
Building
Generative AI
Agents

Using LangGraph, AutoGen,
and CrewAI
 ―
Tom Taulli · Gaurav Deshmukh

Building Generative
AI Agents

Using LangGraph, AutoGen,
and CrewAI

Tom Taulli
Gaurav Deshmukh

Building Generative AI Agents: Using LangGraph, AutoGen, and CrewAI

ISBN-13 (pbk): 979-8-8688-1133-3		 ISBN-13 (electronic): 979-8-8688-1134-0
https://doi.org/10.1007/979-8-8688-1134-0

Copyright © 2025 by Tom Taulli, Gaurav Deshmukh

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: James Markham
Project Manager: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New
York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

If disposing of this product, please recycle the paper

Tom Taulli
Monrovia, CA, USA

Gaurav Deshmukh
Tarzana, CA, USA

https://doi.org/10.1007/979-8-8688-1134-0

iii

About the Authors���ix

Chapter 1: ��Introduction to AI Agents���1

What Are AI Agents?���4

Reflection���5

Tools���6

Memory��7

Planning��9

Multi-agent Collaboration���10

Autonomy���11

UI and UX���12

New Approaches to Development��14

Flavors of AI Agents���16

Brief History���17

LLMs, Copilots, and RPA���19

Use Cases���21

Sierra���22

Enso���23

Asana���24

Conclusion���25

Table of Contents

iv

Chapter 2: ��Generative AI Foundations���27

Pretrained Models��28

Transformer Models���29

Transfer Learning���31

Alignment in Language Models��32

Multimodal LLMs��33

Types of Models���34

Proprietary LLMs��35

Open Source LLMs and SLMs��38

Prompt Engineering���41

Be Clear��42

Details��42

Persona��42

Use Delimiters��43

Steps for a Task��43

Time to Think���44

Length of Output���45

Going Beyond the Transformer���45

Conclusion���46

Chapter 3: ��Types of Agents��47

Simple Reflex Agents���48

Model-Based Reflex Agents���49

Goal-Based Agents���50

Utility-Based Agents���51

Learning Agents���52

Hierarchical Agents��53

Conclusion���55

Table of Contents

v

Chapter 4: ��OpenAI GPTs and the Assistants API����������������������������������57

Registering for the OpenAI API Key��57

GPTs���58

Pricing and Tokens���61

OpenAI API��64

Assistants API���66

Playground���68

Assistants API���72

Recent Advancements��76

Conclusion��79

Chapter 5: ��Developing Agents���81

Jupyter Notebook, VS Code, and Google Colab��82

Jupyter Notebook���82

Visual Studio Code (VS Code)���82

Google Colab���83

How to Use Jupyter Notebooks��83

Google Colab��86

Streamlit, Gradio, and Jupyter Widgets��89

Hugging Face���90

Languages���92

Using LLMs (Large Language Models)���93

Using an API from an LLM Provider��93

Using a Service like Ollama��94

Using a Cloud Service like Azure, Google Cloud, or AWS��������������������������������95

Setting Up and Using Ollama���96

Using Ollama with Google Colab��97

Table of Contents

vi

Customizing LLMs��98

Fine-Tuning���98

Retrieval-Augmented Generation (RAG)���100

Conclusion���101

Chapter 6: ��CrewAI��103

The Basics��104

Agents��104

Tasks��107

Tools���109

Crews���111

Processes���112

Memory��113

Financial Planning Agent���115

Product Launch Orchestrator���123

Customer Call Center Processing���130

Retrieval-Augmented Generation (RAG)���141

Connecting LLMs���143

Conclusion���145

Chapter 7: ��AutoGen��147

ConversableAgent��148

Reflection Agent���150

Tool Use��157

Group Chat���162

Web Search Agent��165

Retrieval-Augmented Generation (RAG)���167

Table of Contents

vii

Using Ollama��170

AutoGen Studio��171

Conclusion���177

Chapter 8: ��LangChain��179

Background��180

The Components��181

Models���182

Prompt Templates��184

Output Parsers���185

Document Loaders���188

Text Splitters��190

Memory��193

Key Concepts of LangChain Agents���198

Types of Agents��199

Tool Calling Agent���199

XML Agent��200

JSON Chat Agent��200

Structured Chat Agent��200

Self-Ask with Search Agent��201

ReAct Agent���201

Agent Program���202

Conclusion���208

Chapter 9: ��Introduction to LangGraph���209

Benefits of Combining LangChain with LangGraph��210

Pros and Cons of LangGraph��212

Graphs��214

State���215

Table of Contents

viii

Nodes���216

Edges��218

Reflection Agent���219

Persistence���225

LangSmith��230

Assistant-UI��232

LangGraph Studio���234

Conclusion��235

Chapter 10: ��Haystack��237

Haystack Program��238

Haystack Agent with Function Calling��242

Conclusion���249

Chapter 11: ��Takeaways��251

Rethinking Software��253

The Challenges��255

AI Agent Frameworks���256

Conclusion���260

��Glossary���261

�Index��267

Table of Contents

ix

About the Authors

Tom Taulli is a consultant to various companies, such as Aisera, a

venture-backed generative AI startup. He has written several books like

Artificial Intelligence Basics and Generative AI. Tom has also taught IT

courses for UCLA, PluralSight, and O’Reilly Media. For these, he has

provided lessons in using Python to create deep learning and machine

learning models. He has also taught on topics like NLP (natural language

processing).

Gaurav Deshmukh is a highly skilled technology leader with over a

decade of experience driving transformative software engineering

initiatives. Throughout his career, he has held pivotal technical roles at

prominent companies such as Guidewire, Cigna, Home Depot, American

Agricultural Laboratory (AmAgLab), Tata Elxsi, and Amdocs. Gaurav's

expertise encompasses a range of cutting-edge technologies, including

cloud computing, cybersecurity, software automation, data engineering,

and full-stack development with various programming languages and

web technology frameworks. He employs his vast knowledge to create

innovative solutions that optimize workflows and drive business growth.

Gaurav holds both an MBA and a master's degree in Computer Science,

with a focus on data warehousing and computer vision. He is dedicated

to elevating the strategic role of software engineering in delivering

business value.

1© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0_1

CHAPTER 1

Introduction to AI
Agents
Andrew Ng is a towering figure in the AI world. He has the rare blend of

being an academic and entrepreneur.

When many in the tech world were focused on the dot-com boom

during the 1990s, Ng saw AI as more interesting. While at Bell Labs, he

worked on evaluating models, improving feature selection, and using

reinforcement learning.

He would go on to get his master’s degree in Electrical Engineering

and Computer Science from the Massachusetts Institute of Technology

(MIT) and a Ph.D. in Computer Science from the University of California,

Berkeley. His thesis was about reinforcement learning.

Ng would become a professor at Stanford. His course, which was

CS229, was the most popular among students. He was also one of the first

to see the usefulness of GPUs (Graphics Processing Units) for AI systems.

Ng would eventually apply his AI skills to the business world. He

became the chief scientist at Baidu and helped to create Google Brain.

Then in 2011, he led the development of Stanford’s MOOC (Massive

Open Online Courses) platform. It would quickly attract large numbers of

students.

https://doi.org/10.1007/979-8-8688-1134-0_1#DOI

2

Ng leveraged this experience by cofounding Coursera, which is one

of the world’s top online learning platforms. The company went public

in 2021, with a market value of nearly $6 billion. Currently, it has about

148 million registered users and has partnerships with more than 325

universities and companies.1

After this, Ng founded other companies like DeepLearning.AI and

Landing AI. He even has launched a venture capital fund.

No doubt, Ng has a knack for understanding trends—especially in the

field of AI. This is someone who you should not bet against.

Then what is he looking at next? Where does he see the biggest

opportunities?

It’s with AI agents. He has noted that they are an “exciting trend” and

something you “should pay attention to.”2 He has also said:

AGI (Artificial General Intelligence) feels like a journey rather
than a destination. But I think … agent workflows could help
us take a small step forward on this very long journey.3

Ng is far from an outlier. Many of tech’s most influential people are

optimistic about AI agents.

Just look at Bill Gates. In his blog, he wrote:

In the computing industry, we talk about platforms—the tech-
nologies that apps and services are built on. Android, iOS,
and Windows are all platforms. Agents will be the next
platform.

In his post, he details how software has changed little since he started

Microsoft during the mid-1970s. The applications are “pretty dumb.”

1 https://investor.coursera.com/overview/default.aspx
2 https://www.youtube.com/watch?v=sal78ACtGTc&t=125s
3 https://www.youtube.com/watch?v=sal78ACtGTc&t=125s

Chapter 1 Introduction to AI Agents

https://investor.coursera.com/overview/default.aspx
https://www.youtube.com/watch?v=sal78ACtGTc&t=125s
https://www.youtube.com/watch?v=sal78ACtGTc&t=125s

3

But AI agents will change everything. A key part of this will be due

to a system’s understanding of your “work, personal life, interests, and

relationships.” In other words, software will become very smart—and

much more useful and productive.

According to Gates:

Imagine that you want to plan a trip. A travel bot will identify
hotels that fit your budget. An agent will know what time of
year you’ll be traveling and, based on its knowledge about
whether you always try a new destination or like to return to
the same place repeatedly, it will be able to suggest locations.
When asked, it will recommend things to do based on your
interests and propensity for adventure, and it will book reser-
vations at the types of restaurants you would enjoy. If you
want this kind of deeply personalized planning today, you
need to pay a travel agent and spend time telling them what
you want.4

Then there is this take from McKinsey, which is one of the leaders in

helping companies leverage AI technologies:

The value that agents can unlock comes from their potential
to automate a long tail of complex use cases characterized by
highly variable inputs and outputs—use cases that have his-
torically been difficult to address in a cost- or time-efficient
manner. Something as simple as a business trip, for example,
can involve numerous possible itineraries encompassing dif-
ferent airlines and flights, not to mention hotel rewards pro-
grams, restaurant reservations, and off-hours activities, all of
which must be handled across different online platforms.
While there have been efforts to automate parts of this process,

4 https://www.gatesnotes.com/AI-agents

Chapter 1 Introduction to AI Agents

https://www.gatesnotes.com/AI-agents

4

much of it still must be done manually. This is in large part
because the wide variation in potential inputs and outputs
makes the process too complicated, costly, or time-intensive to
automate.5

Note S onya Huang is a partner at Sequoia Capital. She has backed
some of the hottest generative AI startups like Hugging Face, Glean,
and LangChain.6 According to her: “One of our core beliefs is that
agents are the next big wave of AI, and that we’re moving as an
industry from copilots to agents.”7

�What Are AI Agents?
There is no clear-cut definition of AI agents. But this should come as no

surprise. The category for AI agents is still in the nascent stages—and the

technology is moving quickly. Just as the Internet grew to encompass a vast

array of applications and services, AI agents are likely to undergo a similar

trajectory of rapid development and diversification. This means that

developers are at a point where significant opportunities for growth and

excitement abound.

Yet we still need a basic definition. So what should this be? A good

place to start is with one of the pioneers of the generative AI revolution,

Harrison Chase. He is the cofounder of LangChain, which is one of the

most popular development frameworks for this technology.

5 https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/
why-agents-are-the-next-frontier-of-generative-ai
6 https://www.linkedin.com/in/sonyaruihuang/details/experience/
7 https://www.sequoiacap.com/podcast/training-data-harrison-chase/

Chapter 1 Introduction to AI Agents

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/why-agents-are-the-next-frontier-of-generative-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/why-agents-are-the-next-frontier-of-generative-ai
https://www.linkedin.com/in/sonyaruihuang/details/experience/
https://www.sequoiacap.com/podcast/training-data-harrison-chase/

5

Here’s how he defines generative AI agents:

The way that I think about agents is that it’s when an LLM is
kind of like deciding the control flow of an application. So what
I mean by that is if you have a more traditional kind of like RAG
chain, or retrieval augmented generation chain, the steps are
generally known ahead of time, first, you’re going to maybe gen-
erate a search query, then you’re going to retrieve some docu-
ments, then you’re going to generate an answer. And you’re going
to return that to a user. And it’s a very fixed sequence of events.8

And I think when I think about things that start to get agentic,
it’s when you put an LLM at the center of it and let it decide
what exactly it’s going to do. So maybe sometimes it will look
up a search query. Other times, it might not, it might just
respond directly to the user. Maybe it will look up a search
query, get the results, look up another search query, look up
two more search queries and then respond. And so you kind of
have the LLM deciding the control flow.

Another way to look at AI agents is to understand their components.

They include reflection, tools, memory, planning, multi-agent

collaboration, and autonomy.

Let’s take a look at each.

�Reflection
Reflection in AI agents refers to the ability of a system to inspect and adjust

its own cognitive processes. This self-awareness allows the AI to scrutinize

its decision-making, learning patterns, and problem-solving approaches. By

engaging in reflection, AI can break down intricate challenges, extract insights

from its experiences, and offer clearer justifications for its conclusions.

8 https://www.sequoiacap.com/podcast/training-data-harrison-chase/

Chapter 1 Introduction to AI Agents

https://www.sequoiacap.com/podcast/training-data-harrison-chase/

6

Recent research, such as the Reflexion framework, has demonstrated

the significance of self-reflection in enhancing AI capabilities. Reflexion

uses verbal self-reflections to generate valuable feedback for future trials,

storing this feedback in the agent’s memory. This process involves an

iterative optimization where the agent evaluates its actions, receives

feedback, and adjusts its behavior accordingly. This method has

shown improvements in tasks like decision-making, reasoning, and

programming.

This metacognitive ability enhances AI systems’ flexibility and

resilience. As the AI evaluates its past performance and outcomes, it can

refine its strategies and expand its autonomous capabilities. The process

facilitates error detection, strategic evolution, and more efficient goal

attainment. For example, Reflexion agents have demonstrated improved

performance in environments such as AlfWorld and on tasks like search-

based question answering and code generation.9

�Tools
Tool use in generative AI agents refers to their ability to interact with

external tools, APIs, or software to enhance their capabilities and perform

complex tasks. This feature allows AI systems to go beyond their core

functions like language or image generation. AI agents can access up-to-

date information, retrieve real-time data, perform calculations, manipulate

files, and automate workflows by chaining multiple actions together.

This integration significantly improves their accuracy and expands their

domain knowledge.

Examples of tool use in generative AI include web browsing for current

information, code execution in real-time environments, data analysis

and visualization, calendar management, file operations, and complex

9 https://ar5iv.labs.arxiv.org/html/2303.11366

Chapter 1 Introduction to AI Agents

https://ar5iv.labs.arxiv.org/html/2303.11366

7

mathematical computations. These capabilities enable AI agents to handle

a broader range of tasks effectively. For instance, Salesforce’s Einstein GPT

integrates with CRM tools to provide AI-generated content across various

business functions. Similarly, AWS’s Solution Architect Agent uses custom-

built tools to query AWS documentation, generate code, and create

architectural diagrams.

Complex tasks often occur in dynamic environments where

solutions are not immediately apparent or may change unexpectedly.

For instance, data sources might be unavailable, requiring the search

of alternative sources, or actions might have unforeseen side effects. In

app development, an initial API request might fail due to network issues,

incorrect argument formats, or changes to the API itself. To adapt, an

agent might need to retry the request with different parameters based on

feedback, such as error messages, or seek explicit human assistance.

What if there is no API? A successful agent must be capable of

navigating an end-user interface. This task is complex, requiring the

agent to understand the interface content, whether by processing HTML

elements or interpreting pixels in a screenshot. The agent then needs to

determine the appropriate action, such as clicking a button or filling out

a form, and verify the success of this action by checking for confirmation

messages. Each action alters the interface state, influencing subsequent

actions and requiring the agent to continuously adapt its approach.

�Memory
Memory in AI agents is a critical capability that enables these systems to

retain and utilize information from previous interactions or tasks. This

function allows AI to maintain context, learn from experiences, and deliver

more coherent and personalized responses.

There are different variations. First, there is short-term memory.

It temporarily retains and manipulates information relevant to the

immediate task. It tracks recent events or data points needed briefly before

Chapter 1 Introduction to AI Agents

8

being discarded or transferred to long-term memory. Implementation

often involves maintaining a log of recent actions or the last few

conversational turns.

Then there is long-term memory. At a high level, this type provides

the agent with the ability to retain and access information over extended

periods, storing accumulated knowledge, learned experiences, and

established patterns. It shapes the agent’s decision-making processes and

adaptability.

Long-term memory is often implemented using vector databases.

This allows for efficient retrieval of relevant information based on queries

related to events, descriptions, and associated metadata. The structure,

representation, and retrieval mechanisms of this data significantly impact

the effectiveness of memory recall and the overall performance of the

AI agent.

Long-term memory includes

•	 Episodic Memory: This stores specific events

or experiences, allowing the agent to recall past

occurrences and apply learned lessons to current

situations.

•	 Semantic Memory: This retains general knowledge and

facts about the world, enabling the agent to understand

objects, concepts, relationships, and procedures.

It provides a broad understanding of the domain,

allowing reasoning and inference even in unfamiliar

scenarios.

•	 Procedural Memory: This focuses on storing learned

skills and procedures, emphasizing how to perform

tasks rather than recalling specific events.

Chapter 1 Introduction to AI Agents

9

Recent research highlights the effectiveness of these memory systems.

For instance, a study demonstrated how AI agents with short-term,

episodic, and semantic memory systems outperformed those without such

structured memory in complex environments. This highlights the benefits

of these memory types for task performance and learning efficiency (Kim

et al., 2023).10

The development of advanced memory systems in AI agents is crucial

for their ability to handle increasingly sophisticated tasks with greater

independence. For example, the JARVIS-1 agent uses multimodal memory

to enhance its task planning and execution in complex, open-world

environments, demonstrating significant advantages in performance and

adaptability (Weng, 2023).11

�Planning
Planning in AI agents involves leveraging LLMs to autonomously

determine a sequence of steps necessary to achieve a broader objective.

This process allows AI to break down complex goals into manageable

tasks. This enhances its capability to execute intricate projects. For

example, an LLM can guide an AI agent in organizing a virtual event by

breaking the task into smaller steps such as selecting speakers, scheduling

sessions, and coordinating technical support.

Recent advancements illustrate the profound impact of LLM-based

planning on autonomous agents. The Reflexion framework, for instance,

combines planning, self-reflection, and memory to iteratively enhance

task performance. This allows agents to dynamically adjust their plans

based on feedback and previous experiences. This helps to improve

decision-making and execution over time.

10 https://ojs.aaai.org/index.php/AAAI/article/view/25075
11 https://ar5iv.labs.arxiv.org/html/2311.05997

Chapter 1 Introduction to AI Agents

https://ojs.aaai.org/index.php/AAAI/article/view/25075
https://ar5iv.labs.arxiv.org/html/2311.05997

10

Furthermore, the TPTU (Task Planning and Tool Usage) framework

emphasizes the synergy between planning and tool usage. This framework

evaluates how effectively LLMs can plan tasks and use tools. AI agents can

either adopt a one-step approach, which outlines the entire task at once,

or a sequential approach, which addresses each subtask individually,

allowing for ongoing feedback and adjustments.

In practical scenarios, planning enables AI agents to manage tasks

that require dynamic responses and specialized knowledge. For example,

an AI agent tasked with automating a home garden can plan steps such

as setting up sensors, configuring irrigation schedules, monitoring plant

health, and integrating data with a smartphone app.

While planning significantly enhances AI capabilities, it also

introduces unpredictability, as agents might deviate from expected

behaviors due to the complexity of generating dynamic plans. However,

with ongoing advancements in this field, the reliability and sophistication

of planning in AI agents are anticipated to improve.

�Multi-agent Collaboration
Multi-agent collaboration uses various LLMs that work together to

accomplish complex tasks. This approach is similar to how human teams

operate—that is, each agent specializing in different subtasks to achieve

a common goal. For example, in a marketing campaign project, different

AI agents could assume roles such as content creator, market analyst,

campaign strategist, and performance evaluator.

By prompting one or multiple LLMs to perform distinct tasks, you can

create specialized agents. For instance, in a marketing campaign, an agent

tasked with content creation might be prompted with instructions like,

“You are an expert in crafting engaging marketing copy. Write content for

the campaign focused on promoting the new product….” This method

leverages the strengths of LLMs while maintaining a clear focus on specific

subtasks, enhancing overall performance and efficiency.

Chapter 1 Introduction to AI Agents

11

Another agent could be assigned to market analysis with a prompt

such as, “You are skilled in analyzing market trends and consumer

behavior. Provide insights based on the latest data to inform the campaign

strategy.”

Research has shown that multi-agent systems often outperform single-

agent setups. Studies like those from MIT demonstrate that collaborative

interactions among multiple AI models can significantly improve

reasoning and factual accuracy.12 By engaging in deliberative processes,

these agents can critique each other’s outputs, leading to more accurate

and comprehensive solutions.

�Autonomy
AI agents exhibit autonomy by independently making decisions and

executing tasks without constant human intervention. This autonomy

stems from their ability to process data, learn from experiences, and adapt

to new situations in real time. Advanced algorithms and machine learning

techniques enable these agents to evaluate their environments, recognize

patterns, and predict outcomes, allowing them to take actions that align

with their programmed goals. For instance, in autonomous vehicles, AI

agents must constantly interpret sensor data to navigate roads, avoid

obstacles, and make driving decisions that ensure safety and efficiency.

These decisions are made on the fly, showcasing the agents’ ability to

function autonomously in dynamic environments.

Moreover, AI agents enhance their autonomy through continuous

learning and adaptation. Machine learning models allow agents to learn

from their experiences and improve their performance over time. This

12 https://news.mit.edu/2023/multi-ai-collaboration-helps-reasoning-
factual-accuracy-language-models-0918

Chapter 1 Introduction to AI Agents

https://news.mit.edu/2023/multi-ai-collaboration-helps-reasoning-factual-accuracy-language-models-0918
https://news.mit.edu/2023/multi-ai-collaboration-helps-reasoning-factual-accuracy-language-models-0918

12

learning process involves analyzing past actions and outcomes to refine

future strategies. For example, in customer service applications, AI

agents can learn from previous interactions to provide more accurate and

personalized responses in subsequent engagements.

However, it is often unwise to have a completely autonomous AI

agent. Instead, there is a spectrum of autonomy and control that should

be considered. Human oversight remains crucial in many scenarios

to ensure that AI agents’ actions align with broader ethical standards,

safety protocols, and organizational goals. By balancing autonomy with

human control, we can leverage the strengths of AI while mitigating risks

associated with unsupervised decision-making.

Yes, there is much that goes into an agent. But this does not imply

that you need to use all the components. You may need only a couple. It

depends on the use case.

�UI and UX
The user interface (UI) and user experience (UX) are crucial components

of software applications. They directly impact user satisfaction,

engagement, and productivity.

A well-designed UI ensures that the software is visually appealing

and intuitive, making it easier for users to navigate and accomplish their

tasks efficiently. Good UX design, on the other hand, focuses on the

overall experience users have with the application, including ease of use,

accessibility, and responsiveness. Together, UI and UX design help reduce

the learning curve for new users, minimize errors, and enhance the overall

effectiveness of the software.

Chapter 1 Introduction to AI Agents

13

This not only boosts user satisfaction but also drives higher adoption

rates and customer loyalty. A study by Forrester Research found that a

well-designed UI could increase a website’s conversion rate by up to 200%,

while better UX design could yield conversion rates up to 400%.13

As AI agents evolve, rethinking UI and UX design becomes essential to

deal with the unique challenges posed by LLMs. Given that LLMs are not

always perfect and can sometimes be unreliable, traditional chat interfaces

have been an early approach. This interface allows users to easily see the

AI’s actions, receive streamed responses, correct the AI by responding to

it, and ask follow-up questions. This interactive and transparent format

ensures that users can remain in control and make necessary changes.

However, there are limitations to this approach. The human remains

very much in the loop, making the system more of a copilot rather than an

autonomous operator.

One way to address this balance is by ensuring transparency and

accountability in the AI’s actions. For instance, in a home automation

scenario, having a detailed log of everything the agent has done allows

users to review and modify actions if necessary.

This review process could be streamlined through an interface that

lets users easily modify the schedule for devices like lights, thermostats,

and security systems. The AI can autonomously manage these devices, but

users can still step in to adjust settings or provide feedback, which the AI

can then learn from and adapt to in future tasks.

Moreover, the interface for interacting with AI agents can be

designed to be more proactive and integrated into everyday devices.

Instead of requiring users to open an application, the AI could work in

the background and periodically reach out with updates or queries. For

example, an AI agent might notify you through your smart home hub or

13 https://www.forrester.com/report/The-Business-Impact-Of-Customer-
Experience-Q4-2016/RES137870

Chapter 1 Introduction to AI Agents

https://www.forrester.com/report/The-Business-Impact-Of-Customer-Experience-Q4-2016/RES137870
https://www.forrester.com/report/The-Business-Impact-Of-Customer-Experience-Q4-2016/RES137870

14

wearable device with a message like, “Your energy consumption is higher

than usual today. Would you like me to adjust the thermostat settings to

save energy?”

This proactive approach ensures that AI agents are seamlessly

integrated into users’ lives, providing assistance as needed without

requiring constant manual engagement.

Ultimately, rethinking UI and UX for AI agents involves creating

systems that are both user-friendly and capable of operating with a degree

of autonomy while maintaining transparency and reliability. This ensures

that users can trust AI agents to handle tasks efficiently, intervening only

when necessary to ensure the desired outcomes.

�New Approaches to Development
Traditional software development follows a fairly deterministic workflow.

It is based on a structured and sequential approach to creating software

applications. This process typically begins with requirement analysis,

where the needs and objectives of the software are clearly defined.

This is followed by system design, where the architecture and detailed

specifications are created. Next comes implementation or coding, where

developers write the actual code according to the design specifications.

Once the coding is complete, the software undergoes rigorous testing to

identify and fix any bugs or issues. After successful testing, the software

is deployed into the production environment. Finally, maintenance and

updates are performed as necessary to address any issues that arise after

deployment.

The deterministic nature of traditional software development lies in its

predictability and repeatability. Each phase of the development process

is well-defined and follows a linear progression. The clear documentation

and structured processes make it easier to manage large teams and

complex projects.

Chapter 1 Introduction to AI Agents

15

Developing generative AI agents significantly differs from traditional

software development due to its reliance on probabilistic outcomes

rather than deterministic processes. This can be a major adjustment for

developers.

Let’s take a look at a typical workflow. The first step is to identify the

use case, a task that can be complex since certain scenarios may not be

suitable for AI due to the need for predictability. Once a suitable use

case is determined, selecting one or more models is the next challenge.

This selection process is intricate because models are sophisticated and

frequently updated.

Cost is another critical factor in developing generative AI agents.

Whether using an API or running models locally, the expenses can be

substantial. Running a model locally may require buying costly hardware,

such as GPUs. Furthermore, the complexity of the workflows must be

thoroughly evaluated. Given that LLMs operate on probabilities, there is

always the risk of incorrect outputs or decisions. To mitigate these risks,

implementing guardrails and considering options for a human-in-the-loop

are common practices to ensure safety and accuracy.

Testing generative AI agents presents its own set of challenges

due to the unpredictability of the responses. This testing phase can be

lengthy and detailed, requiring extensive trials to ensure reliability and

effectiveness.

According to Sonya Huang and Pat Grady, who are partners at Sequoia

Capital:

Existing monitoring tools don’t provide the level of insights
you need to trace what went wrong with an LLM call. And
testing is different in a stochastic world, too—you’re not run-
ning a simple “test that 2=2” unit test that a computer can eas-
ily verify. Testing becomes a more nuanced concept with

Chapter 1 Introduction to AI Agents

16

techniques like pairwise comparisons (e.g. Langsmith, Lmsys)
and tracking improvements/regressions. All of this calls for a
new set of developer tools.14

To improve accuracy, it is often necessary to use databases with

proprietary information, adding another layer of complexity. This may

involve fine-tuning the model or employing techniques like Retrieval-

Augmented Generation (RAG) to enhance the model’s performance. Each

of these steps underscores the dynamic and adaptive nature of developing

generative AI agents. This certainly highlights the differences from the

more deterministic workflows of traditional software development.

�Flavors of AI Agents
AI agents come in two primary forms: embodied agents and software

agents. Each type serves distinct purposes and operates in different

environments. They leverage the unique capabilities of AI to address

specific needs and challenges.

Embodied agents are AI systems that interact with the physical world or

simulated 3D environments. These agents are often used in robotics, where

they can perform tasks such as assembly line work, warehouse management,

and autonomous navigation. In video games, embodied agents control non-

player characters (NPCs), creating more immersive and realistic experiences

for players. The development of embodied agents requires sophisticated

algorithms that enable perception, decision-making, and action within

dynamic environments. These agents often rely on sensors, cameras, and

other input devices to gather information about their surroundings, process

this data in real time, and execute appropriate actions.

14 https://www.sequoiacap.com/article/goldilocks-agents/

Chapter 1 Introduction to AI Agents

https://www.sequoiacap.com/article/goldilocks-agents/

17

Software agents, on the other hand, operate within digital

environments, handling tasks related to office work, workflows, and

data management. These agents can automate repetitive tasks, manage

emails, schedule appointments, and facilitate complex business processes.

Software agents are designed to improve productivity and streamline

operations by acting as intelligent assistants that can understand and

execute various commands based on user inputs.

The development of both embodied and software agents involves

distinct challenges and methodologies. Embodied agents require extensive

training in real or simulated environments to handle physical tasks

effectively. This training often involves reinforcement learning, where

agents learn through trial and error to optimize their actions. Conversely,

software agents are typically trained on large datasets using LLMs to

understand and generate humanlike responses.

As for this book, the primary focus will be on software agents.

�Brief History
AI agents have been around since the dawn of AI, with early programs in

the 1950s laying the groundwork for their development. The Logic Theorist

(1955), created by Allen Newell and Herbert A. Simon, was among the

first AI programs, designed to mimic human problem-solving skills by

proving mathematical theorems from Principia Mathematica. Its use of

automated reasoning and heuristics showcased the potential for machines

to perform intelligent tasks. Following this, Newell and Simon developed

the General Problem Solver (1957), a more versatile system capable of

applying general strategies to solve a wide range of problems. Introducing

means-end analysis and hierarchical problem-solving, GPS aimed for

universal applicability, influencing both AI and cognitive psychology.

These foundational efforts demonstrated that machines could emulate

human reasoning and inspired future AI advancements.

Chapter 1 Introduction to AI Agents

18

Of course, generative AI agents represent a very recent development in

the field of artificial intelligence. The breakthrough came with the launch

of OpenAI’s ChatGPT in November 2022, which rapidly became the fastest-

growing web application.

OpenAI’s subsequent models, including GPT-4o, have significantly

advanced generative AI’s capabilities, enabling more accurate and

sophisticated text generation, reasoning, and content creation. These

developments have allowed AI to assist in diverse applications, from

customer service to software development.

LangChain has played a key role in the development of generative

AI agents by providing a framework that simplifies the integration LLMs

with various data sources and tools. This technology emerged around

mid-2023, when it began offering comprehensive support for agents that

can plan, execute tasks, and adapt based on outcomes.

In the meantime, other systems like BabyAGI and AutoGPT emerged to

build generative AI agents. They initially generated significant buzz within

the AI community. BabyAGI, created by Yohei Nakajima, and AutoGPT,

developed by Toran Bruce Richards, promised revolutionary capabilities

by leveraging LLMs like OpenAI’s GPT-4 to automate complex tasks with

minimal human intervention. However, the initial excitement was soon

tempered by the realization of their limitations. Both systems struggled

with brittleness and generalization, often getting stuck in loops or failing to

follow through on tasks coherently.

But this was OK. This is a normal part of the innovation process. There

are often false starts, and these initial attempts help identify critical areas

for improvement. The experiences with BabyAGI and AutoGPT provided

valuable lessons and insights that contributed to the refinement and

evolution of autonomous AI agents.

New platforms like LangGraph, AutoGen, and CrewAI are now leading

the way in this ongoing evolution. LangGraph provides a framework for

building stateful, multi-agent systems that can handle complex workflows

and integrate seamlessly with various tools, enhancing the reliability

Chapter 1 Introduction to AI Agents

19

and efficiency of AI agents. AutoGen offers advanced capabilities for

generating AI-driven content and automating tasks with greater precision

and adaptability, leveraging the latest advancements in machine learning

and natural language processing. CrewAI focuses on collaborative AI,

enabling multiple agents to work together on intricate projects, optimizing

resource utilization, and improving overall performance. These platforms,

which are open source, represent the next step in the journey of generative

AI, building on past experiences to create more resilient and versatile

AI agents.

Emerging proprietary systems are also making significant strides,

especially in enterprise-grade applications. These systems are designed to

meet the complex needs of businesses, offering robust security, scalability,

and integration capabilities. Companies like Microsoft and Google are

integrating advanced AI functionalities into their enterprise solutions,

providing tools that enhance productivity, automate routine tasks, and

deliver actionable insights across various business functions.

Again, this is early days. But the pace of innovation and investment in

core technologies for AI agents has remained brisk.

�LLMs, Copilots, and RPA
Generative AI agents differ from general-purpose LLMs like ChatGPT,

Claude, and Gemini in several key aspects. While LLMs excel in generating

text based on prompts and can access tools like Internet searches or

APIs for additional information, they typically do not engage in complex

actions or planning. These LLMs are primarily designed for conversational

interactions and do not possess the specialized capabilities or domain-

specific knowledge that generative AI agents often require. As they evolve,

LLMs are incorporating more agentic features, but their primary function

remains centered around providing information and engaging in dialogue

rather than executing tasks or making decisions.

Chapter 1 Introduction to AI Agents

20

Then what about copilots? They are more specialized and task

oriented. These agents are tailored for specific applications or domains

such as marketing, law, or HR. For instance, a marketing copilot might

assist in drafting ad copy or analyzing campaign performance data.

They are capable of not only generating text but also retrieving and

integrating relevant information from various sources, such as emails or

databases, to enhance their output. Users can interact with these agents

to receive suggestions, which they can accept, reject, or modify. This

helps to streamline workflows and enhance productivity within specific

professional contexts.

Robotic process automation (RPA), on the other hand, represents a

different category altogether. RPAs are focused on automating repetitive

and rule-based tasks traditionally performed by humans. They operate

based on predefined rules and structured data, mimicking human actions

like clicking interfaces or entering data into forms. RPAs do not utilize AI

for decision-making but can be integrated with AI agents to enhance their

capabilities. This integration allows RPAs to handle more complex tasks

that require cognitive functions such as natural language understanding or

pattern recognition, expanding their utility beyond basic automation.

However, over time, there will likely be a move mainly toward AI

agents. So ultimately, there may not be much distinction between LLMs,

copilots, and RPA.

Note T he software-as-a-service (SaaS) market is valued at about
$261.15 billion.15 But AI agents are positioned to revolutionize this
sector. One major area is with the traditional subscription business
model. After all, if an AI agent can handle many of the activities of
a certain role and there is likely to be minimal interaction with a

15 https://www.grandviewresearch.com/industry-analysis/
saas-market-report

Chapter 1 Introduction to AI Agents

https://www.grandviewresearch.com/industry-analysis/saas-market-report
https://www.grandviewresearch.com/industry-analysis/saas-market-report

21

human worker, then why tie the charge for the software according to
the number of seats or users? Rather, it seems more likely that the
business model will be based on the measurable improvements to
productivity, cost savings, and effectiveness of the decision-making.
It is essentially an outcome-based pricing model.

�Use Cases
Sandi Besen is an Applied Artificial Intelligence Researcher at IBM. “We

focus on staying 6 months ahead of the AI curve by experimenting with

emerging AI technology and how we can apply it to enterprise solutions,”

she said. “As of the last 6 months our focus has been solely on AI Agents.”16

What she has noticed is that there has been a shift to embedding

agents into operational processes of business—rather than as being a

copilot. This has meant the emergence of a wide array of use cases.

According to her:

Some use cases that our clients have been interested in across
different industries are: helping agents handle flight the
rebooking of passengers when flights are cancelled, having
agents find conflicting arguments in new policies that directly
contradict existing policies, creating long form documenta-
tion with validation and fact checking, research agents that
pull information from many sources to help complete a task,
which is an exhaustive search that would take humans
too long.

So in the rest of the chapter, we’ll take a look at how companies are

deploying AI agents.

16 From an interview with the authors.

Chapter 1 Introduction to AI Agents

22

�Sierra
Bret Taylor has an impressive career in the technology sector, beginning

with his contribution to the creation of Google Maps. Following this

achievement, he ventured into entrepreneurship and cofounded

FriendFeed, a social media aggregation company later acquired by

Facebook. The “like” feature from FriendFeed was integrated into

Facebook, where Taylor eventually served as the Chief Technology Officer.

In 2012, Taylor left Facebook to start Quip, a productivity tool designed

to compete with Google Docs. Quip was eventually sold to Salesforce.

com for a substantial amount, and Taylor rose to the position of co-CEO at

Salesforce.com.

Along the way, he saw the growing importance of AI. So to capitalize

on this trend, he cofounded Sierra with Clay Bavor, Google’s former

Head of VR.

Sierra focuses on creating AI agents aimed at enhancing customer

experience for enterprise clients. The platform emphasizes high levels of

security, governance, and privacy, offering QA and audit tools. Notable

clients include Weight Watchers, Sonos, and OluKai. Taylor highlighted the

importance of democratizing access to advanced technology, stating, “The

greatest opportunity we have is to enable every company, no matter how

sophisticated or technical, to deploy AI successfully.”17

Sierra’s AI agents are designed to integrate with existing business

infrastructures, leveraging company data to inform actions, which must

be formally approved. These agents are sophisticated enough to handle

complex customer interactions with empathy. The platform uses a multi-

model approach, sometimes employing up to seven models, including a

“supervisor” model that monitors and ensures the quality of responses.

17 https://www.cxtoday.com/contact-centre/ex-salesforce-co-ceo-
launches-ai-agent-startup/

Chapter 1 Introduction to AI Agents

https://www.cxtoday.com/contact-centre/ex-salesforce-co-ceo-launches-ai-agent-startup/
https://www.cxtoday.com/contact-centre/ex-salesforce-co-ceo-launches-ai-agent-startup/

23

Furthermore, the founders have innovated in their pricing strategy, opting

for an outcome-based model where customers pay only when problems are

resolved, rather than traditional subscription or usage-based fees.

Sierra has successfully raised $110 million in funding from Sequoia

and Benchmark, showcasing strong investor confidence in their vision and

capabilities.18

�Enso
Mickey Haslavsky’s parents ran small businesses, and from a young age,

he witnessed the challenges they faced, particularly with adopting new

technologies. Inspired by these experiences, Haslavsky founded Enso,

a company that leverages AI agents to assist small- and medium-sized

businesses (SMBs). He noted:

However, I realized the challenge extends beyond generational
divides; small businesses, overwhelmed with managing every-
thing on their own, often struggle to embrace digital tools and
advancements due to limited bandwidth and resources.19

Enso’s AI agents are designed to be user-friendly, requiring no

technical skills. They operate mostly in the background, handling various

tasks and processes, with users primarily needing to make approvals and

minor adjustments. These agents are built on extensive API integrations,

leveraging large language models (LLMs) and robotic process automation

(RPA). They are trained across multiple industries, including healthcare,

financial services, and beauty, to provide versatile support in areas like

marketing, content creation, and research.

18 https://www.cxtoday.com/contact-centre/ex-salesforce-co-ceo-
launches-ai-agent-startup/
19 https://enso.bot/blog/the-story-behind-enso

Chapter 1 Introduction to AI Agents

https://www.cxtoday.com/contact-centre/ex-salesforce-co-ceo-launches-ai-agent-startup/
https://www.cxtoday.com/contact-centre/ex-salesforce-co-ceo-launches-ai-agent-startup/
https://enso.bot/blog/the-story-behind-enso

24

For example, Enso’s AI can generate a podcast by using a research tool

to find relevant topics, LLMs to create and fine-tune the script, voice-

generation tools to record voices, AI music generation for the intro and

outro, and video editing tools to finalize the video. Enso’s services are

priced between $29 and $79 per month.

In July 2024, Enso announced a seed funding round of $6 million, led

by NFX and supported by various angel investors, including Yossi Matias,

head of AI at Google Research, and Shmil Levy, former general partner at

Sequoia Capital.20

�Asana
Asana is a web and mobile application designed to help teams organize,

track, and manage their work. It was founded in 2008 by Dustin Moskovitz

and Justin Rosenstein, both former Facebook employees. The company

has developed an AI agent system called “AI Teammates,” which

underscores the importance of having humans in the loop.21

AI Teammates allow organizations to create customized agents to

manage workflows. This is significant because workflow tools are often

rigid and can easily break if processes change. For instance, if a help ticket

is submitted with missing or inadequate information, the AI teammate

can return it to the submitter, requesting the necessary details. This might

involve using generative AI to assist the employee in writing a complete

ticket before sending it back to the AI teammate, which can then route it to

the appropriate person for resolution.

20 https://enso.bot/blog/press-release-enso-launches-first-guided-ai-
agents-platform-with-6m-in-funding-from-nfx
21 https://techcrunch.com/2024/06/05/asana-introduces-ai-teammates-
designed-to-work-alongside-human-employees/

Chapter 1 Introduction to AI Agents

https://enso.bot/blog/press-release-enso-launches-first-guided-ai-agents-platform-with-6m-in-funding-from-nfx
https://enso.bot/blog/press-release-enso-launches-first-guided-ai-agents-platform-with-6m-in-funding-from-nfx
https://techcrunch.com/2024/06/05/asana-introduces-ai-teammates-designed-to-work-alongside-human-employees/
https://techcrunch.com/2024/06/05/asana-introduces-ai-teammates-designed-to-work-alongside-human-employees/

25

One of Asana’s key advantages is its extensive datasets, with over

100,000 customers. The Asana Work Graph tracks intricate connections

and relationships, enabling the AI to understand not just how work

happens, but how it happens in specific instances. This means that when

AI Teammates are embedded into a workflow, they are given specific

tasks and know which information to access, increasing their likelihood of

performing the right actions.

