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CHAPTER 1

Databricks Platform: 
From Lakehouse to 
Data Intelligence 
Platform
The intensifying pace of digital transformation has led companies to 

amass increasing volumes of diverse data from various sources. This 

data explosion carries enormous potential for organizations to uncover 

transformative insights to guide innovation and decision-making through 

advanced analytics.

In this chapter, we will examine the evolution of data platforms over 

the last decade or so. Then, we will discuss why today’s ideal data platform 

is a lakehouse and how Databricks established the lakehouse category. 

We will then go in-depth to understand the various facets of the lakehouse 

platform as it is on Databricks.

Finally, we will discuss how generative AI (GenAI) and large language 

models (LLMs) have revolutionized the entire artificial intelligence (AI) 

landscape and how Databricks has embraced this technology to create the 

Databricks Data Intelligence Platform.

https://doi.org/10.1007/979-8-8688-0444-1_1#DOI


2

�Data Platforms: Historical Perspective
The data landscape has undergone rapid evolution in recent years, 

necessitated by the exponential growth in information from an ever- 

expanding variety and volume of data. As organizations deal with this 

big data surge, the existing infrastructure has struggled to harness its 

potential effectively. This has led architects and technology leaders to start 

conceptualizing new integrated systems that can adeptly consolidate the 

strengths of current data platforms.

Let’s start with data warehouses. They provided immense value over 

decades for descriptive analytics and business intelligence use cases 

relying on predefined structured data. However, as the focus and needs 

expanded to predictive analytics and leveraging the latest machine 

learning advancements, the nature of workloads moved beyond what 

traditional warehouses could proficiently support. Descriptive analytics for 

business intelligence based on predefined datasets are no longer enough. 

Further varied data types such as unstructured, semi-structured, and 

streaming use cases require more extensive and agile processing than data 

warehouse infrastructures are designed for.

The data lake concept therefore gained interest as an alternative to 

data warehouses, given its natural ability to ingest raw multistructured 

data quickly. One of the more popular technologies that was forefront of 

this was Hadoop and its ecosystem. However, lack of transactionality, data 

quality, and mixing modes inhibited unlocking the benefits promised 

by data lakes. The flexibility therefore came at the cost of governance, 

reliability, and vital enterprise capabilities. Consequently, the data lakes 

quickly turned into “data swamps.”

Despite all these drawbacks, organizations with no better alternatives 

began using both these technologies in their data architecture: data 

warehouses for descriptive and business intelligence (BI) use cases 

and data lakes for AI/machine learning (ML) use cases with a variety of 

processing tools thrown in the mix (sometimes even a single tool for one 

Chapter 1  Databricks Platform: From Lakehouse to Data Intelligence Platform



3

use case). However, with two completely different systems, solving for 

two critical types of workloads started to be problematic. First, it created 

data silos, which necessitated moving data across the platforms and thus 

maintaining multiple copies of the same data. Second, the governance 

model of these disparate platforms was incompatible, thus requiring 

separate governance models for different systems. Finally, organizations 

started using different tools for BI and ML workloads, increasing 

operational efficiency and costs. Over time, the complexity of maintaining 

different systems increased. This is becoming not only costly but also 

slowing innovation.

More than ever enterprises needed a unified data infrastructure 

capable of managing diverse information seamlessly through its entire 

lifecycle to serve exponentially expanding analytical use cases.

�Emergence of the Lakehouse
Let’s understand how organizations look at their modern data platforms. 

First, the platform should be able to store all sorts of data in a single 

storage location, preferably cost-effectively. Then, that data should have 

a single governance and access model and, last, a technology that helps 

them solve all their use cases without moving any data or code.

However as discussed earlier, organizations using both a data 

warehouse and a data lake in their architecture are essentially looking 

at two different piecemeal systems leading to disconnected data silos, 

complex integrations, and fragmented governance, severely hampering 

building enterprise-grade analytic solutions that could positively impact 

the business.

This reality has catalyzed the emergence of an evolutionary new 

paradigm pioneered by Databricks: the lakehouse. The lakehouse 

architecture aims to bring together the most impactful capabilities of data 

warehouses and data lakes into an integrated whole on the cloud. Reliable 
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support for varied workloads using consistent data, managed securely 

under standard governance policies, holds the promise to finally harness 

big data comprehensively.

With its seismic potential to reshape the analytics landscape, the 

lakehouse undoubtedly constitutes one of most pivotal recent data 

platform innovations.

�What Is a Lakehouse?
Let’s dig a bit deeper and understand what a lakehouse is. A lakehouse is a 

data architecture paradigm aiming to bridge the gaps between data lakes 

and data warehouses. The goal is to provide the flexibility and scalability 

of a data lake as well as to provide the performance, reliability, and 

governance typically associated with a data warehouse. A lakehouse seeks 

to implement some of the managed data capabilities seen in warehouses 

directly on top of object stores or cloud-based storage. Figure 1-1 

compares the three.

Figure 1-1.  Data warehouse versus data lake versus data lakehouse
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The data lakehouse construct addresses these gaps by consolidating 

the capabilities of data warehouses and lakes:

•	 Natively manages both structured and varied 

unstructured data

•	 Leverages cloud-scale object storage as the 

foundational data repository

•	 Provides reliability, security, and governance across 

storage and processing

•	 Provides high performance through technologies such 

as caching, indexing, and partitioning

•	 Supports real-time and batch workloads via unified 

streaming architecture

•	 Provides open extensibility to accommodate rapidly 

evolving analytics needs

The lakehouse breaks down data silos and enables simplified 

management by converging workloads on the same platform under 

standard governance policies. This makes it possible to get a single 

view of information at scale to power advanced analytics. With cloud 

infrastructure adding unlimited elasticity, lakehouses finally make it 

feasible to ask bigger questions of data than ever before possible.

If you were to design a new-generation analytical data management 

system using cheap distributed storage as a foundation, you would end 

up with something resembling a lakehouse: flexible schemas but faster 

queries. The goal is real-time insights without compromising governance.
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�What Is the Databricks Lakehouse?
Now that you understand the lakehouse paradigm, let’s move on to see 

how a lakehouse is implemented on Databricks. Published in Conference 

on Innovative Data in 2021, Databricks researchers Michael Armbrust 

et al. wrote “Lakehouse: A New Generation of Open Platforms that Unify 

Data Warehousing and Advanced Analytics” (https://www.cidrdb.org/

cidr2021/papers/cidr2021_paper17.pdf).

Figure 1-2 shows Databricks lakehouse platform.

Figure 1-2.  Databricks lakehouse platform
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Databricks with the lakehouse architecture presented a potential 

solution to consolidate disparate data sources into a single location while 

avoiding some of the limitations of existing architectures. Databricks 

provides one of the most mature enterprise-scale implementations of a 

lakehouse architecture through its integrated data and AI platform. Built 

on open source and open standards, the Databricks lakehouse architecture 

simplifies your data estate by eliminating the silos that historically 

complicate data and AI.

Let’s decode this a bit and do a deep dive into a Databricks lakehouse. 

Databricks leverages cloud object storage (S3-AWS, ADLS-Azure, and 

Google Cloud Storage [GCP]) as a central data store at its foundation. This 

enables enormous volumes of structured, unstructured, and semi- 

structured data to be housed in native formats in one of the cheapest 

storage available on the cloud. This is what constitutes the “lake” in the 

lakehouse. Once the data lands in the cloud in raw format, it is moved to 

Delta Lake format. Please note that data is still in your cloud storage but in 

Delta Lake format. Delta Lake is an open-source storage layer that brings 

performance, reliability, and governance to the data lakes. Delta Lake 

applies atomic transactions, caching, indexing, and time travel to make 

large-scale storage reliable and performant for mission-critical workloads. 

Basically, Delta Lake gives as the “warehouse” type capabilities to the data 

stored in your cloud storage. This constitutes the “house” in the lakehouse 

architecture.

As shown in Figure 1-2, Unity Catalog provides unified data 

governance for all data within the lakehouse. It manages all data assets, 

including tables, schemas, views, and even AI models, centrally.

Finally, the Databricks platform provides features that enable all data 

personas within your organization to build a variety of use cases be it data 

engineering, data science, streaming, or data warehousing.
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To conclude, Databricks provides a unified lakehouse platform built on 

open-source technologies that is cloud-agnostic and able to handle diverse 

use cases at any scale. This platform makes data available for multiple 

analytics use cases, from business intelligence to machine learning.

�Key Features of the Databricks 
Lakehouse Platform
Databricks’ enterprise data cloud provides a leading implementation 

of the lakehouse paradigm. The following are some core concepts and 

capabilities:

Delta Lake: This open format optimizes the storage 

of massive volumes of structured and semi- 

structured data for reliability, performance, and 

governance.

Unified batch and streaming: Databricks processes 

batch and real-time data via the same platform 

using Spark structured streaming. This enables new 

ways to combine historical with streaming data.

Unity Catalog: Unity Catalog captures metadata 

and usage information across diverse data types 

and storage systems for unified discovery and 

governance.

Multilanguage support: The platform natively 

integrates languages like SQL, Python, R, Java, and 

Scala to support various analytics use cases on the 

same data.
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Cloud-native architecture: By leveraging managed 

cloud infrastructure, Databricks automates resource 

management and scaling to meet the needs of the 

most demanding workloads.

Secure and governed access: Comprehensive 

access controls, encryption, and data masking 

enforce strict oversight and granular auditing.

Autoscaling and collaboration: Data scientists 

can quickly scale their work to production while 

closely collaborating with business users via sharing 

dashboards, reports, and applications.

�Introducing the Databricks Data 
Intelligence Platform
If you look back in the technology world, 2023 was a groundbreaking year. 

It is when the world saw the power of GenAI LLMs and the potential they 

hold. Almost instantaneously organizations could imagine the future use 

cases that could be built by leveraging them. GenAI became the talk of 

every boardroom, and everybody was looking at using the technology to 

take a lead on their competitors.

Databricks with its Databricks lakehouse platform was uniquely placed 

to utilize this technology to not only enhance its platform but also help 

enterprises build their GenAI use cases. Let’s talk about these two in detail.

First, Databricks enhanced its lakehouse platform by merging it with 

GenAI capabilities; this is called the Databricks data intelligence platform. 

Databricks used LLMs in almost every part of its platform, from assisting 

developers in troubleshooting coding errors to automatically generating 
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insights from your data. We will discuss each of these features in detail in 

Chapter 12. The overall platform became more and more intelligent and 

thus enhances the user experience.

Second, Databricks built capabilities and features inside the platform 

that allow organizations to build their own GenAI use cases. Features like 

Vector Search, the Fine Tuning API, and RAG Studio enable organizations 

to productionalize their GenAI use cases from RAG applications to even 

building their own model from scratch. We will discuss these features in 

detail in Chapter 9.

Thus, Databricks enhanced its platform using LLMs and allowed users 

to create their GenAI applications on the platform.

To understand the data intelligence platform on Databricks, let’s 

look at this analogy. Figure 1-3 shows the most powerful spaceship ever 

built—SpaceX’s Starship. It is important to note that at the core, sitting 

underneath, is the Super Heavy booster, which is capable of withstanding 

2.8 million pounds of weight while standing and, when in flight, propelling 

the second stage to space with its raptor engine.
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Figure 1-3.  SpaceX spaceship

With this concept in mind, it is not hard to understand the Databricks 

data intelligence platform (see Figure 1-4). It is also comprised of two 

major components. At the core, it is powered by the lakehouse platform 

and GenAI, which makes the platform much more intelligent to user needs 

and requirements.

Chapter 1  Databricks Platform: From Lakehouse to Data Intelligence Platform



12

Figure 1-4.  Databricks data intelligence platform

To conclude, fueled by the latest development of generative AI, 

Databricks has integrated the Data Intelligence Engine into the core of 

its offering. This is equivalent to SpaceX’s Starship. In short, Databricks 

has leveraged the latest GenAI models and technology to create the Data 

Intelligence Engine (Databricks IQ), which fuels all parts of the platform.

With Mosaic ML and Databricks IQ, developers can seamlessly create 

their workload like they are working with a data subject-matter expert 

(SME) like never before. Databricks AI can also allow data scientists to 

leverage large language models as they are, refreshing their domain- 

specific knowledge with RAG, fine-tuning with more specialized 

knowledge, or even training a brand new LLM from scratch. This powerful 

second stage can propel the Databricks platform to a new era, enabling 

organizations to create the next generation of data and AI applications 

with quality, speed, and agility.
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�Conclusion
In this chapter, looked at the evolution of data platforms. Data warehouses 

are excellent for BI use cases, and data lakes with their open storage 

are used for ML use cases. However, by using both, these incompatible 

systems in their architecture created data silos, and hence businesses 

could not utilize their full data for business decisions. The Databricks 

Lakehouse Platform enables organizations to store all their data in one 

place. Whether it is structured, semi-structured, or unstructured data, 

it is stored in an open data lake. Then the raw data is moved into Delta 

Lake format, which provides reliability and improves performance. Unity 

Catalog provides a single governance layer, and the Databricks platform 

offers features to do use cases from data engineering, data warehousing, 

streaming, and data science. Finally, we discussed how Databricks built 

intelligence into their platform by utilizing GenAI and LLMs to create the 

Databricks data intelligence platform. In the next chapters, we will deep 

dive into various parts of the Databricks platform.

Chapter 1  Databricks Platform: From Lakehouse to Data Intelligence Platform



15© The Editor(s) (if applicable) and The Author(s),  
under exclusive license to APress Media, LLC, part of Springer Nature 2024 
N. Gupta and J. Yip, Databricks Data Intelligence Platform,  
https://doi.org/10.1007/979-8-8688-0444-1_2

CHAPTER 2

Databricks Platform 
Overview
In this chapter, you will learn various aspects of the Databricks data 

intelligence platform. This chapter will provide a brief overview of the 

Databricks platform and set the stage for deep dives into various product 

features in later chapters. Initially, you will learn about the most common 

terms unique to the Databricks platform. After that you will learn about 

Databricks compute (clusters) and Databricks notebooks. Again, this 

chapter acts as a foundation for the rest of the chapters and features we 

will cover in them.

�Key Terminology
The Databricks platform delivers three services catering to the specific needs 

of various personas: Data Engineering, Machine Learning, and SQL. Let’s 

first look at the key Databricks terminology used throughout this book. Most 

of these terms will also be explained in detail in subsequent chapters.

•	 Account: A Databricks account allows admins to 

centrally manage and control access to their Databricks 

resources such as workspaces, users, and metastore. 

Billing and support are handled at the account level.  

A Databricks account can have multiple workspaces.

https://doi.org/10.1007/979-8-8688-0444-1_2#DOI
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•	 Workspace: Databricks workspaces provide a 

collaborative environment for data teams to access all 

Databricks assets. Workspaces are accessed via a web 

app and help users organize their work on Databricks. 

Users can create, manage, and share notebooks, 

clusters, and libraries within workspaces.

•	 Databricks file system (DBFS): DBFS is a storage 

location provisioned when creating a Databricks 

workspace. It is important to note that DBFS should not 

be used to store production data, libraries, or scripts.

•	 Cluster (compute): A Databricks cluster is a group 

of virtual machines (VMs) that process your data 

workloads. They allow you to execute code from 

notebooks, libraries, or custom code. Clusters can be 

created, scaled, and managed using the Databricks 

UI or application programming interface (API) or 

command-line interface (CLI), and they provide 

features like autoscaling and spot instances. Clusters 

do not store data. Data is always stored in your cloud 

storage account and other data sources.

•	 Notebooks: Notebooks are a collaborative IDE that 

allows you to write and execute code in Scala, Python, 

R, SQL, or Markdown and visualize results in real time. 

They come with features such as version history,  

co-editing, providing comments, and even scheduling 

as a job. Notebooks need to be connected to a cluster to 

execute commands. Users can share notebooks via the 

Web or download them to a local machine.
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•	 Databricks Git folders (formerly known as repos): 
A folder is a feature of Databricks that allows users to 

source-control their data and AI projects by integrating 

with Git providers like GitHub, GitLab, Azure DevOps, 

etc. A folder also enables users to work directly with Git 

repo-backed folders from the Workspace UI.

•	 Catalog: A catalog is a centralized metadata browser 

that provides a single source of truth for all data assets 

in an organization. It allows users to discover, manage, 

and govern data across multiple workspaces, clusters, 

and teams. We will discuss this more in Chapter 5.

•	 Workflows: Databricks workflows enable you to 

orchestrate and schedule your code and data pipelines. 

Workflow jobs allow the code execution to occur either 

on an already existing cluster or on a cluster of its own. 

Jobs can be run from code in notebooks, JAR files, or 

Python scripts. They can be created manually through 

the UI or the REST API or the CLI.

•	 Libraries: Libraries are packages or modules that 

provide additional functionality to solve your business 

problems. These may be custom-written Scala or Java 

JARs, Python egg or wheel files, or custom-written 

packages. You can write and upload libraries manually 

through the UI, use the Libraries API, or install them 

directly via package management utilities like PyPi, 

Maven, or CRAN.
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•	 Databricks runtime (DBR): Databricks Runtime is a 

set of core components that run on clusters. Databricks 

constantly updates the runtime with newer versions, 

and each version includes updates that improve 

the usability, performance, and security of big data 

analytics.

•	 Databricks Unit (DBU): DBU is the unit of processing 

capability and is billed per second. This is how 

Databricks charges users for the compute they use.

•	 Delta Lake: Delta Lake is an open-source storage layer 

that provides ACID transactions, scalable metadata 

management, and unified data management across 

data pipelines. It allows users to manage large datasets 

and provides a reliable and secure way to store and 

organize data.

After reviewing the key terminologies, we will dive into two topics: 

clusters and Databricks notebooks. As Databricks users, these are the two 

elements you will start working with when you first use the platform.

�Databricks Compute or Clusters
Databricks is a fully managed PaaS offering that requires no infrastructure 

administration, management, or maintenance. Users and processes run 

code on clusters of VMs for data engineering, data science, and data 

analytics workloads. This includes batch and real-time production ETL 

pipelines, streaming analytics, ad hoc analytics, machine learning, deep 

learning, and graph analytics.

Databricks clusters consist of one or more virtual machine instances 

over which computation workloads are distributed. In the typical case, 

a cluster has a driver node alongside one or more worker nodes. During 
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processing, the driver distributes workloads across available worker nodes. 

The driver program takes care of the job execution within the cluster. A job 

is split into multiple tasks distributed over the worker nodes. Clusters can 

be fixed-size clusters or autoscaling; by default, they auto-terminate after 

120 minutes of inactivity (this is configurable). Databricks can also provide 

a single-node cluster option, typically limited to development or testing 

with small workloads.

Databricks has three main cluster types, and depending on the 

use case you are running, you can select one to improve efficiency and 

manage costs.

�Interactive or All-Purpose Clusters
All-purpose compute is best suited for interactive analytics using 

notebooks, dashboards, or IDEs that require fast responses for an 

interactive user experience. They are best for ad hoc analysis, data 

exploration, or development. They can be either single user or shared by 

multiple users and can be terminated and restarted (manually, API or 

cluster setting).

�Job Cluster
Job clusters should be utilized when running Databricks jobs. As a best 

practice, all production jobs or ETL pipelines should be run on job 

clusters, as they provide a fully isolated environment. Job clusters are pure 

ephemeral compute, as they terminate themselves when the job ends, thus 

reducing resource usage and costs. In later chapters, we will learn more 

about job clusters while discussing Databricks workflows. Now we have the 

option to run job clusters in serverless mode.
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�SQL Warehouse
SQL warehouses are meant to run SQL workloads and queries, primarily 

in the DBSQL part of the platform. If you are writing SQL queries, creating 

visualizations/dashboards, or connecting your favorite tool to Databricks, 

SQL warehouses is the way to go.

After defining a cluster and the types of clusters present in the 

Databricks environment, let’s examine how to set one up using the 

Databricks UI.

�Databricks All-Purpose Cluster Setup
This section will discuss the various attributes that need to be selected and 

how to configure them. Figure 2-1 shows the cluster creation interface.
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Figure 2-1.  Creating an interactive cluster

Next, we will look at some of the important parameters on this page.
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�Policy
Cluster policies enable admins to limit the attributes available for cluster 

creation. Users can select a cluster policy from the policy drop-down on 

the cluster configuration page. You can configure ACLs that limit cluster 

policies to specific users and groups.

For example, in Figure 2-2, the cluster policy allows users to create 

a cluster with the defined configurations as given in the JSON file. Only 

the configurable fields are visible when the user uses this policy, and the 

rest are hidden. This allows admins to control the clusters that the users 

can create. Further, only admin users can create, edit, and delete cluster 

policies. Admin users also have access to all policies.
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Figure 2-2.  Sample cluster policy
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Cluster policies present three main benefits. First, it helps control 

costs as these policies prevent individuals from spinning up unnecessarily 

large and enforce specific configurations such as auto-termination. 

Second, cluster policies help improve governance as admins can enforce 

cluster tags to track usage by team or project or control cluster access 

to users/groups. Finally, as more and more users are onboarded on the 

Databricks workspace, disruption is minimized by standardizing the 

cluster creation process.

Before we move further, let’s look into a particular Databricks- 

managed cluster policy that is available: Personal Compute. This policy 

allows users to create single-machine easy compute resources for an 

individual user to start running workloads immediately, minimizing 

compute management overhead for admins. Some of the properties of 

Personal Compute are that the clusters created are single-node, single- 

user (Unity Catalog enabled), and all-purpose clusters with the latest 

Databricks runtime.

The next configuration we want to look into is Access Mode.

�Access Mode
Cluster access modes are divided into three distinct types (see Figure 2-3).

•	 Standard single-user clusters

•	 Shared clusters (for multiple users) with User Isolation 

data access mode

•	 No isolation shared clusters
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Figure 2-3.  Cluster access mode

Standard single-user clusters: Standard single- 

user clusters are Unity Catalog (UC)–enabled 

clusters for a single user designated while creating 

or editing the cluster. Other users cannot attach 

to the cluster, regardless of the cluster permission 

settings. Standard clusters can run workloads 

developed in any language such as Java, Python, 

R, Scala, or SQL, and they can be fixed size or 

autoscaling.

Shared (for multiple users) clusters: Shared 

clusters are UC-enabled clusters ideal for multiple 

users accessing a single cluster to run interactive or 

automated jobs. These clusters only support SQL, 

Python, and R. The key benefits of shared clusters 

are that they provide Apache Spark–native fine- 

grained sharing for maximum resource utilization 

and minimum query latencies so that all users on 
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the cluster can run jobs by sharing total compute 

resources (CPU and RAM) among all the users on 

the cluster. Shared clusters can help reduce costs 

for a shared user work environment, as well as 

experimentation, testing, and execution of some 

production workloads.

The “No isolation shared” option for legacy support and does not 

support Unity Catalog. This access mode is generally recommended for 

new clusters only if there is a specific need.

Table 2-1 summarizes the access modes along with Unity Catalog 

support. Databricks recommends using Unity Catalog for fine-grained 

access controls.

Table 2-1.  Databricks Access Modes

Access 
Mode

Visible to User UC 
Support

Supported Languages

Single user Always Yes Python, SQL, Scala, R

Shared Always (Premium plan or 

above required).

Yes Python (on Databricks 

Runtime 11.3 LTS and 

above), SQL, Scala (on Unity 

Catalog–enabled compute 

using Databricks Runtime 

13.3 LTS and above)

No Isolation 

Shared

Admins can hide this 

access mode by enforcing 

user isolation in the admin 

settings page.

No Python, SQL, Scala, R

Custom Hidden  

(for all new compute).

No Python, SQL, Scala, R
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�Databricks Runtime Version
The Databricks runtime is a collection of core software components 

running on the clusters of machines managed by Databricks. You can 

select this setting in an all-purpose compute, but in SQL warehouses, it 

is auto-selected. The Databricks runtime version includes Spark but also 

adds several components and updates that substantially improve big data 

analytics’ usability, performance, and security. As a best practice, select 

the most recent runtime version. Long-Term Support (LTS) versions are 

released every six months and supported for two years (see Figure 2-4).

Figure 2-4.  Databricks runtime

Apart from the Standard runtime version, there is also an augmented 

machine learning (ML) runtime version. This runtime version caters to 

ML workloads and is optimized for them. Further, many ML libraries come 

pre-installed and optimized with this runtime.
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Finally, there is a checkbox for Photon, Databricks’ vectorized 

execution engine for optimizing performance and costs. We will discuss 

Photon more in Chapter 8.

�Autoscaling and Autotermination
A lot of times, the compute capacity is unknown, say, for example, during 

the development phase when the data engineer is writing and developing 

a pipeline. If the “Enable autoscaling” is checked, you can define the 

minimum and maximum number of workers to be added to the cluster. 

Thus, Databricks will allocate the necessary number of workers according 

to its needs during job execution. For example, you can create a cluster with 

a minimum of two workers and a maximum of eight workers. The cluster at 

start time will have two workers. As the user starts to process data and if need 

be (say for a big join between two tables) more workers will be added until a 

maximum of eight workers is reached. When there is no more need for eight 

workers, the cluster will scale down to two workers. This also is a huge cost-

saving mechanism as you do not always need big clusters running.

You may also enable autotermination (Terminate After) for a cluster. 

During cluster formation, you can choose an inactivity time in minutes 

after which the cluster should terminate. If the difference between the 

current time and the last command issued/executed on the cluster 

exceeds the chosen inactivity interval, Databricks terminates the cluster 

automatically.

�Tags
Cluster tags allow you to monitor costs and attribute Databricks usage/

costs to your organization’s entities, such as business units and teams. 

So, it is important to set tags on your clusters. These tags propagate 

down to VMs, which helps you charge back costs to your departments or 

business units.
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A few default tags are created, such as Vendor (Databricks), ClusterID, 

ClusterName, and Creator. You can also create up to 20 custom tags.

�Spot Instances
Spot instances are unused computes in the respective cloud environment. 

They are massively discounted compute compared to traditional virtual 

machines. You can use spot VMs to run your clusters, thus saving on costs.

One key point is that cloud providers can terminate or recall the 

spot instances when there is demand from Azure. However, Databricks 

automatically terminates spot VMs by starting the pay-as-you-go VMs to 

guarantee job completion. Databricks clusters are resilient to interruptions 

and well-suited for enterprise data and AI use cases.

�Cluster Pools
Pools are pre-reserved VM instances, so when users request new clusters, 

Databricks can pull from an existing pool instead of acquiring from the 

cloud provider. You can set up spot instances for the pool and allocate 

them as clusters start. When creating a pool, select the desired instance 

size and Databricks Runtime version; then choose All Spot from the On- 

demand/Spot option; see Figure 2-5.
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Figure 2-5.  Databricks compute pools

�Cluster Sizing Considerations 
and Best Practices
Here are some cluster best practices:

•	 Use autoscaling clusters when the compute capacity 

required is unknown.

•	 Set automatic termination when applicable.

•	 Use the latest Databricks Runtime version for recent 

features and performance optimizations.

•	 Use cluster tags for project- or team-based chargeback.
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•	 Use the cluster event log and Spark UI to analyze 

cluster activities and submitted job performance.

•	 Configure cluster log delivery to deliver Spark driver 

and worker logs to cloud storage.

•	 Use cluster access control to configure permissions for 

users and groups.

•	 User cluster policies limit cluster types that users 

can launch.

After learning about clusters, we will learn about another important 

feature: Databricks notebooks.

�Databricks Notebooks
If you are familiar with Jupiter notebooks, Databricks notebooks share the 

same concept. However, Databricks notebooks don’t use the same back 

end as Jupyter notebooks, so if you clone the notebook from source control 

to your local environment, you must first convert it to .ipynb format.

A Databricks notebook is a code-first development tool that enables 

conversational data interaction by developing code and visually presenting 

results. With it, you can iteratively explore and visualize your data, 

create ETL pipelines, write reports or prototypes, and train ML models. 

Databricks notebooks provide capabilities like real-time co-authoring, 

support for multiple languages, automatic versioning, and built-in data 

visualizations. Figure 2-6 provides a view of a sample Databricks notebook.

Chapter 2  Databricks Platform Overview



32

Figure 2-6.  Databricks notebook

Now let’s see some of the capabilities of Databricks notebooks:

•	 Multiple language support: Databricks notebooks 

allow you to develop code in multiple languages, such 

as Python, SQL, Scala, and R. This gives developers the 

flexibility to develop in the language of their choice or 

even use multiple languages within the same notebook 

using the magic command (e.g., % SQL or % Python). 

Notebooks also provide Markdown capabilities so you 

can maintain documentation along with the code itself.

•	 Collaborative: Notebooks allow developers to co- 

author or work on the same notebook in real time 

similar to working in your Google Docs environment. 

Further, users can collaborate by writing and leaving 

comments for their team members, which can then be 

worked upon later.
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•	 Reproducible: Notebooks automatically track changes 

you made and store the version in version history, 

allowing you to look back at a previous version easily 

and compare what changed in the current notebook. 

Further, you can also integrate notebooks into your Git 

repositories for your CI/CD.

•	 Visualizations: Databricks notebooks have built-in 

visualizations, including bar, line, pie, scatter, map, 

and more. Users can create one or more visualizations 

for each command’s result. Notebooks also allow you 

to bring external libraries like ggplot (R), matplotlib 

(Python), and Plotly for more advanced figures. 

Visualizations are automatically refreshed and updated 

whenever commands are rerun.

•	 Scheduled: In addition to interactive features, you can 

quickly create automated jobs from the same notebook 

and schedule them at specific intervals as per the use 

case. Thus, you can make your notebook run a job. 

In Chapter 6, we will see how you can orchestrate a 

pipeline using multiple notebooks.

�Debugging
Debugging your Python code has never been easier with a Databricks 

notebook. You can set breakpoints and step into your Python code with 

a debugger. Use the Debug cell button to start debugging, as shown in 

Figure 2-7 and Figure 2-8.
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Figure 2-7.  Notebook cell debugging

Figure 2-8.  Python debugger

Variable Explorer also allows you to see all the variables in your 

notebook, greatly helping with the debugging experience. It supports 

Python, Scala, and R in this view, making the notebook a real-time cross- 

language compiler. Figure 2-9 shows a view of the explorer. The Variable 

Explorer provides a convenient one-click action to inspect all variables, 

including DataFrames. You can click any DataFrame to explore it in a new 

notebook cell, allowing you to visualize or profile it easily.
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Figure 2-9.  Variable Explorer

�Serverless in Notebook
To enable rapid development experience from end to end, Databricks now 

enables users to use serverless SQL warehouse in notebooks. This allows 

SQL developers to continue to collaborate with other team members in the 

same environment. See Figure 2-10.
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Figure 2-10.  Attaching a SQL warehouse to a notebook

�Databricks Widgets
Databricks widgets are input elements that allow you to parameterize your 

notebooks. Consider a scenario where you want to use the same notebook 

code but with multiple different inputs. One way could be to create 

multiple static notebooks by hard-coding values. Still, a more elegant and 

preferred way would be to add input elements to your notebook, making 

the same notebook more reusable. In short, Databricks widgets allow you 

to parameterize your notebooks by creating input widgets that can be 

adjusted to pass different values into the same notebook code.

There are four types of widgets for use with Databricks notebooks (see 

Figure 2-11).

•	 Text Input: Allows users to enter a text value in an 

input box:

dbutils.widgets.text(“widget_name”, “Value”, “Label”)
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•	 Dropdown: This provides a drop-down menu to 

select from a list of options. It is useful for predefined 

categories and options.

dbutils.widgets.dropdown(“widget_name”, “Value”, 

[“option1”, “option2”, “option3”], “Label”)

•	 Combo box: This is a combination of a text box with 

a drop-down. Users can either type a custom value or 

select an option.

•	 Multiselect: This allows users to select multiple values 

via checkboxes.

dbutils.widgets.checkbox(“widget_name”, True, 

“Label”)

Figure 2-11.  Sample widgets in Databricks

Once the widget is created, its value can be accessed using dbutils 

widgets.get() or via :filter_value or ${filter_value} in SQL for DBR 

15.1 or below. The value can then be used as input parameters in your 

code to customize data processing, visualization, or analysis.
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�Library Management
Libraries could be either third-party or prewritten custom code that must 

be available to Databricks notebooks or clusters to execute your code/jobs 

successfully. Libraries can be written in multiple languages and reused 

as needed by developers. Further, they could be stored locally in DBFS or 

cloud storage or called from external repositories such as PyPI, Maven, 

or CRAN.

Databricks Runtime includes many commonly used libraries installed 

on the cluster. The release notes give a list of libraries for your runtime 

version. However, you may need to install more custom or specific libraries 

at the time of code execution. Databricks provides two main options for 

library installation: cluster-scoped and notebook-scoped libraries.

Cluster-scoped libraries provide the ability to install libraries on 

specific clusters so that they can be used by all notebooks/jobs running on 

that cluster (Figure 2-12).

Figure 2-12.  Library installation page
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There are several sources, including workspace files, cloud object 

storage, UC volumes, paths on local machines, or external repositories like 

PyPI, Maven, or CRAN.

Only Python and R allow you to install notebook-scoped libraries and 

create an environment scoped to a notebook session. Notebook-scoped 

libraries are used only when needed for your notebook and can be installed 

using the %pip magic command. These libraries do not persist and must be 

re-installed after each session.

�External Databricks Connectivity
In this section, we will discuss how you can connect to Databricks 

beyond the browser, like Databricks CLI and API. While these are for 

administrative purposes in the beginning, the ecosystem has evolved a lot 

so we do day-to-day development in our favorite IDE offline.

�Databricks CLI
The Databricks command-line interface (aka Databricks CLI) provides 

an easy-to-use tool for automating the Databricks platform from your 

terminal command prompt. From the CLI, you can start/stop a cluster, run 

Databricks jobs, and more.

To connect Databricks CLI to the Databricks workspace, you need to 

generate a Databricks personal access (PAT) token. To do so, browse to 

User Settings ➤ Developer ➤ Access Tokens (see Figure 2-13). The token 

will be visible to you only once and by default is valid for 90 days; you will 

need to regenerate it afterward.
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Figure 2-13.  PAT token generation

Once you have the PAT token, you can quickly connect to the 

workspace by using the following and providing the PAT token when 

prompted:

databricks configure --host <workspace-url> --profile 

<configuration-profile-name>.

Finally, you can run the following to create clusters:

databricks clusters create --cluster-name my-cluster --node- 

type-id Standard_D2_v2 --num-workers 4

�Databricks REST API
The Databricks REST API allows users to interact programmatically with 

their Databricks workspace. More or less anything that can be done via the 

UI can be done via the REST APIs. Users can interact with the Databricks 

REST APIs via curl requests, Python requests, Postman applications, or 

the databricks-api Python package. Here again, you would require a PAT 

token to authenticate to the Databricks workspace.
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The Databricks documentation includes a REST API reference Guide 

that details both the workspace and account-level APIs for all three cloud 

platforms (https://docs.databricks.com/api/azure/workspace/

introduction).

�Databricks Terraform
The Databricks Terraform provider allows you to interact with almost all of 

Databricks’ resources. Behind the scenes, it is powered by the Databricks 

SDK. Both Databricks SDK and Terraform providers are official Databricks 

open-source projects and are actively supported by Databricks.

Administrators often use the Databricks Terraform provider for 

automated deployment and disaster recovery. Figure 2-14 illustrates the 

vast scope that it supports for Databricks management. The ultimate 

meaning of DevOps is leveraging infrastructure as code (IaC) to 

manage operations and not depend on the user interface or a series of 

predocumented commands.

The Databricks Terraform provider can be found at the Terraform 

website:

https://registry.terraform.io/providers/databricks/

databricks/latest

You can find the full source code of Databricks Terraform at Databricks 

GitHub, which is one of the top trending repos:

https://github.com/databricks/terraform-provider-databricks
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Figure 2-14.  Databricks Terraform provider

�Conclusion
In this chapter, we discussed the basic terminology associated with the 

Databricks data intelligence platform. This formed the foundation for the 

concepts and features we will learn throughout the book. Databricks has 

evolved as not only a management tool on top of Spark but also provides 

lots of features and toolings to manage your data and AI assets, be it tables, 

jobs, policies, and development environments. Everything comes out of 

the box. The open-source repo also contains countless useful tools that 

Databricks is maintaining on behalf of the community.
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In addition to key terms, we looked at two commonly used services: 

clusters and notebooks. Clusters form the compute on the Databricks and 

are now available as serverless. A notebook is the IDE where you write your 

code and execute it on your data using clusters. We concluded the chapter 

by looking at external connectivity to Databricks via Databricks CLI, the 

REST API, and Terraform.
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CHAPTER 3

Data Ingestion 
in Lakehouse
Organizations have a wealth of information siloed in various data sources. 

It could be relational databases, on-prem data warehouses, big data 

storage like Hadoop systems, ERP/CRM systems, or real-time streaming 

sources. A significant number of analytics use cases need to not only 

process this data efficiently but also do it in a unified manner to produce 

meaningful reports and predictions. So to start this journey, organizations 

need to ingest data from different sources to a single location. In this 

chapter, we will look into how you can ingest data from various sources 

incrementally and efficiently into your Delta Lake.

�Introduction
In a Databricks lakehouse, organizations can ingest data from a variety 

of sources to create a “single source of truth” for their data, enabling 

comprehensive analytics and data science capabilities across all their data. 

To break down the ingestion process, especially for batch data, it is mostly 

a two-step process, as shown in Figure 3-1.

The first step is to upload raw data from a variety of sources be it on- 

prem or other systems into your cloud storage (S3, ADLS, or Google Cloud 

Storage). This is normally referred to as cloud ingestion. Once it lands in 
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your cloud storage, the second step is to move it into your Delta Lake layer. 

This is referred to as delta ingestion. Now for Delta ingestion there are 

two popular and efficient techniques: the Auto Loader and the COPY INTO 

command. Later in the chapter we will discuss both in detail.

Figure 3-1.  Databricks reference architecture: ingestion

We will discuss Delta Lake in length in Chapter 4, but we’ll touch on 

it here. Databricks’ integration with Delta Lake ensures reliability and 

performance at scale, providing ACID transactions and a unified process 

for batch and streaming data. This unification of data not only simplifies 

data management but also empowers organizations to derive more valuable 

insights, make data-driven decisions, and, ultimately, drive business growth.

Now, let’s move in and learn the various methods used for both cloud 

and Delta ingestion.

�Cloud Ingestion
As a first step, we need to get data into the cloud and, more specifically, 

into your cloud data storage. Usually, we call this layer the landing zone 

where the data lands from various sources and can be stored in any format, 

be it CSV, Parquet, JSON, etc. This layer is a source for Delta ingestion into 

the Delta bronze layer.
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There are a number of alternatives that can be used to bring data to the 

cloud. The first method is via the built-in Databricks connectors that ingest 

data from sources such as Workday, MySQL, Salesforce, etc. Moreover, the 

Databricks UI provides an intuitive way to move the data directly to Delta 

Lake. Next are native cloud tools like Azure Data Factory for Azure Cloud. 

Finally, ingestion can happen via third-party tools such as Fivetran via 

Partner Connect.

Next, we will look into these three options in much more detail:

•	 Databricks Native Connectors, Add Data and File 
Upload: The Databricks’ File Upload UI and Add 

Data UI (see Figure 3-2) allow you to easily move data 

for ingestion into Delta tables with Unity Catalog. It 

enables you to ingest data from a wide range of data 

sources in a secure manner via notebook templates or 

drag-and-drop functionality.	

	 Add Data UI: The Add Data UI acts as a central location 

for all your ingestion needs from various data sources 

into the Databricks lakehouse.

Figure 3-2.  The Add UI Interface
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	 Now developers can click any data source they want 

to ingest data from and then follow the UI flow or 

generated Databricks notebook with instructions 

to finish data ingestion step-by-step directly into 

Delta Lake.

	 Databricks supports several integrations, such Azure 

Data Lake Storage or Amazon S3 as the destination. 

Further, there are built-in connectors to support data 

transfers from data sources such as Snowflake, Kafka, 

MySQL, etc. Once you click the source, a notebook gets 

generated wherein you can give the source and target 

parameters (Figure 3-3).	
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Figure 3-3.  Sample notebook, MySQL to Delta table
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	 Once these notebooks are run using Databricks 

clusters, the data is transferred from the source directly 

to the Delta tables.

	 Further, you can leverage more than 150 other 

connectors in the UI that are supported by Fivetran.

	 File upload UI: The file upload UI allows you to drag 

and drop local files seamlessly and enables the secure 

uploading of these files to create a Delta table. The UI 

is accessible across all personas through the navigation 

bar (Figure 3-4) or from the Catalog UI by clicking the + 

Add icon. The file upload UI offers the option to create 

a new table or overwrite an existing table.	

Figure 3-4.  Data ingestion, file upload UI
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You can use the File Upload UI to ingest via the 

following features:

•	 Select or drag and drop one or multiple files 

(CSV or JSON, etc.)

•	 Preview and configure the resulting table and 

then create the Delta table

•	 Autoselect default settings such as 

column types

•	 Modify various format options and 

table options

Therefore, both the Add UI and File Upload UI 

provide user-friendly interfaces to ingest data, which 

could be local or in other data storage platforms, 

into the Databricks lakehouse platform. Next we 

move into the cloud data ingestion via cloud-

native tools.

•	 Ingestion via cloud-native tools: Another popular 

way to ingest data into the cloud is via cloud-native 

technologies. For example, for batch ingestion, we can 

use ADF (Azure), Glue ( AWS), or Data Fusion (GCP). 

For stream ingestion, EventHub (Azure), Kinesis (AWS), 

Google Pub/Sub, or Kafka are popular choices.

	 Let’s look into an example of using Azure Data Factory 

(ADF) in Azure Cloud. ADF has more than 90 built-in  

data source connectors that can ingest data from 

various sources in the Azure cloud. Further, ADF 

seamlessly orchestrates Azure Databricks notebooks to 

connect and ingest all of your data sources into a single 
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data lake. It also has a Delta format connector that 

can read and write Delta format into the lakehouse, 

providing seamless integration with Databricks.

•	 Ingestion via third-party tools: The next ingestion 

method is to leverage the extensive Databricks partner 

ecosystem and especially ingestion partners such as 

Fivetran, Hevo, Rivery, etc. To make this a seamless 

process, Databricks has closely worked with them and 

not only validated their technology but also aligned 

with them to build integrations that enable you to load 

data into cloud storage. These integrations enable low-

code, scalable data ingestion from various sources into 

a Databricks lakehouse. These partners are featured 

in Databricks Partner Connect (Figure 3-5), which 

provides a UI interface that simplifies connecting third-

party tools to your lakehouse for data ingestion.	

Figure 3-5.  Databricks Partner Connect
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	 Partner Connect lets you create trial accounts with 

select Databricks technology partners and lets you 

connect your Databricks workspace to partner 

solutions from the Databricks UI. With just a few 

clicks, Partner Connect will automatically configure 

resources such as clusters, tokens, and connection files 

for customers to connect with data ingestion, prep and 

transformation, and BI and ML tools.

Fivetran is a popular third-party data ingestion 

Databricks partner that offers simple no-code 

connectors that can ingest more than 150 data 

sources (e.g., MySQL, DynamoDB, SFTP) into 

destination data stores such as Databricks Delta 

Lake. Fivetran’s ingestion solution helps customers 

avoid setting up manual or open-source connectors 

that might be less performant when managing the 

ingestion process. The connector for Fivetran works 

as follows:

•	 Set up a Databricks connection with an interactive 

cluster (jobs clusters are not available for Fivetran 

ingestion).

•	 Specify the data source in the connection as well as 

the schedule (takes just five minutes).

•	 Once complete, Fivetran will run a Databricks 

job and use the COPY INTO or MERGE command to 

append or update Delta Lake tables, which will 

contain the data from the source as scheduled.

Therefore, Databricks with its vast Partner ecosystem allows you to use 

the third-party technology to move data from a variety of sources into the 

lakehouse.
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�Delta Ingestion
The data has now landed in your cloud storage, or the landing zone. Here, 

the data could be in any format, such as CSV, JSON, Parquet, etc. The next 

step is to move that data into Delta Lake (the bronze layer) to complete 

your second-step data ingestion process (Figure 3-6).

Now this might sound simple, but there are a couple of ways where 

things could go wrong. For example, you could accidentally miss some files 

to process, which leads to missing data or could ingest previous ingested 

files, leading to duplicates and reverting or deleting those files would be 

even more complicated. Further, if there is a schema change in the source 

system, it could lead to failed jobs or even lost or corrupted fields in your 

data files.

Figure 3-6.  Delta ingestion via the Auto Loader and COPY INTO

To overcome these challenges, two common methods developed by 

Databricks are recommended: the Auto Loader and COPY INTO. Now, let’s 

look into both in detail.
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�Auto Loader
The Auto Loader provides a highly efficient way to incrementally and 

efficiently process large amounts of data as it arrives in cloud storage. 

It also guarantees that each data file is processed exactly once. This is 

important because processing only new files incrementally solves the 

missing or duplicate data problem, which in turn helps save processing 

times and lowers cost for data ingestion.

The Auto Loader is designed for structured, semi-structured, and 

unstructured data. The Auto Loader can ingest JSON, CSV, XML, Parquet, 

Avro, ORC, text, and BINARYFILE file formats into Delta Lake.

Under the hood, the Auto Loader provides a structured streaming 

source called cloudFiles. Given an input directory path on the cloud 

file storage, the cloudFiles source automatically processes new files as 

they arrive, with the option of also processing all existing unprocessed 

files in that directory. The Auto Loader can be set up easily using the 

following syntax:

Df = Spark.

   readStream.

   format("cloudFiles") \

  .option("cloudFiles.format", "json") \

  .load("<path-to-source-data>") \

  .writeStream \

  .option("maxFilesPerTrigger", "2000") \

  .trigger("availableNow", "True") \

  .option("mergeSchema", "true") \

  .option("cloudFiles.inferColumnTypes", "true") \

  .option("checkpointLocation", "<path-to-checkpoint>") \

  .start("<path_to_target")

Chapter 3  Data Ingestion in Lakehouse



56

Let’s look into the previous code and discuss a few important 

parameters. In the first part we are creating a readStream to read in input 

JSON files that have landed in the raw folder. In the second part, we do a 

writeStream and ingest the data into Delta Lake. The following are some 

noteworthy options in the previous syntax:

•	 Checkpoint: In the case of failures, Checkpoint 

helps the Auto Loader to resume the processing from 

where it left off by using the information stored in the 

checkpoint location and continuing to provide exactly- 

once guarantees when writing data into Delta Lake. You 

don’t need to maintain or manage any state yourself to 

achieve fault tolerance or exactly-once semantics.

•	 Trigger.AvailableNow: The Auto Loader can be 

scheduled to run in Databricks Jobs as a batch job 

by using Trigger.AvailableNow. The AvailableNow 

trigger will instruct the Auto Loader to process all 

the files that arrived before the query start time. New 

files that are uploaded after the stream has started 

are ignored until the next trigger. Let’s assume that 

the incoming data is spiky and instead of processing 

continuously, you want to process the data nightly in 

as a batch job. Trigger.AvailableNow allows you to do 

that without changing your code/architecture.

•	 mergeSchema: The mergeSchema option tells the 

Auto Loader to detect dynamically the evolution of 

the schema, for example, new fields added to the 

data. This prevents users from tracking and handling 

these changes
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•	 manually.inferColumnTypes: The schema inference 

has always been expensive and slow at scale, especially 

with dynamic JSON. The Auto Loader efficiently 

samples data to infer the schema and stores it under 

cloudFiles.schemaLocation in your bucket.

•	 Rescue_Data: The source system often sends data that 

might be malformed and not fit in the table structure. 

The Auto Loader automatically adds the _rescued_

data column, which stores the new columns that can 

be processed later.

Let’s look under the hood as to how the Auto Loader discovers files. 

When you begin to scan hundreds of files and millions of rows, it becomes 

an expensive operation leading to ingestion challenges and higher 

storage costs.

Scanning folders with many files to detect new data is expensive, 

leading to ingestion challenges and higher cloud storage costs. To solve 

this issue and support an efficient listing, Databricks Auto Loader offers 

two modes: Direct Listing and File Notification (Figure 3-7).

•	 Directory Listing: This is the default mode in which 

the Auto Loader identifies new files by periodically 

listing the contents of the input directory on the 

cloud storage. This mode allows you to quickly start 

without any additional permission configurations as 

long as you have access to the data on cloud storage. 

To ensure eventual completeness of data, the Auto 

Loader automatically triggers a full directory listing 

after completing a configured number of consecutive 

incremental listings. Directory Listing mode is suitable 

for small to medium-sized directories or when the 

volume of incoming files is moderate.
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•	 File Notification: In this mode, the Auto Loader sets 

up a managed cloud notification and queue service 

that subscribes to file events from the input directory. 

This requires additional cloud permissions to set up. 

File notification is more performant and scalable for 

very large input directories or a high volume of files, say 

millions/hr.

