

Databricks Data
Intelligence Platform

Unlocking the GenAI Revolution

Nikhil Gupta
Jason Yip

Databricks Data Intelligence Platform: Unlocking the GenAI Revolution

ISBN-13 (pbk): 979-8-8688-0443-4		 ISBN-13 (electronic): 979-8-8688-0444-1
https://doi.org/10.1007/979-8-8688-0444-1

Copyright © 2024 by The Editor(s) (if applicable) and The Author(s),

under exclusive license to APress Media, LLC, part of Springer Nature

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shaul Elson
Development Editor: Laura Berendson
Coordinating Editor: Gryffin Winkler

Cover Photo by JJ Ying on Unsplash (unsplash.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book can be
found here: https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Nikhil Gupta
Livingston, NJ, USA

Jason Yip
Redmond, WA, USA

https://doi.org/10.1007/979-8-8688-0444-1

iii

About the Authors��xv

About the Technical Reviewers���xvii

Chapter 1: Databricks Platform: From Lakehouse to Data
Intelligence Platform���1

Data Platforms: Historical Perspective���2

Emergence of the Lakehouse��3

What Is a Lakehouse?��4

What Is the Databricks Lakehouse?���6

Key Features of the Databricks Lakehouse Platform���8

Introducing the Databricks Data Intelligence Platform��9

Conclusion���13

Chapter 2: ��Databricks Platform Overview���15

Key Terminology���15

Databricks Compute or Clusters��18

Interactive or All-Purpose Clusters���19

Job Cluster���19

SQL Warehouse��20

Databricks All-Purpose Cluster Setup��20

Policy��22

Access Mode��24

Databricks Runtime Version���27

Table of Contents

https://doi.org/10.1007/979-8-8688-0444-1_1
https://doi.org/10.1007/979-8-8688-0444-1_1
https://doi.org/10.1007/979-8-8688-0444-1_1
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_2
https://doi.org/10.1007/979-8-8688-0444-1_2
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec9

iv

Autoscaling and Autotermination���28

Tags��28

Spot Instances��29

Cluster Pools��29

Cluster Sizing Considerations and Best Practices���30

Databricks Notebooks��31

Debugging��33

Serverless in Notebook��35

Databricks Widgets���36

Library Management��38

External Databricks Connectivity���39

Databricks CLI��39

Databricks REST API���40

Databricks Terraform��41

Conclusion���42

Chapter 3: ��Data Ingestion in Lakehouse��45

Introduction��45

Cloud Ingestion��46

Delta Ingestion���54

Auto Loader��55

COPY INTO��58

Conclusion���60

Chapter 4: Delta Lake - Deep Dive���61

The Challenges of Other Formats��61

What Is Delta Lake?���62

Delta Lake: Medallion Architecture��65

Table of Contents

https://doi.org/10.1007/979-8-8688-0444-1_2#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec17
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec18
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec19
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec20
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec21
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec22
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec23
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec24
https://doi.org/10.1007/979-8-8688-0444-1_3
https://doi.org/10.1007/979-8-8688-0444-1_3
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_4
https://doi.org/10.1007/979-8-8688-0444-1_4
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec3

v

Delta Lake Key Features��68

Update, Delete, and Upserts in Delta Table���68

Schema Evolution���68

Time Travel���70

Clone Delta Tables��71

Generated Column���73

Change Data Feed��74

Universal Format��76

Delta Optimization��80

Liquid Clustering��82

Working with Liquid Clustering��83

Current Limitations��84

Predictive I/O��85

ML/AI to the Rescue���87

Conclusion���88

Chapter 5: ��Data Governance with Unity Catalog����������������������������������89

What Is Databricks Unity Catalog?���90

Unity Catalog: Before and After��91

Unity Catalog Hierarchy��92

Unity Catalog Admin Roles���94

Getting Started with Unity Catalog���94

Create a Metastore���95

Organizing Data in Unity Catalog���97

Key Features of Unity Catalog��99

Centralized Metadata and User Management��99

Centralized Access Controls���101

Table of Contents

https://doi.org/10.1007/979-8-8688-0444-1_4#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec17
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec18
https://doi.org/10.1007/979-8-8688-0444-1_5
https://doi.org/10.1007/979-8-8688-0444-1_5
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec10

vi

Data Lineage��102

Data Access Auditing���104

Data Search and Discovery��104

Row-Level Security and Column-Level Masking���105

Row Filters���105

Create a Row Filter���105

Apply the Row Filter to a Table���105

Column Masks��106

Dynamic Views vs. Row Filters and Column Masks�������������������������������������106

Delta Sharing���107

An Open Standard for Data Sharing���108

How Delta Sharing Works���108

Conclusion���111

Chapter 6: Data Engineering Part 1: Orchestrating Data
Pipelines Using Databricks Workflows��113

Databricks Workflow Jobs���114

Databricks Jobs and Tasks��115

Configure Databricks Job Tasks: Task-Level Parameters�����������������������������116

Configure Databricks Job Tasks: Job-Level Parameters������������������������������119

Advanced Workflow Features��124

Monitoring Data Pipelines��130

Conclusion���132

Chapter 7: ��Data Engineering Part 2: Delta Live Tables����������������������133

What Is Delta Live Tables?���134

Data Ingestion Using DLT��135

Change Data Capture with DLT���137

Delta Live Tables Expectations���139

Table of Contents

https://doi.org/10.1007/979-8-8688-0444-1_5#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec17
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec18
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec19
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec20
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec21
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec22
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec23
https://doi.org/10.1007/979-8-8688-0444-1_6
https://doi.org/10.1007/979-8-8688-0444-1_6
https://doi.org/10.1007/979-8-8688-0444-1_6
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_7
https://doi.org/10.1007/979-8-8688-0444-1_7
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec4

vii

Creating a DLT Pipeline��142

Logging and Monitoring���145

Enhanced Autoscaling��147

Runtime Channels��148

Example: A Retail Sales Pipeline��148

Streaming Pipeline���149

Data Validation��149

Data Lineage���150

Validation Dashboard��151

Conclusion���152

Chapter 8: ��Data Warehousing with DBSQL��153

What Is Databricks SQL?��154

SQL Warehouses��155

Photon��157

SQL Editor���158

Introduction to AI/BI Dashboards��159

Alerts��161

Query History and Profile��161

Serverless Compute���163

Constraints in DBSQL���164

Constraints on Databricks��164

Enforced Constraints��165

Informational Constraints: Primary Key Foreign Key������������������������������������166

Streaming Tables and Materialized Views���168

Streaming Tables��169

Materialized Views���170

Create a Materialized View���170

Refresh a Materialized View���171

Table of Contents

https://doi.org/10.1007/979-8-8688-0444-1_7#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_8
https://doi.org/10.1007/979-8-8688-0444-1_8
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec17

viii

Lakehouse Federation��171

AI Functions in DBSQL��173

Consume LLM Models in DBSQL��173

Custom Functions Backed by a Serverless Serving Endpoint����������������������176

Integrate BI Tools with Databricks��176

Publish to PowerBI Online from Databricks��177

Connect Power BI Desktop to Databricks��178

Conclusion���179

Chapter 9: ��Machine Learning Operations Using Databricks��������������181

Machine Learning with Databricks��182

Experiments��183

What Is the Glass Box Approach to Automated Machine Learning?�������������184

Machine Learning Lifecycle: MLOps��185

ML Example: Predicting Flight Delays with Databrick’s AutoML������������������186

Data Exploration at Scale���188

Feature Store��191

Model Building��195

Deploy Model��200

MLOps Best Practices���215

Conclusion��218

Chapter 10: ��Generative AI with Databricks���������������������������������������219

What Is Generative AI?���219

Databricks Generative AI��221

The GenAI Journey���223

Prompt Engineering���224

Mosaic AI Playground���226

Use Cases���228

Table of Contents

https://doi.org/10.1007/979-8-8688-0444-1_8#Sec18
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec19
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec20
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec21
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec22
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec23
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec24
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec25
https://doi.org/10.1007/979-8-8688-0444-1_9
https://doi.org/10.1007/979-8-8688-0444-1_9
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec17
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec24
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec25
https://doi.org/10.1007/979-8-8688-0444-1_10
https://doi.org/10.1007/979-8-8688-0444-1_10
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec6

ix

Retrieval Augmented Generation���230

Similarity Search: The Magic Behind the Scenes���235

A Practical Example for RAG: Using Structured Data������������������������������������236

Step 1: Feature and Function Serving��237

Step 2: Calculate Embedding and Sync to a Vector Database����������������������240

Step 3: Create a LangChainTool to Perform Various Tasks���������������������������242

Step 4: MLflow LLM Evaluation��242

Mosaic AI Fine-Tuning API��247

Fine-Tuning Example��248

Pre-Training���248

A Case Study of AI2’s OLMo, a Truly Open-Source Large Language Model������ 249

Gen AI Pricing���250

What Are Tokens and Tokenizers?��251

Conclusion���253

Chapter 11: ��Large Language Model Operations���������������������������������255

Machine Learning Operations��255

Large Language Model Operations��256

Components of LLMOps���258

Deep Dive into Each Process���263

Prompt Engineering��263

Retrieval Augmented Generation��266

Model Fine-Tuning��270

Model Pretraining���271

A Case Study of AI2’s OLMo, a Truly Open-Source Large Language Model��������271

Model Governance��273

LLM as a Judge��277

Model Packaging and Deployment���279

Conclusion���283

Table of Contents

https://doi.org/10.1007/979-8-8688-0444-1_10#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec17
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec18
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec19
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec20
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec21
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec22
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec23
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec24
https://doi.org/10.1007/979-8-8688-0444-1_11
https://doi.org/10.1007/979-8-8688-0444-1_11
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec17

x

Chapter 12: Mosaic AI Agent Framework: Creating Quality AI
Agents���285

Part 0: The Installations��287

Part 1: LangChain Parametrization��287

Part 2: MLflow Evaluation��289

Part 3: Model Development��294

Part 4: Deployment���302

Evaluation Example��305

Conclusion���308

Beyond LangChain��309

Chapter 13: DBRX: Creating an LLM from Scratch Using
Databricks���311

What Is DBRX?���312

The DBRX Benchmarks��315

DBRX Architecture��318

Shortcomings of the Transformer Architecture��320

Mixture of Experts��322

MegaBlocks: Efficient Sparse Training with Mixture-of-Experts������������������323

Fine-Grained MoE���324

The MosaicML Stack��325

Distributed GPU Training��326

Model Serving��327

Using DBRX on Databricks���328

Conclusion���330

Chapter 14: ��The Databricks Data Intelligence Platform��������������������331

Databricks IQ��333

Deep Dive into Databricks IQ���334

Table of Contents

https://doi.org/10.1007/979-8-8688-0444-1_12
https://doi.org/10.1007/979-8-8688-0444-1_12
https://doi.org/10.1007/979-8-8688-0444-1_12
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_13
https://doi.org/10.1007/979-8-8688-0444-1_13
https://doi.org/10.1007/979-8-8688-0444-1_13
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_14
https://doi.org/10.1007/979-8-8688-0444-1_14
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec2

xi

Databricks Assistant���334

AI-Powered Governance���339

Search and Discovery���347

AI/BI Genie (Previous Data Rooms)���348

How to Set Up Genie���349

Conclusion��352

Chapter 15: ��Databricks CI/CD��353

What Is CI/CD?���353

Stages of CI/CD��356

Introduction to Databricks Repos���358

Databricks UI vs. Git Terminologies��361

Databricks Asset Bundles��364

Case Study: Databricks MLOps Stack��365

Conclusion���369

Chapter 16: Databricks Pricing and Observability Using
System Tables��371

Costs Associated with the Databricks Platform���371

Cloud Infrastructure Costs���372

Databricks Pricing��373

What Are Databricks Units?��373

SQL Warehouse Pricing��379

Databricks Cost Management Best Practices��380

Databricks Observability: System Tables���383

Introduction to System Tables��384

Common Schemas/Tables Available with System Tables�����������������������������386

System Table: Billing Usage Example���387

Conclusion���388

Table of Contents

https://doi.org/10.1007/979-8-8688-0444-1_14#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_15
https://doi.org/10.1007/979-8-8688-0444-1_15
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_16
https://doi.org/10.1007/979-8-8688-0444-1_16
https://doi.org/10.1007/979-8-8688-0444-1_16
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec11

xii

Chapter 17: ��Databricks Platform Security and Compliance��������������389

Databricks Architecture���390

Azure Databricks Deployment��391

Capacity Planning���391

VNET Injection or Bring Your Own VNET���392

Secure Cluster Connectivity (No Public IP/NPIP)��394

Azure Private Link for Back-End and Front-End Connections����������������������396

Encryption and Auditing���397

Customer Managed Keys��397

Identity and Access��399

SSO and Multifactor Authentication���399

IP Access Lists��399

Role-Based Access Control��401

Token Management API��402

Security Analysis Tool��404

Databricks Security Best Practices��407

Conclusion���408

Chapter 18: Spark Structured Streaming: A Comprehensive
Guide��409

Spark Streaming��410

Structured Streaming���414

What Is Continuous Processing?��415

Triggers��416

Output Modes���417

Windowed Grouped Aggregation��418

State Management���418

Late-Arrival Handling: Watermark��420

Table of Contents

https://doi.org/10.1007/979-8-8688-0444-1_17
https://doi.org/10.1007/979-8-8688-0444-1_17
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_18
https://doi.org/10.1007/979-8-8688-0444-1_18
https://doi.org/10.1007/979-8-8688-0444-1_18
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec8

xiii

Auto Loader��422

Project Lightspeed���423

Advanced State Management��424

Use Case: E-commerce Operation��424

Structured Streaming Best Practices���426

Conclusion���428

Chapter 19: From Ideation to Creation: A Walk-Through of
Building a GenAI Application���431

The Problem Statement���432

Data Generation: Source��433

Data Ingestion: Ingest��435

Data Transformation: Transform���435

Using Serverless SQL for Transformation���436

Machine Learning Model for Diabetes Complication Classification: Query
and Process���444

Generative AI: Serve���445

Where Do We Start?���448

Monitoring Dashboard: Analysis���452

Conclusion���455

��Index��457

Table of Contents

https://doi.org/10.1007/979-8-8688-0444-1_18#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_19
https://doi.org/10.1007/979-8-8688-0444-1_19
https://doi.org/10.1007/979-8-8688-0444-1_19
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec10

xv

Nikhil Gupta is a seasoned data professional

with more than 18 years of experience in big

data technologies, driving innovation and

strategic growth in the field. As a solution

architect at Databricks, he leverages his

expertise to help customers across various

industries (including retail, consumer

packaged goods, financial services, banking,

and manufacturing) to modernize their data

and AI implementations on the Databricks platform. His expertise spans

a range of big data technologies, including data warehousing, data lakes,

and real-time data processing, making him a trusted advisor for Fortune

500 companies. 

Jason Yip is a data and machine learning

architect. He currently serves as the director of

data and AI at Tredence, a leading data science

and analytics company. He advises Fortune

500 companies on implementing data and

generative AI strategies on the cloud. He serves

on multiple advisory boards at Databricks,

including the Partner Product Advisory Board

and the Solution Architect Champion Advisory

Board. He is a top voice on Databricks and a

former Microsoft employee who successfully led the Microsoft Corporate

Finance big data transformation using Databricks. 

About the Authors

xvii

Soumendra Mohanty has led key growth

portfolios (IIOT, data, analytics, AI, intelligent

RPA, digital integration, digital experience,

platforms), bringing world-class capabilities,

innovative solutions, and transformation-

led, outcomes-led value propositions to his

clients. Under his leadership, Tredence has

established a wide range of digital and data

analytics capabilities and an enviable client-

centric innovation culture to solve problems at the convergence of physical

and digital.

With a career spanning 25 years, Soum has held various executive

and leadership roles at Accenture, Mindtree, and L&T Infotech, leading

multifaceted profit-and-loss functions, including merger-and-acquisition

advisory for technology growth strategies and start-up ecosystems.

He is an accomplished thought leader and has published several

books. He regularly speaks at various global forums, CDAO advisory

gatherings, and educational institutions. He is an advisor to the Harvard

Business Review (Analytics Stream).  

Vishal Vibhandik is a veteran data architect with more than 20 years of

experience in designing and implementing robust data solutions.

About the Technical Reviewers

1© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_1

CHAPTER 1

Databricks Platform:
From Lakehouse to
Data Intelligence
Platform
The intensifying pace of digital transformation has led companies to

amass increasing volumes of diverse data from various sources. This

data explosion carries enormous potential for organizations to uncover

transformative insights to guide innovation and decision-making through

advanced analytics.

In this chapter, we will examine the evolution of data platforms over

the last decade or so. Then, we will discuss why today’s ideal data platform

is a lakehouse and how Databricks established the lakehouse category.

We will then go in-depth to understand the various facets of the lakehouse

platform as it is on Databricks.

Finally, we will discuss how generative AI (GenAI) and large language

models (LLMs) have revolutionized the entire artificial intelligence (AI)

landscape and how Databricks has embraced this technology to create the

Databricks Data Intelligence Platform.

https://doi.org/10.1007/979-8-8688-0444-1_1#DOI

2

�Data Platforms: Historical Perspective
The data landscape has undergone rapid evolution in recent years,

necessitated by the exponential growth in information from an ever-

expanding variety and volume of data. As organizations deal with this

big data surge, the existing infrastructure has struggled to harness its

potential effectively. This has led architects and technology leaders to start

conceptualizing new integrated systems that can adeptly consolidate the

strengths of current data platforms.

Let’s start with data warehouses. They provided immense value over

decades for descriptive analytics and business intelligence use cases

relying on predefined structured data. However, as the focus and needs

expanded to predictive analytics and leveraging the latest machine

learning advancements, the nature of workloads moved beyond what

traditional warehouses could proficiently support. Descriptive analytics for

business intelligence based on predefined datasets are no longer enough.

Further varied data types such as unstructured, semi-structured, and

streaming use cases require more extensive and agile processing than data

warehouse infrastructures are designed for.

The data lake concept therefore gained interest as an alternative to

data warehouses, given its natural ability to ingest raw multistructured

data quickly. One of the more popular technologies that was forefront of

this was Hadoop and its ecosystem. However, lack of transactionality, data

quality, and mixing modes inhibited unlocking the benefits promised

by data lakes. The flexibility therefore came at the cost of governance,

reliability, and vital enterprise capabilities. Consequently, the data lakes

quickly turned into “data swamps.”

Despite all these drawbacks, organizations with no better alternatives

began using both these technologies in their data architecture: data

warehouses for descriptive and business intelligence (BI) use cases

and data lakes for AI/machine learning (ML) use cases with a variety of

processing tools thrown in the mix (sometimes even a single tool for one

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

3

use case). However, with two completely different systems, solving for

two critical types of workloads started to be problematic. First, it created

data silos, which necessitated moving data across the platforms and thus

maintaining multiple copies of the same data. Second, the governance

model of these disparate platforms was incompatible, thus requiring

separate governance models for different systems. Finally, organizations

started using different tools for BI and ML workloads, increasing

operational efficiency and costs. Over time, the complexity of maintaining

different systems increased. This is becoming not only costly but also

slowing innovation.

More than ever enterprises needed a unified data infrastructure

capable of managing diverse information seamlessly through its entire

lifecycle to serve exponentially expanding analytical use cases.

�Emergence of the Lakehouse
Let’s understand how organizations look at their modern data platforms.

First, the platform should be able to store all sorts of data in a single

storage location, preferably cost-effectively. Then, that data should have

a single governance and access model and, last, a technology that helps

them solve all their use cases without moving any data or code.

However as discussed earlier, organizations using both a data

warehouse and a data lake in their architecture are essentially looking

at two different piecemeal systems leading to disconnected data silos,

complex integrations, and fragmented governance, severely hampering

building enterprise-grade analytic solutions that could positively impact

the business.

This reality has catalyzed the emergence of an evolutionary new

paradigm pioneered by Databricks: the lakehouse. The lakehouse

architecture aims to bring together the most impactful capabilities of data

warehouses and data lakes into an integrated whole on the cloud. Reliable

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

4

support for varied workloads using consistent data, managed securely

under standard governance policies, holds the promise to finally harness

big data comprehensively.

With its seismic potential to reshape the analytics landscape, the

lakehouse undoubtedly constitutes one of most pivotal recent data

platform innovations.

�What Is a Lakehouse?
Let’s dig a bit deeper and understand what a lakehouse is. A lakehouse is a

data architecture paradigm aiming to bridge the gaps between data lakes

and data warehouses. The goal is to provide the flexibility and scalability

of a data lake as well as to provide the performance, reliability, and

governance typically associated with a data warehouse. A lakehouse seeks

to implement some of the managed data capabilities seen in warehouses

directly on top of object stores or cloud-based storage. Figure 1-1

compares the three.

Figure 1-1.  Data warehouse versus data lake versus data lakehouse

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

5

The data lakehouse construct addresses these gaps by consolidating

the capabilities of data warehouses and lakes:

•	 Natively manages both structured and varied

unstructured data

•	 Leverages cloud-scale object storage as the

foundational data repository

•	 Provides reliability, security, and governance across

storage and processing

•	 Provides high performance through technologies such

as caching, indexing, and partitioning

•	 Supports real-time and batch workloads via unified

streaming architecture

•	 Provides open extensibility to accommodate rapidly

evolving analytics needs

The lakehouse breaks down data silos and enables simplified

management by converging workloads on the same platform under

standard governance policies. This makes it possible to get a single

view of information at scale to power advanced analytics. With cloud

infrastructure adding unlimited elasticity, lakehouses finally make it

feasible to ask bigger questions of data than ever before possible.

If you were to design a new-generation analytical data management

system using cheap distributed storage as a foundation, you would end

up with something resembling a lakehouse: flexible schemas but faster

queries. The goal is real-time insights without compromising governance.

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

6

�What Is the Databricks Lakehouse?
Now that you understand the lakehouse paradigm, let’s move on to see

how a lakehouse is implemented on Databricks. Published in Conference

on Innovative Data in 2021, Databricks researchers Michael Armbrust

et al. wrote “Lakehouse: A New Generation of Open Platforms that Unify

Data Warehousing and Advanced Analytics” (https://www.cidrdb.org/

cidr2021/papers/cidr2021_paper17.pdf).

Figure 1-2 shows Databricks lakehouse platform.

Figure 1-2.  Databricks lakehouse platform

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

7

Databricks with the lakehouse architecture presented a potential

solution to consolidate disparate data sources into a single location while

avoiding some of the limitations of existing architectures. Databricks

provides one of the most mature enterprise-scale implementations of a

lakehouse architecture through its integrated data and AI platform. Built

on open source and open standards, the Databricks lakehouse architecture

simplifies your data estate by eliminating the silos that historically

complicate data and AI.

Let’s decode this a bit and do a deep dive into a Databricks lakehouse.

Databricks leverages cloud object storage (S3-AWS, ADLS-Azure, and

Google Cloud Storage [GCP]) as a central data store at its foundation. This

enables enormous volumes of structured, unstructured, and semi-

structured data to be housed in native formats in one of the cheapest

storage available on the cloud. This is what constitutes the “lake” in the

lakehouse. Once the data lands in the cloud in raw format, it is moved to

Delta Lake format. Please note that data is still in your cloud storage but in

Delta Lake format. Delta Lake is an open-source storage layer that brings

performance, reliability, and governance to the data lakes. Delta Lake

applies atomic transactions, caching, indexing, and time travel to make

large-scale storage reliable and performant for mission-critical workloads.

Basically, Delta Lake gives as the “warehouse” type capabilities to the data

stored in your cloud storage. This constitutes the “house” in the lakehouse

architecture.

As shown in Figure 1-2, Unity Catalog provides unified data

governance for all data within the lakehouse. It manages all data assets,

including tables, schemas, views, and even AI models, centrally.

Finally, the Databricks platform provides features that enable all data

personas within your organization to build a variety of use cases be it data

engineering, data science, streaming, or data warehousing.

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

8

To conclude, Databricks provides a unified lakehouse platform built on

open-source technologies that is cloud-agnostic and able to handle diverse

use cases at any scale. This platform makes data available for multiple

analytics use cases, from business intelligence to machine learning.

�Key Features of the Databricks
Lakehouse Platform
Databricks’ enterprise data cloud provides a leading implementation

of the lakehouse paradigm. The following are some core concepts and

capabilities:

Delta Lake: This open format optimizes the storage

of massive volumes of structured and semi-

structured data for reliability, performance, and

governance.

Unified batch and streaming: Databricks processes

batch and real-time data via the same platform

using Spark structured streaming. This enables new

ways to combine historical with streaming data.

Unity Catalog: Unity Catalog captures metadata

and usage information across diverse data types

and storage systems for unified discovery and

governance.

Multilanguage support: The platform natively

integrates languages like SQL, Python, R, Java, and

Scala to support various analytics use cases on the

same data.

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

9

Cloud-native architecture: By leveraging managed

cloud infrastructure, Databricks automates resource

management and scaling to meet the needs of the

most demanding workloads.

Secure and governed access: Comprehensive

access controls, encryption, and data masking

enforce strict oversight and granular auditing.

Autoscaling and collaboration: Data scientists

can quickly scale their work to production while

closely collaborating with business users via sharing

dashboards, reports, and applications.

�Introducing the Databricks Data
Intelligence Platform
If you look back in the technology world, 2023 was a groundbreaking year.

It is when the world saw the power of GenAI LLMs and the potential they

hold. Almost instantaneously organizations could imagine the future use

cases that could be built by leveraging them. GenAI became the talk of

every boardroom, and everybody was looking at using the technology to

take a lead on their competitors.

Databricks with its Databricks lakehouse platform was uniquely placed

to utilize this technology to not only enhance its platform but also help

enterprises build their GenAI use cases. Let’s talk about these two in detail.

First, Databricks enhanced its lakehouse platform by merging it with

GenAI capabilities; this is called the Databricks data intelligence platform.

Databricks used LLMs in almost every part of its platform, from assisting

developers in troubleshooting coding errors to automatically generating

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

10

insights from your data. We will discuss each of these features in detail in

Chapter 12. The overall platform became more and more intelligent and

thus enhances the user experience.

Second, Databricks built capabilities and features inside the platform

that allow organizations to build their own GenAI use cases. Features like

Vector Search, the Fine Tuning API, and RAG Studio enable organizations

to productionalize their GenAI use cases from RAG applications to even

building their own model from scratch. We will discuss these features in

detail in Chapter 9.

Thus, Databricks enhanced its platform using LLMs and allowed users

to create their GenAI applications on the platform.

To understand the data intelligence platform on Databricks, let’s

look at this analogy. Figure 1-3 shows the most powerful spaceship ever

built—SpaceX’s Starship. It is important to note that at the core, sitting

underneath, is the Super Heavy booster, which is capable of withstanding

2.8 million pounds of weight while standing and, when in flight, propelling

the second stage to space with its raptor engine.

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

https://doi.org/10.1007/979-8-8688-0444-1_12
https://doi.org/10.1007/979-8-8688-0444-1_9

11

Figure 1-3.  SpaceX spaceship

With this concept in mind, it is not hard to understand the Databricks

data intelligence platform (see Figure 1-4). It is also comprised of two

major components. At the core, it is powered by the lakehouse platform

and GenAI, which makes the platform much more intelligent to user needs

and requirements.

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

12

Figure 1-4.  Databricks data intelligence platform

To conclude, fueled by the latest development of generative AI,

Databricks has integrated the Data Intelligence Engine into the core of

its offering. This is equivalent to SpaceX’s Starship. In short, Databricks

has leveraged the latest GenAI models and technology to create the Data

Intelligence Engine (Databricks IQ), which fuels all parts of the platform.

With Mosaic ML and Databricks IQ, developers can seamlessly create

their workload like they are working with a data subject-matter expert

(SME) like never before. Databricks AI can also allow data scientists to

leverage large language models as they are, refreshing their domain-

specific knowledge with RAG, fine-tuning with more specialized

knowledge, or even training a brand new LLM from scratch. This powerful

second stage can propel the Databricks platform to a new era, enabling

organizations to create the next generation of data and AI applications

with quality, speed, and agility.

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

13

�Conclusion
In this chapter, looked at the evolution of data platforms. Data warehouses

are excellent for BI use cases, and data lakes with their open storage

are used for ML use cases. However, by using both, these incompatible

systems in their architecture created data silos, and hence businesses

could not utilize their full data for business decisions. The Databricks

Lakehouse Platform enables organizations to store all their data in one

place. Whether it is structured, semi-structured, or unstructured data,

it is stored in an open data lake. Then the raw data is moved into Delta

Lake format, which provides reliability and improves performance. Unity

Catalog provides a single governance layer, and the Databricks platform

offers features to do use cases from data engineering, data warehousing,

streaming, and data science. Finally, we discussed how Databricks built

intelligence into their platform by utilizing GenAI and LLMs to create the

Databricks data intelligence platform. In the next chapters, we will deep

dive into various parts of the Databricks platform.

Chapter 1 Databricks Platform: From Lakehouse to Data Intelligence Platform

15© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_2

CHAPTER 2

Databricks Platform
Overview
In this chapter, you will learn various aspects of the Databricks data

intelligence platform. This chapter will provide a brief overview of the

Databricks platform and set the stage for deep dives into various product

features in later chapters. Initially, you will learn about the most common

terms unique to the Databricks platform. After that you will learn about

Databricks compute (clusters) and Databricks notebooks. Again, this

chapter acts as a foundation for the rest of the chapters and features we

will cover in them.

�Key Terminology
The Databricks platform delivers three services catering to the specific needs

of various personas: Data Engineering, Machine Learning, and SQL. Let’s

first look at the key Databricks terminology used throughout this book. Most

of these terms will also be explained in detail in subsequent chapters.

•	 Account: A Databricks account allows admins to

centrally manage and control access to their Databricks

resources such as workspaces, users, and metastore.

Billing and support are handled at the account level.

A Databricks account can have multiple workspaces.

https://doi.org/10.1007/979-8-8688-0444-1_2#DOI

16

•	 Workspace: Databricks workspaces provide a

collaborative environment for data teams to access all

Databricks assets. Workspaces are accessed via a web

app and help users organize their work on Databricks.

Users can create, manage, and share notebooks,

clusters, and libraries within workspaces.

•	 Databricks file system (DBFS): DBFS is a storage

location provisioned when creating a Databricks

workspace. It is important to note that DBFS should not

be used to store production data, libraries, or scripts.

•	 Cluster (compute): A Databricks cluster is a group

of virtual machines (VMs) that process your data

workloads. They allow you to execute code from

notebooks, libraries, or custom code. Clusters can be

created, scaled, and managed using the Databricks

UI or application programming interface (API) or

command-line interface (CLI), and they provide

features like autoscaling and spot instances. Clusters

do not store data. Data is always stored in your cloud

storage account and other data sources.

•	 Notebooks: Notebooks are a collaborative IDE that

allows you to write and execute code in Scala, Python,

R, SQL, or Markdown and visualize results in real time.

They come with features such as version history,

co-editing, providing comments, and even scheduling

as a job. Notebooks need to be connected to a cluster to

execute commands. Users can share notebooks via the

Web or download them to a local machine.

Chapter 2 Databricks Platform Overview

17

•	 Databricks Git folders (formerly known as repos):
A folder is a feature of Databricks that allows users to

source-control their data and AI projects by integrating

with Git providers like GitHub, GitLab, Azure DevOps,

etc. A folder also enables users to work directly with Git

repo-backed folders from the Workspace UI.

•	 Catalog: A catalog is a centralized metadata browser

that provides a single source of truth for all data assets

in an organization. It allows users to discover, manage,

and govern data across multiple workspaces, clusters,

and teams. We will discuss this more in Chapter 5.

•	 Workflows: Databricks workflows enable you to

orchestrate and schedule your code and data pipelines.

Workflow jobs allow the code execution to occur either

on an already existing cluster or on a cluster of its own.

Jobs can be run from code in notebooks, JAR files, or

Python scripts. They can be created manually through

the UI or the REST API or the CLI.

•	 Libraries: Libraries are packages or modules that

provide additional functionality to solve your business

problems. These may be custom-written Scala or Java

JARs, Python egg or wheel files, or custom-written

packages. You can write and upload libraries manually

through the UI, use the Libraries API, or install them

directly via package management utilities like PyPi,

Maven, or CRAN.

Chapter 2 Databricks Platform Overview

https://doi.org/10.1007/979-8-8688-0444-1_5

18

•	 Databricks runtime (DBR): Databricks Runtime is a

set of core components that run on clusters. Databricks

constantly updates the runtime with newer versions,

and each version includes updates that improve

the usability, performance, and security of big data

analytics.

•	 Databricks Unit (DBU): DBU is the unit of processing

capability and is billed per second. This is how

Databricks charges users for the compute they use.

•	 Delta Lake: Delta Lake is an open-source storage layer

that provides ACID transactions, scalable metadata

management, and unified data management across

data pipelines. It allows users to manage large datasets

and provides a reliable and secure way to store and

organize data.

After reviewing the key terminologies, we will dive into two topics:

clusters and Databricks notebooks. As Databricks users, these are the two

elements you will start working with when you first use the platform.

�Databricks Compute or Clusters
Databricks is a fully managed PaaS offering that requires no infrastructure

administration, management, or maintenance. Users and processes run

code on clusters of VMs for data engineering, data science, and data

analytics workloads. This includes batch and real-time production ETL

pipelines, streaming analytics, ad hoc analytics, machine learning, deep

learning, and graph analytics.

Databricks clusters consist of one or more virtual machine instances

over which computation workloads are distributed. In the typical case,

a cluster has a driver node alongside one or more worker nodes. During

Chapter 2 Databricks Platform Overview

19

processing, the driver distributes workloads across available worker nodes.

The driver program takes care of the job execution within the cluster. A job

is split into multiple tasks distributed over the worker nodes. Clusters can

be fixed-size clusters or autoscaling; by default, they auto-terminate after

120 minutes of inactivity (this is configurable). Databricks can also provide

a single-node cluster option, typically limited to development or testing

with small workloads.

Databricks has three main cluster types, and depending on the

use case you are running, you can select one to improve efficiency and

manage costs.

�Interactive or All-Purpose Clusters
All-purpose compute is best suited for interactive analytics using

notebooks, dashboards, or IDEs that require fast responses for an

interactive user experience. They are best for ad hoc analysis, data

exploration, or development. They can be either single user or shared by

multiple users and can be terminated and restarted (manually, API or

cluster setting).

�Job Cluster
Job clusters should be utilized when running Databricks jobs. As a best

practice, all production jobs or ETL pipelines should be run on job

clusters, as they provide a fully isolated environment. Job clusters are pure

ephemeral compute, as they terminate themselves when the job ends, thus

reducing resource usage and costs. In later chapters, we will learn more

about job clusters while discussing Databricks workflows. Now we have the

option to run job clusters in serverless mode.

Chapter 2 Databricks Platform Overview

20

�SQL Warehouse
SQL warehouses are meant to run SQL workloads and queries, primarily

in the DBSQL part of the platform. If you are writing SQL queries, creating

visualizations/dashboards, or connecting your favorite tool to Databricks,

SQL warehouses is the way to go.

After defining a cluster and the types of clusters present in the

Databricks environment, let’s examine how to set one up using the

Databricks UI.

�Databricks All-Purpose Cluster Setup
This section will discuss the various attributes that need to be selected and

how to configure them. Figure 2-1 shows the cluster creation interface.

Chapter 2 Databricks Platform Overview

21

Figure 2-1.  Creating an interactive cluster

Next, we will look at some of the important parameters on this page.

Chapter 2 Databricks Platform Overview

22

�Policy
Cluster policies enable admins to limit the attributes available for cluster

creation. Users can select a cluster policy from the policy drop-down on

the cluster configuration page. You can configure ACLs that limit cluster

policies to specific users and groups.

For example, in Figure 2-2, the cluster policy allows users to create

a cluster with the defined configurations as given in the JSON file. Only

the configurable fields are visible when the user uses this policy, and the

rest are hidden. This allows admins to control the clusters that the users

can create. Further, only admin users can create, edit, and delete cluster

policies. Admin users also have access to all policies.

Chapter 2 Databricks Platform Overview

23

Figure 2-2.  Sample cluster policy

Chapter 2 Databricks Platform Overview

24

Cluster policies present three main benefits. First, it helps control

costs as these policies prevent individuals from spinning up unnecessarily

large and enforce specific configurations such as auto-termination.

Second, cluster policies help improve governance as admins can enforce

cluster tags to track usage by team or project or control cluster access

to users/groups. Finally, as more and more users are onboarded on the

Databricks workspace, disruption is minimized by standardizing the

cluster creation process.

Before we move further, let’s look into a particular Databricks-

managed cluster policy that is available: Personal Compute. This policy

allows users to create single-machine easy compute resources for an

individual user to start running workloads immediately, minimizing

compute management overhead for admins. Some of the properties of

Personal Compute are that the clusters created are single-node, single-

user (Unity Catalog enabled), and all-purpose clusters with the latest

Databricks runtime.

The next configuration we want to look into is Access Mode.

�Access Mode
Cluster access modes are divided into three distinct types (see Figure 2-3).

•	 Standard single-user clusters

•	 Shared clusters (for multiple users) with User Isolation

data access mode

•	 No isolation shared clusters

Chapter 2 Databricks Platform Overview

25

Figure 2-3.  Cluster access mode

Standard single-user clusters: Standard single-

user clusters are Unity Catalog (UC)–enabled

clusters for a single user designated while creating

or editing the cluster. Other users cannot attach

to the cluster, regardless of the cluster permission

settings. Standard clusters can run workloads

developed in any language such as Java, Python,

R, Scala, or SQL, and they can be fixed size or

autoscaling.

Shared (for multiple users) clusters: Shared

clusters are UC-enabled clusters ideal for multiple

users accessing a single cluster to run interactive or

automated jobs. These clusters only support SQL,

Python, and R. The key benefits of shared clusters

are that they provide Apache Spark–native fine-

grained sharing for maximum resource utilization

and minimum query latencies so that all users on

Chapter 2 Databricks Platform Overview

26

the cluster can run jobs by sharing total compute

resources (CPU and RAM) among all the users on

the cluster. Shared clusters can help reduce costs

for a shared user work environment, as well as

experimentation, testing, and execution of some

production workloads.

The “No isolation shared” option for legacy support and does not

support Unity Catalog. This access mode is generally recommended for

new clusters only if there is a specific need.

Table 2-1 summarizes the access modes along with Unity Catalog

support. Databricks recommends using Unity Catalog for fine-grained

access controls.

Table 2-1.  Databricks Access Modes

Access
Mode

Visible to User UC
Support

Supported Languages

Single user Always Yes Python, SQL, Scala, R

Shared Always (Premium plan or

above required).

Yes Python (on Databricks

Runtime 11.3 LTS and

above), SQL, Scala (on Unity

Catalog–enabled compute

using Databricks Runtime

13.3 LTS and above)

No Isolation

Shared

Admins can hide this

access mode by enforcing

user isolation in the admin

settings page.

No Python, SQL, Scala, R

Custom Hidden

(for all new compute).

No Python, SQL, Scala, R

Chapter 2 Databricks Platform Overview

27

�Databricks Runtime Version
The Databricks runtime is a collection of core software components

running on the clusters of machines managed by Databricks. You can

select this setting in an all-purpose compute, but in SQL warehouses, it

is auto-selected. The Databricks runtime version includes Spark but also

adds several components and updates that substantially improve big data

analytics’ usability, performance, and security. As a best practice, select

the most recent runtime version. Long-Term Support (LTS) versions are

released every six months and supported for two years (see Figure 2-4).

Figure 2-4.  Databricks runtime

Apart from the Standard runtime version, there is also an augmented

machine learning (ML) runtime version. This runtime version caters to

ML workloads and is optimized for them. Further, many ML libraries come

pre-installed and optimized with this runtime.

Chapter 2 Databricks Platform Overview

28

Finally, there is a checkbox for Photon, Databricks’ vectorized

execution engine for optimizing performance and costs. We will discuss

Photon more in Chapter 8.

�Autoscaling and Autotermination
A lot of times, the compute capacity is unknown, say, for example, during

the development phase when the data engineer is writing and developing

a pipeline. If the “Enable autoscaling” is checked, you can define the

minimum and maximum number of workers to be added to the cluster.

Thus, Databricks will allocate the necessary number of workers according

to its needs during job execution. For example, you can create a cluster with

a minimum of two workers and a maximum of eight workers. The cluster at

start time will have two workers. As the user starts to process data and if need

be (say for a big join between two tables) more workers will be added until a

maximum of eight workers is reached. When there is no more need for eight

workers, the cluster will scale down to two workers. This also is a huge cost-

saving mechanism as you do not always need big clusters running.

You may also enable autotermination (Terminate After) for a cluster.

During cluster formation, you can choose an inactivity time in minutes

after which the cluster should terminate. If the difference between the

current time and the last command issued/executed on the cluster

exceeds the chosen inactivity interval, Databricks terminates the cluster

automatically.

�Tags
Cluster tags allow you to monitor costs and attribute Databricks usage/

costs to your organization’s entities, such as business units and teams.

So, it is important to set tags on your clusters. These tags propagate

down to VMs, which helps you charge back costs to your departments or

business units.

Chapter 2 Databricks Platform Overview

https://doi.org/10.1007/979-8-8688-0444-1_8

29

A few default tags are created, such as Vendor (Databricks), ClusterID,

ClusterName, and Creator. You can also create up to 20 custom tags.

�Spot Instances
Spot instances are unused computes in the respective cloud environment.

They are massively discounted compute compared to traditional virtual

machines. You can use spot VMs to run your clusters, thus saving on costs.

One key point is that cloud providers can terminate or recall the

spot instances when there is demand from Azure. However, Databricks

automatically terminates spot VMs by starting the pay-as-you-go VMs to

guarantee job completion. Databricks clusters are resilient to interruptions

and well-suited for enterprise data and AI use cases.

�Cluster Pools
Pools are pre-reserved VM instances, so when users request new clusters,

Databricks can pull from an existing pool instead of acquiring from the

cloud provider. You can set up spot instances for the pool and allocate

them as clusters start. When creating a pool, select the desired instance

size and Databricks Runtime version; then choose All Spot from the On-

demand/Spot option; see Figure 2-5.

Chapter 2 Databricks Platform Overview

30

Figure 2-5.  Databricks compute pools

�Cluster Sizing Considerations
and Best Practices
Here are some cluster best practices:

•	 Use autoscaling clusters when the compute capacity

required is unknown.

•	 Set automatic termination when applicable.

•	 Use the latest Databricks Runtime version for recent

features and performance optimizations.

•	 Use cluster tags for project- or team-based chargeback.

Chapter 2 Databricks Platform Overview

31

•	 Use the cluster event log and Spark UI to analyze

cluster activities and submitted job performance.

•	 Configure cluster log delivery to deliver Spark driver

and worker logs to cloud storage.

•	 Use cluster access control to configure permissions for

users and groups.

•	 User cluster policies limit cluster types that users

can launch.

After learning about clusters, we will learn about another important

feature: Databricks notebooks.

�Databricks Notebooks
If you are familiar with Jupiter notebooks, Databricks notebooks share the

same concept. However, Databricks notebooks don’t use the same back

end as Jupyter notebooks, so if you clone the notebook from source control

to your local environment, you must first convert it to .ipynb format.

A Databricks notebook is a code-first development tool that enables

conversational data interaction by developing code and visually presenting

results. With it, you can iteratively explore and visualize your data,

create ETL pipelines, write reports or prototypes, and train ML models.

Databricks notebooks provide capabilities like real-time co-authoring,

support for multiple languages, automatic versioning, and built-in data

visualizations. Figure 2-6 provides a view of a sample Databricks notebook.

Chapter 2 Databricks Platform Overview

32

Figure 2-6.  Databricks notebook

Now let’s see some of the capabilities of Databricks notebooks:

•	 Multiple language support: Databricks notebooks

allow you to develop code in multiple languages, such

as Python, SQL, Scala, and R. This gives developers the

flexibility to develop in the language of their choice or

even use multiple languages within the same notebook

using the magic command (e.g., % SQL or % Python).

Notebooks also provide Markdown capabilities so you

can maintain documentation along with the code itself.

•	 Collaborative: Notebooks allow developers to co-

author or work on the same notebook in real time

similar to working in your Google Docs environment.

Further, users can collaborate by writing and leaving

comments for their team members, which can then be

worked upon later.

Chapter 2 Databricks Platform Overview

33

•	 Reproducible: Notebooks automatically track changes

you made and store the version in version history,

allowing you to look back at a previous version easily

and compare what changed in the current notebook.

Further, you can also integrate notebooks into your Git

repositories for your CI/CD.

•	 Visualizations: Databricks notebooks have built-in

visualizations, including bar, line, pie, scatter, map,

and more. Users can create one or more visualizations

for each command’s result. Notebooks also allow you

to bring external libraries like ggplot (R), matplotlib

(Python), and Plotly for more advanced figures.

Visualizations are automatically refreshed and updated

whenever commands are rerun.

•	 Scheduled: In addition to interactive features, you can

quickly create automated jobs from the same notebook

and schedule them at specific intervals as per the use

case. Thus, you can make your notebook run a job.

In Chapter 6, we will see how you can orchestrate a

pipeline using multiple notebooks.

�Debugging
Debugging your Python code has never been easier with a Databricks

notebook. You can set breakpoints and step into your Python code with

a debugger. Use the Debug cell button to start debugging, as shown in

Figure 2-7 and Figure 2-8.

Chapter 2 Databricks Platform Overview

https://doi.org/10.1007/979-8-8688-0444-1_6

34

Figure 2-7.  Notebook cell debugging

Figure 2-8.  Python debugger

Variable Explorer also allows you to see all the variables in your

notebook, greatly helping with the debugging experience. It supports

Python, Scala, and R in this view, making the notebook a real-time cross-

language compiler. Figure 2-9 shows a view of the explorer. The Variable

Explorer provides a convenient one-click action to inspect all variables,

including DataFrames. You can click any DataFrame to explore it in a new

notebook cell, allowing you to visualize or profile it easily.

Chapter 2 Databricks Platform Overview

35

Figure 2-9.  Variable Explorer

�Serverless in Notebook
To enable rapid development experience from end to end, Databricks now

enables users to use serverless SQL warehouse in notebooks. This allows

SQL developers to continue to collaborate with other team members in the

same environment. See Figure 2-10.

Chapter 2 Databricks Platform Overview

36

Figure 2-10.  Attaching a SQL warehouse to a notebook

�Databricks Widgets
Databricks widgets are input elements that allow you to parameterize your

notebooks. Consider a scenario where you want to use the same notebook

code but with multiple different inputs. One way could be to create

multiple static notebooks by hard-coding values. Still, a more elegant and

preferred way would be to add input elements to your notebook, making

the same notebook more reusable. In short, Databricks widgets allow you

to parameterize your notebooks by creating input widgets that can be

adjusted to pass different values into the same notebook code.

There are four types of widgets for use with Databricks notebooks (see

Figure 2-11).

•	 Text Input: Allows users to enter a text value in an

input box:

dbutils.widgets.text(“widget_name”, “Value”, “Label”)

Chapter 2 Databricks Platform Overview

37

•	 Dropdown: This provides a drop-down menu to

select from a list of options. It is useful for predefined

categories and options.

dbutils.widgets.dropdown(“widget_name”, “Value”,

[“option1”, “option2”, “option3”], “Label”)

•	 Combo box: This is a combination of a text box with

a drop-down. Users can either type a custom value or

select an option.

•	 Multiselect: This allows users to select multiple values

via checkboxes.

dbutils.widgets.checkbox(“widget_name”, True,

“Label”)

Figure 2-11.  Sample widgets in Databricks

Once the widget is created, its value can be accessed using dbutils

widgets.get() or via :filter_value or ${filter_value} in SQL for DBR

15.1 or below. The value can then be used as input parameters in your

code to customize data processing, visualization, or analysis.

Chapter 2 Databricks Platform Overview

38

�Library Management
Libraries could be either third-party or prewritten custom code that must

be available to Databricks notebooks or clusters to execute your code/jobs

successfully. Libraries can be written in multiple languages and reused

as needed by developers. Further, they could be stored locally in DBFS or

cloud storage or called from external repositories such as PyPI, Maven,

or CRAN.

Databricks Runtime includes many commonly used libraries installed

on the cluster. The release notes give a list of libraries for your runtime

version. However, you may need to install more custom or specific libraries

at the time of code execution. Databricks provides two main options for

library installation: cluster-scoped and notebook-scoped libraries.

Cluster-scoped libraries provide the ability to install libraries on

specific clusters so that they can be used by all notebooks/jobs running on

that cluster (Figure 2-12).

Figure 2-12.  Library installation page

Chapter 2 Databricks Platform Overview

39

There are several sources, including workspace files, cloud object

storage, UC volumes, paths on local machines, or external repositories like

PyPI, Maven, or CRAN.

Only Python and R allow you to install notebook-scoped libraries and

create an environment scoped to a notebook session. Notebook-scoped

libraries are used only when needed for your notebook and can be installed

using the %pip magic command. These libraries do not persist and must be

re-installed after each session.

�External Databricks Connectivity
In this section, we will discuss how you can connect to Databricks

beyond the browser, like Databricks CLI and API. While these are for

administrative purposes in the beginning, the ecosystem has evolved a lot

so we do day-to-day development in our favorite IDE offline.

�Databricks CLI
The Databricks command-line interface (aka Databricks CLI) provides

an easy-to-use tool for automating the Databricks platform from your

terminal command prompt. From the CLI, you can start/stop a cluster, run

Databricks jobs, and more.

To connect Databricks CLI to the Databricks workspace, you need to

generate a Databricks personal access (PAT) token. To do so, browse to

User Settings ➤ Developer ➤ Access Tokens (see Figure 2-13). The token

will be visible to you only once and by default is valid for 90 days; you will

need to regenerate it afterward.

Chapter 2 Databricks Platform Overview

40

Figure 2-13.  PAT token generation

Once you have the PAT token, you can quickly connect to the

workspace by using the following and providing the PAT token when

prompted:

databricks configure --host <workspace-url> --profile

<configuration-profile-name>.

Finally, you can run the following to create clusters:

databricks clusters create --cluster-name my-cluster --node-

type-id Standard_D2_v2 --num-workers 4

�Databricks REST API
The Databricks REST API allows users to interact programmatically with

their Databricks workspace. More or less anything that can be done via the

UI can be done via the REST APIs. Users can interact with the Databricks

REST APIs via curl requests, Python requests, Postman applications, or

the databricks-api Python package. Here again, you would require a PAT

token to authenticate to the Databricks workspace.

Chapter 2 Databricks Platform Overview

41

The Databricks documentation includes a REST API reference Guide

that details both the workspace and account-level APIs for all three cloud

platforms (https://docs.databricks.com/api/azure/workspace/

introduction).

�Databricks Terraform
The Databricks Terraform provider allows you to interact with almost all of

Databricks’ resources. Behind the scenes, it is powered by the Databricks

SDK. Both Databricks SDK and Terraform providers are official Databricks

open-source projects and are actively supported by Databricks.

Administrators often use the Databricks Terraform provider for

automated deployment and disaster recovery. Figure 2-14 illustrates the

vast scope that it supports for Databricks management. The ultimate

meaning of DevOps is leveraging infrastructure as code (IaC) to

manage operations and not depend on the user interface or a series of

predocumented commands.

The Databricks Terraform provider can be found at the Terraform

website:

https://registry.terraform.io/providers/databricks/

databricks/latest

You can find the full source code of Databricks Terraform at Databricks

GitHub, which is one of the top trending repos:

https://github.com/databricks/terraform-provider-databricks

Chapter 2 Databricks Platform Overview

https://docs.databricks.com/api/azure/workspace/introduction
https://docs.databricks.com/api/azure/workspace/introduction
https://registry.terraform.io/providers/databricks/databricks/latest
https://registry.terraform.io/providers/databricks/databricks/latest

42

Figure 2-14.  Databricks Terraform provider

�Conclusion
In this chapter, we discussed the basic terminology associated with the

Databricks data intelligence platform. This formed the foundation for the

concepts and features we will learn throughout the book. Databricks has

evolved as not only a management tool on top of Spark but also provides

lots of features and toolings to manage your data and AI assets, be it tables,

jobs, policies, and development environments. Everything comes out of

the box. The open-source repo also contains countless useful tools that

Databricks is maintaining on behalf of the community.

Chapter 2 Databricks Platform Overview

43

In addition to key terms, we looked at two commonly used services:

clusters and notebooks. Clusters form the compute on the Databricks and

are now available as serverless. A notebook is the IDE where you write your

code and execute it on your data using clusters. We concluded the chapter

by looking at external connectivity to Databricks via Databricks CLI, the

REST API, and Terraform.

Chapter 2 Databricks Platform Overview

45© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_3

CHAPTER 3

Data Ingestion
in Lakehouse
Organizations have a wealth of information siloed in various data sources.

It could be relational databases, on-prem data warehouses, big data

storage like Hadoop systems, ERP/CRM systems, or real-time streaming

sources. A significant number of analytics use cases need to not only

process this data efficiently but also do it in a unified manner to produce

meaningful reports and predictions. So to start this journey, organizations

need to ingest data from different sources to a single location. In this

chapter, we will look into how you can ingest data from various sources

incrementally and efficiently into your Delta Lake.

�Introduction
In a Databricks lakehouse, organizations can ingest data from a variety

of sources to create a “single source of truth” for their data, enabling

comprehensive analytics and data science capabilities across all their data.

To break down the ingestion process, especially for batch data, it is mostly

a two-step process, as shown in Figure 3-1.

The first step is to upload raw data from a variety of sources be it on-

prem or other systems into your cloud storage (S3, ADLS, or Google Cloud

Storage). This is normally referred to as cloud ingestion. Once it lands in

https://doi.org/10.1007/979-8-8688-0444-1_3#DOI

46

your cloud storage, the second step is to move it into your Delta Lake layer.

This is referred to as delta ingestion. Now for Delta ingestion there are

two popular and efficient techniques: the Auto Loader and the COPY INTO

command. Later in the chapter we will discuss both in detail.

Figure 3-1.  Databricks reference architecture: ingestion

We will discuss Delta Lake in length in Chapter 4, but we’ll touch on

it here. Databricks’ integration with Delta Lake ensures reliability and

performance at scale, providing ACID transactions and a unified process

for batch and streaming data. This unification of data not only simplifies

data management but also empowers organizations to derive more valuable

insights, make data-driven decisions, and, ultimately, drive business growth.

Now, let’s move in and learn the various methods used for both cloud

and Delta ingestion.

�Cloud Ingestion
As a first step, we need to get data into the cloud and, more specifically,

into your cloud data storage. Usually, we call this layer the landing zone

where the data lands from various sources and can be stored in any format,

be it CSV, Parquet, JSON, etc. This layer is a source for Delta ingestion into

the Delta bronze layer.

Chapter 3 Data Ingestion in Lakehouse

https://doi.org/10.1007/979-8-8688-0444-1_4

47

There are a number of alternatives that can be used to bring data to the

cloud. The first method is via the built-in Databricks connectors that ingest

data from sources such as Workday, MySQL, Salesforce, etc. Moreover, the

Databricks UI provides an intuitive way to move the data directly to Delta

Lake. Next are native cloud tools like Azure Data Factory for Azure Cloud.

Finally, ingestion can happen via third-party tools such as Fivetran via

Partner Connect.

Next, we will look into these three options in much more detail:

•	 Databricks Native Connectors, Add Data and File
Upload: The Databricks’ File Upload UI and Add

Data UI (see Figure 3-2) allow you to easily move data

for ingestion into Delta tables with Unity Catalog. It

enables you to ingest data from a wide range of data

sources in a secure manner via notebook templates or

drag-and-drop functionality.	

	 Add Data UI: The Add Data UI acts as a central location

for all your ingestion needs from various data sources

into the Databricks lakehouse.

Figure 3-2.  The Add UI Interface

Chapter 3 Data Ingestion in Lakehouse

48

	 Now developers can click any data source they want

to ingest data from and then follow the UI flow or

generated Databricks notebook with instructions

to finish data ingestion step-by-step directly into

Delta Lake.

	 Databricks supports several integrations, such Azure

Data Lake Storage or Amazon S3 as the destination.

Further, there are built-in connectors to support data

transfers from data sources such as Snowflake, Kafka,

MySQL, etc. Once you click the source, a notebook gets

generated wherein you can give the source and target

parameters (Figure 3-3).	

Chapter 3 Data Ingestion in Lakehouse

49

Figure 3-3.  Sample notebook, MySQL to Delta table

Chapter 3 Data Ingestion in Lakehouse

50

	 Once these notebooks are run using Databricks

clusters, the data is transferred from the source directly

to the Delta tables.

	 Further, you can leverage more than 150 other

connectors in the UI that are supported by Fivetran.

	 File upload UI: The file upload UI allows you to drag

and drop local files seamlessly and enables the secure

uploading of these files to create a Delta table. The UI

is accessible across all personas through the navigation

bar (Figure 3-4) or from the Catalog UI by clicking the +

Add icon. The file upload UI offers the option to create

a new table or overwrite an existing table.	

Figure 3-4.  Data ingestion, file upload UI

Chapter 3 Data Ingestion in Lakehouse

51

You can use the File Upload UI to ingest via the

following features:

•	 Select or drag and drop one or multiple files

(CSV or JSON, etc.)

•	 Preview and configure the resulting table and

then create the Delta table

•	 Autoselect default settings such as

column types

•	 Modify various format options and

table options

Therefore, both the Add UI and File Upload UI

provide user-friendly interfaces to ingest data, which

could be local or in other data storage platforms,

into the Databricks lakehouse platform. Next we

move into the cloud data ingestion via cloud-

native tools.

•	 Ingestion via cloud-native tools: Another popular

way to ingest data into the cloud is via cloud-native

technologies. For example, for batch ingestion, we can

use ADF (Azure), Glue (AWS), or Data Fusion (GCP).