Note A aron Levie, who is the cofounder and CEO of Box, has said:
“With AI agents, there are multiple components to a self-reinforcing
flywheel that will serve to dramatically improve what AI agents can
accomplish in the near and long-term: GPU price/performance,
model efficiency, model quality and intelligence, AI frameworks
and infrastructure improvements. Altogether, these improvements
mean that what we’re seeing today in AI agents is barely scratching
the surface of what will soon be possible. Something that may not
work today or seems too expensive to automate, may just be one
performance improvement cycle away from becoming possible.”22

�Conclusion
The evolution of AI agents marks a significant milestone in the AI

landscape, characterized by rapid advancements and widespread

optimism among industry leaders. Andrew Ng and other visionaries like

22 https://www.linkedin.com/posts/boxaaron_ai-agent-innovation-
is-going-to-follow-the-activity-7201264007775756289-Kbt5/?utm_
source=share&utm_medium=member_ios

Chapter 1 Introduction to AI Agents

https://www.linkedin.com/posts/boxaaron_ai-agent-innovation-is-going-to-follow-the-activity-7201264007775756289-Kbt5/?utm_source=share&utm_medium=member_ios
https://www.linkedin.com/posts/boxaaron_ai-agent-innovation-is-going-to-follow-the-activity-7201264007775756289-Kbt5/?utm_source=share&utm_medium=member_ios
https://www.linkedin.com/posts/boxaaron_ai-agent-innovation-is-going-to-follow-the-activity-7201264007775756289-Kbt5/?utm_source=share&utm_medium=member_ios

26

Bill Gates highlight the transformative potential of AI agents, envisioning

a future where these systems become integral to both personal and

professional spheres.

For software developers, in particular, this represents a significant

opportunity. The ongoing advancements promise to redefine traditional

workflows and software paradigms, offering developers a chance to

innovate and create next-generation applications. This new wave of AI

technology will demand fresh approaches and solutions, making it an

exciting time for those looking to push the boundaries of what software

can achieve.

Chapter 1 Introduction to AI Agents

27© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0_2

CHAPTER 2

Generative AI
Foundations
Generative AI is a branch of artificial intelligence that provides for the

creation of diverse content such as blogs, articles, code, images, videos,

and music. This process is initiated by entering a prompt into a chatbot

system, which then generates humanlike output based on the given

instructions. One of the primary ways to access generative AI is through a

large language model (LLM). An LLM is a sophisticated system trained on

vast amounts of data across various topics, including biology, marketing,

history, finance, medicine, technology, literature, entertainment, and

more. This extensive training allows the model to perform tasks such

as language translation, classification—where it categorizes data into

predefined groups—and summarization.

Understanding generative AI is crucial for developing AI agents, as it

provides insight into the capabilities and limitations of this technology.

By grasping how generative AI works, one can better harness its potential

while being mindful of its constraints. This chapter will look into the

fundamentals of generative AI, exploring its applications and significance

in AI agent development.

https://doi.org/10.1007/979-8-8688-1134-0_2#DOI

28

Note  Chatbot technology is nothing new. The roots go back to the
1960s. Joseph Weizenbaum, a professor at MIT, created ELIZA. It was
essentially a virtual therapist. A user could enter a question—in a
teletype interface—and the chatbot would provide a response. True,
it was mostly a mimicking of the question. But ELIZA still proved to be
quite powerful. Some users actually thought it was a real person.

�Pretrained Models
LLMs are pretrained. This means they are trained on vast amounts of data,

often drawn from extensive corpora like Wikipedia, Reddit, and many

other sources across the Internet. The speculation is that some of massive

LLMs encompass most of the content available online, enabling them to

generate highly informed and contextually relevant outputs. Additionally,

some pretrained models incorporate proprietary information, as

companies like OpenAI have licensed content from publishers such as

News Corp, Springer, and Vox.

During the pretraining phase, the models learn embeddings, which

are dense vector representations of words or tokens. These embeddings,

essentially fixed-length arrays of numbers, capture semantic relationships

between words, allowing the model to understand and generate

humanlike text based on context.

Traditionally, AI models were trained on structured, labeled data,

which made it easier to process and categorize information. However,

generative AI distinguishes itself by allowing training on unstructured

data. This flexibility enables the models to handle a more diverse range

of inputs and generate outputs that closely mimic human language. The

effectiveness of these models is further enhanced by scaling laws, which

posit that the performance of an LLM improves with the increase in the

quantity of training data and the size of the model itself.

Chapter 2 Generative AI Foundations

29

An important development in the field of pretrained models is the

emergence of domain-specific LLMs. These models are fine-tuned with

data from specific industries or fields, such as legal documents, medical

records, or financial reports, making them highly specialized for particular

tasks. This specialized training allows them to better understand and

process the unique language and concepts of their domain, enhancing

their accuracy and relevance. As a result, domain-specific LLMs provide

more precise and tailored outputs compared to general-purpose LLMs,

which may struggle with domain-specific terminology and nuances.

Despite their advantages, pretrained models come with certain

drawbacks. One significant limitation is the cut-off date for the training

data, meaning that an LLM will lack the most recent information.

Additionally, there are concerns about the availability and quality of useful

data, with some believing that companies are exhausting the reservoir of

valuable data. As more Internet content becomes AI generated, there is a

risk of creating a corrosive feedback loop that could degrade the quality of

the models.

To mitigate these challenges, an emerging trend involves generating

synthetic data. Synthetic data refers to artificially created data that mimics

real-world data but is generated through algorithms rather than collected

from actual events. This approach reduces the dependence on public

Internet content and proprietary data, potentially lowering costs and

circumventing licensing issues. Synthetic data generation could thus play a

crucial role in sustaining and enhancing the performance of future LLMs.

�Transformer Models
The transformer model represents a revolutionary shift in the field of

natural language processing (NLP) due to its unique architecture and

innovative use of attention mechanisms. Introduced in the seminal 2017

paper “Attention Is All You Need,” the transformer model has significantly

Chapter 2 Generative AI Foundations

30

outperformed previous models—like recurrent neural networks (RNNs)—

by efficiently processing large datasets. Unlike traditional models that

rely on sequential data processing, the transformer employs parallel

processing, allowing it to handle vast amounts of text data more quickly

and accurately. This also makes these types of models ideal for GPUs.

A key component of the transformer model is its attention mechanism,

specifically the self-attention mechanism. This allows the model to weigh

the importance of different tokens within a given context. This helps

to understand the relationships and dependencies between them. By

doing so, it can capture the nuanced meaning of words based on their

surrounding context. For example, the word “bark” can refer to the sound

a dog makes or the outer layer of a tree, and the transformer model can

discern the correct meaning based on the other words in the sentence.

There are three primary types of transformer models, each with

distinct applications. Autoregressive language models, like OpenAI’s GPT

series, predict the next token in a sequence based solely on the preceding

tokens. These models are excellent for tasks involving text generation.

Autoencoding language models, such as Google’s BERT, take a

different approach by predicting tokens based on the surrounding

context, making them bidirectional. This bidirectional nature allows these

models to excel in tasks like text classification, sentiment analysis, and

named entity recognition. They effectively understand the full context

of a sentence. This helps to improve the accuracy in understanding the

meaning and intent behind the text.

The third type of transformer model combines both autoregressive

and autoencoding techniques. An example of this is the T5 model, which

can be fine-tuned for various tasks, leveraging the strengths of both

approaches to achieve state-of-the-art performance across a range of NLP

applications.

In addition to these foundational types, transformer models have

evolved to incorporate various enhancements, such as sparse attention

mechanisms, which reduce computational complexity.

Chapter 2 Generative AI Foundations

31

�Transfer Learning
Transfer learning is a machine learning technique where a model trained

on one task is repurposed to perform a different but related task. This

method leverages the knowledge gained during the initial training phase

to improve performance on the new task.

Transformer models are particularly well suited for transfer learning

due to their ability to learn and encode complex language patterns

during pretraining. These models are initially trained on extensive and

diverse text corpora using unsupervised learning methods, learning to

understand syntax, semantics, and the contextual relationships between

words. Once pretrained, these transformer models can be fine-tuned for

specific downstream tasks, such as text classification, sentiment analysis,

or question answering. Fine-tuning involves adjusting the model’s

parameters using a smaller, task-specific dataset, allowing the model to

adapt its general language understanding to the nuances of the particular

task, leading to enhanced performance.

Note P arameters are variables that the model learns and adjusts
during the training process to make accurate predictions. In the
context for transformer models, these parameters include weights
and biases that help the model understand the complex patterns
and relationships in the data. For example, in an LLM, parameters
determine how strongly each word in a sentence is connected to
other words. This helps the model capture context and meaning.

Retrieval-Augmented Generation (RAG) extends this approach by

combining the capabilities of pretrained language models with an external

knowledge retrieval system. RAG enhances performance on specific tasks

by retrieving relevant information from a large corpus and integrating

it into the generation process. This makes RAG particularly useful for

Chapter 2 Generative AI Foundations

32

tasks requiring current knowledge or detailed context, further improving

the adaptability and efficiency of transformer models in various NLP

applications.

The transfer learning approach with transformers offers several

advantages. It is efficient, as the model has already learned a vast amount

of information during pretraining, requiring significantly less data and

time to fine-tune for specific tasks. Pretrained transformers often achieve

state-of-the-art results on various NLP tasks after fine-tuning. Additionally,

leveraging pretrained models reduces the computational resources

required, making it feasible to train high-performing models even with

limited data and hardware.

�Alignment in Language Models
Alignment in language models refers to the model’s ability to produce

responses that meet the expectations and requirements of the user. This

involves ensuring that the model’s outputs are coherent, contextually

appropriate, and align with the desired goals of the user.

Reinforcement Learning from Human Feedback (RLHF) is a popular

method used to enhance the alignment of LLMs. RLHF involves using

feedback from human evaluators to fine-tune the model’s performance.

Instead of relying solely on traditional supervised learning, which can be

limited by the quality and scope of labeled data, RLHF allows the model to

learn from a smaller, high-quality batch of human feedback on its outputs.

This iterative process helps the model better understand and meet user

expectations, leading to more accurate and satisfactory responses.

The implementation of RLHF has shown significant improvements

in modern LLMs. By incorporating human feedback, these models can

refine their responses to be more relevant and contextually appropriate.

This method helps address issues like generating safe and ethical content,

reducing biases, and improving overall user satisfaction.

Chapter 2 Generative AI Foundations

33

While RLHF has proven effective, other approaches are also being

explored to achieve better alignment in LLMs. One such method is

Reinforcement Learning with AI Feedback, demonstrated by constitutional

AI. This approach uses feedback from AI systems to guide the training and

fine-tuning of language models. By leveraging both human and AI feedback,

researchers aim to create models that are even more aligned with user

expectations and capable of producing high-quality outputs consistently.

�Multimodal LLMs
Multimodal LLMs are a cutting-edge development in artificial intelligence.

They are designed to process and generate information across various

data types such as text, images, audio, and video. These models transcend

the limitations of traditional, text-only language models by integrating

different forms of input and output, enabling more nuanced and versatile

interactions. This advancement aligns with the broader objective of AI to

mirror humanlike understanding and interaction, which naturally involves

multiple senses.

Recent strides in multimodal LLMs have marked significant milestones

in AI research. For example, OpenAI’s advancements with GPT-4o and

Sora highlight the importance of incorporating additional modalities,

such as images, into language models, viewing this integration as a critical

frontier in AI development. Other notable models include DeepMind’s

Flamingo and Microsoft’s KOSMOS-1, which are leading the charge in this

multimodal shift.

One of the primary advantages of multimodal LLMs is their ability

to process and interpret different types of data simultaneously. This

capability leads to more informed decision-making and richer user

experiences. For instance, in ecommerce, these models can enhance

product recommendations by understanding both visual product

attributes and textual customer reviews.

Chapter 2 Generative AI Foundations

34

However, deploying multimodal LLMs comes with challenges,

including the complexity of training these models and ethical

considerations. Training requires extensive and diverse datasets, along

with significant computational resources. Furthermore, the integration

of different data types must be managed carefully to ensure coherent and

useful outputs.

�Types of Models
The first OpenAI GPT model, launched in 2018, had 117 million

parameters and marked a significant breakthrough in natural language

processing. Known as GPT-1, it utilized a transformer architecture and

was trained on a large corpus of Internet text. Although limited in its

capabilities, GPT-1 demonstrated the ability to generate coherent and

contextually relevant text.

Following the release of GPT-1, OpenAI rapidly advanced its

language model technology with subsequent iterations. In 2019, GPT-2

was introduced with 1.5 billion parameters, significantly improving

performance. The leap to GPT-3 in 2020 was even more dramatic, featuring

175 billion parameters. This exponential increase in model size enabled

GPT-3 to perform a wider range of tasks with remarkable accuracy.

However, developing these advanced models required enormous

computational resources and financial investment. Training such

large-scale models necessitated powerful hardware and extensive data.

Recognizing the potential and resource demands of these models,

Microsoft made a $1 billion investment in OpenAI in 2019. This

partnership enabled the scaling and deployment of these advanced

language models, driving forward the progress of AI and its applications

across various industries. Over the years, Microsoft’s investment would

total more than $13 billion.

Chapter 2 Generative AI Foundations

35

With the introduction of GPT-4, OpenAI has not disclosed the exact

number of parameters, but rumors suggest that it exceeds 1 trillion

parameters. This lack of transparency has become common among other

developers of LLMs as they seek to protect their innovations in a highly

competitive field.

Today, the landscape for LLMs is diverse, with new models being

launched or upgraded regularly. This rapid pace of development can make

it challenging for developers to stay current with the latest advancements.

There are different types of LLMs. They include proprietary systems

and open source projects. There are also much smaller platforms, which

are called small language models (SLMs).

Let’s take a look at each of these.

�Proprietary LLMs
Proprietary LLMs are advanced AI systems developed, owned, and

controlled by private organizations. Examples include OpenAI’s GPT

models, Anthropic’s Claude, and Google’s Gemini.

Here are some of the advantages of proprietary LLMs:

•	 Financial Resources and Top Talent: Significant

financial investments allow these companies to attract

highly experienced data scientists and AI experts,

ensuring continuous development and refinement of

cutting-edge models.

•	 Leading Capabilities and Performance: These models

are often at the forefront of AI technology. They

can offer superior performance for various natural

language processing tasks.

Chapter 2 Generative AI Foundations

36

•	 Robust Developer Ecosystem: The availability of well-

structured API ecosystems simplifies integration and

accelerates the development process. Developers can

use common programming languages like Python and

benefit from additional tools such as playgrounds for

testing and refining applications.

•	 Cost Efficiency: Using APIs eliminates the need for

costly hardware investments.

•	 Comprehensive Support: The financial strength of

these companies enables them to provide extensive

customer service and support. This includes access

to detailed documentation, tutorial videos, and

responsive support teams, ensuring developers

can effectively utilize the models and address any

challenges they encounter.

•	 Ethical AI and Responsible Usage: Companies like

Anthropic prioritize aligning AI development with

human values and safety considerations, addressing

concerns related to AI misuse, privacy, and fairness.

•	 Scalability: The robust infrastructure of these

companies supports large-scale deployments and

high-demand scenarios, making these models suitable

for enterprise-wide implementations and services with

high user engagement.

Then what about the downsides? Let’s take a look.

While proprietary large language models (LLMs) like OpenAI’s GPT

models, Anthropic’s Claude, and Google’s Gemini offer numerous benefits,

there are also some notable downsides to consider:

Chapter 2 Generative AI Foundations

37

•	 Limited Customization: Users may have limited

ability to modify the models to suit specific needs

or to integrate them deeply with unique systems or

workflows.

•	 Data Privacy and Security Concerns: When using

proprietary LLMs, sensitive data must be shared with

third-party providers, raising concerns about data

privacy and security. There is always a risk that data

could be mishandled, exposed, or used in ways not

intended by the user.

•	 Dependence on Provider: Relying on a single provider

for AI capabilities creates a dependency that can

be problematic if the provider experiences outages,

changes pricing structures, or discontinues services.

This dependency can lead to significant disruptions

in business operations. For example, in late 2023, the

board of OpenAI abruptly fired the CEO and cofounder,

Sam Altman. While he was installed quickly, the event

caused much worry among customers. The result was

that some looked for alternative models.

•	 Transparency and Control: Users may not have

visibility into how the models are trained, what data is

used, or how decisions are made, leading to a lack of

control and potential trust issues.

•	 Competitive Disadvantages: Companies that rely

heavily on proprietary LLMs might find themselves at

a competitive disadvantage if their competitors have

access to similar or better models.

Chapter 2 Generative AI Foundations

38

�Open Source LLMs and SLMs
Arthur Mensch completed his thesis in 2018 at École Polytechnique and

Télécom Paris, focusing on machine learning for functional brain imaging.

Following this, he became a researcher at Google’s DeepMind, where he

concentrated on large language models (LLMs). During his time there, he

coauthored a paper on a model called Chinchilla, which challenged the

prevailing scaling laws that LLMs had to be massive.1

Concerned about the lack of transparency in megatech companies’

models, Mensch was inspired to start his own company. In April 2023, he

cofounded Mistral with Timothée Lacroix and Guillaume Lample, both of

whom were from Meta’s AI lab. The company, based in Paris, focused on

building more efficient, cost-effective, and open source models.

Mistral’s strategy quickly gained traction. Within nine months of its

founding, the company attracted some of the world’s top investors, raising

$500 million at a valuation of $2 billion. This funding would be followed up

in June 2023 with a $646 million investment, with a valuation of $6 billion.

The investors included Nvidia and Salesforce. At the time, Mistral had only

60 employees.2

Mistral’s rapid success ignited a frenzy of interest in open source

models and small language models (SLMs). Venture capitalists opened

up their wallets to fund new deals. In the meantime, developers and

researchers flocked to platforms like Hugging Face, which now hosts over

400,000 models. Each day, new models are added, reflecting the relentless

pace of innovation.

Open source LLMs offer numerous benefits that are transforming the

AI landscape:

1 https://www.wsj.com/tech/ai/french-startup-mistral-ai-raises-650-
million-in-bid-to-scale-up-22899937
2 https://www.wsj.com/tech/ai/the-9-month-old-ai-startup-challenging-
silicon-valleys-giants-ee2e4c48

Chapter 2 Generative AI Foundations

https://www.wsj.com/tech/ai/french-startup-mistral-ai-raises-650-million-in-bid-to-scale-up-22899937
https://www.wsj.com/tech/ai/french-startup-mistral-ai-raises-650-million-in-bid-to-scale-up-22899937
https://www.wsj.com/tech/ai/the-9-month-old-ai-startup-challenging-silicon-valleys-giants-ee2e4c48
https://www.wsj.com/tech/ai/the-9-month-old-ai-startup-challenging-silicon-valleys-giants-ee2e4c48

39

•	 Transparency: Open source models allow researchers,

developers, and users to inspect the architecture,

weights, and training data, promoting accountability

and enabling the identification and mitigation of biases

inherent in the model.

•	 Community Collaboration: A diverse group of

contributors can work on improving the models, fixing

bugs, and adding new features. This collective effort

accelerates innovation and ensures that the models

evolve rapidly to meet various needs.

•	 Democratization: Open source provides tools that

are freely available for use and customization. This

accessibility encourages experimentation and the

development of new applications across different

domains.

•	 Enhanced Security: With control over the source

code, models can be used locally or in private data

centers, providing more control over proprietary data

and mitigating risks associated with cloud-based

deployment.

As for SLMs, they have their own advantages:

•	 Efficiency: They are designed to deliver robust

performance while requiring less computational power,

making them suitable for deployment in environments

with limited resources. For instance, companies like

Apple use SLMs on their smartphones, reducing

latency by eliminating the need to access the cloud.

•	 Tailor the Models: This can be easier with SLMs. There

is also usually more flexibility.

Chapter 2 Generative AI Foundations

40

•	 More Focused: They can be optimized for specific

tasks like summarization or classification without the

overhead of unused capabilities found in larger models.

This targeted approach ensures that enterprises

do not have to maintain models with unnecessary

functionalities. After all, does an enterprise need the

capability to do things like write poetry? Of course not.

While open source LLMs and SLMs offer numerous benefits, they

also come with several drawbacks that users need to be aware of. In fact,

there are still some potential security issues. Downloading them from

third-party sites can introduce vulnerabilities, such as model poisoning,

where malicious actors embed harmful elements into the models. This

risk underscores the need for robust security measures when handling

these models.

The cost of using open source LLMs and SLMs is another important

consideration. Although the source code is free, running these models

requires sophisticated and often expensive hardware. High-performance

GPUs or specialized AI accelerators are necessary to efficiently train

and deploy these models, which can be cost-prohibitive for smaller

organizations. Additionally, the complexity of these models means that

skilled professionals, such as data analysts and data scientists, are needed

to manage and optimize their use, further increasing operational costs.

Transparency, a touted advantage of open source models, is not always

as clear-cut either. While the architecture and weights may be disclosed,

the training data often remains undisclosed. This partial transparency can

limit the ability to fully understand the model’s behavior and potential

biases, which is crucial for responsible AI deployment.

Chapter 2 Generative AI Foundations

41

�Prompt Engineering
When developing AI agents, understanding prompt engineering is

essential. Prompt engineering is the key to effectively working with LLMs.

It involves crafting inputs that guide these sophisticated AI systems to

generate accurate and relevant responses. Mastering this skill ensures that

developers can leverage the full potential of LLMs, making interactions

with AI more productive and precise.

Prompt engineering is a subfield of machine learning and natural

language processing, focusing on enabling computers to comprehend and

interpret human language. This process goes beyond merely asking single

questions. It often involves an iterative conversation with the LLM, where

you refine and adjust your prompts based on the responses until you

extract the precise information or answer you need. This back-and-forth

interaction helps in honing the model’s output to achieve that valuable

insight or solution.

There is a lot of hype surrounding prompt engineering, with numerous

videos, blogs, and articles claiming to reveal its “secrets.” However, it’s

important to be cautious of these claims. In reality, prompt engineering

boils down to a handful of core concepts. Understanding these

foundational principles is more valuable than chasing after supposed

hidden tricks.

Prompt engineering is a blend of art and science. The fact is, the same

prompt can elicit different responses due to the complex probabilistic

nature of LLMs. This inherent variability means that trial and error is a

common part of the process. Developers must often tweak their prompts

multiple times to get the desired outcome, which requires patience and a

willingness to experiment.

Moreover, LLMs are frequently updated, which can introduce changes

in their capabilities and outputs. These updates can sometimes improve

certain aspects while worsening others, adding another layer of complexity

to prompt engineering.

Chapter 2 Generative AI Foundations

42

With all this in mind, let’s take a look at some of the key factors for

successful prompt engineering.

�Be Clear
When working with LLMs, clarity in your prompts is essential for

generating accurate and relevant responses. An LLM needs to understand

the nuances of your request to offer useful information. By being clear and

detailed in your instructions, you set the stage for the model to produce

responses that align closely with your expectations.

There are several techniques you can employ to achieve this clarity

and context in your prompts.

�Details
To obtain a relevant response from an LLM, it’s important to provide

important details and context in your requests. Failing to do so leaves the

model to make assumptions about your intents. A more effective approach

is to be specific and include key information in your prompt. For instance,

rather than simply asking “Explain gravity,” a more effective prompt would

be “Explain how gravity affects the orbit of the Earth around the Sun, using

simple terms suitable for a high school student.” This level of detail guides

the model to generate a response tailored to your specific needs.

�Persona
A system message is a powerful tool when working with LLMs, as it

allows the model to adopt a specific persona or role for its responses. This

approach enhances the relevance and quality of the model’s output.

System prompt: “When I ask for advice, respond as if you are a

seasoned business consultant with over 20 years of experience in the tech

industry.”

Chapter 2 Generative AI Foundations

43

�Use Delimiters
Delimiters are valuable tools when working LLMs as they help to clearly

demarcate different sections of text that require specific treatment. This

technique can enhance the model’s focus and accuracy in processing

information. Common delimiters include triple quotation marks or

section titles.

For instance, when dealing with a document that needs

summarization, you could use a prompt like “Summarize the text

delimited by triple quotes.” You would then enclose the entire document

within triple quotes. This approach effectively instructs the LLM to

concentrate solely on the content within the specified delimiters, ensuring

that it summarizes only the relevant text while disregarding any extraneous

information.

�Steps for a Task
When working with large language models, breaking down complex tasks

into a sequence of explicit steps can improve the model’s ability to follow

instructions accurately. This approach provides a clear road map for the

model to process information and generate responses. Here’s an example:

Follow these steps to create a simple Python

function:

Step 1: The user will provide a brief description of a

function they need. Based on this description, create

a function signature, including an appropriate

name and parameters. Prefix this with “Function

Signature: ”.

Step 2: Implement the function body with the

necessary logic to accomplish the described task.

Use clear variable names and add comments to

Chapter 2 Generative AI Foundations

44

explain any complex parts. Present the complete

function, including the signature from Step 1, with a

prefix “Implementation: ”.

Step 3: Provide a brief example of how to call the

function with sample inputs, and show the expected

output. Present this as a code snippet with the prefix

“Usage Example: ”.

Another approach is to use recursive summarization. This is when

you have documents that are too long for an LLM’s context window. That

is, you can summarize different sections of the document. Then you will

summarize the summaries.

�Time to Think
When faced with a complex problem or calculation, taking the time to

think it through step by step often leads to better results. This principle

applies not only to humans but also to LLMs. Models tend to produce

more accurate responses when they’re prompted to explain their

reasoning before providing a final answer. This approach, often called a

“chain of thought,” allows the model to work through the problem logically,

much like a human would.

Incorporating step-by-step reasoning in prompts can enhance

problem-solving and decision-making processes. By explicitly asking to

“reason it out” or “think things through step by step,” we create a mental

framework that provides for a more methodical approach. This approach

not only improves the quality of responses but also makes the problem-

solving process more transparent and easier to follow.

However, other types of prompts can be equally valuable in refining

responses. For instance, asking “What can be done to improve this

response?” encourages critical evaluation and identifies areas for

enhancement. Similarly, prompting with “Are there things I should

Chapter 2 Generative AI Foundations

45

add?” can reveal overlooked aspects or additional considerations. These

prompts, along with others like “What assumptions am I making?” or

“What are potential counterarguments?”, foster a more comprehensive and

nuanced approach to problem-solving. By using a variety of thoughtful

prompts, we can guide both human thinking and AI responses toward

more thorough, balanced, and insightful outcomes across a wide range of

tasks and decisions.

�Length of Output
When working with large language models, you have the ability to request

outputs of specific lengths. You can specify the desired length in various

units such as words, sentences, paragraphs, or bullet points. However,

it’s important to note that while the model can generally adhere to these

requests, its precision varies depending on the unit of measurement.

Specifically, asking for a certain number of words may not yield highly

accurate results. On the other hand, the model tends to be more reliable

when asked to generate a specific number of paragraphs or bullet points.

Summarize the text delimited by triple quotes as one paragraph.

Text

�Going Beyond the Transformer
While transformers have significantly advanced generative AI, there

is ongoing research to develop more efficient models. Two promising

alternatives are Test-Time Training (TTT) and State Space Models (SSMs).

Test-Time Training (TTT) is being developed by researchers from

Stanford, UC San Diego, UC Berkeley, and Meta. TTT models are designed

to process more data than transformers while consuming less energy.

Unlike transformers, which rely on a growing lookup table, TTT models

use a machine learning model to encode data into representative variables

Chapter 2 Generative AI Foundations

46

called weights. This method ensures that the model size remains constant,

no matter how much data it processes. TTT can be applied to various data

types, including text, images, audio, and video.

Another alternative, State Space Models (SSMs), are also being

explored for their computational efficiency and scalability. Like TTT, SSMs

can handle larger datasets more efficiently than transformers.

Despite their potential, both TTT and SSM technologies are still in the

early stages of development. For now, transformers remain the default

model for generative AI, but ongoing research aims to improve these

systems’ efficiency and capabilities, potentially leading to new models that

could eventually surpass transformers.

�Conclusion
As we conclude this chapter on the foundations of generative AI, it’s

clear that this technology represents a monumental leap in artificial

intelligence. By enabling the creation of diverse content, from text and

images to music and video, generative AI has unlocked new possibilities

across industries. The backbone of this technology, LLMs, exemplifies the

advancements in AI, showcasing the ability to generate humanlike outputs

based on extensive training data. This understanding forms the bedrock

upon which AI agents are developed, allowing them to perform tasks that

were once considered the exclusive domain of humans.

Reflecting on the evolution of generative AI, we see a continuum from

early chatbot experiments like ELIZA to today’s sophisticated models

capable of nuanced and contextually rich interactions. This progress

underscores the importance of continuous innovation and adaptation in

the AI field. As we look ahead, the potential of domain-specific models

and emerging techniques like synthetic data generation and transformer

alternatives promises to further enhance the capabilities and efficiency of

AI systems.

Chapter 2 Generative AI Foundations

47© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0_3

CHAPTER 3

Types of Agents
Artificial intelligence (AI) agents represent a diverse and evolving field

within AI technology. These agents range from simple systems with limited

capabilities to sophisticated entities capable of complex decision-making

and learning from their environments. The types of AI agents include

simple reflex agents, model-based reflex agents, goal-based agents, utility-

based agents, and learning agents, each with unique characteristics and

applications that cater to different needs and challenges.

However, distinguishing between these different types of agents can

be challenging as the technology continues to evolve rapidly. The lines

between agent types often blur, making it difficult to categorize them

neatly. For example, an agent designed to optimize supply chain logistics

might use a combination of goal-based planning and utility-based

decision-making to adapt to real-time changes in inventory and demand.

This hybrid nature of modern AI agents reflects the complexity and

sophistication of current AI applications.

Moreover, as AI technology advances, new capabilities and integration

methods emerge, leading to the development of agents that incorporate

multiple AI techniques. These hybrid agents can leverage the strengths

of various approaches, such as combining the adaptability of learning

agents with the strategic planning capabilities of goal-based agents.

This convergence makes it increasingly important to understand

the foundational concepts of each type to appreciate their specific

contributions and potential synergies.

https://doi.org/10.1007/979-8-8688-1134-0_3#DOI

48

In this chapter, we will take a closer look at the main types of AI agents,

exploring their unique characteristics, applications, and the nuances that

differentiate them.

�Simple Reflex Agents
Simple reflex agents are the most basic type of intelligent agents in

artificial intelligence. They operate based on a predefined set of rules

that dictate how they should respond to specific sensory inputs from

their environment. These agents do not store past experiences or use any

form of internal memory. Instead, they react solely based on the current

percept. Their decision-making process is straightforward, relying on

simple "if-then" conditions to determine the appropriate actions.

For instance, in a temperature control system, a simple reflex agent

might be programmed with a rule like "If the room temperature exceeds

45 degrees Celsius, then turn on the air conditioning." This rule allows

the agent to monitor the temperature through sensors and activate the

air conditioning using actuators when the specified condition is met.

Such simplicity makes these agents suitable for tasks that do not require

complex decision-making or learning from past experiences, such as

resetting passwords based on keywords or operating basic physical

robots like vacuum cleaners or thermostats that respond to changes in

temperature.

One of the main advantages of simple reflex agents is their ease

of design and implementation. They require minimal computational

resources and can be highly reliable, provided that the sensors are

accurate and the rules are well designed. However, they also have

significant limitations. These agents are prone to errors if the input sensors

are faulty or the predefined rules are not comprehensive enough to handle

all possible situations. Furthermore, they struggle with environments that

are partially observable or subject to changes that the agents have not

Chapter 3 Types of Agents

49

been explicitly programmed to handle. This makes them less effective

in dynamic or unpredictable environments where more sophisticated

decision-making capabilities are necessary.

�Model-Based Reflex Agents
Model-based reflex agents are an advanced form of intelligent agents that

enhance decision-making capabilities by incorporating internal models

of the environment. Unlike simple reflex agents, which react purely

based on current percepts, model-based reflex agents consider both the

current sensory input and an internal state that represents aspects of

the environment that are not immediately observable. In this context,

a "percept" is the data or information that an agent receives from its

environment via its sensors at a given moment. It represents the current

state of the environment as detected by the agent, serving as the basis

for the agent’s decision-making process. The percept allows the agent to

understand and interact with its surroundings by providing real-time input

that informs its actions.

The decision-making process of model-based reflex agents involves

several steps. First, they perceive the environment through sensors,

gathering current state information. Next, they use an internal model

to update their understanding of the environment. This internal model

includes knowledge of how the environment evolves independently and

how the agent’s actions can affect it. This model enables the agent to

predict probable outcomes before making decisions, allowing for more

sophisticated and informed actions.

A key component of these agents is their reasoning mechanism,

which evaluates sensor data and the internal model to make decisions.

This reasoning can be based on rule-based systems, logical reasoning,

or more advanced methods like machine learning and large language

models (LLMs). After making a decision, the agent uses actuators to

Chapter 3 Types of Agents

50

execute actions, which can involve physical movements in robots or virtual

operations in software systems. Actuators are components that carry out

the agent’s decisions by converting them into physical or digital operations

that impact the environment. These actions then impact the environment,

completing the perception-action cycle.

Model-based reflex agents offer several advantages. They can

make quick and efficient decisions by leveraging their internal models

to understand the world better. This makes them more adaptable to

changes in the environment, as they continuously update their models

based on new percepts. However, these agents are computationally

expensive, requiring significant resources to maintain and update their

models. Additionally, accurately capturing the complexity of real-world

environments can be challenging.

A practical use case for model-based reflex agents is in manufacturing

systems, where they optimize production processes by predicting machine

failures or material shortages. By maintaining a detailed internal model of

the production environment, these agents can proactively address issues,

improving efficiency and reducing downtime.

�Goal-Based Agents
Goal-based agents, also known as rule-based agents, are AI systems

designed to achieve specific objectives or goals by considering future

outcomes and planning. They share similarities with model-based agents,

but goal-based agents have a different approach to decision-making. While

model-based agents use historical and current data to make predictions,

goal-based agents are driven by specific objectives and use search

algorithms to determine the most efficient path to achieve their goals. This

involves considering long sequences of possible actions, often referred to

as searching and planning, to navigate toward the desired outcome.

Chapter 3 Types of Agents

51

The capabilities of goal-based agents extend beyond simple

reactionary behavior to proactive planning and optimization. They are

future-oriented, using decision-making algorithms to evaluate potential

scenarios and adapt their strategies based on new information and

changing conditions. This adaptability is essential in environments where

the parameters can shift rapidly, such as robotics, autonomous vehicles,

and complex game AI.

Goal-based agents are particularly valuable due to their enhanced

autonomy, predictive capabilities, and efficiency. They enable systems

to function with minimal human intervention by adjusting their actions

to meet their goals, predict future scenarios, and find optimal paths to

achieve desired results. This not only saves resources and time but also

ensures that the system can adapt to new challenges and opportunities as

they arise.

Moreover, goal-based agents are utilized in various advanced

applications. In generative AI, they are employed for content creation,

game design, automated design and prototyping, personalized marketing,

intelligent assistants, and financial trading. These agents excel in tasks

requiring complex decision-making and strategic planning, making

them indispensable in fields that demand high levels of precision and

adaptability.

�Utility-Based Agents
Utility-based agents are advanced AI systems that use complex reasoning

algorithms to achieve the best possible outcomes by evaluating different

scenarios. This evaluation process involves a utility function, which assigns

values to various states based on their desirability. The agent then selects

actions that lead to high-utility states, effectively balancing multiple goals

or optimizing specific criteria such as cost, quality, or time.

Chapter 3 Types of Agents

52

One of the key strengths of utility-based agents is their ability to adapt

to dynamic environments. They continuously reassess their strategies

based on new data and changing conditions

This makes them effective many fields. For instance, in financial

trading, they help maximize returns by evaluating different investment

strategies and their potential outcomes. In logistics, they optimize

supply chain operations by balancing cost, delivery time, and resource

availability. Additionally, utility-based agents are instrumental in customer

service applications, where they can recommend products or services that

best meet user preferences, considering factors such as price, quality, and

delivery speed.

However, the implementation of utility-based agents comes with

certain challenges. These agents require an accurate model of the

environment to make reliable decisions. If the model is inaccurate or

incomplete, it can lead to suboptimal decision-making and potential

errors. Moreover, the computational demands of evaluating multiple

scenarios and calculating expected utilities can be resource-intensive,

making these agents expensive to operate.

�Learning Agents
Learning agents are a cornerstone of artificial intelligence, designed

to improve their performance over time by learning from previous

experiences. They operate based on sensory inputs and feedback

mechanisms, which allow them to refine their actions and decisions

dynamically. Initially, learning agents start with basic knowledge, but

they adapt and enhance their performance through machine learning

techniques. The architecture of a learning agent typically includes four key

components: a learning element, a critic, a performance element, and a

problem generator. The learning element updates the agent’s knowledge

base, the critic provides feedback by evaluating the agent’s performance,

Chapter 3 Types of Agents

53

the performance element is responsible for decision-making, and the

problem generator introduces new challenges to stimulate continuous

learning.

Despite their potential, learning agents have several notable

drawbacks. The development and maintenance of learning agents can be

costly and resource-intensive. These agents also require large amounts

of data to function effectively, which can be a significant limitation in

scenarios where data is scarce or expensive to obtain.

Learning agents have diverse applications across various industries,

demonstrating their versatility and impact. One prominent use case is

personalized recommender systems. By evaluating user behavior and

preferences, learning agents power recommendation engines in social

networking and ecommerce platforms.

In the healthcare sector, learning agents support medical practitioners

by assisting in drug development, individualized treatment planning,

medical diagnostics, and patient health data monitoring. By analyzing vast

amounts of medical data, these agents help identify patterns and insights

that lead to more accurate diagnoses and effective treatments, ultimately

improving patient outcomes.

�Hierarchical Agents
Hierarchical agents in AI are structured collections of agents organized in

a tiered system. In such a hierarchy, high-level agents are responsible for

setting overarching goals and constraints, which are then communicated

to lower-level agents. These lower-level agents focus on handling specific

tasks to achieve the goals set by the higher-level agents. This structure can

vary in complexity, with simple systems featuring just two levels—high-

level and low-level agents—while more complex systems might include

intermediate-level agents to coordinate and manage activities across

different tiers.

Chapter 3 Types of Agents

54

One of the primary advantages of hierarchical agents is their ability to

reduce duplicated efforts and improve resource efficiency. By delegating

tasks through a structured hierarchy, decision-making can be faster, as

lower-level agents can operate independently within the constraints set by

higher-level agents. This streamlined approach allows for more efficient

use of computational resources and can lead to quicker responses in

executing tasks.

However, there are also downsides to hierarchical agent systems. Fixed

hierarchies can limit adaptability, making these systems less effective in

dynamic environments where conditions frequently change. This rigidity

can prevent the system from adjusting quickly to new circumstances,

potentially reducing its overall effectiveness. What’s more, hierarchical

systems can be challenging to repurpose for different use cases, as their

design is often tailored to specific goals and tasks.

Training hierarchical agent systems can also be complex. The need

for extensive data labeling and the intricacies involved in defining the

interactions and dependencies between different levels of agents can make

the training process labor-intensive and time-consuming. Ensuring that

each agent, at every level of the hierarchy, functions correctly and aligns

with the overall system’s goals requires careful planning and substantial

computational resources.

A use case for hierarchical agents is in transportation systems, such

as managing traffic and routing for logistics. In this scenario, high-level

agents could oversee overall traffic flow and set priorities, while lower-

level agents handle specific routing decisions for individual vehicles.

Intermediate-level agents might coordinate activities within particular

regions or districts, ensuring that traffic moves smoothly and efficiently

across the entire network. This hierarchical approach can optimize route

planning and traffic management, leading to reduced congestion and

improved logistics efficiency.

Chapter 3 Types of Agents

55

�Conclusion
The diverse types of AI agents discussed in this chapter highlight the

breadth and depth of capabilities that artificial intelligence can offer.

From the simplicity of reflex agents that react to immediate stimuli

to the complexity of learning agents that adapt and evolve based on

experience, each type of agent serves unique purposes and applications.

Understanding these different types is crucial for anyone looking to

leverage AI effectively.

As AI technology continues to advance, the distinctions between

different agent types may blur even further, giving rise to hybrid agents that

combine the strengths of various approaches. This evolution underscores

the importance of a foundational understanding of each agent type, as

it provides the necessary context to appreciate the advancements and

synergies that hybrid agents bring.

Chapter 3 Types of Agents

57© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0_4

CHAPTER 4

OpenAI GPTs and the
Assistants API
Sam Altman, who is the CEO and cofounder of OpenAI, has noted that AI

will become more ubiquitous in our lives than smartphones. He also said

that AI agents would be the next super killer app. According to him, an AI

agent will do “[w]hat you really want.”1

To this end, OpenAI has launched several agentic systems. There are

GPTs as well as the Assistants API.

In this chapter, we’ll take a look at these tools. But first, we’ll describe

the OpenAI account and how to get the API key.

