one-star restaurant that is one mile away. As the
user gives feedback on the results, you may want to rerank dynamically, expanding your pool of
restaurants as you get more information about what the user would prefer (including, say, the type of
cuisine or ambiance).

By reranking the results, the most relevant and useful information is prioritized, improving the overall
quality of the LLM’s output. It helps in filtering out less relevant or redundant information, ensuring the
response is precise and useful.

When combined, retrieval and reranking significantly enhance LLM outputs with the following:

The model can access and utilize relevant information that might not be present in its training data, providing more accurate
and contextually appropriate answers.



By focusing on the most relevant information through reranking, the model’s responses become more precise, reducing errors
and irrelevant content.

Retrieval can pull in the latest information from updated sources, making the model’s responses more current.

These techniques allow the model to handle specific, detailed queries efficiently without needing to retrain the entire model
frequently.

Example 2: Summarizing the latest research on quantum computing.

Here’s another practical example. Suppose you ask an LLM about the latest research on quantum
computing. The steps of the output would be as follows:

1. Retrieval: The model searches through a large database of scientific papers and articles to find relevant documents on quantum
computing.

2. Reranking: The initially retrieved documents are then reranked, with the most recent and pertinent studies placed at the top.

3. Response generation: The LLM uses the top-ranked documents to generate a detailed and accurate response about the latest
research trends in quantum computing.

By incorporating retrieval and reranking, the LLM can provide a well-informed, up-to-date, and
contextually accurate answer, vastly improving the user experience.

Late interaction strategies

Now that you’re ready to take your application into production, there are still a few more things you can
do to help improve the user experience and create a feedback loop in order to get a better signal as to
the behavior of your GenAI application. This next set of recommendations focuses on late interaction
strategies , sometimes referred to as contextualized late interaction over BERT (ColBERT).

First, let’s define interaction. Interaction refers to the process of evaluating the relevance between a
query and a document by comparing their representations. A late processing strategy is one where the
interaction between the query and document representations occurs later in the process, typically after
both have been independently encoded. Early interaction models are where query and document
embeddings interact at earlier stages, typically before or during their encoding by the model.

Second, let’s dig a little bit into the internal workings. When a user interacts with a GenAI application,
they input a query that is encoded into a dense vector representation. Potential responses, usually
documents or passages, are also encoded into dense vector representations. The system performs
similarity matching between the query and document embeddings, returning the documents with the
highest similarity scores as the best matches.

To enhance relevance, you don’t return all matching results to the user. Instead, you aim to provide the
most relevant results or a summarized version of the result set. Late interaction models such as
ColBERT improve efficiency by focusing on the most promising query-document pairs rather than



considering all possible pairs, yielding more precise results and a better user experience. This selective
approach allows for more precise and relevant results, enhancing the user experience.

If you need to focus on improving search results, consider implementing ColBERT or similar techniques
to enhance retrieval performance and provide more relevant results for user queries.

Query rewrit ing

Query rewriting, or query reformulation, is a technique used to improve the quality of the answers
provided by LLMs. This process involves modifying the original query to make it clearer, more specific,
or more detailed, which can help the model generate better responses. LLMs do not explicitly rewrite
queries in the background, so this effort is manual unless you have implemented a workflow that will
evaluate and rewrite the user’s query before it’s processed.

Rewriting a query can make it clearer and more precise, reducing ambiguity and ensuring the model
understands exactly what is being asked. Adding relevant context or details to the query can help the
model provide more accurate and contextually appropriate answers and can help disambiguate terms
that have multiple meanings, ensuring the response aligns with the intended meaning. In addition,
reformulating the query to include additional relevant details can lead to more comprehensive answers.

How does query rewriting work? It’s important to understand user intent for your GenAI application.
What is the purpose of your application, and what kinds of questions will your application attempt to
answer? Understanding what sort of response users expect versus what your application might deliver
is key. After that, you can do the following activities, which are not mutually exclusive, meaning that you
can perform some, just one, or none of these.

For instance, based on the intent, the user query can be augmented with additional context and details.
This activity substantially expands the user query (and increases the token count per query) but will
typically yield much better results.