For stream ingestion, EventHub (Azure), Kinesis (AWS),

Google Pub/Sub, or Kafka are popular choices.

	 Let’s look into an example of using Azure Data Factory

(ADF) in Azure Cloud. ADF has more than 90 built-in

data source connectors that can ingest data from

various sources in the Azure cloud. Further, ADF

seamlessly orchestrates Azure Databricks notebooks to

connect and ingest all of your data sources into a single

Chapter 3 Data Ingestion in Lakehouse

52

data lake. It also has a Delta format connector that

can read and write Delta format into the lakehouse,

providing seamless integration with Databricks.

•	 Ingestion via third-party tools: The next ingestion

method is to leverage the extensive Databricks partner

ecosystem and especially ingestion partners such as

Fivetran, Hevo, Rivery, etc. To make this a seamless

process, Databricks has closely worked with them and

not only validated their technology but also aligned

with them to build integrations that enable you to load

data into cloud storage. These integrations enable low-

code, scalable data ingestion from various sources into

a Databricks lakehouse. These partners are featured

in Databricks Partner Connect (Figure 3-5), which

provides a UI interface that simplifies connecting third-

party tools to your lakehouse for data ingestion.	

Figure 3-5.  Databricks Partner Connect

Chapter 3 Data Ingestion in Lakehouse

53

	 Partner Connect lets you create trial accounts with

select Databricks technology partners and lets you

connect your Databricks workspace to partner

solutions from the Databricks UI. With just a few

clicks, Partner Connect will automatically configure

resources such as clusters, tokens, and connection files

for customers to connect with data ingestion, prep and

transformation, and BI and ML tools.

Fivetran is a popular third-party data ingestion

Databricks partner that offers simple no-code

connectors that can ingest more than 150 data

sources (e.g., MySQL, DynamoDB, SFTP) into

destination data stores such as Databricks Delta

Lake. Fivetran’s ingestion solution helps customers

avoid setting up manual or open-source connectors

that might be less performant when managing the

ingestion process. The connector for Fivetran works

as follows:

•	 Set up a Databricks connection with an interactive

cluster (jobs clusters are not available for Fivetran

ingestion).

•	 Specify the data source in the connection as well as

the schedule (takes just five minutes).

•	 Once complete, Fivetran will run a Databricks

job and use the COPY INTO or MERGE command to

append or update Delta Lake tables, which will

contain the data from the source as scheduled.

Therefore, Databricks with its vast Partner ecosystem allows you to use

the third-party technology to move data from a variety of sources into the

lakehouse.

Chapter 3 Data Ingestion in Lakehouse

54

�Delta Ingestion
The data has now landed in your cloud storage, or the landing zone. Here,

the data could be in any format, such as CSV, JSON, Parquet, etc. The next

step is to move that data into Delta Lake (the bronze layer) to complete

your second-step data ingestion process (Figure 3-6).

Now this might sound simple, but there are a couple of ways where

things could go wrong. For example, you could accidentally miss some files

to process, which leads to missing data or could ingest previous ingested

files, leading to duplicates and reverting or deleting those files would be

even more complicated. Further, if there is a schema change in the source

system, it could lead to failed jobs or even lost or corrupted fields in your

data files.

Figure 3-6.  Delta ingestion via the Auto Loader and COPY INTO

To overcome these challenges, two common methods developed by

Databricks are recommended: the Auto Loader and COPY INTO. Now, let’s

look into both in detail.

Chapter 3 Data Ingestion in Lakehouse

55

�Auto Loader
The Auto Loader provides a highly efficient way to incrementally and

efficiently process large amounts of data as it arrives in cloud storage.

It also guarantees that each data file is processed exactly once. This is

important because processing only new files incrementally solves the

missing or duplicate data problem, which in turn helps save processing

times and lowers cost for data ingestion.

The Auto Loader is designed for structured, semi-structured, and

unstructured data. The Auto Loader can ingest JSON, CSV, XML, Parquet,

Avro, ORC, text, and BINARYFILE file formats into Delta Lake.

Under the hood, the Auto Loader provides a structured streaming

source called cloudFiles. Given an input directory path on the cloud

file storage, the cloudFiles source automatically processes new files as

they arrive, with the option of also processing all existing unprocessed

files in that directory. The Auto Loader can be set up easily using the

following syntax:

Df = Spark.

 readStream.

 format("cloudFiles") \

 .option("cloudFiles.format", "json") \

 .load("<path-to-source-data>") \

 .writeStream \

 .option("maxFilesPerTrigger", "2000") \

 .trigger("availableNow", "True") \

 .option("mergeSchema", "true") \

 .option("cloudFiles.inferColumnTypes", "true") \

 .option("checkpointLocation", "<path-to-checkpoint>") \

 .start("<path_to_target")

Chapter 3 Data Ingestion in Lakehouse

56

Let’s look into the previous code and discuss a few important

parameters. In the first part we are creating a readStream to read in input

JSON files that have landed in the raw folder. In the second part, we do a

writeStream and ingest the data into Delta Lake. The following are some

noteworthy options in the previous syntax:

•	 Checkpoint: In the case of failures, Checkpoint

helps the Auto Loader to resume the processing from

where it left off by using the information stored in the

checkpoint location and continuing to provide exactly-

once guarantees when writing data into Delta Lake. You

don’t need to maintain or manage any state yourself to

achieve fault tolerance or exactly-once semantics.

•	 Trigger.AvailableNow: The Auto Loader can be

scheduled to run in Databricks Jobs as a batch job

by using Trigger.AvailableNow. The AvailableNow

trigger will instruct the Auto Loader to process all

the files that arrived before the query start time. New

files that are uploaded after the stream has started

are ignored until the next trigger. Let’s assume that

the incoming data is spiky and instead of processing

continuously, you want to process the data nightly in

as a batch job. Trigger.AvailableNow allows you to do

that without changing your code/architecture.

•	 mergeSchema: The mergeSchema option tells the

Auto Loader to detect dynamically the evolution of

the schema, for example, new fields added to the

data. This prevents users from tracking and handling

these changes

Chapter 3 Data Ingestion in Lakehouse

57

•	 manually.inferColumnTypes: The schema inference

has always been expensive and slow at scale, especially

with dynamic JSON. The Auto Loader efficiently

samples data to infer the schema and stores it under

cloudFiles.schemaLocation in your bucket.

•	 Rescue_Data: The source system often sends data that

might be malformed and not fit in the table structure.

The Auto Loader automatically adds the _rescued_

data column, which stores the new columns that can

be processed later.

Let’s look under the hood as to how the Auto Loader discovers files.

When you begin to scan hundreds of files and millions of rows, it becomes

an expensive operation leading to ingestion challenges and higher

storage costs.

Scanning folders with many files to detect new data is expensive,

leading to ingestion challenges and higher cloud storage costs. To solve

this issue and support an efficient listing, Databricks Auto Loader offers

two modes: Direct Listing and File Notification (Figure 3-7).

•	 Directory Listing: This is the default mode in which

the Auto Loader identifies new files by periodically

listing the contents of the input directory on the

cloud storage. This mode allows you to quickly start

without any additional permission configurations as

long as you have access to the data on cloud storage.

To ensure eventual completeness of data, the Auto

Loader automatically triggers a full directory listing

after completing a configured number of consecutive

incremental listings. Directory Listing mode is suitable

for small to medium-sized directories or when the

volume of incoming files is moderate.

Chapter 3 Data Ingestion in Lakehouse

58

•	 File Notification: In this mode, the Auto Loader sets

up a managed cloud notification and queue service

that subscribes to file events from the input directory.

This requires additional cloud permissions to set up.

File notification is more performant and scalable for

very large input directories or a high volume of files, say

millions/hr.

Figure 3-7.  Auto Loader modes: direct listing and file notification

To conclude, the Auto Loader is a scalable solution that handles

the incremental ingestion of billions of files and guarantees only once

processing. Further, it comes with features like schema inference and

schema evolution and rescues data that would have been otherwise

ignored or lost. Next, let’s look into the second option, COPY INTO

command.

�COPY INTO
COPY INTO is a SQL command that lets you load data from cloud storage

into a Delta table. It supports many common file formats, including JSON,

CSV, Parquet, Avro, and text files. COPY INTO is idempotent by default, so

files are processed only once. This saves time and cost as your ETL pipeline

processes every file only once instead of a full load each time. Now, the

COPY INTO command is perfect for scheduled or ad-hoc ingestion use

Chapter 3 Data Ingestion in Lakehouse

59

cases in which the data source location has a small number of files, which

we would consider in the thousands of files. It is recommended that for

a larger number of files the Auto Loader is suitable. COPY INTO supports

target schema evolution, merging, mapping, and inference.

Let’s look into a quick example.

COPY INTO requires a table to exist as it ingests the data into a target

Delta table. If the ingestion is for the first time, you create an empty

Delta table.

DROP TABLE IF EXISTS test_table;

CREATE TABLE test_table;

Once the table is created, you can ingest the data from a cloud storage

location to the Delta table.

COPY INTO test_table

FROM 's3://my-bucket/exampleData'

FILEFORMAT = CSV

VALIDATE

FORMAT_OPTIONS ('header' = 'true', 'inferSchema' = 'true',

'mergeSchema' = 'true')

COPY_OPTIONS ('mergeSchema' = 'true')

Let’s look into a few specifics from the previous code.

VALIDATE: The COPY INTO validate mode (runtime 10.3 and above)

lets you preview and validate your source data before you write or ingest

the files. Some of the validations are to see if the schema matches that of

the target table or it needs to change, if all nulls and constraints are met,

and if the data is parseable. The result of validate mode is a sample table

that you can view.

If you find inconsistencies, such as nonmatching column names,

format issues, etc., you can go back and fix them in the code.

Chapter 3 Data Ingestion in Lakehouse

60

Now once you are satisfied with the preview table, you can remove the

VALIDATE keyword and rerun the COPY INTO command.

COPY INTO test_table

FROM 's3://my-bucket/exampleData'

FILEFORMAT = CSV

FORMAT_OPTIONS ('header' = 'true', 'inferSchema' = 'true',

'mergeSchema' = 'true')

COPY_OPTIONS ('mergeSchema' = 'true')

To conclude, the COPY INTO SQL command lets you load data from

a file location into a Delta table. This is a retriable and idempotent

operation; files in the source location that have already been loaded are

skipped.

�Conclusion
In this chapter, we covered how to ingest data in a Databricks lakehouse.

Data ingestion is usually a two-step process for batch data. The first is to

bring the data in any format to the cloud storage. The source system could

be varied from on-prem data warehouses/data lakes to cloud databases.

This is usually termed cloud ingestion and can be done in several ways

such as Databricks native connectors, cloud ingestion tools, or third-

party tools.

Thereafter, the data is then moved into a Delta lake, and the two most

recommended approaches here are the Auto Loader and the COPY INTO

command, both of which incrementally process data but also ensure that

the data files are processed only once, helping data engineers to efficiently

manage data ingestion into Delta Lake.

Chapter 3 Data Ingestion in Lakehouse

61© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_4

CHAPTER 4

Delta Lake - Deep Dive
In this chapter, we will examine a crucial aspect of the lakehouse

paradigm: the storage format for your data. As discussed in Chapter 1,

the ideal storage format for a lakehouse is one that provides similar data

management and performance features of a data warehouse but is an open

format and built on top of cloud data lakes. Delta Lake is a storage protocol

that exactly fits the requirements. Delta Lake is an open, performant

storage format that enables organizations to build data lakehouses,

allowing data warehousing and machine learning directly on the data lake.

We will focus on understanding why we need Delta Lake as the storage

protocol in the lakehouse architecture. Thereafter, we will discuss the

medallion architecture and some key features of Delta Lake, including

merge capabilities, liquid clustering, and optimizations. We will end with

some best practices when working with Delta Lake.

�The Challenges of Other Formats
Before we start looking into Delta Lake, let’s first understand some of the

challenges of data lakes and other storage formats. To be honest, data lakes

and standard storage formats, such as CSV, Parquet, JSON, etc., have been

around for quite some time. However, there have been inherent challenges

in terms of reliability and performance while storing data in these

traditional storage formats. Let’s discuss some of these in a bit of detail.

https://doi.org/10.1007/979-8-8688-0444-1_4#DOI
https://doi.org/10.1007/979-8-8688-0444-1_1

62

First, when you use formats like Parquet and CSV, etc., it is extremely

difficult to roll back the data to its original state if your ETL job fails, leaving

data corrupt. Not only that, it is hard to apply inserts, updates, and deletes

to data stored in traditional storage formats. Next, there is a lack of schema

enforcement, which leads to lower data quality, which was one of the main

reasons for the low adoption of data lakes. Another important reason was

that the performance of data in traditional data lakes was way behind that

of warehouses due to issues such as small file problems (a large number of

very small files slowing the processing) and no ability to cache queries or

input data.

All these issues prevented the large-scale adoption of data lakes with

common file formats, such as CSV, Parquet, etc., from becoming the de

facto storage layer. However, the introduction of Delta Lake was a game-

changer. Let’s look into why.

�What Is Delta Lake?
Delta Lake is an open-source storage layer that sits on top of data lakes and

provides reliability, data governance, and performance. At its core, Delta

Lake, like transactional databases, provides ACID compliance to data lakes

with schema enforcement.

Figure 4-1 shows the core components of a Delta table.

Chapter 4 Delta Lake - Deep Dive

63

Figure 4-1.  Delta Lake components

The components are as follows:

•	 Parquet files: Parquet, which organizes data in a highly

efficient columnar format, has been the de facto format

for storing big data for quite some time. Delta is built

on top of Parquet, as the actual data is stored in Parquet

format, which ensures data compression and encoding

optimizations.

•	 Delta log: The Delta log is the transactional log that

acts a ledger and stores all the edits made to the

Delta table. It acts as the single source of truth for the

Delta table. The Delta Log is found in the _delta_log

subdirectory within the Delta folder, which contains the

Chapter 4 Delta Lake - Deep Dive

64

Parquet data files for the table. The Delta log enables

the most common features such as ACID transactions,

time travel, scalable metadata handling, etc.

•	 Cloud Object Storage Layer: It is important to note

that the data is always in your cloud object storage

layer (S3 for AWS, ADLS for Azure, and GSC for GCP).

This storage layer ensures the durability and scalability

of the data within Delta Lake, enabling users to store

and process extensive datasets without the need to

handle the complexities of managing the underlying

infrastructure.

After looking at what composes the Delta Lake, let’s look into some key

features of Delta Lake.

•	 Schema enforcement: Delta enforces the schema by

default and blocks bad writes to the data. However, it

provides the flexibility to evolve the schema as needed.

•	 ACID transactions: ACID transactions ensure

reliability and consistency, even during failures.

•	 Version control: As discussed earlier, the Delta log acts

as a ledger and tracks all the changes made to tables.

If required, say when your job fails midway, the older

version can be easily restored.

•	 Unified batch and streaming: Delta provides the

unique capability of a unified source and sink for

streaming and batch processing. For example, you can

stream and add batch data to the same Delta table.

Chapter 4 Delta Lake - Deep Dive

65

•	 Time travel: The transaction log gives Delta the ability

to time travel, enabling users to revert or access any

version of the table as they were at a specific point

in time.

•	 Compliance: Delta logs help improve data governance,

security, and regulatory compliance needs.

�Delta Lake: Medallion Architecture
The Medallion architecture, sometimes referred to as the multihop

architecture, is the concept of logically separating the data in a lakehouse

into multiple layers with each layer having specific properties. A standard

medallion architecture consists of three main layers: Bronze, Silver, and

Gold. It is best practice to curate your data by using a layered architecture

approach, as it allows data teams to structure the data according to quality

levels and define roles and responsibilities per layer. See Figure 4-2.

Figure 4-2.  Delta Lake medallion architecture

Chapter 4 Delta Lake - Deep Dive

66

Let’s look into the three layers and see what they mean.

•	 The first layer is the raw layer, often called the Bronze
layer. This layer will preserve the data as close as

possible to the original data. It is always a best practice

to maintain a copy of your source system data for the

following reasons:

•	 The source system copy helps to back out a

production workload in case of any error.

•	 The bronze layer helps to reprocess a data pipeline.

•	 The Bronze layer loads preserve historical data for

analytical processing and enable insights and trend

analysis.

•	 A source system copy helps hydrate a data lake to

enable new use cases and is often required by data

scientists so they have access to nontransformed/

unbiased data.

•	 The second layer is the staging layer, which can be

called the Silver layer. This layer can contain multiple

stages to help troubleshoot and process data in

various forms and different degrees of conformation.

The Silver layer can be used by power users (who are

more familiar with the data) and data scientists, but

with some risk as the data is not conformed and can

provide different results from the one usually open to

all business users. A silver layer load typically consists

of the following:

Chapter 4 Delta Lake - Deep Dive

67

•	 Filtered and augmented data typically formatted

per business requirements.

•	 For data scientists, the data in this layer often is free

from class imbalance problems and enables faster

model development in neural networks and other

approaches.

•	 The third layer is called the refined layer, or the Gold
layer. This layer is open to all business users. It will

contain the confirmed (agreed upon) data and will

be treated as the one true version for the business.

This layer can contain smaller subsets of the data for

a specific purpose (sometimes called data marts). The

Gold layer often does the following:

•	 Answers very specific business questions

•	 Most likely is fully aggregated data

•	 Is the data that is ready for the presentation layer

for BI tools to slice and dice this information (an

OLAP cube)

•	 Summary data and quality checked (dimensions

serve as single source of truth)

Now after understanding the inner workings of Delta and the

medallion architecture, let’s look at some of the key features of Delta Lake.

Chapter 4 Delta Lake - Deep Dive

68

�Delta Lake Key Features
The following sections cover the key features of Delta Lake.

�Update, Delete, and Upserts in Delta Table
Delta supports both Update and Delete commands, both of which are not

supported by traditional Parquet format. Further, it provides the ability to

upsert using the MERGE SQL Command.

Let’s examine how the MERGE SQL operation can be used to upsert data

into a Delta table from a source table, view, or DataFrame.

MERGE INTO target

USING source

ON source.key = target.key

WHEN MATCHED THEN

 UPDATE SET *

WHEN NOT MATCHED THEN

 INSERT *

WHEN NOT MATCHED BY SOURCE THEN

 DELETE

These are important operations and can be easily done in traditional

databases, but now you can also do so within your Delta Lake layer.

�Schema Evolution
It is important to note that Delta enforces the schema by default. This

prevents users from adding data that does not conform to the existing

schema, avoiding unwanted data additions to your table and maintaining

data quality. Any new write to a table is checked for compatibility with the

Chapter 4 Delta Lake - Deep Dive

69

target table’s schema before it is committed. If the data is not compatible,

Delta Lake cancels the transaction altogether (no data is written) and

raises an exception to let the user know about the mismatch.

However, data sources evolve over time due to changing requirements,

which might involve adding or dropping new fields to existing tables. So,

to fulfill this use case, although Delta, by default, enforces schema, it also

supports schema evolution.

Therefore, schema evolution allows users to easily change a table’s

current schema to accommodate changing data such as including one or

more new columns while performing an append or overwrite operation.

Therefore, schema evolution can be used when you intend to change the

schema of your table by either setting the option “mergeSchema” to “true

or setting the property spark.databricks.delta.schema.autoMerge.

enabled to true.

By including the mergeSchema option in your query, any columns

present in the DataFrame but not in the target table are automatically

added to the end of the schema as part of a write transaction. Nested

fields can also be added, and these fields will be added to the end of their

respective struct columns as well.

From Spark 3.0 onward, explicit DDL (using ALTER TABLE) is fully

supported. The following code snippets provide some examples of how

this can be utilized:

•	 Adding new columns (at arbitrary positions)

ALTER TABLE table_name ADD COLUMNS (col_name

data_type [COMMENT col_comment] [FIRST|AFTER

colA_name], ...)

•	 Reordering existing columns

ALTER TABLE table_name ALTER [COLUMN] col_name

(COMMENT col_comment | FIRST | AFTER colA_name)

Chapter 4 Delta Lake - Deep Dive

70

•	 Renaming existing columns

ALTER TABLE table_name RENAME COLUMN old_col_

name TO new_col_name

To conclude, Delta supports both schema enforcement, which

prevents adding data that does not conform to the existing schema, and

schema evolution, which gives users the flexibility to make intended

changes to the table.

�Time Travel
Delta Lake’s time travel feature allows users to access and query historical

versions of data stored in Delta tables. This is important because it

eliminates the need to maintain point-in-time copies of data, which is

cumbersome and costly. Delta Log acts as a transaction log that maintains

a granular view of changes made to data over time.

Some of the most common use cases where you might need to access

previous versions of data are auditing data as it changes over time,

reproducing ML experiments or reports, or rolling back to the earlier

version in case of job failures.

Let’s move and see this in action. As explained earlier, every operation

that executes on Delta table is automatically versioned in the Delta log

(Figure 4-3).

Chapter 4 Delta Lake - Deep Dive

71

Figure 4-3.  Delta Log snapshot

You can query the previous versions of the Delta table by doing the

following:

	 1.	 Using a timestamp

SELECT count(*) FROM my_table VERSION AS OF 5238

	 2.	 Using a version number

SELECT * FROM employee_delta VERSION AS OF 2

A key question is how far back one can go to query previous versions

of the Delta table. By default, you can query historical versions of the table

for 30 days. Now, depending on the use case, one can increase or decrease

the time by using the command delta.logRetentionDuration. This gives

users the flexibility to manage storage costs versus the need to go back and

access historical data.

�Clone Delta Tables
When you clone a table, you are basically creating a replica of a table at

a given point in time. As the name suggests, clones have metadata as

the source table but behave as a separate table with a separate lineage

Chapter 4 Delta Lake - Deep Dive

72

or history. Therefore, any changes made to clones affect only the clone

and not the source. Further, if the source data changes after the clone is

created, those changes are not reflected in the cloned table automatically.

You can create a copy of an existing Delta Lake table on Databricks at

a specific version using the clone command. Also, clones have a separate

independent log history from the source table. Time travel queries on your

source table and clone may not return the same result.

There are two types of clones that can be created: deep clones and

shallow clones. Let’s look into both of these:

Deep clone: A deep clone makes a full copy of the

source table’s metadata and data files. This is similar

to copying a table with a CTAS command (CREATE

TABLE... AS... SELECT...). Since the metadata is

being copied from the source table, you do not need

to re-specify partitioning, constraints, and other

information as you have to do with CTAS.

Deep clones are helpful when creating a completely

independent copy of a Delta table for use cases like

archiving specific tables or do transformations on a

new copy to test some transformations

Deep clones can be quickly created using the

following syntax:

CREATE OR REPLACE TABLE db.target_table CLONE

db.source_table --

Shallow clone: A shallow (also known as Zero-Copy)

clone duplicates only the metadata of the source

table. The data files of the table itself are not copied,

so another physical copy of the data is not created,

Chapter 4 Delta Lake - Deep Dive

73

which helps save storage costs. These clones are

not self-contained and depend on the source from

which they were cloned as the source of data.

Shallow clones are useful when you want to perform

experiments on a new table, such as testing new

code on production data, without affecting the

production tables.

Shallow clone can be created using the

following syntax:

CREATE OR REPLACE TABLE my_test SHALLOW CLONE

my_prod_table;

One point to remember is that shallow clones are not self-contained

tables like deep clones. If the data is deleted from the source table for any

reason, your shallow clone may not be usable.

�Generated Column
Generated columns are a special type of columns whose values are

automatically generated based on user-specified functions over the

columns in the Delta table.

When you write to a table with generated columns and you do not

explicitly provide values for them, Delta Lake automatically computes

the values. If you explicitly provide values for them, the value must satisfy

the constraint (<value> <=> <generation expression>) IS True or write

will fail.

Chapter 4 Delta Lake - Deep Dive

74

�Change Data Feed
One of the important functionalities of working in a medallion architecture

is what we call change data capture. Change data capture basically refers

to the process of capturing only incremental changes to a source table and

merging only those changes with the target table.

Within the medallion architecture, as the data moves from bronze

to silver to gold, you can implement the CDC functionality by using the

change data feed (CDF) in Delta Lake. See Figure 4-4.

Figure 4-4.  CDF

The Delta CDF captures the row-level changes between versions

of a Delta table. When CDF is enabled on a Delta table, the Databricks

runtime records “change events” for all the data written into the table into

a separate folder alongside the Delta log. The captured includes both the

row data and corresponding metadata indicating whether the specified

row was inserted, deleted, or updated.

It is important to note that CDF only provides the CDC capability

within the medallion architecture and not for data ingested from source

systems, e.g., databases to Delta Lake. To take advantage of the CDF

functionality, bring your external data sources to the Bronze layer and

Chapter 4 Delta Lake - Deep Dive

75

then enable CDF from that point forward. This will allow you to use the

Change Data Feed in moving to the Silver or Gold layers or feeding out to

an external platform.

Change Data Feed can be easily enabled on all new tables by

setting the property spark.databricks.delta.properties.defaults.

enableChangeDataFeed = true; either in cluster settings or in the

notebook.

You can set this property on the CREATE TABLE command as well.

CREATE TABLE student (id INT, name STRING, age INT)

TBLPROPERTIES (delta.enableChangeDataFeed = true)

If the table already exists, use ALTER TABLE to set the property.

ALTER TABLE myDeltaTable SET TBLPROPERTIES (delta.

enableChangeDataFeed = true)

Once the CDF feature is enabled on the table, a _change_data folder

gets created under the table directory and records the change data for

UPDATE, DELETE, and MERGE operations (Figure 4-5).

Figure 4-5.  CDF change log

This table can now be used to update only the changes, say, from the

Silver table to the Gold table.

CDF can be useful in a number of use cases. For example, you can

now update only the changes from your Silver table to Gold tables with

substantially less processing cost. Another use case might be when you

Chapter 4 Delta Lake - Deep Dive

76

want to transmit data incrementally from Gold tables to external systems

that can ingest change data output to reduce the processing overhead.

Finally, for audit and compliance purposes, it might be necessary to keep

a record of when, where, and how data has been changed. CDF with its

change log helps to maintain the logs.

�Universal Format
As enterprises move toward building their lakehouse architectures, one of

the decisions they need to make is to choose the data format. Ideally they

want to store data in an open-source format but one that gives then data

warehouse capabilities. There are three open-source formats that meet this

criteria: Delta, Iceberg, and Hudi.

Now if we go one level deeper in these formats, we see that all three

are built on top of Parquet with the difference in the metadata layer. But

these differences make these formats incompatible to be read by the same

reader. The problem is further complicated when different departments

within the organizations try to use these different formats within the

lakehouse architecture. See Figure 4-6.

Figure 4-6.  UniForm decoded

Chapter 4 Delta Lake - Deep Dive

77

To solve this problem, Databricks announced Databricks UniForm

(Universal Format) with the Delta 3.0 release. As discussed earlier, all three

formats are built on top of Parquet. UniForm takes advantage of this fact

and is able to make Delta tables accessible as Iceberg or Hudi tables to

respective readers without any data duplication or additional costs. When

a table is created with UniForm activated, the metadata for the additional

formats (e.g., Iceberg) is automatically instantiated and subsequently

updated in response to any data mutation.

Note that prior to the release of Delta UniForm, the ways to switch

between open table formats were copy- or conversion-based and only

provided a point-in-time view of the data.

Let’s see an example there is a Delta reader and an Iceberg reader that

is trying to read the Delta tables that are written by a Delta writer. Uniform

in this scenario will generate Iceberg metadata asynchronously along with

Delta metadata, thereby allowing both readers to read from the same Delta

table. It is important to note that this is possible only with Unity Catalog

(discussed in the next chapter), which essentially acts as an Iceberg catalog

as well and is compatible with Iceberg APIs. See Figure 4-7.

Chapter 4 Delta Lake - Deep Dive

78

Figure 4-7.  Inner workings of Uniform

You can enable Uniform on a new table by running the following

command. Please note that Uniform is available only for

UC-enabled tables.

CREATE TABLE uniform.test.T(name string , age int) TBLPROPERTIES(

 'delta.enableIcebergCompatV2' = 'true',

 'delta.universalFormat.enabledFormats' = 'iceberg');

Let’s add some data.

INSERT INTO uniform.test.T VALUES ('Mark', 35), ('Tom', 42)

Chapter 4 Delta Lake - Deep Dive

79

If we Iook into the table properties for the data, we can see something

like Figure 4-8.

Figure 4-8.  Properties of Delta table with UniForm enabled

Thus, with open table formats, organizations experience seamless data

management, ensuring data integrity and enabling smooth transactions

across multiple users and processing engines.

In the next part of the chapter, we will discuss some of the most

common performance optimization techniques, such as vacuum,

optimize, partitioning, and z-order. These techniques are not only

optimization tools but also help slash storage costs, enhance parallelism,

and reduce operating load on the infrastructure.

Chapter 4 Delta Lake - Deep Dive

80

�Delta Optimization
It is important to have clean and optimized Delta tables to enhance query

performance and build efficient pipelines. As discussed earlier, tables can

grow very large over time and then run into issues like small file problems

or file layouts that do not support the query patterns. These techniques

aim to alleviate some of the issues discussed.

•	 Partitioning: As the name suggests, partitioning refers

to grouping of data files under the same column based

on the partition key. Partitioning data can significantly

enhance query performance as it will help Spark to

skip a lot of unnecessary data partition (i.e., subfolders)

during scan time. Partitioning works best with low-

cardinality columns, and one can choose columns that

are commonly used in queries for partitioning.

CREATE TABLE table_name

USING delta

PARTITIONED BY (column_name)

-- OR --

ALTER TABLE table_name ADD PARTITION

(column_name = 'value')

	 As a best practice, do not partition tables under 1TB in

size and partition data by a column if you expect each

partition to be at least 1GB. Further, always choose a

low-cardinality column—for example, year or date—as

a partition key.

•	 Optimize: As discussed earlier, Delta folders might

accumulate a very large number of small files (small file

problem), which has an impact on query performance.

Optimize compacts and pack these small files to a

Chapter 4 Delta Lake - Deep Dive

81

configurable size, which is optimum to maximize

the performance of big data processing engines.

Optimize keeps all the data as is, but table statistics are

recalculated, and metadata is cleaned up by removing

unnecessary entries. The target file (1GB default) size

of the new command can be changed by tweaking the

following:

spark.databricks.delta.optimize.maxFileSize

You can run Optimize on a Delta table by simply

running this command:

OPTIMIZE table_name

As a practice, OPTIMIZE (with or without ZORDER)

should be done on a regular basis, say once a day

or weekly, to maintain a good file layout for better

downstream query performance. Also, run Optimize

on a separate job cluster because with compute-

intensive VMs, it is a compute-intensive operation.

•	 Z-order: Z-ordering reorganizes data within Delta

tables to improve query performance. It rearranges the

data based on specified columns, allowing Delta Lake

to skip irrelevant data during query execution. In short,

the entire table is rewritten according to the columns

mentioned in the z-order command.

	 As a best practice, always choose high-cardinality

columns (for example, customer_id in an orders table)

for z-ordering. This is the opposite of partitioning,

where low-cardinality columns are chosen. Further,

choose the columns that are most frequently used in

Chapter 4 Delta Lake - Deep Dive

82

filter clauses or as join keys in the downstream queries.

Finally, it is best to limit the columns to four or fewer

because more than that and the effectiveness of z-order

degrades.

•	 Vacuum: Vacuum deletes files that are redundant in

in the Delta folders. By default Delta retains older files

up to 7 days and can be configured using the property

delta.deletedFileRetentionDuration.

Vacuum is not reversible, so it should be used with caution. Further,

once it is done on the table, your ability to use time travel is limited, but

the vacuum saves on storage costs as unnecessary files are deleted. So,

depending on the use case, you can consider whether you want to vacuum

a particular table.

After learning the fundamental optimization techniques, let’s move on

to two of the newer optimizations: liquid clustering and predictive I/O.

�Liquid Clustering
Liquid clustering is a new feature introduced for the Delta table in Runtime

13.1 and above. Let’s examine how you can utilize this feature to enhance

the performance of your Delta tables without much manual intervention.

As discussed, two of the most common techniques used to optimize

your Delta tables for efficient storage and data retrieval are table

partitioning and z-order.

When done right, these techniques help users increase the

performance of their queries. But both require careful consideration.

For example, you need to use the right column to partition your data,

and z-order needs to be done each time new data is added to your table.

Therefore, data engineers need to constantly work to keep the tables

optimized.

Chapter 4 Delta Lake - Deep Dive

83

Liquid clustering aims to replace both these features with much

less manual intervention, thus reducing data management and tuning

overhead. It’s flexible and adaptive to data pattern changes, scaling, and

data skew.

With liquid clustering, keys (columns) can be chosen purely based

on the query access pattern. You do not need to consider things like

cardinality, key order, file size, potential data skew, and future access

pattern change. Further, the keys can be changed without rewriting the

files in the table; thus, over time, as the query pattern changes, the data

layout adapts accordingly.

As a best practice, you should enable liquid clustering for all your

new Delta tables. Some of the scenarios where liquid clustering are highly

useful is when tables have significant data skew, when they are growing

rapidly in size with new data, and when queries involve frequent filtering

by high cardinality columns.

Let’s see how liquid clustering works internally.

�Working with Liquid Clustering
Liquid clustering is enabled during the creation of a Delta table by using

the command CREATE BY and defining the clustering keys. Once enabled,

run OPTIMIZE jobs to cluster data incrementally.

-- Create an empty table

CREATE TABLE table1(col0 int, col1 string) USING DELTA CLUSTER

BY (col0);

-- Using a CTAS statement

CREATE EXTERNAL TABLE table2 CLUSTER BY (col0) -- specify

clustering after table name, not in subquery

LOCATION 'table_location'

AS SELECT * FROM table1;

Chapter 4 Delta Lake - Deep Dive

84

--Trigger the Liquid clustering job

OPTIMIZE table2;

Some of the other useful use cases and commands are as follows:

-- Using a LIKE statement to copy configurations

CREATE TABLE table3 LIKE table1;

--Change the Cluster Key

ALTER TABLE table_name CLUSTER BY (new_column1, new_column2);

--disable the cluster Key

ALTER TABLE table_name CLUSTER BY NONE;

Another important aspect of liquid clustering is determining how

to choose the right clustering keys. To start, choose columns that are

frequently used in queries regardless of their cardinality. You can begin

with one column and add up to four columns when needed. Finally, as the

queries and workload evolve, use ALTER TABLE tbl CLUSTER BY to change

the clustering keys as often as you want. The best part is that there is no

need to rebuild the table.

�Current Limitations
According to the Databricks documentation, the following

limitations exist:

•	 You can only specify columns with statistics collected

for clustering keys. By default, the first 32 columns in a

Delta table have statistics collected.

•	 You can specify up to four columns as clustering keys.

•	 Structured streaming workloads do not support

clustering-on-write.

Chapter 4 Delta Lake - Deep Dive

85

�Predictive I/O
Predictive I/O is a collection of Databricks ML-powered optimizations that

improve the performance for your data interactions. Its accelerated reads

reduce the time to scan and read data, while accelerated updates reduce

the amount of data that needs to be rewritten. Predictive I/O is enabled

by default on serverless SQL and Pro SQL warehouses and clusters with

runtime 14.0 and above.

Let’s move into and see how predictive I/O works with a simple

analogy. Imagine all the data transactions are no more than read and write.

Think of the Windows defragmentation function, which has existed all the

way back to our Windows 95. File systems are often represented by data

blocks, just like containers or buckets, but over time, there will be some

room left in each block, regardless of the size of the block. Everyone who

has done some packing for a trip would understand this concept. How

many bags do we bring? Below is an illustration of a simple file system.

Figure 4-9.  A Simple File System

Source: https://www3.nd.edu/~pbui/teaching/cse.30341.fa18/

project06.html

In terms of file systems, there is a concept of defragmentation, which is

simply reorganizing all the files into proper blocks to optimize storage and

read and write efficiency. You would agree that anything organized would

be more efficient to retrieve. The idea is simple.

Chapter 4 Delta Lake - Deep Dive

https://www3.nd.edu/~pbui/teaching/cse.30341.fa18/project06.html
https://www3.nd.edu/~pbui/teaching/cse.30341.fa18/project06.html

86

In terms of the Delta format, there are three concepts that we need to

consider.

•	 File size: The Delta format is organized by Parquet files,

which is similar to the block size discussed in a file system.

•	 Copy on write: The Delta format supports ACID

transactions. To perform updates or deletes, the

analogy is similar to taking out something (delete)

and placing it back into the file system. In the form of

Parquet files, it must be written back onto the disk to

be able to read again. So anything that’s changed will

need to be rewritten. Even the slightest change would

affect the whole file, making the write operation very

expensive if frequent updates are required.

Figure 4-10.  Copy-on-write operation

•	 Merge on read. To avoid expensive writes, the Delta

format created a _delta_log folder, which keeps track

of transactions, like update, delete, and insert. Similar

to files in a file system, these log files can be either large

or small and will become fragmented over time. While

the write-to-the-log file is a cheap operation, the read

will become expensive because it requires handling a

large amount of operations in real time during reads.

Chapter 4 Delta Lake - Deep Dive

87

Figure 4-11.  Merge-on-read operation

�ML/AI to the Rescue
By now, you may wonder: how do we tune these settings? What is an optimal

file size? Do we need to choose between copy on write or merge on read?

Figure 4-12.  Predictive I/O for Updates makes MERGE up to 10x
faster than Low-Shuffle Merge (LSM)

Source: https://www.databricks.com/blog/announcing-public-

preview-predictive-io-updates

Chapter 4 Delta Lake - Deep Dive

https://www.databricks.com/blog/announcing-public-preview-predictive-io-updates
https://www.databricks.com/blog/announcing-public-preview-predictive-io-updates

88

Databricks, with its vast experience, has developed machine learning

models to optimize these settings. Developers no longer need to worry

about the what, when, and how. The result is a 10x gain in update, merge,

and delete.

�Conclusion
In this chapter, we looked into one of the building blocks of the Databricks

lakehouse architecture: Delta Lake. This format provides both reliability

and performance to your data. Delta Lake is the most critical part of your

lakehouse as it gives all the warehouse-type capabilities to your data, like

ACID transactions, updates/deletes and merge functionality, schema

enforcement and evolution, time travel, etc. We also looked into some

advanced features like change data feed within the medallion architecture,

and UniForm, which allows both multiformat readers (e.g., Iceberg reader)

to read from the same Delta table.

Finally, we looked into optimization techniques like optimize, z-order,

and vacuum to increase the performance of your Delta tables. We also

reviewed some of the new hands-off techniques, such as liquid clusters

and predictive I/O.

Chapter 4 Delta Lake - Deep Dive

89© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_5

CHAPTER 5

Data Governance
with Unity Catalog
Data is one of an organization’s most significant assets. An important

determinant of a company’s performance and growth is how well its data

is handled regarding quality, management, and ownership. Organizations

today, especially with ever-expanding use cases for GenAI, face expanding

data privacy regulations. Nonetheless, the reliance on data is increasing

as organizations look to help optimize operations and drive business

decision-making. Therefore, they are looking for data governance on

their data platforms to ensure that not only their data assets but, more

importantly, their AI products are consistently developed and maintained

and their precise guidelines and standards are adhered to.

In this chapter, we will look at Unity Catalog—Databricks’ data

governance solution. We will introduce the concept of Unity Catalog and

how it differs from traditional Databricks’ hive metastore. Further, we will

look at how you can enable Unity Catalog in your workspace and architect

your data estate. Finally, we will deep dive into some of the key features

of Unity Catalog, like centralized management, data lineage, and Delta

Sharing.

https://doi.org/10.1007/979-8-8688-0444-1_5#DOI

90

�What Is Databricks Unity Catalog?
Unity Catalog is Databricks’ governance solution and is a unified system

for managing its data assets (see Figure 5-1). It is a central storage

repository for all metadata assets, accompanied by tools for governing

data, access control, auditing, and lineage.

Figure 5-1.  Databricks Unity Catalog

It maintains an extensive audit log of actions performed on data across

all Databricks workspaces in your account. It provides capabilities such as

effective data discovery, centralized metadata and user management, data

lineage, and much more. It offers views and controls across all structured,

semi-structured, and unstructured streaming data, AI models, notebooks,

workplaces, files, tables, and dashboards.

In short, it brings all your Databricks workspaces together, offering

fine-grained management of data assets and access. This streamlines

operations by reducing maintenance overheads, accelerates processes,

and increases efficiency and productivity.

Unity Catalog is the foundation of the Databricks Data Intelligence

Platform, which understands the uniqueness of your data. If you are

looking to build your next GenAI application, it is essential to enable Unity

Catalog in your Databricks environment.

Chapter 5 Data Governance with Unity Catalog

https://www.databricks.com/product/data-intelligence-platform
https://www.databricks.com/product/data-intelligence-platform

91

�Unity Catalog: Before and After
Before Unity Catalog, Databricks workspaces were separate and

independent units (see Figure 5-2). Each workspace had its own metastore,

user management (adding/removing users), and Table ACL store. A simple

example is that if a user created a table in one Databricks workspace, it

would not automatically be available in another workspace. This led to

data and governance isolation boundaries between workspaces, and if

you wanted to bring consistency between your workspaces, it would mean

duplication of effort. Some users handled this by developing pipelines or

code to synchronize their metastores and ACLs, while others set up their

self-managed external metastores to use across workspaces. However,

these solutions added more complexity and maintenance.

Figure 5-2.  Before and after Unity Catalog

With Unity Catalog, Databricks has moved all three (User

Management, Metastore, and Access Controls) out of workspaces to

an account that works across all workspaces. The account, including

the Account Console, which is a user interface to control the account,

lives purely in the control plane. As a best practice, there should be one

account per organization (i.e., your entire company) per cloud provider. A

Databricks account lets you set up data, controls, and user management in

one place and use them across multiple Databricks workspaces.

Chapter 5 Data Governance with Unity Catalog

92

�Unity Catalog Hierarchy
Now let’s move on and understand some key concepts with Unity Catalog

(UC) such as the metastore, catalog, etc. See Figure 5-3.

Figure 5-3.  Unity Catalog hierarchy

•	 Metastore: A metastore stores metadata about data

and AI assets and the permissions that govern access to

those assets. UC metastore is a container in your cloud

storage managed by Databricks. You can enable UC for

a workspace by attaching it to a UC metastore. There

should be one metastore per region, and all workspaces

should be assigned to that metastore in that region. The

metastore has a three-level hierarchy: catalog, schema,

and tables.

•	 Catalog: A catalog serves as the top-level container in

the three-level namespace hierarchy. It organizes the

data assets and contains schemas (databases), tables,

views, volumes, models, and functions.

Chapter 5 Data Governance with Unity Catalog

93

•	 Schema (database): This is the second level in the

three-level namespace and contains tables and views.

•	 Tables: Tables are defined within a schema and provide

governance for tabular data. There are two types of

tables: External and Managed.

•	 External tables: In external tables, data is stored

outside the managed storage location(s) for the

associated schema/catalog/metastore. It is used

when direct access to the data outside Databricks is

required. Unity Catalog governs access to “external”

tables but does not manage the underlying data.

This means when you drop a table it deletes only

the metadata and not the underlying data. You can

use Delta and other file formats (CSV, JSON, etc.)

while creating an external table.

•	 Managed tables: These are the default way to

create tables in UC. They are stored in a managed

storage location (at the schema, catalog, or

metastore-level storage location). Unity manages

the data life cycle and file and folder layouts for

these tables. The underlying data format is Delta.

When a table is dropped, the underlying data is

deleted from cloud storage within 30 days.

•	 Volumes: Volumes are defined within a schema and

provide governance for nontabular data (e.g., image

files, etc.). They can store and access files in any format

(unstructured, semi-structured, structured) but cannot

store tables. Volumes can be “managed” by defaulting

to the schema’s managed storage location or “external”

by specifying an external storage location.

Chapter 5 Data Governance with Unity Catalog

94

�Unity Catalog Admin Roles
It is important to understand various admin roles associated with Unity

Catalog.

•	 Account admin: Account admins administer and

control anything at the account level, including SCIM,

SSO, Metastore creation/deletion, and assignment of

metastores to workspaces and create credentials for

external location access. Account admins can query all

data or perform grants on all data objects.

•	 Metastore admin: Metastore admins can create catalogs

and assign their ownership (via grants) to groups or

individuals. They can also create external locations.

Metastore admins have visibility to all securable objects

within the metastore they are admin of.

•	 Data owners: Data owners can perform grants on data

objects they own and create new nested objects. For

example, a catalog owner can create a schema and then

a table within that schema.

•	 Workspace admin: Workspace admins are similar

to cloud administrators and, as the name suggests,

manage the workspaces. They can define cluster

policies on workspaces, add/remove user assignments,

elevate user permissions within a workspace of various

objects like notebooks, etc., and change job ownership.

�Getting Started with Unity Catalog
In this section, we will quickly review how to get started with Unity Catalog

by creating a metastore and assigning users and groups to workspaces via

the account console.

Chapter 5 Data Governance with Unity Catalog

95

�Create a Metastore
The steps to create a metastore are detailed in Databricks documentation

(https://docs.databricks.com/en/data-governance/unity-catalog/

create-metastore.html). As a quick overview, account admins can log

into Databricks Account Console and create a metastore. See Figure 5-4.

Figure 5-4.  Unity Catalog metastore setup interface

Chapter 5 Data Governance with Unity Catalog

https://docs.databricks.com/en/data-governance/unity-catalog/create-metastore.html
https://docs.databricks.com/en/data-governance/unity-catalog/create-metastore.html

96

The key inputs required are as follows:

	 1.	 Name of the metastore.

	 2.	 The region in which the metastore is created. One

needs to remember that we can have one metastore

per region.

	 3.	 ADLS Gen 2 Path or the S3 bucket, which will be the

root bucket for the metastore.

	 4.	 Access Connector ID (Azure): An Access connector

in Azure allows you to use Managed Identity

to access storage containers on behalf of Unity

Catalog users.

IAM role ARN (AWS): Amazon Resource Name for

the bucket that was setup in #2 (https://docs.aws.

amazon.com/IAM/latest/UserGuide/reference_

identifiers.html#identifiers-arns).

Once the metastore is created, you can assign the metastore to a

workspace and thereby enable Unity Catalog (Figure 5-5) for the particular

workspace.

Chapter 5 Data Governance with Unity Catalog

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns

97

Figure 5-5.  Final screen before enabling Unity Catalog

�Organizing Data in Unity Catalog
As discussed earlier, the catalog is the top-level container in the three-

level namespace. As a best practice, you should use catalogs to segregate

your organization’s information architecture. This simply means catalogs

can correspond to a department, team, business unit, or development

environment scope (Dev, UAT, Prod), as shown in Figure 5-6.

Chapter 5 Data Governance with Unity Catalog

98

Figure 5-6.  Sample Unity Catalog structure

Another typical pattern is that developers use workspaces as a data

isolation tool—for example, using different workspaces for prod and dev

environments or a specific workspace for processing sensitive data.

Therefore, while working in that specific workspace, they want

to see only that specific catalog. For example, while working in a dev

environment, you want only the dev catalog visible, not prod. Unity

Catalog has a feature that allows you to bind a catalog to specific
workspaces. This ensures that all specified data processing is handled in

the appropriate workspace. These environment-aware ACLs allow you

to ensure that only specific catalogs are available within a workspace,

regardless of a user’s individual ACLs. This means the metastore admin

or the catalog owner can define the workspaces that a data catalog can be

accessed from.

To learn more, please go to the following website:

https://docs.databricks.com/en/data-governance/unity-catalog/

create-catalogs.html#optional-assign-a-catalog-to-

specific-workspaces

Chapter 5 Data Governance with Unity Catalog

https://docs.databricks.com/en/data-governance/unity-catalog/create-catalogs.html#optional-assign-a-catalog-to-specific-workspaces
https://docs.databricks.com/en/data-governance/unity-catalog/create-catalogs.html#optional-assign-a-catalog-to-specific-workspaces
https://docs.databricks.com/en/data-governance/unity-catalog/create-catalogs.html#optional-assign-a-catalog-to-specific-workspaces

99

Figure 5-7 illustrates the workspace setup architecture.

Figure 5-7.  With Unity Catalog, we can attach a catalog to SDLC
workspaces

�Key Features of Unity Catalog
Let’s talk about the key features in more detail.

�Centralized Metadata and User Management
As explained earlier, Unity Catalog provides a single metastore across all

workspaces in an account. This enables users to create and access tables,

views, etc., across workspaces. Now, you can create multiple catalogs;

set up schemas, tables, and views in one place; and access them across

workspaces.

It is important to note that when multiple metastores are set up in an

organization, the catalogs cannot be attached to the workspaces in other

metastores. The solution is to use Delta Sharing, which will be discussed

later in this chapter. See Figure 5-8.

Chapter 5 Data Governance with Unity Catalog

100

Figure 5-8.  Delta Sharing strategy with multiple metastores

Another important feature of Unity Catalog is centralized user

management. Before, UC admins had to add users to each new workspace

either manually or through some SCIM synchronization and maintain

those workspaces by workspace. With Unity Catalog, once you have synced

your identity provider, say Azure AAD, via SCIM to Databricks Account

Console, you can assign users/groups to all different workspaces via the

account console, hence centrally managing users across workspaces. As a

best practice, you should enable SCIM integration at the account level and

sync users to workspaces with Identity Federation. Do not use SCIM at the

workspace level at all.

Chapter 5 Data Governance with Unity Catalog

101

�Centralized Access Controls
One of the main requirements in any data platform is strict control over

access to data to safeguard it and adhere to various data protection

policies within your organization. Unity Catalog provides a centralized

management method as data access policies are applied across all relevant

workspaces and data assets.

The access control mechanisms use identity federation, allowing

Databricks users to be service principals, individual users, or groups. In

addition, SQL-based syntax, the Databricks UI, or even Terraform and APIs

can be used to provide and control fine-grained access across a wide range

of resources, including schemas, tables, views, clusters, notebooks, and

dashboards.

Let’s look into how you can use ANSI SQL to grant permission scopes

on securable objects like tables or locations to principals like groups, users,

or service principals. As a best practice, use groups for securing access to

tables and owning securable objects. If a group owns an object, then any

users in that group are owners.

GRANT <privilege> ON <securable_type> <securable_name> TO

'<principal>'

GRANT SELECT ON iot.events TO engineers

The same functionality is also available via Databricks UI in an easy-to-

use point-and-click manner, which helps for easy access and auditing on

the spot, as shown in Figure 5-9.

Chapter 5 Data Governance with Unity Catalog

102

Figure 5-9.  Granting permissions on a UC table

In addition, Databricks offers the ability to set these ACLs on objects

via REST API or CLI, which means that Unity Catalog can support and

power anything, from legacy entitlement request processes to modern

dev/sec/ops initiatives.

�Data Lineage
Data lineage is the process of tracking data flows from their source to their

destination. It has gained significance due to the large volume of data

processed through complex transformations and serves various purposes,

including auditing and debugging. Thus, data lineage has become vital

in understanding data movement, tracking, monitoring jobs, debugging

failures, and tracing transformation rules.

Chapter 5 Data Governance with Unity Catalog

103

Unity Catalog has end-to-end data lineages for all workloads, giving

visibility into how data flows are consumed. Data lineage is automatically

aggregated across all workspaces connected to a Unity Catalog metastore,

which means that the lineage captured in one workspace can be seen in

any other workspace that shares the same metastore.

Unity Catalog provides users with both table- and column-level lineage

in a single lineage graph, giving users a better understanding of what a

particular table or column is made up of and where the data is coming

from. Users can easily follow the data flow through different stages, gaining

insight into the tables and fields’ relationships.

Further, the Unity Catalog tracks lineage for notebooks, workflows,

ML models, and dashboards. This improves end-to-end visibility into how

data is used in your organization and allows you to understand the impact

of any data changes on downstream consumers. See Figure 5-10.

Figure 5-10.  Unity Catalog lineage

Data lineage holds critical information about the data flow and uses

Unity Catalog’s common permission model. This means that users with

appropriate permissions can view the lineage data flow diagram, thus

adding an extra layer of security.

Finally, Unity Catalog also offers rich integration with various data

governance partners, such as Collibra and Purview, via Unity Catalog REST

APIs, enabling easy export of lineage information to these partner catalogs.

Chapter 5 Data Governance with Unity Catalog

104

�Data Access Auditing
Unity Catalog automatically captures user-level audit logs and records

the data access activities. These logs encompass various events

associated with the catalog, such as creating, deleting, and altering

multiple components within the metastore, including the metastore

itself. Additionally, they cover actions related to storing and retrieving

credentials, managing access control lists, handling data-sharing requests,

and more.

The built-in system tables let you easily access and query the account’s

operational data, including audit logs, billable usage details, and lineage

information.

We will do a deep dive into system tables later in the book when

discussing observability in Chapter 9.

�Data Search and Discovery
Unity Catalog offers a unified UI across the platform with enhanced

search capabilities. Further, it leverages a common permissioning model

to ensure security, enabling users to access assets they have access to.

It allows tagging and documenting data assets, offers a comprehensive

search interface, and utilizes lineage metadata to represent relationships

within the data.

As we will discuss in Chapter 14, Databricks has greatly enhanced the

platform’s search and discovery capabilities by using LLMs and GenAI

capabilities.

Chapter 5 Data Governance with Unity Catalog

https://doi.org/10.1007/979-8-8688-0444-1_9
https://doi.org/10.1007/979-8-8688-0444-1_14

105

�Row-Level Security and
Column-Level Masking
Organizations are continuously striving to protect and secure their data,

and one important way they are looking to do so is through row and

column-level security. This feature is now available in the Unit Catalog–

enabled Databricks workspaces.

�Row Filters
Row filters allow you to apply a filter to a table so that subsequent queries

only return rows for which the filter predicate evaluates to true. A row filter

is implemented as a SQL user-defined function (UDF). A row filter accepts

zero or more input parameters where each input parameter binds to one

column of the corresponding table.

�Create a Row Filter
CREATE FUNCTION <function_name> (<parameter_name>

<parameter_type>, ...)

RETURN {filter clause whose output must be a boolean};

�Apply the Row Filter to a Table
ALTER TABLE <table_name>

SET ROW FILTER <function_name> ON (<column_name>, ...);

Let’s look at an example. We want to create a function to filter data for

the U.S. region. If the function is called by a user in the admin group, the

RETURN_IF condition will be passed and all the data; otherwise, RETURN_IF

will return the rows with region='US'.

Chapter 5 Data Governance with Unity Catalog

106

CREATE FUNCTION us_filter(region STRING)

RETURN IF(IS_MEMBER('admin'), true, region="US");

ALTER TABLE sales SET ROW FILTER us_filter ON region;

�Column Masks
Column masks let you apply a masking function to a table column. The

masking function gets evaluated at query runtime, substituting each

reference of the target column with the results of the masking function. For

most use cases, column masks determine whether to return the original

column value or redact it based on the identity of the invoking user.

Column masks like row filters are expressions written as SQL UDFs.

CREATE FUNCTION <function_name> (<parameter_name>

<parameter_type>, ...)

RETURN {expression with the same type as the first parameter};

ALTER TABLE <table_name> ALTER COLUMN <col_name> SET MASK

<mask_func_name> [USING COLUMNS <additional_columns>];

In this example, if the user, the query results will mask the SSN

numbers for nonadmin users.

CREATE FUNCTION ssn_mask(ssn STRING)

RETURN IF(IS_MEMBER('admin'), ssn, "****");

ALTER TABLE users ALTER COLUMN table_ssn SET MASK ssn_mask;

�Dynamic Views vs. Row Filters
and Column Masks
Now, an important question is why row-level filters are needed when

Databricks already has dynamic views, which help users create abstracted,

Chapter 5 Data Governance with Unity Catalog

107

read-only views of one or more source tables. Further, dynamic views, row

filters, and column masks let you apply complex logic to tables and process

their filtering decisions at query runtime.

Let’s discuss an important distinction between the two. Creating a

dynamic view defines a new table name that must not match the name

of any source tables. This abstraction layer ensures data integrity and

prevents unintentional alterations to the core data. As a best practice, use

dynamic views if you need to apply transformation logic such as filters and

masks to read-only tables and if it is acceptable for users to refer to the

dynamic views using different names than the source tables.

On the other hand, row-level filters and column masks apply logic

directly to the table itself, and users don’t have to deal with new or

different table names or aliases. Again, use row filters and column masks

if you want to filter or compute expressions over specific data but still

provide users access to the tables using their original names.

�Delta Sharing
Organizations seek to securely exchange data with their customers,

suppliers, or partners to unlock further business value. However, a key

requirement is that data sharing should happen securely to establish

trust in data quality, security, and privacy. Some of the most common use

cases for data sharing are data monetization with customers, B2B sharing

with partners, suppliers, or intra-company data sharing among various

departments.

Data sharing is not a new concept, and traditionally, organizations

have deployed two main methods to do so. The first is via self-built

solutions or tools via APIs, JDBC/ODBC, or file transfers via SFTP. The

second is via commercial software vendors. The problem with the first is

around scalability and infrastructure maintenance, while the problem with

the second is costs and a lack of flexibility in terms of data access.

Chapter 5 Data Governance with Unity Catalog

108

�An Open Standard for Data Sharing
Databricks Unity Catalog comes with Delta Sharing, an open protocol

for securely sharing data internally and across organizations in real time.

Delta Sharing is fully integrated with Unity Catalog and allows you to

centrally manage and audit the shared data across organizations.

Some of the differentiators or benefits of delta sharing include

accessing data where it resides without creating any copies or moving

to other platforms. Further, you can integrate Delta Sharing with either

open-source clients (e.g., Pandas, Spark) or commercial clients (Power BI,

Databricks and others) that support the protocol.

Delta Sharing is a transformative solution to access and share data.

Let’s see how Delta Sharing works.