�Registering for the OpenAI API Key
To use the OpenAI Assistants API, you will need to set up an account with

OpenAI. Go to the following URL:

https://platform.openai.com/docs/overview
You will select the “Sign Up” button on the top right. You can enter

your email address and password. Or, you can create the account using an

existing account with Google, Microsoft, or Apple.

You will get a free credit for $5, which is available for three months.

After this, you will need to set up your credit card with OpenAI.

1 https://www.technologyreview.com/2024/05/01/1091979/sam-altman-says-
helpful-agents-are-poised-to-become-ais-killer-function/

https://doi.org/10.1007/979-8-8688-1134-0_4#DOI
https://platform.openai.com/docs/overview
https://www.technologyreview.com/2024/05/01/1091979/sam-altman-says-helpful-agents-are-poised-to-become-ais-killer-function/
https://www.technologyreview.com/2024/05/01/1091979/sam-altman-says-helpful-agents-are-poised-to-become-ais-killer-function/

58

�GPTs
A GPT is a customization of ChatGPT. It involves combining instructions,

files, and APIs.

Think of GPTs like the iOS App Store or Google Play. You can find them

at the following URL:

https://chatgpt.com/gpts

Figure 4-1.  This is the main screen for OpenAI’s GPTs, which are
customizations for ChatGPT

Chapter 4 OpenAI GPTs and the Assistants API

https://chatgpt.com/gpts

59

There’s a search box where you can discover GPTs, as you can see in

Figure 4-1. There are also different categories you can select from, such as

Writing, Productivity, Lifestyle, and Programming.

You can use GPTs if you have a free account with ChatGPT. But there

are message limits. If you want to have a subscription, it is $20 per month.

Using a GPT is easy. You will click the icon, and there will be a pop-up,

which will provide details about the GPT. To use it, click “Start Chat.” Then

you can chat with the GPT. Your GPTs will also appear on the top left of

ChatGPT.

However, if you want to build a GPT, you need to have a paid account.

If so, you can go to this URL for the GPT Builder:

https://chatgpt.com/gpts/editor

Figure 4-2.  This is the dashboard for the GPT Builder, which allows
for creating GPTs

Figure 4-2 shows the dashboard for it. On the left side, you will create

the GPT, and the right side will preview the output.

Let’s create a GPT.

Chapter 4 OpenAI GPTs and the Assistants API

https://chatgpt.com/gpts/editor

60

You will first write a prompt for the GPT you want to create. It can be a

sentence or two. Here are some examples:

•	 Product research that gathers information on products,

compares features, and provides reviews

•	 Event planner that suggests themes, creates mood

boards, and finds vendors and venues

•	 Fashion consultant that offers style advice, generates

outfit ideas, and finds the latest fashion trends

The GPT Builder will then suggest a name for the GPT, a profile picture,

and some default prompts. Of course, you can add your own or you can

change them later.

The GPT Builder will ask a few more questions to refine the GPT. As

you do this, you will be able to preview it on the right side of the screen.

When it is finished, you can click Create at the top right of the screen.

A menu will pop up, and you will have the option to share the link with

whom you want. Click the Save button to create the GPT. You can start

using it in ChatGPT.

Also, there are other features you can add to the GPT. You do this by

selecting the Configure tab on the right side of the screen. Here, you have

the option to change the profile picture and the prompt suggestions. You

can also change the “Instructions.” This is the prompt for the GPT.

Then there is the Knowledge feature. This allows you to upload

documents, such as PDFs. This is a way to add data to your GPT for more

specialization.

You can also select for capabilities like browsing the Web, image

generation, and the use of the Code Interpreter, which uses Python to solve

problems.

Then there are “Actions.” With these, you can make connections to

APIs, say from Slack, Notion, Zapier, and so on.

Chapter 4 OpenAI GPTs and the Assistants API

61

But there are some things to consider:

•	 GPTs are only accessed from ChatGPT. Rather, to

integrate this capability into another website, you will

use the Assistants API.

•	 Currently, there is no monetization for your GPTs. But

OpenAI has plans to allow this.

•	 The developers of GPTs do not have access to the user

conversations.

•	 The Enterprise edition of ChatGPT allows for creating

GPTs that are for internal purposes.

�Pricing and Tokens
When you use either the Playground or Assistants API, you will pay a fee

for using an LLM. This is based on the number of tokens.

With the competition among the LLM providers, the pricing has been

steadily declining. This is likely to continue for some time.

A token represents a word, part of a word, or a character. This structure

depends on the LLM. But with a token, a model can process text.

A good way to understand how tokens work is to use OpenAI’s

Tokenizer, which you can find here:

https://platform.openai.com/tokenizer

Chapter 4 OpenAI GPTs and the Assistants API

https://platform.openai.com/tokenizer

62

Figure 4-3.  This is the OpenAI Tokenizer

Figure 4-3 shows the page. At the top, the input box is where you enter

text. We entered:

Acquiring knowledge continuously invigorates the intellect and

maintains curiosity!

Below, the Tokenizer uses a coding scheme to indicate the different

tokens. The word “acquiring” is made up of two tokens and “knowledge”

is one, which includes a space. As for “invigorates,” it has three tokens. The

exclamation has one token. And the emoji is made up of three as well.

In terms of the pricing, you can find the latest details here:

https://openai.com/api/pricing/

Chapter 4 OpenAI GPTs and the Assistants API

https://openai.com/api/pricing/

63

The page shows a listing of the available models, ordered by the

performance. As of this writing, the top model is GPT-4o. You will pay $5

for each one million tokens. This is for the prompt. The response from the

LLM, on the other hand, is $15 per one million tokens.

There are different flavors for the use of GPT-4o. For example, there

is the Batch API. This means that the tokens are collected, and the LLM’s

responses are processed within a day or so. This comes with a 50%

discount to the pricing. The Batch API is generally when you have high

volumes for your application.

GPT-4o is multimodal, which means that it allows for recognizing

and generating images. The pricing is also different—and more complex.

Because of this, OpenAI provides a calculator. It’s based on the width,

height, and resolution of the image.

The next novel in performance is the GPT-4o model. It is much

smaller—although it is still powerful. In fact, it is very useful for developing

proof of concepts.

The GPT-4o model is much less expensive. The fee is 15 cents per one

million tokens for the prompt and 60 cents per one million for the LLM

responses. The Batch API is also at a 50% discount.

Another important type of model is for embeddings. This is for

developing applications for search, topic modeling, classification, and

clustering. There are different embedding models available. The pricing

ranges from $0.020 to $0.10 per one million tokens.

Then there are models for fine-tuning. This is a more sophisticated way

to customize an LLM. Fine-tuning is allowed for GPT-40-mini, GPT-3.5-

turbo, davinci-002, and babbage-002. The pricing ranges from $0.30 to $12

per one million tokens.

Next, there is the pricing for the Assistants API. This is based on the

tools you want to use. It is $0.03 per session for the Code Interpreter and

$0.10 per GB per day for File Search.

Chapter 4 OpenAI GPTs and the Assistants API

64

Note T here is a rule of thumb: roughly 1,000 tokens are about
750 words.

�OpenAI API
The OpenAI API is the system to build generative AI apps. It is not the

same as the Assistants API.

But it’s important to have a backgrounder in the OpenAI API. With it,

you can build your own agents. This can provide more control over the

application.

However, it will generally have much more code at least vs. using an

agent framework.

For the purposes of this book, the focus will be on using frameworks—

not natively creating agents.

In light of this, let’s have a short demo of the OpenAI API. This program

is a tweet generator. It asks for the user’s API key once, then repeatedly

prompts for topics. For each topic, it uses GPT-4o-mini to generate a one-

sentence tweet with emojis. The program continues until the user chooses

to quit.

We first need to install the OpenAI API:

pip install openai

Then we have the following:

import openai
import os
from getpass import getpass

First, we import the OpenAI library, which provides a Python interface

to interact with OpenAI’s API services.

Chapter 4 OpenAI GPTs and the Assistants API

65

Next, we bring in the os and getpass modules. These allow for turning

the OpenAI API key into an environment variable. This is to secure it. You

do not want anyone else to have access to the key—since they could charge

your account for the fees.

This function will then ask to enter the API key:

def get_api_key():
 return getpass("Enter your OpenAI API key: ")

Then we have a function to generate the tweet:

def generate_tweet(client, topic):
 try:
 completion = client.chat.completions.create(
 model="gpt-4o-mini",
 messages=[
 �{"role": "system", "content": "You are a social

media expert skilled at creating engaging
tweets."},

 �{"role": "user", "content": f"Write a one-
sentence tweet about {topic}. Include relevant
emojis."}

]
)
 return completion.choices[0].message.content
 except Exception as e:
 return f"An error occurred: {str(e)}"

The function takes two parameters: client (an instance of the OpenAI

API client) and topic (the subject for the tweet). Inside a try-except block

for error handling, it sends a request to the API using the chat completion

endpoint. The request specifies the “gpt-4o-mini” model and includes two

messages: a system message defining the AI’s role as a social media expert

Chapter 4 OpenAI GPTs and the Assistants API

66

and a user message requesting a one-sentence tweet about the given topic

with emojis. If successful, it returns the generated tweet content from

the API response. If an error occurs during this process, it catches the

exception and returns an error message instead.

Finally, we have this function:

def main():
 print("Welcome to the Tweet Generator!")

 # Get the API key once at the start
 api_key = get_api_key()
 client = openai.OpenAI(api_key=api_key)

 while True:
 topic = �input("Enter a topic for your tweet (or 'quit'

to exit): ")
 if topic.lower() == 'quit':
 break
 tweet = generate_tweet(client, topic)
 print("\nGenerated Tweet:")
 print(tweet)
 print("\n" + "-"*50 + "\n")

This starts by printing a welcome message, then securely obtains the

API key from the user and initializes the OpenAI client. The function then

enters a loop, repeatedly prompting the user for tweet topics. For each

topic entered, it calls generate_tweet to create a tweet, prints the result,

and adds a separator line. This cycle continues until the user types “quit,”

at which point the loop breaks and the program ends.

�Assistants API
In November 2023, OpenAI announced its Assistants API. According to the

company:

Chapter 4 OpenAI GPTs and the Assistants API

67

An assistant is a purpose-built AI that has specific instruc-
tions, leverages extra knowledge, and can call models and
tools to perform tasks. The new Assistants API provides new
capabilities such as Code Interpreter and Retrieval as well as
function calling to handle a lot of the heavy lifting that you
previously had to do yourself and enable you to build high-
quality AI apps.2

Basically, this is a wrapper on the OpenAI API that allows for including

agentic capabilities in generative AI apps. In fact, it’s the underlying

technology for GPTs.

Currently, the Assistants API is in beta. So when you read this chapter,

some of the instructions will be different. But we’ll have updates on the

book’s GitHub repository.

The Assistants system has two parts: the Playground and the API. Both

operate on the same workflow, which you can find in Figure 4-4.

Figure 4-4.  This is the workflow for the OpenAI Assistants API

First, we have the Assistant, which is the agent. It has a unique ID and

is configured for an OpenAI LLM. You can also list the tools, and there are

three: the Code Interpreter, File Search, and custom functions.

2 https://openai.com/index/new-models-and-developer-products-
announced-at-devday/

Chapter 4 OpenAI GPTs and the Assistants API

https://openai.com/index/new-models-and-developer-products-announced-at-devday/
https://openai.com/index/new-models-and-developer-products-announced-at-devday/

68

Next, there is a thread. This is where the user has a chat with the

Assistant. The thread will store the messages, which are appended to the

others. When this is done, all the messages will be sent to the LLM. This

allows for memory. After all, an LLM does not have any state. For our

thread, the message is about what the rate of return will be needed to

double an investment. There is also the response, which is the answer from

the LLM.

For this to be executed, there is the Run segment. It will take in the

messages and use the tools. This is where there is orchestration. This

process can go back and forth until the goals have been reached for the

Assistant.

You will be charged for when you run an Assistant. This is based on the

following price:

•	 Code Interpreter: This allows for running Python code,

such as to handle computations, data analysis, and

visualizations. OpenAI charges $0.03 per session.

•	 File Search: You can load and search external files. The

fee is 10 cents per gigabyte of storage per day. OpenAI

provides up to 1 GB free.

You will also be charged for when using a model. We’ll discuss this

later in the chapter.

Let’s now take a look at the Playground.

�Playground
With the Playground, you can experiment with the Assistants API. This is

done in a low-code environment. To use the Playground, you can go to

this URL:

https://platform.openai.com/assistants

Chapter 4 OpenAI GPTs and the Assistants API

https://platform.openai.com/assistants

69

Figure 4-5.  This is the introduction screen for the Playground of the
Assistants API

Figure 4-5 shows the screen. On the left side, you will see any existing

Assistants you’ve created. Then on the right side, you will get the details

for each of them. On the top right of the screen, you can click “Create” to

create a new Assistant.

First, you will enter the name for the Assistant. It can be whatever

you want.

Next, you will enter the instructions. This is essentially the “systems

message” you would have for the OpenAI LLM. That is, it is the persona

you want for the Assistant.

You will then select the model. The default is the most advanced one.

But if you click the icon, you will get a drop-down of other models.

The next section is where you can specify the tools you want, which

include File Search, Code Interpreter, and functions. For both File Search

and Code Interpreter, you can add multiple files.

Chapter 4 OpenAI GPTs and the Assistants API

70

In the Model Configuration section, you can have the Assistant

generate output in JSON format. You can also adjust for the following:

•	 Temperature: This is for the randomness or creativity

for the model’s output. It ranges from 0 to 2. The closer

to 0, the more deterministic are the results.

•	 Top P: This controls the diversity of the LLM’s output

by considering only the most likely tokens whose

cumulative probability reaches a specified threshold

P. For example, if Top P is set to 0.9, the model will

select from the smallest set of tokens whose combined

probability is at least 90%. This method allows for more

dynamic and contextually relevant responses.

You can select for the version of the API. However, it’s common to use

the default, which is the most recent.

You can also delete an Assistant or clone one.

Once you are finished with the Assistant, you can select Playground, at

the top right of the screen.

You will then see the builder screen, which is in Figure 4-6.

Chapter 4 OpenAI GPTs and the Assistants API

71

Figure 4-6.  This is the builder for the Playground of the
Assistants API

The left side of the screen has the configuration options. Then in

the middle, there is the thread. This shows the messages. To create a

message, we enter text in the box below. There is also an option to add files

and images.

Suppose we have the following message:

Assume the average return on my investments is 5% and I make $5,000

contributions each year. How long will it take to reach $100,000?

Figure 4-6 shows the output. The Assistant executes the Code

Interpreter, which creates a Python program that calculates the investment

amount. Then there is the result, which is that it will take 14 years to reach

$100,000.

On the right side, you can see the logs for the Assistant. This can be

helpful in seeing what is being executed. It can also allow for debugging.

On the top right of the thread, there are the number of tokens for

the thread. You can also clear the thread and get a listing of the files

being used.

Chapter 4 OpenAI GPTs and the Assistants API

72

�Assistants API
To show how the Assistants API works, we’ll create a program. It will

calculate the return on investments.

The following imports the OpenAI class and creates an instance of it

called client:

from openai import OpenAI
client = OpenAI()

Then we create the Assistant:

assistant = client.beta.assistants.create(
 name="Investing Bot",
 instructions="You are an expert in calculating investments.",
 tools=[{"type": "code_interpreter"}],
 model="gpt-4o-mini",
)

The “client.beta.assistants.create()” method is called to create a new

Assistant. Note that this is for the beta.

The Assistant has several parameters:

•	 Name: This can be anything you want.

•	 Instructions: This is the system message for the

Assistant.

•	 Tools: You can have more than one. But for this

Assistant, we’ll use the Code Interpreter.

•	 Model: We will use gpt-4o-mini.

Chapter 4 OpenAI GPTs and the Assistants API

73

We will create a thread and a message:

thread = client.beta.threads.create()

message = client.beta.threads.messages.create(
 thread_id=thread.id,
 role="user",
 �content=" You have $10,000 to invest. You want to double
your money in 20 years. What average return will you need
to get?"

)

We will run the thread=ad:

run = client.beta.threads.runs.create(
 thread_id=thread.id,
 assistant_id=assistant.id,
 instructions="Provide detailed analysis."
)

The thread_id=thread.id specifies the conversation thread the

Assistant will process. This ensures the Assistant has the context of the

previous messages in the thread. Next, the assistant_id=assistant.id

identifies which Assistant should be used for this run. This refers to the

Assistant we created earlier.

Then instructions=“Provide detailed analysis” gives additional

instructions to the Assistant for this particular run.

It will take some time for this to be processed. This is why we create the

following, which will notify us when it is completed:

import time

while run.status != "completed":
 run = client.beta.threads.runs.retrieve(
 thread_id=thread.id,

Chapter 4 OpenAI GPTs and the Assistants API

74

 run_id=run.id
)
 print(run.status)
 time.sleep(5)

The import of time brings in Python’s time module, which we’ll use to

add delays between status checks. The while loop will continue as long as

run.status is not “completed.” This means the loop will keep running until

the Assistant finishes processing the request.

This code snippet retrieves all the messages from the thread:

messages = client.beta.threads.messages.list(
 thread_id=thread.id
)

The thread_id=thread.id specifies which thread’s messages should be

retrieved.

This code snippet processes and prints the messages from the thread,

starting with the oldest message:

for thread_message in messages.data[::-1]:
 print(thread_message.content[0].text.value)
 print('\n')

The ([::-1]) is to allow for the reverse order. Then for each message, it

accesses the text content using thread_message.content[0].text.value.

This function is designed to extract a percentage value from the text

response:

def extract_rate_of_return(response):
 import re
 match = re.search(r'(\d+(\.\d+)?%)', response)
 if match:
 return match.group(1)
 return None

Chapter 4 OpenAI GPTs and the Assistants API

75

This function uses regular expressions to find and extract a percentage

value from a given text response. It searches for a pattern of one or more

digits, optionally followed by a decimal portion, and ending with a

percent sign. If such a pattern is found, the function returns the matched

percentage as a string; otherwise, it returns None.

We will then print out the response:

for thread_message in messages.data[::-1]:
 if thread_message.role == "assistant":
 rate_of_return = �extract_rate_of_return(thread_message.

content[0].text.value)
 if rate_of_return:
 �print(f"The average rate of return will need to be

at least {rate_of_return}.")
 else:
 �print("Could not extract the rate of return from

the response.")
 break

This code iterates through the conversation messages in reverse order,

looking for the Assistant’s response. When it finds the Assistant’s message,

it attempts to extract the rate of return using the previously defined

function. If successful, it prints the extracted rate; otherwise, it reports

that extraction failed. The loop breaks after processing the first Assistant

message, ensuring only the most recent response is analyzed.

As you use the API, you can create multiple Assistants. You can find

details about them with this code snippet:

my_assistants = client.beta.assistants.list(
 order="desc",
 limit="20",
)
print(my_assistants.data)

Chapter 4 OpenAI GPTs and the Assistants API

76

This will show the Assistants in descending order and limit to 20.

Also, if you want to delete an Assistant, you can use the following:

response = client.beta.assistants.delete(my_assistants.
data[0].id)
print(response)

The my_assistants.data[0].id refers to the ID of the first Assistant in a

list of Assistants.

�Recent Advancements
The recent article by OpenAI on “Learning to Reason with LLMs”3

introduces the o1 model, which is a new generation of LLM using

reinforcement learning to achieve massive improvements in reasoning

capability. For the most part, this is an example of how broad-based

models are implementing agentic capabilities.

A key to the o1 model is that it can “think before it answers,” thereby

mimicking the way humans explain things. This is a major departure from

traditional LLMs, which are based on the answers on the patterns they

have learned from the training data.

However, with the o1 model, it engages in deep reasoning, breaking

complex tasks into simpler ones so as to try to find the best response.

It promises to do exceptionally well for domains that involve the most

sophisticated problem-solving, such as competitive programming,

mathematical reasoning, and science.

The article boasts about the achievements of the o1 model. About its

performance on a variety of challenging benchmarks, o1 ranked in the

89th percentile on Codeforces, the competitive programming platform,

and placed among the top 500 students in the USA Math Olympiad

3 https://openai.com/index/learning-to-reason-with-llms

Chapter 4 OpenAI GPTs and the Assistants API

https://openai.com/index/learning-to-reason-with-llms

77

qualifier. On expert-level knowledge tasks such as the GPQA benchmark,

o1 outperformed human PhD-level performance in physics, biology, and

chemistry.

4 https://openai.com/index/learning-to-reason-with-llms/#:~:text=
their%20daily%20work.-,Appendix%20A,-Dataset

Table 4-1.  Performance of OpenAI o1 and Other Models in Various

Competitions4

Dataset Metric gpt-4o o1-preview o1

Competition Math AIME (2024) cons@64 13.4 56.7 83.3

pass@1 9.3 44.6 74.4

Competition Code

CodeForces

Elo 808 1,258 1,673

Percentile 11.0 62.0 89.0

GPQA Diamond cons@64 56.1 78.3 78.0

pass@1 50.6 73.3 77.3

Biology cons@64 63.2 73.7 68.4

pass@1 61.6 65.9 69.2

Chemistry cons@64 43.0 60.2 65.6

pass@1 40.2 59.9 64.7

Physics cons@64 68.6 89.5 94.2

pass@1 59.5 89.4 92.8

MATH pass@1 60.3 85.5 94.8

MMLU pass@1 88.0 90.8 92.3

MMMU (val) pass@1 69.1 n/a 78.1

MathVista (testmini) pass@1 63.8 n/a 73.2

Chapter 4 OpenAI GPTs and the Assistants API

https://openai.com/index/learning-to-reason-with-llms/#:~:text=their%20daily%20work.-,Appendix%20A,-Dataset
https://openai.com/index/learning-to-reason-with-llms/#:~:text=their%20daily%20work.-,Appendix%20A,-Dataset

78

So what is the main technical innovation of o1? It’s about the use

of reinforcement learning. This is a type of machine learning where an

agent learns to make decisions by interacting with an environment and

receiving feedback in the form of rewards or penalties. The agent’s goal is

to maximize cumulative rewards over time by optimizing its actions based

on past experiences. So for o1, the model is trained on a trial-and-error

basis. A chain-of-thought type of reasoning allows improvement either by

seeing more data or by spending more “compute time” to arrive at more

reflective and accurate answers.

OpenAI also explains the safety and alignment of the o1 model.

By embedding human values within the chain of thought, the model

becomes more effective in refusing an undesirable request or manipulative

behavior. This has been the case when simulating jailbreaks and edge-case

scenarios.

Overall, OpenAI claims that its o1 model offers unparalleled benefits

compared to its predecessors in LLMs. As OpenAI continues to fine-tune

this model, critical thinking and alignment to human values may give

way to more application scenarios being discovered, hence enhancing its

applicability in real life. Moreover, this shows that the company is investing

heavily in agentic approaches.

In fact, here’s what Aaron Levie—who is the CEO and founder of Box—

has tweeted about o1:

At Box, we’re seeing some very compelling results with
OpenAI’s new o1 model for improved reasoning on compli-
cated enterprise data. For instance, it will follow multi-step
logic rules in a contract to produce an answer, which we
haven’t seen before. This is pretty groundbreaking.5

5 https://x.com/levie/status/1835537106195918918?s=43&t=cS1w1V
Zsy-iY3t91NeeUSw

Chapter 4 OpenAI GPTs and the Assistants API

https://x.com/levie/status/1835537106195918918?s=43&t=cS1w1VZsy-iY3t91NeeUSw
https://x.com/levie/status/1835537106195918918?s=43&t=cS1w1VZsy-iY3t91NeeUSw

79

�Conclusion
By setting up an OpenAI account and obtaining an API key, users can start

exploring the potential of powerful AI tools. GPTs allow for customization,

enabling users to create personalized AI Assistants tailored to specific

needs, whether it’s for productivity, lifestyle enhancements, or business

applications. Meanwhile, the Assistants API offers a more comprehensive

solution for integrating AI capabilities into various applications, providing

tools like the Code Interpreter and File Search to handle complex

operations and data management.

The flexibility and power of OpenAI’s platforms, combined with

their user-friendly interfaces, make it easier than ever for developers and

businesses to harness the potential of AI.

Chapter 4 OpenAI GPTs and the Assistants API

81© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0_5

CHAPTER 5

Developing Agents
In the next part of this book, we will dive into the exciting world of

frameworks for building AI agents, such as CrewAI, LangGraph, AutoGen,

and Haystack. These frameworks are powerful tools that enable developers

to create sophisticated, autonomous agents capable of performing a wide

range of tasks. However, before we explore these frameworks in detail, it’s

crucial to establish a strong foundation by understanding the development

resources and approaches that will guide our journey. This background

knowledge will ensure that you’re well prepared to tackle the more

advanced concepts and techniques that lie ahead.

We’ll begin by examining the various tools, libraries, and platforms

available for AI agent development. From APIs to cloud services, these

resources play a pivotal role in streamlining the development process,

allowing you to focus on the logic and behavior of your agents rather

than getting bogged down in technical details. We’ll also discuss different

development approaches, such as fine-tuning models and integrating

external knowledge sources, which are essential for creating robust and

effective AI agents.

To complement your learning experience, this book is accompanied

by a GitHub repository, which you can access at https://github.com/
ttaulli/agents-book. The repository contains code examples, sample

projects, and additional resources that will help you apply the concepts

discussed in this book. As you work through the chapters, you’ll be able

to follow along with the code and experiment with your own AI agent

projects.

https://doi.org/10.1007/979-8-8688-1134-0_5#DOI
https://github.com/ttaulli/agents-book
https://github.com/ttaulli/agents-book

82

�Jupyter Notebook, VS Code,
and Google Colab
The choice of development environment can make a significant difference

in how efficiently you can experiment, prototype, and deploy your AI

models and agents. Jupyter Notebook, VS Code, and Google Colab are

popular and versatile tools available. Here’s a look.

�Jupyter Notebook
Jupyter Notebook is a versatile web-based application that enables the

creation of documents containing live code, visualizations, equations, and

descriptive text, all within a single interface. This interactive environment

is particularly favored by data scientists and AI practitioners for its ability

to seamlessly combine code execution with rich media support. Its utility

shines in exploratory data analysis and iterative model building, making it

a preferred tool for developing and documenting AI projects. Additionally,

the ease of sharing notebooks enhances collaboration and transparency.

Jupyter Notebook allows users to execute code interactively with results

displayed inline; supports various multimedia content like images, videos,

and mathematical expressions; integrates effortlessly with popular data

science libraries; and offers export options to formats like HTML and PDF

for convenient sharing.

�Visual Studio Code (VS Code)
Visual Studio Code (VS Code) is a powerful and free code editor developed

by Microsoft, widely recognized for its flexibility and capability in

developing generative AI applications. Its strength lies in supporting

a broad range of programming languages while offering extensive

customization through a variety of extensions. VS Code provides the

Chapter 5 Developing Agents

83

functionality of a full-fledged integrated development environment (IDE),

with features such as debugging, Git integration, and an integrated

terminal. The rich ecosystem of extensions allows developers to tailor the

editor to their specific needs, including seamless integration with Jupyter

Notebooks and support for remote development in cloud environments.

This makes VS Code a robust tool for AI development, with extensive

language support, a vast marketplace of extensions, built-in terminal and

debugging tools, and the ability to work on cloud-based or containerized

projects directly from the editor.

�Google Colab
Google Colab is a cloud-hosted Jupyter Notebook environment that

distinguishes itself with its accessibility and computational resources.

By offering free access to powerful GPUs and TPUs, Google Colab is

particularly well suited for training and testing deep learning models,

all without the need for any local setup. Running entirely in the browser,

Colab integrates seamlessly with Google Drive, facilitating easy file storage

and sharing. Its built-in collaboration features allow multiple users to work

on the same notebook simultaneously, making it an excellent choice for

collaborative AI projects. Google Colab also provides free, browser-based

access to high-performance hardware, requires no installation, integrates

directly with Google Drive, supports real-time collaborative editing, and

comes preloaded with popular AI libraries like TensorFlow and PyTorch,

significantly reducing setup time for developers.

�How to Use Jupyter Notebooks
Given the centrality of Jupyter Notebooks in these tools, understanding

their functions is crucial. So, let’s take a demo. After launching Jupyter

Notebook, you’ll be directed to the notebook dashboard in your web

Chapter 5 Developing Agents

84

browser. In the top-right corner, click the “New” button. From the drop-

down menu, select “Python 3” (or any other kernel you prefer, depending

on the programming language you are using).

A new notebook will open in a new tab. The notebook is initially

untitled, which you can see in Figure 5-1.

Figure 5-1.  This is the initial screen for a new Jupyter Notebook

To rename your notebook, click the “Untitled” text at the top of the

notebook.

Enter a new name for your notebook in the dialog box that appears.

Click “Rename” to save the new name.

Jupyter Notebooks are organized into cells, which can contain either

code or text. Let’s start with code cells:

•	 The default cell type is a code cell, where you can write

Python code or code in other supported languages.

•	 To execute the code within a cell, you can press

Shift+Enter or click the Run button in the toolbar.

Suppose you enter this code into three cells:

Calculate the sum of the first 10 natural numbers
sum_of_numbers = sum(range(1, 11))
sum_of_numbers

After running the last cell, the output will be 55. You can see this in

Figure 5-2.

Chapter 5 Developing Agents

85

Figure 5-2.  This shows code entered in the cells of a Jupyter Notebook

You can also use Markdown. This adds explanatory text,

documentation, or any other descriptive content alongside your code.

To create a Markdown cell, click the drop-down menu in the toolbar

(which typically shows “Code”) and select “Markdown.” You can then

enter the text as well as formatting for headings, lists, links, and so on. After

writing your content, run the cell to render the formatted text.

This is the sample Markdown:

Summary of Results
The code above calculates the sum of the first 10 natural
numbers.

Key Points:
- The sum is computed using Python's built-in `sum` function.
- The `range(1, 11)` generates numbers from 1 to 10.
- The final result, as shown in the code output, is 55.

Running this Markdown, you will get the output in Figure 5-3.

Chapter 5 Developing Agents

86

Figure 5-3.  This shows Markdown in Jupyter Notebook

Of course, it’s important to save your work regularly. You can do this

by clicking the floppy disk icon in the toolbar or press Ctrl+S (or Cmd+S on

Mac) to save your notebook. The notebook is saved in the .ipynb format,

which you can open later from the Jupyter dashboard.

You can export your notebook to different formats for sharing

or presentation purposes. Go to the File menu in the notebook and

select “Download as” and choose the desired format (e.g., HTML, PDF,

Markdown).

�Google Colab
To use Google Colab, you will need a Google account. The platform is at

colab.research.google.com.

The free tier, “Colab Free,” provides access to standard computing

resources, allowing users to run Jupyter Notebooks in the cloud without

any cost. However, this tier comes with certain limitations, such as lower

priority access to compute resources, a smaller GPU/TPU availability

window, and session timeouts after periods of inactivity.

Chapter 5 Developing Agents

87

For users who require more robust computing power, Google Colab

offers “Colab Pro” and “Colab Pro+” subscription plans. The Colab

Pro plan, priced at $9.99 per month, enhances the user experience by

providing access to faster GPUs and TPUs, longer session durations, and

more memory. This plan is ideal for users needing reliable and faster

processing for tasks such as machine learning model training. The Colab

Pro+ plan, at $49.99 per month, offers even more resources, including the

highest priority access to premium GPUs like the NVIDIA V100 and A100,

extended sessions, and the ability to execute more intensive computational

tasks with fewer interruptions. These paid tiers are designed to meet the

needs of power users and professionals who rely on consistent and high-

performance resources for their work.

But for the purposes of this book, we’ll use the free version. Figure 5-4

shows the screen you’ll see when you launch Colab.

Figure 5-4.  This shows the initial screen when you launch Colab

Chapter 5 Developing Agents

88

You’ll see the recent files used, and there is a search box to locate them.

Here are the other tabs:

•	 Examples: This has resources to get started with Colab

and help with various features.

•	 Google Drive: You can import notebooks from your

Google Drive.

•	 GitHub: You can import notebooks from GitHub.

•	 Upload: You can load files from your computer.

To get started, let’s select the New Notebook button. Figure 5-5 shows

what you get, which is a Jupyter Notebook as well as Colab-specific

features.

Figure 5-5.  This is a notebook in Colab

At the top, you can click Untitled0.ipynb and enter the name of the file

you want.

You can then enter Code or Text into the cells. The text cells are

equipped to process Markdown. Colab uses marked.js, which is similar but

not quite identical to the Markdown used by Jupyter Notebooks or GitHub.

Chapter 5 Developing Agents

https://github.com/chjj/marked

89

�Streamlit, Gradio, and Jupyter Widgets
When creating AI agents, tools like Streamlit, Gradio, and Jupyter

Widgets play an important role in making the development process more

interactive, accessible, and user-friendly. These tools are designed to help

developers build intuitive interfaces, enabling them to quickly prototype,

test, and demonstrate AI models, making it easier to share their work with

others, whether for research, collaboration, or deployment purposes.

•	 Streamlit: This is a powerful tool for creating custom web

applications with minimal effort. It allows developers to

turn Python scripts into interactive apps in just a few lines

of code. This is particularly useful in generative AI, where

visualizing the results of models, like text generation or

image creation, is essential for understanding and refining

the model’s outputs. Streamlit’s simplicity and flexibility

enable developers to focus on their AI models rather than

the complexities of web development, making it easier to

iterate on ideas and share results with others, including

nontechnical stakeholders.

•	 Gradio: This is another tool that simplifies the process

of building user interfaces for machine learning

models. It allows developers to create web-based

demos for their generative AI models with just a

few lines of code. Gradio is particularly valuable

because it enables real-time interaction with models,

allowing users to input data, adjust parameters, and

immediately see the output. This interactivity is

crucial for testing and refining generative models, as

it provides immediate feedback and helps identify

areas for improvement. Moreover, Gradio makes it

easy to share these demos with others, facilitating

collaboration and feedback from a broader audience.

Chapter 5 Developing Agents

90

•	 Jupyter Widgets: This extends the functionality of

Jupyter Notebooks by allowing developers to add

interactive elements such as sliders, buttons, and

text boxes to their notebooks. This interactivity is

invaluable in the generative AI development process,

as it enables developers to tweak parameters and

observe changes in model behavior in real time. For

instance, when working with text generation models,

Jupyter Widgets can allow users to adjust temperature

settings or modify input prompts dynamically, offering

a deeper understanding of how different inputs

affect the model’s outputs. This hands-on approach

not only enhances experimentation but also aids in

the educational process, making it easier to explain

complex concepts to others.

�Hugging Face
Hugging Face (https://huggingface.co) is a prominent platform and open

source community that plays a key role in the artificial intelligence (AI)

space, particularly in natural language processing (NLP) and generative

AI. Since its founding in 2016, Hugging Face has become a go-to resource

for developers and researchers, offering an array of tools, models, datasets,

and libraries designed to simplify the creation and deployment of AI

applications. Among its most significant offerings is the Transformers

library, which includes pretrained models for various tasks such as text

generation, translation, and summarization. These models, including

well-known ones like GPT, BERT, and T5, can be easily integrated into

projects, allowing developers to bypass the need for extensive training and

computational overhead.

Chapter 5 Developing Agents

https://huggingface.co

91

Hugging Face also features a comprehensive model hub, where users

can access and share thousands of pretrained models, facilitating quick

experimentation and deployment of AI solutions. This collaborative

environment encourages developers to fine-tune existing models for

their specific needs or contribute enhancements back to the community,

speeding up the overall development process for generative AI

applications.

Figure 5-6.  Inference API for Meta-Llama-3.1-8B-Instruct Model

Moreover, Hugging Face provides tools like the Inference API as

shown in Figure 5-6, which simplifies the process of deploying models in

production without requiring extensive infrastructure, and the datasets

library, which offers easy access to a variety of datasets essential for

Chapter 5 Developing Agents

92

training and evaluating models. By offering these resources, Hugging Face

enables developers to focus more on innovative solutions and application-

specific problems, rather than starting from scratch. For anyone working

on generative AI applications, Hugging Face is a crucial resource that

accelerates development, promotes collaboration, and provides easy

access to cutting-edge models and tools.

�Languages
There are various languages for the development of AI agents. R is often

favored for statistical analysis and data visualization, making it useful in

exploratory data analysis stages of AI projects. Java and C++ are known

for their performance and scalability, which are crucial for deploying

AI systems in production environments where speed and efficiency are

paramount. Julia, with its high-performance capabilities and ease of use, is

gaining traction for numerical and scientific computing tasks within AI.

Despite the availability of these languages, Python generally remains

the preferred choice for developing generative AI applications. One

of the main reasons for this preference is Python’s extensive support

for machine learning and deep learning libraries, such as TensorFlow,

PyTorch, Keras, and Hugging Face’s Transformers. These libraries offer

prebuilt modules that simplify complex AI tasks, allowing developers to

quickly prototype, experiment, and refine their models. Python’s syntax is

also user-friendly and concise, making it accessible to both beginners and

experienced developers, which accelerates the learning curve and reduces

development time.

Moreover, Python’s strong community support and vast ecosystem of

third-party packages make it highly adaptable to different AI-related tasks.

Whether it’s data preprocessing, model training, or deployment, Python

provides tools and libraries that cover the entire AI development pipeline.

Additionally, Python integrates well with other languages and systems,

Chapter 5 Developing Agents

93

enabling seamless interaction with APIs, databases, and web frameworks,

which is crucial for deploying generative AI models in real-

world applications.

Python’s versatility and widespread adoption also mean that there is

a wealth of resources available, including tutorials, documentation, and

forums, making it easier for developers to troubleshoot issues and find

solutions to their problems. This community-driven support is invaluable,

especially when working on cutting-edge AI projects that may require

collaboration and knowledge sharing.

As for this book, we will be using Python.

�Using LLMs (Large Language Models)
As a developer, you have multiple options for leveraging a large language

model (LLM). They include the following.

�Using an API from an LLM Provider
Many companies, like OpenAI, Anthropic, and Cohere, offer APIs that

allow you to access their LLMs. You can integrate these APIs directly into

your applications to generate text, answer questions, and more. Or you can

use a framework like LangChain.

The pros of using an API are numerous. First, it offers ease of use,

allowing you to access powerful LLMs without needing to understand the

intricacies of model architecture or deployment. It’s also highly scalable, as

the provider handles traffic management, ensuring that your application

can support a large number of requests without downtime. Additionally,

these APIs often come with built-in security features, including data

encryption and compliance with industry standards, which can save

significant time and effort in securing your application.

Chapter 5 Developing Agents

94

However, there are some cons to consider. One of the main drawbacks

is the lack of control over the model and its environment. You’re limited

to the configurations and capabilities provided by the API, which may not

meet specific customization needs. Additionally, reliance on a third-party

service means you’re subject to their pricing models, which can become

expensive as usage scales. There’s also the concern of data privacy, as your

data is being sent to external servers, which may not be ideal for sensitive

or proprietary information. Lastly, latency can be an issue, as each request

must travel to the provider’s servers and back, potentially slowing down

response times in latency-sensitive applications.

�Using a Service like Ollama
There are several tools that make it easy to run LLMs locally, including

on personal devices like laptops. Ollama is one such library, compatible

with Windows, Mac, and Linux systems. With Ollama, you can load

large models, such as those with 13 billion parameters, provided your

machine has at least 16GB of RAM. The library supports a variety of open

source models, including Mistral, Llama 2, and Gemma. Additionally,

Ollama offers a REST API for running inference, allowing you to create

applications powered by LLMs. It also features various Terminal and UI

integrations that simplify the development of user-facing applications.

Then again, running LLMs locally with Ollama comes with several

drawbacks. The resource intensity of these models can significantly

impact your machine’s performance, potentially slowing down other tasks

or applications you’re trying to run simultaneously. This is particularly

noticeable on less powerful hardware or when trying to multitask. Another

consideration is the manual effort required to keep models up to date. Unlike

cloud-based solutions that often automatically use the latest versions, Ollama

users need to actively manage and update their models to ensure they’re

using the most recent and improved versions. This can be time-consuming

and may lead to using outdated models if not regularly maintained.

Chapter 5 Developing Agents

95

�Using a Cloud Service like Azure, Google
Cloud, or AWS
Major cloud providers offer AI services that include LLMs as part of their

platforms. For example, Azure has OpenAI Service, Google Cloud offers

Vertex AI, and AWS provides Amazon Bedrock and other AI services.

The pros of using a cloud service for LLMs are substantial, particularly

in terms of scalability and integration. These platforms are built to

handle enterprise-level workloads, so they can easily scale to meet the

demands of high-traffic applications. Moreover, they offer a wide range

of complementary services, such as data storage, security, analytics,

and DevOps tools, which can be seamlessly integrated into your LLM

workflows. This makes it easier to build complex, end-to-end solutions

that go beyond just using the LLM. Cloud providers also offer strong

security and compliance features, helping you manage data privacy and

adhere to industry standards, which is particularly important in regulated

industries.

However, there are cons as well. One of the primary drawbacks is cost.

While cloud services offer pay-as-you-go pricing models, the costs can

escalate quickly, especially with high-volume usage or when additional

cloud services are required. Managing these costs effectively requires

careful planning and monitoring. Additionally, while these platforms offer

a high degree of control and customization, they also come with a steep

learning curve. Developers need to be familiar with the cloud provider’s

ecosystem, which can be complex and require significant time to master.

Another potential downside is the risk of vendor lock-in, where your

application becomes tightly integrated with a specific cloud provider,

making it challenging to migrate to another platform if needed. Finally,

although these platforms offer strong security, there’s always some degree

of risk when storing and processing data on third-party servers, which may

be a concern for organizations handling highly sensitive information.