Figure 3-7.  Auto Loader modes: direct listing and file notification

To conclude, the Auto Loader is a scalable solution that handles 

the incremental ingestion of billions of files and guarantees only once 

processing. Further, it comes with features like schema inference and 

schema evolution and rescues data that would have been otherwise 

ignored or lost. Next, let’s look into the second option, COPY INTO 

command.

�COPY INTO
COPY INTO is a SQL command that lets you load data from cloud storage 

into a Delta table. It supports many common file formats, including JSON, 

CSV, Parquet, Avro, and text files. COPY INTO is idempotent by default, so 

files are processed only once. This saves time and cost as your ETL pipeline 

processes every file only once instead of a full load each time. Now, the 

COPY INTO command is perfect for scheduled or ad-hoc ingestion use 
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cases in which the data source location has a small number of files, which 

we would consider in the thousands of files. It is recommended that for 

a larger number of files the Auto Loader is suitable. COPY INTO supports 

target schema evolution, merging, mapping, and inference.

Let’s look into a quick example.

COPY INTO requires a table to exist as it ingests the data into a target 

Delta table. If the ingestion is for the first time, you create an empty 

Delta table.

DROP TABLE IF EXISTS test_table;

CREATE TABLE test_table;

Once the table is created, you can ingest the data from a cloud storage 

location to the Delta table.

COPY INTO test_table

FROM 's3://my-bucket/exampleData'

FILEFORMAT = CSV

VALIDATE

FORMAT_OPTIONS ('header' = 'true', 'inferSchema' = 'true', 

'mergeSchema' = 'true')

COPY_OPTIONS ('mergeSchema' = 'true')

Let’s look into a few specifics from the previous code.

VALIDATE: The COPY INTO validate mode (runtime 10.3 and above) 

lets you preview and validate your source data before you write or ingest 

the files. Some of the validations are to see if the schema matches that of 

the target table or it needs to change, if all nulls and constraints are met, 

and if the data is parseable. The result of validate mode is a sample table 

that you can view.

If you find inconsistencies, such as nonmatching column names, 

format issues, etc., you can go back and fix them in the code.
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Now once you are satisfied with the preview table, you can remove the 

VALIDATE keyword and rerun the COPY INTO command.

COPY INTO test_table

FROM 's3://my-bucket/exampleData'

FILEFORMAT = CSV

FORMAT_OPTIONS ('header' = 'true', 'inferSchema' = 'true', 

'mergeSchema' = 'true')

COPY_OPTIONS ('mergeSchema' = 'true')

To conclude, the COPY INTO SQL command lets you load data from 

a file location into a Delta table. This is a retriable and idempotent 

operation; files in the source location that have already been loaded are 

skipped.

�Conclusion
In this chapter, we covered how to ingest data in a Databricks lakehouse. 

Data ingestion is usually a two-step process for batch data. The first is to 

bring the data in any format to the cloud storage. The source system could 

be varied from on-prem data warehouses/data lakes to cloud databases. 

This is usually termed cloud ingestion and can be done in several ways 

such as Databricks native connectors, cloud ingestion tools, or third- 

party tools.

Thereafter, the data is then moved into a Delta lake, and the two most 

recommended approaches here are the Auto Loader and the COPY INTO 

command, both of which incrementally process data but also ensure that 

the data files are processed only once, helping data engineers to efficiently 

manage data ingestion into Delta Lake.
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CHAPTER 4

Delta Lake - Deep Dive
In this chapter, we will examine a crucial aspect of the lakehouse 

paradigm: the storage format for your data. As discussed in Chapter 1, 

the ideal storage format for a lakehouse is one that provides similar data 

management and performance features of a data warehouse but is an open 

format and built on top of cloud data lakes. Delta Lake is a storage protocol 

that exactly fits the requirements. Delta Lake is an open, performant 

storage format that enables organizations to build data lakehouses, 

allowing data warehousing and machine learning directly on the data lake.

We will focus on understanding why we need Delta Lake as the storage 

protocol in the lakehouse architecture. Thereafter, we will discuss the 

medallion architecture and some key features of Delta Lake, including 

merge capabilities, liquid clustering, and optimizations. We will end with 

some best practices when working with Delta Lake.

�The Challenges of Other Formats
Before we start looking into Delta Lake, let’s first understand some of the 

challenges of data lakes and other storage formats. To be honest, data lakes 

and standard storage formats, such as CSV, Parquet, JSON, etc., have been 

around for quite some time. However, there have been inherent challenges 

in terms of reliability and performance while storing data in these 

traditional storage formats. Let’s discuss some of these in a bit of detail.

https://doi.org/10.1007/979-8-8688-0444-1_4#DOI
https://doi.org/10.1007/979-8-8688-0444-1_1
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First, when you use formats like Parquet and CSV, etc., it is extremely 

difficult to roll back the data to its original state if your ETL job fails, leaving 

data corrupt. Not only that, it is hard to apply inserts, updates, and deletes 

to data stored in traditional storage formats. Next, there is a lack of schema 

enforcement, which leads to lower data quality, which was one of the main 

reasons for the low adoption of data lakes. Another important reason was 

that the performance of data in traditional data lakes was way behind that 

of warehouses due to issues such as small file problems (a large number of 

very small files slowing the processing) and no ability to cache queries or 

input data.

All these issues prevented the large-scale adoption of data lakes with 

common file formats, such as CSV, Parquet, etc., from becoming the de 

facto storage layer. However, the introduction of Delta Lake was a game- 

changer. Let’s look into why.

�What Is Delta Lake?
Delta Lake is an open-source storage layer that sits on top of data lakes and 

provides reliability, data governance, and performance. At its core, Delta 

Lake, like transactional databases, provides ACID compliance to data lakes 

with schema enforcement.

Figure 4-1 shows the core components of a Delta table.
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Figure 4-1.  Delta Lake components

The components are as follows:

•	 Parquet files: Parquet, which organizes data in a highly 

efficient columnar format, has been the de facto format 

for storing big data for quite some time. Delta is built 

on top of Parquet, as the actual data is stored in Parquet 

format, which ensures data compression and encoding 

optimizations.

•	 Delta log: The Delta log is the transactional log that 

acts a ledger and stores all the edits made to the 

Delta table. It acts as the single source of truth for the 

Delta table. The Delta Log is found in the _delta_log 

subdirectory within the Delta folder, which contains the 
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Parquet data files for the table. The Delta log enables 

the most common features such as ACID transactions, 

time travel, scalable metadata handling, etc.

•	 Cloud Object Storage Layer: It is important to note 

that the data is always in your cloud object storage 

layer (S3 for AWS, ADLS for Azure, and GSC for GCP). 

This storage layer ensures the durability and scalability 

of the data within Delta Lake, enabling users to store 

and process extensive datasets without the need to 

handle the complexities of managing the underlying 

infrastructure.

After looking at what composes the Delta Lake, let’s look into some key 

features of Delta Lake.

•	 Schema enforcement: Delta enforces the schema by 

default and blocks bad writes to the data. However, it 

provides the flexibility to evolve the schema as needed.

•	 ACID transactions: ACID transactions ensure 

reliability and consistency, even during failures.

•	 Version control: As discussed earlier, the Delta log acts 

as a ledger and tracks all the changes made to tables. 

If required, say when your job fails midway, the older 

version can be easily restored.

•	 Unified batch and streaming: Delta provides the 

unique capability of a unified source and sink for 

streaming and batch processing. For example, you can 

stream and add batch data to the same Delta table.
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•	 Time travel: The transaction log gives Delta the ability 

to time travel, enabling users to revert or access any 

version of the table as they were at a specific point 

in time.

•	 Compliance: Delta logs help improve data governance, 

security, and regulatory compliance needs.

�Delta Lake: Medallion Architecture
The Medallion architecture, sometimes referred to as the multihop 

architecture, is the concept of logically separating the data in a lakehouse 

into multiple layers with each layer having specific properties. A standard 

medallion architecture consists of three main layers: Bronze, Silver, and 

Gold. It is best practice to curate your data by using a layered architecture 

approach, as it allows data teams to structure the data according to quality 

levels and define roles and responsibilities per layer. See Figure 4-2.

Figure 4-2.  Delta Lake medallion architecture
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Let’s look into the three layers and see what they mean.

•	 The first layer is the raw layer, often called the Bronze 
layer. This layer will preserve the data as close as 

possible to the original data. It is always a best practice 

to maintain a copy of your source system data for the 

following reasons:

•	 The source system copy helps to back out a 

production workload in case of any error.

•	 The bronze layer helps to reprocess a data pipeline.

•	 The Bronze layer loads preserve historical data for 

analytical processing and enable insights and trend 

analysis.

•	 A source system copy helps hydrate a data lake to 

enable new use cases and is often required by data 

scientists so they have access to nontransformed/

unbiased data.

•	 The second layer is the staging layer, which can be 

called the Silver layer. This layer can contain multiple 

stages to help troubleshoot and process data in 

various forms and different degrees of conformation. 

The Silver layer can be used by power users (who are 

more familiar with the data) and data scientists, but 

with some risk as the data is not conformed and can 

provide different results from the one usually open to 

all business users. A silver layer load typically consists 

of the following:
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•	 Filtered and augmented data typically formatted 

per business requirements.

•	 For data scientists, the data in this layer often is free 

from class imbalance problems and enables faster 

model development in neural networks and other 

approaches.

•	 The third layer is called the refined layer, or the Gold 
layer. This layer is open to all business users. It will 

contain the confirmed (agreed upon) data and will 

be treated as the one true version for the business. 

This layer can contain smaller subsets of the data for 

a specific purpose (sometimes called data marts). The 

Gold layer often does the following:

•	 Answers very specific business questions

•	 Most likely is fully aggregated data

•	 Is the data that is ready for the presentation layer 

for BI tools to slice and dice this information (an 

OLAP cube)

•	 Summary data and quality checked (dimensions 

serve as single source of truth)

Now after understanding the inner workings of Delta and the 

medallion architecture, let’s look at some of the key features of Delta Lake.
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�Delta Lake Key Features
The following sections cover the key features of Delta Lake.

�Update, Delete, and Upserts in Delta Table
Delta supports both Update and Delete commands, both of which are not 

supported by traditional Parquet format. Further, it provides the ability to 

upsert using the MERGE SQL Command.

Let’s examine how the MERGE SQL operation can be used to upsert data 

into a Delta table from a source table, view, or DataFrame.

MERGE INTO target

USING source

ON source.key = target.key

WHEN MATCHED THEN

  UPDATE SET *

WHEN NOT MATCHED THEN

  INSERT *

WHEN NOT MATCHED BY SOURCE THEN

  DELETE

These are important operations and can be easily done in traditional 

databases, but now you can also do so within your Delta Lake layer.

�Schema Evolution
It is important to note that Delta enforces the schema by default. This 

prevents users from adding data that does not conform to the existing 

schema, avoiding unwanted data additions to your table and maintaining 

data quality. Any new write to a table is checked for compatibility with the 
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target table’s schema before it is committed. If the data is not compatible, 

Delta Lake cancels the transaction altogether (no data is written) and 

raises an exception to let the user know about the mismatch.

However, data sources evolve over time due to changing requirements, 

which might involve adding or dropping new fields to existing tables. So, 

to fulfill this use case, although Delta, by default, enforces schema, it also 

supports schema evolution.

Therefore, schema evolution allows users to easily change a table’s 

current schema to accommodate changing data such as including one or 

more new columns while performing an append or overwrite operation. 

Therefore, schema evolution can be used when you intend to change the 

schema of your table by either setting the option “mergeSchema” to “true 

or setting the property spark.databricks.delta.schema.autoMerge.

enabled to true.

By including the mergeSchema option in your query, any columns 

present in the DataFrame but not in the target table are automatically 

added to the end of the schema as part of a write transaction. Nested 

fields can also be added, and these fields will be added to the end of their 

respective struct columns as well.

From Spark 3.0 onward, explicit DDL (using ALTER TABLE) is fully 

supported. The following code snippets provide some examples of how 

this can be utilized:

•	 Adding new columns (at arbitrary positions)

ALTER TABLE table_name ADD COLUMNS (col_name 

data_type [COMMENT col_comment] [FIRST|AFTER 

colA_name], ...)

•	 Reordering existing columns

ALTER TABLE table_name ALTER [COLUMN] col_name 

(COMMENT col_comment | FIRST | AFTER colA_name)
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•	 Renaming existing columns

ALTER TABLE table_name RENAME COLUMN old_col_

name TO new_col_name

To conclude, Delta supports both schema enforcement, which 

prevents adding data that does not conform to the existing schema, and 

schema evolution, which gives users the flexibility to make intended 

changes to the table.

�Time Travel
Delta Lake’s time travel feature allows users to access and query historical 

versions of data stored in Delta tables. This is important because it 

eliminates the need to maintain point-in-time copies of data, which is 

cumbersome and costly. Delta Log acts as a transaction log that maintains 

a granular view of changes made to data over time.

Some of the most common use cases where you might need to access 

previous versions of data are auditing data as it changes over time, 

reproducing ML experiments or reports, or rolling back to the earlier 

version in case of job failures.

Let’s move and see this in action. As explained earlier, every operation 

that executes on Delta table is automatically versioned in the Delta log 

(Figure 4-3).
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Figure 4-3.  Delta Log snapshot

You can query the previous versions of the Delta table by doing the 

following:

	 1.	 Using a timestamp

SELECT count(*) FROM my_table VERSION AS OF 5238

	 2.	 Using a version number

SELECT * FROM employee_delta VERSION AS OF 2

A key question is how far back one can go to query previous versions 

of the Delta table. By default, you can query historical versions of the table 

for 30 days. Now, depending on the use case, one can increase or decrease 

the time by using the command delta.logRetentionDuration. This gives 

users the flexibility to manage storage costs versus the need to go back and 

access historical data.

�Clone Delta Tables
When you clone a table, you are basically creating a replica of a table at 

a given point in time. As the name suggests, clones have metadata as 

the source table but behave as a separate table with a separate lineage 
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or history. Therefore, any changes made to clones affect only the clone 

and not the source. Further, if the source data changes after the clone is 

created, those changes are not reflected in the cloned table automatically.

You can create a copy of an existing Delta Lake table on Databricks at 

a specific version using the clone command. Also, clones have a separate 

independent log history from the source table. Time travel queries on your 

source table and clone may not return the same result.

There are two types of clones that can be created: deep clones and 

shallow clones. Let’s look into both of these:

Deep clone: A deep clone makes a full copy of the 

source table’s metadata and data files. This is similar 

to copying a table with a CTAS command (CREATE 

TABLE... AS... SELECT...). Since the metadata is 

being copied from the source table, you do not need 

to re-specify partitioning, constraints, and other 

information as you have to do with CTAS.

Deep clones are helpful when creating a completely 

independent copy of a Delta table for use cases like 

archiving specific tables or do transformations on a 

new copy to test some transformations

Deep clones can be quickly created using the 

following syntax:

CREATE OR REPLACE TABLE db.target_table CLONE 

db.source_table --

Shallow clone: A shallow (also known as Zero-Copy) 

clone duplicates only the metadata of the source 

table. The data files of the table itself are not copied, 

so another physical copy of the data is not created, 
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which helps save storage costs. These clones are 

not self-contained and depend on the source from 

which they were cloned as the source of data.

Shallow clones are useful when you want to perform 

experiments on a new table, such as testing new 

code on production data, without affecting the 

production tables.

Shallow clone can be created using the 

following syntax:

CREATE OR REPLACE TABLE my_test SHALLOW CLONE  

my_prod_table;

One point to remember is that shallow clones are not self-contained 

tables like deep clones. If the data is deleted from the source table for any 

reason, your shallow clone may not be usable.

�Generated Column
Generated columns are a special type of columns whose values are 

automatically generated based on user-specified functions over the 

columns in the Delta table.

When you write to a table with generated columns and you do not 

explicitly provide values for them, Delta Lake automatically computes 

the values. If you explicitly provide values for them, the value must satisfy 

the constraint (<value> <=> <generation expression>) IS True or write 

will fail.

Chapter 4  Delta Lake - Deep Dive



74

�Change Data Feed
One of the important functionalities of working in a medallion architecture 

is what we call change data capture. Change data capture basically refers 

to the process of capturing only incremental changes to a source table and 

merging only those changes with the target table.

Within the medallion architecture, as the data moves from bronze 

to silver to gold, you can implement the CDC functionality by using the 

change data feed (CDF) in Delta Lake. See Figure 4-4.

Figure 4-4.  CDF

The Delta CDF captures the row-level changes between versions 

of a Delta table. When CDF is enabled on a Delta table, the Databricks 

runtime records “change events” for all the data written into the table into 

a separate folder alongside the Delta log. The captured includes both the 

row data and corresponding metadata indicating whether the specified 

row was inserted, deleted, or updated.

It is important to note that CDF only provides the CDC capability 

within the medallion architecture and not for data ingested from source 

systems, e.g., databases to Delta Lake. To take advantage of the CDF 

functionality, bring your external data sources to the Bronze layer and 
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then enable CDF from that point forward. This will allow you to use the 

Change Data Feed in moving to the Silver or Gold layers or feeding out to 

an external platform.

Change Data Feed can be easily enabled on all new tables by 

setting the property spark.databricks.delta.properties.defaults.

enableChangeDataFeed = true; either in cluster settings or in the 

notebook.

You can set this property on the CREATE TABLE command as well.

CREATE TABLE student (id INT, name STRING, age INT) 

TBLPROPERTIES (delta.enableChangeDataFeed = true)

If the table already exists, use ALTER TABLE to set the property.

ALTER TABLE myDeltaTable SET TBLPROPERTIES (delta.

enableChangeDataFeed = true)

Once the CDF feature is enabled on the table, a _change_data folder 

gets created under the table directory and records the change data for 

UPDATE, DELETE, and MERGE operations (Figure 4-5).

Figure 4-5.  CDF change log

This table can now be used to update only the changes, say, from the 

Silver table to the Gold table.

CDF can be useful in a number of use cases. For example, you can 

now update only the changes from your Silver table to Gold tables with 

substantially less processing cost. Another use case might be when you 
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want to transmit data incrementally from Gold tables to external systems 

that can ingest change data output to reduce the processing overhead. 

Finally, for audit and compliance purposes, it might be necessary to keep 

a record of when, where, and how data has been changed. CDF with its 

change log helps to maintain the logs.

�Universal Format
As enterprises move toward building their lakehouse architectures, one of 

the decisions they need to make is to choose the data format. Ideally they 

want to store data in an open-source format but one that gives then data 

warehouse capabilities. There are three open-source formats that meet this 

criteria: Delta, Iceberg, and Hudi.

Now if we go one level deeper in these formats, we see that all three 

are built on top of Parquet with the difference in the metadata layer. But 

these differences make these formats incompatible to be read by the same 

reader. The problem is further complicated when different departments 

within the organizations try to use these different formats within the 

lakehouse architecture. See Figure 4-6.

Figure 4-6.  UniForm decoded
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To solve this problem, Databricks announced Databricks UniForm 

(Universal Format) with the Delta 3.0 release. As discussed earlier, all three 

formats are built on top of Parquet. UniForm takes advantage of this fact 

and is able to make Delta tables accessible as Iceberg or Hudi tables to 

respective readers without any data duplication or additional costs. When 

a table is created with UniForm activated, the metadata for the additional 

formats (e.g., Iceberg) is automatically instantiated and subsequently 

updated in response to any data mutation.

Note that prior to the release of Delta UniForm, the ways to switch 

between open table formats were copy- or conversion-based and only 

provided a point-in-time view of the data.

Let’s see an example there is a Delta reader and an Iceberg reader that 

is trying to read the Delta tables that are written by a Delta writer. Uniform 

in this scenario will generate Iceberg metadata asynchronously along with 

Delta metadata, thereby allowing both readers to read from the same Delta 

table. It is important to note that this is possible only with Unity Catalog 

(discussed in the next chapter), which essentially acts as an Iceberg catalog 

as well and is compatible with Iceberg APIs. See Figure 4-7.
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Figure 4-7.  Inner workings of Uniform

You can enable Uniform on a new table by running the following 

command. Please note that Uniform is available only for  

UC-enabled tables.

CREATE TABLE uniform.test.T(name string , age int) TBLPROPERTIES(

 'delta.enableIcebergCompatV2' = 'true',

 'delta.universalFormat.enabledFormats' = 'iceberg');

Let’s add some data.

INSERT INTO uniform.test.T VALUES ('Mark', 35), ('Tom', 42)
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If we Iook into the table properties for the data, we can see something 

like Figure 4-8.

Figure 4-8.  Properties of Delta table with UniForm enabled

Thus, with open table formats, organizations experience seamless data 

management, ensuring data integrity and enabling smooth transactions 

across multiple users and processing engines.

In the next part of the chapter, we will discuss some of the most 

common performance optimization techniques, such as vacuum, 

optimize, partitioning, and z-order. These techniques are not only 

optimization tools but also help slash storage costs, enhance parallelism, 

and reduce operating load on the infrastructure.
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�Delta Optimization
It is important to have clean and optimized Delta tables to enhance query 

performance and build efficient pipelines. As discussed earlier, tables can 

grow very large over time and then run into issues like small file problems 

or file layouts that do not support the query patterns. These techniques 

aim to alleviate some of the issues discussed.

•	 Partitioning: As the name suggests, partitioning refers 

to grouping of data files under the same column based 

on the partition key. Partitioning data can significantly 

enhance query performance as it will help Spark to 

skip a lot of unnecessary data partition (i.e., subfolders) 

during scan time. Partitioning works best with low- 

cardinality columns, and one can choose columns that 

are commonly used in queries for partitioning.

CREATE TABLE table_name

USING delta

PARTITIONED BY (column_name)

-- OR --

ALTER TABLE table_name ADD PARTITION  

(column_name = 'value')

	 As a best practice, do not partition tables under 1TB in 

size and partition data by a column if you expect each 

partition to be at least 1GB. Further, always choose a 

low-cardinality column—for example, year or date—as 

a partition key.

•	 Optimize: As discussed earlier, Delta folders might 

accumulate a very large number of small files (small file 

problem), which has an impact on query performance. 

Optimize compacts and pack these small files to a 
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configurable size, which is optimum to maximize 

the performance of big data processing engines. 

Optimize keeps all the data as is, but table statistics are 

recalculated, and metadata is cleaned up by removing 

unnecessary entries. The target file (1GB default) size 

of the new command can be changed by tweaking the 

following:

spark.databricks.delta.optimize.maxFileSize

You can run Optimize on a Delta table by simply 

running this command:

OPTIMIZE table_name

As a practice, OPTIMIZE (with or without ZORDER) 

should be done on a regular basis, say once a day 

or weekly, to maintain a good file layout for better 

downstream query performance. Also, run Optimize 

on a separate job cluster because with compute-

intensive VMs, it is a compute-intensive operation.

•	 Z-order: Z-ordering reorganizes data within Delta 

tables to improve query performance. It rearranges the 

data based on specified columns, allowing Delta Lake 

to skip irrelevant data during query execution. In short, 

the entire table is rewritten according to the columns 

mentioned in the z-order command.

	 As a best practice, always choose high-cardinality 

columns (for example, customer_id in an orders table) 

for z-ordering. This is the opposite of partitioning, 

where low-cardinality columns are chosen. Further, 

choose the columns that are most frequently used in 
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filter clauses or as join keys in the downstream queries. 

Finally, it is best to limit the columns to four or fewer 

because more than that and the effectiveness of z-order 

degrades.

•	 Vacuum: Vacuum deletes files that are redundant in 

in the Delta folders. By default Delta retains older files 

up to 7 days and can be configured using the property 

delta.deletedFileRetentionDuration.

Vacuum is not reversible, so it should be used with caution. Further, 

once it is done on the table, your ability to use time travel is limited, but 

the vacuum saves on storage costs as unnecessary files are deleted. So, 

depending on the use case, you can consider whether you want to vacuum 

a particular table.

After learning the fundamental optimization techniques, let’s move on 

to two of the newer optimizations: liquid clustering and predictive I/O.

�Liquid Clustering
Liquid clustering is a new feature introduced for the Delta table in Runtime 

13.1 and above. Let’s examine how you can utilize this feature to enhance 

the performance of your Delta tables without much manual intervention.

As discussed, two of the most common techniques used to optimize 

your Delta tables for efficient storage and data retrieval are table 

partitioning and z-order.

When done right, these techniques help users increase the 

performance of their queries. But both require careful consideration. 

For example, you need to use the right column to partition your data, 

and z-order needs to be done each time new data is added to your table. 

Therefore, data engineers need to constantly work to keep the tables 

optimized.
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Liquid clustering aims to replace both these features with much 

less manual intervention, thus reducing data management and tuning 

overhead. It’s flexible and adaptive to data pattern changes, scaling, and 

data skew.

With liquid clustering, keys (columns) can be chosen purely based 

on the query access pattern. You do not need to consider things like 

cardinality, key order, file size, potential data skew, and future access 

pattern change. Further, the keys can be changed without rewriting the 

files in the table; thus, over time, as the query pattern changes, the data 

layout adapts accordingly.

As a best practice, you should enable liquid clustering for all your 

new Delta tables. Some of the scenarios where liquid clustering are highly 

useful is when tables have significant data skew, when they are growing 

rapidly in size with new data, and when queries involve frequent filtering 

by high cardinality columns.

Let’s see how liquid clustering works internally.

�Working with Liquid Clustering
Liquid clustering is enabled during the creation of a Delta table by using 

the command CREATE BY and defining the clustering keys. Once enabled, 

run OPTIMIZE jobs to cluster data incrementally.

-- Create an empty table

CREATE TABLE table1(col0 int, col1 string) USING DELTA CLUSTER 

BY (col0);

-- Using a CTAS statement

CREATE EXTERNAL TABLE table2 CLUSTER BY (col0)  -- specify 

clustering after table name, not in subquery

LOCATION 'table_location'

AS SELECT * FROM table1;
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--Trigger the Liquid clustering job

OPTIMIZE table2;

Some of the other useful use cases and commands are as follows:

-- Using a LIKE statement to copy configurations

CREATE TABLE table3 LIKE table1;

--Change the Cluster Key

ALTER TABLE table_name CLUSTER BY (new_column1, new_column2);

--disable the cluster Key

ALTER TABLE table_name CLUSTER BY NONE;

Another important aspect of liquid clustering is determining how 

to choose the right clustering keys. To start, choose columns that are 

frequently used in queries regardless of their cardinality. You can begin 

with one column and add up to four columns when needed. Finally, as the 

queries and workload evolve, use ALTER TABLE tbl CLUSTER BY to change 

the clustering keys as often as you want. The best part is that there is no 

need to rebuild the table.

�Current Limitations
According to the Databricks documentation, the following 

limitations exist:

•	 You can only specify columns with statistics collected 

for clustering keys. By default, the first 32 columns in a 

Delta table have statistics collected.

•	 You can specify up to four columns as clustering keys.

•	 Structured streaming workloads do not support 

clustering-on-write.
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�Predictive I/O
Predictive I/O is a collection of Databricks ML-powered optimizations that 

improve the performance for your data interactions. Its accelerated reads 

reduce the time to scan and read data, while accelerated updates reduce 

the amount of data that needs to be rewritten. Predictive I/O is enabled 

by default on serverless SQL and Pro SQL warehouses and clusters with 

runtime 14.0 and above.

Let’s move into and see how predictive I/O works with a simple 

analogy. Imagine all the data transactions are no more than read and write. 

Think of the Windows defragmentation function, which has existed all the 

way back to our Windows 95. File systems are often represented by data 

blocks, just like containers or buckets, but over time, there will be some 

room left in each block, regardless of the size of the block. Everyone who 

has done some packing for a trip would understand this concept. How 

many bags do we bring? Below is an illustration of a simple file system.

Figure 4-9.  A Simple File System 

Source: https://www3.nd.edu/~pbui/teaching/cse.30341.fa18/

project06.html

In terms of file systems, there is a concept of defragmentation, which is 

simply reorganizing all the files into proper blocks to optimize storage and 

read and write efficiency. You would agree that anything organized would 

be more efficient to retrieve. The idea is simple.
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In terms of the Delta format, there are three concepts that we need to 

consider.

•	 File size: The Delta format is organized by Parquet files,  

which is similar to the block size discussed in a file system.

•	 Copy on write: The Delta format supports ACID 

transactions. To perform updates or deletes, the 

analogy is similar to taking out something (delete) 

and placing it back into the file system. In the form of 

Parquet files, it must be written back onto the disk to 

be able to read again. So anything that’s changed will 

need to be rewritten. Even the slightest change would 

affect the whole file, making the write operation very 

expensive if frequent updates are required.

Figure 4-10.  Copy-on-write operation 

•	 Merge on read. To avoid expensive writes, the Delta 

format created a _delta_log folder, which keeps track 

of transactions, like update, delete, and insert. Similar 

to files in a file system, these log files can be either large 

or small and will become fragmented over time. While 

the write-to-the-log file is a cheap operation, the read 

will become expensive because it requires handling a 

large amount of operations in real time during reads.
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Figure 4-11.  Merge-on-read operation 

�ML/AI to the Rescue
By now, you may wonder: how do we tune these settings? What is an optimal 

file size? Do we need to choose between copy on write or merge on read?

Figure 4-12.  Predictive I/O for Updates makes MERGE up to 10x 
faster than Low-Shuffle Merge (LSM) 

Source: https://www.databricks.com/blog/announcing-public-

preview-predictive-io-updates
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Databricks, with its vast experience, has developed machine learning 

models to optimize these settings. Developers no longer need to worry 

about the what, when, and how. The result is a 10x gain in update, merge, 

and delete.

�Conclusion
In this chapter, we looked into one of the building blocks of the Databricks 

lakehouse architecture: Delta Lake. This format provides both reliability 

and performance to your data. Delta Lake is the most critical part of your 

lakehouse as it gives all the warehouse-type capabilities to your data, like 

ACID transactions, updates/deletes and merge functionality, schema 

enforcement and evolution, time travel, etc. We also looked into some 

advanced features like change data feed within the medallion architecture, 

and UniForm, which allows both multiformat readers (e.g., Iceberg reader) 

to read from the same Delta table.

Finally, we looked into optimization techniques like optimize, z-order, 

and vacuum to increase the performance of your Delta tables. We also 

reviewed some of the new hands-off techniques, such as liquid clusters 

and predictive I/O.
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CHAPTER 5

Data Governance 
with Unity Catalog
Data is one of an organization’s most significant assets. An important 

determinant of a company’s performance and growth is how well its data 

is handled regarding quality, management, and ownership. Organizations 

today, especially with ever-expanding use cases for GenAI, face expanding 

data privacy regulations. Nonetheless, the reliance on data is increasing 

as organizations look to help optimize operations and drive business 

decision-making. Therefore, they are looking for data governance on 

their data platforms to ensure that not only their data assets but, more 

importantly, their AI products are consistently developed and maintained 

and their precise guidelines and standards are adhered to.

In this chapter, we will look at Unity Catalog—Databricks’ data 

governance solution. We will introduce the concept of Unity Catalog and 

how it differs from traditional Databricks’ hive metastore. Further, we will 

look at how you can enable Unity Catalog in your workspace and architect 

your data estate. Finally, we will deep dive into some of the key features 

of Unity Catalog, like centralized management, data lineage, and Delta 

Sharing.
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�What Is Databricks Unity Catalog?
Unity Catalog is Databricks’ governance solution and is a unified system 

for managing its data assets (see Figure 5-1). It is a central storage 

repository for all metadata assets, accompanied by tools for governing 

data, access control, auditing, and lineage.

Figure 5-1.  Databricks Unity Catalog

It maintains an extensive audit log of actions performed on data across 

all Databricks workspaces in your account. It provides capabilities such as 

effective data discovery, centralized metadata and user management, data 

lineage, and much more. It offers views and controls across all structured, 

semi-structured, and unstructured streaming data, AI models, notebooks, 

workplaces, files, tables, and dashboards.

In short, it brings all your Databricks workspaces together, offering 

fine-grained management of data assets and access. This streamlines 

operations by reducing maintenance overheads, accelerates processes, 

and increases efficiency and productivity.

Unity Catalog is the foundation of the Databricks Data Intelligence 

Platform, which understands the uniqueness of your data. If you are 

looking to build your next GenAI application, it is essential to enable Unity 

Catalog in your Databricks environment.
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�Unity Catalog: Before and After
Before Unity Catalog, Databricks workspaces were separate and 

independent units (see Figure 5-2). Each workspace had its own metastore, 

user management (adding/removing users), and Table ACL store. A simple 

example is that if a user created a table in one Databricks workspace, it 

would not automatically be available in another workspace. This led to 

data and governance isolation boundaries between workspaces, and if 

you wanted to bring consistency between your workspaces, it would mean 

duplication of effort. Some users handled this by developing pipelines or 

code to synchronize their metastores and ACLs, while others set up their 

self-managed external metastores to use across workspaces. However, 

these solutions added more complexity and maintenance.

Figure 5-2.  Before and after Unity Catalog

With Unity Catalog, Databricks has moved all three (User 

Management, Metastore, and Access Controls) out of workspaces to 

an account that works across all workspaces. The account, including 

the Account Console, which is a user interface to control the account, 

lives purely in the control plane. As a best practice, there should be one 

account per organization (i.e., your entire company) per cloud provider. A 

Databricks account lets you set up data, controls, and user management in 

one place and use them across multiple Databricks workspaces.
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�Unity Catalog Hierarchy
Now let’s move on and understand some key concepts with Unity Catalog 

(UC) such as the metastore, catalog, etc. See Figure 5-3.

Figure 5-3.  Unity Catalog hierarchy

•	 Metastore: A metastore stores metadata about data 

and AI assets and the permissions that govern access to 

those assets. UC metastore is a container in your cloud 

storage managed by Databricks. You can enable UC for 

a workspace by attaching it to a UC metastore. There 

should be one metastore per region, and all workspaces 

should be assigned to that metastore in that region. The 

metastore has a three-level hierarchy: catalog, schema, 

and tables.

•	 Catalog: A catalog serves as the top-level container in 

the three-level namespace hierarchy. It organizes the 

data assets and contains schemas (databases), tables, 

views, volumes, models, and functions.
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•	 Schema (database): This is the second level in the 

three-level namespace and contains tables and views.

•	 Tables: Tables are defined within a schema and provide 

governance for tabular data. There are two types of 

tables: External and Managed.

•	 External tables: In external tables, data is stored 

outside the managed storage location(s) for the 

associated schema/catalog/metastore. It is used 

when direct access to the data outside Databricks is 

required. Unity Catalog governs access to “external” 

tables but does not manage the underlying data. 

This means when you drop a table it deletes only 

the metadata and not the underlying data. You can 

use Delta and other file formats (CSV, JSON, etc.) 

while creating an external table.

•	 Managed tables: These are the default way to 

create tables in UC. They are stored in a managed 

storage location (at the schema, catalog, or 

metastore-level storage location). Unity manages 

the data life cycle and file and folder layouts for 

these tables. The underlying data format is Delta. 

When a table is dropped, the underlying data is 

deleted from cloud storage within 30 days.

•	 Volumes: Volumes are defined within a schema and 

provide governance for nontabular data (e.g., image 

files, etc.). They can store and access files in any format 

(unstructured, semi-structured, structured) but cannot 

store tables. Volumes can be “managed” by defaulting 

to the schema’s managed storage location or “external” 

by specifying an external storage location.
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�Unity Catalog Admin Roles
It is important to understand various admin roles associated with Unity 

Catalog.

•	 Account admin: Account admins administer and 

control anything at the account level, including SCIM, 

SSO, Metastore creation/deletion, and assignment of 

metastores to workspaces and create credentials for 

external location access. Account admins can query all 

data or perform grants on all data objects.

•	 Metastore admin: Metastore admins can create catalogs 

and assign their ownership (via grants) to groups or 

individuals. They can also create external locations. 

Metastore admins have visibility to all securable objects 

within the metastore they are admin of.

•	 Data owners: Data owners can perform grants on data 

objects they own and create new nested objects. For 

example, a catalog owner can create a schema and then 

a table within that schema.

•	 Workspace admin: Workspace admins are similar 

to cloud administrators and, as the name suggests, 

manage the workspaces. They can define cluster 

policies on workspaces, add/remove user assignments, 

elevate user permissions within a workspace of various 

objects like notebooks, etc., and change job ownership.

�Getting Started with Unity Catalog
In this section, we will quickly review how to get started with Unity Catalog 

by creating a metastore and assigning users and groups to workspaces via 

the account console.
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�Create a Metastore
The steps to create a metastore are detailed in Databricks documentation 

(https://docs.databricks.com/en/data-governance/unity-catalog/

create-metastore.html). As a quick overview, account admins can log 

into Databricks Account Console and create a metastore. See Figure 5-4.

Figure 5-4.  Unity Catalog metastore setup interface

Chapter 5  Data Governance with Unity Catalog

https://docs.databricks.com/en/data-governance/unity-catalog/create-metastore.html
https://docs.databricks.com/en/data-governance/unity-catalog/create-metastore.html


96

The key inputs required are as follows:

	 1.	 Name of the metastore.

	 2.	 The region in which the metastore is created. One 

needs to remember that we can have one metastore 

per region.

	 3.	 ADLS Gen 2 Path or the S3 bucket, which will be the 

root bucket for the metastore.

	 4.	 Access Connector ID (Azure): An Access connector 

in Azure allows you to use Managed Identity 

to access storage containers on behalf of Unity 

Catalog users.

IAM role ARN (AWS): Amazon Resource Name for 

the bucket that was setup in #2 (https://docs.aws.

amazon.com/IAM/latest/UserGuide/reference_

identifiers.html#identifiers-arns).

Once the metastore is created, you can assign the metastore to a 

workspace and thereby enable Unity Catalog (Figure 5-5) for the particular 

workspace.

Chapter 5  Data Governance with Unity Catalog

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns


97

Figure 5-5.  Final screen before enabling Unity Catalog

�Organizing Data in Unity Catalog
As discussed earlier, the catalog is the top-level container in the three- 

level namespace. As a best practice, you should use catalogs to segregate 

your organization’s information architecture. This simply means catalogs 

can correspond to a department, team, business unit, or development 

environment scope (Dev, UAT, Prod), as shown in Figure 5-6.
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Figure 5-6.  Sample Unity Catalog structure

Another typical pattern is that developers use workspaces as a data 

isolation tool—for example, using different workspaces for prod and dev 

environments or a specific workspace for processing sensitive data.

Therefore, while working in that specific workspace, they want 

to see only that specific catalog. For example, while working in a dev 

environment, you want only the dev catalog visible, not prod. Unity 

Catalog has a feature that allows you to bind a catalog to specific 
workspaces. This ensures that all specified data processing is handled in 

the appropriate workspace. These environment-aware ACLs allow you 

to ensure that only specific catalogs are available within a workspace, 

regardless of a user’s individual ACLs. This means the metastore admin 

or the catalog owner can define the workspaces that a data catalog can be 

accessed from.

To learn more, please go to the following website:

https://docs.databricks.com/en/data-governance/unity-catalog/

create-catalogs.html#optional-assign-a-catalog-to- 

specific-workspaces
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Figure 5-7 illustrates the workspace setup architecture.

Figure 5-7.  With Unity Catalog, we can attach a catalog to SDLC 
workspaces

�Key Features of Unity Catalog
Let’s talk about the key features in more detail.

�Centralized Metadata and User Management
As explained earlier, Unity Catalog provides a single metastore across all 

workspaces in an account. This enables users to create and access tables, 

views, etc., across workspaces. Now, you can create multiple catalogs; 

set up schemas, tables, and views in one place; and access them across 

workspaces.

It is important to note that when multiple metastores are set up in an 

organization, the catalogs cannot be attached to the workspaces in other 

metastores. The solution is to use Delta Sharing, which will be discussed 

later in this chapter. See Figure 5-8.
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Figure 5-8.  Delta Sharing strategy with multiple metastores

Another important feature of Unity Catalog is centralized user 

management. Before, UC admins had to add users to each new workspace 

either manually or through some SCIM synchronization and maintain 

those workspaces by workspace. With Unity Catalog, once you have synced 

your identity provider, say Azure AAD, via SCIM to Databricks Account 

Console, you can assign users/groups to all different workspaces via the 

account console, hence centrally managing users across workspaces. As a 

best practice, you should enable SCIM integration at the account level and 

sync users to workspaces with Identity Federation. Do not use SCIM at the 

workspace level at all.
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�Centralized Access Controls
One of the main requirements in any data platform is strict control over 

access to data to safeguard it and adhere to various data protection 

policies within your organization. Unity Catalog provides a centralized 

management method as data access policies are applied across all relevant 

workspaces and data assets.

The access control mechanisms use identity federation, allowing 

Databricks users to be service principals, individual users, or groups. In 

addition, SQL-based syntax, the Databricks UI, or even Terraform and APIs 

can be used to provide and control fine-grained access across a wide range 

of resources, including schemas, tables, views, clusters, notebooks, and 

dashboards.

Let’s look into how you can use ANSI SQL to grant permission scopes 

on securable objects like tables or locations to principals like groups, users, 

or service principals. As a best practice, use groups for securing access to 

tables and owning securable objects. If a group owns an object, then any 

users in that group are owners.

GRANT <privilege> ON <securable_type> <securable_name> TO 

'<principal>'

GRANT SELECT ON iot.events TO engineers

The same functionality is also available via Databricks UI in an easy-to- 

use point-and-click manner, which helps for easy access and auditing on 

the spot, as shown in Figure 5-9.
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Figure 5-9.  Granting permissions on a UC table

In addition, Databricks offers the ability to set these ACLs on objects 

via REST API or CLI, which means that Unity Catalog can support and 

power anything, from legacy entitlement request processes to modern 

dev/sec/ops initiatives.

�Data Lineage
Data lineage is the process of tracking data flows from their source to their 

destination. It has gained significance due to the large volume of data 

processed through complex transformations and serves various purposes, 

including auditing and debugging. Thus, data lineage has become vital 

in understanding data movement, tracking, monitoring jobs, debugging 

failures, and tracing transformation rules.
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Unity Catalog has end-to-end data lineages for all workloads, giving 

visibility into how data flows are consumed. Data lineage is automatically 

aggregated across all workspaces connected to a Unity Catalog metastore, 

which means that the lineage captured in one workspace can be seen in 

any other workspace that shares the same metastore.

Unity Catalog provides users with both table- and column-level lineage 

in a single lineage graph, giving users a better understanding of what a 

particular table or column is made up of and where the data is coming 

from. Users can easily follow the data flow through different stages, gaining 

insight into the tables and fields’ relationships.

Further, the Unity Catalog tracks lineage for notebooks, workflows, 

ML models, and dashboards. This improves end-to-end visibility into how 

data is used in your organization and allows you to understand the impact 

of any data changes on downstream consumers. See Figure 5-10.

Figure 5-10.  Unity Catalog lineage

Data lineage holds critical information about the data flow and uses 

Unity Catalog’s common permission model. This means that users with 

appropriate permissions can view the lineage data flow diagram, thus 

adding an extra layer of security.

Finally, Unity Catalog also offers rich integration with various data 

governance partners, such as Collibra and Purview, via Unity Catalog REST 

APIs, enabling easy export of lineage information to these partner catalogs.
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�Data Access Auditing
Unity Catalog automatically captures user-level audit logs and records 

the data access activities. These logs encompass various events 

associated with the catalog, such as creating, deleting, and altering 

multiple components within the metastore, including the metastore 

itself. Additionally, they cover actions related to storing and retrieving 

credentials, managing access control lists, handling data-sharing requests, 

and more.

The built-in system tables let you easily access and query the account’s 

operational data, including audit logs, billable usage details, and lineage 

information.

We will do a deep dive into system tables later in the book when 

discussing observability in Chapter 9.

�Data Search and Discovery
Unity Catalog offers a unified UI across the platform with enhanced 

search capabilities. Further, it leverages a common permissioning model 

to ensure security, enabling users to access assets they have access to. 

It allows tagging and documenting data assets, offers a comprehensive 

search interface, and utilizes lineage metadata to represent relationships 

within the data.

As we will discuss in Chapter 14, Databricks has greatly enhanced the 

platform’s search and discovery capabilities by using LLMs and GenAI 

capabilities.
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�Row-Level Security and 
Column-Level Masking
Organizations are continuously striving to protect and secure their data, 

and one important way they are looking to do so is through row and 

column-level security. This feature is now available in the Unit Catalog–

enabled Databricks workspaces.

�Row Filters
Row filters allow you to apply a filter to a table so that subsequent queries 

only return rows for which the filter predicate evaluates to true. A row filter 

is implemented as a SQL user-defined function (UDF). A row filter accepts 

zero or more input parameters where each input parameter binds to one 

column of the corresponding table.

�Create a Row Filter
CREATE FUNCTION <function_name> (<parameter_name>  

<parameter_type>, ...)

RETURN {filter clause whose output must be a boolean};

�Apply the Row Filter to a Table
ALTER TABLE <table_name>

SET ROW FILTER <function_name> ON (<column_name>, ...);

Let’s look at an example. We want to create a function to filter data for 

the U.S. region. If the function is called by a user in the admin group, the 

RETURN_IF condition will be passed and all the data; otherwise, RETURN_IF 

will return the rows with region='US'.
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CREATE FUNCTION us_filter(region STRING)

RETURN IF(IS_MEMBER('admin'), true, region="US");

ALTER TABLE sales SET ROW FILTER us_filter ON region;

�Column Masks
Column masks let you apply a masking function to a table column. The 

masking function gets evaluated at query runtime, substituting each 

reference of the target column with the results of the masking function. For 

most use cases, column masks determine whether to return the original 

column value or redact it based on the identity of the invoking user. 

Column masks like row filters are expressions written as SQL UDFs.

CREATE FUNCTION <function_name> (<parameter_name>  

<parameter_type>, ...)

RETURN {expression with the same type as the first parameter};

ALTER TABLE <table_name> ALTER COLUMN <col_name> SET MASK 

<mask_func_name> [USING COLUMNS <additional_columns>];

In this example, if the user, the query results will mask the SSN 

numbers for nonadmin users.

CREATE FUNCTION ssn_mask(ssn STRING)

RETURN IF(IS_MEMBER('admin'), ssn, "****");

ALTER TABLE users ALTER COLUMN table_ssn SET MASK ssn_mask;

�Dynamic Views vs. Row Filters 
and Column Masks
Now, an important question is why row-level filters are needed when 

Databricks already has dynamic views, which help users create abstracted, 
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read-only views of one or more source tables. Further, dynamic views, row 

filters, and column masks let you apply complex logic to tables and process 

their filtering decisions at query runtime.

Let’s discuss an important distinction between the two. Creating a 

dynamic view defines a new table name that must not match the name 

of any source tables. This abstraction layer ensures data integrity and 

prevents unintentional alterations to the core data. As a best practice, use 

dynamic views if you need to apply transformation logic such as filters and 

masks to read-only tables and if it is acceptable for users to refer to the 

dynamic views using different names than the source tables.

On the other hand, row-level filters and column masks apply logic 

directly to the table itself, and users don’t have to deal with new or 

different table names or aliases. Again, use row filters and column masks 

if you want to filter or compute expressions over specific data but still 

provide users access to the tables using their original names.

�Delta Sharing
Organizations seek to securely exchange data with their customers, 

suppliers, or partners to unlock further business value. However, a key 

requirement is that data sharing should happen securely to establish 

trust in data quality, security, and privacy. Some of the most common use 

cases for data sharing are data monetization with customers, B2B sharing 

with partners, suppliers, or intra-company data sharing among various 

departments.

Data sharing is not a new concept, and traditionally, organizations 

have deployed two main methods to do so. The first is via self-built 

solutions or tools via APIs, JDBC/ODBC, or file transfers via SFTP. The 

second is via commercial software vendors. The problem with the first is 

around scalability and infrastructure maintenance, while the problem with 

the second is costs and a lack of flexibility in terms of data access.

Chapter 5  Data Governance with Unity Catalog



108

�An Open Standard for Data Sharing
Databricks Unity Catalog comes with Delta Sharing, an open protocol 

for securely sharing data internally and across organizations in real time. 

Delta Sharing is fully integrated with Unity Catalog and allows you to 

centrally manage and audit the shared data across organizations.

Some of the differentiators or benefits of delta sharing include 

accessing data where it resides without creating any copies or moving 

to other platforms. Further, you can integrate Delta Sharing with either 

open-source clients (e.g., Pandas, Spark) or commercial clients (Power BI, 

Databricks and others) that support the protocol.

Delta Sharing is a transformative solution to access and share data. 

Let’s see how Delta Sharing works.

�How Delta Sharing Works
There are three main ways to share data with Delta Sharing:

•	 The Databricks-to-Databricks sharing in which both 

the provider and the recipient are on Unity Catalog–

enabled workspaces. It has some advanced features like 

notebook sharing, AI Model Sharing, data governance, 

auditing, and usage tracking for both providers and 

recipients.

