Databricks
Data Intelligence
Platform

Unlocking the GenAl Revolution

Nikhil Gupta
Jason Yip

m

Databricks Data
Intelligence Platform

Nikhil Gupta
Jason Yip

Apress’

Databricks Data Intelligence Platform: Unlocking the GenAl Revolution

Nikhil Gupta Jason Yip
Livingston, NJ, USA Redmond, WA, USA
ISBN-13 (pbk): 979-8-8688-0443-4 ISBN-13 (electronic): 979-8-8688-0444-1

https://doi.org/10.1007/979-8-8688-0444-1

Copyright © 2024 by The Editor(s) (if applicable) and The Author(s),
under exclusive license to APress Media, LLC, part of Springer Nature

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shaul Elson

Development Editor: Laura Berendson

Coordinating Editor: Gryffin Winkler

Cover Photo by JJ Ying on Unsplash (unsplash.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book can be
found here: https://www.apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-0444-1

Table of Contents

About the AUtROIS......cccormrmmmmrsmmssmrrr s nnnnnsnnnns XV

Ahout the Technical REVIEWEr'S ...cuueeeerirremmssssssmsnsssssnnnssssnsnsasssssnnnnssns Xvii

Chapter 1: Databricks Platform: From Lakehouse to Data

Intelligence Platform........ccccccmmnnsemnnmmsssssnnmssssssssmsssssssssssssssssssssssnsssnss 1
Data Platforms: Historical Perspective...........ccccovcnvnerninsnnenesn s ses e 2
Emergence of the LAKENOUSEcccveeerercrneneneseree e 3
What IS @ LAKENOUSE?ccvecerrrcrircsrrcse s s s s ssnnes 4
What Is the Databricks LaKENOUSE?...........cccorriieninennnssses e 6
Key Features of the Databricks Lakehouse Platform...........ccecvvvvvnveriennnensenienne, 8
Introducing the Databricks Data Intelligence Platform..........ccccooovvvinvenicniencnnns 9
0] T 1 S 13

Chapter 2: Databricks Platform Overviewcccccemmnnessssssssssssnnnnnnas 15
LG (=TT T0] oo SR 15
Databricks Compute or CIUSIEISc.ccvvvrvrieninnnsre e 18

Interactive or All-PUrp0ose CIUSTErS......cccvivrrninienn e 19
JOD CIUSTEN ... 19
SQL WAr€RNOUSEcoererrrrrreeerrrinssesesesrsss e sese s ss s sssssssssssssssssssssssns 20
Databricks All-Purpose ClUSter SEtUP......c.ccvcevivvvirienie s sessesesaens 20
0] O 22
ACCESS MO ... 24
Databricks RUntime VErsioncoccvvevnenmnnsesnsesnsessssse e sesesessesessnnes 27

iii

https://doi.org/10.1007/979-8-8688-0444-1_1
https://doi.org/10.1007/979-8-8688-0444-1_1
https://doi.org/10.1007/979-8-8688-0444-1_1
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_1#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_2
https://doi.org/10.1007/979-8-8688-0444-1_2
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec9

TABLE OF CONTENTS

Autoscaling and Autoterminationccccvvvninininne s 28
TAGS et —————————————— 28
SPOL INSTANCESecveerere s s sr e e s re e e ne e 29
CIUSTEI POOIS......cocccrirrriieieri e 29
Cluster Sizing Considerations and Best PractiCescccvverrerrrenverieresessensenens 30
Databricks NOtEDOOKS.........ccoveeereere e 31
DEDUGGINGviirirercrrer s 33
Serverless in NOTEDOOKcovocrrenrerree s 35
Databricks WIdgets. ..o 36
Library Management...........ccoveeerenerrenernsesessenessssesessesessssessssesessssesssssssssesessesenns 38
External Databricks CONNECLIVILYccoveererrenmrenmrnsesene e 39
(D212 o T G O R 39
Databricks REST APL.........cccovinrinereseresesessses e sessesessess s e sessssessssessnnes 40
Databricks TErraform..........coocevenrenrnsesre e 41
0] T (13 SRRSO 42

Chapter 3: Data Ingestion in Lakehouse...........cccnnnnsssemnnnssssnnssnssssnnnnnsd9

INEPOAUCTION....c.cccecce s 45
Cloud INGESHION ...t e 46
Delta INGESHION ... 54
AULO LOAAET ... nnenen 55
COPY INTO ...eeeerrnrsrsrssssssssssse e e e et se s 58

[0 e 11 S 60
Chapter 4: Delta Lake - Deep DIVeccusemmmmsssnsmnmssssssnnsssssssnssssssnnnnss 61
The Challenges of Other Formats...........coucevvevnncnnnesnese e 61
What IS Delta LAKE?c.ccvrmiiiiriririssssse s s 62
Delta Lake: Medallion ArChiteCtUreccoveerernnmrnseninss s 65

iv

https://doi.org/10.1007/979-8-8688-0444-1_2#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec17
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec18
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec19
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec20
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec21
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec22
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec23
https://doi.org/10.1007/979-8-8688-0444-1_2#Sec24
https://doi.org/10.1007/979-8-8688-0444-1_3
https://doi.org/10.1007/979-8-8688-0444-1_3
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_3#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_4
https://doi.org/10.1007/979-8-8688-0444-1_4
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec3

TABLE OF CONTENTS

Delta Lake Key FEAtUrEScccvervvirierneniirsersie e s s s e s s s sse s 68
Update, Delete, and Upserts in Delta Table.........cccccvininvnnncninsennenieniens 68
Schema EVOIULION..........cccrrce s 68

TIME TFAVEL ... e 70

Clone Delta TADIES.........coeecrereereerere e 71

Generated COIUMN ... e 73

Change Data FEEd...........couverrrermrenirne s 74

Universal FOrmat..........ccconnsssssss s 76

Delta Optimization........ccocvvrierevnrri e nnee 80

LiUID CIUSTEIING ..ceuervereeerererreressere s seesessessessesessessessesessessessesssssssessesaessssensensens 82

Working with Liquid CIUSTEriNg........cccovvririnninsrese s 83

Current LIMiItationscccvvreneresernesereserssesessese s s ese s sessenenns 84

PrediCtive 1/0.......coeceeeerreesese e s 85
ML/AI 10 the RESCUEcevveeerererreerre s s s e sesss e sensnnes 87

0] T L1 SRRSO 88

Chapter 5: Data Governance with Unity Catalog.........ccccussseeensissnnnnnnnn89

What Is Databricks Unity Catalog?..........cccevrevrrerieriennsensensessesssssssessessessssessessees 90
Unity Catalog: Before and After.........cccovevrecrncrnicnne e 91
Unity Catalog Hierarchy............coooorrennncnreserec e 92
Unity Catalog Admin ROIES..........eoeeerrrrerenererenerree s 94
Getting Started with Unity Catalogccccerrvenerienernscneneserese e 94
Create @ Metastore.........cccoveeeresrnnesrese s 95
Organizing Data in Unity Catalogcccovvrernnenenesernsesenesese s sesesens 97
Key Features of Unity Catalog.......c.cceeevvrerveriennnennenseniessssessesessssessessessesessessessens 99
Centralized Metadata and User Managementcccocvvevevnnenienenensensensenns 99
Centralized Access CONtrolscccccvvvevnenenisennse s 101

https://doi.org/10.1007/979-8-8688-0444-1_4#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec17
https://doi.org/10.1007/979-8-8688-0444-1_4#Sec18
https://doi.org/10.1007/979-8-8688-0444-1_5
https://doi.org/10.1007/979-8-8688-0444-1_5
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec10

TABLE OF CONTENTS

D ez IRV SRS 102
Data AcCess AUCILINGcccevevrvcrir e ———— 104
Data Search and DISCOVENY ... ens 104
Row-Level Security and Column-Level Maskingccccevvrererenerenseseseneneenes 105
ROW FIlEEIS ...t 105
Create @ ROW FIlTEN ..o 105
Apply the Row Filter to @ Tableccoveverenereserneseresese e 105
COlUMN MASKScoereeerreereeesesese s e se s s ses e ssasesennes 106
Dynamic Views vs. Row Filters and Column Maskscoouvvvinenereninnnnes 106
Delta SNAMNGccoveeeerieerreer e 107
An Open Standard for Data Sharingc.ccovrvrrnsenennesesnse e 108
How Delta Sharing WOrKSccooverrnenmnenennsssesnesessse s s sessssessenens 108
0] T (1 o OSSOSO 111

Chapter 6: Data Engineering Part 1: Orchestrating Data

Pipelines Using Databricks WOrkflows........c.uceeuremssssnnssssssssnsssssssnnnss 113
Databricks WOrkflow JODS ..o 114
Databricks JODS and TASKSccoueererrerernnmsrnsesessesesesesessesesseses s sessssessssessnnes 115

Configure Databricks Job Tasks: Task-Level Parameters.........c.c.ccovrvrerenne. 116
Configure Databricks Job Tasks: Job-Level Parametersccccovveeernnne. 119
Advanced WOrkflow FEAtUres..........curuvrnrerrnesenssessesess s ssssessssenens 124
Monitoring Data PIipeliNeS.........ccucrierevirrnierieninsensere e ses s sessesse e ssssesesseens 130
{0] T 11T (0] o O 132

Chapter 7: Data Engineering Part 2: Delta Live Tablesccceurrssnnns 133

What IS Delta Live TADIES?ccecceecrererreescse e sesessns 134
Data Ingestion USing DLTccocviininienesnssne s ssessssessesnens 135
Change Data Capture With DLTccoucvnrnnnnnnrrnse s 137
Delta Live Tables Expectationscccocvvvninvninnsnsnnessss s sesennens 139

https://doi.org/10.1007/979-8-8688-0444-1_5#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec17
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec18
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec19
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec20
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec21
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec22
https://doi.org/10.1007/979-8-8688-0444-1_5#Sec23
https://doi.org/10.1007/979-8-8688-0444-1_6
https://doi.org/10.1007/979-8-8688-0444-1_6
https://doi.org/10.1007/979-8-8688-0444-1_6
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_6#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_7
https://doi.org/10.1007/979-8-8688-0444-1_7
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec4

TABLE OF CONTENTS

Creating @ DLT PiPElINEccvvvvreverrerierrenesseresessssessessessesessessessessssessessesssssssensenes 142
Logging and MONItOriNGccceeereeeerenenererereesesese e 145
Enhanced AUTOSCAlING........ccoviririenennsne e s 147
Runtime ChannElS..........ccoveerenerneerreserese e 148
Example: A Retail Sales Pipeling..........ccovvernvesnennnnse s 148
Streaming PIpeliNeccvvcernresercsers s s 149
Data Validation..........c.covvrererenernsesnesese s 149
Data LINBAGE........veerreererererreserrsse s e ss e ses e se s sensssnnsenens 150
Validation DashbOoard...........c.ccovererenmrnsesessesnsese s sesse e sessssesenns 151
0] T (1S3 SO ST S 152

Chapter 8: Data Warehousing with DBSQL.........cc.ccusseenrnssssnnnsnsssnnnns 193

What Is Databricks SQL?........ccouveenmrernnnsssse s sesnssns 154
SQL WArENOUSESc.cerererrereerereresseseesesesssssssesesesssssss e sessssssssssssessssssssssssnsans 155
o110 (0] o TSR 157
SQOL EITOr....vivierererereseseseseseseesssssss s sssssssss s e e sesssssssssssssssssssssssssanas 158
Introduction to Al/BI Dashboards...........c.ccueerererernnnssssesesesssssesesesesssssneaes 159
1= £ 161
Query History and Profile........c.cccoueervrnninencnesns s seseses s 161
Serverless COMPULEcovecerrererererserersesessesessessessssessessessesessessessessssessessees 163
Constraints in DBSQL..........ccovrerereeneseressnsssesesessssssssesesessssssssesssessssssssssesessans 164
Constraints on DAtabricksceoeeereerernenerese s 164
Enforced CONSLIrAINTSccceeeeerereneencseresss e 165
Informational Constraints: Primary Key Foreign Keyccoovvvrvevereccnnnne. 166
Streaming Tables and Materialized VIEWSccoverriererenernscrenenesese e 168
Streaming TabIESccccvvvrvirrr s ————— 169
MaterialiZed VIEWScccvrerereerreresese s srens 170
Create a Materialized VIEWcccoverveernenereserssesese s sese s 170
Refresh a Materialized VIEWccoveeeererernscnenesens s 171

https://doi.org/10.1007/979-8-8688-0444-1_7#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_7#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_8
https://doi.org/10.1007/979-8-8688-0444-1_8
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec17

TABLE OF CONTENTS

Lakehouse Federation ... 171

Al Functions in DBSQL.........cccoviimnennnessese e sssssssssssesens 173
Consume LLM Models in DBSQLcocvrrrmmmmermmmssssssesesssssssesesesssssnsas 173
Custom Functions Backed by a Serverless Serving Endpointc....... 176
Integrate Bl Tools with Databricks........cccoevvrvrierennsniere e 176
Publish to PowerBI Online from Databricks..........ccouovvennennsinncscnerennnenes 177
Connect Power Bl Desktop t0 DAtabriCKsccccvverrererernersereressenseressssensessenes 178
0] T 1 o T 179
Chapter 9: Machine Learning Operations Using Databricks............. 181
Machine Learning with Databricksccovvrermnenesinnesnsesenesese s sessesessssesennes 182
EXPEHMENES.....cociccrr s 183
What Is the Glass Box Approach to Automated Machine Learning?............ 184
Machine Learning Lifecycle: MLOPScccccvvvenmenmsess s sessesessssessnns 185
ML Example: Predicting Flight Delays with Databrick’s AutoML 186
Data Exploration at SCalecccvvvvrvninenninin e 188
FEAtUIE STOME.....ccveeeeece et 191
Model BUIldINg.......ccocrreeernernenerese s sesessssessenens 195
DEPIOY MOMEL.......coeeeeeeerireerese s 200
MLOpPS Best PractiCes.......c.ouuvvririnnnsninesnsinese s s sesse s sessessessens 215

0] T 1 S 218
Chapter 10: Generative Al with Databricksccccemmrnrsmssssssssssnnnnnas 219
What IS GENerative Al?.........conninss s s 219
Databricks GENErative Al............ccovrrinnnnnss s 221
THE GENAI JOUINBYcveueireecriecrire st se s se e s et s e s se s e snsnens 223
Prompt ENGINEEIiNGccveeiiriiirrere s 224
Mosaic Al Playground ... s ssssessessesssssssessessens 226
USE CASES.....eeeerererneerseeresesessesesse e ses e e s e e e sse e ssesesss e ses s sesssesssnesenns 228

viii

https://doi.org/10.1007/979-8-8688-0444-1_8#Sec18
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec19
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec20
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec21
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec22
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec23
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec24
https://doi.org/10.1007/979-8-8688-0444-1_8#Sec25
https://doi.org/10.1007/979-8-8688-0444-1_9
https://doi.org/10.1007/979-8-8688-0444-1_9
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec17
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec24
https://doi.org/10.1007/979-8-8688-0444-1_9#Sec25
https://doi.org/10.1007/979-8-8688-0444-1_10
https://doi.org/10.1007/979-8-8688-0444-1_10
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec6

TABLE OF CONTENTS

Retrieval Augmented GENErationc.ccveerrevenrerserserssessersesessssessesessssessessenes 230
Similarity Search: The Magic Behind the SCENes.c.ccocevvvvverrervverierienne 235

A Practical Example for RAG: Using Structured Data...........ccerrervrerseriernnns 236
Step 1: Feature and FUnction SErvingccecveevrevnrerseriennsensessesessessensenaes 237
Step 2: Calculate Embedding and Sync to a Vector Database.............cc...... 240
Step 3: Create a LangChainTool to Perform Various Tasksccceeeververerne 242
Step 4: MLflow LLM EValu@tionccceeevvvrvenieninnensensesessssessessessssessessesas 242
Mosaic Al FINe-TUNINQG APL........ooreecercerree s sa e s eeas 247
Fine-Tuning EXAmMPIEccoovvrienererrersee e nes e se s s sae e nneas 248
Pre=Trainingcccveviininesn s s s 248
A Case Study of Al2’s OLMo, a Truly Open-Source Large Language Model 249
CTe] (A N o T o ST 250
What Are Tokens and TOKENIZEIS?ccoveererercrnncsereseresesesese e sesenenns 251
L] e 11 0 o SR 253
Chapter 11: Large Language Model Operations..........ccccurusssnnnnnsssnnns 255
Machine Learning Operationscccovvvrrvereressensessesssessessesessssessessessssessessenes 255
Large Language Model Operationsccevveveerersererensensersesessssessessessssessessenes 256
Components Of LLMOPScovvcvrererncrncrineses e se e sss e sessesessssesessesenns 258
Deep Dive into EACh Process ... 263
Prompt ENGINEEIiNG.......ccccoiiririeririnsine s ssssessesnens 263
Retrieval Augmented Generation............ccoevcnvnininnnsnnnnn s sesennens 266
Model FINE-TUNING......cccceieriririerire s srs e snens 270
Model Pretraining ..o s ssessssessesnens 271

A Case Study of Al2’s OLMo, a Truly Open-Source Large Language Model.......271
Model GOVEINANCE.........covererrererreerenesesrese e s ses e se e se s sensenens 273
I U 11T o R 277
Model Packaging and Deploymentccoverreenerencrnncsennene s 279

0] T 1 ST 283

https://doi.org/10.1007/979-8-8688-0444-1_10#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec17
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec18
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec19
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec20
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec21
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec22
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec23
https://doi.org/10.1007/979-8-8688-0444-1_10#Sec24
https://doi.org/10.1007/979-8-8688-0444-1_11
https://doi.org/10.1007/979-8-8688-0444-1_11
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_11#Sec17

TABLE OF CONTENTS

Chapter 12: Mosaic Al Agent Framework: Creating Quality Al

AGeNLS ...cceiriiiinnnnniiissnnnnnssssnn s nn e nnn e R R R R s 285
Part 0: The Installations..........ccccovvernennensssessese e 287
Part 1: LangChain Parametrization............ccccorueevnnenesinsesnsessnsessssssesssessssssessenes 287
Part 2: MLflow Evalu@tioncccormicnnnnssssssssssse s 289
Part 3: Model Development...........ccvvvrnininneninsinsie s seas 294
Part 4: DeploymMENLt..........ccocviirrirrrre e s a e 302
Evaluation EXample.........cccoriinininnnnnncsess s 305
L] 0 e 11 o SR 308

Beyond LangChain.........c.ocovenrnncnncseresersse s s s sesessenens 309

Chapter 13: DBRX: Creating an LLM from Scratch Using

1 11 311
WRHAL IS DBRX? ... sssssssssss s e ss s sssssssssssssssssssssssssasnnas 312
The DBRX BENCHMAIKSccoveeeieriirceree s 315
DBRX ArCRITECIUIE......cvecreeeereee et 318

Shortcomings of the Transformer Architecture.........c.cccvivvnininiennsnsennens 320
MixXture O EXPEILScccvceeeriecirsirer st sss e e snens 322
MegaBlocks: Efficient Sparse Training with Mixture-of-Experts 323
Fine-Grained MOE...........c.cooorenrerrrceree e 324
The MOS@ICML STACK........ccoeeerrererercrereseree s s s sensesessnnens 325
Distributed GPU Trainingccccoernnernsesessnerssesesesesesesessesessesessssesessssessesessenes 326
MOl SEIVING.....ccviicerree e 327
Using DBRX 0N DAtabriCKSccveriererensiriere s ses s ses e s ssssessessens 328
(00416 11 330

Chapter 14: The Databricks Data Intelligence Platform.................... 331
DAtabriCKS [Q......cccoerereieeerereris e 333
Deep Dive into DAtabricks 1Qcccvverererernierreser e seenes 334

https://doi.org/10.1007/979-8-8688-0444-1_12
https://doi.org/10.1007/979-8-8688-0444-1_12
https://doi.org/10.1007/979-8-8688-0444-1_12
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_12#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_13
https://doi.org/10.1007/979-8-8688-0444-1_13
https://doi.org/10.1007/979-8-8688-0444-1_13
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_13#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_14
https://doi.org/10.1007/979-8-8688-0444-1_14
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec2

TABLE OF CONTENTS

Databricks ASSIStant..........cccuvvinnininins e ————— 334
Al-Powered GOVEIMANCEccvurueemsererssssssssesssssssssssssssssssssssssssssssssssassssens 339
SEarch and DISCOVEIY.......uvrrererrererserseressesessessessessssessessesssssssessessessssessesses 347
Al/BI Genie (Previous Data ROOMS)........cccvveviererennensersesessssessesessessssessessens 348
HOW t0 SEt UP GENIB....ccerverrererereriererseresesessersessessesessessesaessssessessessssessessens 349
(0041 1110 352
Chapter 15: Databricks CI/CD.........ccccmemssssnnnesssssnnsssssssnssssssssnnsssssnnns 353
WRAL IS Cl/CD? ... sss s s e s s sssssssnns 353
StAGES OF CI/CD ...t e 356
Introduction to Databricks Repos........cccvrernininienn s 358
Databricks Ul vs. Git Terminologies.........cccuervrerrmnesrsnsesnsesssesesssessssessssssessanes 361
Databricks ASSet BUNAIEScccvririimnisirsssse e 364
Case Study: Databricks MLOPS STACKccccevvrerrerierenensersesesessessessessessssesessens 365
{0 T 11T (0] o T 369

Chapter 16: Databricks Pricing and Observability Using

System Tables........cccoinnmmmmmnnsnnnmmmssnnmmmssssnmssnsns——————————— 371
Costs Associated with the Databricks Platform..........cccocvvevninvnniennescsnsennns 371
Cloud INfrastructure COSESccvviermreririnss s 372
Databricks PriCiNg.......cccocvirieniiinrirsie e 373

What Are Databricks UnitS?.........ccccovrrnnnsnnnisnsssssese s sesssssssssenens 373
SQL Warehouse PriCiNgcoccevvvevneneninensse s s sessesens 379
Databricks Cost Management Best PractiCes..........couvvnvennenernsernsesenesennnnes 380
Databricks Observability: System Tablescccccvivieininininn s 383
Introduction to System Tables ..o, 384
Common Schemas/Tables Available with System Tables.........c.cccceevvenucnne. 386
System Table: Billing Usage Example.........c.cccvvvninininnnnsnsesiesesessesnens 387
L0 e 11 0o 388

https://doi.org/10.1007/979-8-8688-0444-1_14#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_14#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_15
https://doi.org/10.1007/979-8-8688-0444-1_15
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_15#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_16
https://doi.org/10.1007/979-8-8688-0444-1_16
https://doi.org/10.1007/979-8-8688-0444-1_16
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_16#Sec11

TABLE OF CONTENTS

Chapter 17: Databricks Platform Security and Compliance.............. 389
Databricks ArChiteCIUNE ..o 390
Azure Databricks DeplOyMENt............ccorecrerererercrererere e 391

Capacity Planning........cccovvrvnnnnnsn s 391
VNET Injection or Bring Your Own VNET..........ccoiininininnnnrenenn s 392
Secure Cluster Connectivity (No Public IP/NPIP)ccccvvvvnrnirienniensennens 394
Azure Private Link for Back-End and Front-End Connections 396
Encryption and Auditingc.ccocviennnnininsnn e 397
Customer Managed KeYS........cccuvrrnniriennnnsensessssssessese e s ssssessessesnes 397
Identity aN0 ACCESScocrerererererrreresesese s nrenis 399
SS0 and Multifactor Authentication...........coccveeereernec s 399
IP ACCESS LISTS....ccierueerieereecrerene s 399
Role-Based ACCESS CONLIOLc.cccvererereeereecrerese e sese e 401
Token Management APl ... e 402
Security ANalySis TOOccoverrierererereserere e 404
Databricks Security Best PractiCes.........couurmrermresnsnsesnsesssesesssesessesessssessnnes 407
CONCIUSION ..o 408

Chapter 18: Spark Structured Streaming: A Comprehensive

GUIAR.....eerisnnsssssnsssssnnssssnnssssnnnsssnnssssnnsnssanssssannsssannssssnnnnssnnsnssnnnnssnnnnns 409
SPark SIrEAMINGcvceeerreerrsesere s 410
Structured Sreaming.........coovevvenniesernsss s —————— 414
What Is Continuous ProCESSING?.......cucvverererenserseressssessesessesessessessesssssssessesees 415
LT o[S 416
OUEPUL MOTES......ereereeeeerereree s s e sse e se e sre e s e s saesas e s e saesaessssennesaens a7
Windowed Grouped Aggregation..........c.ccevevnnnieniennsnnsesse s sessessessssessessesnes 418
State Management............ccovevrrerrenrnsesree e s 418
Late-Arrival Handling: Watermark............cccocvveennnenesnsesnsesessesesesesessesessesessnns 420

xii

https://doi.org/10.1007/979-8-8688-0444-1_17
https://doi.org/10.1007/979-8-8688-0444-1_17
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec15
https://doi.org/10.1007/979-8-8688-0444-1_17#Sec16
https://doi.org/10.1007/979-8-8688-0444-1_18
https://doi.org/10.1007/979-8-8688-0444-1_18
https://doi.org/10.1007/979-8-8688-0444-1_18
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec8

TABLE OF CONTENTS

LT (0 I 0T T T 422
Project LightSpeed ... s 423
Advanced State Management.............coccvvrevnnnninnnnnnsnnse e 424
Use Case: E-commerce Operation..........ccucvvevrnsevnsenennnsesnsesessesesesessnnes 424
Structured Streaming Best PractiCes........c.ccoovvmvnininnnnnncns s s 426
0] T 1 ST 428

Chapter 19: From Ideation to Creation: A Walk-Through of

Building a GenAl Applicationcccocuuseemnmmnssnnnmmssssssnmnssssssssssssnnns 431
The Problem Statement ... s 432
Data Generation: SOUICEccceerererrneerese e ssssseaes 433
Data Ingestion: INGEST ... s 435
Data Transformation: TranSfOrm.........c.ccoverrnrennnesesrese s 435

Using Serverless SQL for Transformation...........cocccvvvereriesessscsnsesesenenennes 436
Machine Learning Model for Diabetes Complication Classification: Query
AN PrOCESSecivieiiiinsiss s s e 444
GENErative Al: SEIVE........cceeerererieee e 445
Where DO We STart?..........ccconrssess s 448
Monitoring Dashboard: ANalYSiS..........ccccerverrnneniersensee e serses e s seeeas 452
L] 0 (e 11 0 o 455
INA@X..ueeeiiienissnnssssnssssnnssssanssssanssssnnsssssn s s s ssnnsnssnnsnsnnnnnssnnnnssnnnnssnnnnsns 457

xiii

https://doi.org/10.1007/979-8-8688-0444-1_18#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec10
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec11
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec12
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec13
https://doi.org/10.1007/979-8-8688-0444-1_18#Sec14
https://doi.org/10.1007/979-8-8688-0444-1_19
https://doi.org/10.1007/979-8-8688-0444-1_19
https://doi.org/10.1007/979-8-8688-0444-1_19
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec1
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec2
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec3
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec4
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec5
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec6
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec7
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec8
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec9
https://doi.org/10.1007/979-8-8688-0444-1_19#Sec10

About the Authors

Nikhil Gupta is a seasoned data professional
with more than 18 years of experience in big
data technologies, driving innovation and
strategic growth in the field. As a solution
architect at Databricks, he leverages his
expertise to help customers across various
industries (including retail, consumer

packaged goods, financial services, banking,
and manufacturing) to modernize their data
and Al implementations on the Databricks platform. His expertise spans
arange of big data technologies, including data warehousing, data lakes,
and real-time data processing, making him a trusted advisor for Fortune
500 companies.

Jason Yip is a data and machine learning
architect. He currently serves as the director of
data and Al at Tredence, a leading data science
and analytics company. He advises Fortune
500 companies on implementing data and
generative Al strategies on the cloud. He serves
on multiple advisory boards at Databricks,
including the Partner Product Advisory Board

and the Solution Architect Champion Advisory
Board. He is a top voice on Databricks and a
former Microsoft employee who successfully led the Microsoft Corporate
Finance big data transformation using Databricks.

About the Technical Reviewers

Soumendra Mohanty has led key growth
portfolios (IIOT, data, analytics, Al, intelligent
RPA, digital integration, digital experience,
platforms), bringing world-class capabilities,
innovative solutions, and transformation-
led, outcomes-led value propositions to his
clients. Under his leadership, Tredence has

established a wide range of digital and data
analytics capabilities and an enviable client-
centric innovation culture to solve problems at the convergence of physical
and digital.

With a career spanning 25 years, Soum has held various executive
and leadership roles at Accenture, Mindtree, and L&T Infotech, leading
multifaceted profit-and-loss functions, including merger-and-acquisition
advisory for technology growth strategies and start-up ecosystems.

He is an accomplished thought leader and has published several
books. He regularly speaks at various global forums, CDAO advisory
gatherings, and educational institutions. He is an advisor to the Harvard
Business Review (Analytics Stream).

Vishal Vibhandik is a veteran data architect with more than 20 years of
experience in designing and implementing robust data solutions.

xvii

CHAPTER 1

Databricks Platform:
From Lakehouse to
Data Intelligence
Platform

The intensifying pace of digital transformation has led companies to
amass increasing volumes of diverse data from various sources. This

data explosion carries enormous potential for organizations to uncover
transformative insights to guide innovation and decision-making through
advanced analytics.

In this chapter, we will examine the evolution of data platforms over
the last decade or so. Then, we will discuss why today’s ideal data platform
is a lakehouse and how Databricks established the lakehouse category.
We will then go in-depth to understand the various facets of the lakehouse
platform as it is on Databricks.

Finally, we will discuss how generative AI (GenAlI) and large language
models (LLMs) have revolutionized the entire artificial intelligence (AI)
landscape and how Databricks has embraced this technology to create the
Databricks Data Intelligence Platform.

© The Editor(s) (if applicable) and The Author(s), 1
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_1

https://doi.org/10.1007/979-8-8688-0444-1_1#DOI

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

Data Platforms: Historical Perspective

The data landscape has undergone rapid evolution in recent years,
necessitated by the exponential growth in information from an ever-
expanding variety and volume of data. As organizations deal with this

big data surge, the existing infrastructure has struggled to harness its
potential effectively. This has led architects and technology leaders to start
conceptualizing new integrated systems that can adeptly consolidate the
strengths of current data platforms.

Let’s start with data warehouses. They provided immense value over
decades for descriptive analytics and business intelligence use cases
relying on predefined structured data. However, as the focus and needs
expanded to predictive analytics and leveraging the latest machine
learning advancements, the nature of workloads moved beyond what
traditional warehouses could proficiently support. Descriptive analytics for
business intelligence based on predefined datasets are no longer enough.
Further varied data types such as unstructured, semi-structured, and
streaming use cases require more extensive and agile processing than data
warehouse infrastructures are designed for.

The data lake concept therefore gained interest as an alternative to
data warehouses, given its natural ability to ingest raw multistructured
data quickly. One of the more popular technologies that was forefront of
this was Hadoop and its ecosystem. However, lack of transactionality, data
quality, and mixing modes inhibited unlocking the benefits promised
by data lakes. The flexibility therefore came at the cost of governance,
reliability, and vital enterprise capabilities. Consequently, the data lakes
quickly turned into “data swamps.”

Despite all these drawbacks, organizations with no better alternatives
began using both these technologies in their data architecture: data
warehouses for descriptive and business intelligence (BI) use cases
and data lakes for Al/machine learning (ML) use cases with a variety of
processing tools thrown in the mix (sometimes even a single tool for one

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

use case). However, with two completely different systems, solving for
two critical types of workloads started to be problematic. First, it created
data silos, which necessitated moving data across the platforms and thus
maintaining multiple copies of the same data. Second, the governance
model of these disparate platforms was incompatible, thus requiring
separate governance models for different systems. Finally, organizations
started using different tools for Bl and ML workloads, increasing
operational efficiency and costs. Over time, the complexity of maintaining
different systems increased. This is becoming not only costly but also
slowing innovation.

More than ever enterprises needed a unified data infrastructure
capable of managing diverse information seamlessly through its entire
lifecycle to serve exponentially expanding analytical use cases.

Emergence of the Lakehouse

Let’s understand how organizations look at their modern data platforms.
First, the platform should be able to store all sorts of data in a single
storage location, preferably cost-effectively. Then, that data should have
a single governance and access model and, last, a technology that helps
them solve all their use cases without moving any data or code.

However as discussed earlier, organizations using both a data
warehouse and a data lake in their architecture are essentially looking
at two different piecemeal systems leading to disconnected data silos,
complex integrations, and fragmented governance, severely hampering
building enterprise-grade analytic solutions that could positively impact
the business.

This reality has catalyzed the emergence of an evolutionary new
paradigm pioneered by Databricks: the lakehouse. The lakehouse
architecture aims to bring together the most impactful capabilities of data
warehouses and data lakes into an integrated whole on the cloud. Reliable

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

support for varied workloads using consistent data, managed securely
under standard governance policies, holds the promise to finally harness
big data comprehensively.

With its seismic potential to reshape the analytics landscape, the
lakehouse undoubtedly constitutes one of most pivotal recent data
platform innovations.

What Is a Lakehouse?

Let’s dig a bit deeper and understand what a lakehouse is. A lakehouse is a
data architecture paradigm aiming to bridge the gaps between data lakes
and data warehouses. The goal is to provide the flexibility and scalability
of a data lake as well as to provide the performance, reliability, and
governance typically associated with a data warehouse. A lakehouse seeks
to implement some of the managed data capabilities seen in warehouses
directly on top of object stores or cloud-based storage. Figure 1-1
compares the three.

Data Warehouse Data Lake Data Lakehouse

Figure 1-1. Data warehouse versus data lake versus data lakehouse

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

The data lakehouse construct addresses these gaps by consolidating
the capabilities of data warehouses and lakes:

e Natively manages both structured and varied
unstructured data

o Leverages cloud-scale object storage as the
foundational data repository

o Provides reliability, security, and governance across
storage and processing

e Provides high performance through technologies such
as caching, indexing, and partitioning

e Supports real-time and batch workloads via unified
streaming architecture

o Provides open extensibility to accommodate rapidly
evolving analytics needs

The lakehouse breaks down data silos and enables simplified
management by converging workloads on the same platform under
standard governance policies. This makes it possible to get a single
view of information at scale to power advanced analytics. With cloud
infrastructure adding unlimited elasticity, lakehouses finally make it
feasible to ask bigger questions of data than ever before possible.

If you were to design a new-generation analytical data management
system using cheap distributed storage as a foundation, you would end
up with something resembling a lakehouse: flexible schemas but faster
queries. The goal is real-time insights without compromising governance.

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

What Is the Databricks Lakehouse?

Now that you understand the lakehouse paradigm, let’s move on to see
how a lakehouse is implemented on Databricks. Published in Conference
on Innovative Data in 2021, Databricks researchers Michael Armbrust
et al. wrote “Lakehouse: A New Generation of Open Platforms that Unify
Data Warehousing and Advanced Analytics” (https://www.cidrdb.org/
cidr2021/papers/cidr2021_paperi7.pdf).

Figure 1-2 shows Databricks lakehouse platform.

S

databricks

Lakehouse Platform

Data Data Data Data Science
Warehousing Engineering Streaming and ML

Unity Catalog

Fine-grained governance for data and Al

Delta Lake

Data reliability and performance

Cloud Data Lake

All structured and unstructured data

HE Microsoft ;
WS Azure ﬂs. £) Google Cloud

Figure 1-2. Databricks lakehouse platform

https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf
https://www.cidrdb.org/cidr2021/papers/cidr2021_paper17.pdf

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

Databricks with the lakehouse architecture presented a potential
solution to consolidate disparate data sources into a single location while
avoiding some of the limitations of existing architectures. Databricks
provides one of the most mature enterprise-scale implementations of a
lakehouse architecture through its integrated data and Al platform. Built
on open source and open standards, the Databricks lakehouse architecture
simplifies your data estate by eliminating the silos that historically
complicate data and Al

Let’s decode this a bit and do a deep dive into a Databricks lakehouse.
Databricks leverages cloud object storage (S3-AWS, ADLS-Azure, and
Google Cloud Storage [GCP]) as a central data store at its foundation. This
enables enormous volumes of structured, unstructured, and semi-
structured data to be housed in native formats in one of the cheapest
storage available on the cloud. This is what constitutes the “lake” in the
lakehouse. Once the data lands in the cloud in raw format, it is moved to
Delta Lake format. Please note that data is still in your cloud storage but in
Delta Lake format. Delta Lake is an open-source storage layer that brings
performance, reliability, and governance to the data lakes. Delta Lake
applies atomic transactions, caching, indexing, and time travel to make
large-scale storage reliable and performant for mission-critical workloads.
Basically, Delta Lake gives as the “warehouse” type capabilities to the data
stored in your cloud storage. This constitutes the “house” in the lakehouse
architecture.

As shown in Figure 1-2, Unity Catalog provides unified data
governance for all data within the lakehouse. It manages all data assets,
including tables, schemas, views, and even Al models, centrally.

Finally, the Databricks platform provides features that enable all data
personas within your organization to build a variety of use cases be it data
engineering, data science, streaming, or data warehousing.

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

To conclude, Databricks provides a unified lakehouse platform built on
open-source technologies that is cloud-agnostic and able to handle diverse
use cases at any scale. This platform makes data available for multiple

analytics use cases, from business intelligence to machine learning.

Key Features of the Databricks
Lakehouse Platform

Databricks’ enterprise data cloud provides a leading implementation
of the lakehouse paradigm. The following are some core concepts and
capabilities:

Delta Lake: This open format optimizes the storage
of massive volumes of structured and semi-
structured data for reliability, performance, and
governance.

Unified batch and streaming: Databricks processes
batch and real-time data via the same platform
using Spark structured streaming. This enables new
ways to combine historical with streaming data.

Unity Catalog: Unity Catalog captures metadata
and usage information across diverse data types
and storage systems for unified discovery and
governance.

Multilanguage support: The platform natively
integrates languages like SQL, Python, R, Java, and
Scala to support various analytics use cases on the
same data.

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

Cloud-native architecture: By leveraging managed
cloud infrastructure, Databricks automates resource
management and scaling to meet the needs of the
most demanding workloads.

Secure and governed access: Comprehensive
access controls, encryption, and data masking
enforce strict oversight and granular auditing.

Autoscaling and collaboration: Data scientists

can quickly scale their work to production while
closely collaborating with business users via sharing
dashboards, reports, and applications.

Introducing the Databricks Data
Intelligence Platform

If you look back in the technology world, 2023 was a groundbreaking year.
It is when the world saw the power of GenAl LLMs and the potential they
hold. Almost instantaneously organizations could imagine the future use
cases that could be built by leveraging them. GenAl became the talk of
every boardroom, and everybody was looking at using the technology to
take a lead on their competitors.

Databricks with its Databricks lakehouse platform was uniquely placed
to utilize this technology to not only enhance its platform but also help
enterprises build their GenAl use cases. Let’s talk about these two in detail.

First, Databricks enhanced its lakehouse platform by merging it with
GenAl capabilities; this is called the Databricks data intelligence platform.
Databricks used LLMs in almost every part of its platform, from assisting
developers in troubleshooting coding errors to automatically generating

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

insights from your data. We will discuss each of these features in detail in
Chapter 12. The overall platform became more and more intelligent and
thus enhances the user experience.

Second, Databricks built capabilities and features inside the platform
that allow organizations to build their own GenAl use cases. Features like
Vector Search, the Fine Tuning API, and RAG Studio enable organizations
to productionalize their GenAl use cases from RAG applications to even
building their own model from scratch. We will discuss these features in
detail in Chapter 9.

Thus, Databricks enhanced its platform using LLMs and allowed users
to create their GenAl applications on the platform.

To understand the data intelligence platform on Databricks, let’s
look at this analogy. Figure 1-3 shows the most powerful spaceship ever
built—SpaceX’s Starship. It is important to note that at the core, sitting
underneath, is the Super Heavy booster, which is capable of withstanding
2.8 million pounds of weight while standing and, when in flight, propelling
the second stage to space with its raptor engine.

10

https://doi.org/10.1007/979-8-8688-0444-1_12
https://doi.org/10.1007/979-8-8688-0444-1_9

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

Figure 1-3. SpaceX spaceship

With this concept in mind, it is not hard to understand the Databricks
data intelligence platform (see Figure 1-4). It is also comprised of two
major components. At the core, it is powered by the lakehouse platform
and GenAl, which makes the platform much more intelligent to user needs
and requirements.

11

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

S

databricks

Data Intelligence Platform

Delta Live Tables Workflows

Data Intelligence Engine

Use generative Al to understand the semantics of your data

Unity Catalog

Delta Lake

» for refiability and sharing

Open Data Lake

All raw data (logs, texts, audio, video, images)

Figure 1-4. Databricks data intelligence platform

To conclude, fueled by the latest development of generative Al,
Databricks has integrated the Data Intelligence Engine into the core of
its offering. This is equivalent to SpaceX’s Starship. In short, Databricks
has leveraged the latest GenAl models and technology to create the Data
Intelligence Engine (Databricks IQ), which fuels all parts of the platform.

With Mosaic ML and Databricks IQ, developers can seamlessly create
their workload like they are working with a data subject-matter expert
(SME) like never before. Databricks Al can also allow data scientists to
leverage large language models as they are, refreshing their domain-
specific knowledge with RAG, fine-tuning with more specialized
knowledge, or even training a brand new LLM from scratch. This powerful
second stage can propel the Databricks platform to a new era, enabling
organizations to create the next generation of data and Al applications
with quality, speed, and agility.

12

CHAPTER 1 DATABRICKS PLATFORM: FROM LAKEHOUSE TO DATA INTELLIGENCE PLATFORM

Conclusion

In this chapter, looked at the evolution of data platforms. Data warehouses
are excellent for BI use cases, and data lakes with their open storage

are used for ML use cases. However, by using both, these incompatible
systems in their architecture created data silos, and hence businesses
could not utilize their full data for business decisions. The Databricks
Lakehouse Platform enables organizations to store all their data in one
place. Whether it is structured, semi-structured, or unstructured data,
itis stored in an open data lake. Then the raw data is moved into Delta
Lake format, which provides reliability and improves performance. Unity
Catalog provides a single governance layer, and the Databricks platform
offers features to do use cases from data engineering, data warehousing,
streaming, and data science. Finally, we discussed how Databricks built
intelligence into their platform by utilizing GenAl and LLMs to create the
Databricks data intelligence platform. In the next chapters, we will deep
dive into various parts of the Databricks platform.

13

CHAPTER 2

Databricks Platform
Overview

In this chapter, you will learn various aspects of the Databricks data
intelligence platform. This chapter will provide a brief overview of the
Databricks platform and set the stage for deep dives into various product
features in later chapters. Initially, you will learn about the most common
terms unique to the Databricks platform. After that you will learn about
Databricks compute (clusters) and Databricks notebooks. Again, this
chapter acts as a foundation for the rest of the chapters and features we
will cover in them.

Key Terminology

The Databricks platform delivers three services catering to the specific needs
of various personas: Data Engineering, Machine Learning, and SQL. Let’s
first look at the key Databricks terminology used throughout this book. Most
of these terms will also be explained in detail in subsequent chapters.

e Account: A Databricks account allows admins to
centrally manage and control access to their Databricks
resources such as workspaces, users, and metastore.
Billing and support are handled at the account level.

A Databricks account can have multiple workspaces.

© The Editor(s) (if applicable) and The Author(s), 15
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_2

https://doi.org/10.1007/979-8-8688-0444-1_2#DOI

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

o Workspace: Databricks workspaces provide a
collaborative environment for data teams to access all
Databricks assets. Workspaces are accessed via a web
app and help users organize their work on Databricks.
Users can create, manage, and share notebooks,
clusters, and libraries within workspaces.

o Databricks file system (DBFS): DBFS is a storage
location provisioned when creating a Databricks
workspace. It is important to note that DBFS should not
be used to store production data, libraries, or scripts.

e Cluster (compute): A Databricks cluster is a group
of virtual machines (VMs) that process your data
workloads. They allow you to execute code from
notebooks, libraries, or custom code. Clusters can be
created, scaled, and managed using the Databricks
Ul or application programming interface (API) or
command-line interface (CLI), and they provide
features like autoscaling and spot instances. Clusters
do not store data. Data is always stored in your cloud
storage account and other data sources.

« Notebooks: Notebooks are a collaborative IDE that
allows you to write and execute code in Scala, Python,
R, SQL, or Markdown and visualize results in real time.
They come with features such as version history,
co-editing, providing comments, and even scheduling
as a job. Notebooks need to be connected to a cluster to
execute commands. Users can share notebooks via the
Web or download them to a local machine.

16

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Databricks Git folders (formerly known as repos):

A folder is a feature of Databricks that allows users to
source-control their data and Al projects by integrating
with Git providers like GitHub, GitLab, Azure DevOps,
etc. A folder also enables users to work directly with Git
repo-backed folders from the Workspace UI.

Catalog: A catalog is a centralized metadata browser
that provides a single source of truth for all data assets
in an organization. It allows users to discover, manage,
and govern data across multiple workspaces, clusters,
and teams. We will discuss this more in Chapter 5.

Workflows: Databricks workflows enable you to
orchestrate and schedule your code and data pipelines.
Workflow jobs allow the code execution to occur either
on an already existing cluster or on a cluster of its own.
Jobs can be run from code in notebooks, JAR files, or
Python scripts. They can be created manually through
the UI or the REST API or the CLI.

Libraries: Libraries are packages or modules that
provide additional functionality to solve your business
problems. These may be custom-written Scala or Java
JARs, Python egg or wheel files, or custom-written
packages. You can write and upload libraries manually
through the UI, use the Libraries API, or install them
directly via package management utilities like PyPi,
Maven, or CRAN.

17

https://doi.org/10.1007/979-8-8688-0444-1_5

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

o Databricks runtime (DBR): Databricks Runtime is a
set of core components that run on clusters. Databricks
constantly updates the runtime with newer versions,
and each version includes updates that improve
the usability, performance, and security of big data
analytics.

e Databricks Unit (DBU): DBU is the unit of processing
capability and is billed per second. This is how
Databricks charges users for the compute they use.

o Delta Lake: Delta Lake is an open-source storage layer
that provides ACID transactions, scalable metadata
management, and unified data management across
data pipelines. It allows users to manage large datasets
and provides a reliable and secure way to store and
organize data.

After reviewing the key terminologies, we will dive into two topics:
clusters and Databricks notebooks. As Databricks users, these are the two
elements you will start working with when you first use the platform.

Databricks Compute or Clusters

Databricks is a fully managed PaaS offering that requires no infrastructure
administration, management, or maintenance. Users and processes run
code on clusters of VMs for data engineering, data science, and data
analytics workloads. This includes batch and real-time production ETL
pipelines, streaming analytics, ad hoc analytics, machine learning, deep
learning, and graph analytics.

Databricks clusters consist of one or more virtual machine instances
over which computation workloads are distributed. In the typical case,
a cluster has a driver node alongside one or more worker nodes. During

18

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

processing, the driver distributes workloads across available worker nodes.
The driver program takes care of the job execution within the cluster. A job
is split into multiple tasks distributed over the worker nodes. Clusters can
be fixed-size clusters or autoscaling; by default, they auto-terminate after
120 minutes of inactivity (this is configurable). Databricks can also provide
a single-node cluster option, typically limited to development or testing
with small workloads.

Databricks has three main cluster types, and depending on the
use case you are running, you can select one to improve efficiency and
manage costs.

Interactive or All-Purpose Clusters

All-purpose compute is best suited for interactive analytics using
notebooks, dashboards, or IDEs that require fast responses for an
interactive user experience. They are best for ad hoc analysis, data
exploration, or development. They can be either single user or shared by
multiple users and can be terminated and restarted (manually, API or
cluster setting).

Job Cluster

Job clusters should be utilized when running Databricks jobs. As a best
practice, all production jobs or ETL pipelines should be run on job
clusters, as they provide a fully isolated environment. Job clusters are pure
ephemeral compute, as they terminate themselves when the job ends, thus
reducing resource usage and costs. In later chapters, we will learn more
about job clusters while discussing Databricks workflows. Now we have the
option to run job clusters in serverless mode.

19

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

SQL Warehouse

SQL warehouses are meant to run SQL workloads and queries, primarily
in the DBSQL part of the platform. If you are writing SQL queries, creating
visualizations/dashboards, or connecting your favorite tool to Databricks,
SQL warehouses is the way to go.

After defining a cluster and the types of clusters present in the
Databricks environment, let’s examine how to set one up using the
Databricks UL

Databricks All-Purpose Cluster Setup

This section will discuss the various attributes that need to be selected and
how to configure them. Figure 2-1 shows the cluster creation interface.

20

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Demo Cluster »
Policy @
Unrestricted v
© Multinode () Single node
Access mode @ Single user or service principal access ©

Assigned ~ Nikhil Gupta LS

Performance

Databricks runtime version @

Runtime: 13.3 LTS (Scala 2.12, Spark 3.4.1) '

Use Photon Acceleration @

Worker type @ Min workers Max workers

Standard_DS3_v2 14 GB Memory, 4 Cores |« 2 8 Spot instances @
Driver type

Same as worker 14 GB Memory, 4 Cores | wr

Enable autoscaling @
Terminate after 120 minutes of inactivity @

Tags ©
Add tags

» Automatically added tags
» Advanced options

Figure 2-1. Creating an interactive cluster

Next, we will look at some of the important parameters on this page.

21

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Policy

Cluster policies enable admins to limit the attributes available for cluster
creation. Users can select a cluster policy from the policy drop-down on
the cluster configuration page. You can configure ACLs that limit cluster
policies to specific users and groups.

For example, in Figure 2-2, the cluster policy allows users to create
a cluster with the defined configurations as given in the JSON file. Only
the configurable fields are visible when the user uses this policy, and the
rest are hidden. This allows admins to control the clusters that the users
can create. Further, only admin users can create, edit, and delete cluster
policies. Admin users also have access to all policies.

22

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

{
"node_type_id": {
"type": "allowlist”,
"values": [
"Standard_DS3_v2",
"Standard_DS4_v2",
“Standard_DS5_v2",
"Standard_NC4as_T4_v3"
] r
"defaultValue": "Standard_DS3_v2"
+
"spark_version": {
"type": "unlimited",
"defaultValue": "auto:latest-ml"
b
"runtime_engine": {
"type": "fixed",
"value": "STANDARD",
"hidden": true
h
"num_workers": {
"type": "fixed",
"value": @,
"hidden": true
}l

“data_security_mode": {
"type": "allowlist",
"values": [
"SINGLE_USER",
"LEGACY_SINGLE_USER",
"LEGACY_SINGLE_USER_STANDARD"
]l
"defaultValue": "SINGLE_USER",
"hidden": true
Y,
"driver_instance_pool_id": {
"type": "forbidden",
"hidden": true
}l’
"cluster_type": {
"type": "fixed",
"value": "all-purpose"
}!

Figure 2-2. Sample cluster policy

23

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Cluster policies present three main benefits. First, it helps control
costs as these policies prevent individuals from spinning up unnecessarily
large and enforce specific configurations such as auto-termination.
Second, cluster policies help improve governance as admins can enforce
cluster tags to track usage by team or project or control cluster access
to users/groups. Finally, as more and more users are onboarded on the
Databricks workspace, disruption is minimized by standardizing the
cluster creation process.

Before we move further, let’s look into a particular Databricks-
managed cluster policy that is available: Personal Compute. This policy
allows users to create single-machine easy compute resources for an
individual user to start running workloads immediately, minimizing
compute management overhead for admins. Some of the properties of
Personal Compute are that the clusters created are single-node, single-
user (Unity Catalog enabled), and all-purpose clusters with the latest
Databricks runtime.

The next configuration we want to look into is Access Mode.

Access Mode

Cluster access modes are divided into three distinct types (see Figure 2-3).
o Standard single-user clusters

o Shared clusters (for multiple users) with User Isolation
data access mode

¢ Noisolation shared clusters

24

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW
Policy @
Power User Compute v

Access mode (D

J

|shared v

Single user

All languages

Shared
Scala Preview , Python, SQL

No isolation shared
All languages

Worker type (U Min w

Figure 2-3. Cluster access mode

Standard single-user clusters: Standard single-
user clusters are Unity Catalog (UC)-enabled
clusters for a single user designated while creating
or editing the cluster. Other users cannot attach

to the cluster, regardless of the cluster permission
settings. Standard clusters can run workloads
developed in any language such as Java, Python,
R, Scala, or SQL, and they can be fixed size or
autoscaling.

Shared (for multiple users) clusters: Shared
clusters are UC-enabled clusters ideal for multiple
users accessing a single cluster to run interactive or
automated jobs. These clusters only support SQL,
Python, and R. The key benefits of shared clusters
are that they provide Apache Spark-native fine-
grained sharing for maximum resource utilization
and minimum query latencies so that all users on

25

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

the cluster can run jobs by sharing total compute
resources (CPU and RAM) among all the users on
the cluster. Shared clusters can help reduce costs
for a shared user work environment, as well as
experimentation, testing, and execution of some
production workloads.

The “No isolation shared” option for legacy support and does not
support Unity Catalog. This access mode is generally recommended for
new clusters only if there is a specific need.

Table 2-1 summarizes the access modes along with Unity Catalog
support. Databricks recommends using Unity Catalog for fine-grained
access controls.

Table 2-1. Databricks Access Modes

Access Visible to User uc Supported Languages

Mode Support

Single user Always Yes Python, SQL, Scala, R

Shared Always (Premium planor Yes Python (on Databricks
above required). Runtime 11.3 LTS and

above), SQAL, Scala (on Unity
Catalog—enabled compute
using Databricks Runtime
13.3 LTS and above)

No Isolation Admins can hide this No Python, SQL, Scala, R
Shared access mode by enforcing

user isolation in the admin

settings page.

Custom Hidden No Python, SQL, Scala, R
(for all new compute).

26

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Databricks Runtime Version

The Databricks runtime is a collection of core software components
running on the clusters of machines managed by Databricks. You can
select this setting in an all-purpose compute, but in SQL warehouses, it

is auto-selected. The Databricks runtime version includes Spark but also
adds several components and updates that substantially improve big data
analytics’ usability, performance, and security. As a best practice, select
the most recent runtime version. Long-Term Support (LTS) versions are
released every six months and supported for two years (see Figure 2-4).

Performance

Databricks runtime version

l Runtime: 14.3 LTS (Scala 2.12, Spark 3.5.0) ~ l

| Standard > 15.3 Scala 2.12, Spark 3.5.0

' ML » 15.2 Scala 2.12, Spark 3.5.0
15.1 Scala 2.32 3.5.0

1 14.3LTS Scala 2.12, Spark 3.5.0
14.2 Scala 2.12, Spark 3.5.0

| 141 Scala 2.12, Spark 3.5.0

| 13.3LTS Scala 2.12, Spark 3.4.1
12.2LTS Scala 2.12, Spark 3.3.2
N3LTs Scala 2.12, Spark 3.3.0
10.4 LTS Scala 212, Spark 3.2
2.1LTS Scala 2.12, Spark 3.1.2

Figure 2-4. Databricks runtime

Apart from the Standard runtime version, there is also an augmented
machine learning (ML) runtime version. This runtime version caters to
ML workloads and is optimized for them. Further, many ML libraries come
pre-installed and optimized with this runtime.

27

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Finally, there is a checkbox for Photon, Databricks” vectorized
execution engine for optimizing performance and costs. We will discuss
Photon more in Chapter 8.

Autoscaling and Autotermination

Alot of times, the compute capacity is unknown, say, for example, during
the development phase when the data engineer is writing and developing

a pipeline. If the “Enable autoscaling” is checked, you can define the
minimum and maximum number of workers to be added to the cluster.
Thus, Databricks will allocate the necessary number of workers according
to its needs during job execution. For example, you can create a cluster with
a minimum of two workers and a maximum of eight workers. The cluster at
start time will have two workers. As the user starts to process data and if need
be (say for a big join between two tables) more workers will be added until a
maximum of eight workers is reached. When there is no more need for eight
workers, the cluster will scale down to two workers. This also is a huge cost-
saving mechanism as you do not always need big clusters running.

You may also enable autotermination (Terminate After) for a cluster.
During cluster formation, you can choose an inactivity time in minutes
after which the cluster should terminate. If the difference between the
current time and the last command issued/executed on the cluster
exceeds the chosen inactivity interval, Databricks terminates the cluster
automatically.

Tags

Cluster tags allow you to monitor costs and attribute Databricks usage/
costs to your organization’s entities, such as business units and teams.
So, it is important to set tags on your clusters. These tags propagate
down to VMs, which helps you charge back costs to your departments or
business units.

28

https://doi.org/10.1007/979-8-8688-0444-1_8

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

A few default tags are created, such as Vendor (Databricks), ClusterID,
ClusterName, and Creator. You can also create up to 20 custom tags.

Spot Instances

Spot instances are unused computes in the respective cloud environment.
They are massively discounted compute compared to traditional virtual
machines. You can use spot VMs to run your clusters, thus saving on costs.
One key point is that cloud providers can terminate or recall the
spot instances when there is demand from Azure. However, Databricks
automatically terminates spot VMs by starting the pay-as-you-go VMs to
guarantee job completion. Databricks clusters are resilient to interruptions
and well-suited for enterprise data and Al use cases.

Cluster Pools

Pools are pre-reserved VM instances, so when users request new clusters,
Databricks can pull from an existing pool instead of acquiring from the
cloud provider. You can set up spot instances for the pool and allocate
them as clusters start. When creating a pool, select the desired instance
size and Databricks Runtime version; then choose All Spot from the On-
demand/Spot option; see Figure 2-5.

29

CHAPTER 2

Create Pool

Min Idle

0

Max Capacity

Idle Instance Auto Termination

Terminate instances above minimum after 60
Instance Type

Standard_Ddds_v5

Preloaded Databricks Runtime Version

Use Photon preloaded runtimes

Instances

On-demand/Spot
All On-demand @ All Spat

DATABRICKS PLATFORM OVERVIEW

minutes of idle time.

Figure 2-5. Databricks compute pools

Cluster Sizing Considerations

and Best Practices

Here are some cluster best practices:

30

e Use autoscaling clusters when the compute capacity

required is unknown.

e Setautomatic termination when applicable.

e Use the latest Databricks Runtime version for recent

features and performance optimizations.

e Use cluster tags for project- or team-based chargeback.