�How Delta Sharing Works
There are three main ways to share data with Delta Sharing:

•	 The Databricks-to-Databricks sharing in which both

the provider and the recipient are on Unity Catalog–

enabled workspaces. It has some advanced features like

notebook sharing, AI Model Sharing, data governance,

auditing, and usage tracking for both providers and

recipients.

•	 The Databricks open sharing protocol allows a

provider with a Unity Catalog–enabled workspace to

share data with a recipient on any computing platform.

•	 A user-managed implementation of the open-source
Delta Sharing server, which lets you share from any

platform to any platform, whether Databricks or not.

This is open sourced with instructions at https://

github.com/delta-io/delta. See Figure 5-11.	

Chapter 5 Data Governance with Unity Catalog

https://github.com/delta-io/delta
https://github.com/delta-io/delta

109

Figure 5-11.  Delta Sharing in action

Let’s examine how to set up Delta Sharing. The first step is for the data

provider to register a Delta Lake table with the Delta Sharing server. This is

done by creating a share (a read-only collection of data objects like tables,

views, etc.) in a UC-enabled workspace.

CREATE SHARE IF NOT EXISTS test_share

ALTER SHARE test_share

 ADD TABLE test_table

The next step is to create a recipient, basically an individual or

organization gaining access to a share.

CREATE RECIPIENT IF NOT EXISTS, recipient;

Once the recipient is created, each recipient gets an activation link

that the recipients can use to download their credential. The Delta

server identifies and authorizes the recipient/consumer based on these

credentials. See Figure 5-12.

Chapter 5 Data Governance with Unity Catalog

110

Figure 5-12.  Confirmation of Delta Sharing

The recipient can download the credential file and then use it to access

data. One key point to note is that the credential file is a single download

only. The recipient can now use the file to authenticate and access data

using various methods, such as Pandas, Java, or even Power BI.

Many open-source and commercial partners trust Delta Sharing,

and Databricks also works with data providers to share data across the

ecosystem. See Figure 5-13.

Figure 5-13.  Customers who use Delta Sharing

To summarize, Unity Catalog unlocks Delta Sharing, which allows you

to do secure in-place data sharing for data in Delta Lake to any tool that

supports Delta Lake.

Chapter 5 Data Governance with Unity Catalog

111

�Conclusion
Databricks recognized two critical areas that needed attention: discovery

and governance. Before Unity Catalog, data cataloging and governance

were disjointed and cumbersome. With Unity Catalog, Databricks created

an in-house solution that would seamlessly integrate with its ecosystem.

Unity Catalog is the foundation for the Data Intelligence Platform and all

the GenAI use cases that organizations are looking to deploy.

Unity Catalog serves as a central repository for all data assets,

including files, tables, views, dashboards, and more. It provides a robust

data governance framework, ensuring proper control and oversight.

An extensive audit log records all actions performed on data stored in a

Databricks account. Finally, Unity Catalog seamlessly ties in with other

components of the Databricks ecosystem.

Chapter 5 Data Governance with Unity Catalog

113© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_6

CHAPTER 6

Data Engineering
Part 1: Orchestrating
Data Pipelines Using
Databricks Workflows
The goal of orchestration is to configure multiple tasks into one complete

end-to-end process or job. The orchestration service also needs to react

to events or activities throughout the process and make decisions based

on outputs from one automated task to determine and coordinate the

next tasks. Finally, orchestration tools must provide full monitoring and

observability capabilities to enable data engineers to have full visibility of

their pipelines. See Figure 6-1.

https://doi.org/10.1007/979-8-8688-0444-1_6#DOI

114

Figure 6-1.  End-to-end architecture of Databricks workflows

Databricks workflows provide simple, reliable, and easy-to-use

functionality that enables organizations to tackle the challenges of data

orchestration efficiently. Data teams can easily create and manage

multistep pipelines that transform and refine data and train machine

learning algorithms within Databricks workspaces, thus saving time and

effort of managing a separate tool. In this chapter, we will explore some key

concepts of Databricks workflow jobs and examine the features that make

it the orchestration platform of choice for Databricks lakehouses.

�Databricks Workflow Jobs
Databricks workflows offer a unified and streamlined approach to

orchestrating your data, BI, and AI workloads. You can define data

workflows through the workflow user interface or programmatically using

APIs, making them accessible to both technical and nontechnical teams.

Databricks workflows are similar to Azure Data Factory or Airflow,

some popular orchestration services. Although these tools provide features

for complete orchestration services, they do have a learning curve. They

are an additional tool in your data stack, adding more maintenance and

cost of ownership to your data platform.

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

115

Databricks workflows have evolved significantly over the last few

years, not only with basic functionality such as scheduling, managing

dependencies, Git integration but also by adding advanced-level features

like retires, duration threshold, and repair and conditional tasks. These

features give data engineers the capabilities to orchestrate their entire

workload on the Databricks platform. Further, it is essential to note that

there are no extra costs using workflows. The cost is for the underlying

clusters/compute that the jobs use while executing.

In the next section, we will look at some of the building blocks and

features of Databricks workflows.

�Databricks Jobs and Tasks
Let’s first understand the concept of a Databricks job. A Databricks job is a

unit of orchestration within Databricks workflows. Basically, it is a method

for running data processing and analysis applications in the Databricks

workspace.

A job can consist of one or many tasks, each representing a specific

unit of work such as an individual step or action. A job can consist of a

single task or a large workflow with multiple tasks chained together by

complex dependencies. For example, a data project might consist of

ingesting data from various sources, transforming that data through the

medallion architecture, and serving it via both as a SQL dashboard and an

ML model. The entire flow can be a single job, and each activity is a task

joined via dependencies.

Next, we will look into how you can create your first job.

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

116

�Configure Databricks Job Tasks:
Task-Level Parameters
As discussed, a task is the building block of a Databricks job. Figure 6-2

provides a snapshot of how to create a task. Let’s examine some of the

required parameters that you need to provide to do so:

•	 Type: Different “types” of tasks can be executed within

a job. You can execute Databricks notebooks, JARs,

Python Scripts and Wheels, SQL Queries, Delta Live

Tables (DLT) Pipelines, or even DBT jobs. You can

select the Type parameter depending on where your

code resides.

Figure 6-2.  Creating a task

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

117

•	 Source: This parameter is primarily used when

Notebook is selected as the type. A Databricks

notebook is one of the most common utilities that

data engineers utilize as a source of their pipeline

code. These notebooks can either be in a Databricks

workspace or stored in a Git repository like GitHub.

Databricks workflows provide the functionality

of calling these notebooks both directly from the

workspace and from a Git repository via Git integration.

Therefore, in the source, users select the path of the

reference notebook in this parameter.

•	 Cluster: This field allows us to define the type of

compute that would be used to run the job. Three

options are available.

•	 Job cluster: Job clusters have been the most

common/preferred way to run your jobs in a

production environment. They are pure ephemeral

clusters, which means they get spun up once the

job starts, execute the job, and then terminate when

the job ends. Further, job clusters are around 50%

cheaper than interactive/all-purpose clusters. It

is highly recommended that one uses job clusters

for production workloads. As a best practice, use

the latest LTS version of cluster runtime for your

workloads.

•	 Interactive clusters: Interactive or all-purpose

clusters are best used for developing ETL pipelines,

testing jobs, and ad hoc queries. Interactive clusters

should ideally not be used in production as they are

not cost-efficient.

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

118

•	 Serverless: Serverless workflows are fully managed

services that are operationally simpler and more

reliable. Serverless compute provides capabilities

like auto-optimization, selecting appropriate

compute resources, automatic retires to job failures,

etc. Serverless jobs were released very recently, and

we believe they provide excellent compute for short

and frequently running jobs.

•	 Dependent libraries: The configuration allows users

to specify any libraries required for a task’s successful

execution. All libraries specified in the configuration

are installed when the clusters start and are available

when the job runs. These libraries could be installed

from a public repo like Maven/Cran or from an ADLS/

S3 folder.

•	 Parameters: Parameters provide values to a

parameterized notebook. Developers often design

parameterized notebooks for abstraction, so one

notebook can be reused in multiple tasks with different

parameter values rather than creating copies of the

same task. This configuration lets you dynamically set

and retrieve parameter values across tasks to build

more mature and sophisticated data pipelines.

•	 Notifications: Notifications allow users to receive

automatic updates when the task starts, succeeds, fails,

or runs beyond the defined duration thresholds. Users

can configure alerts to be notified via email or other

communication channels like Slack, Teams, PagerDuty

(and more), providing real-time observability of your

task’s execution.

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

119

•	 Task retries: Task retries determine when and how many

times failed runs are retried. This feature enhances your

workflows’ reliability and fault tolerance by automatically

attempting to recover from transient issues.

•	 Duration threshold: This configuration helps you

define the execution time limits for a task. It either

warns you if the task runs longer than expected or

alerts you and terminates the task if it runs beyond the

maximum set completion time.

After defining the parameter values for some or all configurations, you

can hit the Create Task button to create your first task. Similarly, going

back to our example, you can create tasks for all the other steps that need

to be completed. Once your tasks have been created, let’s move on to some

of the job-level parameters you can define.

�Configure Databricks Job Tasks:
Job-Level Parameters
One of the key capabilities of any orchestration service is to run the jobs on

a schedule, and the job-level Schedules & Triggers parameter does exactly

that. Users can configure Databricks jobs to run either at a predefined time

(schedule) or on a trigger (event-based or continuous).

Let’s explore workflow triggers further and see different scenarios

where they could be best used.:

•	 Scheduled: The Scheduled trigger enables you to

automate the execution of your job by defining a

specific time for it to run. It is important to note that

this batch-based scheduling is not intended for low-

latency use cases, as Databricks enforces a minimum

of 10 seconds between subsequent runs. See

Figure 6-3.		

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

120

Figure 6-3.  Scheduled trigger

•	 File Arrival: File arrival triggers a Databricks workflow

when a new file arrives in a particular configured

cloud storage folder. This is useful when the file arrival

schedule is irregular and you do not want a cluster

to be always up and running to monitor the folder.

One important thing to note is that you can only use

this trigger in a Unity Catalog–enabled workspace.

Further, one must use an external location added in

the UC metastore and have READ permissions to the

folder and Can Manage permissions on the job. See

Figure 6-4.	

	

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

121

Figure 6-4.  File arrival trigger

There are two other parameters one can set in the

file arrival trigger:

•	 Minimum time between triggers in seconds: This

is the minimum time to wait before another run is

triggered after a run is completed.

•	 Wait after the last change in seconds: This is the

time to wait after a new file arrives before a run

triggers. If another file arrives within this time

frame, the timer will be reset.

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

122

•	 Continuous: As the name suggests, this trigger is for

jobs running continuously until stopped. By setting the

trigger type, Databricks will always ensure one active

run of that job. A new job run will automatically kick off

if the previous run completes or fails. You cannot use

task dependencies with a continuous job, nor can you

set retry policies.

•	 Table update: This trigger monitors for changes

such as update, delete etc., in a Unity Catalog table

(managed or external). See Figure 6-5.		

Figure 6-5.  Table update trigger

	 Job Tags: Job tags allow users to easily identify and

locate jobs by ownership, topic, and department. Job

tags propagate to the job cluster and underlying VMs,

which helps users assign charge-backs to a particular

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

123

business unit. Furthermore, applying tags simplifies

the process of filtering and identifying clusters based

on specific criteria. This makes tracking, monitoring,

and optimizing resources within your Databricks

environment easier.

	 Job parameters: Job parameters give users more

flexibility and control over their tasks in the

workflows. They provide an easy way to add granular

configurations to a pipeline, which is useful for reusing

jobs for different use cases, a different set of inputs, or

running the same job in different environments (e.g.,

dev staging and prod environments).

Job parameters allow users to provide both static values and dynamic

values (that are provided by the system at runtime). An example of the

dynamic value would be, say, the job ID is defined as {{job.id}} on the

Parameter tab, which is the unique identifier assigned to the job. See

Figure 6-6.

Figure 6-6.  Job parameters

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

124

Table 6-1 identifies different parameter types for different task types.

Table 6-1.  Different Task Types in a Databricks Workflow

Task Type Parameter

Notebook Key value pairs that set a value of a notebook widget

JAR Array of strings passed to the Java main method

Spark Submit Array of strings passed in for additional spark-submit arguments

Python Script Array of strings retrievable using argument parse in Python

Python Wheel Can specify positional arguments as array of strings; or keyword

arguments as key-value pairs

To summarize, with job parameters you can parameterize your tasks

that will give you more reusability of your jobs.

With this, we looked into some key features and configurations while

setting up your Databricks jobs and tasks. In the next section, we will

discuss some of the more advanced and newer features of Databricks

workflows.

�Advanced Workflow Features
In this section, we will look into some of the advanced features of

Databricks workflows such as cluster reuse, conditional execution, etc.

Cluster Reuse: This feature allows users to utilize a job cluster across

multiple tasks. Let’s understand why it is such a useful feature.

Consider that there is a job that consists of five tasks. Without this

feature (as it used to happen earlier), a new cluster would spin up when

each task started and terminated when it ended. This led to five clusters

being spun up and terminated, thus leading to more time to execute the

entire job. But with the cluster reuse feature, you can configure only one

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

125

cluster to spin up to run all the tasks and then terminate. This reduces the

cluster initialization time for each task, leads to efficient cluster utilization,

and decreases overall job latency.

Another important aspect of this feature is that the user still has the

flexibility, if needed, to configure a particular cluster for a specific task.

Continuing on our previous example, if a particular task requires a cluster

of different configurations, for example, a compute-intensive task, one can

configure a bigger cluster specifically for the task. Therefore, the different/

bigger cluster would spin up for this particular task.

Repair and Re-run: This feature enables users to repair/rerun failed or

canceled jobs by running only the subset of failed tasks and any dependent

tasks with the job. Because successful tasks are not run again with this

feature, it reduces the time and resources required to recover from

unsuccessful job runs.

Now, continuing from our previous example, suppose Task_3 (the

third task) was unsuccessful. After fixing the cause of the failure, you can

rerun the workflow starting from Task_3 instead of running all the tasks.

This feature is particularly useful if the tasks prior to the failure were long

or expensive to run. This eliminates the need to rerun those tasks, again

reducing redundancy.

Conditional Execution of Tasks: Conditional execution helps build a

dependency chain between two tasks within a job based on a condition.

This is an important feature that helps orchestrate multistage data

pipelines as it allows users to better control over complex workflows and

implement advanced orchestration scenarios. In conditional execution,

a task is executed only if the status of upstream tasks meets the specified

condition.

Conditional execution consists of two main capabilities, the “If/else

condition task type” and “Run if dependencies,” which together enable

users to create not only a branching logic in their workflows but also more

sophisticated dependencies between tasks in a pipeline thereby giving

them more flexibility into their workflows.

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

126

•	 If/else condition task type: The if/else Task type, as

name suggests, enables users to add branching logic

to their jobs. The If/else condition task is used to run

a part of a job DAG based on the results of a Boolean

expression given as a condition.

•	 “Run if” dependencies: The “Run if” dependencies

are task-level configurations that provide users with

more flexibility in defining task dependency. Take for

example a task that has several dependencies over

multiple prior tasks; users can now define what are

the conditions that will determine the execution of

the dependent task. These conditions are referred

to as “Run if dependencies.” One can now define

whether the dependent task will run if all dependencies

succeed, at least one succeeded, all finished regardless

of status, etc.

The following are the task-level “Run if” dependencies available:

•	 All succeeded (all dependencies are executed and

succeeded)

•	 At least one succeeded (at least one of the

dependencies has succeeded)

•	 None failed (none of the dependencies have failed and

at least one has executed)

•	 All done (all dependencies completed and at least one

has executed)

•	 At least one failed (at least one dependency has failed)

•	 All failed (all dependencies have failed)

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

127

Late Jobs: Data teams usually have hundreds of jobs running in

production. When you run a large number of jobs on the platform, users

find it challenging to monitor all these jobs in real time and usually

know about the status of the individual jobs only once they have been

completed. This could be problematic, especially for long-running jobs, as

it could lead to missed SLAs and prove costly.

For example, let’s assume a particular job takes around 40 minutes to

complete, and, for some reason, on a particular day, it took more than 3

hours to complete. First, there is no way to know that the job is running

way over its usual runtime, and this would lead to higher costs as well.

The late job feature in Databricks workflows enables users to manage

this use case efficiently. It allows users to define a “soft timeout” after

which they receive a warning that a job or task run is taking longer than

expected. Additionally, users can set the “timeout duration” after which

the job will be stopped. See Figure 6-7.

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

128

Figure 6-7.  Late job run

So continuing with our example, the user can set the Warning option

at 1 hr and Timeout option at 1.5 hrs. If the job takes more than 1 hr, a

duration alert will be sent to the configured email(s). Further, if the job

exceeds 2 hrs, the job will be stopped from executing. This gives users

better control over their long running jobs.

Run Job Task Type - Modularize Jobs: Orchestration jobs can

have multiple tasks with complex dependencies between them. More

often than not, managing these complex jobs becomes challenging in

terms of defining, testing, and troubleshooting. Modern software best

practices usually emphasize modularizing complex code into reusable

logical chunks.

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

129

Databricks Workflows Task has a task type “Run Job.” This allows

users to run a “child job” within a “parent job,” which makes the overall

workflow easier to comprehend and maintain. This effectively allows

you to modularize your jobs, as you can now divide your DAGs into

logical chunks or child jobs, which can be managed separately. Further,

these modular child jobs can be reused in different parent workflows by

parameterizing them. See Figure 6-8.

Figure 6-8.  Running job as a task

Now, with Run Job as a task type, users can call the child jobs

(previously defined) within the parent jobs, enabling them to create

modular workflows.

In the next section, we will look into another aspect: monitoring

Databricks workflows both at the job and task levels.

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

130

�Monitoring Data Pipelines
Data engineers/admins need to have complete visibility of all the jobs

running on the orchestration platform to see the status of each job

and what jobs need troubleshooting in case they fail, thus having full

monitoring and observability capabilities. It will be challenging to create

custom dashboards to monitor your hundreds of jobs.

Databricks workflows give users a unified view of all job runs through

its Job Runs dashboard. With this, users not only can view all the jobs that

ran but also dive deep into individual runs for each job. Let's look into this

in a little more detail.

Job Run dashboard: The Job Run dashboard gives users a

comprehensive real-time view of all their jobs in a single workspace. These

are some of the most critical features in this dashboard:

	 1.	 Finished Runs Chart: This stacked bar chart

depicts the number of job runs completed in the

last 48 hours, with the option of redefining the

time interval. The chart shows failed, skipped, and

successful job runs.

	 2.	 Jobs List This table details all the job runs within the

workspace. It is helpful as one can quickly assess the

job runs for any job and navigate to a particular job

run from this table if human intervention is needed

in case the run fails.

	 3.	 Top 5 Error Types: This table lists the most frequent

error types for all the jobs that ran within the

selected timeframe. It helps identify a summary of

the top error types across all workloads, enabling

users to troubleshoot faster, take proactive

measures, and minimize the negative impact on

business operations downstream. See Figure 6-9.

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

131

Figure 6-9.  Workflow monitoring dashboard

Job Matrix View: Previously, we saw the job run dashboard, which

gives an overview of all the jobs in real time. Now as a user one also needs

to keep track of all the runs for an individual job. The Job Matrix View

allows users to assess all the job runs and quickly see the health of each

task within (see Figure 6-10).

Figure 6-10.  Single job status

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

132

Hovering over or clicking ae specific task allows us to identify the cause

of the failure as the error message is displayed. Further, one can quickly go

to a particular task and even to the underlying notebook. This is useful for

seeing which step errored out and for troubleshooting quickly.

�Conclusion
In this chapter, we explored how to orchestrate your data pipelines

using Databricks workflows. Databricks jobs enable you to execute all

your data processing and analysis tasks within a Databricks workspace.

A job consists of one or multiple tasks that can be combined using

dependencies. We then created a simple task and learned about the

different parameters required for configuration at the task and job levels.

We also learned about more advanced configurations, such as cluster

reruns, where you can reuse a single cluster for all your tasks, and how to

configure conditional dependencies for your tasks.

Finally, we examined the observability and monitoring aspects of

Databricks workflows with the job-run dashboard and Job-View Matrix. In

the next chapter, we will examine Delta Live Tables, which provides ETL

capabilities on the Databricks platform.

Chapter 6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

133© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_7

CHAPTER 7

Data Engineering
Part 2: Delta Live
Tables
It is no secret that good, reliable data is the foundation of the lakehouse

architecture. Organizations need clean, fresh, and reliable data to drive

their analytics and data science projects, which in turn help them make

decisions for key business initiatives.

However, most data engineers will agree that maintaining data quality

and reliability at scale is quite complex and tedious. Apart from writing

ETL transformations, they must spend much time on tasks like handling

table dependencies, recovery, backfilling, retries, or error conditions. They

must also manage the infrastructure, which turns simple ETL tasks into

complex data pipelines.

In this chapter, we will introduce you to Delta Live Tables (DLT), which

enable data engineers to concentrate on writing the transformation logic

(the “what”), while Databricks manages the rest (the “how”). We will start

with understanding what Delta Live Tables is and learn about concepts in

declarative programming. Then we will look at some of the key features of

DLT, including Change Data Capture (CDC), data quality and monitoring,

enhanced autoscaling, and more.

https://doi.org/10.1007/979-8-8688-0444-1_7#DOI

134

�What Is Delta Live Tables?
Delta Live Tables makes it easy to build and manage reliable batch and

streaming data pipelines that deliver high-quality data on the Databricks

lakehouse platform. DLT uses a simple declarative approach using SQL

and Python that helps data engineering teams simplify ETL development

and management with pipeline development, automatic data testing, and

visibility for monitoring and recovery. DLT also automates infrastructure

management by handling cluster sizing, error handling, performance

tuning, and orchestration. Therefore, using DLT data, engineers can now

spend less time managing the tooling, focusing on data transformations,

and getting value from data.

So, what is the difference between Delta tables and Delta Live Tables?

Delta is a storage format, and the tables created on the underlying data are

called Delta tables. Delta Live Tables is a declarative pipeline development

that manages how data flows between Delta tables. See Figure 7-1.

Figure 7-1.  Delta Live Tables overview

Chapter 7 Data Engineering Part 2: Delta Live Tables

135

Before we proceed, let’s examine the different types of DLT datasets,

namely, streaming tables, materialized views, and views.

Streaming tables: A streaming table is a Delta table

that supports incremental data processing. It is

most suitable for ingestion workloads and pipelines

that require data freshness and low latency. It is

designed to read append-only data sources like

Kafka, Kinesis, or Auto Loader.

Materialized views: A materialized view (or live

table) precomputes and stores results and keeps

them fresh over time. It is refreshed according to the

pipeline’s update schedule and, more importantly,

incrementally, thus reducing processing costs.

Each time the pipeline updates, query results are

recalculated to reflect changes in upstream datasets.

Views: Views are temporary tables that should

not be exposed outside of the DLT pipeline. They

are just used like temp tables in standard SQL

processing. Views are not published to public

datasets.

Let’s move on and see how we can build a simple DLT pipeline and

explore some key features.

�Data Ingestion Using DLT
The first step is to get data from DLT. This could be ingesting a number

of raw files in a cloud storage folder or directly connecting to a streaming

source like Kafka. It is important to note that data ingestion has to be

reliable and scale efficiently. Under the hood, DLT ingests data using Auto

Loader. We discussed Auto Loader in detail in Chapter 3. To recap, Auto

Chapter 7 Data Engineering Part 2: Delta Live Tables

https://doi.org/10.1007/979-8-8688-0444-1_3

136

Loader incrementally processes new files as they land in the cloud storage.

It can infer schema automatically and evolve schemas as the use cases

require.

Listing 7-1 creates a Delta table called raw_txs and ingest JSON files

from cloud storage into this table. Please note that DLT manages all Auto

Loader configurations, like checkpointing, in the back end.

Listing 7-1.  Creating a Streaming Live Table

CREATE STREAMING LIVE TABLE loan_bronze

AS SELECT * FROM cloud_files('/demos/dlt/loans/raw_

transactions', 'json', map("cloudFiles.inferColumnTypes",

"true"))

Listing 7-2 involved a batch data ingestion. Let’s examine how to ingest

from a Kafka source.

Listing 7-2.  Data Ingestion from Kafka

@dlt.table

def sales():

 return (

 (spark.readStream

 .format("kafka")

 .option("subscribe", 'sales_trends')

 �.option("kafka.bootstrap.servers", kafka_bootstrap_

servers_tls)

 .option("kafka.security.protocol", "SSL")

 .option("startingOffsets", "earliest")

 �.load()).select(col("key").cast("string").alias("eventId"),

from_json(col("value").cast("string"), behavioral_input_

schema).alias("json"))

)

Chapter 7 Data Engineering Part 2: Delta Live Tables

137

Before we build our silver layer, let’s examine some important

concepts, such as Change Data Capture and expectations.

�Change Data Capture with DLT
One important use case during data ingestion, especially from databases

and data warehouses, is capturing Change Data Capture (CDC) events into

the data lake. CDC is a process of identifying any data changes, such as

inserts, updates, or deletes, made to your data sources and moving those

changes to the target.

Let’s look at an example of how CDC can be implemented using

Delta Live Tables. First, external tools, such as Debezium, Fivetran, Qlik

Replicate, etc., can capture and record the history of data changes, say

from external systems like databases, in logs; downstream applications

consume these CDC logs. See Figure 7-2.

Figure 7-2.  Change Data Capture with DLT

As a first step, we will move these logs into a cloud storage object or a

message queue like Kafka. In the previous section, we discussed how to

ingest data in the Delta Bronze Layer from either of these sources. Delta

Live Tables allows you to apply changes from CDC seamlessly your tables,

enabling incremental changes to flow through analytical workloads at

scale easily. Let’s quickly look into an example.

Chapter 7 Data Engineering Part 2: Delta Live Tables

138

Before we begin to apply CDC, we need to ensure that the target table

has most up-to-date data from the source table, as shown in Listing 7-3.

Listing 7-3.  Creating a CDC Table

CREATE INCREMENTAL LIVE TABLE customers

 COMMENT "Clean, materialized customers";

Once the table has been created, we use APPLY CHANGES to propagate

the changes to the target table, as shown in Listing 7-4.

Listing 7-4.  Updating the Live Table

APPLY CHANGES INTO live.customers

FROM stream(live.customers_cdc)

 KEYS (id)

 APPLY AS DELETE WHEN operation = "DELETE"

 �SEQUENCE BY operation_date --primary key, auto-incrementing ID

of any kind that can be used to identity order of events, or

timestamp

 COLUMNS * EXCEPT (operation, operation_date, _rescued_data);

Note that while the CDC comes with INSERT, UPDATE, and DELETE

events, DLT, by default, applies INSERT and UPDATE events from any record

in the source dataset matching primary keys and sequenced by a field that

identifies the order of events. You must use APPLY AS DELETE WHEN in SQL

to handle DELETE events.

After CDC, we will move into another important feature supported by

DLT—Slowly Changing Dimensions (SCD)—for both type 1 and type 2. In

SCD Type 2, when the value of a record changes, a new line for the record

is created and becomes the current record, while the older one is closed. In

Type 1, there is only a simple append.

Chapter 7 Data Engineering Part 2: Delta Live Tables

139

The following code explains how this can be easily achieved in

DLT. To create a SCD2 table, all we have to do is leverage APPLY CHANGES

with the extra option STORED AS {SCD TYPE 1 | SCD TYPE 2 [WITH

{TIMESTAMP|VERSION}}], as shown in Listing 7-5.

Listing 7-5.  Creating a Slowly Changing Dimension Type 2 Table

APPLY CHANGES INTO live.SCD2_customers

FROM stream(live.customers_cd)

 KEYS (id)

 APPLY AS DELETE WHEN operation = "DELETE"

 SEQUENCE BY operation_date

 COLUMNS * EXCEPT (operation, operation_date, _rescued_data)

 STORED AS SCD TYPE 2 ;

We now move into another important aspect of DLT called

Expectations, which help maintain data quality throughout the DLT

pipeline.

�Delta Live Tables Expectations
One of the most important issues data engineers face while building data

pipelines is ensuring proper data quality and establishing the trust of

end users in the data they are using. Further, engineers often struggle to

identify and resolve data quality issues once they discover them.

Delta Live Tables provides a data quality management feature called

Expectations that helps users define data quality and integrity constraints

within their DLT pipelines.

Expectations are optional clauses to which you constrain your DLT

dataset declarations. They apply data quality checks on each record

passing through a query into your table. See Listing 7-6.

Chapter 7 Data Engineering Part 2: Delta Live Tables

140

Listing 7-6.  Delta Live Tables Expectations

CREATE STREAMING LIVE TABLE loans_silver (

 �CONSTRAINT `Payments should be this year` EXPECT (next_

payment_date > date('2020-12-31')),

 �CONSTRAINT `Balance should be positive` EXPECT (balance > 0

AND arrears_balance > 0) ON VIOLATION DROP ROW,

 �CONSTRAINT `Cost center must be specified` EXPECT (cost_

center_code IS NOT NULL) ON VIOLATION FAIL UPDATE

)

AS SELECT * from loans_bronze

In the previous query, we have defined a few constraints on the

DLT table. An expectation typically consists of three parts: description,

invariant, and action when the condition fails. A description is a unique

identifier and allows you to track the metrics for the particular constraint.

An invariant returns a Boolean expression (True/False) based on the

defined condition. Finally, action defines what to do if the condition fails.

There are three actions you can apply to the failed records.

•	 Warn: In this action, the invalid records are written to

the target tables, but failure is reported in as a metric

for the dataset.

•	 Drop: The invalid records are dropped before the target

table is written, and the number of records dropped is

recorded.

•	 Fail: In this, the DLT pipeline is stopped, and the

records have not been updated. Users need to check

and update before manually restarting the pipeline.

Later in this chapter we will see how you can view data quality metrics

in the DLT monitoring UI. See Figure 7-3.

Chapter 7 Data Engineering Part 2: Delta Live Tables

141

Figure 7-3.  Data quality metrics

After creating the silver table, let’s do some transformations and create

a Gold table (see Listing 7-7), which will be the final in our medallion

architecture.

Listing 7-7.  Creating a Gold DLT Table

CREATE LIVE TABLE loans_gold

AS SELECT sum(revol_bal) AS bal, addr_state AS location_code

FROM live.historical_txs GROUP BY addr_state

 �UNION SELECT sum(balance) AS bal, country_code AS location_

code FROM live.cleaned_new_txs GROUP BY country_code

We have defined the logic for our DLT so far. Let’s create our DLT

pipeline.

Chapter 7 Data Engineering Part 2: Delta Live Tables

142

�Creating a DLT Pipeline
After defining the logic for our bronze, silver, and gold tables, let’s combine

everything and create our first DLT pipeline. First, navigate to the DLT UI in

the Dela Live Tables tab and click Create Pipeline, as shown in Figure 7-4.

JSON mode is also available for quick parameter population, as shown in

Figure 7-5.

Figure 7-4.  Delta Live Tables user interface

Chapter 7 Data Engineering Part 2: Delta Live Tables

143

Figure 7-5.  Sample DLT pipeline JSON file

Here are the key parameters that must be provided:

•	 Source code: This is the path to the notebooks or files

containing the pipeline code. The source code could

be in multiple notebooks or files, and you can give file

locations for all of them in this parameter.

•	 Product edition: DLT comes with four SKUs: Core, Pro,

Advanced, and Serverless. The difference is the features

they support. A comparison table is given here:

	 https://www.databricks.com/product/pricing/

delta-live

Chapter 7 Data Engineering Part 2: Delta Live Tables

https://www.databricks.com/product/pricing/delta-live
https://www.databricks.com/product/pricing/delta-live

144

•	 Pipeline mode: We can run DLT pipelines in Triggered

or Continuous mode. In Triggered mode, the pipelines

update the data once and shut down until you run

the pipeline manually or schedule the update. In

Continuous mode, pipelines run continuously and

ingest/process new data as it arrives.

•	 Compute: In this part, you define the compute

resources for pipeline running. You can select a cluster

policy if you want to use one for your cluster. Next

is cluster mode, which has the options Enhanced

Autoscaling, Legacy Autoscaling, or Fixed size. As a best

practice, use Enhanced Autoscaling for your pipelines.

We will discuss this later in the chapter. Finally, there

is an option to select Photon Acceleration for your

workloads.

You can run the pipeline in Development or Production mode to

optimize pipeline execution. When the pipeline runs in Development

mode (default), the cluster is reused in multiple runs to avoid the restarts.

Also, the pipeline retries are disabled, so you can quickly fix any errors.

In Production mode, the pipeline retries in case of operational issues like

cluster failure.

Once you have defined the appropriate parameters for your pipeline,

let’s run it once and see the results. Figure 7-6 represents the high-fidelity

lineage diagram for this DLT pipeline.

Chapter 7 Data Engineering Part 2: Delta Live Tables

145

Figure 7-6.  DAG for a DLT pipeline

It is important to note that if a particular table in the pipeline is out

or you want to refresh a specific table without rerunning it, you can select

Select Tables for Refresh and choose the tables you need to refresh or

run again.

You can see table details, schema, and data quality metrics if you click

on any table boxes in the DAG (Figure 7-6).

Next, we will move forward and examine other aspects of DLT, such as

monitoring and logging, CI/CD, and enhanced autoscaling.

�Logging and Monitoring
Each DLT pipeline emits all event logs to a predefined and unique storage

location. The DLT event logs contain all information related to a pipeline,

including audit logs, data quality checks, pipeline progress, and data

lineage.

Chapter 7 Data Engineering Part 2: Delta Live Tables

146

The logs are also visible in the DLT pipeline run UI page, where you

can quickly investigate the errors. DLT provides a variety of error-handling

capabilities, including retrying failed tasks, handling failed records, and

detecting and fixing data quality issues, but in a nice GUI format. See

Figure 7-7.

Figure 7-7.  DLT task status

These logs are exposed as Delta tables and used for monitoring,

lineage, and data quality reporting using the BI tool of your choice.

Figure 7-8 shows a sample dashboard that can be built on DBSQL.

Figure 7-8.  Dashboard for monitoring DLT job statuses

Chapter 7 Data Engineering Part 2: Delta Live Tables

147

�Enhanced Autoscaling
Organizations are increasingly looking toward real-time and streaming

workloads to provide them with the freshest possible data for their

analytics and ML workloads, which can help them make decisions

faster. However, streaming workloads have spiky and unpredictable data

volumes, making it difficult for data engineers to avoid overprovisioning

compute infrastructure, leading to higher costs.

The DLT Enhanced Autoscaling algorithm improves on the standard

Databricks cluster autoscaling feature to handle streaming workloads

more efficiently. It optimizes cluster utilization for streaming workloads

to lower costs while ensuring your data pipeline has the resources to

maintain consistent SLAs. See Figure 7-9.

Figure 7-9.  DLT “Enhanced autoscaling” option

The “Enhanced autoscaling” option maximizes resource utilization

by shutting down nodes when utilization is low while guaranteeing that

tasks are completed successfully. Further, when the workload increases,

it only scales up to nodes that are needed, even if this is lower than the

maximum number of nodes provisioned. DLT’s “Enhanced autoscaling”

Chapter 7 Data Engineering Part 2: Delta Live Tables

148

option optimizes cluster utilization while minimizing overall end-to-end

latency. DLT’s enhanced autoscaling can be easily enabled on the pipeline

during or after pipeline creation by setting Cluster Mode to “Enhanced

autoscaling.”

�Runtime Channels
Traditional clusters require the maintenance of runtime versions, also

known as Databricks Runtime (DBR). In Delta Live Tables, you can get

the flexibility of both choosing the cluster VM type and having Databricks

manage the runtime for you. The Channel drop-down is designed for this

exact purpose. By default, the “current” channel uses the latest Databricks

runtime, whereas the “preview” channel uses the upcoming runtime. See

Figure 7-10.

Figure 7-10.  DLT runtime channel

�Example: A Retail Sales Pipeline
Now we will example a retail sales pipeline. The source code is

conveniently located at the Databricks’ repo:

https://github.com/databricks/delta-live-tables-notebooks/blob/

main/sql/Retail%20Sales.sql

Chapter 7 Data Engineering Part 2: Delta Live Tables

https://github.com/databricks/delta-live-tables-notebooks/blob/main/sql/Retail Sales.sql
https://github.com/databricks/delta-live-tables-notebooks/blob/main/sql/Retail Sales.sql

149

This example highlights these four features:

•	 Streaming pipeline

•	 Data validation

•	 Data lineage

•	 Validation dashboard

�Streaming Pipeline
Listing 7-8 shows the raw sales order.

Listing 7-8.  Raw Sales Order as Bronze Table

CREATE STREAMING LIVE TABLE sales_orders_raw

COMMENT "The raw sales orders, ingested from /databricks-

datasets."

TBLPROPERTIES ("myCompanyPipeline.quality" = "bronze")

AS

SELECT * FROM cloud_files("/databricks-datasets/retail-org/sales_

orders/", "json", map("cloudFiles.inferColumnTypes", "true"))

This raw pipeline is simply trying to stream the JSON files from the

specified location. As a result, it is now simpler to build a streaming

pipeline using DLT.

�Data Validation
The next step is to perform data cleanup. The traditional ETL requires

separate steps for error handling and data validation. As a result, this logic

will be written in the SQL query, and other developers will try to decode

the purpose. In DLT, there is a descriptive way to handle these records

called Expectation, as shown in Listing 7-9.

Chapter 7 Data Engineering Part 2: Delta Live Tables

150

Listing 7-9.  Raw Sales Order as Bronze Table

CREATE STREAMING LIVE TABLE sales_orders_cleaned(

 �CONSTRAINT valid_order_number EXPECT (order_number IS NOT

NULL) ON VIOLATION DROP ROW

)

PARTITIONED BY (order_date)

COMMENT "The cleaned sales orders with valid order_number(s)

and partitioned by order_datetime."

TBLPROPERTIES ("myCompanyPipeline.quality" = "silver")

AS

SELECT f.customer_id, f.customer_name, f.number_of_line_items,

 �TIMESTAMP(from_unixtime((cast(f.order_datetime as long)))) as

order_datetime,

 �DATE(from_unixtime((cast(f.order_datetime as long)))) as

order_date,

 �f.order_number, f.ordered_products, c.state, c.city, c.lon,

c.lat, c.units_purchased, c.loyalty_segment

 FROM STREAM(LIVE.sales_orders_raw) f

 LEFT JOIN LIVE.customers c

 ON c.customer_id = f.customer_id

 AND c.customer_name = f.customer_name

�Data Lineage
The flow chart in Figure 7-11 in the DLT job shows how the data moves

from one place to another. Therefore, running it through another parsing

tool to generate these diagrams is unnecessary.

Chapter 7 Data Engineering Part 2: Delta Live Tables

151

Figure 7-11.  DLT lineage diagram

�Validation Dashboard
Each step automatically summarizes the expectations and data quality

checks, saving time on the creation and upkeep of additional toolkits.

Having these available automatically also reduces the time needed

to evaluate the code to ensure data validation. See Figure 7-12 and

Figure 7-13.

Figure 7-12.  DLT data quality dashboard

Figure 7-13.  DLT Expectations

Chapter 7 Data Engineering Part 2: Delta Live Tables

152

�Conclusion
Data teams are constantly on the go. However, with Databricks’ Delta Live

Tables, they can streamline reliable data pipelines and quickly find and

manage enterprise data assets across various clouds and data platforms

using Unity Catalog. Additionally, they can simplify the enterprise-wide

governance of data assets, both structured and unstructured.

This chapter examined Delta Live Tables, which provides a declarative

framework for developing, managing, and deploying ETL pipelines. DLT

automatically manages your infrastructure, ensures high data quality

and unifies batch and streaming workloads. We built a DLT pipeline

and looked into important features like Change Data Capture, SCD

Type 1 and 2 support, and DLT Expectations, which help maintain data

quality. We also discussed various performance optimizations that DLT

uses via enhanced autoscaling. Last but not least, the runtime version is

managed for you automatically by default. There is no need to worry about

managing the latest runtime, but cluster types are still available and are

similar to interactive clusters.

Chapter 7 Data Engineering Part 2: Delta Live Tables

153© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_8

CHAPTER 8

Data Warehousing
with DBSQL
If you’re a data analyst who primarily uses SQL to write queries and

reports and create comprehensive dashboards for analysis using your

favorite business intelligence (BI) tools, Databricks SQL (DBSQL) provides

a comprehensive environment for running ad hoc queries and creating

dashboards on data stored in your data lake.

Traditionally, SQL/BI use cases have most commonly been

implemented by storing data in a data warehouse or a database, writing

SQL queries in a SQL IDE, and, finally, using BI tools to build dashboards.

However, with the lakehouse platform, you can handle all this without

moving data to a different storage, like a data warehouse or a database.

Figure 8-1.  Architecture diagram using Databricks SQL

https://doi.org/10.1007/979-8-8688-0444-1_8#DOI

154

In this chapter, we will learn how the Databricks platform provides

the most complete end-to-end data warehousing solution for all analytics

use cases.

Next, we will move on to understand various components and key

features of Databricks SQL or DBSQL.

�What Is Databricks SQL?
Databricks SQL is the collection of services bringing data warehousing

capabilities and performance to your existing data lake through open

formats and standard ANSI SQL. The DBSQL platform provides not only

a SQL editor but also dashboarding tools that allow team members to

collaborate with users directly in the Databricks workspace. Further,

Databricks SQL integrates with a variety of BI tools via connectors or

JDBC/ODBC so that analysts can author queries and dashboards using

their favorite BI tools without adjusting to a new platform. See Figure 8-2.

Figure 8-2.  SQL Persona section on Databricks sidebar

In the following sections, we will look into a few key services in DBSQL.

Chapter 8 Data Warehousing with DBSQL

155

�SQL Warehouses
SQL warehouses are compute resources within DBSQL that run your

SQL queries on data objects within Databricks SQL. Simply put, SQL

warehouses provide processing capabilities in DBSQL similar to clusters

in the data engineering part of the platform. There are three main types of

SQL warehouses.

•	 Classic: This offers limited Databricks SQL

functionality and basic performance features. Only

use a classic SQL warehouse to run interactive queries

for data exploration with entry-level performance and

Databricks SQL features.

•	 Pro: This supports all the Databricks SQL functionality

and delivers higher-performance features than Classic,

including query federation, workflow integration, and

data science and ML functions.

•	 Serverless: This is the most powerful and cost-effective

option. The serverless SQL warehouse gives the most

advanced performance features and supports all of the

features available in the Pro type, along with instant

and fully managed compute. Serverless compute spins

up almost instantaneously with best-in-class price/

performance.

Figure 8-3 shows how to set up a SQL warehouse.

Chapter 8 Data Warehousing with DBSQL

156

Figure 8-3.  Setting up a SQL warehouse in Databricks

It is really simple to spin up a SQL warehouse. Once you click Create

Warehouse, the first parameter to fill in is the warehouse’s name. Next, you

can also select the warehouse type from Classic, Pro, and Serverless.

Let’s look into other important parameters to take into consideration.

•	 Cluster Size: SQL warehouses come in T-shirt sizes

from X-Large to X-small. Please choose the size based

on the latency and throughput. As a best practice,

start from Medium and move up and down as per

your needs.

Chapter 8 Data Warehousing with DBSQL

157

•	 Scaling: A traditional cluster comes with one driver

and a number of workers. When you autoscale a

cluster, you are increasing the number of worker

nodes. However, there is still only one driver node, and

with high-frequency, low-latency workloads, it will

become a bottleneck. With the SQL warehouses scaling

feature, you determine the min and max number of

clusters behind the endpoint, and it is these clusters

(not workers) that can increase based on concurrency

requirements.

Further, one of the key aspects of SQL warehouses that makes it really

performant is Photon. Let’s look into what Photon is and how we can

enable it.

�Photon
Photon is the next-generation ANSI-compliant vectorized query engine

developed by Databricks to support workloads in DBSQL. It comes with

hundreds of built-in optimizations, providing the best performance for all

tools, query types, and real-world applications. This includes the AI-

powered predictive I/O that eliminates performance tuning like indexing

by intelligently prefetching data.

It’s 100% compatible with Apache Spark APIs, which means you don’t

have to rewrite your existing code (SQL, Python, R, Scala) to benefit from

its advantages.

While Photon is an optional feature in interactive clusters, it is

activated by default for SQL warehouses. You can also enable Photon for

All Purpose and Job Clusters options by toggling the switch on the Create

Cluster page.

Chapter 8 Data Warehousing with DBSQL

https://www.databricks.com/product/photon

158

Figure 8-4.  TPC-DS 1TB performance by DBR version versus Photon
(source. https://www.databricks.com/product/photon)

Figure 8-4 shows the performance of Photon with regard to the

Databricks runtime, showing that Photon is almost three times more

performant than the DBR 8.x.

�SQL Editor
The DBSQL UI provides a SQL editor (Figure 8-5) that you can use to

author SQL queries using a familiar ANSI SQL syntax, browse available

data, and create visualizations. You can also share your saved queries

with other team members in the workspace. SQL Editor also supports

functionalities such as autocomplete, autoformatting, auto-save, etc.

Additionally, query updates can be scheduled to refresh automatically, as

well as to issue alerts when meaningful changes occur in the data.

Chapter 8 Data Warehousing with DBSQL

https://www.databricks.com/product/photon

159

Figure 8-5.  SQL Editor in Databricks

�Introduction to AI/BI Dashboards
Databricks SQL enables data analysts to make sense of data through

visualizations and drag-and-drop dashboards. Dashboards (now termed

as legacy dashboards) within DBSQL allow users to combine both

visualizations (via the built-in SQL Editor) and text boxes to give context to

their data. Once built, dashboards can be easily shared with stakeholders,

both within and outside the organization, via a web browser.

Databricks introduced a new generation of dashboards at DAIS’24

called AI/BI dashboards. AI/BI dashboards (formerly known as lakeview

dashboards) allow analysts to quickly build highly interactive dashboards

using natural language questions that analysts can ask. Further, these

dashboards are integrated with the Databricks platform, which ensures

fast performance at a high scale, while all security and governance policies

are managed in Unity Catalog.

Chapter 8 Data Warehousing with DBSQL

160

Let’s look into how you can quickly build AI/BI dashboards in

DBSQL. The dashboard has two tabs, a Data tab for searching for

tables within the Unity catalog or writing queries that will serve as your

Dataset(s), and a Canvas tab where your visualizations are created and

assembled with the option to use natural language to generate tables and

visualizations. Some of the capabilities included are sleek visualizations,

cross-filtering, and periodic PDF snapshots via email.

Figure 8-6.  AI/BI dashboards

Finally, AI/BI dashboards allow users to publish their dashboards to

the entire organization. This means that any authenticated user in your

identity provider (IdP) can access the dashboard via a secure web link,

even if they don’t have Databricks workspace access.

Chapter 8 Data Warehousing with DBSQL

161

�Alerts
DBSQL allows users to set up alerts, which in turn send notifications if a

particular condition is not met in the data. Take, for example, an inventory

management table. One can set an alert on the table if the quantity of a

particular product or SKU falls below a certain threshold. The notifications

can either be delivered through email or to other platforms like Slack,

Teams, etc., via webhooks.

In Chapter 9 , we will discuss using alerts to trigger model retraining

when a threshold drops below certain levels (see Figure 8-7).

Figure 8-7.  Databricks alerts

�Query History and Profile
Query history in DBSQL gives you full visibility and details of query

execution for all the queries executed on the SQL warehouses for the last

30 days. With a unified view, you not only can see the number of queries

executed at a particular time but also quickly zoom into specific queries

and debug issues, if any. See Figure 8-8.

Chapter 8 Data Warehousing with DBSQL

https://doi.org/10.1007/979-8-8688-0444-1_9

162

Figure 8-8.  DB SQL query history

A query profile provides the ability to visualize the details of a query

execution. The query profile helps you troubleshoot performance

bottlenecks during the query’s execution (see Figure 8-9). For example:

•	 You can visualize each query task and its related

metrics, such as the time spent, number of rows

processed, and memory consumption.

•	 You can identify the slowest part of a query execution

at a glance and assess the impacts of modifications to

the query.

•	 You can discover and fix common mistakes in SQL

statements, such as exploding joins or full table scans.

Chapter 8 Data Warehousing with DBSQL

163

Figure 8-9.  Query profile

After the overview of DBSQL, we will move on to do a deep dive into

some important features of DBSQL.

�Serverless Compute
Databricks Serverless is a paradigm in Databricks compute. Serverless is

a fully managed service, eliminating the burden of capacity management,

patching, upgrading, and performance optimization of the cluster.

Additionally, Serverless simplifies the billing. In other words, you need

to pay only once to Databricks for both Compute and Databricks costs.

Although Serverless was initially introduced only for DBSQL workloads, it

has then been expanded to other parts of the platform including Delta Live

Tables, workflows, and notebooks as well.

As discussed previously, with any type of compute be it all-purpose

clusters, jobs clusters, or even SQL warehouse (non-Serverless) the virtual

machines are provided by the cloud provider for which you need to pay

directly to them. This has two main effects - not only it takes three to four

minutes for a cluster to come up or terminate but also the users have

Chapter 8 Data Warehousing with DBSQL

164

to manage these in terms of runtimes, machine types, cluster sizes etc.

Secondly, there are usually two line items in your cloud bill - Databricks

Costs ($DBU) and cloud VM costs. To look at the cost more in-depth,

please refer to the chapter Databricks Pricing and Observability using

System Tables.

With the introduction of Serverless, Databricks is basically “owning

the compute.” To put it simply, Databricks prepurchases these VMs from

the respective cloud provider, and once you ask for a Serverless compute

resource, it releases the specific number of VMs as per the request.

Since this computer is fully managed by Databricks, it spins up or down

in seconds rather than minutes. Furthermore, you only need to pay

Databricks once for both Databricks costs and VM costs. Thus, Serverless

compute brings a truly elastic environment that’s instantly available and

scales with your needs.

�Constraints in DBSQL
Many data analysts have previous experience in relational databases,

building entity-relational models using primary key/foreign key

relationships. After normalization, they usually build multidimensional

data models (referred to as star schemas) so that it is easy to understand

and analyze data across these relational databases or data warehouses.

Further, primary key/foreign keys help maintain data integrity and avoid

errors during data processing and modification, thus helping maintain

data quality.

�Constraints on Databricks
Constraints in databases are rules that ensure data integrity and

consistency by enforcing certain conditions or restrictions on the

data stored in a table. Databricks supports standard SQL constraint

management clauses, which can be divided into two categories:

Chapter 8 Data Warehousing with DBSQL

165

•	 Enforced constraints: These are enforced on the

tables/columns to ensure data quality and integrity:

NOT NULL , UNIQUE, and CHECK.

•	 Informational constraints: These constraints are not

enforced but explain the relationships between fields in

the tables.

�Enforced Constraints
Enforced column constraints are rules that apply to a single column in a

table. Delta tables support the following column constraints:

•	 NOT NULL: This constraint ensures that a column

must have a value for each row and cannot be null. This

ensures data completeness and consistency.

•	 UNIQUE: This constraint ensures that all values in a

column are unique and distinct. It prevents duplicate

values in the table.

•	 CHECK: This constraint validates that a column’s value

meets a specific condition or a range of conditions,

such as ensuring that a particular column is within a

certain range, or a number is greater than a specific

value. It helps ensure data accuracy and consistency.

This constraint allows you to specify a Boolean

expression that must evaluate as true for each row in

the table. If the expression evaluates to false, an error is

raised, and the statement is rolled back.

Chapter 8 Data Warehousing with DBSQL

166

Let’s look at an example of how to define these constraints on a table.

The constraints can be set either while creating a new table or on an

existing table. You can add constraints in a new table as follows:

CREATE TABLE T1 (

 id INT NOT NULL,

 quantity INT,

 date DATE,

 CONSTRAINT chk_quantity CHECK (quantity > 0)

);

To add a constraint to an existing table, you can use ALTER TABLE ADD

CONSTRAINTS, and to drop such a constraint, you can use ALTER TABLE

DROP CONSTRAINT.

ALTER TABLE T1 ADD CONSTRAINT dateWithinRange CHECK

(Date > '1900-01-01');

�Informational Constraints: Primary Key
Foreign Key
A Databricks lakehouse with Unity Catalog gives users the ability to build

entity relationships that are simple to maintain and evolve. Also note

that for now primary key and foreign key are informational only and they

are not enforced. To leverage primary keys/foreign keys (PKs/FKs), your

workspace should be UC-enabled with DBR version 11.1 and above.

Let’s see how we can implement a primary key/foreign key

relationship with an example. We can create two tables, P1 and F1. The

P1 table has a primary constraint on the id column, and table F1 has a

foreign key constraint on the p1_id column that refers to the id column

in the P1 table.

Chapter 8 Data Warehousing with DBSQL

167

CREATE TABLE P1 (

 id INT PRIMARY KEY,

 name STRING

)

USING delta;

CREATE TABLE F1 (

 f1_id INT,

 f1_date DATE,

 p1_id INT,

 FOREIGN KEY (p1_id) REFERENCES p1(id)

)

USING delta;

The “View relationships” button (Figure 8-10) in the Overview

or Schema tab conveniently shows the relationship between tables

(Figure 8-11).

Figure 8-10.  “View relationships” button

Chapter 8 Data Warehousing with DBSQL

168

Figure 8-11.  ER diagram in Databricks

Next we move into streaming tables and materialized views. We

touched on these two briefly in Chapter 9, but we will do a greater deep

dive here.

�Streaming Tables and Materialized Views
Some of the common challenges faced by data analysts while working in

data warehouses include the inability to self-service ingest and fix data

issues, the inability to have the most recent data for BI dashboards, and

having to deal with slow BI dashboards because of the huge volume of

underlying data.

Streaming tables and materialized views in DBSQL will allow SQL

analysts to perform data engineering tasks and thus have real-time

capabilities along with their existing workflows. It is important to note that

both Streaming tables and materialized views require Unity Catalog and

Serverless enabled in your workspace. In the next section, we will discuss

these two features in detail.

Chapter 8 Data Warehousing with DBSQL

https://doi.org/10.1007/979-8-8688-0444-1_9

169

�Streaming Tables
A streaming table is a special type of table that enables ingestion in

DBSQL. It is managed by Unity Catalog and supports append-only

incremental and streaming data processing from various data sources.

In reference to the medallion architecture, streaming tables are ideal for

bringing data into the Bronze layer. Streaming tables enable continuous,

scalable ingestion from any data source, including cloud storage, message

buses (EventHub, Kafka), and more.

Streaming from a source requires the source to be append-only and

never updated or deleted. To configure the streaming table to perform

streaming ingestion of your source, you must specify the STREAM keyword.

Say, for example, you have an S3/ADLS container, and a lot of new files

are continuously arriving. You can create a streaming table by using the

following syntax:

CREATE OR REFRESH STREAMING TABLE mystream

 �AS SELECT * FROM STREAM read_files('s3://<bucket>/<path>/

<folder>')

By default read_files processes all the files in the folder. To avoid

this you can set the property includeExistingFiles option to false.

CREATE OR REFRESH STREAMING TABLE mystream

 �AS SELECT * FROM STREAM read_files('s3://<bucket>/<path>/

<folder>',, includeExistingFiles => false

)

Once the previous command is executed under the hood, a DLT

pipeline is created for each streaming table. You can keep these tables

updated and refreshed.

Chapter 8 Data Warehousing with DBSQL

170

To load data from a system like Kafka, use the following command:

SELECT * FROM STREAM read_kafka(

 bootstrapServers => '<server:ip>',

 subscribe => '<topic>',

 startingOffsets => 'latest'

);

�Materialized Views
A materialized view is a special type of view that precomputes and stores

the results of a SQL query and automatically keeps them fresh over time.

A materialized view is a database object that stores a query’s results as

a physical table. Unlike regular virtual database views, which derive their

data from the underlying tables, materialized views contain precomputed

data that is incrementally updated on a schedule or on-demand. This

precomputation of data allows for faster query response times and

improved performance in certain scenarios.

Materialized views are especially useful in situations where complex

queries or aggregations are performed frequently and the underlying data

changes infrequently. By storing the precomputed results, the database

can avoid the need to execute complex queries repeatedly, resulting in

faster response times.

�Create a Materialized View
Databricks SQL materialized view CREATE operations use a Databricks

SQL warehouse to create and load data in the materialized view. Because

creating a materialized view is a synchronous operation in the Databricks

SQL warehouse, the CREATE MATERIALIZED VIEW command blocks until

the materialized view is created and the initial data load finishes. A Delta

Chapter 8 Data Warehousing with DBSQL

171

Live Tables pipeline is automatically created for every Databricks SQL

materialized view. When the materialized view is refreshed, an update to

the Delta Live Tables pipeline is started to process the refresh.

CREATE MATERIALIZED VIEW mv1

AS SELECT

 date, sum(sales) AS sum_of_sales

FROM

 table1

GROUP BY

 date;

�Refresh a Materialized View
In Databricks SQL, you have the option to set up automatic refresh for a

materialized view based on a predefined schedule. This schedule can be

configured during the creation of the materialized view using the SCHEDULE

clause or added later using the ALTER VIEW statement. Once a schedule

is established, a Databricks job is automatically created to handle the

updates.

REFRESH MATERIALIZED VIEW mv1;

Next, we move into another important feature: Lakehouse Federation,

which allows you to query data stored in data sources without moving

the data.

�Lakehouse Federation
Lakehouse Federation gives the Databricks platform query federation

capabilities. Query federation enables users and systems to run queries

against multiple data sources without migrating all the data to one central

location.

Chapter 8 Data Warehousing with DBSQL

https://docs.databricks.com/en/sql/user/materialized-views.html#mv-refresh

172

Most organizations have valuable data distributed across multiple data

sources—databases, data warehouses, object storage systems, etc. This

siloed data leads to incomplete data and insights, which hinders the ability

to make informed decisions based on the full available data.