•	 The Databricks open sharing protocol allows a 

provider with a Unity Catalog–enabled workspace to 

share data with a recipient on any computing platform.

•	 A user-managed implementation of the open-source 
Delta Sharing server, which lets you share from any 

platform to any platform, whether Databricks or not. 

This is open sourced with instructions at https://

github.com/delta-io/delta. See Figure 5-11.	
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Figure 5-11.  Delta Sharing in action

Let’s examine how to set up Delta Sharing. The first step is for the data 

provider to register a Delta Lake table with the Delta Sharing server. This is 

done by creating a share (a read-only collection of data objects like tables, 

views, etc.) in a UC-enabled workspace.

CREATE SHARE IF NOT EXISTS test_share

ALTER SHARE test_share

 ADD TABLE test_table

The next step is to create a recipient, basically an individual or 

organization gaining access to a share.

CREATE RECIPIENT IF NOT EXISTS, recipient;

Once the recipient is created, each recipient gets an activation link 

that the recipients can use to download their credential. The Delta 

server identifies and authorizes the recipient/consumer based on these 

credentials. See Figure 5-12.
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Figure 5-12.  Confirmation of Delta Sharing

The recipient can download the credential file and then use it to access 

data. One key point to note is that the credential file is a single download 

only. The recipient can now use the file to authenticate and access data 

using various methods, such as Pandas, Java, or even Power BI.

Many open-source and commercial partners trust Delta Sharing, 

and Databricks also works with data providers to share data across the 

ecosystem. See Figure 5-13.

Figure 5-13.  Customers who use Delta Sharing

To summarize, Unity Catalog unlocks Delta Sharing, which allows you 

to do secure in-place data sharing for data in Delta Lake to any tool that 

supports Delta Lake.
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�Conclusion
Databricks recognized two critical areas that needed attention: discovery 

and governance. Before Unity Catalog, data cataloging and governance 

were disjointed and cumbersome. With Unity Catalog, Databricks created 

an in-house solution that would seamlessly integrate with its ecosystem. 

Unity Catalog is the foundation for the Data Intelligence Platform and all 

the GenAI use cases that organizations are looking to deploy.

Unity Catalog serves as a central repository for all data assets, 

including files, tables, views, dashboards, and more. It provides a robust 

data governance framework, ensuring proper control and oversight. 

An extensive audit log records all actions performed on data stored in a 

Databricks account. Finally, Unity Catalog seamlessly ties in with other 

components of the Databricks ecosystem.
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CHAPTER 6

Data Engineering 
Part 1: Orchestrating 
Data Pipelines Using 
Databricks Workflows
The goal of orchestration is to configure multiple tasks into one complete 

end-to-end process or job. The orchestration service also needs to react 

to events or activities throughout the process and make decisions based 

on outputs from one automated task to determine and coordinate the 

next tasks. Finally, orchestration tools must provide full monitoring and 

observability capabilities to enable data engineers to have full visibility of 

their pipelines. See Figure 6-1.
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Figure 6-1.  End-to-end architecture of Databricks workflows

Databricks workflows provide simple, reliable, and easy-to-use 

functionality that enables organizations to tackle the challenges of data 

orchestration efficiently. Data teams can easily create and manage 

multistep pipelines that transform and refine data and train machine 

learning algorithms within Databricks workspaces, thus saving time and 

effort of managing a separate tool. In this chapter, we will explore some key 

concepts of Databricks workflow jobs and examine the features that make 

it the orchestration platform of choice for Databricks lakehouses.

�Databricks Workflow Jobs
Databricks workflows offer a unified and streamlined approach to 

orchestrating your data, BI, and AI workloads. You can define data 

workflows through the workflow user interface or programmatically using 

APIs, making them accessible to both technical and nontechnical teams.

Databricks workflows are similar to Azure Data Factory or Airflow, 

some popular orchestration services. Although these tools provide features 

for complete orchestration services, they do have a learning curve. They 

are an additional tool in your data stack, adding more maintenance and 

cost of ownership to your data platform.
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Databricks workflows have evolved significantly over the last few 

years, not only with basic functionality such as scheduling, managing 

dependencies, Git integration but also by adding advanced-level features 

like retires, duration threshold, and repair and conditional tasks. These 

features give data engineers the capabilities to orchestrate their entire 

workload on the Databricks platform. Further, it is essential to note that 

there are no extra costs using workflows. The cost is for the underlying 

clusters/compute that the jobs use while executing.

In the next section, we will look at some of the building blocks and 

features of Databricks workflows.

�Databricks Jobs and Tasks
Let’s first understand the concept of a Databricks job. A Databricks job is a 

unit of orchestration within Databricks workflows. Basically, it is a method 

for running data processing and analysis applications in the Databricks 

workspace.

A job can consist of one or many tasks, each representing a specific 

unit of work such as an individual step or action. A job can consist of a 

single task or a large workflow with multiple tasks chained together by 

complex dependencies. For example, a data project might consist of 

ingesting data from various sources, transforming that data through the 

medallion architecture, and serving it via both as a SQL dashboard and an 

ML model. The entire flow can be a single job, and each activity is a task 

joined via dependencies.

Next, we will look into how you can create your first job.
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�Configure Databricks Job Tasks: 
Task-Level Parameters
As discussed, a task is the building block of a Databricks job. Figure 6-2 

provides a snapshot of how to create a task. Let’s examine some of the 

required parameters that you need to provide to do so:

•	 Type: Different “types” of tasks can be executed within 

a job. You can execute Databricks notebooks, JARs, 

Python Scripts and Wheels, SQL Queries, Delta Live 

Tables (DLT) Pipelines, or even DBT jobs. You can 

select the Type parameter depending on where your 

code resides.

Figure 6-2.  Creating a task
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•	 Source: This parameter is primarily used when 

Notebook is selected as the type. A Databricks 

notebook is one of the most common utilities that 

data engineers utilize as a source of their pipeline 

code. These notebooks can either be in a Databricks 

workspace or stored in a Git repository like GitHub. 

Databricks workflows provide the functionality 

of calling these notebooks both directly from the 

workspace and from a Git repository via Git integration. 

Therefore, in the source, users select the path of the 

reference notebook in this parameter.

•	 Cluster: This field allows us to define the type of 

compute that would be used to run the job. Three 

options are available.

•	 Job cluster: Job clusters have been the most 

common/preferred way to run your jobs in a 

production environment. They are pure ephemeral 

clusters, which means they get spun up once the 

job starts, execute the job, and then terminate when 

the job ends. Further, job clusters are around 50% 

cheaper than interactive/all-purpose clusters. It 

is highly recommended that one uses job clusters 

for production workloads. As a best practice, use 

the latest LTS version of cluster runtime for your 

workloads.

•	 Interactive clusters: Interactive or all-purpose 

clusters are best used for developing ETL pipelines, 

testing jobs, and ad hoc queries. Interactive clusters 

should ideally not be used in production as they are 

not cost-efficient.
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•	 Serverless: Serverless workflows are fully managed 

services that are operationally simpler and more 

reliable. Serverless compute provides capabilities 

like auto-optimization, selecting appropriate 

compute resources, automatic retires to job failures, 

etc. Serverless jobs were released very recently, and 

we believe they provide excellent compute for short 

and frequently running jobs.

•	 Dependent libraries: The configuration allows users 

to specify any libraries required for a task’s successful 

execution. All libraries specified in the configuration 

are installed when the clusters start and are available 

when the job runs. These libraries could be installed 

from a public repo like Maven/Cran or from an ADLS/ 

S3 folder.

•	 Parameters: Parameters provide values to a 

parameterized notebook. Developers often design 

parameterized notebooks for abstraction, so one 

notebook can be reused in multiple tasks with different 

parameter values rather than creating copies of the 

same task. This configuration lets you dynamically set 

and retrieve parameter values across tasks to build 

more mature and sophisticated data pipelines.

•	 Notifications: Notifications allow users to receive 

automatic updates when the task starts, succeeds, fails, 

or runs beyond the defined duration thresholds. Users 

can configure alerts to be notified via email or other 

communication channels like Slack, Teams, PagerDuty 

(and more), providing real-time observability of your 

task’s execution.
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•	 Task retries: Task retries determine when and how many 

times failed runs are retried. This feature enhances your 

workflows’ reliability and fault tolerance by automatically 

attempting to recover from transient issues.

•	 Duration threshold: This configuration helps you 

define the execution time limits for a task. It either 

warns you if the task runs longer than expected or 

alerts you and terminates the task if it runs beyond the 

maximum set completion time.

After defining the parameter values for some or all configurations, you 

can hit the Create Task button to create your first task. Similarly, going 

back to our example, you can create tasks for all the other steps that need 

to be completed. Once your tasks have been created, let’s move on to some 

of the job-level parameters you can define.

�Configure Databricks Job Tasks: 
Job-Level Parameters
One of the key capabilities of any orchestration service is to run the jobs on 

a schedule, and the job-level Schedules & Triggers parameter does exactly 

that. Users can configure Databricks jobs to run either at a predefined time 

(schedule) or on a trigger (event-based or continuous).

Let’s explore workflow triggers further and see different scenarios 

where they could be best used.:

•	 Scheduled: The Scheduled trigger enables you to 

automate the execution of your job by defining a 

specific time for it to run. It is important to note that 

this batch-based scheduling is not intended for low- 

latency use cases, as Databricks enforces a minimum 

of 10 seconds between subsequent runs. See 

Figure 6-3.		
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Figure 6-3.  Scheduled trigger

•	 File Arrival: File arrival triggers a Databricks workflow 

when a new file arrives in a particular configured 

cloud storage folder. This is useful when the file arrival 

schedule is irregular and you do not want a cluster 

to be always up and running to monitor the folder. 

One important thing to note is that you can only use 

this trigger in a Unity Catalog–enabled workspace. 

Further, one must use an external location added in 

the UC metastore and have READ permissions to the 

folder and Can Manage permissions on the job. See 

Figure 6-4.	
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Figure 6-4.  File arrival trigger

There are two other parameters one can set in the 

file arrival trigger:

•	 Minimum time between triggers in seconds: This 

is the minimum time to wait before another run is 

triggered after a run is completed.

•	 Wait after the last change in seconds: This is the 

time to wait after a new file arrives before a run 

triggers. If another file arrives within this time 

frame, the timer will be reset.
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•	 Continuous: As the name suggests, this trigger is for 

jobs running continuously until stopped. By setting the 

trigger type, Databricks will always ensure one active 

run of that job. A new job run will automatically kick off 

if the previous run completes or fails. You cannot use 

task dependencies with a continuous job, nor can you 

set retry policies.

•	 Table update: This trigger monitors for changes 

such as update, delete etc., in a Unity Catalog table 

(managed or external). See Figure 6-5.		

Figure 6-5.  Table update trigger

	 Job Tags: Job tags allow users to easily identify and 

locate jobs by ownership, topic, and department. Job 

tags propagate to the job cluster and underlying VMs, 

which helps users assign charge-backs to a particular 
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business unit. Furthermore, applying tags simplifies 

the process of filtering and identifying clusters based 

on specific criteria. This makes tracking, monitoring, 

and optimizing resources within your Databricks 

environment easier.

	 Job parameters: Job parameters give users more 

flexibility and control over their tasks in the 

workflows. They provide an easy way to add granular 

configurations to a pipeline, which is useful for reusing 

jobs for different use cases, a different set of inputs, or 

running the same job in different environments (e.g., 

dev staging and prod environments).

Job parameters allow users to provide both static values and dynamic 

values (that are provided by the system at runtime). An example of the 

dynamic value would be, say, the job ID is defined as {{job.id}} on the 

Parameter tab, which is the unique identifier assigned to the job. See 

Figure 6-6.

Figure 6-6.  Job parameters
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Table 6-1 identifies different parameter types for different task types.

Table 6-1.  Different Task Types in a Databricks Workflow

Task Type Parameter

Notebook Key value pairs that set a value of a notebook widget

JAR Array of strings passed to the Java main method

Spark Submit Array of strings passed in for additional spark-submit arguments

Python Script Array of strings retrievable using argument parse in Python

Python Wheel Can specify positional arguments as array of strings; or keyword 

arguments as key-value pairs

To summarize, with job parameters you can parameterize your tasks 

that will give you more reusability of your jobs.

With this, we looked into some key features and configurations while 

setting up your Databricks jobs and tasks. In the next section, we will 

discuss some of the more advanced and newer features of Databricks 

workflows.

�Advanced Workflow Features
In this section, we will look into some of the advanced features of 

Databricks workflows such as cluster reuse, conditional execution, etc.

Cluster Reuse: This feature allows users to utilize a job cluster across 

multiple tasks. Let’s understand why it is such a useful feature.

Consider that there is a job that consists of five tasks. Without this 

feature (as it used to happen earlier), a new cluster would spin up when 

each task started and terminated when it ended. This led to five clusters 

being spun up and terminated, thus leading to more time to execute the 

entire job. But with the cluster reuse feature, you can configure only one 
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cluster to spin up to run all the tasks and then terminate. This reduces the 

cluster initialization time for each task, leads to efficient cluster utilization, 

and decreases overall job latency.

Another important aspect of this feature is that the user still has the 

flexibility, if needed, to configure a particular cluster for a specific task. 

Continuing on our previous example, if a particular task requires a cluster 

of different configurations, for example, a compute-intensive task, one can 

configure a bigger cluster specifically for the task. Therefore, the different/

bigger cluster would spin up for this particular task.

Repair and Re-run: This feature enables users to repair/rerun failed or 

canceled jobs by running only the subset of failed tasks and any dependent 

tasks with the job. Because successful tasks are not run again with this 

feature, it reduces the time and resources required to recover from 

unsuccessful job runs.

Now, continuing from our previous example, suppose Task_3 (the 

third task) was unsuccessful. After fixing the cause of the failure, you can 

rerun the workflow starting from Task_3 instead of running all the tasks. 

This feature is particularly useful if the tasks prior to the failure were long 

or expensive to run. This eliminates the need to rerun those tasks, again 

reducing redundancy.

Conditional Execution of Tasks: Conditional execution helps build a 

dependency chain between two tasks within a job based on a condition. 

This is an important feature that helps orchestrate multistage data 

pipelines as it allows users to better control over complex workflows and 

implement advanced orchestration scenarios. In conditional execution, 

a task is executed only if the status of upstream tasks meets the specified 

condition.

Conditional execution consists of two main capabilities, the “If/else 

condition task type” and “Run if dependencies,” which together enable 

users to create not only a branching logic in their workflows but also more 

sophisticated dependencies between tasks in a pipeline thereby giving 

them more flexibility into their workflows.
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•	 If/else condition task type: The if/else Task type, as 

name suggests, enables users to add branching logic 

to their jobs. The If/else condition task is used to run 

a part of a job DAG based on the results of a Boolean 

expression given as a condition.

•	 “Run if” dependencies: The “Run if” dependencies 

are task-level configurations that provide users with 

more flexibility in defining task dependency. Take for 

example a task that has several dependencies over 

multiple prior tasks; users can now define what are 

the conditions that will determine the execution of 

the dependent task. These conditions are referred 

to as “Run if dependencies.” One can now define 

whether the dependent task will run if all dependencies 

succeed, at least one succeeded, all finished regardless 

of status, etc.

The following are the task-level “Run if” dependencies available:

•	 All succeeded (all dependencies are executed and 

succeeded)

•	 At least one succeeded (at least one of the 

dependencies has succeeded)

•	 None failed (none of the dependencies have failed and 

at least one has executed)

•	 All done (all dependencies completed and at least one 

has executed)

•	 At least one failed (at least one dependency has failed)

•	 All failed (all dependencies have failed)
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Late Jobs: Data teams usually have hundreds of jobs running in 

production. When you run a large number of jobs on the platform, users 

find it challenging to monitor all these jobs in real time and usually 

know about the status of the individual jobs only once they have been 

completed. This could be problematic, especially for long-running jobs, as 

it could lead to missed SLAs and prove costly.

For example, let’s assume a particular job takes around 40 minutes to 

complete, and, for some reason, on a particular day, it took more than 3 

hours to complete. First, there is no way to know that the job is running 

way over its usual runtime, and this would lead to higher costs as well.

The late job feature in Databricks workflows enables users to manage 

this use case efficiently. It allows users to define a “soft timeout” after 

which they receive a warning that a job or task run is taking longer than 

expected. Additionally, users can set the “timeout duration” after which 

the job will be stopped. See Figure 6-7.
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Figure 6-7.  Late job run

So continuing with our example, the user can set the Warning option 

at 1 hr and Timeout option at 1.5 hrs. If the job takes more than 1 hr, a 

duration alert will be sent to the configured email(s). Further, if the job 

exceeds 2 hrs, the job will be stopped from executing. This gives users 

better control over their long running jobs.

Run Job Task Type - Modularize Jobs: Orchestration jobs can 

have multiple tasks with complex dependencies between them. More 

often than not, managing these complex jobs becomes challenging in 

terms of defining, testing, and troubleshooting. Modern software best 

practices usually emphasize modularizing complex code into reusable 

logical chunks.
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Databricks Workflows Task has a task type “Run Job.” This allows 

users to run a “child job” within a “parent job,” which makes the overall 

workflow easier to comprehend and maintain. This effectively allows 

you to modularize your jobs, as you can now divide your DAGs into 

logical chunks or child jobs, which can be managed separately. Further, 

these modular child jobs can be reused in different parent workflows by 

parameterizing them. See Figure 6-8.

Figure 6-8.  Running job as a task

Now, with Run Job as a task type, users can call the child jobs 

(previously defined) within the parent jobs, enabling them to create 

modular workflows.

In the next section, we will look into another aspect: monitoring 

Databricks workflows both at the job and task levels.
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�Monitoring Data Pipelines
Data engineers/admins need to have complete visibility of all the jobs 

running on the orchestration platform to see the status of each job 

and what jobs need troubleshooting in case they fail, thus having full 

monitoring and observability capabilities. It will be challenging to create 

custom dashboards to monitor your hundreds of jobs.

Databricks workflows give users a unified view of all job runs through 

its Job Runs dashboard. With this, users not only can view all the jobs that 

ran but also dive deep into individual runs for each job. Let's look into this 

in a little more detail.

Job Run dashboard: The Job Run dashboard gives users a 

comprehensive real-time view of all their jobs in a single workspace. These 

are some of the most critical features in this dashboard:

	 1.	 Finished Runs Chart: This stacked bar chart 

depicts the number of job runs completed in the 

last 48 hours, with the option of redefining the 

time interval. The chart shows failed, skipped, and 

successful job runs.

	 2.	 Jobs List This table details all the job runs within the 

workspace. It is helpful as one can quickly assess the 

job runs for any job and navigate to a particular job 

run from this table if human intervention is needed 

in case the run fails.

	 3.	 Top 5 Error Types: This table lists the most frequent 

error types for all the jobs that ran within the 

selected timeframe. It helps identify a summary of 

the top error types across all workloads, enabling 

users to troubleshoot faster, take proactive 

measures, and minimize the negative impact on 

business operations downstream. See Figure 6-9.
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Figure 6-9.  Workflow monitoring dashboard

Job Matrix View: Previously, we saw the job run dashboard, which 

gives an overview of all the jobs in real time. Now as a user one also needs 

to keep track of all the runs for an individual job. The Job Matrix View 

allows users to assess all the job runs and quickly see the health of each 

task within (see Figure 6-10).

Figure 6-10.  Single job status
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Hovering over or clicking ae specific task allows us to identify the cause 

of the failure as the error message is displayed. Further, one can quickly go 

to a particular task and even to the underlying notebook. This is useful for 

seeing which step errored out and for troubleshooting quickly.

�Conclusion
In this chapter, we explored how to orchestrate your data pipelines 

using Databricks workflows. Databricks jobs enable you to execute all 

your data processing and analysis tasks within a Databricks workspace. 

A job consists of one or multiple tasks that can be combined using 

dependencies. We then created a simple task and learned about the 

different parameters required for configuration at the task and job levels. 

We also learned about more advanced configurations, such as cluster 

reruns, where you can reuse a single cluster for all your tasks, and how to 

configure conditional dependencies for your tasks.

Finally, we examined the observability and monitoring aspects of 

Databricks workflows with the job-run dashboard and Job-View Matrix. In 

the next chapter, we will examine Delta Live Tables, which provides ETL 

capabilities on the Databricks platform.
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CHAPTER 7

Data Engineering  
Part 2: Delta Live 
Tables
It is no secret that good, reliable data is the foundation of the lakehouse 

architecture. Organizations need clean, fresh, and reliable data to drive 

their analytics and data science projects, which in turn help them make 

decisions for key business initiatives.

However, most data engineers will agree that maintaining data quality 

and reliability at scale is quite complex and tedious. Apart from writing 

ETL transformations, they must spend much time on tasks like handling 

table dependencies, recovery, backfilling, retries, or error conditions. They 

must also manage the infrastructure, which turns simple ETL tasks into 

complex data pipelines.

In this chapter, we will introduce you to Delta Live Tables (DLT), which 

enable data engineers to concentrate on writing the transformation logic 

(the “what”), while Databricks manages the rest (the “how”). We will start 

with understanding what Delta Live Tables is and learn about concepts in 

declarative programming. Then we will look at some of the key features of 

DLT, including Change Data Capture (CDC), data quality and monitoring, 

enhanced autoscaling, and more.
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�What Is Delta Live Tables?
Delta Live Tables makes it easy to build and manage reliable batch and 

streaming data pipelines that deliver high-quality data on the Databricks 

lakehouse platform. DLT uses a simple declarative approach using SQL 

and Python that helps data engineering teams simplify ETL development 

and management with pipeline development, automatic data testing, and 

visibility for monitoring and recovery. DLT also automates infrastructure 

management by handling cluster sizing, error handling, performance 

tuning, and orchestration. Therefore, using DLT data, engineers can now 

spend less time managing the tooling, focusing on data transformations, 

and getting value from data.

So, what is the difference between Delta tables and Delta Live Tables? 

Delta is a storage format, and the tables created on the underlying data are 

called Delta tables. Delta Live Tables is a declarative pipeline development 

that manages how data flows between Delta tables. See Figure 7-1.

Figure 7-1.  Delta Live Tables overview

Chapter 7  Data Engineering Part 2: Delta Live Tables 



135

Before we proceed, let’s examine the different types of DLT datasets, 

namely, streaming tables, materialized views, and views.

Streaming tables: A streaming table is a Delta table 

that supports incremental data processing. It is 

most suitable for ingestion workloads and pipelines 

that require data freshness and low latency. It is 

designed to read append-only data sources like 

Kafka, Kinesis, or Auto Loader.

Materialized views: A materialized view (or live 

table) precomputes and stores results and keeps 

them fresh over time. It is refreshed according to the 

pipeline’s update schedule and, more importantly, 

incrementally, thus reducing processing costs. 

Each time the pipeline updates, query results are 

recalculated to reflect changes in upstream datasets.

Views: Views are temporary tables that should 

not be exposed outside of the DLT pipeline. They 

are just used like temp tables in standard SQL 

processing. Views are not published to public 

datasets.

Let’s move on and see how we can build a simple DLT pipeline and 

explore some key features.

�Data Ingestion Using DLT
The first step is to get data from DLT. This could be ingesting a number 

of raw files in a cloud storage folder or directly connecting to a streaming 

source like Kafka. It is important to note that data ingestion has to be 

reliable and scale efficiently. Under the hood, DLT ingests data using Auto 

Loader. We discussed Auto Loader in detail in Chapter 3. To recap, Auto 
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Loader incrementally processes new files as they land in the cloud storage. 

It can infer schema automatically and evolve schemas as the use cases 

require.

Listing 7-1 creates a Delta table called raw_txs and ingest JSON files 

from cloud storage into this table. Please note that DLT manages all Auto 

Loader configurations, like checkpointing, in the back end.

Listing 7-1.  Creating a Streaming Live Table

CREATE STREAMING LIVE TABLE loan_bronze

AS SELECT * FROM cloud_files('/demos/dlt/loans/raw_

transactions', 'json', map("cloudFiles.inferColumnTypes", 

"true"))

Listing 7-2 involved a batch data ingestion. Let’s examine how to ingest 

from a Kafka source.

Listing 7-2.  Data Ingestion from Kafka

@dlt.table

def sales():

  return (

    (spark.readStream

    .format("kafka")

    .option("subscribe", 'sales_trends')

    �.option("kafka.bootstrap.servers", kafka_bootstrap_

servers_tls)

    .option("kafka.security.protocol", "SSL")

    .option("startingOffsets", "earliest")

    �.load()).select(col("key").cast("string").alias("eventId"), 

from_json(col("value").cast("string"), behavioral_input_

schema).alias("json"))

  )
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Before we build our silver layer, let’s examine some important 

concepts, such as Change Data Capture and expectations.

�Change Data Capture with DLT
One important use case during data ingestion, especially from databases 

and data warehouses, is capturing Change Data Capture (CDC) events into 

the data lake. CDC is a process of identifying any data changes, such as 

inserts, updates, or deletes, made to your data sources and moving those 

changes to the target.

Let’s look at an example of how CDC can be implemented using 

Delta Live Tables. First, external tools, such as Debezium, Fivetran, Qlik 

Replicate, etc., can capture and record the history of data changes, say 

from external systems like databases, in logs; downstream applications 

consume these CDC logs. See Figure 7-2.

Figure 7-2.  Change Data Capture with DLT

As a first step, we will move these logs into a cloud storage object or a 

message queue like Kafka. In the previous section, we discussed how to 

ingest data in the Delta Bronze Layer from either of these sources. Delta 

Live Tables allows you to apply changes from CDC seamlessly your tables, 

enabling incremental changes to flow through analytical workloads at 

scale easily. Let’s quickly look into an example.
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Before we begin to apply CDC, we need to ensure that the target table 

has most up-to-date data from the source table, as shown in Listing 7-3.

Listing 7-3.  Creating a CDC Table

CREATE INCREMENTAL LIVE TABLE customers

 COMMENT "Clean, materialized customers";

Once the table has been created, we use APPLY CHANGES to propagate 

the changes to the target table, as shown in Listing 7-4.

Listing 7-4.  Updating the Live Table

APPLY CHANGES INTO live.customers

FROM stream(live.customers_cdc)

 KEYS (id)

 APPLY AS DELETE WHEN operation = "DELETE"

 �SEQUENCE BY operation_date --primary key, auto-incrementing ID 

of any kind that can be used to identity order of events, or 

timestamp

 COLUMNS * EXCEPT (operation, operation_date, _rescued_data);

Note that while the CDC comes with INSERT, UPDATE, and DELETE 

events, DLT, by default, applies INSERT and UPDATE events from any record 

in the source dataset matching primary keys and sequenced by a field that 

identifies the order of events. You must use APPLY AS DELETE WHEN in SQL 

to handle DELETE events.

After CDC, we will move into another important feature supported by 

DLT—Slowly Changing Dimensions (SCD)—for both type 1 and type 2. In 

SCD Type 2, when the value of a record changes, a new line for the record 

is created and becomes the current record, while the older one is closed. In 

Type 1, there is only a simple append.

Chapter 7  Data Engineering Part 2: Delta Live Tables 



139

The following code explains how this can be easily achieved in 

DLT. To create a SCD2 table, all we have to do is leverage APPLY CHANGES 

with the extra option STORED AS {SCD TYPE 1 | SCD TYPE 2 [WITH 

{TIMESTAMP|VERSION}}], as shown in Listing 7-5.

Listing 7-5.  Creating a Slowly Changing Dimension Type 2 Table

APPLY CHANGES INTO live.SCD2_customers

FROM stream(live.customers_cd)

 KEYS (id)

 APPLY AS DELETE WHEN operation = "DELETE"

 SEQUENCE BY operation_date

 COLUMNS * EXCEPT (operation, operation_date, _rescued_data)

 STORED AS SCD TYPE 2 ;

We now move into another important aspect of DLT called 

Expectations, which help maintain data quality throughout the DLT 

pipeline.

�Delta Live Tables Expectations
One of the most important issues data engineers face while building data 

pipelines is ensuring proper data quality and establishing the trust of 

end users in the data they are using. Further, engineers often struggle to 

identify and resolve data quality issues once they discover them.

Delta Live Tables provides a data quality management feature called 

Expectations that helps users define data quality and integrity constraints 

within their DLT pipelines.

Expectations are optional clauses to which you constrain your DLT 

dataset declarations. They apply data quality checks on each record 

passing through a query into your table. See Listing 7-6.
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Listing 7-6.  Delta Live Tables Expectations

CREATE STREAMING LIVE TABLE loans_silver (

 �CONSTRAINT `Payments should be this year`  EXPECT (next_

payment_date > date('2020-12-31')),

 �CONSTRAINT `Balance should be positive`    EXPECT (balance > 0 

AND arrears_balance > 0) ON VIOLATION DROP ROW,

 �CONSTRAINT `Cost center must be specified` EXPECT (cost_

center_code IS NOT NULL) ON VIOLATION FAIL UPDATE

)

AS SELECT * from  loans_bronze

In the previous query, we have defined a few constraints on the 

DLT table. An expectation typically consists of three parts: description, 

invariant, and action when the condition fails. A description is a unique 

identifier and allows you to track the metrics for the particular constraint. 

An invariant returns a Boolean expression (True/False) based on the 

defined condition. Finally, action defines what to do if the condition fails.

There are three actions you can apply to the failed records.

•	 Warn: In this action, the invalid records are written to 

the target tables, but failure is reported in as a metric 

for the dataset.

•	 Drop: The invalid records are dropped before the target 

table is written, and the number of records dropped is 

recorded.

•	 Fail: In this, the DLT pipeline is stopped, and the 

records have not been updated. Users need to check 

and update before manually restarting the pipeline.

Later in this chapter we will see how you can view data quality metrics 

in the DLT monitoring UI. See Figure 7-3.
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Figure 7-3.  Data quality metrics

After creating the silver table, let’s do some transformations and create 

a Gold table (see Listing 7-7), which will be the final in our medallion 

architecture.

Listing 7-7.  Creating a Gold DLT Table

CREATE LIVE TABLE loans_gold

AS SELECT sum(revol_bal)  AS bal, addr_state   AS location_code 

FROM live.historical_txs  GROUP BY addr_state

 �UNION SELECT sum(balance) AS bal, country_code AS location_

code FROM live.cleaned_new_txs GROUP BY country_code

We have defined the logic for our DLT so far. Let’s create our DLT 

pipeline.
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�Creating a DLT Pipeline
After defining the logic for our bronze, silver, and gold tables, let’s combine 

everything and create our first DLT pipeline. First, navigate to the DLT UI in 

the Dela Live Tables tab and click Create Pipeline, as shown in Figure 7-4. 

JSON mode is also available for quick parameter population, as shown in 

Figure 7-5.

Figure 7-4.  Delta Live Tables user interface
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Figure 7-5.  Sample DLT pipeline JSON file

Here are the key parameters that must be provided:

•	 Source code: This is the path to the notebooks or files 

containing the pipeline code. The source code could 

be in multiple notebooks or files, and you can give file 

locations for all of them in this parameter.

•	 Product edition: DLT comes with four SKUs: Core, Pro, 

Advanced, and Serverless. The difference is the features 

they support. A comparison table is given here:

	 https://www.databricks.com/product/pricing/

delta-live
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•	 Pipeline mode: We can run DLT pipelines in Triggered 

or Continuous mode. In Triggered mode, the pipelines 

update the data once and shut down until you run 

the pipeline manually or schedule the update. In 

Continuous mode, pipelines run continuously and 

ingest/process new data as it arrives.

•	 Compute: In this part, you define the compute 

resources for pipeline running. You can select a cluster 

policy if you want to use one for your cluster. Next 

is cluster mode, which has the options Enhanced 

Autoscaling, Legacy Autoscaling, or Fixed size. As a best 

practice, use Enhanced Autoscaling for your pipelines. 

We will discuss this later in the chapter. Finally, there 

is an option to select Photon Acceleration for your 

workloads.

You can run the pipeline in Development or Production mode to 

optimize pipeline execution. When the pipeline runs in Development 

mode (default), the cluster is reused in multiple runs to avoid the restarts. 

Also, the pipeline retries are disabled, so you can quickly fix any errors. 

In Production mode, the pipeline retries in case of operational issues like 

cluster failure.

Once you have defined the appropriate parameters for your pipeline, 

let’s run it once and see the results. Figure 7-6 represents the high-fidelity 

lineage diagram for this DLT pipeline.
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Figure 7-6.  DAG for a DLT pipeline

It is important to note that if a particular table in the pipeline is out 

or you want to refresh a specific table without rerunning it, you can select 

Select Tables for Refresh and choose the tables you need to refresh or 

run again.

You can see table details, schema, and data quality metrics if you click 

on any table boxes in the DAG (Figure 7-6).

Next, we will move forward and examine other aspects of DLT, such as 

monitoring and logging, CI/CD, and enhanced autoscaling.

�Logging and Monitoring
Each DLT pipeline emits all event logs to a predefined and unique storage 

location. The DLT event logs contain all information related to a pipeline, 

including audit logs, data quality checks, pipeline progress, and data 

lineage.
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The logs are also visible in the DLT pipeline run UI page, where you 

can quickly investigate the errors. DLT provides a variety of error-handling 

capabilities, including retrying failed tasks, handling failed records, and 

detecting and fixing data quality issues, but in a nice GUI format. See 

Figure 7-7.

Figure 7-7.  DLT task status

These logs are exposed as Delta tables and used for monitoring, 

lineage, and data quality reporting using the BI tool of your choice. 

Figure 7-8 shows a sample dashboard that can be built on DBSQL.

Figure 7-8.  Dashboard for monitoring DLT job statuses
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�Enhanced Autoscaling
Organizations are increasingly looking toward real-time and streaming 

workloads to provide them with the freshest possible data for their 

analytics and ML workloads, which can help them make decisions 

faster. However, streaming workloads have spiky and unpredictable data 

volumes, making it difficult for data engineers to avoid overprovisioning 

compute infrastructure, leading to higher costs.

The DLT Enhanced Autoscaling algorithm improves on the standard 

Databricks cluster autoscaling feature to handle streaming workloads 

more efficiently. It optimizes cluster utilization for streaming workloads 

to lower costs while ensuring your data pipeline has the resources to 

maintain consistent SLAs. See Figure 7-9.

Figure 7-9.  DLT “Enhanced autoscaling” option

The “Enhanced autoscaling” option maximizes resource utilization 

by shutting down nodes when utilization is low while guaranteeing that 

tasks are completed successfully. Further, when the workload increases, 

it only scales up to nodes that are needed, even if this is lower than the 

maximum number of nodes provisioned. DLT’s “Enhanced autoscaling” 
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option optimizes cluster utilization while minimizing overall end-to-end 

latency. DLT’s enhanced autoscaling can be easily enabled on the pipeline 

during or after pipeline creation by setting Cluster Mode to “Enhanced 

autoscaling.”

�Runtime Channels
Traditional clusters require the maintenance of runtime versions, also 

known as Databricks Runtime (DBR). In Delta Live Tables, you can get 

the flexibility of both choosing the cluster VM type and having Databricks 

manage the runtime for you. The Channel drop-down is designed for this 

exact purpose. By default, the “current” channel uses the latest Databricks 

runtime, whereas the “preview” channel uses the upcoming runtime. See 

Figure 7-10.

Figure 7-10.  DLT runtime channel

�Example: A Retail Sales Pipeline
Now we will example a retail sales pipeline. The source code is 

conveniently located at the Databricks’ repo:

https://github.com/databricks/delta-live-tables-notebooks/blob/

main/sql/Retail%20Sales.sql
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This example highlights these four features:

•	 Streaming pipeline

•	 Data validation

•	 Data lineage

•	 Validation dashboard

�Streaming Pipeline
Listing 7-8 shows the raw sales order.

Listing 7-8.  Raw Sales Order as Bronze Table

CREATE STREAMING LIVE TABLE sales_orders_raw

COMMENT "The raw sales orders, ingested from /databricks- 

datasets."

TBLPROPERTIES ("myCompanyPipeline.quality" = "bronze")

AS

SELECT * FROM cloud_files("/databricks-datasets/retail-org/sales_

orders/", "json", map("cloudFiles.inferColumnTypes", "true"))

This raw pipeline is simply trying to stream the JSON files from the 

specified location. As a result, it is now simpler to build a streaming 

pipeline using DLT.

�Data Validation
The next step is to perform data cleanup. The traditional ETL requires 

separate steps for error handling and data validation. As a result, this logic 

will be written in the SQL query, and other developers will try to decode 

the purpose. In DLT, there is a descriptive way to handle these records 

called Expectation, as shown in Listing 7-9.
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Listing 7-9.  Raw Sales Order as Bronze Table

CREATE STREAMING LIVE TABLE sales_orders_cleaned(

  �CONSTRAINT valid_order_number EXPECT (order_number IS NOT 

NULL) ON VIOLATION DROP ROW

)

PARTITIONED BY (order_date)

COMMENT "The cleaned sales orders with valid order_number(s) 

and partitioned by order_datetime."

TBLPROPERTIES ("myCompanyPipeline.quality" = "silver")

AS

SELECT f.customer_id, f.customer_name, f.number_of_line_items,

  �TIMESTAMP(from_unixtime((cast(f.order_datetime as long)))) as 

order_datetime,

  �DATE(from_unixtime((cast(f.order_datetime as long)))) as 

order_date,

  �f.order_number, f.ordered_products, c.state, c.city, c.lon, 

c.lat, c.units_purchased, c.loyalty_segment

  FROM STREAM(LIVE.sales_orders_raw) f

  LEFT JOIN LIVE.customers c

      ON c.customer_id = f.customer_id

     AND c.customer_name = f.customer_name

�Data Lineage
The flow chart in Figure 7-11 in the DLT job shows how the data moves 

from one place to another. Therefore, running it through another parsing 

tool to generate these diagrams is unnecessary.
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Figure 7-11.  DLT lineage diagram

�Validation Dashboard
Each step automatically summarizes the expectations and data quality 

checks, saving time on the creation and upkeep of additional toolkits. 

Having these available automatically also reduces the time needed 

to evaluate the code to ensure data validation. See Figure 7-12 and 

Figure 7-13.

Figure 7-12.  DLT data quality dashboard

Figure 7-13.  DLT Expectations
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�Conclusion
Data teams are constantly on the go. However, with Databricks’ Delta Live 

Tables, they can streamline reliable data pipelines and quickly find and 

manage enterprise data assets across various clouds and data platforms 

using Unity Catalog. Additionally, they can simplify the enterprise-wide 

governance of data assets, both structured and unstructured.

This chapter examined Delta Live Tables, which provides a declarative 

framework for developing, managing, and deploying ETL pipelines. DLT 

automatically manages your infrastructure, ensures high data quality 

and unifies batch and streaming workloads. We built a DLT pipeline 

and looked into important features like Change Data Capture, SCD 

Type 1 and 2 support, and DLT Expectations, which help maintain data 

quality. We also discussed various performance optimizations that DLT 

uses via enhanced autoscaling. Last but not least, the runtime version is 

managed for you automatically by default. There is no need to worry about 

managing the latest runtime, but cluster types are still available and are 

similar to interactive clusters.
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CHAPTER 8

Data Warehousing 
with DBSQL
If you’re a data analyst who primarily uses SQL to write queries and 

reports and create comprehensive dashboards for analysis using your 

favorite business intelligence (BI) tools, Databricks SQL (DBSQL) provides 

a comprehensive environment for running ad hoc queries and creating 

dashboards on data stored in your data lake.

Traditionally, SQL/BI use cases have most commonly been 

implemented by storing data in a data warehouse or a database, writing 

SQL queries in a SQL IDE, and, finally, using BI tools to build dashboards. 

However, with the lakehouse platform, you can handle all this without 

moving data to a different storage, like a data warehouse or a database.

Figure 8-1.  Architecture diagram using Databricks SQL

https://doi.org/10.1007/979-8-8688-0444-1_8#DOI
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In this chapter, we will learn how the Databricks platform provides 

the most complete end-to-end data warehousing solution for all analytics 

use cases.

Next, we will move on to understand various components and key 

features of Databricks SQL or DBSQL.

�What Is Databricks SQL?
Databricks SQL is the collection of services bringing data warehousing 

capabilities and performance to your existing data lake through open 

formats and standard ANSI SQL. The DBSQL platform provides not only 

a SQL editor but also dashboarding tools that allow team members to 

collaborate with users directly in the Databricks workspace. Further, 

Databricks SQL integrates with a variety of BI tools via connectors or 

JDBC/ODBC so that analysts can author queries and dashboards using 

their favorite BI tools without adjusting to a new platform. See Figure 8-2.

Figure 8-2.  SQL Persona section on Databricks sidebar

In the following sections, we will look into a few key services in DBSQL.
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�SQL Warehouses
SQL warehouses are compute resources within DBSQL that run your 

SQL queries on data objects within Databricks SQL. Simply put, SQL 

warehouses provide processing capabilities in DBSQL similar to clusters 

in the data engineering part of the platform. There are three main types of 

SQL warehouses.

•	 Classic: This offers limited Databricks SQL 

functionality and basic performance features. Only 

use a classic SQL warehouse to run interactive queries 

for data exploration with entry-level performance and 

Databricks SQL features.

•	 Pro: This supports all the Databricks SQL functionality 

and delivers higher-performance features than Classic, 

including query federation, workflow integration, and 

data science and ML functions.

•	 Serverless: This is the most powerful and cost-effective 

option. The serverless SQL warehouse gives the most 

advanced performance features and supports all of the 

features available in the Pro type, along with instant 

and fully managed compute. Serverless compute spins 

up almost instantaneously with best-in-class price/

performance.

Figure 8-3 shows how to set up a SQL warehouse.
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Figure 8-3.  Setting up a SQL warehouse in Databricks

It is really simple to spin up a SQL warehouse. Once you click Create 

Warehouse, the first parameter to fill in is the warehouse’s name. Next, you 

can also select the warehouse type from Classic, Pro, and Serverless.

Let’s look into other important parameters to take into consideration.

•	 Cluster Size: SQL warehouses come in T-shirt sizes 

from X-Large to X-small. Please choose the size based 

on the latency and throughput. As a best practice, 

start from Medium and move up and down as per 

your needs.
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•	 Scaling: A traditional cluster comes with one driver 

and a number of workers. When you autoscale a 

cluster, you are increasing the number of worker 

nodes. However, there is still only one driver node, and 

with high-frequency, low-latency workloads, it will 

become a bottleneck. With the SQL warehouses scaling 

feature, you determine the min and max number of 

clusters behind the endpoint, and it is these clusters 

(not workers) that can increase based on concurrency 

requirements.

Further, one of the key aspects of SQL warehouses that makes it really 

performant is Photon. Let’s look into what Photon is and how we can 

enable it.

�Photon
Photon  is the next-generation ANSI-compliant vectorized query engine 

developed by Databricks to support workloads in DBSQL. It comes with 

hundreds of built-in optimizations, providing the best performance for all 

tools, query types, and real-world applications. This includes the AI- 

powered predictive I/O that eliminates performance tuning like indexing 

by intelligently prefetching data.

It’s 100% compatible with Apache Spark APIs, which means you don’t 

have to rewrite your existing code (SQL, Python, R, Scala) to benefit from 

its advantages.

While Photon is an optional feature in interactive clusters, it is 

activated by default for SQL warehouses. You can also enable Photon for 

All Purpose and Job Clusters options by toggling the switch on the Create 

Cluster page.
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Figure 8-4.  TPC-DS 1TB performance by DBR version versus Photon 
(source. https://www.databricks.com/product/photon)

Figure 8-4 shows the performance of Photon with regard to the 

Databricks runtime, showing that Photon is almost three times more 

performant than the DBR 8.x.

�SQL Editor
The DBSQL UI provides a SQL editor (Figure 8-5) that you can use to 

author SQL queries using a familiar ANSI SQL syntax, browse available 

data, and create visualizations. You can also share your saved queries 

with other team members in the workspace. SQL Editor also supports 

functionalities such as autocomplete, autoformatting, auto-save, etc. 

Additionally, query updates can be scheduled to refresh automatically, as 

well as to issue alerts when meaningful changes occur in the data.
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Figure 8-5.  SQL Editor in Databricks

�Introduction to AI/BI Dashboards
Databricks SQL enables data analysts to make sense of data through 

visualizations and drag-and-drop dashboards. Dashboards (now termed 

as legacy dashboards) within DBSQL allow users to combine both 

visualizations (via the built-in SQL Editor) and text boxes to give context to 

their data. Once built, dashboards can be easily shared with stakeholders, 

both within and outside the organization, via a web browser.

Databricks introduced a new generation of dashboards at DAIS’24 

called AI/BI dashboards. AI/BI dashboards (formerly known as lakeview 

dashboards) allow analysts to quickly build highly interactive dashboards 

using natural language questions that analysts can ask. Further, these 

dashboards are integrated with the Databricks platform, which ensures 

fast performance at a high scale, while all security and governance policies 

are managed in Unity Catalog.
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Let’s look into how you can quickly build AI/BI dashboards in 

DBSQL. The dashboard has two tabs, a Data tab for searching for 

tables within the Unity catalog or writing queries that will serve as your 

Dataset(s), and a Canvas tab where your visualizations are created and 

assembled with the option to use natural language to generate tables and 

visualizations. Some of the capabilities included are sleek visualizations, 

cross-filtering, and periodic PDF snapshots via email.

Figure 8-6.  AI/BI dashboards

Finally, AI/BI dashboards allow users to publish their dashboards to 

the entire organization. This means that any authenticated user in your 

identity provider (IdP) can access the dashboard via a secure web link, 

even if they don’t have Databricks workspace access.
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�Alerts
DBSQL allows users to set up alerts, which in turn send notifications if a 

particular condition is not met in the data. Take, for example, an inventory 

management table. One can set an alert on the table if the quantity of a 

particular product or SKU falls below a certain threshold. The notifications 

can either be delivered through email or to other platforms like Slack, 

Teams, etc., via webhooks.

In Chapter 9 , we will discuss using alerts to trigger model retraining 

when a threshold drops below certain levels (see Figure 8-7).

Figure 8-7.  Databricks alerts

�Query History and Profile
Query history in DBSQL gives you full visibility and details of query 

execution for all the queries executed on the SQL warehouses for the last 

30 days. With a unified view, you not only can see the number of queries 

executed at a particular time but also quickly zoom into specific queries 

and debug issues, if any. See Figure 8-8.
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Figure 8-8.  DB SQL query history

A query profile provides the ability to visualize the details of a query 

execution. The query profile helps you troubleshoot performance 

bottlenecks during the query’s execution (see Figure 8-9). For example:

•	 You can visualize each query task and its related 

metrics, such as the time spent, number of rows 

processed, and memory consumption.

•	 You can identify the slowest part of a query execution 

at a glance and assess the impacts of modifications to 

the query.

•	 You can discover and fix common mistakes in SQL 

statements, such as exploding joins or full table scans.
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Figure 8-9.  Query profile

After the overview of DBSQL, we will move on to do a deep dive into 

some important features of DBSQL.

�Serverless Compute
Databricks Serverless is a paradigm in Databricks compute. Serverless is 

a fully managed service, eliminating the burden of capacity management, 

patching, upgrading, and performance optimization of the cluster. 

Additionally, Serverless simplifies the billing. In other words, you need 

to pay only once to Databricks for both Compute and Databricks costs. 

Although Serverless was initially introduced only for DBSQL workloads, it 

has then been expanded to other parts of the platform including Delta Live 

Tables, workflows, and notebooks as well.

As discussed previously, with any type of compute be it all-purpose 

clusters, jobs clusters, or even SQL warehouse (non-Serverless) the virtual 

machines are provided by the cloud provider for which you need to pay 

directly to them. This has two main effects - not only it takes three to four 

minutes for a cluster to come up or terminate but also the users have 

Chapter 8  Data Warehousing with DBSQL



164

to manage these in terms of runtimes, machine types, cluster sizes etc. 

Secondly, there are usually two line items in your cloud bill - Databricks 

Costs ($DBU) and cloud VM costs. To look at the cost more in-depth, 

please refer to the chapter Databricks Pricing and Observability using 

System Tables.

With the introduction of Serverless, Databricks is basically “owning 

the compute.” To put it simply, Databricks prepurchases these VMs from 

the respective cloud provider, and once you ask for a Serverless compute 

resource, it releases the specific number of VMs as per the request. 

Since this computer is fully managed by Databricks, it spins up or down 

in seconds rather than minutes. Furthermore, you only need to pay 

Databricks once for both Databricks costs and VM costs. Thus, Serverless 

compute brings a truly elastic environment that’s instantly available and 

scales with your needs.

�Constraints in DBSQL
Many data analysts have previous experience in relational databases, 

building entity-relational models using primary key/foreign key 

relationships. After normalization, they usually build multidimensional 

data models (referred to as star schemas) so that it is easy to understand 

and analyze data across these relational databases or data warehouses. 

Further, primary key/foreign keys help maintain data integrity and avoid 

errors during data processing and modification, thus helping maintain 

data quality.