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

o Use the cluster event log and Spark UI to analyze
cluster activities and submitted job performance.

e Configure cluster log delivery to deliver Spark driver
and worker logs to cloud storage.

e Use cluster access control to configure permissions for
users and groups.

o User cluster policies limit cluster types that users
can launch.

After learning about clusters, we will learn about another important
feature: Databricks notebooks.

Databricks Notebooks

If you are familiar with Jupiter notebooks, Databricks notebooks share the
same concept. However, Databricks notebooks don’t use the same back
end as Jupyter notebooks, so if you clone the notebook from source control
to your local environment, you must first convert it to . ipynb format.

A Databricks notebook is a code-first development tool that enables
conversational data interaction by developing code and visually presenting
results. With it, you can iteratively explore and visualize your data,
create ETL pipelines, write reports or prototypes, and train ML models.
Databricks notebooks provide capabilities like real-time co-authoring,
support for multiple languages, automatic versioning, and built-in data
visualizations. Figure 2-6 provides a view of a sample Databricks notebook.

31

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

single_turn_rag_chain Jumain Pythen &
gle_turn_rag_ B »hnal | wooweary | Escrecs [N
Fle Edit View Run Melp () #ravide foedoack

Figure 2-6. Databricks notebook

Now let’s see some of the capabilities of Databricks notebooks:

e Multiple language support: Databricks notebooks
allow you to develop code in multiple languages, such
as Python, SQL, Scala, and R. This gives developers the
flexibility to develop in the language of their choice or
even use multiple languages within the same notebook
using the magic command (e.g., % SQL or% Python).
Notebooks also provide Markdown capabilities so you
can maintain documentation along with the code itself.

o Collaborative: Notebooks allow developers to co-
author or work on the same notebook in real time
similar to working in your Google Docs environment.
Further, users can collaborate by writing and leaving
comments for their team members, which can then be
worked upon later.

32

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Reproducible: Notebooks automatically track changes
you made and store the version in version history,
allowing you to look back at a previous version easily
and compare what changed in the current notebook.
Further, you can also integrate notebooks into your Git
repositories for your CI/CD.

Visualizations: Databricks notebooks have built-in
visualizations, including bar, line, pie, scatter, map,
and more. Users can create one or more visualizations
for each command’s result. Notebooks also allow you
to bring external libraries like ggplot (R), matplotlib
(Python), and Plotly for more advanced figures.
Visualizations are automatically refreshed and updated

whenever commands are rerun.

Scheduled: In addition to interactive features, you can
quickly create automated jobs from the same notebook
and schedule them at specific intervals as per the use
case. Thus, you can make your notebook run a job.

In Chapter 6, we will see how you can orchestrate a
pipeline using multiple notebooks.

Debugging

Debugging your Python code has never been easier with a Databricks

notebook. You can set breakpoints and step into your Python code with

a debugger. Use the Debug cell button to start debugging, as shown in

Figure 2-7 and Figure 2-8.

33

https://doi.org/10.1007/979-8-8688-0444-1_6

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Run cell Ctri[3 + Enter
Debug cell @ Ctrl + Shift+ D
Run selected text Ctrl+5hift +Enter
Run all above Option + Shift+Up

Run all below Option + Shift + Down

Figure 2-7. Notebook cell debugging

Il Stop | 0048 Debug » =™ + 4% Python

Chain configuration
We sugoest using these default settings
® rag_chain_config = {
"databricks_resources": {
Only required if using Databricks wvector search
"vector_search_endpoint_name": VECTOR_SEARCH_ENDPOINT,
Databricks Model Serving endpoint name
This is the generator LLM where your LLM gqueries are sent.
"1lm_endpoint_name": “databricks—dbrx-instruct",
h
“retriever_config”: {

Vector Sea

index that is created by the data pipeline
“vector_search_index": destination_tables_config["vectorsearch_index_name"],
“schema”: {

Figure 2-8. Python debugger

Variable Explorer also allows you to see all the variables in your

notebook, greatly helping with the debugging experience. It supports
Python, Scala, and R in this view, making the notebook a real-time cross-
language compiler. Figure 2-9 shows a view of the explorer. The Variable
Explorer provides a convenient one-click action to inspect all variables,
including DataFrames. You can click any DataFrame to explore it in a new

notebook cell, allowing you to visualize or profile it easily.

34

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Variables 20 G Send feedback X

Debugger Preview: ON v

Language: Python ~ (*

Q rag {x

> RAG_APP_NAME str
'diabetes_app'

v rag_chain_config dict
{'databricks_resources': {'vector_s
earch_endpoint_name': 'diabetes-
poc!, 'llm_endpoint_name': 'databri
cks-dbrx-instruct'}, 'retriever_confi

a' {'vector search index': 'unitva

Figure 2-9. Variable Explorer

Serverless in Notebook

To enable rapid development experience from end to end, Databricks now

enables users to use serverless SQL warehouse in notebooks. This allows

SQL developers to continue to collaborate with other team members in the

same environment. See Figure 2-10.

35

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Attach to an existing compute resource

General © sa

Summary

Slze Small

m Serverless Starter Warehouse

Type Serverless

Motebooks can cnly be attached to Pro or Serverless SOL Warehouses Cancal Start and attach

Figure 2-10. Attaching a SQL warehouse to a notebook

Databricks Widgets

Databricks widgets are input elements that allow you to parameterize your
notebooks. Consider a scenario where you want to use the same notebook
code but with multiple different inputs. One way could be to create
multiple static notebooks by hard-coding values. Still, a more elegant and
preferred way would be to add input elements to your notebook, making
the same notebook more reusable. In short, Databricks widgets allow you
to parameterize your notebooks by creating input widgets that can be
adjusted to pass different values into the same notebook code.

There are four types of widgets for use with Databricks notebooks (see
Figure 2-11).

o Text Input: Allows users to enter a text value in an
input box:

dbutils.widgets.text(“widget_name’, “Value’, “Label”)

36

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

e Dropdown: This provides a drop-down menu to
select from a list of options. It is useful for predefined
categories and options.

dbutils.widgets.dropdown(“widget_name’, “Value’,

” u

[“optionl’, “option2’, “option3”], “Label”)

o Combo box: This is a combination of a text box with
a drop-down. Users can either type a custom value or
select an option.

e Multiselect: This allows users to select multiple values
via checkboxes.

dbutils.widgets.checkbox(“widget_name’, True,

«u ”
Label”)

myDr [: yWidg:
~ optioni

option2 —

option3d
a # Create a text widget with a default value of “"Hello, world!™
on

dbutils.widgets.text("myWidget", "Hello, world!")

&

Retrieve the value of the text widget
myWidgetValue = dbutils.widgets.get("myWidget")
print (myWidgetValue)

Create & dropdown widget with a list of options

dbutils.widgets.dropdown({"myDropdownWidget”, “eptioni”, [“eptionl", “eption2™, "eption3“]}

Retrieve the value of the dropdown widget
myDropdownValue = dbutils.widgets.get("myDropdownWidget™)
print [myDropdownValue)

Hello, world!

Figure 2-11. Sample widgets in Databricks

Once the widget is created, its value can be accessed using dbutils
widgets.get() orvia :filter valueor ${filter value} in SQL for DBR
15.1 or below. The value can then be used as input parameters in your
code to customize data processing, visualization, or analysis.

37

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Library Management

Libraries could be either third-party or prewritten custom code that must
be available to Databricks notebooks or clusters to execute your code/jobs
successfully. Libraries can be written in multiple languages and reused

as needed by developers. Further, they could be stored locally in DBFS or
cloud storage or called from external repositories such as PyPI, Maven,

or CRAN.

Databricks Runtime includes many commonly used libraries installed
on the cluster. The release notes give a list of libraries for your runtime
version. However, you may need to install more custom or specific libraries
at the time of code execution. Databricks provides two main options for
library installation: cluster-scoped and notebook-scoped libraries.

Cluster-scoped libraries provide the ability to install libraries on
specific clusters so that they can be used by all notebooks/jobs running on
that cluster (Figure 2-12).

Install |ibrary G Send feedback for library %

Library Source (O
Workspace Volumes File Path/ADLS PyPl @ Maven CRAN DBFS

Coordinates

Maven Coordinates (com.databricks:spark-csv_2.10:1.0.0 Search Packages
Repository @

Optional
Exclusions

Dependencies to exclude (logdj:logdj,junit:junit)

Figure 2-12. Library installation page

38

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

There are several sources, including workspace files, cloud object
storage, UC volumes, paths on local machines, or external repositories like
PyPI, Maven, or CRAN.

Only Python and R allow you to install notebook-scoped libraries and
create an environment scoped to a notebook session. Notebook-scoped
libraries are used only when needed for your notebook and can be installed
using the %pip magic command. These libraries do not persist and must be
re-installed after each session.

External Databricks Connectivity

In this section, we will discuss how you can connect to Databricks
beyond the browser, like Databricks CLI and API. While these are for
administrative purposes in the beginning, the ecosystem has evolved a lot
so we do day-to-day development in our favorite IDE offline.

Databricks GCLI

The Databricks command-line interface (aka Databricks CLI) provides

an easy-to-use tool for automating the Databricks platform from your
terminal command prompt. From the CLI, you can start/stop a cluster, run
Databricks jobs, and more.

To connect Databricks CLI to the Databricks workspace, you need to
generate a Databricks personal access (PAT) token. To do so, browse to
User Settings » Developer » Access Tokens (see Figure 2-13). The token
will be visible to you only once and by default is valid for 90 days; you will
need to regenerate it afterward.

39

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

Generate new token

¢ Comment
Tast

Lifatime (days} @
80

Figure 2-13. PAT token generation

Once you have the PAT token, you can quickly connect to the
workspace by using the following and providing the PAT token when
prompted:

databricks configure --host <workspace-url> --profile
<configuration-profile-name>.

Finally, you can run the following to create clusters:

databricks clusters create --cluster-name my-cluster --node-
type-id Standard D2 v2 --num-workers 4

Databricks REST API

The Databricks REST API allows users to interact programmatically with
their Databricks workspace. More or less anything that can be done via the
UI can be done via the REST APIs. Users can interact with the Databricks
REST APIs via curl requests, Python requests, Postman applications, or
the databricks-api Python package. Here again, you would require a PAT
token to authenticate to the Databricks workspace.

40

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

The Databricks documentation includes a REST API reference Guide
that details both the workspace and account-level APIs for all three cloud
platforms (https://docs.databricks.com/api/azure/workspace/
introduction).

Databricks Terraform

The Databricks Terraform provider allows you to interact with almost all of
Databricks’ resources. Behind the scenes, it is powered by the Databricks
SDK. Both Databricks SDK and Terraform providers are official Databricks
open-source projects and are actively supported by Databricks.
Administrators often use the Databricks Terraform provider for
automated deployment and disaster recovery. Figure 2-14 illustrates the
vast scope that it supports for Databricks management. The ultimate
meaning of DevOps is leveraging infrastructure as code (IaC) to
manage operations and not depend on the user interface or a series of
predocumented commands.
The Databricks Terraform provider can be found at the Terraform
website:

https://registry.terraform.io/providers/databricks/
databricks/latest

You can find the full source code of Databricks Terraform at Databricks
GitHub, which is one of the top trending repos:

https://github.com/databricks/terratorm-provider-databricks

41

https://docs.databricks.com/api/azure/workspace/introduction
https://docs.databricks.com/api/azure/workspace/introduction
https://registry.terraform.io/providers/databricks/databricks/latest
https://registry.terraform.io/providers/databricks/databricks/latest

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

I_E:l‘ag'lwﬂ r % ddtﬂbl’icks

O GoogeCloud et LT e [|

M‘: B sasicka user | m B ks 10wy |
Arzre | T | T :
N =Tl
APUTSTTN, BOLAIRE WOPKSPIOE o - - oo ek - v e v - 4]
: e
e B T
: (s e oo
==

:
[
S - [t o
L

Figure 2-14. Databricks Terraform provider

Conclusion

In this chapter, we discussed the basic terminology associated with the
Databricks data intelligence platform. This formed the foundation for the
concepts and features we will learn throughout the book. Databricks has
evolved as not only a management tool on top of Spark but also provides
lots of features and toolings to manage your data and Al assets, be it tables,
jobs, policies, and development environments. Everything comes out of
the box. The open-source repo also contains countless useful tools that
Databricks is maintaining on behalf of the community.

42

CHAPTER 2 DATABRICKS PLATFORM OVERVIEW

In addition to key terms, we looked at two commonly used services:
clusters and notebooks. Clusters form the compute on the Databricks and
are now available as serverless. A notebook is the IDE where you write your
code and execute it on your data using clusters. We concluded the chapter
by looking at external connectivity to Databricks via Databricks CLI, the
REST API, and Terraform.

43

CHAPTER 3

Data Ingestion
in Lakehouse

Organizations have a wealth of information siloed in various data sources.
It could be relational databases, on-prem data warehouses, big data
storage like Hadoop systems, ERP/CRM systems, or real-time streaming
sources. A significant number of analytics use cases need to not only
process this data efficiently but also do it in a unified manner to produce
meaningful reports and predictions. So to start this journey, organizations
need to ingest data from different sources to a single location. In this
chapter, we will look into how you can ingest data from various sources
incrementally and efficiently into your Delta Lake.

Introduction

In a Databricks lakehouse, organizations can ingest data from a variety
of sources to create a “single source of truth” for their data, enabling
comprehensive analytics and data science capabilities across all their data.
To break down the ingestion process, especially for batch data, it is mostly
a two-step process, as shown in Figure 3-1.

The first step is to upload raw data from a variety of sources be it on-
prem or other systems into your cloud storage (S3, ADLS, or Google Cloud
Storage). This is normally referred to as cloud ingestion. Once it lands in

© The Editor(s) (if applicable) and The Author(s), 45
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_3

https://doi.org/10.1007/979-8-8688-0444-1_3#DOI

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

your cloud storage, the second step is to move it into your Delta Lake layer.
This is referred to as delta ingestion. Now for Delta ingestion there are

two popular and efficient techniques: the Auto Loader and the COPY INTO
command. Later in the chapter we will discuss both in detail.

{ \
Straaming
&2 Data

(" Data Scionce and)
Machine Leﬂmlng

- : | = - =) | Me;;.ic AI

[Entorprise |
» | Reporting and BI

Figure 3-1. Databricks reference architecture: ingestion

We will discuss Delta Lake in length in Chapter 4, but we’ll touch on
it here. Databricks’ integration with Delta Lake ensures reliability and
performance at scale, providing ACID transactions and a unified process
for batch and streaming data. This unification of data not only simplifies
data management but also empowers organizations to derive more valuable
insights, make data-driven decisions, and, ultimately, drive business growth.

Now, let’s move in and learn the various methods used for both cloud
and Delta ingestion.

Cloud Ingestion

As a first step, we need to get data into the cloud and, more specifically,
into your cloud data storage. Usually, we call this layer the landing zone
where the data lands from various sources and can be stored in any format,

be it CSV, Parquet, JSON, etc. This layer is a source for Delta ingestion into
the Delta bronze layer.

46

https://doi.org/10.1007/979-8-8688-0444-1_4

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

There are a number of alternatives that can be used to bring data to the
cloud. The first method is via the built-in Databricks connectors that ingest
data from sources such as Workday, MySQL, Salesforce, etc. Moreover, the
Databricks Ul provides an intuitive way to move the data directly to Delta
Lake. Next are native cloud tools like Azure Data Factory for Azure Cloud.
Finally, ingestion can happen via third-party tools such as Fivetran via
Partner Connect.

Next, we will look into these three options in much more detail:

¢ Databricks Native Connectors, Add Data and File
Upload: The Databricks’ File Upload Ul and Add
Data UI (see Figure 3-2) allow you to easily move data
for ingestion into Delta tables with Unity Catalog. It
enables you to ingest data from a wide range of data
sources in a secure manner via notebook templates or

drag-and-drop functionality.

Add Data UI: The Add Data Ul acts as a central location
for all your ingestion needs from various data sources
into the Databricks lakehouse.

8]
& A % & B - ¥
- x ©

Figure 3-2. The Add Ul Interface

47

CHAPTER 3

48

DATA INGESTION IN LAKEHOUSE

Now developers can click any data source they want
to ingest data from and then follow the UI flow or
generated Databricks notebook with instructions

to finish data ingestion step-by-step directly into
Delta Lake.

Databricks supports several integrations, such Azure
Data Lake Storage or Amazon S3 as the destination.
Further, there are built-in connectors to support data
transfers from data sources such as Snowflake, Kafka,
MySQL, etc. Once you click the source, a notebook gets
generated wherein you can give the source and target
parameters (Figure 3-3).

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

Load data from MySQL to Delta Lake

his notebook shows you how 1o import data from JOBC MySOL databases into a Deha Lake table using Python.

Step 1: Connection information
First defing soms varabies 1o programmaticaly crasts thess conrsctions.

Feplace all the variabies in angle brackets < beiow with the correspording information.

A :

driver = *arg, saris®. jdb.Driver

datataie_tast = “slatabase-heant-ur Ls”

detabare_gart = "1508" & spdete 1f you use & men-default port
rone = = e

teble =« “cradle-names™

ULEF & “wOsaImanes

passnurd = “epanssurds®

url = jsbcieysqli//{tatsbase_host): {satebase_port)/{satabese_narel”

bt arly

Step 2: Reading the data

Now that you've specified the file metadata, you can creste o DatafFrame. Use an apton to inder the data schema frc
Fast, cruate 2 DataFramo in Pythen, a the bk o

- L]

remute_tatle = [sperk, reed
. format (" jamc™)
-optien{®driver, sriver!
«optlen{®erl®, wrld
cnphian (dblasle”, Lele)
«aptiani“uner”, useri
«optian{“passard™, password|
« Lol)

Step 3: Create a Delta table
The DataFrame defined and displayed above s a temporaty connection to the remote databa

To ensure that this data can be accessed by relevant users througout your workspace, save it

target_table_name = “<target-schesas.<targe!-table-oames"
resote_table.write.node("overwrite”). saveAsTable({target_table name)

Figure 3-3. Sample notebook, MySQL to Delta table

49

CHAPTER 3

A data
Create or modify table from file upload

DATA INGESTION IN LAKEHOUSE

Once these notebooks are run using Databricks
clusters, the data is transferred from the source directly
to the Delta tables.

Further, you can leverage more than 150 other
connectors in the Ul that are supported by Fivetran.

File upload UI: The file upload UI allows you to drag
and drop local files seamlessly and enables the secure
uploading of these files to create a Delta table. The UI
is accessible across all personas through the navigation
bar (Figure 3-4) or from the Catalog Ul by clicking the +
Add icon. The file upload UI offers the option to create
a new table or overwrite an existing table.

T

Far larger fiss, for other file Tarmats, o for uoloading fHed to & non-tabular dataset without creating a table, upiont 1o & Valums 1 Uity Catale

Figure 3-4. Data ingestion, file upload UI

50

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

You can use the File Upload Ul to ingest via the
following features:

e Select or drag and drop one or multiple files
(CSV or JSON, etc.)

o Preview and configure the resulting table and
then create the Delta table

e Autoselect default settings such as
column types

e Modify various format options and
table options

Therefore, both the Add Ul and File Upload Ul
provide user-friendly interfaces to ingest data, which
could be local or in other data storage platforms,
into the Databricks lakehouse platform. Next we
move into the cloud data ingestion via cloud-

native tools.

Ingestion via cloud-native tools: Another popular
way to ingest data into the cloud is via cloud-native
technologies. For example, for batch ingestion, we can
use ADF (Azure), Glue (AWS), or Data Fusion (GCP).
For stream ingestion, EventHub (Azure), Kinesis (AWS),
Google Pub/Sub, or Kafka are popular choices.

Let’s look into an example of using Azure Data Factory
(ADF) in Azure Cloud. ADF has more than 90 built-in
data source connectors that can ingest data from
various sources in the Azure cloud. Further, ADF
seamlessly orchestrates Azure Databricks notebooks to
connect and ingest all of your data sources into a single

51

CHAPTER 3

DATA INGESTION IN LAKEHOUSE

data lake. It also has a Delta format connector that
can read and write Delta format into the lakehouse,
providing seamless integration with Databricks.

Ingestion via third-party tools: The next ingestion
method is to leverage the extensive Databricks partner
ecosystem and especially ingestion partners such as
Fivetran, Hevo, Rivery, etc. To make this a seamless
process, Databricks has closely worked with them and
not only validated their technology but also aligned
with them to build integrations that enable you to load
data into cloud storage. These integrations enable low-
code, scalable data ingestion from various sources into
a Databricks lakehouse. These partners are featured

in Databricks Partner Connect (Figure 3-5), which
provides a Ul interface that simplifies connecting third-
party tools to your lakehouse for data ingestion.

Partner Connect

Data ingestio

Data Ingestion

n

& Supports all usars

‘&‘ Fivetran -~ Hevo

R Rivery W rudderstack) snowpLow

Figure 3-5. Databricks Partner Connect

52

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

Partner Connect lets you create trial accounts with
select Databricks technology partners and lets you
connect your Databricks workspace to partner
solutions from the Databricks UI. With just a few
clicks, Partner Connect will automatically configure
resources such as clusters, tokens, and connection files
for customers to connect with data ingestion, prep and
transformation, and BI and ML tools.

Fivetran is a popular third-party data ingestion
Databricks partner that offers simple no-code
connectors that can ingest more than 150 data
sources (e.g., MySQL, DynamoDB, SFTP) into
destination data stores such as Databricks Delta
Lake. Fivetran’s ingestion solution helps customers
avoid setting up manual or open-source connectors
that might be less performant when managing the
ingestion process. The connector for Fivetran works
as follows:

e Setup a Databricks connection with an interactive
cluster (jobs clusters are not available for Fivetran
ingestion).

e Specify the data source in the connection as well as
the schedule (takes just five minutes).

¢ Once complete, Fivetran will run a Databricks
job and use the COPY INTO or MERGE command to
append or update Delta Lake tables, which will
contain the data from the source as scheduled.

Therefore, Databricks with its vast Partner ecosystem allows you to use
the third-party technology to move data from a variety of sources into the
lakehouse.

53

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

Delta Ingestion

The data has now landed in your cloud storage, or the landing zone. Here,
the data could be in any format, such as CSV, JSON, Parquet, etc. The next
step is to move that data into Delta Lake (the bronze layer) to complete
your second-step data ingestion process (Figure 3-6).

Now this might sound simple, but there are a couple of ways where
things could go wrong. For example, you could accidentally miss some files
to process, which leads to missing data or could ingest previous ingested
files, leading to duplicates and reverting or deleting those files would be
even more complicated. Further, if there is a schema change in the source
system, it could lead to failed jobs or even lost or corrupted fields in your
data files.

databricks

— (@) “@5

= —
it OA 864 940
» » o
Eb"’* a0 oAD saL nna \atcr.
aws
e in gﬂsﬂor‘ Tablﬂs Refined Tables Feature/Agg Tables "//T?C\
B Microsoh Arure 3l (Bronze) (Sitver) (Gaid) > '."\%}«/PI\
9 oY
Go
Machine L g

Figure 3-6. Delta ingestion via the Auto Loader and COPY INTO

To overcome these challenges, two common methods developed by
Databricks are recommended: the Auto Loader and COPY INTO. Now, let’s
look into both in detail.

54

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

Auto Loader

The Auto Loader provides a highly efficient way to incrementally and
efficiently process large amounts of data as it arrives in cloud storage.
It also guarantees that each data file is processed exactly once. This is
important because processing only new files incrementally solves the
missing or duplicate data problem, which in turn helps save processing
times and lowers cost for data ingestion.

The Auto Loader is designed for structured, semi-structured, and
unstructured data. The Auto Loader can ingest JSON, CSV, XML, Parquet,
Avro, ORC, text, and BINARYFILE file formats into Delta Lake.

Under the hood, the Auto Loader provides a structured streaming
source called cloudFiles. Given an input directory path on the cloud
file storage, the cloudFiles source automatically processes new files as
they arrive, with the option of also processing all existing unprocessed
files in that directory. The Auto Loader can be set up easily using the
following syntax:

Df = Spark.
readStreanm.
format("cloudFiles") \
.option("cloudFiles.format", "json") \
.load("<path-to-source-data>") \
.writeStream \
.option("maxFilesPerTrigger", "2000") \
.trigger("availableNow", "True") \
.option("mergeSchema”, "true") \
.option("cloudFiles.inferColumnTypes", "true") \
.option("checkpointLocation", "<path-to-checkpoint>") \
.start("<path_to_target")

55

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

Let’s look into the previous code and discuss a few important
parameters. In the first part we are creating a readStream to read in input
JSON files that have landed in the raw folder. In the second part, we do a
writeStreamand ingest the data into Delta Lake. The following are some
noteworthy options in the previous syntax:

o Checkpoint: In the case of failures, Checkpoint
helps the Auto Loader to resume the processing from
where it left off by using the information stored in the
checkpoint location and continuing to provide exactly-
once guarantees when writing data into Delta Lake. You
don’t need to maintain or manage any state yourself to
achieve fault tolerance or exactly-once semantics.

o Trigger.AvailableNow: The Auto Loader can be
scheduled to run in Databricks Jobs as a batch job
by using Trigger.AvailableNow. The AvailableNow
trigger will instruct the Auto Loader to process all
the files that arrived before the query start time. New
files that are uploaded after the stream has started
are ignored until the next trigger. Let’s assume that
the incoming data is spiky and instead of processing
continuously, you want to process the data nightly in
as a batch job. Trigger.AvailableNow allows you to do
that without changing your code/architecture.

o mergeSchema: The mergeSchema option tells the
Auto Loader to detect dynamically the evolution of
the schema, for example, new fields added to the
data. This prevents users from tracking and handling
these changes

56

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

o manually.inferColumnTypes: The schema inference
has always been expensive and slow at scale, especially
with dynamic JSON. The Auto Loader efficiently
samples data to infer the schema and stores it under
cloudFiles.schemalocation in your bucket.

¢ Rescue_Data: The source system often sends data that
might be malformed and not fit in the table structure.
The Auto Loader automatically adds the _rescued_
data column, which stores the new columns that can
be processed later.

Let’s look under the hood as to how the Auto Loader discovers files.
When you begin to scan hundreds of files and millions of rows, it becomes
an expensive operation leading to ingestion challenges and higher
storage costs.

Scanning folders with many files to detect new data is expensive,
leading to ingestion challenges and higher cloud storage costs. To solve
this issue and support an efficient listing, Databricks Auto Loader offers
two modes: Direct Listing and File Notification (Figure 3-7).

o Directory Listing: This is the default mode in which
the Auto Loader identifies new files by periodically
listing the contents of the input directory on the
cloud storage. This mode allows you to quickly start
without any additional permission configurations as
long as you have access to the data on cloud storage.
To ensure eventual completeness of data, the Auto
Loader automatically triggers a full directory listing
after completing a configured number of consecutive
incremental listings. Directory Listing mode is suitable
for small to medium-sized directories or when the

volume of incoming files is moderate.

57

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

« File Notification: In this mode, the Auto Loader sets
up a managed cloud notification and queue service
that subscribes to file events from the input directory.
This requires additional cloud permissions to set up.
File notification is more performant and scalable for
very large input directories or a high volume of files, say
millions/hr.

DELTA LAKE

Figure 3-7. Auto Loader modes: direct listing and file notification

To conclude, the Auto Loader is a scalable solution that handles
the incremental ingestion of billions of files and guarantees only once
processing. Further, it comes with features like schema inference and
schema evolution and rescues data that would have been otherwise
ignored or lost. Next, let’s look into the second option, COPY INTO
command.

COPY INTO

COPY INTOis a SQL command that lets you load data from cloud storage
into a Delta table. It supports many common file formats, including JSON,
CSV, Parquet, Avro, and text files. COPY INTO is idempotent by default, so
files are processed only once. This saves time and cost as your ETL pipeline
processes every file only once instead of a full load each time. Now, the
COPY INTO command is perfect for scheduled or ad-hoc ingestion use

58

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

cases in which the data source location has a small number of files, which
we would consider in the thousands of files. It is recommended that for
a larger number of files the Auto Loader is suitable. COPY INTO supports
target schema evolution, merging, mapping, and inference.

Let’s look into a quick example.

COPY INTOrequires a table to exist as it ingests the data into a target
Delta table. If the ingestion is for the first time, you create an empty
Delta table.

DROP TABLE IF EXISTS test table;
CREATE TABLE test table;

Once the table is created, you can ingest the data from a cloud storage
location to the Delta table.

COPY INTO test table
FROM 's3://my-bucket/exampleData’
FILEFORMAT = CSV

VALIDATE
FORMAT OPTIONS ('header' = 'true', 'inferSchema' = 'true',
"‘mergeSchema’ = 'true')

COPY_OPTIONS ('mergeSchema' = 'true')

Let’s look into a few specifics from the previous code.

VALIDATE: The COPY INTO validate mode (runtime 10.3 and above)
lets you preview and validate your source data before you write or ingest
the files. Some of the validations are to see if the schema matches that of
the target table or it needs to change, if all nulls and constraints are met,
and if the data is parseable. The result of validate mode is a sample table
that you can view.

If you find inconsistencies, such as nonmatching column names,
format issues, etc., you can go back and fix them in the code.

59

CHAPTER 3 DATA INGESTION IN LAKEHOUSE

Now once you are satisfied with the preview table, you can remove the
VALIDATE keyword and rerun the COPY INTO command.

COPY INTO test table

FROM 's3://my-bucket/exampleData’

FILEFORMAT = CSV

FORMAT OPTIONS ('header' = 'true', 'inferSchema' = 'true',
"‘mergeSchema’ = 'true')

COPY_OPTIONS ('mergeSchema' = 'true')

To conclude, the COPY INTO SQL command lets you load data from
afile location into a Delta table. This is a retriable and idempotent
operation; files in the source location that have already been loaded are
skipped.

Conclusion

In this chapter, we covered how to ingest data in a Databricks lakehouse.
Data ingestion is usually a two-step process for batch data. The first is to
bring the data in any format to the cloud storage. The source system could
be varied from on-prem data warehouses/data lakes to cloud databases.
This is usually termed cloud ingestion and can be done in several ways
such as Databricks native connectors, cloud ingestion tools, or third-
party tools.

Thereafter, the data is then moved into a Delta lake, and the two most
recommended approaches here are the Auto Loader and the COPY INTO
command, both of which incrementally process data but also ensure that
the data files are processed only once, helping data engineers to efficiently
manage data ingestion into Delta Lake.

60

CHAPTER 4

Delta Lake - Deep Dive

In this chapter, we will examine a crucial aspect of the lakehouse
paradigm: the storage format for your data. As discussed in Chapter 1,
the ideal storage format for a lakehouse is one that provides similar data
management and performance features of a data warehouse but is an open
format and built on top of cloud data lakes. Delta Lake is a storage protocol
that exactly fits the requirements. Delta Lake is an open, performant
storage format that enables organizations to build data lakehouses,
allowing data warehousing and machine learning directly on the data lake.
We will focus on understanding why we need Delta Lake as the storage
protocol in the lakehouse architecture. Thereafter, we will discuss the
medallion architecture and some key features of Delta Lake, including
merge capabilities, liquid clustering, and optimizations. We will end with
some best practices when working with Delta Lake.

The Challenges of Other Formats

Before we start looking into Delta Lake, let’s first understand some of the
challenges of data lakes and other storage formats. To be honest, data lakes
and standard storage formats, such as CSV, Parquet, JSON, etc., have been
around for quite some time. However, there have been inherent challenges
in terms of reliability and performance while storing data in these
traditional storage formats. Let’s discuss some of these in a bit of detail.

© The Editor(s) (if applicable) and The Author(s), 61
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_4

https://doi.org/10.1007/979-8-8688-0444-1_4#DOI
https://doi.org/10.1007/979-8-8688-0444-1_1

CHAPTER 4 DELTA LAKE - DEEP DIVE

First, when you use formats like Parquet and CSV, etc., it is extremely
difficult to roll back the data to its original state if your ETL job fails, leaving
data corrupt. Not only that, it is hard to apply inserts, updates, and deletes
to data stored in traditional storage formats. Next, there is a lack of schema
enforcement, which leads to lower data quality, which was one of the main
reasons for the low adoption of data lakes. Another important reason was
that the performance of data in traditional data lakes was way behind that
of warehouses due to issues such as small file problems (a large number of
very small files slowing the processing) and no ability to cache queries or
input data.

All these issues prevented the large-scale adoption of data lakes with
common file formats, such as CSV, Parquet, etc., from becoming the de
facto storage layer. However, the introduction of Delta Lake was a game-
changer. Let’s look into why.

What Is Delta Lake?

Delta Lake is an open-source storage layer that sits on top of data lakes and
provides reliability, data governance, and performance. At its core, Delta
Lake, like transactional databases, provides ACID compliance to data lakes
with schema enforcement.

Figure 4-1 shows the core components of a Delta table.

62

CHAPTER 4 DELTA LAKE - DEEP DIVE

Contents of a Delta table

A

DELTA LAKE
‘,/a{:'-’,- /f:;’s .-Gte.!'ta——l
"‘:’&;“? % tmr:i‘tiod
Parquet Parquet Iy
Z2% “%,
G 7 |
Parquet Parquet \y
\J/ Transaction log
Data stored with metadata

in Parquet files

Figure 4-1. Delta Lake components

The components are as follows:

o Parquet files: Parquet, which organizes data in a highly
efficient columnar format, has been the de facto format
for storing big data for quite some time. Delta is built
on top of Parquet, as the actual data is stored in Parquet
format, which ensures data compression and encoding
optimizations.

o Deltalog: The Delta log is the transactional log that
acts aledger and stores all the edits made to the
Delta table. It acts as the single source of truth for the
Delta table. The Delta Log is found in the _delta_log
subdirectory within the Delta folder, which contains the

63

CHAPTER 4 DELTA LAKE - DEEP DIVE

Parquet data files for the table. The Delta log enables
the most common features such as ACID transactions,
time travel, scalable metadata handling, etc.

¢ Cloud Object Storage Layer: It is important to note
that the data is always in your cloud object storage
layer (S3 for AWS, ADLS for Azure, and GSC for GCP).
This storage layer ensures the durability and scalability
of the data within Delta Lake, enabling users to store
and process extensive datasets without the need to
handle the complexities of managing the underlying
infrastructure.

After looking at what composes the Delta Lake, let’s look into some key
features of Delta Lake.

e Schema enforcement: Delta enforces the schema by
default and blocks bad writes to the data. However, it
provides the flexibility to evolve the schema as needed.

« ACID transactions: ACID transactions ensure
reliability and consistency, even during failures.

e Version control: As discussed earlier, the Delta log acts
as a ledger and tracks all the changes made to tables.
If required, say when your job fails midway, the older
version can be easily restored.

e Unified batch and streaming: Delta provides the
unique capability of a unified source and sink for
streaming and batch processing. For example, you can
stream and add batch data to the same Delta table.

64

CHAPTER 4 DELTA LAKE - DEEP DIVE

o Time travel: The transaction log gives Delta the ability
to time travel, enabling users to revert or access any
version of the table as they were at a specific point
in time.

o Compliance: Delta logs help improve data governance,
security, and regulatory compliance needs.

Delta Lake: Medallion Architecture

The Medallion architecture, sometimes referred to as the multihop
architecture, is the concept of logically separating the data in a lakehouse
into multiple layers with each layer having specific properties. A standard
medallion architecture consists of three main layers: Bronze, Silver, and
Gold. It is best practice to curate your data by using a layered architecture
approach, as it allows data teams to structure the data according to quality
levels and define roles and responsibilities per layer. See Figure 4-2.

Building reliable, performant data pipelines with £, DELTA LAKE

Improve Data Quality

Raw Data

e

Raw Filtered, Cleaned, Business-Level
Integration Augmented Aggregates

“Landing zone” for raw data, no Def

schema needed

Figure 4-2. Delta Lake medallion architecture

65

CHAPTER 4 DELTA LAKE - DEEP DIVE

66

Let’s look into the three layers and see what they mean.

The first layer is the raw layer, often called the Bronze
layer. This layer will preserve the data as close as
possible to the original data. It is always a best practice
to maintain a copy of your source system data for the
following reasons:

o The source system copy helps to back out a
production workload in case of any error.

¢ The bronze layer helps to reprocess a data pipeline.

e The Bronze layer loads preserve historical data for
analytical processing and enable insights and trend
analysis.

e A source system copy helps hydrate a data lake to
enable new use cases and is often required by data
scientists so they have access to nontransformed/
unbiased data.

The second layer is the staging layer, which can be
called the Silver layer. This layer can contain multiple
stages to help troubleshoot and process data in
various forms and different degrees of conformation.
The Silver layer can be used by power users (who are
more familiar with the data) and data scientists, but
with some risk as the data is not conformed and can
provide different results from the one usually open to
all business users. A silver layer load typically consists
of the following:

CHAPTER 4 DELTA LAKE - DEEP DIVE

o Filtered and augmented data typically formatted
per business requirements.

o For data scientists, the data in this layer often is free
from class imbalance problems and enables faster
model development in neural networks and other
approaches.

e The third layer is called the refined layer, or the Gold
layer. This layer is open to all business users. It will
contain the confirmed (agreed upon) data and will
be treated as the one true version for the business.
This layer can contain smaller subsets of the data for
a specific purpose (sometimes called data marts). The
Gold layer often does the following:

e Answers very specific business questions
e Most likely is fully aggregated data

o Isthe data that is ready for the presentation layer
for BI tools to slice and dice this information (an
OLAP cube)

e Summary data and quality checked (dimensions
serve as single source of truth)

Now after understanding the inner workings of Delta and the
medallion architecture, let’s look at some of the key features of Delta Lake.

67

CHAPTER 4 DELTA LAKE - DEEP DIVE

Delta Lake Key Features

The following sections cover the key features of Delta Lake.

Update, Delete, and Upserts in Delta Table

Delta supports both Update and Delete commands, both of which are not
supported by traditional Parquet format. Further, it provides the ability to
upsert using the MERGE SQL Command.

Let’s examine how the MERGE SQL operation can be used to upsert data
into a Delta table from a source table, view, or DataFrame.

MERGE INTO target
USING source
ON source.key = target.key
WHEN MATCHED THEN
UPDATE SET *
WHEN NOT MATCHED THEN
INSERT *
WHEN NOT MATCHED BY SOURCE THEN
DELETE

These are important operations and can be easily done in traditional
databases, but now you can also do so within your Delta Lake layer.

Schema Evolution

It is important to note that Delta enforces the schema by default. This
prevents users from adding data that does not conform to the existing
schema, avoiding unwanted data additions to your table and maintaining
data quality. Any new write to a table is checked for compatibility with the

68

CHAPTER 4 DELTA LAKE - DEEP DIVE

target table’s schema before it is committed. If the data is not compatible,
Delta Lake cancels the transaction altogether (no data is written) and
raises an exception to let the user know about the mismatch.

However, data sources evolve over time due to changing requirements,
which might involve adding or dropping new fields to existing tables. So,
to fulfill this use case, although Delta, by default, enforces schema, it also
supports schema evolution.

Therefore, schema evolution allows users to easily change a table’s
current schema to accommodate changing data such as including one or
more new columns while performing an append or overwrite operation.
Therefore, schema evolution can be used when you intend to change the
schema of your table by either setting the option “mergeSchema” to “true
or setting the property spark.databricks.delta.schema.autoMerge.
enabled to true

By including the mergeSchema option in your query, any columns
present in the DataFrame but not in the target table are automatically
added to the end of the schema as part of a write transaction. Nested
fields can also be added, and these fields will be added to the end of their
respective struct columns as well.

From Spark 3.0 onward, explicit DDL (using ALTER TABLE) is fully
supported. The following code snippets provide some examples of how
this can be utilized:

e Adding new columns (at arbitrary positions)

ALTER TABLE table_name ADD COLUMNS (col name
data_type [COMMENT col comment] [FIRST|AFTER
colA name], ...)

¢ Reordering existing columns

ALTER TABLE table_name ALTER [COLUMN] col name
(COMMENT col comment | FIRST | AFTER colA name)

69

CHAPTER 4 DELTA LAKE - DEEP DIVE

o Renaming existing columns

ALTER TABLE table_name RENAME COLUMN old col
name TO new_col name

To conclude, Delta supports both schema enforcement, which
prevents adding data that does not conform to the existing schema, and
schema evolution, which gives users the flexibility to make intended
changes to the table.

Time Travel

Delta Lake’s time travel feature allows users to access and query historical
versions of data stored in Delta tables. This is important because it
eliminates the need to maintain point-in-time copies of data, which is
cumbersome and costly. Delta Log acts as a transaction log that maintains
a granular view of changes made to data over time.

Some of the most common use cases where you might need to access
previous versions of data are auditing data as it changes over time,
reproducing ML experiments or reports, or rolling back to the earlier
version in case of job failures.

Let’s move and see this in action. As explained earlier, every operation
that executes on Delta table is automatically versioned in the Delta log
(Figure 4-3).

70

CHAPTER 4 DELTA LAKE - DEEP DIVE

Dverview Sample Data Details Permissions History Lineage nsights Quality

All users 2024-06-22 12:28:50 - 2024-06-2212:31119 B All operations

Version Timestamp Userid Username Operation

2 2024-06-22 12:31:19 4768657035718622 jason.yip@tredence.com UPDATE

1 2024-06-22 12:29:07 4768657036718622 Jasonyip@tredence.com UPDATE

o 2024-06-22 12:28:50 4768657035718622 Jasonyip@tredence.com CREATE TABLE AS SELECT

Figure 4-3. Delta Log snapshot
You can query the previous versions of the Delta table by doing the
following:

1. Using a timestamp

SELECT count(*) FROM my table VERSION AS OF 5238
2. Using a version number

SELECT * FROM employee_delta VERSION AS OF 2

A key question is how far back one can go to query previous versions
of the Delta table. By default, you can query historical versions of the table
for 30 days. Now, depending on the use case, one can increase or decrease
the time by using the command delta.logRetentionDuration. This gives
users the flexibility to manage storage costs versus the need to go back and
access historical data.

Clone Delta Tables

When you clone a table, you are basically creating a replica of a table at
a given point in time. As the name suggests, clones have metadata as
the source table but behave as a separate table with a separate lineage

71

CHAPTER 4 DELTA LAKE - DEEP DIVE

or history. Therefore, any changes made to clones affect only the clone
and not the source. Further, if the source data changes after the clone is
created, those changes are not reflected in the cloned table automatically.

You can create a copy of an existing Delta Lake table on Databricks at
a specific version using the clone command. Also, clones have a separate
independent log history from the source table. Time travel queries on your
source table and clone may not return the same result.

There are two types of clones that can be created: deep clones and
shallow clones. Let’s look into both of these:

Deep clone: A deep clone makes a full copy of the
source table’s metadata and data files. This is similar
to copying a table with a CTAS command (CREATE
TABLE... AS... SELECT...).Since the metadata is
being copied from the source table, you do not need
to re-specify partitioning, constraints, and other
information as you have to do with CTAS.

Deep clones are helpful when creating a completely
independent copy of a Delta table for use cases like
archiving specific tables or do transformations on a

new copy to test some transformations

Deep clones can be quickly created using the
following syntax:

CREATE OR REPLACE TABLE db.target table CLONE
db.source_table --

Shallow clone: A shallow (also known as Zero-Copy)
clone duplicates only the metadata of the source
table. The data files of the table itself are not copied,
so another physical copy of the data is not created,

72

CHAPTER 4 DELTA LAKE - DEEP DIVE

which helps save storage costs. These clones are
not self-contained and depend on the source from
which they were cloned as the source of data.

Shallow clones are useful when you want to perform
experiments on a new table, such as testing new
code on production data, without affecting the
production tables.

Shallow clone can be created using the
following syntax:

CREATE OR REPLACE TABLE my test SHALLOW CLONE
my prod table;

One point to remember is that shallow clones are not self-contained
tables like deep clones. If the data is deleted from the source table for any
reason, your shallow clone may not be usable.

Generated Column

Generated columns are a special type of columns whose values are
automatically generated based on user-specified functions over the
columns in the Delta table.

When you write to a table with generated columns and you do not
explicitly provide values for them, Delta Lake automatically computes
the values. If you explicitly provide values for them, the value must satisfy
the constraint (<value> <=> <generation expression>)IS True or write
will fail.

73

CHAPTER 4 DELTA LAKE - DEEP DIVE

Change Data Feed

One of the important functionalities of working in a medallion architecture
is what we call change data capture. Change data capture basically refers
to the process of capturing only incremental changes to a source table and
merging only those changes with the target table.

Within the medallion architecture, as the data moves from bronze
to silver to gold, you can implement the CDC functionality by using the
change data feed (CDF) in Delta Lake. See Figure 4-4.

rd wafia
s
s
’
’
BRONZE SILVER GOLD
— . A
P E__p - —— - - - -
Raw Filtered, 4 Business-le (o
Ingestion '. Cleaned vel %
External feeds, and History | Augmented / Aggregates
Other COC \ P
output 4 E
Extracts ; -
—— CDF Databases

Figure 4-4. CDF

The Delta CDF captures the row-level changes between versions
of a Delta table. When CDF is enabled on a Delta table, the Databricks
runtime records “change events” for all the data written into the table into
a separate folder alongside the Delta log. The captured includes both the
row data and corresponding metadata indicating whether the specified
row was inserted, deleted, or updated.

It is important to note that CDF only provides the CDC capability
within the medallion architecture and not for data ingested from source
systems, e.g., databases to Delta Lake. To take advantage of the CDF
functionality, bring your external data sources to the Bronze layer and

74

CHAPTER 4 DELTA LAKE - DEEP DIVE

then enable CDF from that point forward. This will allow you to use the
Change Data Feed in moving to the Silver or Gold layers or feeding out to
an external platform.

Change Data Feed can be easily enabled on all new tables by
setting the property spark.databricks.delta.properties.defaults.
enableChangeDataFeed = true; either in cluster settings or in the
notebook.

You can set this property on the CREATE TABLE command as well.

CREATE TABLE student (id INT, name STRING, age INT)
TBLPROPERTIES (delta.enableChangeDataFeed = true)

If the table already exists, use ALTER TABLE to set the property.

ALTER TABLE myDeltaTable SET TBLPROPERTIES (delta.
enableChangeDataFeed = true)

Once the CDF feature is enabled on the table, a _change data folder
gets created under the table directory and records the change data for
UPDATE, DELETE, and MERGE operations (Figure 4-5).

2 SELECT » FROM table_changes('silverTable®, 2, 4) erder by _commit_timestamp

Country MumVaccinated AvnilableDoses change_type commil_version commit_timaestamp

LA 10000 20000 odnle pereimagn
USA 11000 20000 Jodale postmage

] 74 TODO 10000 [_1._.._:-_-

Figure 4-5. CDF change log

This table can now be used to update only the changes, say, from the
Silver table to the Gold table.

CDF can be useful in a number of use cases. For example, you can
now update only the changes from your Silver table to Gold tables with
substantially less processing cost. Another use case might be when you

75

CHAPTER 4 DELTA LAKE - DEEP DIVE

want to transmit data incrementally from Gold tables to external systems
that can ingest change data output to reduce the processing overhead.
Finally, for audit and compliance purposes, it might be necessary to keep
arecord of when, where, and how data has been changed. CDF with its
change log helps to maintain the logs.

Universal Format

As enterprises move toward building their lakehouse architectures, one of
the decisions they need to make is to choose the data format. Ideally they
want to store data in an open-source format but one that gives then data
warehouse capabilities. There are three open-source formats that meet this
criteria: Delta, Iceberg, and Hudi.

Now if we go one level deeper in these formats, we see that all three
are built on top of Parquet with the difference in the metadata layer. But
these differences make these formats incompatible to be read by the same
reader. The problem is further complicated when different departments
within the organizations try to use these different formats within the
lakehouse architecture. See Figure 4-6.

w A @ FA"

Apache Hudi LF Delta Lake Apache Iceberg b Delta Lake with

(c“) Metadata) (Q Metadata) (U Metadata) (A (’9"} ¥ Metadata)
(i',;- Parquet) (,; Parquet) (s‘//’ Parquet) C %’? Parquet)

Figure 4-6. UniForm decoded

76

CHAPTER 4 DELTA LAKE - DEEP DIVE

To solve this problem, Databricks announced Databricks UniForm
(Universal Format) with the Delta 3.0 release. As discussed earlier, all three
formats are built on top of Parquet. UniForm takes advantage of this fact
and is able to make Delta tables accessible as Iceberg or Hudi tables to
respective readers without any data duplication or additional costs. When
a table is created with UniForm activated, the metadata for the additional
formats (e.g., Iceberg) is automatically instantiated and subsequently
updated in response to any data mutation.

Note that prior to the release of Delta UniForm, the ways to switch
between open table formats were copy- or conversion-based and only
provided a point-in-time view of the data.

Let’s see an example there is a Delta reader and an Iceberg reader that
is trying to read the Delta tables that are written by a Delta writer. Uniform
in this scenario will generate Iceberg metadata asynchronously along with
Delta metadata, thereby allowing both readers to read from the same Delta
table. It is important to note that this is possible only with Unity Catalog
(discussed in the next chapter), which essentially acts as an Iceberg catalog
as well and is compatible with Iceberg APIs. See Figure 4-7.

77

CHAPTER 4 DELTA LAKE - DEEP DIVE

0.0
O
e

Delta Writer

Write

|

DELTA LAKE

Metadata Update

£\ DELTA LAKE
o~ <‘- ‘.':; ‘.)
0.0
O -
r“ﬁ"w

Delta Reader

Metadata Update

ICEBERGAJ
ey
0,0
Q
. &g

lceberg Reader

Figure 4-7. Inner workings of Uniform

You can enable Uniform on a new table by running the following
command. Please note that Uniform is available only for
UC-enabled tables.

CREATE TABLE uniform.test.T(name string , age int) TBLPROPERTIES(
'delta.enableIcebergCompatV2’ = 'true',
'delta.universalFormat.enabledFormats' = 'iceberg');

Let’s add some data.

INSERT INTO uniform.test.T VALUES ('Mark', 35), ('Tom', 42)

78

CHAPTER 4 DELTA LAKE - DEEP DIVE

If we Iook into the table properties for the data, we can see something

like Figure 4-8.

Table +

2% key

-

delta.columnMapping.maxColumnid

2 delta.columnMapping.mode

3 delta.enablelcebergCompatV2

4 delta.feature.columnMapping

5 delta.feature.icebergCompatV2

6 delta.minReaderVersion

7 delta.minWriterVersion

8 delta.universalFormat.enabledForma...

4 8rows | 1.35 seconds runtime

Figure 4-8. Properties of Delta table with UniForm enabled

15 value
2

name

true
supported
supported
2

7

iceberg

Thus, with open table formats, organizations experience seamless data

management, ensuring data integrity and enabling smooth transactions
across multiple users and processing engines.

In the next part of the chapter, we will discuss some of the most
common performance optimization techniques, such as vacuum,
optimize, partitioning, and z-order. These techniques are not only
optimization tools but also help slash storage costs, enhance parallelism,

and reduce operating load on the infrastructure.

79

CHAPTER 4 DELTA LAKE - DEEP DIVE

Delta Optimization

It is important to have clean and optimized Delta tables to enhance query
performance and build efficient pipelines. As discussed earlier, tables can
grow very large over time and then run into issues like small file problems
or file layouts that do not support the query patterns. These techniques
aim to alleviate some of the issues discussed.

« Partitioning: As the name suggests, partitioning refers
to grouping of data files under the same column based
on the partition key. Partitioning data can significantly
enhance query performance as it will help Spark to
skip a lot of unnecessary data partition (i.e., subfolders)
during scan time. Partitioning works best with low-
cardinality columns, and one can choose columns that
are commonly used in queries for partitioning.

CREATE TABLE table name

USING delta

PARTITIONED BY (column_name)

-~ OR --

ALTER TABLE table name ADD PARTITION
(column_name = 'value')

As a best practice, do not partition tables under 1TB in
size and partition data by a column if you expect each
partition to be at least 1GB. Further, always choose a
low-cardinality column—for example, year or date—as
a partition key.

e Optimize: As discussed earlier, Delta folders might
accumulate a very large number of small files (small file
problem), which has an impact on query performance.
Optimize compacts and pack these small files to a

80

CHAPTER 4 DELTA LAKE - DEEP DIVE

configurable size, which is optimum to maximize

the performance of big data processing engines.
Optimize keeps all the data as is, but table statistics are
recalculated, and metadata is cleaned up by removing
unnecessary entries. The target file (1GB default) size
of the new command can be changed by tweaking the
following:

spark.databricks.delta.optimize.maxFileSize

You can run Optimize on a Delta table by simply
running this command:

OPTIMIZE table_name

As a practice, OPTIMIZE (with or without ZORDER)
should be done on a regular basis, say once a day

or weekly, to maintain a good file layout for better
downstream query performance. Also, run Optimize
on a separate job cluster because with compute-
intensive VM, it is a compute-intensive operation.

Z-order: Z-ordering reorganizes data within Delta
tables to improve query performance. It rearranges the
data based on specified columns, allowing Delta Lake
to skip irrelevant data during query execution. In short,
the entire table is rewritten according to the columns
mentioned in the z-order command.

As a best practice, always choose high-cardinality
columns (for example, customer id in an orders table)
for z-ordering. This is the opposite of partitioning,
where low-cardinality columns are chosen. Further,
choose the columns that are most frequently used in

81

CHAPTER 4 DELTA LAKE - DEEP DIVE

filter clauses or as join keys in the downstream queries.
Finally, it is best to limit the columns to four or fewer
because more than that and the effectiveness of z-order
degrades.

e Vacuum: Vacuum deletes files that are redundant in
in the Delta folders. By default Delta retains older files
up to 7 days and can be configured using the property
delta.deletedFileRetentionDuration.

Vacuum is not reversible, so it should be used with caution. Further,
once it is done on the table, your ability to use time travel is limited, but
the vacuum saves on storage costs as unnecessary files are deleted. So,
depending on the use case, you can consider whether you want to vacuum
a particular table.

After learning the fundamental optimization techniques, let’s move on
to two of the newer optimizations: liquid clustering and predictive I/0O.

Liquid Clustering

Liquid clustering is a new feature introduced for the Delta table in Runtime
13.1 and above. Let’s examine how you can utilize this feature to enhance
the performance of your Delta tables without much manual intervention.
As discussed, two of the most common techniques used to optimize
your Delta tables for efficient storage and data retrieval are table
partitioning and z-order.
When done right, these techniques help users increase the
performance of their queries. But both require careful consideration.
For example, you need to use the right column to partition your data,
and z-order needs to be done each time new data is added to your table.
Therefore, data engineers need to constantly work to keep the tables
optimized.

82

CHAPTER 4 DELTA LAKE - DEEP DIVE

Liquid clustering aims to replace both these features with much
less manual intervention, thus reducing data management and tuning
overhead. It’s flexible and adaptive to data pattern changes, scaling, and
data skew.

With liquid clustering, keys (columns) can be chosen purely based
on the query access pattern. You do not need to consider things like
cardinality, key order, file size, potential data skew, and future access
pattern change. Further, the keys can be changed without rewriting the
files in the table; thus, over time, as the query pattern changes, the data
layout adapts accordingly.

As a best practice, you should enable liquid clustering for all your
new Delta tables. Some of the scenarios where liquid clustering are highly
useful is when tables have significant data skew, when they are growing
rapidly in size with new data, and when queries involve frequent filtering
by high cardinality columns.

Let’s see how liquid clustering works internally.

Working with Liquid Clustering

Liquid clustering is enabled during the creation of a Delta table by using
the command CREATE BY and defining the clustering keys. Once enabled,
run OPTIMIZE jobs to cluster data incrementally.

-- Create an empty table
CREATE TABLE tablei(colo int, coll string) USING DELTA CLUSTER
BY (colo);

-- Using a CTAS statement

CREATE EXTERNAL TABLE table2 CLUSTER BY (colo) -- specify
clustering after table name, not in subquery

LOCATION 'table_location’

AS SELECT * FROM table1;

83

CHAPTER 4 DELTA LAKE - DEEP DIVE

--Trigger the Liquid clustering job
OPTIMIZE table2;

Some of the other useful use cases and commands are as follows:

-- Using a LIKE statement to copy configurations
CREATE TABLE table3 LIKE tablei;

--Change the Cluster Key
ALTER TABLE table_name CLUSTER BY (new_columni, new_column2);

--disable the cluster Key
ALTER TABLE table_name CLUSTER BY NONE;

Another important aspect of liquid clustering is determining how
to choose the right clustering keys. To start, choose columns that are
frequently used in queries regardless of their cardinality. You can begin
with one column and add up to four columns when needed. Finally, as the
queries and workload evolve, use ALTER TABLE tbl CLUSTER BY to change
the clustering keys as often as you want. The best part is that there is no
need to rebuild the table.

Current Limitations

According to the Databricks documentation, the following
limitations exist:

* You can only specify columns with statistics collected
for clustering keys. By default, the first 32 columns in a
Delta table have statistics collected.

e You can specify up to four columns as clustering keys.

e Structured streaming workloads do not support
clustering-on-write.

84

CHAPTER 4 DELTA LAKE - DEEP DIVE

Predictive I/0

Predictive I/0 is a collection of Databricks ML-powered optimizations that
improve the performance for your data interactions. Its accelerated reads
reduce the time to scan and read data, while accelerated updates reduce
the amount of data that needs to be rewritten. Predictive I/0 is enabled

by default on serverless SQL and Pro SQL warehouses and clusters with
runtime 14.0 and above.

Let’s move into and see how predictive I/0 works with a simple
analogy. Imagine all the data transactions are no more than read and write.
Think of the Windows defragmentation function, which has existed all the
way back to our Windows 95. File systems are often represented by data
blocks, just like containers or buckets, but over time, there will be some
room left in each block, regardless of the size of the block. Everyone who
has done some packing for a trip would understand this concept. How
many bags do we bring? Below is an illustration of a simple file system.

Magic .\\
16 Blocks ~ i
byt EE—— | 5
1:;13!5 m / Block

v 0 1 2 3 4

Inode
Blocks

Data

Block Block Block

Data ‘ Data

Figure 4-9. A Simple File System

Source: https://www3.nd.edu/~pbui/teaching/cse.30341.fa18/
project06.html

In terms of file systems, there is a concept of defragmentation, which is
simply reorganizing all the files into proper blocks to optimize storage and
read and write efficiency. You would agree that anything organized would
be more efficient to retrieve. The idea is simple.