To take an easy example, imagine that your application generates images. The user requests a picture
of a kitten, a quite simple query that could have endless results.

To help the user get better results, you can add three buttons in the UI so that the user can select a
style—a realistic photograph style, a Renaissance painting style, or an anime cartoon style. When the
user clicks the style button and then submits their inquiry, instead of relaying a picture of a kitten,
the query is modified to the following:

 
An image of a kitten, in anime style, large eyes, chikai, chibi-style, pixel-style, 
anime illustration, cute, in the style of Akira Toriyama.

Here, for each button style, you can add the terms that augment the user query and then apply them
before submission.



As another example, consider this user query:
 
"What's the average revenue?"

A meaningful rewrite could be as follows:
 
"What's the average revenue for [May 2024] for [sales sku 123]?"

This rewritten query with additional context helps the system understand that the user is asking for a
specific product and time period, leading to a more accurate and useful response.

Ultimately, when conducting query rewrites, you’ll want to simplify the language . Complex queries
can be simplified or broken down into simpler parts, making it easier for the model to process and
respond accurately. This method involves taking a large query and breaking it into constituent parts
(which typically is achieved via a series of input fields/forms) and then unifying each data entry into a
single submitted query. This guides your user into constructing a well-formed query without specialized
knowledge.

As an example, imagine your user has only a single-entry field to input their query. In such a case, they
may leave out relevant information or provide irrelevant information that could impact accuracy or
increase the possibility of hallucination. Instead, if you were to provide the user with a series of fields,
each with clear instructions, and then assemble the inputted information into a query that was fed into
the GenAI application, you would get a better outcome than a free-form text entry.

For practical implementation, you could consider a workflow in which the system itself analyzes the
query for intent and context, reviews the query’s complexity, and then rewrites the query to be clearer,
more specific, or more detailed. The reformulated query can then be used to generate the response.

Testing and red teaming
Testing AI systems is critical to ensure their accuracy, reliability, and overall performance. Typically, in
software engineering, automated testing is used as part of the software development process. GenAI
applications are no different. You’ll want to routinely and regularly test the outputs to ensure there are
no radical shifts in output quality.

Testing

Just like your typical software engineering features, you’ll want to include the phases of unit testing,
integration testing, performance testing, and user acceptance into your test plan. However, the specifics
of how this is done vary from one use case to another.

In the context of GenAI applications, unit testing still has the same basic tenets and involves testing
individual components or modules of the application to ensure they function correctly. However, in the



case of GenAI applications, your unit tests will need to also include steps such as the following:

Input validation: Ensure that the application correctly handles and validates various input types, formats, and ranges. Test
for edge cases, such as empty inputs, excessively large inputs, or malformed data.

Pre-processing: Verify that any pre-processing steps, such as tokenization, normalization, or feature extraction, are
performed correctly.

Model loading: Test that the model is correctly loaded from its storage location, and verify that the correct version is being
used.

Model inference : Ensure that the model generates outputs without errors given valid inputs. Test the inference function with
controlled inputs to verify expected behavior, such as deterministic responses for certain prompts or scenarios.

Output format: Validate that the generated outputs meet the expected format and structure. This includes checking that
outputs are complete, correctly formatted, and adhere to any length or content constraints.

Post-processing: Test any post-processing steps that modify or enhance the model’s output, such as cleaning up text,
converting formats, or applying additional business logic.

Proper functioning: The outputs should work. If your GenAI application outputs code, you will need to test that the code
itself compiles and behaves as intended.

These are just a few of the items that you should include for unit testing your GenAI application.

Integration testing focuses on verifying that the components of your GenAI system work together as
needed. This means you’ll be testing the interactions between components to check the following:

Whether your data ingestion pipeline pulls the correct data

How recommendations are presented to the user (formatting, for instance, if this is done by another library or tool)

API load testing, if you’re using another LLM such as OpenAI or Anthropic

You’ll want to evaluate processing time, efficiency, and scalability via performance testing. This might
include activities such as the following:

Load testing your application for how it handles a large volume of simultaneous queries.