�Constraints on Databricks
Constraints in databases are rules that ensure data integrity and 

consistency by enforcing certain conditions or restrictions on the 

data stored in a table. Databricks supports standard SQL constraint 

management clauses, which can be divided into two categories:
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•	 Enforced constraints: These are enforced on the 

tables/columns to ensure data quality and integrity: 

NOT NULL , UNIQUE, and CHECK.

•	 Informational constraints: These constraints are not 

enforced but explain the relationships between fields in 

the tables.

�Enforced Constraints
Enforced column constraints are rules that apply to a single column in a 

table. Delta tables support the following column constraints:

•	 NOT NULL: This constraint ensures that a column 

must have a value for each row and cannot be null. This 

ensures data completeness and consistency.

•	 UNIQUE: This constraint ensures that all values in a 

column are unique and distinct. It prevents duplicate 

values in the table.

•	 CHECK: This constraint validates that a column’s value 

meets a specific condition or a range of conditions, 

such as ensuring that a particular column is within a 

certain range, or a number is greater than a specific 

value. It helps ensure data accuracy and consistency. 

This constraint allows you to specify a Boolean 

expression that must evaluate as true for each row in 

the table. If the expression evaluates to false, an error is 

raised, and the statement is rolled back.
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Let’s look at an example of how to define these constraints on a table. 

The constraints can be set either while creating a new table or on an 

existing table. You can add constraints in a new table as follows:

CREATE TABLE T1 (

  id INT NOT NULL,

  quantity INT,

  date DATE,

  CONSTRAINT chk_quantity CHECK (quantity > 0)

);

To add a constraint to an existing table, you can use ALTER TABLE ADD 

CONSTRAINTS, and to drop such a constraint, you can use ALTER TABLE 

DROP CONSTRAINT.

ALTER TABLE T1 ADD CONSTRAINT dateWithinRange CHECK  

(Date > '1900-01-01');

�Informational Constraints: Primary Key 
Foreign Key
A Databricks lakehouse with Unity Catalog gives users the ability to build 

entity relationships that are simple to maintain and evolve. Also note 

that for now primary key and foreign key are informational only and they 

are not enforced. To leverage primary keys/foreign keys (PKs/FKs), your 

workspace should be UC-enabled with DBR version 11.1 and above.

Let’s see how we can implement a primary key/foreign key 

relationship with an example. We can create two tables, P1 and F1. The 

P1 table has a primary constraint on the id column, and table F1 has a 

foreign key constraint on the p1_id column that refers to the id column 

in the P1 table.
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CREATE TABLE P1 (

 id INT PRIMARY KEY,

 name STRING

)

USING delta;

CREATE TABLE F1 (

 f1_id INT,

 f1_date DATE,

 p1_id INT,

 FOREIGN KEY (p1_id) REFERENCES p1(id)

)

USING delta;

The “View relationships” button (Figure 8-10) in the Overview 

or Schema tab conveniently shows the relationship between tables 

(Figure 8-11).

Figure 8-10.  “View relationships” button
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Figure 8-11.  ER diagram in Databricks

Next we move into streaming tables and materialized views. We 

touched on these two briefly in Chapter 9, but we will do a greater deep 

dive here.

�Streaming Tables and Materialized Views
Some of the common challenges faced by data analysts while working in 

data warehouses include the inability to self-service ingest and fix data 

issues, the inability to have the most recent data for BI dashboards, and 

having to deal with slow BI dashboards because of the huge volume of 

underlying data.

Streaming tables and materialized views in DBSQL will allow SQL 

analysts to perform data engineering tasks and thus have real-time 

capabilities along with their existing workflows. It is important to note that 

both Streaming tables and materialized views require Unity Catalog and 

Serverless enabled in your workspace. In the next section, we will discuss 

these two features in detail.
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�Streaming Tables
A streaming table is a special type of table that enables ingestion in 

DBSQL. It is managed by Unity Catalog and supports append-only 

incremental and streaming data processing from various data sources. 

In reference to the medallion architecture, streaming tables are ideal for 

bringing data into the Bronze layer. Streaming tables enable continuous, 

scalable ingestion from any data source, including cloud storage, message 

buses (EventHub, Kafka), and more.

Streaming from a source requires the source to be append-only and 

never updated or deleted. To configure the streaming table to perform 

streaming ingestion of your source, you must specify the STREAM keyword. 

Say, for example, you have an S3/ADLS container, and a lot of new files 

are continuously arriving. You can create a streaming table by using the 

following syntax:

CREATE OR REFRESH STREAMING TABLE mystream

  �AS SELECT * FROM STREAM read_files('s3://<bucket>/<path>/

<folder>')

By default read_files processes all the files in the folder. To avoid 

this you can set the property includeExistingFiles option to false.

CREATE OR REFRESH STREAMING TABLE mystream

  �AS SELECT * FROM STREAM read_files('s3://<bucket>/<path>/ 

<folder>',, includeExistingFiles => false

)

Once the previous command is executed under the hood, a DLT 

pipeline is created for each streaming table. You can keep these tables 

updated and refreshed.
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To load data from a system like Kafka, use the following command:

SELECT * FROM STREAM read_kafka(

  bootstrapServers => '<server:ip>',

  subscribe => '<topic>',

  startingOffsets => 'latest'

);

�Materialized Views
A materialized view is a special type of view that precomputes and stores 

the results of a SQL query and automatically keeps them fresh over time.

A materialized view is a database object that stores a query’s results as 

a physical table. Unlike regular virtual database views, which derive their 

data from the underlying tables, materialized views contain precomputed 

data that is incrementally updated on a schedule or on-demand. This 

precomputation of data allows for faster query response times and 

improved performance in certain scenarios.

Materialized views are especially useful in situations where complex 

queries or aggregations are performed frequently and the underlying data 

changes infrequently. By storing the precomputed results, the database 

can avoid the need to execute complex queries repeatedly, resulting in 

faster response times.

�Create a Materialized View
Databricks SQL materialized view CREATE operations use a Databricks 

SQL warehouse to create and load data in the materialized view. Because 

creating a materialized view is a synchronous operation in the Databricks 

SQL warehouse, the CREATE MATERIALIZED VIEW command blocks until 

the materialized view is created and the initial data load finishes. A Delta 
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Live Tables pipeline is automatically created for every Databricks SQL 

materialized view. When the materialized view is refreshed, an update to 

the Delta Live Tables pipeline is started to process the refresh.

CREATE MATERIALIZED VIEW mv1

AS SELECT

  date, sum(sales) AS sum_of_sales

FROM

  table1

GROUP BY

  date;

�Refresh a Materialized View
In Databricks SQL, you have the option to set up automatic refresh for a 

materialized view based on a predefined schedule. This schedule can be 

configured during the creation of the materialized view using the SCHEDULE 

clause or added later using the ALTER VIEW statement. Once a schedule 

is established, a Databricks job is automatically created to handle the 

updates.

REFRESH MATERIALIZED VIEW mv1;

Next, we move into another important feature: Lakehouse Federation, 

which allows you to query data stored in data sources without moving 

the data.

�Lakehouse Federation
Lakehouse Federation gives the Databricks platform query federation 

capabilities. Query federation enables users and systems to run queries 

against multiple data sources without migrating all the data to one central 

location.
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Most organizations have valuable data distributed across multiple data 

sources—databases, data warehouses, object storage systems, etc. This 

siloed data leads to incomplete data and insights, which hinders the ability 

to make informed decisions based on the full available data.

To query data across multiple data sources, users typically need to 

move or migrate their data to a central data location first, which usually 

takes time and effort. Lakehouse Federation addresses these critical pain 

points and makes it simple for organizations to expose, query, and govern 

siloed data systems as an extension of their lakehouse. The various systems 

include MySQL, PostgreSQL, Amazon Redshift, Snowflake, Azure SQL 

Database, Azure Synapse, BigQuery, and more from within Databricks 

without moving or copying the data, all within a simplified and unified 

experience.

Further, Unity Catalog’s advanced security features, such as row and 

column-level access controls, discovery features like tags, and data lineage, 

are available across these external data sources, ensuring consistent 

governance.

To make a dataset available for read-only querying using Lakehouse 

Federation, you create the following (Figure 8-12):

•	 A connection that specifies a path and credentials for 

accessing an external database system

•	 A foreign catalog that mirrors a database in an external 

data system enabling you to perform read-only queries 

on that data system in your Databricks workspace, 

managing access using Unity Catalog

Chapter 8  Data Warehousing with DBSQL



173

Figure 8-12.  Lakehouse Federation into Snowflake

You can start to write queries against these tables in DBSQL and create 

visualizations to view the data.

As a best practice, Lakehouse Federation should not be used for 

real-time data processing, where latency is paramount, or complex data 

transformations, where vast amounts of data need to be ingested and 

processed.

�AI Functions in DBSQL
In the age of large language models, there is an urgent need to combine 

AI output into a BI report so management can take action based on the 

results. However, this inferencing pipeline not only creates another layer of 

complexity but also requires seasoned data scientists and an ML Ops team 

to maintain, which can become costly.

�Consume LLM Models in DBSQL
Now, there are multiple ways to consume these large language models 

within Databricks. The traditional way is to leverage the code provided on 

Huggingface. Though this approach is flexible, it will require integrating the 

sample code into an existing pipeline, which requires development work.
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The next approach is to use the Model Serving API. Databricks has 

curated popular models and made them part of the platform. These are 

then exposed as the Foundation Model API. With the Foundation Model 

API, developers can access these carefully curated models out of the box 

without going through the deployment process and getting enhanced 

performance.

The third approach we will look into in detail here is AI functions in 

serverless SQL.

AI functions enable analysts to integrate any LLMs in SQL to enrich 

data and empower analysts to extract actionable insights

There are two types of AI functions provided by Databricks:

•	 Built-in functions backed by the Foundation 

Model APIs

•	 Custom functions backed by a Serverless serving 

endpoint

Built-in functions invoke a state-of-the-art generative AI model to 

perform tasks such as sentiment analysis, classification, and translation. 

Let’s examine some common built-in functions.

•	 ai_analyze_sentiment: Given text, output sentiment of 

the text like positive, negative, neutral, mixed.

•	 ai_classify: Ask the LLM to do classification. A good 

use case is to ask an LLM to determine if the text 

contains PII, which is to ask it if the text ["contains 

PII", "no PII"].

•	 ai_extract: Ask the LLM to extract any entities. Similar 

to regex patterns but you no longer need to write a 

regex. You only need to tell the function what you want 

to extract. For example, “Place” will allow you to extract 

a place name.
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•	 ai_gen: Prompting at scale. Given a list of questions, 

ask the LLM to output a list of answers, given in 

table format.

For a list of AI functions, please visit the Databricks website: https://

docs.databricks.com/en/large-language-models/ai-functions.html.

Let's put the AI function in action. Consider this Kaggle Amazon 

review dataset.

We can download it to Databricks and create a Delta table. Using DB 

SQL’s built-in AI functions, we can extract the sentiment from the text, 

successfully connecting AI with BI. See Figure 8-13.

Figure 8-13.  Sentiment analysis with DB SQL

Finally, after persisting the results in Unity Catalog, we can publish the 

inferred dataset to Power BI or Tableau.
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�Custom Functions Backed by a Serverless 
Serving Endpoint
The ai_query() function allows you to serve your ML and LLM models 

using Databricks Model Serving and query them using SQL. To do so, 

this function invokes an existing Databricks Model Serving endpoint 

and parses and returns its response. You can use ai_query() to query 

endpoints that serve custom models hosted by a model-serving endpoint, 

foundation models made available using Foundation Model APIs, 

and external models, which are third-party models hosted outside of 

Databricks.

Let’s look into an example that queries the model behind the 

sentiment-analysis endpoint with the text dataset and specifies the 

request’s return type.

SELECT text, ai_query(

    "sentiment-analysis",

    text,

    returnType => "STRUCT<label:STRING, score:DOUBLE>"

  ) AS predict

FROM

  catalog.schema.customer_reviews

In the next part of the chapter, we will examine how you can connect 

your BI tools through DBSQL.

�Integrate BI Tools with Databricks
Organizations usually deploy transformational and BI tools such as 

PowerBI, Tableau, Looker, etc., for enterprise-wide dashboards and 

reporting needs. Moreover, many data analysts have been proficiently 

using these tools for quite some time. Databricks provides validated 
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integrations with your BI tool of choice, allowing you to connect to your 

data using SQL warehouses or clusters. As a recommended practice, 

analysts get the best experience when they connect their BI tools to 

optimized gold tables via SQL warehouses.

In this section, we will focus on connecting PowerBI to Azure 

Databricks. There are two main ways to connect PowerBI to Azure 

Databricks. The first is to publish to PowerBI Online from Databricks. The 

second popular method is to connect Power BI Desktop to Databricks. 

Let’s explore both these methods.

�Publish to PowerBI Online from Databricks
This allows users to publish tables from Databricks Catalog Explorer UI 

directly to PowerBI workspaces. In short, this is a one-click publish of UC 

datasets to PowerBI workspaces. This method supports both DirectQuery 

and Import modes. Moreover, you can publish entire schemas with table 

relationships (PK/FK). Some of the requirements are that the data must 

be on Unity Catalog, the compute must be UC enabled, users must have 

a premium PowerBI License, and users must enable “Users can edit data 

models in Power BI service (preview)” under the Workspace settings and 

Data model settings. In Figure 8-14, we can go to the Catalog tab and select 

either the full schema or a particular table. Next, in the drop-down, select 

“Use with BI tools.”
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Figure 8-14.  Publishing to PowerBI Online

You can select Publish to Power BI. This will ask you to authenticate 

with your Microsoft account via Entra ID. Once the authentication is 

completed, the user can select the PowerBI workspace and Dataset Mode 

(Direct Query or Import Mode). Thereafter, click Publish to PowerBI, and 

you can start to query this dataset in your PowerBI workspace.

�Connect Power BI Desktop to Databricks
Users can also connect their PowerBI Desktop to Delta Lake Tables via the 

SQL warehouse for a full modeling experience in PowerBI. Further, there 

are three mainly used storage modes that PowerBI offers for tables. First 

is Import mode, wherein all the data is loaded in PowerBI’s in-memory 

cache. Second is DirectQuery mode, wherein the data remains in the 

source system and the metadata is stored in PowerBI. Finally, a newer 

feature is Hybrid mode, which combines the Import and Direct Query 

modes by using partitions. The user can select the mode they want to use 

depending on the use case.
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Let’s now look at how to connect Databricks SQL warehouse with 

PowerBI. In Partner Connect, once you click PowerBI and choose the 

Databricks Compute resource that you want to connect, it downloads 

the connection file. You can open that file with Power BI Desktop, and 

your connection will be automatically configured. After selecting the 

connectivity mode, you can start querying the tables.

�Conclusion
Databricks SQL gives complete warehousing capabilities on the lakehouse 

platform and provides features to data analysts for various BI use cases. 

SQL warehouses, especially Serverless, provide an enhanced compute to 

process SQL queries and provide a connection to various BI tools.

Some of the key features discussed in the chapter include Lakehouse 

Federation, AI functions, materialized views, streaming tables, and 

constraints, which include a primary key/foreign key relationship. Finally, 

we saw how easily you integrate you BI tool of choice with the Databricks 

platform with PowerBI as a case study.

Chapter 8  Data Warehousing with DBSQL



181© The Editor(s) (if applicable) and The Author(s),  
under exclusive license to APress Media, LLC, part of Springer Nature 2024 
N. Gupta and J. Yip, Databricks Data Intelligence Platform,  
https://doi.org/10.1007/979-8-8688-0444-1_9

CHAPTER 9

Machine Learning 
Operations Using 
Databricks
Databricks not only provides exceptional data processing capabilities 

but also offers a wealth of opportunities to develop machine learning 

use cases.

Databricks’ machine learning capabilities have evolved significantly 

over the years. Since 2021, various user personas have been actively 

engaging with the platform. These personas include:

•	 Data scientists: They unlock the power of algorithms 

and models.

•	 Data engineers: They craft robust pipelines for 

seamless data flow.

•	 Machine learning engineers: They skillfully 

orchestrate model deployment.

In this chapter, we will examine the different components in 

Databricks that support machine learning, including model development, 

deployment, inferencing, and monitoring. You will be able to learn how to 

deploy an ML model to Databricks. These concepts are critical in the later 
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chapters when we discuss GenAI as a lot of the components will be reused 

as we advance to GenAI. If you are already familiar with the end-to-end 

ML lifecycle, this chapter can serve as a refreshment and prepare you for 

the concepts to come in later chapters.

�Machine Learning with Databricks
While SQL and data engineering are the top portion of the menu, machine 

learning is also an integral part of Databricks. In 2021, Databricks was 

named a leader in the Gartner Magic Quadrant for data science and 

machine learning platforms.1 See Figure 9-1.

Figure 9-1.  Databricks machine learning stack

Figure 9-2 shows five components in the ML platform that we will 

focus on.

1 https://databricks.com/blog/2021/03/04/databricks-named-a-leader-in- 
2021-gartner-magic-quadrant-for-data-science-and-machine-learning- 
platforms.html
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Figure 9-2.  Machine learning persona in Databricks UI

�Experiments
Experiments are individual pages to track ML training runs. It provides an 

overview of everything related to your training configuration and results 

as well as lineage to your dataset and ML model. You can use MLflow to 

log these values into the experiment page, therefore providing a one-stop 

shop for all the trails you run without losing out the configuration for the 

champion model, aka the best-performing model. See Figure 9-3.

Figure 9-3.  Experiments page for one of the models
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The best way to start with ML is to leverage the Glass Box AutoML 

provided out of the box by Databricks.

It’s worth noting that to use Unity Catalog with AutoML, the cluster 

access mode must be Single User, and you must be the designated single 

user of the cluster. Even administrators will not be able to run AutoML on 

behalf of a user. The selected “table” must also be a “table.” Materialized 

views are not accessible via Single User clusters. See Figure 9-4.

Figure 9-4.  Creating an AutoML experiment

�What Is the Glass Box Approach to Automated 
Machine Learning?
Machine learning is a highly iterative task. Data scientists spend a lot 

of time trying out different algorithms and tuning hyperparameters to 

find the best-performing model. However, these repetitive tasks can be 

automated using AutoML.

Unfortunately, most platforms, such as Azure Machine Learning, are 

black boxes, while capable of picking the best model, because the code to 

train the model is not provided. Hence, it is difficult to replicate the best-

performing model and make further enhancements. Databricks’ Glass Box 

approach provides all the source codes that generated all the models, not 

just the best-performing ones but all the models evaluated, allowing data 

scientists to customize the models with the source code provided.
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�Machine Learning Lifecycle: MLOps
A typical MLOps lifecycle contains the following stages:

	 1.	 Data prep

	 2.	 Model building

	 3.	 Model deployment

We can conveniently use Databricks to do everything. Furthermore, 

to harness the distributed nature of Spark, we can also use libraries like 

Horovord and Petastorm to scale out the model training. See Figure 9-5.

Figure 9-5.  Machine learning life cycle

In the following sections, we will take an example dataset and go 

through every step in Figure 9-5. There will be further clarifications, but 

rest assured that every step will be covered.

We will demonstrate AutoML using a classification problem on a flight 

dataset, which can be found in Kaggle. This problem aims to predict 

whether a flight will be delayed or canceled based on historical flight data. 

Of course, in reality, the real reason for a flight delay or cancellation can 

be caused by a lot of factors beyond the flight itself, like weather or staff 

Chapter 9  Machine Learning Operations Using Databricks



186

shortage. This exercise does not demonstrate how to build a state-of-

the-art on-time flight predictor. It simply uses a dataset to illustrate the 

workflow of ML Ops using Databricks.

�ML Example: Predicting Flight Delays 
with Databrick’s AutoML
�Prepare Data

First, we need to upload the data to Databricks. This can be done very 

easily with JDBC or simply by uploading the CSV file. Then, we can create 

tables from there.

The Create New Table wizard under the Data tab can be used to upload 

data and create a table using the UI or a notebook. See Figure 9-6.

Figure 9-6.  Creating a new table using the Databricks UI

�Exploratory Data Analysis

Databricks has integrated Pandas Profiling for Exploratory Data Analysis 

(EDA). Pandas Profiling is an open-source library that precomputes some 

statistics that data scientists usually want to know and saves these into 
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properly formatted HTML. Once we hook up our data in the AutoML 

interface, it will also generate an EDA report from Pandas Profiling. See 

Figure 9-7.

Figure 9-7.  The “View data exploration notebook” button can be 
found on the experiment page

By clicking “View data exploration notebook,” we can also examine 

how Databricks uses Pandas profiling to perform EDA. See Figure 9-8.

Figure 9-8.  Data exploration notebook

�Feature Engineering

In most cases, we need to transform raw data into something useful that 

the model can use for better predictions. For example, in our flight delay 

example, we can compute the percentage of delayed flights by airport or 
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airline. We can then save these into a feature store, so other team members 

can reuse them and understand how they were built (see Figure 9-9). 

Features can also be joined with raw data in AutoML to increase the 

accuracy of the prediction.

Figure 9-9.  Features tab in Databricks

A feature table can be registered either by a dataframe or a table.

�Data Exploration at Scale
Let’s look at data exploration at scale.

�Pandas Profiling

Data scientists often need to understand the data distribution to decide 

whether the data is useful, whether imputation is required, or, in extreme 

cases, whether to exclude specific columns from the model training. 

For example, if the column contains all nulls or empty values, it will not 

contribute anything to the machine learning model as it cannot learn 

anything.
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Pandas Profiling has always been done using the Python pandas 

library. The limitation of a Pandas library is that it can run on only one 

machine despite a cluster of machines available. The shortcoming is that 

the memory will be limited if the process can run on only one machine. 

If the dataset cannot fit into the memory, Pandas profiling cannot 

generate a report. This often leads to sampling of the data such as df.

sample(fraction=0.5). This often leads to a misrepresentation of the 

data distribution. For example, if the sampled rows don’t contain any 

nulls, then it will lead to data scientists believing that the column does not 

contain nulls.

As of Databricks runtime 14.3 LTS, Databricks will still try to sample 

the dataset for profiling and Auto ML. However, as of 2023, YData released 

Spark support for the popular profiling library, which keeps the same 

interface but takes a Spark Dataframe instead. The following is an example:

https://ydata.ai/resources/ydata-profiling-the-great-debut-

of-pandas-profiling-into-the-big-data-landscape

The Pandas version requires reading Parquet files as Pandas, which is 

not optimal because Delta format contains transactions of Parquet. See 

Listing 9-1.

Listing 9-1.  Pandas Profiling Sample Usage

import pandas as pd

import databricks.automl_runtime

training_data_path = mlflow.artifacts.download_artifacts(run_id

="a0922defd3b542acb2b4bb0956aeb0bf", artifact_path="data", dst_

path=temp_dir)

df = pd.read_parquet(os.path.join(training_data_path, 

"training_data"))

from ydata_profiling import ProfileReport

df_profile = ProfileReport(df,
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                           correlations={

                               "auto": {"calculate": True},

                               "pearson": {"calculate": True},

                               "spearman": {"calculate": True},

                               "kendall": {"calculate": True},

                               "phi_k": {"calculate": True},

                               "cramers": {"calculate": True},

                           �}, title="Profiling Report", progress_

bar=False, infer_dtypes=False)

profile_html = df_profile.to_html()

displayHTML(profile_html)

Spark version—reading the table in Databricks—can preserve the 

integrity of Delta format, as shown in Listing 9-2.

Listing 9-2.  YData’s Spark Support

df = spark.table("kaggle.flight_featured_detla")

from ydata_profiling import ProfileReport

df_profile = ProfileReport(df,

                          correlations={

                              "auto": {"calculate": True},

                              "pearson": {"calculate": True},

                              "spearman": {"calculate": True},

                              "kendall": {"calculate": True},

                              "phi_k": {"calculate": True},

                              "cramers": {"calculate": True},

                          �}, title="Profiling Report", 

progress_bar=False,  

infer_dtypes=False)
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BREAKING CHANGES

The pandas-profiling package naming was changed to ydata-

profiling.

�Data Summarization Using dbutils

Fortunately, despite not being as comprehensive as Pandas profiling, most 

notably missing correlation matrices, starting in Databricks Runtime 9.0, 

there’s a summarize feature available under dbutils, which is using Spark 

as a compute for the statistics that data scientists requires.

Listing 9-3 shows example usage.

Listing 9-3.  Summarization Function in dbutils

df = spark.table("kaggle.flight_featured_detla")

dbutils.data.summarize(df)

�Feature Store
A feature store is a centralized repository that enables data scientists 

to find and share features and also ensures that the same code used to 

compute the feature values is used for model training and inference (see 

Figure 9-10).

Similar to Unity Catalog, consider this a place where the data scientists 

will look for their features. A feature is usually a calculation that has been 

tested and agreed upon among the team and provides value. Not only is it 

useful to the team, but it can potentially be shared among different models 

to save time in the discovery process.
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Figure 9-10.  Databricks feature store

�Why Use Databricks Feature Store?

Databricks Feature Store is fully integrated with other components of 

Databricks. Along with Unity Catalog, it provides powerful lineage tracking 

for all the features from source data to the model. The following are the 

advantages of this out-of-the-box feature store:

•	 Discoverability. The Feature Store UI, accessible from 

the Databricks workspace, lets you browse and search 

for existing features.

•	 Lineage. When you create a feature table in Databricks, 

the data sources used to create the feature table are 

saved and accessible. For each feature in a feature 

table, you can also access the models, notebooks, jobs, 

and endpoints that use the feature.

•	 Integration with model scoring and serving. 

When you use features from Feature Store to train a 

model, the model is packaged with feature metadata. 

When you use the model for batch scoring or online 

inference, it automatically retrieves features from 

Feature Store. The caller does not need to know about 

them or include logic to look up or join features to 

score new data. This makes model deployment and 

updates much easier.
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•	 Point-in-time lookups. Feature Store supports time 

series and event-based use cases that require point-in-

time correctness. For deep dive into time-series tables, 

please refer to the following documentation:

https://docs.databricks.com/en/machine-learning/

feature-store/time-series.html#how-time-series- 

feature-tables-work

To create a feature table in the feature store, it is possible either with a 

delta table or with a Spark dataframe. Bear in mind that if your table requires 

a primary key, you can use the syntax in Listing 9-4 to add a primary key.

Listing 9-4.  Syntax to Add a Primary Key

ALTER TABLE <full_table_name> ADD CONSTRAINT <pk_name> PRIMARY 

KEY(pk_col1, pk_col2, ...)

The main class to be used is called FeatureEngineeringClient, as 

shown in Listing 9-5.

Listing 9-5.  FeatureEngineeringClient Class

from databricks.feature_engineering import 

FeatureEngineeringClient

fe = FeatureEngineeringClient()

To register a feature table with an existing delta table, see Listing 9-6.

Listing 9-6.  Registering a Delta Table as a Feature Table

fe.register_table(

  delta_table='kaggle.flight_featured_detla',

  primary_keys='flight_id',

  description='Flight features'

)
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To create a feature table with a dataframe, see Listing 9-7.

Listing 9-7.  Writing a Feature Table Using Dataframe

fe.write_table(

  name='kaggle.flight_featured_detla',

  df = flight_features_df,

  mode = 'overwrite'

)

Refer to the Feature Engineering Python API for comprehensive usage 

information:

https://api-docs.databricks.com/python/feature-engineering/

latest/index.html

Finally, we can either look up a feature with the Python API or leverage 

AutoML, and then we can join features in the feature store easily. In the 

next section, we will discuss how to create an AutoML experiment (see 

Figure 9-11).

Figure 9-11.  Joining a feature table in AutoML experiment
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�Model Building
Let’s talk about model building.

�Model Training

As mentioned, the next most time-consuming task after careful feature 

engineering is to train and tune your model and sometimes carefully 

select its algorithm or architecture to achieve the best accuracy while 

making predictions. With Databrick’s AutoML, we can seamlessly select 

the data from the Data tab, allowing it to perform hundreds of selections 

automatically and saving data scientists hours of effort to build these from 

scratch.

Of course, the best way to learn how to build a model within 

Databricks is through Databricks. That makes the Glass Box AutoML an 

attractive approach to start with.

While AutoML does not solve all the machine learning problems in 

the world, it does, however, provide a framework that can solve some very 

typical machine learning problems, saving data scientists time to gain 

insight into the quality of the models that can be built with the dataset.

The following ML problem types are supported by Databricks AutoML 

(Figure 9-12):

•	 Classification

	 Classification allows you to assign each observation to 

one of a discrete set of classes, such as good credit risk 

or bad credit risk.

•	 Regression

	 Regression allows you to predict a continuous numeric 

value for each observation, such as annual income.
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•	 Forecasting

	 Time-series forecast allows you to predict a future value 

based on a hierarchy, for example a future store sale in 

each city of each state in the United States.

Figure 9-12.  ML problem types in AutoML

As shown in Table 9-1, the interface contains only a few drop-downs 

and is fully integrated with the feature tables and the Delta tables created 

and persisted on the Data tab. The next step is to choose a prediction 

target. Finally, we can also choose how to handle imputation, a process 

of handling nulls in the dataset. Auto ML will then handle the rest of the 

model selection, hyperparameters tuning, and presenting the results along 

with the notebook.

Table 9-1 illustrates how many different algorithms Databricks 

will try in each ML problem type. In our example, we are using 

Classification models.
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Table 9-1.  Databrick Algorithms

Classification 
Models

Regression Models Forecasting Models

Decision trees Decision trees Prophet

Random forests Random forests Auto-ARIMA (available in 

Databricks Runtime 10.3 ML 

and above)

Logistic regression Linear regression with 

stochastic gradient descent

XGBoost XGBoost

LightGBM LightGBM

Next, we can configure our experiment by choosing the training 

dataset and the target variable (see Figure 9-13). We can also configure 

how we want to treat null values, which is often referred to as imputation. 

Please ensure that you have selected a machine learning runtime-enabled 

cluster for the experiment, which is often an oversight.
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Figure 9-13.  Databrick’s AutoML interface

Finally, we can run the training and wait for the magic to happen. 

Please note that by no means does Databricks AutoML try to produce 

a production-grade model because it aims to simplify the process of 

parameter search, and most importantly, if the dataset is too large, it will 

try to take a sample of the dataset (Figure 9-14). If there is a need to train 

a huge dataset, we can consider using distributed training. The details are 

beyond the scope of this book, but the documentation can be found on 

Databricks’ website:

https://docs.databricks.com/en/machine-learning/train-model/

distributed-training/index.html
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Figure 9-14.  AutoML will automatically select the top 100 most 
relevant results

�Validation

Before we deploy the model to production, we need to validate the model 

with test dataset. We would usually split the data into a training set and 

a test set with ratios like 70/30 split or 80/20 split. We can do random 

split, or splitting based on a business key, aka stratified split. Some more 

advanced approaches can include training/validation/test split with the 

validation is used for hyperparameters tuning, and until after the final 

model is decided, we can evaluate the model with a test set. We can split 

into 60/20/20 for train/val/test in these scenarios. AutoML uses the latter 

approach for splitting.

In Databricks Runtime 10.1 ML and above, we can specify a 

time column for splitting for classification and regression problems. 

This provides flexibility when some problems are highly based on 

chronological order.
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�Deploy Model
Let’s talk about the deploy model.

�Deployment

Once you have verified the champion model’s parameters and metrics and 

you are ready to take the next step to deploy this model for further review 

with stakeholders, you can register the model right from the experiment. 

For best practices, you should always register your mode in Unity Catalog, 

as shown in Figure 9-15 and Figure 9-16.

Figure 9-15.  Model overview page in an experiment
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Figure 9-16.  Model registration

Databricks model registry provides a portal to manage our models’ 

versions, tag them, and create a model-serving endpoint right from the 

model. All these models are registered using MLflow. See Figure 9-17 and 

Figure 9-18.
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Figure 9-17.  Models tab in Databricks UI

Figure 9-18.  Registered models in Databricks

�Model Serving/Inferencing

On the Models tab, we can also create an API endpoint, aka serve the 

model, for external consumption (Figure 9-19). This will generate a REST 

API endpoint, allowing the model to be easily accessed externally using 

Python or other programming languages.
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Figure 9-19.  Model Serving and inferencing

Unity Catalog tightly integrates with Lakehouse Monitoring, so it is 

recommended that an inference table be set up for output (Figure 9-20).

Figure 9-20.  Set up model inference tables

Once a serving endpoint is created, we can query it. The “Query 

endpoint” button on the top right of the page will show us the exact 

commands to call the API (Figure 9-21). This API will generate inference 

results and save into the table shown, in our case, unitygo.default.

flight_delay_output_payload. Databricks will always append _payload 

for the inference table.
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Figure 9-21.  Query endpoint button in a served endpoint

To summarize, here is how the workflow looks:

	 1.	 Enable inference tables on your endpoint, as in 

Figure 9-20.

	 2.	 Schedule a workflow to process the JSON payloads 

using the code in the Query Endpoint button, as in  

Figure 9-21.

	 3.	 (Optional) Join the unpacked requests and 

responses with ground-truth labels to allow model 

quality metrics to be calculated.

	 4.	 Create a monitor over the resulting Delta table and 

refresh the metrics by using Lakehouse Monitoring, 

which we will discuss next.

�Monitoring

ML models are never built once and run forever. So, we do need to retrain 

our models. The question is when we need to retrain. Some people decide 

to train the model daily, but a more reactive approach is to detect data drift 

and trigger a retrain when it happens. Simply put, data drift is the change 

in input data that causes the model’s performance to degrade over time. 

This can be caused by missing data in the pipeline, for example. With Unity 
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Catalog, Databricks provides out-of-the-box Lakehouse Monitoring, which 

includes drift detection, that leverages the SQL workspace to build a drift 

monitoring dashboard. Additionally, triggers can be set up to retrain a 

model when drift happens.

Next we will dive into Lakehouse Monitoring, a powerful monitoring 

product that comes with no cost to Databricks customers.

�Lakehouse Monitoring

Your table must be Unity Catalog enabled to use Lakehouse Monitoring. 

Otherwise, the monitoring option will not be visible. While everything in 

Databricks can be configured with code, the easiest way to get started is via 

the user interface. We can navigate to the Quality tab in any UC-enabled 

table and set up a monitor. Please note that only one type of monitoring 

can be set up in any given table. See Figure 9-22 and Figure 9-23.

Figure 9-22.  Setting up Lakehouse Monitoring

Chapter 9  Machine Learning Operations Using Databricks



206

Figure 9-23.  Creating a monitor using Lakehouse Monitoring

Here are the options available when setting up a monitor in Lakehouse 

Monitoring:

Snapshot profile: Designed for basic quality metrics 

for any table at a snapshot in time. While Delta 

Live Tables (DLT) comes with basic expectations, 

a snapshot profile is similar to the data profiling 

function in dbutils for exploratory data analysis 

over time.

Time series profile: This isn’t talking about a time 

series forecast but rather determining data drift 

occurrence given a timestamp column. The drift 

analysis metrics are shown in Table 9-2.		
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Table 9-2.  AI Model Monitoring Metrics

Column Name Type Description

chi_squared_

test

struct<statistic: 

double, pvalue: 

double>

Chi-square test for drift in 

distribution.

ks_test struct<statistic: 

double, pvalue: 

double>

KS test for drift in distribution. 

Calculated for numeric columns 

only.

tv_distance double Total variation distance for drift in 

distribution.

l_infinity_

distance

double L-infinity distance for drift in 

distribution.

js_distance double Jensen–Shannon distance for 

drift in distribution. Calculated for 

categorical columns only.

wasserstein_

distance

double Drift between two numeric 

distributions using the Wasserstein 

distance metric.

population_

stability_

index

double Metric for comparing the drift 

between two numeric distributions 

using the population stability index 

metric.

Inference profile: This is designed to measure 

classification and regression influence results 

like precision and recall and R2 scores. Currently, 

data scientists need to maintain the codebase 

to calculate these numbers, and each team will 

try to use a different library depending on what 
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model they are using. Databricks’ approach is 

model agnostic and is calculated completely based 

on an inference table. On top of that, it includes 

fairness and biases, which is a baby step forward 

to Responsible AI. The metrics include predictive 

parity, predictive equality, equal opportunity, and 

statistical parity. See Figure 9-24.

Figure 9-24.  Microsoft’s Responsible AI standards

All of these profilers can detect PII in the data using AI, and sensitive 

columns will be tags as PII in the catalog.

�Why Profiling?

When building an ML model, it is critical to understand the statistics in 

every stage of the process. For example, if a column contains lots of nulls, it 

will not be suitable to be included in the model as it will not provide a lot of 

values, and it will further degrade the training and inference performance.
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Data drift is a concept that determines whether model retraining 

is required. Most of the time ML models are not trained once and run 

forever. For example, ChatGPT usually comes with a knowledge cutoff 

time. That’s because, like humans, ML models also need to get up-to-date 

with their knowledge to make better decisions or predictions. There are 

many different ways to measure drift, and calculating these drift metrics at 

scale is often very challenging.

Finally, by monitoring the model metrics like F1 and R2 over time, we 

will also know when a model retrain or refactor is required. In the case of 

retraining with more data that does not improve the model metrics, it is 

time to refactor the model to provide more high-quality data, which goes 

back to the need to monitor the data drift and understand the statistical 

distribution of the raw data. See Figure 9-25.

Figure 9-25.  Lakehouse Monitoring table schema

Lakehouse Monitoring provides a one-stop interface for setting up all 

these statistics and storing them in different tables so they can be reused. 

Dashboards are also created for ease of visualization and quick insights, 

saving teams numerous hours of research and development effort. See 

Figure 9-26 and Figure 9-27.
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To learn more about the monitoring metrics tables, please visit the 

documentation here:

https://docs.databricks.com/en/lakehouse-monitoring/monitor-

output.html

Figure 9-26.  Lakehouse Monitoring report #1
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Figure 9-27.  Lakehouse Monitoring report #2

Databricks Lakehouse Monitoring is a framework that enables a self-

serve data platform with proactive issue management.

•	 Auto-Generated Reports

	 Share quality updates organization-wide with auto-

generated dashboards, and use ready-made metrics 

and analytics tools for easy issue exploration in your 

data products.

•	 Unified Monitoring

	 Monitor the quality of all data products with a single 

tool, regardless of the framework or platform used 

to build them. Merge quality and business metrics 

effortlessly in your lakehouse to gauge your data 

products’ impact.
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•	 Automated Root Cause Analysis

	 Catch data product issues before they reach consumers 

with cost-effective “insurance.” Boost efficiency with 

smart automation in your data and AI pipelines, 

avoiding unnecessary retraining.

�Deep Dive into Lakehouse Monitoring Output Tables

YData profiling (formerly Pandas profiling) and the summarize command 

provide invaluable insights for data scientists to analyze datasets with 

Spark compute, yet it doesn’t give you access to the raw data in a table 

format. The importance of getting this data into a reusable format 

includes:

–– Setting up custom alerts: When including basic statistics 

in a data drift report, we can trigger an alert to re-train 

a model.

–– Creating reports beyond the given interface: Rarely does 

any team not have an existing dashboard, so integrating 

the analysis into an existing dashboard, like Power BI 

and Tableau, is an important part of the team process.

–– Comparing statistics between two different tables (with 

Spark): Often we want an efficient way to compare the 

differences between two different tables. While YData 

profiling provides capabilities in Pandas to compare 

two different datasets, it currently does not support 

using Spark. On the other hand, the dbutils command 

does not allow comparing two different datasets.

–– Keeping track of historical differences: Understanding 

the trend of the data allows the team to understand if 
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there is missing data due to source issues or incomplete 

data pull. For example, if there is a job that was rerun 

but produced fewer rows than it used to have or the 

standard deviation compared to the last month 

dropped drastically compared to historical runs, it 

would be important to understand the root cause in 

case it impacted the model.

Figure 9-28 illustrates input tables versus generated tables as well as 

the relationship between generated tables and the dashboard.

Figure 9-28.  Lakehouse Monitoring tables relationships

Consider if we wanted to monitor the table nyctaxi_trips, a baseline 

table can also be specified optionally to measure drift. Lakehouse 

Monitoring will generate two new tables automatically:

•	 nyctaxi_trips_drift_metrics

•	 nyctaxi_trips_profile_metrics
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Figure 9-29 illustrates the output table in Unity Catalog.

Figure 9-29.  Lakehouse Monitoring tables that were being generated

These tables contain a lot of information. To examine it closely, please 

refer to the documentation from Databricks website:

https://docs.databricks.com/en/lakehouse-monitoring/monitor-

output.html#column-schemas-for-generated-tables

The usage of these tables is also fully transparent. Databricks generates 

all the queries and uses them in the Databricks Dashboard—everything 

can be found in the workspace. This approach is essentially similar to the 

Glass Box Auto ML approach—it will save weeks of development time for 

teams that want to kick off an ML monitoring project.

The help you get started, Databricks has created sample notebooks, 

including the datasets and models for Lakehouse Monitoring:

https://docs.databricks.com/en/lakehouse-monitoring/create-

monitor-api.html#example-notebooks

Figure 9-30 shows examples of queries and dashboard generated by 

Lakehouse Monitoring.
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Figure 9-30.  Objects created by Lakehouse Monitoring; everything is 
open source

�MLOps Best Practices
Building an ML model is rarely a single-person effort. Even if a single data 

scientist is working on model building, they will require collaboration 

with other people. Often, best practices must be shared across the team so 

there is no difference to the ML pipeline on every model. If best practices 

are followed, working across the team will save time without repeatedly 

learning the code base on every single model. Hence, learning from our 

experience, Databricks has open-sourced the internal best practices to 

develop an ML model, called the MLOps stack.

https://github.com/databricks/mlops-stacks
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The architecture diagram in Figure 9-31 represents the process 

from development to deployment for an ML model. There are three 

components provided in the repo:

•	 ML Code: Example ML project structure (training and 

batch inference, etc.), with unit-tested Python modules 

and notebooks

•	 ML Resources as Code: ML pipeline resources 

(training and batch inference jobs, etc.) defined 

through Databricks CLI bundles

•	 CI/CD (GitHub Actions or Azure DevOps): GitHub 

Actions or Azure DevOps workflows to test and deploy 

ML code and resources

Figure 9-31.  Databricks’ MLOps stack

By leveraging Databricks’ best practices, teams can focus on 

generating business values from their ML model rather than dealing with 

infrastructure setup. The three items can be grouped into two major parts, 
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which is CI/CD and ML Project. We will focus on the ML Project portion 

in this chapter and look at the CI/CD portion later in Chapter 15. See 

Figure 9-32.

Figure 9-32.  Databricks’ MLOps stack

Once we have initialized the MLOps stack with databricks bundle 

init mlops-stacks and choose the Project Only option, the CLI will 

create template folder structures along with an NYC ML example in the 

folders so we can follow the code. Figure 9-33 shows what the folder 

structure look like, but as the project continues to evolve. The exact project 

details can be found in the README.md file under the main project folder.

Figure 9-33.  Suggested project structure
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With the provided sample notebooks, teams can use source control to 

develop their ML model and deploy via the Git actions provided, saving 

time to re-developing reusable standards and focusing on producing 

business values.

�Conclusion
In this chapter, we spent a lot of time taking an ML model from 

development to production because data scientists need to spend time 

coding up the model and then tuning the models. In between they also 

need to work closely with data engineers and ML engineers to ensure they 

are getting the latest data and deploying the latest model for testing.

When using Databricks’ Glass Box Auto ML approach along with other 

toolsets like feature stores, data scientists can now speed up their process 

of getting to a baseline model, which is an important milestone to evaluate 

the effectiveness of the input data. Then they can leverage the code 

generated to build a production model while seamlessly collaborating with 

data engineers and ML engineers using the intuitive interfaces.

Databricks has recently taken the ML model building to the next level. 

While many tools out there can manage the MLOps life cycle, Databricks 

is the only platform that allows a team of data experts to work together 

seamlessly without having to jump through multiple hoops of toolsets.

Chapter 9  Machine Learning Operations Using Databricks



219© The Editor(s) (if applicable) and The Author(s),  
under exclusive license to APress Media, LLC, part of Springer Nature 2024 
N. Gupta and J. Yip, Databricks Data Intelligence Platform,  
https://doi.org/10.1007/979-8-8688-0444-1_10

CHAPTER 10

Generative AI 
with Databricks
Ever since ChatGPT was released to the public, there has been no shortage 

of interest in chatbots or generative artificial intelligence (GenAI). But what 

exactly is GenAI, and how does Databricks come into the picture? And how 

it can help organizations deploy their own chatbot or develop their own 

GenAI applications? In this chapter, we will first learn the concepts around 

GenAI. Then we will discuss how Databricks and the newly acquired 

company Mosaic ML will work together and transform the industry once 

more. This chapter lays some background regarding the journey of GenAI 

and introduces the Databricks offering in the GenAI space.

�What Is Generative AI?
According to Gartner:

“Generative AI can learn from existing artifacts to generate 
new, realistic artifacts (at scale) that reflect the characteristics 
of the training data but don’t repeat it. It can produce a  
variety of novel content, such as images, video, music, speech, 
text, software code and product designs.”

https://doi.org/10.1007/979-8-8688-0444-1_10#DOI


220

Generative AI uses several techniques that continue to evolve. 

Foremost are AI foundation models, which are trained on a broad set of 

unlabeled data that can be used for different tasks, with additional fine- 

tuning. Complex math and enormous computing power are required 

to create these trained models, but they are, in essence, prediction 

algorithms.

Today, generative AI most commonly creates content in response to 

natural language requests—it doesn’t require knowledge of or entering 

code—but the enterprise use cases are numerous and include innovations 

in drug and chip design and material science development.

Figure 10-1 explains how generative AI and ChatGPT are different. 

From a very high level, generative AI is a technique that tries to generate 

some new content by learning from vast amounts of similar content. For 

example, when trying to generate English language content, it could have 

trained on all the text on Wikipedia to start with. However, that’s just an 

understatement. With that said, not something every household would 

have access to the resources required to train these models, despite the 

number of models increasing by the day. As a result, similar to transfer 

learning, a lot of data scientists would use so-called foundation models to 

enhance the AI with some internal knowledge.

The enhancement process can be done via retrieval augmented 

generation (RAG) or fine-tuning. There is a fundamental difference 

between the two. RAG is trying to optimize the data, whereas fine-tuning 

is trying to optimize the model. We will discuss both these in greater detail 

later in the chapter.

Finally, if resources are available and the goal is to train a fully domain 

specific model without bias, Mosaic ML’s training platform will help you do 

that albeit at a much reduced cost. The results of these are large language 

models (LLMs). ChatGPT is an application created on top of the LLMs to 

serve as a chatbot, providing an intuitive interface for the general public to 

use. But then on the other hand, in the case of GenAI, we might think that 

the larger the model the better, but in fact this is not the case. The world 
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is still learning how to optimize the data for optimized throughput of the 

tasks required. An excellent example is Databricks’ bespoke LLM model 

for auto-documentation generation, which costs about $1,000 to train. 

Figure 10-1 is a quick reference to these standard terms.

Figure 10-1.  Differences between AI models (source: https://www.
gartner.com/en/insights/generative-ai-for-business)

�Databricks Generative AI
Databricks provides a lot of tools for you to take control in model 

training all the way to governing the model. Figure 10-2 illustrates all the 

capabilities that Databricks provides for organizations to use and build 

their next GenAI use case.
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Figure 10-2.  Databricks’ generative AI offerings

In this chapter, we will examine the basic out-of-the-box features that 

Databricks provides, and then in subsequent chapters, we will discuss how 

you can leverage all the advanced tools to enhance your GenAI offering.

While we will discuss the details in later chapters, here are the high- 

level functionalities of each stack:

•	 Build: This includes the Mosaic AI stack to refine an 

LLM either through RAG or fine-tuning.

•	 Evaluate: This is part of the AI Agent framework to 

allow evaluation with metrics as well as getting peer 

feedback.

•	 Deploy: There is a one-line command to deploy a 

nonproduction app for a user acceptance test.

•	 Govern: There is an extension of MLflow to manage 

internal and external LLM APIs.
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�The GenAI Journey
With GenAI dominating the world now, many organizations start by 

allowing their employees to play around with these models. To combine 

the data from within the organization, some of them with more budget 

want to train a model of their own from scratch. While others keep the 

model for use within their organization, some also decide to open up their 

model to the world and become foundation models.

Figures 10-3 and 10-4 present two different views of this journey. 

Figure 10-3 represents the journey or maturity an organization can get 

with GenAI. From the left, we have prompt engineering, then retrieval 

augmented generation, fine-tuning, and, lastly, pre-training.