Chapter 5 Developing Agents

96

�Setting Up and Using Ollama
Ollama is available for Windows, Linux, and Mac systems. You can

download it using this URL: ollama.com/download. The installation

process is straightforward.

After this, go to your terminal and enter ollama. If you get resources

about how to use the service, then you have successfully installed the

program.

This URL shows the local models available on Ollama: ollama.com/

library. Some of them you can download to a standard PC. But others

could require systems with large amounts of RAM and have GPUs.

To use a model, this is the command:

ollama pull [name of the model]

Then to run it, you use this:

ollama run [name of the model]

You can then chat with the model:

from langchain_community.llms import Ollama
llm = Ollama(model="[name of the model]")
response = llm.invoke("What is 2 + 2 ?")
print(response)

However, it can be quite slow if you have a standard CPU machine. In

fact, it can easily take a few minutes for the LLM to generate a response.

Because of this, you might consider using Ollama in Google Colab,

since you will get access to more powerful GPUs and TPUs. There are

different ways to do this, such as by using services like ngrok. This enables

you to expose the local Ollama server running on Colab to the Internet,

allowing your local machine to interact with it via a public URL, thereby

leveraging cloud-based resources while interacting with LLMs as if they

were running locally.

Chapter 5 Developing Agents

97

�Using Ollama with Google Colab
An effective way to use Ollama is with Google Colab. You can leverage

their GPUs and TPUs to run local models. When it comes to using proof of

concepts, this can be free.

Here are the steps for using this approach. First, InfuseAI/colab-
xterm is a utility to run terminals in Google Colab. We set this up with the

following:

pip install colab-xterm
%load_ext colabxterm
%xterm

We run the local Ollama system by entering the following code in the

shell that is instantiated by colab-xterm:

curl -fsSL https://ollama.com/install.sh | sh
ollama serve & ollama pull llama3 & ollama pull nomic-
embed-text

The curl utility downloads Ollama. And yes, it’s that simple. You can

then use a local model for your AI agents.

Why use a local model? When compared to using an API like OpenAI,

there are several benefits. One is improved privacy in that all data resides

on your machine. It might also be more cost-efficient because you do not

pay any usage fees after the simple setup. Local models can also be much

quicker with no dependency on Internet connectivity, which is a huge

advantage in offline or real-time applications.

As for the rest of the chapter, we’ll look at techniques for

customizing LLMs.

Chapter 5 Developing Agents

98

�Customizing LLMs
The true potential of LLMs often lies in their ability to be customized for

specific use cases and domains. Customization allows LLMs to move

beyond general-purpose applications and address specialized tasks with

greater accuracy and efficiency.

Two key techniques have emerged to facilitate this customization

process: fine-tuning and Retrieval-Augmented Generation (RAG).

These approaches offer distinct methods for enhancing LLMs, enabling

organizations to choose the best fit for their particular requirements and

resources.

�Fine-Tuning
This process for fine-tuning starts with a general LLM, which has been

trained on a large and diverse corpus of text, and then refines it using a

smaller, task-specific dataset. This typically involves several steps: first,

you gather and preprocess the data that is relevant to the task or domain

you’re focusing on. Then, the LLM is trained on this dataset, adjusting

its parameters to better understand and generate text that aligns with

the specific context of your application. Finally, the fine-tuned model

is evaluated and optimized to ensure it meets the desired performance

criteria.

The pros of fine-tuning an LLM are important. It allows you to leverage

the vast knowledge encoded in a general-purpose LLM while customizing

it to excel at specific tasks. Some examples include answering customer

service inquiries, generating legal documents, or writing technical content.

This process can lead to more accurate and relevant outputs. It can help

make the model more effective for specialized applications. Fine-tuning

also reduces the need for extensive training from scratch. This saves time

and computational resources.

Chapter 5 Developing Agents

99

However, there are some cons to consider. Fine-tuning requires

access to a high-quality, domain-specific dataset. This may not always

be readily available or easy to create. Furthermore, the process can be

computationally expensive. This is especially the case when working

with very large models. Fine-tuning also introduces the risk of overfitting.

This is where the model becomes too specialized and loses its ability to

generalize well to new, unseen data. Finally, fine-tuning can complicate

the deployment and maintenance of the model. The reason is that it

requires ongoing adjustments and updates to keep the model aligned with

evolving data and use cases.

Fine-tuning methods generally fall into two categories: pretrained fine-

tuning and advanced fine-tuning.

Pretrained fine-tuning leverages LLMs that have already been

trained on extensive and diverse datasets. This method can be efficiently

carried out using tools like Hugging Face Transformers, which offer a

comprehensive set of resources for fine-tuning a variety of pretrained

models and datasets. Another commonly used tool is PyTorch, a popular

machine learning library that helps in training and fine-tuning models.

What’s more, many LLM providers, such as OpenAI, offer API services

that allow users to fine-tune models without requiring deep technical

expertise.

On the other hand, advanced fine-tuning techniques demand more

specialized knowledge. One such method is Low-Rank Adaptation (LoRA),

which reduces computational requirements and saves memory by

simplifying the model’s update process. QLoRA is a variation of LoRA that

uses lower precision, thus improving the efficiency and speed of fine-tuning

for larger models. Another advanced approach is Reinforcement

Learning from Human Feedback (RLHF), where models are trained

based on human feedback to ensure that their outputs align with human

preferences. This is the technique used in interactive systems like

ChatGPT, which asks users for feedback to refine its responses. A simpler

yet effective alternative to RLHF is Direct Preference Optimization (DPO),

Chapter 5 Developing Agents

100

which fine-tunes models to match human preferences while maintaining

or improving performance in tasks like sentiment control, summarization,

and dialogue generation. Unlike RLHF, DPO is easier to implement and

train while achieving competitive or superior results.

�Retrieval-Augmented Generation (RAG)
RAG is an advanced technique that enhances the capabilities of an LLM

by incorporating external knowledge sources during the generation

process. Instead of relying solely on the information embedded within

the pretrained model, RAG involves retrieving relevant data from an

external database—usually a vector database—or knowledge base in

response to a query. The process typically involves two main components:

a retrieval model and a generation model. When a query is received, the

retrieval model searches through a large dataset to find the most relevant

documents or pieces of information. These retrieved documents are then

fed into the generation model, which uses this external knowledge to

produce a more informed and contextually accurate response.

The pros of RAG are considerable, particularly in scenarios where

up-to-date or specialized knowledge is essential. By supplementing the

LLM with real-time or domain-specific data, RAG can produce more

accurate and relevant outputs, making it especially useful in applications

like customer support, research, and technical writing. This approach also

mitigates the issue of “hallucination,” where an LLM generates plausible

but incorrect information, by grounding the generation process in actual

data sources. Additionally, RAG enables models to remain useful over time

without needing frequent retraining, as the external knowledge base can

be updated independently of the LLM.

However, there are also cons to consider with RAG. The complexity of

the system increases because it involves integrating and maintaining both

a retrieval mechanism and a generation model. This can lead to additional

challenges in terms of infrastructure, especially when handling large-scale

Chapter 5 Developing Agents

101

deployments. RAG also introduces potential latency, as retrieving relevant

documents from an external source takes time, which could impact the

response speed in real-time applications. Furthermore, the effectiveness

of RAG heavily depends on the quality and relevance of the external data;

if the retrieval process pulls in irrelevant or outdated information, it could

negatively affect the quality of the generated output. Lastly, implementing

RAG requires careful tuning and optimization to balance the retrieval and

generation components, which can be resource-intensive and require

specialized expertise.

�Conclusion
As we conclude this chapter on developing AI agents, it’s clear that the

landscape of AI development is rich with possibilities, offering a variety

of tools, frameworks, and approaches to build sophisticated agents. The

journey from understanding the foundational resources, such as APIs,

cloud services, and local deployment options, to exploring advanced

customization techniques like fine-tuning and Retrieval-Augmented

Generation (RAG) sets the stage for creating powerful, specialized AI

applications.

Chapter 5 Developing Agents

103© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0_6

CHAPTER 6

CrewAI
Based in São Paulo, Brazil, João Moura has worked as a software engineer

for the past 20 years. He has had stints at startups like Clearbit, Urdog, and

Toptal. Along the way, he has developed systems in languages like Ruby,

JavaScript, TypeScript, Elixir, and Python. He also has a strong background

in machine learning and AI.

In 2023, he launched CrewAI, a Python library that he posted on

GitHub. You can find it here:

https://github.com/crewAIInc/crewAI
What sparked his interest was the concept of having “fully autonomous

departments backed by AI.”1 CrewAI would focus on building systems that

rely on role-playing.

It did not take long for the framework to catch on. According to João:

I've been testing CrewAI personally over the past few weeks
and the results I’m getting have been impressive. It's like wit-
nessing a jigsaw puzzle fall into place, each agent contributing
to a bigger picture.2

Currently, the framework has over 18,000 stars and 115 contributors.

In this chapter, we’ll get a backgrounder on it.

1 https://www.linkedin.com/posts/joaomdmoura_fully-autonomous-
departments-backed-by-ai-activity-7130285095780777985--4DP/
2 https://www.linkedin.com/posts/joaomdmoura_fully-autonomous-
departments-backed-by-ai-activity-7130285095780777985--4DP/

https://doi.org/10.1007/979-8-8688-1134-0_6#DOI
https://github.com/crewAIInc/crewAI
https://www.linkedin.com/posts/joaomdmoura_fully-autonomous-departments-backed-by-ai-activity-7130285095780777985%2D%2D4DP/
https://www.linkedin.com/posts/joaomdmoura_fully-autonomous-departments-backed-by-ai-activity-7130285095780777985%2D%2D4DP/
https://www.linkedin.com/posts/joaomdmoura_fully-autonomous-departments-backed-by-ai-activity-7130285095780777985%2D%2D4DP/
https://www.linkedin.com/posts/joaomdmoura_fully-autonomous-departments-backed-by-ai-activity-7130285095780777985%2D%2D4DP/

104

�The Basics
For AI agent frameworks, CrewAI is one of the easier ones. It is well

thought out and intuitive. But it is still quite powerful.

Another key advantage is that CrewAI is built on the LangChain

framework. This means that it benefits from its many integrations and

functions. There is also the connection with LangSmith, which allows for

testing and monitoring of generative AI apps.

As for CrewAI, it has various core concepts, such as agents, tasks, tools,

processes, crews, and memory. We’ll take a look at each of these.

�Agents
An agent in CrewAI is an autonomous entity designed to execute tasks,

make decisions, and interact with other agents within a collaborative team

environment. Each agent acts as a specialized team member, equipped

with specific skills that align with the team’s overall objectives. For

example, an agent could be a Data Analyst, Content Creator, or Technical

Support specialist, each role crafted to support the team’s goals effectively.

Here’s sample code for an agent:

agent = Agent(
 role='Content Creator',
 goal='Develop engaging marketing content',
 �backstory="""You're a content creator at a digital
marketing agency.

 �Your main responsibility is to create compelling content that
resonates with the target audience and drives engagement.

 �You're currently working on a campaign to promote a new
product launch across social media platforms.""",

Chapter 6 CrewAI

105

 �tools=[content_tool1, content_tool2], # Optional, defaults
to an empty list

 llm=my_llm, # Optional
 function_calling_llm=my_llm, # Optional
 max_iter=15, # Optional
 verbose=True, # Optional
 allow_delegation=True, # Optional
 callbacks=[callback1, callback2], # Optional
)

The behavior and capabilities of an agent are defined by several key

attributes:

role: This defines the agent’s specific function

within the team. In this case, the agent is a “Content

Creator,” responsible for producing marketing

content that aligns with the brand’s messaging

and goals.

goal: This is the primary objective that guides

the agent’s actions. Here, the goal is to “Develop

engaging marketing content,” which drives the agent

to focus on creating content that will capture the

audience’s attention and encourage interaction.

backstory: Provides narrative context to the agent’s

role and objective. The backstory situates the agent

as a content creator at a digital marketing agency,

currently tasked with promoting a new product

launch. This context helps the agent make decisions

that are consistent with its role and responsibilities.

tools: These are the specific capabilities or resources

the agent can use to achieve its goal.

Chapter 6 CrewAI

106

llm: The language model that powers the agent’s

ability to generate and understand text. my_llm

represents the specific instance of a model like

GPT-4, which the agent uses to produce content and

make decisions.

function_calling_llm: A specialized language model

responsible for handling the use of tools or functions

by the agent. If specified, this model takes over the

function-calling duties, ensuring that the agent can

effectively utilize its tools to produce content.

max_iter: This sets a limit on how many times

the agent can iterate on a task before finalizing its

output. In this case, the agent has up to 15 iterations

to refine and perfect its content before presenting

the final version.

verbose: When enabled, this attribute ensures that

the agent provides detailed feedback or logs during

its operation. This is useful for tracking the agent’s

content creation process and understanding how it

reaches its conclusions.

allow_delegation: Determines whether the agent

can pass tasks or queries to other agents. With

allow_delegation=True, the agent can delegate

certain tasks to other specialized agents if it believes

they are better suited for the task, ensuring efficient

content creation.

callbacks: These are functions that are triggered at

specific points during the agent’s operation. This

allows to call methods or functions to perform

notifications or actions based on the outcome of the

agent’s operation.

Chapter 6 CrewAI

107

�Tasks
Tasks are distinct assignments managed by agents, designed with detailed

instructions to ensure their successful execution. Each task provides

everything an agent needs to complete its work, including descriptions,

designated roles, required tools, and additional resources. This

comprehensive setup allows agents to tackle tasks of varying complexity

with precision.

In CrewAI, tasks can also be collaborative, often involving multiple

agents working together. The properties of these tasks are configured to

facilitate effective collaboration, with the Crew’s processes ensuring that

teamwork is streamlined and efficient.

Here’s a code for a task:

task = Task(
 �description='Research and compile a list of best practices

for cybersecurity in cloud environments',
 �expected_output='A detailed report outlining the top 10

best practices for securing cloud environments, including
explanations and examples.',

 agent=cybersecurity_agent,
 tools=[cloud_security_tool, research_tool]
)

This is a breakdown of the attributes in the task structure, along with

explanations for each:

description: This attribute provides a brief yet

comprehensive summary of what the task entails. It

outlines the main objective or purpose of the task,

ensuring that the agent understands what needs to

be done.

Chapter 6 CrewAI

108

expected_output: This attribute defines the desired

result or outcome of the task. It offers a detailed

outline of what successful task completion should

look like, ensuring that the agent knows what is

expected.

agent: The agent is the specific entity or individual

responsible for carrying out the task. This could be

a designated agent or one determined through an

internal process within the system.

Like with an agent, you can also set the attributes for max_iter, verbose,

allow_delegation, and callbacks. But there are some others:

async_execution: This attribute allows the task to

be run asynchronously, meaning it can be executed

without halting other processes. This is useful when

tasks are long-running or when multiple tasks need

to proceed in parallel.

context: This attribute adds other tasks whose

output can be provided as additional context for the

execution of the task.

config: This attribute allows additional configuration

details for further customization of the task.

output_json: This attribute enables the task to

generate output in the form of a JSON object.

This is useful for structured data that needs to

be easily processed or transmitted, requiring an

OpenAI client.

Chapter 6 CrewAI

109

output_pydantic: Similar to the JSON output, this

attribute allows the task to produce output as a

Pydantic model object, which is especially useful for

tasks that need to adhere to specific data models.

This also requires an OpenAI client.

output_file: This attribute enables the task’s result to

be saved to a file. If combined with JSON or Pydantic

output, it dictates how and where the output is

stored, making it accessible for future use or review.

Only one output format can be set.

human_input: Specifies whether the task requires

human feedback upon completion, making it useful

for tasks that need human oversight. By default, this

is set to False.

callback: Call methods or functions to perform

notifications or actions based on the task’s

operation output.

�Tools
In CrewAI, a tool is a capability or function that agents use to perform a

wide range of tasks, ranging from simple searches to complex interactions,

all while supporting seamless teamwork. These tools are essential

components that enhance agents’ ability to collaborate effectively, drawing

from options within the CrewAI Toolkit and LangChain Tools. These tools

are designed with specific tasks in mind, such as web searching, data

analysis, content generation, and agent collaboration, making them highly

useful and versatile.

Integrated directly into the agents’ workflow, these tools significantly

boost the agents’ capabilities, enabling them to execute tasks more

efficiently. Additionally, these tools offer a high degree of customizability,

Chapter 6 CrewAI

110

allowing developers to create custom tools or utilize existing ones to

meet the specific needs of the agents. To ensure smooth operations, they

are equipped with robust error-handling mechanisms, and they feature

intelligent caching to optimize performance by reducing redundant tasks.

This combination of utility, integration, customizability, and performance

optimization makes tools a vital part of the CrewAI ecosystem. This book

uses the CrewAI version 0.51.0.

The following are some tools from CrewAI:

•	 BrowserbaseLoadTool: A tool for interacting with web

browsers and pulling data from them

•	 CodeDocsSearchTool: A search tool optimized for

exploring code documentation and technical manuals

•	 CSVSearchTool: A specialized tool for searching

through CSV files, designed to handle structured data

efficiently

•	 DALL-E Tool: A tool that generates images using the

DALL-E API

•	 DOCXSearchTool: A tool for searching within DOCX

files, making it easy to process and retrieve information

from Word documents

•	 PDFSearchTool: A tool specialized in searching

PDF documents, useful for handling scanned or

complex files

•	 ScrapeWebsiteTool: A tool for scraping entire websites,

perfect for collecting comprehensive data from the Web

•	 XMLSearchTool: A tool designed for searching through

XML files, tailored for structured data formats

Chapter 6 CrewAI

111

�Crews
A crew is a collaborative assembly of agents working together to complete

a set of tasks. Each crew is responsible for defining the strategy for task

execution, coordinating agent interactions, and managing the overall

workflow to ensure efficient and effective operations.

This is sample code for a crew:

project_team = Crew(
 agents=[data_analyst, report_creator],
 tasks=[data_analysis_task, generate_report_task],
 process=Process.sequential,
 full_output=True,
 verbose=True,
)

We have attributes to set the agents to run, as well as the tasks. There is

also an attribute for the process. This is the sequence for how to run these

agents. We’ll discuss this in more detail below.

Next, there is the full_output attribute. This controls whether the crew

returns all task outputs or just the final result.

Here are some other attributes:

•	 share_crew: This option allows you to share the crew’s

execution data and outcomes with the CrewAI team.

Sharing this information can help improve the library

and aid in model training.

•	 output_log_file: If you want to save a complete log of

the crew’s output and execution, you can set this to true

or provide a path to a specific file where the log should

be saved.

Chapter 6 CrewAI

112

•	 planning: When activated, this attribute enables the

crew to engage in planning before each iteration. You

can also set the LLM for this with the planning_llm

attribute.

�Processes
In CrewAI, processes function as the backbone for task management,

much like how project managers organize and delegate work in human

teams. These processes make sure tasks are distributed and executed

effectively, all according to a set strategy.

These are the types of processes:

•	 Sequential Process: Tasks are carried out one after

another, following a set order. This ensures that each

task is completed in a specific sequence.

•	 Hierarchical Process: Tasks are managed within a

structured hierarchy. A manager, either a language

model (manager_llm) or a custom agent (manager_

agent), is responsible for task delegation and oversight.

This setup allows the manager to create and assign

tasks as needed, ensuring they align with the team’s

overall goals.

•	 Consensual Process: This process is designed to enable

agents to make collaborative decisions regarding task

execution. It introduces a democratic approach to

task management in CrewAI but is currently planned

for future development and isn’t available in the

existing code.

Chapter 6 CrewAI

113

The following is the code for a sequential process:

crew = Crew(
 agents=my_agents,
 tasks=my_tasks,
 process=Process.sequential
)

And here is the code for a hierarchical process:

crew = Crew(
 agents=my_agents,
 tasks=my_tasks,
 process=Process.hierarchical,
 manager_llm=ChatOpenAI(model="gpt-4")
)

�Memory
The CrewAI framework includes an advanced memory system that greatly

enhances AI agents’ abilities to remember, reason, and learn from past

experiences. This memory system is composed of several key elements,

each designed to improve the agents’ performance in specific ways:

•	 Short-Term Memory: This temporarily stores recent

interactions and outcomes, allowing agents to access

and apply relevant information during current tasks.

This immediate recall is essential for maintaining

continuity and relevance in ongoing operations.

Chapter 6 CrewAI

114

•	 Long-Term Memory: This preserves valuable insights

from past executions, enabling agents to build a

knowledge base over time and refine their decision-

making processes. This accumulated wisdom allows

agents to draw on past experiences to inform future

actions.

•	 Entity Memory: This is focused on capturing and

organizing information about entities, such as people,

places, and concepts, encountered during tasks. This

enhances the agents’ understanding and ability to

navigate complex scenarios by providing them with

detailed knowledge about the key elements they

interact with.

•	 Contextual Memory: This integrates the functions

of short-term, long-term, and entity memory to

maintain a consistent context across multiple tasks

or conversations. This ensures that agents provide

coherent and contextually relevant responses, even as

the scope of their interactions expands.

By combining these memory components, the CrewAI system equips

agents with contextual awareness, the ability to accumulate and learn

from experiences, and a deeper understanding of key entities. This

comprehensive memory system makes the agents more effective and

intelligent in their interactions, enabling them to handle complex tasks

with greater sophistication and adaptability.

For the rest of the chapter, we’ll illustrate these core concepts with

several CrewAI applications.

Chapter 6 CrewAI

115

Note  CrewAI+ is the enterprise edition of CrewAI. It allows for quick
transformation of any crew into an API, allowing for integration with
applications through hooks, REST, gRPC, and other methods. There
are also templates and custom tools, although, as of this writing,
CrewAI+ is in a private beta.

�Financial Planning Agent
We’ll create a budgeting agent that assists users by analyzing their income

and expenses to create a detailed monthly budget, ensuring that all

necessary costs are covered while optimizing savings.

This involves multi-agent collaboration. First, there is the Budgeting

Agent. It assists users by analyzing their income and expenses to create

a detailed monthly budget. Next, there is the Investment Advisor Agent,

which provides tailored investment recommendations based on the user’s

financial goals and risk tolerance, aiming to help the user grow their

wealth through informed decisions. Lastly, the Debt Management Agent

focuses on helping users manage and reduce their debt by developing

effective repayment strategies and offering advice on debt consolidation

and interest rate negotiations.

Let’s go through the code:

!pip install crewai
!pip install crewai crewai-tools

We first install the core CrewAI package, which includes the essential

classes and functions required to create and manage multi-agent systems

within Python. Then we install the package for the tools. These tools

include specialized components for managing specific types of agents,

connecting to external APIs, or implementing advanced features within the

multi-agent framework.

Chapter 6 CrewAI

116

We then import the following:

from crewai import Agent, Task, Crew

The next part of the code listing is for defining the different agents.

Here’s the one for the Budgeting Agent:

budgeting_agent = Agent(
 role="Budgeting Advisor",
 �goal="Create a monthly budget to help users manage their

income and expenses effectively.",
 backstory=(
 �"You are an experienced financial advisor specializing

in personal finance. "
 �"Your goal is to help users allocate their income

efficiently, ensuring they cover "
 �"all necessary expenses while also saving for the

future."
),
 allow_delegation=False,
 verbose=True
)

The Agent class is instantiated with several key parameters that

establish the agent’s role, goals, and behavior. In this case, the agent is

given the role of a “Budgeting Advisor,” with the goal of creating a monthly

budget to help users manage their income and expenses effectively.

The backstory parameter provides context and narrative for the agent,

describing it as an experienced financial advisor specializing in personal

finance. This backstory helps the agent frame its responses and actions

in a way that aligns with the expertise expected from a financial advisor.

The allow_delegation=False parameter ensures that this agent will not

delegate its tasks to other agents, maintaining responsibility for its specific

duties. Lastly, verbose=True enables detailed logging of the agent’s

Chapter 6 CrewAI

117

actions, providing insights into how the agent processes information

and makes decisions. This setup allows the budgeting agent to function

effectively within a multi-agent system, contributing to the overall goal of

comprehensive personal financial management.

Then we have the Investment Advisor Agent:

investment_agent = Agent(
 role="Investment Advisor",
 �goal="Recommend suitable investment options based on the

user's financial goals and risk tolerance.",
 backstory=(
 �"You are an investment expert with years of experience

in the financial markets. "
 �"Your goal is to help users grow their wealth by

providing sound investment advice "
 �"tailored to their risk tolerance and financial

objectives."
),
 allow_delegation=False,
 verbose=True
)

The backstory parameter is crucial in shaping the agent’s responses

and actions, portraying it as an experienced investment expert with a

deep understanding of financial markets. This narrative helps the agent

to deliver advice that is not only relevant but also aligns with the expertise

expected from a seasoned financial professional.

Finally, there is the creation of the Debt Management Agent:

debt_management_agent = Agent(
 role="Debt Management Specialist",
 �goal="Help users manage and reduce their debt through

effective strategies.",

Chapter 6 CrewAI

118

 backstory=(
 �"You specialize in helping individuals overcome debt by

creating personalized repayment plans. "
 �"Your focus is on reducing interest payments and

improving the user's financial health."
),
 allow_delegation=False,
 verbose=True
)

The backstory parameter improves the agent’s capabilities by framing

it as an expert who specializes in creating personalized repayment plans

aimed at reducing interest payments and improving the user’s overall

financial health. This narrative helps the agent provide advice and

solutions that are tailored to the user’s unique financial situation, ensuring

that the guidance is both relevant and actionable.

For the next set of code, we will establish the three different tasks for

the agents. We start with this one:

budgeting_task = Task(
 description=(
 �"1. Analyze the user's income and expenses. Financial

Data: {financialdata}\n"
 �"2. Create a detailed monthly budget that includes

essential expenses, savings, and discretionary
spending.\n"

 �"3. Provide tips for optimizing spending and increasing
savings."

),
 �expected_output="A comprehensive monthly budget with

recommendations for optimizing spending and savings.",
 agent=budgeting_agent
)

Chapter 6 CrewAI

119

The code snippet is for the budgeting task. This involves a

comprehensive approach, starting with an analysis of the user’s income

and expenses. The description parameter outlines the key steps the

agent should take: analyzing the user’s financial situation; creating a

detailed monthly budget that includes essential expenses, savings, and

discretionary spending; and finally, providing practical tips for optimizing

spending and increasing savings.

The expected_output parameter specifies what the task should

produce—a comprehensive monthly budget complete with

recommendations for improving financial management. By linking this

task to the budgeting_agent, the program ensures that the agent’s expertise

in financial planning is directly applied to generate a personalized and

actionable budget for the user.

There is then the investment task:

investment_task = Task(
 description=(
 �"1. Assess the user's financial goals and risk

tolerance.\n"
 �"2. Recommend suitable investment options such as

stocks, bonds, mutual funds, or ETFs.\n"
 �"3. Provide a brief overview of each recommended

investment's potential risks and returns."
),
 �expected_output="A personalized investment plan with

recommendations and risk assessments.",
 agent=investment_agent
)

The description parameter outlines the steps the agent should follow:

first, assessing the user’s financial goals and risk tolerance to understand

their unique investment needs; second, recommending suitable

Chapter 6 CrewAI

120

investment options such as stocks, bonds, mutual funds, or ETFs that align

with these goals; and third, providing a brief overview of the potential risks

and returns associated with each recommended investment.

The expected_output parameter specifies that the task should result

in a personalized investment plan, complete with recommendations and

risk assessments, tailored to the user’s financial profile. By linking this

task to the investment_agent, the program leverages the agent’s expertise

in financial markets to deliver sound investment advice, helping users

make informed decisions that align with their financial goals and risk

preferences.

The third task is for debt management:

debt_management_task = Task(
 description=(
 �"1. Analyze the user's current debts, including

interest rates and balances.\n"
 �"2. Develop a repayment plan that prioritizes high-

interest debt and suggests strategies for paying off
balances faster.\n"

 �"3. Provide advice on consolidating debt or negotiating
lower interest rates."

),
 �expected_output="A debt management plan with actionable

steps to reduce and eliminate debt.",
 agent=debt_management_agent
)

The description parameter outlines the key actions that the agent

will take: first, analyzing the user’s current debts, including details such

as interest rates and balances, to gain a comprehensive understanding

of their debt situation; second, developing a repayment plan that

prioritizes paying off high-interest debt first, which is often the most

Chapter 6 CrewAI

121

financially beneficial strategy; and third, providing advice on consolidating

debt or negotiating lower interest rates to further reduce the user’s

financial burden.

The expected_output parameter specifies that the task should produce

a detailed debt management plan that includes actionable steps for

reducing and eventually eliminating debt. By assigning this task to the

debt_management_agent, the program ensures that the agent’s specialized

knowledge in debt management is applied to create a personalized and

practical plan for the user.

We will then need to connect the agents with the various tasks. We do

this with the following code:

crew = Crew(
 �agents=[budgeting_agent, investment_agent, debt_

management_agent],
 �tasks=[budgeting_task, investment_task, debt_

management_task],
 �verbose=True # Set to True for detailed logging or False

to reduce output
)

This Crew object brings together the three previously defined agents

and the tasks parameter links these agents to their respective tasks,

ensuring that each agent performs the actions assigned to it, such as

creating a budget, recommending investments, and developing a debt

management plan.

We will then run the Crew with this:

user_financial_data = dict({
 "financialdata": {
 "income": 5000, # Monthly income in dollars
 "expenses": {
 "rent": 1500,

Chapter 6 CrewAI

122

 "utilities": 300,
 "groceries": 400,
 "transportation": 200,
 "entertainment": 150,
 "other": 450
 },
 "debts": {
 "credit_card": {
 "balance": 2000,
 "interest_rate": 0.18 # 18% interest rate
 },
 "student_loan": {
 "balance": 15000,
 "interest_rate": 0.045 # 4.5% interest rate
 }
 },
 "savings_goal": 500 # Monthly savings goal in dollars
 }
})

Now run the crew kickoff with the defined data
result = crew.kickoff(inputs=user_financial_data)

Extract the raw text from the result
raw_result = result.raw

Display the result as markdown
from IPython.display import Markdown
Markdown(raw_result)

The variable user_financial_data is defined to represent a user’s

financial situation, which includes various elements necessary for

financial planning. The user’s monthly income is set at $5,000. The

Chapter 6 CrewAI

123

expenses are broken down into categories such as rent ($1,500), utilities

($300), groceries ($400), transportation ($200), entertainment ($150),

and other miscellaneous expenses totaling $450. Additionally, the user’s

debts are detailed, including a credit card balance of $2,000 with an 18%

interest rate and a student loan balance of $15,000 with a 4.5% interest

rate. The user also has a monthly savings goal of $500. This comprehensive

financial data is then passed to the crew.kickoff function, which initiates

the collaborative process involving multiple AI agents to generate financial

advice. The result of this process is extracted as raw text, which is then

displayed using Markdown for easy reading and interpretation, which you

can see in Figure 6-1.

Figure 6-1.  This is the output for the CrewAI Agent

�Product Launch Orchestrator
We’ll create a more advanced AI agent. We’ll call it LaunchMaster. It’s

designed to streamline the complexities of a product launch, ensuring

every aspect is meticulously managed for success. By leveraging

specialized sub-agents, LaunchMaster handles crucial tasks such as

conducting in-depth market research to identify target demographics

and competitors, crafting engaging and persuasive content for various

marketing channels, and executing targeted outreach to influencers and

media outlets.

Chapter 6 CrewAI

124

This program introduces some new concepts from the CrewAI

framework. For example, we use new tools, such as SerperDevTool and

ScrapeWebsiteTool. We also look at how to create a custom tool.

The agent will then allow for human input as well as provide for saving

data to your computer.

Let’s see how the program works.

We bring in the following libraries:

from crewai_tools import ScrapeWebsiteTool, SerperDevTool
from pydantic import BaseModel

ScrapeWebsiteTool is designed to scrape data from websites, enabling

AI agents to gather and analyze web content dynamically. SerperDevTool

searches the Internet. To use this, you will need to sign up for an API key at

serper.dev.

From pydantic, we import BaseModel. It’s a class used to define data

models with validation rules in Python. This will provide the structure for

the custom tool.

Then we create three agents:

market_researcher = Agent(
 role="Market Researcher",
 �goal="Conduct thorough market research to identify target

demographics and competitors.",
 tools=[search_tool, scrape_tool],
 verbose=True,
 backstory=(
 �"Analytical and detail-oriented, you excel at gathering

insights about the market, "
 �"analyzing competitors, and identifying the best

strategies to target the desired audience."
)
)

Chapter 6 CrewAI

125

content_creator = Agent(
 role='Content Creator',
 �goal="Develop engaging content for the product launch,

including blogs, social media posts, and videos.",
 tools=[search_tool, scrape_tool],
 verbose=True,
 backstory=(
 �"Creative and persuasive, you craft content that

resonates with the audience, "
 �"driving engagement and excitement for the product

launch."
)
)

pr_outreach_specialist = Agent(
 role="PR and Outreach Specialist",
 �goal="Reach out to influencers, media outlets, and key

opinion leaders to promote the product launch.",
 tools=[search_tool, scrape_tool],
 verbose=True,
 backstory=(
 �"With strong networking skills, you connect with

influencers and media outlets to ensure "
 �"the product launch gains maximum visibility and

coverage."
)
)

The Market Researcher agent focuses on gathering and analyzing

market data to identify target demographics and competitors, using

tools like search and web scraping. The Content Creator agent develops

engaging content, such as blogs and social media, to drive excitement and

Chapter 6 CrewAI

126

engagement for the product launch. The PR and Outreach Specialist agent

targets influencers and media outlets to maximize the product launch’s

visibility and coverage, leveraging strong networking skills and the same

tools for effective outreach.

This is the base class:

class MarketResearchData(BaseModel):
 target_demographics: str
 competitor_analysis: str
 key_findings: str

The MarketResearchData class is a structured data model designed

to capture the output of the Market Researcher agent’s analysis. This

allows the agent to store and validate critical market research findings in

a consistent format. The model includes fields for key audience segments,

insights on market competitors, and key_findings, which highlights the

most important conclusions drawn from the research.

Then we have a few tasks:

market_research_task = Task(
 �description="Conduct market research for the {product_name}

launch, focusing on target demographics and competitors.",
 �expected_output="A detailed report on market research

findings, including target demographics and competitor
analysis.",

 human_input=True,
 output_json=MarketResearchData,
 output_file="market_research.json",
 agent=market_researcher
)

This task produces a detailed formatted output according to the

MarketResearchData base model, ensuring consistency and accuracy.

It also includes a human_input parameter, allowing for human

Chapter 6 CrewAI

127

feedback before finalizing the results. The output is saved as a JSON file

(“market_research.json”), making it easy to share and integrate with other

components of the launch strategy.

Next, there is this task:

content_creation_task = Task(
 �description="Create content for the {product_name} launch,

including blog posts, social media updates, and promotional
videos.",

 �expected_output="A collection of content pieces ready for
publication.",

 human_input=True,
 async_execution=False, # Change to synchronous
 output_file="content_plan.txt",
 agent=content_creator
)

This task instructs the Content Creator agent to develop various

content pieces for a product launch. The task’s goal is to produce a ready-

to-publish collection of content that effectively promotes the product.

There is also a parameter for human feedback. The completed content is

saved in a text file (“content_plan.txt”).

Finally, we have this task:

pr_outreach_task = Task(
 �description="Contact influencers, media outlets, and key

opinion leaders to promote the {product_name} launch.",
 �expected_output="A report on outreach efforts, including

responses from influencers and media coverage.",
 async_execution=False, # Change to synchronous
 output_file="outreach_report.md",
 agent=pr_outreach_specialist
)

Chapter 6 CrewAI

128

This directs the PR and Outreach Specialist agent to engage with

influencers, media outlets, and key opinion leaders to promote a product

launch. The task focuses on generating visibility and media coverage for

the product. The expected output is a comprehensive report detailing the

outreach efforts, including feedback and responses from the contacted

parties. The final report is saved as a Markdown file (“outreach_

report.md”).

We create the crew for the agent:

product_launch_crew = Crew(
 �agents=[market_researcher, content_creator, pr_outreach_

specialist],
 �tasks=[market_research_task, content_creation_task, pr_

outreach_task], # Ensure only one async task is at the end
 verbose=True
)

This crew consists of the Market Researcher, Content Creator, and PR

and Outreach Specialist agents.

Then we run the crew:

launch_details = {
 'product_name': "SmartHome 360",
 �'product_description': "A cutting-edge smart home system

that integrates with all your devices.",
 'launch_date': "2024-10-01",
 'target_market': "Tech-savvy homeowners",
 'budget': 50000
}

result = product_launch_crew.kickoff(inputs=launch_details)

Chapter 6 CrewAI

129

The launch_details dictionary contains key information about the

product launch for the “SmartHome 360,” a state-of-the-art smart home

system that integrates seamlessly with various devices. It includes essential

details such as the product name, a brief description, the launch date set

for October 1, 2024, the target market of tech-savvy homeowners, and the

allocated budget of $50,000. When these details are passed as inputs to the

product_launch_crew via the kickoff method, the crew of AI agents begins

executing their respective tasks—market research, content creation, and

PR outreach—tailored specifically to these launch parameters.

The output will be extensive. For us, it was over 162 pages! The

program accesses the Internet to gather data for the report and analysis.

Then we take this information and put it in a form that is more concise:

import json
from pprint import pprint
from IPython.display import Markdown
Add this line to import the Markdown function

Display the generated market_research.json file
with open('market_research.json') as f:
 data = json.load(f)
pprint(data)

Display the generated content_plan.txt file
with open('content_plan.txt') as f:
 content = f.read()
print(content)

Display the generated outreach_report.md file
Markdown("outreach_report.md")

First, the json module is imported to load and parse JSON data, while

pprint from the pprint module is used to neatly format and print complex

data structures.

Chapter 6 CrewAI

130

The code then proceeds to open and load the market_research.json

file, which contains data from the Market Researcher agent, and prints

it using pprint for a clear and structured view. Next, the content_plan.

txt file, generated by the Content Creator agent, is opened, read, and

printed to display the planned content for the product launch. Finally, the

outreach_report.md file, created by the PR and Outreach Specialist agent,

is rendered using the Markdown function to present the outreach report in

a well-formatted manner, making it easy to review the results of the agent’s

efforts. This sequence of steps ensures that all critical outputs from the AI

agents are accessible and presented in a user-friendly format.

�Customer Call Center Processing
We’ll look at a more complex example using CrewAI. It will automate the

task of a call center. For this, we’ll use the hierarchical process.

A typical customer care center forms the service hub through which

customers communicate, say with calls, emails, or chats. The calls from the

customers are forwarded to agents according to the nature of the problem,

which may be a billing query, technical support, or general inquiry, among

others. The Agents provide direct solutions for the customer’s problem

or escalate problems to specialists. Complex issues will be tracked using

a ticketing system and followed up to resolution. After the interaction,

customers usually get asked for their feedback to improve the service

quality further.

Figure 6-2 shows the hierarchy. Here are the agents:

•	 Customer Service Manager: Supervises several

specialized agents for specific tasks

•	 Call Handling Agent: Manages tasks like call routing,

query resolution, and escalations

Chapter 6 CrewAI

131

•	 Technical Support Agent: Deals with troubleshooting,

remote assistance, and service ticket creation

•	 Billing and Payments Agent: Handles invoice

generation, payment processing, and dispute

resolution

•	 Customer Feedback and Surveys Agent: Manages the

survey distribution, feedback collection, and sentiment

analysis

Figure 6-2.  The organizational chart of the customer call center

Let’s see how the program works.

Chapter 6 CrewAI

132

We bring in the following libraries:

from langchain_openai import ChatOpenAI
from crewai import Crew, Process, Agent

As defined in the hierarchy above, we create the following four agents:

call_handling_agent = Agent(
 role="Call Handling Agent",
 �goal="Manage and resolve customer inquiries via phone,

including call routing and query resolution: {call_action_
taken}",

 tools=[],
 �allow_delegation=True,

This agent can delegate tasks if needed
 verbose=True,
 �backstory=("Skilled in handling incoming calls, routing

customers to the right departments, and resolving basic
queries efficiently.")

)

The above code describes the functions of a Call Handling Agent in

this system. Examples include call routing, response to simple queries,

and escalation. This uses an argument that dynamically uses details of

the action taken from the customer call itself {call_action_taken}.

This agent also passes on tasks to other agents or departments for more

complex problems.

We have the Tech Support Agent:

tech_support_agent = Agent(
 role="Technical Support Agent",
 �goal="Troubleshoot and resolve technical issues reported by

customers: {technical_action_taken}",
 tools=[],

Chapter 6 CrewAI

133

 �allow_delegation=True, # This agent can delegate tasks to
others or escalate when needed

 verbose=True,
 �backstory=("Experienced in providing remote technical

assistance, troubleshooting problems, and managing service
tickets to ensure issues are resolved.")

)

The goal dynamically includes the action taken by the agent during

resolution {technical_action_taken}. This agent has the capability

to either delegate a task or escalate an issue to another agent (allow_
delegation=True). With the description, the agent has broad experience

with remote technical support, troubleshooting of all levels of problems,

and service ticket management that covers all process stages.

Next, there is the Billing Agent:

billing_agent = Agent(
 role="Billing & Payments Agent",
 goal="Handle customer billing inquiries, process payments,
and resolve payment disputes: {billing_action_taken}",
 tools=[],
 allow_delegation=False, # This agent does not
delegate tasks
 verbose=True,
 backstory=("Expert in managing billing-related issues,
ensuring accurate invoices, and processing payments quickly
while addressing customer disputes or issues.")
)

The goal dynamically includes the action taken regarding the

customer’s billing during this interaction {billing_action_taken}.