To query data across multiple data sources, users typically need to

move or migrate their data to a central data location first, which usually

takes time and effort. Lakehouse Federation addresses these critical pain

points and makes it simple for organizations to expose, query, and govern

siloed data systems as an extension of their lakehouse. The various systems

include MySQL, PostgreSQL, Amazon Redshift, Snowflake, Azure SQL

Database, Azure Synapse, BigQuery, and more from within Databricks

without moving or copying the data, all within a simplified and unified

experience.

Further, Unity Catalog’s advanced security features, such as row and

column-level access controls, discovery features like tags, and data lineage,

are available across these external data sources, ensuring consistent

governance.

To make a dataset available for read-only querying using Lakehouse

Federation, you create the following (Figure 8-12):

•	 A connection that specifies a path and credentials for

accessing an external database system

•	 A foreign catalog that mirrors a database in an external

data system enabling you to perform read-only queries

on that data system in your Databricks workspace,

managing access using Unity Catalog

Chapter 8 Data Warehousing with DBSQL

173

Figure 8-12.  Lakehouse Federation into Snowflake

You can start to write queries against these tables in DBSQL and create

visualizations to view the data.

As a best practice, Lakehouse Federation should not be used for

real-time data processing, where latency is paramount, or complex data

transformations, where vast amounts of data need to be ingested and

processed.

�AI Functions in DBSQL
In the age of large language models, there is an urgent need to combine

AI output into a BI report so management can take action based on the

results. However, this inferencing pipeline not only creates another layer of

complexity but also requires seasoned data scientists and an ML Ops team

to maintain, which can become costly.

�Consume LLM Models in DBSQL
Now, there are multiple ways to consume these large language models

within Databricks. The traditional way is to leverage the code provided on

Huggingface. Though this approach is flexible, it will require integrating the

sample code into an existing pipeline, which requires development work.

Chapter 8 Data Warehousing with DBSQL

174

The next approach is to use the Model Serving API. Databricks has

curated popular models and made them part of the platform. These are

then exposed as the Foundation Model API. With the Foundation Model

API, developers can access these carefully curated models out of the box

without going through the deployment process and getting enhanced

performance.

The third approach we will look into in detail here is AI functions in

serverless SQL.

AI functions enable analysts to integrate any LLMs in SQL to enrich

data and empower analysts to extract actionable insights

There are two types of AI functions provided by Databricks:

•	 Built-in functions backed by the Foundation

Model APIs

•	 Custom functions backed by a Serverless serving

endpoint

Built-in functions invoke a state-of-the-art generative AI model to

perform tasks such as sentiment analysis, classification, and translation.

Let’s examine some common built-in functions.

•	 ai_analyze_sentiment: Given text, output sentiment of

the text like positive, negative, neutral, mixed.

•	 ai_classify: Ask the LLM to do classification. A good

use case is to ask an LLM to determine if the text

contains PII, which is to ask it if the text ["contains

PII", "no PII"].

•	 ai_extract: Ask the LLM to extract any entities. Similar

to regex patterns but you no longer need to write a

regex. You only need to tell the function what you want

to extract. For example, “Place” will allow you to extract

a place name.

Chapter 8 Data Warehousing with DBSQL

https://docs.databricks.com/en/sql/language-manual/functions/ai_analyze_sentiment.html
https://docs.databricks.com/en/sql/language-manual/functions/ai_classify.html

175

•	 ai_gen: Prompting at scale. Given a list of questions,

ask the LLM to output a list of answers, given in

table format.

For a list of AI functions, please visit the Databricks website: https://

docs.databricks.com/en/large-language-models/ai-functions.html.

Let's put the AI function in action. Consider this Kaggle Amazon

review dataset.

We can download it to Databricks and create a Delta table. Using DB

SQL’s built-in AI functions, we can extract the sentiment from the text,

successfully connecting AI with BI. See Figure 8-13.

Figure 8-13.  Sentiment analysis with DB SQL

Finally, after persisting the results in Unity Catalog, we can publish the

inferred dataset to Power BI or Tableau.

Chapter 8 Data Warehousing with DBSQL

https://docs.databricks.com/en/large-language-models/ai-functions.html
https://docs.databricks.com/en/large-language-models/ai-functions.html

176

�Custom Functions Backed by a Serverless
Serving Endpoint
The ai_query() function allows you to serve your ML and LLM models

using Databricks Model Serving and query them using SQL. To do so,

this function invokes an existing Databricks Model Serving endpoint

and parses and returns its response. You can use ai_query() to query

endpoints that serve custom models hosted by a model-serving endpoint,

foundation models made available using Foundation Model APIs,

and external models, which are third-party models hosted outside of

Databricks.

Let’s look into an example that queries the model behind the

sentiment-analysis endpoint with the text dataset and specifies the

request’s return type.

SELECT text, ai_query(

 "sentiment-analysis",

 text,

 returnType => "STRUCT<label:STRING, score:DOUBLE>"

) AS predict

FROM

 catalog.schema.customer_reviews

In the next part of the chapter, we will examine how you can connect

your BI tools through DBSQL.

�Integrate BI Tools with Databricks
Organizations usually deploy transformational and BI tools such as

PowerBI, Tableau, Looker, etc., for enterprise-wide dashboards and

reporting needs. Moreover, many data analysts have been proficiently

using these tools for quite some time. Databricks provides validated

Chapter 8 Data Warehousing with DBSQL

177

integrations with your BI tool of choice, allowing you to connect to your

data using SQL warehouses or clusters. As a recommended practice,

analysts get the best experience when they connect their BI tools to

optimized gold tables via SQL warehouses.

In this section, we will focus on connecting PowerBI to Azure

Databricks. There are two main ways to connect PowerBI to Azure

Databricks. The first is to publish to PowerBI Online from Databricks. The

second popular method is to connect Power BI Desktop to Databricks.

Let’s explore both these methods.

�Publish to PowerBI Online from Databricks
This allows users to publish tables from Databricks Catalog Explorer UI

directly to PowerBI workspaces. In short, this is a one-click publish of UC

datasets to PowerBI workspaces. This method supports both DirectQuery

and Import modes. Moreover, you can publish entire schemas with table

relationships (PK/FK). Some of the requirements are that the data must

be on Unity Catalog, the compute must be UC enabled, users must have

a premium PowerBI License, and users must enable “Users can edit data

models in Power BI service (preview)” under the Workspace settings and

Data model settings. In Figure 8-14, we can go to the Catalog tab and select

either the full schema or a particular table. Next, in the drop-down, select

“Use with BI tools.”

Chapter 8 Data Warehousing with DBSQL

178

Figure 8-14.  Publishing to PowerBI Online

You can select Publish to Power BI. This will ask you to authenticate

with your Microsoft account via Entra ID. Once the authentication is

completed, the user can select the PowerBI workspace and Dataset Mode

(Direct Query or Import Mode). Thereafter, click Publish to PowerBI, and

you can start to query this dataset in your PowerBI workspace.

�Connect Power BI Desktop to Databricks
Users can also connect their PowerBI Desktop to Delta Lake Tables via the

SQL warehouse for a full modeling experience in PowerBI. Further, there

are three mainly used storage modes that PowerBI offers for tables. First

is Import mode, wherein all the data is loaded in PowerBI’s in-memory

cache. Second is DirectQuery mode, wherein the data remains in the

source system and the metadata is stored in PowerBI. Finally, a newer

feature is Hybrid mode, which combines the Import and Direct Query

modes by using partitions. The user can select the mode they want to use

depending on the use case.

Chapter 8 Data Warehousing with DBSQL

179

Let’s now look at how to connect Databricks SQL warehouse with

PowerBI. In Partner Connect, once you click PowerBI and choose the

Databricks Compute resource that you want to connect, it downloads

the connection file. You can open that file with Power BI Desktop, and

your connection will be automatically configured. After selecting the

connectivity mode, you can start querying the tables.

�Conclusion
Databricks SQL gives complete warehousing capabilities on the lakehouse

platform and provides features to data analysts for various BI use cases.

SQL warehouses, especially Serverless, provide an enhanced compute to

process SQL queries and provide a connection to various BI tools.

Some of the key features discussed in the chapter include Lakehouse

Federation, AI functions, materialized views, streaming tables, and

constraints, which include a primary key/foreign key relationship. Finally,

we saw how easily you integrate you BI tool of choice with the Databricks

platform with PowerBI as a case study.

Chapter 8 Data Warehousing with DBSQL

181© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_9

CHAPTER 9

Machine Learning
Operations Using
Databricks
Databricks not only provides exceptional data processing capabilities

but also offers a wealth of opportunities to develop machine learning

use cases.

Databricks’ machine learning capabilities have evolved significantly

over the years. Since 2021, various user personas have been actively

engaging with the platform. These personas include:

•	 Data scientists: They unlock the power of algorithms

and models.

•	 Data engineers: They craft robust pipelines for

seamless data flow.

•	 Machine learning engineers: They skillfully

orchestrate model deployment.

In this chapter, we will examine the different components in

Databricks that support machine learning, including model development,

deployment, inferencing, and monitoring. You will be able to learn how to

deploy an ML model to Databricks. These concepts are critical in the later

https://doi.org/10.1007/979-8-8688-0444-1_9#DOI

182

chapters when we discuss GenAI as a lot of the components will be reused

as we advance to GenAI. If you are already familiar with the end-to-end

ML lifecycle, this chapter can serve as a refreshment and prepare you for

the concepts to come in later chapters.

�Machine Learning with Databricks
While SQL and data engineering are the top portion of the menu, machine

learning is also an integral part of Databricks. In 2021, Databricks was

named a leader in the Gartner Magic Quadrant for data science and

machine learning platforms.1 See Figure 9-1.

Figure 9-1.  Databricks machine learning stack

Figure 9-2 shows five components in the ML platform that we will

focus on.

1 https://databricks.com/blog/2021/03/04/databricks-named-a-leader-in-
2021-gartner-magic-quadrant-for-data-science-and-machine-learning-
platforms.html

Chapter 9 Machine Learning Operations Using Databricks

https://databricks.com/blog/2021/03/04/databricks-named-a-leader-in-2021-gartner-magic-quadrant-for-data-science-and-machine-learning-platforms.html
https://databricks.com/blog/2021/03/04/databricks-named-a-leader-in-2021-gartner-magic-quadrant-for-data-science-and-machine-learning-platforms.html
https://databricks.com/blog/2021/03/04/databricks-named-a-leader-in-2021-gartner-magic-quadrant-for-data-science-and-machine-learning-platforms.html

183

Figure 9-2.  Machine learning persona in Databricks UI

�Experiments
Experiments are individual pages to track ML training runs. It provides an

overview of everything related to your training configuration and results

as well as lineage to your dataset and ML model. You can use MLflow to

log these values into the experiment page, therefore providing a one-stop

shop for all the trails you run without losing out the configuration for the

champion model, aka the best-performing model. See Figure 9-3.

Figure 9-3.  Experiments page for one of the models

Chapter 9 Machine Learning Operations Using Databricks

184

The best way to start with ML is to leverage the Glass Box AutoML

provided out of the box by Databricks.

It’s worth noting that to use Unity Catalog with AutoML, the cluster

access mode must be Single User, and you must be the designated single

user of the cluster. Even administrators will not be able to run AutoML on

behalf of a user. The selected “table” must also be a “table.” Materialized

views are not accessible via Single User clusters. See Figure 9-4.

Figure 9-4.  Creating an AutoML experiment

�What Is the Glass Box Approach to Automated
Machine Learning?
Machine learning is a highly iterative task. Data scientists spend a lot

of time trying out different algorithms and tuning hyperparameters to

find the best-performing model. However, these repetitive tasks can be

automated using AutoML.

Unfortunately, most platforms, such as Azure Machine Learning, are

black boxes, while capable of picking the best model, because the code to

train the model is not provided. Hence, it is difficult to replicate the best-

performing model and make further enhancements. Databricks’ Glass Box

approach provides all the source codes that generated all the models, not

just the best-performing ones but all the models evaluated, allowing data

scientists to customize the models with the source code provided.

Chapter 9 Machine Learning Operations Using Databricks

185

�Machine Learning Lifecycle: MLOps
A typical MLOps lifecycle contains the following stages:

	 1.	 Data prep

	 2.	 Model building

	 3.	 Model deployment

We can conveniently use Databricks to do everything. Furthermore,

to harness the distributed nature of Spark, we can also use libraries like

Horovord and Petastorm to scale out the model training. See Figure 9-5.

Figure 9-5.  Machine learning life cycle

In the following sections, we will take an example dataset and go

through every step in Figure 9-5. There will be further clarifications, but

rest assured that every step will be covered.

We will demonstrate AutoML using a classification problem on a flight

dataset, which can be found in Kaggle. This problem aims to predict

whether a flight will be delayed or canceled based on historical flight data.

Of course, in reality, the real reason for a flight delay or cancellation can

be caused by a lot of factors beyond the flight itself, like weather or staff

Chapter 9 Machine Learning Operations Using Databricks

186

shortage. This exercise does not demonstrate how to build a state-of-

the-art on-time flight predictor. It simply uses a dataset to illustrate the

workflow of ML Ops using Databricks.

�ML Example: Predicting Flight Delays
with Databrick’s AutoML
�Prepare Data

First, we need to upload the data to Databricks. This can be done very

easily with JDBC or simply by uploading the CSV file. Then, we can create

tables from there.

The Create New Table wizard under the Data tab can be used to upload

data and create a table using the UI or a notebook. See Figure 9-6.

Figure 9-6.  Creating a new table using the Databricks UI

�Exploratory Data Analysis

Databricks has integrated Pandas Profiling for Exploratory Data Analysis

(EDA). Pandas Profiling is an open-source library that precomputes some

statistics that data scientists usually want to know and saves these into

Chapter 9 Machine Learning Operations Using Databricks

187

properly formatted HTML. Once we hook up our data in the AutoML

interface, it will also generate an EDA report from Pandas Profiling. See

Figure 9-7.

Figure 9-7.  The “View data exploration notebook” button can be
found on the experiment page

By clicking “View data exploration notebook,” we can also examine

how Databricks uses Pandas profiling to perform EDA. See Figure 9-8.

Figure 9-8.  Data exploration notebook

�Feature Engineering

In most cases, we need to transform raw data into something useful that

the model can use for better predictions. For example, in our flight delay

example, we can compute the percentage of delayed flights by airport or

Chapter 9 Machine Learning Operations Using Databricks

188

airline. We can then save these into a feature store, so other team members

can reuse them and understand how they were built (see Figure 9-9).

Features can also be joined with raw data in AutoML to increase the

accuracy of the prediction.

Figure 9-9.  Features tab in Databricks

A feature table can be registered either by a dataframe or a table.

�Data Exploration at Scale
Let’s look at data exploration at scale.

�Pandas Profiling

Data scientists often need to understand the data distribution to decide

whether the data is useful, whether imputation is required, or, in extreme

cases, whether to exclude specific columns from the model training.

For example, if the column contains all nulls or empty values, it will not

contribute anything to the machine learning model as it cannot learn

anything.

Chapter 9 Machine Learning Operations Using Databricks

189

Pandas Profiling has always been done using the Python pandas

library. The limitation of a Pandas library is that it can run on only one

machine despite a cluster of machines available. The shortcoming is that

the memory will be limited if the process can run on only one machine.

If the dataset cannot fit into the memory, Pandas profiling cannot

generate a report. This often leads to sampling of the data such as df.

sample(fraction=0.5). This often leads to a misrepresentation of the

data distribution. For example, if the sampled rows don’t contain any

nulls, then it will lead to data scientists believing that the column does not

contain nulls.

As of Databricks runtime 14.3 LTS, Databricks will still try to sample

the dataset for profiling and Auto ML. However, as of 2023, YData released

Spark support for the popular profiling library, which keeps the same

interface but takes a Spark Dataframe instead. The following is an example:

https://ydata.ai/resources/ydata-profiling-the-great-debut-

of-pandas-profiling-into-the-big-data-landscape

The Pandas version requires reading Parquet files as Pandas, which is

not optimal because Delta format contains transactions of Parquet. See

Listing 9-1.

Listing 9-1.  Pandas Profiling Sample Usage

import pandas as pd

import databricks.automl_runtime

training_data_path = mlflow.artifacts.download_artifacts(run_id

="a0922defd3b542acb2b4bb0956aeb0bf", artifact_path="data", dst_

path=temp_dir)

df = pd.read_parquet(os.path.join(training_data_path,

"training_data"))

from ydata_profiling import ProfileReport

df_profile = ProfileReport(df,

Chapter 9 Machine Learning Operations Using Databricks

https://ydata.ai/resources/ydata-profiling-the-great-debut-of-pandas-profiling-into-the-big-data-landscape
https://ydata.ai/resources/ydata-profiling-the-great-debut-of-pandas-profiling-into-the-big-data-landscape

190

 correlations={

 "auto": {"calculate": True},

 "pearson": {"calculate": True},

 "spearman": {"calculate": True},

 "kendall": {"calculate": True},

 "phi_k": {"calculate": True},

 "cramers": {"calculate": True},

 �}, title="Profiling Report", progress_

bar=False, infer_dtypes=False)

profile_html = df_profile.to_html()

displayHTML(profile_html)

Spark version—reading the table in Databricks—can preserve the

integrity of Delta format, as shown in Listing 9-2.

Listing 9-2.  YData’s Spark Support

df = spark.table("kaggle.flight_featured_detla")

from ydata_profiling import ProfileReport

df_profile = ProfileReport(df,

 correlations={

 "auto": {"calculate": True},

 "pearson": {"calculate": True},

 "spearman": {"calculate": True},

 "kendall": {"calculate": True},

 "phi_k": {"calculate": True},

 "cramers": {"calculate": True},

 �}, title="Profiling Report",

progress_bar=False,

infer_dtypes=False)

Chapter 9 Machine Learning Operations Using Databricks

191

BREAKING CHANGES

The pandas-profiling package naming was changed to ydata-

profiling.

�Data Summarization Using dbutils

Fortunately, despite not being as comprehensive as Pandas profiling, most

notably missing correlation matrices, starting in Databricks Runtime 9.0,

there’s a summarize feature available under dbutils, which is using Spark

as a compute for the statistics that data scientists requires.

Listing 9-3 shows example usage.

Listing 9-3.  Summarization Function in dbutils

df = spark.table("kaggle.flight_featured_detla")

dbutils.data.summarize(df)

�Feature Store
A feature store is a centralized repository that enables data scientists

to find and share features and also ensures that the same code used to

compute the feature values is used for model training and inference (see

Figure 9-10).

Similar to Unity Catalog, consider this a place where the data scientists

will look for their features. A feature is usually a calculation that has been

tested and agreed upon among the team and provides value. Not only is it

useful to the team, but it can potentially be shared among different models

to save time in the discovery process.

Chapter 9 Machine Learning Operations Using Databricks

192

Figure 9-10.  Databricks feature store

�Why Use Databricks Feature Store?

Databricks Feature Store is fully integrated with other components of

Databricks. Along with Unity Catalog, it provides powerful lineage tracking

for all the features from source data to the model. The following are the

advantages of this out-of-the-box feature store:

•	 Discoverability. The Feature Store UI, accessible from

the Databricks workspace, lets you browse and search

for existing features.

•	 Lineage. When you create a feature table in Databricks,

the data sources used to create the feature table are

saved and accessible. For each feature in a feature

table, you can also access the models, notebooks, jobs,

and endpoints that use the feature.

•	 Integration with model scoring and serving.

When you use features from Feature Store to train a

model, the model is packaged with feature metadata.

When you use the model for batch scoring or online

inference, it automatically retrieves features from

Feature Store. The caller does not need to know about

them or include logic to look up or join features to

score new data. This makes model deployment and

updates much easier.

Chapter 9 Machine Learning Operations Using Databricks

193

•	 Point-in-time lookups. Feature Store supports time

series and event-based use cases that require point-in-

time correctness. For deep dive into time-series tables,

please refer to the following documentation:

https://docs.databricks.com/en/machine-learning/

feature-store/time-series.html#how-time-series-

feature-tables-work

To create a feature table in the feature store, it is possible either with a

delta table or with a Spark dataframe. Bear in mind that if your table requires

a primary key, you can use the syntax in Listing 9-4 to add a primary key.

Listing 9-4.  Syntax to Add a Primary Key

ALTER TABLE <full_table_name> ADD CONSTRAINT <pk_name> PRIMARY

KEY(pk_col1, pk_col2, ...)

The main class to be used is called FeatureEngineeringClient, as

shown in Listing 9-5.

Listing 9-5.  FeatureEngineeringClient Class

from databricks.feature_engineering import

FeatureEngineeringClient

fe = FeatureEngineeringClient()

To register a feature table with an existing delta table, see Listing 9-6.

Listing 9-6.  Registering a Delta Table as a Feature Table

fe.register_table(

 delta_table='kaggle.flight_featured_detla',

 primary_keys='flight_id',

 description='Flight features'

)

Chapter 9 Machine Learning Operations Using Databricks

https://docs.databricks.com/en/machine-learning/feature-store/time-series.html#how-time-series-feature-tables-work
https://docs.databricks.com/en/machine-learning/feature-store/time-series.html#how-time-series-feature-tables-work
https://docs.databricks.com/en/machine-learning/feature-store/time-series.html#how-time-series-feature-tables-work

194

To create a feature table with a dataframe, see Listing 9-7.

Listing 9-7.  Writing a Feature Table Using Dataframe

fe.write_table(

 name='kaggle.flight_featured_detla',

 df = flight_features_df,

 mode = 'overwrite'

)

Refer to the Feature Engineering Python API for comprehensive usage

information:

https://api-docs.databricks.com/python/feature-engineering/

latest/index.html

Finally, we can either look up a feature with the Python API or leverage

AutoML, and then we can join features in the feature store easily. In the

next section, we will discuss how to create an AutoML experiment (see

Figure 9-11).

Figure 9-11.  Joining a feature table in AutoML experiment

Chapter 9 Machine Learning Operations Using Databricks

https://api-docs.databricks.com/python/feature-engineering/latest/index.html
https://api-docs.databricks.com/python/feature-engineering/latest/index.html

195

�Model Building
Let’s talk about model building.

�Model Training

As mentioned, the next most time-consuming task after careful feature

engineering is to train and tune your model and sometimes carefully

select its algorithm or architecture to achieve the best accuracy while

making predictions. With Databrick’s AutoML, we can seamlessly select

the data from the Data tab, allowing it to perform hundreds of selections

automatically and saving data scientists hours of effort to build these from

scratch.

Of course, the best way to learn how to build a model within

Databricks is through Databricks. That makes the Glass Box AutoML an

attractive approach to start with.

While AutoML does not solve all the machine learning problems in

the world, it does, however, provide a framework that can solve some very

typical machine learning problems, saving data scientists time to gain

insight into the quality of the models that can be built with the dataset.

The following ML problem types are supported by Databricks AutoML

(Figure 9-12):

•	 Classification

	 Classification allows you to assign each observation to

one of a discrete set of classes, such as good credit risk

or bad credit risk.

•	 Regression

	 Regression allows you to predict a continuous numeric

value for each observation, such as annual income.

Chapter 9 Machine Learning Operations Using Databricks

196

•	 Forecasting

	 Time-series forecast allows you to predict a future value

based on a hierarchy, for example a future store sale in

each city of each state in the United States.

Figure 9-12.  ML problem types in AutoML

As shown in Table 9-1, the interface contains only a few drop-downs

and is fully integrated with the feature tables and the Delta tables created

and persisted on the Data tab. The next step is to choose a prediction

target. Finally, we can also choose how to handle imputation, a process

of handling nulls in the dataset. Auto ML will then handle the rest of the

model selection, hyperparameters tuning, and presenting the results along

with the notebook.

Table 9-1 illustrates how many different algorithms Databricks

will try in each ML problem type. In our example, we are using

Classification models.

Chapter 9 Machine Learning Operations Using Databricks

197

Table 9-1.  Databrick Algorithms

Classification
Models

Regression Models Forecasting Models

Decision trees Decision trees Prophet

Random forests Random forests Auto-ARIMA (available in

Databricks Runtime 10.3 ML

and above)

Logistic regression Linear regression with

stochastic gradient descent

XGBoost XGBoost

LightGBM LightGBM

Next, we can configure our experiment by choosing the training

dataset and the target variable (see Figure 9-13). We can also configure

how we want to treat null values, which is often referred to as imputation.

Please ensure that you have selected a machine learning runtime-enabled

cluster for the experiment, which is often an oversight.

Chapter 9 Machine Learning Operations Using Databricks

https://scikit-learn.org/stable/modules/tree.html#classification
https://scikit-learn.org/stable/modules/tree.html#regression
https://facebook.github.io/prophet/docs/quick_start.html#python-api
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://pypi.org/project/pmdarima/
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/sgd.html#regression
https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier
https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRegressor
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html

198

Figure 9-13.  Databrick’s AutoML interface

Finally, we can run the training and wait for the magic to happen.

Please note that by no means does Databricks AutoML try to produce

a production-grade model because it aims to simplify the process of

parameter search, and most importantly, if the dataset is too large, it will

try to take a sample of the dataset (Figure 9-14). If there is a need to train

a huge dataset, we can consider using distributed training. The details are

beyond the scope of this book, but the documentation can be found on

Databricks’ website:

https://docs.databricks.com/en/machine-learning/train-model/

distributed-training/index.html

Chapter 9 Machine Learning Operations Using Databricks

https://docs.databricks.com/en/machine-learning/train-model/distributed-training/index.html
https://docs.databricks.com/en/machine-learning/train-model/distributed-training/index.html

199

Figure 9-14.  AutoML will automatically select the top 100 most
relevant results

�Validation

Before we deploy the model to production, we need to validate the model

with test dataset. We would usually split the data into a training set and

a test set with ratios like 70/30 split or 80/20 split. We can do random

split, or splitting based on a business key, aka stratified split. Some more

advanced approaches can include training/validation/test split with the

validation is used for hyperparameters tuning, and until after the final

model is decided, we can evaluate the model with a test set. We can split

into 60/20/20 for train/val/test in these scenarios. AutoML uses the latter

approach for splitting.

In Databricks Runtime 10.1 ML and above, we can specify a

time column for splitting for classification and regression problems.

This provides flexibility when some problems are highly based on

chronological order.

Chapter 9 Machine Learning Operations Using Databricks

200

�Deploy Model
Let’s talk about the deploy model.

�Deployment

Once you have verified the champion model’s parameters and metrics and

you are ready to take the next step to deploy this model for further review

with stakeholders, you can register the model right from the experiment.

For best practices, you should always register your mode in Unity Catalog,

as shown in Figure 9-15 and Figure 9-16.

Figure 9-15.  Model overview page in an experiment

Chapter 9 Machine Learning Operations Using Databricks

201

Figure 9-16.  Model registration

Databricks model registry provides a portal to manage our models’

versions, tag them, and create a model-serving endpoint right from the

model. All these models are registered using MLflow. See Figure 9-17 and

Figure 9-18.

Chapter 9 Machine Learning Operations Using Databricks

202

Figure 9-17.  Models tab in Databricks UI

Figure 9-18.  Registered models in Databricks

�Model Serving/Inferencing

On the Models tab, we can also create an API endpoint, aka serve the

model, for external consumption (Figure 9-19). This will generate a REST

API endpoint, allowing the model to be easily accessed externally using

Python or other programming languages.

Chapter 9 Machine Learning Operations Using Databricks

203

Figure 9-19.  Model Serving and inferencing

Unity Catalog tightly integrates with Lakehouse Monitoring, so it is

recommended that an inference table be set up for output (Figure 9-20).

Figure 9-20.  Set up model inference tables

Once a serving endpoint is created, we can query it. The “Query

endpoint” button on the top right of the page will show us the exact

commands to call the API (Figure 9-21). This API will generate inference

results and save into the table shown, in our case, unitygo.default.

flight_delay_output_payload. Databricks will always append _payload

for the inference table.

Chapter 9 Machine Learning Operations Using Databricks

204

Figure 9-21.  Query endpoint button in a served endpoint

To summarize, here is how the workflow looks:

	 1.	 Enable inference tables on your endpoint, as in

Figure 9-20.

	 2.	 Schedule a workflow to process the JSON payloads

using the code in the Query Endpoint button, as in

Figure 9-21.

	 3.	 (Optional) Join the unpacked requests and

responses with ground-truth labels to allow model

quality metrics to be calculated.

	 4.	 Create a monitor over the resulting Delta table and

refresh the metrics by using Lakehouse Monitoring,

which we will discuss next.

�Monitoring

ML models are never built once and run forever. So, we do need to retrain

our models. The question is when we need to retrain. Some people decide

to train the model daily, but a more reactive approach is to detect data drift

and trigger a retrain when it happens. Simply put, data drift is the change

in input data that causes the model’s performance to degrade over time.

This can be caused by missing data in the pipeline, for example. With Unity

Chapter 9 Machine Learning Operations Using Databricks

205

Catalog, Databricks provides out-of-the-box Lakehouse Monitoring, which

includes drift detection, that leverages the SQL workspace to build a drift

monitoring dashboard. Additionally, triggers can be set up to retrain a

model when drift happens.

Next we will dive into Lakehouse Monitoring, a powerful monitoring

product that comes with no cost to Databricks customers.

�Lakehouse Monitoring

Your table must be Unity Catalog enabled to use Lakehouse Monitoring.

Otherwise, the monitoring option will not be visible. While everything in

Databricks can be configured with code, the easiest way to get started is via

the user interface. We can navigate to the Quality tab in any UC-enabled

table and set up a monitor. Please note that only one type of monitoring

can be set up in any given table. See Figure 9-22 and Figure 9-23.

Figure 9-22.  Setting up Lakehouse Monitoring

Chapter 9 Machine Learning Operations Using Databricks

206

Figure 9-23.  Creating a monitor using Lakehouse Monitoring

Here are the options available when setting up a monitor in Lakehouse

Monitoring:

Snapshot profile: Designed for basic quality metrics

for any table at a snapshot in time. While Delta

Live Tables (DLT) comes with basic expectations,

a snapshot profile is similar to the data profiling

function in dbutils for exploratory data analysis

over time.

Time series profile: This isn’t talking about a time

series forecast but rather determining data drift

occurrence given a timestamp column. The drift

analysis metrics are shown in Table 9-2.		

Chapter 9 Machine Learning Operations Using Databricks

207

Table 9-2.  AI Model Monitoring Metrics

Column Name Type Description

chi_squared_

test

struct<statistic:

double, pvalue:

double>

Chi-square test for drift in

distribution.

ks_test struct<statistic:

double, pvalue:

double>

KS test for drift in distribution.

Calculated for numeric columns

only.

tv_distance double Total variation distance for drift in

distribution.

l_infinity_

distance

double L-infinity distance for drift in

distribution.

js_distance double Jensen–Shannon distance for

drift in distribution. Calculated for

categorical columns only.

wasserstein_

distance

double Drift between two numeric

distributions using the Wasserstein

distance metric.

population_

stability_

index

double Metric for comparing the drift

between two numeric distributions

using the population stability index

metric.

Inference profile: This is designed to measure

classification and regression influence results

like precision and recall and R2 scores. Currently,

data scientists need to maintain the codebase

to calculate these numbers, and each team will

try to use a different library depending on what

Chapter 9 Machine Learning Operations Using Databricks

208

model they are using. Databricks’ approach is

model agnostic and is calculated completely based

on an inference table. On top of that, it includes

fairness and biases, which is a baby step forward

to Responsible AI. The metrics include predictive

parity, predictive equality, equal opportunity, and

statistical parity. See Figure 9-24.

Figure 9-24.  Microsoft’s Responsible AI standards

All of these profilers can detect PII in the data using AI, and sensitive

columns will be tags as PII in the catalog.

�Why Profiling?

When building an ML model, it is critical to understand the statistics in

every stage of the process. For example, if a column contains lots of nulls, it

will not be suitable to be included in the model as it will not provide a lot of

values, and it will further degrade the training and inference performance.

Chapter 9 Machine Learning Operations Using Databricks

209

Data drift is a concept that determines whether model retraining

is required. Most of the time ML models are not trained once and run

forever. For example, ChatGPT usually comes with a knowledge cutoff

time. That’s because, like humans, ML models also need to get up-to-date

with their knowledge to make better decisions or predictions. There are

many different ways to measure drift, and calculating these drift metrics at

scale is often very challenging.

Finally, by monitoring the model metrics like F1 and R2 over time, we

will also know when a model retrain or refactor is required. In the case of

retraining with more data that does not improve the model metrics, it is

time to refactor the model to provide more high-quality data, which goes

back to the need to monitor the data drift and understand the statistical

distribution of the raw data. See Figure 9-25.

Figure 9-25.  Lakehouse Monitoring table schema

Lakehouse Monitoring provides a one-stop interface for setting up all

these statistics and storing them in different tables so they can be reused.

Dashboards are also created for ease of visualization and quick insights,

saving teams numerous hours of research and development effort. See

Figure 9-26 and Figure 9-27.

Chapter 9 Machine Learning Operations Using Databricks

210

To learn more about the monitoring metrics tables, please visit the

documentation here:

https://docs.databricks.com/en/lakehouse-monitoring/monitor-

output.html

Figure 9-26.  Lakehouse Monitoring report #1

Chapter 9 Machine Learning Operations Using Databricks

https://docs.databricks.com/en/lakehouse-monitoring/monitor-output.html
https://docs.databricks.com/en/lakehouse-monitoring/monitor-output.html

211

Figure 9-27.  Lakehouse Monitoring report #2

Databricks Lakehouse Monitoring is a framework that enables a self-

serve data platform with proactive issue management.

•	 Auto-Generated Reports

	 Share quality updates organization-wide with auto-

generated dashboards, and use ready-made metrics

and analytics tools for easy issue exploration in your

data products.

•	 Unified Monitoring

	 Monitor the quality of all data products with a single

tool, regardless of the framework or platform used

to build them. Merge quality and business metrics

effortlessly in your lakehouse to gauge your data

products’ impact.

Chapter 9 Machine Learning Operations Using Databricks

212

•	 Automated Root Cause Analysis

	 Catch data product issues before they reach consumers

with cost-effective “insurance.” Boost efficiency with

smart automation in your data and AI pipelines,

avoiding unnecessary retraining.

�Deep Dive into Lakehouse Monitoring Output Tables

YData profiling (formerly Pandas profiling) and the summarize command

provide invaluable insights for data scientists to analyze datasets with

Spark compute, yet it doesn’t give you access to the raw data in a table

format. The importance of getting this data into a reusable format

includes:

–– Setting up custom alerts: When including basic statistics

in a data drift report, we can trigger an alert to re-train

a model.

–– Creating reports beyond the given interface: Rarely does

any team not have an existing dashboard, so integrating

the analysis into an existing dashboard, like Power BI

and Tableau, is an important part of the team process.

–– Comparing statistics between two different tables (with

Spark): Often we want an efficient way to compare the

differences between two different tables. While YData

profiling provides capabilities in Pandas to compare

two different datasets, it currently does not support

using Spark. On the other hand, the dbutils command

does not allow comparing two different datasets.

–– Keeping track of historical differences: Understanding

the trend of the data allows the team to understand if

Chapter 9 Machine Learning Operations Using Databricks

213

there is missing data due to source issues or incomplete

data pull. For example, if there is a job that was rerun

but produced fewer rows than it used to have or the

standard deviation compared to the last month

dropped drastically compared to historical runs, it

would be important to understand the root cause in

case it impacted the model.

Figure 9-28 illustrates input tables versus generated tables as well as

the relationship between generated tables and the dashboard.

Figure 9-28.  Lakehouse Monitoring tables relationships

Consider if we wanted to monitor the table nyctaxi_trips, a baseline

table can also be specified optionally to measure drift. Lakehouse

Monitoring will generate two new tables automatically:

•	 nyctaxi_trips_drift_metrics

•	 nyctaxi_trips_profile_metrics

Chapter 9 Machine Learning Operations Using Databricks

214

Figure 9-29 illustrates the output table in Unity Catalog.

Figure 9-29.  Lakehouse Monitoring tables that were being generated

These tables contain a lot of information. To examine it closely, please

refer to the documentation from Databricks website:

https://docs.databricks.com/en/lakehouse-monitoring/monitor-

output.html#column-schemas-for-generated-tables

The usage of these tables is also fully transparent. Databricks generates

all the queries and uses them in the Databricks Dashboard—everything

can be found in the workspace. This approach is essentially similar to the

Glass Box Auto ML approach—it will save weeks of development time for

teams that want to kick off an ML monitoring project.

The help you get started, Databricks has created sample notebooks,

including the datasets and models for Lakehouse Monitoring:

https://docs.databricks.com/en/lakehouse-monitoring/create-

monitor-api.html#example-notebooks

Figure 9-30 shows examples of queries and dashboard generated by

Lakehouse Monitoring.

Chapter 9 Machine Learning Operations Using Databricks

https://docs.databricks.com/en/lakehouse-monitoring/monitor-output.html#column-schemas-for-generated-tables
https://docs.databricks.com/en/lakehouse-monitoring/monitor-output.html#column-schemas-for-generated-tables
https://docs.databricks.com/en/lakehouse-monitoring/create-monitor-api.html#example-notebooks
https://docs.databricks.com/en/lakehouse-monitoring/create-monitor-api.html#example-notebooks

215

Figure 9-30.  Objects created by Lakehouse Monitoring; everything is
open source

�MLOps Best Practices
Building an ML model is rarely a single-person effort. Even if a single data

scientist is working on model building, they will require collaboration

with other people. Often, best practices must be shared across the team so

there is no difference to the ML pipeline on every model. If best practices

are followed, working across the team will save time without repeatedly

learning the code base on every single model. Hence, learning from our

experience, Databricks has open-sourced the internal best practices to

develop an ML model, called the MLOps stack.

https://github.com/databricks/mlops-stacks

Chapter 9 Machine Learning Operations Using Databricks

https://github.com/databricks/mlops-stacks

216

The architecture diagram in Figure 9-31 represents the process

from development to deployment for an ML model. There are three

components provided in the repo:

•	 ML Code: Example ML project structure (training and

batch inference, etc.), with unit-tested Python modules

and notebooks

•	 ML Resources as Code: ML pipeline resources

(training and batch inference jobs, etc.) defined

through Databricks CLI bundles

•	 CI/CD (GitHub Actions or Azure DevOps): GitHub

Actions or Azure DevOps workflows to test and deploy

ML code and resources

Figure 9-31.  Databricks’ MLOps stack

By leveraging Databricks’ best practices, teams can focus on

generating business values from their ML model rather than dealing with

infrastructure setup. The three items can be grouped into two major parts,

Chapter 9 Machine Learning Operations Using Databricks

217

which is CI/CD and ML Project. We will focus on the ML Project portion

in this chapter and look at the CI/CD portion later in Chapter 15. See

Figure 9-32.

Figure 9-32.  Databricks’ MLOps stack

Once we have initialized the MLOps stack with databricks bundle

init mlops-stacks and choose the Project Only option, the CLI will

create template folder structures along with an NYC ML example in the

folders so we can follow the code. Figure 9-33 shows what the folder

structure look like, but as the project continues to evolve. The exact project

details can be found in the README.md file under the main project folder.

Figure 9-33.  Suggested project structure

Chapter 9 Machine Learning Operations Using Databricks

https://doi.org/10.1007/979-8-8688-0444-1_15

218

With the provided sample notebooks, teams can use source control to

develop their ML model and deploy via the Git actions provided, saving

time to re-developing reusable standards and focusing on producing

business values.

�Conclusion
In this chapter, we spent a lot of time taking an ML model from

development to production because data scientists need to spend time

coding up the model and then tuning the models. In between they also

need to work closely with data engineers and ML engineers to ensure they

are getting the latest data and deploying the latest model for testing.

When using Databricks’ Glass Box Auto ML approach along with other

toolsets like feature stores, data scientists can now speed up their process

of getting to a baseline model, which is an important milestone to evaluate

the effectiveness of the input data. Then they can leverage the code

generated to build a production model while seamlessly collaborating with

data engineers and ML engineers using the intuitive interfaces.

Databricks has recently taken the ML model building to the next level.

While many tools out there can manage the MLOps life cycle, Databricks

is the only platform that allows a team of data experts to work together

seamlessly without having to jump through multiple hoops of toolsets.

Chapter 9 Machine Learning Operations Using Databricks

219© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_10

CHAPTER 10

Generative AI
with Databricks
Ever since ChatGPT was released to the public, there has been no shortage

of interest in chatbots or generative artificial intelligence (GenAI). But what

exactly is GenAI, and how does Databricks come into the picture? And how

it can help organizations deploy their own chatbot or develop their own

GenAI applications? In this chapter, we will first learn the concepts around

GenAI. Then we will discuss how Databricks and the newly acquired

company Mosaic ML will work together and transform the industry once

more. This chapter lays some background regarding the journey of GenAI

and introduces the Databricks offering in the GenAI space.

�What Is Generative AI?
According to Gartner:

“Generative AI can learn from existing artifacts to generate
new, realistic artifacts (at scale) that reflect the characteristics
of the training data but don’t repeat it. It can produce a
variety of novel content, such as images, video, music, speech,
text, software code and product designs.”

https://doi.org/10.1007/979-8-8688-0444-1_10#DOI

220

Generative AI uses several techniques that continue to evolve.

Foremost are AI foundation models, which are trained on a broad set of

unlabeled data that can be used for different tasks, with additional fine-

tuning. Complex math and enormous computing power are required

to create these trained models, but they are, in essence, prediction

algorithms.

Today, generative AI most commonly creates content in response to

natural language requests—it doesn’t require knowledge of or entering

code—but the enterprise use cases are numerous and include innovations

in drug and chip design and material science development.

Figure 10-1 explains how generative AI and ChatGPT are different.

From a very high level, generative AI is a technique that tries to generate

some new content by learning from vast amounts of similar content. For

example, when trying to generate English language content, it could have

trained on all the text on Wikipedia to start with. However, that’s just an

understatement. With that said, not something every household would

have access to the resources required to train these models, despite the

number of models increasing by the day. As a result, similar to transfer

learning, a lot of data scientists would use so-called foundation models to

enhance the AI with some internal knowledge.

The enhancement process can be done via retrieval augmented

generation (RAG) or fine-tuning. There is a fundamental difference

between the two. RAG is trying to optimize the data, whereas fine-tuning

is trying to optimize the model. We will discuss both these in greater detail

later in the chapter.

Finally, if resources are available and the goal is to train a fully domain

specific model without bias, Mosaic ML’s training platform will help you do

that albeit at a much reduced cost. The results of these are large language

models (LLMs). ChatGPT is an application created on top of the LLMs to

serve as a chatbot, providing an intuitive interface for the general public to

use. But then on the other hand, in the case of GenAI, we might think that

the larger the model the better, but in fact this is not the case. The world

Chapter 10 Generative AI with Databricks

221

is still learning how to optimize the data for optimized throughput of the

tasks required. An excellent example is Databricks’ bespoke LLM model

for auto-documentation generation, which costs about $1,000 to train.

Figure 10-1 is a quick reference to these standard terms.

Figure 10-1.  Differences between AI models (source: https://www.
gartner.com/en/insights/generative-ai-for-business)

�Databricks Generative AI
Databricks provides a lot of tools for you to take control in model

training all the way to governing the model. Figure 10-2 illustrates all the

capabilities that Databricks provides for organizations to use and build

their next GenAI use case.

Chapter 10 Generative AI with Databricks

https://www.gartner.com/en/insights/generative-ai-for-business
https://www.gartner.com/en/insights/generative-ai-for-business

222

Figure 10-2.  Databricks’ generative AI offerings

In this chapter, we will examine the basic out-of-the-box features that

Databricks provides, and then in subsequent chapters, we will discuss how

you can leverage all the advanced tools to enhance your GenAI offering.

While we will discuss the details in later chapters, here are the high-

level functionalities of each stack:

•	 Build: This includes the Mosaic AI stack to refine an

LLM either through RAG or fine-tuning.

•	 Evaluate: This is part of the AI Agent framework to

allow evaluation with metrics as well as getting peer

feedback.

•	 Deploy: There is a one-line command to deploy a

nonproduction app for a user acceptance test.

•	 Govern: There is an extension of MLflow to manage

internal and external LLM APIs.

Chapter 10 Generative AI with Databricks

223

�The GenAI Journey
With GenAI dominating the world now, many organizations start by

allowing their employees to play around with these models. To combine

the data from within the organization, some of them with more budget

want to train a model of their own from scratch. While others keep the

model for use within their organization, some also decide to open up their

model to the world and become foundation models.

Figures 10-3 and 10-4 present two different views of this journey.

Figure 10-3 represents the journey or maturity an organization can get

with GenAI. From the left, we have prompt engineering, then retrieval

augmented generation, fine-tuning, and, lastly, pre-training.

Figure 10-3.  The GenAI journey

While these building blocks are available, not every organization will

need to reach the last step of pre-training due to the computation, aka

cost, as well as complexity, aka expert knowledge, required to reach

the next level. Figure 10-4 illustrates this idea in another way. Note that

pre-training is the most time-consuming and complex process. We will

walk you through the journey, but before you decide to move to the next

step, it is best to consider the trade-off between time and cost as well as

whether experts are available to validate the results.

Chapter 10 Generative AI with Databricks

224

Figure 10-4.  Alternate aspect of the GenAI journey with time and
complexity involved

�Prompt Engineering
Prompt engineering is the art of asking the right questions to get the best

output from a language model (LLM) using plain-language prompts. It

enables direct interaction with the LLM, allowing you to communicate

with it using only natural language instructions. In the past, working

with machine learning models typically required deep knowledge of

datasets, statistics, and modeling techniques. However, today, LLMs can

be “programmed” in English and other languages, making them more

accessible to a broader audience.

Here are some key points about prompt engineering:

•	 Best Practices for Prompting:

•	 Clear communication: Clearly communicate what

content or information is most important.

•	 Structured prompts: Structure your prompts by

starting with the role or context, followed by input

data and then the instruction.

Chapter 10 Generative AI with Databricks

225

•	 Varied examples: Use specific and varied examples

to help the model narrow its focus and generate

accurate results.

•	 Constraints: Use constraints to limit the scope of

the model’s output and prevent factual inaccuracies.

•	 Break down complex tasks: Divide complex tasks

into a sequence of simpler prompts.

•	 Self-evaluation: Instruct the model to evaluate or

check its own responses before producing them.

•	 Creativity: Be creative! The more open-minded

and creative you are, the better your results will be.

•	 Types of Prompts:

•	 Direct prompting (zero-shot): The simplest type

of prompt that provides only an instruction without

examples.

•	 Example: “Can you give me a list of ideas for

blog posts for tourists visiting New York City for

the first time?”

•	 Role prompting: Assign a role to the model and ask

it to understand your goals and objectives before

designing a prompt.

•	 Example: “You are a mighty and powerful

prompt-generating robot. Design a prompt for

the best outcome based on the context and data

provided.”

•	 Chain-of-thought prompting: Break down

complex tasks into a sequence of simpler prompts.

Chapter 10 Generative AI with Databricks

226

Remember, being a great prompt engineer doesn’t require coding

experience. Creativity and persistence will benefit you greatly on your

journey in this evolving field of LLMs and prompt engineering12.

�Mosaic AI Playground
Riding on the wave of generative AI, many corporations have released

foundation large language models. However, without background in

programming, it is difficult to use these models. Databricks has optimized

a few models and curated in the “Playground” section for experimentation,

providing a standard interface to interact with these models. It is also an

interactive environment where users can simultaneously experiment and

“chat” with various large language models and compare results.

The curated models include the following:

–– Llama2 70B Chat

Llama-2-70B-Chat is a state-of-the-art 70B

parameter language model with a context length of

4,096 tokens, trained by Meta. It excels at interactive

applications that require strong reasoning

capabilities, including summarization, question-

answering, and chat application

–– Mixtral-8x7B Instruct

Mixtral-8x7B Instruct is a high-quality sparse

mixture of experts model (SMoE) trained by Mistral

AI. Mixtral-8x7B Instruct can be used for a variety of

tasks such as question-answering, summarization,

and extraction.

Chapter 10 Generative AI with Databricks

227

–– MPT 30B Instruct

MPT-7B-8K-Instruct is a 6.7B parameter model

trained by MosaicML for long-form instruction

following, especially question-answering on and

summarization of longer documents. The model is

pre-trained for 1.5T tokens on a mixture of datasets,

and fine-tuned on a dataset derived from the

Databricks Dolly-15k and the Anthropic Helpful and

Harmless (HH-RLHF) datasets. The model name

you see in the product is mpt-7b-instruct, but the

model specifically being used is the newer version of

the model.

–– MPT 7B Instruct

MPT-30B-Instruct is a 30B parameter model for

instruction following trained by MosaicML. The

model is pre-trained for 1T tokens on a mixture of

English text and code, and then further instruction

fine-tuned on a dataset derived from Databricks

Dolly-15k, Anthropic Helpful and Harmless (HH-

RLHF), CompetitionMath, DuoRC, CoT GSM8k,

QASPER, QuALITY, SummScreen, and Spider

datasets.

https://learn.microsoft.com/en-us/azure/

databricks/machine-learning/foundation-

models/supported-models

Chapter 10 Generative AI with Databricks

https://learn.microsoft.com/en-us/azure/databricks/machine-learning/foundation-models/supported-models
https://learn.microsoft.com/en-us/azure/databricks/machine-learning/foundation-models/supported-models
https://learn.microsoft.com/en-us/azure/databricks/machine-learning/foundation-models/supported-models

228

�Use Cases
Out of the box, Databricks provides four different use cases in the

playground, but large language models are not limited to these four

use cases. Users can chat with these models and get responses from the

prompt window.

�Sentiment Analysis

You will be provided with a tweet, and your task is to classify its sentiment

as positive, neutral, or negative.

Example:
Input: The new Spiderman movie was meh

Output: Sentiment: Neutral

�Unstructured Text Parsing

You will be provided with unstructured data, and your task is to parse it

into JSON format.

Example:
Input: Advanced Micro Devices, Inc. is an American multinational

semiconductor company based in Santa Clara, California, that develops

computer processors and related technologies for business and consumer

markets. The company was founded in 1969 by Jerry Sanders and a group

of other technology professionals

Output: { “name”: “Advanced Micro Devices, Inc.”, “location”: “Santa

Clara, California”, “founders”: [“Jerry Sanders”], “founding_year”: 1969,

“products”: [“computer processors”, “related technologies”], “markets”:

[“business”, “consumer”] }

Chapter 10 Generative AI with Databricks

229

�Summarization

You will be provided with a document and asked to summarize it.

Example:
Input: Copy activity supports Azure Databricks Delta Lake connector

to copy data from any supported source data store to Azure Databricks

delta lake table, and from delta lake table to any supported sink data store.

It leverages your Databricks cluster to perform the data movement, see

details in Prerequisites section.

Output:

	 1.	 The copy activity in a data integration tool supports

the use of the Azure Databricks Delta Lake

connector.

	 2.	 This feature enables data copying from any

supported source data store to an Azure Databricks

delta lake table, and from the delta lake table to any

supported sink data store.

	 3.	 The copy activity utilizes a user's Databricks cluster

to perform data movement.

	 4.	 Users should refer to the Prerequisites section for

further details and requirements.

�Document Q&A

You will be provided with a document and asked a question about it.

Example:
Document:
Farm Utility Exemption Notice

The full text can be found on this website due to its length:

https://www.dfa.arkansas.gov/images/uploads/exciseTaxOffice/

et1441.pdf

Chapter 10 Generative AI with Databricks

https://www.dfa.arkansas.gov/images/uploads/exciseTaxOffice/et1441.pdf
https://www.dfa.arkansas.gov/images/uploads/exciseTaxOffice/et1441.pdf

230

Question: Is a greenhouse a qualifying agricultural structure?

Answer: Yes, a greenhouse is a qualifying agricultural structure

according to the document. It is listed under C of the definition of

qualifying agricultural structures as a greenhouse used for commercial

production.

While the playground allows developers to play around with the model

use cases, behind the scenes it is using Databricks’ serverless technology

to power the LLM API. You can use the UI, the Foundation Models APIs,

the Python SDK, the MLflow Deployments SDK, or the REST API to query

supported models. The APIs are compatible with OpenAI, so you can even

use the OpenAI client for querying.

�Retrieval Augmented Generation
While ChatGPT democratized LLM-based chatbots for consumer use,

companies need to deploy personalized models that meet needs like the

following:

•	 Privacy requirements on sensitive information

•	 Preventing hallucination

•	 Specialized content, not available on the Internet

•	 Specific behavior for customer tasks

•	 Control over speed and cost

•	 Deploy models on private infrastructure for

security reasons

To accomplish this, organizations often need to provide internal

documents to ground the model with truth. This process requires

converting context into something called embeddings. Embeddings are

mathematical representations (vectors) of the semantic content of data,

Chapter 10 Generative AI with Databricks

231

typically text or image data. Depending on the use case, there are many

ways to generate embeddings. But in the case of GenAI, embeddings

are generated by a large language model, for example, BAAI’s BGE-

Large-EN (https://huggingface.co/BAAI/bge-large-en). They are

a key component of many GenAI applications that depend on finding

documents or images that are similar to each other.

Figure 10-5 illustrates how we can convert a knowledge graph to

embeddings, where the nodes can be viewed as internal documents and

the edges can be viewed as references. You can see each component of the

input graph is converted to a numeric calculation, and these numbers are

helpful for machine learning or GenAI tasks.

Figure 10-5.  Representation of embedding from a knowledge graph
(source: https://en.wikipedia.org/wiki/Knowledge_graph_
embedding)

Figure 10-6 gives a sample workflow using LangChain to connect

the document embeddings to Databricks’ vector index and sync with

Databricks’ vector database. An application can then be built over this

architecture. Later in this chapter, we will introduce Mosaic AI Agent
Framework, an offering by Databricks to deploy the LLM application for

evaluation with ML Flow LLM Judges or expert users.

Chapter 10 Generative AI with Databricks

https://huggingface.co/BAAI/bge-large-en
https://en.wikipedia.org/wiki/Knowledge_graph_embedding
https://en.wikipedia.org/wiki/Knowledge_graph_embedding

232

Figure 10-6.  AI Agent workflow with Dataricks vector database
(source: https://medium.com/@tsiciliani/using-ai-agents-
with-databricks-vector-search-8b688d7ed41a)

As the data volume increases, it has become increasingly hard

to optimize the performance of large data applications. To solve the

performance issues, Databricks has released a suite of tools so developers

can focus on developing the pipeline to achieve higher quality rather than

worrying about performance tuning and maintaining infrastructure. These

tools include the following:

•	 Fully managed foundation models providing pay-per-
token base LLMs.

	 The first step of our LLM workflow is to generate

embeddings, either based on text or binaries.

The Databricks Foundation Model API provides

performance guarantees for some foundation models

for different use cases. In the case of embedding, BGE

Large (English) is provided with an API interface,

Chapter 10 Generative AI with Databricks

https://medium.com/@tsiciliani/using-ai-agents-with-databricks-vector-search-8b688d7ed41a
https://medium.com/@tsiciliani/using-ai-agents-with-databricks-vector-search-8b688d7ed41a

233

so developers can calculate the embedding at scale.

Table 10-1 lists some of the foundation models that

come out of the box from Databricks. They can be used

as an API endpoint without acquiring any compute,

simplifying the deployment requirements.		

Table 10-1.  Databricks Foundation Model API

Model Task type Endpoint

DBRX Instruct Chat databricks-dbrx-instruct

Meta-Llama-3-70B-Instruct Chat databricks-meta-llama-3-70b-

instruct

Meta-Llama-2-70B-Chat Chat databricks-llama-2-70b-chat

Mixtral-8x7B Instruct Chat databricks-mixtral-8x7b-

instruct

MPT 7B Instruct Completion databricks-mpt-7b-instruct

MPT 30B Instruct Completion databricks-mpt-30b-instruct

GTE Large (English) Embedding databricks-gte-large-en

BGE Large (English) Embedding databricks-bge-large-en

•	 A vector search service to power semantic search
on existing tables in your lakehouse.

	 A vector database is a specialized database to store

embeddings. To ensure the performance is guaranteed,

a vector index will be created for a specific column.

Databricks Vector DB will either calculate the

embeddings for you if it is a text column in a delta

table or will sync the embeddings to an index if it is

generated by binaries when the values are stored in a

delta table or API can be used to sync the index if no

Chapter 10 Generative AI with Databricks

234

table is provided. Either way, embeddings will need to

be present in a highly performant and scalable format

to perform similarity search.

In summary, Databricks provides multiple types of vector search

indexes (see Figure 10-7).

•	 Managed embeddings: These provide a text column

and endpoint name, and Databricks synchronizes the

index with your Delta table.

•	 Self-managed embeddings: You compute the

embeddings and save them as a field of your Delta

table; Databricks will then synchronize the index.

•	 Direct index: When you want to use and update the

index without having a Delta table.

Figure 10-7.  Databricks vector search index types

Chapter 10 Generative AI with Databricks

235

�Similarity Search: The Magic Behind the Scenes
In the previous section, we discussed that vector search is based on the

similarity algorithm. The text is first encoded into some vector form,

and the similarity between the question and answer will be measured to

give the best answer. Cosine similarity (Figure 10-8) or dot product is an

algebraic operation that takes two equal-length sequences of numbers

(usually coordinate vectors) and returns a single number. When the result

is 0, it is completely different; whereas when the result is 1, it is identical.

Vector DB uses this function to search for relevant documents to answer a

specific question.

Figure 10-8.  Cosine similarity

Mosaic AI Vector Search does not use cosine similarity. However,

according to Databricks, Mosaic AI Vector Search uses the Hierarchical

Navigable Small World (HNSW) algorithm for its approximate nearest

neighbor searches and the L2 distance metric to measure embedding

vector similarity. If you want to use cosine similarity, you need to

normalize your datapoint embeddings before feeding them into

vector search.

Chapter 10 Generative AI with Databricks

236

In other words, given a set of similar vectors, using either L2 distance

or cosine similarity, we can use the HNSW to refine the search to ensure

Databricks gains efficiency in terms of finding the most relevant chunk

of document at scale. L2 and Cosine similarity are both an acceptable

solutions for the search. Figure 10-9 shows HNSW.