85

https://www3.nd.edu/~pbui/teaching/cse.30341.fa18/project06.html
https://www3.nd.edu/~pbui/teaching/cse.30341.fa18/project06.html

CHAPTER 4 DELTA LAKE - DEEP DIVE

In terms of the Delta format, there are three concepts that we need to
consider.

o File size: The Delta format is organized by Parquet files,
which is similar to the block size discussed in a file system.

o Copy on write: The Delta format supports ACID
transactions. To perform updates or deletes, the
analogy is similar to taking out something (delete)
and placing it back into the file system. In the form of
Parquet files, it must be written back onto the disk to
be able to read again. So anything that’s changed will
need to be rewritten. Even the slightest change would
affect the whole file, making the write operation very
expensive if frequent updates are required.

Copy-on-write
File 0O1 File 002 File 003

l Writes are expensive

File 004 File 005 File 006

Figure 4-10. Copy-on-write operation

e Merge onread. To avoid expensive writes, the Delta
format created a _delta_log folder, which keeps track
of transactions, like update, delete, and insert. Similar
to files in a file system, these log files can be either large
or small and will become fragmented over time. While
the write-to-the-log file is a cheap operation, the read
will become expensive because it requires handling a

large amount of operations in real time during reads.

86

CHAPTER 4 DELTA LAKE - DEEP DIVE

Merge-on-read

File OO1 File 002 File CO3

s | s e
'

File CO1 File 002 File 003

L. F
Y

Reads are expensive

Figure 4-11. Merge-on-read operation

ML/AI to the Rescue

By now, you may wonder: how do we tune these settings? What is an optimal
file size? Do we need to choose between copy on write or merge on read?

Merge duration performance (Seconds)
Lower is better

@

A

141

Classic MERGE Low-Shuffie Predictive |/0
MERGE for Updates

Figure 4-12. Predictive I/0 for Updates makes MERGE up to 10x
faster than Low-Shuffle Merge (LSM)

Source: https://www.databricks.com/blog/announcing-public-
preview-predictive-io-updates

87

https://www.databricks.com/blog/announcing-public-preview-predictive-io-updates
https://www.databricks.com/blog/announcing-public-preview-predictive-io-updates

CHAPTER 4 DELTA LAKE - DEEP DIVE

Databricks, with its vast experience, has developed machine learning
models to optimize these settings. Developers no longer need to worry
about the what, when, and how. The result is a 10x gain in update, merge,
and delete.

Conclusion

In this chapter, we looked into one of the building blocks of the Databricks
lakehouse architecture: Delta Lake. This format provides both reliability
and performance to your data. Delta Lake is the most critical part of your
lakehouse as it gives all the warehouse-type capabilities to your data, like
ACID transactions, updates/deletes and merge functionality, schema
enforcement and evolution, time travel, etc. We also looked into some
advanced features like change data feed within the medallion architecture,
and UniForm, which allows both multiformat readers (e.g., Iceberg reader)
to read from the same Delta table.

Finally, we looked into optimization techniques like optimize, z-order,
and vacuum to increase the performance of your Delta tables. We also
reviewed some of the new hands-off techniques, such as liquid clusters
and predictive I/0.

88

CHAPTER 5

Data Governance
with Unity Catalog

Data is one of an organization’s most significant assets. An important
determinant of a company’s performance and growth is how well its data
is handled regarding quality, management, and ownership. Organizations
today, especially with ever-expanding use cases for GenAl, face expanding
data privacy regulations. Nonetheless, the reliance on data is increasing

as organizations look to help optimize operations and drive business
decision-making. Therefore, they are looking for data governance on

their data platforms to ensure that not only their data assets but, more
importantly, their Al products are consistently developed and maintained
and their precise guidelines and standards are adhered to.

In this chapter, we will look at Unity Catalog—Databricks’ data
governance solution. We will introduce the concept of Unity Catalog and
how it differs from traditional Databricks’ hive metastore. Further, we will
look at how you can enable Unity Catalog in your workspace and architect
your data estate. Finally, we will deep dive into some of the key features
of Unity Catalog, like centralized management, data lineage, and Delta
Sharing.

© The Editor(s) (if applicable) and The Author(s), 89
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_5

https://doi.org/10.1007/979-8-8688-0444-1_5#DOI

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

What Is Databricks Unity Catalog?

Unity Catalog is Databricks’ governance solution and is a unified system
for managing its data assets (see Figure 5-1). It is a central storage
repository for all metadata assets, accompanied by tools for governing
data, access control, auditing, and lineage.

&~ Databricks Unity Catalog
Ao Access . P ot Data
Discovery R Lineage Monitoring Auditing Sharing

ables Files Models Notebook Dashboards

| | ;l 9,_;,‘ 2.‘_ &
s L (3,) L5 f:';’ i |

o

Figure 5-1. Databricks Unity Catalog

It maintains an extensive audit log of actions performed on data across
all Databricks workspaces in your account. It provides capabilities such as
effective data discovery, centralized metadata and user management, data
lineage, and much more. It offers views and controls across all structured,
semi-structured, and unstructured streaming data, Al models, notebooks,
workplaces, files, tables, and dashboards.

In short, it brings all your Databricks workspaces together, offering
fine-grained management of data assets and access. This streamlines
operations by reducing maintenance overheads, accelerates processes,
and increases efficiency and productivity.

Unity Catalog is the foundation of the Databricks Data Intelligence
Platform, which understands the uniqueness of your data. If you are
looking to build your next GenAl application, it is essential to enable Unity
Catalog in your Databricks environment.

90

https://www.databricks.com/product/data-intelligence-platform
https://www.databricks.com/product/data-intelligence-platform

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Unity Catalog: Before and After

Before Unity Catalog, Databricks workspaces were separate and
independent units (see Figure 5-2). Each workspace had its own metastore,
user management (adding/removing users), and Table ACL store. A simple
example is that if a user created a table in one Databricks workspace, it
would not automatically be available in another workspace. This led to
data and governance isolation boundaries between workspaces, and if
you wanted to bring consistency between your workspaces, it would mean
duplication of effort. Some users handled this by developing pipelines or
code to synchronize their metastores and ACLs, while others set up their
self-managed external metastores to use across workspaces. However,
these solutions added more complexity and maintenance.

Without Unity Catalog With Unity Catalog

Databricks
Workspace 2

Databricks
Workspace 1

Usar
Managament

Matastore

User
Managarment

Matastone

Unity Catalog
Usier "
Management Metastore Access Cantrols

Databricks

Workspace

Wsters

Chusters Clusters
SAL Warehouses

SGL Wershouses

(Databricks
L Workspace

Figure 5-2. Before and after Unity Catalog

With Unity Catalog, Databricks has moved all three (User
Management, Metastore, and Access Controls) out of workspaces to
an account that works across all workspaces. The account, including
the Account Console, which is a user interface to control the account,
lives purely in the control plane. As a best practice, there should be one
account per organization (i.e., your entire company) per cloud provider. A
Databricks account lets you set up data, controls, and user management in
one place and use them across multiple Databricks workspaces.

91

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Unity Catalog Hierarchy

Now let’s move on and understand some key concepts with Unity Catalog
(UC) such as the metastore, catalog, etc. See Figure 5-3.

Metastore

Catalog

Schema

Table View Volume Model Function
Figure 5-3. Unity Catalog hierarchy

o Metastore: A metastore stores metadata about data
and Al assets and the permissions that govern access to
those assets. UC metastore is a container in your cloud
storage managed by Databricks. You can enable UC for
a workspace by attaching it to a UC metastore. There
should be one metastore per region, and all workspaces
should be assigned to that metastore in that region. The
metastore has a three-level hierarchy: catalog, schema,
and tables.

o Catalog: A catalog serves as the top-level container in
the three-level namespace hierarchy. It organizes the
data assets and contains schemas (databases), tables,
views, volumes, models, and functions.

92

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Schema (database): This is the second level in the
three-level namespace and contains tables and views.

Tables: Tables are defined within a schema and provide
governance for tabular data. There are two types of
tables: External and Managed.

« External tables: In external tables, data is stored
outside the managed storage location(s) for the
associated schema/catalog/metastore. It is used
when direct access to the data outside Databricks is
required. Unity Catalog governs access to “external”
tables but does not manage the underlying data.
This means when you drop a table it deletes only
the metadata and not the underlying data. You can
use Delta and other file formats (CSV, JSON, etc.)
while creating an external table.

e Managed tables: These are the default way to
create tables in UC. They are stored in a managed
storage location (at the schema, catalog, or
metastore-level storage location). Unity manages
the data life cycle and file and folder layouts for
these tables. The underlying data format is Delta.
When a table is dropped, the underlying data is
deleted from cloud storage within 30 days.

Volumes: Volumes are defined within a schema and
provide governance for nontabular data (e.g., image
files, etc.). They can store and access files in any format
(unstructured, semi-structured, structured) but cannot
store tables. Volumes can be “managed” by defaulting
to the schema’s managed storage location or “external”
by specifying an external storage location.

93

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Unity Catalog Admin Roles

It is important to understand various admin roles associated with Unity
Catalog.

e Account admin: Account admins administer and
control anything at the account level, including SCIM,
SSO, Metastore creation/deletion, and assignment of
metastores to workspaces and create credentials for
external location access. Account admins can query all
data or perform grants on all data objects.

o Metastore admin: Metastore admins can create catalogs
and assign their ownership (via grants) to groups or
individuals. They can also create external locations.
Metastore admins have visibility to all securable objects
within the metastore they are admin of.

o Data owners: Data owners can perform grants on data
objects they own and create new nested objects. For
example, a catalog owner can create a schema and then
a table within that schema.

e Workspace admin: Workspace admins are similar
to cloud administrators and, as the name suggests,
manage the workspaces. They can define cluster
policies on workspaces, add/remove user assignments,
elevate user permissions within a workspace of various
objects like notebooks, etc., and change job ownership.

Getting Started with Unity Catalog

In this section, we will quickly review how to get started with Unity Catalog
by creating a metastore and assigning users and groups to workspaces via
the account console.

94

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Create a Metastore

The steps to create a metastore are detailed in Databricks documentation
(https://docs.databricks.com/en/data-governance/unity-catalog/
create-metastore.html). As a quick overview, account admins can log
into Databricks Account Console and create a metastore. See Figure 5-4.

Create metastore

o Create metastore Assign to workspaces

“ Name

* Region

ADLS Gen 2 path (optional) B

)ptional location for storing managed tables data across all catalogs in the metastore. Once configured

Access Connector Id (3)

v Advanced options

Cancel

Figure 5-4. Unity Catalog metastore setup interface

95

https://docs.databricks.com/en/data-governance/unity-catalog/create-metastore.html
https://docs.databricks.com/en/data-governance/unity-catalog/create-metastore.html

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

The key inputs required are as follows:
1. Name of the metastore.

2. The region in which the metastore is created. One
needs to remember that we can have one metastore

per region.

3. ADLS Gen 2 Path or the S3 bucket, which will be the
root bucket for the metastore.

4. Access Connector ID (Azure): An Access connector
in Azure allows you to use Managed Identity
to access storage containers on behalf of Unity
Catalog users.

IAM role ARN (AWS): Amazon Resource Name for
the bucket that was setup in #2 (https://docs.aws.
amazon.com/IAM/latest/UserGuide/reference
identifiers.html#identifiers-arns).

Once the metastore is created, you can assign the metastore to a
workspace and thereby enable Unity Catalog (Figure 5-5) for the particular
workspace.

96

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Enable Unity Catalog? X

Assigning the metastore will update workspaces to use Unity Catalog, meaning that:

«~ Data can be governed and accessed across workspaces
+~ Data access and lineage is captured automatically
+ ldentities are managed centrally at the account level (cannot be reversed)

Before enabling Unity Catalog, consider these readiness checks:

+ Understand the privileges of workspace admins in Unity Catalog and review existing
workspace admin designations

+ Update any automation for principal/group management, such as SCIM, Okta and AAD
connectors, and Terraform to reference account endpoints instead of workspace endpoints

Learn more

Figure 5-5. Final screen before enabling Unity Catalog

Organizing Data in Unity Catalog

As discussed earlier, the catalog is the top-level container in the three-
level namespace. As a best practice, you should use catalogs to segregate
your organization’s information architecture. This simply means catalogs
can correspond to a department, team, business unit, or development
environment scope (Dev, UAT, Prod), as shown in Figure 5-6.

97

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Catalogs Workspaces Groups
= dav " dev_ws ‘ —t" Dovelopers
"4 Fi
/ o s ¥
- staging i, staging_ws —a\
“m_, Teste
./’ esters
& & N
2 Metastore < —— - prod —p prod_ws ‘ e Analysts
_— R
= .
- bu_1_dev = - BU Developers

= pu_l_staging — —- BU Testers

e bu_1_prod E— bu_prod_ws & |—

~ BU Users

Figure 5-6. Sample Unity Catalog structure

Another typical pattern is that developers use workspaces as a data
isolation tool—for example, using different workspaces for prod and dev
environments or a specific workspace for processing sensitive data.

Therefore, while working in that specific workspace, they want
to see only that specific catalog. For example, while working in a dev
environment, you want only the dev catalog visible, not prod. Unity
Catalog has a feature that allows you to bind a catalog to specific
workspaces. This ensures that all specified data processing is handled in
the appropriate workspace. These environment-aware ACLs allow you
to ensure that only specific catalogs are available within a workspace,
regardless of a user’s individual ACLs. This means the metastore admin
or the catalog owner can define the workspaces that a data catalog can be
accessed from.

To learn more, please go to the following website:

https://docs.databricks.com/en/data-governance/unity-catalog/
create-catalogs.html#foptional-assign-a-catalog-to-
specific-workspaces

98

https://docs.databricks.com/en/data-governance/unity-catalog/create-catalogs.html#optional-assign-a-catalog-to-specific-workspaces
https://docs.databricks.com/en/data-governance/unity-catalog/create-catalogs.html#optional-assign-a-catalog-to-specific-workspaces
https://docs.databricks.com/en/data-governance/unity-catalog/create-catalogs.html#optional-assign-a-catalog-to-specific-workspaces

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Figure 5-7 illustrates the workspace setup architecture.

Cross-Workspace Siloed
Metastore Admin
EEIUnity Catalog [pev DEV 1 [se sTG 1 [0 PRD T
Metastore Admin catalog |Admin catalog Admin catalog
Sy |
N .y RN
<> DEV <& ste PRD
== workspace w workspace

workspace

~— PRD _‘|

= DEV - STG
(— storage | :lj \'== storage 7 'l— storage

Figure 5-7. With Unity Catalog, we can attach a catalog to SDLC
workspaces

Key Features of Unity Catalog

Let’s talk about the key features in more detail.

Centralized Metadata and User Management

As explained earlier, Unity Catalog provides a single metastore across all
workspaces in an account. This enables users to create and access tables,
views, etc., across workspaces. Now, you can create multiple catalogs;
set up schemas, tables, and views in one place; and access them across
workspaces.

It is important to note that when multiple metastores are set up in an
organization, the catalogs cannot be attached to the workspaces in other
metastores. The solution is to use Delta Sharing, which will be discussed
later in this chapter. See Figure 5-8.

99

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

catalog . schema . table/view
Central_dev
Central_stg
Unity Central
— Central_prd - ——— tables
Metastore 1 N databases
BU_1_published ——= dataBbL:ises ——— tables
BU

BU_2_published — —— tables

databases
. shared | | shared
| databases | tables
. shared | | shared
databases tables
shared | shared |,
databases | tables |
Unity 80 1 ord BU tables,
Metastore 2 == L databases views
BU 1 BU tables,
\ i databases views
80 2 prd BU tables,
mr databases views
BU 2 =l BU | tables,
\ e e databases views

Figure 5-8. Delta Sharing strategy with multiple metastores

Another important feature of Unity Catalog is centralized user
management. Before, UC admins had to add users to each new workspace
either manually or through some SCIM synchronization and maintain
those workspaces by workspace. With Unity Catalog, once you have synced
your identity provider, say Azure AAD, via SCIM to Databricks Account
Console, you can assign users/groups to all different workspaces via the
account console, hence centrally managing users across workspaces. As a
best practice, you should enable SCIM integration at the account level and
sync users to workspaces with Identity Federation. Do not use SCIM at the
workspace level at all.

100

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Centralized Access Controls

One of the main requirements in any data platform is strict control over
access to data to safeguard it and adhere to various data protection
policies within your organization. Unity Catalog provides a centralized
management method as data access policies are applied across all relevant
workspaces and data assets.

The access control mechanisms use identity federation, allowing
Databricks users to be service principals, individual users, or groups. In
addition, SQL-based syntax, the Databricks UI, or even Terraform and APIs
can be used to provide and control fine-grained access across a wide range
of resources, including schemas, tables, views, clusters, notebooks, and
dashboards.

Let’s look into how you can use ANSI SQL to grant permission scopes
on securable objects like tables or locations to principals like groups, users,
or service principals. As a best practice, use groups for securing access to
tables and owning securable objects. If a group owns an object, then any
users in that group are owners.

GRANT <privilege> ON <securable type> <securable_name> TO
‘<principal>’
GRANT SELECT ON iot.events TO engineers

The same functionality is also available via Databricks Ul in an easy-to-
use point-and-click manner, which helps for easy access and auditing on
the spot, as shown in Figure 5-9.

101

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Grant on loans.public.category X

O Users also require USE CATALOG and USE SCHEMA on the parent catalog and schema to
perform actions in this table. Learn more

Principals

Privileges

APPLY TAG gives ability to apply tags to an object
MODIFY
SELECT gives read access to an object
ALL PRIVILEGES gives all privileges @

Cancel

Figure 5-9. Granting permissions on a UC table

In addition, Databricks offers the ability to set these ACLs on objects
via REST API or CLI, which means that Unity Catalog can support and
power anything, from legacy entitlement request processes to modern
dev/sec/ops initiatives.

Data Lineage

Data lineage is the process of tracking data flows from their source to their
destination. It has gained significance due to the large volume of data
processed through complex transformations and serves various purposes,
including auditing and debugging. Thus, data lineage has become vital

in understanding data movement, tracking, monitoring jobs, debugging
failures, and tracing transformation rules.

102

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Unity Catalog has end-to-end data lineages for all workloads, giving
visibility into how data flows are consumed. Data lineage is automatically
aggregated across all workspaces connected to a Unity Catalog metastore,
which means that the lineage captured in one workspace can be seen in
any other workspace that shares the same metastore.

Unity Catalog provides users with both table- and column-level lineage
in a single lineage graph, giving users a better understanding of what a
particular table or column is made up of and where the data is coming
from. Users can easily follow the data flow through different stages, gaining
insight into the tables and fields’ relationships.

Further, the Unity Catalog tracks lineage for notebooks, workflows,

ML models, and dashboards. This improves end-to-end visibility into how
data is used in your organization and allows you to understand the impact
of any data changes on downstream consumers. See Figure 5-10.

E retention_prod churn.churn_prediction

(5]

retention_prod.churn_bronze landing_z retention_prod.churn_gold.chum,_featu
Wy E oy

Figure 5-10. Unity Catalog lineage

Data lineage holds critical information about the data flow and uses
Unity Catalog’s common permission model. This means that users with
appropriate permissions can view the lineage data flow diagram, thus
adding an extra layer of security.

Finally, Unity Catalog also offers rich integration with various data
governance partners, such as Collibra and Purview, via Unity Catalog REST
APIs, enabling easy export of lineage information to these partner catalogs.

103

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Data Access Auditing

Unity Catalog automatically captures user-level audit logs and records

the data access activities. These logs encompass various events

associated with the catalog, such as creating, deleting, and altering
multiple components within the metastore, including the metastore

itself. Additionally, they cover actions related to storing and retrieving
credentials, managing access control lists, handling data-sharing requests,
and more.

The built-in system tables let you easily access and query the account’s
operational data, including audit logs, billable usage details, and lineage
information.

We will do a deep dive into system tables later in the book when
discussing observability in Chapter 9.

Data Search and Discovery

Unity Catalog offers a unified UI across the platform with enhanced
search capabilities. Further, it leverages a common permissioning model
to ensure security, enabling users to access assets they have access to.
It allows tagging and documenting data assets, offers a comprehensive
search interface, and utilizes lineage metadata to represent relationships
within the data.

As we will discuss in Chapter 14, Databricks has greatly enhanced the
platform’s search and discovery capabilities by using LLMs and GenAlI
capabilities.

104

https://doi.org/10.1007/979-8-8688-0444-1_9
https://doi.org/10.1007/979-8-8688-0444-1_14

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Row-Level Security and
Column-Level Masking

Organizations are continuously striving to protect and secure their data,
and one important way they are looking to do so is through row and
column-level security. This feature is now available in the Unit Catalog-
enabled Databricks workspaces.

Row Filters

Row filters allow you to apply a filter to a table so that subsequent queries
only return rows for which the filter predicate evaluates to true. A row filter
is implemented as a SQL user-defined function (UDF). A row filter accepts
zero or more input parameters where each input parameter binds to one
column of the corresponding table.

Create a Row Filter

CREATE FUNCTION <function _name> (<parameter name>
<parameter type>, ...)
RETURN {filter clause whose output must be a boolean};

Apply the Row Filter to a Table

ALTER TABLE <table_name>
SET ROW FILTER <function _name> ON (<column_name>, ...);

Let’s look at an example. We want to create a function to filter data for
the U.S. region. If the function is called by a user in the admin group, the
RETURN_IF condition will be passed and all the data; otherwise, RETURN_IF
will return the rows with region="US".

105

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

CREATE FUNCTION us_filter(region STRING)
RETURN IF(IS_MEMBER('admin'), true, region="US");

ALTER TABLE sales SET ROW FILTER us filter ON region;

Column Masks

Column masks let you apply a masking function to a table column. The
masking function gets evaluated at query runtime, substituting each
reference of the target column with the results of the masking function. For
most use cases, column masks determine whether to return the original
column value or redact it based on the identity of the invoking user.
Column masks like row filters are expressions written as SQL UDFs.

CREATE FUNCTION <function name> (<parameter_name>

<parameter type>, ...)

RETURN {expression with the same type as the first parameter};
ALTER TABLE <table_name> ALTER COLUMN <col name> SET MASK
<mask_func_name> [USING COLUMNS <additional columns>];

In this example, if the user, the query results will mask the SSN

numbers for nonadmin users.

CREATE FUNCTION ssn_mask(ssn STRING)
RETURN IF(IS MEMBER('admin'), ssn, ™tkk*").

ALTER TABLE users ALTER COLUMN table ssn SET MASK ssn_mask;

Dynamic Views vs. Row Filters
and Column Masks

Now, an important question is why row-level filters are needed when

Databricks already has dynamic views, which help users create abstracted,

106

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

read-only views of one or more source tables. Further, dynamic views, row
filters, and column masks let you apply complex logic to tables and process
their filtering decisions at query runtime.

Let’s discuss an important distinction between the two. Creating a
dynamic view defines a new table name that must not match the name
of any source tables. This abstraction layer ensures data integrity and
prevents unintentional alterations to the core data. As a best practice, use
dynamic views if you need to apply transformation logic such as filters and
masks to read-only tables and if it is acceptable for users to refer to the
dynamic views using different names than the source tables.

On the other hand, row-level filters and column masks apply logic
directly to the table itself, and users don’t have to deal with new or
different table names or aliases. Again, use row filters and column masks
if you want to filter or compute expressions over specific data but still
provide users access to the tables using their original names.

Delta Sharing

Organizations seek to securely exchange data with their customers,
suppliers, or partners to unlock further business value. However, a key
requirement is that data sharing should happen securely to establish
trust in data quality, security, and privacy. Some of the most common use
cases for data sharing are data monetization with customers, B2B sharing
with partners, suppliers, or intra-company data sharing among various
departments.

Data sharing is not a new concept, and traditionally, organizations
have deployed two main methods to do so. The first is via self-built
solutions or tools via APIs, JDBC/ODBC, or file transfers via SFTP. The
second is via commercial software vendors. The problem with the first is
around scalability and infrastructure maintenance, while the problem with
the second is costs and a lack of flexibility in terms of data access.

107

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

An Open Standard for Data Sharing

Databricks Unity Catalog comes with Delta Sharing, an open protocol
for securely sharing data internally and across organizations in real time.
Delta Sharing is fully integrated with Unity Catalog and allows you to
centrally manage and audit the shared data across organizations.

Some of the differentiators or benefits of delta sharing include
accessing data where it resides without creating any copies or moving
to other platforms. Further, you can integrate Delta Sharing with either
open-source clients (e.g., Pandas, Spark) or commercial clients (Power BI,
Databricks and others) that support the protocol.

Delta Sharing is a transformative solution to access and share data.
Let’s see how Delta Sharing works.

How Delta Sharing Works

There are three main ways to share data with Delta Sharing:

o The Databricks-to-Databricks sharing in which both
the provider and the recipient are on Unity Catalog-
enabled workspaces. It has some advanced features like
notebook sharing, Al Model Sharing, data governance,
auditing, and usage tracking for both providers and
recipients.

o The Databricks open sharing protocol allows a
provider with a Unity Catalog-enabled workspace to
share data with a recipient on any computing platform.

¢ A user-managed implementation of the open-source
Delta Sharing server, which lets you share from any
platform to any platform, whether Databricks or not.
This is open sourced with instructions at https://
github.com/delta-io/delta. See Figure 5-11.

108

https://github.com/delta-io/delta
https://github.com/delta-io/delta

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Provider Data Recipient

p—— i) PowerBI

permissions iz
) £ DELTA SHARING Spar
. T [— I B —— " Al weindiis
ﬁ u'_. Delta Sharing Protocol I"I P

':i' +obleou

Delta Lake Table Delta Sharing Server
Any Sharing Client

Figure 5-11. Delta Sharing in action

Let’s examine how to set up Delta Sharing. The first step is for the data
provider to register a Delta Lake table with the Delta Sharing server. This is
done by creating a share (a read-only collection of data objects like tables,
views, etc.) in a UC-enabled workspace.

CREATE SHARE IF NOT EXISTS test share

ALTER SHARE test share
ADD TABLE test table

The next step is to create a recipient, basically an individual or
organization gaining access to a share.

CREATE RECIPIENT IF NOT EXISTS, recipient;

Once the recipient is created, each recipient gets an activation link
that the recipients can use to download their credential. The Delta
server identifies and authorizes the recipient/consumer based on these
credentials. See Figure 5-12.

109

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

You've been given access to a dataset
through Delta Sharing.

" Download Credential File #

This credential file can only be downloaded once, so don't lose it.

Figure 5-12. Confirmation of Delta Sharing

The recipient can download the credential file and then use it to access
data. One key point to note is that the credential file is a single download
only. The recipient can now use the file to authenticate and access data
using various methods, such as Pandas, Java, or even Power BI.

Many open-source and commercial partners trust Delta Sharing,
and Databricks also works with data providers to share data across the
ecosystem. See Figure 5-13.

Open Source Clents

RAes s [Gowmance |
™ oondes T
Spo&z J4d pan

o 4 datobricks)
presto.® D trino sitablooy A Powerd c EmmuTa privacera

@ r“;. Qlik@ b Locker (dm‘o B hpcon Ay £<F Alation 5 collibra
85

ORACLE Cloud

M Nasdag 5% Giobal [My precisely [Z[saFEcRARM 4 ariassiaN FOURSGUARE

yipitoara |y veraset @rearc dunfbradstrel @heaithvesty S ACXIOM CART®

W AccuWeather B Lexistionis <) Facteus

Figure 5-13. Customers who use Delta Sharing

To summarize, Unity Catalog unlocks Delta Sharing, which allows you
to do secure in-place data sharing for data in Delta Lake to any tool that
supports Delta Lake.

110

CHAPTER 5 DATA GOVERNANCE WITH UNITY CATALOG

Conclusion

Databricks recognized two critical areas that needed attention: discovery
and governance. Before Unity Catalog, data cataloging and governance
were disjointed and cumbersome. With Unity Catalog, Databricks created
an in-house solution that would seamlessly integrate with its ecosystem.
Unity Catalog is the foundation for the Data Intelligence Platform and all
the GenAl use cases that organizations are looking to deploy.

Unity Catalog serves as a central repository for all data assets,
including files, tables, views, dashboards, and more. It provides a robust
data governance framework, ensuring proper control and oversight.

An extensive audit log records all actions performed on data stored in a
Databricks account. Finally, Unity Catalog seamlessly ties in with other
components of the Databricks ecosystem.

111

CHAPTER 6

Data Engineering
Part 1: Orchestrating
Data Pipelines Using
Databricks Workflows

The goal of orchestration is to configure multiple tasks into one complete
end-to-end process or job. The orchestration service also needs to react
to events or activities throughout the process and make decisions based
on outputs from one automated task to determine and coordinate the
next tasks. Finally, orchestration tools must provide full monitoring and
observability capabilities to enable data engineers to have full visibility of

their pipelines. See Figure 6-1.

© The Editor(s) (if applicable) and The Author(s), 113
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_6

https://doi.org/10.1007/979-8-8688-0444-1_6#DOI

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

" Dota Engineering - Delta Live Tables | |
< Warkflows | |

Figure 6-1. End-to-end architecture of Databricks workflows

Databricks workflows provide simple, reliable, and easy-to-use
functionality that enables organizations to tackle the challenges of data
orchestration efficiently. Data teams can easily create and manage
multistep pipelines that transform and refine data and train machine
learning algorithms within Databricks workspaces, thus saving time and
effort of managing a separate tool. In this chapter, we will explore some key
concepts of Databricks workflow jobs and examine the features that make
it the orchestration platform of choice for Databricks lakehouses.

Databricks Workflow Jobs

Databricks workflows offer a unified and streamlined approach to
orchestrating your data, BI, and Al workloads. You can define data
workflows through the workflow user interface or programmatically using
APIs, making them accessible to both technical and nontechnical teams.

Databricks workflows are similar to Azure Data Factory or Airflow,
some popular orchestration services. Although these tools provide features
for complete orchestration services, they do have a learning curve. They
are an additional tool in your data stack, adding more maintenance and
cost of ownership to your data platform.

114

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS
Databricks workflows have evolved significantly over the last few

years, not only with basic functionality such as scheduling, managing
dependencies, Git integration but also by adding advanced-level features
like retires, duration threshold, and repair and conditional tasks. These
features give data engineers the capabilities to orchestrate their entire
workload on the Databricks platform. Further, it is essential to note that
there are no extra costs using workflows. The cost is for the underlying
clusters/compute that the jobs use while executing.

In the next section, we will look at some of the building blocks and
features of Databricks workflows.

Databricks Jobs and Tasks

Let’s first understand the concept of a Databricks job. A Databricks job is a
unit of orchestration within Databricks workflows. Basically, it is a method
for running data processing and analysis applications in the Databricks
workspace.

A job can consist of one or many tasks, each representing a specific
unit of work such as an individual step or action. A job can consist of a
single task or a large workflow with multiple tasks chained together by
complex dependencies. For example, a data project might consist of
ingesting data from various sources, transforming that data through the
medallion architecture, and serving it via both as a SQL dashboard and an
ML model. The entire flow can be a single job, and each activity is a task
joined via dependencies.

Next, we will look into how you can create your first job.

115

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

Configure Databricks Job Tasks:
Task-Level Parameters

As discussed, a task is the building block of a Databricks job. Figure 6-2
provides a snapshot of how to create a task. Let’s examine some of the
required parameters that you need to provide to do so:

o Type: Different “types” of tasks can be executed within
a job. You can execute Databricks notebooks, JARs,
Python Scripts and Wheels, SQL Queries, Delta Live
Tables (DLT) Pipelines, or even DBT jobs. You can
select the Type parameter depending on where your
code resides.

Runs Tasks

Task_1 l

Task name* Task_1

Type" Notebook

Source* Motebook
z Python script
it ythan strip
Python wheel
Cluster* &
s0L
Dependent libraries Delta Live Tables pipefine
Parameters (0 dut
JAR

Maotifications (0 Spark Submit

Retries = hdd

Figure 6-2. Creating a task

116

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

e Source: This parameter is primarily used when
Notebook is selected as the type. A Databricks
notebook is one of the most common utilities that
data engineers utilize as a source of their pipeline
code. These notebooks can either be in a Databricks
workspace or stored in a Git repository like GitHub.
Databricks workflows provide the functionality
of calling these notebooks both directly from the
workspace and from a Git repository via Git integration.
Therefore, in the source, users select the path of the
reference notebook in this parameter.

e Cluster: This field allows us to define the type of
compute that would be used to run the job. Three
options are available.

o Job cluster: Job clusters have been the most
common/preferred way to run your jobs in a
production environment. They are pure ephemeral
clusters, which means they get spun up once the
job starts, execute the job, and then terminate when
the job ends. Further, job clusters are around 50%
cheaper than interactive/all-purpose clusters. It
is highly recommended that one uses job clusters
for production workloads. As a best practice, use
the latest LTS version of cluster runtime for your
workloads.

o Interactive clusters: Interactive or all-purpose
clusters are best used for developing ETL pipelines,
testing jobs, and ad hoc queries. Interactive clusters
should ideally not be used in production as they are
not cost-efficient.

117

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

o Serverless: Serverless workflows are fully managed
services that are operationally simpler and more
reliable. Serverless compute provides capabilities
like auto-optimization, selecting appropriate
compute resources, automatic retires to job failures,
etc. Serverless jobs were released very recently, and
we believe they provide excellent compute for short
and frequently running jobs.

o Dependent libraries: The configuration allows users
to specify any libraries required for a task’s successful
execution. All libraries specified in the configuration
are installed when the clusters start and are available
when the job runs. These libraries could be installed
from a public repo like Maven/Cran or from an ADLS/
S3 folder.

o Parameters: Parameters provide values to a
parameterized notebook. Developers often design
parameterized notebooks for abstraction, so one
notebook can be reused in multiple tasks with different
parameter values rather than creating copies of the
same task. This configuration lets you dynamically set
and retrieve parameter values across tasks to build
more mature and sophisticated data pipelines.

« Notifications: Notifications allow users to receive
automatic updates when the task starts, succeeds, fails,
or runs beyond the defined duration thresholds. Users
can configure alerts to be notified via email or other
communication channels like Slack, Teams, PagerDuty
(and more), providing real-time observability of your
task’s execution.

118

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS
o Taskretries: Task retries determine when and how many

times failed runs are retried. This feature enhances your
workflows’ reliability and fault tolerance by automatically

attempting to recover from transient issues.

e Duration threshold: This configuration helps you
define the execution time limits for a task. It either
warns you if the task runs longer than expected or
alerts you and terminates the task if it runs beyond the
maximum set completion time.

After defining the parameter values for some or all configurations, you
can hit the Create Task button to create your first task. Similarly, going
back to our example, you can create tasks for all the other steps that need
to be completed. Once your tasks have been created, let’s move on to some
of the job-level parameters you can define.

Configure Databricks Job Tasks:
Job-Level Parameters

One of the key capabilities of any orchestration service is to run the jobs on
a schedule, and the job-level Schedules & Triggers parameter does exactly
that. Users can configure Databricks jobs to run either at a predefined time
(schedule) or on a trigger (event-based or continuous).

Let’s explore workflow triggers further and see different scenarios
where they could be best used.:

e Scheduled: The Scheduled trigger enables you to
automate the execution of your job by defining a
specific time for it to run. It is important to note that
this batch-based scheduling is not intended for low-
latency use cases, as Databricks enforces a minimum
of 10 seconds between subsequent runs. See
Figure 6-3.

119

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS
Schedules & Triggers

Trigger Status
o Active

Paused

Trigger type

Scheduled

Schedule type

Schedule
Every Day ~ |at| 01 v (1| 42 v (UTC+00:00) UTC

Show cron syntax

Gance m

Figure 6-3. Scheduled trigger

o File Arrival: File arrival triggers a Databricks workflow
when a new file arrives in a particular configured
cloud storage folder. This is useful when the file arrival
schedule is irregular and you do not want a cluster
to be always up and running to monitor the folder.
One important thing to note is that you can only use
this trigger in a Unity Catalog-enabled workspace.
Further, one must use an external location added in
the UC metastore and have READ permissions to the
folder and Can Manage permissions on the job. See
Figure 6-4.

120

CHAPTER6 DATAENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS
Schedules & Triggers

Trigger Status

O Active

Paused

Trigger type

File arrival v

Job currently does not have failure notifications. Consider using email or webhook notifications to be notified when
trigger evaluation fails.

File arrival triggers monitor cloud storage paths of up to 10,000 files for new files. These paths are either volumes or external
locations managed through the Unity Catalog.

Storage location @

lﬂ\d vanced ~

Minimum time between triggers in seconds O

Wait after last change in seconds ©

Figure 6-4. File arrival trigger

There are two other parameters one can set in the
file arrival trigger:

e Minimum time between triggers in seconds: This
is the minimum time to wait before another run is
triggered after a run is completed.

e Wait after the last change in seconds: This is the
time to wait after a new file arrives before a run
triggers. If another file arrives within this time

frame, the timer will be reset.

121

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

o Continuous: As the name suggests, this trigger is for
jobs running continuously until stopped. By setting the
trigger type, Databricks will always ensure one active
run of that job. A new job run will automatically kick off
if the previous run completes or fails. You cannot use
task dependencies with a continuous job, nor can you
set retry policies.

o Table update: This trigger monitors for changes
such as update, delete etc., in a Unity Catalog table
(managed or external). See Figure 6-5.

Schedules & Triggers

Trigger Status

© Active

Paused

Trigger type

Table update

Job currently does not have failure notifications. Consider using email or webhook notifications to be notified when trigger
evaluation fails.

Table update triggers monitor tables for data changes (e.g. update, merge and delete). These tables can be managed or external tables in
Unity Catalog

Tables O/

demao.test.table
-+ Add table

Advanced w

Test connection Cance! m

Figure 6-5. Table update trigger

Job Tags: Job tags allow users to easily identify and

locate jobs by ownership, topic, and department. Job
tags propagate to the job cluster and underlying VMs,
which helps users assign charge-backs to a particular

122

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

business unit. Furthermore, applying tags simplifies
the process of filtering and identifying clusters based
on specific criteria. This makes tracking, monitoring,
and optimizing resources within your Databricks
environment easier.

Job parameters: Job parameters give users more
flexibility and control over their tasks in the

workflows. They provide an easy way to add granular
configurations to a pipeline, which is useful for reusing
jobs for different use cases, a different set of inputs, or
running the same job in different environments (e.g.,
dev staging and prod environments).

Job parameters allow users to provide both static values and dynamic
values (that are provided by the system at runtime). An example of the
dynamic value would be, say, the job ID is defined as {{job.id}} on the
Parameter tab, which is the unique identifier assigned to the job. See
Figure 6-6.

Job parameters X

Add job parameters that are automatically pushed down to tasks that take key/value-based
parameters. The job parameters can also be referenced explicitly in individual tasks.

Key Value

is_incremental True {) 5]

{
Cancel m

Figure 6-6. Job parameters

123

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

Table 6-1 identifies different parameter types for different task types.

Table 6-1. Different Task Types in a Databricks Workflow

Task Type Parameter
Notebook Key value pairs that set a value of a notebook widget
JAR Array of strings passed to the Java main method

Spark Submit Array of strings passed in for additional spark-submit arguments
Python Script Array of strings retrievable using argument parse in Python

Python Wheel Can specify positional arguments as array of strings; or keyword
arguments as key-value pairs

To summarize, with job parameters you can parameterize your tasks
that will give you more reusability of your jobs.

With this, we looked into some key features and configurations while
setting up your Databricks jobs and tasks. In the next section, we will
discuss some of the more advanced and newer features of Databricks
workflows.

Advanced Workflow Features

In this section, we will look into some of the advanced features of
Databricks workflows such as cluster reuse, conditional execution, etc.

Cluster Reuse: This feature allows users to utilize a job cluster across
multiple tasks. Let’s understand why it is such a useful feature.

Consider that there is a job that consists of five tasks. Without this
feature (as it used to happen earlier), a new cluster would spin up when
each task started and terminated when it ended. This led to five clusters
being spun up and terminated, thus leading to more time to execute the
entire job. But with the cluster reuse feature, you can configure only one

124

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS
cluster to spin up to run all the tasks and then terminate. This reduces the

cluster initialization time for each task, leads to efficient cluster utilization,
and decreases overall job latency.

Another important aspect of this feature is that the user still has the
flexibility, if needed, to configure a particular cluster for a specific task.
Continuing on our previous example, if a particular task requires a cluster
of different configurations, for example, a compute-intensive task, one can
configure a bigger cluster specifically for the task. Therefore, the different/
bigger cluster would spin up for this particular task.

Repair and Re-run: This feature enables users to repair/rerun failed or
canceled jobs by running only the subset of failed tasks and any dependent
tasks with the job. Because successful tasks are not run again with this
feature, it reduces the time and resources required to recover from
unsuccessful job runs.

Now, continuing from our previous example, suppose Task_3 (the
third task) was unsuccessful. After fixing the cause of the failure, you can
rerun the workflow starting from Task_3 instead of running all the tasks.
This feature is particularly useful if the tasks prior to the failure were long
or expensive to run. This eliminates the need to rerun those tasks, again
reducing redundancy.

Conditional Execution of Tasks: Conditional execution helps build a
dependency chain between two tasks within a job based on a condition.
This is an important feature that helps orchestrate multistage data
pipelines as it allows users to better control over complex workflows and
implement advanced orchestration scenarios. In conditional execution,

a task is executed only if the status of upstream tasks meets the specified
condition.

Conditional execution consists of two main capabilities, the “If/else
condition task type” and “Run if dependencies,” which together enable
users to create not only a branching logic in their workflows but also more
sophisticated dependencies between tasks in a pipeline thereby giving
them more flexibility into their workflows.

125

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS
o If/else condition task type: The if/else Task type, as

name suggests, enables users to add branching logic
to their jobs. The If/else condition task is used to run
a part of a job DAG based on the results of a Boolean
expression given as a condition.

e “Runif” dependencies: The “Run if” dependencies
are task-level configurations that provide users with
more flexibility in defining task dependency. Take for
example a task that has several dependencies over
multiple prior tasks; users can now define what are
the conditions that will determine the execution of
the dependent task. These conditions are referred
to as “Run if dependencies.” One can now define
whether the dependent task will run if all dependencies
succeed, at least one succeeded, all finished regardless
of status, etc.

The following are the task-level “Run if” dependencies available:

o All succeeded (all dependencies are executed and
succeeded)

e Atleast one succeeded (at least one of the
dependencies has succeeded)

e None failed (none of the dependencies have failed and
at least one has executed)

o Alldone (all dependencies completed and at least one
has executed)

e Atleast one failed (at least one dependency has failed)

e Allfailed (all dependencies have failed)

126

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS
Late Jobs: Data teams usually have hundreds of jobs running in

production. When you run a large number of jobs on the platform, users
find it challenging to monitor all these jobs in real time and usually

know about the status of the individual jobs only once they have been
completed. This could be problematic, especially for long-running jobs, as
it could lead to missed SLAs and prove costly.

For example, let’s assume a particular job takes around 40 minutes to
complete, and, for some reason, on a particular day, it took more than 3
hours to complete. First, there is no way to know that the job is running
way over its usual runtime, and this would lead to higher costs as well.

The late job feature in Databricks workflows enables users to manage
this use case efficiently. It allows users to define a “soft timeout” after
which they receive a warning that a job or task run is taking longer than
expected. Additionally, users can set the “timeout duration” after which
the job will be stopped. See Figure 6-7.

127

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS
Lale_-Jobs_Demo o

Retries () b Add

Duraton throuhold Wa gl Timoout

Figure 6-7. Latejob run

So continuing with our example, the user can set the Warning option
at 1 hr and Timeout option at 1.5 hrs. If the job takes more than 1 hr, a
duration alert will be sent to the configured email(s). Further, if the job
exceeds 2 hrs, the job will be stopped from executing. This gives users
better control over their long running jobs.

Run Job Task Type - Modularize Jobs: Orchestration jobs can
have multiple tasks with complex dependencies between them. More
often than not, managing these complex jobs becomes challenging in
terms of defining, testing, and troubleshooting. Modern software best
practices usually emphasize modularizing complex code into reusable
logical chunks.

128

CHAPTER6 DATAENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS
Databricks Workflows Task has a task type “Run Job.” This allows

users to run a “child job” within a “parent job,” which makes the overall
workflow easier to comprehend and maintain. This effectively allows
you to modularize your jobs, as you can now divide your DAGs into
logical chunks or child jobs, which can be managed separately. Further,
these modular child jobs can be reused in different parent workflows by
parameterizing them. See Figure 6-8.

Jobs-as-a-task

[Run Job m v

Python script

Python wheel

Sle M New |

Delta Live Tables pipeline
dbt

JAR

Spark Submit

Run Job m v

Figure 6-8. Runningjob as a task

Now, with Run Job as a task type, users can call the child jobs
(previously defined) within the parent jobs, enabling them to create
modular workflows.

In the next section, we will look into another aspect: monitoring
Databricks workflows both at the job and task levels.

129

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS

Monitoring Data Pipelines

Data engineers/admins need to have complete visibility of all the jobs
running on the orchestration platform to see the status of each job

and what jobs need troubleshooting in case they fail, thus having full
monitoring and observability capabilities. It will be challenging to create
custom dashboards to monitor your hundreds of jobs.

Databricks workflows give users a unified view of all job runs through
its Job Runs dashboard. With this, users not only can view all the jobs that
ran but also dive deep into individual runs for each job. Let's look into this
in a little more detail.

Job Run dashboard: The Job Run dashboard gives users a
comprehensive real-time view of all their jobs in a single workspace. These
are some of the most critical features in this dashboard:

1. Finished Runs Chart: This stacked bar chart
depicts the number of job runs completed in the
last 48 hours, with the option of redefining the
time interval. The chart shows failed, skipped, and
successful job runs.

2. Jobs List This table details all the job runs within the
workspace. It is helpful as one can quickly assess the
job runs for any job and navigate to a particular job
run from this table if human intervention is needed
in case the run fails.

3. Top 5 Error Types: This table lists the most frequent
error types for all the jobs that ran within the
selected timeframe. It helps identify a summary of
the top error types across all workloads, enabling
users to troubleshoot faster, take proactive
measures, and minimize the negative impact on
business operations downstream. See Figure 6-9.

130

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS

WORKFLOWS

Workflows

e Do L Tk

Figure 6-9. Workflow monitoring dashboard

Job Matrix View: Previously, we saw the job run dashboard, which

gives an overview of all the jobs in real time. Now as a user one also needs

to keep track of all the runs for an individual job. The Job Matrix View
allows users to assess all the job runs and quickly see the health of each
task within (see Figure 6-10).

Workflows » Jobs »

Simple Job i
Runs Tasks
Runs Start date [Previaus
= Jun 35 Jun 25 un 25 25 Jn 25
2
E V139
8
L.}
2 5
* I |
Lanting S EOOSPOEREPE SO EEREES
.
to tha filpn. | Canced rung
Run 1D Launched Duration Spark Status Error cade m
M 24BEGZAIEZ,. Menuslly Els Logs (& Succesded $
AGIBETOE00. Manually 555 Logs (@ Succesded
73424374085, Manual Iy &85 Logs & Succoeded
GIE6O52STE. Manually 575 Logs @ Succended
M 6326065638, Manually Imas L (@ Succeeded

Figure 6-10. Single job status

131

CHAPTER6 DATA ENGINEERING PART 1: ORCHESTRATING DATA PIPELINES USING DATABRICKS
WORKFLOWS
Hovering over or clicking ae specific task allows us to identify the cause

of the failure as the error message is displayed. Further, one can quickly go
to a particular task and even to the underlying notebook. This is useful for
seeing which step errored out and for troubleshooting quickly.

Conclusion

In this chapter, we explored how to orchestrate your data pipelines
using Databricks workflows. Databricks jobs enable you to execute all
your data processing and analysis tasks within a Databricks workspace.
A job consists of one or multiple tasks that can be combined using
dependencies. We then created a simple task and learned about the
different parameters required for configuration at the task and job levels.
We also learned about more advanced configurations, such as cluster
reruns, where you can reuse a single cluster for all your tasks, and how to
configure conditional dependencies for your tasks.

Finally, we examined the observability and monitoring aspects of
Databricks workflows with the job-run dashboard and Job-View Matrix. In
the next chapter, we will examine Delta Live Tables, which provides ETL
capabilities on the Databricks platform.

132

CHAPTER 7

Data Engineering
Part 2: Delta Live
Tables

It is no secret that good, reliable data is the foundation of the lakehouse
architecture. Organizations need clean, fresh, and reliable data to drive
their analytics and data science projects, which in turn help them make
decisions for key business initiatives.

However, most data engineers will agree that maintaining data quality
and reliability at scale is quite complex and tedious. Apart from writing
ETL transformations, they must spend much time on tasks like handling
table dependencies, recovery, backfilling, retries, or error conditions. They
must also manage the infrastructure, which turns simple ETL tasks into
complex data pipelines.

In this chapter, we will introduce you to Delta Live Tables (DLT), which
enable data engineers to concentrate on writing the transformation logic
(the “what”), while Databricks manages the rest (the “how”). We will start
with understanding what Delta Live Tables is and learn about concepts in
declarative programming. Then we will look at some of the key features of
DLT, including Change Data Capture (CDC), data quality and monitoring,
enhanced autoscaling, and more.

© The Editor(s) (if applicable) and The Author(s), 133
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_7

https://doi.org/10.1007/979-8-8688-0444-1_7#DOI

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

What Is Delta Live Tables?

Delta Live Tables makes it easy to build and manage reliable batch and
streaming data pipelines that deliver high-quality data on the Databricks
lakehouse platform. DLT uses a simple declarative approach using SQL
and Python that helps data engineering teams simplify ETL development
and management with pipeline development, automatic data testing, and
visibility for monitoring and recovery. DLT also automates infrastructure
management by handling cluster sizing, error handling, performance
tuning, and orchestration. Therefore, using DLT data, engineers can now
spend less time managing the tooling, focusing on data transformations,
and getting value from data.

So, what is the difference between Delta tables and Delta Live Tables?
Delta is a storage format, and the tables created on the underlying data are
called Delta tables. Delta Live Tables is a declarative pipeline development
that manages how data flows between Delta tables. See Figure 7-1.

V" Delta Live Tables

%@% @

Continuaus r rror Handling D s Pipelin tormat ,-,: Orchentrate Data 540 Analytics
i Batch or Stream Pipaline and Bl
Processing Hece.wery Opemt-ang)

Continuows or Bronze Zone Data Silver Zone Mode! Facts, Dims Gald Zone AlfML
Scheduled In ngest : Tranaformation and Aggrogates

Ao
— i
Spaﬁ \l_\-:?,\ Photon - - =

Dota Quality

Diata Sharing

£\ DELTA LAKE

Figure 7-1. Delta Live Tables overview

134

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

Before we proceed, let’s examine the different types of DLT datasets,
namely, streaming tables, materialized views, and views.

Streaming tables: A streaming table is a Delta table
that supports incremental data processing. It is
most suitable for ingestion workloads and pipelines
that require data freshness and low latency. It is
designed to read append-only data sources like
Kafka, Kinesis, or Auto Loader.

Materialized views: A materialized view (or live
table) precomputes and stores results and keeps
them fresh over time. It is refreshed according to the
pipeline’s update schedule and, more importantly,
incrementally, thus reducing processing costs.

Each time the pipeline updates, query results are
recalculated to reflect changes in upstream datasets.

Views: Views are temporary tables that should
not be exposed outside of the DLT pipeline. They
are just used like temp tables in standard SQL
processing. Views are not published to public
datasets.

Let’s move on and see how we can build a simple DLT pipeline and
explore some key features.

Data Ingestion Using DLT

The first step is to get data from DLT. This could be ingesting a number

of raw files in a cloud storage folder or directly connecting to a streaming
source like Kafka. It is important to note that data ingestion has to be
reliable and scale efficiently. Under the hood, DLT ingests data using Auto
Loader. We discussed Auto Loader in detail in Chapter 3. To recap, Auto

135

https://doi.org/10.1007/979-8-8688-0444-1_3

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

Loader incrementally processes new files as they land in the cloud storage.
It can infer schema automatically and evolve schemas as the use cases
require.

Listing 7-1 creates a Delta table called raw_txs and ingest JSON files
from cloud storage into this table. Please note that DLT manages all Auto
Loader configurations, like checkpointing, in the back end.

Listing 7-1. Creating a Streaming Live Table

CREATE STREAMING LIVE TABLE loan_bronze

AS SELECT * FROM cloud files('/demos/dlt/loans/raw_
transactions', 'json', map("cloudFiles.inferColumnTypes",
"true"))

Listing 7-2 involved a batch data ingestion. Let’s examine how to ingest
from a Kafka source.

Listing 7-2. Data Ingestion from Kafka

@dlt.table
def sales():
return (

(spark.readStream
.format("kafka")
.option("subscribe", 'sales trends"')
.option("kafka.bootstrap.servers", kafka bootstrap
servers tls)
.option("kafka.security.protocol”, "SSL")
.option("startingOffsets", "earliest")
.load()).select(col("key").cast("string").alias("eventId"),
from json(col("value").cast("string"), behavioral input
schema).alias("json"))

136

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

Before we build our silver layer, let’s examine some important

concepts, such as Change Data Capture and expectations.

Change Data Capture with DLT

One important use case during data ingestion, especially from databases
and data warehouses, is capturing Change Data Capture (CDC) events into
the data lake. CDC is a process of identifying any data changes, such as
inserts, updates, or deletes, made to your data sources and moving those
changes to the target.

Let’s look at an example of how CDC can be implemented using
Delta Live Tables. First, external tools, such as Debezium, Fivetran, Qlik
Replicate, etc., can capture and record the history of data changes, say
from external systems like databases, in logs; downstream applications
consume these CDC logs. See Figure 7-2.

cuents

products 128 customer_bronze_clean v customer_silver

= 1 GRLTA LAKE 0
ftlems = | [0] - =}

lransachons

r I Autoloader Delta Live Table Pipeline R
| | |1ncrementally load |
new data
\ | C|UI-II|F| S | .L —_————— [Sel configuration for applyChanges enabled to ‘.rue] |
; | I]| |
BLTS0L

M}’ SQL | | | | Apply Changes into |
External database e | : g :) | | > - . T . |

detaliole . -~ 1 —
| |

Figure 7-2. Change Data Capture with DLT

As a first step, we will move these logs into a cloud storage object or a
message queue like Kafka. In the previous section, we discussed how to
ingest data in the Delta Bronze Layer from either of these sources. Delta
Live Tables allows you to apply changes from CDC seamlessly your tables,
enabling incremental changes to flow through analytical workloads at
scale easily. Let’s quickly look into an example.

137

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

Before we begin to apply CDC, we need to ensure that the target table
has most up-to-date data from the source table, as shown in Listing 7-3.

Listing 7-3. Creating a CDC Table

CREATE INCREMENTAL LIVE TABLE customers
COMMENT "Clean, materialized customers”;

Once the table has been created, we use APPLY CHANGES to propagate
the changes to the target table, as shown in Listing 7-4.

Listing 7-4. Updating the Live Table

APPLY CHANGES INTO live.customers
FROM stream(live.customers cdc)
KEYS (id)
APPLY AS DELETE WHEN operation = "DELETE"
SEQUENCE BY operation date --primary key, auto-incrementing ID
of any kind that can be used to identity order of events, or
timestamp
COLUMNS * EXCEPT (operation, operation date, rescued data);

Note that while the CDC comes with INSERT, UPDATE, and DELETE
events, DLT, by default, applies INSERT and UPDATE events from any record
in the source dataset matching primary keys and sequenced by a field that
identifies the order of events. You must use APPLY AS DELETE WHEN in SQL
to handle DELETE events.

After CDC, we will move into another important feature supported by
DLT—Slowly Changing Dimensions (SCD)—for both type 1 and type 2. In
SCD Type 2, when the value of a record changes, a new line for the record
is created and becomes the current record, while the older one is closed. In
Type 1, there is only a simple append.

138

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

The following code explains how this can be easily achieved in
DLT. To create a SCD2 table, all we have to do is leverage APPLY CHANGES
with the extra option STORED AS {SCD TYPE 1 | SCD TYPE 2 [WITH
{TIMESTAMP|VERSION}}], as shown in Listing 7-5.

Listing 7-5. Creating a Slowly Changing Dimension Type 2 Table

APPLY CHANGES INTO live.SCD2_customers

FROM stream(live.customers cd)

KEYS (id)

APPLY AS DELETE WHEN operation = "DELETE"

SEQUENCE BY operation date

COLUMNS * EXCEPT (operation, operation date, rescued data)
STORED AS SCD TYPE 2 ;

We now move into another important aspect of DLT called
Expectations, which help maintain data quality throughout the DLT
pipeline.

Delta Live Tables Expectations

One of the most important issues data engineers face while building data
pipelines is ensuring proper data quality and establishing the trust of
end users in the data they are using. Further, engineers often struggle to
identify and resolve data quality issues once they discover them.

Delta Live Tables provides a data quality management feature called
Expectations that helps users define data quality and integrity constraints
within their DLT pipelines.

Expectations are optional clauses to which you constrain your DLT
dataset declarations. They apply data quality checks on each record
passing through a query into your table. See Listing 7-6.

139

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

Listing 7-6. Delta Live Tables Expectations

CREATE STREAMING LIVE TABLE loans silver (

CONSTRAINT "Payments should be this year™ EXPECT (next_
payment_date > date('2020-12-31')),

CONSTRAINT "Balance should be positive’ EXPECT (balance > 0
AND arrears_balance > 0) ON VIOLATION DROP ROW,

CONSTRAINT ~Cost center must be specified” EXPECT (cost
center code IS NOT NULL) ON VIOLATION FAIL UPDATE

)

AS SELECT * from loans bronze

In the previous query, we have defined a few constraints on the
DLT table. An expectation typically consists of three parts: description,
invariant, and action when the condition fails. A description is a unique
identifier and allows you to track the metrics for the particular constraint.
An invariant returns a Boolean expression (True/False) based on the
defined condition. Finally, action defines what to do if the condition fails.
There are three actions you can apply to the failed records.

e« Warn: In this action, the invalid records are written to
the target tables, but failure is reported in as a metric
for the dataset.

¢ Drop: The invalid records are dropped before the target
table is written, and the number of records dropped is
recorded.

e Fail: In this, the DLT pipeline is stopped, and the
records have not been updated. Users need to check
and update before manually restarting the pipeline.