Figure 10-3.  The GenAI journey

While these building blocks are available, not every organization will 

need to reach the last step of pre-training due to the computation, aka  

cost, as well as complexity, aka expert knowledge, required to reach  

the next level. Figure 10-4 illustrates this idea in another way. Note that 

pre-training is the most time-consuming and complex process. We will 

walk you through the journey, but before you decide to move to the next 

step, it is best to consider the trade-off between time and cost as well as 

whether experts are available to validate the results.
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Figure 10-4.  Alternate aspect of the GenAI journey with time and 
complexity involved

�Prompt Engineering
Prompt engineering is the art of asking the right questions to get the best 

output from a language model (LLM) using plain-language prompts. It 

enables direct interaction with the LLM, allowing you to communicate 

with it using only natural language instructions. In the past, working 

with machine learning models typically required deep knowledge of 

datasets, statistics, and modeling techniques. However, today, LLMs can 

be “programmed” in English and other languages, making them more 

accessible to a broader audience.

Here are some key points about prompt engineering:

•	 Best Practices for Prompting:

•	 Clear communication: Clearly communicate what 

content or information is most important.

•	 Structured prompts: Structure your prompts by 

starting with the role or context, followed by input 

data and then the instruction.
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•	 Varied examples: Use specific and varied examples 

to help the model narrow its focus and generate 

accurate results.

•	 Constraints: Use constraints to limit the scope of 

the model’s output and prevent factual inaccuracies.

•	 Break down complex tasks: Divide complex tasks 

into a sequence of simpler prompts.

•	 Self-evaluation: Instruct the model to evaluate or 

check its own responses before producing them.

•	 Creativity: Be creative! The more open-minded 

and creative you are, the better your results will be.

•	 Types of Prompts:

•	 Direct prompting (zero-shot): The simplest type 

of prompt that provides only an instruction without 

examples.

•	 Example: “Can you give me a list of ideas for 

blog posts for tourists visiting New York City for 

the first time?”

•	 Role prompting: Assign a role to the model and ask 

it to understand your goals and objectives before 

designing a prompt.

•	 Example: “You are a mighty and powerful 

prompt-generating robot. Design a prompt for 

the best outcome based on the context and data 

provided.”

•	 Chain-of-thought prompting: Break down 

complex tasks into a sequence of simpler prompts.
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Remember, being a great prompt engineer doesn’t require coding 

experience. Creativity and persistence will benefit you greatly on your 

journey in this evolving field of LLMs and prompt engineering12.

�Mosaic AI Playground
Riding on the wave of generative AI, many corporations have released 

foundation large language models. However, without background in 

programming, it is difficult to use these models. Databricks has optimized 

a few models and curated in the “Playground” section for experimentation, 

providing a standard interface to interact with these models. It is also an 

interactive environment where users can simultaneously experiment and 

“chat” with various large language models and compare results.

The curated models include the following:

–– Llama2 70B Chat

Llama-2-70B-Chat is a state-of-the-art 70B 

parameter language model with a context length of 

4,096 tokens, trained by Meta. It excels at interactive 

applications that require strong reasoning 

capabilities, including summarization, question-

answering, and chat application

–– Mixtral-8x7B Instruct

Mixtral-8x7B Instruct is a high-quality sparse 

mixture of experts model (SMoE) trained by Mistral 

AI. Mixtral-8x7B Instruct can be used for a variety of 

tasks such as question-answering, summarization, 

and extraction.
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–– MPT 30B Instruct

MPT-7B-8K-Instruct is a 6.7B parameter model 

trained by MosaicML for long-form instruction 

following, especially question-answering on and 

summarization of longer documents. The model is 

pre-trained for 1.5T tokens on a mixture of datasets, 

and fine-tuned on a dataset derived from the 

Databricks Dolly-15k and the Anthropic Helpful and 

Harmless (HH-RLHF) datasets. The model name 

you see in the product is mpt-7b-instruct, but the 

model specifically being used is the newer version of 

the model.

–– MPT 7B Instruct

MPT-30B-Instruct is a 30B parameter model for 

instruction following trained by MosaicML. The 

model is pre-trained for 1T tokens on a mixture of 

English text and code, and then further instruction 

fine-tuned on a dataset derived from Databricks 

Dolly-15k, Anthropic Helpful and Harmless (HH-

RLHF), CompetitionMath, DuoRC, CoT GSM8k, 

QASPER, QuALITY, SummScreen, and Spider 

datasets.

https://learn.microsoft.com/en-us/azure/

databricks/machine-learning/foundation-

models/supported-models
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�Use Cases
Out of the box, Databricks provides four different use cases in the 

playground, but large language models are not limited to these four 

use cases. Users can chat with these models and get responses from the 

prompt window.

�Sentiment Analysis

You will be provided with a tweet, and your task is to classify its sentiment 

as positive, neutral, or negative.

Example:
Input: The new Spiderman movie was meh

Output: Sentiment: Neutral

�Unstructured Text Parsing

You will be provided with unstructured data, and your task is to parse it 

into JSON format.

Example:
Input: Advanced Micro Devices, Inc. is an American multinational 

semiconductor company based in Santa Clara, California, that develops 

computer processors and related technologies for business and consumer 

markets. The company was founded in 1969 by Jerry Sanders and a group 

of other technology professionals

Output: { “name”: “Advanced Micro Devices, Inc.”, “location”: “Santa 

Clara, California”, “founders”: [ “Jerry Sanders” ], “founding_year”: 1969, 

“products”: [ “computer processors”, “related technologies” ], “markets”:  

[ “business”, “consumer” ] }
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�Summarization

You will be provided with a document and asked to summarize it.

Example:
Input: Copy activity supports Azure Databricks Delta Lake connector 

to copy data from any supported source data store to Azure Databricks 

delta lake table, and from delta lake table to any supported sink data store. 

It leverages your Databricks cluster to perform the data movement, see 

details in Prerequisites section.

Output:

	 1.	 The copy activity in a data integration tool supports 

the use of the Azure Databricks Delta Lake 

connector.

	 2.	 This feature enables data copying from any 

supported source data store to an Azure Databricks 

delta lake table, and from the delta lake table to any 

supported sink data store.

	 3.	 The copy activity utilizes a user's Databricks cluster 

to perform data movement.

	 4.	 Users should refer to the Prerequisites section for 

further details and requirements.

�Document Q&A

You will be provided with a document and asked a question about it.

Example:
Document:
Farm Utility Exemption Notice

The full text can be found on this website due to its length:

https://www.dfa.arkansas.gov/images/uploads/exciseTaxOffice/

et1441.pdf
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Question: Is a greenhouse a qualifying agricultural structure?

Answer: Yes, a greenhouse is a qualifying agricultural structure 

according to the document. It is listed under C of the definition of 

qualifying agricultural structures as a greenhouse used for commercial 

production.

While the playground allows developers to play around with the model 

use cases, behind the scenes it is using Databricks’ serverless technology 

to power the LLM API. You can use the UI, the Foundation Models APIs, 

the Python SDK, the MLflow Deployments SDK, or the REST API to query 

supported models. The APIs are compatible with OpenAI, so you can even 

use the OpenAI client for querying.

�Retrieval Augmented Generation
While ChatGPT democratized LLM-based chatbots for consumer use, 

companies need to deploy personalized models that meet needs like the 

following:

•	 Privacy requirements on sensitive information

•	 Preventing hallucination

•	 Specialized content, not available on the Internet

•	 Specific behavior for customer tasks

•	 Control over speed and cost

•	 Deploy models on private infrastructure for 

security reasons

To accomplish this, organizations often need to provide internal 

documents to ground the model with truth. This process requires 

converting context into something called embeddings. Embeddings are 

mathematical representations (vectors) of the semantic content of data, 
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typically text or image data. Depending on the use case, there are many 

ways to generate embeddings. But in the case of GenAI, embeddings 

are generated by a large language model, for example, BAAI’s BGE-

Large-EN (https://huggingface.co/BAAI/bge-large-en). They are 

a key component of many GenAI applications that depend on finding 

documents or images that are similar to each other.

Figure 10-5 illustrates how we can convert a knowledge graph to 

embeddings, where the nodes can be viewed as internal documents and 

the edges can be viewed as references. You can see each component of the 

input graph is converted to a numeric calculation, and these numbers are 

helpful for machine learning or GenAI tasks.

Figure 10-5.  Representation of embedding from a knowledge graph 
(source: https://en.wikipedia.org/wiki/Knowledge_graph_
embedding)

Figure 10-6 gives a sample workflow using LangChain to connect 

the document embeddings to Databricks’ vector index and sync with 

Databricks’ vector database. An application can then be built over this 

architecture. Later in this chapter, we will introduce Mosaic AI Agent 
Framework, an offering by Databricks to deploy the LLM application for 

evaluation with ML Flow LLM Judges or expert users.
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Figure 10-6.  AI Agent workflow with Dataricks vector database 
(source: https://medium.com/@tsiciliani/using-ai-agents-
with-databricks-vector-search-8b688d7ed41a)

As the data volume increases, it has become increasingly hard 

to optimize the performance of large data applications. To solve the 

performance issues, Databricks has released a suite of tools so developers 

can focus on developing the pipeline to achieve higher quality rather than 

worrying about performance tuning and maintaining infrastructure. These 

tools include the following:

•	 Fully managed foundation models providing pay-per-
token base LLMs.

	 The first step of our LLM workflow is to generate 

embeddings, either based on text or binaries. 

The Databricks Foundation Model API provides 

performance guarantees for some foundation models 

for different use cases. In the case of embedding, BGE 

Large (English) is provided with an API interface, 
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so developers can calculate the embedding at scale. 

Table 10-1 lists some of the foundation models that 

come out of the box from Databricks. They can be used 

as an API endpoint without acquiring any compute, 

simplifying the deployment requirements.		

Table 10-1.  Databricks Foundation Model API

Model Task type Endpoint

DBRX Instruct Chat databricks-dbrx-instruct

Meta-Llama-3-70B-Instruct Chat databricks-meta-llama-3-70b-

instruct

Meta-Llama-2-70B-Chat Chat databricks-llama-2-70b-chat

Mixtral-8x7B Instruct Chat databricks-mixtral-8x7b-

instruct

MPT 7B Instruct Completion databricks-mpt-7b-instruct

MPT 30B Instruct Completion databricks-mpt-30b-instruct

GTE Large (English) Embedding databricks-gte-large-en

BGE Large (English) Embedding databricks-bge-large-en

•	 A vector search service to power semantic search 
on existing tables in your lakehouse.

	 A vector database is a specialized database to store 

embeddings. To ensure the performance is guaranteed, 

a vector index will be created for a specific column. 

Databricks Vector DB will either calculate the 

embeddings for you if it is a text column in a delta 

table or will sync the embeddings to an index if it is 

generated by binaries when the values are stored in a 

delta table or API can be used to sync the index if no 
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table is provided. Either way, embeddings will need to 

be present in a highly performant and scalable format 

to perform similarity search.

In summary, Databricks provides multiple types of vector search 

indexes (see Figure 10-7).

•	 Managed embeddings: These provide a text column 

and endpoint name, and Databricks synchronizes the 

index with your Delta table.

•	 Self-managed embeddings: You compute the 

embeddings and save them as a field of your Delta 

table; Databricks will then synchronize the index.

•	 Direct index: When you want to use and update the 

index without having a Delta table.

Figure 10-7.  Databricks vector search index types
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�Similarity Search: The Magic Behind the Scenes
In the previous section, we discussed that vector search is based on the 

similarity algorithm. The text is first encoded into some vector form, 

and the similarity between the question and answer will be measured to 

give the best answer. Cosine similarity (Figure 10-8) or dot product is an 

algebraic operation that takes two equal-length sequences of numbers 

(usually coordinate vectors) and returns a single number. When the result 

is 0, it is completely different; whereas when the result is 1, it is identical. 

Vector DB uses this function to search for relevant documents to answer a 

specific question.

Figure 10-8.  Cosine similarity

Mosaic AI Vector Search does not use cosine similarity. However, 

according to Databricks, Mosaic AI Vector Search uses the Hierarchical 

Navigable Small World (HNSW) algorithm for its approximate nearest 

neighbor searches and the L2 distance metric to measure embedding 

vector similarity. If you want to use cosine similarity, you need to 

normalize your datapoint embeddings before feeding them into 

vector search.
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In other words, given a set of similar vectors, using either L2 distance 

or cosine similarity, we can use the HNSW to refine the search to ensure 

Databricks gains efficiency in terms of finding the most relevant chunk 

of document at scale. L2 and Cosine similarity are both an acceptable 

solutions for the search. Figure 10-9 shows HNSW.

Figure 10-9.  Illustration of the hierarchical NSW idea

After learning the basic concepts and building blocks of RAG we will 

look at an example of how to create an end-to-end RAG application

�A Practical Example for RAG: Using 
Structured Data
Let’s start by looking at the raw components Databricks provides to 

accelerate the development of a RAG application. These components are 

essential for any RAG application. Many companies are worried about 
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vendor lock-in, but Databricks can be used as a serving platform. In the 

next chapter, we will discuss how to use Databricks to create an end-to-

end RAG application.

The typical steps to create an end-to-end RAG app are as follows:

	 1.	 Create a feature serving endpoint. This step is 

required only if the data is being consumed outside 

of Databricks.

	 2.	 Calculate embedding and sync it into a vector 

database.

	 3.	 Create a LangChainTool that uses the endpoint to 

look up relevant data and log it with MLflow.

	 4.	 Evaluate the model using MLflow or human 

feedback.

�Step 1: Feature and Function Serving
In case developers want to create the app outside of Databricks but 

still want to utilize the data within Databricks lakehouse platform, 

Databricks has made it easy to make data available via an API endpoint 

and automatically scale up and down as demand changes for the data, 

eliminating the needs to extract the data outside of Databricks.

There are two ways to serve these features. One is to expose the data, 

either via a delta table or via a function, to an API endpoint, and another is 

to sync the features into an external feature store.
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–– Online tables can be created easily via the UI or API, as 

shown in Figure 10-10.		

Figure 10-10.  Databricks online table

–– Sync features to external feature stores, as shown in 

Figure 10-11.		

Figure 10-11.  Online external
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Table 10-2 shows which external feature stores Databricks supports for 

specific features.

Table 10-2.  External Feature Stores That Databricks Supports

Online Store 
Provider

Publish with 
Feature 
Engineering in 
Unity Catalog

Publish with 
Workspace 
Feature Store

Feature 
Lookup 
in Legacy 
MLflow Model 
Serving

Feature 
Lookup 
in Model 
Serving

Amazon 

DynamoDB

X X (Feature Store 

client v0.3.8 

and above)

X X

Amazon Aurora 

(MySQL-

compatible)

X X

Amazon RDS 

MySQL

X X

Azure Cosmos 

DB

X X (Feature Store 

client v0.5.0 

and above)

X X

Azure MySQL 

(Single Server)

X X

Azure SQL 

Server

X
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Listing 10-1 shows the sample code to publish to an online feature store.

Listing 10-1.  Syncing Features to Amazon Dynamo DB

import datetime

from databricks.feature_engineering.online_store_spec import 

AmazonDynamoDBSpec

# or databricks.feature_store.online_store_spec for Workspace 

Feature Store

# do not pass `write_secret_prefix` if you intend to use the 

instance profile attached to the cluster.

online_store = AmazonDynamoDBSpec(

  region='<region>',

  read_secret_prefix='<read-scope>/<prefix>',

  write_secret_prefix='<write-scope>/<prefix>'

)

fe.publish_table( # or fs.publish_table for Workspace 

Feature Store

  name='ml.recommender_system.customer_features',

  online_store=online_store,

  filter_condition=f"_dt = '{str(datetime.date.today())}'",

  mode='merge'

)

�Step 2: Calculate Embedding and Sync 
to a Vector Database
The Databricks Foundation Model API (FMAPI) can be used outside 

of Databricks. As discussed, Mosaic AI vector search will calculate the 

embeddings for you automatically. But it is also possible to use the 

embedding endpoint outside of Databricks. Listing 10-2 is the code to 

calculate the embedding using FMAPI.
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Listing 10-2.  Using Databricks FMAPI to Calculate Text 

Embeddings

def calculate_embedding(text):

   embedding_endpoint_name = "databricks-bge-large-en"

   �url = f"https://{mlflow.utils.databricks_utils.get_browser_

hostname()}/serving-endpoints/{embedding_endpoint_name}/

invocations"

   �databricks_token = mlflow.utils.databricks_utils.get_

databricks_host_creds().token

   �headers = {'Authorization': f'Bearer {databricks_token}', 

'Content-Type': 'application/json'}

   data = {

       "input": text

   }

   data_json = json.dumps(data, allow_nan=True)

   �print(f"\nCalling Embedding Endpoint: {embedding_endpoint_

name}\n")

   �response = requests.request(method='POST', headers=headers, 

url=url, data=data_json)

   if response.status_code != 200:

       �raise Exception(f'Request failed with status {response.

status_code}, {response.text}')

   return response.json()['data'][0]['embedding']
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�Step 3: Create a LangChainTool to Perform 
Various Tasks
It is typical to use a LangChainTool to perform the tasks, aka from 

langchain.agents import initialize_agent. But it can also be anything 

you want to do with LangChain or LlamaIndex. It is not a restriction 

but rather a suggestion because MLflow supports logging only with 

LangChain, OpenAI and Huggingface for now. The code in Listing 10-3 will 

log your LangChain model as artifacts.

Listing 10-3.  Logging Model with LangChain Flavor

mlflow.langchain.log_model()

�Step 4: MLflow LLM Evaluation
Similar to traditional machine learning models, LLMs also need to be 

evaluated to ensure the output is accurate. However, because the output 

can be nondeterministic and very often there is no single ground truth to 

compare against, ML Flow has provided a few ways to evaluate an LLM 

model, and the team is continuously working to update the functionalities.

	 1.	 Use Default Metrics for Predefined Model Types 
with mlflow.evaluate()

MLflow comes with a few predefined model types; 

with each model type, it leverages some open-

source libraries to compute the metrics. The types 

are described as follows:
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•	 question-answering: model_type="question-
answering":

•	 exact-match: Measures the exact match 

between the predicted answer and the 

true answer

•	 toxicity 1 : detects if the answer contains toxic 

or harmful content

•	 ari_grade_level2 and flesch_kincaid_grade_

level 2 : evaluate the readability of the answer 

based on its complexity and grade level

•	 text-summarization: model_type="text-
summarization":

•	 ROUGE3: Measures the similarity between the 

predicted summary and the true summary

•	 toxicity1: Detects if the answer contains toxic 

or harmful content

•	 ari_grade_level2 and flesch_kincaid_grade_

level2 : Evaluate the readability of the answer 

based on its complexity and grade level

•	 text models: model_type="text":

•	 toxicity1: Detects if the answer contains toxic 

or harmful content

•	 ari_grade_level2 and flesch_kincaid_grade_

level2: Evaluate the readability of the

Listing 10-4 shows the code to run an evaluation.
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Listing 10-4.  Running an Evaluation of a Dataset

    results = mlflow.evaluate(

        basic_qa_model.model_uri,

        eval_df,

        �targets="ground_truth",  # specify which column 

corresponds to the expected output

        �model_type="question-answering",  # model type 

indicates which metrics are relevant for this task

        evaluators="default",

    )

	 2.	 LLM Metrics: Unlike traditional machine learning, 

where there is a formula for each metric, LLM 

metrics are evaluation criteria provided to a 

powerful LLM, by default GPT 4, to evaluate an 

answer either against ground truth or providing 

prompts. The following are the provided interfaces:

•	 Answer_similarity: Give a score on how similar the 

answer with respect to the ground truth.

•	 Answer_correctness: Give a score on the 

correctness of the answer with respect to the 

ground truth.

•	 Answer_relevance: Determine how relevant the 

answer is with respect to the ground truth.

•	 Relevance: Given both ground truth and context 

(for example, history of Databricks) to determine 

how relevant of the answer with respect to the 

ground truth.
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•	 Faithfulness: It evaluates only with the provided 

context with the output to determine if the claim 

can be inherited from the context.

It is understandable that the concept is challenging to 

understand at first glance. However, reviewing default prompts 

from MLflow will help answer some of the doubts you might 

have in your mind:

https://github.com/mlflow/mlflow/blob/

master/mlflow/metrics/genai/prompts/v1.py

MLflow provides these examples by default to 

ensure we give enough hints to the model. It is 

recommended that you give examples as input, but 

you can also evolve from the default ones.

Figure 10-12 shows example output of the 

similarity metric.

Figure 10-12.  Example output of MLflow metrics
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	 3.	 Evaluation data: This is the data your model is 

evaluated by. It can be a Pandas dataframe, a Python 

list, a numpy array, or an mlflow.data.dataset.

Dataset() instance. This dataset usually contains 

input dataset and ground truth labels, as shown in 

Listing 10-5.

Listing 10-5.  Example Input Dataset for Ground Truth Data

{

    "inputs": ["What is MLflow?",],

    �"ground_truth": [ "MLflow is an open-source platform for 

managing the end-to-end machine learning lifecycle. It was 

developed by Databricks, a company that specializes in big 

data and machine learning solutions. MLflow is designed to 

address the challenges that data scientists and machine 

learning engineers face when developing, training, and 

deploying machine learning models.",],

}

We have demonstrated the ability to use Databricks as a serving 

endpoint as well as the open-sourced version of MLflow to do an 

RAG application and evaluate its performance. To simplify all these 

operations, we can easily use AI Agent framework and everything shown 

in Figure 10-3. Without first understanding the core pieces of operations, it 

will be easy to think that Databricks is a lock-in platform, but in fact, it is an 

open platform. All the tools are built upon the basic components discussed 

earlier.

After looking at the RAG Applications, we will look into the Fine-

Tuning API.
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�Mosaic AI Fine-Tuning API
In the world of LLMs, the cost of training and the hardware requirements 

increase as the stage moves from prompt engineering all the way to 

pre-training. Not only that but the technical knowledge required also 

increases. Table 10-3 illustrates the skills requirements as well as hardware 

requirements for each stage.

Table 10-3.  Role and Hardware Requirements for Each Step of the 

GenAI Journey

Prompting RAG Fine-Tuning Pre-Training

Role English Data Engineers Data Scientists Research Scientists

Hardware CPU CPU GPU GPU clusters

According to Open AI, fine-tuning lets you get more out of the models 

available by providing:

•	 Higher-quality results than prompting

•	 Ability to train on more examples than can fit in 

a prompt

•	 Token savings due to shorter prompts

•	 Lower-latency requests

Referencing Table 10-3, understanding the resources and skills 

requirement as well as the training dataset, one should consider tweaking 

the prompt before getting into fine-tuning. It is necessary to gather more 

ground truth data for the model so the fine-tuned model can provide a 

more accurate response to a specific topic.
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As the name suggests, fine-tuning is a process to get to some specific 

knowledge faster, but it comes with a cost unless it is really needed. For 

example, the model cannot answer some specialized medical questions 

that often involve a lot of nuances only training medical professionals 

would know how to answer. Then it can be a good use case for fine-tuning.

Open AI has published a detailed guide on prompt engineering, and 

we can try these with Mosaic ML Playground:

https://platform.openai.com/docs/guides/prompt-engineering

�Fine-Tuning Example
Databricks has integrated Mosaic ML’s fine-tuning API into the platform. 

The details of the fine-tuning API can be found at the MosaicML website:

https://docs.mosaicml.com/projects/mcli/en/latest/

finetuning/finetuning.html

The advantage of integrating MosaicML with Databricks is that now 

the fine-tuned model will be supported by the Databricks platform with 

Model Serving and Model Registry, it will also be able to take advantage 

of the managed MLflow feature. Everything is integrated into a single 

environment.

Despite the warning, if you are really familiar with the process and also 

have a good dataset available, fine-tuning can achieve amazing results 

with a low cost:

https://www.databricks.com/blog/creating-bespoke-llm-ai-

generated-documentation

�Pre-Training
Pre-training is the most costly and would require the most effort to 

accomplish (https://www.databricks.com/blog/ai2-olmo-is-here). 

Because everything will be created from scratch, one must create a model 
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like traditional deep learning; only it will require perhaps billions of times 

more data and much more commodity hardware, which is not something a 

small-to-medium enterprise would want to do.

�A Case Study of AI2’s OLMo, a Truly Open-Source 
Large Language Model
The Open Language Model (OLMo) is a collaboration between Databricks 

and Allen Institute for AI, and we will examine the requirements to 

re-create this model (https://arxiv.org/pdf/2402.00838.pdf). See 

Figure 10-13.

Dataset: In traditional deep learning, the sample 

size required per category is about a few thousand. 

By comparison, the Dolma dataset is an open 

dataset of 3 trillion tokens from a diverse mix of 

web content, academic publications, code, books, 

and encyclopedic materials.

Figure 10-13.  Composition of the data used in the model training
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Model training: Because the data volume is so 

huge, it can no longer fit in one GPU, it is required 

to distribute across multiple GPUs. In section 3.1 of 

the AI2 paper, it discusses the distributed framework 

in detail.

Model architecture: A proper model architecture 

must be implemented for the model. It is not 

prebuilt like foundation models. Section 2.1 of the 

AI2 paper discusses such architecture for 1B, 7B as 

well as 65B parameters.

Hardware: This might be the most expensive and 

most difficult part to achieve. Not to mention there 

are currently very limited availability of high-

end GPUs on the market, they are reserved for 

researchers who would deliver ultimate value to the 

company.

In the OMLo model, it uses MosaicML with 27 nodes on the cluster, 

where each node consists of 8x NVIDIA A100 GPUs with 40GB of memory 

and 800Gbps interconnect. In total, 216 GPUs will be required to pretrain 

this model. Unless someone who really understands the ins and outs of 

LLMs as well as there is high ROI on these projects, organizations usually 

stop their GenAI journey at fine-tuning.

�Gen AI Pricing
While the pricing of the GenAI infra is usually use per hour and can be 

found at the following Databricks websites. For information about DBU 

hours, please refer to Chapter 16.
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Model Serving:

https://www.databricks.com/product/pricing/

model-serving

https://www.databricks.com/product/pricing/

foundation-model-serving

Vector search:

https://www.databricks.com/product/pricing/

vector-search

Model training:

https://www.databricks.com/product/pricing/

mosaic-training

There is one concept that is not fully explained, which is pay per token. 

The price is per 1 million tokens. Please note that one token does not 

directly translate to one English word or certain bytes. For example, ASCII 

is 1 byte, and Unicode ranges from 1 byte to 4 bytes. The concept in LLMs 

is similar, but it is not so straightforward.

�What Are Tokens and Tokenizers?
The very short version is to split text into smaller chunks for the model 

to consume because with any model there is a capability to take in some 

text at once. Tokenizers are used to split some text into subwords, aka 

tokens. To learn more about tokenizers, please refer to this blog post from 

Huggingface: https://huggingface.co/docs/transformers/main/

tokenizer_summary.

More important, the real question is, how do we estimate how many 

tokens my input text will generate? To answer this question, we need first 

to understand what tokenizer each model is using; see Table 10-4.
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Table 10-4.  Tokenizer Used in Some Popular Large Language Models

Model Tokenizer

DBRX GPT-4

(https://www.databricks.com/blog/introducing-dbrx-

new-state-art-open-llm)

Llama 2 Bytepair encoding

(https://ai.meta.com/research/publications/llama-2-

open-foundation-and-fine-tuned-chat-models/

Section 2.2 Tokenizer)

Mistral Byte-fallback BPE tokenizer

(https://huggingface.co/docs/transformers/main/model_

doc/mistral)

MPT EleutherAI/gpt-neox-20b

(https://huggingface.co/mosaicml/mpt-30b)

Understanding the tokenizer is just the first step. While you can very 

easily load a tokenizer with one line of code, as shown in Listing 10-6, we 

also need to have a way to estimate the number of tokens we need for our 

task in order for cost estimation.

Listing 10-6.  Getting the Tokenizer from the Model

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("name-of-tokenizer")

The good news is that there are some python or JavaScript tools that we 

can utilize to estimate the number of tokens:
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Open AI: https://cookbook.openai.com/

examples/how_to_count_tokens_with_tiktoken

Llama: https://github.com/belladoreai/llama-

tokenizer-js/

Mistral: https://github.com/imoneoi/mistral-

tokenizer/

With these tools, we can easily calculate the number of tokens in input 

text to estimate the cost of using the GenAI services. Of course they can 

also be found in the system tables, but that will be after the job finishes 

running. Please refer to Chapter 16 for more information.

�Conclusion
Navigating the LLM world is very challenging, and addressing those 

blockers with the right solution is something that requires careful 

consideration, especially from an ML lifecycle perspective. The Databricks 

GenAI stack provides a powerful solution for accelerating machine 

learning and AI capabilities at competitive pricing points. Databricks 

provides flexibility and customization options that traditional ML 

platforms lack or provide at a higher price. With the GenAI capabilities 

in Databricks, organizations can focus on creating value, whether it is 

managing data, tracking experiments, packaging code, or deploying 

models into Unity Catalog, thereby streamlining the entire LLM life cycle 

with governance.
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CHAPTER 11

Large Language 
Model Operations
We discussed machine learning operations (MLOps) in an earlier chapter. 

In this chapter, we will discuss a similar topic called large language model 

(LLM) operations. This chapter has certain similarities with the chapter on 

generative AI (GenAI), but we will mainly focus on the operations part of 

machine learning and the benefits of it as a practice. We will also dive deep 

into using different techniques and libraries in the industry to perform 

these operations, which Databricks also supports.

MLOps and LLMOps are related but distinct concepts in artificial 

intelligence (AI) and machine learning (ML). Here's a brief overview 

of each.

�Machine Learning Operations
MLOps aims to streamline the machine learning life cycle by combining 

machine learning practices and DevOps. In the previous chapter, we 

discussed the MLOps stack from Databricks, which combines ML 

templates and DevOps templates that are ready to deploy. This section will 

revisit the roles and responsibilities as well as the end goal for MLOps.

https://doi.org/10.1007/979-8-8688-0444-1_11#DOI
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•	 Collaboration and communication between data 

scientists and ML engineers

•	 Using CI/CD workflow (GitHub actions, Azure DevOps) 

to automate the ML life cycle, including feature 

engineering, model training, and deployment along 

with infrastructure as code

•	 Version control and management of ML models and 

data (features)

•	 Continuous integration and delivery (CI/CD) of ML 

models, including Model Serving

•	 Monitoring of ML model performance, including data 

drift, model drift, concept drift, etc., using Lakehouse 

Monitoring

�Large Language Model Operations
It is only a natural transition with the historical singular focus on LLMs that 

large language model operations (LLMOps) ensures we are doing the right 

things when handling the huge amount of data and model outputs. LLMs 

are complex AI models that require significant computational resources, 

data, and expertise to develop, deploy, and maintain. Everything from the 

cost to the curation of data and ensuring few mistakes are made is crucial 

to the project’s success. LLMOps builds upon MLOps principles and adds 

additional considerations, such as the following:

•	 Scalability and performance optimization for large 

models and datasets, mainly for cost reasons

•	 Specialized software and hardware requirements (e.g., 

GPUs, MosaicML)
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•	 Advanced techniques for model pruning, knowledge 

distillation, and inference optimization (e.g. Mixture- 

of-Expert)

•	 Application of the model, such as chatbots, search 

engines, and recommendation systems

In summary, building on the foundation of MLOps, LLMOps is a suite 

of specialized tools focused on handling the unique challenges of LLMs 

including prompting, RAG, fine-tuning, and pre-training. Figure 11-1 

outlines the flow and toolings required for LLMOps.

Figure 11-1.  LLMOps
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�Components of LLMOps
First, let’s review the components required to make LLMOps successful. 

While some of these components are similar to MLOps, as the volume of 

data increases, the process has become data-centric instead of model- 

centric. In other words, in MLOps, the goal was to test as many models 

as possible, but in LLMOps, a lot of work will go into ensuring the data is 

high-quality.

•	 Exploratory data analysis (EDA): As discussed in 

the previous chapter, Databricks offers a few different 

ways to perform EDA, including YData profiling (which 

supports both Pandas and Spark) as well as dbutils. 

For LLM, specialized tools are required to handle large 

amounts of data. Databricks acquired Llacai, which 

allows you to visualize and clean up data easily. We will 

discuss the usage of these tools later in this chapter.

•	 Prompt engineering: There are two tasks in prompt 

engineering. One is to write prompts, which are 

instructions to the LLM. The engineering part is to 

understand the capabilities of the LLM and ensure 

the prompts are generating meaningful outputs, as 

well as utilizing tools like LangChain for templating 

and creating a chain of thoughts process. Although 

prompt engineering is the first step, prompt quality, 

aka providing clear instructions and detailed steps for 

the question or an evaluation process, will greatly help 

the LLM to provide a good answer. And as the context 

length increases, people are starting to put very long 

pages of instructions for their prompt.
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•	 Retrieval augmented generation (RAG): Prompt 

engineering is a way to instruct the model to search for 

the knowledge you want. But like humans, LLMs are 

also limited to the knowledge that’s exposed to them 

during training time. Things like company-specific 

information not publicly available on the Internet will 

not be available in the models. Hence, the process 

of RAG is to update the model by providing extra 

information such as PDFs or PowerPoints. This is the 

process of RAG.

Figure 11-2 shows a typical RAG workflow.

Figure 11-2.  Typical workflow of RAG

•	 Vector database

Vectors or embeddings are an essential part of the 

RAG process. They are numerical representations 

of the data. To answer a question, similarity search 

is often used. There are a few terms we need to 

consider:

•	 Vector index: A specialized data structure 

optimized to facilitate similarity search within a 

collection of vector embeddings. It is read-only and 

needs to be rebuilt when content changes.
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•	 Vector library: A tool to manage vector 

embeddings and conduct similarity searches. They 

predominantly:

•	 Operate on in-memory indexes.

•	 Focus solely on vector embeddings, often 

requiring a secondary storage mechanism for 

the actual data objects.

•	 Vector database:

•	 Store both the vector embeddings and the 

actual data objects, permitting combined vector 

searches with advanced filtering.

•	 Offer full CRUD (create, read, update, delete) 

operations, allowing dynamic adjustments 

without rebuilding the entire index.

•	 Are generally better suited for production-

grade deployments due to their robustness and 

flexibility.

Databricks offers vector search backed by the serverless architecture 

and provides the vector index service, combined with Unity Catalog and 

Delta tables, which can be served as a database. It offers the following 

advantages:

•	 Auto-syncs with the source Delta table

•	 Columns in Delta table are filters

•	 Unity Catalog governance and lineage

•	 Integrated with Model Serving for embedding 

generation
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Figure 11-3 shows a sample workflow for an RAG application, which 

combines feature and function serving.

Figure 11-3.  Workflow of RAG in Databricks

•	 Model fine-tuning: If we use the previous analogy, 

prompting is similar to seeking help from a consultant 

and providing clear instructions to them, assuming 

they have existing knowledge. RAG is the process of 

giving them extra documents or reference materials to 

enhance their knowledge. Sometimes, these are not 

enough because of a brand new domain. For example, 

an LLM might not be trained with highly specialized 

medical knowledge. That’s when we need to provide 

a lot more datasets but still a relatively small amount 

compared to pre-training, for the fine-tuning process. 

Instead of prompting and RAG using the existing 

model, the fine-tuning process will create a new LLM 

from the base models. For example, DBRX base versus 

DBRX Instruct are two different models.
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•	 Model pre-training: Model pre-training is a process 

of creating an LLM from scratch. In Chapter 13, we 

will discuss how Databricks trained DBRX using 

the platform available to customers. The difference 

between “pre-training” and “model training” in 

traditional machine learning is that the base model 

that’s pre-trained often needs to be enhanced or fine- 

tuned. The output of this process is a base model, e.g., 

DBRX base.

•	 Model evaluation with human feedback: As opposed 

to using standard metrics like F1 and R2 scores, 

evaluating LLMs is more challenging and constantly 

evolving, primarily because LLMs often demonstrate 

uneven capabilities across different tasks. An LLM 

might excel in one benchmark, but slight variations 

in the prompt or problem can drastically affect its 

performance. Just think about it: not everyone gets 

the same result from Google. That’s why in addition to 

new evaluation suites coming out every now and then, 

usually when a new company releases a new LLM, they 

will release a new suite.

However, even machine learning models require human feedback, 

and LLM is even more so. That’s why Databricks MLflow comes with 

an interface for human evaluation. And application developers should 

purposely develop a feedback mechanism to collect user feedback.

•	 Model packaging and deployment: Similar to the 

MLOps pipeline, LLMOps also consists of various 

components, such as the mode API, RAG pipeline, and 

prompt engineering templates.
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•	 Model Serving and inference: After we have 

developed and deployed a great new model, the 

last step is to serve it as an API endpoint and start 

generating outputs, aka inferencing. Databricks Model 

Serving and the MLflow deployment server (formerly 

AI gateway) can be used to standardize model API 

interfaces for real-time inference, and Spark can be 

leveraged to do offline distributed inference.

�Deep Dive into Each Process
In Chapter 12, we discuss how these processes can be applied. However, 

there are often details beyond the chat window that we need to pay 

attention to when transitioning from an LLM user to an LLM application 

developer. This section is designed to get you started with these concepts.

�Prompt Engineering
As discussed in the previous section, good prompt engineering involves 

giving clear instructions to a consultant to execute your task. When you 

give instructions, you might start with a few sentences, but you rarely end 

with that and expect high-quality outcomes. The key lies in providing clear 

and concise instructions.

�Prompt Templates

While ancient knowledge is transferred by word of mouth, modern 

knowledge can be placed into a template. The purpose of templating is 

to allow best practices to be captured in a repeatable form so everyone 

can take advantage of it. A simple example is “What is the {input_model} 

model?” where “model” can be any machine learning model. We can 

consider using LangChain for this purpose, as shown in Listing 11-1.
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Listing 11-1.  Prompt Template with LangChain

import os

import openai

from openai import OpenAI

from langchain import PromptTemplate

client = OpenAI(

    api_key="databricks-api-token",

    �base_url="https://adb-xxxxxxxxx.xx.azuredatabricks.net/

serving-endpoints"

)

template = PromptTemplate(

    input_variables=["input_model"],

    template="What is {input_model} model?"

)

prompt=template.format(input_model="Mixture of Expert")

response = client.chat.completions.create(

    messages = [{"role": "user", "content": prompt}],

    model="databricks-dbrx-instruct",

    max_tokens=256

)

generated_text = response.choices[0].message.content

# Use the generated text in your Databricks workflow

print(generated_text)

Please note that because we are hitting a Foundation Model API as an 

endpoint, we don’t need a Databricks cluster to run the previous code. We 

can easily execute the previous code in a Python notebook on our local 

machine, as shown in Listing 11-2.
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Listing 11-2.  Actual Output from Python Code

A Mixture of Expert (MoE) model is a type of machine learning 

model that is composed of several "expert" models, each of 

which specializes in handling a particular subset of the data. 

These expert models are weighted and combined together using 

a "gating" mechanism, which determines how much each expert 

should contribute to the final prediction. This allows the MoE 

model to effectively handle a wide variety of data and make 

more accurate predictions.

�Chain of Thoughts

Clear communication means creating a good prompt template, and 

creating step-by-step instructions will greatly help the LLM to provide a 

high-quality answer. This process is called chain of thoughts (https://

arxiv.org/abs/2201.11903), as shown in Listing 11-3.

Listing 11-3.  Chain of Thought Template

Think step by step and explain your reasoning:

{input}

Step 1: {question_1}

{answer_1}

Step 2: {question_2}

{answer_2}

Step 3: {question_3}

{answer_3}

Final Answer: {final_answer}

Providing step-by-step instructions, as shown in https://arxiv.org/

abs/2201.11903, has been proven to increase an LLM’s performance.
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�Retrieval Augmented Generation
As mentioned, to update an LLM with new knowledge, we need to conduct 

a similarity search with the text converted to vector form. Databricks 

provides all the components discussed earlier, aka vector index, vector 

library, and vector database.

A vector index can be conveniently created on the user interface on 

any table that is Unity Catalog enabled. As illustrated in Figure 11-4, an 

index can be created by going into the table interface itself by clicking the 

Create button.

Figure 11-4.  Creating a vector search index

The index creation has different options, as shown in Figure 11-5.
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Figure 11-5.  Creating a vector search index UI

•	 The primary key can be used to identify unique 

embedding entries so it will not create duplicates.

•	 The endpoint is the vector search endpoint, which is 

serverless compute, that can be used to compute the 

embedding or perform similarity search.

•	 “Embedding source column” can be used to generate 

embedding based on a text-based column, but for 

binary (e.g., PDF or images), embeddings can be stored 
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in a column in a Delta table. The column type must 

be array<float>, array<double>, array<int>, 

array<byte>).

•	 Databricks provides a bge-large-en model for 

embedding purposes. Embedding is a way to 

convert a text column to a vector. The BGE model 

from the University of Science and Technology of 

China specializes in natural language embedding. 

According to the BGE paper (https://arxiv.org/

pdf/2402.03216), the model’s features can be found in 

Figure 11-6.	

Figure 11-6.  bge-large-en model features

	 However, please note that this is optimized for text 

embedding, so if you need other embeddings, you 

might want to use a different model. The following link 

shows a list of Databricks curated models:
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	 https://www.databricks.com/product/machine-

learning/large-language-models-oss-guidance

	 For a deep dive into the text-embedding, please refer to 

the Massive Text Embedding Benchmark (MTEB) from 

Huggingface:

	 https://huggingface.co/blog/mteb

•	 Finally, you can choose to sync the index, which is 

the embedding column back by a Delta table, back to 

a vector Databricks vector search, a vector database 

optimized to store and retrieve embeddings. See 

Figure 11-7.	

Figure 11-7.  Using Databricks to calculate embeddings

You can choose to calculate the embedding automatically or provide 

a precalculated column and optionally sync the embedding into the 

vector database (Databricks vector search). As discussed, having a vector 

database optimizes the way similarity search is calculated and hence 

enhances the performance of RAG. See Figure 11-8.
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Figure 11-8.  Precalculating the embeddings

�Model Fine-Tuning
Usually, the steps in machine learning operations are required from end 

to end to ensure the best model is selected and the model is performing 

well. In LLMOps, however, most of the time it is sufficient to stop at 

RAG because high-quality prompt engineering and high-quality RAG 

are usually enough to get quality output on something that the model is 

trained for. But if the model is not trained on something specific, like the 

healthcare domain, and you want to ensure the model can adapt to the 

new domain, we will need to consider fine-tuning the model.

This is usually more costly and time-consuming than RAG, but from 

the deployment perspective, it becomes easier. Consider DBRX-base and 

DBRX-Instruct, where the latter is a fine-tuned model but we don’t need to 

worry about maintaining the embedding and vector database.

Unlike RAG, fine-tuning is a model training process, which can 

consume a lot of resources. We must have a good understanding of the 

architecture of the neural network (large language model is a neural 

network) in order to train it properly.

An example using DeepSpeed for fine-tuning can be found here, which 

can take advantage of multiple GPUs for more resource-intensive tasks:

https://github.com/databricks-academy/large-language-models
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Alternatively, a less resource intensive method is called parameter- 

efficient fine-tuning (PET) can also be used to fine-tune an LLM, the 

approaches are called LoRA, QLoRA, or IA3. Databricks has provided 

detailed discussions here:

https://www.databricks.com/blog/efficient-fine-tuning-lora-

guide-llms

�Model Pretraining
Pre-training is the most costly and would require the most effort to 

accomplish. Because everything will be created from scratch, one must 

create a model like traditional deep learning; only it will require perhaps 

billions of times more data and much more commodity hardware, which is 

not something a small-to-medium enterprise would want to do.

�A Case Study of AI2’s OLMo, a Truly 
Open-Source Large Language Model
The Open Language Model (OLMo), , is a collaboration between 

Databricks and Allen Institute for AI (https://arxiv.org/

pdf/2402.00838.pdf). We will examine the requirements to re-create 

this model.

Dataset: In traditional deep learning, the sample 

size required per category is about a few thousand. 

By comparison, the Dolma dataset is an open 

dataset of 3 trillion tokens from a diverse mix of 

web content, academic publications, code, books, 

and encyclopedic materials (see Figure 11-9).	
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Figure 11-9.  Text content of the 3 trillion tokens (about 1 
trillion words)

Model training: Because the data volume is so 

huge, it can no longer fit in one GPU; it is required 

to distribute across multiple GPUs. In section 3.1 of 

the AI2 paper, it discusses the distributed framework 

in detail.

Model architecture: A proper model architecture 

must be implemented for the model. It is not 

prebuilt like foundation models. Section 2.1 of the 

AI2 paper discusses such an architecture for 1B, 7B, 

and 65B parameters.

Hardware: This might be the most expensive and 

most difficult part to achieve. Not to mention, there 

is currently very limited availability of high- 

end GPUs on the market; they are reserved for 

researchers who would deliver ultimate value to the 

company.

The OMLo model uses MosaicML with 27 nodes on the cluster, each 

consisting of 8x NVIDIA A100 GPUs with 40GB of memory and 800Gbps 

interconnect. In total, 216 GPUs will be required to pretrain this model. 
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Unless someone really understands the ins and outs of large language 

models and there is high ROI on these projects, organizations usually stop 

their GenAI journey at fine-tuning.

For further information, please refer to Chapter 13 where we discuss in 

great length how Databricks pretrained a model from scratch.

�Model Governance
Let’s discuss model governance.

�MLflow Deployments Server

Databricks MLflow provides a deployment server (formerly AI gateway) 

for us to manage, govern, evaluate prompts, and switch models easily. 

Figure 11-10 illustrates how MLflow AI gateway is a bridge between LLMs 

and their use cases.

Figure 11-10.  Illustration of MLflow deployment gateway
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MLflow Deployments Server reduces the management overhead of 

managing multiple credentials for premium LLMs that would otherwise 

require different API keys. It also unifies different model inputs and 

outputs together to abstract the complexities behind the scenes to 

transform the input and parse the output.

For a list of supported models, please refer to the following:

https://mlflow.org/docs/latest/llms/deployments/index.

html#providers

The credentials can also be managed in Databricks Model Serving. 

However, the advantage of MLflow is open source and not vendor-specific. 

On the Serving tab of Databricks sidebar, you can create a serving endpoint 

with stored credentials, as shown in Figure 11-11. In Figure 11-12, we can 

choose an entity that we want to serve.

Figure 11-11.  Creating a serving endpoint
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Figure 11-12.  Selecting a served entity, then saving the credentials

Once a model is chosen, we can then enter the credentials; they can be 

retrieved from a secret store for the best of security. See Figure 11-13.

Figure 11-13.  An API key secret can be associated with a 
model entity
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Prompt evaluations can be done in two different ways; the most 

obvious way is of course evaluating prompts, which can be done using 

MLflow or Databricks’ playground. But that does not allow you to do it at 

scale or understand the capabilities of the model. Standard benchmarks 

will provide greater insights into the model’s strength. The most popular 

evaluation suites include but are not limited to the following:

•	 AI2 Wildbench (https://github.com/allenai/

WildBench)

	 AI2 Wildbench is a carefully curated collection of 1,024 

hard tasks from real users, which cover common use 

cases such as code debugging, creative writing, and 

data analysis. For more details of the dataset, please 

refer to the following page: https://huggingface.co/

datasets/allenai/WildBench

•	 EluetherAI LM Evaluation Harness (https://github.

com/EleutherAI/lm-evaluation-harness)

	 A holistic framework that assesses models on more 

than 200 tasks, merging evaluations like BIG-bench and 

MMLU, promoting reproducibility and comparability. 

It powers the popular Huggingface leaderboard 

(https://huggingface.co/spaces/HuggingFaceH4/

open_llm_leaderboard).

•	 Mosaic Model Gauntlet (https://github.com/

mosaicml/llm-foundry/blob/main/scripts/eval/

local_data/EVAL_GAUNTLET.md); see Figure 11-14	

	 Developed as part of the DBRX release by MosaicML, 

using an aggregated evaluation approach, categorizing 

model competency into six broad domains 

(shown below) rather than distilling to a single 

monolithic metric.
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Figure 11-14.  Mosaic AI Model Gauntlet

�LLM as a Judge
While human evaluation is powerful, LLM performance is being evaluated 

in domains where text is scarce or there is a reliance on subject-matter 

expert knowledge. In such scenarios, evaluating LLM output can be 

costly and time-consuming. For example, imagine gathering a group of 

medical specialists together to evaluate the correctness of an open-heart 

procedure. It will certainly not be easy.

Leveraging LLM as a judge is an idea to use a powerful model, say 

GPT4, to evaluate the performance of a fine-tuned, smaller domain- 

specific model. So often, organizations choose to deploy open-source 

alternatives to production to save costs. This is an opportunity to leverage 

a more powerful model in a limited capacity to ensure high quality. On 
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the other hand, given enough examples, an LLM can also perform judging 

by itself like a machine learning model. The idea is to use judging in a 

systematic way to evaluate. See Listing 11-4.