Figure 10-9.  Illustration of the hierarchical NSW idea

After learning the basic concepts and building blocks of RAG we will

look at an example of how to create an end-to-end RAG application

�A Practical Example for RAG: Using
Structured Data
Let’s start by looking at the raw components Databricks provides to

accelerate the development of a RAG application. These components are

essential for any RAG application. Many companies are worried about

Chapter 10 Generative AI with Databricks

237

vendor lock-in, but Databricks can be used as a serving platform. In the

next chapter, we will discuss how to use Databricks to create an end-to-

end RAG application.

The typical steps to create an end-to-end RAG app are as follows:

	 1.	 Create a feature serving endpoint. This step is

required only if the data is being consumed outside

of Databricks.

	 2.	 Calculate embedding and sync it into a vector

database.

	 3.	 Create a LangChainTool that uses the endpoint to

look up relevant data and log it with MLflow.

	 4.	 Evaluate the model using MLflow or human

feedback.

�Step 1: Feature and Function Serving
In case developers want to create the app outside of Databricks but

still want to utilize the data within Databricks lakehouse platform,

Databricks has made it easy to make data available via an API endpoint

and automatically scale up and down as demand changes for the data,

eliminating the needs to extract the data outside of Databricks.

There are two ways to serve these features. One is to expose the data,

either via a delta table or via a function, to an API endpoint, and another is

to sync the features into an external feature store.

Chapter 10 Generative AI with Databricks

238

–– Online tables can be created easily via the UI or API, as

shown in Figure 10-10.		

Figure 10-10.  Databricks online table

–– Sync features to external feature stores, as shown in

Figure 10-11.		

Figure 10-11.  Online external

Chapter 10 Generative AI with Databricks

239

Table 10-2 shows which external feature stores Databricks supports for

specific features.

Table 10-2.  External Feature Stores That Databricks Supports

Online Store
Provider

Publish with
Feature
Engineering in
Unity Catalog

Publish with
Workspace
Feature Store

Feature
Lookup
in Legacy
MLflow Model
Serving

Feature
Lookup
in Model
Serving

Amazon

DynamoDB

X X (Feature Store

client v0.3.8

and above)

X X

Amazon Aurora

(MySQL-

compatible)

X X

Amazon RDS

MySQL

X X

Azure Cosmos

DB

X X (Feature Store

client v0.5.0

and above)

X X

Azure MySQL

(Single Server)

X X

Azure SQL

Server

X

Chapter 10 Generative AI with Databricks

240

Listing 10-1 shows the sample code to publish to an online feature store.

Listing 10-1.  Syncing Features to Amazon Dynamo DB

import datetime

from databricks.feature_engineering.online_store_spec import

AmazonDynamoDBSpec

or databricks.feature_store.online_store_spec for Workspace

Feature Store

do not pass `write_secret_prefix` if you intend to use the

instance profile attached to the cluster.

online_store = AmazonDynamoDBSpec(

 region='<region>',

 read_secret_prefix='<read-scope>/<prefix>',

 write_secret_prefix='<write-scope>/<prefix>'

)

fe.publish_table(# or fs.publish_table for Workspace

Feature Store

 name='ml.recommender_system.customer_features',

 online_store=online_store,

 filter_condition=f"_dt = '{str(datetime.date.today())}'",

 mode='merge'

)

�Step 2: Calculate Embedding and Sync
to a Vector Database
The Databricks Foundation Model API (FMAPI) can be used outside

of Databricks. As discussed, Mosaic AI vector search will calculate the

embeddings for you automatically. But it is also possible to use the

embedding endpoint outside of Databricks. Listing 10-2 is the code to

calculate the embedding using FMAPI.

Chapter 10 Generative AI with Databricks

241

Listing 10-2.  Using Databricks FMAPI to Calculate Text

Embeddings

def calculate_embedding(text):

 embedding_endpoint_name = "databricks-bge-large-en"

 �url = f"https://{mlflow.utils.databricks_utils.get_browser_

hostname()}/serving-endpoints/{embedding_endpoint_name}/

invocations"

 �databricks_token = mlflow.utils.databricks_utils.get_

databricks_host_creds().token

 �headers = {'Authorization': f'Bearer {databricks_token}',

'Content-Type': 'application/json'}

 data = {

 "input": text

 }

 data_json = json.dumps(data, allow_nan=True)

 �print(f"\nCalling Embedding Endpoint: {embedding_endpoint_

name}\n")

 �response = requests.request(method='POST', headers=headers,

url=url, data=data_json)

 if response.status_code != 200:

 �raise Exception(f'Request failed with status {response.

status_code}, {response.text}')

 return response.json()['data'][0]['embedding']

Chapter 10 Generative AI with Databricks

242

�Step 3: Create a LangChainTool to Perform
Various Tasks
It is typical to use a LangChainTool to perform the tasks, aka from

langchain.agents import initialize_agent. But it can also be anything

you want to do with LangChain or LlamaIndex. It is not a restriction

but rather a suggestion because MLflow supports logging only with

LangChain, OpenAI and Huggingface for now. The code in Listing 10-3 will

log your LangChain model as artifacts.

Listing 10-3.  Logging Model with LangChain Flavor

mlflow.langchain.log_model()

�Step 4: MLflow LLM Evaluation
Similar to traditional machine learning models, LLMs also need to be

evaluated to ensure the output is accurate. However, because the output

can be nondeterministic and very often there is no single ground truth to

compare against, ML Flow has provided a few ways to evaluate an LLM

model, and the team is continuously working to update the functionalities.

	 1.	 Use Default Metrics for Predefined Model Types
with mlflow.evaluate()

MLflow comes with a few predefined model types;

with each model type, it leverages some open-

source libraries to compute the metrics. The types

are described as follows:

Chapter 10 Generative AI with Databricks

243

•	 question-answering: model_type="question-
answering":

•	 exact-match: Measures the exact match

between the predicted answer and the

true answer

•	 toxicity 1 : detects if the answer contains toxic

or harmful content

•	 ari_grade_level2 and flesch_kincaid_grade_

level 2 : evaluate the readability of the answer

based on its complexity and grade level

•	 text-summarization: model_type="text-
summarization":

•	 ROUGE3: Measures the similarity between the

predicted summary and the true summary

•	 toxicity1: Detects if the answer contains toxic

or harmful content

•	 ari_grade_level2 and flesch_kincaid_grade_

level2 : Evaluate the readability of the answer

based on its complexity and grade level

•	 text models: model_type="text":

•	 toxicity1: Detects if the answer contains toxic

or harmful content

•	 ari_grade_level2 and flesch_kincaid_grade_

level2: Evaluate the readability of the

Listing 10-4 shows the code to run an evaluation.

Chapter 10 Generative AI with Databricks

244

Listing 10-4.  Running an Evaluation of a Dataset

 results = mlflow.evaluate(

 basic_qa_model.model_uri,

 eval_df,

 �targets="ground_truth", # specify which column

corresponds to the expected output

 �model_type="question-answering", # model type

indicates which metrics are relevant for this task

 evaluators="default",

)

	 2.	 LLM Metrics: Unlike traditional machine learning,

where there is a formula for each metric, LLM

metrics are evaluation criteria provided to a

powerful LLM, by default GPT 4, to evaluate an

answer either against ground truth or providing

prompts. The following are the provided interfaces:

•	 Answer_similarity: Give a score on how similar the

answer with respect to the ground truth.

•	 Answer_correctness: Give a score on the

correctness of the answer with respect to the

ground truth.

•	 Answer_relevance: Determine how relevant the

answer is with respect to the ground truth.

•	 Relevance: Given both ground truth and context

(for example, history of Databricks) to determine

how relevant of the answer with respect to the

ground truth.

Chapter 10 Generative AI with Databricks

245

•	 Faithfulness: It evaluates only with the provided

context with the output to determine if the claim

can be inherited from the context.

It is understandable that the concept is challenging to

understand at first glance. However, reviewing default prompts

from MLflow will help answer some of the doubts you might

have in your mind:

https://github.com/mlflow/mlflow/blob/

master/mlflow/metrics/genai/prompts/v1.py

MLflow provides these examples by default to

ensure we give enough hints to the model. It is

recommended that you give examples as input, but

you can also evolve from the default ones.

Figure 10-12 shows example output of the

similarity metric.

Figure 10-12.  Example output of MLflow metrics

Chapter 10 Generative AI with Databricks

https://github.com/mlflow/mlflow/blob/master/mlflow/metrics/genai/prompts/v1.py
https://github.com/mlflow/mlflow/blob/master/mlflow/metrics/genai/prompts/v1.py

246

	 3.	 Evaluation data: This is the data your model is

evaluated by. It can be a Pandas dataframe, a Python

list, a numpy array, or an mlflow.data.dataset.

Dataset() instance. This dataset usually contains

input dataset and ground truth labels, as shown in

Listing 10-5.

Listing 10-5.  Example Input Dataset for Ground Truth Data

{

 "inputs": ["What is MLflow?",],

 �"ground_truth": ["MLflow is an open-source platform for

managing the end-to-end machine learning lifecycle. It was

developed by Databricks, a company that specializes in big

data and machine learning solutions. MLflow is designed to

address the challenges that data scientists and machine

learning engineers face when developing, training, and

deploying machine learning models.",],

}

We have demonstrated the ability to use Databricks as a serving

endpoint as well as the open-sourced version of MLflow to do an

RAG application and evaluate its performance. To simplify all these

operations, we can easily use AI Agent framework and everything shown

in Figure 10-3. Without first understanding the core pieces of operations, it

will be easy to think that Databricks is a lock-in platform, but in fact, it is an

open platform. All the tools are built upon the basic components discussed

earlier.

After looking at the RAG Applications, we will look into the Fine-

Tuning API.

Chapter 10 Generative AI with Databricks

247

�Mosaic AI Fine-Tuning API
In the world of LLMs, the cost of training and the hardware requirements

increase as the stage moves from prompt engineering all the way to

pre-training. Not only that but the technical knowledge required also

increases. Table 10-3 illustrates the skills requirements as well as hardware

requirements for each stage.

Table 10-3.  Role and Hardware Requirements for Each Step of the

GenAI Journey

Prompting RAG Fine-Tuning Pre-Training

Role English Data Engineers Data Scientists Research Scientists

Hardware CPU CPU GPU GPU clusters

According to Open AI, fine-tuning lets you get more out of the models

available by providing:

•	 Higher-quality results than prompting

•	 Ability to train on more examples than can fit in

a prompt

•	 Token savings due to shorter prompts

•	 Lower-latency requests

Referencing Table 10-3, understanding the resources and skills

requirement as well as the training dataset, one should consider tweaking

the prompt before getting into fine-tuning. It is necessary to gather more

ground truth data for the model so the fine-tuned model can provide a

more accurate response to a specific topic.

Chapter 10 Generative AI with Databricks

248

As the name suggests, fine-tuning is a process to get to some specific

knowledge faster, but it comes with a cost unless it is really needed. For

example, the model cannot answer some specialized medical questions

that often involve a lot of nuances only training medical professionals

would know how to answer. Then it can be a good use case for fine-tuning.

Open AI has published a detailed guide on prompt engineering, and

we can try these with Mosaic ML Playground:

https://platform.openai.com/docs/guides/prompt-engineering

�Fine-Tuning Example
Databricks has integrated Mosaic ML’s fine-tuning API into the platform.

The details of the fine-tuning API can be found at the MosaicML website:

https://docs.mosaicml.com/projects/mcli/en/latest/

finetuning/finetuning.html

The advantage of integrating MosaicML with Databricks is that now

the fine-tuned model will be supported by the Databricks platform with

Model Serving and Model Registry, it will also be able to take advantage

of the managed MLflow feature. Everything is integrated into a single

environment.

Despite the warning, if you are really familiar with the process and also

have a good dataset available, fine-tuning can achieve amazing results

with a low cost:

https://www.databricks.com/blog/creating-bespoke-llm-ai-

generated-documentation

�Pre-Training
Pre-training is the most costly and would require the most effort to

accomplish (https://www.databricks.com/blog/ai2-olmo-is-here).

Because everything will be created from scratch, one must create a model

Chapter 10 Generative AI with Databricks

https://platform.openai.com/docs/guides/prompt-engineering
https://docs.mosaicml.com/projects/mcli/en/latest/finetuning/finetuning.html
https://docs.mosaicml.com/projects/mcli/en/latest/finetuning/finetuning.html
https://www.databricks.com/blog/creating-bespoke-llm-ai-generated-documentation
https://www.databricks.com/blog/creating-bespoke-llm-ai-generated-documentation
https://www.databricks.com/blog/ai2-olmo-is-here

249

like traditional deep learning; only it will require perhaps billions of times

more data and much more commodity hardware, which is not something a

small-to-medium enterprise would want to do.

�A Case Study of AI2’s OLMo, a Truly Open-Source
Large Language Model
The Open Language Model (OLMo) is a collaboration between Databricks

and Allen Institute for AI, and we will examine the requirements to

re-create this model (https://arxiv.org/pdf/2402.00838.pdf). See

Figure 10-13.

Dataset: In traditional deep learning, the sample

size required per category is about a few thousand.

By comparison, the Dolma dataset is an open

dataset of 3 trillion tokens from a diverse mix of

web content, academic publications, code, books,

and encyclopedic materials.

Figure 10-13.  Composition of the data used in the model training

Chapter 10 Generative AI with Databricks

https://arxiv.org/pdf/2402.00838.pdf

250

Model training: Because the data volume is so

huge, it can no longer fit in one GPU, it is required

to distribute across multiple GPUs. In section 3.1 of

the AI2 paper, it discusses the distributed framework

in detail.

Model architecture: A proper model architecture

must be implemented for the model. It is not

prebuilt like foundation models. Section 2.1 of the

AI2 paper discusses such architecture for 1B, 7B as

well as 65B parameters.

Hardware: This might be the most expensive and

most difficult part to achieve. Not to mention there

are currently very limited availability of high-

end GPUs on the market, they are reserved for

researchers who would deliver ultimate value to the

company.

In the OMLo model, it uses MosaicML with 27 nodes on the cluster,

where each node consists of 8x NVIDIA A100 GPUs with 40GB of memory

and 800Gbps interconnect. In total, 216 GPUs will be required to pretrain

this model. Unless someone who really understands the ins and outs of

LLMs as well as there is high ROI on these projects, organizations usually

stop their GenAI journey at fine-tuning.

�Gen AI Pricing
While the pricing of the GenAI infra is usually use per hour and can be

found at the following Databricks websites. For information about DBU

hours, please refer to Chapter 16.

Chapter 10 Generative AI with Databricks

https://doi.org/10.1007/979-8-8688-0444-1_16

251

Model Serving:

https://www.databricks.com/product/pricing/

model-serving

https://www.databricks.com/product/pricing/

foundation-model-serving

Vector search:

https://www.databricks.com/product/pricing/

vector-search

Model training:

https://www.databricks.com/product/pricing/

mosaic-training

There is one concept that is not fully explained, which is pay per token.

The price is per 1 million tokens. Please note that one token does not

directly translate to one English word or certain bytes. For example, ASCII

is 1 byte, and Unicode ranges from 1 byte to 4 bytes. The concept in LLMs

is similar, but it is not so straightforward.

�What Are Tokens and Tokenizers?
The very short version is to split text into smaller chunks for the model

to consume because with any model there is a capability to take in some

text at once. Tokenizers are used to split some text into subwords, aka

tokens. To learn more about tokenizers, please refer to this blog post from

Huggingface: https://huggingface.co/docs/transformers/main/

tokenizer_summary.

More important, the real question is, how do we estimate how many

tokens my input text will generate? To answer this question, we need first

to understand what tokenizer each model is using; see Table 10-4.

Chapter 10 Generative AI with Databricks

https://www.databricks.com/product/pricing/model-serving
https://www.databricks.com/product/pricing/model-serving
https://www.databricks.com/product/pricing/foundation-model-serving
https://www.databricks.com/product/pricing/foundation-model-serving
https://www.databricks.com/product/pricing/vector-search
https://www.databricks.com/product/pricing/vector-search
https://www.databricks.com/product/pricing/mosaic-training
https://www.databricks.com/product/pricing/mosaic-training
https://huggingface.co/docs/transformers/main/tokenizer_summary
https://huggingface.co/docs/transformers/main/tokenizer_summary

252

Table 10-4.  Tokenizer Used in Some Popular Large Language Models

Model Tokenizer

DBRX GPT-4

(https://www.databricks.com/blog/introducing-dbrx-

new-state-art-open-llm)

Llama 2 Bytepair encoding

(https://ai.meta.com/research/publications/llama-2-

open-foundation-and-fine-tuned-chat-models/

Section 2.2 Tokenizer)

Mistral Byte-fallback BPE tokenizer

(https://huggingface.co/docs/transformers/main/model_

doc/mistral)

MPT EleutherAI/gpt-neox-20b

(https://huggingface.co/mosaicml/mpt-30b)

Understanding the tokenizer is just the first step. While you can very

easily load a tokenizer with one line of code, as shown in Listing 10-6, we

also need to have a way to estimate the number of tokens we need for our

task in order for cost estimation.

Listing 10-6.  Getting the Tokenizer from the Model

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("name-of-tokenizer")

The good news is that there are some python or JavaScript tools that we

can utilize to estimate the number of tokens:

Chapter 10 Generative AI with Databricks

https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/
https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/
https://huggingface.co/docs/transformers/main/model_doc/mistral
https://huggingface.co/docs/transformers/main/model_doc/mistral
https://huggingface.co/mosaicml/mpt-30b

253

Open AI: https://cookbook.openai.com/

examples/how_to_count_tokens_with_tiktoken

Llama: https://github.com/belladoreai/llama-

tokenizer-js/

Mistral: https://github.com/imoneoi/mistral-

tokenizer/

With these tools, we can easily calculate the number of tokens in input

text to estimate the cost of using the GenAI services. Of course they can

also be found in the system tables, but that will be after the job finishes

running. Please refer to Chapter 16 for more information.

�Conclusion
Navigating the LLM world is very challenging, and addressing those

blockers with the right solution is something that requires careful

consideration, especially from an ML lifecycle perspective. The Databricks

GenAI stack provides a powerful solution for accelerating machine

learning and AI capabilities at competitive pricing points. Databricks

provides flexibility and customization options that traditional ML

platforms lack or provide at a higher price. With the GenAI capabilities

in Databricks, organizations can focus on creating value, whether it is

managing data, tracking experiments, packaging code, or deploying

models into Unity Catalog, thereby streamlining the entire LLM life cycle

with governance.

Chapter 10 Generative AI with Databricks

https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken
https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken
https://github.com/belladoreai/llama-tokenizer-js/
https://github.com/belladoreai/llama-tokenizer-js/
https://github.com/imoneoi/mistral-tokenizer/
https://github.com/imoneoi/mistral-tokenizer/
https://doi.org/10.1007/979-8-8688-0444-1_16

255© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_11

CHAPTER 11

Large Language
Model Operations
We discussed machine learning operations (MLOps) in an earlier chapter.

In this chapter, we will discuss a similar topic called large language model

(LLM) operations. This chapter has certain similarities with the chapter on

generative AI (GenAI), but we will mainly focus on the operations part of

machine learning and the benefits of it as a practice. We will also dive deep

into using different techniques and libraries in the industry to perform

these operations, which Databricks also supports.

MLOps and LLMOps are related but distinct concepts in artificial

intelligence (AI) and machine learning (ML). Here's a brief overview

of each.

�Machine Learning Operations
MLOps aims to streamline the machine learning life cycle by combining

machine learning practices and DevOps. In the previous chapter, we

discussed the MLOps stack from Databricks, which combines ML

templates and DevOps templates that are ready to deploy. This section will

revisit the roles and responsibilities as well as the end goal for MLOps.

https://doi.org/10.1007/979-8-8688-0444-1_11#DOI

256

•	 Collaboration and communication between data

scientists and ML engineers

•	 Using CI/CD workflow (GitHub actions, Azure DevOps)

to automate the ML life cycle, including feature

engineering, model training, and deployment along

with infrastructure as code

•	 Version control and management of ML models and

data (features)

•	 Continuous integration and delivery (CI/CD) of ML

models, including Model Serving

•	 Monitoring of ML model performance, including data

drift, model drift, concept drift, etc., using Lakehouse

Monitoring

�Large Language Model Operations
It is only a natural transition with the historical singular focus on LLMs that

large language model operations (LLMOps) ensures we are doing the right

things when handling the huge amount of data and model outputs. LLMs

are complex AI models that require significant computational resources,

data, and expertise to develop, deploy, and maintain. Everything from the

cost to the curation of data and ensuring few mistakes are made is crucial

to the project’s success. LLMOps builds upon MLOps principles and adds

additional considerations, such as the following:

•	 Scalability and performance optimization for large

models and datasets, mainly for cost reasons

•	 Specialized software and hardware requirements (e.g.,

GPUs, MosaicML)

Chapter 11 Large Language Model Operations

257

•	 Advanced techniques for model pruning, knowledge

distillation, and inference optimization (e.g. Mixture-

of-Expert)

•	 Application of the model, such as chatbots, search

engines, and recommendation systems

In summary, building on the foundation of MLOps, LLMOps is a suite

of specialized tools focused on handling the unique challenges of LLMs

including prompting, RAG, fine-tuning, and pre-training. Figure 11-1

outlines the flow and toolings required for LLMOps.

Figure 11-1.  LLMOps

Chapter 11 Large Language Model Operations

258

�Components of LLMOps
First, let’s review the components required to make LLMOps successful.

While some of these components are similar to MLOps, as the volume of

data increases, the process has become data-centric instead of model-

centric. In other words, in MLOps, the goal was to test as many models

as possible, but in LLMOps, a lot of work will go into ensuring the data is

high-quality.

•	 Exploratory data analysis (EDA): As discussed in

the previous chapter, Databricks offers a few different

ways to perform EDA, including YData profiling (which

supports both Pandas and Spark) as well as dbutils.

For LLM, specialized tools are required to handle large

amounts of data. Databricks acquired Llacai, which

allows you to visualize and clean up data easily. We will

discuss the usage of these tools later in this chapter.

•	 Prompt engineering: There are two tasks in prompt

engineering. One is to write prompts, which are

instructions to the LLM. The engineering part is to

understand the capabilities of the LLM and ensure

the prompts are generating meaningful outputs, as

well as utilizing tools like LangChain for templating

and creating a chain of thoughts process. Although

prompt engineering is the first step, prompt quality,

aka providing clear instructions and detailed steps for

the question or an evaluation process, will greatly help

the LLM to provide a good answer. And as the context

length increases, people are starting to put very long

pages of instructions for their prompt.

Chapter 11 Large Language Model Operations

259

•	 Retrieval augmented generation (RAG): Prompt

engineering is a way to instruct the model to search for

the knowledge you want. But like humans, LLMs are

also limited to the knowledge that’s exposed to them

during training time. Things like company-specific

information not publicly available on the Internet will

not be available in the models. Hence, the process

of RAG is to update the model by providing extra

information such as PDFs or PowerPoints. This is the

process of RAG.

Figure 11-2 shows a typical RAG workflow.

Figure 11-2.  Typical workflow of RAG

•	 Vector database

Vectors or embeddings are an essential part of the

RAG process. They are numerical representations

of the data. To answer a question, similarity search

is often used. There are a few terms we need to

consider:

•	 Vector index: A specialized data structure

optimized to facilitate similarity search within a

collection of vector embeddings. It is read-only and

needs to be rebuilt when content changes.

Chapter 11 Large Language Model Operations

260

•	 Vector library: A tool to manage vector

embeddings and conduct similarity searches. They

predominantly:

•	 Operate on in-memory indexes.

•	 Focus solely on vector embeddings, often

requiring a secondary storage mechanism for

the actual data objects.

•	 Vector database:

•	 Store both the vector embeddings and the

actual data objects, permitting combined vector

searches with advanced filtering.

•	 Offer full CRUD (create, read, update, delete)

operations, allowing dynamic adjustments

without rebuilding the entire index.

•	 Are generally better suited for production-

grade deployments due to their robustness and

flexibility.

Databricks offers vector search backed by the serverless architecture

and provides the vector index service, combined with Unity Catalog and

Delta tables, which can be served as a database. It offers the following

advantages:

•	 Auto-syncs with the source Delta table

•	 Columns in Delta table are filters

•	 Unity Catalog governance and lineage

•	 Integrated with Model Serving for embedding

generation

Chapter 11 Large Language Model Operations

261

Figure 11-3 shows a sample workflow for an RAG application, which

combines feature and function serving.

Figure 11-3.  Workflow of RAG in Databricks

•	 Model fine-tuning: If we use the previous analogy,

prompting is similar to seeking help from a consultant

and providing clear instructions to them, assuming

they have existing knowledge. RAG is the process of

giving them extra documents or reference materials to

enhance their knowledge. Sometimes, these are not

enough because of a brand new domain. For example,

an LLM might not be trained with highly specialized

medical knowledge. That’s when we need to provide

a lot more datasets but still a relatively small amount

compared to pre-training, for the fine-tuning process.

Instead of prompting and RAG using the existing

model, the fine-tuning process will create a new LLM

from the base models. For example, DBRX base versus

DBRX Instruct are two different models.

Chapter 11 Large Language Model Operations

262

•	 Model pre-training: Model pre-training is a process

of creating an LLM from scratch. In Chapter 13, we

will discuss how Databricks trained DBRX using

the platform available to customers. The difference

between “pre-training” and “model training” in

traditional machine learning is that the base model

that’s pre-trained often needs to be enhanced or fine-

tuned. The output of this process is a base model, e.g.,

DBRX base.

•	 Model evaluation with human feedback: As opposed

to using standard metrics like F1 and R2 scores,

evaluating LLMs is more challenging and constantly

evolving, primarily because LLMs often demonstrate

uneven capabilities across different tasks. An LLM

might excel in one benchmark, but slight variations

in the prompt or problem can drastically affect its

performance. Just think about it: not everyone gets

the same result from Google. That’s why in addition to

new evaluation suites coming out every now and then,

usually when a new company releases a new LLM, they

will release a new suite.

However, even machine learning models require human feedback,

and LLM is even more so. That’s why Databricks MLflow comes with

an interface for human evaluation. And application developers should

purposely develop a feedback mechanism to collect user feedback.

•	 Model packaging and deployment: Similar to the

MLOps pipeline, LLMOps also consists of various

components, such as the mode API, RAG pipeline, and

prompt engineering templates.

Chapter 11 Large Language Model Operations

https://doi.org/10.1007/979-8-8688-0444-1_13

263

•	 Model Serving and inference: After we have

developed and deployed a great new model, the

last step is to serve it as an API endpoint and start

generating outputs, aka inferencing. Databricks Model

Serving and the MLflow deployment server (formerly

AI gateway) can be used to standardize model API

interfaces for real-time inference, and Spark can be

leveraged to do offline distributed inference.

�Deep Dive into Each Process
In Chapter 12, we discuss how these processes can be applied. However,

there are often details beyond the chat window that we need to pay

attention to when transitioning from an LLM user to an LLM application

developer. This section is designed to get you started with these concepts.

�Prompt Engineering
As discussed in the previous section, good prompt engineering involves

giving clear instructions to a consultant to execute your task. When you

give instructions, you might start with a few sentences, but you rarely end

with that and expect high-quality outcomes. The key lies in providing clear

and concise instructions.

�Prompt Templates

While ancient knowledge is transferred by word of mouth, modern

knowledge can be placed into a template. The purpose of templating is

to allow best practices to be captured in a repeatable form so everyone

can take advantage of it. A simple example is “What is the {input_model}

model?” where “model” can be any machine learning model. We can

consider using LangChain for this purpose, as shown in Listing 11-1.

Chapter 11 Large Language Model Operations

https://doi.org/10.1007/979-8-8688-0444-1_12

264

Listing 11-1.  Prompt Template with LangChain

import os

import openai

from openai import OpenAI

from langchain import PromptTemplate

client = OpenAI(

 api_key="databricks-api-token",

 �base_url="https://adb-xxxxxxxxx.xx.azuredatabricks.net/

serving-endpoints"

)

template = PromptTemplate(

 input_variables=["input_model"],

 template="What is {input_model} model?"

)

prompt=template.format(input_model="Mixture of Expert")

response = client.chat.completions.create(

 messages = [{"role": "user", "content": prompt}],

 model="databricks-dbrx-instruct",

 max_tokens=256

)

generated_text = response.choices[0].message.content

Use the generated text in your Databricks workflow

print(generated_text)

Please note that because we are hitting a Foundation Model API as an

endpoint, we don’t need a Databricks cluster to run the previous code. We

can easily execute the previous code in a Python notebook on our local

machine, as shown in Listing 11-2.

Chapter 11 Large Language Model Operations

265

Listing 11-2.  Actual Output from Python Code

A Mixture of Expert (MoE) model is a type of machine learning

model that is composed of several "expert" models, each of

which specializes in handling a particular subset of the data.

These expert models are weighted and combined together using

a "gating" mechanism, which determines how much each expert

should contribute to the final prediction. This allows the MoE

model to effectively handle a wide variety of data and make

more accurate predictions.

�Chain of Thoughts

Clear communication means creating a good prompt template, and

creating step-by-step instructions will greatly help the LLM to provide a

high-quality answer. This process is called chain of thoughts (https://

arxiv.org/abs/2201.11903), as shown in Listing 11-3.

Listing 11-3.  Chain of Thought Template

Think step by step and explain your reasoning:

{input}

Step 1: {question_1}

{answer_1}

Step 2: {question_2}

{answer_2}

Step 3: {question_3}

{answer_3}

Final Answer: {final_answer}

Providing step-by-step instructions, as shown in https://arxiv.org/

abs/2201.11903, has been proven to increase an LLM’s performance.

Chapter 11 Large Language Model Operations

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

266

�Retrieval Augmented Generation
As mentioned, to update an LLM with new knowledge, we need to conduct

a similarity search with the text converted to vector form. Databricks

provides all the components discussed earlier, aka vector index, vector

library, and vector database.

A vector index can be conveniently created on the user interface on

any table that is Unity Catalog enabled. As illustrated in Figure 11-4, an

index can be created by going into the table interface itself by clicking the

Create button.

Figure 11-4.  Creating a vector search index

The index creation has different options, as shown in Figure 11-5.

Chapter 11 Large Language Model Operations

267

Figure 11-5.  Creating a vector search index UI

•	 The primary key can be used to identify unique

embedding entries so it will not create duplicates.

•	 The endpoint is the vector search endpoint, which is

serverless compute, that can be used to compute the

embedding or perform similarity search.

•	 “Embedding source column” can be used to generate

embedding based on a text-based column, but for

binary (e.g., PDF or images), embeddings can be stored

Chapter 11 Large Language Model Operations

268

in a column in a Delta table. The column type must

be array<float>, array<double>, array<int>,

array<byte>).

•	 Databricks provides a bge-large-en model for

embedding purposes. Embedding is a way to

convert a text column to a vector. The BGE model

from the University of Science and Technology of

China specializes in natural language embedding.

According to the BGE paper (https://arxiv.org/

pdf/2402.03216), the model’s features can be found in

Figure 11-6.	

Figure 11-6.  bge-large-en model features

	 However, please note that this is optimized for text

embedding, so if you need other embeddings, you

might want to use a different model. The following link

shows a list of Databricks curated models:

Chapter 11 Large Language Model Operations

https://arxiv.org/pdf/2402.03216
https://arxiv.org/pdf/2402.03216

269

	 https://www.databricks.com/product/machine-

learning/large-language-models-oss-guidance

	 For a deep dive into the text-embedding, please refer to

the Massive Text Embedding Benchmark (MTEB) from

Huggingface:

	 https://huggingface.co/blog/mteb

•	 Finally, you can choose to sync the index, which is

the embedding column back by a Delta table, back to

a vector Databricks vector search, a vector database

optimized to store and retrieve embeddings. See

Figure 11-7.	

Figure 11-7.  Using Databricks to calculate embeddings

You can choose to calculate the embedding automatically or provide

a precalculated column and optionally sync the embedding into the

vector database (Databricks vector search). As discussed, having a vector

database optimizes the way similarity search is calculated and hence

enhances the performance of RAG. See Figure 11-8.

Chapter 11 Large Language Model Operations

https://www.databricks.com/product/machine-learning/large-language-models-oss-guidance
https://www.databricks.com/product/machine-learning/large-language-models-oss-guidance
https://huggingface.co/blog/mteb

270

Figure 11-8.  Precalculating the embeddings

�Model Fine-Tuning
Usually, the steps in machine learning operations are required from end

to end to ensure the best model is selected and the model is performing

well. In LLMOps, however, most of the time it is sufficient to stop at

RAG because high-quality prompt engineering and high-quality RAG

are usually enough to get quality output on something that the model is

trained for. But if the model is not trained on something specific, like the

healthcare domain, and you want to ensure the model can adapt to the

new domain, we will need to consider fine-tuning the model.

This is usually more costly and time-consuming than RAG, but from

the deployment perspective, it becomes easier. Consider DBRX-base and

DBRX-Instruct, where the latter is a fine-tuned model but we don’t need to

worry about maintaining the embedding and vector database.

Unlike RAG, fine-tuning is a model training process, which can

consume a lot of resources. We must have a good understanding of the

architecture of the neural network (large language model is a neural

network) in order to train it properly.

An example using DeepSpeed for fine-tuning can be found here, which

can take advantage of multiple GPUs for more resource-intensive tasks:

https://github.com/databricks-academy/large-language-models

Chapter 11 Large Language Model Operations

https://github.com/databricks-academy/large-language-models

271

Alternatively, a less resource intensive method is called parameter-

efficient fine-tuning (PET) can also be used to fine-tune an LLM, the

approaches are called LoRA, QLoRA, or IA3. Databricks has provided

detailed discussions here:

https://www.databricks.com/blog/efficient-fine-tuning-lora-

guide-llms

�Model Pretraining
Pre-training is the most costly and would require the most effort to

accomplish. Because everything will be created from scratch, one must

create a model like traditional deep learning; only it will require perhaps

billions of times more data and much more commodity hardware, which is

not something a small-to-medium enterprise would want to do.

�A Case Study of AI2’s OLMo, a Truly
Open-Source Large Language Model
The Open Language Model (OLMo), , is a collaboration between

Databricks and Allen Institute for AI (https://arxiv.org/

pdf/2402.00838.pdf). We will examine the requirements to re-create

this model.

Dataset: In traditional deep learning, the sample

size required per category is about a few thousand.

By comparison, the Dolma dataset is an open

dataset of 3 trillion tokens from a diverse mix of

web content, academic publications, code, books,

and encyclopedic materials (see Figure 11-9).	

Chapter 11 Large Language Model Operations

https://www.databricks.com/blog/efficient-fine-tuning-lora-guide-llms
https://www.databricks.com/blog/efficient-fine-tuning-lora-guide-llms
https://arxiv.org/pdf/2402.00838.pdf
https://arxiv.org/pdf/2402.00838.pdf

272

Figure 11-9.  Text content of the 3 trillion tokens (about 1
trillion words)

Model training: Because the data volume is so

huge, it can no longer fit in one GPU; it is required

to distribute across multiple GPUs. In section 3.1 of

the AI2 paper, it discusses the distributed framework

in detail.

Model architecture: A proper model architecture

must be implemented for the model. It is not

prebuilt like foundation models. Section 2.1 of the

AI2 paper discusses such an architecture for 1B, 7B,

and 65B parameters.

Hardware: This might be the most expensive and

most difficult part to achieve. Not to mention, there

is currently very limited availability of high-

end GPUs on the market; they are reserved for

researchers who would deliver ultimate value to the

company.

The OMLo model uses MosaicML with 27 nodes on the cluster, each

consisting of 8x NVIDIA A100 GPUs with 40GB of memory and 800Gbps

interconnect. In total, 216 GPUs will be required to pretrain this model.

Chapter 11 Large Language Model Operations

273

Unless someone really understands the ins and outs of large language

models and there is high ROI on these projects, organizations usually stop

their GenAI journey at fine-tuning.

For further information, please refer to Chapter 13 where we discuss in

great length how Databricks pretrained a model from scratch.

�Model Governance
Let’s discuss model governance.

�MLflow Deployments Server

Databricks MLflow provides a deployment server (formerly AI gateway)

for us to manage, govern, evaluate prompts, and switch models easily.

Figure 11-10 illustrates how MLflow AI gateway is a bridge between LLMs

and their use cases.

Figure 11-10.  Illustration of MLflow deployment gateway

Chapter 11 Large Language Model Operations

https://doi.org/10.1007/979-8-8688-0444-1_13

274

MLflow Deployments Server reduces the management overhead of

managing multiple credentials for premium LLMs that would otherwise

require different API keys. It also unifies different model inputs and

outputs together to abstract the complexities behind the scenes to

transform the input and parse the output.

For a list of supported models, please refer to the following:

https://mlflow.org/docs/latest/llms/deployments/index.

html#providers

The credentials can also be managed in Databricks Model Serving.

However, the advantage of MLflow is open source and not vendor-specific.

On the Serving tab of Databricks sidebar, you can create a serving endpoint

with stored credentials, as shown in Figure 11-11. In Figure 11-12, we can

choose an entity that we want to serve.

Figure 11-11.  Creating a serving endpoint

Chapter 11 Large Language Model Operations

https://mlflow.org/docs/latest/llms/deployments/index.html#providers
https://mlflow.org/docs/latest/llms/deployments/index.html#providers

275

Figure 11-12.  Selecting a served entity, then saving the credentials

Once a model is chosen, we can then enter the credentials; they can be

retrieved from a secret store for the best of security. See Figure 11-13.

Figure 11-13.  An API key secret can be associated with a
model entity

Chapter 11 Large Language Model Operations

276

Prompt evaluations can be done in two different ways; the most

obvious way is of course evaluating prompts, which can be done using

MLflow or Databricks’ playground. But that does not allow you to do it at

scale or understand the capabilities of the model. Standard benchmarks

will provide greater insights into the model’s strength. The most popular

evaluation suites include but are not limited to the following:

•	 AI2 Wildbench (https://github.com/allenai/

WildBench)

	 AI2 Wildbench is a carefully curated collection of 1,024

hard tasks from real users, which cover common use

cases such as code debugging, creative writing, and

data analysis. For more details of the dataset, please

refer to the following page: https://huggingface.co/

datasets/allenai/WildBench

•	 EluetherAI LM Evaluation Harness (https://github.

com/EleutherAI/lm-evaluation-harness)

	 A holistic framework that assesses models on more

than 200 tasks, merging evaluations like BIG-bench and

MMLU, promoting reproducibility and comparability.

It powers the popular Huggingface leaderboard

(https://huggingface.co/spaces/HuggingFaceH4/

open_llm_leaderboard).

•	 Mosaic Model Gauntlet (https://github.com/

mosaicml/llm-foundry/blob/main/scripts/eval/

local_data/EVAL_GAUNTLET.md); see Figure 11-14	

	 Developed as part of the DBRX release by MosaicML,

using an aggregated evaluation approach, categorizing

model competency into six broad domains

(shown below) rather than distilling to a single

monolithic metric.

Chapter 11 Large Language Model Operations

https://github.com/allenai/WildBench
https://github.com/allenai/WildBench
https://huggingface.co/datasets/allenai/WildBench
https://huggingface.co/datasets/allenai/WildBench
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md

277

Figure 11-14.  Mosaic AI Model Gauntlet

�LLM as a Judge
While human evaluation is powerful, LLM performance is being evaluated

in domains where text is scarce or there is a reliance on subject-matter

expert knowledge. In such scenarios, evaluating LLM output can be

costly and time-consuming. For example, imagine gathering a group of

medical specialists together to evaluate the correctness of an open-heart

procedure. It will certainly not be easy.

Leveraging LLM as a judge is an idea to use a powerful model, say

GPT4, to evaluate the performance of a fine-tuned, smaller domain-

specific model. So often, organizations choose to deploy open-source

alternatives to production to save costs. This is an opportunity to leverage

a more powerful model in a limited capacity to ensure high quality. On

Chapter 11 Large Language Model Operations

278

the other hand, given enough examples, an LLM can also perform judging

by itself like a machine learning model. The idea is to use judging in a

systematic way to evaluate. See Listing 11-4.

Listing 11-4.  Using LLM as a Judge

from mlflow.metrics.genai import EvaluationExample, answer_

similarity

Create an example to describe what answer_similarity means

like for this problem.

example = EvaluationExample(

 input="What is MLflow?",

 �output="MLflow is an open-source platform for managing

machine "

 �"learning workflows, including experiment tracking, model

packaging, "

 �"versioning, and deployment, simplifying the ML

lifecycle.",

 score=4,

 �justification="The definition effectively explains what

MLflow is "

 �"its purpose, and its developer. It could be more concise

for a 5-score.",

 grading_context={

 �"targets": "MLflow is an open-source platform for

managing "

 �"the end-to-end machine learning (ML) lifecycle. It was

developed by Databricks, "

 �"a company that specializes in big data and machine

learning solutions. MLflow is "

Chapter 11 Large Language Model Operations

279

 �"designed to address the challenges that data

scientists and machine learning "

 �"engineers face when developing, training, and

deploying machine learning models."

 },

)

Construct the metric using OpenAI GPT-4 as the judge

answer_similarity_metric = answer_similarity(model="openai:/

gpt-4", examples=[example])

Figure 11-15 shows the result of the judging.

Figure 11-15.  Judging results

�Model Packaging and Deployment
By now, you have learned how to develop an application using LLM and

evaluate its performance interactively. Similar to MLOps, once we finish

developing the machine learning model, we need to pack and deploy it via

MLflow so the model can be reused.

Chapter 11 Large Language Model Operations

280

MLflow offers several different standardized interfaces for LLM,

including Huggingface, OpenAI, SBERT.net, and LangChain. With the

standard interfaces, we can perform standard logging and monitoring like

we do with ML models. You can also pack the pipeline into a PyFunc and

make it easy for inference.

�LangChain Flavor with MLflow

We talked about prompt engineering, we discussed using LangChain to

create a prompt template. Let’s take a look at how to pack this with MLflow

and deploy it into production.

In the previous example, instead of separating the model for

inference, we can use LangChain to chain both the prompt template and

a model together. Of course, a chain can contain a lot more than these

two components; we are just examining a quick start scenario here (see

Listing 11-5).

Listing 11-5.  Chaining an LLM and a Prompt Together

chain = LLMChain(llm=client, prompt=prompt)

In the “Prompt Engineering” section, the client is using an OpenAI

interface. However, when chaining it with LangChain, we need to use the

LangChain interface. Listing 11-6 illustrates how to use the LangChain

interface in the code. Databricks documentation provides various ways to

interact with the models; a quick reference can be found here: https://

docs.databricks.com/en/machine-learning/model-serving/score-

foundation-models.html#query-a-chat-completion-model.

Listing 11-6.  Using LangChain to Process a Prompt

from langchain.llms import Databricks

from langchain_core.messages import HumanMessage, SystemMessage

Chapter 11 Large Language Model Operations

https://docs.databricks.com/en/machine-learning/model-serving/score-foundation-models.html#query-a-chat-completion-model
https://docs.databricks.com/en/machine-learning/model-serving/score-foundation-models.html#query-a-chat-completion-model
https://docs.databricks.com/en/machine-learning/model-serving/score-foundation-models.html#query-a-chat-completion-model

281

def transform_input(**request):

 request["messages"] = [

 {

 "role": "user",

 "content": request["prompt"]

 }

]

 del request["prompt"]

 return request

llm = Databricks(endpoint_name="databricks-dbrx-instruct",

transform_input_fn=transform_input)

Next we can chain the LLM and prompt together. See Listing 11-7.

Listing 11-7.  Chaining an LLM and a Prompt Together After

Delcaration

prompt = PromptTemplate(

 input_variables=["input_model"],

 template="What is {input_model} model?"

)

chain = LLMChain(llm=llm, prompt=prompt)

With the previous chain, we can then log the chain like how we do it in

ML models using MLflow. See Listing 11-8.

Listing 11-8.  Logging a LangChain Model

mlflow.set_experiment("/Users/jason.yip@tredence.com/

DatabricksDIP")

with mlflow.start_run():

 �model_info = mlflow.langchain.log_model(chain,

"langchain_model")

Chapter 11 Large Language Model Operations

282

Now once the model is logged, we can load it back using the PyFunc,

as shown in Listing 11-9.

Listing 11-9.  Loading a PyFunc model from the logged LangChain

loaded_model = mlflow.pyfunc.load_model(model_info.model_uri)

answer = loaded_model.predict({"input_model": "Mixture of

Expert"})

print(answer[0])

The model can now be accessed; view the Experiments tab on the

sidebar. Inside the experiment, it also contains various tabs that are

standard across all MLflow projects. See Figure 11-16 and See Figure 11-17.

Figure 11-16.  Model logged by MLflow, Overview tab

Chapter 11 Large Language Model Operations

283

Figure 11-17.  Binaries of our logged model, Artifacts tab

�Conclusion
In this chapter, you learned about the differences between MLOps and

LLMOps. While the life cycle is similar to each other, the focus on LLMOps

is more about newly introduced components like vector indexes or a

LangChain/Huggingface pipeline. Rarely do we need to train a new large

language model like in machine learning. Instead, we take a pre-trained,

aka base model, to enhance its knowledge by using retrieval augmented

generation technique or fine-tuning a model by providing a domain-specific

dataset. If there is a need to pre-train a model from scratch, Databricks’

MosaicML platform is also capable of handling such a demanding task.

Finally, we can also use Databricks MLflow to continue packaging

the LLMOps pipeline into artifacts and deploying it into production.

However, we have to decide which flavor we want to use the model in for

compatibility purposes. Databricks Model Serving and batch inference

capabilities can be used to consume the model and generate outputs.

In the next chapter, we will put these components into practice and

create a chatbot using the RAG technique.

Chapter 11 Large Language Model Operations

285© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_12

CHAPTER 12

Mosaic AI Agent
Framework: Creating
Quality AI Agents
In this chapter, we will discuss the secret weapon for updating a large

language model (LLM) with custom unstructured data, like PDF or

PowerPoint. While most applications allow you to build a bot or GPT

very easily, enterprises are looking for ways to evaluate the quality of the

chatbot. This is where the AI Agent Framework comes in. We will not only

discuss how to deploy a chatbot from end to end, but how to evaluate it

with an LLM as a Judge or human feedback. These metrics will ensure data

scientists who are already familiar with MLflow will be able to transition to

LLM evaluation easily.

Without a doubt, there are a lot of components involved in setting up

an application with a Retrieval Augmented Generation (RAG) workflow.

Databricks has simplified the deployment of this infrastructure by

providing an accessible Python package via MLflow to get users up and

running without a lot of manual intervention. More than that, the Mosaic

AI Agent Framework also provides continuous logging and allows users

to deploy a user interface to gather feedback, putting it all together so

it can iterate quickly and get to business values in less time. Figure 12-1

demonstrates this simplified workflow.

https://doi.org/10.1007/979-8-8688-0444-1_12#DOI

286

Figure 12-1.  AI Agent Framework workflow

The AI Agent Framework supports unified logging, parameterizing,

and tracing chains between the development and production and

simplified UI deployment.

Let’s do a walkthrough of a RAG application using the AI Agent

Framework to see the differences.

Here are the main features that comes AI Agent Framework:

•	 Python dictionary or YAML file parametrization allows

different configurations of a chain (prompt template,

model and model config, etc.) for the selection of

champion config

•	 MLflow logging on the model artifacts, and experiment

tracking on evaluation metrics as well as deployment

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

287

�Part 0: The Installations
The Mosaic AI Agent Framework is conveniently packaged as a Python

library and can be installed, along with other libraries, using the command

shown in Listing 12-1.

Listing 12-1.  AI Agent Framework Installations

%pip install -U -qqqq databricks-agents mlflow langchain==0.2.1

langchain_core==0.2.5 langchain_community==0.2.4

The framework can then be referenced using the imports shown in

Listing 12-2.

Listing 12-2.  Imports for AI Agent Framework

import os

import mlflow

from databricks import agents

Use the Unity Catalog model registry

mlflow.set_registry_uri('databricks-dip')

�Part 1: LangChain Parametrization
Next, we need to provide our configuration so we can iterate different

settings of our model. Adding mlflow.models.ModelConfig in MLflow

allows settings to be configured easily using Python or YAML, as shown in

Listing 12-3 and Listing 12-4.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

288

Listing 12-3.  Model Config with Python

config_dict = {

 �"prompt_template": "You are a hello world bot. Respond

with a reply to the user's question that is fun and

interesting to the user. User's question: {question}",

 "prompt_template_input_vars": ["question"],

 "model_serving_endpoint": "databricks-dbrx-instruct",

 "llm_parameters": {"temperature": 0.01, "max_tokens": 500},

}

model_config = mlflow.models.ModelConfig(development_

config=config_dict)

Listing 12-4.  Model Config with YAML

llm_parameters:

 max_tokens: 500

 temperature: 0.01

model_serving_endpoint: databricks-dbrx-instruct

prompt_template: 'You are a hello world bot. Respond with a

reply to the user''s

 �question that indicates your prompt template came from a YAML

file. Your response

 �must use the word "YAML" somewhere. User''s question:

{question}'

prompt_template_input_vars:

- question

The config dictionary/file can then be used as shown in Listing 12-5.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

289

Listing 12-5.  Model Config Usage

config_file = "configs/rag_config.yaml"

model_config = mlflow.models.ModelConfig(development_

config=config_file)

model_config.get("prompt_template")

Model_config allows us to reuse the chain as it is without having to

duplicate code. The YAML file can be used with any value that conforms

the same chain setting, making it highly flexible.

�Part 2: MLflow Evaluation
The Mosaic AI Agent Framework has extended the custom metric list and

included a lot of new metrics. Similar to standard MLflow, these metrics

will be computed automatically and logged on the Model Metrics tab in

the experiment (see Figure 12-2).

Figure 12-2.  Model metrics tab from MLflow Experiment

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

290

In Chapter 10, we discussed the model_type parameter for evaluation,

the Mosaic AI Agent Framework introduced a new model type called

databricks-agent. See Listing 12-6.

Listing 12-6.  databricks-agent model_type for Evaluation

 eval_results = mlflow.evaluate(

 data=eval_set_df,

 model=logged_chain_info.model_uri,

 model_type="databricks-agent",

)

AI Agent framework also introduced new custom metrics as MLflow

extension. The two types include LLM as a Judge and system statistics.

•	 Aggregated metric values across the entire
evaluation set: Each row of the evaluation set is passed

into an LLM, and a rating will be given on each output

or given ground truth, or an expected retrieval context

is provided (aka the document name). A full list of

metrics is available in Databricks documentation:

	 https://docs.databricks.com/en/generative-ai/

agent-evaluation/llm-judge-metrics.html

	 With the numeric ratings provided by the LLM judge,

we can now expect similar metrics in traditional

machine learning like precision and recall.

•	 Data about each question in the evaluation set: Each

row of the input will have an output rated, including

but not limited to groundedness, correctness, relevancy

to query and chunk, and chain statistics.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

https://doi.org/10.1007/979-8-8688-0444-1_10
https://docs.databricks.com/en/generative-ai/agent-evaluation/llm-judge-metrics.html
https://docs.databricks.com/en/generative-ai/agent-evaluation/llm-judge-metrics.html

291

By default, all metrics will run during evaluation using mlflow.

evaluate(), but they can be set in the YAML file to optionally run them.

See Listing 12-7 for an example.

Listing 12-7.  Metrics for Evaluation

builtin_assessments:

 - groundedness

 - correctness

 - relevance_to_query

 - chunk_relevance

Then run the evaluation harness; just run the input dataset with

mlflow.evaluate. See Listing 12-8.

Listing 12-8.  MLflow Evaluation

evaluation_results = mlflow.evaluate(

 data=eval_set_with_chain_outputs_df,

 model_type="databricks-agent",

)

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

292

The input dataset has the schema shown in Table 12-1.

Table 12-1.  Input Evaluation Dataset Schema

Key Type Description

request_id string Unique identifier of this row in the evaluation set.

request string Input to the chain to evaluate, e.g., the user’s

question/query such as “What is RAG?”

expected_

retrieved_

context

array** An array of objects containing the expected

retrieved context for the request.

expected_

response

string The ground truth (i.e., correct) answer to request.

response string The response generated by the chain being

evaluated.

retrieved_

context

array** The retrieval results generated by the retriever

in the chain being evaluated. If multiple retrieval

steps are in the chain, this should be the retrieval

results that were put into the LLM’s prompt.

trace MLflow trace MLflow Trace with the Chain’s outputs.

** The expected_retrieved_context and retrieved_context arrays expect
each array element to be a dictionary with the keys shown in Table 12-2.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

293

Table 12-2.  Array Structure from Table 1’s Parameters

Key Type Description

content string The contents of the retrieved context. Can be any string

regardless of formatting e.g., HTML, Plain Text, Markdown,

etc.

doc_uri String Unique identifier (URI) of the parent document where the

chunk came from.

e.g. dbfs:/Volumes/databricks_doc/spark.pdf

Table 12-3.  Metrics for Different Levels of Datasets

Level A Level B Level C

Required data - Input Dataset

Evaluation set: request ✓ ✓ ✓

Evaluation set: expected_response X ✓ ✓

Evaluation set: expected_retrieved_context X X ✓
(continued)

Based on this input schema, we can specify three different levels of

parameters, and at each level, a subset of the metrics will be computed

automatically. See Table 12-3.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

294

Level A Level B Level C

Supported metrics - output metrics

response/llm_judged/relevance_to_query_rating ✓ ✓ ✓

response/llm_judged/harmfulness_rating/average ✓ ✓ ✓

retrieval/llm_judged/chunk_relevance_precision/

average

✓ ✓ ✓

response/llm_judged/groundedness_rating/average ✓ ✓ ✓

chain/request_token_count ✓ ✓ ✓

chain/response_token_count ✓ ✓ ✓

chain/total_token_count ✓ ✓ ✓

chain/input_token_count ✓ ✓ ✓

chain/output_token_count ✓ ✓ ✓

Customer-defined LLM judges ✓ ✓ ✓

response/llm_judged/correctness_rating/average X ✓ ✓

retrieval/ground_truth/document_recall/average X X ✓

retrieval/ground_truth/document_precision/average X X ✓

Table 12-3.  (continued)

�Part 3: Model Development
The AI Agent Framework provides an easy interface to deploy a chatbot as

a review app for human feedback leveraging the chain that was just built.

But before we dive into the app, as discussed in Chapter 11, we need to

develop our model, in the case of a LangChain pipeline, and log the model

as artifacts by using the mlflow.langchain.log_model() function. See

Listing 12-9.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

https://doi.org/10.1007/979-8-8688-0444-1_11

295

Listing 12-9.  Model Logging with LangChain

with mlflow.start_run():

 # Log the chain code + config + parameters to the run

 logged_chain_info = mlflow.langchain.log_model(

 lc_model=chain_notebook_path,

 �model_config=baseline_config, # The configuration to

test - this can also be a YAML file path rather than a

Dict e.g., `chain_config_path`

 artifact_path="chain",

 input_example=input_example,

 example_no_conversion=True,

 extra_pip_requirements=[

 "databricks-agent"

],

)

There is an important difference between the RAG artifacts compared

to normal MLflow artifacts. By default, MLflow will “pickle” the LangChain

objects, but as the complexity of the chain grows, often this process

will fail. For more information, please refer to the FAQ section of the

LangChain flavor of MLflow:

https://mlflow.org/docs/latest/llms/langchain/index.html#faq

So instead of “pickling” the chain, the AI Agent Framework opted to

log the artifacts as code. That’s why in the log_model() function, there

is an lc_model parameter, which basically specifies the path of the chain

notebook. While converting the notebook to a Python file is not needed,

the notebook is required to support Python-only code. Otherwise the log

will not be able to run successfully. An inspection of the Artifacts tab in the

experiment reveals that a Python file is taking the place of the PKL file in

the model, as shown in Figure 12-3.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

https://mlflow.org/docs/latest/llms/langchain/index.html#faq

296

Figure 12-3.  LangChain pipeline logged as code

Next, we will do a walkthrough of using this cutting-edge product to

create a RAG application. Here’s what a basic chain would look like:

	 1.	 Extract a user query from messages.

	 2.	 Retrieve relevant information using vector search.

	 3.	 Format the docs returned by the retriever into

the prompt.

	 4.	 Generate a prompt for the language model.

	 5.	 Call the model endpoint with a prompt as input.

	 6.	 Parse the output into a string format.

Listing 12-10 shows the sample code of the chain from the

previous logic.

Listing 12-10.  Sample LangChain Pipeline

chain = (

 {

 �"question": itemgetter("messages") |

RunnableLambda(extract_user_query_string),

 "context": itemgetter("messages")

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

297

 | RunnableLambda(extract_user_query_string)

 | vector_search_as_retriever

 | RunnableLambda(format_context),

 }

 | prompt

 | model

 | StrOutputParser()

)

From the previous steps, the following components are configurable,

and hence we can put them in a YAML file.

•	 Vector search endpoint/index

•	 Vector store-backed retriever (LangChain),

	 https://python.langchain.com/v0.1/docs/

integrations/vectorstores/databricks_

vector_search/

•	 Chunk template

•	 Prompt template

•	 Model endpoint

Now consider one set of YAML configurations for our purpose. To

increase readability, we can first create a spreadsheet of these settings and

generate YAML files at a later stage; see Table 12-4.

Table 12-4.  Template for YAML File Configurations

Vector

search

endpoint

Vector

search

index

LangChain vector

store parameters

Chunk

template

Prompt

template

Model

endpoint

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

https://python.langchain.com/v0.1/docs/integrations/vectorstores/databricks_vector_search/
https://python.langchain.com/v0.1/docs/integrations/vectorstores/databricks_vector_search/
https://python.langchain.com/v0.1/docs/integrations/vectorstores/databricks_vector_search/

298

Listing 12-11 shows an example of a YAML file, which should

correspond to one entry of Table 12-4. We will call this file rag_chain_

config.yaml.