Later in this chapter we will see how you can view data quality metrics
in the DLT monitoring UI. See Figure 7-3.

140

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

cleaned_new_txs X

Details Data quality Schema Flows

® Written 93.6% (9,364)
® Dropped 6.4% (636)
Expectations Al | Faiures only |
Name Action Fail% o Foled
records
Payments should be this year ALLOW == 100% 10000
Balance should be positive DROP ' 6.4% 636

Figure 7-3. Data quality metrics

After creating the silver table, let’s do some transformations and create
a Gold table (see Listing 7-7), which will be the final in our medallion
architecture.

Listing 7-7. Creating a Gold DLT Table

CREATE LIVE TABLE loans gold
AS SELECT sum(revol bal) AS bal, addr state AS location code
FROM live.historical txs GROUP BY addr state
UNION SELECT sum(balance) AS bal, country code AS location_
code FROM live.cleaned new txs GROUP BY country code

We have defined the logic for our DLT so far. Let’s create our DLT
pipeline.

141

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

Creating a DLT Pipeline

After defining the logic for our bronze, silver, and gold tables, let’s combine
everything and create our first DLT pipeline. First, navigate to the DLT Ul in
the Dela Live Tables tab and click Create Pipeline, as shown in Figure 7-4.
JSON mode is also available for quick parameter population, as shown in
Figure 7-5.

Create pipeline n | mon

Ganaral Fineiira rama & —

Source code

Figure 7-4. Delta Live Tables user interface

142

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

"id": "62dcade2-cba2-4e75-ad15-bBT813b4aB79",
“pipeline_type": "WORKSPACE",
"clusters": [
{
“label": "default",
“autoscale": {
“min_workers": 1,
“max_workers': 5,
"mode': "ENHANCED"

¥
1,
"development”: true,
"continuous": false,
“channel™: "CURRENT",
“photon": false,
"libraries": [
{
"notebook": {
"path": “/fUsers/nikhil.gupta@databricks.com/d1t-1loans/81-DLT-Loan-pipeline-SQL"
}
}
1,
"name": “DLT_Demo",
“edition": "ADVANCED"
"storage": "dbfs:/pipelines/62dcaBe2-cba2-4e75-ad15-b8f8f3b4aB79",
"data_sampling": false

Figure 7-5. Sample DLT pipeline JSON file

Here are the key parameters that must be provided:

e Source code: This is the path to the notebooks or files
containing the pipeline code. The source code could
be in multiple notebooks or files, and you can give file
locations for all of them in this parameter.

¢ Product edition: DLT comes with four SKUs: Core, Pro,
Advanced, and Serverless. The difference is the features
they support. A comparison table is given here:

https://www.databricks.com/product/pricing/
delta-live

143

https://www.databricks.com/product/pricing/delta-live
https://www.databricks.com/product/pricing/delta-live

CHAPTER 7

DATA ENGINEERING PART 2: DELTA LIVE TABLES

Pipeline mode: We can run DLT pipelines in Triggered
or Continuous mode. In Triggered mode, the pipelines
update the data once and shut down until you run

the pipeline manually or schedule the update. In
Continuous mode, pipelines run continuously and
ingest/process new data as it arrives.

Compute: In this part, you define the compute
resources for pipeline running. You can select a cluster
policy if you want to use one for your cluster. Next

is cluster mode, which has the options Enhanced
Autoscaling, Legacy Autoscaling, or Fixed size. As a best
practice, use Enhanced Autoscaling for your pipelines.
We will discuss this later in the chapter. Finally, there

is an option to select Photon Acceleration for your
workloads.

You can run the pipeline in Development or Production mode to

optimize pipeline execution. When the pipeline runs in Development

mode (default), the cluster is reused in multiple runs to avoid the restarts.

Also, the pipeline retries are disabled, so you can quickly fix any errors.

In Production mode, the pipeline retries in case of operational issues like

cluster failure.

Once you have defined the appropriate parameters for your pipeline,

let’s run it once and see the results. Figure 7-6 represents the high-fidelity

lineage diagram for this DLT pipeline.

144

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

demos_dlt_loans
1]

Update details

Figure 7-6. DAG for a DLT pipeline

It is important to note that if a particular table in the pipeline is out
or you want to refresh a specific table without rerunning it, you can select
Select Tables for Refresh and choose the tables you need to refresh or
run again.

You can see table details, schema, and data quality metrics if you click
on any table boxes in the DAG (Figure 7-6).

Next, we will move forward and examine other aspects of DLT, such as
monitoring and logging, CI/CD, and enhanced autoscaling.

Logging and Monitoring

Each DLT pipeline emits all event logs to a predefined and unique storage
location. The DLT event logs contain all information related to a pipeline,
including audit logs, data quality checks, pipeline progress, and data
lineage.

145

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

The logs are also visible in the DLT pipeline run Ul page, where you
can quickly investigate the errors. DLT provides a variety of error-handling
capabilities, including retrying failed tasks, handling failed records, and

detecting and fixing data quality issues, but in a nice GUI format. See
Figure 7-7.

Al @ e | (D warning (& Error C Filter

{£) 2 days ago fiow_progress Flow ‘new_loan_balances_by_country' has COMPLETED.

@ 2 days ago flow_progress Flow "historical_txs' has COMPLETED.

(=) 2 days ago tlow_progress Flow ‘total_loan_balances' is PLANMING.

@ 2 days ago planning_lnformation Flow "total_lean_balances' has been planned in DLT to be execuled as COMPLETE_RECOMPUTE.
(5) 2 days ago flow_progress Flow "total_loan_balances' is STARTING.

@ 2 days ago flow_progress Flow “total_loan_balances' is RUNNING.

Figure 7-7. DLT task status

These logs are exposed as Delta tables and used for monitoring,
lineage, and data quality reporting using the BI tool of your choice.
Figure 7-8 shows a sample dashboard that can be built on DBSQL.

Retail ingestion quality tracker

This dustiboand iwstrage lhe Daks Live Table exsectalion metr s 3 Utk o Sate tally et e pesson poslise

The pipeine i1 Ncremantaly ConsuTEng nes data (sach hour o in real time) s mduted

crsinght B2 1Bl e L Table- Dogmition 10 viRealize the Deta Live Tatle ppeine.

0t e et Erupared using 4 SOL quiny cve Tha wakos o B fupstes/mvents (il Opes 42, 1-00T—fmpeet 41 Len-mubbanrd- data-prep fof MOt dets

Ingestion rate Ivalid data Incorrect input schema rate

3,300,000 536% 0.10%

Daily row ingested Quality Failure rate Invalid input schema

Dalty ingestsan snd fallure Cusiity stat par table

0O 0

o

/" o o

Figure 7-8. Dashboard for monitoring DLT job statuses

e —
\

146

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

Enhanced Autoscaling

Organizations are increasingly looking toward real-time and streaming
workloads to provide them with the freshest possible data for their
analytics and ML workloads, which can help them make decisions
faster. However, streaming workloads have spiky and unpredictable data
volumes, making it difficult for data engineers to avoid overprovisioning
compute infrastructure, leading to higher costs.

The DLT Enhanced Autoscaling algorithm improves on the standard
Databricks cluster autoscaling feature to handle streaming workloads
more efficiently. It optimizes cluster utilization for streaming workloads
to lower costs while ensuring your data pipeline has the resources to
maintain consistent SLAs. See Figure 7-9.

Compute Cluster policy C

None

Cluster mode

Enhanced autoscaling

Enhanced autoscaling
Legacy autoscaling

Fixed size
Use Photon Acceleration
Cluster tags
Add cluster tag

Figure 7-9. DLT “Enhanced autoscaling” option

The “Enhanced autoscaling” option maximizes resource utilization
by shutting down nodes when utilization is low while guaranteeing that
tasks are completed successfully. Further, when the workload increases,
it only scales up to nodes that are needed, even if this is lower than the
maximum number of nodes provisioned. DLT’s “Enhanced autoscaling”

147

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

option optimizes cluster utilization while minimizing overall end-to-end
latency. DLT’s enhanced autoscaling can be easily enabled on the pipeline
during or after pipeline creation by setting Cluster Mode to “Enhanced
autoscaling.”

Runtime Channels

Traditional clusters require the maintenance of runtime versions, also
known as Databricks Runtime (DBR). In Delta Live Tables, you can get
the flexibility of both choosing the cluster VM type and having Databricks
manage the runtime for you. The Channel drop-down is designed for this
exact purpose. By default, the “current” channel uses the latest Databricks
runtime, whereas the “preview” channel uses the upcoming runtime. See
Figure 7-10.

Advanced Configuration

Add configuration

The version of the Defta Live Tables

runtime used

Figure 7-10. DLT runtime channel

Example: A Retail Sales Pipeline

Now we will example a retail sales pipeline. The source code is
conveniently located at the Databricks’ repo:

https://github.com/databricks/delta-live-tables-notebooks/blob/
main/sql/Retail%20Sales.sql

148

https://github.com/databricks/delta-live-tables-notebooks/blob/main/sql/Retail Sales.sql
https://github.com/databricks/delta-live-tables-notebooks/blob/main/sql/Retail Sales.sql

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

This example highlights these four features:
e Streaming pipeline
o Datavalidation
e Datalineage

e Validation dashboard

Streaming Pipeline

Listing 7-8 shows the raw sales order.

Listing 7-8. Raw Sales Order as Bronze Table

CREATE STREAMING LIVE TABLE sales orders raw

COMMENT "The raw sales orders, ingested from /databricks-
datasets.”

TBLPROPERTIES ("myCompanyPipeline.quality" = "bronze")

AS

SELECT * FROM cloud files("/databricks-datasets/retail-org/sales_
orders/", "json", map("cloudFiles.inferColumnTypes", "true"))

This raw pipeline is simply trying to stream the JSON files from the
specified location. As a result, it is now simpler to build a streaming
pipeline using DLT.

Data Validation

The next step is to perform data cleanup. The traditional ETL requires
separate steps for error handling and data validation. As a result, this logic
will be written in the SQL query, and other developers will try to decode
the purpose. In DLT, there is a descriptive way to handle these records
called Expectation, as shown in Listing 7-9.

149

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

Listing 7-9. Raw Sales Order as Bronze Table

CREATE STREAMING LIVE TABLE sales orders cleaned(
CONSTRAINT valid order number EXPECT (order number IS NOT
NULL) ON VIOLATION DROP ROW

)

PARTITIONED BY (order date)

COMMENT "The cleaned sales orders with valid order number(s)

and partitioned by order datetime.”

TBLPROPERTIES ("myCompanyPipeline.quality"” = "silver")

AS

SELECT f.customer id, f.customer name, f.number of line items,
TIMESTAMP(from unixtime((cast(f.order datetime as long)))) as
order datetime,

DATE(from unixtime((cast(f.order datetime as long)))) as
order date,
f.order number, f.ordered products, c.state, c.city, c.lon,
c.lat, c.units_purchased, c.loyalty segment
FROM STREAM(LIVE.sales orders raw) f
LEFT JOIN LIVE.customers c

ON c.customer id = f.customer id

AND c.customer name = f.customer name

Data Lineage

The flow chart in Figure 7-11 in the DLT job shows how the data moves
from one place to another. Therefore, running it through another parsing
tool to generate these diagrams is unnecessary.

150

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

& customers @ = sales_order in_chi.. @

| = sales orders clean @ ‘
= sales_orders_raw @ // o
.

& sales_order_in_la

Figure 7-11. DLT lineage diagram

Validation Dashboard

Each step automatically summarizes the expectations and data quality
checks, saving time on the creation and upkeep of additional toolkits.
Having these available automatically also reduces the time needed

to evaluate the code to ensure data validation. See Figure 7-12 and
Figure 7-13.

Data quality x

® Written 100% (4,083)

Dropped 0% (0)

Figure 7-12. DLT data quality dashboard

Expectations Al | Failures only

MName Action Fail % - Fajled
records

valid_order_nurmber DRCP 0% o

Figure 7-13. DLT Expectations

151

CHAPTER 7 DATA ENGINEERING PART 2: DELTA LIVE TABLES

Conclusion

Data teams are constantly on the go. However, with Databricks’ Delta Live
Tables, they can streamline reliable data pipelines and quickly find and
manage enterprise data assets across various clouds and data platforms
using Unity Catalog. Additionally, they can simplify the enterprise-wide
governance of data assets, both structured and unstructured.

This chapter examined Delta Live Tables, which provides a declarative
framework for developing, managing, and deploying ETL pipelines. DLT
automatically manages your infrastructure, ensures high data quality
and unifies batch and streaming workloads. We built a DLT pipeline
and looked into important features like Change Data Capture, SCD
Type 1 and 2 support, and DLT Expectations, which help maintain data
quality. We also discussed various performance optimizations that DLT
uses via enhanced autoscaling. Last but not least, the runtime version is
managed for you automatically by default. There is no need to worry about
managing the latest runtime, but cluster types are still available and are
similar to interactive clusters.

152

CHAPTER 8

Data Warehousing
with DBSQL

If you're a data analyst who primarily uses SQL to write queries and
reports and create comprehensive dashboards for analysis using your
favorite business intelligence (BI) tools, Databricks SQL (DBSQL) provides
a comprehensive environment for running ad hoc queries and creating
dashboards on data stored in your data lake.

Traditionally, SQL/BI use cases have most commonly been
implemented by storing data in a data warehouse or a database, writing
SQL queries in a SQL IDE, and, finally, using BI tools to build dashboards.
However, with the lakehouse platform, you can handle all this without
moving data to a different storage, like a data warehouse or a database.

Streaming
Data

| £ |—a | —
L | . J (" DataScience and |

Machine Learning

"' Data Engineering - Delta Live Tables, |

< Workflows <, ‘ 1
= ./'. Mosaic Al J
e e — =
() " peta) [B = -
Batch Ingest oo : BSOL .
Data — - .
Auloloades &

Warehouse Enterprise |
COPY INTO] g{g — 5 | Reporting and B ‘
| Basbrckasal | > "

] & >

mo @

) (@

=l
W

Figure 8-1. Architecture diagram using Databricks SQL

© The Editor(s) (if applicable) and The Author(s), 153
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_8

https://doi.org/10.1007/979-8-8688-0444-1_8#DOI

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

In this chapter, we will learn how the Databricks platform provides
the most complete end-to-end data warehousing solution for all analytics
use cases.

Next, we will move on to understand various components and key
features of Databricks SQL or DBSQL.

What Is Databricks SQL?

Databricks SQL is the collection of services bringing data warehousing
capabilities and performance to your existing data lake through open
formats and standard ANSI SQL. The DBSQL platform provides not only
a SQL editor but also dashboarding tools that allow team members to
collaborate with users directly in the Databricks workspace. Further,
Databricks SQL integrates with a variety of BI tools via connectors or
JDBC/ODBC so that analysts can author queries and dashboards using
their favorite BI tools without adjusting to a new platform. See Figure 8-2.

] SQL Editor

L) Queries

1) Query History

SQL Warehou

Figure 8-2. SQL Persona section on Databricks sidebar

In the following sections, we will look into a few key services in DBSQL.

154

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

SQL Warehouses

SQL warehouses are compute resources within DBSQL that run your
SQL queries on data objects within Databricks SQL. Simply put, SQL
warehouses provide processing capabilities in DBSQL similar to clusters

in the data engineering part of the platform. There are three main types of

SQL warehouses.

Classic: This offers limited Databricks SQL
functionality and basic performance features. Only
use a classic SQL warehouse to run interactive queries
for data exploration with entry-level performance and
Databricks SQL features.

Pro: This supports all the Databricks SQL functionality
and delivers higher-performance features than Classic,
including query federation, workflow integration, and
data science and ML functions.

Serverless: This is the most powerful and cost-effective
option. The serverless SQL warehouse gives the most
advanced performance features and supports all of the
features available in the Pro type, along with instant
and fully managed compute. Serverless compute spins
up almost instantaneously with best-in-class price/
performance.

Figure 8-3 shows how to set up a SQL warehouse.

155

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

New SQL warehouse X
MName Test_Warehouse

Cluster size (0 X-Large 80 DBU [h | cluster

Auto stop (After 10 minutes of inactivity.

Scaling (O Min. 1 Max. c'.Iuslers {BO to 320 DBU)

Type [-] @ O EE) Classic

Advanced options v

Tags (1
Unity Catalog [@]

Channel (© current

Figure 8-3. Setting up a SQL warehouse in Databricks

It is really simple to spin up a SQL warehouse. Once you click Create
Warehouse, the first parameter to fill in is the warehouse’s name. Next, you
can also select the warehouse type from Classic, Pro, and Serverless.

Let’s look into other important parameters to take into consideration.

¢ Cluster Size: SQL warehouses come in T-shirt sizes
from X-Large to X-small. Please choose the size based
on the latency and throughput. As a best practice,
start from Medium and move up and down as per
your needs.

156

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

e Scaling: A traditional cluster comes with one driver
and a number of workers. When you autoscale a
cluster, you are increasing the number of worker
nodes. However, there is still only one driver node, and
with high-frequency, low-latency workloads, it will
become a bottleneck. With the SQL warehouses scaling
feature, you determine the min and max number of
clusters behind the endpoint, and it is these clusters
(not workers) that can increase based on concurrency
requirements.

Further, one of the key aspects of SQL warehouses that makes it really
performant is Photon. Let’s look into what Photon is and how we can
enable it.

Photon

Photon is the next-generation ANSI-compliant vectorized query engine
developed by Databricks to support workloads in DBSQL. It comes with
hundreds of built-in optimizations, providing the best performance for all
tools, query types, and real-world applications. This includes the AI-
powered predictive I/0 that eliminates performance tuning like indexing
by intelligently prefetching data.

It’s 100% compatible with Apache Spark APIs, which means you don'’t
have to rewrite your existing code (SQL, Python, R, Scala) to benefit from
its advantages.

While Photon is an optional feature in interactive clusters, it is
activated by default for SQL warehouses. You can also enable Photon for
All Purpose and Job Clusters options by toggling the switch on the Create
Cluster page.

157

https://www.databricks.com/product/photon

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Relative Speedup to DBR 2.1 by DBR version
Higher is better

7

Relative Speedup to DBR 21

DER version (TPC-DS 1TB 10 x i3.x1)

Figure 8-4. TPC-DS 1TB performance by DBR version versus Photon
(source. https://www.databricks.com/product/photon)

Figure 8-4 shows the performance of Photon with regard to the
Databricks runtime, showing that Photon is almost three times more
performant than the DBR 8.x.

SQL Editor

The DBSQL UI provides a SQL editor (Figure 8-5) that you can use to
author SQL queries using a familiar ANSI SQL syntax, browse available
data, and create visualizations. You can also share your saved queries
with other team members in the workspace. SQL Editor also supports
functionalities such as autocomplete, autoformatting, auto-save, etc.
Additionally, query updates can be scheduled to refresh automatically, as
well as to issue alerts when meaningful changes occur in the data.

158

https://www.databricks.com/product/photon

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

& Calog

Figure 8-5. SQL Editor in Databricks

Introduction to Al/BI Dashboards

Databricks SQL enables data analysts to make sense of data through
visualizations and drag-and-drop dashboards. Dashboards (now termed
as legacy dashboards) within DBSQL allow users to combine both
visualizations (via the built-in SQL Editor) and text boxes to give context to
their data. Once built, dashboards can be easily shared with stakeholders,
both within and outside the organization, via a web browser.

Databricks introduced a new generation of dashboards at DAIS’24
called AI/BI dashboards. Al/BI dashboards (formerly known as lakeview
dashboards) allow analysts to quickly build highly interactive dashboards
using natural language questions that analysts can ask. Further, these
dashboards are integrated with the Databricks platform, which ensures
fast performance at a high scale, while all security and governance policies
are managed in Unity Catalog.

159

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Let’s look into how you can quickly build AI/BI dashboards in
DBSQL. The dashboard has two tabs, a Data tab for searching for
tables within the Unity catalog or writing queries that will serve as your
Dataset(s), and a Canvas tab where your visualizations are created and
assembled with the option to use natural language to generate tables and
visualizations. Some of the capabilities included are sleek visualizations,
cross-filtering, and periodic PDF snapshots via email.

Retail Revenue & Supply Chain Overview
R = m Messen by Gty

e Custerers Ui Sepsbers

499.99K 50K o 7/ Thl

:::::::::

#harian

PR

man (LI W PRI [RFEL S

o AL RIS
TN

Figure 8-6. Al/BI dashboards

Finally, AI/BI dashboards allow users to publish their dashboards to
the entire organization. This means that any authenticated user in your
identity provider (IdP) can access the dashboard via a secure web link,
even if they don’t have Databricks workspace access.

160

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Alerts

DBSQL allows users to set up alerts, which in turn send notifications if a
particular condition is not met in the data. Take, for example, an inventory
management table. One can set an alert on the table if the quantity of a
particular product or SKU falls below a certain threshold. The notifications
can either be delivered through email or to other platforms like Slack,
Teams, etc., via webhooks.

In Chapter 9, we will discuss using alerts to trigger model retraining
when a threshold drops below certain levels (see Figure 8-7).

Daily Fare to Distance Analysis: weekday > 1 + Share mm i

TRIGGERED R

191e 1o UNKNOWN

Figure 8-7. Databricks alerts

Query History and Profile

Query history in DBSQL gives you full visibility and details of query
execution for all the queries executed on the SQL warehouses for the last
30 days. With a unified view, you not only can see the number of queries
executed at a particular time but also quickly zoom into specific queries
and debug issues, if any. See Figure 8-8.

161

https://doi.org/10.1007/979-8-8688-0444-1_9

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Query History

Figure 8-8. DB SQL query history

A query profile provides the ability to visualize the details of a query
execution. The query profile helps you troubleshoot performance
bottlenecks during the query’s execution (see Figure 8-9). For example:

e You can visualize each query task and its related
metrics, such as the time spent, number of rows

processed, and memory consumption.

¢ You can identify the slowest part of a query execution
at a glance and assess the impacts of modifications to
the query.

¢ You can discover and fix common mistakes in SQL
statements, such as exploding joins or full table scans.

162

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Figure 8-9. Query profile

After the overview of DBSQL, we will move on to do a deep dive into
some important features of DBSQL.

Serverless Compute

Databricks Serverless is a paradigm in Databricks compute. Serverless is

a fully managed service, eliminating the burden of capacity management,
patching, upgrading, and performance optimization of the cluster.
Additionally, Serverless simplifies the billing. In other words, you need

to pay only once to Databricks for both Compute and Databricks costs.
Although Serverless was initially introduced only for DBSQL workloads, it
has then been expanded to other parts of the platform including Delta Live
Tables, workflows, and notebooks as well.

As discussed previously, with any type of compute be it all-purpose
clusters, jobs clusters, or even SQL warehouse (non-Serverless) the virtual
machines are provided by the cloud provider for which you need to pay
directly to them. This has two main effects - not only it takes three to four
minutes for a cluster to come up or terminate but also the users have

163

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

to manage these in terms of runtimes, machine types, cluster sizes etc.
Secondly, there are usually two line items in your cloud bill - Databricks
Costs ($DBU) and cloud VM costs. To look at the cost more in-depth,
please refer to the chapter Databricks Pricing and Observability using
System Tables.

With the introduction of Serverless, Databricks is basically “owning
the compute.” To put it simply, Databricks prepurchases these VMs from
the respective cloud provider, and once you ask for a Serverless compute
resource, it releases the specific number of VMs as per the request.

Since this computer is fully managed by Databricks, it spins up or down
in seconds rather than minutes. Furthermore, you only need to pay
Databricks once for both Databricks costs and VM costs. Thus, Serverless
compute brings a truly elastic environment that’s instantly available and
scales with your needs.

Constraints in DBSQL

Many data analysts have previous experience in relational databases,
building entity-relational models using primary key/foreign key
relationships. After normalization, they usually build multidimensional
data models (referred to as star schemas) so that it is easy to understand
and analyze data across these relational databases or data warehouses.
Further, primary key/foreign keys help maintain data integrity and avoid
errors during data processing and modification, thus helping maintain
data quality.

Constraints on Databricks

Constraints in databases are rules that ensure data integrity and
consistency by enforcing certain conditions or restrictions on the
data stored in a table. Databricks supports standard SQL constraint
management clauses, which can be divided into two categories:

164

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Enforced constraints: These are enforced on the
tables/columns to ensure data quality and integrity:
NOT NULL , UNIQUE, and CHECK.

Informational constraints: These constraints are not
enforced but explain the relationships between fields in
the tables.

Enforced Constraints

Enforced column constraints are rules that apply to a single column in a

table. Delta tables support the following column constraints:

NOT NULL: This constraint ensures that a column
must have a value for each row and cannot be null. This
ensures data completeness and consistency.

UNIQUE: This constraint ensures that all values in a
column are unique and distinct. It prevents duplicate
values in the table.

CHECK: This constraint validates that a column’s value
meets a specific condition or a range of conditions,
such as ensuring that a particular column is within a
certain range, or a number is greater than a specific
value. It helps ensure data accuracy and consistency.
This constraint allows you to specify a Boolean
expression that must evaluate as true for each row in
the table. If the expression evaluates to false, an error is
raised, and the statement is rolled back.

165

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Let’s look at an example of how to define these constraints on a table.
The constraints can be set either while creating a new table or on an
existing table. You can add constraints in a new table as follows:

CREATE TABLE T1 (
id INT NOT NULL,
quantity INT,
date DATE,
CONSTRAINT chk_quantity CHECK (quantity > 0)

)s

To add a constraint to an existing table, you can use ALTER TABLE ADD
CONSTRAINTS, and to drop such a constraint, you can use ALTER TABLE
DROP CONSTRAINT.

ALTER TABLE T1 ADD CONSTRAINT dateWithinRange CHECK
(Date » '1900-01-01");

Informational Constraints: Primary Key
Foreign Key

A Databricks lakehouse with Unity Catalog gives users the ability to build
entity relationships that are simple to maintain and evolve. Also note
that for now primary key and foreign key are informational only and they
are not enforced. To leverage primary keys/foreign keys (PKs/FKs), your
workspace should be UC-enabled with DBR version 11.1 and above.

Let’s see how we can implement a primary key/foreign key
relationship with an example. We can create two tables, P1 and F1. The
P1 table has a primary constraint on the id column, and table F1 hasa
foreign key constraint on the p1_id column that refers to the id column
in the P1 table.

166

CHAPTER 8

CREATE TABLE P1 (
id INT PRIMARY KEY,
name STRING

)
USING delta;

CREATE TABLE F1 (

f1_id INT,

f1_date DATE,

p1_id INT,

FOREIGN KEY (p1_id) REFERENCES p1(id)

)
USING delta;

DATA WAREHOUSING WITH DBSQL

The “View relationships” button (Figure 8-10) in the Overview

or Schema tab conveniently shows the relationship between tables

(Figure 8-11).

Q %g View relationships
Column Type Comment
f1_id int ®
f1_date date @

p.. OnFK int @

Figure 8-10. “View relationships” button

* Al generate

Tags

(‘D

®

167

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Entity Relationship Diagram for unitygo.default.f1

E unityge.default. p1 E unitygo. default. 11

Figure 8-11. ER diagram in Databricks

Next we move into streaming tables and materialized views. We
touched on these two briefly in Chapter 9, but we will do a greater deep
dive here.

Streaming Tables and Materialized Views

Some of the common challenges faced by data analysts while working in
data warehouses include the inability to self-service ingest and fix data
issues, the inability to have the most recent data for BI dashboards, and
having to deal with slow BI dashboards because of the huge volume of
underlying data.

Streaming tables and materialized views in DBSQL will allow SQL
analysts to perform data engineering tasks and thus have real-time
capabilities along with their existing workflows. It is important to note that
both Streaming tables and materialized views require Unity Catalog and
Serverless enabled in your workspace. In the next section, we will discuss
these two features in detail.

168

https://doi.org/10.1007/979-8-8688-0444-1_9

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Streaming Tables

A streaming table is a special type of table that enables ingestion in
DBSQL. It is managed by Unity Catalog and supports append-only
incremental and streaming data processing from various data sources.

In reference to the medallion architecture, streaming tables are ideal for
bringing data into the Bronze layer. Streaming tables enable continuous,
scalable ingestion from any data source, including cloud storage, message
buses (EventHub, Kafka), and more.

Streaming from a source requires the source to be append-only and
never updated or deleted. To configure the streaming table to perform
streaming ingestion of your source, you must specify the STREAM keyword.
Say, for example, you have an S3/ADLS container, and a lot of new files
are continuously arriving. You can create a streaming table by using the
following syntax:

CREATE OR REFRESH STREAMING TABLE mystream
AS SELECT * FROM STREAM read files('s3://<bucket>/<path>/
<folder>")

By default read_files processes all the files in the folder. To avoid
this you can set the property includeExistingFiles option to false.

CREATE OR REFRESH STREAMING TABLE mystream
AS SELECT * FROM STREAM read files('s3://<bucket>/<path>/
<folder>',, includeExistingFiles =» false

)

Once the previous command is executed under the hood, a DLT
pipeline is created for each streaming table. You can keep these tables
updated and refreshed.

169

CHAPTER 8 DATA WAREHOUSING WITH DBSQL
To load data from a system like Kafka, use the following command:

SELECT * FROM STREAM read kafka(
bootstrapServers => '<server:ip>',
subscribe => '<topic>',
startingOffsets => 'latest’

);

Materialized Views

A materialized view is a special type of view that precomputes and stores
the results of a SQL query and automatically keeps them fresh over time.

A materialized view is a database object that stores a query’s results as
a physical table. Unlike regular virtual database views, which derive their
data from the underlying tables, materialized views contain precomputed
data that is incrementally updated on a schedule or on-demand. This
precomputation of data allows for faster query response times and
improved performance in certain scenarios.

Materialized views are especially useful in situations where complex
queries or aggregations are performed frequently and the underlying data
changes infrequently. By storing the precomputed results, the database
can avoid the need to execute complex queries repeatedly, resulting in
faster response times.

Create a Materialized View

Databricks SQL materialized view CREATE operations use a Databricks
SQL warehouse to create and load data in the materialized view. Because
creating a materialized view is a synchronous operation in the Databricks
SQL warehouse, the CREATE MATERIALIZED VIEW command blocks until
the materialized view is created and the initial data load finishes. A Delta

170

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Live Tables pipeline is automatically created for every Databricks SQL
materialized view. When the materialized view is refreshed, an update to
the Delta Live Tables pipeline is started to process the refresh.

CREATE MATERIALIZED VIEW mvi
AS SELECT
date, sum(sales) AS sum_of_sales
FROM
table1
GROUP BY
date;

Refresh a Materialized View

In Databricks SQL, you have the option to set up automatic refresh for a
materialized view based on a predefined schedule. This schedule can be
configured during the creation of the materialized view using the SCHEDULE
clause or added later using the ALTER VIEW statement. Once a schedule
is established, a Databricks job is automatically created to handle the
updates.

REFRESH MATERIALIZED VIEW mvi;

Next, we move into another important feature: Lakehouse Federation,
which allows you to query data stored in data sources without moving
the data.

Lakehouse Federation

Lakehouse Federation gives the Databricks platform query federation
capabilities. Query federation enables users and systems to run queries
against multiple data sources without migrating all the data to one central
location.

171

https://docs.databricks.com/en/sql/user/materialized-views.html#mv-refresh

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Most organizations have valuable data distributed across multiple data
sources—databases, data warehouses, object storage systems, etc. This
siloed data leads to incomplete data and insights, which hinders the ability
to make informed decisions based on the full available data.

To query data across multiple data sources, users typically need to
move or migrate their data to a central data location first, which usually
takes time and effort. Lakehouse Federation addresses these critical pain
points and makes it simple for organizations to expose, query, and govern
siloed data systems as an extension of their lakehouse. The various systems
include MySQL, PostgreSQL, Amazon Redshift, Snowflake, Azure SQL
Database, Azure Synapse, BigQuery, and more from within Databricks
without moving or copying the data, all within a simplified and unified
experience.

Further, Unity Catalog’s advanced security features, such as row and
column-level access controls, discovery features like tags, and data lineage,
are available across these external data sources, ensuring consistent
governance.

To make a dataset available for read-only querying using Lakehouse
Federation, you create the following (Figure 8-12):

e A connection that specifies a path and credentials for
accessing an external database system

« Aforeign catalog that mirrors a database in an external
data system enabling you to perform read-only queries
on that data system in your Databricks workspace,
managing access using Unity Catalog

172

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

5 dotobricks 01 & ——— xan

Catalog Explorer

O showtlake_catalog

Figure 8-12. Lakehouse Federation into Snowflake

You can start to write queries against these tables in DBSQL and create
visualizations to view the data.

As a best practice, Lakehouse Federation should not be used for
real-time data processing, where latency is paramount, or complex data
transformations, where vast amounts of data need to be ingested and
processed.

Al Functions in DBSQL

In the age of large language models, there is an urgent need to combine

Al output into a Bl report so management can take action based on the
results. However, this inferencing pipeline not only creates another layer of
complexity but also requires seasoned data scientists and an ML Ops team
to maintain, which can become costly.

Consume LLM Models in DBSQL

Now, there are multiple ways to consume these large language models
within Databricks. The traditional way is to leverage the code provided on
Huggingface. Though this approach is flexible, it will require integrating the
sample code into an existing pipeline, which requires development work.

173

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

The next approach is to use the Model Serving API. Databricks has
curated popular models and made them part of the platform. These are
then exposed as the Foundation Model API. With the Foundation Model
API, developers can access these carefully curated models out of the box
without going through the deployment process and getting enhanced
performance.

The third approach we will look into in detail here is Al functions in
serverless SQL.

Al functions enable analysts to integrate any LLMs in SQL to enrich
data and empower analysts to extract actionable insights

There are two types of Al functions provided by Databricks:

e Built-in functions backed by the Foundation
Model APIs

o Custom functions backed by a Serverless serving
endpoint

Built-in functions invoke a state-of-the-art generative Al model to
perform tasks such as sentiment analysis, classification, and translation.
Let’s examine some common built-in functions.

e ai_analyze_sentiment: Given text, output sentiment of
the text like positive, negative, neutral, mixed.

o ai_classify: Ask the LLM to do classification. A good
use case is to ask an LLM to determine if the text
contains PII, which is to ask it if the text ["contains
PII", "no PII"].

e ai_extract: Ask the LLM to extract any entities. Similar
to regex patterns but you no longer need to write a
regex. You only need to tell the function what you want
to extract. For example, “Place” will allow you to extract
a place name.

174

https://docs.databricks.com/en/sql/language-manual/functions/ai_analyze_sentiment.html
https://docs.databricks.com/en/sql/language-manual/functions/ai_classify.html

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

o ai_gen: Prompting at scale. Given a list of questions,
ask the LLM to output a list of answers, given in
table format.

For a list of Al functions, please visit the Databricks website: https://
docs.databricks.com/en/large-language-models/ai-functions.html.
Let's putthe Al function in action. Consider this Kaggle Amazon

review dataset.
We can download it to Databricks and create a Delta table. Using DB
SQL's built-in Al functions, we can extract the sentiment from the text,

successfully connecting Al with BI. See Figure 8-13.

» Run (1000} H hive_metastore . B default ~ : (Z) Starter War... Serverisss

mentitext) from tredence_test.copllot.ssazonreviews

+* New result table: OFF » []

Refreshed a minute ago
4

Figure 8-13. Sentiment analysis with DB SQL

Finally, after persisting the results in Unity Catalog, we can publish the
inferred dataset to Power BI or Tableau.

175

https://docs.databricks.com/en/large-language-models/ai-functions.html
https://docs.databricks.com/en/large-language-models/ai-functions.html

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Custom Functions Backed by a Serverless
Serving Endpoint

The ai_query() function allows you to serve your ML and LLM models
using Databricks Model Serving and query them using SQL. To do so,
this function invokes an existing Databricks Model Serving endpoint
and parses and returns its response. You can use ai_query() to query
endpoints that serve custom models hosted by a model-serving endpoint,
foundation models made available using Foundation Model APIs,
and external models, which are third-party models hosted outside of
Databricks.

Let’s look into an example that queries the model behind the
sentiment-analysis endpoint with the text dataset and specifies the
request’s return type.

SELECT text, ai query(
"sentiment-analysis”,
text,
returnType => "STRUCT<label:STRING, score:DOUBLE>"
) AS predict
FROM
catalog.schema.customer reviews

In the next part of the chapter, we will examine how you can connect
your BI tools through DBSQL.

Integrate Bl Tools with Databricks

Organizations usually deploy transformational and BI tools such as
PowerBI, Tableau, Looker, etc., for enterprise-wide dashboards and
reporting needs. Moreover, many data analysts have been proficiently
using these tools for quite some time. Databricks provides validated

176

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

integrations with your BI tool of choice, allowing you to connect to your
data using SQL warehouses or clusters. As a recommended practice,
analysts get the best experience when they connect their BI tools to
optimized gold tables via SQL warehouses.

In this section, we will focus on connecting PowerBI to Azure
Databricks. There are two main ways to connect PowerBI to Azure
Databricks. The first is to publish to PowerBI Online from Databricks. The
second popular method is to connect Power BI Desktop to Databricks.
Let’s explore both these methods.

Publish to PowerBIl Online from Databricks

This allows users to publish tables from Databricks Catalog Explorer Ul
directly to PowerBI workspaces. In short, this is a one-click publish of UC
datasets to PowerBI workspaces. This method supports both DirectQuery
and Import modes. Moreover, you can publish entire schemas with table
relationships (PK/FK). Some of the requirements are that the data must
be on Unity Catalog, the compute must be UC enabled, users must have

a premium PowerBI License, and users must enable “Users can edit data
models in Power Bl service (preview)” under the Workspace settings and
Data model settings. In Figure 8-14, we can go to the Catalog tab and select
either the full schema or a particular table. Next, in the drop-down, select
“Use with BI tools.”

177

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Catalog Explorer

Add data Browse DBFS = Sarveriess

& dbdemos.abdi ¥

Overview Details

Tags: Add tags

Mame =T Owner Created at Popularity

Figure 8-14. Publishing to PowerBI Online

You can select Publish to Power BI. This will ask you to authenticate
with your Microsoft account via Entra ID. Once the authentication is
completed, the user can select the PowerBI workspace and Dataset Mode
(Direct Query or Import Mode). Thereafter, click Publish to PowerBI, and
you can start to query this dataset in your PowerBI workspace.

Connect Power Bl Desktop to Databricks

Users can also connect their PowerBI Desktop to Delta Lake Tables via the
SQL warehouse for a full modeling experience in PowerBI. Further, there
are three mainly used storage modes that PowerBI offers for tables. First
is Import mode, wherein all the data is loaded in PowerBI’s in-memory
cache. Second is DirectQuery mode, wherein the data remains in the
source system and the metadata is stored in PowerBI. Finally, a newer
feature is Hybrid mode, which combines the Import and Direct Query
modes by using partitions. The user can select the mode they want to use
depending on the use case.

178

CHAPTER 8 DATA WAREHOUSING WITH DBSQL

Let’s now look at how to connect Databricks SQL warehouse with
PowerBI. In Partner Connect, once you click PowerBI and choose the
Databricks Compute resource that you want to connect, it downloads
the connection file. You can open that file with Power BI Desktop, and
your connection will be automatically configured. After selecting the
connectivity mode, you can start querying the tables.

Conclusion

Databricks SQL gives complete warehousing capabilities on the lakehouse
platform and provides features to data analysts for various BI use cases.
SQL warehouses, especially Serverless, provide an enhanced compute to
process SQL queries and provide a connection to various BI tools.

Some of the key features discussed in the chapter include Lakehouse
Federation, Al functions, materialized views, streaming tables, and
constraints, which include a primary key/foreign key relationship. Finally,
we saw how easily you integrate you BI tool of choice with the Databricks
platform with PowerBI as a case study.

179

CHAPTER 9

Machine Learning
Operations Using
Databricks

Databricks not only provides exceptional data processing capabilities
but also offers a wealth of opportunities to develop machine learning
use cases.

Databricks’ machine learning capabilities have evolved significantly
over the years. Since 2021, various user personas have been actively
engaging with the platform. These personas include:

o Data scientists: They unlock the power of algorithms
and models.

o Data engineers: They craft robust pipelines for
seamless data flow.

e Machine learning engineers: They skillfully
orchestrate model deployment.

In this chapter, we will examine the different components in
Databricks that support machine learning, including model development,
deployment, inferencing, and monitoring. You will be able to learn how to
deploy an ML model to Databricks. These concepts are critical in the later

© The Editor(s) (if applicable) and The Author(s), 181
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_9

https://doi.org/10.1007/979-8-8688-0444-1_9#DOI

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

chapters when we discuss GenAl as a lot of the components will be reused
as we advance to GenAl If you are already familiar with the end-to-end
ML lifecycle, this chapter can serve as a refreshment and prepare you for
the concepts to come in later chapters.

Machine Learning with Databricks

While SQL and data engineering are the top portion of the menu, machine
learning is also an integral part of Databricks. In 2021, Databricks was
named a leader in the Gartner Magic Quadrant for data science and
machine learning platforms.' See Figure 9-1.

5= Databricks Machine Learning
Collaborative Multi-Language Notebooks

AutoL

125 Model =55, { Runtirme and

=% T Batch Scoring
Data "-i‘J?‘ Training Maciel Tung Environments %
Prap
Oniing S g
Fot o versioniog o Fabtans tcey + Jobs and AP Automation st
£
MLOps | Governance powered by miJl Iow

Open Multicloud Data Lakehouse Foundation with
DELTA LAKE

Figure 9-1. Databricks machine learning stack

Figure 9-2 shows five components in the ML platform that we will

focus on.

'https://databricks.com/blog/2021/03/04/databricks-named-a-leader-in-
2021-gartner-magic-quadrant-for-data-science-and-machine-learning-
platforms.html

182

https://databricks.com/blog/2021/03/04/databricks-named-a-leader-in-2021-gartner-magic-quadrant-for-data-science-and-machine-learning-platforms.html
https://databricks.com/blog/2021/03/04/databricks-named-a-leader-in-2021-gartner-magic-quadrant-for-data-science-and-machine-learning-platforms.html
https://databricks.com/blog/2021/03/04/databricks-named-a-leader-in-2021-gartner-magic-quadrant-for-data-science-and-machine-learning-platforms.html

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

earning

= Playground

[l Experiments
o' Features
Models

Serving

Figure 9-2. Machine learning persona in Databricks Ul

Experiments

Experiments are individual pages to track ML training runs. It provides an
overview of everything related to your training configuration and results
as well as lineage to your dataset and ML model. You can use MLflow to
log these values into the experiment page, therefore providing a one-stop
shop for all the trails you run without losing out the configuration for the
champion model, aka the best-performing model. See Figure 9-3.

tian Preview Traces Preview

223 B s 07709863

Figure 9-3. Experiments page for one of the models

183

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

The best way to start with ML is to leverage the Glass Box AutoML
provided out of the box by Databricks.

It’s worth noting that to use Unity Catalog with AutoML, the cluster
access mode must be Single User, and you must be the designated single
user of the cluster. Even administrators will not be able to run AutoML on
behalf of a user. The selected “table” must also be a “table.” Materialized
views are not accessible via Single User clusters. See Figure 9-4.

Experiments

Q || ol i mpeciments. |

Mame Crgated by Last modified = Locasion Description

Figure 9-4. Creating an AutoML experiment

What Is the Glass Box Approach to Automated
Machine Learning?

Machine learning is a highly iterative task. Data scientists spend a lot
of time trying out different algorithms and tuning hyperparameters to
find the best-performing model. However, these repetitive tasks can be
automated using AutoML.

Unfortunately, most platforms, such as Azure Machine Learning, are
black boxes, while capable of picking the best model, because the code to
train the model is not provided. Hence, it is difficult to replicate the best-
performing model and make further enhancements. Databricks’ Glass Box
approach provides all the source codes that generated all the models, not
just the best-performing ones but all the models evaluated, allowing data
scientists to customize the models with the source code provided.

184

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Machine Learning Lifecycle: MLOps

A typical MLOps lifecycle contains the following stages:
1. Data prep
2. Model building
3. Model deployment

We can conveniently use Databricks to do everything. Furthermore,
to harness the distributed nature of Spark, we can also use libraries like
Horovord and Petastorm to scale out the model training. See Figure 9-5.

* Prepare Data * Model training
* EDA . . Prep * Validation
* Feature Engineering data

Build

model

Deploy
model

* Deployment
* Monitoring

Figure 9-5. Machine learning life cycle

In the following sections, we will take an example dataset and go
through every step in Figure 9-5. There will be further clarifications, but
rest assured that every step will be covered.

We will demonstrate AutoML using a classification problem on a flight
dataset, which can be found in Kaggle. This problem aims to predict
whether a flight will be delayed or canceled based on historical flight data.
Of course, in reality, the real reason for a flight delay or cancellation can
be caused by a lot of factors beyond the flight itself, like weather or staff

185

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

shortage. This exercise does not demonstrate how to build a state-of-
the-art on-time flight predictor. It simply uses a dataset to illustrate the
workflow of ML Ops using Databricks.

ML Example: Predicting Flight Delays
with Databrick’s AutoML

Prepare Data

First, we need to upload the data to Databricks. This can be done very
easily with JDBC or simply by uploading the CSV file. Then, we can create
tables from there.

The Create New Table wizard under the Data tab can be used to upload
data and create a table using the UI or a notebook. See Figure 9-6.

Create New Table

Data source @

Upload File DBFS Other Data Sources

DBFS Target Directory @

s/ (aptional) Select

Files @

Drop files to upload, or click to browse

Figure 9-6. Creating a new table using the Databricks Ul

Exploratory Data Analysis

Databricks has integrated Pandas Profiling for Exploratory Data Analysis
(EDA). Pandas Profiling is an open-source library that precomputes some
statistics that data scientists usually want to know and saves these into

186

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

properly formatted HTML. Once we hook up our data in the AutoML
interface, it will also generate an EDA report from Pandas Profiling. See
Figure 9-7.

[view nateback far best model [Wiew dats exploration nateback

Figure 9-7. The “View data exploration notebook” button can be
found on the experiment page

By clicking “View data exploration notebook,” we can also examine
how Databricks uses Pandas profiling to perform EDA. See Figure 9-8.

... e S T |
24-02-09-07:08-Datakxploration-329c662a58071cf98dc 131492504768 minen > o S [

Data Exploration

sian 14,3.x-cpu-ml-scala2. 12, edit the aptians of pandas-profifing, ar

Figure 9-8. Data exploration notebook

Feature Engineering

In most cases, we need to transform raw data into something useful that
the model can use for better predictions. For example, in our flight delay
example, we can compute the percentage of delayed flights by airport or

187

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

airline. We can then save these into a feature store, so other team members
can reuse them and understand how they were built (see Figure 9-9).
Features can also be joined with raw data in AutoML to increase the
accuracy of the prediction.

Machine Learning v
{=} Playground

Experiments

ﬁl-' Features

= Models

‘> Serving

Figure 9-9. Features tab in Databricks

A feature table can be registered either by a dataframe or a table.

Data Exploration at Scale

Let’s look at data exploration at scale.

Pandas Profiling

Data scientists often need to understand the data distribution to decide
whether the data is useful, whether imputation is required, or, in extreme
cases, whether to exclude specific columns from the model training.

For example, if the column contains all nulls or empty values, it will not
contribute anything to the machine learning model as it cannot learn
anything.

188

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Pandas Profiling has always been done using the Python pandas
library. The limitation of a Pandas library is that it can run on only one
machine despite a cluster of machines available. The shortcoming is that
the memory will be limited if the process can run on only one machine.

If the dataset cannot fit into the memory, Pandas profiling cannot
generate a report. This often leads to sampling of the data such as df.
sample(fraction=0.5). This often leads to a misrepresentation of the
data distribution. For example, if the sampled rows don’t contain any
nulls, then it will lead to data scientists believing that the column does not
contain nulls.

As of Databricks runtime 14.3 LTS, Databricks will still try to sample
the dataset for profiling and Auto ML. However, as of 2023, YData released
Spark support for the popular profiling library, which keeps the same
interface but takes a Spark Dataframe instead. The following is an example:

https://ydata.ai/resources/ydata-profiling-the-great-debut-
of-pandas-profiling-into-the-big-data-landscape

The Pandas version requires reading Parquet files as Pandas, which is
not optimal because Delta format contains transactions of Parquet. See
Listing 9-1.

Listing 9-1. Pandas Profiling Sample Usage

import pandas as pd
import databricks.automl runtime

training data_path = mlflow.artifacts.download artifacts(run_id
="a0922defd3b542acb2b4bb0956aebobf", artifact path="data", dst_
path=temp dir)

df = pd.read_parquet(os.path.join(training data path,

"training data"))

from ydata profiling import ProfileReport
df_profile = ProfileReport(df,

189

https://ydata.ai/resources/ydata-profiling-the-great-debut-of-pandas-profiling-into-the-big-data-landscape
https://ydata.ai/resources/ydata-profiling-the-great-debut-of-pandas-profiling-into-the-big-data-landscape

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

correlations={
"auto": {"calculate": True},
"pearson”: {"calculate": True},
"spearman”: {"calculate": True},
"kendall": {"calculate": True},
"phi k": {"calculate": True},
"cramers": {"calculate": True},
}, title="Profiling Report", progress
bar=False, infer dtypes=False)
profile _html = df profile.to_html()
displayHTML(profile html)

Spark version—reading the table in Databricks—can preserve the
integrity of Delta format, as shown in Listing 9-2.

Listing 9-2. YData'’s Spark Support

df = spark.table("kaggle.flight featured detla")
from ydata_profiling import ProfileReport
df profile = ProfileReport(df,
correlations={
"auto": {"calculate": True},
"pearson”: {"calculate": True},
"spearman”: {"calculate": True},
"kendall": {"calculate": True},
"phi k": {"calculate": True},
"cramers": {"calculate": True},
}, title="Profiling Report",
progress_bar=False,
infer dtypes=False)

190

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

BREAKING CHANGES

The pandas-profiling package naming was changed to ydata-
profiling.

Data Summarization Using dbutils

Fortunately, despite not being as comprehensive as Pandas profiling, most
notably missing correlation matrices, starting in Databricks Runtime 9.0,
there’s a summarize feature available under dbutils, which is using Spark
as a compute for the statistics that data scientists requires.

Listing 9-3 shows example usage.

Listing 9-3. Summarization Function in dbutils

df = spark.table("kaggle.flight featured detla")
dbutils.data.summarize(df)

Feature Store

A feature store is a centralized repository that enables data scientists

to find and share features and also ensures that the same code used to
compute the feature values is used for model training and inference (see
Figure 9-10).

Similar to Unity Catalog, consider this a place where the data scientists
will look for their features. A feature is usually a calculation that has been
tested and agreed upon among the team and provides value. Not only is it
useful to the team, but it can potentially be shared among different models
to save time in the discovery process.

191

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Features Parmissians

||||||||||||

Figure 9-10. Databricks feature store

Why Use Databricks Feature Store?

Databricks Feature Store is fully integrated with other components of
Databricks. Along with Unity Catalog, it provides powerful lineage tracking
for all the features from source data to the model. The following are the
advantages of this out-of-the-box feature store:

« Discoverability. The Feature Store UI, accessible from
the Databricks workspace, lets you browse and search

for existing features.

« Lineage. When you create a feature table in Databricks,
the data sources used to create the feature table are
saved and accessible. For each feature in a feature
table, you can also access the models, notebooks, jobs,
and endpoints that use the feature.

¢ Integration with model scoring and serving.
When you use features from Feature Store to train a
model, the model is packaged with feature metadata.
When you use the model for batch scoring or online
inference, it automatically retrieves features from
Feature Store. The caller does not need to know about
them or include logic to look up or join features to
score new data. This makes model deployment and
updates much easier.

192

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

o Point-in-time lookups. Feature Store supports time
series and event-based use cases that require point-in-
time correctness. For deep dive into time-series tables,
please refer to the following documentation:

https://docs.databricks.com/en/machine-learning/
feature-store/time-series.html#thow-time-series-
feature-tables-work

To create a feature table in the feature store, it is possible either with a
delta table or with a Spark dataframe. Bear in mind that if your table requires
a primary key, you can use the syntax in Listing 9-4 to add a primary key.

Listing 9-4. Syntax to Add a Primary Key

ALTER TABLE <full table name> ADD CONSTRAINT <pk name> PRIMARY
KEY(pk_col1, pk _col2, ...)

The main class to be used is called FeatureEngineeringClient, as
shown in Listing 9-5.

Listing 9-5. FeatureEngineeringClient Class

from databricks.feature engineering import
FeatureEngineeringClient
fe = FeatureEngineeringClient()

To register a feature table with an existing delta table, see Listing 9-6.

Listing 9-6. Registering a Delta Table as a Feature Table

fe.register table(
delta table='kaggle.flight featured detla’,
primary keys='flight id',
description="'Flight features'

)

193

https://docs.databricks.com/en/machine-learning/feature-store/time-series.html#how-time-series-feature-tables-work
https://docs.databricks.com/en/machine-learning/feature-store/time-series.html#how-time-series-feature-tables-work
https://docs.databricks.com/en/machine-learning/feature-store/time-series.html#how-time-series-feature-tables-work

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

To create a feature table with a dataframe, see Listing 9-7.

Listing 9-7. Writing a Feature Table Using Dataframe

fe.write table(
name="'kaggle.flight featured detla’,
df = flight features df,
mode = 'overwrite'

Refer to the Feature Engineering Python API for comprehensive usage
information:

https://api-docs.databricks.com/python/feature-engineering/
latest/index.html

Finally, we can either look up a feature with the Python API or leverage
AutoML, and then we can join features in the feature store easily. In the
next section, we will discuss how to create an AutoML experiment (see
Figure 9-11).

Configure AutoML experiment

@ Configure o Join Features Train Evaluate

Join Additional Features

Select features from the Feature Store to join with training data. Learn more ™.
Feature Table © ©
Feature Table: feature_store_flight_example.airport_fea... @ v
Primary key @ Lookup key @
vendorlD v
View feature table

Figure 9-11. Joining a feature table in AutoML experiment

194

https://api-docs.databricks.com/python/feature-engineering/latest/index.html
https://api-docs.databricks.com/python/feature-engineering/latest/index.html

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Model Building

Let’s talk about model building.

Model Training

As mentioned, the next most time-consuming task after careful feature
engineering is to train and tune your model and sometimes carefully
select its algorithm or architecture to achieve the best accuracy while
making predictions. With Databrick’s AutoML, we can seamlessly select
the data from the Data tab, allowing it to perform hundreds of selections
automatically and saving data scientists hours of effort to build these from
scratch.

Of course, the best way to learn how to build a model within
Databricks is through Databricks. That makes the Glass Box AutoML an
attractive approach to start with.

While AutoML does not solve all the machine learning problems in
the world, it does, however, provide a framework that can solve some very
typical machine learning problems, saving data scientists time to gain
insight into the quality of the models that can be built with the dataset.

The following ML problem types are supported by Databricks AutoML
(Figure 9-12):

o Classification

Classification allows you to assign each observation to
one of a discrete set of classes, such as good credit risk
or bad credit risk.

o Regression

Regression allows you to predict a continuous numeric
value for each observation, such as annual income.

195

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

o Forecasting

Time-series forecast allows you to predict a future value
based on a hierarchy, for example a future store sale in
each city of each state in the United States.

Experiment Configuration L
* ML problem type
| P ;
Classification o
Regression
Forecasting
Lruvese

Figure 9-12. ML problem types in AutoML

As shown in Table 9-1, the interface contains only a few drop-downs
and is fully integrated with the feature tables and the Delta tables created
and persisted on the Data tab. The next step is to choose a prediction
target. Finally, we can also choose how to handle imputation, a process
of handling nulls in the dataset. Auto ML will then handle the rest of the
model selection, hyperparameters tuning, and presenting the results along
with the notebook.

Table 9-1 illustrates how many different algorithms Databricks
will try in each ML problem type. In our example, we are using
Classification models.

196

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Table 9-1. Databrick Algorithms

Classification Regression Models Forecasting Models

Models

Decision trees Decision trees Prophet

Random forests Random forests Auto-ARIMA (available in
Databricks Runtime 10.3 ML
and above)

Logistic regression Linear regression with
stochastic gradient descent

XGBoost XGBoost
LightGBM LightGBM

Next, we can configure our experiment by choosing the training
dataset and the target variable (see Figure 9-13). We can also configure
how we want to treat null values, which is often referred to as imputation.
Please ensure that you have selected a machine learning runtime-enabled
cluster for the experiment, which is often an oversight.

197

https://scikit-learn.org/stable/modules/tree.html#classification
https://scikit-learn.org/stable/modules/tree.html#regression
https://facebook.github.io/prophet/docs/quick_start.html#python-api
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://pypi.org/project/pmdarima/
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
https://scikit-learn.org/stable/modules/sgd.html#regression
https://scikit-learn.org/stable/modules/sgd.html#regression
https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBClassifier
https://xgboost.readthedocs.io/en/latest/python/python_api.html#xgboost.XGBRegressor
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMRegressor.html

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

chema:
]
a
-]
L]
-]
-]
-]

a

Figure 9-13. Databrick’s AutoML interface

Finally, we can run the training and wait for the magic to happen.
Please note that by no means does Databricks AutoML try to produce
a production-grade model because it aims to simplify the process of
parameter search, and most importantly, if the dataset is too large, it will
try to take a sample of the dataset (Figure 9-14). If there is a need to train
a huge dataset, we can consider using distributed training. The details are
beyond the scope of this book, but the documentation can be found on
Databricks’ website:
https://docs.databricks.com/en/machine-learning/train-model/
distributed-training/index.html

198

https://docs.databricks.com/en/machine-learning/train-model/distributed-training/index.html
https://docs.databricks.com/en/machine-learning/train-model/distributed-training/index.html

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

.......

Figure 9-14. AutoML will automatically select the top 100 most
relevant results

Validation

Before we deploy the model to production, we need to validate the model
with test dataset. We would usually split the data into a training set and
a test set with ratios like 70/30 split or 80/20 split. We can do random
split, or splitting based on a business key, aka stratified split. Some more
advanced approaches can include training/validation/test split with the
validation is used for hyperparameters tuning, and until after the final
model is decided, we can evaluate the model with a test set. We can split
into 60/20/20 for train/val/test in these scenarios. AutoML uses the latter
approach for splitting.

In Databricks Runtime 10.1 ML and above, we can specify a
time column for splitting for classification and regression problems.
This provides flexibility when some problems are highly based on
chronological order.