Listing 11-4.  Using LLM as a Judge

from mlflow.metrics.genai import EvaluationExample, answer_

similarity

# Create an example to describe what answer_similarity means 

like for this problem.

example = EvaluationExample(

    input="What is MLflow?",

    �output="MLflow is an open-source platform for managing 

machine "

    �"learning workflows, including experiment tracking, model 

packaging, "

    �"versioning, and deployment, simplifying the ML 

lifecycle.",

    score=4,

    �justification="The definition effectively explains what 

MLflow is "

    �"its purpose, and its developer. It could be more concise 

for a 5-score.",

    grading_context={

        �"targets": "MLflow is an open-source platform for 

managing "

        �"the end-to-end machine learning (ML) lifecycle. It was 

developed by Databricks, "

        �"a company that specializes in big data and machine 

learning solutions. MLflow is "

Chapter 11  Large Language Model Operations



279

        �"designed to address the challenges that data 

scientists and machine learning "

        �"engineers face when developing, training, and 

deploying machine learning models."

    },

)

# Construct the metric using OpenAI GPT-4 as the judge

answer_similarity_metric = answer_similarity(model="openai:/

gpt-4", examples=[example])

Figure 11-15 shows the result of the judging.

Figure 11-15.  Judging results

�Model Packaging and Deployment
By now, you have learned how to develop an application using LLM and 

evaluate its performance interactively. Similar to MLOps, once we finish 

developing the machine learning model, we need to pack and deploy it via 

MLflow so the model can be reused.
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MLflow offers several different standardized interfaces for LLM, 

including Huggingface, OpenAI, SBERT.net, and LangChain. With the 

standard interfaces, we can perform standard logging and monitoring like 

we do with ML models. You can also pack the pipeline into a PyFunc and 

make it easy for inference.

�LangChain Flavor with MLflow

We talked about prompt engineering, we discussed using LangChain to 

create a prompt template. Let’s take a look at how to pack this with MLflow 

and deploy it into production.

In the previous example, instead of separating the model for 

inference, we can use LangChain to chain both the prompt template and 

a model together. Of course, a chain can contain a lot more than these 

two components; we are just examining a quick start scenario here (see 

Listing 11-5).

Listing 11-5.  Chaining an LLM and a Prompt Together

chain = LLMChain(llm=client, prompt=prompt)

In the “Prompt Engineering” section, the client is using an OpenAI 

interface. However, when chaining it with LangChain, we need to use the 

LangChain interface. Listing 11-6 illustrates how to use the LangChain 

interface in the code. Databricks documentation provides various ways to 

interact with the models; a quick reference can be found here: https://

docs.databricks.com/en/machine-learning/model-serving/score-

foundation-models.html#query-a-chat-completion-model.

Listing 11-6.  Using LangChain to Process a Prompt

from langchain.llms import Databricks

from langchain_core.messages import HumanMessage, SystemMessage
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def transform_input(**request):

  request["messages"] = [

    {

      "role": "user",

      "content": request["prompt"]

    }

  ]

  del request["prompt"]

  return request

llm = Databricks(endpoint_name="databricks-dbrx-instruct", 

transform_input_fn=transform_input)

Next we can chain the LLM and prompt together. See Listing 11-7.

Listing 11-7.  Chaining an LLM and a Prompt Together After 

Delcaration

prompt = PromptTemplate(

    input_variables=["input_model"],

    template="What is {input_model} model?"

)

chain = LLMChain(llm=llm, prompt=prompt)

With the previous chain, we can then log the chain like how we do it in 

ML models using MLflow. See Listing 11-8.

Listing 11-8.  Logging a LangChain Model

mlflow.set_experiment("/Users/jason.yip@tredence.com/

DatabricksDIP")

with mlflow.start_run():

    �model_info = mlflow.langchain.log_model(chain, 

"langchain_model")
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Now once the model is logged, we can load it back using the PyFunc, 

as shown in Listing 11-9.

Listing 11-9.  Loading a PyFunc model from the logged LangChain

loaded_model = mlflow.pyfunc.load_model(model_info.model_uri)

answer = loaded_model.predict({"input_model": "Mixture of 

Expert"})

print(answer[0])

The model can now be accessed; view the Experiments tab on the 

sidebar. Inside the experiment, it also contains various tabs that are 

standard across all MLflow projects. See Figure 11-16 and See Figure 11-17.

Figure 11-16.  Model logged by MLflow, Overview tab
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Figure 11-17.  Binaries of our logged model, Artifacts tab

�Conclusion
In this chapter, you learned about the differences between MLOps and 

LLMOps. While the life cycle is similar to each other, the focus on LLMOps 

is more about newly introduced components like vector indexes or a 

LangChain/Huggingface pipeline. Rarely do we need to train a new large 

language model like in machine learning. Instead, we take a pre-trained, 

aka base model, to enhance its knowledge by using retrieval augmented 

generation technique or fine-tuning a model by providing a domain-specific 

dataset. If there is a need to pre-train a model from scratch, Databricks’ 

MosaicML platform is also capable of handling such a demanding task.

Finally, we can also use Databricks MLflow to continue packaging 

the LLMOps pipeline into artifacts and deploying it into production. 

However, we have to decide which flavor we want to use the model in for 

compatibility purposes. Databricks Model Serving and batch inference 

capabilities can be used to consume the model and generate outputs.

In the next chapter, we will put these components into practice and 

create a chatbot using the RAG technique.
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CHAPTER 12

Mosaic AI Agent 
Framework: Creating 
Quality AI Agents
In this chapter, we will discuss the secret weapon for updating a large 

language model (LLM) with custom unstructured data, like PDF or 

PowerPoint. While most applications allow you to build a bot or GPT 

very easily, enterprises are looking for ways to evaluate the quality of the 

chatbot. This is where the AI Agent Framework comes in. We will not only 

discuss how to deploy a chatbot from end to end, but how to evaluate it 

with an LLM as a Judge or human feedback. These metrics will ensure data 

scientists who are already familiar with MLflow will be able to transition to 

LLM evaluation easily.

Without a doubt, there are a lot of components involved in setting up 

an application with a Retrieval Augmented Generation (RAG) workflow.

Databricks has simplified the deployment of this infrastructure by 

providing an accessible Python package via MLflow to get users up and 

running without a lot of manual intervention. More than that, the Mosaic 

AI Agent Framework also provides continuous logging and allows users 

to deploy a user interface to gather feedback, putting it all together so 

it can iterate quickly and get to business values in less time. Figure 12-1 

demonstrates this simplified workflow.

https://doi.org/10.1007/979-8-8688-0444-1_12#DOI
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Figure 12-1.  AI Agent Framework workflow

The AI Agent Framework supports unified logging, parameterizing, 

and tracing chains between the development and production and 

simplified UI deployment.

Let’s do a walkthrough of a RAG application using the AI Agent 

Framework to see the differences.

Here are the main features that comes AI Agent Framework:

•	 Python dictionary or YAML file parametrization allows 

different configurations of a chain (prompt template, 

model and model config, etc.) for the selection of 

champion config

•	 MLflow logging on the model artifacts, and experiment 

tracking on evaluation metrics as well as deployment
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�Part 0: The Installations
The Mosaic AI Agent Framework is conveniently packaged as a Python 

library and can be installed, along with other libraries, using the command 

shown in Listing 12-1.

Listing 12-1.  AI Agent Framework Installations

%pip install -U -qqqq databricks-agents mlflow langchain==0.2.1 

langchain_core==0.2.5 langchain_community==0.2.4

The framework can then be referenced using the imports shown in 

Listing 12-2.

Listing 12-2.  Imports for AI Agent Framework

import os

import mlflow

from databricks import agents

# Use the Unity Catalog model registry

mlflow.set_registry_uri('databricks-dip')

�Part 1: LangChain Parametrization
Next, we need to provide our configuration so we can iterate different 

settings of our model. Adding mlflow.models.ModelConfig in MLflow 

allows settings to be configured easily using Python or YAML, as shown in 

Listing 12-3 and Listing 12-4.
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Listing 12-3.  Model Config with Python

config_dict = {

    �"prompt_template": "You are a hello world bot.  Respond 

with a reply to the user's question that is fun and 

interesting to the user.  User's question: {question}",

    "prompt_template_input_vars": ["question"],

    "model_serving_endpoint": "databricks-dbrx-instruct",

    "llm_parameters": {"temperature": 0.01, "max_tokens": 500},

}

model_config = mlflow.models.ModelConfig(development_

config=config_dict)

Listing 12-4.  Model Config with YAML

llm_parameters:

  max_tokens: 500

  temperature: 0.01

model_serving_endpoint: databricks-dbrx-instruct

prompt_template: 'You are a hello world bot.  Respond with a 

reply to the user''s

  �question that indicates your prompt template came from a YAML 

file.  Your response

  �must use the word "YAML" somewhere.  User''s question: 

{question}'

prompt_template_input_vars:

- question

The config dictionary/file can then be used as shown in Listing 12-5.
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Listing 12-5.  Model Config Usage

config_file = "configs/rag_config.yaml"

model_config = mlflow.models.ModelConfig(development_

config=config_file)

model_config.get("prompt_template")

Model_config allows us to reuse the chain as it is without having to 

duplicate code. The YAML file can be used with any value that conforms 

the same chain setting, making it highly flexible.

�Part 2: MLflow Evaluation
The Mosaic AI Agent Framework has extended the custom metric list and 

included a lot of new metrics. Similar to standard MLflow, these metrics 

will be computed automatically and logged on the Model Metrics tab in 

the experiment (see Figure 12-2).

Figure 12-2.  Model metrics tab from MLflow Experiment
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In Chapter 10, we discussed the model_type parameter for evaluation, 

the Mosaic AI Agent Framework introduced a new model type called 

databricks-agent. See Listing 12-6.

Listing 12-6.  databricks-agent model_type for Evaluation

    eval_results = mlflow.evaluate(

        data=eval_set_df,

        model=logged_chain_info.model_uri,

        model_type="databricks-agent",

    )

AI Agent framework also introduced new custom metrics as MLflow  

extension. The two types include LLM as a Judge and system statistics. 

•	 Aggregated metric values across the entire 
evaluation set: Each row of the evaluation set is passed 

into an LLM, and a rating will be given on each output 

or given ground truth, or an expected retrieval context 

is provided (aka the document name). A full list of 

metrics is available in Databricks documentation:

	 https://docs.databricks.com/en/generative-ai/

agent-evaluation/llm-judge-metrics.html

	 With the numeric ratings provided by the LLM judge, 

we can now expect similar metrics in traditional 

machine learning like precision and recall.

•	 Data about each question in the evaluation set: Each 

row of the input will have an output rated, including 

but not limited to groundedness, correctness, relevancy 

to query and chunk, and chain statistics.

Chapter 12  Mosaic AI Agent Framework: Creating Quality AI Agents

https://doi.org/10.1007/979-8-8688-0444-1_10
https://docs.databricks.com/en/generative-ai/agent-evaluation/llm-judge-metrics.html
https://docs.databricks.com/en/generative-ai/agent-evaluation/llm-judge-metrics.html


291

By default, all metrics will run during evaluation using mlflow.

evaluate(), but they can be set in the YAML file to optionally run them. 

See Listing 12-7 for an example.

Listing 12-7.  Metrics for Evaluation

builtin_assessments:

     - groundedness

     - correctness

     - relevance_to_query

     - chunk_relevance

Then run the evaluation harness; just run the input dataset with 

mlflow.evaluate. See Listing 12-8.

Listing 12-8.  MLflow Evaluation

evaluation_results = mlflow.evaluate(

    data=eval_set_with_chain_outputs_df,

    model_type="databricks-agent",

)
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The input dataset has the schema shown in Table 12-1.

Table 12-1.  Input Evaluation Dataset Schema

Key Type Description

request_id string Unique identifier of this row in the evaluation set.

request string Input to the chain to evaluate, e.g., the user’s 

question/query such as “What is RAG?”

expected_

retrieved_

context

array** An array of objects containing the expected 

retrieved context for the request.

expected_

response

string The ground truth (i.e., correct) answer to request.

response string The response generated by the chain being 

evaluated.

retrieved_

context

array** The retrieval results generated by the retriever 

in the chain being evaluated. If multiple retrieval 

steps are in the chain, this should be the retrieval 

results that were put into the LLM’s prompt.

trace MLflow trace MLflow Trace with the Chain’s outputs.

** The expected_retrieved_context and retrieved_context arrays expect 
each array element to be a dictionary with the keys shown in Table 12-2.
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Table 12-2.  Array Structure from Table 1’s Parameters

Key Type Description

content string The contents of the retrieved context. Can be any string 

regardless of formatting e.g., HTML, Plain Text, Markdown, 

etc.

doc_uri String Unique identifier (URI) of the parent document where the 

chunk came from.

e.g. dbfs:/Volumes/databricks_doc/spark.pdf

Table 12-3.  Metrics for Different Levels of Datasets

Level A Level B Level C

Required data - Input Dataset

Evaluation set: request ✓ ✓ ✓

Evaluation set: expected_response X ✓ ✓

Evaluation set: expected_retrieved_context X X ✓
(continued)

Based on this input schema, we can specify three different levels of 

parameters, and at each level, a subset of the metrics will be computed 

automatically. See Table 12-3.
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Level A Level B Level C

Supported metrics - output metrics

response/llm_judged/relevance_to_query_rating ✓ ✓ ✓

response/llm_judged/harmfulness_rating/average ✓ ✓ ✓

retrieval/llm_judged/chunk_relevance_precision/

average

✓ ✓ ✓

response/llm_judged/groundedness_rating/average ✓ ✓ ✓

chain/request_token_count ✓ ✓ ✓

chain/response_token_count ✓ ✓ ✓

chain/total_token_count ✓ ✓ ✓

chain/input_token_count ✓ ✓ ✓

chain/output_token_count ✓ ✓ ✓

Customer-defined LLM judges ✓ ✓ ✓

response/llm_judged/correctness_rating/average X ✓ ✓

retrieval/ground_truth/document_recall/average X X ✓

retrieval/ground_truth/document_precision/average X X ✓

Table 12-3.  (continued)

�Part 3: Model Development
The AI Agent Framework provides an easy interface to deploy a chatbot as 

a review app for human feedback leveraging the chain that was just built. 

But before we dive into the app, as discussed in Chapter 11, we need to 

develop our model, in the case of a LangChain pipeline, and log the model 

as artifacts by using the mlflow.langchain.log_model() function. See 

Listing 12-9.
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Listing 12-9.  Model Logging with LangChain

with mlflow.start_run():

    # Log the chain code + config + parameters to the run

    logged_chain_info = mlflow.langchain.log_model(

        lc_model=chain_notebook_path,

        �model_config=baseline_config,  # The configuration to 

test - this can also be a YAML file path rather than a 

Dict e.g., `chain_config_path`

        artifact_path="chain",

        input_example=input_example,

        example_no_conversion=True,

        extra_pip_requirements=[

            "databricks-agent"

        ],

    )

There is an important difference between the RAG artifacts compared 

to normal MLflow artifacts. By default, MLflow will “pickle” the LangChain 

objects, but as the complexity of the chain grows, often this process 

will fail. For more information, please refer to the FAQ section of the 

LangChain flavor of MLflow:

https://mlflow.org/docs/latest/llms/langchain/index.html#faq

So instead of “pickling” the chain, the AI Agent Framework opted to 

log the artifacts as code. That’s why in the log_model() function, there 

is an lc_model parameter, which basically specifies the path of the chain 

notebook. While converting the notebook to a Python file is not needed, 

the notebook is required to support Python-only code. Otherwise the log 

will not be able to run successfully. An inspection of the Artifacts tab in the 

experiment reveals that a Python file is taking the place of the PKL file in 

the model, as shown in Figure 12-3.
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Figure 12-3.  LangChain pipeline logged as code

Next, we will do a walkthrough of using this cutting-edge product to 

create a RAG application. Here’s what a basic chain would look like:

	 1.	 Extract a user query from messages.

	 2.	 Retrieve relevant information using vector search.

	 3.	 Format the docs returned by the retriever into 

the prompt.

	 4.	 Generate a prompt for the language model.

	 5.	 Call the model endpoint with a prompt as input.

	 6.	 Parse the output into a string format.

Listing 12-10 shows the sample code of the chain from the 

previous logic.

Listing 12-10.  Sample LangChain Pipeline

chain = (

    {

        �"question": itemgetter("messages") | 

RunnableLambda(extract_user_query_string),

        "context": itemgetter("messages")
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        | RunnableLambda(extract_user_query_string)

        | vector_search_as_retriever

        | RunnableLambda(format_context),

    }

    | prompt

    | model

    | StrOutputParser()

)

From the previous steps, the following components are configurable, 

and hence we can put them in a YAML file.

•	 Vector search endpoint/index

•	 Vector store-backed retriever (LangChain),

	 https://python.langchain.com/v0.1/docs/

integrations/vectorstores/databricks_

vector_search/

•	 Chunk template

•	 Prompt template

•	 Model endpoint

Now consider one set of YAML configurations for our purpose. To 

increase readability, we can first create a spreadsheet of these settings and 

generate YAML files at a later stage; see Table 12-4.

Table 12-4.  Template for YAML File Configurations

Vector 

search 

endpoint

Vector 

search 

index

LangChain vector 

store parameters

Chunk 

template

Prompt 

template

Model 

endpoint
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Listing 12-11 shows an example of a YAML file, which should 

correspond to one entry of Table 12-4. We will call this file rag_chain_

config.yaml.

Listing 12-11.  rag_chain_config.yaml

chat_endpoint: databricks-dbrx-instruct

chat_endpoint_parameters:

  max_tokens: 500

  temperature: 0.01

chat_prompt_template: 'You are a trusted assistant that helps 

answer questions based

  �only on the provided information. If you do not know the 

answer to a question, you

  �truthfully say you do not know.  Here is some context which 

might or might not help

  �you answer: {context}.  Answer directly, do not repeat the 

question, do not start

  �with something like: the answer to the question, do not add 

AI in front of your

  �answer, do not say: here is the answer, do not mention the 

context or the question.

  �Based on this context, answer this question: {question}'

chat_prompt_template_variables:

- context

- question

chunk_template: '`{chunk_text}`

  '

vector_search_endpoint_name: test

vector_search_index: unitygo.rag.gold_volume_databricks_

documentation_chunked_index

vector_search_parameters:
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  k: 3

vector_search_schema:

  chunk_text: chunked_text

  document_source: doc_uri

  primary_key: chunk_id

By loading the file rag_chain_config.yaml, we can derive the code 

shown in Listing 12-12 for our chain.

Listing 12-12.  Setting Up a Chat Endpoint Using a 

Configuration File

############

# Get the configuration YAML

############

model_config = mlflow.models.ModelConfig(development_

config="rag_chain_config.yaml")

############

# Connect to the Vector Search Index

############

vs_client = VectorSearchClient(disable_notice=True)

vs_index = vs_client.get_index(

    �endpoint_name=model_config.get("vector_search_

endpoint_name"),

    �index_name=model_config.get("vector_search_index"),

)

vector_search_schema = model_config.get("vector_search_schema")

############

# Turn the Vector Search index into a LangChain retriever

############

vector_search_as_retriever = DatabricksVectorSearch(

    vs_index,
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    text_column=vector_search_schema.get("chunk_text"),

    columns=[

        vector_search_schema.get("primary_key"),

        vector_search_schema.get("chunk_text"),

        vector_search_schema.get("document_source"),

    ],

).as_retriever(search_kwargs=model_config.get("vector_search_

parameters"))

############

# Required to:

# 1. Enable the Review App to properly display retrieved chunks

# 2. Enable evaluation suite to measure the retriever

############

rag.set_vector_search_schema(

    primary_key=vector_search_schema.get("primary_key"),

    text_column=vector_search_schema.get("chunk_text"),

    doc_uri=vector_search_schema.get(

        "document_source"

    �),  # Review App uses `doc_uri` to display chunks from the 

same document in a single view

)

############

# Method to format the docs returned by the retriever into 

the prompt

############

def format_context(docs):

    chunk_template = model_config.get("chunk_template")

    �chunk_contents = [chunk_template.format(chunk_text=d.page_

content) for d in docs]

    return "".join(chunk_contents)
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############

# Prompt Template for generation

############

prompt = PromptTemplate(

    template=model_config.get("chat_prompt_template"),

    �input_variables=model_config.get("chat_prompt_template_

variables"),

)

############

# FM for generation

############

model = ChatDatabricks(

    endpoint=model_config.get("chat_endpoint"),

    extra_params=model_config.get("chat_endpoint_parameters"),

)

Before we log the chain into a model, we can optionally test it 

by invoking the model. Databricks also provides an interface of the 

LangChain pipeline, so any troubleshooting can be done within the 

platform. Listing 12-13 is for testing purposes and should not be in 

production.

Listing 12-13.  Testing the Chat Endpoint

model_input_sample = {

    "messages": [

        {

            "role": "user",

            "content": "What is Spark?",

        }

    ]

}

chain.invoke(model_input_sample)
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After we invoke the code, MLflow automatically generates a tracing 

interface for the LangChain flavor via mlflow.langchain.autolog. You 

can easily see the prompts, which models and retrievers were used, which 

documents were retrieved to augment the response, how long things took, 

and the final output. Figure 12-4 demonstrates this view that will be useful 

for troubleshooting.

Figure 12-4.  LangChain trace interface

When we combine everything together in a notebook, this will become 

the file chain/model.py in the logged artifacts.

�Part 4: Deployment
The AI agent framework comes with an easy one-line chatbot deployment 

that can collect human feedback, greatly reducing the time required to 

develop an interface for humans to interact with.

First, we need to register our model. See Listing 12-14.
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Listing 12-14.  LangChain Model Registration

# Unity Catalog location

uc_model_fqn = f"{uc_catalog}.{uc_schema}.{model_name}"

# Register the model to the Unity Catalog

uc_registered_model_info = mlflow.register_model(model_

uri=logged_chain_info.model_uri, name=uc_model_fqn )

Next, the one-line deployment command looks like Listing 12-15.

Listing 12-15.  One-Line Deployment Command

deployment_info = agents.deploy(model_name=UC_MODEL_NAME, 

model_version=uc_registered_model_info.version)

Once we run the deployment command, it will take some time for 

the magic to work behind the scenes. We can check the status of the 

deployment using the command in Listing 12-16. At the end of the wait, 

the review app URL will be shown.

Listing 12-16.  Getting Deployment Status

# Wait for the Review App to be ready

print("\nWaiting for endpoint to deploy.", end="")

while w.serving_endpoints.get(deployment_info.endpoint_name).

state.ready == EndpointStateReady.NOT_READY or w.serving_

endpoints.get(deployment_info.endpoint_name).state.config_

update == EndpointStateConfigUpdate.IN_PROGRESS:

   print(".", end="")

   time.sleep(30)

print(f"\n\nReview App: {deployment_info.review_app_url}")

To retrieve the deployed endpoints in general, we can use the 

command in Listing 12-17.
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Listing 12-17.  Retrieving Review App URLs

active_deployments = agents.list_deployments()

active_deployment = next((item for item in active_deployments 

if item.model_name == UC_MODEL_NAME), None)

print(f"Review App URL: {active_deployment.review_app_url}")

Finally, following the URL, we can have a review app with a single line 

of code, but before that, we need to share the model with users so they can 

use the chatbot aka the Review App. See Listing 12-18 and Figure 12-5.

Listing 12-18.  Sharing Permission to Users to Query the Model

user_list = ["user@databricks.com"]

# Set the permissions.  If successful, there will be no 

return value.

agents.set_permissions(model_name=UC_MODEL_NAME, users=user_

list, permission_level=agents.PermissionLevel.CAN_QUERY)
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Figure 12-5.  Review app user interface

�Evaluation Example
To deliver high-quality RAG applications, Databricks recommends 

following an evaluation-driven approach to development. To start your 

development process, we suggest starting with 5 to 10 examples of 

questions that your users will expect your RAG application to answer 

correctly. Over the course of your development process, you will expand 

this evaluation set. The input schema can be found in the earlier “Part 2: 

MLflow Evaluation” section. Listing 12-19 is one example.
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Listing 12-19.  Setting the Evaluation Dataset

eval_set = [

    {

        "request_id": "97496aa16cefcde44bc4ad97f00b9f85",

        �"request": "Did GPT-4's opinion response rate increase 

or decrease by June 2023?",

        "expected_response": "Decrease", # Optional

        "expected_retrieved_context": [ # Optional

            {

                �"doc_uri": "dbfs:/Volumes/unitygo/rag/volume_

databricks_documentation/2307.09009.pdf",

            }

        ],

    }

]

After we are able to evaluate the best chain configuration, then we 

can deploy the chain as an app for human review. Once again, mlflow.

evaluate() will be used to test against the previous logged model with the 

eval set (see Listing 12-20).

Listing 12-20.  Running Evaluation of a Model Based on the 

eval Dataset

    eval_results = mlflow.evaluate(

        data=eval_set_df,

        model=logged_chain_info.model_uri,

        model_type="databricks-agent",

    )

eval_results will contain the LLM judged metrics, and we can simply 

display them or save them into a table (see Listing 12-21).
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Listing 12-21.  Visualizing the Evaluation Results

display(eval_results.tables['eval_results'].

drop(columns=["trace"]))

Alternatively, they can also be found in the MLflow UI, as shown in 

Figure 12-6.

Figure 12-6.  Evaluation metrics logged into MLflow

Deployment is only our first step; we need to collect critical feedback 

via evaluation and human feedback. Then there are quality knobs that we 

need to tune. The details of tuning the app is beyond the scope of this book 

and can be found on the Databricks’ GenAI cookbook website:

https://ai-cookbook.io/nbs/3-deep-dive.html
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�Conclusion
Mosaic AI Agent Framework’s product philosophy is underpinned by the 

following principles:

•	 Quality through metrics: Objective metrics are the 

cornerstone of quality assessment. Metrics provide 

indicators for evaluating the RAG application’s quality 

and cost/latency performance and for identifying areas 

for improvement.

•	 Comprehensive “always-on” logging: Metrics work 

best if they can be computed for any invocation of the 

RAG app. Therefore, every invocation of the app, both 

in development and in production, must be logged. 

The log must capture all inputs and outputs, as well as 

the detailed steps that transform inputs into outputs.

•	 Human feedback as the benchmark: Collecting 

human feedback is costly, but its value as a quality 

measure is unmatched. RAG Studio is designed to 

make the collection of human feedback as efficient as 

possible.

•	 LLM judges scale feedback: Utilizing RAG LLM judges 

in tandem with human feedback accelerates the 

development loop, allowing for quicker development 

cycles without subsequently scaling the number of 

human evaluators. However, RAG LLM judges are not a 

substitute but, rather, an augment to human feedback.

•	 Rapid iteration: The cycle of creating and testing new 

versions of a RAG application must be quick.
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•	 Effortless version management: Tracking and 

managing versions must be seamless, reducing 

cognitive load and letting developers concentrate 

on enhancing the application rather than on 

administrative tasks.

•	 Development and production are unified: The tools, 

schemas, and processes used in development should 

be consistent with those in production environments, 

ensuring a consistent workflow for quality 

improvement in development to deployment with the 

same code base.

�Beyond LangChain
While this chapter did a walkthrough using LangChain and leveraged the 

interface mlflow.langchain.log_model(), the AI Agent Framework is 

not limited to LangChain. The pyFunc interface is available for any Python 

model. However, there are some customizations needed.

In other words, if you are using pyFunc, Databricks recommends using 

type hints to annotate the predict() function with input and output 

data classes that are subclasses of classes defined in mlflow.models.

rag_signatures (see https://github.com/mlflow/mlflow/blob/master/

mlflow/models/rag_signatures.py).

You can construct an output object from the data class inside 

predict() to ensure the format is followed. The returned object must be 

transformed into a dictionary representation to ensure it can be serialized.
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The LangChain implementation in the MLflow source code provides 

an example of how to create such a customization:

https://github.com/mlflow/mlflow/blob/master/mlflow/

langchain/output_parsers.py

You can find a custom pyFunc model in the MLflow documentation:

https://mlflow.org/docs/latest/traditional-ml/serving-

multiple-models-with-pyfunc/notebooks/MME_Tutorial.html#2---

Create-an-MME-Custom-PyFunc-Model
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CHAPTER 13

DBRX: Creating 
an LLM from Scratch 
Using Databricks
In this chapter, we will discusse a model that Databricks trained using 

Databricks, which is called DBRX. DBRX is a state-of-the-art large 

language model (LLM) trained from scratch on the Databricks and 

MosaicML platforms. At the time of model release, it outperformed 

established open-source models on language understanding (MMLU), 

programming (HumanEval), and math (GSM8K), as shown in Figure 13-1.

https://doi.org/10.1007/979-8-8688-0444-1_13#DOI
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Figure 13-1.  DBRX performance versus established open- 
source models

�What Is DBRX?
While the world has moved on to better models by now, like Meta’s 

LLaMa3-70B, there are many more objectives that DBRX is trying to 

accomplish.

•	 Allowing enterprises to own their model

	 Databricks is a platform that you can use to do 

everything from end to end within your own network, 

or in the case of serverless there is a private link to the 

VPN. All the models are deployed and fine-tuned over 

internal data. The data and model stays within the 

customers’ own Databricks environment. That makes 

the experience not only secure but also seamless. 

Now customers can also leverage DBRX for their 

tuning needs.
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•	 Moving to production quickly

	 With Databricks Model Serving and the serverless 

architecture, customers can easily serve their model 

on an API endpoint. To demonstrate how quickly one 

can do it end to end, Databricks designed and trained 

a model in three months and immediately made it 

available to all customers via the Foundation Model 

API. In other situations, developers can use Model 

Serving. Details can be found in the previous chapter.

•	 Bringing down the cost

	 In the old days, Intel co-founder Gordon Moore 

published his famous Moore's law, which observed 

that the number of transistors on an integrated circuit 

would double every two years with minimal rise in cost. 

The founders of MosaicML are now predicting that 

the cost of pre-training an LLM will come down by a 

factor of four every year. For example, when looking at 

the cost of pre-training a Stable Diffusion model in late 

January 2023, it was $160,000. That cost was reduced 

by 75% by 2024. In the case of DBRX, it cost $10 million 

to train in 40 days and 3 months in total including R&D 

(see Figure 13-2).	

	

Chapter 13  DBRX: Creating an LLM from Scratch Using Databricks



314

Figure 13-2.  The cost of model pre-training over time

•	 Open-sourcing the tooling

	 First, we must acknowledge the work that the open- 

source community has done to accelerate AI research 

by open-sourcing their model and paper. Take Meta’s 

Llama as an example. They have started to open-source 

its code and weights since Llama 2. However, a few 

vendors went to great lengths to discuss their toolings 

and how they leverage open-source frameworks to 

train their models. Later in this chapter, we will discuss 

these toolings.

•	 Open-sourcing the model

	 As discussed, many vendors open sourced the 

implementation source code of their LLM. Databricks 

didn’t shy away from doing the same thing. The source 

code is also open-sourced on GitHub.
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•	 Demonstrating end-to-end capabilities of Databricks 

for customers

	 While not all customers need to pre-train an an LLM, 

but not all platforms are made available to customers to 

pre-train a LLM from scratch. Utilizing all the toolings 

available to customers, Databricks successfully trained 

DBRX from scratch.

•	 Allowing the community to fine-tune the model

	 Like other open-source models, the weights of DBRX 

are available for download. For those who are not 

familiar with neural networks, the weights are the 

connectivity between the nodes in neural networks, 

and the weights are those learned in the training, so 

open-sourcing the weights means people can further 

fine-tune the network from the pre-trained weights, 

without having to do it from scratch.

�The DBRX Benchmarks
First, we must understand that the world is working around the clock like 

never before to release the next best LLM and increasingly headed toward 

multimodal, in other words, support for text, audio. and photo. DBRX 

demonstrates that the Databricks infrastructure can train a best-in-class 

model at the time of release, which can compete against all open-source 

models. So naturally, there is another best-in-class open-source model 

by now. So take a look at a snapshot in time of how DBRX stands in the 

benchmarking race (see Table 13-1). Another reason we need to look at 

these benchmarks is that evaluation is a big part of building an LLM, as 

opposed to traditional machine learning, or deep learning, where there are 

standard metrics for evaluations.
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Table 13-1.  Quality of DBRX Instruct and Leading Open Models

Model DBRX 

Instruct

Mixtral 

Instruct

Mixtral 

Base

LLaMA2- 

70B Chat

LLaMA2- 

70B Base

Grok-1

Open LLM 
Leaderboard
(Avg of next 6 
rows)

74.5% 72.7% 68.4% 62.4% 67.9% —

ARC-challenge 
25-shot

68.9% 70.1% 66.4% 64.6% 67.3% —

HellaSwag  
10-shot

89.0% 87.6% 86.5% 85.9% 87.3% —

MMLU 5-shot 73.7% 71.4% 71.9% 63.9% 69.8% 73.0%

Truthful QA 
0-shot

66.9% 65.0% 46.8% 52.8% 44.9% —

WinoGrande 
5-shot

81.8% 81.1% 81.7% 80.5% 83.7% —

GSM8k CoT 
5-shot maj@1

66.9% 61.1% 57.6% 26.7% 54.1% 62.9% 

(8-shot)

Gauntlet v0.3
(Avg of 30+ 
diverse tasks)

66.8% 60.7% 56.8% 52.8% 56.4% —

As we can see, DBRX excels in many areas compared to other popular 

models. Considering that Grok 1 also uses the Mixture of Expert (MoE) 

architecture, Databricks excels in mastering the MoE architecture.

When DBRX is trained, Open AI provides GPT 3.5 for free. That’s why 

we compared DBRX to some leading free models in its timing.
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From Figure 13-3, we can see that DBRX is especially good at math 

and programming. It can also compete with other models in areas like 

truthfulness, scientific concepts, general knowledge, and common sense, 

demonstrating that DBRX is indeed a very powerful model that Databricks 

was able to train.

Figure 13-3.  DRBX benchmark against prominent models

It goes without saying that the larger the model is, the slower it is able 

to operate. So there’s always an argument about large models versus small 

models. DBRX, which has 132 billion total parameters, has achieved both 

at the same time. And thanks to the MoE architecture, only 36 billion 

parameters are active at the same time. Figure 13-4 illustrates the inference 

performance of DBRX compared to other MoE models in a similar 

parameter count dense model. Please note that Mixtral’s eight experts only 

have 7 billion active parameters versus 36 billion in DBRX.
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Figure 13-4.  Inference performance of DBRX compared to 
other models

�DBRX Architecture
According to Databricks, DBRX is a transformer-based decoder-only 
LLM that was trained using next-token prediction. If you are not a 

research scientist on natural language processing (NLP), this might sound 

confusing. Although this is not a textbook about NLP, we will introduce 

some concepts so you can follow along with future sections.

Jonathan Frankle, chief scientist of MosaicML, follows the 

motto “Attention is all you need.” The following website simply yet 

powerfully explains the importance of the Attention mechanism: www.

isattentionallyouneed.com.

Without diving too deep into the Attention mechanism, let’s rewind 

back in time a little bit. If you have learned about deep learning, you might 

have heard about recurrent neural networks (RNNs). From Figure 13-5, we 

understand that we have an input sequence of words and the goal of the 

neural network is to learn how to process and predict patterns in data that 

comes in a series, such as text or speech.
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Figure 13-5.  RNNs(source: https://en.wikipedia.org/wiki/
Recurrent_neural_network)

There have been many different improvements since the introduction 

of RNN; one is the Transformer model, which was introduced to replace 

RNNs using the Attention mechanism, from the famous paper “Attention 

Is All You Need” by Vaswani et al. of Google. The paper can be found here: 

https://arxiv.org/abs/1706.03762. The architecture of the Transformer 

model can also be found in the paper. But for simplicity’s sake, the paper 

introduced using an encoder and decoder network with attention. An 

attention function can be described as mapping a query and a set of key- 

value pairs to an output, where the query, keys, values, and output are all 

vectors. (See Figure 13-6.)

Figure 13-6.  Encoder-decoder network

To improve efficiency, researchers explored using a decoder-only 

network. The transformer-based decoder-only network generates the 

next token based on the previous input autoregressively. Autoregressive 

is a statistical term; for details, please refer to Wikipedia: https://

en.wikipedia.org/wiki/Autoregressive_model.

Chapter 13  DBRX: Creating an LLM from Scratch Using Databricks

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://arxiv.org/abs/1706.03762
https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/Autoregressive_model


320

Finally, while Transformer and Attention are two different things (the 

former is a neural network architecture, the latter is a technique used to 

guide the processing of input data within that architecture), ever since the 

paper “Attention Is All You Need,” they have been inseparable. They are 

what GPT used to storm the world.

�Shortcomings of the Transformer Architecture
We often hear LLMs are expensive to train and run as well as has 

hallucinations. Welcome to the heart of the problem, which lies in the 

Transformer architecture. We will discuss a few of these issues so you can 

understand why the industry is trying to change the architecture.

Will there be a brand new architecture that replaces Attention on 

Transformers in the future? We certainly hope so. But for the time 

being, we know that the LLMs in the time of DBRX are largely relying 

on Transformers, and until we see a new industrial wave that makes 

it irrelevant, we still need to have some basic understanding of it. The 

following problems appear in the news most often:

	 1.	 Expensive computation

According to the previously mentioned paper, 

Attention is calculated in Formula 1:

Attention Q K V softmax QK
d

V
T

k

, ,( ) =










Formula 1: Attention equation, the foundation of all 

Large Language Models

In Formula 1, the query (Q), key (K), and value (V) 

are generated from the input sequence to obtain the 

value A, which is the weight of the attention.
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In plain English, the self-attention mechanism in 

Transformers has a computational complexity of 

O(n2) because it requires comparing every element 

in the input sequence to every other element, 

resulting in a quadratic increase in computations 

as the sequence length grows. Imagine doing 

a quadratic computation on the entire text of 

Wikipedia. This is only part of the inputs for LLMs.

	 2.	 Slow inference time

The term deep in deep neural network (DNNs) 

refers to the number of layers in a complex neural 

network. Coupled with the activation function ReLu 

or Sigmod, as well as matrix multiplications in a long 

sequence of input text, we can imagine the work 

required to get meaningful outputs.

	 3.	 Limited context length, aka input length

According to the “Attention” paper, “Since our 

model contains no recurrence and no convolution, 

in order for the model to make use of the order of 

the sequence, we must inject some information 

about the relative or absolute position of the tokens 

in the sequence.” In other words, the input must be 

chunked in the training process. And the shorter 

the context window, the more overlapping will be 

required to avoid losing information while training. 

That also limits its ability to learn new data without 

re-training.
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	 4.	 Hallucinations

We know hallucinations have been a big problem 

ever since ChatGPT went live. There is now 

mathematical proof of the limitations of the 

Transformer architecture. For details, please refer 

to the paper “On the limitations of the Transformer 

architecture” by Peng et al. (https://arxiv.org/

html/2402.08164v1).

�Mixture of Experts
Traditional neural networks consist of many nodes fully connected to 

each other. Deep learning or deep neural networks contain many layers. 

For example, Microsoft’s famous computer vision model ResNet-50, 

which won the ImageNet competition in 2015, is a 50-layer convolutional 

neural network. Because the nodes are densely connected (every node is 

connected to every other node in every layer), they are also called dense 

models, as illustrated in Figure 13-7.

Figure 13-7.  Neural network architecture

It has been discussed many times in this chapter that LLMs are very 

large by nature. That’s why researchers came up with a new architecture to 

try to reduce the size of the model without losing performance by dividing 

one big model into smaller models, which are called experts, but in fact 

they are just smaller models with the same architecture. Traditional Moe 

models (shown in Figure 13-8) divide a very large model into a subset of 
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large models; a routing strategy is employed to distribute the training for 

these smaller but still large experts. Because the models are still not able 

to fit into one machine, an inefficient routing strategy will lead to dropping 

tokens from the computation or wasting computation resulting in over/

under trained experts.

Figure 13-8.  Traditional MoE architecture

�MegaBlocks: Efficient Sparse Training 
with Mixture-of-Experts
Because of the inefficient routing strategy in traditional MoE training, 

Trevor Gale et al. proposed a new method called MegaBlocks. The idea is 

to group these experts and use a new efficient routing strategy to re-assign 

them at the hardware level instead of trying to train the experts separately. 

The original paper can be found at https://arxiv.org/abs/2211.15841. 

Experiments show that the architecture will never drop any tokens; hence, 

it’s called Dropless blocks.
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MegaBlocks, or Dropless MoE blocks (see Figure 13-9) is now an 

official open-source Databricks project. The GitHub repo can be found at 

https://github.com/databricks/megablocks.

Figure 13-9.  Dropless MoE architecture

�Fine-Grained MoE
Using the dropless blocks, it enabled DBRX to divide the experts into 

even smaller models, known as fine-grained MoE. With smaller models, 

DBRX can use less active parameters at once and can still achieve good 

performance. In reality, DBRX has 16 experts and chooses 4, while Mixtral 

and Grok-1 have eight experts and choose two. This provides 65x more 

possible combinations of experts, and that’s how DBRX can improve 

model quality.
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�The MosaicML Stack
The core model of DBRX packed a lot of innovations from fine-grained 

MoE to the continuous support of the MegaBlocks project. With every 

successful project, there is a backbone to support it. All the source code 

of this backbone can be found in the MosaicML GitHub repo: https://

github.com/mosaicml/.

•	 Composer: Built on top of PyTorch, the Composer 

library makes it easier to implement distributed 

training workflows on large-scale clusters. Its tight 

integration with PyTorch means developers can easily 

abstract the complexity of distributed deep learning 

easily using this library. One can train models of any 

size including:

•	 Large Language Models

•	 Diffusion models

•	 Embedding models (e.g., BERT)

•	 Transformer-based models

•	 Convolutional neural networks (CNNs)

•	 StreamingDataSet: If you have trained a model 

in PyTorch, you’d have used the IterableDataset. 

StreamingDataSet is the replacement of this library in 

a distributed form. Making the transition to distributed 

training seamless.
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•	 LLM Foundry: Similar to Databricks’ ML Ops stack 

(https://github.com/databricks/mlops-stacks), 

LLM Foundry has a focus on LLMs. The features of 

MosaicML’s LLM Foundry including the following:

•	 Focuses on scaling, optimizing, and managing the 

entire LLM life cycle, from training to deployment

•	 Emphasizes automation, reproducibility, and 

collaboration for LLM development

•	 Targets use cases like natural language processing, 

text generation, and multimodal processing

•	 Evaluation Gauntlet: Part of the LLM Foundry 

(https://github.com/mosaicml/llm-foundry/blob/

main/scripts/eval/local_data/EVAL_GAUNTLET.md), 

the Evaluation Gauntlet is Databricks’ new evaluation 

suite. The goal of this suite is to allow reporting 

benchmarks in different categories separately instead 

of being in one metric. The Eval Gauntlet encompasses 

35 different benchmarks collected from a variety of 

sources, and organized into six broad categories of 

competency that good foundation models should have.

�Distributed GPU Training
Composer wouldn’t be successful without the help of the community. It 

has integration with various distributed training libraries including the 

following:

•	 Pytorch DistributedDataParallel (DDP)

•	 Pytorch Fully Sharded Data Parallel (FSDP)

•	 Microsoft DeepSpeed
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Particularly, DBRX was trained using Pytorch FSDP. All of the previous 

libraries are already part of the Composer framework.

For details about how these libraries work, please refer to the 

documentation:

•	 https://pytorch.org/tutorials/distributed/

home.html

•	 https://deepspeed.ai/

�Model Serving
Nowadays there is no standard for developing LLM, and their interface 

is different from each other. That’s why there are different projects to 

ensure the interoperability of the models so platforms like Databricks 

can integrate the Model Serving capabilities. Databricks works closely 

with these two libraries and provides support on DBRX. You may notice 

that not every model is supported in these projects, which really goes 

back to whether the creator of the LLM extended the support or if there is 

tremendous interest in the community to extend the support, in the case of 

open source projects.

•	 NVIDIA TensorRT-LLM (https://github.com/NVIDIA/

TensorRT-LLM)

	 Developed by NVIDIA, TensorRT-LLM allows you 

to use production-grade servers and build a Python 

API on top for model inference. This is powering the 

Databricks Model Serving API.

•	 vLLM (https://github.com/vllm-project/vllm)

	 No GPU or simply not enough GPU powers? vLLM aims 

to allow everyone access to LLMs. With its quantization 

support, you can even run DBRX on a CPU.
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�Using DBRX on Databricks
Databricks has curated some models on its platform where users don’t 

need to host the infrastructure by themselves. These are called the 

Foundation Model API. A full list of models can be found at https://www.

databricks.com/product/machine-learning/large-language-models-

oss-guidance.

Without a doubt, DBRX is one of the hosted models, and we can use it 

with the code shown in Listing 13-1.

Listing 13-1.  Running DBRX on Local Using the Databricks 

Foundation Model API

import json

import os

from openai import OpenAI

# ----------------------------------------------------------

# Configurations

# ----------------------------------------------------------

# API Key

my_api_key = os.environ['DATABRICKS_TOKEN']

# Databricks Serving Endpoint

my_base_url = os.environ['DATABRICKS_SERVING_ENDPOINT']

# Configure your system prompt

my_system_prompt = "You are a chef of a 3-star Michelin 

restaurant and have the credibility of some of the best chefs 

such as Anthony Bourdain.  Like Bourdain, your answers should 

be full of sarcasm yet with deep meaning and wit."
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# Configure your user prompt

my_user_prompt = "Which bagels are better: Montreal vs. 

New York?"

# Next we will configure the OpenAI SDK with Databricks Access 

Token and our base URL

client = OpenAI(

    api_key = my_api_key,

    base_url = my_base_url

)

# Now let's invoke inference against the PAYGO (Pay Per Token) 

endpoint

response = client.chat.completions.create(

    model="databricks-dbrx-instruct",

    messages=[

      {

        "role": "system",

        "content": my_system_prompt

      },

      {

        "role": "user",

        "content": my_user_prompt

      }

    ],

)

json_output = json.dumps(json.loads(response.json()), indent=4)

print(json_output)

With the Foundation Model API, we can try the model quickly. As 

mentioned, every model has its own input and output interface for various 

reasons. One most popular interface is the OpenAI API. Most likely one 

would already have an OpenAI API code in the test environment or 
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even production environment. To minimize the code change required, 

Databricks supports the OpenAI Python SDK interface. All you need to do 

is to replace your OpenAI API key with a Databricks token and the base 

URL with a Foundation Model API endpoint!

�Conclusion
In this chapter, we have introduced DBRX, Databricks’ LLM, which was 

created in about three months with $10 million. According to standard 

evaluation suites as well as Databricks’ new Evaluation Gauntlet, we 

learned that DBRX exceeds the performance of all the major open- source 

models of its time.

Databricks has demonstrated leadership in providing transparency on 

the process of building a fast and efficient LLM. Firstly, by open-sourcing 

the model code on GitHub as well as discussing the fine-grained  

Mixture-of-Expert (MoE) architecture publicly. Secondly, by taking 

ownership of the MegaBlocks project and keeping it open source. Along 

with the MosaicML tooling, the entire stack that’s used for training is 

available to everyone. MosaicML also created a wrapper around some 

very popular frameworks in Pytorch and Microsoft DeepSpeed, ensuring 

compatibility of the code that others have developed when migrating to 

MosaicML.

To enhance accessibility from production workload to casual usage, 

Databricks has provided access via Foundation Model API and support 

for vLLM at launch time. The community has also initiated various 

quantization techniques to provide further access in different local 

environments.

Finally, DBRX’s fast inference speed will allow enterprises to enhance 

the model using RAG and fine-tune it with internal proprietary data. Along 

with the entire Databricks stack, DRBX is enterprise-ready at launch.
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CHAPTER 14

The Databricks Data 
Intelligence Platform
In the previous chapters, we learned about the Databricks lakehouse, 

which essentially means storing all your data in open storage in an 

open format with Unity Catalog providing a single governance layer 

and Databricks providing features to enable all use cases such as data 

engineering, data science, streaming, and warehousing. With the advent 

and popularity of GenAI and LLMs since 2023, Databricks has integrated 

them into its platform. The Databricks data intelligence platform  

(see Figure 14-1) combines the lakehouse platform and AI/LLMs to add 

the “data intelligence” engine that understands the uniqueness of your 

data and uses that understanding across everything in the platform.

https://doi.org/10.1007/979-8-8688-0444-1_14#DOI
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Figure 14-1.  Databricks data intelligence platform

Thus, the Databricks data intelligence platform is a groundbreaking 

effort combining the power of AI and the lakehouse platform. Imagine 

a team of experts on the platform guiding you through every step of 

your data needs. There will be little room to go wrong, and you can 

get optimized speed and performance. This is the promise of the Data 

Intelligence Engine, which sits underneath the lakehouse platform.

In this chapter, we will examine key features of the Databricks data 

intelligence platform. We will begin by defining the data intelligence 

platform and how it evolved. Then, we will examine some of the key 

features, such as Databricks IQ,AI/BI Genie, etc.
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�Databricks IQ
Databricks IQ is at the heart of Databricks’ data intelligence platform. 