Unlike other agents, this one cannot delegate tasks, as indicated by allow_
delegation=False. The agent’s description underlines the experience

Chapter 6 CrewAI

134

in handling all kinds of billing issues, such as correct invoicing, correct

posting of payments, and sorting out any disputes or issues regarding

billing.

Then there is the Feedback Agent:

feedback_agent = Agent(
 role="Customer Feedback & Surveys Agent",
 �goal="Gather and analyze customer feedback through surveys

and sentiment analysis: {customer_feedback}",
 tools=[],
 �allow_delegation=False, # This agent does not

delegate tasks
 verbose=True,
backstory=("Specialized in collecting customer feedback,
conducting surveys, and analyzing sentiment data to improve
overall service quality.")
)

This agent analyzes the feedback by customers using {customer_
feedback}. This agent does not allow for delegation. The backstory of

an agent includes specialization for the collection of customer feedback,

surveys, and sentiment data analysis to improve the quality of customer

service.

The following code shows the tasks of various agents:

Call Handling Task with context, agent, and callback
call_handling_task = Task(
 �description="Handle incoming customer calls and resolve

basic queries or escalate them if needed.",
 �expected_output="A detailed report on calls handled,

queries resolved, and escalations made.",
 human_input=True,
 output_json=CallHandlingData,

Chapter 6 CrewAI

135

 output_file="call_handling_report.json",
 �context={'priority': 'high', 'expected_resolution_time':

'15 minutes'}, # Additional task context
 agent=call_handling_agent,
 �callback=lambda result: print(f"Task completed by {call_

handling_agent.role}: {result}"), # Task callback
)

Technical Support Task with context, agent, and callback
tech_support_task = Task(
 �description="Troubleshoot technical issues reported by

customers and resolve or escalate them as necessary as per
{troubleshooting_steps}",

 �expected_output="A report summarizing the technical issues
handled and any open tickets.",

 human_input=True,
 output_json=TechSupportData,
 output_file="tech_support_report.json",
 �context={'priority': 'medium', 'expected_resolution_time':

'30 minutes'},
 agent=tech_support_agent,
 �callback=lambda result: print(f"Task completed by {tech_

support_agent.role}: {result}"),
)

Billing & Payments Task with context, agent, and callback
billing_task = Task(
 �description="Process customer invoices, handle payment

issues, and resolve any disputes.",
 �expected_output="A report detailing invoices processed,

payments completed, and disputes resolved.",
 human_input=True,

Chapter 6 CrewAI

136

 output_json=BillingData,
 output_file="billing_report.json",
 �context={'priority': 'low', 'expected_resolution_time': '45

minutes'},
 agent=billing_agent,
 �callback=lambda result: print(f"Task completed by {billing_

agent.role}: {result}"),
)

Customer Feedback & Surveys Task with context, agent, and
callback

feedback_task = Task(
 �description="Distribute customer satisfaction surveys and

analyze the feedback for sentiment insights.",
 �expected_output="A report summarizing survey results and

customer sentiment analysis.",
 human_input=True,
 output_json=FeedbackData,
 output_file="feedback_report.json",
 �context={'priority': 'low', 'expected_resolution_time': '60

minutes'},
 agent=feedback_agent,
 callback=lambda result: print(f"Task completed by
{feedback_agent.role}: {result}"),
)

The Call Handling Agent handles customer calls, resolution of queries,

and escalation of complex issues, which should be resolved within 15

minutes. The Technical Support Agent troubleshoots technical issues and

prepares a report, which is expected to be done within 30 minutes. The

Billing Agent handles invoice processing, payment problems, or disputes.

Chapter 6 CrewAI

137

Overall, the priority is low, with a resolution window of about 45 minutes.

The Customer Feedback Agent collects customer feedback via surveys.

The priority of the task is also low, and the expected completion time is 60

minutes.

The callback attribute takes a function executed after the task has run,

and a result is produced by logging a message that the agent has already

finished the task. This is useful for real-time task execution tracking and

management, maintaining a smooth workflow and proper recording of

results.

For storage of the data related to tasks performed by the agents, we can

create base classes as follows:

class CallHandlingData(BaseModel):
 call_summary: str
 resolved_queries: str
 escalated_issues: str

class TechSupportData(BaseModel):
 troubleshooting_steps: str
 resolved_issues: str
 open_tickets: str

class BillingData(BaseModel):
 invoice_details: str
 processed_payments: str
 resolved_disputes: str

class FeedbackData(BaseModel):
 survey_results: str
 customer_feedback: str
 sentiment_summary: str

Chapter 6 CrewAI

138

The code snippet below is for creating a Crew that is composed of

four agents:

customer_service_crew = Crew(
 �agents=[call_handling_agent, tech_support_agent, billing_

agent, feedback_agent],
 �tasks=[call_handling_task, tech_support_task, billing_task,

feedback_task],
 �manager_llm=ChatOpenAI(temperature=0, model="gpt-4o"),

LLM managing overall task delegation
 �process=Process.hierarchical, # Hierarchical task delegation
 �memory=True, # Memory enabled for continuity in task execution
 �planning=True, # Enable planning to strategically allocate

resources and manage tasks
)

Setting memory=True allows for storing information from prior tasks for

better continuity in the performance of tasks. The attribute planning=True

allows the system to make strategic plans through resource distribution.

The hierarchical process structure allows the crew to act like an

organized and well-coordinated team in which every agent performs its

role, and the system organizes the overall workflow and task distribution.

Next, we get input from the user:

customer_service_details = dict({
 'call_handling': {
 'queries_to_resolve': [
 �'Account update request, need to update phone

number', # Customer had issues with updating
their account

 'Complaint about slow service on previous calls'
],

Chapter 6 CrewAI

139

 �'call_action_taken': 'Account update request is
completed. Call transferred to technical support'

}
 'escalations': {
 'technical_support': {
 �'issue': 'Product malfunction after

software update'
'technical_action_taken': 'noted the issues faced by the
customer and ticket created for further investigation, call
transferred to billing for resolution of overcharges'
 },
 'billing': {
 'issue': 'Overcharged on most recent invoice',
 'priority': 'High'
 �'billing_action_taken': 'The overcharges are

dropped and customer was sent to take survey
with end of the call'

 }
 }
 },
 'technical_support': {
 'troubleshooting_steps': [
 'Check for software compatibility issues',
 'Remote assistance to reinstall/update software'
],
 },
 'billing_payments': {
 'priority': 'High'
 'dispute_resolution_steps': [

Chapter 6 CrewAI

140

 'Review the invoice for overcharges',
 �'Calculate and issue refund if overcharge is

confirmed'
]
 },
 'customer_feedback': {
 'feedback_sentiment': {
 �'positive': '50%', # The customer was satisfied

with the billing resolution
 �'neutral': '30%', # Neutral on overall

service quality
 �'negative': '20%' # Negative due to unresolved

technical issue
 }
 }
}
)

Finally, we kick off our crew with the above user input:

task_result = customer_service_crew.kickoff(inputs=customer_
service_details)

And we print out the result of our execution at the end of crew task

completion:

Sample callback handling for task completion
def handle_task_completion(task_result):
 # Extract the raw text from the result
 raw_result = task_result.raw
Display the result as markdown
 from IPython.display import Markdown
 print(f"Task completed:")
 Markdown(raw_result)

Chapter 6 CrewAI

141

�Retrieval-Augmented Generation (RAG)
CrewAI offers various classes for Retrieval-Augmented Generation (RAG).

Here are some examples:

•	 CSVSearchTool: This allows agents to efficiently

retrieve specific data from CSV files.

•	 DOCXSearchTool: This searches through DOCX

documents, retrieving relevant sections of text based on

the context of the query.

•	 PDFSearchTool: This allows for searching through

PDF files, extracting and using relevant content for

generating responses.

•	 WebsiteSearchTool: This searches through specified

websites, pulling in pertinent information from web

pages to enhance the generative process.

So let’s see an example. We’ll use WebsiteSearchTool.

We start out with these imports:

from crewai import Agent, Task, Crew, Process
from crewai_tools import WebsiteSearchTool

We configure WebsiteSearchTool with a URL:

WebsiteSearchTool(website='https://en.wikipedia.org/wiki/Alan_
Turing')

This is a bio of Alan Turing.

We will create an Agent that performs a search:

search_agent = Agent(
 role='Website Researcher',
 goal='Search and extract relevant information from a
specific website.',

Chapter 6 CrewAI

142

 verbose=True,
 memory=True,
 �backstory='You are an expert in searching websites for the

most relevant and up-to-date information.',
 tools=[search_tool]

The agent is assigned the role of a “Website Researcher” with the clear

goal of identifying and retrieving relevant data from the site. The agent’s

backstory establishes it as an expert in web research, emphasizing its

capability to find the most relevant and current information. Finally, the

agent is equipped with the necessary tools, in this case, the search_tool, to

effectively carry out its search tasks.

We define the task for the agent:

search_task = Task(
 description=(
 �"Use the provided website to find information on the

topic '{topic}'. "
 �"Make sure to gather all the relevant data available on

this site."
),
 �expected_output='A detailed summary of the information

found on the website.',
 tools=[search_tool],
 agent=search_agent,
)

search_task instructs the agent to use the URL to gather information

on a given topic, denoted by {topic}. The task description emphasizes

the importance of collecting all relevant data available on the site. The

expected output for this task is a detailed summary of the information

found, which the agent will compile based on its findings. The task is

Chapter 6 CrewAI

143

equipped with the necessary search_tool to carry out the search process

and is assigned to the search_agent, who will execute the task using its

expertise in web research.

We will create the crew:

research_crew = Crew(
 agents=[search_agent],
 tasks=[search_task],
 �process=Process.sequential

Executes tasks one after the other
)

The crew is configured to execute tasks sequentially. The inclusion

of the search_agent ensures that a dedicated expert is in place to carry

out the research, while the search_task provides clear instructions on

what needs to be accomplished. By organizing the process in this way, the

research crew efficiently handles the flow of tasks.

We kick off the crew with the input of “Artificial intelligence,” which is

for the topic, and then print out the results of the RAG:

result = research_crew.kickoff(inputs={'topic': 'Artificial
intelligence'})

print(result)

We then get an output that retrieves the relevant parts for the topic

from the web page.

�Connecting LLMs
Currently, the default LLM for CrewAI is GPT-4o. But the framework allows

for many others.

Chapter 6 CrewAI

144

Let’s first look at how to use models from Hugging Face:

from langchain.llms import HuggingFaceHub

Then we create an instance of it:

llm = HuggingFaceHub(
 repo_id="HuggingFaceH4/zephyr-7b-beta",
 huggingfacehub_api_token="<HF_TOKEN_HERE>",
 task="text-generation",
)

Here’s a look at the parameters:

•	 repo_id: This specifies the model you want to use from

Hugging Face Hub.

•	 huggingfacehub_api_token: This is where you provide

your API token for Hugging Face. You can get a free one

at HuggingFace.co.

•	 task: This parameter specifies the type of task the

model is designed for. In this case, “text-generation”

indicates that the model will be used to generate text.

Another option is Cohere. For this, you will import this module:

from langchain_community.chat_models import ChatCohere

Next, you will set up an environment variable for the Cohere API key

(which you can find at cohere.com):

os.environ["COHERE_API_KEY"] = "your-cohere-api-key"

You will then create an instance of the Cohere LLM:

llm = ChatCohere()

Chapter 6 CrewAI

145

You can use the following for an Azure LLM:

from langchain_openai import AzureChatOpenAI

azure_llm = AzureChatOpenAI(
 azure_endpoint=os.environ.get("AZURE_OPENAI_ENDPOINT"),
 api_key=os.environ.get("AZURE_OPENAI_KEY")
)

There are several ways to use local LLMs. The preferred approach is

with Ollama.

You will then use this import:

from langchain_ollama import ChatOllama

Then you will create an llm object with the following parameters:

llm = ChatOllama(
 model = "llama3.1",
 base_url = "http://localhost:11434")

This will connect the Ollama instance on port 11434.

�Conclusion
Built on the robust LangChain framework, CrewAI simplifies the creation

and management of multi-agent systems by focusing on role-playing

scenarios, allowing agents to collaborate effectively to achieve complex

goals. The framework’s flexibility is evident in its ability to integrate

with various tools, including web searching, data analysis, and content

generation, making it highly versatile for different applications. With a

growing community of contributors, CrewAI is poised to be a significant

player in the AI development landscape.

Chapter 6 CrewAI

147© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0_7

CHAPTER 7

AutoGen
In August 2023, a group of researchers from Microsoft, Pennsylvania

State University, the University of Washington, and Xidian University

in China published a paper entitled “AutoGen: Enabling Next-Gen LLM

Applications via Multi-Agent Conversation.”1 This paper introduced a new

open source framework, AutoGen, for developers to build LLM-based

applications that feature multiple agents working together.

These agents have proven effective in solving complex math

problems, automating coding processes, and enhancing decision-making

capabilities. By leveraging the strengths of multiple agents, AutoGen

represents a significant advancement in LLM application development,

offering a robust platform that can be tailored to a wide array of scenarios.

It has also seen a surge in popularity since its launch. Currently,

AutoGen has over 30,000 stars on its GitHub repository, and there are more

than 300 contributors.2

At present I am a lead principal software engineer, leading a team of

ten people who are working on GenAI applications. We do use Agents for

solving finance problems using AutoGen and Microsoft low-code/no-code

copilot studio which also supports agentic workflows.

1 https://arxiv.org/abs/2308.08155
2 https://github.com/microsoft/autogen

https://doi.org/10.1007/979-8-8688-1134-0_7#DOI
https://arxiv.org/abs/2308.08155
https://github.com/microsoft/autogen

148

“AutoGen gives more granular control to developers on defining

the multi-agentic workflow and their customization,” said Ravi Shankar

Goli, who is a lead principal software engineer at Microsoft. He

focuses primarily on generative AI. “The framework is easy to develop

conversational agents when we need human-in-the-loop.”

In this chapter, we’ll take a look at the core components in AutoGen

and how to create multi-agent systems.

Note  This chapter is based on AutoGen 0.2. However, there is
expected to be a major update to the framework. But we’ll have
updates on our GitHub repo.

�ConversableAgent
ConversableAgent is a specialized agent designed to manage

conversations effectively. It handles input from users, processes it using

predefined logic, and generates appropriate responses. The agent is built

to understand and participate in natural language dialogues, making it

useful in various chatbot and virtual assistant applications. It leverages

predefined skills and contextual understanding to provide relevant and

coherent interactions, ensuring a smooth and meaningful conversational

experience for users.

Let’s see how to use ConversableAgent. This will be a simple example

of a conversation between two agents, Alice and Bob, where Alice is a

friendly AI assistant, and Bob is a curious learner. The conversation will

focus on a simple question-answer exchange, and we will print out the

conversation details afterward.

Chapter 7 AutoGen

149

We will have this setup:

pip install --upgrade pyautogen
from autogen import ConversableAgent
llm_config = {"model": "gpt-4o-mini"}

We start by installing the AutoGen library and then import

ConversableAgent. Then we set the LLM for gpt-4o-mini.

Next, we will set up the agents for Alice and Bob:

alice = ConversableAgent(
 name="alice",
 system_message="Your name is Alice, and you are a friendly
AI assistant ready to help with any questions.",
 llm_config=llm_config,
 human_input_mode="NEVER",
)

bob = ConversableAgent(
 name="bob",
 system_message="Your name is Bob, and you are a curious
learner who loves asking questions.",
 llm_config=llm_config,
 human_input_mode="NEVER",
)

The first agent, Alice, is set up as a friendly AI assistant. Her system

message defines her character, indicating that she is always ready

to help with any questions users may have. The configuration (llm_
config) specifies the language model she uses to generate responses,

and the human_input_mode is set to “NEVER,” meaning Alice operates

autonomously without needing direct human input.

Chapter 7 AutoGen

150

The second agent, Bob, is characterized as a curious learner who

enjoys asking questions. Similar to Alice, Bob’s behavior and responses

are shaped by his system message, which highlights his inquisitive nature.

Like Alice, Bob uses the same language model configuration and operates

independently.

Then we use this to start the conversation:

chat_result = bob.initiate_chat(
 recipient=alice,
 �message="Hi Alce! Can you tell me how photosynthesis

works?",
 max_turns=2,
)

Bob starts the interaction by asking Alice a question about

photosynthesis. The initiate_chat method is used to begin this dialogue,

with Bob as the sender and Alice as the recipient. The initial message Bob

sends is, “Hi Alice! Can you tell me how photosynthesis works?”

The max_turns=2 parameter specifies that the conversation will

continue for two exchanges (a turn from Bob and a response from Alice).

This setup allows Bob to ask a question and receive an informative

response from Alice, demonstrating how these agents can engage in a

structured and coherent exchange, with Bob seeking knowledge and Alice

providing it. The outcome of this interaction, including the conversation

history and any generated responses, is stored in the chat_result variable,

which can be further analyzed or displayed.

�Reflection Agent
We’ll look at the concept of reflection by creating a multi-agent system

designed to create and refine tweets. Reflection, in this context, refers to

the process where agents critically assess and improve upon their outputs

Chapter 7 AutoGen

151

based on feedback from other agents. This program will highlight how

reflection is implemented by utilizing specialized agents—each with

a distinct role, such as crafting the initial tweet, optimizing it for SEO,

ensuring legal compliance, and providing final approval. Through this

example, you’ll learn how reflection enables these agents to iteratively

refine their work, improving the quality and coherence of the final product.

We’ll first need to load in the AutoGen library:

import autogen

Then we set the task:

task = '''
 �Write an engaging tweet to promote a new AI tool

designed for content creators.
 �The tweet should be concise, include relevant hashtags,

and be within the character limit for Twitter.
 '''

Basically, we want the tweet to be concise, effectively capturing

the essence of the AI tool while fitting within Twitter’s character limit.

Additionally, it should include relevant hashtags to enhance its visibility

and reach within the platform’s ecosystem. This task serves as the

foundational directive for the multi-agent system, guiding the subsequent

steps where various agents refine and optimize the tweet to ensure it meets

the specified criteria and maximizes its impact on social media.

We will set up various agents:

Tweet Writer Agent
tweet_writer = autogen.AssistantAgent(
 name="TweetWriter",
 �system_message="You are a tweet writer. You write concise

and engaging tweets on given topics. "

Chapter 7 AutoGen

152

 �"Your tweets should be compelling, include
relevant hashtags, and be within the
character limit.",

 llm_config=llm_config,
)

Content Optimizer Agent
content_optimizer = autogen.AssistantAgent(
 name="ContentOptimizer",
 �system_message="You are a content optimizer. You refine the

tweet to improve its clarity, engagement, and impact. "
 �"Your revisions should enhance the message

while keeping the tweet concise and within
the character limit.",

 llm_config=llm_config,
)

SEO Reviewer Agent
seo_reviewer = autogen.AssistantAgent(
 name="SEOReviewer",
 llm_config=llm_config,
 �system_message="You are an SEO reviewer. You optimize the

tweet for search engines and social media algorithms. "
 �"Your suggestions should include relevant

keywords and hashtags that increase
visibility.",

)

Legal Reviewer Agent
legal_reviewer = autogen.AssistantAgent(
 name="LegalReviewer",
 llm_config=llm_config,

Chapter 7 AutoGen

153

 �system_message="You are a legal reviewer. You ensure that
the tweet is legally compliant and free from any potential
legal issues. "

 �"Your review should be concise, ensuring that
the content adheres to legal standards.",

)

Final Reviewer Agent (finalizes the tweet)
final_reviewer = autogen.AssistantAgent(
 name="FinalReviewer",
 llm_config=llm_config,
 �system_message="You are the final reviewer. You aggregate

all feedback and finalize the tweet, ensuring it is
optimized, legally compliant, and engaging.",

)

In this multi-agent system, each agent plays a specialized role in the

workflow, contributing to the creation and refinement of a high-quality

tweet. The process begins with the Tweet Writer Agent, who is responsible

for drafting the initial tweet. This agent sets the foundation for the tweet,

ensuring that it captures the core message and appeals to the target audience.

Once the initial draft is created, the Content Optimizer Agent steps

in. This agent refines the tweet by enhancing its clarity, engagement, and

overall impact. The Content Optimizer’s role is to polish the tweet, making

sure that the language is sharp, the message is clear, and the content

resonates well with the intended audience. This iterative process helps

transform the initial draft into a more compelling piece of content, without

sacrificing the brevity required for Twitter.

Next, the SEO Reviewer Agent evaluates the tweet from a search engine

optimization perspective. This agent ensures that the tweet includes the

right keywords and hashtags to maximize its visibility on social media

platforms. The SEO Reviewer optimizes the content for algorithms,

aiming to increase the tweet’s reach and engagement by making it more

discoverable to users who are searching for related topics.

Chapter 7 AutoGen

154

The Legal Reviewer Agent then reviews the tweet to ensure it complies

with legal standards. This agent is crucial for mitigating any potential legal

risks, such as the use of copyrighted material, misleading statements, or

any other content that could lead to legal issues.

Then the Final Reviewer Agent aggregates all the feedback from the

previous agents and finalizes the tweet. This agent’s role is to ensure

that the tweet is not only legally compliant and SEO optimized but also

engaging and polished. The Final Reviewer integrates the insights from

all other agents, making any necessary adjustments before the tweet

is approved for publication. This final step ensures that the tweet is of

the highest quality, meeting all the necessary criteria for success on

social media.

We will then have a function to generate a reflection message:

def reflection_message(recipient, messages, sender, config):
 return f'''Review the following content.
 �\n\n {recipient.chat_messages_for_summary(sender)

[-1]['content']}'''

This retrieves the latest message from the specified sender, which is

then summarized and sent to the recipient for evaluation. This reflective

process allows agents to critically assess each other’s work, ensuring that

feedback is given based on the most current output.

After this, we’ll set up the nested review process:

review_chats = [
 {
 "recipient": content_optimizer,
 "message": reflection_message,
 "summary_method": "reflection_with_llm",
 "summary_args": {"summary_prompt":
 "Return review as a JSON object only:"
 "{'Reviewer': '', 'Review': ''}. Here Reviewer

Chapter 7 AutoGen

155

should be your role",},
 "max_turns": 1
 },
 {
 "recipient": seo_reviewer,
 "message": reflection_message,
 "summary_method": "reflection_with_llm",
 "summary_args": {"summary_prompt":
 "Return review as a JSON object only:"
 "{'Reviewer': '', 'Review': ''}.",},
 "max_turns": 1
 },
 {
 "recipient": legal_reviewer,
 "message": reflection_message,
 "summary_method": "reflection_with_llm",
 "summary_args": {"summary_prompt":
 "Return review as a JSON object only:"
 "{'Reviewer': '', 'Review': ''}",},
 "max_turns": 1
 },
 {
 "recipient": final_reviewer,
 �"message": "Aggregate feedback from all reviewers and

finalize the tweet.",
 "max_turns": 1
 },
]

The review_chats list defines the sequence of reflection interactions

among the various agents involved in refining the tweet. Each entry in this

list specifies an agent (the recipient) who will receive a reflection message

Chapter 7 AutoGen

156

generated by the reflection_message function. The content optimizer,

SEO reviewer, and legal reviewer are each tasked with reviewing the tweet’s

content, providing feedback within their areas of expertise. The summary

method, reflection_with_llm, is used to summarize their feedback, and

the agents are instructed to return their reviews as JSON objects, ensuring

a structured and standardized format. The final entry in the list assigns the

final reviewer the responsibility of aggregating all the feedback received

from the previous agents and producing a finalized version of the tweet.

We will register the nested chats:

tweet_writer.register_nested_chats(
 review_chats,
 trigger=tweet_writer,
)

We will then initialize the chat and get the final tweet:

res = tweet_writer.generate_reply(messages=[{"content": task,
"role": "user"}])
res = final_reviewer.initiate_chat(
 recipient=tweet_writer,
 message=task,
 max_turns=2,
 summary_method="last_msg"
)

print(res.summary)

The process begins with the tweet_writer agent generating the initial

tweet based on the provided task. The generate_reply function is used

here to produce a response that serves as the draft tweet. Following this,

the final_reviewer agent initiates a chat with the tweet_writer by calling

the initiate_chat function. This function orchestrates a conversation

between the agents, allowing the final_reviewer to gather and integrate

Chapter 7 AutoGen

157

all the feedback received during the earlier reflection phases. The max_
turns=2 parameter indicates that the chat can go back and forth up to

two times to refine the tweet further. The summary_method="last_msg"

ensures that the final output is based on the most recent message in the

conversation, which should represent the finalized and refined tweet. The

final result, encapsulated in res.summary, is printed out, showcasing the

tweet that has been optimized and reviewed by all involved agents.

Figure 7-1 shows the output.

Figure 7-1.  This is the output for the Tweet Creator agent

�Tool Use
Our next program will be for an agent that processes a leave request for an

employee. The program highlights the use of tools by integrating custom

functions, which are registered as callable tools within the agents. By

simulating a workflow where one agent summarizes a leave request and

another agent makes an approval decision based on that summary, the

program showcases how tools can be effectively utilized to break down

complex tasks into modular, manageable components that agents can

execute autonomously.

We’ll first load in this library:

from typing import Annotated

Chapter 7 AutoGen

158

Annotated allows you to add additional metadata to type hints,

enabling you to provide more context or constraints for how a value should

be used, which can be useful for documentation, validation, or tooling

purposes in your code.

We then have a leave request to be processed:

leave_request_text = """
Employee: John Doe
Department: IT
Leave Type: Annual Leave
Leave Dates: 10/01/2024 - 10/05/2024
Total Days: 5
Reason: Vacation
Remaining Leave Balance: 10 days
Status: Pending Approval
"""

The variable leave_request_text is a multi-line string in Python that

contains the details of a leave request. It includes information such as

the employee’s name, department, type of leave, leave dates, total days

requested, reason for leave, remaining leave balance, and the current

status of the request (pending approval).

We next have two tools:

def summarize_leave_request() -> Annotated[str, "Summary of the
leave request"]:
 """Summarizes the provided leave request."""
 �return ("Summary: Employee John Doe from the IT department

has requested 5 days "
 �"of annual leave from 10/01/2024 to 10/05/2024 for

vacation. "
 �"Remaining leave balance is 10 days. Status is

Pending Approval.")

Chapter 7 AutoGen

159

def approve_or_reject_leave(summary: Annotated[str, "Summary of
the leave request"]) -> Annotated[str, "Approval or Rejection
decision"]:
 �"""Approves or rejects the leave request based on the

summary."""
 �if "Remaining leave balance is 10 days" in summary and "5

days" in summary:
 �return "Approved: The leave request is approved as it

meets the company policy."
 else:
 �return "Rejected: The leave request is rejected due to

insufficient leave balance."

The summarize_leave_request function generates a summary of the

leave request based on provided details, such as the employee’s name,

department, leave dates, and the status of the request.

The approve_or_reject_leave function takes the summary generated

by the previous function as input and evaluates whether the leave request

should be approved or rejected. It checks the leave balance against the

days requested; if the balance is sufficient, the request is approved;

otherwise, it is rejected. These functions demonstrate how the program

automates the decision-making process by first summarizing relevant data

and then applying business logic to reach a conclusion.

After this, we will create two agents:

Leave Request Reviewer Agent
leave_request_reviewer = ConversableAgent(
 name="Leave Request Reviewer",
 �system_message="You are responsible for reviewing the leave

request. "

Chapter 7 AutoGen

160

 �"First, call summarize_leave_request() to get a summary of
the leave request. "

 �"Then, pass the summary to the Leave Approver for a
decision.",

 llm_config=llm_config,
)

Leave Approver Agent
leave_approver = ConversableAgent(
 name="Leave Approver",
 �system_message="You are responsible for approving or

rejecting the leave request. "
 �"Wait for the summary from the Leave Request Reviewer

and make a decision by calling approve_or_reject_
leave(summary).",

 llm_config=llm_config,
)

The leave_request_reviewer agent is responsible for reviewing the

leave request. Its primary task is to call the summarize_leave_request

function to generate a summary of the leave details, which it then passes

on for further processing.

The leave_approver agent, on the other hand, is tasked with making

the final decision on the leave request. It waits for the summary provided

by the leave_request_reviewer and uses this summary to call the

approve_or_reject_leave function, which determines whether the leave

request should be approved or rejected. These agents illustrate how tasks

can be divided among different entities, each with specific responsibilities,

to streamline and automate a workflow.

Chapter 7 AutoGen

161

We will then register the tools with the agents:

from autogen import register_function

Register summarize_leave_request tool
register_function(
 summarize_leave_request,
 caller=leave_request_reviewer,
 executor=leave_request_reviewer, # Set executor
 name="summarize_leave_request",
 description="Summarizes the leave request.",
)

Register approve_or_reject_leave tool
register_function(
 approve_or_reject_leave,
 caller=leave_approver,
 executor=leave_approver, # Set executor
 name="approve_or_reject_leave",
 �description="Makes a decision to approve or reject the

leave request based on the summary.",
)

For the summarize_leave_request function, it is registered with the

leave_request_reviewer agent, making it callable and executable by this

agent. Similarly, the approve_or_reject_leave function is registered with

the leave_approver agent. By registering these functions as tools, the agents

are equipped to perform their designated tasks within the workflow, enabling

them to autonomously process and make decisions on the leave requests.

Finally, we have the code to run the multi-agent system:

summary_result = summarize_leave_request()
decision_result = approve_or_reject_leave(summary_result)

print(f"Summary: {summary_result}")
print(f"Decision: {decision_result}")

Chapter 7 AutoGen

162

First, the summarize_leave_request function is called to generate

a summary of the leave request. This summary is then passed to the

approve_or_reject_leave function, which determines whether the leave

should be approved or rejected based on the summarized information.

The results of these functions are stored in summary_result and

decision_result, which are then printed out to display the summary

of the leave request and the final decision. This manual simulation

demonstrates how the entire process can be executed step by step,

providing a clear understanding of how the agents and their associated

tools interact to process a leave request.

And then we get this output:

Summary: Employee John Doe from the IT

department has requested 5 days of annual leave

from 10/01/2024 to 10/05/2024 for vacation.

Remaining leave balance is 10 days. Status is

Pending Approval.

Decision: Approved: The leave request is approved

as it meets the company policy.

�Group Chat
A group chat in AutoGen refers to a system where multiple agents

collaborate to perform tasks through an automated chat framework. This

feature enables a dynamic and interactive environment where these agents

can communicate with each other to solve complex tasks collectively.

We’ll look at a code example for Web Chat. It will be for the scenario of

automating the process of resolving customer support tickets by engaging

in a group chat with specialized agents. The agents will collaborate to

understand the issue, suggest potential fixes, and determine the best

course of action.

Chapter 7 AutoGen

163

We first have this setup:

import autogen
llm_config = {"model": "gpt-4o-mini", "cache_seed": 42}

We import the library and then initialize it. We not only set the model

but also the cache seed, which is for generating different outputs from the

LLM while still using the cache.

We set up the User Proxy Agent, which is the customer service

representative:

user_proxy = autogen.UserProxyAgent(
 name="Customer_Service_Rep",
 system_message="A human customer service representative.",
 code_execution_config={
 "last_n_messages": 2,
 "work_dir": "support_chat",
 "use_docker": False,
 },
 human_input_mode="TERMINATE",
)

The system_message attribute provides context, indicating that this

agent represents a human role. The code_execution_config dictionary

specifies that the agent will consider the last two messages in the

conversation and will operate within the “support_chat” directory. We

then indicate we will not use Docker.

Next, the human_input_mode is set to “TERMINATE,” meaning the

agent’s interaction will end upon completing the task or when a certain

condition is met.

Chapter 7 AutoGen

164

We create agents for a technical support specialist and a

product expert:

tech_support = autogen.AssistantAgent(
 name="Tech_Support",
 system_message="An expert in technical troubleshooting.",
 llm_config=llm_config,
)

product_expert = autogen.AssistantAgent(
 name="Product_Expert",
 �system_message="Knowledgeable in all product features and

user issues.",
 llm_config=llm_config,
)

With the following, we set up the group chat:

groupchat = autogen.GroupChat(agents=[user_proxy, tech_support,
product_expert], messages=[], max_round=12)
manager = autogen.GroupChatManager(groupchat=groupchat, llm_
config=llm_config)

The GroupChat instance is initialized with these agents, and an

empty list of messages, indicating that the chat will begin with no

prior conversation history. The max_round parameter is set to 12,

limiting the conversation to 12 exchanges. This chat is managed by a

GroupChatManager, which coordinates the interactions among the agents.

Finally, we initialize the chat:

user_proxy.initiate_chat(
 �manager, message="A customer reported that the software

crashes during the export function. Investigate and provide
a resolution."

)

Chapter 7 AutoGen

165

Then, there will be an extensive back-and-forth with the different

agents to resolve a customer service issue.

�Web Search Agent
In the following example, we will show how to use AssistantAgent and

UserProxyAgent for web retrieval.

AssistantAgent is an LLM-based agent that can write Python code. As

for our example, we’ll use it for scraping a website.

Next, UserProxyAgent is an agent that acts as a proxy for a user when

executing code written by AssistantAgent. Depending on the setting of

human_input_mode, UserProxyAgent can receive feedback from the user

for the AssistantAgent. If the human_input_mode is “TERMINATE,” then

the UserProxyAgent will execute the code and return the execution result

of success/failure. If there is user feedback, then UserProxyAgent passes it

back to the AssistantAgent.

Here’s the code:

assistant = autogen.AssistantAgent(
 name="assistant",
 llm_config=llm_config,
)

user_proxy = autogen.UserProxyAgent(
 name="user_proxy",
 human_input_mode="TERMINATE",
 max_consecutive_auto_reply=10,
 �is_termination_msg=lambda x: x.get("content", "").rstrip().

endswith("TERMINATE"),
 code_execution_config={
 "work_dir": "web",
 "use_docker": False,

Chapter 7 AutoGen

166

 �}, # Please set use_docker=True if docker is available to
run the generated code. Using docker is safer than running
the generated code directly.

 llm_config=llm_config,
 �system_message="""Reply TERMINATE if the task has been solved
at full satisfaction.

Otherwise, reply CONTINUE, or the reason why the task is not
solved yet.""",
)

Then we need to call the function initiate_chat() on the

UserProxyAgent to initiate the chat:

user_proxy.initiate_chat(
 assistant,
 message="""
What this article is about: https://pureai.com/
Articles/2024/03/01/autogen.aspx
""",
)

This will prompt the user at the end of each message whether the user

wants to provide feedback when the assistant agent raises a “TERMINATE”

signal. If the user simply presses Enter, the conversation will end

right away.

The advantage of using this functionality is that the web scraper

generated by UserProxyAgent will figure out the web page content and

structure and modify the code that needs to be scraped on the web page.

Figure 7-2 shows the output.

Chapter 7 AutoGen

167

Figure 7-2.  This is the final output for the Web Search Agent

�Retrieval-Augmented Generation (RAG)
We will create a program that uses Retrieval-Augmented Generation

(RAG). The scenario will be to assist entrepreneurs in developing effective

business plans by combining an LLM with document retrieval. The

program initializes two agents: an assistant agent, designed to act as

an experienced business consultant, and a proxy retrieval agent, which

fetches relevant business-related documents. The retrieval agent accesses

specific resources, including business plan templates and guides from

reliable sources, to ensure the assistant provides accurate, document-

supported advice.

Chapter 7 AutoGen

168

Here’s the setup code:

from autogen.agentchat.contrib.retrieve_assistant_agent import
RetrieveAssistantAgent
from autogen.agentchat.contrib.retrieve_user_proxy_agent import
RetrieveUserProxyAgent
llm_config = {"model": "gpt-4o-mini", "timeout": 600, "cache_
seed": 42}

This begins by importing the required modules, including

RetrieveAssistantAgent and RetrieveUserProxyAgent, which are

responsible for handling an assistant agent and a proxy agent for

document retrieval. The llm_config defines the configuration for the

language model, specifying the use of the “gpt-4o-mini” model, setting a

timeout of 600 seconds, and adding a “cache_seed” for reproducibility.

Then we initialize the assistant agent:

assistant = AssistantAgent(
 name="business_assistant",
 �system_message="You are an experienced business consultant

helping entrepreneurs.",
 llm_config=llm_config,
)

The system_message sets the assistant’s role and tone for interactions.

The llm_config is passed to the agent to specify the LLM and other

configuration details.

Next, we use the Retrieve Proxy Agent to fetch business-related

documents from the Internet:

ragproxyagent = RetrieveUserProxyAgent(
 name="business_ragproxyagent",
 human_input_mode="NEVER",
 max_consecutive_auto_reply=3,

Chapter 7 AutoGen

169

 retrieve_config={
 "task": "business",
 "docs_path": [
 �"https://www.sba.gov/business-guide/plan-your-

business/write-your-business-plan",
 �"https://www.score.org/resource/business-plan-

template-startup-business",
 �os.path.join(os.path.abspath(""), "..",

"business_docs"),
],
 },
 �code_execution_config=False, # No code execution for this

business task
)

The human_input_mode is set to not have human intervention and max_
consecutive_auto_reply to allow the agent to respond automatically up

to three times before requiring further action. The retrieve_config defines

the task as “business” and specifies a list of document paths, including

external URLs and a local path, from which the agent can retrieve

business-related information. This is information from the Small Business

Administration (SBA).

The code_execution_config is set to “False,” indicating that no code

execution is necessary for this task, as the focus is purely on document

retrieval for business consulting purposes.

We specify the business question:

business_problem = (
 �"How can I create an effective business plan for a small

retail store, "
 "and what should I include in the financial projections?"
)

Chapter 7 AutoGen

170

Finally, we initiate the retrieval and conversation with the

assistant agent:

ragproxyagent.initiate_chat(assistant, problem=business_
problem, search_string="business plan, financial projections")

The initiate_chat method is called on the ragproxyagent, which

prompts the retrieval agent to begin the process of assisting the assistant in

providing a solution. The assistant will leverage the retrieved documents

and resources to help answer the defined business_problem, which in this

case involves creating an effective business plan and providing financial

projections. The search_string parameter further narrows the focus of

the retrieval by specifying relevant keywords like “business plan” and

“financial projections,” guiding the agent to locate appropriate resources

on these topics.

When you run this, you will get an input box to enter a prompt. You can

enter something like this:

For a business plan for a retail store, write an executive summary.

The RAG system will then search the document and provide a

response.

�Using Ollama
You can use a local LLM with AutoGen. A common approach for this is to

use Ollama.

First, you will create a configuration list for the Code Llama model

running locally, which will include the local server’s base URL where the

model is running (“http://localhost:11434/v1”) and the API key:

config_list = [
 {
 "model": "codellama",
 "base_url": "http://localhost:11434/v1",

Chapter 7 AutoGen

171

 "api_key": "ollama",
 }
]

Then we can create an assistant that uses the local model

configuration:

assistant = AssistantAgent("assistant", llm_config={"config_
list": config_list})

We can then use a proxy agent with the code execution configurations:

user_proxy = UserProxyAgent("user_proxy", code_execution_
config={"work_dir": "coding", "use_docker": False})

You can then use the local model, such as by using a prompt:

user_proxy.initiate_chat(assistant, message="Write a Python
script to scrape the latest headlines from a news website
like BBC.")

�AutoGen Studio
AutoGen Studio is a powerful tool designed to help you create generative

AI agents with a low-code approach. You can access the AutoGen Studio at

the following link:

https://autogen-studio.com

To begin, make sure you have Python 3.11 or a more recent

version installed. You can easily install Python using Conda, which is

available here:

https://anaconda.org/anaconda/conda

Chapter 7 AutoGen

172

Next, since AutoGen Studio relies on OpenAI’s LLMs, you’ll need an

OpenAI API key. If you’re using Microsoft Azure, you can use an API key

from there as well.

Let’s now see how to set up your environment. On both Windows and

macOS, open your terminal or command prompt and run the following

command:

conda create -n autogenstudio python=3.11

Then activate the environment:

conda init
conda activate autogenstudio

You will set up your OpenAI API key. On macOS or Linux:

export OPENAI_API_KEY=XXXX

On Windows:

set OPENAI_API_KEY=XXXX

Next, we’ll install the AutoGen Studio:

pip install autogenstudio

To launch it, you will do the following:

autogenstudio ui

After launching, copy the provided URL into your browser to access the

UI. Figure 7-3 shows the initial screen.

Chapter 7 AutoGen

173

Figure 7-3.  This is the initial screen for the AutoGen Studio

At the top left of the screen, you have two options:

•	 Build: This is where you create your AI agents.

•	 Playground: This section allows you to test and

experiment with your agents.

Let’s first look at Build. On the left side of the screen, you have various

menu items. One is Skills. This lets you create Python functions for specific

tasks. You can use existing functions, like generating and saving images

or PDFs, or create new ones. As you define these skills, the corresponding

Python code is automatically generated and updated. You can even copy

and paste this code into your own IDE if you prefer.

On the top right of the screen, you can select New Skill. This allows you

to create a custom skill.

Figure 7-4 shows the screen for this.

Chapter 7 AutoGen

174

Figure 7-4.  This allows you to create a custom skill

You can provide a name for it and a description, which is a prompt that

will tell the LLM what to do. You can then enter the LLM you want to use.

As you enter these parameters, the code on the left side will be

updated.

So for the Name, I put tweet_creator, and then for Description, I

entered “Create an interesting tweet.” Then I clicked Save Skill.