Listing 12-11.  rag_chain_config.yaml

chat_endpoint: databricks-dbrx-instruct

chat_endpoint_parameters:

 max_tokens: 500

 temperature: 0.01

chat_prompt_template: 'You are a trusted assistant that helps

answer questions based

 �only on the provided information. If you do not know the

answer to a question, you

 �truthfully say you do not know. Here is some context which

might or might not help

 �you answer: {context}. Answer directly, do not repeat the

question, do not start

 �with something like: the answer to the question, do not add

AI in front of your

 �answer, do not say: here is the answer, do not mention the

context or the question.

 �Based on this context, answer this question: {question}'

chat_prompt_template_variables:

- context

- question

chunk_template: '`{chunk_text}`

 '

vector_search_endpoint_name: test

vector_search_index: unitygo.rag.gold_volume_databricks_

documentation_chunked_index

vector_search_parameters:

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

299

 k: 3

vector_search_schema:

 chunk_text: chunked_text

 document_source: doc_uri

 primary_key: chunk_id

By loading the file rag_chain_config.yaml, we can derive the code

shown in Listing 12-12 for our chain.

Listing 12-12.  Setting Up a Chat Endpoint Using a

Configuration File

############

Get the configuration YAML

############

model_config = mlflow.models.ModelConfig(development_

config="rag_chain_config.yaml")

############

Connect to the Vector Search Index

############

vs_client = VectorSearchClient(disable_notice=True)

vs_index = vs_client.get_index(

 �endpoint_name=model_config.get("vector_search_

endpoint_name"),

 �index_name=model_config.get("vector_search_index"),

)

vector_search_schema = model_config.get("vector_search_schema")

############

Turn the Vector Search index into a LangChain retriever

############

vector_search_as_retriever = DatabricksVectorSearch(

 vs_index,

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

300

 text_column=vector_search_schema.get("chunk_text"),

 columns=[

 vector_search_schema.get("primary_key"),

 vector_search_schema.get("chunk_text"),

 vector_search_schema.get("document_source"),

],

).as_retriever(search_kwargs=model_config.get("vector_search_

parameters"))

############

Required to:

1. Enable the Review App to properly display retrieved chunks

2. Enable evaluation suite to measure the retriever

############

rag.set_vector_search_schema(

 primary_key=vector_search_schema.get("primary_key"),

 text_column=vector_search_schema.get("chunk_text"),

 doc_uri=vector_search_schema.get(

 "document_source"

 �), # Review App uses `doc_uri` to display chunks from the

same document in a single view

)

############

Method to format the docs returned by the retriever into

the prompt

############

def format_context(docs):

 chunk_template = model_config.get("chunk_template")

 �chunk_contents = [chunk_template.format(chunk_text=d.page_

content) for d in docs]

 return "".join(chunk_contents)

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

301

############

Prompt Template for generation

############

prompt = PromptTemplate(

 template=model_config.get("chat_prompt_template"),

 �input_variables=model_config.get("chat_prompt_template_

variables"),

)

############

FM for generation

############

model = ChatDatabricks(

 endpoint=model_config.get("chat_endpoint"),

 extra_params=model_config.get("chat_endpoint_parameters"),

)

Before we log the chain into a model, we can optionally test it

by invoking the model. Databricks also provides an interface of the

LangChain pipeline, so any troubleshooting can be done within the

platform. Listing 12-13 is for testing purposes and should not be in

production.

Listing 12-13.  Testing the Chat Endpoint

model_input_sample = {

 "messages": [

 {

 "role": "user",

 "content": "What is Spark?",

 }

]

}

chain.invoke(model_input_sample)

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

302

After we invoke the code, MLflow automatically generates a tracing

interface for the LangChain flavor via mlflow.langchain.autolog. You

can easily see the prompts, which models and retrievers were used, which

documents were retrieved to augment the response, how long things took,

and the final output. Figure 12-4 demonstrates this view that will be useful

for troubleshooting.

Figure 12-4.  LangChain trace interface

When we combine everything together in a notebook, this will become

the file chain/model.py in the logged artifacts.

�Part 4: Deployment
The AI agent framework comes with an easy one-line chatbot deployment

that can collect human feedback, greatly reducing the time required to

develop an interface for humans to interact with.

First, we need to register our model. See Listing 12-14.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

303

Listing 12-14.  LangChain Model Registration

Unity Catalog location

uc_model_fqn = f"{uc_catalog}.{uc_schema}.{model_name}"

Register the model to the Unity Catalog

uc_registered_model_info = mlflow.register_model(model_

uri=logged_chain_info.model_uri, name=uc_model_fqn)

Next, the one-line deployment command looks like Listing 12-15.

Listing 12-15.  One-Line Deployment Command

deployment_info = agents.deploy(model_name=UC_MODEL_NAME,

model_version=uc_registered_model_info.version)

Once we run the deployment command, it will take some time for

the magic to work behind the scenes. We can check the status of the

deployment using the command in Listing 12-16. At the end of the wait,

the review app URL will be shown.

Listing 12-16.  Getting Deployment Status

Wait for the Review App to be ready

print("\nWaiting for endpoint to deploy.", end="")

while w.serving_endpoints.get(deployment_info.endpoint_name).

state.ready == EndpointStateReady.NOT_READY or w.serving_

endpoints.get(deployment_info.endpoint_name).state.config_

update == EndpointStateConfigUpdate.IN_PROGRESS:

 print(".", end="")

 time.sleep(30)

print(f"\n\nReview App: {deployment_info.review_app_url}")

To retrieve the deployed endpoints in general, we can use the

command in Listing 12-17.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

304

Listing 12-17.  Retrieving Review App URLs

active_deployments = agents.list_deployments()

active_deployment = next((item for item in active_deployments

if item.model_name == UC_MODEL_NAME), None)

print(f"Review App URL: {active_deployment.review_app_url}")

Finally, following the URL, we can have a review app with a single line

of code, but before that, we need to share the model with users so they can

use the chatbot aka the Review App. See Listing 12-18 and Figure 12-5.

Listing 12-18.  Sharing Permission to Users to Query the Model

user_list = ["user@databricks.com"]

Set the permissions. If successful, there will be no

return value.

agents.set_permissions(model_name=UC_MODEL_NAME, users=user_

list, permission_level=agents.PermissionLevel.CAN_QUERY)

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

305

Figure 12-5.  Review app user interface

�Evaluation Example
To deliver high-quality RAG applications, Databricks recommends

following an evaluation-driven approach to development. To start your

development process, we suggest starting with 5 to 10 examples of

questions that your users will expect your RAG application to answer

correctly. Over the course of your development process, you will expand

this evaluation set. The input schema can be found in the earlier “Part 2:

MLflow Evaluation” section. Listing 12-19 is one example.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

306

Listing 12-19.  Setting the Evaluation Dataset

eval_set = [

 {

 "request_id": "97496aa16cefcde44bc4ad97f00b9f85",

 �"request": "Did GPT-4's opinion response rate increase

or decrease by June 2023?",

 "expected_response": "Decrease", # Optional

 "expected_retrieved_context": [# Optional

 {

 �"doc_uri": "dbfs:/Volumes/unitygo/rag/volume_

databricks_documentation/2307.09009.pdf",

 }

],

 }

]

After we are able to evaluate the best chain configuration, then we

can deploy the chain as an app for human review. Once again, mlflow.

evaluate() will be used to test against the previous logged model with the

eval set (see Listing 12-20).

Listing 12-20.  Running Evaluation of a Model Based on the

eval Dataset

 eval_results = mlflow.evaluate(

 data=eval_set_df,

 model=logged_chain_info.model_uri,

 model_type="databricks-agent",

)

eval_results will contain the LLM judged metrics, and we can simply

display them or save them into a table (see Listing 12-21).

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

307

Listing 12-21.  Visualizing the Evaluation Results

display(eval_results.tables['eval_results'].

drop(columns=["trace"]))

Alternatively, they can also be found in the MLflow UI, as shown in

Figure 12-6.

Figure 12-6.  Evaluation metrics logged into MLflow

Deployment is only our first step; we need to collect critical feedback

via evaluation and human feedback. Then there are quality knobs that we

need to tune. The details of tuning the app is beyond the scope of this book

and can be found on the Databricks’ GenAI cookbook website:

https://ai-cookbook.io/nbs/3-deep-dive.html

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

https://ai-cookbook.io/nbs/3-deep-dive.html

308

�Conclusion
Mosaic AI Agent Framework’s product philosophy is underpinned by the

following principles:

•	 Quality through metrics: Objective metrics are the

cornerstone of quality assessment. Metrics provide

indicators for evaluating the RAG application’s quality

and cost/latency performance and for identifying areas

for improvement.

•	 Comprehensive “always-on” logging: Metrics work

best if they can be computed for any invocation of the

RAG app. Therefore, every invocation of the app, both

in development and in production, must be logged.

The log must capture all inputs and outputs, as well as

the detailed steps that transform inputs into outputs.

•	 Human feedback as the benchmark: Collecting

human feedback is costly, but its value as a quality

measure is unmatched. RAG Studio is designed to

make the collection of human feedback as efficient as

possible.

•	 LLM judges scale feedback: Utilizing RAG LLM judges

in tandem with human feedback accelerates the

development loop, allowing for quicker development

cycles without subsequently scaling the number of

human evaluators. However, RAG LLM judges are not a

substitute but, rather, an augment to human feedback.

•	 Rapid iteration: The cycle of creating and testing new

versions of a RAG application must be quick.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

309

•	 Effortless version management: Tracking and

managing versions must be seamless, reducing

cognitive load and letting developers concentrate

on enhancing the application rather than on

administrative tasks.

•	 Development and production are unified: The tools,

schemas, and processes used in development should

be consistent with those in production environments,

ensuring a consistent workflow for quality

improvement in development to deployment with the

same code base.

�Beyond LangChain
While this chapter did a walkthrough using LangChain and leveraged the

interface mlflow.langchain.log_model(), the AI Agent Framework is

not limited to LangChain. The pyFunc interface is available for any Python

model. However, there are some customizations needed.

In other words, if you are using pyFunc, Databricks recommends using

type hints to annotate the predict() function with input and output

data classes that are subclasses of classes defined in mlflow.models.

rag_signatures (see https://github.com/mlflow/mlflow/blob/master/

mlflow/models/rag_signatures.py).

You can construct an output object from the data class inside

predict() to ensure the format is followed. The returned object must be

transformed into a dictionary representation to ensure it can be serialized.

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

https://github.com/mlflow/mlflow/blob/master/mlflow/models/rag_signatures.py
https://github.com/mlflow/mlflow/blob/master/mlflow/models/rag_signatures.py

310

The LangChain implementation in the MLflow source code provides

an example of how to create such a customization:

https://github.com/mlflow/mlflow/blob/master/mlflow/

langchain/output_parsers.py

You can find a custom pyFunc model in the MLflow documentation:

https://mlflow.org/docs/latest/traditional-ml/serving-

multiple-models-with-pyfunc/notebooks/MME_Tutorial.html#2---

Create-an-MME-Custom-PyFunc-Model

Chapter 12 Mosaic AI Agent Framework: Creating Quality AI Agents

https://github.com/mlflow/mlflow/blob/master/mlflow/langchain/output_parsers.py
https://github.com/mlflow/mlflow/blob/master/mlflow/langchain/output_parsers.py
https://mlflow.org/docs/latest/traditional-ml/serving-multiple-models-with-pyfunc/notebooks/MME_Tutorial.html#2---Create-an-MME-Custom-PyFunc-Model
https://mlflow.org/docs/latest/traditional-ml/serving-multiple-models-with-pyfunc/notebooks/MME_Tutorial.html#2---Create-an-MME-Custom-PyFunc-Model
https://mlflow.org/docs/latest/traditional-ml/serving-multiple-models-with-pyfunc/notebooks/MME_Tutorial.html#2---Create-an-MME-Custom-PyFunc-Model

311© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_13

CHAPTER 13

DBRX: Creating
an LLM from Scratch
Using Databricks
In this chapter, we will discusse a model that Databricks trained using

Databricks, which is called DBRX. DBRX is a state-of-the-art large

language model (LLM) trained from scratch on the Databricks and

MosaicML platforms. At the time of model release, it outperformed

established open-source models on language understanding (MMLU),

programming (HumanEval), and math (GSM8K), as shown in Figure 13-1.

https://doi.org/10.1007/979-8-8688-0444-1_13#DOI

312

Figure 13-1.  DBRX performance versus established open-
source models

�What Is DBRX?
While the world has moved on to better models by now, like Meta’s

LLaMa3-70B, there are many more objectives that DBRX is trying to

accomplish.

•	 Allowing enterprises to own their model

	 Databricks is a platform that you can use to do

everything from end to end within your own network,

or in the case of serverless there is a private link to the

VPN. All the models are deployed and fine-tuned over

internal data. The data and model stays within the

customers’ own Databricks environment. That makes

the experience not only secure but also seamless.

Now customers can also leverage DBRX for their

tuning needs.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

313

•	 Moving to production quickly

	 With Databricks Model Serving and the serverless

architecture, customers can easily serve their model

on an API endpoint. To demonstrate how quickly one

can do it end to end, Databricks designed and trained

a model in three months and immediately made it

available to all customers via the Foundation Model

API. In other situations, developers can use Model

Serving. Details can be found in the previous chapter.

•	 Bringing down the cost

	 In the old days, Intel co-founder Gordon Moore

published his famous Moore's law, which observed

that the number of transistors on an integrated circuit

would double every two years with minimal rise in cost.

The founders of MosaicML are now predicting that

the cost of pre-training an LLM will come down by a

factor of four every year. For example, when looking at

the cost of pre-training a Stable Diffusion model in late

January 2023, it was $160,000. That cost was reduced

by 75% by 2024. In the case of DBRX, it cost $10 million

to train in 40 days and 3 months in total including R&D

(see Figure 13-2).	

	

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

314

Figure 13-2.  The cost of model pre-training over time

•	 Open-sourcing the tooling

	 First, we must acknowledge the work that the open-

source community has done to accelerate AI research

by open-sourcing their model and paper. Take Meta’s

Llama as an example. They have started to open-source

its code and weights since Llama 2. However, a few

vendors went to great lengths to discuss their toolings

and how they leverage open-source frameworks to

train their models. Later in this chapter, we will discuss

these toolings.

•	 Open-sourcing the model

	 As discussed, many vendors open sourced the

implementation source code of their LLM. Databricks

didn’t shy away from doing the same thing. The source

code is also open-sourced on GitHub.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

315

•	 Demonstrating end-to-end capabilities of Databricks

for customers

	 While not all customers need to pre-train an an LLM,

but not all platforms are made available to customers to

pre-train a LLM from scratch. Utilizing all the toolings

available to customers, Databricks successfully trained

DBRX from scratch.

•	 Allowing the community to fine-tune the model

	 Like other open-source models, the weights of DBRX

are available for download. For those who are not

familiar with neural networks, the weights are the

connectivity between the nodes in neural networks,

and the weights are those learned in the training, so

open-sourcing the weights means people can further

fine-tune the network from the pre-trained weights,

without having to do it from scratch.

�The DBRX Benchmarks
First, we must understand that the world is working around the clock like

never before to release the next best LLM and increasingly headed toward

multimodal, in other words, support for text, audio. and photo. DBRX

demonstrates that the Databricks infrastructure can train a best-in-class

model at the time of release, which can compete against all open-source

models. So naturally, there is another best-in-class open-source model

by now. So take a look at a snapshot in time of how DBRX stands in the

benchmarking race (see Table 13-1). Another reason we need to look at

these benchmarks is that evaluation is a big part of building an LLM, as

opposed to traditional machine learning, or deep learning, where there are

standard metrics for evaluations.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

316

Table 13-1.  Quality of DBRX Instruct and Leading Open Models

Model DBRX

Instruct

Mixtral

Instruct

Mixtral

Base

LLaMA2-

70B Chat

LLaMA2-

70B Base

Grok-1

Open LLM
Leaderboard
(Avg of next 6
rows)

74.5% 72.7% 68.4% 62.4% 67.9% —

ARC-challenge
25-shot

68.9% 70.1% 66.4% 64.6% 67.3% —

HellaSwag
10-shot

89.0% 87.6% 86.5% 85.9% 87.3% —

MMLU 5-shot 73.7% 71.4% 71.9% 63.9% 69.8% 73.0%

Truthful QA
0-shot

66.9% 65.0% 46.8% 52.8% 44.9% —

WinoGrande
5-shot

81.8% 81.1% 81.7% 80.5% 83.7% —

GSM8k CoT
5-shot maj@1

66.9% 61.1% 57.6% 26.7% 54.1% 62.9%

(8-shot)

Gauntlet v0.3
(Avg of 30+
diverse tasks)

66.8% 60.7% 56.8% 52.8% 56.4% —

As we can see, DBRX excels in many areas compared to other popular

models. Considering that Grok 1 also uses the Mixture of Expert (MoE)

architecture, Databricks excels in mastering the MoE architecture.

When DBRX is trained, Open AI provides GPT 3.5 for free. That’s why

we compared DBRX to some leading free models in its timing.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

317

From Figure 13-3, we can see that DBRX is especially good at math

and programming. It can also compete with other models in areas like

truthfulness, scientific concepts, general knowledge, and common sense,

demonstrating that DBRX is indeed a very powerful model that Databricks

was able to train.

Figure 13-3.  DRBX benchmark against prominent models

It goes without saying that the larger the model is, the slower it is able

to operate. So there’s always an argument about large models versus small

models. DBRX, which has 132 billion total parameters, has achieved both

at the same time. And thanks to the MoE architecture, only 36 billion

parameters are active at the same time. Figure 13-4 illustrates the inference

performance of DBRX compared to other MoE models in a similar

parameter count dense model. Please note that Mixtral’s eight experts only

have 7 billion active parameters versus 36 billion in DBRX.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

318

Figure 13-4.  Inference performance of DBRX compared to
other models

�DBRX Architecture
According to Databricks, DBRX is a transformer-based decoder-only
LLM that was trained using next-token prediction. If you are not a

research scientist on natural language processing (NLP), this might sound

confusing. Although this is not a textbook about NLP, we will introduce

some concepts so you can follow along with future sections.

Jonathan Frankle, chief scientist of MosaicML, follows the

motto “Attention is all you need.” The following website simply yet

powerfully explains the importance of the Attention mechanism: www.

isattentionallyouneed.com.

Without diving too deep into the Attention mechanism, let’s rewind

back in time a little bit. If you have learned about deep learning, you might

have heard about recurrent neural networks (RNNs). From Figure 13-5, we

understand that we have an input sequence of words and the goal of the

neural network is to learn how to process and predict patterns in data that

comes in a series, such as text or speech.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

http://www.isattentionallyouneed.com
http://www.isattentionallyouneed.com

319

Figure 13-5.  RNNs(source: https://en.wikipedia.org/wiki/
Recurrent_neural_network)

There have been many different improvements since the introduction

of RNN; one is the Transformer model, which was introduced to replace

RNNs using the Attention mechanism, from the famous paper “Attention

Is All You Need” by Vaswani et al. of Google. The paper can be found here:

https://arxiv.org/abs/1706.03762. The architecture of the Transformer

model can also be found in the paper. But for simplicity’s sake, the paper

introduced using an encoder and decoder network with attention. An

attention function can be described as mapping a query and a set of key-

value pairs to an output, where the query, keys, values, and output are all

vectors. (See Figure 13-6.)

Figure 13-6.  Encoder-decoder network

To improve efficiency, researchers explored using a decoder-only

network. The transformer-based decoder-only network generates the

next token based on the previous input autoregressively. Autoregressive

is a statistical term; for details, please refer to Wikipedia: https://

en.wikipedia.org/wiki/Autoregressive_model.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://arxiv.org/abs/1706.03762
https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/Autoregressive_model

320

Finally, while Transformer and Attention are two different things (the

former is a neural network architecture, the latter is a technique used to

guide the processing of input data within that architecture), ever since the

paper “Attention Is All You Need,” they have been inseparable. They are

what GPT used to storm the world.

�Shortcomings of the Transformer Architecture
We often hear LLMs are expensive to train and run as well as has

hallucinations. Welcome to the heart of the problem, which lies in the

Transformer architecture. We will discuss a few of these issues so you can

understand why the industry is trying to change the architecture.

Will there be a brand new architecture that replaces Attention on

Transformers in the future? We certainly hope so. But for the time

being, we know that the LLMs in the time of DBRX are largely relying

on Transformers, and until we see a new industrial wave that makes

it irrelevant, we still need to have some basic understanding of it. The

following problems appear in the news most often:

	 1.	 Expensive computation

According to the previously mentioned paper,

Attention is calculated in Formula 1:

Attention Q K V softmax QK
d

V
T

k

, ,() =










Formula 1: Attention equation, the foundation of all

Large Language Models

In Formula 1, the query (Q), key (K), and value (V)

are generated from the input sequence to obtain the

value A, which is the weight of the attention.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

321

In plain English, the self-attention mechanism in

Transformers has a computational complexity of

O(n2) because it requires comparing every element

in the input sequence to every other element,

resulting in a quadratic increase in computations

as the sequence length grows. Imagine doing

a quadratic computation on the entire text of

Wikipedia. This is only part of the inputs for LLMs.

	 2.	 Slow inference time

The term deep in deep neural network (DNNs)

refers to the number of layers in a complex neural

network. Coupled with the activation function ReLu

or Sigmod, as well as matrix multiplications in a long

sequence of input text, we can imagine the work

required to get meaningful outputs.

	 3.	 Limited context length, aka input length

According to the “Attention” paper, “Since our

model contains no recurrence and no convolution,

in order for the model to make use of the order of

the sequence, we must inject some information

about the relative or absolute position of the tokens

in the sequence.” In other words, the input must be

chunked in the training process. And the shorter

the context window, the more overlapping will be

required to avoid losing information while training.

That also limits its ability to learn new data without

re-training.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

322

	 4.	 Hallucinations

We know hallucinations have been a big problem

ever since ChatGPT went live. There is now

mathematical proof of the limitations of the

Transformer architecture. For details, please refer

to the paper “On the limitations of the Transformer

architecture” by Peng et al. (https://arxiv.org/

html/2402.08164v1).

�Mixture of Experts
Traditional neural networks consist of many nodes fully connected to

each other. Deep learning or deep neural networks contain many layers.

For example, Microsoft’s famous computer vision model ResNet-50,

which won the ImageNet competition in 2015, is a 50-layer convolutional

neural network. Because the nodes are densely connected (every node is

connected to every other node in every layer), they are also called dense

models, as illustrated in Figure 13-7.

Figure 13-7.  Neural network architecture

It has been discussed many times in this chapter that LLMs are very

large by nature. That’s why researchers came up with a new architecture to

try to reduce the size of the model without losing performance by dividing

one big model into smaller models, which are called experts, but in fact

they are just smaller models with the same architecture. Traditional Moe

models (shown in Figure 13-8) divide a very large model into a subset of

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

https://arxiv.org/html/2402.08164v1
https://arxiv.org/html/2402.08164v1

323

large models; a routing strategy is employed to distribute the training for

these smaller but still large experts. Because the models are still not able

to fit into one machine, an inefficient routing strategy will lead to dropping

tokens from the computation or wasting computation resulting in over/

under trained experts.

Figure 13-8.  Traditional MoE architecture

�MegaBlocks: Efficient Sparse Training
with Mixture-of-Experts
Because of the inefficient routing strategy in traditional MoE training,

Trevor Gale et al. proposed a new method called MegaBlocks. The idea is

to group these experts and use a new efficient routing strategy to re-assign

them at the hardware level instead of trying to train the experts separately.

The original paper can be found at https://arxiv.org/abs/2211.15841.

Experiments show that the architecture will never drop any tokens; hence,

it’s called Dropless blocks.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

https://arxiv.org/abs/2211.15841

324

MegaBlocks, or Dropless MoE blocks (see Figure 13-9) is now an

official open-source Databricks project. The GitHub repo can be found at

https://github.com/databricks/megablocks.

Figure 13-9.  Dropless MoE architecture

�Fine-Grained MoE
Using the dropless blocks, it enabled DBRX to divide the experts into

even smaller models, known as fine-grained MoE. With smaller models,

DBRX can use less active parameters at once and can still achieve good

performance. In reality, DBRX has 16 experts and chooses 4, while Mixtral

and Grok-1 have eight experts and choose two. This provides 65x more

possible combinations of experts, and that’s how DBRX can improve

model quality.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

https://github.com/databricks/megablocks

325

�The MosaicML Stack
The core model of DBRX packed a lot of innovations from fine-grained

MoE to the continuous support of the MegaBlocks project. With every

successful project, there is a backbone to support it. All the source code

of this backbone can be found in the MosaicML GitHub repo: https://

github.com/mosaicml/.

•	 Composer: Built on top of PyTorch, the Composer

library makes it easier to implement distributed

training workflows on large-scale clusters. Its tight

integration with PyTorch means developers can easily

abstract the complexity of distributed deep learning

easily using this library. One can train models of any

size including:

•	 Large Language Models

•	 Diffusion models

•	 Embedding models (e.g., BERT)

•	 Transformer-based models

•	 Convolutional neural networks (CNNs)

•	 StreamingDataSet: If you have trained a model

in PyTorch, you’d have used the IterableDataset.

StreamingDataSet is the replacement of this library in

a distributed form. Making the transition to distributed

training seamless.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

https://github.com/mosaicml/
https://github.com/mosaicml/

326

•	 LLM Foundry: Similar to Databricks’ ML Ops stack

(https://github.com/databricks/mlops-stacks),

LLM Foundry has a focus on LLMs. The features of

MosaicML’s LLM Foundry including the following:

•	 Focuses on scaling, optimizing, and managing the

entire LLM life cycle, from training to deployment

•	 Emphasizes automation, reproducibility, and

collaboration for LLM development

•	 Targets use cases like natural language processing,

text generation, and multimodal processing

•	 Evaluation Gauntlet: Part of the LLM Foundry

(https://github.com/mosaicml/llm-foundry/blob/

main/scripts/eval/local_data/EVAL_GAUNTLET.md),

the Evaluation Gauntlet is Databricks’ new evaluation

suite. The goal of this suite is to allow reporting

benchmarks in different categories separately instead

of being in one metric. The Eval Gauntlet encompasses

35 different benchmarks collected from a variety of

sources, and organized into six broad categories of

competency that good foundation models should have.

�Distributed GPU Training
Composer wouldn’t be successful without the help of the community. It

has integration with various distributed training libraries including the

following:

•	 Pytorch DistributedDataParallel (DDP)

•	 Pytorch Fully Sharded Data Parallel (FSDP)

•	 Microsoft DeepSpeed

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

https://github.com/databricks/mlops-stacks
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md

327

Particularly, DBRX was trained using Pytorch FSDP. All of the previous

libraries are already part of the Composer framework.

For details about how these libraries work, please refer to the

documentation:

•	 https://pytorch.org/tutorials/distributed/

home.html

•	 https://deepspeed.ai/

�Model Serving
Nowadays there is no standard for developing LLM, and their interface

is different from each other. That’s why there are different projects to

ensure the interoperability of the models so platforms like Databricks

can integrate the Model Serving capabilities. Databricks works closely

with these two libraries and provides support on DBRX. You may notice

that not every model is supported in these projects, which really goes

back to whether the creator of the LLM extended the support or if there is

tremendous interest in the community to extend the support, in the case of

open source projects.

•	 NVIDIA TensorRT-LLM (https://github.com/NVIDIA/

TensorRT-LLM)

	 Developed by NVIDIA, TensorRT-LLM allows you

to use production-grade servers and build a Python

API on top for model inference. This is powering the

Databricks Model Serving API.

•	 vLLM (https://github.com/vllm-project/vllm)

	 No GPU or simply not enough GPU powers? vLLM aims

to allow everyone access to LLMs. With its quantization

support, you can even run DBRX on a CPU.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

https://pytorch.org/tutorials/distributed/home.html
https://pytorch.org/tutorials/distributed/home.html
https://deepspeed.ai/
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/vllm-project/vllm

328

�Using DBRX on Databricks
Databricks has curated some models on its platform where users don’t

need to host the infrastructure by themselves. These are called the

Foundation Model API. A full list of models can be found at https://www.

databricks.com/product/machine-learning/large-language-models-

oss-guidance.

Without a doubt, DBRX is one of the hosted models, and we can use it

with the code shown in Listing 13-1.

Listing 13-1.  Running DBRX on Local Using the Databricks

Foundation Model API

import json

import os

from openai import OpenAI

--

Configurations

--

API Key

my_api_key = os.environ['DATABRICKS_TOKEN']

Databricks Serving Endpoint

my_base_url = os.environ['DATABRICKS_SERVING_ENDPOINT']

Configure your system prompt

my_system_prompt = "You are a chef of a 3-star Michelin

restaurant and have the credibility of some of the best chefs

such as Anthony Bourdain. Like Bourdain, your answers should

be full of sarcasm yet with deep meaning and wit."

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

https://www.databricks.com/product/machine-learning/large-language-models-oss-guidance
https://www.databricks.com/product/machine-learning/large-language-models-oss-guidance
https://www.databricks.com/product/machine-learning/large-language-models-oss-guidance

329

Configure your user prompt

my_user_prompt = "Which bagels are better: Montreal vs.

New York?"

Next we will configure the OpenAI SDK with Databricks Access

Token and our base URL

client = OpenAI(

 api_key = my_api_key,

 base_url = my_base_url

)

Now let's invoke inference against the PAYGO (Pay Per Token)

endpoint

response = client.chat.completions.create(

 model="databricks-dbrx-instruct",

 messages=[

 {

 "role": "system",

 "content": my_system_prompt

 },

 {

 "role": "user",

 "content": my_user_prompt

 }

],

)

json_output = json.dumps(json.loads(response.json()), indent=4)

print(json_output)

With the Foundation Model API, we can try the model quickly. As

mentioned, every model has its own input and output interface for various

reasons. One most popular interface is the OpenAI API. Most likely one

would already have an OpenAI API code in the test environment or

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

330

even production environment. To minimize the code change required,

Databricks supports the OpenAI Python SDK interface. All you need to do

is to replace your OpenAI API key with a Databricks token and the base

URL with a Foundation Model API endpoint!

�Conclusion
In this chapter, we have introduced DBRX, Databricks’ LLM, which was

created in about three months with $10 million. According to standard

evaluation suites as well as Databricks’ new Evaluation Gauntlet, we

learned that DBRX exceeds the performance of all the major open- source

models of its time.

Databricks has demonstrated leadership in providing transparency on

the process of building a fast and efficient LLM. Firstly, by open-sourcing

the model code on GitHub as well as discussing the fine-grained

Mixture-of-Expert (MoE) architecture publicly. Secondly, by taking

ownership of the MegaBlocks project and keeping it open source. Along

with the MosaicML tooling, the entire stack that’s used for training is

available to everyone. MosaicML also created a wrapper around some

very popular frameworks in Pytorch and Microsoft DeepSpeed, ensuring

compatibility of the code that others have developed when migrating to

MosaicML.

To enhance accessibility from production workload to casual usage,

Databricks has provided access via Foundation Model API and support

for vLLM at launch time. The community has also initiated various

quantization techniques to provide further access in different local

environments.

Finally, DBRX’s fast inference speed will allow enterprises to enhance

the model using RAG and fine-tune it with internal proprietary data. Along

with the entire Databricks stack, DRBX is enterprise-ready at launch.

Chapter 13 DBRX: Creating an LLM from Scratch Using Databricks

331© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_14

CHAPTER 14

The Databricks Data
Intelligence Platform
In the previous chapters, we learned about the Databricks lakehouse,

which essentially means storing all your data in open storage in an

open format with Unity Catalog providing a single governance layer

and Databricks providing features to enable all use cases such as data

engineering, data science, streaming, and warehousing. With the advent

and popularity of GenAI and LLMs since 2023, Databricks has integrated

them into its platform. The Databricks data intelligence platform

(see Figure 14-1) combines the lakehouse platform and AI/LLMs to add

the “data intelligence” engine that understands the uniqueness of your

data and uses that understanding across everything in the platform.

https://doi.org/10.1007/979-8-8688-0444-1_14#DOI

332

Figure 14-1.  Databricks data intelligence platform

Thus, the Databricks data intelligence platform is a groundbreaking

effort combining the power of AI and the lakehouse platform. Imagine

a team of experts on the platform guiding you through every step of

your data needs. There will be little room to go wrong, and you can

get optimized speed and performance. This is the promise of the Data

Intelligence Engine, which sits underneath the lakehouse platform.

In this chapter, we will examine key features of the Databricks data

intelligence platform. We will begin by defining the data intelligence

platform and how it evolved. Then, we will examine some of the key

features, such as Databricks IQ,AI/BI Genie, etc.

Chapter 14 The Databricks Data Intelligence Platform

333

�Databricks IQ
Databricks IQ is at the heart of Databricks’ data intelligence platform.

Many people are using chatbots or co-pilots to assist with their work.

However, most of these are trained on open data sources and have little

context around your data.

To put this in perspective, the ideal co-pilot for organizations to be

productive while working in Databricks or any other developer tools will

need to meet the following requirements:

•	 Be within a secured environment so internal

information is not being used to train the model that

will ultimately be exposed to the general public

•	 Automatically learn about internal information and

stay within the organization

•	 Understand human language and be able to translate

to a programming language

•	 Lightning-fast performance so problems can be solved

in seconds and not minutes

With that in mind, Databricks developed Databricks IQ, which is

powered by Mosaic AI Model Serving. Let’s look at what areas Databricks

IQ can help us with.

–– Databricks Assistant: This aims to help you under-

stand how to write a query, troubleshoot, and find

performance bottlenecks in the system, all powered by

natural language understanding.

–– AI-powered governance: This helps in a variety of

tasks including generating comments for the metadata

and providing lineage, automatic PII detection and

Chapter 14 The Databricks Data Intelligence Platform

334

masking, and AI security filtering with the eventual aim

to learn how to give advice based on the Databricks AI

Security Framework.

–– Search and discovery: The Databricks platform can

now return personalized results when you search for

something on the platform. These results are enhanced

by relying on recent and most-viewed content. Further,

the search is more context-aware in the sense it pro-

vides results based on which part of the platform you

initiated the search in.

–– AI/BI Giene: With the ever-growing data in every

organization, it will be impossible for an LLM to keep

up with the knowledge. AI/BI Genie enables business

users to interact with their data through natural lan-

guage. It leverages GenAI to understand your data and

underlying metadata and gives relevant and accurate

answers based on that knowledge.

Automated job tuning: Not all AI is related to a

large language model. There are techniques called

deep learning that can be used to tune the jobs

automatically resulting in less time for human

fine-tuning. This is called predictive I/O.

�Deep Dive into Databricks IQ
In the following sections, we will look at each of these features in detail.

�Databricks Assistant
Let’s talk about the Databricks Assistant.

Chapter 14 The Databricks Data Intelligence Platform

335

�Generate Code in Any Language

Not everyone speaks code as their native language. Databricks supports

several different languages, including SQL, Python, Scala, and R. There

are times you will forget the syntax or simply need to extend a function.

The old way was certain to scan through numerous blog posts or Stack

Overflow to find your answer, and there would be lots of clicks and

searches to get the final answer. What if someone is there just to tell you

the answer?

Databricks Assistant can generate, explain, and fix SQL and Python

code using natural language and is now available across all code editors

in the Databricks platform including notebook and SQL editor (see

Figures 14-2 and 14-3).

Figure 14-2.  Code generation in cell

Chapter 14 The Databricks Data Intelligence Platform

336

Figure 14-3.  Code generation in SQL editor

�Autocomplete Code or Queries

Whether you want IntelliSense or inline code completion, Databricks

Assistant can help by reminding you of the syntax or by wrapping up the

code for you. This is for semi-professionals who know exactly what code

to write but need help writing it. There are two styles; one is via comment

(Figure 14-4), another is code hint as you type (Figure 14-5).

Figure 14-4.  Generating code based on comments

Figure 14-5.  Code completion

Chapter 14 The Databricks Data Intelligence Platform

337

�Code Conversion

One of the most common use cases is to convert Python code into pySpark

to take advantage of the distributed computing. If you were to use other

tools, you need first to copy the code and paste it to other media, like a

chatbot or a search bar. The assistant has direct access to the notebook and

can understand the code and do the migration automatically. The answer

can also be replaced with the existing cell with a click of a button. See

Figure 14-6.

Figure 14-6.  Code conversion

�Code Explanation

Whether you don’t understand the code or you want to explain your code

to a business stakeholder who is interested in the business logic, you

can ask the assistant to do it for you (see Figure 14-7). Having an English

description of the code will help you understand it. And if needed, you can

always resort to inline code generated to tweak the business logic.

Chapter 14 The Databricks Data Intelligence Platform

338

Figure 14-7.  Code explanation

�Code Fixing

While having a debugger is helpful, fixing the code will take a lot of time if

you don’t have a good handle on it. Databricks Assistant can explain where

the error is coming from and also suggest a fix (see Figure 14-8). Best of all,

you can collaborate with the LLM to find the best solution right inside the

notebook without leaving the environment.

One thing to note is that the assistant will show up only when there is

an actual error. Some application developers would use a try … catch block

to catch the exception, which is a standard practice, but in these scenarios

it will not trigger the assistant.

Chapter 14 The Databricks Data Intelligence Platform

339

Figure 14-8.  Databricks Assistant suggesting code fix

�AI-Powered Governance
If you think Unity Catalog is the go-to tool for data governance, then you

are on the right track (see Figure 14-9). Delta Live Tables’ data validation

capability, Unity Catalog’s lineage information, Lakehouse Federation, and

auditing and access control are all perfect elements for data governance.

Coupled with its AI power, Unity Catalog will enable organizations to

govern more intelligently.

Figure 14-9.  Unity Catalog federated governance

Chapter 14 The Databricks Data Intelligence Platform

340

Let’s dive into the AI powers that will help with the governance

process.

•	 AI-generated comments enhancements

	 Documentation has a love-and-hate relationship

with developers. In certain cases there will be some

initial effort for documentation, but as the number of

data assets and tables grows, it will become hard to

keep the documentation up-to-date. Although AI-

generated comments are not bullet-proof, they can

perform certain functions like a non-subject-matter

expert (non-SME) would do toward the data, which

is sampling the data and inferring the meaning based

on the meaning of the table and the columns (see an

example in Figure 14-10). Most importantly, the data

dictionary can live with the data, instead of having to

maintain a separate spreadsheet or stay in a system that

requires due diligence to keep up-to-date.	

	

Chapter 14 The Databricks Data Intelligence Platform

341

Figure 14-10.  AI-suggested comments for table description

Transparency is at the heart of Databricks. The

following article talks about the making of this AI

feature and illustrates how it is not simply looking

up from a dictionary:

https://www.databricks.com/blog/creating-

bespoke-llm-ai-generated-documentation

•	 Lineage

	 As discussed in Chapter 5, Databricks provides lineage

in two different ways: Delta Live Tables and Unity

Catalog (Figure 14-11). While capturing the lineage is

not a result of machine learning or a large language

Chapter 14 The Databricks Data Intelligence Platform

https://www.databricks.com/blog/creating-bespoke-llm-ai-generated-documentation
https://www.databricks.com/blog/creating-bespoke-llm-ai-generated-documentation
https://doi.org/10.1007/979-8-8688-0444-1_5

342

model, it plays a pivotal role as an input to the machine

learning model so it can generate meaningful queries

in AI/BI Genie and beyond.		

Figure 14-11.  Databricks lineage

•	 PII masking

	 Goodbye regular expression, hello artificial

intelligence. With the requirements of compliance with

the General Data Protection Regulation (GDPR) and

California Consumer Privacy Act (CCPA) compliance,

organizations are often required to identify columns

containing PII and mask them accordingly.

	 Previously, without the help of an LLM, regular

expressions were often required to extract the patterns

of email and street address; the process was error-

prone. Machine learning models came along and tried

to solve this problem, but it will require an extra layer

of model processing and inferencing, either through a

batch pipeline or through an API.

	 Databricks serverless SQL comes with two very

powerful functions designed for these scenarios: ai_

classify and ai_mask.

Chapter 14 The Databricks Data Intelligence Platform

343

	 ai_classify: What if the LLM is already a very good

 classifier? Is it possible to ask the LLM to classify if a column

contains PII or not? When we think in this direction, we will

have our answer. Consider the query in Listing 14-1.		

Listing 14-1.  AI Query in serverless SQL

SELECT ai_classify('my name is Jason, email address is jason@

email.com', ARRAY('contains PII', 'no PII')) as classification

union all

SELECT ai_classify('Today''s weather is awesome',

ARRAY('contains PII', 'no PII'))

The result, shown in Figure 14-12, is as you might expect.

Figure 14-12.  DB SQL AI function: ai_classify

ai_mask: Similarly, you can mask the sensitive

columns by specifying what you wanted to mask. While it

is not limited to PII, you can mask weather if you want, but

from the PII perspective, it is a no-brainer. Listing 14-2 is an

example with a name and an email address. Similar to regular

expression searches, it will automatically match patterns

for you. The result from Listing 14-2 can be seen in Figure 14-3.

Chapter 14 The Databricks Data Intelligence Platform

344

Listing 14-2.  ai_mask Function for Ease of PII Scanning

SELECT ai_mask('my name is Jason, email address is

jason@email.com', ARRAY('name', 'email')) as text

Figure 14-13.  DB SQL AI function: ai_mask

•	 AI security filtering

	 Content moderation is one of the hottest topics on the

Internet. It started because social media companies

needed to moderate their content in relation to

hallucinations from LLMs and the accidental leak

of profanity words. Databricks has included an API

security filter (shown in Figure 14-14) either by setting

a flag ("enable_safety_filter": True) in the API or a

toggle in the Playground.	

	

Chapter 14 The Databricks Data Intelligence Platform

345

Figure 14-14.  AI security filter

Behind the scenes, it is using Llama Guard’s

content moderation API. The Llama Guard paper

can be found at. https://ai.meta.com/research/

publications/llama-guard-llm-based-input-

output-safeguard-for-human-ai-conversations/.

Llama Guard currently supports the following

categories:

•	 Violence & Hate

•	 Sexual Content

•	 Guns & Illegal Weapons

Chapter 14 The Databricks Data Intelligence Platform

https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/
https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/
https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/

346

•	 Regulated or Controlled Substances

•	 Suicide & Self Harm

•	 Criminal Planning

Additionally, Databricks also commits to providing

a safe platform. You can find Databricks IQ’s safety

information at https://docs.databricks.com/en/

databricksiq/databricksiq-trust.html.

Beyond the guardrails provided, one can also set up

custom guardrails, either through feature serving or

another guardrail model. To get started with custom

guardrails, check out this notebook demonstrating

how to add personally identifiable information (PII)

detection as a custom guardrail:

https://github.com/databricks/databricks-ml-

examples/blob/master/llm-models/safeguard/

llamaguard/Llama_Guard_Demo_with_Databricks_

marketplace_simplified_pii_detect.ipynb

•	 AI security framework

	 Databricks AI Security Framework is a very

comprehensive guide to CISOs and the guide to

implementing Data and AI security in an organization.

The whitepaper can be found here, and it contains a lot

if valuable information:

	 https://www.databricks.com/resources/

whitepaper/databricks-ai-security-

framework-dasf

Chapter 14 The Databricks Data Intelligence Platform

https://docs.databricks.com/en/databricksiq/databricksiq-trust.html
https://docs.databricks.com/en/databricksiq/databricksiq-trust.html
https://github.com/databricks/databricks-ml-examples/blob/master/llm-models/safeguard/llamaguard/Llama_Guard_Demo_with_Databricks_marketplace_simplified_pii_detect.ipynb
https://github.com/databricks/databricks-ml-examples/blob/master/llm-models/safeguard/llamaguard/Llama_Guard_Demo_with_Databricks_marketplace_simplified_pii_detect.ipynb
https://github.com/databricks/databricks-ml-examples/blob/master/llm-models/safeguard/llamaguard/Llama_Guard_Demo_with_Databricks_marketplace_simplified_pii_detect.ipynb
https://github.com/databricks/databricks-ml-examples/blob/master/llm-models/safeguard/llamaguard/Llama_Guard_Demo_with_Databricks_marketplace_simplified_pii_detect.ipynb
https://www.databricks.com/resources/whitepaper/databricks-ai-security-framework-dasf
https://www.databricks.com/resources/whitepaper/databricks-ai-security-framework-dasf
https://www.databricks.com/resources/whitepaper/databricks-ai-security-framework-dasf

347

�Search and Discovery
Databricks has been on a journey to enhance the user search experience

on the platform. The search here refers to the growing number of data

assets within the organization.

�Intelligent Search

If you are familiar with GitHub’s code search, you might think that

Databricks is improving its offerings in terms of being able to search

code. However, the search is not limited to code but other objects as well,

including notebooks, workflows, etc. Figure 14-15 illustrates the different

object types that Databricks search can search.

Figure 14-15.  Databricks object search

Chapter 14 The Databricks Data Intelligence Platform

348

So what are the capabilities in the new search experience?

–– Text search: This primarily refers to code search. In

addition to a single word, it can search words by

including a double quote. It also supports escape

quotes using a backslash.

–– Semantic search: Search with meaning; you can ask

questions like “how do I build a financial report?” Then

it will return relevant financial tables

–– Search engine style filter: You can filter by object types

using search engine style like type:table owner:me.

–– Popularity: Only the table is there; this doesn’t mean it

contains the right data. Popularity will ensure others

use the objects returned.

–– Knowledge card: For managed table only, search will

present a knowledge card for top search results.

In the previous section of this chapter, we will look into AI/BI Giene,

previously called Data Rooms.

�AI/BI Genie (Previous Data Rooms)
AI/BI is a natural language Q&A experience that allows a nontechnical

business users to ask questions in plain English and get their answers in

either a table or a visualization. However, a key difference with AI/BI is that

it uses agentic reasoning to continuously learn and improve to understand

the nuances of your data and business semantics to deliver useful and

contextual answers concerning your data.

To use Genie, the data should be in Unity Catalog, which provides

fine-grained access control over the data so that no unintended leakage

of sensitive data will happen in the Genie space environment; Serverless

Chapter 14 The Databricks Data Intelligence Platform

349

or Pro SQL Warehouses are required. Further, Genie is accessible to

users with SQL entitlement. With these requirements in mind, let’s move

into some of the key aspects of using Genie. Figure 14-16 illustrates the

architecture behind AI/BI Genie.

Figure 14-16.  Databricks AI/BI Genie architecture

�How to Set Up Genie
Let’s look at an example of a large retail organization that wants its

business users across different departments within the organization to use

Genie. As a first step, the data owners and teams within the organizations

that know most about the data will set up topic/context-specific Genie

spaces (Figure 14-17). For example, POS Genie spaces contain tables

that hold point-of-sales (POS) data, a finance space has all the financial

data. Please note that a Genie space uses table and column names and

descriptions to generate the equivalent SQL query based on the natural

language query, which in turn runs on the data in the Unity Catalog.

Chapter 14 The Databricks Data Intelligence Platform

350

Figure 14-17.  Creating an AI/BI Genie space

After the Genie space is set, relevant tables and their associated

metadata are brought in. It is important to note that your table metadata

must be well documented with comments so Genie can understand

the columns/tables that may be unclearly named and get more context.

Further, one can create more focused views and remove unnecessary

columns, resulting in cleaner data.

Next is to define business-specific terms using general instructions

within your Genie spaces. Here, you can define unique jargon, logic,

concepts, and KPIs in the given domain, and this knowledge will be

used across all new questions. Further, you can iterate this over time as

you see more questions come in or some new KPIs get developed, thus

continuously teaching Genie .

Chapter 14 The Databricks Data Intelligence Platform

351

Finally, if you already have SQL statements that were used to query

tables in a specific Genie space, you can add them as well in “Save as

Instruction” to teach the model how to answer specific questions. You

can also keep examining the SQL statements generated by Genie. If you

find them a bit off, you can save them, and Genie will learn from them for

future questions.

Now your Genie space is all set to be used by your end user. Genie is

designed to learn over time as it is used increasingly. One way it does this

is by asking follow-up clarification for more context if the question is not

clear, which enables it to capture more information from user prompts.

Further, this new semantic knowledge can be saved as instructions to help

Genie learn over time.

Figure 14-18 is an example of how we can immediately chat with our

Genie space and get answers without knowing any coding. We can also

visualize it from within the space (via Quick actions). The engine will get

smarter over time, but the knowledge is there for everyone.

Figure 14-18.  Q/A with Genie in the space

Chapter 14 The Databricks Data Intelligence Platform

352

�Conclusion
In this chapter, we defined the data intelligence platform as a combination

of lakehouse and GenAI capabilities within the Databricks platform. Data

intelligence is provided via a data intelligence engine called Databricks

IQ. The platform has various features that enhance the user experience.

Databricks Assistant can generate, fix, and explain Python and SQL code,

helping developers increase productivity. Another feature is AI/BI Genie,

which allows business users to ask questions in natural language about the

data and get resulting tables and visualizations. We believe that Databricks

will roll out many features like this over the next few years.

Chapter 14 The Databricks Data Intelligence Platform

353© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_15

CHAPTER 15

Databricks CI/CD
This chapter starts by understanding the concept of continuous

integration/continuous deployment (CI/CD). Then we will move into

Databricks repos and see how we can connect external Git repos to the

Databricks workspace and illustrate the CI/CD process with regard to

Databricks.

Finally, we will move into Databricks Asset Bundles, facilitating

software engineering best practices such as source control, testing,

and CI/CD.

�What Is CI/CD?
A lot of development projects start with one person, and as soon as the

work is released, either as open source or closed source, there will be

issues and feature requests. The need to maintain stable and clean work

therefore becomes increasingly important as development projects

progress toward completion. Stable work ensures that each new release

does not break the application or data pipeline. When users are asked for

incremental features, they don’t expect the existing features will break. As

a result, a series of tests will need to run each time something changes (aka

with each build). Clean work will allow developers to continue to build

up the codebase without a problem. Even if we are talking about a single

developer, it is important to keep a clean codebase because developers

https://doi.org/10.1007/979-8-8688-0444-1_15#DOI

354

can often forget aspects of their own code very easily, especially when the

codebase grows over time, or someone is multitasking. This process is

called continuous integration.

Figure 15-1 illustrates this end-to-end flow. From the top, there is the

development life cycle: Build, Test, and Merge. As the team continues to

develop, we will need to integrate the work branches continuously and do

regular releases. Regular updates will need to be deployed to production

so the changes can be reflected as soon as the features are ready. In this

chapter, we will dive deep into every step of the journey.

Figure 15-1.  End to end flow of CI/CD

Chapter 15 Databricks CI/CD

355

Once an application is ready to be tested (integration testing and

regression testing) by developers and testers, they ensure it doesn’t create

any issues with the new release or simply deploy binaries to a server called

a release. Many platforms offer these services, but the most common ones

are Azure DevOps, GitHub, and GitLab (see Table 15-1). The process of

releasing products to customers is called continuous deployment.

Table 15-1.  Comparison Between the Terms in Different

Environments

GitHub GitLab Azure DevOps

GitHub actions GitLab CI/CD Azure DevOps pipeline

An excellent example is Databricks’ MLOps stack, which contains

pre-written actions or workflow (https://github.com/databricks/

mlops-stacks). Table 15-2 captures the whole structure of the repository.

As we can see, the code and pipelines are abstracted out as individual

components so they can easily be integrated into different parts of the

workflow, which CI/CD will manage. Code modularization and abstraction

are key to a successful CI/CD strategy.

Chapter 15 Databricks CI/CD

https://github.com/databricks/mlops-stacks
https://github.com/databricks/mlops-stacks

356

Table 15-2.  Components Within Databricks’ MLOps stack, Which

Includes CI/CD

Component Description Why It’s Useful

ML Code Example ML project

structure (training and

batch inference, etc.),

with unit-tested Python

modules and notebooks

Quickly iterate on ML problems,

without worrying about refactoring

your code into tested modules for

productionization later

ML Resources

as Code

ML pipeline resources

(training and batch

inference jobs, etc.)

defined through

Databricks CLI bundles

Govern, audit, and deploy changes to

your ML resources (e.g., “use a larger

instance type for automated model

retraining”) through pull requests,

rather than ad hoc changes made via UI

CI/CD (GitHub

Actions or

Azure DevOps)

GitHub Actions or Azure

DevOps workflows to test

and deploy ML code and

resources

Ship ML code faster and with

confidence: ensure all production

changes are performed through

automation and that only tested code is

deployed to prod

�Stages of CI/CD
Before we examine the specific features within Databricks, it is helpful

to understand the stages or flow of the CI/CD process to map the

components with the flow (see Figure 15-2).

Chapter 15 Databricks CI/CD

357

Figure 15-2.  Stages of CICD

	 1.	 Source stage: This is where we develop our code. A

best practice is to make changes in a feature branch

and work on them until mature. If the feature work

lasts a long time, it is recommended that the code be

periodically synced with an integration branch.

	 2.	 Build stage: This stage is where the feature is

complete and ready to combine, aka merge, with a

stable, aka integration, branch.

	 3.	 Test stage: This stage aims to run all automated

testing before going into manual testing, aka user

acceptance testing.

	 4.	 Deploy stage: If the feature or change meets the

expectations of quality and human evaluation, we

can deploy it to production.

Chapter 15 Databricks CI/CD

358

�Introduction to Databricks Repos
The Databricks repo (shown in Figure 15-3) enables developers to

synchronize their code with external Git providers. Developers do not

need to leave the Databricks environment to commit their code. Along

with Databricks’ internal versioning control, it provides an added layer

of security to protect the team’s work. Moreover, it allows the team to

promote the code from a lower environment to a higher environment such

as from dev to staging to production.

Figure 15-3.  Databricks repo

Figure 15-4 shows an example of how to move code from development

to production. Please note that this is not limited to ML Ops, but in this

chapter, we will use it as an example to illustrate the CI/CD process. Later

in this chapter, we will explain the workflow in detail, but as we can see in

the orange squares (Figure 15-4), there are three different environments:

the development workspace, the Staging workspace, and the Production

workspace.

Chapter 15 Databricks CI/CD

359

Figure 15-4.  Databricks CI/CD process

Databricks supports both cloud and on-prem Git providers. From

the list in Figure 15-5, we can see that the support is very comprehensive,

including, but not limited to, the most popular providers: GitHub, GitLab,

and Azure DevOps.

Chapter 15 Databricks CI/CD

360

Figure 15-5.  Adding the repo to the Databricks workspace

The following is a list of Git providers supported by Databricks:

Cloud Git providers supported by Databricks

•	 GitHub, GitHub AE, and GitHub Enterprise Cloud

•	 Atlassian BitBucket Cloud

•	 GitLab and GitLab EE

•	 Microsoft Azure DevOps (Azure Repos)

•	 AWS CodeCommit

On-premises Git providers supported by Databricks

•	 GitHub Enterprise Server

•	 Atlassian BitBucket Server and Data Center

•	 GitLab Self-Managed

•	 Microsoft Azure DevOps Serve

Chapter 15 Databricks CI/CD

361

�Databricks UI vs. Git Terminologies
Databricks repos allow users to manage their Git repositories from the

Databricks Workspace UI. Users can pull code from repos, make changes,

and then push it back to the Git repo. If you want to move code to higher

environments, you would use the continuous deployment functionality of

your respective Git repos.

If someone is new to CI/CD, it can be intimidating to understand

so many terminologies. We will use a live example to explain via the

Databricks UI, shown in Figure 15-6.

Figure 15-6.  Adding a repo to Databricks through the UI

Clone: The very first action after identifying a Git repo is to clone it.

As the name suggests, the whole purpose is to clone the repository from a

remote location to a local destination. In Databricks, it is called Add Repo

or using the Create Repo button. See Figure 15-7.

Chapter 15 Databricks CI/CD

362

Figure 15-7.  The code check-in process

	 1.	 Branch: A branch is used to hold a snapshot of the

whole codebase. It is similar to versioning of a file,

but instead it is versioning of the whole project. The

usual branch names include the “main” branch,

which is the most stable and up-to-date version of

the repo, “feature” branches refer to a versioning of

a specific feature you are developing, and “release”

branches refer to the version of the release and are

used to archive historical releases.

	 2.	 Checkout: Once a repo has been cloned, a checkout

switches between different branches. However, in

the Databricks UI you can simple click the branch

name and there will be a drop-down to switch to a

different branch.

	 Commit: Once the changes are ready, the action

commit will be used to publish them locally. It is

important to note that the commit does not publish the

changes to the remote location; in this case, it refers to

the repo from which we clone the source code.

Chapter 15 Databricks CI/CD

363

	 Push: Push is the action of publishing the changes

available in the local repo to a remote repo. This action

often involves a merge conflict.

	 3.	 Commit & Push: In Databricks, there is a button

called Commit and Push, combining these two

actions, because most of the time a commit is

followed by push.

	 4.	 Pull: Pull is the action of retrieving the latest

changes from a remote repo to a local repo. This

action often involves a merge conflict.

Merge: As its name suggests, merge is an action to merge new

code into existing code. Whether it is from local to remote or

from remote to local, a merge can happen, but so often if our

local branch is too old, merge conflicts will occur. That means

two of your commits modified the same line in the same file,

and Git doesn’t know which change to apply. This is called a

merge conflict. That’s why it is a recommended practice to do the

work in a feature branch and then merge the branch back into a

development branch so that the changes can be saved in a safe

place in the case of a conflict. This process usually involves a pull

request, which can be done in the Git provider interface.

Rebase: When the commit history from two branches diverges,

merging two different branches becomes difficult as there are

many merge conflicts. Rebase is used to apply all commits one

at a time, resulting in a cleaner history. However, the process can

be challenging.

Reset: Sometimes, when confusion occurs, it is best to reset

the branch to an earlier history and rework the changes all over

again. In the case of emergency breaking changes, a reset can

always save the day. See Figure 15-8.