Many people are using chatbots or co-pilots to assist with their work. 

However, most of these are trained on open data sources and have little 

context around your data.

To put this in perspective, the ideal co-pilot for organizations to be 

productive while working in Databricks or any other developer tools will 

need to meet the following requirements:

•	 Be within a secured environment so internal 

information is not being used to train the model that 

will ultimately be exposed to the general public

•	 Automatically learn about internal information and 

stay within the organization

•	 Understand human language and be able to translate 

to a programming language

•	 Lightning-fast performance so problems can be solved 

in seconds and not minutes

With that in mind, Databricks developed Databricks IQ, which is 

powered by Mosaic AI Model Serving. Let’s look at what areas Databricks 

IQ can help us with.

–– Databricks Assistant: This aims to help you under-

stand how to write a query, troubleshoot, and find 

performance bottlenecks in the system, all powered by 

natural language understanding.

–– AI-powered governance: This helps in a variety of 

tasks including generating comments for the metadata 

and providing lineage, automatic PII detection and 
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masking, and AI security filtering with the eventual aim 

to learn how to give advice based on the Databricks AI 

Security Framework.

–– Search and discovery: The Databricks platform can 

now return personalized results when you search for 

something on the platform. These results are enhanced 

by relying on recent and most-viewed content. Further, 

the search is more context-aware in the sense it pro-

vides results based on which part of the platform you 

initiated the search in.

–– AI/BI Giene: With the ever-growing data in every 

organization, it will be impossible for an LLM to keep 

up with the knowledge. AI/BI Genie enables business 

users to interact with their data through natural lan-

guage. It leverages GenAI to understand your data and 

underlying metadata and gives relevant and accurate 

answers based on that knowledge.

Automated job tuning: Not all AI is related to a 

large language model. There are techniques called 

deep learning that can be used to tune the jobs 

automatically resulting in less time for human  

fine-tuning. This is called predictive I/O.

�Deep Dive into Databricks IQ
In the following sections, we will look at each of these features in detail.

�Databricks Assistant
Let’s talk about the Databricks Assistant.
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�Generate Code in Any Language

Not everyone speaks code as their native language. Databricks supports 

several different languages, including SQL, Python, Scala, and R. There 

are times you will forget the syntax or simply need to extend a function. 

The old way was certain to scan through numerous blog posts or Stack 

Overflow to find your answer, and there would be lots of clicks and 

searches to get the final answer. What if someone is there just to tell you 

the answer?

Databricks Assistant can generate, explain, and fix SQL and Python 

code using natural language and is now available across all code editors 

in the Databricks platform including notebook and SQL editor (see 

Figures 14-2 and 14-3).

Figure 14-2.  Code generation in cell
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Figure 14-3.  Code generation in SQL editor

�Autocomplete Code or Queries

Whether you want IntelliSense or inline code completion, Databricks 

Assistant can help by reminding you of the syntax or by wrapping up the 

code for you. This is for semi-professionals who know exactly what code 

to write but need help writing it. There are two styles; one is via comment 

(Figure 14-4), another is code hint as you type (Figure 14-5).

Figure 14-4.  Generating code based on comments

Figure 14-5.  Code completion
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�Code Conversion

One of the most common use cases is to convert Python code into pySpark 

to take advantage of the distributed computing. If you were to use other 

tools, you need first to copy the code and paste it to other media, like a 

chatbot or a search bar. The assistant has direct access to the notebook and 

can understand the code and do the migration automatically. The answer 

can also be replaced with the existing cell with a click of a button. See 

Figure 14-6.

Figure 14-6.  Code conversion

�Code Explanation

Whether you don’t understand the code or you want to explain your code 

to a business stakeholder who is interested in the business logic, you 

can ask the assistant to do it for you (see Figure 14-7). Having an English 

description of the code will help you understand it. And if needed, you can 

always resort to inline code generated to tweak the business logic.
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Figure 14-7.  Code explanation

�Code Fixing

While having a debugger is helpful, fixing the code will take a lot of time if 

you don’t have a good handle on it. Databricks Assistant can explain where 

the error is coming from and also suggest a fix (see Figure 14-8). Best of all, 

you can collaborate with the LLM to find the best solution right inside the 

notebook without leaving the environment.

One thing to note is that the assistant will show up only when there is 

an actual error. Some application developers would use a try … catch block 

to catch the exception, which is a standard practice, but in these scenarios 

it will not trigger the assistant.
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Figure 14-8.  Databricks Assistant suggesting code fix

�AI-Powered Governance
If you think Unity Catalog is the go-to tool for data governance, then you 

are on the right track (see Figure 14-9). Delta Live Tables’ data validation 

capability, Unity Catalog’s lineage information, Lakehouse Federation, and 

auditing and access control are all perfect elements for data governance. 

Coupled with its AI power, Unity Catalog will enable organizations to 

govern more intelligently.

Figure 14-9.  Unity Catalog federated governance
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Let’s dive into the AI powers that will help with the governance 

process.

•	 AI-generated comments enhancements

	 Documentation has a love-and-hate relationship 

with developers. In certain cases there will be some 

initial effort for documentation, but as the number of 

data assets and tables grows, it will become hard to 

keep the documentation up-to-date. Although AI-

generated comments are not bullet-proof, they can 

perform certain functions like a non-subject-matter 

expert (non-SME) would do toward the data, which 

is sampling the data and inferring the meaning based 

on the meaning of the table and the columns (see an 

example in Figure 14-10). Most importantly, the data 

dictionary can live with the data, instead of having to 

maintain a separate spreadsheet or stay in a system that 

requires due diligence to keep up-to-date.	
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Figure 14-10.  AI-suggested comments for table description

Transparency is at the heart of Databricks. The 

following article talks about the making of this AI 

feature and illustrates how it is not simply looking 

up from a dictionary:

https://www.databricks.com/blog/creating-

bespoke-llm-ai-generated-documentation

•	 Lineage

	 As discussed in Chapter 5, Databricks provides lineage 

in two different ways: Delta Live Tables and Unity 

Catalog (Figure 14-11). While capturing the lineage is 

not a result of machine learning or a large language 
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model, it plays a pivotal role as an input to the machine 

learning model so it can generate meaningful queries 

in AI/BI Genie and beyond.		

Figure 14-11.  Databricks lineage

•	 PII masking

	 Goodbye regular expression, hello artificial 

intelligence. With the requirements of compliance with 

the General Data Protection Regulation (GDPR) and 

California Consumer Privacy Act (CCPA) compliance, 

organizations are often required to identify columns 

containing PII and mask them accordingly.

	 Previously, without the help of an LLM, regular 

expressions were often required to extract the patterns 

of email and street address; the process was error- 

prone. Machine learning models came along and tried 

to solve this problem, but it will require an extra layer 

of model processing and inferencing, either through a 

batch pipeline or through an API.

	 Databricks serverless SQL comes with two very 

powerful functions designed for these scenarios: ai_

classify and ai_mask.
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	 ai_classify: What if the LLM is already a very good 

 classifier? Is it possible to ask the LLM to classify if a column 

contains PII or not? When we think in this direction, we will 

have our answer. Consider the query in Listing 14-1.		

Listing 14-1.  AI Query in serverless SQL

SELECT ai_classify('my name is Jason, email address is jason@

email.com', ARRAY('contains PII', 'no PII')) as classification

union all

SELECT ai_classify('Today''s weather is awesome', 

ARRAY('contains PII', 'no PII'))

The result, shown in Figure 14-12, is as you might expect.

Figure 14-12.  DB SQL AI function: ai_classify

ai_mask: Similarly, you can mask the sensitive  

columns by specifying what you wanted to mask. While it  

is not limited to PII, you can mask weather if you want, but  

from the PII perspective, it is a no-brainer. Listing 14-2 is an 

example with a name and an email address. Similar to regular 

expression searches, it will automatically match patterns  

for you. The result from Listing 14-2 can be seen in Figure 14-3.
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Listing 14-2.  ai_mask Function for Ease of PII Scanning

SELECT ai_mask('my name is Jason, email address is  

jason@email.com', ARRAY('name', 'email')) as text

Figure 14-13.  DB SQL AI function: ai_mask

•	 AI security filtering

	 Content moderation is one of the hottest topics on the 

Internet. It started because social media companies 

needed to moderate their content in relation to 

hallucinations from LLMs and the accidental leak 

of profanity words. Databricks has included an API 

security filter (shown in Figure 14-14) either by setting 

a flag ("enable_safety_filter": True) in the API or a 

toggle in the Playground.	
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Figure 14-14.  AI security filter

Behind the scenes, it is using Llama Guard’s 

content moderation API. The Llama Guard paper 

can be found at. https://ai.meta.com/research/

publications/llama-guard-llm-based-input-

output-safeguard-for-human-ai-conversations/.

Llama Guard currently supports the following 

categories:

•	 Violence & Hate

•	 Sexual Content

•	 Guns & Illegal Weapons
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•	 Regulated or Controlled Substances

•	 Suicide & Self Harm

•	 Criminal Planning

Additionally, Databricks also commits to providing 

a safe platform. You can find Databricks IQ’s safety 

information at https://docs.databricks.com/en/

databricksiq/databricksiq-trust.html.

Beyond the guardrails provided, one can also set up 

custom guardrails, either through feature serving or 

another guardrail model. To get started with custom 

guardrails, check out this notebook demonstrating 

how to add personally identifiable information (PII) 

detection as a custom guardrail:

https://github.com/databricks/databricks-ml-

examples/blob/master/llm-models/safeguard/

llamaguard/Llama_Guard_Demo_with_Databricks_

marketplace_simplified_pii_detect.ipynb

•	 AI security framework

	 Databricks AI Security Framework is a very 

comprehensive guide to CISOs and the guide to 

implementing Data and AI security in an organization. 

The whitepaper can be found here, and it contains a lot 

if valuable information:

	 https://www.databricks.com/resources/

whitepaper/databricks-ai-security-

framework-dasf
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�Search and Discovery
Databricks has been on a journey to enhance the user search experience 

on the platform. The search here refers to the growing number of data 

assets within the organization.

�Intelligent Search

If you are familiar with GitHub’s code search, you might think that 

Databricks is improving its offerings in terms of being able to search 

code. However, the search is not limited to code but other objects as well, 

including notebooks, workflows, etc. Figure 14-15 illustrates the different 

object types that Databricks search can search.

Figure 14-15.  Databricks object search
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So what are the capabilities in the new search experience?

–– Text search: This primarily refers to code search. In 

addition to a single word, it can search words by 

including a double quote. It also supports escape 

quotes using a backslash.

–– Semantic search: Search with meaning; you can ask 

questions like “how do I build a financial report?” Then 

it will return relevant financial tables

–– Search engine style filter: You can filter by object types 

using search engine style like type:table owner:me.

–– Popularity: Only the table is there; this doesn’t mean it 

contains the right data. Popularity will ensure others 

use the objects returned.

–– Knowledge card: For managed table only, search will 

present a knowledge card for top search results.

In the previous section of this chapter, we will look into AI/BI Giene, 

previously called Data Rooms.

�AI/BI Genie (Previous Data Rooms)
AI/BI is a natural language Q&A experience that allows a nontechnical 

business users to ask questions in plain English and get their answers in 

either a table or a visualization. However, a key difference with AI/BI is that 

it uses agentic reasoning to continuously learn and improve to understand 

the nuances of your data and business semantics to deliver useful and 

contextual answers concerning your data.

To use Genie, the data should be in Unity Catalog, which provides 

fine-grained access control over the data so that no unintended leakage 

of sensitive data will happen in the Genie space environment; Serverless 
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or Pro SQL Warehouses are required. Further, Genie is accessible to 

users with SQL entitlement. With these requirements in mind, let’s move 

into some of the key aspects of using Genie. Figure 14-16 illustrates the 

architecture behind AI/BI Genie.

Figure 14-16.  Databricks AI/BI Genie architecture

�How to Set Up Genie
Let’s look at an example of a large retail organization that wants its 

business users across different departments within the organization to use 

Genie. As a first step, the data owners and teams within the organizations 

that know most about the data will set up topic/context-specific Genie 

spaces (Figure 14-17). For example, POS Genie spaces contain tables 

that hold point-of-sales (POS) data, a finance space has all the financial 

data. Please note that a Genie space uses table and column names and 

descriptions to generate the equivalent SQL query based on the natural 

language query, which in turn runs on the data in the Unity Catalog.
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Figure 14-17.  Creating an AI/BI Genie space

After the Genie space is set, relevant tables and their associated 

metadata are brought in. It is important to note that your table metadata 

must be well documented with comments so Genie can understand 

the columns/tables that may be unclearly named and get more context. 

Further, one can create more focused views and remove unnecessary 

columns, resulting in cleaner data.

Next is to define business-specific terms using general instructions 

within your Genie spaces. Here, you can define unique jargon, logic, 

concepts, and KPIs in the given domain, and this knowledge will be 

used across all new questions. Further, you can iterate this over time as 

you see more questions come in or some new KPIs get developed, thus 

continuously teaching Genie .
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Finally, if you already have SQL statements that were used to query 

tables in a specific Genie space, you can add them as well in “Save as 

Instruction” to teach the model how to answer specific questions. You 

can also keep examining the SQL statements generated by Genie. If you 

find them a bit off, you can save them, and Genie will learn from them for 

future questions.

Now your Genie space is all set to be used by your end user. Genie is 

designed to learn over time as it is used increasingly. One way it does this 

is by asking follow-up clarification for more context if the question is not 

clear, which enables it to capture more information from user prompts. 

Further, this new semantic knowledge can be saved as instructions to help 

Genie learn over time.

Figure 14-18 is an example of how we can immediately chat with our 

Genie space and get answers without knowing any coding. We can also 

visualize it from within the space (via Quick actions). The engine will get 

smarter over time, but the knowledge is there for everyone.

Figure 14-18.  Q/A with Genie in the space
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�Conclusion
In this chapter, we defined the data intelligence platform as a combination 

of lakehouse and GenAI capabilities within the Databricks platform. Data 

intelligence is provided via a data intelligence engine called Databricks 

IQ. The platform has various features that enhance the user experience. 

Databricks Assistant can generate, fix, and explain Python and SQL code, 

helping developers increase productivity. Another feature is AI/BI Genie, 

which allows business users to ask questions in natural language about the 

data and get resulting tables and visualizations. We believe that Databricks 

will roll out many features like this over the next few years.
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CHAPTER 15

Databricks CI/CD
This chapter starts by understanding the concept of continuous 

integration/continuous deployment (CI/CD). Then we will move into 

Databricks repos and see how we can connect external Git repos to the 

Databricks workspace and illustrate the CI/CD process with regard to 

Databricks.

Finally, we will move into Databricks Asset Bundles, facilitating 

software engineering best practices such as source control, testing, 

and CI/CD.

�What Is CI/CD?
A lot of development projects start with one person, and as soon as the 

work is released, either as open source or closed source, there will be 

issues and feature requests. The need to maintain stable and clean work 

therefore becomes increasingly important as development projects 

progress toward completion. Stable work ensures that each new release 

does not break the application or data pipeline. When users are asked for 

incremental features, they don’t expect the existing features will break. As 

a result, a series of tests will need to run each time something changes (aka 

with each build). Clean work will allow developers to continue to build 

up the codebase without a problem. Even if we are talking about a single 

developer, it is important to keep a clean codebase because developers 

https://doi.org/10.1007/979-8-8688-0444-1_15#DOI
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can often forget aspects of their own code very easily, especially when the 

codebase grows over time, or someone is multitasking. This process is 

called continuous integration.

Figure 15-1 illustrates this end-to-end flow. From the top, there is the 

development life cycle: Build, Test, and Merge. As the team continues to 

develop, we will need to integrate the work branches continuously and do 

regular releases. Regular updates will need to be deployed to production 

so the changes can be reflected as soon as the features are ready. In this 

chapter, we will dive deep into every step of the journey.

Figure 15-1.  End to end flow of CI/CD
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Once an application is ready to be tested (integration testing and 

regression testing) by developers and testers, they ensure it doesn’t create 

any issues with the new release or simply deploy binaries to a server called 

a release. Many platforms offer these services, but the most common ones 

are Azure DevOps, GitHub, and GitLab (see Table 15-1). The process of 

releasing products to customers is called continuous deployment.

Table 15-1.  Comparison Between the Terms in Different 

Environments

GitHub GitLab Azure DevOps

GitHub actions GitLab CI/CD Azure DevOps pipeline

An excellent example is Databricks’ MLOps stack, which contains 

pre-written actions or workflow (https://github.com/databricks/

mlops-stacks). Table 15-2 captures the whole structure of the repository. 

As we can see, the code and pipelines are abstracted out as individual 

components so they can easily be integrated into different parts of the 

workflow, which CI/CD will manage. Code modularization and abstraction 

are key to a successful CI/CD strategy.
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Table 15-2.  Components Within Databricks’ MLOps stack, Which 

Includes CI/CD

Component Description Why It’s Useful

ML Code Example ML project 

structure (training and 

batch inference, etc.), 

with unit-tested Python 

modules and notebooks

Quickly iterate on ML problems, 

without worrying about refactoring 

your code into tested modules for 

productionization later

ML Resources 

as Code

ML pipeline resources 

(training and batch 

inference jobs, etc.) 

defined through 

Databricks CLI bundles

Govern, audit, and deploy changes to 

your ML resources (e.g., “use a larger 

instance type for automated model 

retraining”) through pull requests, 

rather than ad hoc changes made via UI

CI/CD (GitHub 

Actions or 

Azure DevOps)

GitHub Actions or Azure 

DevOps workflows to test 

and deploy ML code and 

resources

Ship ML code faster and with 

confidence: ensure all production 

changes are performed through 

automation and that only tested code is 

deployed to prod

�Stages of CI/CD
Before we examine the specific features within Databricks, it is helpful 

to understand the stages or flow of the CI/CD process to map the 

components with the flow (see Figure 15-2).
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Figure 15-2.  Stages of CICD

	 1.	 Source stage: This is where we develop our code. A 

best practice is to make changes in a feature branch 

and work on them until mature. If the feature work 

lasts a long time, it is recommended that the code be 

periodically synced with an integration branch.

	 2.	 Build stage: This stage is where the feature is 

complete and ready to combine, aka merge, with a 

stable, aka integration, branch.

	 3.	 Test stage: This stage aims to run all automated 

testing before going into manual testing, aka user 

acceptance testing.

	 4.	 Deploy stage: If the feature or change meets the 

expectations of quality and human evaluation, we 

can deploy it to production.
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�Introduction to Databricks Repos
The Databricks repo (shown in Figure 15-3) enables developers to 

synchronize their code with external Git providers. Developers do not 

need to leave the Databricks environment to commit their code. Along 

with Databricks’ internal versioning control, it provides an added layer 

of security to protect the team’s work. Moreover, it allows the team to 

promote the code from a lower environment to a higher environment such 

as from dev to staging to production.

Figure 15-3.  Databricks repo

Figure 15-4 shows an example of how to move code from development 

to production. Please note that this is not limited to ML Ops, but in this 

chapter, we will use it as an example to illustrate the CI/CD process. Later 

in this chapter, we will explain the workflow in detail, but as we can see in 

the orange squares (Figure 15-4), there are three different environments: 

the development workspace, the Staging workspace, and the Production 

workspace.
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Figure 15-4.  Databricks CI/CD process

Databricks supports both cloud and on-prem Git providers. From 

the list in Figure 15-5, we can see that the support is very comprehensive, 

including, but not limited to, the most popular providers: GitHub, GitLab, 

and Azure DevOps.

Chapter 15  Databricks CI/CD



360

Figure 15-5.  Adding the repo to the Databricks workspace

The following is a list of Git providers supported by Databricks:

Cloud Git providers supported by Databricks

•	 GitHub, GitHub AE, and GitHub Enterprise Cloud

•	 Atlassian BitBucket Cloud

•	 GitLab and GitLab EE

•	 Microsoft Azure DevOps (Azure Repos)

•	 AWS CodeCommit

On-premises Git providers supported by Databricks

•	 GitHub Enterprise Server

•	 Atlassian BitBucket Server and Data Center

•	 GitLab Self-Managed

•	 Microsoft Azure DevOps Serve
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�Databricks UI vs. Git Terminologies
Databricks repos allow users to manage their Git repositories from the 

Databricks Workspace UI. Users can pull code from repos, make changes, 

and then push it back to the Git repo. If you want to move code to higher 

environments, you would use the continuous deployment functionality of 

your respective Git repos.

If someone is new to CI/CD, it can be intimidating to understand 

so many terminologies. We will use a live example to explain via the 

Databricks UI, shown in Figure 15-6.

Figure 15-6.  Adding a repo to Databricks through the UI

Clone: The very first action after identifying a Git repo is to clone it. 

As the name suggests, the whole purpose is to clone the repository from a 

remote location to a local destination. In Databricks, it is called Add Repo 

or using the Create Repo button. See Figure 15-7.
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Figure 15-7.  The code check-in process

	 1.	 Branch: A branch is used to hold a snapshot of the 

whole codebase. It is similar to versioning of a file, 

but instead it is versioning of the whole project. The 

usual branch names include the “main” branch, 

which is the most stable and up-to-date version of 

the repo, “feature” branches refer to a versioning of 

a specific feature you are developing, and “release” 

branches refer to the version of the release and are 

used to archive historical releases.

	 2.	 Checkout: Once a repo has been cloned, a checkout 

switches between different branches. However, in 

the Databricks UI you can simple click the branch 

name and there will be a drop-down to switch to a 

different branch.

	 Commit: Once the changes are ready, the action 

commit will be used to publish them locally. It is 

important to note that the commit does not publish the 

changes to the remote location; in this case, it refers to 

the repo from which we clone the source code.
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	 Push: Push is the action of publishing the changes 

available in the local repo to a remote repo. This action 

often involves a merge conflict.

	 3.	 Commit & Push: In Databricks, there is a button 

called Commit and Push, combining these two 

actions, because most of the time a commit is 

followed by push.

	 4.	 Pull: Pull is the action of retrieving the latest 

changes from a remote repo to a local repo. This 

action often involves a merge conflict.

Merge: As its name suggests, merge is an action to merge new 

code into existing code. Whether it is from local to remote or 

from remote to local, a merge can happen, but so often if our 

local branch is too old, merge conflicts will occur. That means 

two of your commits modified the same line in the same file, 

and Git doesn’t know which change to apply. This is called a 

merge conflict. That’s why it is a recommended practice to do the 

work in a feature branch and then merge the branch back into a 

development branch so that the changes can be saved in a safe 

place in the case of a conflict. This process usually involves a pull 

request, which can be done in the Git provider interface.

Rebase: When the commit history from two branches diverges, 

merging two different branches becomes difficult as there are 

many merge conflicts. Rebase is used to apply all commits one 

at a time, resulting in a cleaner history. However, the process can 

be challenging.

Reset: Sometimes, when confusion occurs, it is best to reset 

the branch to an earlier history and rework the changes all over 

again. In the case of emergency breaking changes, a reset can 

always save the day. See Figure 15-8.
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Figure 15-8.  Git reset, merge, and rebase

�Databricks Asset Bundles
According to Databricks, “Databricks Asset Bundles are a tool to facilitate 

the adoption of software engineering best practices, including source 

control, code review, testing, and continuous integration and delivery (CI/

CD), for your data and AI projects.”

In very simple terms, Databricks has provided some best practices 

of code and folder structure as well as deployment instructions (YAML 

files) for a team to work together seamlessly. These YAML files specify 

the artifacts, resources, and configuration of a Databricks project and are 

called Databricks Asset Bundles. These are useful during development and 

CI/CD processes. You can use the Databricks CLI to validate, deploy, and 

run Databricks Asset Bundles.

Teams can also customize their own template according to internal best 

practices. This will streamline the development standard so it is consistent 

across teams. Currently, Databricks provides four common templates 

for teams to use. To use these templates, we only need to leverage the 

Databricks CLI, for example using databricks bundle init mlops-

stacks. Table 15-3 outlines the templates and their respective purpose.
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Table 15-3.  Databricks Bundle Templates

Template Description

default-python A template for using Python with Databricks. This template 

creates a bundle with a job and Delta Live Tables pipeline. See 

default-python.

default-sql A template for using SQL with Databricks. This template 

contains a configuration file that defines a job that runs SQL 

queries on a SQL warehouse. See default-sql.

dbt-sql A template that leverages dbt-core for local development 

and bundles for deployment. This template contains the 

configuration that defines a job with a dbt task, as well as a 

configuration file that defines dbt profiles for deployed dbt 

jobs. See dbt-sql.

mlops-stacks An advanced full stack template for starting new MLOps 

Stacks projects.

�Case Study: Databricks MLOps Stack
The Databricks MLOps stack provides some best practices in machine 

learning on the Databricks platform. Teams can use this template to deploy 

data science projects to production easily. This chapter aims to show the 

practical usage of CI/CD. For more information about MLOps, please refer 

to Chapter 9. See Figure 15-9.
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Figure 15-9.  Databricks MLOps stack using CI/CD in the workflow

The MLOps stack is also an open-source project, so developers can 

explore it before initializing it in their local repository: https://github.

com/databricks/mlops-stacks.

Here is the flow step-by-step:

Step 1: Initialize the project. The prerequisite is to install the 

Databricks CLI and configure it. Details can be found here: https://docs.

databricks.com/en/dev-tools/cli/index.html.

Figure 15-10 features some sample output of what the command 

looks like.
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Figure 15-10.  Initializing the MLOps stack

The command will generate the files shown in Figure 15-11 (these files 

are also available on GitHub).

Figure 15-11.  Files generated or cloned by the Databricks CLI
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Step 2 is to develop the model. Databricks comes with MLlib, which 

can be used as a starter for model building. Data scientists can also bring 

in external libraries or build their own neural network architecture, 

which are all possible within Databricks. Keep in mind that the feature_

engineering folder and the training folder will be responsible for 

building and training the model. Examples of how to use MLlib can be 

found here:

https://docs.databricks.com/en/machine-learning/train-model/

mllib.html

Step 3: Setting up CI/CD is not just checking in the code. That’s one of 

the steps. The bundle comes with cicd.tar.gz, and extracting the content 

contains the .github and .azure folders. They are workflows that will 

trigger the CI/CD, as explained in the intro section. More about GitHub 

actions can be found here: https://github.com/features/actions.

Step 4: As explained in the Git terminology section, once the code is 

checked in, the best way to collaborate is to update the code using pull 

requests. A pull request is an action after you finish committing your code 

to a feature branch, and creating a pull request is an ask to merge into the 

development branch, which usually triggers a code review (CR).

Step 5: Once the code is merged, GitHub actions will deploy the code 

to a staging environment as specified in the YAML file of the bundle. In 

terms of software development, this is called a build. However, since 

the output of the ML project isn’t a binary itself, we will run the entire 

pipeline to ensure the data is refreshed, the model is trained, inferences 

are generated, and potentially the dashboard is refreshed with the latest 

predictions.

Step 6: When the team and stakeholders can verify the results, ML 

operators can trigger another GitHub action to deploy the pipeline to the 

production environment. It is critical that we don’t automatically deploy 

the pipeline to production once the job runs successfully. Even if all the 
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tests are passed, it is still a good idea to have humans review the results. 

For example, we need to ensure that the model does not generate biases 

for the sake of responsible AI.

https://www.databricks.com/blog/helping-enterprises-

responsibly-deploy-ai

All these steps, except step 6, can be summarized in Figure 15-12.

Figure 15-12.  Sample CI/CD workflow in the MLOps stack

�Conclusion
In this chapter, we learned the flow of CI/CD and the different stages. 

These concepts are generic no matter what tool you use. We also discussed 

how we can leverage these concepts in Databricks using different tools 

and how Databricks represents them in the user interface. It’s important 

to understand the core concepts. Then, we are in the driver’s seat and can 

look for the specific functions instead of trying to follow where the user 

interface design might lead.
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Finally, we have look at a real-life case study using Databricks’ open- 

source project MLOps stack, which is a generic name but is an actual 

project from Databricks. It might look more complicated than someone 

would learn for CI/CD, but it is always beneficial to go through a real-life 

scenario. Once you grasp this scenario, you are then ready to work with a 

team in real life.

CI/CD is a core strategy to keep the team productive and collaborative. 

It is imperative to master these skills to push any projects into production 

and beyond.
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CHAPTER 16

Databricks Pricing 
and Observability 
Using System Tables
In this chapter, we will look into how pricing for running workloads on 

Databricks works. It is important to be able to calculate the costs involved 

in running solutions on Databricks. We will see what factors determine the 

pricing model and recommend which compute SKU should be used for 

running your specific workloads.

Then we will look at the concept of observability and how you can do 

observability on the Databricks platform using system tables. One of the 

most common ways to implement observability prior to Unity Catalog was 

an internally developed utility tool called Overwatch. However, for this 

chapter, Overwatch is out of scope.

�Costs Associated with the 
Databricks Platform
Almost all the costs associated with Databricks are related to the compute 

resources being used. Since Databricks decouples storage and compute, 

the storage (which is provisioned in your cloud account) costs are 

https://doi.org/10.1007/979-8-8688-0444-1_16#DOI
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directly paid to the cloud provider. Further, for compute, which is again 

provisioned in your cloud account, the costs can be divided into two 

parts—Databricks costs and cloud compute costs.

Cloud compute costs refer to the underlying hardware, such as virtual 

machines, disks, etc., within the customer’s cloud account. The cloud 

compute is billed separately from the Databricks costs and is again paid 

directly to the cloud provider. It is important to note that the pricing model 

changes slightly with serverless compute, which we will discuss that later 

in this chapter.

For this chapter we will mostly look at the Databricks cost for running 

the compute resources in the lakehouse platform. But before we do that, 

let’s look at some of the cloud costs components involved in running 

workloads on Databricks.

�Cloud Infrastructure Costs
First we will break down the costs associated with the lakehouse platform:

•	 Storage costs: Within the lakehouse platform, data 

is stored in cloud storage (e.g., S3 on AWS, ADLS 

on Azure). The storage costs are paid directly to the 

respective cloud provider. The charges for storage 

are normally usage-based; i.e., they depend upon the 

amount of data being stored.

•	 Compute costs: The cloud compute costs are the cost 

of using the cloud compute infrastructure (VMs or 

EC2). The cloud infrastructure costs include costs for 

the virtual machines (VMs), disks, etc., that are paid 

directly to the cloud provider. Since Databricks clusters 

are ephemeral, the cloud provider charges for the 

duration for which the VMs have been deployed in the 

Databricks cluster.
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•	 Networking costs: There are some networking 

costs involved while deploying/running workloads 

within workspaces. Some of these are the costs of IP 

addresses, NAT gateways, load balancers, and private 

links (if enabled). Further, if the data and workspace are 

in different regions, there are egress costs associated 

as well. All of these costs are again paid directly to the 

cloud provider.

Next, we will learn how to calculate Databricks’ DBU costs and 

Infrastructure costs.

�Databricks Pricing
Let’s look at the pricing in more detail now.

�What Are Databricks Units?
A Databricks unit (DBU) is a normalized unit of processing power. 

Databricks consumption is through clusters (job or all-purpose compute), 

and SQL warehouses or serverless is priced in terms of DBUs. DBUs are the 

underlying unit of consumption within the platform. However, the billing 

is based on per-second usage.

Next, we will look into what factors determine the DBU consumption 

of Databricks compute. These are the three key factors that influence the 

cluster price:

•	 Compute size and type: This is the size of VMs one 

chooses both as the worker and the master node in 

the cluster. Depending upon the VM size, the number 

of DBUs change as well. Further, the number of DBUs 
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consumed depends upon whether Photon is enabled 

on the cluster. The compute size and type determines 

the number of DBUs that are consumed.

•	 Product SKU: The Product SKU determines the 

amount that would be charged per DBU-hr. For 

example, the per second price is DBU-hr / 3600. 

There are several different SKUs for the compute 

resources. This includes the all-purpose cluster, jobs 

cluster, DLT cluster, SQL warehouse (Classic and Pro), 

serverless, etc. Generative AI has a slightly different 

way to calculate the cost, but it is also based on DBUs. 

Depending upon the SKU being used, the dollars 

charged for the DBU-hr varies.

•	 Account tier: This is the Databricks account pricing 

tier in which the workspace runs, and one can select 

Standard, Premium, or Enterprise for AWS or Standard 

or Premium for Azure. Depending upon on the tier, the 

number of DBUs charged varies.

After looking at some of the levers that determine the DBU 

consumption, let’s move on and look at an example to calculate the pricing 

of a cluster in dollar value. In the following example, we assume that we 

have a nine-node cluster, and together with the master node we have a 

total of 10 VMs that power this cluster, as shown in Figure 16-1.
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Figure 16-1.  Databricks cluster configuration

In the Summary box in Figure 16-1, you can see that the cluster of 

this configuration would consume 15 DBUs/hr. Next, we can see how 

much that will cost in terms of dollar amount. Figure 16-2 shows the Azure 

Databricks pricing page. (Please note that this pricing is as of writing the 

book. For actual and most current pricing, visit https://www.databricks.

com/product/pricing).
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Figure 16-2.  Azure Databricks pricing information

The cluster shown in Figure 16-1 is an all-purpose compute and 

is created in a Premium Databricks account. Therefore, referring to 

Figure 16-3 this cluster is priced at $0.55 DBU-hr. Since the cluster is 

consuming 15 DBU/hr, we can easily calculate that the price for running 

this cluster would be as follows:

Total DBU cost: 15* $0.55 = $8.25/hr.

Further, let’s calculate the price of the VMs that are being used for the 

cluster. Since this is Azure Databricks and the VMs used are Standard_

DS3_V2, let’s go into the VM pricing page and find the costs for running 

the 10 VMs for 1 hr.

Figure 16-3.  Pricing of DS3 v2

Total VM cost: 10 * $0.2930 = $2.93/hr

For Azure:

https://azure.microsoft.com/en-us/pricing/details/virtual-

machines/linux/
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For AWS:

https://aws.amazon.com/ec2/instance-types/

For GCP:

https://cloud.google.com/compute/docs/general-

purpose-machines

Therefore, the user has to pay a total price of $8.25 + $2.93 = $11.18/

hr. Further, as noted earlier, the Databricks DBU cost would be paid to 

Databricks and the VM cost of $2.93 would be paid to the cloud provider.

In the previous example, we have enabled Photon acceleration. Please 

note that the number of DBUs required for Photon engine are 2x higher. 

Therefore, if we disable Photon, the cost would be $4.125.

A logical question we would ask is, should we enable Photon to pay a 

premium price? It is important to note that although Photon appears to 

be two times as expensive, the performance will be roughly 3x higher than 

without it. Therefore, for most workloads, Photon do give a better price/

performance than workloads running without Photon enabled. Figure 16-4 

illustrates that when running a sample NYC Taxi query, the performance 

is three times faster, and in our experience, the performance guarantee is 

quite consistent.

Databricks SQL comes with Photon free of charge. We discussed 

Photon in details in Chapter 8.
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Figure 16-4.  Photon vs. Databricks Runtime on NYC taxi example 
query (source: https://www.databricks.com/blog/2021/06/17/
announcing-photon-public-preview-the-next-generation-
query-engine-on-the-databricks-lakehouse-platform.html)

Before we move on, let’s discuss another important aspect around the 

pricing of jobs compute. Referring to the previous example, let’s assume 

we had spun up a jobs cluster instead of the all-purpose cluster. If we refer 

to Figure 16-3, the jobs compute is $0.3 DBU/hr, which is almost 50% 

less than the all-purpose compute. The cost for running the same cluster 

would be 15* $0.3=$4.5, and the cloud compute costs of $2.93 remain 

the same. Therefore, it is strongly recommended that all automated jobs 

always utilize the job clusters.

⭐ BEST PRACTICE ⭐

During Databricks Data + AI Summit 2024, Nvidia CEO Jensen Huang 

announced the completion of a five-year project with Databricks to accelerate 

Photon with GPU. We will discuss the serverless SQL warehouse in the next 

section. It provides the best price-performance for data engineering workload 

and will drive down total cost of ownership.
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�SQL Warehouse Pricing
In this section, we will learn about pricing of Databricks’ SQL warehouse 

compute and how pricing differs from other compute in Databricks.

There are two types of SQL warehouse computes: Classic and 

Serverless. Classic is similar to interactive clusters, where the DBU cost 

and underlying infra cost are paid separately, but Photon is included in the 

price. Second, Serverless is one price all inclusive.

As discussed earlier, Databricks fully manages the underlying cloud 

compute instances. Therefore, rather than having two separate charges 

(i.e., the DBU compute cost and the underlying cloud compute cost), 

the user pays only a single charge to Databricks for both. The concept of 

calculating the pricing of Classic and Pro SQL warehouses remains the 

same as discussed earlier. We will look into how we calculate the pricing of 

serverless SQL warehouse compute.

Next, we will look at how to calculate the cost of the serverless SQL 

warehouse. In Figure 16-5 we have an X-Large cluster size that will 

consume 80 DBU/hr.

Figure 16-5.  Creating a new SQL warehouse
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According to the Databricks pricing page, Classic SQL is $0.22/hr, 

Pro is $0.55/hr, and Serverless is $0.7/hr. Therefore, the total cost for the 

example X-Large serverless SQL warehouse for one hour would be $0.70 

* 80 = $56. This is the total cost, including the underlying infrastructure. 

This applies only to Serverless as the other tiers will require users to pay for 

underlying infrastructure.

Databricks SQL does not allow you to choose the infrastructure, unlike 

interactive and job clusters. However, Databricks has carefully worked on 

the best-suited VMs for each cloud and carefully tuned the performance to 

give users the best price/performance for their analytical SQL workloads. 

To understand what Databricks chose for the underlying infra, please refer 

to the following:

Azure: https://learn.microsoft.com/en-us/

azure/databricks/compute/sql-warehouse/

warehouse-behavior

AWS: https://docs.databricks.com/en/compute/

sql-warehouse/warehouse-behavior.html

GCP: https://docs.gcp.databricks.com/en/

compute/sql-warehouse/warehouse-behavior

�Databricks Cost Management 
Best Practices
In this section, we will look into some of the best practices for cost 

management on the Databricks Platform.

	 1.	 Cluster Policies

Cluster policies allow users and groups to follow 

pre-defined rules when configuring or spinning up 

clusters. With cluster policies, admins can limit the 
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size of clusters and define the type of VMs that can 

be used while creating the clusters. Further, admins 

can even set the max DBUs per hour on the clusters. 

Therefore, by enforcing cluster policies, admins can 

manage compute costs on the platform.

	 2.	 Cluster Access Controls

Cluster access controls allow admins to control 

which users can create clusters. The cluster-level 

permissions give control over whether a user can 

attach to, manage, or restart a cluster. As a best 

practice, cluster creation abilities should be given 

admins who can manage and govern access to the 

clusters.

	 3.	 Cluster Autoscaling and Cluster Termination

Databricks cluster autoscaling automatically adds 

and removes worker nodes in response to changing 

workloads to optimize resource usage. Autoscaling 

makes it easier to achieve high cluster utilization as 

one does not need to provision the exact number 

of nodes to match the workloads. This not only can 

enable the workloads to run faster than an under-

provisioned cluster but also helps reduce the overall 

costs as compared to a statically sized cluster due to 

better resource utilization.

Cluster auto-termination terminates a cluster after a 

specified inactivity period. As a best practice, always 

enable auto-termination for all-purpose clusters 

to prevent these clusters running overnight or over 

weekends.
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	 4.	 Spot Instances

When you are requesting certain types of clusters, 

you are requesting new virtual machines from the 

cloud provider. Cloud providers also have the need 

to maximize their resource utilization. So spot 

instances allow you to utilize idle compute available 

in the region of the cloud provider, up to the price 

that you can optionally specify in advance. One 

thing to note about spot instances is that the cloud 

provider can recall spot instances at any time even 

when your job is running. So spot instances can 

be deployed in some long-running jobs where if 

the cluster restarts midway the job continues from 

where it left. Further, you can also configure it to fall 

back into on-demand instances

	 5.	 Instance pools

Similar to spot instances. Instance pools apply to 

the workspace level where administrators can pre-

allocate some popular instances of virtual machines, 

either via on-demand or spot. Then when clusters 

are starting, there is no need to acquire them from 

the cloud provider, speeding up the time to start the 

cluster. However, administrators must be careful not 

to pre-load so many virtual machines because once 

they are loaded, the cloud provider will charge the 

account.
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	 6.	 Cluster Tags

Cluster tags can be associated with Databricks 

Clusters to attribute cost for chargeback purposes. 

For example, if there are multiple BUs in an 

organization, each BU can tag their clusters.

For in in-depth analysis of different cluster strategies, please refer to 

the Databricks website: https://docs.databricks.com/en/compute/

cluster-config-best-practices.html.

�Databricks Observability: System Tables
Observability is a key aspect of modern cloud data platforms. In simplistic 

terms, observability is how well one can understand the IT system 

from its generated outputs, such as logs, metrics, and traces. Therefore, 

observability gives admins an approach to optimizing and controlling their 

platforms based on the data they generate.

Some of the typical use cases platform admins might be interested in 

doing the following:

•	 Monitoring costs

•	 Monitoring security and audit

•	 Monitoring platform usage/pipeline states

•	 Data observability and optimization

•	 Performance/resource utilization

Databricks’ system tables integrated within Unity Catalog provides 

curated datasets that enable users to query and answer these use cases.
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�Introduction to System Tables
Let’s understand how one can utilize system tables for observability of the 

Databricks platform.

System tables are a Databricks-hosted analytical store for operational 

and usage data. They are fully integrated with Unity Catalog.

System tables can be used for monitoring and analyzing the 

performance, usage, and behavior of Databricks platform components. 

By querying these tables, users can gain insights into how their jobs, 

notebooks, users, clusters, ML endpoints, and SQL warehouses are 

functioning and changing over time. This historical data can be used to 

optimize performance, troubleshoot issues, track usage patterns, and 

make data-driven decisions.

System tables provide a means to enhance observability and gain 

valuable insights into the operational aspects of Databricks usage, 

enabling users to better understand and manage their workflows and 

resources. Based on the schemas/tables available as of writing the book, 

one can work toward solving/answering the following use cases:

•	 Cost and usage analytics

•	 Efficiency analytics

•	 Audit analytics

•	 GDPR regulation

•	 Service-level objective analytics

•	 Data quality analytics

System tables are available to customers who have Unity Catalog 

activated in at least one workspace in their account. This is needed to 

enable system tables for the account. The data one sees in these tables is 

collected across all the workspaces in the account irrespective of whether 
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Unity Catalog is enabled on the workspaces. However, system tables would 

be visible and queried only in the workspace that has Unity Catalog 

enabled.

Since system tables are governed by Unity Catalog, you need at least 

one Unity Catalog–governed workspace in your account to enable system 

tables. That way you can map your system tables to the Unity Catalog 

metastore. System tables must be enabled by an account admin. You can 

enable system tables in your account either by using the Databricks CLI or 

by calling the Unity Catalog API in a notebook.

The system tables are organized within a catalog named system, 

which is a fundamental component of every Unity Catalog metastore. 

Inside this catalog, you’ll find schemas such as access and billing that 

house the system tables. These tables offer a comprehensive view of your 

Databricks environment, enabling you to make informed decisions and 

optimizing resource allocation. See Figure 16-6. It is important to note that 

the billing schema is enabled by default, but others have to be enabled 

manually.

For details of the system table schema, please refer to the Databricks 

documentation:

https://docs.databricks.com/en/administration-guide/system-

tables/index.html
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Figure 16-6.  Databricks system table catalogs

System table access is governed by Unity Catalog. By default, no users 

have access to system tables. To grant access, a metastore admin or other 

privileged user must grant USE and SELECT permissions on the system 

schemas.

�Common Schemas/Tables Available 
with System Tables
These schemas/tables are available with the system tables:

•	 Audit logs: Includes records for all audit events across 

your Azure Databricks account.

•	 Billing usage: Includes records for all billable usage 

across your account. Each usage record is an hourly 

aggregate of a resource’s billable usage.
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•	 Table lineage: Includes a record for each read or write 

event on a Unity Catalog table or path.

•	 Workflow: Allows you to view records related to job 

activity in your account. Further, you can join jobs 

system tables with billing tables to monitor the cost of 

jobs across your account.

These system tables provide valuable insights into the activities, 

resource utilization, and data lineage within your Databricks account 

and can be used for historical KPI tracking, monitoring and alerting, and 

forecasting expected usage for an intelligent lakehouse. There are many 

more schemas such as Pricing, Cluster, SQL Warehouse, etc., that users can 

analyze to ascertain the operational health of the Databricks platform.

�System Table: Billing Usage Example
In the data and AI era, when there is data, there is AI. The granularity of the 

billing table is detailed enough to use as an input for a time-series forecast 

model. Databricks has built a demo, and the notebooks are available here:

https://notebooks.databricks.com/demos/uc-04-system-tables/

index.html#

Figure 16-7 illustrates that we can use cluster SKU and workspace ID 

along with the historical cost trend as training data to predict the future 

cost and feed into a dashboard for monitoring purposes.
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Figure 16-7.  Predictive analysis of utilization and pricing

You can build your custom solutions by leveraging the monitoring 

tables for predictive analysis and achieve greater savings in terms of cluster 

pooling, termination time, and beyond.

�Conclusion
In this chapter, we looked at how to calculate the costs associated with 

Databricks. There are two types of costs associated with Databricks 

compute: cloud compute costs associated with VMs that are paid directly 

to the cloud provider and DBU costs that are paid to Databricks. We looked 

into how to calculate costs for various compute SKUs like interactive 

clusters, jobs clusters, and serverless SQL warehouses.

Then we moved into observability on the Databricks platform using 

system tables.

System tables in the Unity Catalog provide great insights to 

administrators who want to dig deeper into the platform, such as audit 

logs, pricing, and lineage. We have also demonstrated that, beyond a 

maintenance report, teams can create predictive analytics with the data, 

making it great for the finance team to do budgeting.
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CHAPTER 17

Databricks 
Platform Security 
and Compliance
In this chapter, we will start by looking into the Databricks platform 

architecture. We will then move into Databricks workspace deployment 

and deep dive into topics like VNET injection and No Public IP (NPIP). 

Further, we will look into encryption and access control features. Finally, 

we will review an important tool called Security Analysis Tool developed 

by Databricks, which, when executed on a Databricks workspace, helps 

identify gaps in workspace security with recommended best practices and 

gives pointers to admins on how to resolve those deficiencies.

Please note that for this chapter we have used Azure Databricks as our 

reference to explain the concepts using single-cloud terminology, but the 

same concepts exist in both AWS and GCP.
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�Databricks Architecture
Databricks is a hybrid PaaS general-purpose, cloud-agnostic compute 

platform. Let’s decode this a bit. The term hybrid PaaS means deploying 

a data plane (virtual network and VMs) in your cloud service provider 

account while Databricks manages a multitenant control plane, as shown 

in Figure 17-1.

Figure 17-1.  Databricks data plane control plane architecture

Next, we will further drill down into what the control plane and data 

plane are. The control plane contains all the back-end services such as 

WebApp, Cluster Manager, notebooks, workflow jobs, etc., and is managed 

by Databricks. On the other hand, a data plane is where you process and 

manage your data. The clusters/VMs get spun up in the data plane and 

connect to your storage account, where your data resides. Therefore, there 

is no need to send a copy of data to Databricks for processing, and as a 

result, there is no duplication of data required. Another advantage is that 

since data resides in your cloud storage, you can access it with or without 

Databricks.
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Further, the data plane provides a natural isolation as it runs in your 

cloud account. It is important to note that the control and data planes 

always communicate over Azure Backbone.

�Azure Databricks Deployment
In this section, we will examine the planning that needs to be done before 

Databricks deployment and some related best practices. Again, to reiterate, 

we have used Azure Databricks to explain the terminology, but the 

concepts are similar for AWS and GCP.

�Capacity Planning
Within the Databricks workspace, you can spin up multiple clusters at 

a time for data processing. However, there is a limit to the number of 

clusters/nodes that can spin concurrently inside the workspace, and this 

is dependent on the size of the VNET and corresponding subnets selected 

during workspace deployment. Figure 17-2 showcases how the number 

of nodes that can be spun up in the workspace depend upon the size of 

virtual networks/subnets created.
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Figure 17-2.  Nodes per virtual network calculations

It is also important to note that once the size of the subnets is selected 

and the workspace has been deployed, we cannot resize the workspace 

or the subnets. In that case, a new workspace has to be deployed, and all 

the artifacts might need migration. As a best practice, if this is your first 

Databricks deployment, start with the /24 or /23 workspace. Once you 

size your workloads and jobs, you can always spin up a larger workspaces 

thereafter.