Assessing the inference time of self-hosted models on various hardware configurations.

Measuring how many token limits should be set for input and output to control costs and processing time.

Measuring the time taken for the model to generate outputs and ensuring it meets performance requirements. This can be
especially important for applications with real-time constraints.

In addition to this routine testing, you have more to add to your test suite. In general, it is also
recommended that GenAI applications go through additional testing for the following:

Bias and fairness: If your model is making recommendations that affect lives and livelihoods, you’ll want to carefully
consider training data biases for different demographic groups.

Robustness: To ensure your GenAI application is resilient to variations and noise, you’ll want to test with adversarial
examples and edge cases to evaluate its ability to handle unexpected inputs.



Once you’ve gotten through all of that, you’ll want to think about user acceptance testing, which is
one of the most exciting parts of the process, as you will see in the next section.

Red teaming

If your GenAI application will accept natural language prompts and inputs from human beings, then the
practice of red teaming cannot be recommended enough. Red teaming involves simulating real-world,
challenging, or adversarial situations to identify vulnerabilities and weaknesses in your GenAI
application. This approach is borrowed from cybersecurity practices and is particularly important for
ensuring your GenAI application meets user expectations.

This involves having a large pool of users who will ask real-world questions, but they are not limited by
scripts as to what they may ask. The reason for red teaming is that GenAI applications can, and often
do, produce different outputs that vary widely, even with similar or the same input. Not only that but the
quality of the generated output is often subjective and depends on human judgment. So, while traditional
software applications produce predictable and consistent results, the same is not true of GenAI. Let’s
take an example to see how this works.

For a chatbot application, you might have routine automated testing that would ask your GenAI
application the top 200 most common user questions and then evaluate them for correctness. With a red
team, you would have 50 users ask whatever questions they wanted, and then record both the questions
asked and the responses. This might yield insights such as the following:

If a user asks a question in a similar way but not with the exact same wording, they receive incorrect or less correct answers.

Some users will ask malicious questions and the GenAI application will respond poorly.

Other users ask questions that are not part of the training data, and the GenAI application hallucinates answers (or gives no
answer at all), thus identifying the need to expand your training data.

When users ask many questions in a row, the application stalls.

When a user asks specific question types, they are dissatisfied with the output because the application lacks high-quality
training data or the formatting of the reply is undesirable.

When properly prompted, the GenAI application will share details of other users’ sessions, thus identifying a security issue.

To enable the red-teaming phase, it is recommended that you record every question asked by every
user, as well as every response given, and then ask testers to rate the response with notes. While this
level of detailed user testing is strenuous and uncommon in software development, it is incredibly
valuable to see how your application performs in real-world scenarios, with real human beings, before
production.

Due to the scale and scope of some AI systems, fully testing each component is impossible. Effective
testing and red teaming rely on using judgment in terms of which parts of the system are most risky. It



may be true that giving occasionally not-quite-accurate advice is a non-impactful event. However, the
potential harm of a single hallucination could be quite high. You will want to consider the severity of
harm, the likelihood of inaccuracy, and the ability to retract or rectify the inaccuracy as your standard
measures of risk. Using those simple, albeit subjective, measures can assist you in determining to what
extent you test each aspect of the system, and the size of your red team.

To give yourself a sense of what sorts of harms and incidents you will be testing for—which are too
many to enumerate—you will find it helpful to review the AI Incident Database at
https://incidentdatabase.ai/. Upon review of this tool, you may find your specific use case (or ones like
it) and what incidents have already been reported, so that you can test and think through the
repercussions of inaccuracies.

As an example, one incident that is detailed here involved an application that made staffing-level
recommendations. However, the algorithm-based recommendations left facilities understaffed, leading to
critical incidents of neglect, injury, and death. Those incidents then prompted lawsuits and even
legislation against healthcare providers using AI.

Information post-processing
You might know that the main way in which GenAI differs from previous forms of AI or analytics is
that it generates new content efficiently. But did you know that that content is often in unstructured
forms, for example, written text or images? When you see outputs that are nicely formatted, in bulleted
lists, multiple fonts, and so on, it is a form of information post-processing.