The next menu option is Models. Yes, here you specify the LLM you

want to use. AutoGen Studio supports several preconfigured models

like GPT-4. Or, you can add a model that is not on the list. You do this by

Chapter 7 AutoGen

175

selecting New Model and entering the information, such as the model

name and the API key. You can then click Test Model to see if there is a

connection. Figure 7-5 shows this for gpt-4o.

Figure 7-5.  This shows the selection of a new model

Next, we have the Agents menu item. With this, we can configure an

agent for your workflow. There are different options, such as an agent for

planning and one for a language assistant. You can see these in Figure 7-6.

Figure 7-6.  These are default agents

Chapter 7 AutoGen

176

You can create a custom agent by selecting New Agent. You have

different templates. They are

User Proxy Agent: This represents a user and

executes code.

Assistant Agent: This is for planning and generating

code to solve problems.

GroupChat: This is to manage group chat

interactions.

Finally, there is the menu item for Workflows. This is where you

connect multiple agents to create complex, multi-agent interactions. For

example, you could build a workflow for travel planning, where various

agents communicate and collaborate.

With our Agent, we can test it out in the Playground. We will select

New, which will create a session.

You will then select the type of workflow. I will choose the default.

Then I will click Create.

Figure 7-7 shows the screen for this.

Figure 7-7.  This is a session for the Playground

Then you can test it by writing a prompt or using a predefined one.

Chapter 7 AutoGen

177

�Conclusion
AutoGen offers a powerful framework for building multi-agent systems

that can efficiently solve complex tasks across a wide range of applications.

From generating engaging social media content to automating approval

workflows, AutoGen enables developers to create highly specialized

agents that work together to achieve precise outcomes. The modularity

and flexibility of this platform allow for seamless integration of custom

tools, enhanced collaboration among agents, and the ability to handle

diverse scenarios. As the development of multi-agent systems continues to

evolve, AutoGen stands out as a pioneering framework that brings robust

functionality to developers.

Chapter 7 AutoGen

179© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0_8

CHAPTER 8

LangChain
LangChain is an open source framework designed to simplify the

development of applications powered by LLMs. It addresses the

complexities of working with LLMs by providing a comprehensive suite

of tools, components, and prebuilt chains that enable developers to

create sophisticated, context-aware AI applications efficiently. LangChain

facilitates the seamless integration of LLMs with external data sources and

computational resources. This allows for more dynamic and interactive AI

experiences.

Understanding LangChain is important for developers who want to

create AI agents within the LangGraph framework, which we will cover in

the next chapter. LangGraph, which is built on top of LangChain, extends

these foundational capabilities by incorporating advanced graph-based

models that enhance the logical structure and decision-making processes

of AI agents. It allows developers to create agents that can navigate

complex decision trees, manage intricate state transitions, and optimize

task execution in a more structured and efficient manner. Without a solid

grasp of LangChain, developers may find it challenging to fully harness the

power of LangGraph’s advanced features.

This interdependence is also evident in frameworks like CrewAI, which

we will cover in Chapter 6. This similarly builds on LangChain to offer

specialized capabilities for AI agent development.

https://doi.org/10.1007/979-8-8688-1134-0_8#DOI

180

While LangChain itself provides robust tools for creating AI agents,

enabling functionalities like prompt engineering, data integration, and

multi-agent coordination, frameworks like LangGraph and CrewAI take

these capabilities to the next level. They allow for more specialized and

high-performance applications, making LangChain a foundational skill

for any developer working in this space. Understanding the nuances of

LangChain not only equips developers to build effective AI agents but

also positions them to leverage more advanced frameworks that rely on

its core principles.

LangChain is available for both Python and JavaScript. But for this

book, we will focus on Python.

�Background
Harrison Chase developed LangChain to address challenges commonly

faced by AI developers when building LLM-based applications. The

process of creating these applications is often complex, tedious, and time-

consuming, requiring the integration of various components and prompts.

LangChain was designed to simplify this process by allowing developers

to “chain” multiple prompts and components together, streamlining

development and reducing the time and effort needed to create powerful

AI-driven applications. This ability to orchestrate different elements within

an LLM application is a key feature, which is why LangChain is frequently

referred to as an orchestration tool.

LangChain’s growth has paralleled the explosive interest in generative

AI, particularly following the launch of OpenAI’s ChatGPT in late

November 2022. ChatGPT demonstrated the remarkable capabilities of

generative AI, rapidly gaining over 100 million users within just a few

months. As developers sought to harness the power of these large language

models, LangChain emerged as a critical framework, offering a more

efficient and structured way to build and scale LLM-based applications.

Chapter 8 LangChain

181

The framework’s rise reflects the broader trend of increasing demand for

tools that can simplify and enhance the development of generative AI

applications, making it a pivotal resource for AI developers worldwide.

Currently, LangChain averages over 15 million monthly downloads. It

also powers over 100,000 apps, and the open source project has more than

75 stars, with over 3,000 contributors. Some of its customers include The

Home Depot, Instacart, and Moody’s.1

Let’s take a look at a case study. It’s for Ally Financial, which is a

digital-only bank in the United States and has over 11 million customers.2

The company operates Ally.ai, which is an AI platform that provides

assistance to more than 700 customer care associates. The technology

handles tasks like summarizing conversations.

However, because of the stringent regulations for the financial

services industry, Ally needed a way to protect customer information. The

company did this by leveraging LangChain to build a tool to masked PII

(personally identifiable information). Ally had five engineers work on this

project for two months.

The results were significant. The system saved 2 minutes and 30 seconds

per call and up to 85% of call summaries required no additional edits.

�The Components
One of the key strengths of LangChain lies in its modularity. The

framework is composed of several components, each designed to

handle a specific aspect of AI development. This modular approach

allows developers to mix and match components according to their

specific needs, making it possible to build everything from simple

1 https://www.langchain.com/
2 https://blog.langchain.dev/ally-financial-collaborates-with-
langchain-to-deliver-critical-coding-module-to-mask-personal-
identifying-information-in-a-compliant-and-safe-manner/

Chapter 8 LangChain

https://www.langchain.com/
https://blog.langchain.dev/ally-financial-collaborates-with-langchain-to-deliver-critical-coding-module-to-mask-personal-identifying-information-in-a-compliant-and-safe-manner/
https://blog.langchain.dev/ally-financial-collaborates-with-langchain-to-deliver-critical-coding-module-to-mask-personal-identifying-information-in-a-compliant-and-safe-manner/
https://blog.langchain.dev/ally-financial-collaborates-with-langchain-to-deliver-critical-coding-module-to-mask-personal-identifying-information-in-a-compliant-and-safe-manner/

182

chatbots to sophisticated AI agents capable of complex decision-making.

Whether you’re looking to create a model that can engage in multi-turn

conversations, retrieve information from external sources, or execute a

sequence of tasks autonomously, LangChain provides the building blocks

needed to bring your vision to life.

In the next few sections, we’ll take a look at the various components.

�Models
Chat models are a fundamental component of LangChain, designed

specifically to handle conversations by taking chat messages as inputs

and returning chat messages as outputs, rather than merely processing

plain text. This makes them particularly suited for building interactive and

dynamic AI-driven applications. LangChain offers robust integrations with

a variety of model providers, including OpenAI, Cohere, and Hugging Face,

ensuring that developers can seamlessly interact with different models

through a standardized interface.

In addition to basic functionality, LangChain enhances the usability

of chat models by supporting multiple operational modes such as

synchronous, asynchronous, batching, and streaming. This flexibility

allows developers to choose the best mode for their specific use case,

whether it be real-time interaction or processing large volumes of data.

Moreover, LangChain provides additional features like caching, which can

improve performance and reduce latency in applications.

Let’s take a look at how to use a chat model. First, we need some setup:

pip install langchain

import openai
import os
import getpass

os.environ["OPENAI_API_KEY"] = getpass.getpass()

Chapter 8 LangChain

183

This code snippet is designed to set up the necessary environment

to use LangChain with OpenAI’s API. The first command, pip install

langchain, installs the LangChain library.

The next part of the code imports the necessary libraries, including

openai for interacting with OpenAI’s models, os for handling environment

variables, and getpass for securely capturing sensitive information like API

keys. The os.environ[“OPENAI_API_KEY”] = getpass.getpass() prompts the

user to input their OpenAI API key securely without displaying it on the

screen. This key is then stored as an environment variable, allowing the

code to authenticate requests to OpenAI’s API without exposing the key in

the code itself.

Then we have this code:

from langchain_openai import ChatOpenAI

chat_model = ChatOpenAI(model="gpt-4o")
output = chat_model.invoke("What is LangChain?")
print(output.content)

The line from langchain_openai import ChatOpenAI imports the

ChatOpenAI class from the langchain_openai module, which is designed

to facilitate interactions with OpenAI’s language models in a chat-

like format.

By instantiating ChatOpenAI with chat_model = ChatOpenAI
(model="gpt-4o"), the code creates an instance of the chat model

configured to use OpenAI’s “gpt-4o” version of GPT-4. This model is then

ready to handle chat-based queries. The invoke method is used to send

a question, in this case, “What is LangChain?”, to the model. The model

processes the input and generates a response, which is then stored in the

output variable. Finally, print(output.content) is used to display the

model’s response, showcasing the ability of the chat model to generate

meaningful and contextually appropriate replies.

Chapter 8 LangChain

184

�Prompt Templates
The ChatPromptTemplate in LangChain is a tool designed to streamline

the process of generating dynamic prompts for LLMs. This template class

allows developers to create flexible and reusable prompt structures, where

placeholders can be defined and later filled with specific values at runtime.

This is particularly useful in scenarios where the content of the prompt

needs to change based on the context or input provided by the user.

Here’s a code sample:

from langchain_core.prompts import ChatPromptTemplate

Create a new prompt template
prompt = ChatPromptTemplate.from_template(
 """List 3 benefits of using this technology:
{technology}"""
)

Format the prompt with a specific technology
formatted_prompt = prompt.format(technology="blockchain")

Get the response from the LLM
response = llm(formatted_prompt)

Print out the response
print(response.content)

The process starts by importing ChatPromptTemplate from

langchain_core.prompts, which allows the user to define a template

with placeholders, such as {technology}, that can be filled in later with

specific values.

In the example, a prompt template is created with the sentence

“List 3 benefits of using this technology: {technology}.” The placeholder

{technology} is then replaced with “blockchain” using the format

method, resulting in a fully customized prompt. This formatted prompt is

Chapter 8 LangChain

185

passed to LLM to generate a response. Finally, the response content, which

contains the AI-generated text, is printed out using print(response.
content).

�Output Parsers
Output parsers play an important role in converting the output generated

by LLMs into more structured and usable formats. This functionality is

especially important when the task at hand involves generating structured

data, such as JSON, XML, or CSV files. LangChain offers a wide array of

output parsers, each designed to handle different types of outputs and

formats, ensuring that the data produced is both accurate and easily

interpretable.

One notable feature of LangChain’s output parsers is their support for

streaming, which allows for real-time processing and formatting of data as

it is generated by the LLM. Additionally, many of these parsers come with

format instructions to ensure the output adheres to a specified schema,

although there are exceptions, such as when the schema is defined outside

the prompt. Some output parsers, particularly those that handle complex

or potentially error-prone outputs, can even call back to the LLM to correct

any misformatted data, further enhancing the reliability and precision

of the generated output. This capability makes LangChain’s output

parsers highly versatile tools for developers working with LLMs to create

structured, actionable data from AI-generated content.

We’ll take a look at a code example of an output parser. This will be

by using a custom data structure defined with Pydantic. That is, we can

ensure that the LLM-generated content is organized into specific fields

such as product name, rating, and review details. For this, we’ll use

JsonOutputParser.

Chapter 8 LangChain

186

First, we have some setup:

from langchain_core.output_parsers import JsonOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
Initialize the ChatOpenAI model
model = ChatOpenAI(temperature=0)

We import JsonOutputParser and the PromptTemplate. Then we

have BaseModel and Field from Pydantic. We will use these to define a

structured data model, which ensures that the output conforms to specific

data types and formats, such as strings for product names and integers for

ratings. After this, we create an instance of the OpenAI LLM.

Then we create this class:

Define the desired data structure for the product review
class ProductReview(BaseModel):
 �product_name: str = Field(description="The name of the

product being reviewed")
 �rating: int = Field(description="The rating given to the

product, out of 5")
 �review_text: str = Field(description="The text of the review")
 �pros: str = Field(description="The positive aspects

mentioned in the review")
 �cons: str = Field(description="The negative aspects

mentioned in the review")

This code snippet defines a ProductReview class using Pydantic’s

BaseModel. Each attribute of the class—such as product_name, rating,

review_text, pros, and cons—is defined with a specific data type (e.g.,

“str” for strings and “int” for integers) and accompanied by a descriptive

Field. These descriptions clarify the expected content for each field,

ensuring that when a language model generates a review, the output

adheres to this predefined format.

Chapter 8 LangChain

187

We initialize a JsonOutputParser with the custom data structure

defined by the ProductReview class:

parser = JsonOutputParser(pydantic_object=ProductReview)

We create a PromptTemplate:

prompt = PromptTemplate(
 �template="Provide a detailed product review based on the

user's input.\n{format_instructions}\n{query}\n",
 input_variables=["query"],
 �partial_variables={"format_instructions": parser.get_

format_instructions()},
)

The template string includes placeholders for {format_instructions}

and {query}, where the former is dynamically filled with instructions

from the JsonOutputParser on how to format the output according to the

ProductReview schema. The input_variables parameter specifies that

the prompt will take a user-provided query as input. By combining the

prompt with format instructions and the user’s query, this setup ensures

that the LLM produces an output that is both relevant and structured

according to the predefined format, making it easier to parse and use in

downstream tasks.

We define the query for the LLM to generate a product review:

review_query = "Review the latest smartphone model XYZ."

We chain the prompt, model, and parser together:

chain = prompt | model | parser

This uses LangChain Expression Language (LCEL), which developers

use to construct and manage complex AI workflows. LCEL provides a

declarative way to compose LangChain components, allowing for more

intuitive and flexible application design. With LCEL, developers can easily

Chapter 8 LangChain

188

chain together various LangChain components, creating sophisticated

pipelines that can handle complex tasks while maintaining readability and

modularity.

In our code example, the pipe operator (|) allows you to chain together

different components—starting with a PromptTemplate that generates a

prompt, passing it to a language model (ChatOpenAI), and then feeding

the model’s output to a JsonOutputParser for structured processing. The

pipe operator in LCEL creates a seamless and intuitive flow of data from

one component to the next, enhancing readability and reducing the need

for complex boilerplate code.

We run this with the following:

parsed_review = chain.invoke({"query": review_query})

Here, chain.invoke() is called with a dictionary containing the input

variable, in this case, {"query": review_query}.

Then we print out the response, which will show the JSON output:

print(parsed_review)

�Document Loaders
Document loaders allow for importing data from various sources and

converting them into a standardized format known as Documents. A

Document is essentially a piece of text accompanied by metadata, such

as the source, creation date, or other relevant details. This uniform format

allows for consistent processing and analysis, regardless of the text’s origin.

Document loaders are versatile and can handle a range of data sources,

including .txt files, web page content, or even YouTube video transcripts,

making it easy to integrate diverse textual data into a LangChain workflow.

Each document loader is equipped with a load method, which

facilitates the conversion of data from a specified source into documents

that can be used within the workflow. Additionally, some loaders offer

Chapter 8 LangChain

189

a “lazy load” feature, which loads data only when necessary, optimizing

memory usage for larger datasets. This feature is particularly useful when

dealing with extensive data sources that don’t need to be fully loaded

at once.

Below is an example of how to use a document loader to read the

contents of a CSV file:

from langchain_community.document_loaders.csv_loader import
CSVLoader
from tabulate import tabulate

The CSVLoader class is designed to facilitate the loading and

processing of CSV files. Then we import the tabulate library. You will

also need to install it using pip install tabulate. This library is for

formatting and displaying tabular data.

Then we load the CSV file and prepare the data:

loader = CSVLoader(file_path='books_output.csv', source_
column="Book Title")
data = loader.load()
table_data = []
headers = ["Book Title"]

By specifying the file_path parameter as books_output.csv and

using the source_column argument as “Book Title,” this code ensures that

each document generated from the CSV file is associated with a unique

identifier based on the book title.

Once the data is loaded, the code prepares it for display using the

tabulate library. The table_data list is initialized to hold the formatted

data, and headers is set to ["Book Title"] to define the column name for

the table.

Chapter 8 LangChain

190

Then we display the information:

for document in data:
 table_data.append([document.metadata['source']])

print(tabulate(table_data, headers=headers, tablefmt="grid"))

The for loop iterates over each document in the data list, which

was previously loaded from the CSV file using the CSVLoader. For each

document, the loop extracts the Book Title from the metadata['source']

attribute and appends it to the table_data list.

After collecting all the book titles, the code uses the tabulate library to

print the data as a neatly formatted table. The tabulate function is called

with table_data, headers, and tablefmt="grid" as arguments. headers

contains the column name (“Book Title”), and tablefmt="grid" specifies

the table format style, which renders the table with a grid-like appearance.

�Text Splitters
When working with long documents in LangChain, it’s often necessary

to break them down into smaller, more manageable pieces. This process,

known as text splitting, is crucial because it ensures that the text fits

within the context window of your model, enabling efficient processing

and analysis. LangChain provides a variety of built-in tools that allow

users to split, combine, filter, and manipulate documents to suit specific

application needs.

Text splitting is more complex than it might initially seem. The goal

is to maintain the semantic integrity of the text, keeping related pieces

of information together. What qualifies as “semantically related” can

vary depending on the type of text you’re working with. For instance, in

some cases, it might be important to keep entire sentences or paragraphs

intact, while in other scenarios, a more granular approach might be

Chapter 8 LangChain

191

necessary. LangChain offers several methods to achieve this, ensuring that

the resulting chunks of text are both meaningful and useful for the task

at hand.

At a high level, text splitters in LangChain work by first breaking down

the text into smaller, semantically meaningful units, often at the sentence

level. These units are then combined into larger chunks until they reach

a predefined size, based on specific measurement criteria. Once a chunk

reaches the desired size, it is treated as a separate piece of text, and a new

chunk begins, sometimes with overlapping content to maintain context

across chunks. This process can be customized along two main axes: how

the text is initially split and how the size of each chunk is measured.

LangChain offers a wide range of text splitters, each designed to handle

different types of text and splitting needs. For example, there are splitters

that focus on specific characters or tokens, as well as those tailored to

particular formats like HTML or Markdown. More advanced splitters,

like the RecursiveCharacterTextSplitter or the AI21SemanticTextSplitter,

aim to keep semantically related text together by recursively splitting or

identifying distinct topics within the text. Tools like Chunkviz can help

visualize how these splitters operate, making it easier to fine-tune the

splitting process to meet your specific requirements.

Text splitting is just one of the many document transformation

capabilities in LangChain, with other tools available for integrating

third-party services and performing additional modifications on

documents before they are processed by language models.

Let’s see an example. The HTMLHeaderTextSplitter is a specialized

tool designed to process HTML content by breaking it down at the element

level, such as headers, while preserving important structural information.

This splitter is particularly useful for documents where the structure is

essential for maintaining context, such as web pages or structured reports.

By splitting the text based on HTML headers, the splitter not only divides

the content into manageable chunks but also adds metadata for each

header, making it easier to keep related sections of text together and

maintain their semantic meaning.

Chapter 8 LangChain

192

We have some setup code:

pip install lxml
from langchain_text_splitters import HTMLHeaderTextSplitter

To work with HTML content in Python, you may need to install the

“lxml” library, which is a powerful and efficient tool for parsing and

manipulating HTML and XML documents. Once installed, you can use

it in conjunction with tools like the HTMLHeaderTextSplitter from the

langchain_text_splitters module. This splitter allows you to process

HTML content by breaking it into segments based on specific header tags

(like “<h1>,” “<h2>,” etc.), making it easier to analyze and manipulate

structured text within an HTML document.

Then we read the HTML file:

with open('sample_document.html', 'r', encoding='utf-8')
as file:
 html_string = file.read()

This code opens the file sample_document.html in read mode (“r”)

with UTF-8 encoding, ensuring that any special characters are correctly

interpreted. The with open(...) construct is used for opening the file,

which ensures that the file is properly closed after reading, even if an error

occurs. The file.read() method reads the entire content of the file into

the variable html_string, which can then be used for further processing,

such as parsing or splitting the HTML content.

Next, we define the headers to split on:

headers_to_split_on = [
 ("h1", "Header 1"),
 ("h2", "Header 2"),
 ("h3", "Header 3"),
]

Chapter 8 LangChain

193

Then we work with the data:

html_splitter = HTMLHeaderTextSplitter(headers_to_split_
on=headers_to_split_on)
html_header_splits = html_splitter.split_text(html_string)
print(html_header_splits)

First, an instance of HTMLHeaderTextSplitter is created and

configured with the headers defined in the headers_to_split_on list.

This list specifies which HTML tags (such as “<h1>,” “<h2>,” “<h3>”)

should be used as breakpoints for splitting the text. Then, the split_text

method is called on the html_splitter object, passing in the html_string

containing the HTML content. This method processes the HTML content

and divides it into segments wherever the specified headers appear. The

resulting segments are stored in html_header_splits, which is then

printed to display the split sections of the HTML document. This approach

is useful for extracting and organizing structured content from HTML files,

making it easier to analyze or further manipulate the data.

�Memory
In most LLM applications, a conversational interface is key, allowing

the system to engage in meaningful dialogue with users. A vital aspect

of any conversation is the ability to reference information that was

shared earlier in the discussion. At the very least, a conversational

system should be capable of accessing a portion of past messages. For

more advanced systems, it is essential to have a continually updated

world model that tracks entities and their relationships throughout the

conversation.

Chapter 8 LangChain

194

This capability to retain and utilize information from previous

interactions is known as memory. LangChain offers numerous tools

to incorporate memory into a system. These utilities can function

independently or be integrated smoothly into a chain of processes.

However, much of the memory-related functionality in LangChain is

currently in beta, as it is still under development and may not yet be

suitable for production environments. Most of this functionality also

operates with legacy chains rather than LCEL syntax.

A notable exception is the ChatMessageHistory feature, which is

largely production-ready and compatible with LCEL. ChatMessageHistory

allows the system to store and retrieve past messages, thereby maintaining

context across interactions. This feature supports both reading and writing

actions, meaning a system can augment user inputs based on previous

interactions and store new interactions for future reference.

When building a memory system, two primary design decisions must

be made: how the state (or memory) is stored and how it is queried. At

the core of any memory system is a history of chat interactions. These

interactions need to be stored, whether in-memory or in persistent storage

like databases. LangChain’s memory module offers a range of integrations

for managing chat message storage, from simple in-memory lists to more

robust database solutions.

Once messages are stored, the challenge is how to query this stored

information effectively. A basic memory system might return the most

recent messages, while a more complex system could summarize

past interactions or extract specific entities mentioned in previous

conversations. The LangChain memory module aims to be flexible,

allowing developers to start with simple memory systems and customize

them as needed for specific applications.

Let’s look at a code example that uses memory. This will be a chatbot

designed to remember details about the user’s career goals and previous

discussions, helping to provide more personalized advice in future

interactions.

Chapter 8 LangChain

195

We will start with preliminary setup:

from langchain_core.messages import SystemMessage
from langchain_core.prompts import (
 ChatPromptTemplate,
 HumanMessagePromptTemplate,
 MessagesPlaceholder,
)
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import LLMChain

We import a variety of LangChain Templates like SystemMessage,

ChatPromptTemplate, and HumanMessagePromptTemplate. These help to

structure the conversational prompts by setting a system-wide context

and defining how user inputs are incorporated. MessagesPlaceholder is

used to insert conversation history into the prompt, allowing for continuity

across interactions. ChatOpenAI represents the chat-based language model

used to generate responses, while ConversationBufferMemory manages

the storage of previous chat messages, enabling the model to reference

past interactions. Finally, LLMChain ties these components together,

creating a functional chain that processes user inputs, maintains context

through memory, and generates coherent responses in a conversation.

We then set up the chat prompt:

prompt = ChatPromptTemplate.from_messages(
 [
 SystemMessage(
 �content="You are a career coach chatbot, helping

users with their career goals."
), # The persistent system prompt
 MessagesPlaceholder(
 variable_name="chat_history"

Chapter 8 LangChain

196

), # Where the memory will be stored
 HumanMessagePromptTemplate.from_template(
 "{human_input}"
), # Where the human input will be injected
]
)

This code snippet constructs a ChatPromptTemplate for a

chatbot designed to act as a career coach. The SystemMessage sets a

consistent and persistent context, indicating that the chatbot’s role

is to help users with their career goals. The MessagesPlaceholder is

used to insert the chat history, allowing the chatbot to remember and

reference previous interactions during the conversation. Finally, the

HumanMessagePromptTemplate is configured to dynamically inject the

user’s current input into the prompt, ensuring that the chatbot can

respond appropriately to each new message while maintaining the overall

context of the conversation. This setup enables the chatbot to deliver

personalized and context-aware career advice.

Next, we initialize the memory to keep track of the conversation history

and then initialize the OpenAI mode:

memory = ConversationBufferMemory(memory_key="chat_history",
return_messages=True)

llm = ChatOpenAI()

We then create the LLMChain with the prompt, memory, and model:

chat_llm_chain = LLMChain(
 llm=llm,
 prompt=prompt,
 verbose=True,
 memory=memory,
)

Chapter 8 LangChain

197

We then simulate a conversation, to see how the memory works with

the chatbot:

response = chat_llm_chain.predict(human_input="I'm thinking
about switching careers to data science.")
print(response)

response = chat_llm_chain.predict(human_input="What skills do I
need to develop for a data science role?")
print(response)

response = chat_llm_chain.predict(human_input="I have started
learning Python. What should I focus on next?")

print(response)

The first line sends the user’s input, “I’m thinking about switching

careers to data science,” to the chatbot, and the response is stored in the

response variable and printed out. This initiates the conversation and

sets the context for future interactions. The second line continues the

conversation by asking, “What skills do I need to develop for a data science

role?” Again, the chatbot generates a response based on both the current

input and the previous context, which is also printed. Finally, the third

line further develops the discussion by stating, “I have started learning

Python. What should I focus on next?” The chatbot, remembering the prior

exchanges, provides advice tailored to the user’s ongoing journey into data

science, and the response is printed. Each of these steps demonstrates how

the chatbot uses memory to deliver increasingly personalized and context-

aware career advice.

Chapter 8 LangChain

198

�Key Concepts of LangChain Agents
Creating AI agents in LangChain involves several key concepts and

components that allow for dynamic decision-making and interaction

within the AI system. Agents in LangChain use language models to

determine the sequence of actions dynamically.

Here’s a look at the core concepts:

•	 AgentAction: This is a critical component that defines

the action an AI agent should take at a particular step.

Each AgentAction consists of a tool that the agent

should invoke and the input that should be passed

to this tool. This allows the agent to interact with

various tools, such as APIs or databases, and retrieve or

manipulate data as needed.

•	 AgentFinish: When an agent has completed its task

and is ready to return the result, it uses the AgentFinish

component. This contains the final output of the agent,

typically structured as a key-value mapping. The output

is usually a string that represents the agent’s final

response to the user, encapsulating all the steps taken

during the interaction.

•	 Intermediate Steps: These represent the history of

actions and corresponding outputs during the current

run of the agent. By maintaining this history, the

agent can track what has already been done, which is

essential for ensuring that future steps are relevant and

do not duplicate previous work. This is represented as a

list of tuples, where each tuple contains an AgentAction

and its associated output.

Chapter 8 LangChain

199

•	 Agent: The agent itself is responsible for determining

the next action to take based on the current context and

the intermediate steps taken so far. It typically relies

on a language model to make these decisions, using a

prompt to encode the inputs and an output parser to

interpret the results. Agents can be customized with

different prompting styles, input encodings, and output

parsing strategies to suit specific tasks.

•	 AgentExecutor: The agent executor is the runtime

environment where the agent operates. It continuously

cycles through the process of selecting actions,

executing them, and processing their outputs until

the agent reaches a conclusion. The executor handles

complexities such as error management, tool selection,

and logging, ensuring the smooth operation of

the agent.

�Types of Agents
LangChain offers a variety of agent types, each designed to handle specific

tasks and workflows within AI systems. These agents leverage different

strategies for decision-making and interaction, enabling developers to

tailor their AI solutions to various use cases.

They include the Tool Calling Agent, XML Agent, JSON Chat Agent,

Structured Chat Agent, ReAct Agent, and Self-Ask with Search Agent.

�Tool Calling Agent
The Tool Calling Agent is a versatile agent that allows an LLM to determine

when and how to invoke external tools. By defining a set of tools that the

agent can use, the model can intelligently decide which tool to call based

Chapter 8 LangChain

200

on the inputs it receives. The agent then produces structured outputs,

such as JSON objects, that specify the arguments needed to call these

tools. This approach enhances the reliability and accuracy of tool calls

compared to using a generic text completion or chat API. The Tool Calling

Agent supports a wide range of providers, including OpenAI, Anthropic,

Google Gemini, and Mistral, making it a powerful and flexible solution for

integrating tool usage into AI workflows.

�XML Agent
The XML Agent is tailored for LLMs, such as Anthropic’s Claude, that excel

at reasoning and writing in XML format. This agent is particularly useful

when working with unstructured tools that accept a single string input. By

structuring its outputs in XML, the agent can interact more effectively with

certain models and tools, providing a specialized solution for tasks that

require XML-based reasoning.

�JSON Chat Agent
The JSON Chat Agent is designed for language models that are proficient at

generating JSON-formatted outputs. This agent is particularly useful when

working with chat models that require structured data exchanges. By using

JSON to format its outputs, the agent can support complex interactions

with chat models, making it easier to manage and process multi-step

conversations or data-intensive tasks.

�Structured Chat Agent
The Structured Chat Agent is capable of handling multi-input tools,

making it ideal for scenarios where multiple pieces of information need

to be processed simultaneously. This agent type supports more complex

interactions, allowing it to manage tasks that require the integration of

Chapter 8 LangChain

201

various data points or inputs in a structured manner. It is particularly

useful in applications where the agent must coordinate multiple actions or

decisions based on a combination of inputs.

�Self-Ask with Search Agent
The Self-Ask with Search Agent is designed for tasks that require iterative

querying and information retrieval. This agent uses a process of self-

questioning, where it asks itself clarifying questions to better understand

the task before conducting a search for the necessary information. This

approach is particularly useful for tasks that involve complex information

retrieval or where the agent needs to gather data from external sources to

complete a query.

Next, we will take a deeper look at the ReAct Agent and see how to

code one using LangChain.

�ReAct Agent
In October 2022, researchers from Google Research and Princeton

University published a paper entitled, “ReAct: Synergizing Reasoning and

Acting in Language Models.”3 This established a new type of agent called

ReAct, which has become critical for LangChain. It’s about helping LLMs

to reason and act to solve general tasks.

Before ReAct, the abilities of LLMs to these activities were mostly

studied separately. But this led to disappointing results. ReAct’s

combination or synergizing of reasoning and tasks has meant significant

improvements with agents.

3 https://arxiv.org/abs/2210.03629

Chapter 8 LangChain

https://arxiv.org/abs/2210.03629

202

In the paper, the researchers used Google’s PaLM-540B and fed it both

specific actions (like “search” or “go to”) and reasoning traces (logical steps

or thoughts) for solving tasks. Depending on the task, the model alternated

between generating reasoning traces and actions, creating a road map or

trajectory to solve the task. The ReAct dynamically adjusted its plans based

on new information and interacted with external sources like Wikipedia

for more data. There are various types of reasoning traces employed like

creating action plans, injecting commonsense knowledge, and adjusting

plans when faced with exceptions. This way, the model wasn’t just

thinking about the task but also taking steps to solve it.

�Agent Program
This program is a project management assistant that integrates tools

for task status retrieval and online documentation search. It utilizes a

structured approach where specific tools are defined to either look up the

status of tasks in an internal database or search for relevant documentation

online using DuckDuckGo. The program leverages an OpenAI LLM to

guide the interaction, with the input being processed according to a

custom prompt that directs the agent’s responses. The agent is capable

of performing actions like retrieving the status of a task based on its ID

and searching for best practices or other project-related documentation,

making it a useful tool for project managers or team members needing

quick access to task-related information.

We start with these imports:

from langchain import PromptTemplate
from langchain.tools import StructuredTool
from langchain_openai import ChatOpenAI
from langchain.agents import create_tool_calling_agent,
AgentExecutor

Chapter 8 LangChain

203

from langchain.tools import DuckDuckGoSearchResults
from pydantic import BaseModel

PromptTemplate is used to create customizable prompts that guide

the language model’s behavior. The StructuredTool is a class that allows

you to define tools that can handle structured input data, making it easier

to interact with specific functions or APIs. ChatOpenAI is an interface

to OpenAI’s language models, enabling natural language processing

capabilities within the program. The create_tool_calling_agent and

AgentExecutor from langchain.agents are used to create and manage an

agent that can decide when and how to use the defined tools based on user

input. DuckDuckGoSearchResults provides a tool for searching the Web via

DuckDuckGo, which can be integrated into the agent for tasks like finding

online documentation. Finally, BaseModel from pydantic is used to define

data models that enforce type validation and structured input, ensuring

that the tools receive correctly formatted data.

After this, we define the task status retriever tool:

class TaskStatusRetriever:
 def __init__(self, task_database):
 self.task_database = task_database

 def get_status(self, task_id: str) -> str:
 return self.task_database.get(task_id, "Task
not found")

task_database = {
 "task1": "In Progress",
 "task2": "Completed",
 "task3": "Not Started",
}

Chapter 8 LangChain

204

task_status_retriever = TaskStatusRetriever(task_database)

def task_status_lookup(task_id: str) -> str:
 return task_status_retriever.get_status(task_id)

This code defines a TaskStatusRetriever class that simulates a system

for retrieving the status of tasks from a project management database. The

class is initialized with a task_database, a dictionary that stores task IDs

as keys and their statuses as values. The get_status method is used to

look up the status of a specific task by its ID, returning the status if found

or “Task not found” if the task ID does not exist in the database. The task_
database dictionary contains example tasks with predefined statuses (“In

Progress,” “Completed,” and “Not Started”). The task_status_retriever

object is an instance of this class, and the task_status_lookup function

serves as an interface to retrieve the status of a task by passing in its ID,

making it easy to integrate this functionality into a larger system.

Next, we’ll define the input schema for TaskStatusLookup:

class TaskStatusInput(BaseModel):
 task_id: str

task_status_tool = StructuredTool.from_function(
 name="TaskStatusLookup",
 description="Look up the status of a task by its ID.",
 func=task_status_lookup,
 args_schema=TaskStatusInput
)

This code defines a TaskStatusInput class using Pydantic’s BaseModel,

which serves as a schema to enforce the structure and type of input data

for the task status lookup tool. The TaskStatusInput model specifies that

the input must include a task_id as a string. The task_status_tool is

then created using StructuredTool.from_function, which generates

a tool based on the task_status_lookup function. This tool is named

Chapter 8 LangChain

205

“TaskStatusLookup” and is described as a tool to look up the status of a

task by its ID. By using the TaskStatusInput model as the args_schema,

the tool ensures that it receives properly formatted input, thereby

facilitating structured and validated interaction with the task status

retrieval functionality within a larger LangChain-based application.

Then we’ll use the Online Documentation Search Tool:

duckduckgo_search = DuckDuckGoSearchResults()

def search_docs(query: str) -> str:
 return duckduckgo_search.run(query)

This code initializes a DuckDuckGoSearchResults object, which

provides the ability to perform web searches using the DuckDuckGo

search engine within a LangChain application. The search_docs function

is defined to take a search query as input, represented by the query string.

When called, the function uses the duckduckgo_search object to execute

the search by invoking its run method with the provided query. The

function returns the search results as a string.

We define the input schema for DocsSearch:

class DocsSearchInput(BaseModel):
 query: str

docs_search_tool = StructuredTool.from_function(
 name="DocsSearch",
 description="Search for relevant documentation online.",
 func=search_docs,
 args_schema=DocsSearchInput
)

The DocsSearchInput model includes a single field, query, which is

a string representing the search query. The docs_search_tool is then

created using StructuredTool.from_function, which constructs a tool

Chapter 8 LangChain

206

based on the search_docs function. This tool is named “DocsSearch” and

is described as a tool to search for relevant documentation online. By using

the DocsSearchInput model as the args_schema, the tool ensures that the

input is validated and correctly structured.

We create the Tools List:

tools = [task_status_tool, docs_search_tool

Then we define the LLM and the prompt:

llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)

prompt_template = """
You are a project assistant. You can look up the status of
tasks in a project management system and search for relevant
documentation online.
Respond based on the user's input using the appropriate tools.

User's input: {input}

{agent_scratchpad}
"""
prompt = PromptTemplate.from_template(prompt_template)

The llm variable is initialized with an instance of ChatOpenAI,

specifying the use of the “gpt-4o-mini” model from OpenAI. The

temperature=0 parameter is set to make the model’s outputs more

deterministic, reducing randomness in its responses.

The prompt_template is a string that defines the structure and

instructions for how the agent should behave. It describes the agent

as a project assistant capable of looking up task statuses in a project

management system and searching for relevant documentation

online. The template includes placeholders {input} for the user’s

input and {agent_scratchpad} for the agent’s internal reasoning or

intermediate steps.

Chapter 8 LangChain

207

Finally, the prompt variable is created by passing the prompt_template

string to PromptTemplate.from_template, which formats the prompt for

use with the language model. This setup ensures that the agent responds

appropriately to user queries by leveraging the language model and the

defined tools.

Then we create the agent as well as the Agent Executor. Then we test it

and create the response:

agent = create_tool_calling_agent(llm, tools, prompt)

agent_executor = AgentExecutor(agent=agent, tools=tools,
verbose=True)

response = agent_executor.invoke({"input": "What's the status
of task1?"})
print(response['output'])

response = agent_executor.invoke({"input": "Find documentation
on project management best practices"})
print(response['output'])

First, the agent is created using the create_tool_calling_agent

function, which combines the language model (llm), the list of tools

(tools), and the prompt template (prompt). This agent is designed to

interpret user input, determine the appropriate tool to use, and provide a

response based on the results from that tool.

Next, the agent_executor is initialized using the AgentExecutor class.

The agent_executor manages the execution of the agent, handling the

sequence of actions the agent takes when responding to user queries. The

verbose=True argument ensures that the execution process is logged,

providing detailed output for debugging or understanding the agent’s

behavior.

Chapter 8 LangChain

208

The agent is then tested with two example queries. The invoke method

is called with a dictionary containing the user’s input under the “input”

key. The first query asks for the status of a specific task, task1, and the

agent’s response is printed. The second query asks for documentation on

project management best practices, and, again, the agent’s response is

printed.

The output from the agent demonstrates its ability to process user

queries by utilizing the appropriate tools. In the first instance, the agent

successfully retrieves the status of a specific task (task1), confirming

that it is “In Progress.” In the second instance, the agent searches for

documentation on project management best practices and provides a list

of relevant online resources. These include links and brief descriptions of

articles from reputable sources, which cover various project management

techniques and methodologies. The output shows that the agent effectively

switches between tools to deliver accurate and helpful responses based on

the user’s input.

�Conclusion
LangChain’s modularity and support for both Python and JavaScript

make it a foundational tool for AI developers. The chapter highlighted

the importance of LangChain’s orchestration abilities, its rapid growth

following the rise of generative AI, and its adoption by major companies.

The chapter also dived into the components of LangChain, including

models, prompt templates, output parsers, document loaders, and text

splitters, providing practical examples and code snippets to illustrate their

use. The chapter then concluded with LangChain agents, explaining how

to build them to handle dynamic decision-making and interaction within

AI systems.

Chapter 8 LangChain

209© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0_9

CHAPTER 9

Introduction
to LangGraph
LangGraph is a popular open source framework—created by LangChain—

that helps developers use large language models (LLMs) to build

sophisticated, stateful, and multi-actor applications. This capability is vital

for crafting advanced agent architectures capable of context retention,

learning from interactions, and continuous evolution.

A key distinction of LangGraph lies in its departure from the limitations

of Directed Acyclic Graph (DAG) structures, which are common in many

LLM frameworks. They are based on a conceptual model used in computer

science and mathematics. It consists of a finite set of vertices (or nodes)

connected by directed edges, with the crucial constraint that there are no

cycles or loops within the structure. In other words, if you start at any node

and follow the directed edges, you can never return to the same node. This

structure is widely used in task scheduling, data processing pipelines, and

dependency resolution, where a clear, one-way flow of operations or data

is required.

While DAGs are useful for many applications, they have limitations

when it comes to creating truly dynamic and adaptive AI agents. This is

where LangGraph’s innovative approach comes into play. By enabling the

creation of cycles within the workflow, LangGraph opens up possibilities

for implementing iterative processes, feedback loops, and recursive

behaviors—all essential components of genuine agentic intelligence.

https://doi.org/10.1007/979-8-8688-1134-0_9#DOI

210

LangGraph’s architectural inspiration comes from established

frameworks like Pregel and Apache Beam, with its public interface drawing

from NetworkX concepts. This fusion results in a powerful yet accessible

AI development tool. While LangGraph is designed to work seamlessly

with LangChain and LangSmith, it maintains the flexibility to be used

independently, catering to developers with diverse toolchain preferences.

Regardless, it is still important to understand the fundamentals of

LangChain. This will be the focus of the first half of this chapter. After this,

we’ll dive into how LangChain works.