�VNET Injection or Bring Your Own VNET
The default deployment of Azure Databricks workspace is a fully managed 

service on Azure. However, if you want customization and control over 

your environment, you can deploy the Databricks data plane in your own 

virtual network. For several reasons, you want to use your own VNET/

subnets (known as VNET injection) to deploy your Databricks workspace.
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First, this lets you connect Azure Databricks to other Azure services 

(such as Azure Storage) more securely using service endpoints or private 

link implementation. Next, you can connect to on-premises data sources 

with Azure Databricks via Express Route, taking advantage of user-defined 

routes. VNET injection allows you to connect Azure Databricks to a 

network virtual appliance to inspect all outbound traffic and take actions 

according to allow and deny rules. Finally, you can configure Databricks to 

use custom DNS and set up network security group (NSG) rules to specify 

egress traffic restrictions.

Hence, with the ability to fully manage your deployment, it is strongly 

recommended that Azure Databricks be deployed using VNET injection or 

in your own VNET/subnet.

Now let’s move further to see how VNET injection works. The first step 

is to create a VNET if you don’t have an existing one. Within the VNET 

there needs to be two dedicated nonoverlapping subnets per workspace 

that need to be created. The IP ranges for these VNET and subnets in 

Figure 17-2 determine the number of concurrent clusters you can spin.

By default, the subnets are named “public” and “private.”. Please 

note that these subnets cannot be shared with other applications. As 

a recommended practice, you should have a single workspace per 

VNET. Figure 17-3 shows the parameters required for the VNET-injected 

workspace in Azure Portal.
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Figure 17-3.  Azure Databricks parameters

�Secure Cluster Connectivity (No Public IP/NPIP)
In Figure 17-3, the first checkbox below Networking is called Secure 

Cluster Connectivity (No Public IP). Let’s discuss what No Public IP (NPIP) 

means and why it should be selected while deploying your workspace.

When Databricks is deployed without Secure Cluster Connectivity, the 

Databricks control plane initiates an inbound connection to cluster(s). 

As discussed earlier, each VM in a cluster requires one public and one 

private IP. Thus, in this case, the traffic between the control and data plane 
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uses public IPs. Not only this, but ports need to be open on the firewall 

to enable this connection, which might be an issue for the enterprise 

infosec teams.

The Secure Cluster Connectivity, or NPIP, feature aims to solve the 

public IP issue. With NPIP, each cluster initiates a connection to the control 

plane’s hosted secure cluster connectivity relay during cluster creation 

(Figure 17-4). This results in a data plane (the VNET) with no open ports, 

and classic compute plane resources have no public IP addresses for their 

nodes. The two subnets required for the workspace are now both private.

Figure 17-4.  Secure cluster connectivity between control plane and 
data plane
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Therefore, with secure cluster connectivity enabled, customer virtual 

networks have no inbound open ports from external networks, and 

Databricks cluster nodes have no public IP addresses. This configuration 

is strongly recommended for all Azure Databricks workspaces because it 

significantly reduces the attack surface and hardens the security posture.

�Azure Private Link for Back-End 
and Front-End Connections
After VNET injection and No Public IP (NPIP), Databricks introduced 

the Private Link feature. Azure Private Link provides private connectivity 

from Azure VNETs and on-premises networks to Azure services without 

exposing the traffic to the public network.

With the private link feature, illustrated in Figure 17-5, Azure 

Databricks now supports private link connectivity for two main in-transit 

connections in the data plane and control plane architecture. The first 

connection is from the user or front-end (including notebooks, REST API, 

JDBC/ODBC, and Databricks Connect) to the workspace control plane. 

The second connection is between the data plane to control plane. For 

both these connections, you can set up private endpoints while deploying 

the Databricks workspace.

Figure 17-5.  Private link security
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You can give instructions on how you can set private link connectivity 

for Databricks deployment here: https://learn.microsoft.com/en-us/

azure/databricks/security/network/classic/private-link.

After reviewing some of the main security features to consider while 

deploying a Databricks workspace, let’s move on to the next section, which 

deals with encryption and auditing.

�Encryption and Auditing
One important aspect of platform security is encryption and auditing. 

Let’s first examine the default encryptions available within the Databricks 

platform.

First, all in-transit traffic is encrypted by default. Therefore, the control-

plane data plane and user-control plane traffic is encrypted by default. 

Also, if you are communicating with other Azure services, that traffic is 

encrypted as well.

You can enable further encryptions in your Databricks deployment. 

The first is intra-cluster spark traffic, i.e. , data movement within your VMs 

in a cluster. Normally, this is not necessary to enforce (except for specific 

data processing use cases) because there is a performance degradation 

when this feature is enabled. The second encryption you can enable is the 

encryption of shuffle disks on compute workers.

Next, we will move on to learn about another very important feature: 

customer-managed keys, which can be used to encrypt artifacts in both the 

control plane and the data plane.

�Customer Managed Keys
All managed services in the Databricks control plane are encrypted 

by default at rest. Optionally, you can add customer-managed keys 

(illustrated in Figure 17-6) for these managed services to control access to 

some services in the control and data planes. Some of the services where 
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encryption via customer-managed keys can be done in the control plane 

are notebooks, notebook results, secrets stored by the secret manager, 

DBSQL queries, repo credentials, and PAT tokens.

Figure 17-6.  CMKs

Moving on to data plane artifacts, you can also use customer-managed 

keys to encrypt the DBFS root store and Azure-managed disks. The 

following page gives the steps to enable this feature in your Databricks 

workspace:

https://learn.microsoft.com/en-us/azure/databricks/security/

keys/customer-managed-keys

To use this feature, you must first store your encryption key in 

the Azure key vault in your cloud. Similarly, Azure Databricks creates 

data-encrypting keys rooted in the customer key in the control plane. 

Applications now use customer-managed keys to encrypt and decrypt all 

data/artifacts. As a best practice, customers should develop policies to 

enable their key rotations.

To conclude, customer-managed keys give you full control over the 

keys used to encrypt data in the control and data planes.
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�Identity and Access
In this section, we will examine some of the features related to identity and 

access control on the Databricks platform.

�SSO and Multifactor Authentication
Databricks provides security features such as single sign-on for user 

authentication. SSO enables you to authenticate your users using your 

identity provider (OKTA, AAD, etc.). It is highly recommended that SSO 

should be configured for enhanced security.

Further, once the SSO is enabled, you can enable multifactor 

authentication, again via your identity provider. In Azure Databricks, SSO 

in the form of Microsoft Entra ID-backed login is available in the account 

and workspaces by default.

Azure Databricks also supports Microsoft Entra ID conditional access, 

which allows administrators to control where and when users can sign in. 

Conditional access policies can restrict sign-in to your corporate network 

or require multifactor authentication (MFA).

�IP Access Lists
IP access lists (see Figure 17-7) allow you to restrict access to Databricks 

accounts and workspaces based on the user’s IP address. By default, users 

can connect to Databricks from any IP address. This might not be a best 

practice especially when the user accesses Databricks via the public/

shared Internet like in a cafe.

When IP access lists are configured, it restricts the IP addresses that 

can authenticate to Databricks by checking if the user or API client is 

coming from a known good IP address range such as a VPN or office 

network. Further, if a user is moved from an established session to a bad IP 
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address, the Databricks connection will not work, and workspace access 

will be denied. Thus, this gives you comprehensive control over which 

networks their workspaces can be accessed from.

Figure 17-7.  IP access list

An IP access list can be configured via the Databricks CLI or using the 

IP Access List API. Let’s see an example in Listing 17-1.

Listing 17-1.  IP Access List API Payload

{

  "label": "Office VPN",

  "list_type": "ALLOW",

  "ip_addresses": [

    "192.168.100.0/22"

  ]

}
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This will allow users within the IP range to access Databricks. The rest 

of the IP addresses will be blocked.

�Role-Based Access Control
In Databricks, you can use access control lists (ACLs) to configure 

permission to access workspace-level objects such as clusters, notebooks, 

etc., as shown in Figure 17-8. These ACLs are administered by workspace 

admins to users via the UI or the Permissions API. Workspace admins have 

the CAN MANAGE permission on all objects in their workspace, allowing 

them to manage permissions on all objects in their workspaces. Further, 

they can give/revoke access to Databricks workspace-level objects 

as needed.

Figure 17-8.  ACLs

Figure 17-9 provides a snapshot of notebook ACLs as an example. 

Different ACLs can be administered depending on the user’s role. The 

following lists all ACLs to different Databricks objects:

https://learn.microsoft.com/en-us/azure/databricks/security/

auth-authz/access-control/
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Figure 17-9.  Notebook ACLs

Thus, workspace ACLs allow admins to provide appropriate access to 

Databricks objects to users.

�Token Management API
Databricks Personal Access Tokens (PAT) are user-created tokens within 

Databricks. Users can create tokens through the UI or using the token 

API. While creating access tokens, users can mention the expiration 

date when the token will expire. If the field is left blank, PAT tokens 

never expire.

As illustrated in Figure 17-10, the Token Management API is built on 

top of the PATs by providing a stronger API for administrators to enable 

secure usage. It also gives admins the ability to turn off or disable PAT 

tokens. Using the permission API, admins can control which user is 

allowed to create tokens. The API also enables administrators to view and 

delete tokens from users in a workspace. Finally, administrators can set 

policies such as maximum token lifetime and more.
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Figure 17-10.  Token Management APIs

Let’s look into a quick example (Listing 17-2) of using the Token 

Management API to set token permission. The API request lets you set a 

Can_Use permission to a user, group, or service principal.

Listing 17-2.  Payload for Token Management API

{

  "access_control_list": [

    {

      "user_name": "string",

      "group_name": "string",

      "service_principal_name": "string",

      "permission_level": "CAN_USE"

    }

  ]

}

To conclude, admins must manage the PAT tokens created for user 

authentication. The Token Management API enables admins to do this 

seamlessly.
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In the next section of this chapter, we will examine the Security 

Analysis Tool, a utility developed by Databricks that gives users a 

mechanism to see if the security features for their Databricks deployment 

follow security best practices.

�Security Analysis Tool
Customers need to assess and reassess the security of the deployed 

architecture. Even if the initial deployment was well architected and 

all security features were taken into consideration, over time as newer 

features get released and configuration drift might happen, which could 

lead to data breach. To assess and monitor the security health of the 

deployed workspaces, Databricks launched the Security Analysis Tool 

(SAT), illustrated in Figure 17-11. SAT programmatically measures your 

workspace configuration against Databricks’ security best practices. 

Thereafter, the reported deviations are ranked by severity, and links 

are provided to explain how you can extend your security to meet the 

Databricks requirements.
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Figure 17-11.  Benefits of SAT

SAT consists of a set of notebooks and libraries that collect details 

of the workspace using REST APIs. These notebooks run in Databricks 

workflows and can be scheduled or run manually. The notebooks’ results 

are saved in a Delta table for historical reference. Finally, SAT comes with 

a prebuilt dashboard (Figure 17-12) that displays the latest results from the 

Delta table. Administrators, security analysts, and auditors can now assess 

their Databricks security posture from the comfort of a single screen.
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Figure 17-12.  SAT Dashboard report

The SAT dashboard gives you information on certain dimensions. The 

first is Workspace Security Summary, which is a high-level summary of 

the findings by severity. The second dimension is workspace stats, such 

as users, databases, tables, etc. Then, it moves into individual Security 

Category details, which contain not only a summary of the deviation 

counts but also a table of security violations and links to documentation to 

fix the violations.
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�Databricks Security Best Practices
In this section, we will examine some of the security best practices in 

addition to the features we discussed earlier in the chapter.

•	 Do not use Databricks FileSystem (DBFS) as a storage 

layer as by default it is accessible to all workspace users. 

Use cloud storage for all data and with Unity Catalog 

enabled to manage access to tables and volumes.

•	 Back up and automate code deployment via CI/CD 

so you can integrate code scanning, better provide for 

permissions, perform linting, and more. Databricks 

repos enable you to move notebooks to your Git repos.

•	 Always monitor audit logs for user activities within the 

workspace. Audit logs are provided via system tables.

•	 Manage secrets and credentials via Databricks secret 

management or external systems like Azure Key Vault. 

Avoid entering credentials directly in notebooks, but 

reference them from the secret manager.

•	 Use service principals to run production workloads. 

You can configure service principals and generate PATs 

for service principals.

•	 Databricks Security and Trust Center (https://www.

databricks.com/trust) provides extensive direction 

around the latest security features and best practices. 

Please refer to it as and when needed.
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�Conclusion
In this chapter, we examined key features related to Databricks security 

and compliance. We started by learning about the control plane/

data plane architecture. Then, we moved on to key security features 

recommended for Databricks deployment: VNET injection, Secure Cluster 

Connectivity (NPIP), and private link.

Next, we looked at key features that users can implement for 

encryption such as customer-managed keys (CMKs), which allow users to 

encrypt certain assets in both the control and data planes.

Then we moved into identity and access and discussed SSO and 

multifactor authentication, IP access lists that allows users from certain IP 

addresses to access Databricks workspaces, and token management for 

managing PAT tokens.

Finally, we discussed an excellent utility by Databricks: the Security 

Analysis tool. This tool allows users to assess their security with respect 

to Databricks’ best practices and take appropriate measures based on the 

recommendations generated by the tool.
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CHAPTER 18

Spark Structured 
Streaming: A 
Comprehensive  
Guide
Many people think of streaming as some very low-latency continuous real- 

time events like Twitter feeds or IoT devices; while that was the original 

use case, streaming has evolved over the years to allow integration with 

other non-real-time tables. In this chapter, we will first go back in time to 

visit Spark Streaming; then we will look at the latest Databricks Structured 

Streaming engine and how to use Delta Live Tables to process streaming. 

Apache Spark offers two popular streaming processing engines: Spark 

Streaming and Structured Streaming. While both engines are designed for 

real-time data processing, they have distinct architectures, advantages, 

and use cases.

https://doi.org/10.1007/979-8-8688-0444-1_18#DOI
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�Spark Streaming
Spark Streaming is the traditional streaming engine that uses the Resilient 

Distributed Dataset (RDD) API. It processes data in micro-batches, where 

each batch is processed as a whole. This approach allows for low-latency  

processing and high throughput. In micro-batching, illustrated in 

Figure 18-1, data is processed in small batches, e.g., 1,000 rows at a time. 

Spark Streaming uses a write-ahead log, which only means it will keep 

track of the count or offset before it writes to ensure disaster recovery. 

However, with this process, the batch writing will become sequential and 

result in hundreds of milliseconds of latency between batches.

Figure 18-1.  Micro-batch processing

The high-level architecture of Spark Streaming consists of the following 

components:

•	 Data source: The source of the data stream, such as 

Kafka, Kinesis, or Flume

•	 Receiver: The component that receives the data from 

the data source and hands it over to Spark Streaming
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•	 Spark Streaming (engine): The core engine processes 

the data stream

•	 Processing: The component that performs various 

operations on the data stream, such as filtering, 

mapping, reducing, joining, and so on

•	 State management: The component that manages 

the state of the streaming application, including 

checkpoint management

•	 Output sink: The component that writes the processed 

data to a target system, such as a file, database, or 

messaging system

Figure 18-2 shows the workflow.

Figure 18-2.  Spark Streaming workflow

With the process in mind, let’s explore, using Listing 18-1, how to build 

a Spark streaming application in Scala, Spark’s native language.

Listing 18-1.  Spark Streaming Example Using Scala

import org.apache.spark.SparkConf

import org.apache.spark.streaming._

object SparkStreamingExample {

  def main(args: Array[String]) {

    �val conf = new SparkConf().setAppName("SparkStreaming 

Example")

    �val ssc = new StreamingContext(conf, Seconds(10))  

// 10-second batch interval
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    // Create a DStream from socket stream

    val lines = ssc.socketTextStream("localhost", 9999)

    // Split lines into words

    val words = lines.flatMap(_.split(" "))

    // Count words

    val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

    // Print word counts

    wordCounts.print()

    ssc.start()

    ssc.awaitTermination()

  }

}

While we appreciate the low latency brought by Spark Streaming, it is 

not easy to fit into today’s rapid data engineering requirements due to the 

following reasons:

•	 Complex programming model

	 As illustrated, creating an application requires a 

few steps, especially handling RDD and ultimately 

performing map and reduce operations.

•	 Requires manual state management

Because streaming applications run 24/7, keeping 

track of the progress is important. There are multiple 

ways to handle states:

a.	 Checkpointing: Spark Streaming can 

checkpoint the application’s state at regular 

intervals, allowing it to recover from failures 

and resume processing from the last 

checkpointed state.
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b.	 Windowing: Spark Streaming provides 

windowing operations (e.g., window(), 

reduceByKeyAndWindow()) that allow you to 

manage state over a sliding window of data.

c.	 UpdateStateByKey: Spark Streaming 

provides the updateStateByKey() method, 

which allows you to update the state of a key-

value pair based on new data.

d.	 Stateful transformations: Spark Streaming 

provides stateful transformations (aka 

mapWithState()) that allow you to maintain 

state across batches of data.

While these operations are largely deprecated, 

they are the foundation for Structured Streaming. 

Understanding these operations will make 

the transition into the enhancements easier 

later. To read more about the operations of 

stateful operations, please visit the following 

Databricks blog:

https://www.databricks.com/blog/2016/02/01/

faster-stateful-stream-processing-in-apache-

spark-streaming.html

•	 Limited support for event-time processing

	 Micro-batch processing in Spark Streaming focuses on 

the data that arrives within a specific time window, but 

it will do so only when the watermark reaches the event 

time of the late data, not immediately, resulting in a late 

arrival situation that is not ideal.
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�Structured Streaming
Structured Streaming is a newer streaming engine that uses the 

Dataframe/Dataset API, which is the strong foundation of Spark SQL. It 

processes data continuously, allowing for exactly-once guarantees and 

robust state management.

Beyond putting a structure (dataframe) into the streaming data, 

Structured Streaming is designed to address the following challenges:

•	 Providing end-to-end reliability and correctness 
guarantees: When failure occurs, batch processing 

is required to restart from its last successful batch, 

which is not hard to imagine why. With the increasing 

demand of streaming, pipelines must be continuously 

monitored and automatically mitigated to ensure 

highly available insights are delivered in real time.

•	 Performing complex transformations: In addition 

to streaming systems, data can often come in as flat 

file formats (CSV, JSON, Avro, etc.) that often must 

be restructured, transformed before being ingested 

into a bronze table. Structured streaming is designed 

to process and transform these data with minimal 

latencies.

•	 Handling late or out-of-order data: As discussed, 

there is a challenge in processing late arrival data 

because one must wait until the next batch is finished 

before processing the late arrival. We will discuss how 

the new architecture, called continuous processing, will 

be able to address this issue.
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�What Is Continuous Processing?
Instead of performing micro batches one after another, continuous 

processing (see Figure 18-3) is now tightly integrated with Spark. It 

launches a set of long-running tasks at the same time that keep reading, 

processing, and writing data continuously. This means as soon as new data 

is available, it gets processed and written right away, so the delay between 

when the data comes in and when it’s ready is very short—just a few 

milliseconds.

Figure 18-3.  Continuous processing

Spark uses a special technique called the Chandy-Lamport algorithm 

to track how the processing is going. It adds special markers to the data 

stream, called epoch markers. When a task sees one of these markers, 

it tells the main computer (called the driver) where it stopped (offset) 

processing. The tasks report back asynchronously, in other words, without 

waiting for the task to finish; then the driver writes down all the offset in 

parallel, so the progress can be kept track of without waiting for the batch 

to finish. This all happens in the background, so the tasks can keep going 

without stopping, and everything stays fast and efficient.
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�Triggers
While Structured Streaming now supports continuous processing, it 

doesn’t mean micro-batch processing becomes obsolete immediately. It 

is not hard to imagine that by spinning up an always-on Spark instance, 

it will incur a lot of resources as well as cost, so unless the real-time 

requirement is mandatory, like in a credit card transaction scenario where 

you cannot afford keeping the customer waiting for a batch to finish, there 

is always an option to fall back into micro-batch processing. That’s where 

Trigger mode comes into the picture.

The following are the different trigger modes:

•	 Default mode (no trigger is specified)

	 If the trigger option is not specified, then by default, the 

query will be executed in micro-batch mode.

•	 Fixed interval micro-batches 

(trigger(processingTime = "1 second") )

	 As the name states, the micro-batch will be triggered 

in the interval specified. Since micro-batching is a 

sequential operation, if the previous batch cannot 

finish in the specified interval, the next batch will wait 

for the batch to finish before processing.

•	 Available-now micro-batch 

(trigger(availableNow=True))

	 If you were resuming from a streaming process, you can 

use this option to process all the batches in the queue. 

This trigger will stop on its own.
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•	 Continuous with fixed checkpoint interval 

(trigger(continuous = "1 second")

	 The query will be executed in the new low-latency, 

continuous processing mode. The regular checkpoint 

will be written into the checkpoint location.

�Output Modes
Similar to write modes in the Spark dataframe, the most initiative ones 

are “overwrite” mode and “append” mode. Spark Structured Streaming 

also has these two modes, which can be called using writeStream.

OutputMode(). There is an additional mode called “update” in Structured 

Streaming that is more applicable to grouped aggregations on a sliding 

window, which we will discuss later in this chapter. These are brief 

descriptions of the modes:

Complete: Similar to the overwrite mode, on every 

trigger, everything will be rewritten again, but it does 

not delete old data, so there will be duplications. 

However, this can be useful for aggregations, so we 

don’t lose any count as a result of late arrival.

Append: As its name suggests, all the data will be 

appended on every trigger. But late arrivals need 

to be handled properly for aggregations. This is the 

default mode.

Update: Mainly applies to aggregations. This mode 

will put intermediate results in memory and update 

the aggregations once the threshold is reached for 

late arrival.
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�Windowed Grouped Aggregation
Structured Streaming offers a way to group aggregations together by 

windowing (sliding window or tumbling window), say for five minutes, 

similar to the groupBy operator. Imagine we are converting a timestamp 

column to a time range, say 12:00 to 12:10, and for every trigger, it will 

aggregate the events and save it into a table. In the table shown in 

Figure 18-4, we can notice “cat” changed to 2 from 12:05 to 12:10 because 

another “cat” arrived at 12:07.

Figure 18-4.  Windowed grouped aggregation

�State Management
When you need to handle state management all by yourself, Structured 

Streaming comes with a checkpointing option. Databricks recommends 

always specifying this option to ensure the job can be recovered in case of 

failure, as shown in Listing 18-2.
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Listing 18-2.  Spark Streaming Checkpoint

streamingDataFrame.writeStream

  .format("parquet")

  .option("path", "/path/to/table")

  .option("checkpointLocation", "/path/to/table/_checkpoint")

  .start()

However, there are times that require more advanced stateful 

processing. That’s where the new operators mapGroupsWithState() and 

flatmapGroupsWithState() come into the picture. These operators 

allow you to maintain state for a group of target audience, and the key to 

group them together might not be in sequence; hence, they are arbitrary. 

For example, for a class of users in a geographic location or spending 

threshold, instead of applying on an individual basis, the grouping key can 

be a state name, but some data can come in the form of a city name. These 

techniques are helpful to ensure late data can be tagged to a specific group 

for analysis. See Figure 18-5.

Figure 18-5.  Arbitrary stateful processing in Structured Streaming
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�Late-Arrival Handling: Watermark
Structured Streaming uses a watermark to control the threshold for how 

long to continue processing updates for a given state entity. A watermark 

(see the example in Listing 18-3) is a threshold timestamp used to track 

the latest event time of the data processed so far. Any data arriving with an 

event time older than the watermark is considered late and can be either 

ignored or processed separately.

Listing 18-3.  Spark Streaming Watermark

from pyspark.sql.functions import window

(df

  .withWatermark("event_time", "10 minutes")

  .groupBy(

    window("event_time", "5 minutes"),

    "id")

  .count()

)

Earlier we discussed a new output mode called Update, which is useful 

for aggregations along with a watermark.

Update mode will continue to update the count on every trigger until 

after the watermark threshold is reached, as shown in Figure 18-6.
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Figure 18-6.  Update mode in aggregation

Append mode will write the data into a table only after a threshold is 

reached (see Figure 18-7).

Figure 18-7.  Append mode in aggregation
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�Auto Loader
Auto Loaders are a special form of streaming using micro-batch 

processing. Their goal is to abstract the complexity of loading file arrivals 

using a micro-batch pipeline. The CloudFiles protocol can monitor for 

ADLS, S3, and GCP for you automatically without the need to set up a file 

trigger in Databricks or an external system.

Combined with Delta Live Tables, Auto Loaders provide the following 

advantages:

•	 Autoscaling compute infrastructure for cost savings

	 Choose from serverless or enhanced autoscaling. These 

two options can optimize streaming workloads by de- 

allocating resources that are not used quickly.

•	 Data quality checks with expectations

	 Similar to the Great Expectation library, you can specify 

validation conditions in DLT and write outliners to an 

exception table.

•	 Automatic schema evolution handling

	 By default, the stream will fail, and new columns will 

be added to the target table so logic can be applied 

to them if necessary. But you can also choose from 

different options, like rescuing the columns (by not 

failing), failing without adding new columns, or 

ignoring the new changes.

•	 Monitoring via metrics in the event log

	 With Delta Live Tables, you can quite literally monitor 

everything from streaming progress to record counts, 

resource allocations, autoscaling activities, user audit 

logs, and many more possibilities.
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�Project Lightspeed
Announced in 2022, Project Lightspeed aims to enhance the capabilities of 

Structured Streaming. The following are the goals of this project:

•	 Improving the latency and ensuring it is predictable

	 Advanced offsetting and state management capabilities 

are part of this project just to ensure that more state 

management scenarios and more responsive offsets 

are covered. Query performance optimization is also in 

scope in this project.

•	 Enhancing functionality for processing data with new 

operators and APIs

	 Multiple state operators are introduced, along with 

Python support for the state API.

•	 Improving ecosystem support for connectors

	 This goal is to improve support for connectors such as 

Amazon Kinesis and Google Pub/Sub.

•	 Simplifying deployment, operations, monitoring, and 

troubleshooting

	 With the increased popularity of Python, Databricks 

made sure that a new Python query listener is 

introduced and supported in an observability API
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�Advanced State Management
State management has been discussed throughout this chapter. However, 

Databricks has continued to improve it because state management is so 

important. With Project Lightspeed, joining multiple state operations 

together is now possible, which was not previously possible. Let’s consider 

a real-life scenario.

�Use Case: E-commerce Operation
Let’s consider the first scenario where an e-commerce system wants 

to serve ads to customers browsing their website. After getting the logs 

from the data center, we need to filter on specific products that contain 

promotions. With mapGroupsWithState, we can do some targeted 

grouping for the ads. At the same time, these filtered products can also 

feed into a knowledge graph in the second route for cross-selling product 

recommendations. Without diving into details, we can imagine the 

importance of being able to chain through these operations instead of 

separating them into different pipelines. This scenario can be found in the 

paper at https://par.nsf.gov/servlets/purl/10277558. Figure 18-8 

provides an illustration.
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Figure 18-8.  Sample e-commerce streaming workflow

It is also worth noting that the paper discussed the shortcoming of 

Spark Streaming. The DStream approach is what we initially covered. 

Fast-forward to Project LightSpeed; writing streaming applications is never 

easier with Structured Streaming.

For full details and updates on Project Lightspeed, please refer to the 

following blog:

https://www.databricks.com/blog/project-lightspeed-update-

advancing-apache-spark-structured-streaming
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�Structured Streaming Best Practices
These are some best practices:

•	 Use Dataframe instead of Dataset: Dataframe is 

optimized for streaming workloads.

•	 Specify trigger intervals: Control the frequency of 

streaming data processing.

•	 Use Update mode for aggregation: Efficiently update 

aggregates instead of recalculating.

•	 Leverage watermark for event-time processing: 
Handle late-arriving data and manage state.

•	 Monitor and adjust resources: For micro batching, 

use Spark UI’s structured streaming monitor for 

detailed monitoring and troubleshooting. The 

streaming UI provides real-time statistics, so if anything 

is out of the ordinary, say when the processing rate 

spikes, we can take action immediately to determine 

if it was a cyberattack or due to some trending 

news. Figure 18-9 illustrates this interface. For an 

in-depth case study, please refer to this Databricks 

announcement: https://www.databricks.com/

blog/2020/07/29/a-look-at-the-new-structured-

streaming-ui-in-apache-spark-3-0.html.	
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Figure 18-9.  Structured streaming monitor UI
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�Conclusion
More than 14 million Structured Streaming jobs run weekly on Databricks, 

and that number is growing at a rate of more than two times per year (see 

Figure 18-10).

Figure 18-10.  Streaming job runs on Databricks since 2019 (source: 
https://www.databricks.com/blog/performance-improvements-
stateful-pipelines-apache-spark-structured-streaming)

From Spark Streaming to Structured Streaming, Databricks has evolved 

on all fronts. From the architecture perspective, it added support for 

continuous processing and micro-batch processing. It also added support 

for Python and enhanced state management and watermarking.

The introduction of the Auto Loader when working with Delta Live 

Tables provides groundbreaking resilience support. It also provides cost 

savings, comprehensive monitoring, and lineage support.
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Further, Project Lightspeed makes a series of enhancements, not only 

integrating some core Spark innovations into streaming, like Adaptive 

Query Execution, proving that Spark is fully capable of running at scale 

and in real time, but it also extends support for different platforms. 

Asynchronous checkpointing in micro-batch processing is another 

commitment for Databricks to take streaming more and more seriously.
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CHAPTER 19

From Ideation 
to Creation: A Walk- 
Through of Building 
a GenAI Application
In this chapter, we will walk through creating a healthcare and life science 

application from start to finish. The input is some realistic patient data, but 

this data was generated by a high-quality data generator, so there are no 

privacy concerns in this scenario.

We will discuss the downsides of having low-quality data, which will 

affect downstream data. We will combine the classic machine learning 

approach and the latest and greatest GenAI techniques for making one 

great solution. Rest assured, if you are able to master this project, you are 

already an accomplished data and AI architect.

https://doi.org/10.1007/979-8-8688-0444-1_19#DOI
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�The Problem Statement
According to the World Health Organization (https://www.who.int/

health-topics/diabetes),

“Diabetes is a chronic, metabolic disease characterized by ele-
vated levels of blood glucose (or blood sugar), which leads 
over time to serious damage to the heart, blood vessels, eyes, 
kidneys and nerves. About 422 million people worldwide have 
diabetes, the majority living in low-and middle-income coun-
tries, and 1.5 million deaths are directly attributed to diabetes 
each year.”

The term chronic is the most important in the statement because it 

means it is a disease that will follow you for a lifetime, and there is no cure 

for this disease right now. Not only that, the stage of diabetes can range 

from pre-diabetes to diabetes, and it can also lead to complications later in 

life if not carefully treated such as blindness, amputation, or even kidney 

disease.

In this chapter, we will develop a machine learning classification 

model to classify the severity of diabetes complications using a patient’s 

medical history. We will demonstrate how to use GenAI to give book 

recommendations to the patient. We do not recommend seeking medical 

help from GenAI at this stage. That’s why this application is meant for 

enrichment and not medical advice. Using the AI Agent Framework, 

we will build a chatbot to answer some of the questions related to the 

complications of diabetes and the ebooks. Finally, we will mimic a real 

dashboard used in a medical institute to demonstrate that Databricks 

can build everything from end to end. Figure 19-1 shows this flow in an 

architecture diagram.
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Figure 19-1.  Architecture of a GenAI pipeline

�Data Generation: Source
In this section, we will discuss how to acquire the necessary data for our 

use case. Most of the demo code out there leverages Kaggle or open-source 

data. Not only is it difficult to acquire high-quality healthcare data, but it is 

also impossible to get a large amount of data. Here are some ideas:

Idea 1: Generate data based on a medical journal.
This idea is to leverage pre-existing experiments and reverse engineer 

their dataset. Based on a medical journal, generate some random data that 

falls within the range and apply some medical knowledge rules on top. For 

example, obesity, by definition, has a BMI greater than 30, and our data 

will make sure the BMI is greater than 30. This is probably good enough 

for a demonstration. The paper “T1DMicro: A Clinical Risk Calculator for 

Type 1 Diabetes Related Microvascular Complications” has provided some 

insights into what it uses to determine Type 1 diabetes complications.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583376/
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Without expert domain knowledge, it is difficult to judge if the data 

generated makes sense, even at a small scale. Nevertheless, the generated 

data can be found in the GitHub repo.

Idea 2: Generate data based on a data generator.
Synthea (https://github.com/synthetichealth/synthea) is 

an open-source project that can generate synthetic, realistic (but not 

real) patient data and associated health records in a variety of formats, 

including CSV. Using this application, we can generate as many patients as 

we want along with their medical journey. We didn’t think of the later part 

when generating random data in the first place. Although we could still use 

the latest record of their hospital visit, it is important to understand that in 

real life, there will be historical transactions, be it financial records or retail 

transactions. Having this data will help with different types of modeling.

The detailed data dictionary can be found here: https://github.com/

synthetichealth/synthea/wiki/CSV-File-Data-Dictionary.

Idea 3: Use the latest and greatest AI model designed for data 
generation.

“I believe open source AI will become the industry standard 
and is the path forward. Partnering with Databricks on Llama 
3.1 means advanced capabilities like synthetic data genera-
tion and real-time batch inference are more accessible for 
developers everywhere. I’m looking forward to seeing what 
people build with this.”

—Mark Zuckerberg, founder and CEO, Meta

The is an article that describes how to generate the data using Nvidia 

GPU and Llama 3.1. If the Synetha data generator doesn’t work well, this 

could be a good idea, but the development process will take time.

https://developer.nvidia.com/blog/creating-synthetic-data-

using-llama-3-1-405b/
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�Data Ingestion: Ingest
There are a couple of ways to ingest the data:

•	 Using the Ingestion UI

•	 Load data using the Auto Loader

Repeat the same code for the rest of the data. The Databricks Auto 

Loader will pick up the new files when they arrive the next time the job is 

run. Hence, we need to ensure that we keep one folder per file type.

�Data Transformation: Transform
After getting the data to the Bronze layer, we need to transform the data 

into features for our machine learning model. We also need to filter our 

data to ensure we are picking up the latest visit. Data cleansing is also 

needed to reduce the noise in our model.

	 1.	 In the NLM report, different values of HbA1C are 

calculated as features.

	 2.	 For complications, we will take the latest diagnosis 

and rank the severity.

	 3.	 Medication is the third item we are interested in. 

We want to list all the generic medication names 

without dosage and represent them in columns. 

If a patient takes a medication, we will mark this 

column as 1; otherwise, it will be 0.
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	 4.	 Following an actual report in the United Kingdom, 

we will build out a sample view and publish it 

to PowerBI: https://digital.nhs.uk/data-

and-information/publications/statistical/

national-diabetes-audit-type-1-diabetes/nda-

type-1-2021-22-detailed-analysis.

	 5.	 Finally, we will demonstrate an important feature 

that is a Databricks SQL AI function.

�Using Serverless SQL for Transformation
In most cases, we can use serverless SQL for the job. Listing 19-1 shares the 

detailed code for the A1C features.

Listing 19-1.  Patient_A1C Table

create table patient_a1c as

WITH agg_observations AS (

   SELECT

    patient,

    max(value) max_a1c,

    avg(value) avg_a1c,

    stddev(value) std_a1c

  FROM

    observations

  WHERE

    category = 'laboratory'

    AND LOWER(description) LIKE '%a1c%'

  group by patient

)

,filtered_observations AS (

  SELECT
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    patient,

    date,

    description,

    value as current_value,

    LEAD(value) OVER (ORDER BY date desc) AS previous_value,

    ROW_NUMBER() OVER (PARTITION BY patient ORDER BY date 

DESC) AS rn

  FROM

    observations

  WHERE

    category = 'laboratory'

    AND LOWER(description) LIKE '%a1c%'

)

SELECT

  latest.*,

  avg_a1c,

  std_a1c,

  max_a1c

FROM

  filtered_observations latest

  JOIN agg_observations a ON latest.patient = a.patient

WHERE rn = 1

By doing a little research or by asking an AI program, we can easily find 

what the common diabetes complications are. Listing 19-2 shows the code 

to group the complications.
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Listing 19-2.  Patient_complication Table

create table patient_complication as

select

patient,

case

when description = 'Kidney Disease' then 'Sev 0'

when description = 'Amputation' then 'Sev 1'

when description = 'Retinopathy' then 'Sev 2'

when description = 'Neuropathy' then 'Sev 3'

when description = 'Hyperglycemia' then 'Sev 4'

when description = 'Proteinuria' then 'Sev 5'

when description = 'Diabetes' then 'Sev 6'

when description = 'Pre-Diabetes' then 'Sev 7'

else description

end as Severity from

(

SELECT

    patient,

    case

    �when lower(description) like '%neuropathy%' then 

'Neuropathy'

    �when lower(description) like '%retinopathy%' then 

'Retinopathy'

    �when lower(description) like '%nephropathy%' then 

'Nephropathy'

    when lower(description) like '%blindness%' then 'Blindness'

    �when lower(description) like '%photocoagulation%' then 

'Photocoagulation'

    �when lower(description) like '%amputation%' then 

'Amputation'
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    �when lower(description) like '%ulcer%' then 'Diabetic 

Foot Ulcer'

    �when lower(description) like '%hyperglycemia%' then 

'Hyperglycemia'

    �when lower(description) like '%microalbuminuria%' then 

'Microalbuminuria'

    �when lower(description) like '%kidney%' then 'Kidney 

Disease'

    �when lower(description) like '%proteinuria%' then 

'Proteinuria'

    �when lower(description) like '%prediabetes%' then 'Pre- 

Diabetes'

    else 'Diabetes'

    end as description,

    �ROW_NUMBER() OVER (PARTITION BY patient ORDER BY start 

DESC) AS rn

FROM

    patients

JOIN

    conditions ON patients.id = conditions.patient

WHERE

    lower(conditions.description) LIKE '%diabetes%'

    OR lower(conditions.description) LIKE '%Diabetic%'

    OR lower(conditions.description) LIKE '%Hyperglycemia%'

    OR lower(conditions.description) LIKE '%Hypoglycemia%'

    OR lower(conditions.description)  like '%neuropathy%'

    OR lower(conditions.description)  like '%retinopathy%'

    OR lower(conditions.description)  like '%nephropathy%'

    OR lower(conditions.description)  like '%blindness%'

    OR lower(conditions.description)  like '%photocoagulation%'

    OR lower(conditions.description)  like '%amputation%'
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    OR lower(conditions.description)  like '%ulcer%'

    OR lower(conditions.description)  like '%hyperglycemia%'

    OR lower(conditions.description)  like '%microalbuminuria%'

    OR lower(conditions.description)  like '%kidney%'

    OR lower(conditions.description)  like '%proteinuria%'

ORDER BY

    patients.id, conditions.start

) where rn = 1

Prescribed medication comes with dosage, and it is different for 

different people or stages of the complication. However, if we want to use 

these as columns, we need to extract the medication names. Listing 19-3 is 

an example.

Listing 19-3.  Example of Medication Name Standardization

emtricitabine 200 MG / tenofovir disoproxil fumarate 300 MG 

Oral Tablet → {emtricitabine / tenofovir disoproxil fumarate}

But instead of doing manual cleanup, we can leverage Databricks’ new 

AI function, the ai_extract() function, as shown in Listing 19-4.

Listing 19-4.  Using AI Function to Extract the Medication Name

SELECT distinct description,

    �CAST(ai_extract(description, array('medication name without 

dosage')) AS STRING) as med_wo_dosage

from

(

    �select distinct description from medications where patient 

in (select patient from diabetes_training)

)
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Figure 19-2 is the result of the query.

Figure 19-2.  Result of the AI extract query

Next, using the pivot function, we can transpose the active ingredient 

into columns. Our goal is to transpose the rows in Figure 19-3 to columns 

in Figure 19-4. Listing 19-5 and Listing 19-6 together will perform this 

action. However, because the PIVOT function does not allow a dynamic list, 

we need to construct a query that is understandable by the engine.

Listing 19-5.  Transforming “Active Ingredients” into a List

descriptions = [row['desc'] for row in spark.sql("SELECT 

DISTINCT `Active Ingredients` as desc FROM medications m join 

med_mapping mm on m.description = mm.Prescription").collect()]

Listing 19-6.  Using the pivot Function to Transform Rows 

into Columns

# Constructing the dynamic part of the pivot query

pivot_clause = ", ".join([f"'{desc}'" for desc in 

descriptions])

# Constructing the full query

query = f"""

SELECT *

FROM (
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  SELECT

    m.PATIENT,

    inline(

      collect_list(

        named_struct(

          'description', `Active Ingredients`,

          �'stop', CASE WHEN m.STOP IS NULL THEN '1' 

ELSE '0' END

        )

      )

    ) AS (description, stop)

  FROM

    medications m

    join med_mapping mm on m.description = mm.Prescription

  GROUP BY

    m.PATIENT

) AS subquery

PIVOT (

  MAX(stop)

  FOR description IN ({pivot_clause})

)

"""

Figure 19-3 shows what the result looks like.
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Figure 19-3.  Patient medication table

Finally, we can combine all the new tables together to create one 

training table, as shown in Figure 19-4.

Figure 19-4.  Lineage of the training table
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�Machine Learning Model for Diabetes 
Complication Classification: Query 
and Process
Typical machine learning projects involve a process called exploration 

data analysis (EDA). But we are going to take a leap of faith and see if our 

data makes sense by running AutoML on the two datasets that we have. 

There isn’t anything that needs to be done here; just choose the input 

dataset and select our target variable.

Dataset 1: Randomly generated data
From Figure 19-5, we can tell that the best model scores 0.24. This is 

not an acceptable base model for fine-tuning, but that’s the best we can get 

with random data.

Figure 19-5.  AutoML results for randomly generated data 
with checks
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Dataset 2: Synthea-generated data
The program has proven track record for generating realistic data. We 

will give AutoML another try with the diabetes_training data. The result is 

surprisingly ~0.73 (see Figure 19-6).

Figure 19-6.  AutoML results for Synthea-generated data with checks

�Generative AI: Serve
This is perhaps one of the most anticipated steps in the whole pipeline. 

We are using the Mosaic AI stack here. We will first try prompt 

engineering, and we will move on to a RAG use case by building a simple 

chatbot. Imagine someone is diagnosed or predicted to have diabetic 

complications; it can be a daunting task to go through all the self-help 

guides available. We can first ask an LLM in Databricks’ Playground for 

ebook recommendations for self-help purposes (see Figure 19-7).
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Figure 19-7.  Output from Databricks’ GenAI playground

Next, assuming we have legally acquired all the ebooks, we want to 

upload them to a volume in Unity Catalog. This step can be done easily via 

the user interface. We can navigate to a Unity Catalog, choose a preferred 

database, and click the “Upload to this volume” button, as shown in 

Figure 19-8.
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Figure 19-8.  Volume interface from Databricks

As a starter, we will leverage Databricks’ prebuilt template for our 

proof-of-concept app, and later we will look at techniques to “tune the 

quality knobs.”

⭐ IMPORTANT ⭐

Please bookmark the following site because it contains best practices for the 

evolving topic of using the AI Agent framework:

https://ai-cookbook.io/
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The following are the prerequisites needed to leverage the AI Agent 

framework, which can be set up via the user interface:

–– Unity Catalog and Schema: For storing the parsed/

chunked documents

–– Vector Search Endpoint: Either a new endpoint or an 

existing one

–– UC Volume: An volume that was created using the 

command and then the documents can be uploaded

–– The Foundation Model API is accessible for embedding 

a calculation

–– The MLflow experiment is accessible for model and 

metric logging

�Where Do We Start?
Here are the steps:

	 1.	 Verify all the permissions, and deploy something if 

you are not sure they are correct.

	 2.	 Clone the following repo from Databricks into 

the repo:

https://github.com/databricks/genai-

cookbook/

	 3.	 Fill in the config in rag_app_sample_code/00_

global_config. If you have followed these 

prerequisites, you should not have any problems 

filling in the details, but a couple of details that are 

extremely important not to miss, and can be found 

in the user interface, include the following:
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	 a.	 VECTOR_SEARCH_ENDPOINT can be found on the 

Compute tab, as shown in Figure 19-9.

Figure 19-9.  Vector search endpoint UI

	 b.	 Volume can be found under the database of a catalog, 

as shown in Figure 19-10.

Figure 19-10.  Volumes can be found under a database

	 4.	 To verify everything is set up correctly, run 01_

validate_config in the corresponding folder of the 

file type of your choice. For example, for PDF files, 

they can be found at the following location:

/genai-cookbook/rag_app_sample_code/A_POC_app/ 

pdf_uc_volume/01_validate_config

If everything passes, you will see a print message at 

the end of each cell, as shown in Figure 19-11.
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Figure 19-11.  Passing messages at the end of each command

	 5.	 Run 02_poc_data_pipeline, and the result is the 

experiment being logged on the Experiments tab, as 

shown in Figure 19-12.

Figure 19-12.  Experiment logged after running the data pipeline

	 6.	 Run 03_deploy_poc_to_review_ap. It will deploy 

an application for you, and you can ask questions 

about your use case. You will notice the relevant 

document is being referenced in the chat, as shown 

in Figure 19-13.
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Figure 19-13.  Databricks hosted chatbot interface

	 7.	 Congratulations, you have successfully deployed a 

chatbot, but the story does not end here.

	 a.	 04_create_evaluation_set allows you to create an 

evaluation dataset. If you know some of the answers 

that might come from the PDF that you uploaded, 

you can set up this evaluation dataset so the AI Agent 

framework can evaluate the accuracy of the output.

	 b.	 05_evaluate_poc_quality runs this notebook to 

evaluate the application.

	 8.	 If you have made it this far, I am sure you will 

appreciate how much work Databricks has done to 

make it easy, but the story is far from over. Please 

head over to “RAG quality knobs” section of the 

GenAI cookbook: https://ai-cookbook.io/nbs/3-

deep-dive.html. That’s where we will learn more 

about the underlying process of building a RAG 

application so your application will be future-proof.
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�Monitoring Dashboard: Analysis
To evaluate hospital treatments, we can build a dashboard similar to 

England’s National Health Service (see Figure 19-14). We will create a 

materialized view for the report so we can refresh the view when the report 

is scheduled to refresh, saving time and cost as it can compute incremental 

changes.

Figure 19-14.  Sample diabetes dashboard from England’s National 
Health Service (source: https://digital.nhs.uk/data-and-
information/publications/statistical/national-diabetes-
audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis)

Listing 19-7 is a query similar to the one on the dashboard in 

Figure 19-15.

Listing 19-7.  Query for the Health Dashboard

create materialized view patient_report as

with encounter_latest as

(
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    select

    *,

    �ROW_NUMBER() OVER (PARTITION BY patient ORDER BY start 

DESC) AS rn

    from encounters e

),

observations_new as

(

    select

    distinct

    patient,

    encounter,

    category,

    (case

        �when lower(description) like '%cholesterol%' then 

'cholesterol'

        �when lower(description) like '%blood%pressure%' 

then 'BP'

        else description end) as description_alias

    from

    observations

)

select o.Name as OrganizationName, o.City as OrganizationCity,

    count(distinct e.patient) as Count_of_Patients,

    count(distinct encounter) as Count_of_Encounters,

    �sum( case when category = 'laboratory' and lower 

(s.description_alias) like '%albumin%' then 1 else 0 end ) 

as Count_of_Albumin,

    �sum( case when category = 'vital-signs' and lower 

(s.description_alias) like '%bmi%' then 1 else 0 end ) as 

Count_of_BMI,
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    �sum( case when category = 'vital-signs' and lower(s.

description_alias) like '%blood%pressure%' then 1 else 0 

end ) as Count_of_BP,

    �sum( case when category = 'laboratory' and lower(s.

description_alias) like '%cholesterol%' then 1 else 0 end ) 

as Count_of_Cholesterol,

    �sum( case when lower(s.description_alias) like '%foot%' 

then 1 else 0 end ) as Count_of_Foot_exam,

    �sum( case when category = 'laboratory' and lower(s.

description_alias) like '%a1c%' then 1 else 0 end ) as 

Count_of_HbA1C,

    �sum( case when category = 'social-history' and lower(s.

description_alias) like '%smoking%' then 1 else 0 end ) as 

Count_of_Smoking

from encounter_latest e

join observations_new s on e.id = s.encounter

join organizations o on e.organization = o.id

where e.patient in (select patient from diabetes_training) and 

e.rn = 1

group by o.Name, o.City

We can publish this view to a Power BI dashboard, as shown in 

Figure 19-15.

Figure 19-15.  Publishing the materialized view to Power BI Desktop
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�Conclusion
The Databricks data intelligence platform not only provides the 

intelligence to power the next generation application, but it is also built 

on top of the lakehouse architecture, so it has a strong foundation of 

supporting any size of workload and complex data transformation. In this 

chapter, we have demonstrated the ability to create an application from 

ideation to creation, all within Databricks. While other platforms may 

come with similar tools in their ecosystem, Databricks’ tight integration 

allows us to stay on the same platform and collaborate closely with the 

team. Unlocking the GenAI revolution has never been easier!
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