199

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Deploy Model

Let’s talk about the deploy model.

Deployment

Once you have verified the champion model’s parameters and metrics and
you are ready to take the next step to deploy this model for further review
with stakeholders, you can register the model right from the experiment.
For best practices, you should always register your mode in Unity Catalog,
as shown in Figure 9-15 and Figure 9-16.

puzzled-cat-154

Overview Modsl matr

Paramsutors (153)

Farameter

classitier

Figure 9-15.

200

Trace Evaluation results Preview
Mutrics (24
Value Metric Value
TranstarmedTapetCiassifier|classtiorXGECIass I
inribase_score=None, o GBS 1IN
bacater=hare, 0BBISIA09NTIB02S
callbacks=Nong,
0756095236005238
colsample_bylevel=None,

i) v OEA2963:
colsample_bymode=nane, 07329387003420152
colsamole_bytree=0 307256 4B60R1564 Irarirag_jog_a BBABS1SEHITIIETES

0.6201283583138158
" R —
o jissiamita N, 072BA6ZI696463626
callbacks=

cals. _tylevel=hone. " TRy 525

colsample_byrodeshone
DGE847E; 852

OG2430:

D7624309302266104

eval_metric=None, feature_typesstione,

Model overview page in an experiment

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

-

Register model X

Workspace Model Registry
© Unity Catalog

Registration code

Run the snippets below on a cluster running Databricks Runtime 13.1 or above
with access to Unity Catalog. First, install Python dependencies:

%pip install “"mlflow-skinny|databricks]>=2.4.1" g
dbutils.library.restartPython()

Then, register the model to Unity Catalog. Customize the catalog, schema, and
model name as needed

import mlflow a

catalog = “"main"

schema = “"default’

model_name = "my_model"

mlflow.set_registry uri("databricks-uc")

miflow. register_model(
model_uri="runs:/cf3al84a735a40758342e4ae19be

name=f"{catalog}.{schema}. {model_name}"

Figure 9-16. Model registration

Databricks model registry provides a portal to manage our models’
versions, tag them, and create a model-serving endpoint right from the
model. All these models are registered using MLflow. See Figure 9-17 and
Figure 9-18.

201

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

(£} Playground
Experiments

1! Features

ﬁ Models

‘ay Serving

Figure 9-17. Models tab in Databricks Ul

Registered Models ©

O deley] Unity Cataiog Workspace Moded Registry Owned by me

Hame Catalog Schema

Figure 9-18. Registered models in Databricks

Model Serving/Inferencing

Last modified

Jul 11, 2024, 07:42 AM FOT

On the Models tab, we can also create an API endpoint, aka serve the

model, for external consumption (Figure 9-19). This will generate a REST

API endpoint, allowing the model to be easily accessed externally using

Python or other programming languages.

202

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Catalog Explorer * unityg

% flight_delay i

Overview Details Permissions
Description: Add description About this model
Owner: jasonylp@tredence.com
Versions Tags: Add tags
Status Version Timere.. Tags Aliases... Registe.. Comment
@ Version 1 2024-0.. @ jason.yi...

Figure 9-19. Model Serving and inferencing

Unity Catalog tightly integrates with Lakehouse Monitoring, so it is
recommended that an inference table be set up for output (Figure 9-20).

Enable inference tables

unityga - default flight_delay_output m
Takik name: unitygo.dat _delay_output_payloac

Inference tables

Figure 9-20. Set up model inference tables

Once a serving endpoint is created, we can query it. The “Query
endpoint” button on the top right of the page will show us the exact
commands to call the API (Figure 9-21). This API will generate inference
results and save into the table shown, in our case, unitygo.default.
flight_delay output_payload. Databricks will always append _payload
for the inference table.

203

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

flightdelay P Permasions

Serving endpaint state: (2) Ready Inference table: heot enabled

Created by: jasoryip@tredence.com

URL: hatps:f) 33 1, & dpai frnvocations)

Tags: &
Active configuration

Entay Version Mama LT Computs Trattic [3)

flight_delay-1 &) Ready CPU, Small 4 concurres ncy (4 DBU) 100

Figure 9-21. Query endpoint button in a served endpoint

To summarize, here is how the workflow looks:

1. Enable inference tables on your endpoint, as in
Figure 9-20.

2. Schedule a workflow to process the JSON payloads
using the code in the Query Endpoint button, as in
Figure 9-21.

3. (Optional) Join the unpacked requests and
responses with ground-truth labels to allow model
quality metrics to be calculated.

4. Create a monitor over the resulting Delta table and
refresh the metrics by using Lakehouse Monitoring,
which we will discuss next.

Monitoring

ML models are never built once and run forever. So, we do need to retrain
our models. The question is when we need to retrain. Some people decide
to train the model daily, but a more reactive approach is to detect data drift
and trigger a retrain when it happens. Simply put, data drift is the change
in input data that causes the model’s performance to degrade over time.
This can be caused by missing data in the pipeline, for example. With Unity

204

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Catalog, Databricks provides out-of-the-box Lakehouse Monitoring, which
includes drift detection, that leverages the SQL workspace to build a drift
monitoring dashboard. Additionally, triggers can be set up to retrain a
model when drift happens.

Next we will dive into Lakehouse Monitoring, a powerful monitoring
product that comes with no cost to Databricks customers.

Lakehouse Monitoring

Your table must be Unity Catalog enabled to use Lakehouse Monitoring.
Otherwise, the monitoring option will not be visible. While everything in
Databricks can be configured with code, the easiest way to get started is via
the user interface. We can navigate to the Quality tab in any UC-enabled
table and set up a monitor. Please note that only one type of monitoring
can be set up in any given table. See Figure 9-22 and Figure 9-23.

Overview Sample Data Details Permissions History Lineage Insights Quality

Create a monitor for

Figure 9-22. Setting up Lakehouse Monitoring

205

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Create monitor

@ Create a monitor to capture profile and drift metrics for dbdemos.uc_acl customers. Learn more £

Profiling Profile type

Schedule

General Metric tables schema name (O

Figure 9-23. Creating a monitor using Lakehouse Monitoring

Here are the options available when setting up a monitor in Lakehouse
Monitoring:

Snapshot profile: Designed for basic quality metrics
for any table at a snapshot in time. While Delta

Live Tables (DLT) comes with basic expectations,

a snapshot profile is similar to the data profiling
function in dbutils for exploratory data analysis
over time.

Time series profile: This isn’t talking about a time
series forecast but rather determining data drift
occurrence given a timestamp column. The drift
analysis metrics are shown in Table 9-2.

206

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Table 9-2. Al Model Monitoring Metrics

Column Name

Type

Description

chi squared_
test

ks test

tv_distance

1 infinity
distance

js_distance

wasserstein_
distance

population_
stability
index

struct<statistic:

double, pvalue:
double>

struct<statistic:

double, pvalue:
double>
double
double

double

double

double

Chi-square test for drift in
distribution.

KS test for drift in distribution.
Calculated for numeric columns
only.

Total variation distance for drift in
distribution.

L-infinity distance for drift in
distribution.

Jensen—Shannon distance for
drift in distribution. Calculated for
categorical columns only.

Drift between two numeric
distributions using the Wasserstein
distance metric.

Metric for comparing the drift
between two numeric distributions
using the population stability index
metric.

Inference profile: This is designed to measure

classification and regression influence results

like precision and recall and R2 scores. Currently,

data scientists need to maintain the codebase

to calculate these numbers, and each team will

try to use a different library depending on what

207

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

model they are using. Databricks’ approach is
model agnostic and is calculated completely based
on an inference table. On top of that, it includes
fairness and biases, which is a baby step forward
to Responsible Al. The metrics include predictive
parity, predictive equality, equal opportunity, and
statistical parity. See Figure 9-24.

ot

Faimess

q@> Transparency

@ Accountability

Figure 9-24. Microsoft’s Responsible AI standards

All of these profilers can detect PII in the data using Al, and sensitive
columns will be tags as PII in the catalog.

Why Profiling?

When building an ML model, it is critical to understand the statistics in
every stage of the process. For example, if a column contains lots of nulls, it
will not be suitable to be included in the model as it will not provide a lot of
values, and it will further degrade the training and inference performance.

208

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Data drift is a concept that determines whether model retraining
is required. Most of the time ML models are not trained once and run
forever. For example, ChatGPT usually comes with a knowledge cutoff
time. That’s because, like humans, ML models also need to get up-to-date
with their knowledge to make better decisions or predictions. There are
many different ways to measure drift, and calculating these drift metrics at
scale is often very challenging.

Finally, by monitoring the model metrics like F1 and R2 over time, we
will also know when a model retrain or refactor is required. In the case of
retraining with more data that does not improve the model metrics, it is
time to refactor the model to provide more high-quality data, which goes
back to the need to monitor the data drift and understand the statistical
distribution of the raw data. See Figure 9-25.

Monitor model-guality metrics,

quality of input data, and drift
of model inputs and predictions

Monitor statistical i AR, | TTTmTTmmRmmmmE \

properties and guality of 1 1

input data | |

I Inference table I

1 Logs model inputs and prediction,]

| and oplionally ground truth values |

when they become available

_____________ - J I

{ 1 \ userid (BK) |

1 Input table 1 Feature table 1 timestamp |

1 userid (PX) 1 userid (PK) Y ;:::i:::‘:u“’ I

1 SEadLE Sooie T :::d.l.t_ucun : ground truth |

1 ! home address 1 !

1 I income I

1 Input table ‘L 1 :_ ML pipeline ,
! userid (PK) I
| age I
1 home address i
! S Data pipeline ;

T e b

Figure 9-25. Lakehouse Monitoring table schema

Lakehouse Monitoring provides a one-stop interface for setting up all
these statistics and storing them in different tables so they can be reused.
Dashboards are also created for ease of visualization and quick insights,
saving teams numerous hours of research and development effort. See
Figure 9-26 and Figure 9-27.

209

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

To learn more about the monitoring metrics tables, please visit the
documentation here:

https://docs.databricks.com/en/lakehouse-monitoring/monitor-
output.html

21,932 1 0

Metrics

Figure 9-26. Lakehouse Monitoring report #1

210

https://docs.databricks.com/en/lakehouse-monitoring/monitor-output.html
https://docs.databricks.com/en/lakehouse-monitoring/monitor-output.html

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

- 1 28 10.11 14.71 W2

Dutput Tables

Metrics

Actiel Parformance

Figure 9-27. Lakehouse Monitoring report #2

Databricks Lakehouse Monitoring is a framework that enables a self-
serve data platform with proactive issue management.

e Auto-Generated Reports

Share quality updates organization-wide with auto-

generated dashboards, and use ready-made metrics
and analytics tools for easy issue exploration in your
data products.

e Unified Monitoring

Monitor the quality of all data products with a single
tool, regardless of the framework or platform used
to build them. Merge quality and business metrics
effortlessly in your lakehouse to gauge your data
products’ impact.

211

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

e Automated Root Cause Analysis

Catch data product issues before they reach consumers
with cost-effective “insurance.” Boost efficiency with
smart automation in your data and Al pipelines,
avoiding unnecessary retraining.

Deep Dive into Lakehouse Monitoring Output Tables

YData profiling (formerly Pandas profiling) and the summarize command
provide invaluable insights for data scientists to analyze datasets with
Spark compute, yet it doesn’t give you access to the raw data in a table
format. The importance of getting this data into a reusable format
includes:

— Setting up custom alerts: When including basic statistics
in a data drift report, we can trigger an alert to re-train
amodel.

— Creating reports beyond the given interface: Rarely does
any team not have an existing dashboard, so integrating
the analysis into an existing dashboard, like Power BI
and Tableau, is an important part of the team process.

— Comparing statistics between two different tables (with
Spark): Often we want an efficient way to compare the
differences between two different tables. While YData
profiling provides capabilities in Pandas to compare
two different datasets, it currently does not support
using Spark. On the other hand, the dbutils command
does not allow comparing two different datasets.

— Keeping track of historical differences: Understanding
the trend of the data allows the team to understand if

212

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

there is missing data due to source issues or incomplete
data pull. For example, if there is a job that was rerun
but produced fewer rows than it used to have or the
standard deviation compared to the last month
dropped drastically compared to historical runs, it
would be important to understand the root cause in
case it impacted the model.

Figure 9-28 illustrates input tables versus generated tables as well as
the relationship between generated tables and the dashboard.

table = o =
= 185 i 0 data Profile statistics
e oo o 'ﬂw‘f) s
A A
Databricks monitor —
You define what type of metrics are relevant for 4
your table < /
\ Drift tab /
‘' compared to bassline or
‘previous time window

Figure 9-28. Lakehouse Monitoring tables relationships

Consider if we wanted to monitor the table nyctaxi_trips, a baseline
table can also be specified optionally to measure drift. Lakehouse
Monitoring will generate two new tables automatically:

e nyctaxi_trips_drift _metrics

e nyctaxi trips profile metrics

213

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Figure 9-29 illustrates the output table in Unity Catalog.

™ H unitygo
v B monitering
[ivi) nyctaxi_trips
Tl nyctaxi_trips_drift_metrics

m nyctaxi_trips_profila_metrics

Figure 9-29. Lakehouse Monitoring tables that were being generated

These tables contain a lot of information. To examine it closely, please
refer to the documentation from Databricks website:

https://docs.databricks.com/en/lakehouse-monitoring/monitor-
output.html#column-schemas-for-generated-tables

The usage of these tables is also fully transparent. Databricks generates
all the queries and uses them in the Databricks Dashboard—everything
can be found in the workspace. This approach is essentially similar to the
Glass Box Auto ML approach—it will save weeks of development time for
teams that want to kick off an ML monitoring project.

The help you get started, Databricks has created sample notebooks,
including the datasets and models for Lakehouse Monitoring:

https://docs.databricks.com/en/lakehouse-monitoring/create-
monitor-api.html#example-notebooks

Figure 9-30 shows examples of queries and dashboard generated by
Lakehouse Monitoring.

214

https://docs.databricks.com/en/lakehouse-monitoring/monitor-output.html#column-schemas-for-generated-tables
https://docs.databricks.com/en/lakehouse-monitoring/monitor-output.html#column-schemas-for-generated-tables
https://docs.databricks.com/en/lakehouse-monitoring/create-monitor-api.html#example-notebooks
https://docs.databricks.com/en/lakehouse-monitoring/create-monitor-api.html#example-notebooks

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

Workspace » Users

jasonyip@tredence.com »

databricks_lakehouse_monitoring »

unitygo.monitoring.wine_ts_jason_yi

Name =7 Type Owner Created at

|:‘ column-drift-time-series Query jasonyip@tredence.com 2024-02-13 23:35:53
[data-integrity-table Query jasonyip@tredence.com 2024-02-13 23:36:07
[drift-metrics-last-updated-at Query jasonyip@tredence.com 2024-02-13 23:36:25
[mi_35405_adult_profile_metrics_las.. Query jasonyip@tredence.com 2024-02-13 23:36:24
[multi-select-metric-data-integrity Guery Jasonyip@tredence.com 2024-02-13 23:35:58
r,‘j num-columns-with-high=-nulls Query Jasonyip@tredence.com 2024-02-13 23:36:12
[-.':‘ num-columns-with-high-nulls-times... Query jasonyip@tredence com 2024-02-13 23:36118
[® num-columns-with-high-zeros Query jasonyip@tredence.com 2024-02-13 23:36:16
[numeric-drift Guery jasonyip@tredence.com 2024-02-13 23:36:01
[numeric-profile-time-series Guery jasonyip@tredence.com 2024-02-13 23:36:06
™ numeric-profile-window-distribution Query jasonyip@tredence.com 2024-02-13 23:35:65
[® numeric-profiles-table Query jasonyip@tredence.com 2024-02-13 23:35:57
|-:' numerical-columns-with-high-drift-... Query Jasonyip@tredence.com 2024-02-13 23:38114
[» requests-counter Query jasonyip@tredence.com 2024-02-13 23:36:M
[requests-time-series Guery jasonyip@tredence.com 2024-02-13 23:36:22
B wine_ts_jason_yi Monitoring Dashboard jasonyip@tredence.com 2024-02-13 23:36:26

Figure 9-30. Objects created by Lakehouse Monitoring; everything is
open source

MLOps Best Practices

Building an ML model is rarely a single-person effort. Even if a single data
scientist is working on model building, they will require collaboration
with other people. Often, best practices must be shared across the team so
there is no difference to the ML pipeline on every model. If best practices
are followed, working across the team will save time without repeatedly
learning the code base on every single model. Hence, learning from our
experience, Databricks has open-sourced the internal best practices to
develop an ML model, called the MLOps stack.
https://github.com/databricks/mlops-stacks

215

https://github.com/databricks/mlops-stacks

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

The architecture diagram in Figure 9-31 represents the process
from development to deployment for an ML model. There are three
components provided in the repo:

e ML Code: Example ML project structure (training and
batch inference, etc.), with unit-tested Python modules
and notebooks

e ML Resources as Code: ML pipeline resources
(training and batch inference jobs, etc.) defined
through Databricks CLI bundles

e CI/CD (GitHub Actions or Azure DevOps): GitHub
Actions or Azure DevOps workflows to test and deploy
ML code and resources

B - —Hv m—— S
+
o, |
miftaw
I O T
TR [inet bt e T
...... - S ting
o T TS m e
[— o

_J{ j-mrm-..ﬁ.m....m.L ,,,,,, J

Pipeline — Reads % Madel E Repo

I Task — Writos » Model transition p Branch

Figure 9-31. Databricks’ MLOps stack

By leveraging Databricks’ best practices, teams can focus on
generating business values from their ML model rather than dealing with
infrastructure setup. The three items can be grouped into two major parts,

216

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

which is CI/CD and ML Project. We will focus on the ML Project portion
in this chapter and look at the CI/CD portion later in Chapter 15. See
Figure 9-32.

Select if both CI/CD and the Project should be set up, or only one of them.

You can always set up the other later by running initialization again:
CICD_and_Project

» Project_Only
CICD_Only

Figure 9-32. Databricks’ MLOps stack

Once we have initialized the MLOps stack with databricks bundle
init mlops-stacks and choose the Project Only option, the CLI will
create template folder structures along with an NYC ML example in the
folders so we can follow the code. Figure 9-33 shows what the folder
structure look like, but as the project continues to evolve. The exact project
details can be found in the README .md file under the main project folder.

Project Structure

j—flight_delay

| F—__init__py

| F—requirements. <~ Python file containing a generic class called Job to run jobs via dbx.

[feature-table-

| b—featurizepy <- Perform data preprocessing steps on features and label. creation

| F—feature_table_creatorpy <- Create Databricks Feature Store table.]
T model-train |
| }—model_train_pipeline.py <- Create sklearn pipeline.

| F—model_trainpy <~ Train model and track params, metrics and model to MLflow Tracking.

! _) model-deployment |
| F—model_deployment.py <~ Model comparison prior to deployment.

I

| b—model_inference.py <- Load model and perform inference.

|

| }—jobs <- Package containing job entrypoint modules.

| L—utils <- Package containing various utility modules.

Figure 9-33. Suggested project structure

217

https://doi.org/10.1007/979-8-8688-0444-1_15

CHAPTER9 MACHINE LEARNING OPERATIONS USING DATABRICKS

With the provided sample notebooks, teams can use source control to
develop their ML model and deploy via the Git actions provided, saving
time to re-developing reusable standards and focusing on producing

business values.

Conclusion

In this chapter, we spent a lot of time taking an ML model from
development to production because data scientists need to spend time
coding up the model and then tuning the models. In between they also
need to work closely with data engineers and ML engineers to ensure they
are getting the latest data and deploying the latest model for testing.

When using Databricks’ Glass Box Auto ML approach along with other
toolsets like feature stores, data scientists can now speed up their process
of getting to a baseline model, which is an important milestone to evaluate
the effectiveness of the input data. Then they can leverage the code
generated to build a production model while seamlessly collaborating with
data engineers and ML engineers using the intuitive interfaces.

Databricks has recently taken the ML model building to the next level.
While many tools out there can manage the MLOps life cycle, Databricks
is the only platform that allows a team of data experts to work together
seamlessly without having to jump through multiple hoops of toolsets.

218

CHAPTER 10

Generative Al
with Databricks

Ever since ChatGPT was released to the public, there has been no shortage
of interest in chatbots or generative artificial intelligence (GenAI). But what
exactly is GenAl, and how does Databricks come into the picture? And how
it can help organizations deploy their own chatbot or develop their own
GenAlI applications? In this chapter, we will first learn the concepts around
GenAl. Then we will discuss how Databricks and the newly acquired
company Mosaic ML will work together and transform the industry once
more. This chapter lays some background regarding the journey of GenAl
and introduces the Databricks offering in the GenAl space.

What Is Generative Al?

According to Gartner:

“Generative Al can learn from existing artifacts to generate
new, realistic artifacts (at scale) that reflect the characteristics
of the training data but don’t repeat it. It can produce a
variety of novel content, such as images, video, music, speech,
text, software code and product designs.”

© The Editor(s) (if applicable) and The Author(s), 219
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_10

https://doi.org/10.1007/979-8-8688-0444-1_10#DOI

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Generative Al uses several techniques that continue to evolve.
Foremost are Al foundation models, which are trained on a broad set of
unlabeled data that can be used for different tasks, with additional fine-
tuning. Complex math and enormous computing power are required
to create these trained models, but they are, in essence, prediction
algorithms.

Today, generative Al most commonly creates content in response to
natural language requests—it doesn’t require knowledge of or entering
code—but the enterprise use cases are numerous and include innovations
in drug and chip design and material science development.

Figure 10-1 explains how generative Al and ChatGPT are different.
From a very high level, generative Al is a technique that tries to generate
some new content by learning from vast amounts of similar content. For
example, when trying to generate English language content, it could have
trained on all the text on Wikipedia to start with. However, that’s just an
understatement. With that said, not something every household would
have access to the resources required to train these models, despite the
number of models increasing by the day. As a result, similar to transfer
learning, a lot of data scientists would use so-called foundation models to
enhance the Al with some internal knowledge.

The enhancement process can be done via retrieval augmented
generation (RAG) or fine-tuning. There is a fundamental difference
between the two. RAG is trying to optimize the data, whereas fine-tuning
is trying to optimize the model. We will discuss both these in greater detail
later in the chapter.

Finally, if resources are available and the goal is to train a fully domain
specific model without bias, Mosaic ML’ training platform will help you do
that albeit at a much reduced cost. The results of these are large language
models (LLMs). ChatGPT is an application created on top of the LLMs to
serve as a chatbot, providing an intuitive interface for the general public to
use. But then on the other hand, in the case of GenAl, we might think that
the larger the model the better, but in fact this is not the case. The world

220

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

is still learning how to optimize the data for optimized throughput of the
tasks required. An excellent example is Databricks’ bespoke LLM model
for auto-documentation generation, which costs about $1,000 to train.
Figure 10-1 is a quick reference to these standard terms.

What Is Generative Al?

Al techniques that learn from data about

o Generative Al existing artifacts and use this to generate

new artifacts.

= Large machine learning models that are
o Foun datl on trained on a broad set of unlabeled data and
MOd el S are fine-tuned to a wide range of applications.

Al that is trained on vast amounts of text
Large Language to interpret and generate human-like

Models (LLM) textual output.

An OpenAl service that incarporates
° ChatGPT a conversational chatbot with LLM to

create content.

Gartner

Figure 10-1. Differences between Al models (source: https://www.
gartner.com/en/insights/generative-ai-for-business)

Databricks Generative Al

Databricks provides a lot of tools for you to take control in model
training all the way to governing the model. Figure 10-2 illustrates all the
capabilities that Databricks provides for organizations to use and build
their next GenAl use case.

221

https://www.gartner.com/en/insights/generative-ai-for-business
https://www.gartner.com/en/insights/generative-ai-for-business

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Generative Al

Embracing compund systems
| Build | | Evaluate | | Govern |

: Function Calling _ Peer Labeling Usage Tracking
=i Agent Serving

Figure 10-2. Databricks’ generative Al offerings

In this chapter, we will examine the basic out-of-the-box features that
Databricks provides, and then in subsequent chapters, we will discuss how
you can leverage all the advanced tools to enhance your GenAl offering.

While we will discuss the details in later chapters, here are the high-

level functionalities of each stack:

¢ Build: This includes the Mosaic Al stack to refine an
LLM either through RAG or fine-tuning.

o Evaluate: This is part of the Al Agent framework to
allow evaluation with metrics as well as getting peer
feedback.

e Deploy: There is a one-line command to deploy a
nonproduction app for a user acceptance test.

e Govern: There is an extension of MLflow to manage
internal and external LLM APIs.

222

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

The GenAl Journey

With GenAl dominating the world now, many organizations start by
allowing their employees to play around with these models. To combine
the data from within the organization, some of them with more budget
want to train a model of their own from scratch. While others keep the
model for use within their organization, some also decide to open up their
model to the world and become foundation models.

Figures 10-3 and 10-4 present two different views of this journey.
Figure 10-3 represents the journey or maturity an organization can get
with GenAl. From the left, we have prompt engineering, then retrieval
augmented generation, fine-tuning, and, lastly, pre-training.

Fine-tuning Pre-training

Crafting specialized Combining an LLM with Adapting a pre-trained Training a GenAl model
prompts and pipelines to custom, enterprise data Genal model to specific from scratch
guide GenAl behavior data sets or domains

More control and customization, but more compute and complexity

Figure 10-3. The GenAl journey

While these building blocks are available, not every organization will
need to reach the last step of pre-training due to the computation, aka
cost, as well as complexity, aka expert knowledge, required to reach
the next level. Figure 10-4 illustrates this idea in another way. Note that
pre-training is the most time-consuming and complex process. We will
walk you through the journey, but before you decide to move to the next
step, it is best to consider the trade-off between time and cost as well as
whether experts are available to validate the results.

223

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Pre-Train your

own GenAl
Models
- Fine Tune
.‘i Open Source
K GenAl Models
[=3
g Retrieval
Q Augmented
Generation (RAG)
Prompt
engineering

Time / Organizational Maturity

Figure 10-4. Alternate aspect of the GenAl journey with time and
complexity involved

Prompt Engineering

Prompt engineering is the art of asking the right questions to get the best
output from a language model (LLM) using plain-language prompts. It
enables direct interaction with the LLM, allowing you to communicate
with it using only natural language instructions. In the past, working
with machine learning models typically required deep knowledge of
datasets, statistics, and modeling techniques. However, today, LLMs can
be “programmed” in English and other languages, making them more
accessible to a broader audience.

Here are some key points about prompt engineering:

o Best Practices for Prompting:

¢ Clear communication: Clearly communicate what
content or information is most important.

e Structured prompts: Structure your prompts by
starting with the role or context, followed by input
data and then the instruction.

224

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

o Varied examples: Use specific and varied examples
to help the model narrow its focus and generate
accurate results.

o Constraints: Use constraints to limit the scope of
the model’s output and prevent factual inaccuracies.

e Break down complex tasks: Divide complex tasks
into a sequence of simpler prompts.

o Self-evaluation: Instruct the model to evaluate or
check its own responses before producing them.

e Creativity: Be creative! The more open-minded
and creative you are, the better your results will be.

Types of Prompts:

o Direct prompting (zero-shot): The simplest type
of prompt that provides only an instruction without

examples.

« Example: “Can you give me a list of ideas for
blog posts for tourists visiting New York City for
the first time?”

¢ Role prompting: Assign a role to the model and ask
it to understand your goals and objectives before
designing a prompt.

« Example: “You are a mighty and powerful
prompt-generating robot. Design a prompt for
the best outcome based on the context and data
provided.”

¢ Chain-of-thought prompting: Break down
complex tasks into a sequence of simpler prompts.

225

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Remember, being a great prompt engineer doesn’t require coding
experience. Creativity and persistence will benefit you greatly on your
journey in this evolving field of LLMs and prompt engineering'2.

Mosaic Al Playground

Riding on the wave of generative Al, many corporations have released
foundation large language models. However, without background in
programming, it is difficult to use these models. Databricks has optimized
a few models and curated in the “Playground” section for experimentation,
providing a standard interface to interact with these models. It is also an
interactive environment where users can simultaneously experiment and
“chat” with various large language models and compare results.

The curated models include the following:

— Llama2 70B Chat

Llama-2-70B-Chat is a state-of-the-art 70B
parameter language model with a context length of
4,096 tokens, trained by Meta. It excels at interactive
applications that require strong reasoning
capabilities, including summarization, question-

answering, and chat application
— Mixtral-8x7B Instruct

Mixtral-8x7B Instruct is a high-quality sparse
mixture of experts model (SMoE) trained by Mistral
Al Mixtral-8x7B Instruct can be used for a variety of
tasks such as question-answering, summarization,

and extraction.

226

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

MPT 30B Instruct

MPT-7B-8K-Instruct is a 6.7B parameter model
trained by MosaicML for long-form instruction
following, especially question-answering on and
summarization of longer documents. The model is
pre-trained for 1.5T tokens on a mixture of datasets,
and fine-tuned on a dataset derived from the
Databricks Dolly-15k and the Anthropic Helpful and
Harmless (HH-RLHF) datasets. The model name
you see in the product is mpt-7b-instruct, but the
model specifically being used is the newer version of
the model.

MPT 7B Instruct

MPT-30B-Instruct is a 30B parameter model for
instruction following trained by MosaicML. The
model is pre-trained for 1T tokens on a mixture of
English text and code, and then further instruction
fine-tuned on a dataset derived from Databricks
Dolly-15k, Anthropic Helpful and Harmless (HH-
RLHF), CompetitionMath, DuoRC, CoT GSM8k,
QASPER, QuALITY, SummScreen, and Spider
datasets.

https://learn.microsoft.com/en-us/azure/
databricks/machine-learning/foundation-
models/supported-models

227

https://learn.microsoft.com/en-us/azure/databricks/machine-learning/foundation-models/supported-models
https://learn.microsoft.com/en-us/azure/databricks/machine-learning/foundation-models/supported-models
https://learn.microsoft.com/en-us/azure/databricks/machine-learning/foundation-models/supported-models

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Use Cases

Out of the box, Databricks provides four different use cases in the
playground, but large language models are not limited to these four
use cases. Users can chat with these models and get responses from the
prompt window.

Sentiment Analysis

You will be provided with a tweet, and your task is to classify its sentiment
as positive, neutral, or negative.

Example:

Input: The new Spiderman movie was meh

Output: Sentiment: Neutral

Unstructured Text Parsing

You will be provided with unstructured data, and your task is to parse it
into JSON format.

Example:

Input: Advanced Micro Devices, Inc. is an American multinational
semiconductor company based in Santa Clara, California, that develops
computer processors and related technologies for business and consumer
markets. The company was founded in 1969 by Jerry Sanders and a group
of other technology professionals

Output: { “name”: “Advanced Micro Devices, Inc.; “location”: “Santa
Clara, California’;, “founders”: [“Jerry Sanders” |, “founding_year”: 1969,

” «u

“products”: [“computer processors’, “related technologies” |, “markets”:

” u

[“business’, “consumer” | }

228

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Summarization

You will be provided with a document and asked to summarize it.

Example:

Input: Copy activity supports Azure Databricks Delta Lake connector
to copy data from any supported source data store to Azure Databricks
delta lake table, and from delta lake table to any supported sink data store.
It leverages your Databricks cluster to perform the data movement, see
details in Prerequisites section.

Output:

1. The copy activity in a data integration tool supports
the use of the Azure Databricks Delta Lake
connector.

2. This feature enables data copying from any
supported source data store to an Azure Databricks
delta lake table, and from the delta lake table to any
supported sink data store.

3. The copy activity utilizes a user's Databricks cluster
to perform data movement.

4. Users should refer to the Prerequisites section for
further details and requirements.

Document Q&A

You will be provided with a document and asked a question about it.
Example:
Document:
Farm Utility Exemption Notice
The full text can be found on this website due to its length:
https://www.dfa.arkansas.gov/images/uploads/exciseTax0ffice/
et1441.pdf

229

https://www.dfa.arkansas.gov/images/uploads/exciseTaxOffice/et1441.pdf
https://www.dfa.arkansas.gov/images/uploads/exciseTaxOffice/et1441.pdf

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Question: Is a greenhouse a qualifying agricultural structure?

Answer: Yes, a greenhouse is a qualifying agricultural structure
according to the document. It is listed under C of the definition of
qualifying agricultural structures as a greenhouse used for commercial
production.

While the playground allows developers to play around with the model
use cases, behind the scenes it is using Databricks’ serverless technology
to power the LLM API. You can use the UI, the Foundation Models APISs,
the Python SDK, the MLflow Deployments SDK, or the REST API to query
supported models. The APIs are compatible with OpenAl, so you can even
use the OpenAl client for querying.

Retrieval Augmented Generation

While ChatGPT democratized LLM-based chatbots for consumer use,
companies need to deploy personalized models that meet needs like the
following:

» Privacy requirements on sensitive information

e Preventing hallucination

e Specialized content, not available on the Internet
e Specific behavior for customer tasks

o Control over speed and cost

o Deploy models on private infrastructure for
security reasons

To accomplish this, organizations often need to provide internal
documents to ground the model with truth. This process requires
converting context into something called embeddings. Embeddings are
mathematical representations (vectors) of the semantic content of data,

230

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

typically text or image data. Depending on the use case, there are many
ways to generate embeddings. But in the case of GenAl, embeddings
are generated by a large language model, for example, BAAI's BGE-
Large-EN (https://huggingface.co/BAAI/bge-large-en). They are

a key component of many GenAl applications that depend on finding
documents or images that are similar to each other.

Figure 10-5 illustrates how we can convert a knowledge graph to
embeddings, where the nodes can be viewed as internal documents and
the edges can be viewed as references. You can see each component of the
input graph is converted to a numeric calculation, and these numbers are
helpful for machine learning or GenAI tasks.

Knowledge Graph Embedded Representation Machine Learning Task

Figure 10-5. Representation of embedding from a knowledge graph
(source: https://en.wikipedia.org/wiki/Knowledge graph_
embedding)

Figure 10-6 gives a sample workflow using LangChain to connect
the document embeddings to Databricks’ vector index and sync with
Databricks’ vector database. An application can then be built over this
architecture. Later in this chapter, we will introduce Mosaic AI Agent
Framework, an offering by Databricks to deploy the LLM application for
evaluation with ML Flow LLM Judges or expert users.

231

https://huggingface.co/BAAI/bge-large-en
https://en.wikipedia.org/wiki/Knowledge_graph_embedding
https://en.wikipedia.org/wiki/Knowledge_graph_embedding

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

O

LangChain TOOLS
& openAl A =
)
Ciiticy .\ Delta Syne Index o fél‘a
e YoulTH
Text Video URLs Ty WikiremA Aut "
[A

= =
=soL =S|

F

Figure 10-6. Al Agent workflow with Dataricks vector database
(source: https://medium.com/@tsiciliani/using-ai-agents-
with-databricks-vector-search-8b688d7ed41a)

As the data volume increases, it has become increasingly hard
to optimize the performance of large data applications. To solve the
performance issues, Databricks has released a suite of tools so developers
can focus on developing the pipeline to achieve higher quality rather than
worrying about performance tuning and maintaining infrastructure. These
tools include the following:

o Fullymanaged foundation models providing pay-per-
token base LLMs.

The first step of our LLM workflow is to generate
embeddings, either based on text or binaries.

The Databricks Foundation Model API provides
performance guarantees for some foundation models
for different use cases. In the case of embedding, BGE
Large (English) is provided with an API interface,

232

https://medium.com/@tsiciliani/using-ai-agents-with-databricks-vector-search-8b688d7ed41a
https://medium.com/@tsiciliani/using-ai-agents-with-databricks-vector-search-8b688d7ed41a

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

so developers can calculate the embedding at scale.
Table 10-1 lists some of the foundation models that
come out of the box from Databricks. They can be used
as an API endpoint without acquiring any compute,
simplifying the deployment requirements.

Table 10-1. Databricks Foundation Model API

Model Task type Endpoint

DBRX Instruct Chat databricks-dbrx-instruct

Meta-Llama-3-70B-Instruct Chat databricks-meta-1lama-3-70b-
instruct

Meta-Llama-2-70B-Chat Chat databricks-1lama-2-70b-chat

Mixtral-8x7B Instruct Chat databricks-mixtral-8x7b-
instruct

MPT 7B Instruct Completion databricks-mpt-7b-instruct

MPT 30B Instruct Completion databricks-mpt-30b-instruct

GTE Large (English) Embedding databricks-gte-large-en

BGE Large (English) Embedding databricks-bge-large-en

e Avector search service to power semantic search
on existing tables in your lakehouse.

A vector database is a specialized database to store
embeddings. To ensure the performance is guaranteed,
a vector index will be created for a specific column.
Databricks Vector DB will either calculate the
embeddings for you if it is a text column in a delta
table or will sync the embeddings to an index if it is
generated by binaries when the values are stored in a
delta table or API can be used to sync the index if no

233

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

table is provided. Either way, embeddings will need to
be present in a highly performant and scalable format
to perform similarity search.

In summary, Databricks provides multiple types of vector search
indexes (see Figure 10-7).

e Managed embeddings: These provide a text column
and endpoint name, and Databricks synchronizes the
index with your Delta table.

¢ Self-managed embeddings: You compute the
embeddings and save them as a field of your Delta
table; Databricks will then synchronize the index.

o Directindex: When you want to use and update the
index without having a Delta table.
Choosing your Vector Search Index type

Managed embeddin

Index on a Delta Toble

g Self managed embedding Direct vector search index
e Index on o Delta Toble Na Delta Table - full flexibility

APl call to index new embeddings

Databricks manages the index

Simple, fully mo nogad

Reaitime indexation use-coses

Figure 10-7. Databricks vector search index types

234

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Similarity Search: The Magic Behind the Scenes

In the previous section, we discussed that vector search is based on the
similarity algorithm. The text is first encoded into some vector form,

and the similarity between the question and answer will be measured to
give the best answer. Cosine similarity (Figure 10-8) or dot product is an
algebraic operation that takes two equal-length sequences of numbers
(usually coordinate vectors) and returns a single number. When the result
is 0, it is completely different; whereas when the result is 1, it is identical.
Vector DB uses this function to search for relevant documents to answer a
specific question.

Cosine Distance/Simil: ity

Item 2
X,

ltem 1

)
\

Cosine Distance

Xy

Figure 10-8. Cosine similarity

Mosaic Al Vector Search does not use cosine similarity. However,
according to Databricks, Mosaic Al Vector Search uses the Hierarchical
Navigable Small World (HNSW) algorithm for its approximate nearest
neighbor searches and the L2 distance metric to measure embedding
vector similarity. If you want to use cosine similarity, you need to
normalize your datapoint embeddings before feeding them into

vector search.

235

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

In other words, given a set of similar vectors, using either L2 distance
or cosine similarity, we can use the HNSW to refine the search to ensure
Databricks gains efficiency in terms of finding the most relevant chunk
of document at scale. L2 and Cosine similarity are both an acceptable
solutions for the search. Figure 10-9 shows HNSW.

Layer=2
K
R
| i
T

Decreasing characteristic radius

<

Figure 10-9. Illustration of the hierarchical NSW idea

After learning the basic concepts and building blocks of RAG we will
look at an example of how to create an end-to-end RAG application

A Practical Example for RAG: Using
Structured Data

Let’s start by looking at the raw components Databricks provides to
accelerate the development of a RAG application. These components are
essential for any RAG application. Many companies are worried about

236

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

vendor lock-in, but Databricks can be used as a serving platform. In the
next chapter, we will discuss how to use Databricks to create an end-to-
end RAG application.

The typical steps to create an end-to-end RAG app are as follows:

1. Create a feature serving endpoint. This step is
required only if the data is being consumed outside
of Databricks.

2. Calculate embedding and sync it into a vector
database.

3. Create a LangChainTool that uses the endpoint to
look up relevant data and log it with MLflow.

4. Evaluate the model using MLflow or human
feedback.

Step 1: Feature and Function Serving

In case developers want to create the app outside of Databricks but
still want to utilize the data within Databricks lakehouse platform,
Databricks has made it easy to make data available via an API endpoint
and automatically scale up and down as demand changes for the data,
eliminating the needs to extract the data outside of Databricks.

There are two ways to serve these features. One is to expose the data,
either via a delta table or via a function, to an API endpoint, and another is
to sync the features into an external feature store.

237

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

— Online tables can be created easily via the UI or API, as
shown in Figure 10-10.

Catalog Explorer © send fesdbsck + Add Browse DBFS | (D0- Shared -

Catalog o oA Catlogs » docs » default »
m docs.default.user_preferences 4 i UsewithBitools w “
¥ v
Owner: & Popularity: Size: 41 o 53go
+» [ooes
Tags: Add t :
v B default age! ags Croate online table &

» Tables(z3) Comment: % Al generste Add
» Velumes{1)

* Functions (4)

Create vector search index

Columns Samplo Data Dotails Permissions History Delete

» B information_sehema

Q o2 Viw rtationsfiy #* Al generate
Column Type Comment Tags
user_id Ow PR int @ @
avg_budget double (O] @
haotel_preference varchar{255) Lo @

Figure 10-10. Databricks online table

— Sync features to external feature stores, as shown in
Figure 10-11.

Client

miflow

Online store

Publish

Figure 10-11. Online external

238

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Table 10-2 shows which external feature stores Databricks supports for

specific features.

Table 10-2. External Feature Stores That Databricks Supports

Online Store Publish with Publish with Feature Feature
Provider Feature Workspace Lookup Lookup

Engineering in Feature Store in Legacy in Model

Unity Catalog MLflow Model Serving

Serving
Amazon X X (Feature Store X X
DynamoDB client v0.3.8
and above)
Amazon Aurora X X
(MySQL-
compatible)
Amazon RDS X X
MySQL
Azure Cosmos X X (Feature Store X X
DB client v0.5.0
and above)

Azure MySQL X X
(Single Server)
Azure SQL X
Server

239

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Listing 10-1 shows the sample code to publish to an online feature store.

Listing 10-1. Syncing Features to Amazon Dynamo DB

import datetime

from databricks.feature_engineering.online store_spec import
AmazonDynamoDBSpec

or databricks.feature store.online store spec for Workspace
Feature Store

do not pass “write secret prefix if you intend to use the
instance profile attached to the cluster.
online store = AmazonDynamoDBSpec(
region="<region>',
read_secret_prefix='<read-scope>/<prefix>’,
write secret prefix='<write-scope>/<prefix>'

)

fe.publish table(# or fs.publish table for Workspace
Feature Store
name="'ml.recommender_system.customer features',
online store=online_store,
filter condition=f" dt = '{str(datetime.date.today())}"",
mode="merge’

Step 2: Calculate Embedding and Sync
to a Vector Database

The Databricks Foundation Model API (FMAPI) can be used outside
of Databricks. As discussed, Mosaic Al vector search will calculate the
embeddings for you automatically. But it is also possible to use the
embedding endpoint outside of Databricks. Listing 10-2 is the code to
calculate the embedding using FMAPI.

240

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Listing 10-2. Using Databricks FMAPI to Calculate Text
Embeddings

def calculate embedding(text):
embedding_endpoint_name = "databricks-bge-large-en"
url = f"https://{mlflow.utils.databricks utils.get browser_
hostname()}/serving-endpoints/{embedding endpoint name}/
invocations"
databricks token = mlflow.utils.databricks utils.get
databricks host creds().token

headers = {'Authorization': f'Bearer {databricks token}',
"Content-Type': 'application/json'}

data = {
"input": text
}

data_json = json.dumps(data, allow _nan=True)

print(f"\nCalling Embedding Endpoint: {embedding endpoint_
name}\n")

response = requests.request(method="POST', headers=headers,
url=url, data=data_json)
if response.status code != 200:
raise Exception(f'Request failed with status {response.
status_code}, {response.text}")

return response.json()['data’'][0]['embedding"]

241

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Step 3: Create a LangChainTool to Perform
Various Tasks

It is typical to use a LangChainTool to perform the tasks, aka from
langchain.agents import initialize agent. Butit can also be anything
you want to do with LangChain or Llamalndex. It is not a restriction

but rather a suggestion because MLflow supports logging only with
LangChain, OpenAl and Huggingface for now. The code in Listing 10-3 will
log your LangChain model as artifacts.

Listing 10-3. Logging Model with LangChain Flavor

mlflow.langchain.log model()

Step 4: MLflow LLM Evaluation

Similar to traditional machine learning models, LLMs also need to be
evaluated to ensure the output is accurate. However, because the output
can be nondeterministic and very often there is no single ground truth to
compare against, ML Flow has provided a few ways to evaluate an LLM
model, and the team is continuously working to update the functionalities.

1. Use Default Metrics for Predefined Model Types
with mlflow.evaluate()

MLflow comes with a few predefined model types;
with each model type, it leverages some open-
source libraries to compute the metrics. The types
are described as follows:

242

CHAPTER 10 GENERATIVE Al WITH DATABRICKS
e question-answering: model type="question-
answering":

« exact-match: Measures the exact match
between the predicted answer and the
true answer

o toxicity':detects if the answer contains toxic
or harmful content

e ari_grade level?and flesch _kincaid grade_
level 2: evaluate the readability of the answer
based on its complexity and grade level

e text-summarization: model type="text-
summarization”:

e ROUGE?: Measures the similarity between the
predicted summary and the true summary

o toxicity!: Detects if the answer contains toxic
or harmful content

e ari_grade level?and flesch _kincaid grade_
level?: Evaluate the readability of the answer
based on its complexity and grade level

o text models: model type="text":

o toxicity!: Detects if the answer contains toxic
or harmful content

e ari_grade level?and flesch _kincaid grade_
level? Evaluate the readability of the

Listing 10-4 shows the code to run an evaluation.

243

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Listing 10-4. Running an Evaluation of a Dataset

results = mlflow.evaluate(
basic_qa model.model uri,
eval df,
targets="ground truth", # specify which column
corresponds to the expected output
model type="question-answering", # model type
indicates which metrics are relevant for this task
evaluators="default",

2. LLM Metrics: Unlike traditional machine learning,
where there is a formula for each metric, LLM
metrics are evaluation criteria provided to a
powerful LLM, by default GPT 4, to evaluate an
answer either against ground truth or providing
prompts. The following are the provided interfaces:

e Answer_similarity: Give a score on how similar the
answer with respect to the ground truth.

¢ Answer_correctness: Give a score on the
correctness of the answer with respect to the
ground truth.

« Answer_relevance: Determine how relevant the
answer is with respect to the ground truth.

o Relevance: Given both ground truth and context
(for example, history of Databricks) to determine
how relevant of the answer with respect to the
ground truth.

244

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

o Faithfulness: It evaluates only with the provided

context with the output to determine if the claim

can be inherited from the context.

It is understandable that the concept is challenging to

understand at first glance. However, reviewing default prompts

from MLflow will help answer some of the doubts you might

have in your mind:

https://github.com/mlflow/mlflow/blob/
master/mlflow/metrics/genai/prompts/vi.py

MLflow provides these examples by default to

ensure we give enough hints to the model. It is

recommended that you give examples as input, but

you can also evolve from the default ones.

Figure 10-12 shows example output of the

similarity metric.

answer_similarity/vl/score

answer_similarity/v1/justification

4

2

5

4

The output provided by the model aligns well w...
The output provided by the model does correctl...
The output provided by the model aligns very c...

The output provided by the model aligns well w...

Figure 10-12. Example output of MLflow metrics

245

https://github.com/mlflow/mlflow/blob/master/mlflow/metrics/genai/prompts/v1.py
https://github.com/mlflow/mlflow/blob/master/mlflow/metrics/genai/prompts/v1.py

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

3. Evaluation data: This is the data your model is
evaluated by. It can be a Pandas dataframe, a Python
list, a numpy array, or anmlflow.data.dataset.
Dataset() instance. This dataset usually contains
input dataset and ground truth labels, as shown in
Listing 10-5.

Listing 10-5. Example Input Dataset for Ground Truth Data

{
"inputs": ["What is MLflow?",],

"ground truth": ["MLflow is an open-source platform for
managing the end-to-end machine learning lifecycle. It was
developed by Databricks, a company that specializes in big
data and machine learning solutions. MLflow is designed to
address the challenges that data scientists and machine
learning engineers face when developing, training, and
deploying machine learning models.",],

We have demonstrated the ability to use Databricks as a serving
endpoint as well as the open-sourced version of MLflow to do an
RAG application and evaluate its performance. To simplify all these
operations, we can easily use Al Agent framework and everything shown
in Figure 10-3. Without first understanding the core pieces of operations, it
will be easy to think that Databricks is a lock-in platform, but in fact, itis an
open platform. All the tools are built upon the basic components discussed
earlier.

After looking at the RAG Applications, we will look into the Fine-
Tuning APL.

246

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Mosaic Al Fine-Tuning API

In the world of LLMs, the cost of training and the hardware requirements
increase as the stage moves from prompt engineering all the way to
pre-training. Not only that but the technical knowledge required also
increases. Table 10-3 illustrates the skills requirements as well as hardware
requirements for each stage.

Table 10-3. Role and Hardware Requirements for Each Step of the
GenAl Journey

Prompting RAG Fine-Tuning Pre-Training
Role English Data Engineers Data Scientists Research Scientists
Hardware CPU CPU GPU GPU clusters

According to Open Al, fine-tuning lets you get more out of the models
available by providing:

e Higher-quality results than prompting

o Ability to train on more examples than can fit in
a prompt
e Token savings due to shorter prompts

o Lower-latency requests

Referencing Table 10-3, understanding the resources and skills
requirement as well as the training dataset, one should consider tweaking
the prompt before getting into fine-tuning. It is necessary to gather more
ground truth data for the model so the fine-tuned model can provide a
more accurate response to a specific topic.

247

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

As the name suggests, fine-tuning is a process to get to some specific
knowledge faster, but it comes with a cost unless it is really needed. For
example, the model cannot answer some specialized medical questions
that often involve a lot of nuances only training medical professionals
would know how to answer. Then it can be a good use case for fine-tuning.

Open Al has published a detailed guide on prompt engineering, and
we can try these with Mosaic ML Playground:

https://platform.openai.com/docs/guides/prompt-engineering

Fine-Tuning Example

Databricks has integrated Mosaic ML’ fine-tuning API into the platform.
The details of the fine-tuning API can be found at the MosaicML website:

https://docs.mosaicml.com/projects/mcli/en/latest/
finetuning/finetuning.html

The advantage of integrating MosaicML with Databricks is that now
the fine-tuned model will be supported by the Databricks platform with
Model Serving and Model Registry, it will also be able to take advantage
of the managed MLflow feature. Everything is integrated into a single
environment.

Despite the warning, if you are really familiar with the process and also
have a good dataset available, fine-tuning can achieve amazing results
with a low cost:

https://www.databricks.com/blog/creating-bespoke-1lm-ai-
generated-documentation

Pre-Training

Pre-training is the most costly and would require the most effort to
accomplish (https://www.databricks.com/blog/ai2-olmo-is-here).
Because everything will be created from scratch, one must create a model

248

https://platform.openai.com/docs/guides/prompt-engineering
https://docs.mosaicml.com/projects/mcli/en/latest/finetuning/finetuning.html
https://docs.mosaicml.com/projects/mcli/en/latest/finetuning/finetuning.html
https://www.databricks.com/blog/creating-bespoke-llm-ai-generated-documentation
https://www.databricks.com/blog/creating-bespoke-llm-ai-generated-documentation
https://www.databricks.com/blog/ai2-olmo-is-here

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

like traditional deep learning; only it will require perhaps billions of times

more data and much more commodity hardware, which is not something a

small-to-medium enterprise would want to do.

A Case Study of Al2’s OLMo, a Truly Open-Source

Large Language Model

The Open Language Model (OLMo) is a collaboration between Databricks
and Allen Institute for Al, and we will examine the requirements to
re-create this model (https://arxiv.org/pdf/2402.00838.pdf). See

Figure 10-13.

Dataset: In traditional deep learning, the sample

size required per category is about a few thousand.
By comparison, the Dolma dataset is an open

dataset of 3 trillion tokens from a diverse mix of

web content, academic publications, code, books,

and encyclopedic materials.

UTF-8 Dlicigit GPT-NeoX
Source Doc Type bytes o — tokens

(GB) (millions) (billions)
Common Crawl web pages 9,022 3,370 2,006
The Stack code 1,043 210 342
C4 web pages 790 364 174
Reddit social media 339 377 80
peS2o STEM papers 268 38.8 57
Project Gutenberg books 20.4 0.056 52
Wikipedia, Wikibooks encyclopedic 16.2 6.2 37

Total 11,519 4,367 2,668

Figure 10-13. Composition of the data used in the model training

249

https://arxiv.org/pdf/2402.00838.pdf

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Model training: Because the data volume is so
huge, it can no longer fit in one GPU, it is required

to distribute across multiple GPUs. In section 3.1 of
the AI2 paper, it discusses the distributed framework
in detail.

Model architecture: A proper model architecture
must be implemented for the model. It is not
prebuilt like foundation models. Section 2.1 of the
AI2 paper discusses such architecture for 1B, 7B as
well as 65B parameters.

Hardware: This might be the most expensive and
most difficult part to achieve. Not to mention there
are currently very limited availability of high-

end GPUs on the market, they are reserved for
researchers who would deliver ultimate value to the
company.

In the OMLo model, it uses MosaicML with 27 nodes on the cluster,
where each node consists of 8x NVIDIA A100 GPUs with 40GB of memory
and 800Gbps interconnect. In total, 216 GPUs will be required to pretrain
this model. Unless someone who really understands the ins and outs of
LLMs as well as there is high ROI on these projects, organizations usually
stop their GenAl journey at fine-tuning.

Gen Al Pricing

While the pricing of the GenAl infra is usually use per hour and can be
found at the following Databricks websites. For information about DBU
hours, please refer to Chapter 16.

250

https://doi.org/10.1007/979-8-8688-0444-1_16

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Model Serving:

https://www.databricks.com/product/pricing/
model-serving

https://www.databricks.com/product/pricing/
foundation-model-serving

Vector search:

https://www.databricks.com/product/pricing/
vector-search

Model training:

https://www.databricks.com/product/pricing/
mosaic-training

There is one concept that is not fully explained, which is pay per token.
The price is per 1 million tokens. Please note that one token does not
directly translate to one English word or certain bytes. For example, ASCII
is 1 byte, and Unicode ranges from 1 byte to 4 bytes. The concept in LLMs
is similar, but it is not so straightforward.

What Are Tokens and Tokenizers?

The very short version is to split text into smaller chunks for the model
to consume because with any model there is a capability to take in some
text at once. Tokenizers are used to split some text into subwords, aka
tokens. To learn more about tokenizers, please refer to this blog post from
Huggingface: https://huggingface.co/docs/transformers/main/
tokenizer summary.

More important, the real question is, how do we estimate how many
tokens my input text will generate? To answer this question, we need first
to understand what tokenizer each model is using; see Table 10-4.

251

https://www.databricks.com/product/pricing/model-serving
https://www.databricks.com/product/pricing/model-serving
https://www.databricks.com/product/pricing/foundation-model-serving
https://www.databricks.com/product/pricing/foundation-model-serving
https://www.databricks.com/product/pricing/vector-search
https://www.databricks.com/product/pricing/vector-search
https://www.databricks.com/product/pricing/mosaic-training
https://www.databricks.com/product/pricing/mosaic-training
https://huggingface.co/docs/transformers/main/tokenizer_summary
https://huggingface.co/docs/transformers/main/tokenizer_summary

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Table 10-4. Tokenizer Used in Some Popular Large Language Models

Model Tokenizer

DBRX GPT-4

(https://www.databricks.com/blog/introducing-dbrx-
new-state-art-open-11m)

Llama?2 Bytepair encoding

(https://ai.meta.com/research/publications/1lama-2-
open-foundation-and-fine-tuned-chat-models/
Section 2.2 Tokenizer)

Mistral Byte-fallback BPE tokenizer

(https://huggingface.co/docs/transformers/main/model
doc/mistral)

MPT EleutherAl/gpt-neox-20b

(https://huggingface.co/mosaicml/mpt-30b)

Understanding the tokenizer is just the first step. While you can very
easily load a tokenizer with one line of code, as shown in Listing 10-6, we
also need to have a way to estimate the number of tokens we need for our
task in order for cost estimation.

Listing 10-6. Getting the Tokenizer from the Model
from transformers import AutoTokenizer, AutoModelForCausallM
tokenizer = AutoTokenizer.from pretrained("name-of-tokenizer")

The good news is that there are some python or JavaScript tools that we
can utilize to estimate the number of tokens:

252

https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/
https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/
https://huggingface.co/docs/transformers/main/model_doc/mistral
https://huggingface.co/docs/transformers/main/model_doc/mistral
https://huggingface.co/mosaicml/mpt-30b

CHAPTER 10 GENERATIVE Al WITH DATABRICKS

Open Al https://cookbook.openai.com/
examples/how_to_count tokens with_tiktoken

Llama: https://github.com/belladoreai/llama-
tokenizer-js/

Mistral: https://github.com/imoneoi/mistral-
tokenizer/

With these tools, we can easily calculate the number of tokens in input
text to estimate the cost of using the GenAl services. Of course they can
also be found in the system tables, but that will be after the job finishes
running. Please refer to Chapter 16 for more information.

Conclusion

Navigating the LLM world is very challenging, and addressing those
blockers with the right solution is something that requires careful
consideration, especially from an ML lifecycle perspective. The Databricks
GenAl stack provides a powerful solution for accelerating machine
learning and Al capabilities at competitive pricing points. Databricks
provides flexibility and customization options that traditional ML
platforms lack or provide at a higher price. With the GenAI capabilities
in Databricks, organizations can focus on creating value, whether it is
managing data, tracking experiments, packaging code, or deploying
models into Unity Catalog, thereby streamlining the entire LLM life cycle
with governance.

253

https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken
https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken
https://github.com/belladoreai/llama-tokenizer-js/
https://github.com/belladoreai/llama-tokenizer-js/
https://github.com/imoneoi/mistral-tokenizer/
https://github.com/imoneoi/mistral-tokenizer/
https://doi.org/10.1007/979-8-8688-0444-1_16

CHAPTER 11

Large Language
Model Operations

We discussed machine learning operations (MLOps) in an earlier chapter.
In this chapter, we will discuss a similar topic called large language model
(LLM) operations. This chapter has certain similarities with the chapter on
generative Al (GenAl), but we will mainly focus on the operations part of
machine learning and the benefits of it as a practice. We will also dive deep
into using different techniques and libraries in the industry to perform
these operations, which Databricks also supports.