�Benefits of Combining LangChain
with LangGraph
The integration of LangChain and LangGraph represents a significant

advancement in the field of AI development, creating a powerful

ecosystem that offers developers unprecedented capabilities. This synergy

combines LangChain’s extensive toolset for large language model (LLM)

interactions with LangGraph’s sophisticated stateful framework, resulting

in a comprehensive solution for building advanced AI applications.

At the core of this integration is the ability to handle complexity

with greater ease and efficiency. Developers can now create AI agents

capable of managing intricate, multi-step processes that were previously

challenging to implement. These agents benefit from improved context

awareness, maintaining state across interactions, learning from

experiences, and evolving over time. This dynamic adaptability leads to

more intelligent and responsive AI systems that can handle a wide range of

tasks with increased sophistication.

The combined framework offers a streamlined development

experience, particularly beneficial for those already familiar with

LangChain. The shared concepts and patterns between the two

systems reduce the learning curve, allowing developers to quickly

Chapter 9 Introduction to LangGraph

211

leverage LangGraph’s advanced features. This continuity accelerates

the development process, enabling faster creation and deployment of

complex AI agents. Furthermore, the integration provides developers with

increased flexibility, offering a broader palette of tools and approaches to

choose from when solving specific AI challenges.

One of the key strengths of this integration is the enhanced workflow

management capabilities. LangGraph’s cyclic workflows complement

LangChain’s robust language model utilities, enabling the implementation

of sophisticated feedback loops and iterative behaviors within AI agents.

This feature is crucial for creating AI systems that can refine their responses

and adapt their strategies based on ongoing interactions and outcomes.

The scalability offered by this combined approach is another

significant advantage. As AI applications grow in complexity and data

volume, the integrated framework provides the necessary tools and

structures to scale effectively. This scalability is complemented by

improved error handling mechanisms, enhancing the overall reliability

and robustness of AI systems. The modular nature of the combined

framework also facilitates easier maintenance and updates, allowing

developers to create more reusable components.

From a resource perspective, the LangChain-LangGraph integration

enables more efficient use of computational resources. This optimization

can lead to reduced costs in AI application deployment, making

advanced AI solutions more accessible to a broader range of projects

and organizations. The framework also expands the potential use cases,

enabling developers to tackle a wider spectrum of AI challenges, from

straightforward chatbots to complex decision-making systems that require

nuanced understanding and reasoning.

Testing and debugging complex AI systems become more manageable

with this integrated approach. The combined framework offers enhanced

tools for examining AI agent behaviors and troubleshooting intricate

workflows. This improvement in the development and quality assurance

process leads to more reliable and performant AI applications.

Chapter 9 Introduction to LangGraph

212

Lastly, the integration enhances interoperability, making it easier to

connect AI agents with external systems and data sources. This expanded

connectivity opens up new possibilities for AI applications, allowing them

to integrate more seamlessly into existing technological ecosystems and

leverage a wider range of data and functionalities.

In conclusion, the combination of LangChain and LangGraph provides

developers with a comprehensive toolkit that pushes the boundaries

of what’s possible in AI development. It enables the creation of more

sophisticated, adaptable, and context-aware AI applications, setting a new

standard for intelligent systems. As this integrated approach continues to

evolve, it promises to drive innovation in AI, opening up new frontiers in

machine intelligence and its practical applications across various domains.

�Pros and Cons of LangGraph
One of the standout features of LangGraph is its emphasis on

controllability. As a low-level framework, it offers developers fine-grained

control over both the flow of operations and the state of the application.

This level of control is crucial for creating reliable and predictable AI

agents, especially in scenarios where precision and consistency are

paramount. Developers can define complex decision trees, implement

conditional logic, and orchestrate multi-step processes with a high degree

of specificity.

Persistence is another key advantage of LangGraph. The framework

includes built-in mechanisms for automatically saving the state after

each step in the graph. This feature opens up a world of possibilities for

advanced applications. It enables seamless implementation of human-

in-the-loop workflows, where human operators can intervene, provide

feedback, or make decisions at critical junctures. The persistence

capability also facilitates error recovery, allowing developers to pause and

Chapter 9 Introduction to LangGraph

213

resume graph execution at any point. This is particularly valuable for long-

running processes or in scenarios where reliability and fault tolerance are

critical.

LangGraph’s design philosophy draws inspiration from established

frameworks like Pregel and Apache Beam, while its public interface

borrows concepts from NetworkX. This blend of influences results in a

powerful yet accessible tool for AI development. While LangGraph is built

to integrate seamlessly with LangChain and LangSmith, it’s important to

note that it can be used independently, offering flexibility to developers

who may have different toolchain preferences.

The framework also shines in its support for streaming outputs. As

each node in the graph produces results, these can be streamed in real

time, including token-by-token streaming from language models. This

feature is invaluable for creating responsive, interactive AI agents that can

provide immediate feedback and engage in dynamic conversations.

In the broader context of AI development, LangGraph represents a

significant step forward in the creation of more sophisticated, stateful AI

agents. By providing tools for implementing cycles, ensuring persistence,

and offering fine-grained control, it empowers developers to create AI

systems that can handle complex, multi-step tasks, maintain context over

extended interactions, and adapt to changing conditions. This makes it

particularly well suited for applications in areas such as conversational AI,

task planning and execution, and multi-agent simulations.

As AI continues to evolve and find new applications across industries,

frameworks like LangGraph play a crucial role in bridging the gap between

the raw capabilities of large language models and the complex, real-world

requirements of AI systems. By providing a robust foundation for building

stateful, adaptive AI agents, LangGraph is poised to accelerate innovation

in the field of artificial intelligence and enable the creation of more

capable, reliable, and sophisticated AI applications.

Chapter 9 Introduction to LangGraph

214

�Graphs
LangGraph models agent workflows as graphs, where the behavior of your

agents is defined by three essential components. First, the State represents

the current snapshot of your application, which can be any Python type,

though it often takes the form of a TypedDict or Pydantic BaseModel.

Next, Nodes are Python functions that encode the logic of your agents,

taking the current State as input, performing some computation or action,

and returning an updated State. Lastly, Edges are Python functions that

determine the next Node to execute based on the current State, guiding the

flow of operations through either conditional branches or fixed transitions.

By combining Nodes and Edges, you can create intricate, looping

workflows that allow the State to evolve over time. The real strength

of LangGraph lies in how it manages this State, with Nodes and Edges

functioning as Python code—whether incorporating an LLM or utilizing

standard Python logic.

In essence, Nodes perform the tasks, while Edges dictate the next

steps. LangGraph’s underlying graph algorithm employs message passing

to define a general program structure. When a Node completes its

operation, it sends messages along its Edges to subsequent Nodes, which

then execute their functions and pass the resulting messages onward.

This process continues in a pattern inspired by Google’s Pregel system,

advancing through discrete “super-steps.” Each super-step corresponds to

a single iteration over the graph’s nodes, where parallel operations belong

to the same super-step, while sequential ones are divided across separate

super-steps.

At the start of graph execution, all nodes are inactive, becoming active

only when they receive new messages (state) through their incoming

edges or channels. An active node runs its function and sends updates in

response. Once a super-step concludes, nodes without incoming messages

signal their inactivity. The graph’s execution completes when all nodes are

inactive, and no messages remain in transit.

Chapter 9 Introduction to LangGraph

215

The StateGraph class is the primary graph class used, parameterized

by a user-defined State object. On the other hand, the MessageGraph class

is a specialized type of graph where the State is merely a list of messages,

making it rarely used except in chatbot applications, where the State’s

complexity is minimal.

To construct your graph, you first define the State, then add nodes and

edges, and finally compile it. Compiling is a straightforward process that

performs basic structural checks on your graph, ensuring there are no

orphaned nodes, among other things. It also allows you to specify runtime

arguments such as checkpointers and breakpoints. Compiling is done by

calling the “.compile” method on your graph.

In the next few sections, we’ll take a deeper look at State, Nodes,

and Edges.

�State
The State includes the schema and reducer functions that dictate how

updates are applied. The schema, which serves as the input for all Nodes

and Edges, can be a TypedDict or a Pydantic model. Nodes emit updates to

the State, which are then processed using the specified reducer functions.

The schema is typically defined using TypedDict, but a Pydantic

BaseModel can also be used to incorporate default values and additional

data validation. By default, the input and output schemas of the graph

are the same, but you can customize them if needed, particularly when

handling numerous keys with distinct roles.

Reducers play a crucial role in applying updates to the State. Each

key in the State has an independent reducer function, with the default

behavior being to overwrite the key with new updates. For instance, you

can use the Annotated type to specify a custom reducer, like operator.add,

which can append updates rather than overwrite them.

Chapter 9 Introduction to LangGraph

216

Context channels allow you to manage shared resources like database

connections that are maintained outside the nodes and excluded from

checkpointing. These resources are set up at the beginning of the graph

execution and cleaned up at the end, ensuring efficient management

throughout the graph’s run.

When working with messages in your graph’s State, particularly in

applications involving chat models, it’s beneficial to store conversation

history as a list of Message objects. By adding a key to the State for these

messages and using a reducer like operator.add, you can efficiently

manage message updates. Alternatively, the add_messages function can

be used to track message IDs and handle both new and updated messages

accurately, ensuring that manual updates don’t inadvertently append

messages but instead update them as needed.

For serialization, add_messages also facilitates the deserialization

of messages into LangChain Message objects, allowing seamless state

updates. You can easily access these messages using dot notation, like

state["messages"][-1].content.

�Nodes
Nodes are typically Python functions, either synchronous or asynchronous,

where the first argument is the state and the optional second argument is

a “config” that holds configurable parameters, such as a session_id. You

add these nodes to a graph using the add_node method.

For example, consider a function process_data that logs a message

and returns a modified state:

from langchain_core.runnables import RunnableConfig
from langgraph.graph import StateGraph

builder = StateGraph(dict)

Chapter 9 Introduction to LangGraph

217

def process_data(state: dict, config: RunnableConfig):
 �print("Processing data for session:",

config["configurable"]["session_id"])
 state["output"] = f"Processed: {state['input']}"
 return state

def finalize_data(state: dict):
 state["status"] = "complete"
 return state

builder.add_node("process_data", process_data)
builder.add_node("finalize_data", finalize_data)

When these functions are added to the graph, they are automatically

converted into RunnableLambda objects, which provide features like batch

processing, asynchronous execution, and built-in tracing and debugging. If

you add a node without specifying a name, the function’s name is used as

the node name by default.

Special nodes such as START and END are crucial for controlling the

flow within the graph. The START node is used to designate the entry point

for user input, allowing you to specify which nodes are triggered first:

from langgraph.graph import START
builder.add_edge(START, "process_data")

The END node serves as a terminal point in the graph, marking where

no further actions will occur after the execution of its associated edges:

from langgraph.graph import END
builder.add_edge("finalize_data", END)

These special nodes help define the structure of your graph, ensuring

clear entry and exit points for the data flow.

Chapter 9 Introduction to LangGraph

218

�Edges
There are several key types of edges:

•	 Normal Edges: Directly connect one node to the next

•	 Conditional Edges: Use a function to decide which

node(s) to transition to next

•	 Entry Point: Specifies the first node to execute when

user input is received

•	 Conditional Entry Point: Uses a function to determine

the initial node(s) to execute based on custom logic

A node can have multiple outgoing edges, meaning all destination

nodes will execute in parallel in the next super-step.

For a normal edge, you will use the add_edge method:

graph.add_edge("step_one", "step_two")

For more complex routing, you can use a conditional edge. This uses a

method that requires a node name and a routing function, which uses the

current state of the graph to determine the next node or nodes:

def routing_logic(state):
 return "step_two" if state["condition"] else "step_three"

graph.add_conditional_edges("step_one", routing_logic)

You can also map the function’s output to specific nodes:

graph.add_conditional_edges("step_one", routing_logic, {True:
"step_two", False: "step_three"})

For an Entry Point Edge, you connect the virtual START node to the

first node using add_edge:

Chapter 9 Introduction to LangGraph

219

from langgraph.graph import START

graph.add_edge(START, "initial_step")

Finally, with a Conditional Entry Point, you need to start at different

nodes based on some condition. For this, you can use add_conditional_
edges from the START node:

from langgraph.graph import START

def start_logic(state):
 �return "initial_step" if state["start_here"] else

"alternative_step"

graph.add_conditional_edges(START, start_logic, {True:
"initial_step", False: "alternative_step"})

This approach allows you to dynamically control the flow based on

the incoming data, ensuring that the graph starts in the most appropriate

place, depending on the situation.

�Reflection Agent
The reflection agent in LangGraph is a specialized type of agent designed

to analyze and evaluate its own decisions and actions, enabling it to

improve performance over time. Unlike reactive agents that respond to

inputs in a straightforward manner, reflection agents incorporate a layer

of self-assessment, allowing them to learn from past interactions and

outcomes. This self-reflection capability is crucial for tasks that require

ongoing optimization, such as content creation or strategy development.

By iterating on its decisions and considering what worked well and what

didn’t, a reflection agent can refine its output to achieve higher-quality

results over time.

To demonstrate this, we’ll create a program that makes better tweets.

Chapter 9 Introduction to LangGraph

220

We will first need to install various libraries, including those for

OpenAI, LangChain, and LangGraph:

pip install --upgrade -q openai langchain langchain-openai
langchain-community langgraph

Next, we will have these imports:

from typing import TypedDict, Annotated, Sequence
from langgraph.graph import Graph, StateGraph
from langchain_openai import ChatOpenAI
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser

The import statement from typing import TypedDict, Annotated,

Sequence brings in important type hinting features from Python’s typing

module. TypedDict is used to create dictionaries with a predetermined

structure, where each key is associated with a specific type, ensuring that

data follows a consistent format. Annotated allows you to add metadata

or constraints to types, which can be useful for enhancing type hints and

making them more informative for tools or frameworks. Sequence is a type

hint that represents ordered collections, such as lists or tuples, allowing

you to specify the type of elements contained within the sequence.

From the LangGraph library, the imports from langgraph.graph
import Graph, StateGraph introduce two essential components, Graph

and StateGraph.

Then there are various libraries from LangChain, such as ChatOpenAI

for integrating OpenAI’s chat models, PromptTemplate for managing

structured prompts, and StrOutputParser for parsing string outputs.

We’ll then initialize the LLM:

llm = ChatOpenAI(model="gpt-4o-mini")

Chapter 9 Introduction to LangGraph

221

We will define the prompt templates:

reflection_template = PromptTemplate.from_template(
 """
 �Analyze the following tweet and provide a reflection on how

it can be improved:
 Tweet: {tweet}

 �Consider aspects such as clarity, engagement, and brevity.
Provide specific suggestions.

 """
)

The template, named reflection_template, is designed to analyze

tweets and provide reflections on how they can be improved. It asks for

an analysis of a given tweet, focusing on aspects like clarity, engagement,

and brevity. By using the PromptTemplate.from_template method,

the template is created with placeholders, such as {tweet}, which can

be dynamically filled with specific tweet content during runtime. This

approach ensures that the prompt is consistently formatted, making it

easier to generate targeted and effective reflections for tweet improvement.

This function is to improve the tweet:

improve_tweet_template = PromptTemplate.from_template(
 """
 �Given the original tweet and the reflection, provide an

improved version of the tweet:

 Original tweet: {tweet}
 Reflection: {reflection}

 Improved tweet:
 """
)

Chapter 9 Introduction to LangGraph

222

The placeholders {tweet} and {reflection} allow for dynamic

insertion of the original tweet content and the analysis provided by the

reflection, respectively. This template ensures that the process of refining

tweets is consistent and guided by specific feedback, making it easier to

produce more effective and engaging tweets.

We define the nodes:

def reflect(state: AgentState) -> AgentState:
 chain = reflection_template | llm | StrOutputParser()
 reflection = chain.invoke({"tweet": state['tweet']})
 state['reflection'] = reflection
 return state

The function takes an AgentState object as input, which holds the

current state of the agent, including the tweet to be analyzed. Inside the

function, a chain is created using the reflection_template, an LLM,

and a StrOutputParser. This chain processes the tweet by invoking the

reflection template and parsing the output to generate a reflection. The

resulting reflection is then stored back into the state object under the key

reflection, allowing the agent to use this reflection in subsequent steps.

This setup is integral to building a modular and reusable workflow that

systematically improves tweet content based on structured feedback.

There is the function to improve the tweet:

def improve_tweet(state: AgentState) -> AgentState:
 chain = improve_tweet_template | llm | StrOutputParser()
 �improved_tweet = chain.invoke({"tweet": state['tweet'],

"reflection": state['reflection']})
 state['improved_tweet'] = improved_tweet
 return state

This also takes in the AgentState object as input. There is also the

same approach with the use of the improve_tweet_template, an LLM, and

a StrOutputParser as well as the use of state.

Chapter 9 Introduction to LangGraph

223

We define the graph:

workflow = StateGraph(AgentState)

We add some nodes for the reflection and the improvement of

the tweet:

workflow.add_node("reflect", reflect)
workflow.add_node("improve_tweet", improve_tweet)

The same goes for the edges of the graph:

workflow.add_edge("reflect", "improve_tweet")

Then we set an entry point for the graph:

workflow.set_entry_point("reflect")

We compile the graph:

graph = workflow.compile()

We create a function to run the graph:

def improve_tweet_with_reflection(tweet: str) -> str:
 result = graph.invoke({"tweet": tweet})
 return result['improved_tweet']

We invoke the graph with the original tweet passed as input. The

workflow processes the tweet through various nodes, including generating

a reflection and then improving the tweet based on that reflection. The

final output, an enhanced version of the tweet, is extracted from the result

and returned as the function’s output.

Then we use an example of this agent:

if __name__ == "__main__":
 �original_tweet = "I think AI is cool and will change

everything."

Chapter 9 Introduction to LangGraph

224

 �improved_tweet = improve_tweet_with_
reflection(original_tweet)

 print(f"Original tweet: {original_tweet}")
 print(f"Improved tweet: {improved_tweet}")

The original_tweet is defined with the text “I think AI is cool and

will change everything.” The function improve_tweet_with_reflection

is then called with this tweet, and the resulting improved_tweet is stored.

Finally, both the original and improved tweets are printed to the console,

allowing you to see the before-and-after results of the tweet enhancement

process.

In fact, we can create a visualization of this agent:

from IPython.display import Image, display

try:
 display(Image(graph.get_graph().draw_mermaid_png()))
except Exception:
 # This requires some extra dependencies and is optional
 pass

The IPython.display module generates a graphic representation of the

workflow using Mermaid diagrams, rendered as a PNG image. The graph.
get_graph().draw_mermaid_png() function is called to create this visual,

and display(Image(...)) is used to show it within the environment. If

an error occurs, such as missing dependencies required for rendering the

image, the except block catches the exception and passes, allowing the

script to continue running without interruption.

Figure 9-1 shows what it looks like.

Chapter 9 Introduction to LangGraph

225

Figure 9-1.  A visualization of a reflection agent in LangGraph

�Persistence
Persistence is a critical feature in AI workflows, especially when it comes

to applications that need to maintain context across multiple interactions.

In the context of LangGraph, persistence refers to the ability to store and

retrieve the state of a graph after its nodes have been executed. This means

that an AI agent can “remember” what it has done in the past, allowing it to

pick up where it left off after an interruption or between different sessions.

This is particularly useful for applications where user input plays a

significant role, as the state of the agent can be saved and resumed without

losing any progress.

Using a feature called checkpointer, LangGraph provides a streamlined

way to store this state data in various persistent storage systems, such as

SQLite, Postgres, or MongoDB. When an agent pauses—whether waiting

for user input or due to another event—its state is saved and can be

retrieved later to continue processing from where it left off. This ability

to store state over time also enhances debugging, tracking history, and

supporting multiple user sessions, making persistence essential for robust,

production-grade AI applications. With LangGraph’s checkpointers, you

Chapter 9 Introduction to LangGraph

226

can ensure that no matter what happens during an interaction, your

application will be able to pick up right where it left off, seamlessly and

efficiently.

We’ll write a program that illustrates the use of persistence. The

scenario is for a travel booking assistant.

For the program, we have this setup:

from langgraph.graph.message import add_messages

add_messages, imported from langgraph.graph.message, is a function

used to append or combine messages, so as to handle the concatenation of

chat messages in a stateful way as the graph processes interactions.

Then we create different tools:

from langchain_core.tools import tool

@tool
def book_flight(destination: str):
 """Book a flight to the specified destination."""
 return {"confirmation": "FL12345", "destination": destination}

@tool
def book_hotel(location: str):
 """Book a hotel in the specified location."""
 return {"confirmation": "HT98765", "location": location}

@tool
def book_car_rental(location: str):
 """Book a car rental in the specified location."""
 return {"confirmation": "CR56789", "location": location}

tools = [book_flight, book_hotel, book_car_rental]

The tool decorator from langchain_core.tools is used to define

functions that can be invoked by an AI agent as part of a workflow, turning

regular Python functions into callable “tools” within a LangChain or

Chapter 9 Introduction to LangGraph

227

LangGraph environment. In this case, three distinct tools are defined for

booking travel services: book_flight, book_hotel, and book_car_rental.

Each function takes a specific input—destination for flights and location

for hotels and car rentals—and returns a confirmation number along with

the requested information. These tools simulate actions that an AI agent

can perform.

Then we set up the OpenAI model:

from langchain_openai import ChatOpenAI

model = ChatOpenAI(temperature=0, streaming=True)
bound_model = model.bind_tools(tools)

We create two functions for the workflow:

from typing import Literal
def should_continue(state: TravelState) -> Literal["action",
"__end__"]:
 last_message = state["messages"][-1]
 if not last_message.tool_calls:
 return "__end__"
 return "action"

def call_model(state: TravelState):
 response = model.invoke(state["messages"])
 return {"messages": response}

The Literal import from typing is used to specify that a function’s

return value must be one of a few specific string options, providing more

precise control over the flow of logic. In the should_continue function, the

agent examines the state—specifically, the last message in the “messages”

list—to decide whether to continue with an action or finish the current

task. If no tool calls were made in the last message, it returns __end__,

indicating that the process is complete. Otherwise, it returns “action,”

signaling that further steps are needed.

Chapter 9 Introduction to LangGraph

228

The call_model function is responsible for invoking the AI model to

generate a response based on the current state (the list of messages). It

returns the generated message wrapped in a dictionary, allowing the agent

to use this output in the next step of its decision-making process.

We set up the workflows for the agents, tools, and edges:

from langgraph.graph import StateGraph, START
from langgraph.prebuilt import ToolNode

tool_node = ToolNode(tools)
workflow = StateGraph(TravelState)

workflow.add_node("agent", call_model)
workflow.add_node("action", tool_node)

workflow.add_edge(START, "agent")
workflow.add_conditional_edges("agent", should_continue)
workflow.add_edge("action", "agent")

The imports from langgraph.graph bring in the StateGraph class,

which is used to define a workflow that maintains the state across

different nodes, and the START constant, which defines the starting point

of the graph. Additionally, ToolNode from langgraph.prebuilt is a

preconfigured node responsible for executing tools (in this case, the travel

booking tools).

In this code, tool_node is instantiated with the predefined tools, such

as flight, hotel, and car rental booking functions, making them executable

within the workflow. A StateGraph object is created to manage the state

of the travel agent (represented by the “TravelState”), and two main nodes

are defined: the “agent” node, which invokes the model via the call_model

function, and the “action” node, which runs the tool when the model

decides to take an action. The workflow is set up by adding edges: it starts

with the “agent” node, which is linked to the “action” node based on

Chapter 9 Introduction to LangGraph

229

conditions. This structure allows the workflow to cycle between decision-

making (agent) and action execution (tools), dynamically progressing

based on real-time inputs and tool calls.

We then set up the memory:

from langgraph.checkpoint.memory import MemorySaver

memory = MemorySaver()
app = workflow.compile(checkpointer=memory)

The MemorySaver class from langgraph.checkpoint.memory is

imported to provide in-memory storage for the workflow’s state, enabling

persistence across interactions. By creating an instance of MemorySaver,

called memory, the state of the agent can be stored in memory, ensuring

that previous interactions are saved and can be accessed later.

The memory object is then passed as a checkpointer when compiling

the workflow using workflow.compile(checkpointer=memory). This step

ensures that after each node execution in the graph, the state is saved,

allowing the agent to “remember” what has already been processed.

Finally, we create the chat for the human and AI:

from langchain_core.messages import HumanMessage

config = {"configurable": {"thread_id": "2"}}
input_message = HumanMessage(content="Hello, I want to book a
flight to New York?")
for event in app.stream({"messages": [input_message]}, config,
stream_mode="values"):
 event["messages"][-1].pretty_print()

input_message = HumanMessage(content="I also want to book a
hotel room.")
for event in app.stream({"messages": [input_message]}, config,
stream_mode="values"):
 event["messages"][-1].pretty_print()

Chapter 9 Introduction to LangGraph

230

The HumanMessage class from langchain_core.messages is imported

to represent user input in the form of human-readable messages.

The config dictionary includes a key “configurable” that specifies a

thread_id, which ensures that the agent can track the conversation within

the same session. In this case, the thread_id is set to “2,” allowing the

agent to maintain context throughout the interaction.

In the first part of the interaction, an instance of HumanMessage is

created with the content “Hello, I want to book a flight to New York?”, and

it is passed to the app.stream function along with the config. The agent

processes this message and returns a response, which is then printed.

The second message, “I also want to book a hotel room.”, is handled in

a similar way, continuing the conversation in the same thread.

This is the output:

Human: Hello, I want to book a flight to New York?

AI: Great! When would you like to travel to New York

and from which city would you be departing?

Human: I also want to book a hotel room.

AI: Of course! Would you like assistance in finding

a hotel in New York as well? If so, what are your

preferences for the hotel such as budget, location,

amenities, etc.?

So as you can see, in the last thread from the AI, it recognizes the city.

In other words, there is persistence across the different nodes and calls to

the LLM.

�LangSmith
LangSmith is a powerful platform designed to build production-ready LLM

applications. It makes it easier for developers to manage the complexities

of these systems. With LangSmith, you can keep a close eye on your

Chapter 9 Introduction to LangGraph

231

application’s performance and progress, allowing for faster deployment

with increased confidence. Its seamless integration with LangChain and

LangGraph, along with the ability to operate independently, provides a

flexible and reliable framework for handling LLM solutions.

Working with LLMs can be challenging due to their probabilistic

nature. That is, a response can be unpredictable, often producing

inconsistent results based on natural language prompts.

Key features of LangSmith include tracing and debugging, where it

offers detailed logs of application runs, which help developers understand

the entire operation and quickly identify any issues. The platform also

provides robust tools for evaluation and testing, enabling developers to

create datasets of inputs and expected outputs for automated and manual

assessments. In production, LangSmith offers real-time monitoring of

essential metrics like latency, cost, and user feedback, ensuring any

problems are swiftly addressed.

Collaboration is another core focus, with LangSmith providing features

for annotation and feedback, allowing developers to share insights

and improve debugging and evaluation. Moreover, the platform offers

versioning and comparison tools, enabling users to analyze different

application versions side by side and track changes over time.

LangSmith offers three pricing plans tailored to different user needs.

The Developer plan, free for one user, includes 5,000 free traces per month,

with additional traces billed at $0.05 per trace. The Plus plan costs $39 per

user per month, offering 10,000 free traces with the same rate for extra

traces. Enterprise pricing is customized, providing features like Single

Sign-On, deployment options, and dedicated support. All plans support

key features like debugging, testing, and monitoring, with additional

collaboration and security options for teams.

Let’s take a look at LangSmith. You can register for the service at this

URL: smith.langchain.com. Figure 9-2 shows the dashboard.

Chapter 9 Introduction to LangGraph

232

Figure 9-2.  This is the dashboard for LangSmith

It’s divided into different sections, such as Projects, Datasets & Testing,

Annotation Queues, and Prompts.

To get an API key, select the Settings icon on the left side of the

dashboard. You will then choose Create API Key. You have two options.

One is the Personal Access Token, which is for an individual user. Then

there is the Service Key. This is for more advanced capabilities.

For our purposes, we’ll select the Personal Access Token.

Next, you will use these commands in the terminal:

export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>

With this, a connection will be made to LangSmith. So when you go

back to the dashboard, you can then use the different functions to track,

debug, and monitor the agent.

�Assistant-UI
Assistant-UI (https://www.assistant-ui.com/docs) is a React

component library for building chatbot-like UIs. It has an integration with

Chapter 9 Introduction to LangGraph

https://www.assistant-ui.com/docs

233

LangGraph Cloud. You can create a new project using this, or you can use

it with existing React projects with the various components.

It’s simple to implement. First, here’s how you create a new project:

npx assistant-ui@latest create my-app
cd my-app

To add the API key for accessing OpenAI, we create a new .env file to

the project with your OpenAI API key:

OPENAI_API_KEY="sk-xx"

To run the application, use the following (as you would with a React

application):

npm run dev

This will display a skeleton for the Chat Agent UI, as you can see in

Figure 9-3.

Figure 9-3.  The Assistant-UI screen after running the application

Chapter 9 Introduction to LangGraph

234

�LangGraph Studio
LangGraph Studio (github.com/langchain-ai/langgraph-studio) is

a desktop application for prototyping and debugging LangGraph

applications. It offers visual ways to interact with, edit, and debug agent

workflows. There is also step-by-step execution and human-in-the-loop—

all integrated with LangSmith. It is currently available for macOS and

Windows (Linux support is coming soon). It requires Docker to set up.

Currently, this application is in the beta phase and is free. Figure 9-4 shows

the dashboard for this application.

Figure 9-4.  LangGraph Studio screen displaying a LangGraph agent
workflow

Chapter 9 Introduction to LangGraph

235

�Conclusion
LangGraph stands as an effective tool for building stateful, adaptive

agents that can handle complex workflows. Its flexibility in creating cyclic

structures, persistence, and fine-grained control empowers developers to

overcome the limitations of traditional DAG frameworks. By combining

LangGraph with LangChain, developers gain access to a comprehensive

ecosystem that simplifies the creation of advanced AI systems capable of

continuous learning and dynamic interactions.

Chapter 9 Introduction to LangGraph

237© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0_10

CHAPTER 10

Haystack
The Haystack framework, developed by Berlin-based startup Deepset,

is an open source tool that allows developers to build advanced AI

applications using large language models (LLMs). Founded in 2018 by

Milos Rusic and Malte Pietsch, Deepset gained early attention for its focus

on natural language processing (NLP) solutions, such as training the first

German BERT model. Haystack has since evolved into a powerful tool for

building custom applications like question answering, semantic search,

and Retrieval-Augmented Generation (RAG) systems.

Haystack’s strength lies in its modularity and flexibility. This enables

developers to integrate components like vector databases, transformer

models, and LLMs from platforms such as Hugging Face, OpenAI, or even

custom models hosted on various cloud platforms like AWS or Azure. It

allows users to connect these components into pipelines, providing full

control over the data flow and enabling the creation of robust, scalable AI

solution.

Beyond open source tools, Deepset offers an enterprise version,

Deepset Cloud, which simplifies the deployment of production-ready NLP

applications. Haystack's features make it useful for enterprises looking to

build and manage NLP-driven applications with greater ease, thanks to its

support for document retrieval, semantic search, and advanced dynamic

template generation.

https://doi.org/10.1007/979-8-8688-1134-0_10#DOI

238

With Deepset continuing to secure significant investment, including

$30 million in 2023, the company is poised to further expand its LLM-

focused offerings.1

�Haystack Program
To get a sense of how Haystack works, we’ll create a simple program. It

will use a Retrieval-Augmented Generation (RAG) pipeline to retrieve and

generate answers to a question given a set of documents.

First, we will need to install the framework:

pip install haystack-ai

Next, we will install few libraries:

from haystack import Pipeline, Document
from haystack.utils import Secret
from haystack.document_stores.in_memory import
InMemoryDocumentStore
from haystack.components.retrievers.in_memory import
InMemoryBM25Retriever
from haystack.components.generators import OpenAIGenerator
from haystack.components.builders.answer_builder import
AnswerBuilder
from haystack.components.builders.prompt_builder import
PromptBuilder

Here are the explanations:

•	 Pipeline: Allows you to develop a series of processes

ranging from document retrieval to answer generation.

1 https://techcrunch.com/2023/08/09/deepset-secures-30m-to-expand-its-
llm-focused-mlops-offerings/

Chapter 10 Haystack

https://techcrunch.com/2023/08/09/deepset-secures-30m-to-expand-its-llm-focused-mlops-offerings/
https://techcrunch.com/2023/08/09/deepset-secures-30m-to-expand-its-llm-focused-mlops-offerings/

239

•	 Document: A single unit or piece of content or text that

is used in answering questions.

•	 Secret: Library for handling private information like

API keys for the OpenAI API.

•	 InMemoryDocumentStore: Library to store the

documents that are kept in memory for quick lookup at

runtime.

•	 InMemoryBM25Retriever: Helps to find relevant

documents from the document store given the

question using BM25 as its method of retrieval. This is a

traditional information retrieval algorithm.

•	 OpenAIGenerator: Library for the OpenAI API.

•	 AnswerBuilder and PromptBuilder: Classes for

instantiating responses and prompts for the LLM.

We instantiate a document in an in-store memory database. We will

write three simple documents to it:

document_store = InMemoryDocumentStore()
document_store.write_documents([
 Document(content="My name is Jean and I live in Paris."),
 Document(content="My name is Mark and I live in Berlin."),
 Document(content="My name is Giorgio and I live in Rome.")
])

These will be the documents from which the pipeline fetches

information on certain knowledge.

Then we have the code for the RAG pipeline:

Build a RAG pipeline
prompt_template = """
Given these documents, answer the question.

Chapter 10 Haystack

240

Documents:
{% for doc in documents %}
 {{ doc.content }}
{% endfor %}
Question: {{question}}
Answer:
"""

retriever = InMemoryBM25Retriever(document_
store=document_store)
prompt_builder = PromptBuilder(template=prompt_template)
api_key = userdata.get('OPEN_AI_API_KEY')
llm = OpenAIGenerator(api_key=Secret.from_token(api_key))

rag_pipeline = Pipeline()
rag_pipeline.add_component("retriever", retriever)
rag_pipeline.add_component("prompt_builder", prompt_builder)
rag_pipeline.add_component("llm", llm)
rag_pipeline.connect("retriever", "prompt_builder.documents")
rag_pipeline.connect("prompt_builder", "llm")

Here’s a rundown:

•	 Prompt Template: A custom template is generated

using the PromptBuilder. It takes the retrieved

documents as input and creates a prompt for the

language model, which asks the model to give

an answer.

•	 Retriever: The InMemoryBM25Retriever is configured

to look into the document store for the best matching

documents to the query. In this example, it will fetch a

document that is very likely to contain an answer.

Chapter 10 Haystack

241

•	 PromptBuilder: This constructs the final prompt that

goes to the LLM. It inserts the retrieved documents into

the template.

•	 OpenAIGenerator: This module is responsible for

generating responses with the use of OpenAI's GPT-

based models. The key of the OpenAI API is securely

retrieved through “Secret.from_token()”.

We construct a question using this code:

Ask a question
question = "Who lives in Paris?"
results = rag_pipeline.run(
 {
 "retriever": {"query": question},
 "prompt_builder": {"question": question},
 }
)

The pipeline runs, retrieving relevant documents and generating an

answer using OpenAI’s GPT model.

We print the response:

print(results["llm"]["replies"])

In this example, the system will likely find the document “My name is

Jean, and I live in Paris” for this question's answer.

This setup illustrates how RAG pipelines combine traditional search

with the generative power of large language models to answer questions

based on documents provided with the help of the Haystack framework.

Chapter 10 Haystack

242

�Haystack Agent with Function Calling
The OpenAIFunctionCaller class of the haystack-experimental package

helps to connect models like GPT-4 easier in Jupyter or Colab notebooks.

It also supports function calling. That is, it will recognize when to invoke

certain functions, say to look something up or make a calculation.

This is a handy component in that it makes the integration of agents

into the workflow of Haystack easier. It also handles common problems

like API errors or poor connections. This component can even deal with

retries for failed attempts. For the most part, this component helps to

create more interactive and smart agents, since the AI can decide when to

perform particular actions based on the user’s input.

Let's take a look at the example. We will create a program that uses a

RAG pipeline. For this, the user will ask questions, and the AI agent will

dynamically decide to call on various functions like asking about the

weather or who lives where.

First, we need to install Gradio, which allows for creating simple web

interfaces:

pip install haystack-ai gradio

Next, we import various frameworks for Haystack that will allow for

using memory, RAG, prompts, OpenAI LLMs, and function calling:

from haystack.utils import Secret
from haystack.document_stores.in_memory import
InMemoryDocumentStore
from haystack.components.retrievers.in_memory import
InMemoryBM25Retriever
from haystack.components.builders.answer_builder import
AnswerBuilder
from haystack.components.builders.prompt_builder import
PromptBuilder

Chapter 10 Haystack

243

from haystack import component, Pipeline, Document
from haystack.components.builders import PromptBuilder
from haystack.components.generators import OpenAIGenerator
from haystack.components.generators.chat.openai import
OpenAIChatGenerator
from haystack.dataclasses import ChatMessage
from haystack.components.joiners import BranchJoiner
from haystack_experimental.components.tools import
OpenAIFunctionCaller

Then we will create the data structure for the weather_fetch function

since we will not be using an API (although, in a production program, you

would do so):

WEATHER_INFO = {
 �"Berlin": {"weather": "mostly sunny", "temperature": 7,

"unit": "celsius"},
 �"Paris": {"weather": "mostly cloudy", "temperature": 8,

"unit": "celsius"},
 �"Rome": {"weather": "sunny", "temperature": 14, "unit":

"celsius"},
 �"Madrid": {"weather": "sunny", "temperature": 10, "unit":

"celsius"},
 �"London": {"weather": "cloudy", "temperature": 9, "unit":

"celsius"},
}

def get_current_weather(location: str):
 if location in WEATHER_INFO:
 return WEATHER_INFO[location]
 else:
 �return {"weather": "sunny", "temperature": 70, "unit":

"fahrenheit"}

Chapter 10 Haystack

244

Next, we define tools for the RAG pipeline and fetching the weather:

tools = [
 {
 "type": "function",
 "function": {
 "name": "rag_pipeline_func",
 �"description": "Get information about where

people live",
 "parameters": {
 "type": "object",
 "properties": {
 "query": {
 "type": "string",
 �"description": "The query to use in

the search. Infer this from the user's
message. It should be a question or a
statement",

 }
 },
 "required": ["query"],
 },
 },
 },
 {
 "type": "function",
 "function": {
 "name": "get_current_weather",
 "description": "Get the current weather",
 "parameters": {
 "type": "object",
 "properties": {

Chapter 10 Haystack

245

 �"location": {"type": "string",
"description": "The city"}

 },
 "required": ["location"],
 },
 },
 },
]

Then we use the tools in the chat_agent:

message_collector = BranchJoiner(List[ChatMessage])
chat_generator = OpenAIChatGenerator(api_key=Secret.
from_token(api_key),model="gpt-3.5-turbo", generation_
kwargs={'tools': tools})
function_caller = OpenAIFunctionCaller(available_
functions={"rag_pipeline_func": rag_pipeline,
 �"get_current_

weather":
get_current_
weather})

chat_agent = Pipeline()
chat_agent.add_component("message_collector", message_
collector)
chat_agent.add_component("generator", chat_generator)
chat_agent.add_component("function_caller", function_caller)

chat_agent.connect("message_collector", "generator.messages")
chat_agent.connect("generator", "function_caller")
chat_agent.connect("function_caller.function_replies",
"message_collector")
chat_agent.show()

Chapter 10 Haystack

246

The function chat first takes what the user typed and appends it in a

list that contains the record of the conversation. This is important as the

system needs to know what has been discussed so that answers come out

correctly in the context. The chat_agent.run() method sends the user

query to an endpoint on OpenAI's API, which then decides if a function

call is needed or if a simple text reply will be enough. So, with a query

dealing with weather, the system will invoke a pre-set function to fetch

current weather. These are then appended to the conversation history for

continuity in the chat, and the first response of the assistant is returned

and displayed to the user. Figure 10-1 shows the workflow.

Chapter 10 Haystack

247

Figure 10-1.  Haystack chat agent architecture

Chapter 10 Haystack

248

We will now make an interactive chat interface using Gradio using the

gr.ChatInterface() function. We provide a few example questions that

the user can try, such as “How is the weather in Madrid?” and “Who lives

in London?” These examples give users an idea of how to interact with the

system and some of the things it can do.

def chat(message, history):
 messages.append(ChatMessage.from_user(message))
 response = �chat_agent.run({"message_collector": {"value":

messages}})
 �messages.extend(response['function_caller']['assistant_

replies'])
 �return response['function_caller']['assistant_replies']

[0].content

demo = gr.ChatInterface(
 fn=chat,
 examples=[
 "Can you tell me where Giorgio lives?",
 "What's the weather like in Madrid?",
 "Who lives in London?",
 "What's the weather like where Mark lives?",
],
 title="Ask me about weather or where people live!",
)
demo.launch(share=True)

Finally, we start the interface using the following command: demo.

launch(share=True). It opens a web-based chat interface for inputting

the queries. The argument “share=True” will provide the notebook with a

public URL to use it.

Chapter 10 Haystack

249

The whole process works once the user types something in the dialog

interface. It gets processed through the chat agent that makes a decision

on whether to give a text-based answer or make a function call in order to

fetch data, such as weather information. The agent then gives a real-time

response, and at every new exchange, the conversation history updates,

therefore making the system more interactive.