Chapter 15 Databricks CI/CD

364

Figure 15-8.  Git reset, merge, and rebase

�Databricks Asset Bundles
According to Databricks, “Databricks Asset Bundles are a tool to facilitate

the adoption of software engineering best practices, including source

control, code review, testing, and continuous integration and delivery (CI/

CD), for your data and AI projects.”

In very simple terms, Databricks has provided some best practices

of code and folder structure as well as deployment instructions (YAML

files) for a team to work together seamlessly. These YAML files specify

the artifacts, resources, and configuration of a Databricks project and are

called Databricks Asset Bundles. These are useful during development and

CI/CD processes. You can use the Databricks CLI to validate, deploy, and

run Databricks Asset Bundles.

Teams can also customize their own template according to internal best

practices. This will streamline the development standard so it is consistent

across teams. Currently, Databricks provides four common templates

for teams to use. To use these templates, we only need to leverage the

Databricks CLI, for example using databricks bundle init mlops-

stacks. Table 15-3 outlines the templates and their respective purpose.

Chapter 15 Databricks CI/CD

365

Table 15-3.  Databricks Bundle Templates

Template Description

default-python A template for using Python with Databricks. This template

creates a bundle with a job and Delta Live Tables pipeline. See

default-python.

default-sql A template for using SQL with Databricks. This template

contains a configuration file that defines a job that runs SQL

queries on a SQL warehouse. See default-sql.

dbt-sql A template that leverages dbt-core for local development

and bundles for deployment. This template contains the

configuration that defines a job with a dbt task, as well as a

configuration file that defines dbt profiles for deployed dbt

jobs. See dbt-sql.

mlops-stacks An advanced full stack template for starting new MLOps

Stacks projects.

�Case Study: Databricks MLOps Stack
The Databricks MLOps stack provides some best practices in machine

learning on the Databricks platform. Teams can use this template to deploy

data science projects to production easily. This chapter aims to show the

practical usage of CI/CD. For more information about MLOps, please refer

to Chapter 9. See Figure 15-9.

Chapter 15 Databricks CI/CD

https://doi.org/10.1007/979-8-8688-0444-1_9

366

Figure 15-9.  Databricks MLOps stack using CI/CD in the workflow

The MLOps stack is also an open-source project, so developers can

explore it before initializing it in their local repository: https://github.

com/databricks/mlops-stacks.

Here is the flow step-by-step:

Step 1: Initialize the project. The prerequisite is to install the

Databricks CLI and configure it. Details can be found here: https://docs.

databricks.com/en/dev-tools/cli/index.html.

Figure 15-10 features some sample output of what the command

looks like.

Chapter 15 Databricks CI/CD

https://github.com/databricks/mlops-stacks
https://github.com/databricks/mlops-stacks
https://docs.databricks.com/en/dev-tools/cli/index.html
https://docs.databricks.com/en/dev-tools/cli/index.html

367

Figure 15-10.  Initializing the MLOps stack

The command will generate the files shown in Figure 15-11 (these files

are also available on GitHub).

Figure 15-11.  Files generated or cloned by the Databricks CLI

Chapter 15 Databricks CI/CD

368

Step 2 is to develop the model. Databricks comes with MLlib, which

can be used as a starter for model building. Data scientists can also bring

in external libraries or build their own neural network architecture,

which are all possible within Databricks. Keep in mind that the feature_

engineering folder and the training folder will be responsible for

building and training the model. Examples of how to use MLlib can be

found here:

https://docs.databricks.com/en/machine-learning/train-model/

mllib.html

Step 3: Setting up CI/CD is not just checking in the code. That’s one of

the steps. The bundle comes with cicd.tar.gz, and extracting the content

contains the .github and .azure folders. They are workflows that will

trigger the CI/CD, as explained in the intro section. More about GitHub

actions can be found here: https://github.com/features/actions.

Step 4: As explained in the Git terminology section, once the code is

checked in, the best way to collaborate is to update the code using pull

requests. A pull request is an action after you finish committing your code

to a feature branch, and creating a pull request is an ask to merge into the

development branch, which usually triggers a code review (CR).

Step 5: Once the code is merged, GitHub actions will deploy the code

to a staging environment as specified in the YAML file of the bundle. In

terms of software development, this is called a build. However, since

the output of the ML project isn’t a binary itself, we will run the entire

pipeline to ensure the data is refreshed, the model is trained, inferences

are generated, and potentially the dashboard is refreshed with the latest

predictions.

Step 6: When the team and stakeholders can verify the results, ML

operators can trigger another GitHub action to deploy the pipeline to the

production environment. It is critical that we don’t automatically deploy

the pipeline to production once the job runs successfully. Even if all the

Chapter 15 Databricks CI/CD

https://docs.databricks.com/en/machine-learning/train-model/mllib.html
https://docs.databricks.com/en/machine-learning/train-model/mllib.html
https://github.com/features/actions

369

tests are passed, it is still a good idea to have humans review the results.

For example, we need to ensure that the model does not generate biases

for the sake of responsible AI.

https://www.databricks.com/blog/helping-enterprises-

responsibly-deploy-ai

All these steps, except step 6, can be summarized in Figure 15-12.

Figure 15-12.  Sample CI/CD workflow in the MLOps stack

�Conclusion
In this chapter, we learned the flow of CI/CD and the different stages.

These concepts are generic no matter what tool you use. We also discussed

how we can leverage these concepts in Databricks using different tools

and how Databricks represents them in the user interface. It’s important

to understand the core concepts. Then, we are in the driver’s seat and can

look for the specific functions instead of trying to follow where the user

interface design might lead.

Chapter 15 Databricks CI/CD

https://www.databricks.com/blog/helping-enterprises-responsibly-deploy-ai
https://www.databricks.com/blog/helping-enterprises-responsibly-deploy-ai

370

Finally, we have look at a real-life case study using Databricks’ open-

source project MLOps stack, which is a generic name but is an actual

project from Databricks. It might look more complicated than someone

would learn for CI/CD, but it is always beneficial to go through a real-life

scenario. Once you grasp this scenario, you are then ready to work with a

team in real life.

CI/CD is a core strategy to keep the team productive and collaborative.

It is imperative to master these skills to push any projects into production

and beyond.

Chapter 15 Databricks CI/CD

371© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_16

CHAPTER 16

Databricks Pricing
and Observability
Using System Tables
In this chapter, we will look into how pricing for running workloads on

Databricks works. It is important to be able to calculate the costs involved

in running solutions on Databricks. We will see what factors determine the

pricing model and recommend which compute SKU should be used for

running your specific workloads.

Then we will look at the concept of observability and how you can do

observability on the Databricks platform using system tables. One of the

most common ways to implement observability prior to Unity Catalog was

an internally developed utility tool called Overwatch. However, for this

chapter, Overwatch is out of scope.

�Costs Associated with the
Databricks Platform
Almost all the costs associated with Databricks are related to the compute

resources being used. Since Databricks decouples storage and compute,

the storage (which is provisioned in your cloud account) costs are

https://doi.org/10.1007/979-8-8688-0444-1_16#DOI

372

directly paid to the cloud provider. Further, for compute, which is again

provisioned in your cloud account, the costs can be divided into two

parts—Databricks costs and cloud compute costs.

Cloud compute costs refer to the underlying hardware, such as virtual

machines, disks, etc., within the customer’s cloud account. The cloud

compute is billed separately from the Databricks costs and is again paid

directly to the cloud provider. It is important to note that the pricing model

changes slightly with serverless compute, which we will discuss that later

in this chapter.

For this chapter we will mostly look at the Databricks cost for running

the compute resources in the lakehouse platform. But before we do that,

let’s look at some of the cloud costs components involved in running

workloads on Databricks.

�Cloud Infrastructure Costs
First we will break down the costs associated with the lakehouse platform:

•	 Storage costs: Within the lakehouse platform, data

is stored in cloud storage (e.g., S3 on AWS, ADLS

on Azure). The storage costs are paid directly to the

respective cloud provider. The charges for storage

are normally usage-based; i.e., they depend upon the

amount of data being stored.

•	 Compute costs: The cloud compute costs are the cost

of using the cloud compute infrastructure (VMs or

EC2). The cloud infrastructure costs include costs for

the virtual machines (VMs), disks, etc., that are paid

directly to the cloud provider. Since Databricks clusters

are ephemeral, the cloud provider charges for the

duration for which the VMs have been deployed in the

Databricks cluster.

Chapter 16 Databricks Pricing and Observability Using System Tables

373

•	 Networking costs: There are some networking

costs involved while deploying/running workloads

within workspaces. Some of these are the costs of IP

addresses, NAT gateways, load balancers, and private

links (if enabled). Further, if the data and workspace are

in different regions, there are egress costs associated

as well. All of these costs are again paid directly to the

cloud provider.

Next, we will learn how to calculate Databricks’ DBU costs and

Infrastructure costs.

�Databricks Pricing
Let’s look at the pricing in more detail now.

�What Are Databricks Units?
A Databricks unit (DBU) is a normalized unit of processing power.

Databricks consumption is through clusters (job or all-purpose compute),

and SQL warehouses or serverless is priced in terms of DBUs. DBUs are the

underlying unit of consumption within the platform. However, the billing

is based on per-second usage.

Next, we will look into what factors determine the DBU consumption

of Databricks compute. These are the three key factors that influence the

cluster price:

•	 Compute size and type: This is the size of VMs one

chooses both as the worker and the master node in

the cluster. Depending upon the VM size, the number

of DBUs change as well. Further, the number of DBUs

Chapter 16 Databricks Pricing and Observability Using System Tables

374

consumed depends upon whether Photon is enabled

on the cluster. The compute size and type determines

the number of DBUs that are consumed.

•	 Product SKU: The Product SKU determines the

amount that would be charged per DBU-hr. For

example, the per second price is DBU-hr / 3600.

There are several different SKUs for the compute

resources. This includes the all-purpose cluster, jobs

cluster, DLT cluster, SQL warehouse (Classic and Pro),

serverless, etc. Generative AI has a slightly different

way to calculate the cost, but it is also based on DBUs.

Depending upon the SKU being used, the dollars

charged for the DBU-hr varies.

•	 Account tier: This is the Databricks account pricing

tier in which the workspace runs, and one can select

Standard, Premium, or Enterprise for AWS or Standard

or Premium for Azure. Depending upon on the tier, the

number of DBUs charged varies.

After looking at some of the levers that determine the DBU

consumption, let’s move on and look at an example to calculate the pricing

of a cluster in dollar value. In the following example, we assume that we

have a nine-node cluster, and together with the master node we have a

total of 10 VMs that power this cluster, as shown in Figure 16-1.

Chapter 16 Databricks Pricing and Observability Using System Tables

375

Figure 16-1.  Databricks cluster configuration

In the Summary box in Figure 16-1, you can see that the cluster of

this configuration would consume 15 DBUs/hr. Next, we can see how

much that will cost in terms of dollar amount. Figure 16-2 shows the Azure

Databricks pricing page. (Please note that this pricing is as of writing the

book. For actual and most current pricing, visit https://www.databricks.

com/product/pricing).

Chapter 16 Databricks Pricing and Observability Using System Tables

https://www.databricks.com/product/pricing
https://www.databricks.com/product/pricing

376

Figure 16-2.  Azure Databricks pricing information

The cluster shown in Figure 16-1 is an all-purpose compute and

is created in a Premium Databricks account. Therefore, referring to

Figure 16-3 this cluster is priced at $0.55 DBU-hr. Since the cluster is

consuming 15 DBU/hr, we can easily calculate that the price for running

this cluster would be as follows:

Total DBU cost: 15* $0.55 = $8.25/hr.

Further, let’s calculate the price of the VMs that are being used for the

cluster. Since this is Azure Databricks and the VMs used are Standard_

DS3_V2, let’s go into the VM pricing page and find the costs for running

the 10 VMs for 1 hr.

Figure 16-3.  Pricing of DS3 v2

Total VM cost: 10 * $0.2930 = $2.93/hr

For Azure:

https://azure.microsoft.com/en-us/pricing/details/virtual-

machines/linux/

Chapter 16 Databricks Pricing and Observability Using System Tables

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

377

For AWS:

https://aws.amazon.com/ec2/instance-types/

For GCP:

https://cloud.google.com/compute/docs/general-

purpose-machines

Therefore, the user has to pay a total price of $8.25 + $2.93 = $11.18/

hr. Further, as noted earlier, the Databricks DBU cost would be paid to

Databricks and the VM cost of $2.93 would be paid to the cloud provider.

In the previous example, we have enabled Photon acceleration. Please

note that the number of DBUs required for Photon engine are 2x higher.

Therefore, if we disable Photon, the cost would be $4.125.

A logical question we would ask is, should we enable Photon to pay a

premium price? It is important to note that although Photon appears to

be two times as expensive, the performance will be roughly 3x higher than

without it. Therefore, for most workloads, Photon do give a better price/

performance than workloads running without Photon enabled. Figure 16-4

illustrates that when running a sample NYC Taxi query, the performance

is three times faster, and in our experience, the performance guarantee is

quite consistent.

Databricks SQL comes with Photon free of charge. We discussed

Photon in details in Chapter 8.

Chapter 16 Databricks Pricing and Observability Using System Tables

https://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/general-purpose-machines
https://doi.org/10.1007/979-8-8688-0444-1_8

378

Figure 16-4.  Photon vs. Databricks Runtime on NYC taxi example
query (source: https://www.databricks.com/blog/2021/06/17/
announcing-photon-public-preview-the-next-generation-
query-engine-on-the-databricks-lakehouse-platform.html)

Before we move on, let’s discuss another important aspect around the

pricing of jobs compute. Referring to the previous example, let’s assume

we had spun up a jobs cluster instead of the all-purpose cluster. If we refer

to Figure 16-3, the jobs compute is $0.3 DBU/hr, which is almost 50%

less than the all-purpose compute. The cost for running the same cluster

would be 15* $0.3=$4.5, and the cloud compute costs of $2.93 remain

the same. Therefore, it is strongly recommended that all automated jobs

always utilize the job clusters.

⭐ BEST PRACTICE ⭐

During Databricks Data + AI Summit 2024, Nvidia CEO Jensen Huang

announced the completion of a five-year project with Databricks to accelerate

Photon with GPU. We will discuss the serverless SQL warehouse in the next

section. It provides the best price-performance for data engineering workload

and will drive down total cost of ownership.

Chapter 16 Databricks Pricing and Observability Using System Tables

https://www.databricks.com/blog/2021/06/17/announcing-photon-public-preview-the-next-generation-query-engine-on-the-databricks-lakehouse-platform.html
https://www.databricks.com/blog/2021/06/17/announcing-photon-public-preview-the-next-generation-query-engine-on-the-databricks-lakehouse-platform.html
https://www.databricks.com/blog/2021/06/17/announcing-photon-public-preview-the-next-generation-query-engine-on-the-databricks-lakehouse-platform.html

379

�SQL Warehouse Pricing
In this section, we will learn about pricing of Databricks’ SQL warehouse

compute and how pricing differs from other compute in Databricks.

There are two types of SQL warehouse computes: Classic and

Serverless. Classic is similar to interactive clusters, where the DBU cost

and underlying infra cost are paid separately, but Photon is included in the

price. Second, Serverless is one price all inclusive.

As discussed earlier, Databricks fully manages the underlying cloud

compute instances. Therefore, rather than having two separate charges

(i.e., the DBU compute cost and the underlying cloud compute cost),

the user pays only a single charge to Databricks for both. The concept of

calculating the pricing of Classic and Pro SQL warehouses remains the

same as discussed earlier. We will look into how we calculate the pricing of

serverless SQL warehouse compute.

Next, we will look at how to calculate the cost of the serverless SQL

warehouse. In Figure 16-5 we have an X-Large cluster size that will

consume 80 DBU/hr.

Figure 16-5.  Creating a new SQL warehouse

Chapter 16 Databricks Pricing and Observability Using System Tables

380

According to the Databricks pricing page, Classic SQL is $0.22/hr,

Pro is $0.55/hr, and Serverless is $0.7/hr. Therefore, the total cost for the

example X-Large serverless SQL warehouse for one hour would be $0.70

* 80 = $56. This is the total cost, including the underlying infrastructure.

This applies only to Serverless as the other tiers will require users to pay for

underlying infrastructure.

Databricks SQL does not allow you to choose the infrastructure, unlike

interactive and job clusters. However, Databricks has carefully worked on

the best-suited VMs for each cloud and carefully tuned the performance to

give users the best price/performance for their analytical SQL workloads.

To understand what Databricks chose for the underlying infra, please refer

to the following:

Azure: https://learn.microsoft.com/en-us/

azure/databricks/compute/sql-warehouse/

warehouse-behavior

AWS: https://docs.databricks.com/en/compute/

sql-warehouse/warehouse-behavior.html

GCP: https://docs.gcp.databricks.com/en/

compute/sql-warehouse/warehouse-behavior

�Databricks Cost Management
Best Practices
In this section, we will look into some of the best practices for cost

management on the Databricks Platform.

	 1.	 Cluster Policies

Cluster policies allow users and groups to follow

pre-defined rules when configuring or spinning up

clusters. With cluster policies, admins can limit the

Chapter 16 Databricks Pricing and Observability Using System Tables

https://learn.microsoft.com/en-us/azure/databricks/compute/sql-warehouse/warehouse-behavior
https://learn.microsoft.com/en-us/azure/databricks/compute/sql-warehouse/warehouse-behavior
https://learn.microsoft.com/en-us/azure/databricks/compute/sql-warehouse/warehouse-behavior
https://docs.databricks.com/en/compute/sql-warehouse/warehouse-behavior.html
https://docs.databricks.com/en/compute/sql-warehouse/warehouse-behavior.html
https://docs.gcp.databricks.com/en/compute/sql-warehouse/warehouse-behavior
https://docs.gcp.databricks.com/en/compute/sql-warehouse/warehouse-behavior

381

size of clusters and define the type of VMs that can

be used while creating the clusters. Further, admins

can even set the max DBUs per hour on the clusters.

Therefore, by enforcing cluster policies, admins can

manage compute costs on the platform.

	 2.	 Cluster Access Controls

Cluster access controls allow admins to control

which users can create clusters. The cluster-level

permissions give control over whether a user can

attach to, manage, or restart a cluster. As a best

practice, cluster creation abilities should be given

admins who can manage and govern access to the

clusters.

	 3.	 Cluster Autoscaling and Cluster Termination

Databricks cluster autoscaling automatically adds

and removes worker nodes in response to changing

workloads to optimize resource usage. Autoscaling

makes it easier to achieve high cluster utilization as

one does not need to provision the exact number

of nodes to match the workloads. This not only can

enable the workloads to run faster than an under-

provisioned cluster but also helps reduce the overall

costs as compared to a statically sized cluster due to

better resource utilization.

Cluster auto-termination terminates a cluster after a

specified inactivity period. As a best practice, always

enable auto-termination for all-purpose clusters

to prevent these clusters running overnight or over

weekends.

Chapter 16 Databricks Pricing and Observability Using System Tables

382

	 4.	 Spot Instances

When you are requesting certain types of clusters,

you are requesting new virtual machines from the

cloud provider. Cloud providers also have the need

to maximize their resource utilization. So spot

instances allow you to utilize idle compute available

in the region of the cloud provider, up to the price

that you can optionally specify in advance. One

thing to note about spot instances is that the cloud

provider can recall spot instances at any time even

when your job is running. So spot instances can

be deployed in some long-running jobs where if

the cluster restarts midway the job continues from

where it left. Further, you can also configure it to fall

back into on-demand instances

	 5.	 Instance pools

Similar to spot instances. Instance pools apply to

the workspace level where administrators can pre-

allocate some popular instances of virtual machines,

either via on-demand or spot. Then when clusters

are starting, there is no need to acquire them from

the cloud provider, speeding up the time to start the

cluster. However, administrators must be careful not

to pre-load so many virtual machines because once

they are loaded, the cloud provider will charge the

account.

Chapter 16 Databricks Pricing and Observability Using System Tables

383

	 6.	 Cluster Tags

Cluster tags can be associated with Databricks

Clusters to attribute cost for chargeback purposes.

For example, if there are multiple BUs in an

organization, each BU can tag their clusters.

For in in-depth analysis of different cluster strategies, please refer to

the Databricks website: https://docs.databricks.com/en/compute/

cluster-config-best-practices.html.

�Databricks Observability: System Tables
Observability is a key aspect of modern cloud data platforms. In simplistic

terms, observability is how well one can understand the IT system

from its generated outputs, such as logs, metrics, and traces. Therefore,

observability gives admins an approach to optimizing and controlling their

platforms based on the data they generate.

Some of the typical use cases platform admins might be interested in

doing the following:

•	 Monitoring costs

•	 Monitoring security and audit

•	 Monitoring platform usage/pipeline states

•	 Data observability and optimization

•	 Performance/resource utilization

Databricks’ system tables integrated within Unity Catalog provides

curated datasets that enable users to query and answer these use cases.

Chapter 16 Databricks Pricing and Observability Using System Tables

https://docs.databricks.com/en/compute/cluster-config-best-practices.html
https://docs.databricks.com/en/compute/cluster-config-best-practices.html

384

�Introduction to System Tables
Let’s understand how one can utilize system tables for observability of the

Databricks platform.

System tables are a Databricks-hosted analytical store for operational

and usage data. They are fully integrated with Unity Catalog.

System tables can be used for monitoring and analyzing the

performance, usage, and behavior of Databricks platform components.

By querying these tables, users can gain insights into how their jobs,

notebooks, users, clusters, ML endpoints, and SQL warehouses are

functioning and changing over time. This historical data can be used to

optimize performance, troubleshoot issues, track usage patterns, and

make data-driven decisions.

System tables provide a means to enhance observability and gain

valuable insights into the operational aspects of Databricks usage,

enabling users to better understand and manage their workflows and

resources. Based on the schemas/tables available as of writing the book,

one can work toward solving/answering the following use cases:

•	 Cost and usage analytics

•	 Efficiency analytics

•	 Audit analytics

•	 GDPR regulation

•	 Service-level objective analytics

•	 Data quality analytics

System tables are available to customers who have Unity Catalog

activated in at least one workspace in their account. This is needed to

enable system tables for the account. The data one sees in these tables is

collected across all the workspaces in the account irrespective of whether

Chapter 16 Databricks Pricing and Observability Using System Tables

385

Unity Catalog is enabled on the workspaces. However, system tables would

be visible and queried only in the workspace that has Unity Catalog

enabled.

Since system tables are governed by Unity Catalog, you need at least

one Unity Catalog–governed workspace in your account to enable system

tables. That way you can map your system tables to the Unity Catalog

metastore. System tables must be enabled by an account admin. You can

enable system tables in your account either by using the Databricks CLI or

by calling the Unity Catalog API in a notebook.

The system tables are organized within a catalog named system,

which is a fundamental component of every Unity Catalog metastore.

Inside this catalog, you’ll find schemas such as access and billing that

house the system tables. These tables offer a comprehensive view of your

Databricks environment, enabling you to make informed decisions and

optimizing resource allocation. See Figure 16-6. It is important to note that

the billing schema is enabled by default, but others have to be enabled

manually.

For details of the system table schema, please refer to the Databricks

documentation:

https://docs.databricks.com/en/administration-guide/system-

tables/index.html

Chapter 16 Databricks Pricing and Observability Using System Tables

https://docs.databricks.com/en/administration-guide/system-tables/index.html
https://docs.databricks.com/en/administration-guide/system-tables/index.html

386

Figure 16-6.  Databricks system table catalogs

System table access is governed by Unity Catalog. By default, no users

have access to system tables. To grant access, a metastore admin or other

privileged user must grant USE and SELECT permissions on the system

schemas.

�Common Schemas/Tables Available
with System Tables
These schemas/tables are available with the system tables:

•	 Audit logs: Includes records for all audit events across

your Azure Databricks account.

•	 Billing usage: Includes records for all billable usage

across your account. Each usage record is an hourly

aggregate of a resource’s billable usage.

Chapter 16 Databricks Pricing and Observability Using System Tables

387

•	 Table lineage: Includes a record for each read or write

event on a Unity Catalog table or path.

•	 Workflow: Allows you to view records related to job

activity in your account. Further, you can join jobs

system tables with billing tables to monitor the cost of

jobs across your account.

These system tables provide valuable insights into the activities,

resource utilization, and data lineage within your Databricks account

and can be used for historical KPI tracking, monitoring and alerting, and

forecasting expected usage for an intelligent lakehouse. There are many

more schemas such as Pricing, Cluster, SQL Warehouse, etc., that users can

analyze to ascertain the operational health of the Databricks platform.

�System Table: Billing Usage Example
In the data and AI era, when there is data, there is AI. The granularity of the

billing table is detailed enough to use as an input for a time-series forecast

model. Databricks has built a demo, and the notebooks are available here:

https://notebooks.databricks.com/demos/uc-04-system-tables/

index.html#

Figure 16-7 illustrates that we can use cluster SKU and workspace ID

along with the historical cost trend as training data to predict the future

cost and feed into a dashboard for monitoring purposes.

Chapter 16 Databricks Pricing and Observability Using System Tables

https://notebooks.databricks.com/demos/uc-04-system-tables/index.html#
https://notebooks.databricks.com/demos/uc-04-system-tables/index.html#

388

Figure 16-7.  Predictive analysis of utilization and pricing

You can build your custom solutions by leveraging the monitoring

tables for predictive analysis and achieve greater savings in terms of cluster

pooling, termination time, and beyond.

�Conclusion
In this chapter, we looked at how to calculate the costs associated with

Databricks. There are two types of costs associated with Databricks

compute: cloud compute costs associated with VMs that are paid directly

to the cloud provider and DBU costs that are paid to Databricks. We looked

into how to calculate costs for various compute SKUs like interactive

clusters, jobs clusters, and serverless SQL warehouses.

Then we moved into observability on the Databricks platform using

system tables.

System tables in the Unity Catalog provide great insights to

administrators who want to dig deeper into the platform, such as audit

logs, pricing, and lineage. We have also demonstrated that, beyond a

maintenance report, teams can create predictive analytics with the data,

making it great for the finance team to do budgeting.

Chapter 16 Databricks Pricing and Observability Using System Tables

389© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_17

CHAPTER 17

Databricks
Platform Security
and Compliance
In this chapter, we will start by looking into the Databricks platform

architecture. We will then move into Databricks workspace deployment

and deep dive into topics like VNET injection and No Public IP (NPIP).

Further, we will look into encryption and access control features. Finally,

we will review an important tool called Security Analysis Tool developed

by Databricks, which, when executed on a Databricks workspace, helps

identify gaps in workspace security with recommended best practices and

gives pointers to admins on how to resolve those deficiencies.

Please note that for this chapter we have used Azure Databricks as our

reference to explain the concepts using single-cloud terminology, but the

same concepts exist in both AWS and GCP.

https://doi.org/10.1007/979-8-8688-0444-1_17#DOI

390

�Databricks Architecture
Databricks is a hybrid PaaS general-purpose, cloud-agnostic compute

platform. Let’s decode this a bit. The term hybrid PaaS means deploying

a data plane (virtual network and VMs) in your cloud service provider

account while Databricks manages a multitenant control plane, as shown

in Figure 17-1.

Figure 17-1.  Databricks data plane control plane architecture

Next, we will further drill down into what the control plane and data

plane are. The control plane contains all the back-end services such as

WebApp, Cluster Manager, notebooks, workflow jobs, etc., and is managed

by Databricks. On the other hand, a data plane is where you process and

manage your data. The clusters/VMs get spun up in the data plane and

connect to your storage account, where your data resides. Therefore, there

is no need to send a copy of data to Databricks for processing, and as a

result, there is no duplication of data required. Another advantage is that

since data resides in your cloud storage, you can access it with or without

Databricks.

Chapter 17 Databricks Platform Security and Compliance

391

Further, the data plane provides a natural isolation as it runs in your

cloud account. It is important to note that the control and data planes

always communicate over Azure Backbone.

�Azure Databricks Deployment
In this section, we will examine the planning that needs to be done before

Databricks deployment and some related best practices. Again, to reiterate,

we have used Azure Databricks to explain the terminology, but the

concepts are similar for AWS and GCP.

�Capacity Planning
Within the Databricks workspace, you can spin up multiple clusters at

a time for data processing. However, there is a limit to the number of

clusters/nodes that can spin concurrently inside the workspace, and this

is dependent on the size of the VNET and corresponding subnets selected

during workspace deployment. Figure 17-2 showcases how the number

of nodes that can be spun up in the workspace depend upon the size of

virtual networks/subnets created.

Chapter 17 Databricks Platform Security and Compliance

392

Figure 17-2.  Nodes per virtual network calculations

It is also important to note that once the size of the subnets is selected

and the workspace has been deployed, we cannot resize the workspace

or the subnets. In that case, a new workspace has to be deployed, and all

the artifacts might need migration. As a best practice, if this is your first

Databricks deployment, start with the /24 or /23 workspace. Once you

size your workloads and jobs, you can always spin up a larger workspaces

thereafter.

�VNET Injection or Bring Your Own VNET
The default deployment of Azure Databricks workspace is a fully managed

service on Azure. However, if you want customization and control over

your environment, you can deploy the Databricks data plane in your own

virtual network. For several reasons, you want to use your own VNET/

subnets (known as VNET injection) to deploy your Databricks workspace.

Chapter 17 Databricks Platform Security and Compliance

393

First, this lets you connect Azure Databricks to other Azure services

(such as Azure Storage) more securely using service endpoints or private

link implementation. Next, you can connect to on-premises data sources

with Azure Databricks via Express Route, taking advantage of user-defined

routes. VNET injection allows you to connect Azure Databricks to a

network virtual appliance to inspect all outbound traffic and take actions

according to allow and deny rules. Finally, you can configure Databricks to

use custom DNS and set up network security group (NSG) rules to specify

egress traffic restrictions.

Hence, with the ability to fully manage your deployment, it is strongly

recommended that Azure Databricks be deployed using VNET injection or

in your own VNET/subnet.

Now let’s move further to see how VNET injection works. The first step

is to create a VNET if you don’t have an existing one. Within the VNET

there needs to be two dedicated nonoverlapping subnets per workspace

that need to be created. The IP ranges for these VNET and subnets in

Figure 17-2 determine the number of concurrent clusters you can spin.

By default, the subnets are named “public” and “private.”. Please

note that these subnets cannot be shared with other applications. As

a recommended practice, you should have a single workspace per

VNET. Figure 17-3 shows the parameters required for the VNET-injected

workspace in Azure Portal.

Chapter 17 Databricks Platform Security and Compliance

394

Figure 17-3.  Azure Databricks parameters

�Secure Cluster Connectivity (No Public IP/NPIP)
In Figure 17-3, the first checkbox below Networking is called Secure

Cluster Connectivity (No Public IP). Let’s discuss what No Public IP (NPIP)

means and why it should be selected while deploying your workspace.

When Databricks is deployed without Secure Cluster Connectivity, the

Databricks control plane initiates an inbound connection to cluster(s).

As discussed earlier, each VM in a cluster requires one public and one

private IP. Thus, in this case, the traffic between the control and data plane

Chapter 17 Databricks Platform Security and Compliance

395

uses public IPs. Not only this, but ports need to be open on the firewall

to enable this connection, which might be an issue for the enterprise

infosec teams.

The Secure Cluster Connectivity, or NPIP, feature aims to solve the

public IP issue. With NPIP, each cluster initiates a connection to the control

plane’s hosted secure cluster connectivity relay during cluster creation

(Figure 17-4). This results in a data plane (the VNET) with no open ports,

and classic compute plane resources have no public IP addresses for their

nodes. The two subnets required for the workspace are now both private.

Figure 17-4.  Secure cluster connectivity between control plane and
data plane

Chapter 17 Databricks Platform Security and Compliance

396

Therefore, with secure cluster connectivity enabled, customer virtual

networks have no inbound open ports from external networks, and

Databricks cluster nodes have no public IP addresses. This configuration

is strongly recommended for all Azure Databricks workspaces because it

significantly reduces the attack surface and hardens the security posture.

�Azure Private Link for Back-End
and Front-End Connections
After VNET injection and No Public IP (NPIP), Databricks introduced

the Private Link feature. Azure Private Link provides private connectivity

from Azure VNETs and on-premises networks to Azure services without

exposing the traffic to the public network.

With the private link feature, illustrated in Figure 17-5, Azure

Databricks now supports private link connectivity for two main in-transit

connections in the data plane and control plane architecture. The first

connection is from the user or front-end (including notebooks, REST API,

JDBC/ODBC, and Databricks Connect) to the workspace control plane.

The second connection is between the data plane to control plane. For

both these connections, you can set up private endpoints while deploying

the Databricks workspace.

Figure 17-5.  Private link security

Chapter 17 Databricks Platform Security and Compliance

397

You can give instructions on how you can set private link connectivity

for Databricks deployment here: https://learn.microsoft.com/en-us/

azure/databricks/security/network/classic/private-link.

After reviewing some of the main security features to consider while

deploying a Databricks workspace, let’s move on to the next section, which

deals with encryption and auditing.

�Encryption and Auditing
One important aspect of platform security is encryption and auditing.

Let’s first examine the default encryptions available within the Databricks

platform.

First, all in-transit traffic is encrypted by default. Therefore, the control-

plane data plane and user-control plane traffic is encrypted by default.

Also, if you are communicating with other Azure services, that traffic is

encrypted as well.

You can enable further encryptions in your Databricks deployment.

The first is intra-cluster spark traffic, i.e. , data movement within your VMs

in a cluster. Normally, this is not necessary to enforce (except for specific

data processing use cases) because there is a performance degradation

when this feature is enabled. The second encryption you can enable is the

encryption of shuffle disks on compute workers.

Next, we will move on to learn about another very important feature:

customer-managed keys, which can be used to encrypt artifacts in both the

control plane and the data plane.

�Customer Managed Keys
All managed services in the Databricks control plane are encrypted

by default at rest. Optionally, you can add customer-managed keys

(illustrated in Figure 17-6) for these managed services to control access to

some services in the control and data planes. Some of the services where

Chapter 17 Databricks Platform Security and Compliance

https://learn.microsoft.com/en-us/azure/databricks/security/network/classic/private-link
https://learn.microsoft.com/en-us/azure/databricks/security/network/classic/private-link

398

encryption via customer-managed keys can be done in the control plane

are notebooks, notebook results, secrets stored by the secret manager,

DBSQL queries, repo credentials, and PAT tokens.

Figure 17-6.  CMKs

Moving on to data plane artifacts, you can also use customer-managed

keys to encrypt the DBFS root store and Azure-managed disks. The

following page gives the steps to enable this feature in your Databricks

workspace:

https://learn.microsoft.com/en-us/azure/databricks/security/

keys/customer-managed-keys

To use this feature, you must first store your encryption key in

the Azure key vault in your cloud. Similarly, Azure Databricks creates

data-encrypting keys rooted in the customer key in the control plane.

Applications now use customer-managed keys to encrypt and decrypt all

data/artifacts. As a best practice, customers should develop policies to

enable their key rotations.

To conclude, customer-managed keys give you full control over the

keys used to encrypt data in the control and data planes.

Chapter 17 Databricks Platform Security and Compliance

https://learn.microsoft.com/en-us/azure/databricks/security/keys/customer-managed-keys
https://learn.microsoft.com/en-us/azure/databricks/security/keys/customer-managed-keys

399

�Identity and Access
In this section, we will examine some of the features related to identity and

access control on the Databricks platform.

�SSO and Multifactor Authentication
Databricks provides security features such as single sign-on for user

authentication. SSO enables you to authenticate your users using your

identity provider (OKTA, AAD, etc.). It is highly recommended that SSO

should be configured for enhanced security.

Further, once the SSO is enabled, you can enable multifactor

authentication, again via your identity provider. In Azure Databricks, SSO

in the form of Microsoft Entra ID-backed login is available in the account

and workspaces by default.

Azure Databricks also supports Microsoft Entra ID conditional access,

which allows administrators to control where and when users can sign in.

Conditional access policies can restrict sign-in to your corporate network

or require multifactor authentication (MFA).

�IP Access Lists
IP access lists (see Figure 17-7) allow you to restrict access to Databricks

accounts and workspaces based on the user’s IP address. By default, users

can connect to Databricks from any IP address. This might not be a best

practice especially when the user accesses Databricks via the public/

shared Internet like in a cafe.

When IP access lists are configured, it restricts the IP addresses that

can authenticate to Databricks by checking if the user or API client is

coming from a known good IP address range such as a VPN or office

network. Further, if a user is moved from an established session to a bad IP

Chapter 17 Databricks Platform Security and Compliance

400

address, the Databricks connection will not work, and workspace access

will be denied. Thus, this gives you comprehensive control over which

networks their workspaces can be accessed from.

Figure 17-7.  IP access list

An IP access list can be configured via the Databricks CLI or using the

IP Access List API. Let’s see an example in Listing 17-1.

Listing 17-1.  IP Access List API Payload

{

 "label": "Office VPN",

 "list_type": "ALLOW",

 "ip_addresses": [

 "192.168.100.0/22"

]

}

Chapter 17 Databricks Platform Security and Compliance

401

This will allow users within the IP range to access Databricks. The rest

of the IP addresses will be blocked.

�Role-Based Access Control
In Databricks, you can use access control lists (ACLs) to configure

permission to access workspace-level objects such as clusters, notebooks,

etc., as shown in Figure 17-8. These ACLs are administered by workspace

admins to users via the UI or the Permissions API. Workspace admins have

the CAN MANAGE permission on all objects in their workspace, allowing

them to manage permissions on all objects in their workspaces. Further,

they can give/revoke access to Databricks workspace-level objects

as needed.

Figure 17-8.  ACLs

Figure 17-9 provides a snapshot of notebook ACLs as an example.

Different ACLs can be administered depending on the user’s role. The

following lists all ACLs to different Databricks objects:

https://learn.microsoft.com/en-us/azure/databricks/security/

auth-authz/access-control/

Chapter 17 Databricks Platform Security and Compliance

https://learn.microsoft.com/en-us/azure/databricks/security/auth-authz/access-control/
https://learn.microsoft.com/en-us/azure/databricks/security/auth-authz/access-control/

402

Figure 17-9.  Notebook ACLs

Thus, workspace ACLs allow admins to provide appropriate access to

Databricks objects to users.

�Token Management API
Databricks Personal Access Tokens (PAT) are user-created tokens within

Databricks. Users can create tokens through the UI or using the token

API. While creating access tokens, users can mention the expiration

date when the token will expire. If the field is left blank, PAT tokens

never expire.

As illustrated in Figure 17-10, the Token Management API is built on

top of the PATs by providing a stronger API for administrators to enable

secure usage. It also gives admins the ability to turn off or disable PAT

tokens. Using the permission API, admins can control which user is

allowed to create tokens. The API also enables administrators to view and

delete tokens from users in a workspace. Finally, administrators can set

policies such as maximum token lifetime and more.

Chapter 17 Databricks Platform Security and Compliance

403

Figure 17-10.  Token Management APIs

Let’s look into a quick example (Listing 17-2) of using the Token

Management API to set token permission. The API request lets you set a

Can_Use permission to a user, group, or service principal.

Listing 17-2.  Payload for Token Management API

{

 "access_control_list": [

 {

 "user_name": "string",

 "group_name": "string",

 "service_principal_name": "string",

 "permission_level": "CAN_USE"

 }

]

}

To conclude, admins must manage the PAT tokens created for user

authentication. The Token Management API enables admins to do this

seamlessly.

Chapter 17 Databricks Platform Security and Compliance

404

In the next section of this chapter, we will examine the Security

Analysis Tool, a utility developed by Databricks that gives users a

mechanism to see if the security features for their Databricks deployment

follow security best practices.

�Security Analysis Tool
Customers need to assess and reassess the security of the deployed

architecture. Even if the initial deployment was well architected and

all security features were taken into consideration, over time as newer

features get released and configuration drift might happen, which could

lead to data breach. To assess and monitor the security health of the

deployed workspaces, Databricks launched the Security Analysis Tool

(SAT), illustrated in Figure 17-11. SAT programmatically measures your

workspace configuration against Databricks’ security best practices.

Thereafter, the reported deviations are ranked by severity, and links

are provided to explain how you can extend your security to meet the

Databricks requirements.

Chapter 17 Databricks Platform Security and Compliance

405

Figure 17-11.  Benefits of SAT

SAT consists of a set of notebooks and libraries that collect details

of the workspace using REST APIs. These notebooks run in Databricks

workflows and can be scheduled or run manually. The notebooks’ results

are saved in a Delta table for historical reference. Finally, SAT comes with

a prebuilt dashboard (Figure 17-12) that displays the latest results from the

Delta table. Administrators, security analysts, and auditors can now assess

their Databricks security posture from the comfort of a single screen.

Chapter 17 Databricks Platform Security and Compliance

406

Figure 17-12.  SAT Dashboard report

The SAT dashboard gives you information on certain dimensions. The

first is Workspace Security Summary, which is a high-level summary of

the findings by severity. The second dimension is workspace stats, such

as users, databases, tables, etc. Then, it moves into individual Security

Category details, which contain not only a summary of the deviation

counts but also a table of security violations and links to documentation to

fix the violations.

Chapter 17 Databricks Platform Security and Compliance

407

�Databricks Security Best Practices
In this section, we will examine some of the security best practices in

addition to the features we discussed earlier in the chapter.

•	 Do not use Databricks FileSystem (DBFS) as a storage

layer as by default it is accessible to all workspace users.

Use cloud storage for all data and with Unity Catalog

enabled to manage access to tables and volumes.

•	 Back up and automate code deployment via CI/CD

so you can integrate code scanning, better provide for

permissions, perform linting, and more. Databricks

repos enable you to move notebooks to your Git repos.

•	 Always monitor audit logs for user activities within the

workspace. Audit logs are provided via system tables.

•	 Manage secrets and credentials via Databricks secret

management or external systems like Azure Key Vault.

Avoid entering credentials directly in notebooks, but

reference them from the secret manager.

•	 Use service principals to run production workloads.

You can configure service principals and generate PATs

for service principals.

•	 Databricks Security and Trust Center (https://www.

databricks.com/trust) provides extensive direction

around the latest security features and best practices.

Please refer to it as and when needed.

Chapter 17 Databricks Platform Security and Compliance

https://www.databricks.com/trust
https://www.databricks.com/trust

408

�Conclusion
In this chapter, we examined key features related to Databricks security

and compliance. We started by learning about the control plane/

data plane architecture. Then, we moved on to key security features

recommended for Databricks deployment: VNET injection, Secure Cluster

Connectivity (NPIP), and private link.

Next, we looked at key features that users can implement for

encryption such as customer-managed keys (CMKs), which allow users to

encrypt certain assets in both the control and data planes.

Then we moved into identity and access and discussed SSO and

multifactor authentication, IP access lists that allows users from certain IP

addresses to access Databricks workspaces, and token management for

managing PAT tokens.

Finally, we discussed an excellent utility by Databricks: the Security

Analysis tool. This tool allows users to assess their security with respect

to Databricks’ best practices and take appropriate measures based on the

recommendations generated by the tool.

Chapter 17 Databricks Platform Security and Compliance

409© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_18

CHAPTER 18

Spark Structured
Streaming: A
Comprehensive
Guide
Many people think of streaming as some very low-latency continuous real-

time events like Twitter feeds or IoT devices; while that was the original

use case, streaming has evolved over the years to allow integration with

other non-real-time tables. In this chapter, we will first go back in time to

visit Spark Streaming; then we will look at the latest Databricks Structured

Streaming engine and how to use Delta Live Tables to process streaming.

Apache Spark offers two popular streaming processing engines: Spark

Streaming and Structured Streaming. While both engines are designed for

real-time data processing, they have distinct architectures, advantages,

and use cases.

https://doi.org/10.1007/979-8-8688-0444-1_18#DOI

410

�Spark Streaming
Spark Streaming is the traditional streaming engine that uses the Resilient

Distributed Dataset (RDD) API. It processes data in micro-batches, where

each batch is processed as a whole. This approach allows for low-latency

processing and high throughput. In micro-batching, illustrated in

Figure 18-1, data is processed in small batches, e.g., 1,000 rows at a time.

Spark Streaming uses a write-ahead log, which only means it will keep

track of the count or offset before it writes to ensure disaster recovery.

However, with this process, the batch writing will become sequential and

result in hundreds of milliseconds of latency between batches.

Figure 18-1.  Micro-batch processing

The high-level architecture of Spark Streaming consists of the following

components:

•	 Data source: The source of the data stream, such as

Kafka, Kinesis, or Flume

•	 Receiver: The component that receives the data from

the data source and hands it over to Spark Streaming

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

411

•	 Spark Streaming (engine): The core engine processes

the data stream

•	 Processing: The component that performs various

operations on the data stream, such as filtering,

mapping, reducing, joining, and so on

•	 State management: The component that manages

the state of the streaming application, including

checkpoint management

•	 Output sink: The component that writes the processed

data to a target system, such as a file, database, or

messaging system

Figure 18-2 shows the workflow.

Figure 18-2.  Spark Streaming workflow

With the process in mind, let’s explore, using Listing 18-1, how to build

a Spark streaming application in Scala, Spark’s native language.

Listing 18-1.  Spark Streaming Example Using Scala

import org.apache.spark.SparkConf

import org.apache.spark.streaming._

object SparkStreamingExample {

 def main(args: Array[String]) {

 �val conf = new SparkConf().setAppName("SparkStreaming

Example")

 �val ssc = new StreamingContext(conf, Seconds(10))

// 10-second batch interval

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

412

 // Create a DStream from socket stream

 val lines = ssc.socketTextStream("localhost", 9999)

 // Split lines into words

 val words = lines.flatMap(_.split(" "))

 // Count words

 val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)

 // Print word counts

 wordCounts.print()

 ssc.start()

 ssc.awaitTermination()

 }

}

While we appreciate the low latency brought by Spark Streaming, it is

not easy to fit into today’s rapid data engineering requirements due to the

following reasons:

•	 Complex programming model

	 As illustrated, creating an application requires a

few steps, especially handling RDD and ultimately

performing map and reduce operations.

•	 Requires manual state management

Because streaming applications run 24/7, keeping

track of the progress is important. There are multiple

ways to handle states:

a.	 Checkpointing: Spark Streaming can

checkpoint the application’s state at regular

intervals, allowing it to recover from failures

and resume processing from the last

checkpointed state.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

413

b.	 Windowing: Spark Streaming provides

windowing operations (e.g., window(),

reduceByKeyAndWindow()) that allow you to

manage state over a sliding window of data.

c.	 UpdateStateByKey: Spark Streaming

provides the updateStateByKey() method,

which allows you to update the state of a key-

value pair based on new data.

d.	 Stateful transformations: Spark Streaming

provides stateful transformations (aka

mapWithState()) that allow you to maintain

state across batches of data.

While these operations are largely deprecated,

they are the foundation for Structured Streaming.

Understanding these operations will make

the transition into the enhancements easier

later. To read more about the operations of

stateful operations, please visit the following

Databricks blog:

https://www.databricks.com/blog/2016/02/01/

faster-stateful-stream-processing-in-apache-

spark-streaming.html

•	 Limited support for event-time processing

	 Micro-batch processing in Spark Streaming focuses on

the data that arrives within a specific time window, but

it will do so only when the watermark reaches the event

time of the late data, not immediately, resulting in a late

arrival situation that is not ideal.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

https://www.databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html
https://www.databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html
https://www.databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html

414

�Structured Streaming
Structured Streaming is a newer streaming engine that uses the

Dataframe/Dataset API, which is the strong foundation of Spark SQL. It

processes data continuously, allowing for exactly-once guarantees and

robust state management.

Beyond putting a structure (dataframe) into the streaming data,

Structured Streaming is designed to address the following challenges:

•	 Providing end-to-end reliability and correctness
guarantees: When failure occurs, batch processing

is required to restart from its last successful batch,

which is not hard to imagine why. With the increasing

demand of streaming, pipelines must be continuously

monitored and automatically mitigated to ensure

highly available insights are delivered in real time.

•	 Performing complex transformations: In addition

to streaming systems, data can often come in as flat

file formats (CSV, JSON, Avro, etc.) that often must

be restructured, transformed before being ingested

into a bronze table. Structured streaming is designed

to process and transform these data with minimal

latencies.

•	 Handling late or out-of-order data: As discussed,

there is a challenge in processing late arrival data

because one must wait until the next batch is finished

before processing the late arrival. We will discuss how

the new architecture, called continuous processing, will

be able to address this issue.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

415

�What Is Continuous Processing?
Instead of performing micro batches one after another, continuous

processing (see Figure 18-3) is now tightly integrated with Spark. It

launches a set of long-running tasks at the same time that keep reading,

processing, and writing data continuously. This means as soon as new data

is available, it gets processed and written right away, so the delay between

when the data comes in and when it’s ready is very short—just a few

milliseconds.

Figure 18-3.  Continuous processing

Spark uses a special technique called the Chandy-Lamport algorithm

to track how the processing is going. It adds special markers to the data

stream, called epoch markers. When a task sees one of these markers,

it tells the main computer (called the driver) where it stopped (offset)

processing. The tasks report back asynchronously, in other words, without

waiting for the task to finish; then the driver writes down all the offset in

parallel, so the progress can be kept track of without waiting for the batch

to finish. This all happens in the background, so the tasks can keep going

without stopping, and everything stays fast and efficient.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

416

�Triggers
While Structured Streaming now supports continuous processing, it

doesn’t mean micro-batch processing becomes obsolete immediately. It

is not hard to imagine that by spinning up an always-on Spark instance,

it will incur a lot of resources as well as cost, so unless the real-time

requirement is mandatory, like in a credit card transaction scenario where

you cannot afford keeping the customer waiting for a batch to finish, there

is always an option to fall back into micro-batch processing. That’s where

Trigger mode comes into the picture.

The following are the different trigger modes:

•	 Default mode (no trigger is specified)

	 If the trigger option is not specified, then by default, the

query will be executed in micro-batch mode.

•	 Fixed interval micro-batches

(trigger(processingTime = "1 second"))

	 As the name states, the micro-batch will be triggered

in the interval specified. Since micro-batching is a

sequential operation, if the previous batch cannot

finish in the specified interval, the next batch will wait

for the batch to finish before processing.

•	 Available-now micro-batch

(trigger(availableNow=True))

	 If you were resuming from a streaming process, you can

use this option to process all the batches in the queue.

This trigger will stop on its own.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

417

•	 Continuous with fixed checkpoint interval

(trigger(continuous = "1 second")

	 The query will be executed in the new low-latency,

continuous processing mode. The regular checkpoint

will be written into the checkpoint location.

�Output Modes
Similar to write modes in the Spark dataframe, the most initiative ones

are “overwrite” mode and “append” mode. Spark Structured Streaming

also has these two modes, which can be called using writeStream.

OutputMode(). There is an additional mode called “update” in Structured

Streaming that is more applicable to grouped aggregations on a sliding

window, which we will discuss later in this chapter. These are brief

descriptions of the modes:

Complete: Similar to the overwrite mode, on every

trigger, everything will be rewritten again, but it does

not delete old data, so there will be duplications.

However, this can be useful for aggregations, so we

don’t lose any count as a result of late arrival.

Append: As its name suggests, all the data will be

appended on every trigger. But late arrivals need

to be handled properly for aggregations. This is the

default mode.

Update: Mainly applies to aggregations. This mode

will put intermediate results in memory and update

the aggregations once the threshold is reached for

late arrival.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

418

�Windowed Grouped Aggregation
Structured Streaming offers a way to group aggregations together by

windowing (sliding window or tumbling window), say for five minutes,

similar to the groupBy operator. Imagine we are converting a timestamp

column to a time range, say 12:00 to 12:10, and for every trigger, it will

aggregate the events and save it into a table. In the table shown in

Figure 18-4, we can notice “cat” changed to 2 from 12:05 to 12:10 because

another “cat” arrived at 12:07.

Figure 18-4.  Windowed grouped aggregation

�State Management
When you need to handle state management all by yourself, Structured

Streaming comes with a checkpointing option. Databricks recommends

always specifying this option to ensure the job can be recovered in case of

failure, as shown in Listing 18-2.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

419

Listing 18-2.  Spark Streaming Checkpoint

streamingDataFrame.writeStream

 .format("parquet")

 .option("path", "/path/to/table")

 .option("checkpointLocation", "/path/to/table/_checkpoint")

 .start()

However, there are times that require more advanced stateful

processing. That’s where the new operators mapGroupsWithState() and

flatmapGroupsWithState() come into the picture. These operators

allow you to maintain state for a group of target audience, and the key to

group them together might not be in sequence; hence, they are arbitrary.

For example, for a class of users in a geographic location or spending

threshold, instead of applying on an individual basis, the grouping key can

be a state name, but some data can come in the form of a city name. These

techniques are helpful to ensure late data can be tagged to a specific group

for analysis. See Figure 18-5.

Figure 18-5.  Arbitrary stateful processing in Structured Streaming

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

420

�Late-Arrival Handling: Watermark
Structured Streaming uses a watermark to control the threshold for how

long to continue processing updates for a given state entity. A watermark

(see the example in Listing 18-3) is a threshold timestamp used to track

the latest event time of the data processed so far. Any data arriving with an

event time older than the watermark is considered late and can be either

ignored or processed separately.

Listing 18-3.  Spark Streaming Watermark

from pyspark.sql.functions import window

(df

 .withWatermark("event_time", "10 minutes")

 .groupBy(

 window("event_time", "5 minutes"),

 "id")

 .count()

)

Earlier we discussed a new output mode called Update, which is useful

for aggregations along with a watermark.

Update mode will continue to update the count on every trigger until

after the watermark threshold is reached, as shown in Figure 18-6.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

421

Figure 18-6.  Update mode in aggregation

Append mode will write the data into a table only after a threshold is

reached (see Figure 18-7).

Figure 18-7.  Append mode in aggregation

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

422

�Auto Loader
Auto Loaders are a special form of streaming using micro-batch

processing. Their goal is to abstract the complexity of loading file arrivals

using a micro-batch pipeline. The CloudFiles protocol can monitor for

ADLS, S3, and GCP for you automatically without the need to set up a file

trigger in Databricks or an external system.

Combined with Delta Live Tables, Auto Loaders provide the following

advantages:

•	 Autoscaling compute infrastructure for cost savings

	 Choose from serverless or enhanced autoscaling. These

two options can optimize streaming workloads by de-

allocating resources that are not used quickly.

•	 Data quality checks with expectations

	 Similar to the Great Expectation library, you can specify

validation conditions in DLT and write outliners to an

exception table.

•	 Automatic schema evolution handling

	 By default, the stream will fail, and new columns will

be added to the target table so logic can be applied

to them if necessary. But you can also choose from

different options, like rescuing the columns (by not

failing), failing without adding new columns, or

ignoring the new changes.

•	 Monitoring via metrics in the event log

	 With Delta Live Tables, you can quite literally monitor

everything from streaming progress to record counts,

resource allocations, autoscaling activities, user audit

logs, and many more possibilities.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

423

�Project Lightspeed
Announced in 2022, Project Lightspeed aims to enhance the capabilities of

Structured Streaming. The following are the goals of this project:

•	 Improving the latency and ensuring it is predictable

	 Advanced offsetting and state management capabilities

are part of this project just to ensure that more state

management scenarios and more responsive offsets

are covered. Query performance optimization is also in

scope in this project.

•	 Enhancing functionality for processing data with new

operators and APIs

	 Multiple state operators are introduced, along with

Python support for the state API.

•	 Improving ecosystem support for connectors

	 This goal is to improve support for connectors such as

Amazon Kinesis and Google Pub/Sub.

•	 Simplifying deployment, operations, monitoring, and

troubleshooting

	 With the increased popularity of Python, Databricks

made sure that a new Python query listener is

introduced and supported in an observability API

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

424

�Advanced State Management
State management has been discussed throughout this chapter. However,

Databricks has continued to improve it because state management is so

important. With Project Lightspeed, joining multiple state operations

together is now possible, which was not previously possible. Let’s consider

a real-life scenario.

�Use Case: E-commerce Operation
Let’s consider the first scenario where an e-commerce system wants

to serve ads to customers browsing their website. After getting the logs

from the data center, we need to filter on specific products that contain

promotions. With mapGroupsWithState, we can do some targeted

grouping for the ads. At the same time, these filtered products can also

feed into a knowledge graph in the second route for cross-selling product

recommendations. Without diving into details, we can imagine the

importance of being able to chain through these operations instead of

separating them into different pipelines. This scenario can be found in the

paper at https://par.nsf.gov/servlets/purl/10277558. Figure 18-8

provides an illustration.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

https://par.nsf.gov/servlets/purl/10277558

425

Figure 18-8.  Sample e-commerce streaming workflow

It is also worth noting that the paper discussed the shortcoming of

Spark Streaming. The DStream approach is what we initially covered.

Fast-forward to Project LightSpeed; writing streaming applications is never

easier with Structured Streaming.

For full details and updates on Project Lightspeed, please refer to the

following blog:

https://www.databricks.com/blog/project-lightspeed-update-

advancing-apache-spark-structured-streaming

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

https://www.databricks.com/blog/project-lightspeed-update-advancing-apache-spark-structured-streaming
https://www.databricks.com/blog/project-lightspeed-update-advancing-apache-spark-structured-streaming

426

�Structured Streaming Best Practices
These are some best practices:

•	 Use Dataframe instead of Dataset: Dataframe is

optimized for streaming workloads.

•	 Specify trigger intervals: Control the frequency of

streaming data processing.

•	 Use Update mode for aggregation: Efficiently update

aggregates instead of recalculating.

•	 Leverage watermark for event-time processing:
Handle late-arriving data and manage state.

•	 Monitor and adjust resources: For micro batching,

use Spark UI’s structured streaming monitor for

detailed monitoring and troubleshooting. The

streaming UI provides real-time statistics, so if anything

is out of the ordinary, say when the processing rate

spikes, we can take action immediately to determine

if it was a cyberattack or due to some trending

news. Figure 18-9 illustrates this interface. For an

in-depth case study, please refer to this Databricks

announcement: https://www.databricks.com/

blog/2020/07/29/a-look-at-the-new-structured-

streaming-ui-in-apache-spark-3-0.html.	