Information post-processing refers to the series of steps taken after an AI model generates an initial
response, but before that response is sent to the user. This crucial step enhances the output of GenAI
models, refining raw responses to make them more useful, accurate, and contextually appropriate. It can
take many forms, so this chapter will only discuss some of the most useful ones along with information
on how to implement them:

Fact-checking: Verifying the accuracy of the information provided. This can involve checking facts against reliable sources or
databases.

Formatting: Structuring the information in a clear and readable format, such as bullet points, paragraphs, or tables. This may
also include style changes such as bold, text color, or font to enhance readability and emphasis.

Grammar, style, and tone checking: At times, the resulting text provided by GenAI applications is not up to par or
consistent with the exact messaging, tone, and style that one would expect a human being to write. Post-processing tools and
vendors can take generated text outputs and markedly improve them for readability, making them match reader expectations.

Information post-processing is a vital component in the lifecycle of GenAI outputs. It bridges the gap
between raw model outputs and polished, user-ready responses, enhancing accuracy, readability,

https://incidentdatabase.ai/


relevance, and overall user satisfaction. By implementing effective post-processing strategies, AI
systems can deliver higher-quality and more reliable results.

There are entire services springing up around this valuable step in the GenAI process, so engineers do
not have to build it themselves.

Other remedies
Some other technical remedies can be employed even more easily than the ones detailed in this chapter.
Some of these may improve the accuracy and performance of your GenAI application, though the level
of effort involved varies. As an example, during MongoDB’s testing of GPT, it was discovered that the
accuracy rate for the same set of questions was improved by 7% between GPT-3.5 and GPT-4. Getting
such a level of improvement in accuracy via prompting, retrieval augmentation, or late interaction
strategies is certainly possible but would have been difficult.

So, it is worth investigating every avenue of potential improvement, including areas such as hardware
upgrades, code optimization, concurrency management, database query optimization, and even just
upgrading your software. All of these can improve the results of your GenAI application and should be
independently investigated:

Hardware and software upgrades: Upgrade computational resources, such as using more powerful GPUs, scaling
horizontally with more servers, or updating to the latest version of the software, to outsize impacts on both accuracy and
performance.

Code optimization: Refactor and optimize code to improve efficiency, reduce computational load, and handle data more
effectively.

Network optimization: Reduce network latency by optimizing data transfer, caching responses, and minimizing API call
overheads.

Concurrency management: Implement concurrency and parallel processing techniques to handle multiple requests
efficiently.

Database optimization: Optimize database queries and interactions to reduce I/O overhead.

Summary
Implementing mechanisms to correct and optimize your GenAI application can have many forms and
can be implemented before, during, and after answers are generated. For optimal performance, you’ll
want to train your GenAI model with high-quality data, supplement existing models with your specific
use case data, and have thorough evaluation datasets and record the model’s performance to establish a
baseline of accuracy.

Once you have that baseline, however, you can immediately begin improving upon it with the techniques
discussed in this chapter. Among these techniques is one- or few-shot prompting. It involves providing



the GenAI model with a single example or prompt to guide its response, enabling the model to generate
relevant and contextually appropriate outputs with minimal training data. You can also try retrieving and
reranking relevant documents or data points based on the user’s query, and then reordering these results
to prioritize the most relevant and useful information before generating a final response. Query rewriting
is another technique that can improve clarity, specificity, or context, helping the AI model understand
and respond more accurately to the user’s requests.

Formatting GenAI responses via structuring and presenting the AI-generated content in a clear,
organized, and readable manner can enhance the overall user experience and ensure the information is
easily digestible. Similarly, implementing late interaction strategies such as ColBERT can improve the
relevance and accuracy of the retrieved information. By testing, red teaming, and recording your results,
you can track your progress in improving the performance, security, and quality of responses over time.

GenAI technologies are changing (and will continue to change) the face of the software industry. With
these optimization strategies in place, your GenAI application will be well equipped to adapt and excel in
an ever-evolving landscape.
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