MLOps and LLMOps are related but distinct concepts in artificial
intelligence (AI) and machine learning (ML). Here's a brief overview
of each.

Machine Learning Operations

MLOps aims to streamline the machine learning life cycle by combining
machine learning practices and DevOps. In the previous chapter, we
discussed the MLOps stack from Databricks, which combines ML
templates and DevOps templates that are ready to deploy. This section will
revisit the roles and responsibilities as well as the end goal for MLOps.

© The Editor(s) (if applicable) and The Author(s), 255
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_11

https://doi.org/10.1007/979-8-8688-0444-1_11#DOI

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

e Collaboration and communication between data
scientists and ML engineers

o Using CI/CD workflow (GitHub actions, Azure DevOps)
to automate the ML life cycle, including feature
engineering, model training, and deployment along
with infrastructure as code

e Version control and management of ML models and
data (features)

o Continuous integration and delivery (CI/CD) of ML
models, including Model Serving

e Monitoring of ML model performance, including data
drift, model drift, concept drift, etc., using Lakehouse
Monitoring

Large Language Model Operations

Itis only a natural transition with the historical singular focus on LLMs that
large language model operations (LLMOps) ensures we are doing the right
things when handling the huge amount of data and model outputs. LLMs
are complex Al models that require significant computational resources,
data, and expertise to develop, deploy, and maintain. Everything from the
cost to the curation of data and ensuring few mistakes are made is crucial
to the project’s success. LLMOps builds upon MLOps principles and adds
additional considerations, such as the following:

o Scalability and performance optimization for large
models and datasets, mainly for cost reasons

e Specialized software and hardware requirements (e.g.,
GPUs, MosaicML)

256

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

e Advanced techniques for model pruning, knowledge
distillation, and inference optimization (e.g. Mixture-
of-Expert)

e Application of the model, such as chatbots, search
engines, and recommendation systems

In summary, building on the foundation of MLOps, LLMOps is a suite
of specialized tools focused on handling the unique challenges of LLMs
including prompting, RAG, fine-tuning, and pre-training. Figure 11-1
outlines the flow and toolings required for LLMOps.

‘Warkhaw Reads Gt ey
— — B oee
JobiWorkflow task ——3 Writes ;.9 Git branch
-
CICD pipeline — MLtlow AP %é Registered madel

Figure 11-1. LLMOps

257

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Components of LLMOps

First, let’s review the components required to make LLMOps successful.
While some of these components are similar to MLOps, as the volume of
data increases, the process has become data-centric instead of model-
centric. In other words, in MLOps, the goal was to test as many models
as possible, but in LLMOps, a lot of work will go into ensuring the data is
high-quality.

o Exploratory data analysis (EDA): As discussed in
the previous chapter, Databricks offers a few different
ways to perform EDA, including YData profiling (which
supports both Pandas and Spark) as well as dbutils.
For LLM, specialized tools are required to handle large
amounts of data. Databricks acquired Llacai, which
allows you to visualize and clean up data easily. We will
discuss the usage of these tools later in this chapter.

e Prompt engineering: There are two tasks in prompt
engineering. One is to write prompts, which are
instructions to the LLM. The engineering part is to
understand the capabilities of the LLM and ensure
the prompts are generating meaningful outputs, as
well as utilizing tools like LangChain for templating
and creating a chain of thoughts process. Although
prompt engineering is the first step, prompt quality,
aka providing clear instructions and detailed steps for
the question or an evaluation process, will greatly help
the LLM to provide a good answer. And as the context
length increases, people are starting to put very long
pages of instructions for their prompt.

258

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

e Retrieval augmented generation (RAG): Prompt
engineering is a way to instruct the model to search for
the knowledge you want. But like humans, LLMs are
also limited to the knowledge that’s exposed to them
during training time. Things like company-specific
information not publicly available on the Internet will
not be available in the models. Hence, the process
of RAG is to update the model by providing extra
information such as PDFs or PowerPoints. This is the
process of RAG.

Figure 11-2 shows a typical RAG workflow.

Usar recajves
istput

Figure 11-2. Typical workflow of RAG

e Vector database

Vectors or embeddings are an essential part of the
RAG process. They are numerical representations
of the data. To answer a question, similarity search
is often used. There are a few terms we need to
consider:

e Vector index: A specialized data structure
optimized to facilitate similarity search within a
collection of vector embeddings. It is read-only and
needs to be rebuilt when content changes.

259

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

e Vector library: A tool to manage vector
embeddings and conduct similarity searches. They
predominantly:

e Operate on in-memory indexes.

« Focus solely on vector embeddings, often
requiring a secondary storage mechanism for
the actual data objects.

« Vector database:

o Store both the vector embeddings and the
actual data objects, permitting combined vector
searches with advanced filtering.

o Offer full CRUD (create, read, update, delete)
operations, allowing dynamic adjustments
without rebuilding the entire index.

e Are generally better suited for production-
grade deployments due to their robustness and
flexibility.

Databricks offers vector search backed by the serverless architecture
and provides the vector index service, combined with Unity Catalog and
Delta tables, which can be served as a database. It offers the following
advantages:

e Auto-syncs with the source Delta table
e Columns in Delta table are filters
o Unity Catalog governance and lineage

o Integrated with Model Serving for embedding

generation

260

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Figure 11-3 shows a sample workflow for an RAG application, which
combines feature and function serving.

RAG Chain =
e, (q — .
p Retrievers ¢ h
. Query) Generate i
| Processor | [" Unstructured Recommendations
S a 2
_ J L) Data \ J
/.f
User Preferences Price Computation MPT 78
Feature Serving Function Serving Foundation Model

|

Online Tables

Hotel Finder

Vector Search

Figure 11-3. Workflow of RAG in Databricks

e Model fine-tuning: If we use the previous analogy,
prompting is similar to seeking help from a consultant
and providing clear instructions to them, assuming
they have existing knowledge. RAG is the process of
giving them extra documents or reference materials to
enhance their knowledge. Sometimes, these are not
enough because of a brand new domain. For example,
an LLM might not be trained with highly specialized
medical knowledge. That’s when we need to provide
a lot more datasets but still a relatively small amount
compared to pre-training, for the fine-tuning process.
Instead of prompting and RAG using the existing
model, the fine-tuning process will create a new LLM
from the base models. For example, DBRX base versus
DBRX Instruct are two different models.

261

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

e Model pre-training: Model pre-training is a process
of creating an LLM from scratch. In Chapter 13, we
will discuss how Databricks trained DBRX using
the platform available to customers. The difference
between “pre-training” and “model training” in
traditional machine learning is that the base model
that’s pre-trained often needs to be enhanced or fine-
tuned. The output of this process is a base model, e.g.,
DBRX base.

e Model evaluation with human feedback: As opposed
to using standard metrics like F1 and R2 scores,
evaluating LLMs is more challenging and constantly
evolving, primarily because LLMs often demonstrate
uneven capabilities across different tasks. An LLM
might excel in one benchmark, but slight variations
in the prompt or problem can drastically affect its
performance. Just think about it: not everyone gets
the same result from Google. That’s why in addition to
new evaluation suites coming out every now and then,
usually when a new company releases a new LLM, they
will release a new suite.

However, even machine learning models require human feedback,
and LLM is even more so. That’s why Databricks MLflow comes with
an interface for human evaluation. And application developers should
purposely develop a feedback mechanism to collect user feedback.

e Model packaging and deployment: Similar to the
MLOps pipeline, LLMOps also consists of various
components, such as the mode API, RAG pipeline, and
prompt engineering templates.

262

https://doi.org/10.1007/979-8-8688-0444-1_13

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

e Model Serving and inference: After we have
developed and deployed a great new model, the
last step is to serve it as an API endpoint and start
generating outputs, aka inferencing. Databricks Model
Serving and the MLflow deployment server (formerly
Al gateway) can be used to standardize model API
interfaces for real-time inference, and Spark can be
leveraged to do offline distributed inference.

Deep Dive into Each Process

In Chapter 12, we discuss how these processes can be applied. However,
there are often details beyond the chat window that we need to pay
attention to when transitioning from an LLM user to an LLM application
developer. This section is designed to get you started with these concepts.

Prompt Engineering

As discussed in the previous section, good prompt engineering involves
giving clear instructions to a consultant to execute your task. When you
give instructions, you might start with a few sentences, but you rarely end
with that and expect high-quality outcomes. The key lies in providing clear
and concise instructions.

Prompt Templates

While ancient knowledge is transferred by word of mouth, modern
knowledge can be placed into a template. The purpose of templating is
to allow best practices to be captured in a repeatable form so everyone
can take advantage of it. A simple example is “What is the {input_model}
model?” where “model” can be any machine learning model. We can
consider using LangChain for this purpose, as shown in Listing 11-1.

263

https://doi.org/10.1007/979-8-8688-0444-1_12

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Listing 11-1. Prompt Template with LangChain

import os

import openai

from openai import OpenAI

from langchain import PromptTemplate

client = OpenAI(
api_key="databricks-api-token",
base_url="https://adb-xxxxxxxxx.xx.azuredatabricks.net/
serving-endpoints”

)

template = PromptTemplate(
input variables=["input model"],
template="What is {input_model} model?"
)

prompt=template.format(input_model="Mixture of Expert")

response = client.chat.completions.create(
messages = [{"role": "user", "content": prompt}],

model="databricks-dbrx-instruct",
max_tokens=256

)

generated_text = response.choices[0].message.content

Use the generated text in your Databricks workflow
print(generated text)

Please note that because we are hitting a Foundation Model API as an
endpoint, we don’t need a Databricks cluster to run the previous code. We
can easily execute the previous code in a Python notebook on our local
machine, as shown in Listing 11-2.

264

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Listing 11-2. Actual Output from Python Code

A Mixture of Expert (MoE) model is a type of machine learning
model that is composed of several "expert" models, each of
which specializes in handling a particular subset of the data.
These expert models are weighted and combined together using

a "gating" mechanism, which determines how much each expert
should contribute to the final prediction. This allows the MoE
model to effectively handle a wide variety of data and make
more accurate predictions.

Chain of Thoughts

Clear communication means creating a good prompt template, and
creating step-by-step instructions will greatly help the LLM to provide a
high-quality answer. This process is called chain of thoughts (https://
arxiv.org/abs/2201.11903), as shown in Listing 11-3.

Listing 11-3. Chain of Thought Template

Think step by step and explain your reasoning:
{input}

Step 1: {question 1}

{answer 1}

Step 2: {question 2}

{answer 2}

Step 3: {question 3}

{answer 3}

Final Answer: {final answer}

Providing step-by-step instructions, as shown in https://arxiv.org/
abs/2201.11903, has been proven to increase an LLM’s performance.

265

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Retrieval Augmented Generation

As mentioned, to update an LLM with new knowledge, we need to conduct
a similarity search with the text converted to vector form. Databricks
provides all the components discussed earlier, aka vector index, vector
library, and vector database.

A vector index can be conveniently created on the user interface on
any table that is Unity Catalog enabled. As illustrated in Figure 11-4, an
index can be created by going into the table interface itself by clicking the
Create button.

Catalogs * unitygo » monitoring »

[unitygo.monitoring.adult_census_baseline_jason_yi ir H Use with Bl tools | v

Overview Sample Data Details Permissions History Lineage Insights Qualit ™ Query

4 Al generate Aboutthistable i Netebook

Owner: jasonyip@tred HI Dashboard
Column Type Comment Tags Data source format: 4 I Vector search index

age double : @ Popularity: . [online table

Tags: Add tags
workclass string @ g g

Figure 11-4. Creating a vector search index

The index creation has different options, as shown in Figure 11-5.

266

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Create vector search index X
Primary key
3 primary v
Endpoint
test [« %

Embedding source

© Compute embeddings Use existing embedding column

Embedding source column

Select a column to generate embeddings for .
Embedding model

databricks-bge-large-en o v
Sync computed embeddings

Sync mode

© Triggered Continuous

Figure 11-5. Creating a vector search index UI

e The primary key can be used to identify unique
embedding entries so it will not create duplicates.

e The endpoint is the vector search endpoint, which is
serverless compute, that can be used to compute the
embedding or perform similarity search.

o “Embedding source column” can be used to generate
embedding based on a text-based column, but for
binary (e.g., PDF or images), embeddings can be stored

267

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

in a column in a Delta table. The column type must
be array<float>, array<double>, array<int>,
array<byte>).

o Databricks provides a bge-large-en model for
embedding purposes. Embedding is a way to
convert a text column to a vector. The BGE model
from the University of Science and Technology of
China specializes in natural language embedding.
According to the BGE paper (https://arxiv.org/
pdf/2402.03216), the model’s features can be found in
Figure 11-6.

Multi-Linguality Multi-Functionality Multi-Granularity

100+ languages i Dense Retrieval i Sentence-Level
Multi-Lingual Sparse Retrieval Passage-Level

Cross-Lingual Multi-Vec Retrieval ' Doc-Level (£81592)

BGE M3 Embedding

Figure 11-6. bge-large-en model features

However, please note that this is optimized for text
embedding, so if you need other embeddings, you
might want to use a different model. The following link
shows a list of Databricks curated models:

268

https://arxiv.org/pdf/2402.03216
https://arxiv.org/pdf/2402.03216

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

https://www.databricks.com/product/machine-
learning/large-language-models-oss-guidance

For a deep dive into the text-embedding, please refer to
the Massive Text Embedding Benchmark (MTEB) from
Huggingface:

https://huggingface.co/blog/mteb

» Finally, you can choose to sync the index, which is
the embedding column back by a Delta table, back to
a vector Databricks vector search, a vector database
optimized to store and retrieve embeddings. See
Figure 11-7.

Create vector database Query endpoint
(Databricks calculates and
optionally saves embeddings)

Source Delta
table

i
!
: table

Figure 11-7. Using Databricks to calculate embeddings

You can choose to calculate the embedding automatically or provide
a precalculated column and optionally sync the embedding into the
vector database (Databricks vector search). As discussed, having a vector
database optimizes the way similarity search is calculated and hence
enhances the performance of RAG. See Figure 11-8.

269

https://www.databricks.com/product/machine-learning/large-language-models-oss-guidance
https://www.databricks.com/product/machine-learning/large-language-models-oss-guidance
https://huggingface.co/blog/mteb

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Create vector database Query endpoint
(precalculated embeddings)

Source Delta LLm 5
s Rakta Vetick deveciion o_‘ app"caﬁon

Figure 11-8. Precalculating the embeddings

Model Fine-Tuning

Usually, the steps in machine learning operations are required from end
to end to ensure the best model is selected and the model is performing
well. In LLMOps, however, most of the time it is sufficient to stop at

RAG because high-quality prompt engineering and high-quality RAG
are usually enough to get quality output on something that the model is
trained for. But if the model is not trained on something specific, like the
healthcare domain, and you want to ensure the model can adapt to the
new domain, we will need to consider fine-tuning the model.

This is usually more costly and time-consuming than RAG, but from
the deployment perspective, it becomes easier. Consider DBRX-base and
DBRX-Instruct, where the latter is a fine-tuned model but we don’t need to
worry about maintaining the embedding and vector database.

Unlike RAG, fine-tuning is a model training process, which can
consume a lot of resources. We must have a good understanding of the
architecture of the neural network (large language model is a neural
network) in order to train it properly.

An example using DeepSpeed for fine-tuning can be found here, which
can take advantage of multiple GPUs for more resource-intensive tasks:

https://github.com/databricks-academy/large-language-models

270

https://github.com/databricks-academy/large-language-models

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Alternatively, a less resource intensive method is called parameter-
efficient fine-tuning (PET) can also be used to fine-tune an LLM, the
approaches are called LoRA, QLoRA, or IA3. Databricks has provided
detailed discussions here:

https://www.databricks.com/blog/efficient-fine-tuning-lora-
guide-1lms

Model Pretraining

Pre-training is the most costly and would require the most effort to
accomplish. Because everything will be created from scratch, one must
create a model like traditional deep learning; only it will require perhaps
billions of times more data and much more commodity hardware, which is

not something a small-to-medium enterprise would want to do.

A Case Study of Al2’s OLMo, a Truly
Open-Source Large Language Model

The Open Language Model (OLMo), , is a collaboration between
Databricks and Allen Institute for AI (https://arxiv.org/
pdf/2402.00838.pdf). We will examine the requirements to re-create
this model.

Dataset: In traditional deep learning, the sample
size required per category is about a few thousand.
By comparison, the Dolma dataset is an open
dataset of 3 trillion tokens from a diverse mix of
web content, academic publications, code, books,
and encyclopedic materials (see Figure 11-9).

271

https://www.databricks.com/blog/efficient-fine-tuning-lora-guide-llms
https://www.databricks.com/blog/efficient-fine-tuning-lora-guide-llms
https://arxiv.org/pdf/2402.00838.pdf
https://arxiv.org/pdf/2402.00838.pdf

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

UTF-8 s GPT-NeoX
Source Doc Type bytes Dogl;_nmnts tokens
. ({GRB) (millions) (billions)
- Common Crawl web pages 9.022 3,370 2,006
The Stack code 1,043 210 342
C4 web pages 790 364 174
Reddit social media 339 377 80
peS2o STEM papers 268 38.8 57
Project Gutenberg books 20.4 0.056 52
Wikipedia, Wikibooks encyclopedic 16.2 6.2 37
Total 11,519 4,367 2,668

Figure 11-9. Text content of the 3 trillion tokens (about 1
trillion words)

Model training: Because the data volume is so
huge, it can no longer fit in one GPU; it is required

to distribute across multiple GPUs. In section 3.1 of
the AI2 paper, it discusses the distributed framework
in detail.

Model architecture: A proper model architecture
must be implemented for the model. It is not
prebuilt like foundation models. Section 2.1 of the
Al2 paper discusses such an architecture for 1B, 7B,
and 65B parameters.

Hardware: This might be the most expensive and
most difficult part to achieve. Not to mention, there
is currently very limited availability of high-

end GPUs on the market; they are reserved for
researchers who would deliver ultimate value to the
company.

The OMLo model uses MosaicML with 27 nodes on the cluster, each
consisting of 8x NVIDIA A100 GPUs with 40GB of memory and 800Gbps
interconnect. In total, 216 GPUs will be required to pretrain this model.

272

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Unless someone really understands the ins and outs of large language
models and there is high ROI on these projects, organizations usually stop
their GenAl journey at fine-tuning.

For further information, please refer to Chapter 13 where we discuss in
great length how Databricks pretrained a model from scratch.

Model Governance

Let’s discuss model governance.

MLflow Deployments Server

Databricks MLflow provides a deployment server (formerly Al gateway)
for us to manage, govern, evaluate prompts, and switch models easily.
Figure 11-10 illustrates how MLflow Al gateway is a bridge between LLMs
and their use cases.

Multiple Generative Al use cases
across the organization

Pipelines Apps ry] Users

MLflow Al Gateway

D € € CED

Multiple Generative Al Models

! mosaic™*
, @Openar Bard M os

databricks o] ETRRES
2o ANTHROP\C cozhere

Figure 11-10. Illustration of MLflow deployment gateway

273

https://doi.org/10.1007/979-8-8688-0444-1_13

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

MLflow Deployments Server reduces the management overhead of
managing multiple credentials for premium LLMs that would otherwise
require different API keys. It also unifies different model inputs and
outputs together to abstract the complexities behind the scenes to
transform the input and parse the output.

For a list of supported models, please refer to the following:

https://mlflow.org/docs/latest/11ms/deployments/index.
html#providers

The credentials can also be managed in Databricks Model Serving.
However, the advantage of MLflow is open source and not vendor-specific.
On the Serving tab of Databricks sidebar, you can create a serving endpoint
with stored credentials, as shown in Figure 11-11. In Figure 11-12, we can
choose an entity that we want to serve.

Create serving endpoint

General ﬂame
URL preview: hitps:/fadb-8333330282859393.13.azuredatabricks.net/serving-endpoints)

Served entities _)
Entity details

Entity Version Traffic (%)

-+ Add served entity

Figure 11-11. Creating a serving endpoint

274

https://mlflow.org/docs/latest/llms/deployments/index.html#providers
https://mlflow.org/docs/latest/llms/deployments/index.html#providers

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Select served entity

Source
(0 sty catalog sedel

Uity catalog fnsturs spac hunction
1 Extarnal mockel Praview

Mioy| nglalry medal

Frovidar

Cance

A Latn

Armapin Brdrech
aemecpie

[

Ostshncks Modal Serving

Goagie Cloud Vertm Al

[

Figure 11-12. Selecting a served entity, then saving the credentials

Once a model is chosen, we can then enter the credentials; they can be

retrieved from a secret store for the best of security. See Figure 11-13.

Entity details X
Provider Version Traffic (%)
%2 Anthropic . 100

Anthropic Configuration
For more information on provider configurations, please refer to documentations 4.

API key secret
Provide the secret in plaintext form or as a Databricks Secret [7 reference

Secret Reference ~ [{secrets/<scope>/<key>}} n

Task

External model name

Advanced configuration >

Figure 11-13. An API key secret can be associated with a
model entity

275

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Prompt evaluations can be done in two different ways; the most
obvious way is of course evaluating prompts, which can be done using
MLflow or Databricks’ playground. But that does not allow you to do it at
scale or understand the capabilities of the model. Standard benchmarks
will provide greater insights into the model’s strength. The most popular
evaluation suites include but are not limited to the following:

o AI2Wildbench (https://github.com/allenai/
WildBench)

AI2 Wildbench is a carefully curated collection of 1,024
hard tasks from real users, which cover common use
cases such as code debugging, creative writing, and
data analysis. For more details of the dataset, please
refer to the following page: https://huggingface.co/
datasets/allenai/WildBench

o EluetherAl LM Evaluation Harness (https://github.
com/EleutherAI/1m-evaluation-harness)

A holistic framework that assesses models on more
than 200 tasks, merging evaluations like BIG-bench and
MMLU, promoting reproducibility and comparability.
It powers the popular Huggingface leaderboard
(https://huggingface.co/spaces/HuggingFaceH4/
open_11m leaderboard).

o Mosaic Model Gauntlet (https://github.com/
mosaicml/11lm-foundry/blob/main/scripts/eval/
local data/EVAL_GAUNTLET.md); see Figure 11-14

Developed as part of the DBRX release by MosaicML,
using an aggregated evaluation approach, categorizing
model competency into six broad domains

(shown below) rather than distilling to a single
monolithic metric.

276

https://github.com/allenai/WildBench
https://github.com/allenai/WildBench
https://huggingface.co/datasets/allenai/WildBench
https://huggingface.co/datasets/allenai/WildBench
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

o R
Language understanding e My World knowledge
P N\
/ N

\ y
Symbolic problem solving \\ /f"
~— -
Reading comprehansion

0 wer-a08 8 vei-me-ex 0 ver-7e

Source: Mosaic Model Gauntlet

Figure 11-14. Mosaic AI Model Gauntlet

LLM as a Judge

While human evaluation is powerful, LLM performance is being evaluated
in domains where text is scarce or there is a reliance on subject-matter
expert knowledge. In such scenarios, evaluating LLM output can be
costly and time-consuming. For example, imagine gathering a group of
medical specialists together to evaluate the correctness of an open-heart
procedure. It will certainly not be easy.

Leveraging LLM as a judge is an idea to use a powerful model, say
GPT4, to evaluate the performance of a fine-tuned, smaller domain-
specific model. So often, organizations choose to deploy open-source
alternatives to production to save costs. This is an opportunity to leverage
a more powerful model in a limited capacity to ensure high quality. On

277

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

the other hand, given enough examples, an LLM can also perform judging
by itself like a machine learning model. The idea is to use judging in a
systematic way to evaluate. See Listing 11-4.

Listing 11-4. Using LLM as a Judge

from mlflow.metrics.genai import EvaluationExample, answer
similarity

Create an example to describe what answer similarity means
like for this problem.
example = EvaluationExample(
input="What is MLflow?",
output="MLflow is an open-source platform for managing
machine "
"learning workflows, including experiment tracking, model
packaging, "
"versioning, and deployment, simplifying the ML
lifecycle.",
score=4,
justification="The definition effectively explains what
MLflow is "
"its purpose, and its developer. It could be more concise
for a 5-score.”,
grading context={
"targets": "MLflow is an open-source platform for
managing "
"the end-to-end machine learning (ML) lifecycle. It was
developed by Databricks, "
"a company that specializes in big data and machine

learning solutions. MLflow is

278

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

"designed to address the challenges that data
scientists and machine learning "

"engineers face when developing, training, and
deploying machine learning models."

b
)

Construct the metric using OpenAI GPT-4 as the judge
answer_similarity metric = answer_ similarity(model="openai:/
gpt-4", examples=[example])

Figure 11-15 shows the result of the judging.

Inputs ground_truth outputs foken_count toxicityiviiscore flesch_kincald_grade_lavedvi/score arl_grade_levelvi/score answer_similarit
m
lseENogie'f usaEffact{) s a
O ety moky ok 1% Y e 8 Q000209) =4
FAleact that g
your com... ¥
Static
Winat does the membens g:r;‘i'c" "‘::
1 static keyword in belongsto T Ngﬁm:u" 55 0.000141 125 144
a tunction maan? the class, piry
rather th
"Finally'
i The finally'
Whatdoesthe defines o block in Pythan
2 finally' block in biock of codo musedio 4 0000290 "y 135
n

do? N wh hy
Pythan do’ o rur wher vl

Whatis the Multthroading Multiprocassing

diflerence refers o the invoives the

3 49 0.000207 228 28.0

between abiliy of & execution of
mulliprocessing. proc.. mulL..

Figure 11-15. Judging results

Model Packaging and Deployment

By now, you have learned how to develop an application using LLM and
evaluate its performance interactively. Similar to MLOps, once we finish
developing the machine learning model, we need to pack and deploy it via
MLflow so the model can be reused.

279

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

MLflow offers several different standardized interfaces for LLM,
including Huggingface, OpenAl, SBERT.net, and LangChain. With the
standard interfaces, we can perform standard logging and monitoring like
we do with ML models. You can also pack the pipeline into a PyFunc and
make it easy for inference.

LangChain Flavor with MLflow

We talked about prompt engineering, we discussed using LangChain to
create a prompt template. Let’s take a look at how to pack this with MLflow
and deploy it into production.

In the previous example, instead of separating the model for
inference, we can use LangChain to chain both the prompt template and
a model together. Of course, a chain can contain a lot more than these
two components; we are just examining a quick start scenario here (see
Listing 11-5).

Listing 11-5. Chaining an LLM and a Prompt Together
chain = LLMChain(1llm=client, prompt=prompt)

In the “Prompt Engineering” section, the client is using an OpenAl
interface. However, when chaining it with LangChain, we need to use the
LangChain interface. Listing 11-6 illustrates how to use the LangChain
interface in the code. Databricks documentation provides various ways to
interact with the models; a quick reference can be found here: https://
docs.databricks.com/en/machine-learning/model-serving/score-
foundation-models.html#query-a-chat-completion-model.

Listing 11-6. Using LangChain to Process a Prompt

from langchain.llms import Databricks
from langchain_core.messages import HumanMessage, SystemMessage

280

https://docs.databricks.com/en/machine-learning/model-serving/score-foundation-models.html#query-a-chat-completion-model
https://docs.databricks.com/en/machine-learning/model-serving/score-foundation-models.html#query-a-chat-completion-model
https://docs.databricks.com/en/machine-learning/model-serving/score-foundation-models.html#query-a-chat-completion-model

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

def transform input(**request):
request["messages"] = [
{
"role": "user",
"content": request["prompt"]

}

]
del request["prompt"]

return request

11m = Databricks(endpoint name="databricks-dbrx-instruct”,
transform_input_fn=transform_input)

Next we can chain the LLM and prompt together. See Listing 11-7.

Listing 11-7. Chaining an LLM and a Prompt Together After
Delcaration

prompt = PromptTemplate(
input_variables=["input_model"],
template="What is {input_model} model?"

)
chain = LLMChain(1lm=11m, prompt=prompt)

With the previous chain, we can then log the chain like how we do it in
ML models using MLflow. See Listing 11-8.

Listing 11-8. Logging a LangChain Model

mlflow.set experiment("/Users/jason.yip@tredence.com/
DatabricksDIP")

with mlflow.start run():
model info = mlflow.langchain.log model(chain,
"langchain_model™)

281

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Now once the model is logged, we can load it back using the PyFunc,
as shown in Listing 11-9.

Listing 11-9. Loading a PyFunc model from the logged LangChain

loaded model = mlflow.pyfunc.load model(model info.model uri)
answer = loaded model.predict({"input _model": "Mixture of
Expert"})

print(answer[0])

The model can now be accessed; view the Experiments tab on the
sidebar. Inside the experiment, it also contains various tabs that are
standard across all MLflow projects. See Figure 11-16 and See Figure 11-17.

righteous-frog-262 £ | Reprotuce fun

Overview Model metrics Systam metrics

sclbiciDIcBAndbLOcEI0c001dBE0 1T

Duratian &78

Figure 11-16. Model logged by MLflow, Overview tab

282

CHAPTER 11 LARGE LANGUAGE MODEL OPERATIONS

Expariments » flsarsfjason yip@trodence com/Databncks D
righteous-frog-262 t Repeoduce Run
erview Model metrics System metrics Artifacts
* B8 langchain_moded Iaﬂgr_‘hain_mcl ﬂE| Ragister madel
al

MLflow Model

Thi cote snippats below demonstrate How 1o make
3 requirements.txt controd and deploy a2 & REST endpaing for renl time

tions wssirg the logged modal You can als register It 10 the model registry 10 versien

Model schema Make Predictions

Input and cutput schema for your modal, Lesm mare Predict on a Spark DataFrame:

Mams Type

Bl mputs g1y

put_modet
{roguired)

B outputs (1)

Figure 11-17. Binaries of our logged model, Artifacts tab

Conclusion

In this chapter, you learned about the differences between MLOps and
LLMOps. While the life cycle is similar to each other, the focus on LLMOps
is more about newly introduced components like vector indexes or a
LangChain/Huggingface pipeline. Rarely do we need to train a new large
language model like in machine learning. Instead, we take a pre-trained,
aka base model, to enhance its knowledge by using retrieval augmented
generation technique or fine-tuning a model by providing a domain-specific
dataset. If there is a need to pre-train a model from scratch, Databricks’
MosaicML platform is also capable of handling such a demanding task.

Finally, we can also use Databricks MLflow to continue packaging
the LLMOps pipeline into artifacts and deploying it into production.
However, we have to decide which flavor we want to use the model in for
compatibility purposes. Databricks Model Serving and batch inference
capabilities can be used to consume the model and generate outputs.

In the next chapter, we will put these components into practice and
create a chatbot using the RAG technique.

283

CHAPTER 12

Mosaic Al Agent
Framework: Creating
Quality Al Agents

In this chapter, we will discuss the secret weapon for updating a large
language model (LLM) with custom unstructured data, like PDF or
PowerPoint. While most applications allow you to build a bot or GPT
very easily, enterprises are looking for ways to evaluate the quality of the
chatbot. This is where the AI Agent Framework comes in. We will not only
discuss how to deploy a chatbot from end to end, but how to evaluate it
with an LLM as a Judge or human feedback. These metrics will ensure data
scientists who are already familiar with MLflow will be able to transition to
LLM evaluation easily.
Without a doubt, there are a lot of components involved in setting up
an application with a Retrieval Augmented Generation (RAG) workflow.
Databricks has simplified the deployment of this infrastructure by
providing an accessible Python package via MLflow to get users up and
running without a lot of manual intervention. More than that, the Mosaic
Al Agent Framework also provides continuous logging and allows users
to deploy a user interface to gather feedback, putting it all together so
it can iterate quickly and get to business values in less time. Figure 12-1
demonstrates this simplified workflow.

© The Editor(s) (if applicable) and The Author(s), 285
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_12

https://doi.org/10.1007/979-8-8688-0444-1_12#DOI

CHAPTER 12

Expert User

:

|

P ‘ 1

MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

AP1

/ Trace Log / / Assesament
AP

—

=] * Request
@ LLM Judge Service [Rquest Log '—{

—

Assessment &
Evaluation Results Log

—

Figure 12-1. Al Agent Framework workflow

The AI Agent Framework supports unified logging, parameterizing,
and tracing chains between the development and production and

simplified UI deployment.

Let’s do a walkthrough of a RAG application using the AT Agent

Framework to see the differences.

Here are the main features that comes AI Agent Framework:

e Python dictionary or YAML file parametrization allows

different configurations of a chain (prompt template,

model and model config, etc.) for the selection of

champion config

o MLflow logging on the model artifacts, and experiment

tracking on evaluation metrics as well as deployment

286

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

Part 0: The Installations

The Mosaic Al Agent Framework is conveniently packaged as a Python
library and can be installed, along with other libraries, using the command
shown in Listing 12-1.

Listing 12-1. Al Agent Framework Installations

%pip install -U -qqqq databricks-agents mlflow langchain==0.2.1
langchain_core==0.2.5 langchain_community==0.2.4

The framework can then be referenced using the imports shown in
Listing 12-2.

Listing 12-2. Imports for Al Agent Framework

import os
import mlflow
from databricks import agents

Use the Unity Catalog model registry
mlflow.set registry uri('databricks-dip")

Part 1: LangChain Parametrization

Next, we need to provide our configuration so we can iterate different
settings of our model. Adding ml1flow.models.ModelConfig in MLflow
allows settings to be configured easily using Python or YAML, as shown in
Listing 12-3 and Listing 12-4.

287

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS
Listing 12-3. Model Config with Python

config dict = {
"prompt_template": "You are a hello world bot. Respond
with a reply to the user's question that is fun and
interesting to the user. User's question: {question}”,
"prompt_template input vars": ["question"],
"model_serving endpoint": "databricks-dbrx-instruct”,
"11lm parameters": {"temperature": 0.01, "max_tokens": 500},
}
model config = mlflow.models.ModelConfig(development
config=config dict)

Listing 12-4. Model Config with YAML

1lm_parameters:
max_tokens: 500
temperature: 0.01
model_serving endpoint: databricks-dbrx-instruct
prompt template: 'You are a hello world bot. Respond with a
reply to the user''s
question that indicates your prompt template came from a YAML
file. Your response
must use the word "YAML" somewhere. User''s question:
{question}’
prompt_template_input_vars:
- question

The config dictionary/file can then be used as shown in Listing 12-5.

288

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS
Listing 12-5. Model Config Usage

config file = "configs/rag _config.yaml"

model config = mlflow.models.ModelConfig(development
config=config file)

model config.get("prompt template")

Model_config allows us to reuse the chain as it is without having to
duplicate code. The YAML file can be used with any value that conforms
the same chain setting, making it highly flexible.

Part 2: MLflow Evaluation

The Mosaic Al Agent Framework has extended the custom metric list and
included a lot of new metrics. Similar to standard MLflow, these metrics
will be computed automatically and logged on the Model Metrics tab in
the experiment (see Figure 12-2).

Ouerviow Model motrics Systam maeirics Artitacts

| Auito-retrest

~ chainflatency_secands (1] + Add chant

31 chalnfiatency_socondsfaverage

Figure 12-2. Model metrics tab from MLflow Experiment

289

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

In Chapter 10, we discussed the model type parameter for evaluation,
the Mosaic Al Agent Framework introduced a new model type called
databricks-agent. See Listing 12-6.

Listing 12-6. databricks-agent model_type for Evaluation

eval results = mlflow.evaluate(
data=eval set df,
model=logged chain_info.model uri,
model type="databricks-agent",

)

Al Agent framework also introduced new custom metrics as MLflow
extension. The two types include LLM as a Judge and system statistics.

e Aggregated metric values across the entire
evaluation set: Each row of the evaluation set is passed
into an LLM, and a rating will be given on each output
or given ground truth, or an expected retrieval context
is provided (aka the document name). A full list of
metrics is available in Databricks documentation:

https://docs.databricks.com/en/generative-ai/
agent-evaluation/1lm-judge-metrics.html

With the numeric ratings provided by the LLM judge,
we can now expect similar metrics in traditional
machine learning like precision and recall.

o Data about each question in the evaluation set: Each
row of the input will have an output rated, including
but not limited to groundedness, correctness, relevancy
to query and chunk, and chain statistics.

290

https://doi.org/10.1007/979-8-8688-0444-1_10
https://docs.databricks.com/en/generative-ai/agent-evaluation/llm-judge-metrics.html
https://docs.databricks.com/en/generative-ai/agent-evaluation/llm-judge-metrics.html

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

By default, all metrics will run during evaluation using ml1flow.
evaluate(), but they can be set in the YAML file to optionally run them.
See Listing 12-7 for an example.

Listing 12-7. Metrics for Evaluation

builtin_assessments:

groundedness
correctness

relevance_to_query

chunk_relevance

Then run the evaluation harness; just run the input dataset with
mlflow.evaluate. See Listing 12-8.

Listing 12-8. MLflow Evaluation

evaluation_results = mlflow.evaluate(
data=eval set with chain outputs df,
model type="databricks-agent",

291

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS
The input dataset has the schema shown in Table 12-1.

Table 12-1. Input Evaluation Dataset Schema

Key Type Description

request_id string Unique identifier of this row in the evaluation set.

request string Input to the chain to evaluate, e.qg., the user’s
question/query such as “What is RAG?”

expected array** An array of objects containing the expected

retrieved_ retrieved context for the request.

context

expected_ string The ground truth (i.e., correct) answer to request.

response

response string The response generated by the chain being
evaluated.

retrieved_ array** The retrieval results generated by the retriever

context in the chain being evaluated. If multiple retrieval

steps are in the chain, this should be the retrieval
results that were put into the LLM’s prompt.

trace MLflow trace MLflow Trace with the Chain’s outputs.

**The expected retrieved context andretrieved context arrays expect
each array element to be a dictionary with the keys shown in Table 12-2.

292

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

Table 12-2. Array Structure from Table 1’s Parameters

Key Type Description

content string The contents of the retrieved context. Can be any string
regardless of formatting e.g., HTML, Plain Text, Markdown,

etc.

doc_uri String Unique identifier (URI) of the parent document where the

chunk came from.

e.g. dbfs:/Volumes/databricks_doc/spark.pdf

Based on this input schema, we can specify three different levels of

parameters, and at each level, a subset of the metrics will be computed

automatically. See Table 12-3.

Table 12-3. Metrics for Different Levels of Datasets

Level A Level B Level C

Required data - Input Dataset

Evaluation set: request

Evaluation set: expected_response

Evaluation set: expected_retrieved_context

v v v

X v v

X X v
(continued)

293

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

Table 12-3. (continued)

Level A Level B Level C

Supported metrics - output metrics

response/lim_judged/relevance_to_query_rating v v v
response/llm_judged/harmfulness_rating/average v v v
retrieval/lim_judged/chunk_relevance_precision/ v v v
average

response/lim_judged/groundedness_rating/average v v v
chain/request_token_count v v v
chain/response_token_count v v v
chain/total_token_count v/ v/ v
chain/input_token_count v v v
chain/output_token_count v v v
Customer-defined LLM judges v v v
response/llm_judged/correctness_rating/average X v v
retrieval/ground_truth/document_recall/average X X v
retrieval/ground_truth/document_precision/average X X v

Part 3: Model Development

The Al Agent Framework provides an easy interface to deploy a chatbot as
areview app for human feedback leveraging the chain that was just built.
But before we dive into the app, as discussed in Chapter 11, we need to
develop our model, in the case of a LangChain pipeline, and log the model
as artifacts by using the m1flow.langchain.log model() function. See
Listing 12-9.

294

https://doi.org/10.1007/979-8-8688-0444-1_11

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

Listing 12-9. Model Logging with LangChain

with mlflow.start run():

Log the chain code + config + parameters to the run

logged chain_info = mlflow.langchain.log model(
lc_model=chain_notebook path,
model config=baseline config, # The configuration to
test - this can also be a YAML file path rather than a
Dict e.g., “chain_config path”
artifact_path="chain",
input_example=input_example,
example_no_conversion=True,
extra_pip_requirements=[

"databricks-agent”

1,
)

There is an important difference between the RAG artifacts compared
to normal MLflow artifacts. By default, MLflow will “pickle” the LangChain
objects, but as the complexity of the chain grows, often this process
will fail. For more information, please refer to the FAQ section of the
LangChain flavor of MLflow:

https://mlflow.org/docs/latest/11ms/langchain/index.html#faq

So instead of “pickling” the chain, the AI Agent Framework opted to
log the artifacts as code. That’s why in the 1log_model() function, there
is an 1c_model parameter, which basically specifies the path of the chain
notebook. While converting the notebook to a Python file is not needed,
the notebook is required to support Python-only code. Otherwise the log
will not be able to run successfully. An inspection of the Artifacts tab in the
experiment reveals that a Python file is taking the place of the PKL file in
the model, as shown in Figure 12-3.

295

https://mlflow.org/docs/latest/llms/langchain/index.html#faq

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

Owerviow Model metrics Systemmetrics Artacts

chainfmodel.py o=

mpart os
from detebricks import r

atllatabricks
t DatabricksVectorSearch

from lengchain core. runnables import RunnablePassthrough

Figure 12-3. LangChain pipeline logged as code
Next, we will do a walkthrough of using this cutting-edge product to
create a RAG application. Here’s what a basic chain would look like:
1. Extractauser query from messages.
2. Retrieve relevant information using vector search.

3. Format the docs returned by the retriever into
the prompt.

4. Generate a prompt for the language model.
5. Call the model endpoint with a prompt as input.
6. Parse the output into a string format.
Listing 12-10 shows the sample code of the chain from the

previous logic.

Listing 12-10. Sample LangChain Pipeline

chain = (
{
"question": itemgetter("messages") |
RunnablelLambda(extract user query string),
"context": itemgetter("messages")

296

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

| RunnableLambda(extract user query string)
| vector search as retriever
| RunnableLambda(format context),

}

| prompt

| model

| StrOutputParser()

From the previous steps, the following components are configurable,
and hence we can put them in a YAML file.

e Vector search endpoint/index
e Vector store-backed retriever (LangChain),

https://python.langchain.com/v0.1/docs/
integrations/vectorstores/databricks_
vector_search/

e Chunk template
e Prompt template
e Model endpoint

Now consider one set of YAML configurations for our purpose. To
increase readability, we can first create a spreadsheet of these settings and
generate YAML files at a later stage; see Table 12-4.

Table 12-4. Template for YAML File Configurations

Vector Vector LangChain vector Chunk Prompt Model
search search store parameters template template endpoint
endpoint index

297

https://python.langchain.com/v0.1/docs/integrations/vectorstores/databricks_vector_search/
https://python.langchain.com/v0.1/docs/integrations/vectorstores/databricks_vector_search/
https://python.langchain.com/v0.1/docs/integrations/vectorstores/databricks_vector_search/

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

Listing 12-11 shows an example of a YAML file, which should
correspond to one entry of Table 12-4. We will call this file rag_chain_
config.yaml.

Listing 12-11. rag_chain_config.yaml

chat_endpoint: databricks-dbrx-instruct
chat_endpoint_parameters:
max_tokens: 500
temperature: 0.01
chat_prompt_template: 'You are a trusted assistant that helps
answer questions based
only on the provided information. If you do not know the
answer to a question, you
truthfully say you do not know. Here is some context which
might or might not help
you answer: {context}. Answer directly, do not repeat the
question, do not start
with something like: the answer to the question, do not add
AI in front of your
answer, do not say: here is the answer, do not mention the
context or the question.
Based on this context, answer this question: {question}'
chat_prompt_template variables:
- context
- question
chunk_template: '“{chunk text}"

vector search endpoint name: test

vector search index: unitygo.rag.gold volume databricks
documentation_chunked_index

vector search parameters:

298

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

k: 3

vector search schema:
chunk_text: chunked text
document_source: doc_uri
primary key: chunk id

By loading the file rag_chain_config.yaml, we can derive the code
shown in Listing 12-12 for our chain.

Listing 12-12. Setting Up a Chat Endpoint Using a
Configuration File

HHHH

Get the configuration YAML

HHHHAH AR HAH

model config = mlflow.models.ModelConfig(development
config="rag chain_config.yaml")

A
Connect to the Vector Search Index
HHH A
vs_client = VectorSearchClient(disable notice=True)
vs_index = vs client.get index(
endpoint_name=model config.get("vector search
endpoint_name"),
index_name=model config.get("vector search index"),

)

vector_search_schema = model config.get("vector search schema")

HHH

Turn the Vector Search index into a LangChain retriever

HHHHAH R HAH

vector search_as retriever = DatabricksVectorSearch(
vs_index,

299

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

text_column=vector_ search schema.get("chunk text"),
columns=|
vector search schema.get("primary key"),
vector_search _schema.get("chunk text"),
vector_search_schema.get("document_source"),
])
).as_retriever(search_kwargs=model config.get("vector_ search_
parameters"))

HHH
Required to:
1. Enable the Review App to properly display retrieved chunks
2. Enable evaluation suite to measure the retriever
A
rag.set _vector search schema(
primary key=vector search schema.get("primary key"),
text column=vector search_schema.get("chunk text"),
doc_uri=vector search_schema.get(
"document_source"
), # Review App uses “doc_uri® to display chunks from the
same document in a single view

)

HHHA R

Method to format the docs returned by the retriever into

the prompt

HHHA AR

def format context(docs):
chunk_template = model config.get("chunk template")
chunk_contents = [chunk_template.format(chunk text=d.page
content) for d in docs]

.join(chunk_contents)

return

300

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

HHHH

Prompt Template for generation

HHHHHHHHHHHH

prompt = PromptTemplate(
template=model config.get("chat_prompt template"),
input_variables=model config.get("chat prompt template
variables"),

)

A

FM for generation

HHH A

model = ChatDatabricks(
endpoint=model config.get("chat endpoint"),
extra_params=model config.get("chat endpoint parameters"),

Before we log the chain into a model, we can optionally test it
by invoking the model. Databricks also provides an interface of the
LangChain pipeline, so any troubleshooting can be done within the
platform. Listing 12-13 is for testing purposes and should not be in
production.

Listing 12-13. Testing the Chat Endpoint

model input sample = {
"messages": [

{

"role": "user",
"content": "What is Spark?",

}

chain.invoke(model input sample)

301

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

After we invoke the code, MLflow automatically generates a tracing
interface for the LangChain flavor via m1flow.langchain.autolog. You
can easily see the prompts, which models and retrievers were used, which
documents were retrieved to augment the response, how long things took,
and the final output. Figure 12-4 demonstrates this view that will be useful
for troubleshooting.

ul and flexible

« Inputs

I F RunnableSequence. [i 2612 * messages

%L RunnabieParall i f1183 JSON T
¥ Runnables foooss ;
T3 Runna Jooozs
T extrac [ooo1s “content®: “What is Spark?*
¥ RunnableS 114
% Runna jooots
Outputs
T extrac fooois
@ vecton I o054 ,
T format fooras 5
JsoN @
T PromptTemplat jooms

and flexible open-source distriby

T ChatDatabricks

T StrOutputParse fopois

Figure 12-4. LangChain trace interface

When we combine everything together in a notebook, this will become
the file chain/model. py in the logged artifacts.

Part 4: Deployment

The Al agent framework comes with an easy one-line chatbot deployment
that can collect human feedback, greatly reducing the time required to
develop an interface for humans to interact with.

First, we need to register our model. See Listing 12-14.

302

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS
Listing 12-14. LangChain Model Registration

Unity Catalog location
uc_model fgn = f"{uc_catalog}.{uc_schema}.{model name}"

Register the model to the Unity Catalog
uc_registered model info = mlflow.register model(model
uri=logged chain_info.model uri, name=uc_model fgn)

Next, the one-line deployment command looks like Listing 12-15.

Listing 12-15. One-Line Deployment Command

deployment_info = agents.deploy(model name=UC_MODEL_ NAME,
model version=uc_registered model info.version)

Once we run the deployment command, it will take some time for
the magic to work behind the scenes. We can check the status of the
deployment using the command in Listing 12-16. At the end of the wait,
the review app URL will be shown.

Listing 12-16. Getting Deployment Status

Wait for the Review App to be ready
print("\nWaiting for endpoint to deploy.", end="")
while w.serving endpoints.get(deployment info.endpoint name).
state.ready == EndpointStateReady.NOT _READY or w.serving
endpoints.get(deployment _info.endpoint name).state.config
update == EndpointStateConfigUpdate.IN PROGRESS:

print(".", end="")

time.sleep(30)

print(f"\n\nReview App: {deployment_info.review app_url}")

To retrieve the deployed endpoints in general, we can use the
command in Listing 12-17.

303

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS
Listing 12-17. Retrieving Review App URLs
active deployments = agents.list deployments()

active_deployment = next((item for item in active_deployments
if item.model name == UC_MODEL_NAME), None)

print(f"Review App URL: {active deployment.review app url}")

Finally, following the URL, we can have a review app with a single line
of code, but before that, we need to share the model with users so they can
use the chatbot aka the Review App. See Listing 12-18 and Figure 12-5.

Listing 12-18. Sharing Permission to Users to Query the Model
user list = ["user@databricks.com"]

Set the permissions. If successful, there will be no
return value.

agents.set permissions(model name=UC MODEL NAME, users=user
list, permission_level=agents.PermissionLevel.CAN_QUERY)

304

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

unitygo-rag-pdf_rag_bot_single_turn_2

what is Spark?

ﬂ unitygo-rag-pdf_rag_bot_single_turn_2

Spark is a powerful and flexible open-source distributed computing system that provides an interface for programming
entire clusters with implicit data paralielism and fault tolerance. It is designed to cover a wide range of workloads,
including batch applications, iterative algorithms, interactive queries, and streaming. Spark offers APIs in multiple
languages, including Java, Scala, Python, and R, and it comes with built-in libraries for SQL, machine learning, graph
processing, and stream processing.

& Edit response

® Awaiting Feedback

Is this a good response for the question?

4 Yes CP No | don't know
ITces
dbfs:/Vol itygo/rag/volum dbfs:/Volumesfunitygo/rag/volum
e_databricks_documentation/2... e_databricks_documentation/2...
2 references * 1 reference *

Figure 12-5. Review app user interface

Evaluation Example

To deliver high-quality RAG applications, Databricks recommends
following an evaluation-driven approach to development. To start your
development process, we suggest starting with 5 to 10 examples of
questions that your users will expect your RAG application to answer
correctly. Over the course of your development process, you will expand
this evaluation set. The input schema can be found in the earlier “Part 2:
MLflow Evaluation” section. Listing 12-19 is one example.

305

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

Listing 12-19. Setting the Evaluation Dataset

eval set = [
{

"request id": "97496aal6cefcde44bc4ad97foobof85",

"request”: "Did GPT-4's opinion response rate increase

or decrease by June 2023?",

"expected response": "Decrease", # Optional

"expected _retrieved context": [# Optional

{

"doc_uri": "dbfs:/Volumes/unitygo/rag/volume_
databricks_documentation/2307.09009.pdf",

After we are able to evaluate the best chain configuration, then we
can deploy the chain as an app for human review. Once again, mlflow.
evaluate() will be used to test against the previous logged model with the
eval set (see Listing 12-20).

Listing 12-20. Running Evaluation of a Model Based on the
eval Dataset

eval results = mlflow.evaluate(
data=eval set df,
model=1ogged chain_info.model uri,
model type="databricks-agent",

)

eval results will contain the LLM judged metrics, and we can simply
display them or save them into a table (see Listing 12-21).

306

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS
Listing 12-21. Visualizing the Evaluation Results

display(eval results.tables['eval results'].
drop(columns=["trace"]))

Alternatively, they can also be found in the MLflow Ul, as shown in
Figure 12-6.

dashing-dolphin-967

W Modslmetrica Systemmetics Treces Evalustion mauits Praview Artitact

v retrievaliground_truthidocumant_rocall (1) + Ada ch

Figure 12-6. Evaluation metrics logged into MLflow

Deployment is only our first step; we need to collect critical feedback
via evaluation and human feedback. Then there are quality knobs that we
need to tune. The details of tuning the app is beyond the scope of this book
and can be found on the Databricks’ GenAI cookbook website:

https://ai-cookbook.io/nbs/3-deep-dive.html

307

https://ai-cookbook.io/nbs/3-deep-dive.html

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

Conclusion

Mosaic AI Agent Framework’s product philosophy is underpinned by the
following principles:

¢ Quality through metrics: Objective metrics are the
cornerstone of quality assessment. Metrics provide
indicators for evaluating the RAG application’s quality
and cost/latency performance and for identifying areas
for improvement.

o Comprehensive “always-on” logging: Metrics work
best if they can be computed for any invocation of the
RAG app. Therefore, every invocation of the app, both
in development and in production, must be logged.
The log must capture all inputs and outputs, as well as
the detailed steps that transform inputs into outputs.

o Human feedback as the benchmark: Collecting
human feedback is costly, but its value as a quality
measure is unmatched. RAG Studio is designed to
make the collection of human feedback as efficient as
possible.

e LLM judges scale feedback: Utilizing RAG LLM judges
in tandem with human feedback accelerates the
development loop, allowing for quicker development
cycles without subsequently scaling the number of
human evaluators. However, RAG LLM judges are not a
substitute but, rather, an augment to human feedback.

o Rapid iteration: The cycle of creating and testing new
versions of a RAG application must be quick.

308

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

o Effortless version management: Tracking and
managing versions must be seamless, reducing
cognitive load and letting developers concentrate
on enhancing the application rather than on
administrative tasks.

¢ Development and production are unified: The tools,
schemas, and processes used in development should
be consistent with those in production environments,
ensuring a consistent workflow for quality
improvement in development to deployment with the
same code base.

Beyond LangChain

While this chapter did a walkthrough using LangChain and leveraged the
interface mlflow.langchain.log model(), the Al Agent Framework is
not limited to LangChain. The pyFunc interface is available for any Python
model. However, there are some customizations needed.

In other words, if you are using pyFunc, Databricks recommends using
type hints to annotate the predict() function with input and output
data classes that are subclasses of classes defined in m1flow.models.
rag signatures (see https://github.com/mlflow/mlflow/blob/master/
mlflow/models/rag signatures.py).

You can construct an output object from the data class inside
predict() to ensure the format is followed. The returned object must be

transformed into a dictionary representation to ensure it can be serialized.

309

https://github.com/mlflow/mlflow/blob/master/mlflow/models/rag_signatures.py
https://github.com/mlflow/mlflow/blob/master/mlflow/models/rag_signatures.py

CHAPTER 12 MOSAIC Al AGENT FRAMEWORK: CREATING QUALITY Al AGENTS

The LangChain implementation in the MLflow source code provides
an example of how to create such a customization:

https://github.com/mlflow/mlflow/blob/master/mlflow/
langchain/output_parsers.py

You can find a custom pyFunc model in the MLflow documentation:

https://mlflow.org/docs/latest/traditional-ml/serving-
multiple-models-with-pyfunc/notebooks/MME_Tutorial.html#2---
Create-an-MME-Custom-PyFunc-Model

310

https://github.com/mlflow/mlflow/blob/master/mlflow/langchain/output_parsers.py
https://github.com/mlflow/mlflow/blob/master/mlflow/langchain/output_parsers.py
https://mlflow.org/docs/latest/traditional-ml/serving-multiple-models-with-pyfunc/notebooks/MME_Tutorial.html#2---Create-an-MME-Custom-PyFunc-Model
https://mlflow.org/docs/latest/traditional-ml/serving-multiple-models-with-pyfunc/notebooks/MME_Tutorial.html#2---Create-an-MME-Custom-PyFunc-Model
https://mlflow.org/docs/latest/traditional-ml/serving-multiple-models-with-pyfunc/notebooks/MME_Tutorial.html#2---Create-an-MME-Custom-PyFunc-Model

CHAPTER 13

DBRX: Creating
an LLM from Scratch
Using Databricks

In this chapter, we will discusse a model that Databricks trained using
Databricks, which is called DBRX. DBRX is a state-of-the-art large
language model (LLM) trained from scratch on the Databricks and
MosaicML platforms. At the time of model release, it outperformed
established open-source models on language understanding (MMLU),
programming (HumanEval), and math (GSM8K), as shown in Figure 13-1.

© The Editor(s) (if applicable) and The Author(s), 311
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_13

https://doi.org/10.1007/979-8-8688-0444-1_13#DOI

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

Language Understanding (MMLLU) Programming (HumanEval) Math (GSMBK)
™% - 73.9% 73.0%
71.4% g
70% _| 69.8% 70.1%
66.9%
65% | 63.2% 62.9%
61.1%
60% _|
§oss% | 54.8% 54.1%
a
@
50% |
a5% _|
a0% _|
35% _|
32.2%
a0% [
L 4 L 4 L * L 4 L 3 L L] L 4 L 4 L 4 s
5 N) 3 N - N
& & & & § & & & § & & &
Y F o8 IC: & ‘é\&- o3 @ Q ‘!@ﬂ‘ o @
\’rﬁ N "
~ N N

Figure 13-1. DBRX performance versus established open-
source models

What Is DBRX?

While the world has moved on to better models by now, like Meta’s
LLaMa3-70B, there are many more objectives that DBRX is trying to
accomplish.

» Allowing enterprises to own their model

Databricks is a platform that you can use to do
everything from end to end within your own network,
or in the case of serverless there is a private link to the
VPN. All the models are deployed and fine-tuned over
internal data. The data and model stays within the
customers’ own Databricks environment. That makes
the experience not only secure but also seamless.
Now customers can also leverage DBRX for their

tuning needs.

312

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

Moving to production quickly

With Databricks Model Serving and the serverless
architecture, customers can easily serve their model
on an API endpoint. To demonstrate how quickly one
can do it end to end, Databricks designed and trained
amodel in three months and immediately made it
available to all customers via the Foundation Model
APIL. In other situations, developers can use Model
Serving. Details can be found in the previous chapter.

Bringing down the cost

In the old days, Intel co-founder Gordon Moore
published his famous Moore's law, which observed
that the number of transistors on an integrated circuit
would double every two years with minimal rise in cost.
The founders of MosaicML are now predicting that

the cost of pre-training an LLM will come down by a
factor of four every year. For example, when looking at
the cost of pre-training a Stable Diffusion model in late
January 2023, it was $160,000. That cost was reduced
by 75% by 2024. In the case of DBRX, it cost $10 million
to train in 40 days and 3 months in total including R&D
(see Figure 13-2).