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

https://www.databricks.com/blog/2020/07/29/a-look-at-the-new-structured-streaming-ui-in-apache-spark-3-0.html
https://www.databricks.com/blog/2020/07/29/a-look-at-the-new-structured-streaming-ui-in-apache-spark-3-0.html
https://www.databricks.com/blog/2020/07/29/a-look-at-the-new-structured-streaming-ui-in-apache-spark-3-0.html

427

Figure 18-9.  Structured streaming monitor UI

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

428

�Conclusion
More than 14 million Structured Streaming jobs run weekly on Databricks,

and that number is growing at a rate of more than two times per year (see

Figure 18-10).

Figure 18-10.  Streaming job runs on Databricks since 2019 (source:
https://www.databricks.com/blog/performance-improvements-
stateful-pipelines-apache-spark-structured-streaming)

From Spark Streaming to Structured Streaming, Databricks has evolved

on all fronts. From the architecture perspective, it added support for

continuous processing and micro-batch processing. It also added support

for Python and enhanced state management and watermarking.

The introduction of the Auto Loader when working with Delta Live

Tables provides groundbreaking resilience support. It also provides cost

savings, comprehensive monitoring, and lineage support.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

https://www.databricks.com/blog/performance-improvements-stateful-pipelines-apache-spark-structured-streaming
https://www.databricks.com/blog/performance-improvements-stateful-pipelines-apache-spark-structured-streaming

429

Further, Project Lightspeed makes a series of enhancements, not only

integrating some core Spark innovations into streaming, like Adaptive

Query Execution, proving that Spark is fully capable of running at scale

and in real time, but it also extends support for different platforms.

Asynchronous checkpointing in micro-batch processing is another

commitment for Databricks to take streaming more and more seriously.

Chapter 18 Spark Structured Streaming: A Comprehensive Guide

431© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_19

CHAPTER 19

From Ideation
to Creation: A Walk-
Through of Building
a GenAI Application
In this chapter, we will walk through creating a healthcare and life science

application from start to finish. The input is some realistic patient data, but

this data was generated by a high-quality data generator, so there are no

privacy concerns in this scenario.

We will discuss the downsides of having low-quality data, which will

affect downstream data. We will combine the classic machine learning

approach and the latest and greatest GenAI techniques for making one

great solution. Rest assured, if you are able to master this project, you are

already an accomplished data and AI architect.

https://doi.org/10.1007/979-8-8688-0444-1_19#DOI

432

�The Problem Statement
According to the World Health Organization (https://www.who.int/

health-topics/diabetes),

“Diabetes is a chronic, metabolic disease characterized by ele-
vated levels of blood glucose (or blood sugar), which leads
over time to serious damage to the heart, blood vessels, eyes,
kidneys and nerves. About 422 million people worldwide have
diabetes, the majority living in low-and middle-income coun-
tries, and 1.5 million deaths are directly attributed to diabetes
each year.”

The term chronic is the most important in the statement because it

means it is a disease that will follow you for a lifetime, and there is no cure

for this disease right now. Not only that, the stage of diabetes can range

from pre-diabetes to diabetes, and it can also lead to complications later in

life if not carefully treated such as blindness, amputation, or even kidney

disease.

In this chapter, we will develop a machine learning classification

model to classify the severity of diabetes complications using a patient’s

medical history. We will demonstrate how to use GenAI to give book

recommendations to the patient. We do not recommend seeking medical

help from GenAI at this stage. That’s why this application is meant for

enrichment and not medical advice. Using the AI Agent Framework,

we will build a chatbot to answer some of the questions related to the

complications of diabetes and the ebooks. Finally, we will mimic a real

dashboard used in a medical institute to demonstrate that Databricks

can build everything from end to end. Figure 19-1 shows this flow in an

architecture diagram.

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

https://www.who.int/health-topics/diabetes
https://www.who.int/health-topics/diabetes

433

Figure 19-1.  Architecture of a GenAI pipeline

�Data Generation: Source
In this section, we will discuss how to acquire the necessary data for our

use case. Most of the demo code out there leverages Kaggle or open-source

data. Not only is it difficult to acquire high-quality healthcare data, but it is

also impossible to get a large amount of data. Here are some ideas:

Idea 1: Generate data based on a medical journal.
This idea is to leverage pre-existing experiments and reverse engineer

their dataset. Based on a medical journal, generate some random data that

falls within the range and apply some medical knowledge rules on top. For

example, obesity, by definition, has a BMI greater than 30, and our data

will make sure the BMI is greater than 30. This is probably good enough

for a demonstration. The paper “T1DMicro: A Clinical Risk Calculator for

Type 1 Diabetes Related Microvascular Complications” has provided some

insights into what it uses to determine Type 1 diabetes complications.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583376/

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583376/

434

Without expert domain knowledge, it is difficult to judge if the data

generated makes sense, even at a small scale. Nevertheless, the generated

data can be found in the GitHub repo.

Idea 2: Generate data based on a data generator.
Synthea (https://github.com/synthetichealth/synthea) is

an open-source project that can generate synthetic, realistic (but not

real) patient data and associated health records in a variety of formats,

including CSV. Using this application, we can generate as many patients as

we want along with their medical journey. We didn’t think of the later part

when generating random data in the first place. Although we could still use

the latest record of their hospital visit, it is important to understand that in

real life, there will be historical transactions, be it financial records or retail

transactions. Having this data will help with different types of modeling.

The detailed data dictionary can be found here: https://github.com/

synthetichealth/synthea/wiki/CSV-File-Data-Dictionary.

Idea 3: Use the latest and greatest AI model designed for data
generation.

“I believe open source AI will become the industry standard
and is the path forward. Partnering with Databricks on Llama
3.1 means advanced capabilities like synthetic data genera-
tion and real-time batch inference are more accessible for
developers everywhere. I’m looking forward to seeing what
people build with this.”

—Mark Zuckerberg, founder and CEO, Meta

The is an article that describes how to generate the data using Nvidia

GPU and Llama 3.1. If the Synetha data generator doesn’t work well, this

could be a good idea, but the development process will take time.

https://developer.nvidia.com/blog/creating-synthetic-data-

using-llama-3-1-405b/

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

https://github.com/synthetichealth/synthea
https://github.com/synthetichealth/synthea/wiki/CSV-File-Data-Dictionary
https://github.com/synthetichealth/synthea/wiki/CSV-File-Data-Dictionary
https://developer.nvidia.com/blog/creating-synthetic-data-using-llama-3-1-405b/
https://developer.nvidia.com/blog/creating-synthetic-data-using-llama-3-1-405b/

435

�Data Ingestion: Ingest
There are a couple of ways to ingest the data:

•	 Using the Ingestion UI

•	 Load data using the Auto Loader

Repeat the same code for the rest of the data. The Databricks Auto

Loader will pick up the new files when they arrive the next time the job is

run. Hence, we need to ensure that we keep one folder per file type.

�Data Transformation: Transform
After getting the data to the Bronze layer, we need to transform the data

into features for our machine learning model. We also need to filter our

data to ensure we are picking up the latest visit. Data cleansing is also

needed to reduce the noise in our model.

	 1.	 In the NLM report, different values of HbA1C are

calculated as features.

	 2.	 For complications, we will take the latest diagnosis

and rank the severity.

	 3.	 Medication is the third item we are interested in.

We want to list all the generic medication names

without dosage and represent them in columns.

If a patient takes a medication, we will mark this

column as 1; otherwise, it will be 0.

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

436

	 4.	 Following an actual report in the United Kingdom,

we will build out a sample view and publish it

to PowerBI: https://digital.nhs.uk/data-

and-information/publications/statistical/

national-diabetes-audit-type-1-diabetes/nda-

type-1-2021-22-detailed-analysis.

	 5.	 Finally, we will demonstrate an important feature

that is a Databricks SQL AI function.

�Using Serverless SQL for Transformation
In most cases, we can use serverless SQL for the job. Listing 19-1 shares the

detailed code for the A1C features.

Listing 19-1.  Patient_A1C Table

create table patient_a1c as

WITH agg_observations AS (

 SELECT

 patient,

 max(value) max_a1c,

 avg(value) avg_a1c,

 stddev(value) std_a1c

 FROM

 observations

 WHERE

 category = 'laboratory'

 AND LOWER(description) LIKE '%a1c%'

 group by patient

)

,filtered_observations AS (

 SELECT

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis
https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis
https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis
https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis

437

 patient,

 date,

 description,

 value as current_value,

 LEAD(value) OVER (ORDER BY date desc) AS previous_value,

 ROW_NUMBER() OVER (PARTITION BY patient ORDER BY date

DESC) AS rn

 FROM

 observations

 WHERE

 category = 'laboratory'

 AND LOWER(description) LIKE '%a1c%'

)

SELECT

 latest.*,

 avg_a1c,

 std_a1c,

 max_a1c

FROM

 filtered_observations latest

 JOIN agg_observations a ON latest.patient = a.patient

WHERE rn = 1

By doing a little research or by asking an AI program, we can easily find

what the common diabetes complications are. Listing 19-2 shows the code

to group the complications.

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

438

Listing 19-2.  Patient_complication Table

create table patient_complication as

select

patient,

case

when description = 'Kidney Disease' then 'Sev 0'

when description = 'Amputation' then 'Sev 1'

when description = 'Retinopathy' then 'Sev 2'

when description = 'Neuropathy' then 'Sev 3'

when description = 'Hyperglycemia' then 'Sev 4'

when description = 'Proteinuria' then 'Sev 5'

when description = 'Diabetes' then 'Sev 6'

when description = 'Pre-Diabetes' then 'Sev 7'

else description

end as Severity from

(

SELECT

 patient,

 case

 �when lower(description) like '%neuropathy%' then

'Neuropathy'

 �when lower(description) like '%retinopathy%' then

'Retinopathy'

 �when lower(description) like '%nephropathy%' then

'Nephropathy'

 when lower(description) like '%blindness%' then 'Blindness'

 �when lower(description) like '%photocoagulation%' then

'Photocoagulation'

 �when lower(description) like '%amputation%' then

'Amputation'

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

439

 �when lower(description) like '%ulcer%' then 'Diabetic

Foot Ulcer'

 �when lower(description) like '%hyperglycemia%' then

'Hyperglycemia'

 �when lower(description) like '%microalbuminuria%' then

'Microalbuminuria'

 �when lower(description) like '%kidney%' then 'Kidney

Disease'

 �when lower(description) like '%proteinuria%' then

'Proteinuria'

 �when lower(description) like '%prediabetes%' then 'Pre-

Diabetes'

 else 'Diabetes'

 end as description,

 �ROW_NUMBER() OVER (PARTITION BY patient ORDER BY start

DESC) AS rn

FROM

 patients

JOIN

 conditions ON patients.id = conditions.patient

WHERE

 lower(conditions.description) LIKE '%diabetes%'

 OR lower(conditions.description) LIKE '%Diabetic%'

 OR lower(conditions.description) LIKE '%Hyperglycemia%'

 OR lower(conditions.description) LIKE '%Hypoglycemia%'

 OR lower(conditions.description) like '%neuropathy%'

 OR lower(conditions.description) like '%retinopathy%'

 OR lower(conditions.description) like '%nephropathy%'

 OR lower(conditions.description) like '%blindness%'

 OR lower(conditions.description) like '%photocoagulation%'

 OR lower(conditions.description) like '%amputation%'

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

440

 OR lower(conditions.description) like '%ulcer%'

 OR lower(conditions.description) like '%hyperglycemia%'

 OR lower(conditions.description) like '%microalbuminuria%'

 OR lower(conditions.description) like '%kidney%'

 OR lower(conditions.description) like '%proteinuria%'

ORDER BY

 patients.id, conditions.start

) where rn = 1

Prescribed medication comes with dosage, and it is different for

different people or stages of the complication. However, if we want to use

these as columns, we need to extract the medication names. Listing 19-3 is

an example.

Listing 19-3.  Example of Medication Name Standardization

emtricitabine 200 MG / tenofovir disoproxil fumarate 300 MG

Oral Tablet → {emtricitabine / tenofovir disoproxil fumarate}

But instead of doing manual cleanup, we can leverage Databricks’ new

AI function, the ai_extract() function, as shown in Listing 19-4.

Listing 19-4.  Using AI Function to Extract the Medication Name

SELECT distinct description,

 �CAST(ai_extract(description, array('medication name without

dosage')) AS STRING) as med_wo_dosage

from

(

 �select distinct description from medications where patient

in (select patient from diabetes_training)

)

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

441

Figure 19-2 is the result of the query.

Figure 19-2.  Result of the AI extract query

Next, using the pivot function, we can transpose the active ingredient

into columns. Our goal is to transpose the rows in Figure 19-3 to columns

in Figure 19-4. Listing 19-5 and Listing 19-6 together will perform this

action. However, because the PIVOT function does not allow a dynamic list,

we need to construct a query that is understandable by the engine.

Listing 19-5.  Transforming “Active Ingredients” into a List

descriptions = [row['desc'] for row in spark.sql("SELECT

DISTINCT `Active Ingredients` as desc FROM medications m join

med_mapping mm on m.description = mm.Prescription").collect()]

Listing 19-6.  Using the pivot Function to Transform Rows

into Columns

Constructing the dynamic part of the pivot query

pivot_clause = ", ".join([f"'{desc}'" for desc in

descriptions])

Constructing the full query

query = f"""

SELECT *

FROM (

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

442

 SELECT

 m.PATIENT,

 inline(

 collect_list(

 named_struct(

 'description', `Active Ingredients`,

 �'stop', CASE WHEN m.STOP IS NULL THEN '1'

ELSE '0' END

)

)

) AS (description, stop)

 FROM

 medications m

 join med_mapping mm on m.description = mm.Prescription

 GROUP BY

 m.PATIENT

) AS subquery

PIVOT (

 MAX(stop)

 FOR description IN ({pivot_clause})

)

"""

Figure 19-3 shows what the result looks like.

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

443

Figure 19-3.  Patient medication table

Finally, we can combine all the new tables together to create one

training table, as shown in Figure 19-4.

Figure 19-4.  Lineage of the training table

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

444

�Machine Learning Model for Diabetes
Complication Classification: Query
and Process
Typical machine learning projects involve a process called exploration

data analysis (EDA). But we are going to take a leap of faith and see if our

data makes sense by running AutoML on the two datasets that we have.

There isn’t anything that needs to be done here; just choose the input

dataset and select our target variable.

Dataset 1: Randomly generated data
From Figure 19-5, we can tell that the best model scores 0.24. This is

not an acceptable base model for fine-tuning, but that’s the best we can get

with random data.

Figure 19-5.  AutoML results for randomly generated data
with checks

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

445

Dataset 2: Synthea-generated data
The program has proven track record for generating realistic data. We

will give AutoML another try with the diabetes_training data. The result is

surprisingly ~0.73 (see Figure 19-6).

Figure 19-6.  AutoML results for Synthea-generated data with checks

�Generative AI: Serve
This is perhaps one of the most anticipated steps in the whole pipeline.

We are using the Mosaic AI stack here. We will first try prompt

engineering, and we will move on to a RAG use case by building a simple

chatbot. Imagine someone is diagnosed or predicted to have diabetic

complications; it can be a daunting task to go through all the self-help

guides available. We can first ask an LLM in Databricks’ Playground for

ebook recommendations for self-help purposes (see Figure 19-7).

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

446

Figure 19-7.  Output from Databricks’ GenAI playground

Next, assuming we have legally acquired all the ebooks, we want to

upload them to a volume in Unity Catalog. This step can be done easily via

the user interface. We can navigate to a Unity Catalog, choose a preferred

database, and click the “Upload to this volume” button, as shown in

Figure 19-8.

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

447

Figure 19-8.  Volume interface from Databricks

As a starter, we will leverage Databricks’ prebuilt template for our

proof-of-concept app, and later we will look at techniques to “tune the

quality knobs.”

⭐ IMPORTANT ⭐

Please bookmark the following site because it contains best practices for the

evolving topic of using the AI Agent framework:

https://ai-cookbook.io/

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

https://ai-cookbook.io/

448

The following are the prerequisites needed to leverage the AI Agent

framework, which can be set up via the user interface:

–– Unity Catalog and Schema: For storing the parsed/

chunked documents

–– Vector Search Endpoint: Either a new endpoint or an

existing one

–– UC Volume: An volume that was created using the

command and then the documents can be uploaded

–– The Foundation Model API is accessible for embedding

a calculation

–– The MLflow experiment is accessible for model and

metric logging

�Where Do We Start?
Here are the steps:

	 1.	 Verify all the permissions, and deploy something if

you are not sure they are correct.

	 2.	 Clone the following repo from Databricks into

the repo:

https://github.com/databricks/genai-

cookbook/

	 3.	 Fill in the config in rag_app_sample_code/00_

global_config. If you have followed these

prerequisites, you should not have any problems

filling in the details, but a couple of details that are

extremely important not to miss, and can be found

in the user interface, include the following:

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

https://github.com/databricks/genai-cookbook/
https://github.com/databricks/genai-cookbook/

449

	 a.	 VECTOR_SEARCH_ENDPOINT can be found on the

Compute tab, as shown in Figure 19-9.

Figure 19-9.  Vector search endpoint UI

	 b.	 Volume can be found under the database of a catalog,

as shown in Figure 19-10.

Figure 19-10.  Volumes can be found under a database

	 4.	 To verify everything is set up correctly, run 01_

validate_config in the corresponding folder of the

file type of your choice. For example, for PDF files,

they can be found at the following location:

/genai-cookbook/rag_app_sample_code/A_POC_app/

pdf_uc_volume/01_validate_config

If everything passes, you will see a print message at

the end of each cell, as shown in Figure 19-11.

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

450

Figure 19-11.  Passing messages at the end of each command

	 5.	 Run 02_poc_data_pipeline, and the result is the

experiment being logged on the Experiments tab, as

shown in Figure 19-12.

Figure 19-12.  Experiment logged after running the data pipeline

	 6.	 Run 03_deploy_poc_to_review_ap. It will deploy

an application for you, and you can ask questions

about your use case. You will notice the relevant

document is being referenced in the chat, as shown

in Figure 19-13.

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

451

Figure 19-13.  Databricks hosted chatbot interface

	 7.	 Congratulations, you have successfully deployed a

chatbot, but the story does not end here.

	 a.	 04_create_evaluation_set allows you to create an

evaluation dataset. If you know some of the answers

that might come from the PDF that you uploaded,

you can set up this evaluation dataset so the AI Agent

framework can evaluate the accuracy of the output.

	 b.	 05_evaluate_poc_quality runs this notebook to

evaluate the application.

	 8.	 If you have made it this far, I am sure you will

appreciate how much work Databricks has done to

make it easy, but the story is far from over. Please

head over to “RAG quality knobs” section of the

GenAI cookbook: https://ai-cookbook.io/nbs/3-

deep-dive.html. That’s where we will learn more

about the underlying process of building a RAG

application so your application will be future-proof.

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

https://ai-cookbook.io/nbs/3-deep-dive.html
https://ai-cookbook.io/nbs/3-deep-dive.html

452

�Monitoring Dashboard: Analysis
To evaluate hospital treatments, we can build a dashboard similar to

England’s National Health Service (see Figure 19-14). We will create a

materialized view for the report so we can refresh the view when the report

is scheduled to refresh, saving time and cost as it can compute incremental

changes.

Figure 19-14.  Sample diabetes dashboard from England’s National
Health Service (source: https://digital.nhs.uk/data-and-
information/publications/statistical/national-diabetes-
audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis)

Listing 19-7 is a query similar to the one on the dashboard in

Figure 19-15.

Listing 19-7.  Query for the Health Dashboard

create materialized view patient_report as

with encounter_latest as

(

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis
https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis
https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis

453

 select

 *,

 �ROW_NUMBER() OVER (PARTITION BY patient ORDER BY start

DESC) AS rn

 from encounters e

),

observations_new as

(

 select

 distinct

 patient,

 encounter,

 category,

 (case

 �when lower(description) like '%cholesterol%' then

'cholesterol'

 �when lower(description) like '%blood%pressure%'

then 'BP'

 else description end) as description_alias

 from

 observations

)

select o.Name as OrganizationName, o.City as OrganizationCity,

 count(distinct e.patient) as Count_of_Patients,

 count(distinct encounter) as Count_of_Encounters,

 �sum(case when category = 'laboratory' and lower

(s.description_alias) like '%albumin%' then 1 else 0 end)

as Count_of_Albumin,

 �sum(case when category = 'vital-signs' and lower

(s.description_alias) like '%bmi%' then 1 else 0 end) as

Count_of_BMI,

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

454

 �sum(case when category = 'vital-signs' and lower(s.

description_alias) like '%blood%pressure%' then 1 else 0

end) as Count_of_BP,

 �sum(case when category = 'laboratory' and lower(s.

description_alias) like '%cholesterol%' then 1 else 0 end)

as Count_of_Cholesterol,

 �sum(case when lower(s.description_alias) like '%foot%'

then 1 else 0 end) as Count_of_Foot_exam,

 �sum(case when category = 'laboratory' and lower(s.

description_alias) like '%a1c%' then 1 else 0 end) as

Count_of_HbA1C,

 �sum(case when category = 'social-history' and lower(s.

description_alias) like '%smoking%' then 1 else 0 end) as

Count_of_Smoking

from encounter_latest e

join observations_new s on e.id = s.encounter

join organizations o on e.organization = o.id

where e.patient in (select patient from diabetes_training) and

e.rn = 1

group by o.Name, o.City

We can publish this view to a Power BI dashboard, as shown in

Figure 19-15.

Figure 19-15.  Publishing the materialized view to Power BI Desktop

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
      A GENAI APPLICATION

455

�Conclusion
The Databricks data intelligence platform not only provides the

intelligence to power the next generation application, but it is also built

on top of the lakehouse architecture, so it has a strong foundation of

supporting any size of workload and complex data transformation. In this

chapter, we have demonstrated the ability to create an application from

ideation to creation, all within Databricks. While other platforms may

come with similar tools in their ecosystem, Databricks’ tight integration

allows us to stay on the same platform and collaborate closely with the

team. Unlocking the GenAI revolution has never been easier!

Chapter 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

457© The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1

Index

A
Access control lists (ACLs), 91, 98,

102, 401, 402
Access control mechanisms, 101
Access Tokens, 39, 402
Account admin, 94, 95, 385
ACLs, see Access control

lists (ACLs)
Add Data UI, 47, 49
Add UI Interface, 47
ADF, see Azure Data Factory (ADF)
AI, see Artificial intelligence (AI)
AI/BI dashboards, 159, 160
AI/BI Genie, 334, 348–350
ai_extract() function, 440
AI-powered governance, 339

AI-generated comments
enhancements, 340, 341

AI security filtering, 344–346
AI security framework, 346
governance process, 340
lineage, 341, 342
PII masking, 342, 343
Unity Catalog federated

governance, 339
ai_query() function, 176
AI2 Wildbench, 276

Amazon S3, 48
API, see Application programming

interface (API)
Application programming interface

(API), 16
Artificial intelligence (AI), 2, 7

foundation models, 220
models, 220, 221

Attention mechanism, 318–320
Auto-documentation

generation, 221
Auto Loader, 46, 55

advantages, 422
Checkpoint, 56
cloudFiles, 55
direct listing, 57, 58
file notification, 58
manually.inferColumnTypes, 57
manually.Rescue_Data, 57
mergeSchema, 56
Trigger.AvailableNow, 56

Automated machine learning
(AutoML), 184–188,
194–196, 198, 199, 444, 455

AutoML, see Automated machine
learning (AutoML)

Autoregressive, 319

https://doi.org/10.1007/979-8-8688-0444-1#DOI

458

Autoscaling, 9, 16, 19, 25, 28, 30,
133, 144, 145, 147–148, 152,
381, 422

Autotermination, 28
Azure Data Factory (ADF), 47, 51
Azure Data Lake Storage, 48

B
Batch ingestion, 51
Bge-large-en model, 268
BI, see Business intelligence (BI)
Bronze layer, 46, 54, 66, 74, 137,

169, 435
Built-in functions, 174
Business intelligence (BI), 2,

3, 13, 153

C
Catalog, 17
Catalog UI, 50
CDC, see Change data

capture (CDC)
CDF, see Change data feed (CDF)
Centralized user management, 100
Chain of thoughts, 258, 265
Chandy-Lamport algorithm, 415
Change data capture

(CDC), 74, 133
Change data feed (CDF), 74, 75
Chatbots, 219, 230, 257, 283, 285,

294, 302, 304, 333, 337, 432,
445, 451

ChatGPT, 209, 219, 220, 230
CHECK constraint, 165
Cloud compute costs

compute cost, 372
networking cost, 373
storage cost, 372

cloudFiles, 55, 422
Cloud ingestion, 45

Add Data UI, 47–50
file upload UI, 47, 50, 51
Fivetran, 53
landing zone, 46
native cloud tools, 47
notebook, MySQL to Delta

table, 49
Partner Connect, 52
via cloud-native tools, 51, 52
via third-party tools, 52, 53

Cloud object storage layer, 64
Cluster access controls, 31, 381
Cluster access modes, 25

shared clusters, 25, 26
standard single-user clusters, 25
types, 24

Cluster autoscaling, 147, 381
Cluster auto-termination, 381
Cluster best practices, 30, 31
Cluster policies, 22–24, 380
Cluster-scoped libraries, 38
Cluster tags, 28, 30, 383
CMKs, see Customer-managed

keys (CMKs)
CNNs, see Convolutional neural

networks (CNNs)

INDEX

459

Column masks, 106, 107
Command-line interface (CLI), 16,

17, 39, 102
Conditional execution, 124, 125
Content moderation, 344, 345
Continuous integration/

continuous
deployment (CI/CD)

databricks, 359
end to end flow, 354
stages

build, 357
deploy, 357
source, 357
test, 357

Continuous processing,
414–417, 428

Convolutional neural networks
(CNNs), 322, 325

COPY INTO command, 46, 58–60
COPY INTO validate mode, 59
Cosine similarity, 235, 236
CREATE TABLE command, 75
Curated models, 226, 227
Customer-managed keys (CMKs),

398, 408

D
Data access, 90, 104, 107
Data architecture, 2, 4
Databricks

access modes, 26
account, 15

AI, 12
algorithms, 196, 197
auto-generated reports, 211
automated root cause

analysis, 212
AutoML, 198, 199
AutoML interface, 197, 198
bespoke LLM model, 221
Databricks Asset Bundles,

templates, 364, 365
data volume, 232
DBRX, 328, 329
documentation, 41, 198, 385
external feature stores, 239
feature store, 191, 192

advantages, 192
AutoML, 194
dataframe, 194
delta table, 193
FeatureEngineeringClient

class, 193
feature table, 193
primary key, 193

File Upload UI, 47
GenAI, 221, 222
Git folders, 17
infrastructure, 315
ML, see Machine learning (ML)
models tab, 201, 202
online tables, 238
production-grade model, 198
registered models, 201, 202
REST API, 40, 41
Terraform, 41, 42

INDEX

460

UI, 16, 47
unified monitoring, 211
Unity Catalog, 204
validation, 199
vector database, 231–233
vector search indexes, 234
widgets, 36, 37
websites, 250
workspaces, 16

Databricks all-purpose clusters
access modes (see Cluster

access modes)
autoscaling and

autotermination, 28
cluster creation interface, 20
cluster tags, 28
DBR, 27
policies, 22–24
pools, 29, 30
spot instances, 29

Databricks Assistant
autocomplete code/queries, 336
code conversion, 337
code explanation, 337, 338
code fixing, 338, 339
code generation, 335, 336

Databricks command-line interface
(Databricks CLI), 39

Databricks compute/
clusters, 16, 18

all-purpose compute (see
Databricks all-purpose
clusters)

job clusters, 19
SQL warehouses, 20

Databricks costs
account tier, 374
Azure, 376
cluster access controls, 381
cluster autoscaling, 381
cluster configuration, 375
cluster policies, 380
cluster tags, 383
compute size and type, 373
instance pools, 382
vs. photon, 378
product SKU, 374
spot instances, 382
SQL warehouse (see SQL

warehouse)
Databricks data intelligence

platform, 9–12, 331, 332
AI/BI Genie, 348–351
Databricks IQ, 333
Intelligent Search, 347, 348

Databricks deployment
capacity planning, 391, 392
customer-managed keys,

397, 398
encryptions/auditing, 397
NPIP, 394, 395
private link, 396, 397
VNET injection, 393, 394

Databricks file system (DBFS), 16,
38, 398, 407

Databricks Foundation Model API,
232, 233

Databricks (cont.)

INDEX

461

Databricks IQ, 12, 333
AI/BI Genie, 334
AI-powered governance, 333,

339 (see also AI-powered
governance)

automated job tuning, 334
Databricks Assistant, 333, 334

(see also Databricks
Assistant)

requirements, 333
search and discovery, 334

Databricks job
job-level parameters

continuous, 122
file arrival, 120, 121
job parameters, 123
job tags, 122
scheduled, 119
table update, 122

task-level parameters
cluster, 117, 118
create, 116
dependent libraries, 118
duration threshold, 119
notifications, 118
parameters, 118
source, 117
task retries, 119
type, 116

Databricks lakehouse
cloud object storage, 7
core concepts and

capabilities, 8, 9
Delta Lake, 7

enterprise-scale
implementations, 7

lakehouse architecture, 7
platform, 6

Databricks MLOps stack
CI/CD, 366
CI/CD workflow, 369
code review, 368
develop model, 368
initialize, 367
setting CI/CD, 368
YAML file, 368

Databricks open sharing
protocol, 108

Databricks Partner
Connect, 52

Databricks platform, 7
account, 15
catalog, 17
cluster, 16 (see also Databricks

compute/cluster)
cluster best practices, 30, 31
cluster creation interface, 21
DBFS, 16
DBR, 18
DBU, 18
Delta Lake, 18
external connectivity (see

External Databricks
connectivity)

folder, 17
libraries, 17
notebooks, 16 (see also

Notebooks)

INDEX

462

workflows, 17
workspaces, 16

Databricks reference architecture,
ingestion, 46

Databricks repo, 358
branch, 362
checkout, 362
clone, 361
Cloud Git providers, 360
commit, 362
commit & push, 363
Git repositories, 361
merge, 363
on-premises Git providers, 360
pull, 363
push, 363
rebase, 363
reset, 363

Databricks runtime (DBR), 18, 24,
27, 38, 148

Databricks SQL (DBSQL)
architecture diagram, 153
BI tools, 154
constraints

enforced, 165, 166
informational, 165–167

definition, 154
materialized view (see

Materialized views)
streaming tables,

168, 169
Databricks-to-Databricks

sharing, 108

Databricks unit (DBU), 18, 373,
374, 377, 379, 388

Databricks workflows, 17, 115
advanced features

cluster reuse, 124, 125
conditional execution, 125
late jobs, 127, 128
modularize jobs, 128, 129
repair/re-run, 125
running jobs, 129

end-to-end architecture, 114
Job Matrix View, 131
Job Run dashboard

error types, 130
finished run chart, 130
jobs list, 130
monitoring, 131

task types, 124
Data cleansing, 435
Data drift, 204, 206, 209
Data engineers, 113–152, 155, 168,

181, 182, 218, 331, 378, 412
Data exploration

pandas profiling, 188–190
summarization, 191

Data generation, 433, 434
Data ingestion, 45–60, 135–137, 435
Data lakehouse, 4, 5, 61, 171
Data lakes, 2–5, 61–88
Data lineage, 102, 103
Data owners, 94, 349
Data scientists, 181, 184, 186, 188,

189, 191, 195, 207, 212
Data search, 104

Databricks platform (cont.)

INDEX

463

Datasets, 249, 271, 444, 445
Data sharing, 104, 107, 108, 110
Data swamps, 2
Data transformation, 134, 173,

435, 455
Data warehouses, 3–7, 13, 45, 60,

61, 76, 153–179
DBFS, see Databricks file

system (DBFS)
DBR, see Databricks runtime (DBR)
DBU, see Databricks unit (DBU)
DBRX, 252, 318

benchmarks, 315
cost of pre-training, 313, 314
end-to-end capabilities, 315
enterprises, 312
fine-tuning, 315
inference performance, 317, 318
instruct, open models, 315, 316
Open AI, 316
vs. open-source models, 311,

312, 330
open-sourcing

model, 314
tooling, 314

production, 313
vs. prominent models, 317
Pytorch FSDP, 327
transformer

architecture, 320–322
DBSQL, see Databricks

SQL (DBSQL)
DDP, see DistributedData

Parallel (DDP)

Decision trees, 197
Deep clones, 72, 73
Deep learning, 322, 334
Deep neural networks (DNNs),

321, 322
Defragmentation, 85
Delta bronze layer, 46, 137
Delta ingestion, 46, 54

via Auto Loader, 54–58
via COPY INTO, 54, 58–60

Delta Lake, 7, 18, 46–48, 53–56
challenges, other storage

formats, 61
change data feed (CDF),

74–76
clone delta tables, 71–73
components, 62, 63

cloud object storage
layer, 64

Delta log, 63
Parquet files, 63

definition, 62
Delta format, 86
Delta optimization, 80

optimize, 80, 81
partitioning, 80
vacuum, 82
Z-ordering, 81

generated columns, 73
key features

ACID transactions, 64
compliance, 65
schema enforcement, 64
time travel, 65

INDEX

464

unified batch and
streaming, 64

version control, 64
limitations, 84
liquid clustering, 82–84
Medallion (see Medallion

architecture)
MERGE SQL operation, 68
ML/AI to rescue, 88, 89
predictive I/O, 85
schema evolution, 69–71
storage protocol, 61
time travel feature, 70, 71
Universal Format, 77–80
Update and Delete

commands, 68
Delta Lake format, 7, 13
Delta Live Tables (DLT), 116,

133, 206
CDC, 137
create pipeline, 142, 143
DAG, 145
data ingestion, 135, 137
enhanced autoscaling

algorithm, 147
expectations, 139, 151
logs, 146
materialized view, 135
metrics, 141
monitor, 146
parameters

compute, 144
pipeline mode, 144

product edition, 143
source code, 143

retail sales pipeline (see Retail
sales pipeline)

streaming table, 135
views, 135
PowerBI Desktop, 178, 179

Delta log, 63, 70
Delta Sharing

confirmation, 110
customers, 110
differentiators/benefits, 108
working, 108, 109

Delta UniForm, 77
Deploy model

model overview, 200
model registration, 200, 201
Model Serving/inferencing,

202, 203
inference tables, 203
query endpoint button,

203, 204
Unity Catalog, 203
workflow, 204

Descriptive analytics, 2
Dev environment, 98
Digital transformation, 1
DistributedDataParallel (DDP), 326
Distributed training libraries, 326
DLT, see Delta Live Tables (DLT)
DNNs, see Deep neural

networks (DNNs)
Document Q&A, 229, 230

Dynamic view, 107

Delta Lake (cont.)

INDEX

465

E
E-commerce system, 424, 425
Embeddings, 230–235, 240, 241,

259, 261, 267–270
Encoder and decoder

network, 319
Enforced constraints, 165, 166
Enhanced Autoscaling

algorithm, 147
Epoch markers, 415
ERP/CRM systems, 45
Evaluation-driven

approach, 305–307
Exploratory data analysis (EDA),

186, 258, 444
External Databricks connectivity

Databricks CLI, 39, 40
Databricks Terraform, 41, 42
REST APIs, 40, 41

External tables, 93

F
Feature engineering, 187, 188, 194,

195, 256
File arrival triggers, 120, 121
File upload UI, 47, 50, 51
Fine-tuning, 10, 220, 247, 248
Fivetran, 47, 50, 53
Foundation Model API, 328, 330
Fully Sharded Data Parallel (FSDP),

326, 327

G
Gartner Magic Quadrant, 182
GenAI, see Generative artificial

intelligence (GenAI)
GenAI techniques

architecture, 433
dashboard, 452, 454
output, 446
steps, 448–451
user interface, 448
volume interface, 447

Generative artificial intelligence
(GenAI), 9–12, 219, 253

content, 220
embeddings, 231
journey, 223, 224, 247
knowledge graph, 231
pricing, 250
vs. ChatGPT, 220, 221

Genie space, 349–351
Glass Box approach, 184
Gold layer, 67, 75

H
Hadoop systems, 2, 45
Hierarchical Navigable

Small World (HNSW),
235, 236

HNSW, see Hierarchical Navigable
Small World (HNSW)

Hybrid PaaS, 390

INDEX

466

I
Identity and access control

ACL, 401, 402
best practices, 407
IP access lists, 399–401
MFA, 399
SAT, 404–406
SSO, 399
Token Management API, 402–404

If/else condition task type, 126
Informational constraints, 165–167
Ingestion partners, 52
Instance pools, 382
Interactive clusters, 21, 53, 117,

152, 157, 379, 388

J
Job clusters, 19, 81, 117, 122, 157,

378, 380
Job parameters, 123, 124
Job tags, 122
Jupyter notebooks, 31

K
Kafka, 48, 51, 135–137, 169,

170, 410

L
Lakehouse, 5

architecture, 3
data architecture paradigm, 4

object stores/cloud-based
storage, 4

paradigm, 6
Lakehouse monitoring

drift analysis metrics, 206, 207
inference profile, 207
metrics tables, 210
model metrics, 209
monitor, 205, 206
notebooks, 214
nyctaxi_trips, 213
one-stop interface, 209
output table, 214
queries and dashboard, 214, 215
reports, 209, 211
Responsible AI, 208
reusable format, 212
set up, 205
snapshot profile, 206
table schema, 209
tables documentation, 214
tables relationship, 213
tables usage, 214
time series profile, 206

LangChain model, 280–283
LangChainTool, 242
Large language model operations

(LLMOps)
advantages, 260
bge-large-en model, 268
calculate embeddings, 269, 270
components, 258
considerations, 256
create vector search, 267

INDEX

467

feedback mechanism
model packaging, 262
Model Serving and

interference, 263
index creation, 266
judging, 278, 279
model evaluation, 262
model fine-tuning, 261, 270
model pre-training, 262, 271
prompt engineering

chain of thoughts, 265
templates, 263–265

Large language models (LLMs), 9,
10, 12, 220, 222, 224, 232,
242, 244, 247, 253, 311

Late job, 127, 128
Legacy dashboards, 159
Libraries, 17, 38, 39
LightGBM, 197
Liquid clustering, 61, 82–84
Llama, 253, 314, 434
Llama 2, 252
Llama-2-70B-Chat model, 226
Llama Guard, 345
LLMs, see Large language

models (LLMs)
Logistic regression, 197
Long-Term Support (LTS)

versions, 27, 117

M
Machine learning (ML), 2, 3, 13, 182

best practices, 215–218

black boxes, 184
components, 182
engineers, 181, 218
experiments, 183, 184
flight delay/cancellation, 185

data preparation, 186
EDA, 186, 187
feature engineering, 187, 188

lifecycle, 185
problem types, 195, 196
randomly generated data, 444
Synthea-generated data, 445
user personas, 181

Machine learning
operations (MLOps)

deployment server, 273
interfaces for LLM, 280
LangChain, 280–283
roles/responsibilities, 255

Massive Text Embedding
Benchmark (MTEB), 269

Materialized views
AI functions, 173
BI tools, 176
create, 170
custom models, 176
Lakehouse Federation,

171, 173
LLM models, 174, 175
PowerBI, 177, 178
refresh, 171

Medallion architecture, 65
Bronze layer, 66
Gold layer, 67

INDEX

468

main layers, 65
as multihop architecture, 65
Silver layer, 66

Merge conflict, 363
Metastore admin, 94, 98, 386
Micro-batch processing, 410, 413,

416, 422, 428, 429
Mistral, 252, 253
Mixtral-8x7B Instruct model, 226
Mixture of Expert (MoE), 316

fine-grained, 324, 330
MegaBlocks/Dropless MoE

blocks, 324
neural networks

architecture, 322
traditional architecture,

322, 323
MLflow Deployments Server

advantage, 274
AI2 Wildbench, 276
create serving endpoint, 274
EluetherAI LM Evaluation

Harness, 276
Mosaic Model Gauntlet, 276
saving credentials, 275

MLOps, see Machine learning
operations (MLOps)

MoE, see Mixture of Expert (MoE)
Model architecture, 250, 272
Model fine-tuning, 261, 270
Model pre-training, 262, 271
Model Serving, 174, 176, 201–204,

248, 263, 313, 327, 333

Model training, 185, 188, 191, 195,
221, 249, 250, 256, 262,
270, 272

Modern data platforms, 3
Mosaic AI agent framework, 285

deployment
LangChain model

registration, 302
one-line deployment

command, 303
retrieving review app

URLs, 303
sharing permission, 304, 305
status, 303

features, 286
installations, 287
LangChain, 309
LangChain parameterization,

287, 288
MLflow evaluation

array structure, 292, 293
custom metrics, 290
databricks-agent, 290
input dataset schema, 292
metrics, 293, 294
mlflow.evaluate, 291
model metrics tab, 289
principles, 308
YAML file, 291

model development
basic chain, 296
chat endpoint, configuration

file, 299, 301
components, 297

Medallion architecture (cont.)

INDEX

469

LangChain pipeline, 295–297
LangChain trace

interface, 302
log_model() function, 295
mlflow.langchain.log_

model() function, 294
RAG artifacts vs. MLflow

artifacts, 295
rag_chain_config.yaml, 298
testing, 301
YAML configurations, 297

workflow, 285, 286
Mosaic AI Agent Framework,

231, 285–310
Mosaic AI vector Search, 235, 240
MosaicML, 12, 248, 325, 326, 330
MPT, 252
MPT-7B-8K-Instruct model, 227
MPT-30B-Instruct model, 227
MTEB, see Massive Text

Embedding
Benchmark (MTEB)

MySQL, 48–49, 53, 172, 239

N
Native cloud tools, 47
Natural language processing

(NLP), 318
Network security group (NSG), 393
Neural networks, 67, 270, 315, 318,

320–322, 368
NLP, see Natural language

processing (NLP)

Notebooks, 16
attach SQL warehouse, 36
cell debugging, 34
code-first development

tool, 31
collaborative, 32
Databricks widgets, 36, 37
debugging, 33, 34
Jupiter notebooks, 31
multiple language

support, 32
reproducible, 33
sample Databricks

notebook, 31, 32
scheduled, 33
serverless, 35
visualizations, 33

NOT NULL constraints, 165
NSG, see Network security

group (NSG)

O
Observability, 371–388, 423
OLMo, see Open Language

Model (OLMo)
Open AI, 247, 248, 253, 329
Open Language Model (OLMo),

249, 250, 271
dataset, 271
hardware, 272
model architecture, 272
model training, 272

Output modes, 417, 420

INDEX

470

P, Q
PAT, see Personal access tokens (PAT)
Pandas Profiling, 186–191, 212
Parameter-efficient fine-tuning

(PET), 271
Parquet, 46, 54, 55, 58, 61–64, 76,

77, 86, 189
Partitioning, 5, 72, 79–82
Partner Connect, 47, 52, 53, 179
Personal access tokens (PAT), 39,

40, 402, 403
Personal Compute, 24
Personalized models, 230
Personally identifiable information

(PII) masking, 342, 343, 346
PET, see Parameter-efficient fine-

tuning (PET)
Photon, 28, 144, 157, 158,

374, 377–379
PII masking, see Personally

identifiable information
(PII) masking

PIVOT function, 441
PowerBI workspaces, 177, 178
Predictive I/O, 85, 334
Pre-training, 223, 247, 248, 257,

261, 262, 271, 313, 314
Project Lightspeed, 423–425, 429
Prompt engineering, 224, 258

curated models, 227
key points, 224, 225
types, 225

Python debugger, 34

R
RAG, see Retrieval augmented

generation (RAG)
RAG Studio, 10
Random forests, 197
RDD, see Resilient Distributed

Dataset (RDD)
readStream, 56
Real-time streaming sources, 45
Recurrent neural networks (RNNs),

318, 319
Resilient Distributed Dataset

(RDD), 410, 412
Retail sales pipeline

data lineage, 150, 151
data quality, 151
data validation, 149–151
streaming, 149

Retrieval augmented generation
(RAG), 220, 259, 285

creation, 237
embeddings/sync, 240, 241
feature and function serving

external feature stores,
238, 239

online feature stores, 240
online tables, 238

LangChainTool, 242
MLflow LLM evaluation

data, 246
metrics, 244, 245
predefined model

types, 242–244

INDEX

471

RNNs, see Recurrent neural
networks (RNNs)

Row filters
apply to table, 105
create, 105

“Run if” dependencies, 126

S
SAT, see Security Analysis

Tool (SAT)
SCD, see Slowly Changing

Dimensions (SCD)
Scheduled trigger, 119, 120
Schema evolution, 58, 59, 68, 69
Secure Cluster

Connectivity, 394–396
Security Analysis Tool

(SAT), 404–406
Sentiment analysis, 174–176, 228
serverless SQL, 436, 437, 440
Serverless workflows, 118
Shallow clones, 72, 73
Shared clusters, 25, 26
Silver layer, 66, 137
Slowly Changing Dimensions

(SCD), 138, 152
SME, see Subject-matter

expert (SME)
SMoE, see Sparse mixture of

experts model (SMoE)
Snowflake, 48, 172, 173
SpaceX spaceship, 11
SpaceX’s Starship, 10, 12

Spark Streaming
components, 410
data engineering, 412, 413
Scala, 411
workflow, 411

Sparse mixture of experts model
(SMoE), 226

Spot instances, 16, 29, 382
SQL editor, 154, 158, 159,

335, 336
SQL warehouses, 20

AI/BI dashboards, 159, 160
alerts, 161
AWS, 380
Azure, 380
Canvas tab, 160
classic, 155, 379
create new, 379
Data tab, 160
GCP, 380
parameters

cluster size, 156
scaling, 157

photon, 157
pro, 155
query history, 161, 162
query profile, 162, 163
serverless, 155, 379
serverless compute, 163, 164
setting up, 156
SQL editor, 158, 159

Standard runtime version, 27
Standard single-user

clusters, 24, 25

INDEX

472

Star schemas, 164
State management, 411, 412, 414,

418–419, 423, 424, 428
Streaming tables, 135, 168,

169, 179
Structured Streaming

best practices, 426
challenges, 414
group aggregations, 418
monitor UI, 427
state management, 418, 419

watermark, 420, 421

Subject-matter expert (SME), 12
Summarization, 191, 226,

227, 229

Super Heavy booster, 10
System tables

audit logs, 386
billable usage, 386–388
catalogs, 386
Databricks documentation, 385
table lineage, 387
Unity Catalog, 385
use cases, 383, 384
uses, 384

workflow, 387

T
Table update trigger, 122

Tokenizers, 251–253

Tokens, 251–253

Transformer model, 319, 320
Trigger modes, 161, 416

U
UC, see Unity Catalog (UC)

Unified monitoring, 211
UniForm (Universal Format),

77–79, 88

UNIQUE constraint, 165
Unity Catalog (UC), 7, 8

admin roles
account admin, 94
create metastore,

95–97
data owners, 94
metastore admin, 94
workspace admin, 94

capabilities, 90
catalog, 92
column masks, 106
data sharing, 107
definition, 90
dev environment, 98
dynamic view, 107
–enabled clusters, 25
external tables, 93
features

access control
mechanisms, 101

INDEX

473

centralized user
management, 100

data access, 104
data lineage, 102, 103
data search, 104
granting permissions, 102
SCIM synchronization, 100

hierarchy, 92
managed tables, 93
metastore, 92
row filter (see Row filters)
schema, 93
SDLC workspaces, 99
structure, 98
support, 26
tables, 93
volumes, 93
website, 98
with/without, 91

workspace setup, 99
Unstructured text

parsing, 228

V
Variable Explorer, 34, 35
Vector database, 231–233, 237,

240–241, 259, 260, 266,

269, 270
Vector index, 231, 233, 259, 260,

266, 283

Vector library, 260, 266
Vector Search, 10, 233–235, 260,

267, 269, 296, 297
Virtual machines (VMs), 16, 18,

28, 29, 372
VMs, see Virtual machines (VMs)

W, X, Y
Workspace admin, 94, 401

Z
Z-ordering, 81

INDEX

	About the Authors
	About the Technical Reviewers
	Chapter 1: Databricks Platform: From Lakehouse to Data Intelligence Platform
	Data Platforms: Historical Perspective
	Emergence of the Lakehouse
	What Is a Lakehouse?
	What Is the Databricks Lakehouse?
	Key Features of the Databricks Lakehouse Platform
	Introducing the Databricks Data Intelligence Platform
	Conclusion

	Chapter 2: Databricks Platform Overview
	Key Terminology
	Databricks Compute or Clusters
	Interactive or All-Purpose Clusters
	Job Cluster
	SQL Warehouse

	Databricks All-Purpose Cluster Setup
	Policy
	Access Mode
	Databricks Runtime Version
	Autoscaling and Autotermination
	Tags
	Spot Instances
	Cluster Pools

	Cluster Sizing Considerations and Best Practices
	Databricks Notebooks
	Debugging
	Serverless in Notebook
	Databricks Widgets

	Library Management
	External Databricks Connectivity
	Databricks CLI
	Databricks REST API
	Databricks Terraform

	Conclusion

	Chapter 3: Data Ingestion in Lakehouse
	Introduction
	Cloud Ingestion
	Delta Ingestion
	Auto Loader
	COPY INTO

	Conclusion

	Chapter 4: Delta Lake - Deep Dive
	The Challenges of Other Formats
	What Is Delta Lake?
	Delta Lake: Medallion Architecture
	Delta Lake Key Features
	Update, Delete, and Upserts in Delta Table
	Schema Evolution

	Time Travel
	Clone Delta Tables
	Generated Column
	Change Data Feed
	Universal Format
	Delta Optimization
	Liquid Clustering
	Working with Liquid Clustering
	Current Limitations
	Predictive I/O
	ML/AI to the Rescue

	Conclusion

	Chapter 5: Data Governance with Unity Catalog
	What Is Databricks Unity Catalog?
	Unity Catalog: Before and After
	Unity Catalog Hierarchy
	Unity Catalog Admin Roles
	Getting Started with Unity Catalog
	Create a Metastore

	Organizing Data in Unity Catalog
	Key Features of Unity Catalog
	Centralized Metadata and User Management
	Centralized Access Controls

	Data Lineage
	Data Access Auditing
	Data Search and Discovery
	Row-Level Security and Column-Level Masking
	Row Filters
	Create a Row Filter
	Apply the Row Filter to a Table
	Column Masks
	Dynamic Views vs. Row Filters and Column Masks

	Delta Sharing
	An Open Standard for Data Sharing
	How Delta Sharing Works

	Conclusion

	Chapter 6: Data Engineering Part 1: Orchestrating Data Pipelines Using Databricks Workflows
	Databricks Workflow Jobs
	Databricks Jobs and Tasks
	Configure Databricks Job Tasks: Task-Level Parameters
	Configure Databricks Job Tasks: Job-Level Parameters

	Advanced Workflow Features
	Monitoring Data Pipelines
	Conclusion

	Chapter 7: Data Engineering Part 2: Delta Live Tables
	What Is Delta Live Tables?
	Data Ingestion Using DLT
	Change Data Capture with DLT
	Delta Live Tables Expectations

	Creating a DLT Pipeline
	Logging and Monitoring
	Enhanced Autoscaling
	Runtime Channels
	Example: A Retail Sales Pipeline
	Streaming Pipeline
	Data Validation
	Data Lineage
	Validation Dashboard

	Conclusion

	Chapter 8: Data Warehousing with DBSQL
	What Is Databricks SQL?
	SQL Warehouses
	Photon
	SQL Editor
	Introduction to AI/BI Dashboards
	Alerts
	Query History and Profile
	Serverless Compute

	Constraints in DBSQL
	Constraints on Databricks
	Enforced Constraints
	Informational Constraints: Primary Key Foreign Key

	Streaming Tables and Materialized Views
	Streaming Tables

	Materialized Views
	Create a Materialized View
	Refresh a Materialized View
	Lakehouse Federation
	AI Functions in DBSQL
	Consume LLM Models in DBSQL
	Custom Functions Backed by a Serverless Serving Endpoint
	Integrate BI Tools with Databricks
	Publish to PowerBI Online from Databricks

	Connect Power BI Desktop to Databricks
	Conclusion

	Chapter 9: Machine Learning Operations Using Databricks
	Machine Learning with Databricks
	Experiments
	What Is the Glass Box Approach to Automated Machine Learning?

	Machine Learning Lifecycle: MLOps
	ML Example: Predicting Flight Delays with Databrick’s AutoML
	Prepare Data
	Exploratory Data Analysis
	Feature Engineering

	Data Exploration at Scale
	Pandas Profiling
	Data Summarization Using dbutils

	Feature Store
	Why Use Databricks Feature Store?

	Model Building
	Model Training
	Validation

	Deploy Model
	Deployment
	Model Serving/Inferencing

	Monitoring
	Lakehouse Monitoring
	Why Profiling?
	Deep Dive into Lakehouse Monitoring Output Tables

	MLOps Best Practices
	Conclusion

	Chapter 10: Generative AI with Databricks
	What Is Generative AI?
	Databricks Generative AI
	The GenAI Journey
	Prompt Engineering
	Mosaic AI Playground
	Use Cases
	Sentiment Analysis
	Unstructured Text Parsing
	Summarization
	Document Q&A

	Retrieval Augmented Generation
	Similarity Search: The Magic Behind the Scenes
	A Practical Example for RAG: Using Structured Data
	Step 1: Feature and Function Serving
	Step 2: Calculate Embedding and Sync to a Vector Database
	Step 3: Create a LangChainTool to Perform Various Tasks
	Step 4: MLflow LLM Evaluation

	Mosaic AI Fine-Tuning API
	Fine-Tuning Example

	Pre-Training
	A Case Study of AI2’s OLMo, a Truly Open-Source Large Language Model

	Gen AI Pricing
	What Are Tokens and Tokenizers?

	Conclusion

	Chapter 11: Large Language Model Operations
	Machine Learning Operations
	Large Language Model Operations
	Components of LLMOps
	Deep Dive into Each Process
	Prompt Engineering
	Prompt Templates
	Chain of Thoughts

	Retrieval Augmented Generation
	Model Fine-Tuning
	Model Pretraining

	A Case Study of AI2’s OLMo, a Truly Open-Source Large Language Model
	Model Governance
	MLflow Deployments Server

	LLM as a Judge
	Model Packaging and Deployment
	LangChain Flavor with MLflow

	Conclusion

	Chapter 12: Mosaic AI Agent Framework: Creating Quality AI Agents
	Part 0: The Installations
	Part 1: LangChain Parametrization
	Part 2: MLflow Evaluation
	Part 3: Model Development
	Part 4: Deployment
	Evaluation Example
	Conclusion
	Beyond LangChain

	Chapter 13: DBRX: Creating an LLM from Scratch Using Databricks
	What Is DBRX?
	The DBRX Benchmarks
	DBRX Architecture
	Shortcomings of the Transformer Architecture
	Mixture of Experts
	MegaBlocks: Efficient Sparse Training with Mixture-of-Experts
	Fine-Grained MoE

	The MosaicML Stack
	Distributed GPU Training
	Model Serving
	Using DBRX on Databricks
	Conclusion

	Chapter 14: The Databricks Data Intelligence Platform
	Databricks IQ
	Deep Dive into Databricks IQ
	Databricks Assistant
	Generate Code in Any Language
	Autocomplete Code or Queries
	Code Conversion
	Code Explanation
	Code Fixing

	AI-Powered Governance
	Search and Discovery
	Intelligent Search

	AI/BI Genie (Previous Data Rooms)
	How to Set Up Genie
	Conclusion

	Chapter 15: Databricks CI/CD
	What Is CI/CD?
	Stages of CI/CD
	Introduction to Databricks Repos
	Databricks UI vs. Git Terminologies
	Databricks Asset Bundles
	Case Study: Databricks MLOps Stack
	Conclusion

	Chapter 16: Databricks Pricing and Observability Using System Tables
	Costs Associated with the Databricks Platform
	Cloud Infrastructure Costs
	Databricks Pricing
	What Are Databricks Units?
	SQL Warehouse Pricing

	Databricks Cost Management Best Practices
	Databricks Observability: System Tables
	Introduction to System Tables
	Common Schemas/Tables Available with System Tables
	System Table: Billing Usage Example

	Conclusion

	Chapter 17: Databricks Platform Security and Compliance
	Databricks Architecture
	Azure Databricks Deployment
	Capacity Planning
	VNET Injection or Bring Your Own VNET
	Secure Cluster Connectivity (No Public IP/NPIP)
	Azure Private Link for Back-End and Front-End Connections
	Encryption and Auditing
	Customer Managed Keys

	Identity and Access
	SSO and Multifactor Authentication
	IP Access Lists
	Role-Based Access Control
	Token Management API

	Security Analysis Tool
	Databricks Security Best Practices
	Conclusion

	Chapter 18: Spark Structured Streaming: A Comprehensive Guide
	Spark Streaming
	Structured Streaming
	What Is Continuous Processing?
	Triggers
	Output Modes
	Windowed Grouped Aggregation
	State Management
	Late-Arrival Handling: Watermark
	Auto Loader
	Project Lightspeed
	Advanced State Management
	Use Case: E-commerce Operation

	Structured Streaming Best Practices
	Conclusion

	Chapter 19: From Ideation to Creation: A Walk- Through of Building a GenAI Application
	The Problem Statement
	Data Generation: Source
	Data Ingestion: Ingest
	Data Transformation: Transform
	Using Serverless SQL for Transformation

	Machine Learning Model for Diabetes Complication Classification: Query and Process
	Generative AI: Serve
	Where Do We Start?

	Monitoring Dashboard: Analysis
	Conclusion

	Index
	df-0.png