�Conclusion
Haystack provides a flexible, modular platform for building sophisticated

AI applications, particularly those leveraging RAG pipelines. Its open

source framework allows developers to integrate a wide variety of tools,

databases, and LLMs, making it ideal for creating not only advanced NLP

solutions but also powerful AI agents. These agents can dynamically

interact with users, retrieve relevant information, and perform tasks

like function calling in real time. Whether through its open source

framework or the enterprise-focused Deepset Cloud, Haystack streamlines

the development and deployment of AI-driven applications, offering

businesses a robust solution for managing and scaling NLP workflows and

AI agent interactions.

Chapter 10 Haystack

251© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0_11

CHAPTER 11

Takeaways
As we write the last chapter of this book, the category for AI agents has

accelerated. The pace of change is really breathtaking.

A major validation of the space is the adoption of this technology from

some of the world’s largest technology companies. They understand the

transformative nature of this technology—how it will go well beyond the

typical chatbot approach for generative AI.

Consider the following developments:

•	 Salesforce’s Agentforce: This is a platform that provides

conversational capabilities and autonomous agents

for many tasks, such as CRM (customer relationship

management), marketing, and data management.

Agentforce has advanced embedding models that allow

for working with complex business workflows and

processes. They are also multimodal, handling images,

audio, and video. In fact, according to Saleforce’s CEO,

Marc Benioff, there will be one billion AI agents by the

end of fiscal year 2026.1

•	 ServiceNow’s Xanadu: This agentic system automates

complex processes for customer service management (CSM)

and IT service management (ITSM). For example, if a

customer reports a Wi-Fi issue, an AI agent can verify

1 https://finance.yahoo.com/news/salesforce-co-founder-and-ceo-marc-
benioff-autonomous-ai-agents-will-beat-copilots-155044728.html

https://doi.org/10.1007/979-8-8688-1134-0_11#DOI
https://finance.yahoo.com/news/salesforce-co-founder-and-ceo-marc-benioff-autonomous-ai-agents-will-beat-copilots-155044728.html
https://finance.yahoo.com/news/salesforce-co-founder-and-ceo-marc-benioff-autonomous-ai-agents-will-beat-copilots-155044728.html

252

network stability, analyze similar past cases, request router

details from the customer, and guide the human agent

through the next steps—all while following company

policies.2

•	 Workday: The company has released various HR and

financial management agents. They are based on the

training of models for 800 billion business transactions.

Among the agents, there is Recruiter. It automates

the workflows for identifying talent, outreach, and

scheduling interviews.3

•	 Oracle: The company has created more than 50 role-

based AI agents for its Cloud Fusion Applications

Suite. They span use cases for ERP (enterprise resource

planning), HCM (human capital management), SCM

(supply chain management), and CX (customer

experience).4

All these examples point to the strategic importance of AI agents. They

also highlight the many opportunities for developers.

According to Jensen Huang, who is the CEO and cofounder of Nvidia,

“This is an extraordinary time. In no time in history has technology moved

faster than Moore’s Law. We’re moving way faster than Moore’s Law,

reasonably Moore’s Law squared.”5

2 https://www.crn.com/news/ai/2024/servicenow-partner-summit-xanadu-
release-the-biggest-ai-news
3 https://www.cio.com/article/3526668/will-workdays-new-ai-agents-set-
it-apart-from-competitors.html
4 https://finance.yahoo.com/news/oracle-adds-powerful-ai-capabilities-
132000823.html
5 https://venturebeat.com/ai/why-jensen-huang-and-marc-benioff-see-
gigantic-opportunity-for-agentic-ai/

Chapter 11 Takeaways

https://www.crn.com/news/ai/2024/servicenow-partner-summit-xanadu-release-the-biggest-ai-news
https://www.crn.com/news/ai/2024/servicenow-partner-summit-xanadu-release-the-biggest-ai-news
https://www.cio.com/article/3526668/will-workdays-new-ai-agents-set-it-apart-from-competitors.html
https://www.cio.com/article/3526668/will-workdays-new-ai-agents-set-it-apart-from-competitors.html
https://finance.yahoo.com/news/oracle-adds-powerful-ai-capabilities-132000823.html
https://finance.yahoo.com/news/oracle-adds-powerful-ai-capabilities-132000823.html
https://venturebeat.com/ai/why-jensen-huang-and-marc-benioff-see-gigantic-opportunity-for-agentic-ai/
https://venturebeat.com/ai/why-jensen-huang-and-marc-benioff-see-gigantic-opportunity-for-agentic-ai/

253

He also is a big believer in AI agents. He has said that they are a

“gigantic” opportunity and are in the “flywheel zone.”

Or consider this from Juan Jose Lopez Murphy, who is the Head of

Data Science and AI at Globant:

AI Agents will have important use cases throughout different
industries. The more mature they are in their digital journeys,
the more they’ll act like software companies. In media and
entertainment, they’ll be used to process and aggregate even
more data for analysis and share faster, more exact personal-
ized recommendations for each user. In healthcare, AI Agents
could be used to create even stronger predictions of future
diagnoses based on initial symptoms. Agents could also pro-
actively search and test compounds, proteins, new drug devel-
opments and many exploration tasks that are very time
consuming and that combine a requirement of extensive
knowledge and high creativity.6

These are certainly exciting times. And yes, our book is a way to get

a starting-off point to participate in this industry. You can then build on

this—focusing on those areas you find most interesting.

For the last chapter of this book, we’ll provide some takeaways and

observations. True, the category for AI agents is moving fast. But for the

most part, it seems very clear it’s an area that is poised for long-

term growth.

�Rethinking Software
In this book, we saw how AI agents will be transformative across industries

and personal applications alike. From revolutionizing business workflows

to enhancing customer experiences, AI agents represent a fundamental

shift in how we interact with technology. The potential of these systems

6 This quote is from an interview with the authors of this book.

Chapter 11 Takeaways

254

lies not only in their ability to automate complex tasks but also in their

capacity to operate autonomously, learning and adapting in real time.

This evolution is already prompting significant changes, especially in

the areas of user interface (UI) and user experience (UX) design, which

must be rethought to accommodate the unique challenges of AI-driven

interactions.

Unlike traditional software that follows predictable, rule-based

workflows, AI agents require dynamic interfaces that balance autonomy

with user control. Users need transparency into the agent's decision-

making process and should be able to intervene when necessary while also

benefiting from a seamless, automated experience. This calls for interfaces

that can manage complex tasks in the background, yet provide timely

updates and options for human input. These changes will fundamentally

reshape how software is designed, emphasizing real-time feedback loops,

decision logs, and adaptable interfaces that evolve alongside the AI's

capabilities.

Moreover, the development process is changing. Whereas conventional

development follows a deterministic, step-by-step approach, working with

agentic AI relies on probabilistic models that generate outcomes based

on a range of potential inputs. This introduces unpredictability, requiring

extensive testing, fine-tuning, and ongoing iteration to ensure reliability.

Developers must now consider variables like model accuracy, data

integrity, and the potential for unexpected outputs. These complexities

demand new tools, workflows, and skill sets, as the development process

is less about writing rigid code and more about shaping models and

algorithms that can adapt to various scenarios.

Moreover, the distinction between traditional automation tools

like robotic process automation (RPA) and AI agents is also fading. AI

agents are evolving to perform not just repetitive, rule-based tasks but

also complex decision-making processes, often without direct human

oversight. This shift is driving a rethinking of business models, as the focus

moves from subscription-based services to outcome-based pricing, where

Chapter 11 Takeaways

255

companies pay for measurable improvements in productivity or cost

savings. In this context, AI agents are poised to become a cornerstone of

enterprise systems, seamlessly integrating with existing infrastructures and

driving efficiency in unprecedented ways.

�The Challenges
While AI agents hold tremendous promise, they also come with notable

downsides that must be addressed for their widespread adoption. One

of the key challenges lies in the frameworks used to build these agents,

which are still in their nascent stages. Despite the excitement surrounding

platforms like LangChain, AutoGen, and LangGraph, their complexity

and evolving nature can make them difficult to work with. Developers

often face difficulties orchestrating multiple components—such as

memory, tools, and multi-agent systems—into a cohesive workflow. These

challenges are compounded by the need for human oversight, as fully

autonomous systems are not yet reliable enough to operate independently.

Data management presents another significant obstacle. AI agents

rely on vast amounts of data to function effectively, but managing this

data—especially in real time—can be overwhelming. Data orchestration,

which involves coordinating data from different sources, presents its own

difficulties, particularly when systems require frequent updates or process

dynamic data types.

Furthermore, these agents often deal with highly sensitive information,

raising serious concerns about privacy, security, and governance. Without

robust measures in place, the risks of data breaches, unauthorized

access, or unintentional misuse increase, potentially eroding trust in the

technology. Ensuring that AI agents are secure, private, and adhere to

governance standards is crucial for their long-term viability, particularly in

sectors like healthcare, finance, and enterprise applications.

Chapter 11 Takeaways

256

Another major limitation of current AI agents is the reliance on

transformer models, which have inherent weaknesses. These models,

while revolutionary, are prone to hallucinations—where the AI generates

false or misleading information—and have cut-off dates for their training

data, making them unable to provide up-to-date or entirely accurate

information. While progress has been made in improving the reliability

of large language models (LLMs), there is still much work to be done to

make them more dependable in high-stakes environments. Additionally,

transformers are resource-intensive, requiring significant computational

power and energy, making them costly and less sustainable at scale.

�AI Agent Frameworks
In this book, we have covered several of the leading AI agent frameworks,

such as LangGraph, AutoGen, CrewAI, LangChain, and Haystack.

So which one to use? There are no clear-cut answers. Part of this is due

to the fact that the industry is moving so quickly.

Yet there are still some general factors to keep in mind. For example,

LangGraph approaches agents by using graphs for the decision-making

processes. This allows for more granular control of the workflows.

LangGraph will work fine in projects where complex decision-making

processes are required, such as in a customer service system, which will

take into consideration hundreds of different situations. The framework

also provides strong traceability.

AutoGen, on the other hand, is well suited for collaboration. In fact, it

can handle many functions out of the box. Think of AutoGen as a system

where various agents work together like a committee of experts. This

can be helpful with scenarios like major problem-solving and in making

advanced chatbots.

Chapter 11 Takeaways

257

Next, there is CrewAI. This framework is one of the most intuitive. Yet

it is still powerful. CrewAI is designed to mimic how human teams work.

That makes it a good choice for projects that require a number of different

roles, such as a virtual project management tool or a creative writing

assistant that uses different AIs.

As for LangChain, this is like the Swiss Army knife of AI frameworks:

very flexible, packed full of tools, and is a good choice if you want to build

something very specific or if you need to combine AI with other types of

data or systems. It has been around longer than the others, which generally

means there are more examples and community support to help you out.

Then there is Haystack. This framework is particularly good with

large datasets for RAG (Retrieval-Augmented Generation), with

many integrations for databases and deep NLP (natural language

processing) models.

Note that all of these frameworks work seamlessly with LLMs. But each

does this differently. There are also important differences when it comes to

the size of the application and scalability.

No doubt, a critical factor for an agent framework is the ecosystem.

How many contributors does it have? How many times has it been

downloaded and starred?

LangChain and LangGraph have perhaps the most vibrant ecosystems.

But frameworks like AutoGen, CrewAI, and Haystack have been gaining

lots of momentum. AutoGen also has the advantage of the backing of

Microsoft. This is certainly important for enterprises.

In choosing between frameworks, consider your project's complexity,

your team's strengths, the desired project growth, and special needs. If you

are in doubt, it’s a good idea to try a couple to find out what works best.

Remember, there is no one-size-fits-all answer. The best depends on what

you're trying to build and who is going to use it.

Table 11-1 provides comparisons among these frameworks.

Chapter 11 Takeaways

258

Ta
bl

e
11

-1
. 

 A
 C

om
p

ar
is

on
 T

ab
le

 fo
r

A
I A

ge
n

t F
ra

m
ew

or
ks

Fa
ct

or
La

ng
Gr

ap
h

Au
to

Ge
n

Cr
ew

AI
La

ng
Ch

ai
n

Ha
ys

ta
ck

Co
m

pl
ex

ity
✅
✅
✅

✅
✅

✅
✅
✅
✅

✅
✅

Ea
se

 o
f U

se
✅

✅
✅

✅
✅
✅

✅
✅
✅

M
ul

ti-
ag

en
t

Co
lla

bo
ra

tio
n

✅
✅

✅
✅
✅

✅
✅

✅
✅

✅

Vi
su

al
iz

at
io

n
of

W
or

kf
lo

w
s

✅
✅
✅

✅
✅
✅

✅
✅
✅

Cu
st

om
iz

at
io

n

Fa
ct

or

✅
✅

✅
✅

✅
✅
✅

✅
✅

Co
m

m
un

ity

Su
pp

or
t

✅
✅
✅

✅
✅
✅
✅

✅
✅

Le
ar

ni
ng

 C
ur

ve
St

ee
p

M
od

er
at

e
Ge

nt
le

St
ee

p
M

od
er

at
e

Sc
al

ab
ili

ty
✅
✅

✅
✅
✅

✅
✅

✅
✅
✅

✅
✅
✅

Chapter 11 Takeaways

259

In
te

gr
at

io
n

Ca
pa

bi
lit

ie
s

✅
✅

✅
✅

✅
✅
✅
✅

✅
✅
✅

Us
e

Ca
se

Ex
am

pl
es

1.
 A

dv
an

ce
d

di
ag

no
st

ic

sy
st

em
s

in

he
al

th
ca

re

2.
 F

in
an

ci
al

m
od

el
in

g
w

ith

m
ul

tip
le

 d
ec

is
io

n

po
in

ts

3.
 A

da
pt

iv
e

e-
le

ar
ni

ng

pl
at

fo
rm

s

4.
 C

om
pl

ex

cu
st

om
er

 s
up

po
rt

ch
at

bo
ts

1.
 C

ol
la

bo
ra

tiv
e

re
se

ar
ch

 a
ss

is
ta

nt
s

2.
 M

ul
ti-

ex
pe

rt

co
ns

ul
tin

g
sy

st
em

s

3.
 C

om
pl

ex

pr
ob

le
m

-s
ol

vi
ng

pl
at

fo
rm

s

4.
 S

im
ul

at
io

ns
 o

f

m
ul

ti-
en

tit
y

sy
st

em
s

(e
.g

.,
ec

on
om

ic

m
od

el
s)

1.
 A

I-d
riv

en
 p

ro
je

ct

m
an

ag
em

en
t t

oo
ls

2.
 V

irt
ua

l e
ve

nt

pl
an

ni
ng

 s
ys

te
m

s

3.
 C

re
at

iv
e

w
rit

in
g

as
si

st
an

ts
 w

ith

sp
ec

ia
liz

ed
 ro

le
s

4.
 B

us
in

es
s

si
m

ul
at

io
ns

 fo
r

tra
in

in
g

1.
 C

us
to

m
iz

ed

in
du

st
ry

-s
pe

ci
fic

 A
I

as
si

st
an

ts

2.
 D

at
a

an
al

ys
is

pi
pe

lin
es

 c
om

bi
ni

ng

LL
M

s
w

ith
 o

th
er

da
ta

 s
ou

rc
es

3.
 R

ap
id

 p
ro

to
ty

pi
ng

of
 v

ar
io

us
 A

I

ap
pl

ic
at

io
ns

4.
 C

on
te

nt

ge
ne

ra
tio

n
sy

st
em

s

re
qu

iri
ng

 fi
ne

-

gr
ai

ne
d

co
nt

ro
l

1.
 L

ar
ge

-s
ca

le

do
cu

m
en

t s
ea

rc
h

an
d

re
tri

ev
al

 s
ys

te
m

s

2.
 Q

ue
st

io
n-

an
sw

er
in

g

ap
pl

ic
at

io
ns

 o
ve

r

la
rg

e
da

ta
se

ts

3.
 In

fo
rm

at
io

n

ex
tra

ct
io

n
fro

m

un
st

ru
ct

ur
ed

 d
at

a

4.
 B

ui
ld

in
g

co
nv

er
sa

tio
na

l A
I w

ith

ac
ce

ss
 to

 e
xt

er
na

l

kn
ow

le
dg

e

Le
ge

nd
: ✅

 =
 F

ai
r,
✅
✅

 =
 G

oo
d,

 ✅
✅
✅

 =
 E

xc
el

le
nt

Chapter 11 Takeaways

260

�Conclusion
In this book, we covered quite a bit about the transformative potential of

AI agents, from their foundational components and evolving frameworks

to the challenges and innovations that lie ahead. Yet, as comprehensive

as this discussion has been, it is still a foundation for further learning and

exploration.

As you continue on your journey with AI agents, remember that

this field is still evolving, and staying curious and adaptive will be key to

mastering its complexities. New advancements will emerge and, with

them, fresh opportunities to push the boundaries of what AI can achieve.

The potential of AI agents is boundless, and we are only at the beginning of

this exciting transformation.

So, we wish you the best of luck as you continue to explore, innovate,

and make your mark in this rapidly advancing world of AI agents!

Chapter 11 Takeaways

261© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0

�Glossary

AGI (Artificial General Intelligence): A concept in AI that refers to a

machine’s ability to understand, learn, and apply knowledge across a wide

range of tasks, similar to human intelligence.

AI Agents: Software systems that operate autonomously, using artificial

intelligence to make decisions, perform tasks, and interact with users or

other systems without constant human intervention.

Alignment: The ability of a model to produce responses that meet user

expectations, ensuring outputs are coherent, contextually appropriate, and

aligned with the desired goals. Techniques like Reinforcement Learning

from Human Feedback (RLHF) enhance alignment.

AutoGen: An open source framework for building LLM-based

applications that feature multiple agents working together, enabling

advanced multi-agent conversational AI systems.

AutoGen Studio: A low-code platform within AutoGen that helps

developers create generative AI agents, providing tools for building skills,

models, agents, and workflows.

AutoGPT: An early generative AI system that aimed to automate

complex tasks with minimal human intervention, known for its initial

excitement followed by the realization of its limitations.

Autonomy: The ability of AI agents to independently make decisions

and execute tasks without human intervention, relying on their ability to

learn, adapt, and respond to new situations in real time.

Conditional Edges: In LangGraph, these are edges that use a function

to decide the next node(s) to transition to based on the current state of

the graph.

https://doi.org/10.1007/979-8-8688-1134-0#DOI

262

ConversableAgent: A specialized agent in AutoGen designed to

manage conversations effectively, handling input, processing it using

predefined logic, and generating appropriate responses.

Copilots: Specialized AI agents designed for specific applications

or domains, assisting with tasks like content creation, data analysis, or

decision-making within a particular context.

CrewAI: A system within OpenAI’s offerings that allows for the

development of sophisticated conversational agents, integrating multiple

AI technologies to create complex interactions.

Delimiters: Tools used in prompt engineering to clearly separate

different sections of text, enhancing the accuracy and focus of AI models in

processing information.

Directed Acyclic Graph (DAG): A conceptual model used in computer

science and mathematics, consisting of vertices connected by directed

edges with no cycles, often used in task scheduling and data processing.

Embodied Agents: AI systems that interact with the physical world,

often used in robotics or simulated environments to perform tasks like

navigation, assembly, or interaction with humans.

Fine-Tuning: The process of training a general AI model on a smaller,

task-specific dataset to refine its performance for particular applications.

Generative AI: A branch of AI that creates diverse content such as text,

images, videos, and music based on prompts, often utilizing large language

models (LLMs).

Goal-Based Agents: AI systems that achieve specific objectives by

considering future outcomes and planning their actions accordingly, often

using search algorithms to find the most efficient path to a goal.

Google Colab: A cloud-based Jupyter Notebook environment offering

free access to GPUs and TPUs, enabling AI practitioners to train and

deploy models without local setup.

Gradio: A web-based interface builder that allows developers to

quickly create demos for AI models, enabling real-time user interaction

with machine learning applications.

GLOSSARY

263

Haystack: A framework developed by Deepset, an open source tool

that allows developers to build advanced AI applications using large

language models (LLMs). It supports applications like question answering,

semantic search, and Retrieval-Augmented Generation (RAG) systems​.

Hierarchical Agents: AI systems organized in a tiered structure

where high-level agents set overarching goals and lower-level agents

handle specific tasks to achieve those goals, optimizing efficiency and

decision-making.

Hugging Face: A platform and open source community that offers

pretrained AI models, datasets, and tools to simplify natural language

processing and generative AI applications.

Jupyter Notebook: A web-based interactive development environment

that combines live code, visualizations, and text, commonly used for

exploratory data analysis and AI model development.

Jupyter Widgets: Interactive elements such as sliders and buttons

that can be embedded within Jupyter Notebooks to allow dynamic

manipulation of parameters in AI models.

LangChain: A development framework for building generative AI

agents that integrate LLMs with various data sources and tools, allowing

for the creation of sophisticated AI-driven applications.

LangGraph: An open source framework by LangChain that allows

developers to create stateful and multi-actor AI applications, with a focus

on dynamic and adaptive agent architectures.

Learning Agents: AI systems that improve their performance over time

by learning from experiences, typically using machine learning techniques

to refine their actions and decisions.

LLM (Large Language Model): A type of AI model trained on vast

amounts of text data to generate humanlike responses, understand

context, and perform a wide range of language-related tasks.

Memory: In AI, the ability to retain and utilize information from

previous interactions, enabling the system to maintain context, learn from

experiences, and provide coherent and personalized responses.

GLOSSARY

264

Model-Based Reflex Agents: AI systems that enhance decision-making

by incorporating internal models of the environment, allowing them to

predict outcomes and make more informed actions.

Multimodal LLMs: Advanced language models that can process and

generate information across various data types such as text, images, audio,

and video, enabling more versatile interactions.

Multi-agent Collaboration: The interaction of multiple AI agents, each

specializing in different tasks, working together to achieve a common goal,

akin to how human teams operate.

Natural Language Processing (NLP): A field of artificial intelligence

that focuses on the interaction between computers and humans using

natural language. It enables machines to understand, interpret, and

generate human language.

Nodes: In LangGraph, these are Python functions that encode the logic

of agents, taking the current state as input, performing computations, and

returning an updated state.

Ollama: A tool that facilitates running large language models locally on

personal devices, providing the ability to load and interact with AI models

such as Llama 2 and Mistral.

Open Source LLMs and SLMs: Language models developed and

distributed openly, allowing for transparency, community collaboration,

and customization. Small language models (SLMs) are more efficient,

requiring less computational power and tailored for specific tasks.

Outcome-Based Pricing Model: A business model where charges

for software or services are based on measurable improvements in

productivity, cost savings, or decision-making effectiveness, rather than

the number of users or licenses.

Planning: The process by which AI agents determine a sequence

of steps to achieve a specific goal, breaking down complex tasks into

manageable actions.

GLOSSARY

265

Pretrained Models: LLMs that are trained on extensive datasets before

being fine-tuned for specific tasks, allowing for efficient adaptation to

various applications.

Prompt Engineering: The art and science of crafting inputs that guide

AI systems to generate accurate and relevant responses, often involving

iterative refinement of prompts.

Proprietary LLMs: Advanced AI systems owned and controlled by

private organizations, offering high performance but often with limitations

like customization and data privacy concerns.

Reflection Agent: A specialized agent in LangGraph designed to

analyze and evaluate its own decisions and actions, enabling it to improve

performance over time through self-assessment.

Retrieval-Augmented Generation (RAG): An AI technique where

external data sources are incorporated during text generation, improving

the accuracy of responses by retrieving relevant information.

RPA (Robotic Process Automation): Technology that automates

repetitive, rule-based tasks typically performed by humans, often used in

conjunction with AI to handle more complex processes.

Semantic Search: A search technique that improves upon traditional

keyword matching by understanding the meanings of words and phrases

in their broader context, providing more relevant search results​.

Simple Reflex Agents: The most basic type of AI agents, operating

based on predefined rules that dictate how they should respond to specific

sensory inputs without using memory or learning from past experiences.

State in LangGraph: The current snapshot of an application managed

by LangGraph, which includes the schema and reducer functions that

dictate how updates are applied during workflow execution.

Streaming Outputs: A feature in LangGraph that allows real-time

streaming of results from nodes, enabling responsive interactions and

immediate feedback during AI operations.

GLOSSARY

266

Streamlit: A Python-based tool for creating simple, interactive web

applications, useful for visualizing AI model outputs like text or image

generation.

Synthetic Data: Artificially created data that mimics real-world data,

used to train AI models when real data is scarce or expensive to obtain.

Test-Time Training (TTT): An emerging AI model that processes more

data than transformers while consuming less energy, offering a constant

model size regardless of the data volume.

Tools: External APIs or software that AI agents use to extend their

capabilities, allowing them to perform complex tasks beyond their core

functions.

Transfer Learning: A machine learning technique where a model

trained on one task is repurposed for a different but related task, leveraging

the knowledge gained during initial training.

Transformer Models: A revolutionary architecture in natural language

processing that uses attention mechanisms for efficient data processing,

outperforming previous models like RNNs.

TPTU (Task Planning and Tool Usage) Framework: A system that

evaluates how effectively LLMs can plan tasks and utilize tools, allowing AI

agents to dynamically adjust their actions based on ongoing feedback.

Vector Databases: Specialized databases used to store and query

vector representations of data, particularly useful in AI applications like

semantic search, where similarities between data points are computed

based on their vector representations.

GLOSSARY

267© Tom Taulli, Gaurav Deshmukh 2025
T. Taulli and G. Deshmukh, Building Generative AI Agents,
https://doi.org/10.1007/979-8-8688-1134-0

Index

A
Accountability, 13, 39
AgentAction, 198
AgentExecutor, 199
AgentFinish, 198
Agentforce, 251
AgentState, 222
AI agents, 2, 3, 41, 46, 81, 209,

255, 261
AI development, 101
autonomy, 11, 12
comparison table, 257–260
cost, 15
definition, 4
development, 92
history, 17–19
memory, 7–9
planning, 9, 10
reflection, 5, 6
tool, 6, 7
traditional software

development, 14
transformer models, 256
user experience (UX), 12–14
user interface (UI), 12–14

AI agents code and experiment, 81

AI application deployment, 211
Alignment, 261
allow_delegation=False

parameter, 116
Ally.ai, 181
AnswerBuilder, 239
approve_or_reject_leave

function, 159
Artificial General

Intelligence (AGI), 2, 3, 261
Artificial intelligence (AI), 47, 90
Asana, 24, 25
Assistants API, 66–68, 72–76
Assistant-UI, 232–234
async_execution, 108
Autoencoding language models, 30
AutoGen, 18, 81, 255, 261

ConversableAgent, 148–150
description, 147
group chat, 162–165
multi-agentic workflow, 148
reflection agent, 150–157
Retrieval-Augmented

Generation (RAG), 167–170
studio, 171–177
tools, 157–162
web search agent, 165–167

https://doi.org/10.1007/979-8-8688-1134-0#DOI

268

AutoGPT, 18, 261
Autonomy, 11, 12, 261
Azure, 95, 96

B
BabyAGI, 18
Backstory, 105, 117
BaseModel, 124, 186
Billing agent, 133

C
Callbacks, 106, 109
Call Handling Agent, 132, 136
call_model function, 228
chat_agent.run() method, 246
ChatGPT, 18, 58–62, 99, 180

capabilities, 60
dashboard, 59
free account, 59
GPT builder, 60
knowledge feature, 60
paid account, 59
prompt, 60

ChatMessageHistory, 194
Chat models, 182, 183
ChatOpenAI, 183, 188, 195,

206, 220
ChatPromptTemplate, 184
Clearbit, 103
Cloud-based deployment, 39
Cloud services, 95, 96

code_execution_config, 169
Codeforces, 76
Code interpreter, 68
Code snippet, 119, 183
Cognitive processes, 5
Collaboration, 231
Community collaboration, 39
Configuration details, 108
Consensual process, 112
Constraints, 158
Content Creator, 104, 127
Content Optimizer Agent, 153
Context channels, 216
Contextual memory, 114
ConversableAgent, 148–150
ConversationBufferMemory, 195
Copilots, 20–22, 262
Cost efficiency, 36
Crafting, 151
CrewAI, 18, 81, 121–123, 180, 262

agents, 104–106
agents tasks, 134–136
building systems, 103
customer call center

processing, 130–140
financial planning

agent, 115–123
full_output attribute, 111
key attributes, 105, 106
LangChain framework, 104
memory, 113–115
processes, 112, 113

INDEX

269

product launch
orchestrator, 123–130

Retrieval-Augmented
Generation (RAG), 141–143

sample code, 111
tasks, 107–109
tools, 110

CRM tools, 7, 8
CSVLoader, 190
Customer Call Center

Processing, 130–140
Customer service

management (CSM), 251

D
Data analyst, 104
Data management, 255
Debt management, 120

agent, 115, 117
plan, 121

Debugging, 234
Decision-making process, 49
Default agents, 176
Delimiters, 43, 262
Democratization, 39
Description parameter, 119
Directed Acyclic Graph (DAG),

209, 262
Direct Preference

Optimization (DPO), 99
Document loaders, 188–190
DuckDuckGoSearchResults, 205

E
Edges, 214, 218–220
Elixir, 103
Embodied agents, 16, 17
Enso AI agents, 23, 24
Entity memory, 114
Episodic memory, 8
Error-prone outputs, 185
Expected_output parameter,

120, 121

F
Feedback Agent, 134
file.read() method, 192
Final Reviewer Agent, 154
Financial management agents, 252
Fine-tuning methods, 98–100
Function calling, 242–250

G
Gates, Bill, 3, 4
Generative AI agents, 5, 15, See also

AI agents
artificial intelligence, 27
pretrained models, 28, 29
testing, 15
tools, 6, 7

Generative AI applications, 181
GitHub, 81, 147
Goal-based agents, 50, 51, 262
Goal-based planning, 47

INDEX

270

Google Cloud, 95, 96
Google Colab, 83, 86–88, 97, 262
GPT-1, 34
GPT-4, 35
GPT-4o model, 63
GPT Builder, 58–61
Gradio, 89, 262
gr.ChatInterface() function, 248
Graphics Processing Units (GPUs),

1, 83, 87, 96
Group chats, 162–165

H
Haystack, 81, 263

features, 237
with function calling, 242–250
modularity and flexibility, 237
program, 239–242

haystack-experimental
package, 242

Hierarchical agents, 53, 54, 263
Hierarchical process, 112
HTMLHeaderTextSplitter, 191
Hugging Face, 90–92
human_input_mode, 169
HumanMessage class, 230

I
initiate_chat method, 150, 170
InMemoryBM25Retriever, 239, 240
InMemoryDocumentStore, 239

Innovation process, 18
input_variables parameter, 187
Integrated development

environment (IDE), 83
Internet, 28, 129
Investment Advisor

Agent, 115, 117
Investment task, 119
IPython.display module, 224
IT service management

(ITSM), 251

J
JARVIS-1 agent, 9
JavaScript, 103
JSON Chat Agent, 200
JSON file, 127
JSON format, 70
JsonOutputParser, 186–188
Jupyter Notebooks, 82

code cells, 84
dialog box, 84
.ipynb format, 86
launching, 83
new tab, 84
output, 84

Jupyter Widgets, 90, 263

K
Keras, 92
Kickoff function, 123

INDEX

271

L
LangChain, 220, 255, 263

Agent Program, 202–208
application, 205
components, 182, 183
core concepts, 198–200
decision-making, 179, 199
digital-only bank, 181
interdependence, 179
LangGraph with, 210–212
LLM-based applications, 180
memory, 193–197
models, 182, 183
open-source framework, 179
output parsers, 185–188
prompts and components, 180
self-Ask with search agent, 201
text splitting, 190–193

langchain_core.tools, 226
LangChain Expression

Language (LCEL), 187
langchain_openai import

ChatOpenAI, 183
LangGraph, 18, 81, 179, 180, 220,

255, 265
AI agents, 209
AI development, 212
architectural inspiration, 210
assistant, 232–234
combined framework, 210–212
conceptual model, 209
controllability, 212
design philosophy, 213

gap, 213
graphs, 214, 215
interoperability, 212
LangChain with, 210–212
persistence, 212
scalability, 211
testing, 211
token-by-token streaming, 213
workflow management, 211
workflow processes, 223

LangGraph Studio, 234
LangSmith, 234

dashboard, 232
key features, 231
pricing plans, 231
production-ready, 230

Languages, 92, 93
Large Language Model (LLMs),

19–21, 27, 49, 209, 237, 256,
262, 263

alignment, 32, 33
benefits, 38–40
configurations, 94
connection, 143–145
customizing, 98
data privacy, 94
domain-specific, 29
latency-sensitive

applications, 94
multimodal, 33, 34
Ollama, 94
OpenAI GPT model, 34–36
Open Source, 38–40
pretrained models, 29

INDEX

272

proprietary, 35–37
traffic management, 93
training data, 28

launch_details dictionary, 129
Learning agents, 52, 53
leave_approver agent, 160
leave_request_reviewer agent, 160
Long-term memory, 8, 114
Low-Rank Adaptation (LoRA), 99

M
Machine learning, 49
Markdown cell, 85
Market Researcher agent, 125–127
Massachusetts Institute of

Technology (MIT), 1
Massive Open Online Courses

(MOOC), 1
max_iter, 106
max_turns=2 parameter, 150
McKinsey & Company, 3, 4
Means-end analysis, 17
Memory, 263
MemorySaver class, 229
Model-based reflex agents,

49, 50, 264
MongoDB, 225
Multi-agent collaboration, 10, 11
Multi-agent system, 151, 153, 161,

162, 255
Multimodal LLMs, 33, 34, 264

Multi-step processes, 210
my_llm, 106

N
Natural language processing (NLP),

29, 90, 237, 264
Nested chats, 156
Nodes, 214, 216, 217
Non-player characters (NPCs), 16
Nvidia, 252

O
Ollama, 94, 170, 171, 264

CPU machine, 96
Google Colab, 97
ngrok, 96
URL, 96

Olympiad qualifier, 76
OpenAI, 18, 28, 33, 34, 36, 93, 97,

99, 180, 183, 220, 227,
237, 242

OpenAI API, 64–66
OpenAIFunctionCaller class, 242
OpenAIGenerator, 239, 241
OpenAI GPT model, 34–36

advancements, 76–78
assistants system, 67–69
ChatGPT, 58–62
competitions, 77
email address, 57
pricing, 61–64
tokens, 61–64

Large Language
Model (LLMs) (cont.)

INDEX

273

Open Source LLMs, 38–40
Oracle, 252
Outcomes-based pricing

model, 264
output_file, 109
output_json, 108
output_log_file, 111
Output parsers, 185–188
output_pydantic, 109
Outreach Specialist agent, 128

P, Q
Pay-as-you-go pricing models, 95
Persistence, 225–230
Personal access token, 232
Pipeline, 238
Pipe operator (|), 188
Playground, 68–71
Postgres, 225
Pre-training phase, 28
Pricing, 61–64
Procedural memory, 8
Product launch

orchestrator, 123–130
ProductReview, 186
Project-related documentation, 202
Prompt

engineering, 180
language model’s behavior, 203
string, 206
templates, 184–186, 240

PromptBuilder, 239, 241
Prompt engineering, 41, 42

clarity, 42
delimiters, 43
length of output, 45
persona, 42
step-by-step reasoning, 44
steps, tasks, 43, 44

PromptTemplate, 186, 220
Prototyping, 234
Pydantic, 185
Pydantic BaseModel, 214, 215
Python, 93, 103, 115, 158, 197
PyTorch, 83, 92, 99

R
ReAct Agent, 201, 202
Recurrent neural networks

(RNNs), 30
Reflection agent, 150–157,

219–225, 265
reflection_template, 221
Reflexion framework, 6, 7
Reinforcement Learning from

Human Feedback (RLHF),
32, 99, 261

res.summary, 157
Retrieval-augmented generation

(RAG), 16, 31, 98, 100, 101,
237, 238, 265

AutoGen, 167–170
CrewAI, 141–143

review_chats list, 155
Robotic process automation (RPA),

20–22, 254, 265

INDEX

274

Rule-based systems, 49
Rule-based workflows, 254

S
Salesforce’s Agentforce, 251
Scalability, 36
ScrapeWebsiteTool, 124
Search box, 88
Self-assessment, 219
Self-attention mechanism, 30
Self-reflections, 6
Semantic memory, 8
Semantic search, 265
SEO Reviewer Agent, 153
Sequential process, 112
Sequoia Capital, 15, 24
SerperDevTool, 124
ServiceNow’s Xanadu, 251
share_crew, 111
Short-term memory, 7, 113
Sierra AI platform, 22, 23
Simple reflex agents, 48, 49
Small-and medium-sized

businesses (SMBs), 23
Small language models

(SLMs), 38–40
Software agents, 17, 18
SQLite, 225
StateGraph class, 215, 228
State schema, 215, 216
State Space Models (SSMs), 45
Step-by-step approach, 254

Streamlit, 89, 266
Structured Chat Agent, 200
Summarization, 43
summarize_leave_request

function, 159, 161, 162
Synthetic data, 29
system_message attribute, 163

T
Task distribution, 138–141
Task Planning and Tool Usage

(TPTU), 10, 266
Tasks—market research, 129
TaskStatusLookup, 204, 205
TaskStatusRetriever class, 204
Task structure, 107–109
Technical Support specialist, 104
Tech Support Agent, 132, 133
TensorFlow, 83, 92
Test-Time Training (TTT), 45, 266
Text Splitters, 190–193
Tokenizer, 61–63
Tokens, 61–64
Tool Calling Agent, 199
Tools, 109, 110, 266
Toptal, 103
Transfer learning, 31, 32, 266
Transformer model, 29, 30
Transparency, 13, 39
Tweet Creator agent, 157
TypedDict, 214
TypeScript, 103

INDEX

275

U
Urdog, 103
User experience (UX), 12–14,

33, 87, 254
User_financial_data, 122
User interface (UI), 12–14, 89, 254
UserProxyAgent, 165, 166
Utility-based agents, 51, 52
Utility-based decision-making, 47

V
Vector databases, 266

verbose, 106, 108
Visual Studio Code (VS

Code), 82, 83

W
Web Search Agent, 165–167
Wikipedia, 202
Windows, 234
Workflow, 138–141, 252

X, Y, Z
XML Agent, 200

INDEX

	Table of Contents
	About the Authors
	Chapter 1: Introduction to AI Agents
	What Are AI Agents?
	Reflection
	Tools
	Memory
	Planning
	Multi-agent Collaboration
	Autonomy

	UI and UX
	New Approaches to Development
	Flavors of AI Agents
	Brief History
	LLMs, Copilots, and RPA
	Use Cases

	Sierra
	Enso
	Asana
	Conclusion

	Chapter 2: Generative AI Foundations
	Pretrained Models
	Transformer Models
	Transfer Learning
	Alignment in Language Models
	Multimodal LLMs
	Types of Models
	Proprietary LLMs
	Open Source LLMs and SLMs
	Prompt Engineering
	Be Clear
	Details
	Persona
	Use Delimiters
	Steps for a Task

	Time to Think
	Length of Output

	Going Beyond the Transformer
	Conclusion

	Chapter 3: Types of Agents
	Simple Reflex Agents
	Model-Based Reflex Agents
	Goal-Based Agents
	Utility-Based Agents
	Learning Agents
	Hierarchical Agents
	Conclusion

	Chapter 4: OpenAI GPTs and the Assistants API
	Registering for the OpenAI API Key
	GPTs
	Pricing and Tokens
	OpenAI API
	Assistants API
	Playground
	Assistants API
	Recent Advancements
	Conclusion

	Chapter 5: Developing Agents
	Jupyter Notebook, VS Code, and Google Colab
	Jupyter Notebook
	Visual Studio Code (VS Code)
	Google Colab

	How to Use Jupyter Notebooks
	Google Colab
	Streamlit, Gradio, and Jupyter Widgets
	Hugging Face
	Languages
	Using LLMs (Large Language Models)
	Using an API from an LLM Provider
	Using a Service like Ollama
	Using a Cloud Service like Azure, Google Cloud, or AWS

	Setting Up and Using Ollama
	Using Ollama with Google Colab
	Customizing LLMs
	Fine-Tuning
	Retrieval-Augmented Generation (RAG)

	Conclusion

	Chapter 6: CrewAI
	The Basics
	Agents
	Tasks
	Tools
	Crews
	Processes
	Memory
	Financial Planning Agent
	Product Launch Orchestrator
	Customer Call Center Processing
	Retrieval-Augmented Generation (RAG)
	Connecting LLMs
	Conclusion

	Chapter 7: AutoGen
	ConversableAgent
	Reflection Agent
	Tool Use
	Group Chat
	Web Search Agent
	Retrieval-Augmented Generation (RAG)
	Using Ollama
	AutoGen Studio
	Conclusion

	Chapter 8: LangChain
	Background
	The Components
	Models
	Prompt Templates
	Output Parsers
	Document Loaders
	Text Splitters
	Memory
	Key Concepts of LangChain Agents
	Types of Agents
	Tool Calling Agent
	XML Agent
	JSON Chat Agent
	Structured Chat Agent
	Self-Ask with Search Agent

	ReAct Agent
	Agent Program
	Conclusion

	Chapter 9: Introduction to LangGraph
	Benefits of Combining LangChain with LangGraph
	Pros and Cons of LangGraph
	Graphs
	State
	Nodes
	Edges
	Reflection Agent
	Persistence
	LangSmith
	Assistant-UI
	LangGraph Studio
	Conclusion

	Chapter 10: Haystack
	Haystack Program
	Haystack Agent with Function Calling
	Conclusion

	Chapter 11: Takeaways
	Rethinking Software
	The Challenges
	AI Agent Frameworks
	Conclusion

	Glossary
	Index