313

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

Pretraining shows it can train a Stable Diffusion
model for 10x less cost

$160k B
S50k

Figure 13-2. The cost of model pre-training over time

e Open-sourcing the tooling

First, we must acknowledge the work that the open-
source community has done to accelerate Al research
by open-sourcing their model and paper. Take Meta’s
Llama as an example. They have started to open-source
its code and weights since Llama 2. However, a few
vendors went to great lengths to discuss their toolings
and how they leverage open-source frameworks to
train their models. Later in this chapter, we will discuss
these toolings.

e Open-sourcing the model

As discussed, many vendors open sourced the
implementation source code of their LLM. Databricks
didn’t shy away from doing the same thing. The source
code is also open-sourced on GitHub.

314

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

o Demonstrating end-to-end capabilities of Databricks
for customers

While not all customers need to pre-train an an LLM,
but not all platforms are made available to customers to
pre-train a LLM from scratch. Utilizing all the toolings
available to customers, Databricks successfully trained
DBRX from scratch.

o Allowing the community to fine-tune the model

Like other open-source models, the weights of DBRX
are available for download. For those who are not
familiar with neural networks, the weights are the
connectivity between the nodes in neural networks,
and the weights are those learned in the training, so
open-sourcing the weights means people can further
fine-tune the network from the pre-trained weights,
without having to do it from scratch.

The DBRX Benchmarks

First, we must understand that the world is working around the clock like
never before to release the next best LLM and increasingly headed toward
multimodal, in other words, support for text, audio. and photo. DBRX
demonstrates that the Databricks infrastructure can train a best-in-class
model at the time of release, which can compete against all open-source
models. So naturally, there is another best-in-class open-source model

by now. So take a look at a snapshot in time of how DBRX stands in the
benchmarking race (see Table 13-1). Another reason we need to look at
these benchmarks is that evaluation is a big part of building an LLM, as
opposed to traditional machine learning, or deep learning, where there are

standard metrics for evaluations.

315

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

Table 13-1. Quality of DBRX Instruct and Leading Open Models

Model DBRX Mixtral ~ Mixtral LLaMA2- LLaMA2- Grok-1
Instruct Instruct Base 70B Chat 70B Base

Open LLM 74.5% 727% 68.4% 62.4% 67.9% —

Leaderboard

(Avg of next 6

rows)

ARC-challenge 68.9% 70.1% 66.4% 64.6% 67.3% —
25-shot

HellaSwag 89.0% 87.6% 86.5% 85.9% 87.3% —
10-shot

MMLU 5-shot 73.7% 714% 719% 63.9% 69.8% 73.0%

Truthful QA 66.9% 65.0% 46.8% 52.8% 44.9% —
0-shot

WinoGrande 81.8% 81.1% 81.7% 80.5% 83.7% —
5-shot

GSM8k CoT 66.9% 61.1% 57.6% 26.7% 54.1% 62.9%
5-shot maj@1 (8-shot)
Gauntletv0.3 66.8% 60.7% 56.8% 52.8% 56.4% —
(Avg of 30+

diverse tasks)

As we can see, DBRX excels in many areas compared to other popular
models. Considering that Grok 1 also uses the Mixture of Expert (MoE)
architecture, Databricks excels in mastering the MoE architecture.

When DBRX is trained, Open Al provides GPT 3.5 for free. That’s why
we compared DBRX to some leading free models in its timing.

316

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

From Figure 13-3, we can see that DBRX is especially good at math
and programming. It can also compete with other models in areas like
truthfulness, scientific concepts, general knowledge, and common sense,
demonstrating that DBRX is indeed a very powerful model that Databricks
was able to train.

General Knowladge (MMLL)
08

Scientific Concepts (ARC-Challange) Common Sense (HellaSwag)

O Darx instruct

O Mistral Instruct

O ChatGPT 3.5
LiaMA2-708

Truthful (Truthful QA) Programming (HumanEval)

Mathematics (GEMBK)

Figure 13-3. DRBX benchmark against prominent models

It goes without saying that the larger the model is, the slower it is able
to operate. So there’s always an argument about large models versus small
models. DBRX, which has 132 billion total parameters, has achieved both
at the same time. And thanks to the MoE architecture, only 36 billion
parameters are active at the same time. Figure 13-4 illustrates the inference
performance of DBRX compared to other MoE models in a similar
parameter count dense model. Please note that Mixtral’s eight experts only
have 7 billion active parameters versus 36 billion in DBRX.

317

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS
200

&% DBRX

M Mixtral-8x7B
R LLaMa2-70B
4+ Dense-1328

100
JG I |I II |I I

M0+ MO+ MU+ MO+ MO+ Mo+ Moo+
1 2 4 8 16 a2 64

150

Output tokens per second per user
N

Number of Concurrent Users

Figure 13-4. Inference performance of DBRX compared to
other models

DBRX Architecture

According to Databricks, DBRX is a transformer-based decoder-only
LLM that was trained using next-token prediction. If you are not a
research scientist on natural language processing (NLP), this might sound
confusing. Although this is not a textbook about NLP, we will introduce
some concepts so you can follow along with future sections.

Jonathan Frankle, chief scientist of MosaicML, follows the
motto “Attention is all you need.” The following website simply yet
powerfully explains the importance of the Attention mechanism: www.
isattentionallyouneed.com.

Without diving too deep into the Attention mechanism, let’s rewind
back in time a little bit. If you have learned about deep learning, you might
have heard about recurrent neural networks (RNNs). From Figure 13-5, we
understand that we have an input sequence of words and the goal of the
neural network is to learn how to process and predict patterns in data that
comes in a series, such as text or speech.

318

http://www.isattentionallyouneed.com
http://www.isattentionallyouneed.com

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

C(T:D Unfold CT})
N I:> +1 hﬂ[|+ | f‘-%T = | hw; I~
® ® ®

Figure 13-5. RNNs(source: https://en.wikipedia.org/wiki/
Recurrent neural network)

There have been many different improvements since the introduction
of RNN; one is the Transformer model, which was introduced to replace
RNNSs using the Attention mechanism, from the famous paper “Attention
Is All You Need” by Vaswani et al. of Google. The paper can be found here:
https://arxiv.org/abs/1706.03762. The architecture of the Transformer
model can also be found in the paper. But for simplicity’s sake, the paper
introduced using an encoder and decoder network with attention. An
attention function can be described as mapping a query and a set of key-
value pairs to an output, where the query, keys, values, and output are all
vectors. (See Figure 13-6.)

0.1

0.8
Input Text .. Encoder 0.3 Decoder #

0.6
0.1

Context Vector

Figure 13-6. Encoder-decoder network

To improve efficiency, researchers explored using a decoder-only
network. The transformer-based decoder-only network generates the
next token based on the previous input autoregressively. Autoregressive
is a statistical term; for details, please refer to Wikipedia: https://
en.wikipedia.org/wiki/Autoregressive model.

319

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://arxiv.org/abs/1706.03762
https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/Autoregressive_model

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

Finally, while Transformer and Attention are two different things (the
former is a neural network architecture, the latter is a technique used to
guide the processing of input data within that architecture), ever since the
paper “Attention Is All You Need,” they have been inseparable. They are
what GPT used to storm the world.

Shortcomings of the Transformer Architecture

We often hear LLMs are expensive to train and run as well as has
hallucinations. Welcome to the heart of the problem, which lies in the
Transformer architecture. We will discuss a few of these issues so you can
understand why the industry is trying to change the architecture.

Will there be a brand new architecture that replaces Attention on
Transformers in the future? We certainly hope so. But for the time
being, we know that the LLMs in the time of DBRX are largely relying
on Transformers, and until we see a new industrial wave that makes
it irrelevant, we still need to have some basic understanding of it. The
following problems appear in the news most often:

1. Expensive computation

According to the previously mentioned paper,
Attention is calculated in Formula 1:

T
Attention(Q, K, V) = soﬁmax(oK JV

A

Formula 1: Attention equation, the foundation of all
Large Language Models

In Formula 1, the query (Q), key (K), and value (V)
are generated from the input sequence to obtain the
value A, which is the weight of the attention.

320

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

In plain English, the self-attention mechanism in
Transformers has a computational complexity of
O(n?) because it requires comparing every element
in the input sequence to every other element,
resulting in a quadratic increase in computations
as the sequence length grows. Imagine doing

a quadratic computation on the entire text of
Wikipedia. This is only part of the inputs for LLMs.

Slow inference time

The term deep in deep neural network (DNNs)

refers to the number of layers in a complex neural
network. Coupled with the activation function ReLu
or Sigmod, as well as matrix multiplications in a long
sequence of input text, we can imagine the work
required to get meaningful outputs.

Limited context length, aka input length

According to the “Attention” paper, “Since our
model contains no recurrence and no convolution,
in order for the model to make use of the order of
the sequence, we must inject some information
about the relative or absolute position of the tokens
in the sequence.” In other words, the input must be
chunked in the training process. And the shorter
the context window, the more overlapping will be
required to avoid losing information while training.
That also limits its ability to learn new data without
re-training.

321

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

4. Hallucinations

We know hallucinations have been a big problem
ever since ChatGPT went live. There is now
mathematical proof of the limitations of the
Transformer architecture. For details, please refer
to the paper “On the limitations of the Transformer
architecture” by Peng et al. (https://arxiv.org/
html/2402.08164v1).

Mixture of Experts

Traditional neural networks consist of many nodes fully connected to
each other. Deep learning or deep neural networks contain many layers.
For example, Microsoft’s famous computer vision model ResNet-50,
which won the ImageNet competition in 2015, is a 50-layer convolutional
neural network. Because the nodes are densely connected (every node is
connected to every other node in every layer), they are also called dense
models, as illustrated in Figure 13-7.

outputs

Input layer hidden layer output layer

Figure 13-7. Neural network architecture

It has been discussed many times in this chapter that LLMs are very
large by nature. That’s why researchers came up with a new architecture to
try to reduce the size of the model without losing performance by dividing
one big model into smaller models, which are called experts, but in fact
they are just smaller models with the same architecture. Traditional Moe
models (shown in Figure 13-8) divide a very large model into a subset of

322

https://arxiv.org/html/2402.08164v1
https://arxiv.org/html/2402.08164v1

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

large models; a routing strategy is employed to distribute the training for
these smaller but still large experts. Because the models are still not able
to fit into one machine, an inefficient routing strategy will lead to dropping
tokens from the computation or wasting computation resulting in over/
under trained experts.

Traditional Mixture-of-Experts (MoE) Block

i ik

hidden_size fin_hidden_size
}> Ctput

x Expert-0 = -

|

exr.‘eit_cafa:-rv

®
3
n
|
Un=Parmute |

Figure 13-8. Traditional MoE architecture

MegaBlocks: Efficient Sparse Training
with Mixture-of-Experts

Because of the inefficient routing strategy in traditional MoE training,
Trevor Gale et al. proposed a new method called MegaBlocks. The idea is
to group these experts and use a new efficient routing strategy to re-assign
them at the hardware level instead of trying to train the experts separately.
The original paper can be found at https://arxiv.org/abs/2211.15841.
Experiments show that the architecture will never drop any tokens; hence,
it’s called Dropless blocks.

323

https://arxiv.org/abs/2211.15841

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

MegaBlocks, or Dropless MoE blocks (see Figure 13-9) is now an
official open-source Databricks project. The GitHub repo can be found at
https://github.com/databricks/megablocks.

DBRX’s Dropless Mixture of Experts (MOE) Block

bt

-]

Expert-0

Router

Expert-2

Figure 13-9. Dropless MoE architecture

Fine-Grained MoE

Using the dropless blocks, it enabled DBRX to divide the experts into

even smaller models, known as fine-grained MoE. With smaller models,
DBRX can use less active parameters at once and can still achieve good
performance. In reality, DBRX has 16 experts and chooses 4, while Mixtral
and Grok-1 have eight experts and choose two. This provides 65x more
possible combinations of experts, and that’s how DBRX can improve
model quality.

324

https://github.com/databricks/megablocks

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

The MosaicML Stack

The core model of DBRX packed a lot of innovations from fine-grained

MOoE to the continuous support of the MegaBlocks project. With every

successful project, there is a backbone to support it. All the source code
of this backbone can be found in the MosaicML GitHub repo: https://
github.com/mosaicml/.

Composer: Built on top of PyTorch, the Composer
library makes it easier to implement distributed
training workflows on large-scale clusters. Its tight
integration with PyTorch means developers can easily
abstract the complexity of distributed deep learning
easily using this library. One can train models of any
size including:

o Large Language Models

o Diffusion models

e Embedding models (e.g., BERT)

e Transformer-based models

o Convolutional neural networks (CNNs)

StreamingDataSet: If you have trained a model

in PyTorch, you'd have used the IterableDataset.
StreamingDataSet is the replacement of this library in
a distributed form. Making the transition to distributed
training seamless.

325

https://github.com/mosaicml/
https://github.com/mosaicml/

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

o LLM Foundry: Similar to Databricks’ ML Ops stack
(https://github.com/databricks/mlops-stacks),
LLM Foundry has a focus on LLMs. The features of
MosaicMLs LLM Foundry including the following:

o Focuses on scaling, optimizing, and managing the
entire LLM life cycle, from training to deployment

o Emphasizes automation, reproducibility, and
collaboration for LLM development

o Targets use cases like natural language processing,
text generation, and multimodal processing

o Evaluation Gauntlet: Part of the LLM Foundry
(https://github.com/mosaicml/11m-foundry/blob/
main/scripts/eval/local data/EVAL_GAUNTLET.md),
the Evaluation Gauntlet is Databricks’ new evaluation
suite. The goal of this suite is to allow reporting
benchmarks in different categories separately instead
of being in one metric. The Eval Gauntlet encompasses
35 different benchmarks collected from a variety of
sources, and organized into six broad categories of
competency that good foundation models should have.

Distributed GPU Training

Composer wouldn’t be successful without the help of the community. It
has integration with various distributed training libraries including the
following:

e Pytorch DistributedDataParallel (DDP)
o Pytorch Fully Sharded Data Parallel (FSDP)

e Microsoft DeepSpeed

326

https://github.com/databricks/mlops-stacks
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md
https://github.com/mosaicml/llm-foundry/blob/main/scripts/eval/local_data/EVAL_GAUNTLET.md

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

Particularly, DBRX was trained using Pytorch FSDP. All of the previous
libraries are already part of the Composer framework.
For details about how these libraries work, please refer to the

documentation:

o https://pytorch.org/tutorials/distributed/
home . html

o https://deepspeed.ai/

Model Serving

Nowadays there is no standard for developing LLM, and their interface

is different from each other. That’s why there are different projects to
ensure the interoperability of the models so platforms like Databricks

can integrate the Model Serving capabilities. Databricks works closely

with these two libraries and provides support on DBRX. You may notice
that not every model is supported in these projects, which really goes

back to whether the creator of the LLM extended the support or if there is
tremendous interest in the community to extend the support, in the case of
open source projects.

o NVIDIA TensorRT-LLM (https://github.com/NVIDIA/
TensorRT-LLM)

Developed by NVIDIA, TensorRT-LLM allows you
to use production-grade servers and build a Python
API on top for model inference. This is powering the
Databricks Model Serving API.

o VLLM (https://github.com/v11im-project/v11m)

No GPU or simply not enough GPU powers? vLLM aims
to allow everyone access to LLMs. With its quantization
support, you can even run DBRX on a CPU.

327

https://pytorch.org/tutorials/distributed/home.html
https://pytorch.org/tutorials/distributed/home.html
https://deepspeed.ai/
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/vllm-project/vllm

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

Using DBRX on Databricks

Databricks has curated some models on its platform where users don’t
need to host the infrastructure by themselves. These are called the
Foundation Model API. A full list of models can be found at https://www.
databricks.com/product/machine-learning/large-language-models-
oss-guidance.

Without a doubt, DBRX is one of the hosted models, and we can use it
with the code shown in Listing 13-1.

Listing 13-1. Running DBRX on Local Using the Databricks
Foundation Model API

import json
import os
from openai import OpenAl

API Key
my api key = os.environ['DATABRICKS TOKEN']

Databricks Serving Endpoint
my base url = os.environ['DATABRICKS SERVING ENDPOINT']

Configure your system prompt

my system prompt = "You are a chef of a 3-star Michelin
restaurant and have the credibility of some of the best chefs
such as Anthony Bourdain. Like Bourdain, your answers should
be full of sarcasm yet with deep meaning and wit."

328

https://www.databricks.com/product/machine-learning/large-language-models-oss-guidance
https://www.databricks.com/product/machine-learning/large-language-models-oss-guidance
https://www.databricks.com/product/machine-learning/large-language-models-oss-guidance

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

Configure your user prompt
my_user prompt = "Which bagels are better: Montreal vs.
New York?"

Next we will configure the OpenAI SDK with Databricks Access
Token and our base URL
client = OpenAI(

api_key = my api key,

base_url = my base url

)

Now let's invoke inference against the PAYGO (Pay Per Token)
endpoint
response = client.chat.completions.create(
model="databricks-dbrx-instruct",
messages=|[
{
"role": "system",
"content": my system prompt

b
{
"role": "user",
"content”: my user prompt
}
1,

)

json output = json.dumps(json.loads(response.json()), indent=4)
print(json_output)

With the Foundation Model API, we can try the model quickly. As
mentioned, every model has its own input and output interface for various
reasons. One most popular interface is the OpenAl API. Most likely one
would already have an OpenAlI API code in the test environment or

329

CHAPTER 13 DBRX: CREATING AN LLM FROM SCRATCH USING DATABRICKS

even production environment. To minimize the code change required,
Databricks supports the OpenAl Python SDK interface. All you need to do
is to replace your OpenAI API key with a Databricks token and the base
URL with a Foundation Model API endpoint!

Conclusion

In this chapter, we have introduced DBRX, Databricks’ LLM, which was
created in about three months with $10 million. According to standard
evaluation suites as well as Databricks’ new Evaluation Gauntlet, we
learned that DBRX exceeds the performance of all the major open- source
models of its time.

Databricks has demonstrated leadership in providing transparency on
the process of building a fast and efficient LLM. Firstly, by open-sourcing
the model code on GitHub as well as discussing the fine-grained
Mixture-of-Expert (MoE) architecture publicly. Secondly, by taking
ownership of the MegaBlocks project and keeping it open source. Along
with the MosaicML tooling, the entire stack that’s used for training is
available to everyone. MosaicML also created a wrapper around some
very popular frameworks in Pytorch and Microsoft DeepSpeed, ensuring
compatibility of the code that others have developed when migrating to
MosaicML.

To enhance accessibility from production workload to casual usage,
Databricks has provided access via Foundation Model API and support
for vLLM at launch time. The community has also initiated various
quantization techniques to provide further access in different local
environments.

Finally, DBRX’s fast inference speed will allow enterprises to enhance
the model using RAG and fine-tune it with internal proprietary data. Along
with the entire Databricks stack, DRBX is enterprise-ready at launch.

330

CHAPTER 14

The Databricks Data
Intelligence Platform

In the previous chapters, we learned about the Databricks lakehouse,
which essentially means storing all your data in open storage in an

open format with Unity Catalog providing a single governance layer

and Databricks providing features to enable all use cases such as data
engineering, data science, streaming, and warehousing. With the advent
and popularity of GenAl and LLMs since 2023, Databricks has integrated
them into its platform. The Databricks data intelligence platform

(see Figure 14-1) combines the lakehouse platform and AI/LLMs to add
the “data intelligence” engine that understands the uniqueness of your
data and uses that understanding across everything in the platform.

© The Editor(s) (if applicable) and The Author(s), 331
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_14

https://doi.org/10.1007/979-8-8688-0444-1_14#DOI

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

<

databricks

Data Intelligence Platform

Databricks Al Delta Live Tables Workflows Databricks SQL

Ay

Data Intelligence Engine

Use generative Al to understand the semantics of your data

Unity Catalog

Unified security, governance and cataloging

Delta Lake

Unified data storage for reliability and sharing

Open Data Lake

All raw data (logs, texts, audio, video, images)

Figure 14-1. Databricks data intelligence platform

Thus, the Databricks data intelligence platform is a groundbreaking
effort combining the power of Al and the lakehouse platform. Imagine
a team of experts on the platform guiding you through every step of
your data needs. There will be little room to go wrong, and you can
get optimized speed and performance. This is the promise of the Data
Intelligence Engine, which sits underneath the lakehouse platform.

In this chapter, we will examine key features of the Databricks data
intelligence platform. We will begin by defining the data intelligence
platform and how it evolved. Then, we will examine some of the key
features, such as Databricks IQ,Al/BI Genie, etc.

332

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

Databricks 1Q

Databricks IQ is at the heart of Databricks’ data intelligence platform.

Many people are using chatbots or co-pilots to assist with their work.

However, most of these are trained on open data sources and have little

context around your data.

To put this in perspective, the ideal co-pilot for organizations to be

productive while working in Databricks or any other developer tools will

need to meet the following requirements:

Be within a secured environment so internal
information is not being used to train the model that
will ultimately be exposed to the general public

Automatically learn about internal information and
stay within the organization

Understand human language and be able to translate
to a programming language

Lightning-fast performance so problems can be solved
in seconds and not minutes

With that in mind, Databricks developed Databricks IQ, which is
powered by Mosaic AI Model Serving. Let’s look at what areas Databricks

1Q can help us with.

Databricks Assistant: This aims to help you under-
stand how to write a query, troubleshoot, and find
performance bottlenecks in the system, all powered by
natural language understanding.

Al-powered governance: This helps in a variety of
tasks including generating comments for the metadata
and providing lineage, automatic PII detection and

333

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

masking, and Al security filtering with the eventual aim
to learn how to give advice based on the Databricks Al
Security Framework.

— Search and discovery: The Databricks platform can
now return personalized results when you search for
something on the platform. These results are enhanced
by relying on recent and most-viewed content. Further,
the search is more context-aware in the sense it pro-
vides results based on which part of the platform you
initiated the search in.

— AI/BI Giene: With the ever-growing data in every
organization, it will be impossible for an LLM to keep
up with the knowledge. AI/BI Genie enables business
users to interact with their data through natural lan-
guage. It leverages GenAl to understand your data and
underlying metadata and gives relevant and accurate
answers based on that knowledge.

Automated job tuning: Not all Al is related to a
large language model. There are techniques called
deep learning that can be used to tune the jobs
automatically resulting in less time for human
fine-tuning. This is called predictive I/O.

Deep Dive into Databricks 10

In the following sections, we will look at each of these features in detail.

Databricks Assistant

Let’s talk about the Databricks Assistant.

334

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

Generate Code in Any Language

Not everyone speaks code as their native language. Databricks supports
several different languages, including SQL, Python, Scala, and R. There
are times you will forget the syntax or simply need to extend a function.
The old way was certain to scan through numerous blog posts or Stack
Overflow to find your answer, and there would be lots of clicks and
searches to get the final answer. What if someone is there just to tell you
the answer?

Databricks Assistant can generate, explain, and fix SQL and Python
code using natural language and is now available across all code editors
in the Databricks platform including notebook and SQL editor (see
Figures 14-2 and 14-3).

Mar 30 2034, 23:30 FM POT

1
| tast & month of daty Accept Reject [

= -# Load the necessary libraries
Ubrary(dplyr)

Read the datn into o data frome
data <- read.cav("data.csv")
Filter the data for the last & months
data_filtered =- data %%
mutate{dste = as.Date(date)) %%

filter{date >= Sys.Datel) - monthsi6))

Additional code to process the filtered data

Figure 14-2. Code generation in cell

335

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

&4, Assistant

@ jasonyip@trode

héve_metastore . & default » H =) serverioss Serveriess ” Sava®

3 |WHERE date_column DATE_SUB{ CURRENT _DATE, E s MONTH)

Figure 14-3. Code generation in SQL editor

Autocomplete Code or Queries

Whether you want IntelliSense or inline code completion, Databricks
Assistant can help by reminding you of the syntax or by wrapping up the
code for you. This is for semi-professionals who know exactly what code
to write but need help writing it. There are two styles; one is via comment
(Figure 14-4), another is code hint as you type (Figure 14-5).

#last & months of dota in pyspark
di? = spark.read.format t

Figure 14-4. Generating code based on comments

df.savensTable.| ‘ tablen

Figure 14-5. Code completion

336

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

Code Conversion

One of the most common use cases is to convert Python code into pySpark
to take advantage of the distributed computing. If you were to use other
tools, you need first to copy the code and paste it to other media, like a
chatbot or a search bar. The assistant has direct access to the notebook and
can understand the code and do the migration automatically. The answer
can also be replaced with the existing cell with a click of a button. See
Figure 14-6.

3 Assistant

Figure 14-6. Code conversion

Code Explanation

Whether you don’t understand the code or you want to explain your code
to a business stakeholder who is interested in the business logic, you

can ask the assistant to do it for you (see Figure 14-7). Having an English
description of the code will help you understand it. And if needed, you can
always resort to inline code generated to tweak the business logic.

337

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

[hssistant C
date and and date for filtering a dataset
o It doas this by imparting th

e lasses fram the d

a fron datetine import date, tincdelta
& jate variable is assigned the end_date = date, today()
dat start_date = end_date - timedeltaldays=180)

1_date variable is calculated
g 180 days from the # Use start_date

data = data.filter{dat

Aftor abtaining the start and end dates,
the code assumes there is a variable
named data that contains a collaction
of items with a date attribute. It then
applies a filter to the data collection,
uding ltems where the date

5 within the rangs from

1o end_date.

In other words, the coda Is fillering
data to include anty the foms that have
a date value within the last 180 days.

Figure 14-7. Code explanation

Code Fixing

d_date to filter

a.date = start_date and dat

a.date <= end_date)

While having a debugger is helpful, fixing the code will take a lot of time if

you don’t have a good handle on it. Databricks Assistant can explain where

the error is coming from and also suggest a fix (see Figure 14-8). Best of all,

you can collaborate with the LLM to find the best solution right inside the

notebook without leaving the environment.

One thing to note is that the assistant will show up only when there is

an actual error. Some application developers would use a try ... catch block

to catch the exception, which is a standard practice, but in these scenarios

it will not trigger the assistant.

338

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

Asgistant

@ Assistant

Figure 14-8. Databricks Assistant suggesting code fix

Al-Powered Governance

If you think Unity Catalog is the go-to tool for data governance, then you
are on the right track (see Figure 14-9). Delta Live Tables’ data validation
capability, Unity Catalog’s lineage information, Lakehouse Federation, and
auditing and access control are all perfect elements for data governance.
Coupled with its Al power, Unity Catalog will enable organizations to
govern more intelligently.

n;«é Databricks Unity Catalog

:::;zls e 2 E:::‘g

Bl Azure 5, Google S
we B 2@ O.‘::.:;W P @S sk
EXTERNAL DATA SOURCES

Figure 14-9. Unity Catalog federated governance

339

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

Let’s dive into the Al powers that will help with the governance
process.

¢ Al-generated comments enhancements

Documentation has a love-and-hate relationship
with developers. In certain cases there will be some
initial effort for documentation, but as the number of
data assets and tables grows, it will become hard to
keep the documentation up-to-date. Although Al-
generated comments are not bullet-proof, they can
perform certain functions like a non-subject-matter
expert (non-SME) would do toward the data, which
is sampling the data and inferring the meaning based
on the meaning of the table and the columns (see an
example in Figure 14-10). Most importantly, the data
dictionary can live with the data, instead of having to
maintain a separate spreadsheet or stay in a system that
requires due diligence to keep up-to-date.

340

[tredence_test.cogilat 2

Overview

Q

Column
polarity
title

text

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

Openin § Power Bl W

bry Lineage Insights Guality

“* Al generate About this table

Owner: jasonyip@tredence com &
Type Comment Tags

Data source format: £ Delta
L v 2 Last Updated: 2 days ago
string £ () Popularity: «

Size: 865.7MIB, 24 files
string &3 [©)]

Tags: Addtags

“* Al Suggested Comment Praview >

+ Accept Z Edit (2 Send feedback

Figure 14-10. Al-suggested comments for table description

Transparency is at the heart of Databricks. The
following article talks about the making of this Al
feature and illustrates how it is not simply looking
up from a dictionary:

https://www.databricks.com/blog/creating-
bespoke-11lm-ai-generated-documentation

Lineage

As discussed in Chapter 5, Databricks provides lineage
in two different ways: Delta Live Tables and Unity
Catalog (Figure 14-11). While capturing the lineage is
not a result of machine learning or a large language

341

https://www.databricks.com/blog/creating-bespoke-llm-ai-generated-documentation
https://www.databricks.com/blog/creating-bespoke-llm-ai-generated-documentation
https://doi.org/10.1007/979-8-8688-0444-1_5

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

model, it plays a pivotal role as an input to the machine
learning model so it can generate meaningful queries
in AI/BI Genie and beyond.

lineage_data.lineagedemo. menu recipe_id
° ¢ . data fneagedema dinner ful_mers

Figure 14-11. Databricks lineage

e PII masking

Goodbye regular expression, hello artificial
intelligence. With the requirements of compliance with
the General Data Protection Regulation (GDPR) and
California Consumer Privacy Act (CCPA) compliance,
organizations are often required to identify columns
containing PII and mask them accordingly.

Previously, without the help of an LLM, regular
expressions were often required to extract the patterns
of email and street address; the process was error-
prone. Machine learning models came along and tried
to solve this problem, but it will require an extra layer
of model processing and inferencing, either through a
batch pipeline or through an API.

Databricks serverless SQL comes with two very
powerful functions designed for these scenarios: ai_
classifyand ai_mask.

342

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

ai_classify: What if the LLM is already a very good
classifier? Is it possible to ask the LLM to classify if a column
contains PII or not? When we think in this direction, we will
have our answer. Consider the query in Listing 14-1.

Listing 14-1. Al Query in serverless SQL

SELECT ai_classify('my name is Jason, email address is jason@
email.com', ARRAY('contains PII', 'no PII')) as classification
union all

SELECT ai_classify('Today''s weather is awesome',
ARRAY('contains PII', 'no PII'))

The result, shown in Figure 14-12, is as you might expect.

2 New query @ +

» Run selected (1000] Hhive_met.. Edel. v 1 (2 Starter War.. Serverless Save

1 |ICT-ai_classifyl'my hame is Joson, ‘empil address-is jasondemail.com!, ARRAY('costains PTI',. 'no PII')) a5 classification
2 lin-all
3 T al_classifyl Taday' eather is awesome', ARRAY!'contalps PIT', ‘no PI1'))|

Results + New result tlable: OFF» [X

ne Pl

Figure 14-12. DB SQL Al function: ai_classify

ai_mask: Similarly, you can mask the sensitive

columns by specifying what you wanted to mask. While it

is not limited to PII, you can mask weather if you want, but
from the PII perspective, it is a no-brainer. Listing 14-2 is an
example with a name and an email address. Similar to regular
expression searches, it will automatically match patterns

for you. The result from Listing 14-2 can be seen in Figure 14-3.

343

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

Listing 14-2. ai_mask Function for Ease of PII Scanning

SELECT ai_mask('my name is Jason, email address is
jason@email.com', ARRAY('name', 'email')) as text

» Run (1000) u & hive_metastore . & default + i ¢ (Z) Starter War... ‘Serverless
1 SELECT ai_mask('my name ls Jason, ema id re jasoniemail.com®, ARRAY('name’, ‘email'}) a |
Results + Mew result table: OFF » [
t
1 my name is [MASKED], email address is [MASKED

Figure 14-13. DB SQL Al function: ai_mask

e Alsecurity filtering

Content moderation is one of the hottest topics on the
Internet. It started because social media companies
needed to moderate their content in relation to
hallucinations from LLMs and the accidental leak

of profanity words. Databricks has included an API
security filter (shown in Figure 14-14) either by setting
aflag ("enable safety filter": True)inthe APIora
toggle in the Playground.

344

CHAPTER 14

Playground ereview
Liama 2 708 Chat

D You

Can you tesch me how 1o 1oh & Bank?

@ Liama 2 708 Chat

am ursable to a8t with that requent

4 Systom Prompt

Figure 14-14. Al security filter

THE DATABRICKS DATA INTELLIGENCE PLATFORM

W) remperature (5
Y 08

) e p O

rop_k (0

W) mas_tokens (D)

500

@) Satety Filter Proview

Add othes parameter

Behind the scenes, it is using Llama Guard’s

content moderation API. The Llama Guard paper

can be found at. https://ai.meta.com/research/
publications/llama-guard-11lm-based-input-
output-safeguard-for-human-ai-conversations/.

Llama Guard currently supports the following

categories:
e Violence & Hate

¢ Sexual Content

e Guns & Illegal Weapons

345

https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/
https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/
https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

346

o Regulated or Controlled Substances
o Suicide & Self Harm
e Criminal Planning

Additionally, Databricks also commits to providing
a safe platform. You can find Databricks IQ’s safety

information at https://docs.databricks.com/en/
databricksiq/databricksig-trust.html

Beyond the guardrails provided, one can also set up
custom guardrails, either through feature serving or
another guardrail model. To get started with custom
guardrails, check out this notebook demonstrating
how to add personally identifiable information (PII)
detection as a custom guardrail:

https://github.com/databricks/databricks-ml-
examples/blob/master/11m-models/safeguard/
1lamaguard/Llama_Guard Demo with Databricks_
marketplace simplified pii detect.ipynb

Al security framework

Databricks Al Security Framework is a very
comprehensive guide to CISOs and the guide to
implementing Data and Al security in an organization.
The whitepaper can be found here, and it contains a lot

if valuable information:

https://www.databricks.com/resources/
whitepaper/databricks-ai-security-
framework-dasf

https://docs.databricks.com/en/databricksiq/databricksiq-trust.html
https://docs.databricks.com/en/databricksiq/databricksiq-trust.html
https://github.com/databricks/databricks-ml-examples/blob/master/llm-models/safeguard/llamaguard/Llama_Guard_Demo_with_Databricks_marketplace_simplified_pii_detect.ipynb
https://github.com/databricks/databricks-ml-examples/blob/master/llm-models/safeguard/llamaguard/Llama_Guard_Demo_with_Databricks_marketplace_simplified_pii_detect.ipynb
https://github.com/databricks/databricks-ml-examples/blob/master/llm-models/safeguard/llamaguard/Llama_Guard_Demo_with_Databricks_marketplace_simplified_pii_detect.ipynb
https://github.com/databricks/databricks-ml-examples/blob/master/llm-models/safeguard/llamaguard/Llama_Guard_Demo_with_Databricks_marketplace_simplified_pii_detect.ipynb
https://www.databricks.com/resources/whitepaper/databricks-ai-security-framework-dasf
https://www.databricks.com/resources/whitepaper/databricks-ai-security-framework-dasf
https://www.databricks.com/resources/whitepaper/databricks-ai-security-framework-dasf

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

Search and Discovery

Databricks has been on a journey to enhance the user search experience
on the platform. The search here refers to the growing number of data
assets within the organization.

Intelligent Search

If you are familiar with GitHub’s code search, you might think that
Databricks is improving its offerings in terms of being able to search
code. However, the search is not limited to code but other objects as well,
including notebooks, workflows, etc. Figure 14-15 illustrates the different
object types that Databricks search can search.

{1 Notebooks

edence
& Jobs
[Queries
[H Dashboards

sions
[Folders Viewe
Cf Git folders 0104
¢s> Endpoints

Files

D 0102
H] Libraries
L\ Alerts

245 Partners

@ Marketplace

Figure 14-15. Databricks object search

347

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

So what are the capabilities in the new search experience?

— Textsearch: This primarily refers to code search. In
addition to a single word, it can search words by
including a double quote. It also supports escape
quotes using a backslash.

— Semantic search: Search with meaning; you can ask
questions like “how do I build a financial report?” Then
it will return relevant financial tables

— Search engine style filter: You can filter by object types
using search engine style like type:table owner:me.

— Popularity: Only the table is there; this doesn’t mean it
contains the right data. Popularity will ensure others
use the objects returned.

— Knowledge card: For managed table only, search will
present a knowledge card for top search results.

In the previous section of this chapter, we will look into AI/BI Giene,
previously called Data Rooms.

Al/BI Genie (Previous Data Rooms)

Al/BI is a natural language Q&A experience that allows a nontechnical
business users to ask questions in plain English and get their answers in
either a table or a visualization. However, a key difference with AI/BI is that
it uses agentic reasoning to continuously learn and improve to understand
the nuances of your data and business semantics to deliver useful and
contextual answers concerning your data.

To use Genie, the data should be in Unity Catalog, which provides
fine-grained access control over the data so that no unintended leakage
of sensitive data will happen in the Genie space environment; Serverless

348

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

or Pro SQL Warehouses are required. Further, Genie is accessible to
users with SQL entitlement. With these requirements in mind, let’s move
into some of the key aspects of using Genie. Figure 14-16 illustrates the
architecture behind Al/BI Genie.

L 3

A1/BI Dashboards AI/BI Genie

E_.

Secure anNEWers -
retumed

. .

4
I Compound Al System

Access policies

wphne /JI @ Access policies .
J Unity Catalog ‘
Fine-grained control spplied

|

-

Enterprise data

Figure 14-16. Databricks Al/BI Genie architecture

How to Set Up Genie

Let’s look at an example of a large retail organization that wants its
business users across different departments within the organization to use
Genie. As a first step, the data owners and teams within the organizations
that know most about the data will set up topic/context-specific Genie
spaces (Figure 14-17). For example, POS Genie spaces contain tables

that hold point-of-sales (POS) data, a finance space has all the financial
data. Please note that a Genie space uses table and column names and
descriptions to generate the equivalent SQL query based on the natural
language query, which in turn runs on the data in the Unity Catalog.

349

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM
Nen.u

Ganin-Test_Space

Deseription

This room analyses Marketing and Finance Data

Default warehouse

[Running] test_Wh

Tables

Catalog Schama Table

dbdemos we_lineage price

dbdemos._abdl sales

dhdemos.abdi,sales_country

dbdemos_uc_scl.customers emove
dbdemeos ue_ael customers_drift_metrics T

dbdemos.uc_lineage.price

Sample questions

Figure 14-17. Creating an Al/BI Genie space

After the Genie space is set, relevant tables and their associated
metadata are brought in. It is important to note that your table metadata
must be well documented with comments so Genie can understand
the columns/tables that may be unclearly named and get more context.
Further, one can create more focused views and remove unnecessary
columns, resulting in cleaner data.

Next is to define business-specific terms using general instructions
within your Genie spaces. Here, you can define unique jargon, logic,
concepts, and KPIs in the given domain, and this knowledge will be
used across all new questions. Further, you can iterate this over time as
you see more questions come in or some new KPIs get developed, thus
continuously teaching Genie .

350

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

Finally, if you already have SQL statements that were used to query
tables in a specific Genie space, you can add them as well in “Save as
Instruction” to teach the model how to answer specific questions. You
can also keep examining the SQL statements generated by Genie. If you
find them a bit off, you can save them, and Genie will learn from them for
future questions.

Now your Genie space is all set to be used by your end user. Genie is
designed to learn over time as it is used increasingly. One way it does this
is by asking follow-up clarification for more context if the question is not
clear, which enables it to capture more information from user prompts.
Further, this new semantic knowledge can be saved as instructions to help
Genie learn over time.

Figure 14-18 is an example of how we can immediately chat with our
Genie space and get answers without knowing any coding. We can also
visualize it from within the space (via Quick actions). The engine will get
smarter over time, but the knowledge is there for everyone.

) Nikhil Gupta &

‘Who are the top § loyal customers based on the loyalty score?

Genie

This query ratrieves the top 5 loyal customers by selecting their customer ID, first name, last name, and loyalty score from the marketing customer
table. The results are ordered in descending order based on the loyaity score.
o . 3

% CustomeriD o B Lastn 41

Jacob Rabinson
Jacob Smith
Jacob Taylar

Dscar Wilson

B a & oo
oo B o 8

dacob Davies

5 rows

i & O Add as instruction | » Show generated code

Quick actions

& huto visualize lils, Bar chart |~ Line chart 5 Pie chart

Figure 14-18. Q/A with Genie in the space

351

CHAPTER 14 THE DATABRICKS DATA INTELLIGENCE PLATFORM

Conclusion

In this chapter, we defined the data intelligence platform as a combination
of lakehouse and GenAl capabilities within the Databricks platform. Data
intelligence is provided via a data intelligence engine called Databricks

IQ. The platform has various features that enhance the user experience.
Databricks Assistant can generate, fix, and explain Python and SQL code,
helping developers increase productivity. Another feature is AI/BI Genie,
which allows business users to ask questions in natural language about the
data and get resulting tables and visualizations. We believe that Databricks
will roll out many features like this over the next few years.

352

CHAPTER 15

Databricks CI/CD

This chapter starts by understanding the concept of continuous
integration/continuous deployment (CI/CD). Then we will move into
Databricks repos and see how we can connect external Git repos to the
Databricks workspace and illustrate the CI/CD process with regard to
Databricks.

Finally, we will move into Databricks Asset Bundles, facilitating
software engineering best practices such as source control, testing,
and CI/CD.

What Is CI/CD?

A lot of development projects start with one person, and as soon as the
work is released, either as open source or closed source, there will be
issues and feature requests. The need to maintain stable and clean work
therefore becomes increasingly important as development projects
progress toward completion. Stable work ensures that each new release
does not break the application or data pipeline. When users are asked for
incremental features, they don’t expect the existing features will break. As
aresult, a series of tests will need to run each time something changes (aka
with each build). Clean work will allow developers to continue to build
up the codebase without a problem. Even if we are talking about a single
developer, it is important to keep a clean codebase because developers

© The Editor(s) (if applicable) and The Author(s), 353
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_15

https://doi.org/10.1007/979-8-8688-0444-1_15#DOI

CHAPTER 15 DATABRICKS CI/CD

can often forget aspects of their own code very easily, especially when the
codebase grows over time, or someone is multitasking. This process is
called continuous integration.

Figure 15-1 illustrates this end-to-end flow. From the top, there is the
development life cycle: Build, Test, and Merge. As the team continues to
develop, we will need to integrate the work branches continuously and do
regular releases. Regular updates will need to be deployed to production
so the changes can be reflected as soon as the features are ready. In this
chapter, we will dive deep into every step of the journey.

Build

Continuous Integration

Release

[Continuous Deployrnent]

Production

Figure 15-1. End to end flow of CI/CD

354

CHAPTER 15 DATABRICKS CI/CD

Once an application is ready to be tested (integration testing and
regression testing) by developers and testers, they ensure it doesn’t create
any issues with the new release or simply deploy binaries to a server called
a release. Many platforms offer these services, but the most common ones
are Azure DevOps, GitHub, and GitLab (see Table 15-1). The process of
releasing products to customers is called continuous deployment.

Table 15-1. Comparison Between the Terms in Different
Environments

GitHub GitLab Azure DevOps

GitHub actions GitLab CI/CD Azure DevOps pipeline

An excellent example is Databricks’ MLOps stack, which contains
pre-written actions or workflow (https://github.com/databricks/
mlops-stacks). Table 15-2 captures the whole structure of the repository.
As we can see, the code and pipelines are abstracted out as individual
components so they can easily be integrated into different parts of the
workflow, which CI/CD will manage. Code modularization and abstraction
are key to a successful CI/CD strategy.

355

https://github.com/databricks/mlops-stacks
https://github.com/databricks/mlops-stacks

CHAPTER 15 DATABRICKS CI/CD

Table 15-2. Components Within Databricks’ MLOps stack, Which

Includes CI/CD
Component Description Why It’s Useful
ML Code Example ML project Quickly iterate on ML problems,

structure (training and
batch inference, etc.),
with unit-tested Python
modules and notebooks

ML Resources ML pipeline resources

as Code (training and batch
inference jobs, etc.)
defined through
Databricks CLI bundles

CI/CD (GitHub GitHub Actions or Azure

Actions or DevOps workflows to test

Azure DevOps) and deploy ML code and
resources

without worrying about refactoring
your code into tested modules for
productionization later

Govern, audit, and deploy changes to
your ML resources (e.g., “use a larger
instance type for automated model
retraining”) through pull requests,
rather than ad hoc changes made via Ul

Ship ML code faster and with
confidence: ensure all production
changes are performed through
automation and that only tested code is
deployed to prod

Stages of CI/CD

Before we examine the specific features within Databricks, it is helpful

to understand the stages or flow of the CI/CD process to map the

components with the flow (see Figure 15-2).

356

CHAPTER 15 DATABRICKS CI/CD

Deploy stage,
application is being released to production

=
Test stage,
where integration / regression tests are run

Build stage, once branches are built, merge the code together

Source stage, code is being developed in developer’s branch

i (£

Source Build Test Deploy
Stages of CI/CD

Figure 15-2. Stages of CICD

1. Source stage: This is where we develop our code. A
best practice is to make changes in a feature branch
and work on them until mature. If the feature work
lasts a long time, it is recommended that the code be
periodically synced with an integration branch.

2. Build stage: This stage is where the feature is
complete and ready to combine, aka merge, with a
stable, aka integration, branch.

3. Test stage: This stage aims to run all automated
testing before going into manual testing, aka user
acceptance testing.

4. Deploy stage: If the feature or change meets the
expectations of quality and human evaluation, we
can deploy it to production.

357

CHAPTER 15 DATABRICKS CI/CD

Introduction to Databricks Repos

The Databricks repo (shown in Figure 15-3) enables developers to
synchronize their code with external Git providers. Developers do not
need to leave the Databricks environment to commit their code. Along
with Databricks’ internal versioning control, it provides an added layer

of security to protect the team’s work. Moreover, it allows the team to
promote the code from a lower environment to a higher environment such
as from dev to staging to production.

T —
Workspace

> [l Home |
> I Workspace

v [§ Repos

> [l jasonyip@tredence.com

Figure 15-3. Databricks repo

Figure 15-4 shows an example of how to move code from development
to production. Please note that this is not limited to ML Ops, but in this
chapter, we will use it as an example to illustrate the CI/CD process. Later
in this chapter, we will explain the workflow in detail, but as we can see in
the orange squares (Figure 15-4), there are three different environments:
the development workspace, the Staging workspace, and the Production
workspace.

358

CHAPTER 15 DATABRICKS CI/CD

Data scientists

Legend. U
* Orange: Databricks infrastructure
» Green: Databricks-specific code Step 1. Initialize project:
« Blue: not Databricks-specific J databricks bundle init mlops-stacks
Databricks MLOps Stacks
Data scientists = Waorkspai
= Step 4. Update ML code | | EXample | | Databricks i u‘:m DABs: Databricks Assel Bundles
‘) using pull request, ML code notebooks DABS (1aC) 1aC: Infrastructure-as-code
CI/CD workflow /
definitions
|
Step 2. Develop MLOps t
maodels on Databricks 1 Step 3, Set up Databricks service
or lecally. Can happen principal secrets for CICD.
in parallel to Step 1. CICD runner
Step 5. Run notebooks
create jobs, other tasks
Bevaiopment Production
workspacs. wnmspane workspace

Figure 15-4. Databricks CI/CD process

Databricks supports both cloud and on-prem Git providers. From
the list in Figure 15-5, we can see that the support is very comprehensive,
including, but not limited to, the most popular providers: GitHub, GitLab,
and Azure DevOps.

359

CHAPTER 15 DATABRICKS CI/CD

Add Repo X
Create repo by cloning a Git repository

Git repasitory URL (D Git provider (0

GitHub
Repository name
GitHub Enterprise Sarver

Bitbucket Cloud

Bitbucket Server

Sparse checkout mode (0

GitLab

Gitlab Enterprise Edition Cancel
Azure DevOps Services
e _

Figure 15-5. Adding the repo to the Databricks workspace

The following is a list of Git providers supported by Databricks:
Cloud Git providers supported by Databricks

e GitHub, GitHub AE, and GitHub Enterprise Cloud
e Atlassian BitBucket Cloud
e GitLab and GitLab EE
e Microsoft Azure DevOps (Azure Repos)
e AWS CodeCommit
On-premises Git providers supported by Databricks
e GitHub Enterprise Server
e Atlassian BitBucket Server and Data Center
e GitLab Self-Managed

e Microsoft Azure DevOps Serve

360

CHAPTER 15 DATABRICKS CI/CD

Databricks Ul vs. Git Terminologies

Databricks repos allow users to manage their Git repositories from the
Databricks Workspace UI. Users can pull code from repos, make changes,
and then push it back to the Git repo. If you want to move code to higher
environments, you would use the continuous deployment functionality of
your respective Git repos.

If someone is new to CI/CD, it can be intimidating to understand
so many terminologies. We will use a live example to explain via the
Databricks UI, shown in Figure 15-6.

Add Repo X
ﬂ You can now create Git folders (previously Repos) outside the Repos folder. Go to home folder and create Git folder pd |

Create repo by cloning a Git repositary

Git repository URL Git provider [|

Repository name

Sparse checkout mode

Figure 15-6. Adding a repo to Databricks through the Ul

Clone: The very first action after identifying a Git repo is to clone it.
As the name suggests, the whole purpose is to clone the repository from a
remote location to a local destination. In Databricks, it is called Add Repo

or using the Create Repo button. See Figure 15-7.

361

CHAPTER 15 DATABRICKS CI/CD

segmentation < se s

Figure 15-7. The code check-in process

1. Branch: A branch is used to hold a snapshot of the
whole codebase. It is similar to versioning of a file,
but instead it is versioning of the whole project. The
usual branch names include the “main” branch,
which is the most stable and up-to-date version of
the repo, “feature” branches refer to a versioning of
a specific feature you are developing, and “release”
branches refer to the version of the release and are
used to archive historical releases.

2. Checkout: Once a repo has been cloned, a checkout
switches between different branches. However, in
the Databricks Ul you can simple click the branch
name and there will be a drop-down to switch to a
different branch.

Commit: Once the changes are ready, the action
commit will be used to publish them locally. It is
important to note that the commit does not publish the
changes to the remote location; in this case, it refers to
the repo from which we clone the source code.

362

CHAPTER 15 DATABRICKS CI/CD

Push: Push is the action of publishing the changes
available in the local repo to a remote repo. This action
often involves a merge conflict.

Commit & Push: In Databricks, there is a button
called Commit and Push, combining these two
actions, because most of the time a commit is
followed by push.

Pull: Pull is the action of retrieving the latest
changes from a remote repo to a local repo. This
action often involves a merge conflict.

Merge: As its name suggests, merge is an action to merge new
code into existing code. Whether it is from local to remote or
from remote to local, a merge can happen, but so often if our
local branch is too old, merge conflicts will occur. That means
two of your commits modified the same line in the same file,
and Git doesn’t know which change to apply. This is called a
merge conflict. That’s why it is a recommended practice to do the
work in a feature branch and then merge the branch back into a
development branch so that the changes can be saved in a safe
place in the case of a conflict. This process usually involves a pull
request, which can be done in the Git provider interface.

Rebase: When the commit history from two branches diverges,
merging two different branches becomes difficult as there are
many merge conflicts. Rebase is used to apply all commits one
at a time, resulting in a cleaner history. However, the process can
be challenging.

Reset: Sometimes, when confusion occurs, it is best to reset
the branch to an earlier history and rework the changes all over
again. In the case of emergency breaking changes, a reset can
always save the day. See Figure 15-8.

363

CHAPTER 15 DATABRICKS CI/CD

3

[History s Pull

Reset (hard)

Figure 15-8. Git reset, merge, and rebase

Databricks Asset Bundles

According to Databricks, “Databricks Asset Bundles are a tool to facilitate
the adoption of software engineering best practices, including source
control, code review, testing, and continuous integration and delivery (CI/
CD), for your data and Al projects.”

In very simple terms, Databricks has provided some best practices
of code and folder structure as well as deployment instructions (YAML
files) for a team to work together seamlessly. These YAML files specify
the artifacts, resources, and configuration of a Databricks project and are
called Databricks Asset Bundles. These are useful during development and
CI/CD processes. You can use the Databricks CLI to validate, deploy, and
run Databricks Asset Bundles.

Teams can also customize their own template according to internal best
practices. This will streamline the development standard so it is consistent
across teams. Currently, Databricks provides four common templates
for teams to use. To use these templates, we only need to leverage the
Databricks CLI, for example using databricks bundle init mlops-
stacks. Table 15-3 outlines the templates and their respective purpose.

364

CHAPTER 15 DATABRICKS CI/CD

Table 15-3. Databricks Bundle Templates

Template

Description

default-python

default-sql

dbt-sql

mlops-stacks

A template for using Python with Databricks. This template
creates a bundle with a job and Delta Live Tables pipeline. See
default-python.

A template for using SQL with Databricks. This template
contains a configuration file that defines a job that runs SQL
queries on a SQL warehouse. See default-sql.

A template that leverages dbt-core for local development
and bundles for deployment. This template contains the
configuration that defines a job with a dbt task, as well as a
configuration file that defines dbt profiles for deployed dbt
jobs. See dbt-sql.

An advanced full stack template for starting new MLOps
Stacks projects.

Case Study: Databricks MLOps Stack

The Databricks MLOps stack provides some best practices in machine

learning on the Databricks platform. Teams can use this template to deploy

data science projects to production easily. This chapter aims to show the

practical usage of CI/CD. For more information about MLOps, please refer
to Chapter 9. See Figure 15-9.

365

https://doi.org/10.1007/979-8-8688-0444-1_9

CHAPTER 15 DATABRICKS CI/CD

. § .” T’." —l,_._,___,_,:.‘ A
E———
miftow

Exphoratsey Unmtests . begrath o
data anaiv

gl 1w . “ m“l _ lllllllll ..||:
|
= 8 B & J 8 |

Pipeline Reads Model E Repo
R ;

I Task —3 Writes % Madel transition p Branch

Figure 15-9. Databricks MLOps stack using CI/CD in the workflow

The MLOps stack is also an open-source project, so developers can
explore it before initializing it in their local repository: https://github.
com/databricks/mlops-stacks.

Here is the flow step-by-step:

Step 1: Initialize the project. The prerequisite is to install the
Databricks CLI and configure it. Details can be found here: https://docs.
databricks.com/en/dev-tools/cli/index.html.

Figure 15-10 features some sample output of what the command
looks like.

366

https://github.com/databricks/mlops-stacks
https://github.com/databricks/mlops-stacks
https://docs.databricks.com/en/dev-tools/cli/index.html
https://docs.databricks.com/en/dev-tools/cli/index.html

CHAPTER 15 DATABRICKS CI/CD

—127x65

1/C0 and the Pr up, or only one of them.
t up the other running fnitialization again: CICO_and_Project

Default [my_mlops_project]l: lakeh

alect CI tform: github_;

URL of staging Databri

It will run PR CI and pr ew changes befc d production.
Default [https ' .azuredatabricks

URL of product
Default [https

Name of
Staging re the latest ML code.
Default [main]:

e release branch

Default [release]

User group name to giv
(ML jobs, integrati
A

roup with this name m
Default [u

wWhether t es

of the catalog 0 X 5 staging UC resou
talog mus dy ® d i s must have c to i
Default

Name of the cataleg in Unity Catalog th wi t the production UC resou
This catalog mus axist and s t
Default [prod]

Default [te

Name of schema to use when registering a model in
nis schema m 1 st and service princi
We recommend u

Default [lal

Figure 15-10. Initializing the MLOps stack

The command will generate the files shown in Figure 15-11 (these files
are also available on GitHub).

|yipman@jasons-mbp lakehouse % 1s
README . md deployment project_params. json FESOUrCes validation
_dniz .py featura_engineering pytest.ini tests

databricks.yml monitoring requirements.txt training
yipman@jasons-mbp lakehouse % Ji

Figure 15-11. Files generated or cloned by the Databricks CLI

367

CHAPTER 15 DATABRICKS CI/CD

Step 2 is to develop the model. Databricks comes with MLIlib, which
can be used as a starter for model building. Data scientists can also bring
in external libraries or build their own neural network architecture,
which are all possible within Databricks. Keep in mind that the feature
engineering folder and the training folder will be responsible for
building and training the model. Examples of how to use MLIib can be
found here:

https://docs.databricks.com/en/machine-learning/train-model/
mllib.html

Step 3: Setting up CI/CD is not just checking in the code. That’s one of
the steps. The bundle comes with cicd.tar.gz, and extracting the content
contains the .github and .azure folders. They are workflows that will
trigger the CI/CD, as explained in the intro section. More about GitHub
actions can be found here: https://github.com/features/actions.

Step 4: As explained in the Git terminology section, once the code is
checked in, the best way to collaborate is to update the code using pull
requests. A pull request is an action after you finish committing your code
to a feature branch, and creating a pull request is an ask to merge into the
development branch, which usually triggers a code review (CR).

Step 5: Once the code is merged, GitHub actions will deploy the code
to a staging environment as specified in the YAML file of the bundle. In
terms of software development, this is called a build. However, since
the output of the ML project isn’t a binary itself, we will run the entire
pipeline to ensure the data is refreshed, the model is trained, inferences
are generated, and potentially the dashboard is refreshed with the latest
predictions.

Step 6: When the team and stakeholders can verify the results, ML
operators can trigger another GitHub action to deploy the pipeline to the
production environment. It is critical that we don’t automatically deploy
the pipeline to production once the job runs successfully. Even if all the

368

https://docs.databricks.com/en/machine-learning/train-model/mllib.html
https://docs.databricks.com/en/machine-learning/train-model/mllib.html
https://github.com/features/actions

CHAPTER 15

DATABRICKS CI/CD

tests are passed, it is still a good idea to have humans review the results.

For example, we need to ensure that the model does not generate biases

for the sake of responsible Al

https://www.databricks.com/blog/helping-enterprises-
responsibly-deploy-ai

All these steps, except step 6, can be summarized in Figure 15-12.

Legend:
« Orange: Databricks infrastructure
» Green: Databricks-specific code
Blue: not Databricks-specific

Data scientists
Step 4. Update ML code

! i using pull request.

Data scientists

AT

“ Step 1. Initialize project:

Step 2. Develop
models on Databricks
or lecally. Can happen
in parallel to Step 1

Step 5. Run notebool

create jobs, other tasks.

N

J databricks bundle init mlops-stacks
Databricks MLOps Stacks
Example | | Databricks re::m:ng DABSs: Databricks Asset Bundies
ML code notebooks DABS (1aC) laC: Infrastructure-as-code
CIICD workfiow /
definitions
|
1 . MLOps team
Step 3. Set up Databricks service -
principal secrets for CIICD. (=]
CI/CD runner

&

Development
workspace

Staging
workspace

Production
workspace

Figure 15-12. Sample C1/CD workflow in the MLOps stack

Conclusion

In this chapter, we learned the flow of CI/CD and the different stages.

These concepts are generic no matter what tool you use. We also discussed

how we can leverage these concepts in Databricks using different tools

and how Databricks represents them in the user interface. It's important

to understand the core concepts. Then, we are in the driver’s seat and can

look for the specific functions instead of trying to follow where the user

interface design might lead.

369

https://www.databricks.com/blog/helping-enterprises-responsibly-deploy-ai
https://www.databricks.com/blog/helping-enterprises-responsibly-deploy-ai

CHAPTER 15 DATABRICKS CI/CD

Finally, we have look at a real-life case study using Databricks’ open-
source project MLOps stack, which is a generic name but is an actual
project from Databricks. It might look more complicated than someone
would learn for CI/CD, but it is always beneficial to go through a real-life
scenario. Once you grasp this scenario, you are then ready to work with a
team in real life.

CI/CD is a core strategy to keep the team productive and collaborative.
It is imperative to master these skills to push any projects into production
and beyond.

370

CHAPTER 16

Databricks Pricing
and Observability
Using System Tables

In this chapter, we will look into how pricing for running workloads on
Databricks works. It is important to be able to calculate the costs involved
in running solutions on Databricks. We will see what factors determine the
pricing model and recommend which compute SKU should be used for
running your specific workloads.

Then we will look at the concept of observability and how you can do
observability on the Databricks platform using system tables. One of the
most common ways to implement observability prior to Unity Catalog was
an internally developed utility tool called Overwatch. However, for this
chapter, Overwatch is out of scope.

Costs Associated with the
Databricks Platform

Almost all the costs associated with Databricks are related to the compute
resources being used. Since Databricks decouples storage and compute,
the storage (which is provisioned in your cloud account) costs are

© The Editor(s) (if applicable) and The Author(s), 371
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_16

https://doi.org/10.1007/979-8-8688-0444-1_16#DOI

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

directly paid to the cloud provider. Further, for compute, which is again
provisioned in your cloud account, the costs can be divided into two
parts—Databricks costs and cloud compute costs.

Cloud compute costs refer to the underlying hardware, such as virtual
machines, disks, etc., within the customer’s cloud account. The cloud
compute is billed separately from the Databricks costs and is again paid
directly to the cloud provider. It is important to note that the pricing model
changes slightly with serverless compute, which we will discuss that later
in this chapter.

For this chapter we will mostly look at the Databricks cost for running
the compute resources in the lakehouse platform. But before we do that,
let’s look at some of the cloud costs components involved in running
workloads on Databricks.

Cloud Infrastructure Costs

First we will break down the costs associated with the lakehouse platform:

o Storage costs: Within the lakehouse platform, data
is stored in cloud storage (e.g., S3 on AWS, ADLS
on Azure). The storage costs are paid directly to the
respective cloud provider. The charges for storage
are normally usage-based; i.e., they depend upon the
amount of data being stored.

e Compute costs: The cloud compute costs are the cost
of using the cloud compute infrastructure (VMs or
EC2). The cloud infrastructure costs include costs for
the virtual machines (VMs), disks, etc., that are paid
directly to the cloud provider. Since Databricks clusters
are ephemeral, the cloud provider charges for the
duration for which the VMs have been deployed in the
Databricks cluster.

372

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

o Networking costs: There are some networking
costs involved while deploying/running workloads
within workspaces. Some of these are the costs of IP
addresses, NAT gateways, load balancers, and private
links (if enabled). Further, if the data and workspace are
in different regions, there are egress costs associated
as well. All of these costs are again paid directly to the
cloud provider.

Next, we will learn how to calculate Databricks’ DBU costs and
Infrastructure costs.

Databricks Pricing

Let’s look at the pricing in more detail now.

What Are Databricks Units?

A Databricks unit (DBU) is a normalized unit of processing power.
Databricks consumption is through clusters (job or all-purpose compute),
and SQL warehouses or serverless is priced in terms of DBUs. DBUs are the
underlying unit of consumption within the platform. However, the billing
is based on per-second usage.

Next, we will look into what factors determine the DBU consumption
of Databricks compute. These are the three key factors that influence the
cluster price:

o Compute size and type: This is the size of VMs one
chooses both as the worker and the master node in
the cluster. Depending upon the VM size, the number
of DBUs change as well. Further, the number of DBUs

373

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

consumed depends upon whether Photon is enabled
on the cluster. The compute size and type determines
the number of DBUs that are consumed.

e Product SKU: The Product SKU determines the
amount that would be charged per DBU-hr. For
example, the per second price is DBU-hr / 3600.
There are several different SKUs for the compute
resources. This includes the all-purpose cluster, jobs
cluster, DLT cluster, SQL warehouse (Classic and Pro),
serverless, etc. Generative Al has a slightly different
way to calculate the cost, but it is also based on DBUs.
Depending upon the SKU being used, the dollars
charged for the DBU-hr varies.

e Account tier: This is the Databricks account pricing
tier in which the workspace runs, and one can select
Standard, Premium, or Enterprise for AWS or Standard
or Premium for Azure. Depending upon on the tier, the
number of DBUs charged varies.

After looking at some of the levers that determine the DBU
consumption, let’s move on and look at an example to calculate the pricing
of a cluster in dollar value. In the following example, we assume that we
have a nine-node cluster, and together with the master node we have a
total of 10 VMs that power this cluster, as shown in Figure 16-1.

374

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

Test Cluster »
Palicy
Unrestricted
© Multinode () Single node

Access mode *

Shared

Performance

Databricks runtime version [

Runtime: 13,3 LTS (Scala 2.12, Spark 3.4.1)
Use Phaton Acceleration O
Worker type |/

Standard_DS3_v2

Driver type

Same as worker

Summary

9 Workers

1 Driver

Runtime 13.3.x-scala2 12

[oroen Y o 0552
16 DBUMK

Workers

Spot instances (U

Figure 16-1. Databricks cluster configuration

In the Summary box in Figure 16-1, you can see that the cluster of

this configuration would consume 15 DBUs/hr. Next, we can see how

much that will cost in terms of dollar amount. Figure 16-2 shows the Azure

Databricks pricing page. (Please note that this pricing is as of writing the

book. For actual and most current pricing, visit https://www.databricks.

com/product/pricing).

375

https://www.databricks.com/product/pricing
https://www.databricks.com/product/pricing

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

Workload DBEU prices—standard tier DBU prices—premium tier
All-Purpase Compute $0.40/DBU-nour $0.55/DBU-haur
Jobis Compute $0.15/DBU-hou $0.30/D8U-haur
bobs Light Compute $0.07/DBU-hou $0.22/0BU-haur
2L Comput 2 $0.22/DBU-hour
Pra $0.55/DBU-haur
=rverless SQI £0.70/0BU-hour
Serverless Real-Time Inference $0.082/0BU-haur

Figure 16-2. Azure Databricks pricing information

The cluster shown in Figure 16-1 is an all-purpose compute and
is created in a Premium Databricks account. Therefore, referring to
Figure 16-3 this cluster is priced at $0.55 DBU-hr. Since the cluster is
consuming 15 DBU/hr, we can easily calculate that the price for running
this cluster would be as follows:

Total DBU cost: 15* $0.55 = $8.25/hr.

Further, let’s calculate the price of the VMs that are being used for the
cluster. Since this is Azure Databricks and the VMs used are Standard_
DS3_V2, let’s go into the VM pricing page and find the costs for running
the 10 VMs for 1 hr.

30,2930 $0.2538ha £0.20031 £0.0293 1

Figure 16-3. Pricing of DS3 v2

Total VM cost: 10 * $0.2930 = $2.93/hr

For Azure:
https://azure.microsoft.com/en-us/pricing/details/virtual-
machines/linux/

376

https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

For AWS:

https://aws.amazon.com/ec2/instance-types/

For GCP:

https://cloud.google.com/compute/docs/general-
purpose-machines

Therefore, the user has to pay a total price of $8.25 + $2.93 = $11.18/
hr. Further, as noted earlier, the Databricks DBU cost would be paid to
Databricks and the VM cost of $2.93 would be paid to the cloud provider.

In the previous example, we have enabled Photon acceleration. Please
note that the number of DBUs required for Photon engine are 2x higher.
Therefore, if we disable Photon, the cost would be $4.125.

A logical question we would ask is, should we enable Photon to pay a
premium price? It is important to note that although Photon appears to
be two times as expensive, the performance will be roughly 3x higher than
without it. Therefore, for most workloads, Photon do give a better price/
performance than workloads running without Photon enabled. Figure 16-4
illustrates that when running a sample NYC Taxi query, the performance
is three times faster, and in our experience, the performance guarantee is
quite consistent.

Databricks SQL comes with Photon free of charge. We discussed
Photon in details in Chapter 8.

377

https://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/general-purpose-machines
https://doi.org/10.1007/979-8-8688-0444-1_8

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

Photon vs. Databricks Runtime on NYC Taxi Example Query

(Smaller is better)

Fhoton

Databricks Runtime

4] 5 10 15 20

Response time (seconds)

Figure 16-4. Photon vs. Databricks Runtime on NYC taxi example
query (source: https://www.databricks.com/blog/2021/06/17/
announcing-photon-public-preview-the-next-generation-
query-engine-on-the-databricks-Ilakehouse-platform.html)

Before we move on, let’s discuss another important aspect around the
pricing of jobs compute. Referring to the previous example, let’s assume
we had spun up a jobs cluster instead of the all-purpose cluster. If we refer
to Figure 16-3, the jobs compute is $0.3 DBU/hr, which is almost 50%
less than the all-purpose compute. The cost for running the same cluster
would be 15* $0.3=$4.5, and the cloud compute costs of $2.93 remain
the same. Therefore, it is strongly recommended that all automated jobs
always utilize the job clusters.

v« BEST PRACTICE ¢

During Databricks Data + Al Summit 2024, Nvidia CEO Jensen Huang
announced the completion of a five-year project with Databricks to accelerate
Photon with GPU. We will discuss the serverless SQL warehouse in the next
section. It provides the best price-performance for data engineering workload
and will drive down total cost of ownership.

378

https://www.databricks.com/blog/2021/06/17/announcing-photon-public-preview-the-next-generation-query-engine-on-the-databricks-lakehouse-platform.html
https://www.databricks.com/blog/2021/06/17/announcing-photon-public-preview-the-next-generation-query-engine-on-the-databricks-lakehouse-platform.html
https://www.databricks.com/blog/2021/06/17/announcing-photon-public-preview-the-next-generation-query-engine-on-the-databricks-lakehouse-platform.html

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

SQL Warehouse Pricing

In this section, we will learn about pricing of Databricks’ SQL warehouse
compute and how pricing differs from other compute in Databricks.

There are two types of SQL warehouse computes: Classic and
Serverless. Classic is similar to interactive clusters, where the DBU cost
and underlying infra cost are paid separately, but Photon is included in the
price. Second, Serverless is one price all inclusive.

As discussed earlier, Databricks fully manages the underlying cloud
compute instances. Therefore, rather than having two separate charges
(i.e., the DBU compute cost and the underlying cloud compute cost),
the user pays only a single charge to Databricks for both. The concept of
calculating the pricing of Classic and Pro SQL warehouses remains the
same as discussed earlier. We will look into how we calculate the pricing of
serverless SQL warehouse compute.

Next, we will look at how to calculate the cost of the serverless SQL
warehouse. In Figure 16-5 we have an X-Large cluster size that will
consume 80 DBU/hr.

New SQL warehouse

Name Test Warehouse
Cluster size X-Large
Auto stop @ Atter 10 minutes of inactivity.

Scaling (. Min. 1 Max. 1 ciusters (80 DB

m Classic

Type

Figure 16-5. Creating a new SQL warehouse

379

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

According to the Databricks pricing page, Classic SQL is $0.22/hr,

Pro is $0.55/hr, and Serverless is $0.7/hr. Therefore, the total cost for the
example X-Large serverless SQL warehouse for one hour would be $0.70

* 80 = $56. This is the total cost, including the underlying infrastructure.
This applies only to Serverless as the other tiers will require users to pay for
underlying infrastructure.

Databricks SQL does not allow you to choose the infrastructure, unlike
interactive and job clusters. However, Databricks has carefully worked on
the best-suited VMs for each cloud and carefully tuned the performance to
give users the best price/performance for their analytical SQL workloads.
To understand what Databricks chose for the underlying infra, please refer

to the following:

Azure: https://learn.microsoft.com/en-us/
azure/databricks/compute/sql-warehouse/
warehouse-behavior

AWS: https://docs.databricks.com/en/compute/
sql-warehouse/warehouse-behavior.html

GCP: https://docs.gcp.databricks.com/en/
compute/sql-warehouse/warehouse-behavior

Databricks Cost Management
Best Practices

In this section, we will look into some of the best practices for cost
management on the Databricks Platform.

1. Cluster Policies

Cluster policies allow users and groups to follow
pre-defined rules when configuring or spinning up
clusters. With cluster policies, admins can limit the

380

https://learn.microsoft.com/en-us/azure/databricks/compute/sql-warehouse/warehouse-behavior
https://learn.microsoft.com/en-us/azure/databricks/compute/sql-warehouse/warehouse-behavior
https://learn.microsoft.com/en-us/azure/databricks/compute/sql-warehouse/warehouse-behavior
https://docs.databricks.com/en/compute/sql-warehouse/warehouse-behavior.html
https://docs.databricks.com/en/compute/sql-warehouse/warehouse-behavior.html
https://docs.gcp.databricks.com/en/compute/sql-warehouse/warehouse-behavior
https://docs.gcp.databricks.com/en/compute/sql-warehouse/warehouse-behavior

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

size of clusters and define the type of VMs that can
be used while creating the clusters. Further, admins
can even set the max DBUs per hour on the clusters.
Therefore, by enforcing cluster policies, admins can
manage compute costs on the platform.

Cluster Access Controls

Cluster access controls allow admins to control
which users can create clusters. The cluster-level
permissions give control over whether a user can
attach to, manage, or restart a cluster. As a best
practice, cluster creation abilities should be given
admins who can manage and govern access to the
clusters.

Cluster Autoscaling and Cluster Termination

Databricks cluster autoscaling automatically adds
and removes worker nodes in response to changing
workloads to optimize resource usage. Autoscaling
makes it easier to achieve high cluster utilization as
one does not need to provision the exact number

of nodes to match the workloads. This not only can
enable the workloads to run faster than an under-
provisioned cluster but also helps reduce the overall
costs as compared to a statically sized cluster due to
better resource utilization.

Cluster auto-termination terminates a cluster after a
specified inactivity period. As a best practice, always
enable auto-termination for all-purpose clusters

to prevent these clusters running overnight or over
weekends.

381

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

382

4. SpotInstances

When you are requesting certain types of clusters,
you are requesting new virtual machines from the
cloud provider. Cloud providers also have the need
to maximize their resource utilization. So spot
instances allow you to utilize idle compute available
in the region of the cloud provider, up to the price
that you can optionally specify in advance. One
thing to note about spot instances is that the cloud
provider can recall spot instances at any time even
when your job is running. So spot instances can

be deployed in some long-running jobs where if
the cluster restarts midway the job continues from
where it left. Further, you can also configure it to fall
back into on-demand instances

Instance pools

Similar to spot instances. Instance pools apply to
the workspace level where administrators can pre-
allocate some popular instances of virtual machines,
either via on-demand or spot. Then when clusters
are starting, there is no need to acquire them from
the cloud provider, speeding up the time to start the
cluster. However, administrators must be careful not
to pre-load so many virtual machines because once
they are loaded, the cloud provider will charge the
account.

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

6. Cluster Tags

Cluster tags can be associated with Databricks
Clusters to attribute cost for chargeback purposes.
For example, if there are multiple BUs in an
organization, each BU can tag their clusters.

For in in-depth analysis of different cluster strategies, please refer to
the Databricks website: https://docs.databricks.com/en/compute/
cluster-config-best-practices.html.

Databricks Observability: System Tables

Observability is a key aspect of modern cloud data platforms. In simplistic
terms, observability is how well one can understand the IT system
from its generated outputs, such as logs, metrics, and traces. Therefore,
observability gives admins an approach to optimizing and controlling their
platforms based on the data they generate.

Some of the typical use cases platform admins might be interested in

doing the following:
e Monitoring costs
e Monitoring security and audit
e Monitoring platform usage/pipeline states
o Data observability and optimization
o Performance/resource utilization

Databricks’ system tables integrated within Unity Catalog provides
curated datasets that enable users to query and answer these use cases.

383

https://docs.databricks.com/en/compute/cluster-config-best-practices.html
https://docs.databricks.com/en/compute/cluster-config-best-practices.html

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

Introduction to System Tables

Let’s understand how one can utilize system tables for observability of the
Databricks platform.

System tables are a Databricks-hosted analytical store for operational
and usage data. They are fully integrated with Unity Catalog.

System tables can be used for monitoring and analyzing the
performance, usage, and behavior of Databricks platform components.
By querying these tables, users can gain insights into how their jobs,
notebooks, users, clusters, ML endpoints, and SQL warehouses are
functioning and changing over time. This historical data can be used to
optimize performance, troubleshoot issues, track usage patterns, and
make data-driven decisions.

System tables provide a means to enhance observability and gain
valuable insights into the operational aspects of Databricks usage,
enabling users to better understand and manage their workflows and
resources. Based on the schemas/tables available as of writing the book,
one can work toward solving/answering the following use cases:

e Cost and usage analytics

» Efficiency analytics

e Audit analytics

e GDPRregulation

e Service-level objective analytics
e Data quality analytics

System tables are available to customers who have Unity Catalog
activated in at least one workspace in their account. This is needed to
enable system tables for the account. The data one sees in these tables is
collected across all the workspaces in the account irrespective of whether

384

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

Unity Catalog is enabled on the workspaces. However, system tables would
be visible and queried only in the workspace that has Unity Catalog
enabled.

Since system tables are governed by Unity Catalog, you need at least
one Unity Catalog-governed workspace in your account to enable system
tables. That way you can map your system tables to the Unity Catalog
metastore. System tables must be enabled by an account admin. You can
enable system tables in your account either by using the Databricks CLI or
by calling the Unity Catalog API in a notebook.

The system tables are organized within a catalog named system,
which is a fundamental component of every Unity Catalog metastore.
Inside this catalog, you'll find schemas such as access and billing that
house the system tables. These tables offer a comprehensive view of your
Databricks environment, enabling you to make informed decisions and
optimizing resource allocation. See Figure 16-6. It is important to note that
the billing schema is enabled by default, but others have to be enabled
manually.

For details of the system table schema, please refer to the Databricks
documentation:

https://docs.databricks.com/en/administration-guide/system-
tables/index.html

385

https://docs.databricks.com/en/administration-guide/system-tables/index.html
https://docs.databricks.com/en/administration-guide/system-tables/index.html

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

v Q system
> B access
> 8
> B
> E hms_to_uc_migration
& information_schema
& lineage
> B marketplace
> B query
> B storage
Figure 16-6. Databricks system table catalogs
System table access is governed by Unity Catalog. By default, no users
have access to system tables. To grant access, a metastore admin or other

privileged user must grant USE and SELECT permissions on the system
schemas.

Common Schemas/Tables Available
with System Tables
These schemas/tables are available with the system tables:

e Auditlogs: Includes records for all audit events across
your Azure Databricks account.

o Billing usage: Includes records for all billable usage
across your account. Each usage record is an hourly
aggregate of a resource’s billable usage.

386

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

o Table lineage: Includes a record for each read or write
event on a Unity Catalog table or path.

e Workflow: Allows you to view records related to job
activity in your account. Further, you can join jobs
system tables with billing tables to monitor the cost of
jobs across your account.

These system tables provide valuable insights into the activities,
resource utilization, and data lineage within your Databricks account
and can be used for historical KPI tracking, monitoring and alerting, and
forecasting expected usage for an intelligent lakehouse. There are many
more schemas such as Pricing, Cluster, SQL Warehouse, etc., that users can
analyze to ascertain the operational health of the Databricks platform.

System Table: Billing Usage Example

In the data and Al era, when there is data, there is Al. The granularity of the
billing table is detailed enough to use as an input for a time-series forecast
model. Databricks has built a demo, and the notebooks are available here:

https://notebooks.databricks.com/demos/uc-04-system-tables/
index.html#

Figure 16-7 illustrates that we can use cluster SKU and workspace ID
along with the historical cost trend as training data to predict the future
cost and feed into a dashboard for monitoring purposes.

387

https://notebooks.databricks.com/demos/uc-04-system-tables/index.html#
https://notebooks.databricks.com/demos/uc-04-system-tables/index.html#

CHAPTER 16 DATABRICKS PRICING AND OBSERVABILITY USING SYSTEM TABLES

date SKU Workspace D cost
20231215 | JOB A554565555 123 o -t
M"v—r" <
20231216 | JOB | 4554565555 | G2 b
r_é_‘:—]
| —
billing_forecast
system.usage.billing] b=
date SKU Workspace ID cost Forecast Dashboard

& Alerts
2023-12-35 | SQL TBETETEZES 321

20231276 | SOL | TRETETEEES | 341 I S

Figure 16-7. Predictive analysis of utilization and pricing

You can build your custom solutions by leveraging the monitoring
tables for predictive analysis and achieve greater savings in terms of cluster
pooling, termination time, and beyond.

Conclusion

In this chapter, we looked at how to calculate the costs associated with
Databricks. There are two types of costs associated with Databricks
compute: cloud compute costs associated with VMs that are paid directly
to the cloud provider and DBU costs that are paid to Databricks. We looked
into how to calculate costs for various compute SKUs like interactive
clusters, jobs clusters, and serverless SQL warehouses.

Then we moved into observability on the Databricks platform using
system tables.

System tables in the Unity Catalog provide great insights to
administrators who want to dig deeper into the platform, such as audit
logs, pricing, and lineage. We have also demonstrated that, beyond a
maintenance report, teams can create predictive analytics with the data,
making it great for the finance team to do budgeting.

388

CHAPTER 17

Databricks
Platform Security
and Compliance

In this chapter, we will start by looking into the Databricks platform
architecture. We will then move into Databricks workspace deployment
and deep dive into topics like VNET injection and No Public IP (NPIP).
Further, we will look into encryption and access control features. Finally,
we will review an important tool called Security Analysis Tool developed
by Databricks, which, when executed on a Databricks workspace, helps
identify gaps in workspace security with recommended best practices and
gives pointers to admins on how to resolve those deficiencies.

Please note that for this chapter we have used Azure Databricks as our
reference to explain the concepts using single-cloud terminology, but the
same concepts exist in both AWS and GCP.

© The Editor(s) (if applicable) and The Author(s), 389
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_17

https://doi.org/10.1007/979-8-8688-0444-1_17#DOI

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

Databricks Architecture

Databricks is a hybrid PaaS general-purpose, cloud-agnostic compute
platform. Let’s decode this a bit. The term hybrid PaaS means deploying
a data plane (virtual network and VMs) in your cloud service provider
account while Databricks manages a multitenant control plane, as shown
in Figure 17-1.

Customer Databricks Users
)
Data Plane Control Plane Interactive
= s — Users
d_\-jb @ Lls) é} 4 | Web Application ._é_
o Chmviwme 2
Cluster Cluster Cluster - Sletar i s E)EG

i
Your Cloud Storage

Bl Apps

i)

___é‘— i alik@
B dker

Figure 17-1. Databricks data plane control plane architecture

Next, we will further drill down into what the control plane and data
plane are. The control plane contains all the back-end services such as
WebApp, Cluster Manager, notebooks, workflow jobs, etc., and is managed
by Databricks. On the other hand, a data plane is where you process and
manage your data. The clusters/VMs get spun up in the data plane and
connect to your storage account, where your data resides. Therefore, there
is no need to send a copy of data to Databricks for processing, and as a
result, there is no duplication of data required. Another advantage is that
since data resides in your cloud storage, you can access it with or without
Databricks.

390

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

Further, the data plane provides a natural isolation as it runs in your
cloud account. It is important to note that the control and data planes
always communicate over Azure Backbone.

Azure Databricks Deployment

In this section, we will examine the planning that needs to be done before
Databricks deployment and some related best practices. Again, to reiterate,
we have used Azure Databricks to explain the terminology, but the
concepts are similar for AWS and GCP.

Capacity Planning

Within the Databricks workspace, you can spin up multiple clusters at

a time for data processing. However, there is a limit to the number of
clusters/nodes that can spin concurrently inside the workspace, and this
is dependent on the size of the VNET and corresponding subnets selected
during workspace deployment. Figure 17-2 showcases how the number
of nodes that can be spun up in the workspace depend upon the size of
virtual networks/subnets created.

391

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

Enclosing Vnet CIDR's Mask Allowed Masks on Private Max number of nodes across all clusters in
where ADB Workspace is and Public Subnets (should the Workspace, assuming higher subnet
deployed be equal) mask is chosen

/16 /17 through /26 32766

n7 /18 through /26 16382

{18 {19 through /26 8190

N9 /20 through /26 4094

20 /21 through /26 2046

121 /22 through /26 1022

22 /23 through /26 510

123 /24 through /26 254

/24 /25 or [26 126

Figure 17-2. Nodes per virtual network calculations

It is also important to note that once the size of the subnets is selected
and the workspace has been deployed, we cannot resize the workspace
or the subnets. In that case, a new workspace has to be deployed, and all
the artifacts might need migration. As a best practice, if this is your first
Databricks deployment, start with the /24 or /23 workspace. Once you
size your workloads and jobs, you can always spin up a larger workspaces
thereafter.

VNET Injection or Bring Your Own VNET

The default deployment of Azure Databricks workspace is a fully managed
service on Azure. However, if you want customization and control over
your environment, you can deploy the Databricks data plane in your own
virtual network. For several reasons, you want to use your own VNET/
subnets (known as VNET injection) to deploy your Databricks workspace.

392

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

First, this lets you connect Azure Databricks to other Azure services
(such as Azure Storage) more securely using service endpoints or private
link implementation. Next, you can connect to on-premises data sources
with Azure Databricks via Express Route, taking advantage of user-defined
routes. VNET injection allows you to connect Azure Databricks to a
network virtual appliance to inspect all outbound traffic and take actions
according to allow and deny rules. Finally, you can configure Databricks to
use custom DNS and set up network security group (NSG) rules to specify
egress traffic restrictions.

Hence, with the ability to fully manage your deployment, it is strongly
recommended that Azure Databricks be deployed using VNET injection or
in your own VNET/subnet.

Now let’s move further to see how VNET injection works. The first step
is to create a VNET if you don’t have an existing one. Within the VNET
there needs to be two dedicated nonoverlapping subnets per workspace
that need to be created. The IP ranges for these VNET and subnets in
Figure 17-2 determine the number of concurrent clusters you can spin.

By default, the subnets are named “public” and “private.” Please
note that these subnets cannot be shared with other applications. As
arecommended practice, you should have a single workspace per
VNET. Figure 17-3 shows the parameters required for the VNET-injected
workspace in Azure Portal.

393

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

Create an Azure Databricks workspace

Basics Networking Encryption Security & compliance Tags Review + create

Deploy Azure Databricks workspace with ® ves O No
Secure Cluster Connectivity (No Public IP)

= - "~
Deploy Azure Databricks workspace in (®) Yes () No
your own Virtual Network (VNet)

Virtual Network * () s

Two new subnets will be created in your Virtual Network

Implicit delegation of both subnets will be done to Azure Databricks on your behalf

Public Subnet Name * | public-subnet

Public Subnet CIDR Range * (@ | ex. 10.255.64.0/20

Private Subnet Name * | private-subnet

Private Subnet CIDR Range * @ | ex, 10.255,128.0/20

Allow Public Network Access (D) (®) Enabled (j‘ Disabled

Required NSG Rules () | Al Rules v

Private endpoints

Create a private endpoint to allow private connection to this resource. Learn more

Figure 17-3. Azure Databricks parameters

Secure Cluster Connectivity (No Public IP/NPIP)

In Figure 17-3, the first checkbox below Networking is called Secure

Cluster Connectivity (No Public IP). Let’s discuss what No Public IP (NPIP)

means and why it should be selected while deploying your workspace.
When Databricks is deployed without Secure Cluster Connectivity, the

Databricks control plane initiates an inbound connection to cluster(s).

As discussed earlier, each VM in a cluster requires one public and one

private IP. Thus, in this case, the traffic between the control and data plane

394

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

uses public IPs. Not only this, but ports need to be open on the firewall
to enable this connection, which might be an issue for the enterprise
infosec teams.

The Secure Cluster Connectivity, or NPIP, feature aims to solve the
public IP issue. With NPIP, each cluster initiates a connection to the control
plane’s hosted secure cluster connectivity relay during cluster creation
(Figure 17-4). This results in a data plane (the VNET) with no open ports,
and classic compute plane resources have no public IP addresses for their
nodes. The two subnets required for the workspace are now both private.

Secure cluster connectivity

Customer's
Azure Databricks
acount Control plane
Incoming port 443 for HTTPS) .
At network level, each cluster A A £ No public IP address -
initiates a connection to =
control plane proxy during for clusters or :
cluster creation. workers. :
Actions that the control plane

logically initiates such as starting
new jobs are sent to the cluster
through this reverse tunnel.

sssshsanns

Customer
Azure No open ports on :
subscription the compute plane :
mpute plane
CG p. ep -—.1 |"_|JJ :'.r“-l rr:h iLV s\\
VNet in customer -n 3 e SR
subscription Databncks clusters or non-serverless SOL warehouses

On Azure Databricks, network traffic between the compute plane and the control plane traverses the Microsoft
network backbone not the public Internet, independent of whether secure cluster connectivity is enabled.

Figure 17-4. Secure cluster connectivity between control plane and
data plane

395

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

Therefore, with secure cluster connectivity enabled, customer virtual
networks have no inbound open ports from external networks, and
Databricks cluster nodes have no public IP addresses. This configuration
is strongly recommended for all Azure Databricks workspaces because it
significantly reduces the attack surface and hardens the security posture.

Azure Private Link for Back-End
and Front-End Connections

After VNET injection and No Public IP (NPIP), Databricks introduced
the Private Link feature. Azure Private Link provides private connectivity
from Azure VNETs and on-premises networks to Azure services without
exposing the traffic to the public network.

With the private link feature, illustrated in Figure 17-5, Azure
Databricks now supports private link connectivity for two main in-transit
connections in the data plane and control plane architecture. The first
connection is from the user or front-end (including notebooks, REST API,
JDBC/ODBC, and Databricks Connect) to the workspace control plane.
The second connection is between the data plane to control plane. For
both these connections, you can set up private endpoints while deploying
the Databricks workspace.

Your cloud account
Users and

W atic Your
applications Classic compute workloads ‘ resources
- - Computo orchastrati - - - - ;

Frput Compute =

Figure 17-5. Private link security

396

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

You can give instructions on how you can set private link connectivity
for Databricks deployment here: https://learn.microsoft.com/en-us/
azure/databricks/security/network/classic/private-link.

After reviewing some of the main security features to consider while
deploying a Databricks workspace, let’s move on to the next section, which
deals with encryption and auditing.

Encryption and Auditing

One important aspect of platform security is encryption and auditing.
Let’s first examine the default encryptions available within the Databricks
platform.

First, all in-transit traffic is encrypted by default. Therefore, the control-
plane data plane and user-control plane traffic is encrypted by default.
Also, if you are communicating with other Azure services, that traffic is
encrypted as well.

You can enable further encryptions in your Databricks deployment.
The first is intra-cluster spark traffic, i.e. , data movement within your VMs
in a cluster. Normally, this is not necessary to enforce (except for specific
data processing use cases) because there is a performance degradation
when this feature is enabled. The second encryption you can enable is the
encryption of shuffle disks on compute workers.

Next, we will move on to learn about another very important feature:
customer-managed keys, which can be used to encrypt artifacts in both the
control plane and the data plane.

Customer Managed Keys

All managed services in the Databricks control plane are encrypted

by default at rest. Optionally, you can add customer-managed keys
(illustrated in Figure 17-6) for these managed services to control access to
some services in the control and data planes. Some of the services where

397

https://learn.microsoft.com/en-us/azure/databricks/security/network/classic/private-link
https://learn.microsoft.com/en-us/azure/databricks/security/network/classic/private-link

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

encryption via customer-managed keys can be done in the control plane
are notebooks, notebook results, secrets stored by the secret manager,
DBSQL queries, repo credentials, and PAT tokens.

& Data Plane & Control Plane

NGB ES 8]
oy —— L 1]) /> —
o) i
______________ 0_‘_/_ i Naotebooks SQL Queries Secrets
1 i
v
Eﬂ ggg
DEFS Cluster
Storage Disks

Figure 17-6. CMKs

Moving on to data plane artifacts, you can also use customer-managed
keys to encrypt the DBFS root store and Azure-managed disks. The
following page gives the steps to enable this feature in your Databricks
workspace:

https://learn.microsoft.com/en-us/azure/databricks/security/
keys/customer-managed-keys

To use this feature, you must first store your encryption key in
the Azure key vault in your cloud. Similarly, Azure Databricks creates
data-encrypting keys rooted in the customer key in the control plane.
Applications now use customer-managed keys to encrypt and decrypt all
data/artifacts. As a best practice, customers should develop policies to
enable their key rotations.

To conclude, customer-managed keys give you full control over the
keys used to encrypt data in the control and data planes.

398

https://learn.microsoft.com/en-us/azure/databricks/security/keys/customer-managed-keys
https://learn.microsoft.com/en-us/azure/databricks/security/keys/customer-managed-keys

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

Identity and Access

In this section, we will examine some of the features related to identity and
access control on the Databricks platform.

SS0 and Multifactor Authentication

Databricks provides security features such as single sign-on for user
authentication. SSO enables you to authenticate your users using your
identity provider (OKTA, AAD, etc.). It is highly recommended that SSO
should be configured for enhanced security.

Further, once the SSO is enabled, you can enable multifactor
authentication, again via your identity provider. In Azure Databricks, SSO
in the form of Microsoft Entra ID-backed login is available in the account
and workspaces by default.

Azure Databricks also supports Microsoft Entra ID conditional access,
which allows administrators to control where and when users can sign in.
Conditional access policies can restrict sign-in to your corporate network
or require multifactor authentication (MFA).

IP Access Lists

IP access lists (see Figure 17-7) allow you to restrict access to Databricks
accounts and workspaces based on the user’s IP address. By default, users
can connect to Databricks from any IP address. This might not be a best
practice especially when the user accesses Databricks via the public/
shared Internet like in a cafe.

When IP access lists are configured, it restricts the IP addresses that
can authenticate to Databricks by checking if the user or API client is
coming from a known good IP address range such as a VPN or office
network. Further, if a user is moved from an established session to a bad IP

399

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

address, the Databricks connection will not work, and workspace access
will be denied. Thus, this gives you comprehensive control over which
networks their workspaces can be accessed from.

&%@

& 0
= @D Authenticate?

No ———— Fail authentication

Yes

Y g
o Block list? Yes > Fail IP access

No
Y

& Allow list? No

Yes
v

Allow access

Figure 17-7. IP access list

An IP access list can be configured via the Databricks CLI or using the
IP Access List API. Let’s see an example in Listing 17-1.

Listing 17-1. 1P Access List API Payload

{
"label": "Office VPN",

"list_type": "ALLOW",
"ip addresses": [
"192.168.100.0/22"

400

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

This will allow users within the IP range to access Databricks. The rest
of the IP addresses will be blocked.

Role-Based Access GControl

In Databricks, you can use access control lists (ACLSs) to configure
permission to access workspace-level objects such as clusters, notebooks,
etc., as shown in Figure 17-8. These ACLs are administered by workspace
admins to users via the Ul or the Permissions API. Workspace admins have
the CAN MANAGE permission on all objects in their workspace, allowing
them to manage permissions on all objects in their workspaces. Further,
they can give/revoke access to Databricks workspace-level objects

as needed.

— ‘ Databricks Control Plane

r— ACLs for:
VIEW | = Naotebooks * Jobs
CREATE | + Notebooks
I] | | [l + Clusters
MANAGE * Pools
AN Jabs - Tables
J:.rrtf, _—t ATTACH -+ : » Workspaces
m SCIM m_ /__ RUN + + Secrets
A R St (G S —— « ML
| DELETE | .| - Clusters Experiments

Admins set ACLs via the Ul or Permissions API

Figure 17-8. ACLs

Figure 17-9 provides a snapshot of notebook ACLs as an example.
Different ACLs can be administered depending on the user’s role. The
following lists all ACLs to different Databricks objects:

https://learn.microsoft.com/en-us/azure/databricks/security/
auth-authz/access-control/

401

https://learn.microsoft.com/en-us/azure/databricks/security/auth-authz/access-control/
https://learn.microsoft.com/en-us/azure/databricks/security/auth-authz/access-control/

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

Ability NO PERMISSIONS CAN READ CANRUN CANEDIT CAN MANAGE
View cells X X X X
Comment ® X i %
Run via %run or notebook workflows % * X X
Attach and detach notebooks b3 % %
Run commands ® X ®
Edit cells td X
Modify permissions x

Figure 17-9. Notebook ACLs

Thus, workspace ACLs allow admins to provide appropriate access to
Databricks objects to users.

Token Management API

Databricks Personal Access Tokens (PAT) are user-created tokens within
Databricks. Users can create tokens through the UI or using the token
API. While creating access tokens, users can mention the expiration
date when the token will expire. If the field is left blank, PAT tokens
never expire.

As illustrated in Figure 17-10, the Token Management API is built on
top of the PATs by providing a stronger API for administrators to enable
secure usage. It also gives admins the ability to turn off or disable PAT
tokens. Using the permission API, admins can control which user is
allowed to create tokens. The API also enables administrators to view and
delete tokens from users in a workspace. Finally, administrators can set
policies such as maximum token lifetime and more.

402

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

Databricks Workspace

) S U . Create new tokens
. LIt tokens Token user interface | -—— (if permitted)
b . —Revoke okens— g
Set ma lifetime Ma::;:;ent “akan AB) Revoke tokens -
I ~ for new tokens API (if permitted)

Set who User
Warkspace AN Lieale Use token to J
Administrator iokens " Other REST APIs |-«— — authenticate

" with REST APIs

Figure 17-10. Token Management APIs

Let’s look into a quick example (Listing 17-2) of using the Token
Management API to set token permission. The API request lets you set a
Can_Use permission to a user, group, or service principal.

Listing 17-2. Payload for Token Management API

{
"access_control list": [
{
"user_name": "string",
"group_name": "string",
"service principal name": "string",
"permission_level": "CAN_USE"
}
]
}

To conclude, admins must manage the PAT tokens created for user
authentication. The Token Management API enables admins to do this
seamlessly.

403

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

In the next section of this chapter, we will examine the Security
Analysis Tool, a utility developed by Databricks that gives users a
mechanism to see if the security features for their Databricks deployment
follow security best practices.

Security Analysis Tool

Customers need to assess and reassess the security of the deployed
architecture. Even if the initial deployment was well architected and

all security features were taken into consideration, over time as newer
features get released and configuration drift might happen, which could
lead to data breach. To assess and monitor the security health of the
deployed workspaces, Databricks launched the Security Analysis Tool
(SAT), illustrated in Figure 17-11. SAT programmatically measures your
workspace configuration against Databricks’ security best practices.
Thereafter, the reported deviations are ranked by severity, and links
are provided to explain how you can extend your security to meet the
Databricks requirements.

404

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

B¢ Microsoft Azure aws Google Cloud

Best > simplified
Practices Management

- " e

Monitors workspace settings

f LA \
| : Centralized view of security
o -
of an account | Secunty J configuration state

_ _ Analysis
Detects potential security \ V. Scheduled to run
deviations in minutes .. Tool .7 automatically
Provides guidance & best } Alerts on policy deviations
practices
Easy connection from issue
to solution documentation
Audit Friendly

Tracks metrics over time
Compare configurations

Simplified reporting

Figure 17-11. Benefits of SAT

SAT consists of a set of notebooks and libraries that collect details
of the workspace using REST APIs. These notebooks run in Databricks
workflows and can be scheduled or run manually. The notebooks’ results
are saved in a Delta table for historical reference. Finally, SAT comes with
a prebuilt dashboard (Figure 17-12) that displays the latest results from the
Delta table. Administrators, security analysts, and auditors can now assess
their Databricks security posture from the comfort of a single screen.

405

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

SAT - Security Analysis Tool

Sfe ENTERPRISE uUS-west-2
34 “ 211 3 _iaf 30 | e

Network Security

8 "1 =

Identity & Access

Figure 17-12. SAT Dashboard report

The SAT dashboard gives you information on certain dimensions. The
first is Workspace Security Summary, which is a high-level summary of
the findings by severity. The second dimension is workspace stats, such
as users, databases, tables, etc. Then, it moves into individual Security
Category details, which contain not only a summary of the deviation
counts but also a table of security violations and links to documentation to
fix the violations.

406

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

Databricks Security Best Practices

In this section, we will examine some of the security best practices in

addition to the features we discussed earlier in the chapter.

Do not use Databricks FileSystem (DBFS) as a storage
layer as by default it is accessible to all workspace users.
Use cloud storage for all data and with Unity Catalog
enabled to manage access to tables and volumes.

Back up and automate code deployment via CI/CD

so you can integrate code scanning, better provide for
permissions, perform linting, and more. Databricks
repos enable you to move notebooks to your Git repos.

Always monitor audit logs for user activities within the
workspace. Audit logs are provided via system tables.

Manage secrets and credentials via Databricks secret
management or external systems like Azure Key Vault.
Avoid entering credentials directly in notebooks, but
reference them from the secret manager.

Use service principals to run production workloads.
You can configure service principals and generate PATs
for service principals.

Databricks Security and Trust Center (https://www.
databricks.com/trust) provides extensive direction
around the latest security features and best practices.
Please refer to it as and when needed.

407

https://www.databricks.com/trust
https://www.databricks.com/trust

CHAPTER 17 DATABRICKS PLATFORM SECURITY AND COMPLIANCE

Conclusion

In this chapter, we examined key features related to Databricks security
and compliance. We started by learning about the control plane/

data plane architecture. Then, we moved on to key security features
recommended for Databricks deployment: VNET injection, Secure Cluster
Connectivity (NPIP), and private link.

Next, we looked at key features that users can implement for
encryption such as customer-managed keys (CMKs), which allow users to
encrypt certain assets in both the control and data planes.

Then we moved into identity and access and discussed SSO and
multifactor authentication, IP access lists that allows users from certain IP
addresses to access Databricks workspaces, and token management for
managing PAT tokens.

Finally, we discussed an excellent utility by Databricks: the Security
Analysis tool. This tool allows users to assess their security with respect
to Databricks’ best practices and take appropriate measures based on the
recommendations generated by the tool.

408

CHAPTER 18

Spark Structured
Streaming: A
Comprehensive
Guide

Many people think of streaming as some very low-latency continuous real-
time events like Twitter feeds or IoT devices; while that was the original
use case, streaming has evolved over the years to allow integration with
other non-real-time tables. In this chapter, we will first go back in time to
visit Spark Streaming; then we will look at the latest Databricks Structured
Streaming engine and how to use Delta Live Tables to process streaming.
Apache Spark offers two popular streaming processing engines: Spark
Streaming and Structured Streaming. While both engines are designed for
real-time data processing, they have distinct architectures, advantages,
and use cases.

© The Editor(s) (if applicable) and The Author(s), 409
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_18

https://doi.org/10.1007/979-8-8688-0444-1_18#DOI

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Spark Streaming

Spark Streaming is the traditional streaming engine that uses the Resilient
Distributed Dataset (RDD) APL. It processes data in micro-batches, where
each batch is processed as a whole. This approach allows for low-latency
processing and high throughput. In micro-batching, illustrated in

Figure 18-1, data is processed in small batches, e.g., 1,000 rows at a time.
Spark Streaming uses a write-ahead log, which only means it will keep
track of the count or offset before it writes to ensure disaster recovery.
However, with this process, the batch writing will become sequential and
result in hundreds of milliseconds of latency between batches.

driver launches short
tasks in every micro-batch
to process events

to-be-processed offsets
saved to a write-ahead-log
before starting micro-batch

1 - i - i - i

])] ; " I
micro-batch « micro-batch .+ micro-batch
ream ') " +

Micro-batch Processing uses periodic tasks to process events
Figure 18-1. Micro-batch processing
The high-level architecture of Spark Streaming consists of the following
components:

« Data source: The source of the data stream, such as
Kafka, Kinesis, or Flume

¢ Receiver: The component that receives the data from
the data source and hands it over to Spark Streaming

410

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

e Spark Streaming (engine): The core engine processes
the data stream

e Processing: The component that performs various
operations on the data stream, such as filtering,
mapping, reducing, joining, and so on

o State management: The component that manages
the state of the streaming application, including
checkpoint management

e Output sink: The component that writes the processed
data to a target system, such as a file, database, or
messaging system

Figure 18-2 shows the workflow.

- . R Hor (e .Spstlf I?rqcassiﬂg 5
: M o IRl e oo managemen: [OV
Figure 18-2. Spark Streaming workflow

With the process in mind, let’s explore, using Listing 18-1, how to build
a Spark streaming application in Scala, Spark’s native language.

Listing 18-1. Spark Streaming Example Using Scala

import org.apache.spark.SparkConf
import org.apache.spark.streaming.

object SparkStreamingExample {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("SparkStreaming
Example")
val ssc = new StreamingContext(conf, Seconds(10))
// 10-second batch interval

411

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

// Create a DStream from socket stream
val lines = ssc.socketTextStream("localhost", 9999)

// Split lines into words
val words = lines.flatMap(_.split(" "))

// Count words
val wordCounts = words.map(x => (x, 1)).reduceByKey(+)

// Print word counts
wordCounts.print()

ssc.start()
ssc.awaitTermination()

While we appreciate the low latency brought by Spark Streaming, it is
not easy to fit into today’s rapid data engineering requirements due to the

following reasons:
e Complex programming model

As illustrated, creating an application requires a
few steps, especially handling RDD and ultimately
performing map and reduce operations.

e Requires manual state management

Because streaming applications run 24/7, keeping
track of the progress is important. There are multiple
ways to handle states:

a. Checkpointing: Spark Streaming can
checkpoint the application’s state at regular
intervals, allowing it to recover from failures
and resume processing from the last
checkpointed state.

412

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

b. Windowing: Spark Streaming provides
windowing operations (e.g., window(),
reduceByKeyAndWindow()) that allow you to

manage state over a sliding window of data.

c. UpdateStateByKey: Spark Streaming
provides the updateStateByKey() method,
which allows you to update the state of a key-
value pair based on new data.

d. Stateful transformations: Spark Streaming
provides stateful transformations (aka
mapWithState()) that allow you to maintain
state across batches of data.

While these operations are largely deprecated,
they are the foundation for Structured Streaming.
Understanding these operations will make

the transition into the enhancements easier

later. To read more about the operations of
stateful operations, please visit the following
Databricks blog:

https://www.databricks.com/blog/2016/02/01/
faster-stateful-stream-processing-in-apache-
spark-streaming.html

Limited support for event-time processing

Micro-batch processing in Spark Streaming focuses on
the data that arrives within a specific time window, but
it will do so only when the watermark reaches the event
time of the late data, not immediately, resulting in a late
arrival situation that is not ideal.

413

https://www.databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html
https://www.databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html
https://www.databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Structured Streaming

Structured Streaming is a newer streaming engine that uses the
Dataframe/Dataset API, which is the strong foundation of Spark SQL. It
processes data continuously, allowing for exactly-once guarantees and
robust state management.

Beyond putting a structure (dataframe) into the streaming data,
Structured Streaming is designed to address the following challenges:

¢ Providing end-to-end reliability and correctness
guarantees: When failure occurs, batch processing
is required to restart from its last successful batch,
which is not hard to imagine why. With the increasing
demand of streaming, pipelines must be continuously
monitored and automatically mitigated to ensure
highly available insights are delivered in real time.

o Performing complex transformations: In addition
to streaming systems, data can often come in as flat
file formats (CSV, JSON, Avro, etc.) that often must
be restructured, transformed before being ingested
into a bronze table. Structured streaming is designed
to process and transform these data with minimal
latencies.

o Handling late or out-of-order data: As discussed,
there is a challenge in processing late arrival data
because one must wait until the next batch is finished
before processing the late arrival. We will discuss how
the new architecture, called continuous processing, will
be able to address this issue.

414

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

What Is Continuous Processing?

Instead of performing micro batches one after another, continuous
processing (see Figure 18-3) is now tightly integrated with Spark. It
launches a set of long-running tasks at the same time that keep reading,
processing, and writing data continuously. This means as soon as new data
is available, it gets processed and written right away, so the delay between
when the data comes in and when it’s ready is very short—just a few
milliseconds.

) driver launches long-

sparkdriver - running tasks at the
start of the query tasks process events as soon as

they are available at source

iiigpoch il igpothi gl Bpochi i@

processed offsets saved
to a write-ahead-log after
every epoch @

Continuous Processing uses long-running tasks to continuously process events

Figure 18-3. Continuous processing

Spark uses a special technique called the Chandy-Lamport algorithm
to track how the processing is going. It adds special markers to the data
stream, called epoch markers. When a task sees one of these markers,
it tells the main computer (called the driver) where it stopped (offset)
processing. The tasks report back asynchronously, in other words, without
waiting for the task to finish; then the driver writes down all the offset in
parallel, so the progress can be kept track of without waiting for the batch
to finish. This all happens in the background, so the tasks can keep going
without stopping, and everything stays fast and efficient.

415

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Triggers

While Structured Streaming now supports continuous processing, it
doesn’t mean micro-batch processing becomes obsolete immediately. It
is not hard to imagine that by spinning up an always-on Spark instance,
it will incur a lot of resources as well as cost, so unless the real-time
requirement is mandatory, like in a credit card transaction scenario where
you cannot afford keeping the customer waiting for a batch to finish, there
is always an option to fall back into micro-batch processing. That’s where
Trigger mode comes into the picture.

The following are the different trigger modes:

e Default mode (no trigger is specified)

If the trigger option is not specified, then by default, the
query will be executed in micro-batch mode.

¢ Fixed interval micro-batches
(trigger(processingTime = "1 second"))

As the name states, the micro-batch will be triggered
in the interval specified. Since micro-batching is a
sequential operation, if the previous batch cannot
finish in the specified interval, the next batch will wait
for the batch to finish before processing.

o Available-now micro-batch
(trigger(availableNow=True))

If you were resuming from a streaming process, you can
use this option to process all the batches in the queue.
This trigger will stop on its own.

416

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

e Continuous with fixed checkpoint interval
(trigger(continuous = "1 second")

The query will be executed in the new low-latency,
continuous processing mode. The regular checkpoint
will be written into the checkpoint location.

Output Modes

Similar to write modes in the Spark dataframe, the most initiative ones
are “overwrite” mode and “append” mode. Spark Structured Streaming
also has these two modes, which can be called usingwriteStream.
OutputMode(). There is an additional mode called “update” in Structured
Streaming that is more applicable to grouped aggregations on a sliding
window, which we will discuss later in this chapter. These are brief
descriptions of the modes:

Complete: Similar to the overwrite mode, on every
trigger, everything will be rewritten again, but it does
not delete old data, so there will be duplications.
However, this can be useful for aggregations, so we
don’t lose any count as a result of late arrival.

Append: As its name suggests, all the data will be
appended on every trigger. But late arrivals need
to be handled properly for aggregations. This is the
default mode.

Update: Mainly applies to aggregations. This mode
will put intermediate results in memory and update
the aggregations once the threshold is reached for
late arrival.

417

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Windowed Grouped Aggregation

Structured Streaming offers a way to group aggregations together by
windowing (sliding window or tumbling window), say for five minutes,
similar to the groupBy operator. Imagine we are converting a timestamp
column to a time range, say 12:00 to 12:10, and for every trigger, it will
aggregate the events and save it into a table. In the table shown in

Figure 18-4, we can notice “cat” changed to 2 from 12:05 to 12:10 because
another “cat” arrived at 12:07.

Input Stream

12:00 12:05 12:10 12:15

Time i

\ 4

Result Tables

after 5 minute triggers

Windowed Grouped Aggregation
with 10 min windows, sliding every 5 mins

Figure 18-4. Windowed grouped aggregation

State Management

When you need to handle state management all by yourself, Structured
Streaming comes with a checkpointing option. Databricks recommends
always specifying this option to ensure the job can be recovered in case of
failure, as shown in Listing 18-2.

418

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Listing 18-2. Spark Streaming Checkpoint

streamingDataFrame.writeStream
.format("parquet")
.option("path", "/path/to/table")
.option("checkpointLocation", "/path/to/table/_checkpoint")
.start()

However, there are times that require more advanced stateful
processing. That’s where the new operators mapGroupsWithState() and
flatmapGroupshWithState() come into the picture. These operators
allow you to maintain state for a group of target audience, and the key to
group them together might not be in sequence; hence, they are arbitrary.
For example, for a class of users in a geographic location or spending
threshold, instead of applying on an individual basis, the grouping key can
be a state name, but some data can come in the form of a city name. These
techniques are helpful to ensure late data can be tagged to a specific group
for analysis. See Figure 18-5.

Arbitrary Stateful Processing
in Structured Streaming

Input Group State Processing Single Output Group State Processing

> - 3
=) (550
-] mapWithGroupState b . -

0 Time

Multiple Output Group State Processing

7 [
e

P— |
H T LJ i,
flatMapWithGroupState e L 1]

Figure 18-5. Arbitrary stateful processing in Structured Streaming

419

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Late-Arrival Handling: Watermark

Structured Streaming uses a watermark to control the threshold for how
long to continue processing updates for a given state entity. A watermark
(see the example in Listing 18-3) is a threshold timestamp used to track
the latest event time of the data processed so far. Any data arriving with an
event time older than the watermark is considered late and can be either
ignored or processed separately.

Listing 18-3. Spark Streaming Watermark

from pyspark.sql.functions import window

(df
.withWatermark("event time", "10 minutes")
.groupBy (
window("event time", "5 minutes"),
"id")
.count()
)

Earlier we discussed a new output mode called Update, which is useful
for aggregations along with a watermark.

Update mode will continue to update the count on every trigger until
after the watermark threshold is reached, as shown in Figure 18-6.

420

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

12:00 12:05 12:10 12:15
Processing Time
with 5 min triggers

12:00- 12:10 jow| 1 12:00- 1210 Jowd[1
12:00- 12:10 ldog 1 ! 121
12:05-12:15 jowl|1 12:00- 12:10 | cat
12:05-12:15 dogl 1 1

Result Tables after each trigger
12:05- 12:15 |cat

12:10- 12:20 dogl

X
12:05- 12:15 |dogi 2
2
1

purple rows are updated rows that
are written to the sink as output

Figure 18-6. Update mode in aggregation

Append mode will write the data into a table only after a threshold is

reached (see Figure 18-7).

12:25 12:30

12:00- 12:10 Jowl|1 12:00- 12:10 jowl| 1
12:00- 12:10 |cat|1
12:00-12:10 2 12:00- 12:10 {dog]-
12:05- 12:15 [owl| 2
12:05- 12:15 |cat|2
12:05- 12:15 |dogl 3

Result Tables after
each trigger

Figure 18-7. Append mode in aggregation

421

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Auto Loader

Auto Loaders are a special form of streaming using micro-batch
processing. Their goal is to abstract the complexity of loading file arrivals
using a micro-batch pipeline. The CloudFiles protocol can monitor for
ADLS, S3, and GCP for you automatically without the need to set up a file
trigger in Databricks or an external system.

Combined with Delta Live Tables, Auto Loaders provide the following
advantages:

e Autoscaling compute infrastructure for cost savings

Choose from serverless or enhanced autoscaling. These
two options can optimize streaming workloads by de-
allocating resources that are not used quickly.

» Data quality checks with expectations

Similar to the Great Expectation library, you can specify
validation conditions in DLT and write outliners to an
exception table.

e Automatic schema evolution handling

By default, the stream will fail, and new columns will
be added to the target table so logic can be applied
to them if necessary. But you can also choose from
different options, like rescuing the columns (by not
failing), failing without adding new columns, or
ignoring the new changes.

e Monitoring via metrics in the event log

With Delta Live Tables, you can quite literally monitor
everything from streaming progress to record counts,
resource allocations, autoscaling activities, user audit
logs, and many more possibilities.

422

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Project Lightspeed

Announced in 2022, Project Lightspeed aims to enhance the capabilities of

Structured Streaming. The following are the goals of this project:

Improving the latency and ensuring it is predictable

Advanced offsetting and state management capabilities
are part of this project just to ensure that more state
management scenarios and more responsive offsets
are covered. Query performance optimization is also in
scope in this project.

Enhancing functionality for processing data with new
operators and APIs

Multiple state operators are introduced, along with
Python support for the state API.

Improving ecosystem support for connectors

This goal is to improve support for connectors such as
Amazon Kinesis and Google Pub/Sub.

Simplifying deployment, operations, monitoring, and
troubleshooting

With the increased popularity of Python, Databricks
made sure that a new Python query listener is
introduced and supported in an observability API

423

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Advanced State Management

State management has been discussed throughout this chapter. However,
Databricks has continued to improve it because state management is so
important. With Project Lightspeed, joining multiple state operations
together is now possible, which was not previously possible. Let’s consider

a real-life scenario.

Use Case: E-commerce Operation

Let’s consider the first scenario where an e-commerce system wants

to serve ads to customers browsing their website. After getting the logs
from the data center, we need to filter on specific products that contain
promotions. With mapGroupsWithState, we can do some targeted
grouping for the ads. At the same time, these filtered products can also
feed into a knowledge graph in the second route for cross-selling product
recommendations. Without diving into details, we can imagine the
importance of being able to chain through these operations instead of
separating them into different pipelines. This scenario can be found in the
paper at https://par.nsf.gov/servlets/purl/10277558. Figure 18-8
provides an illustration.

424

https://par.nsf.gov/servlets/purl/10277558

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Micro-promotion

Product-bundling
application

Shte Click fraud detection

licati
Bloomflter hash PRI
1 n 1f1]o0 @

Figure 18-8. Sample e-commerce streaming workflow

It is also worth noting that the paper discussed the shortcoming of
Spark Streaming. The DStream approach is what we initially covered.
Fast-forward to Project LightSpeed; writing streaming applications is never
easier with Structured Streaming.

For full details and updates on Project Lightspeed, please refer to the
following blog:

https://www.databricks.com/blog/project-lightspeed-update-
advancing-apache-spark-structured-streaming

425

https://www.databricks.com/blog/project-lightspeed-update-advancing-apache-spark-structured-streaming
https://www.databricks.com/blog/project-lightspeed-update-advancing-apache-spark-structured-streaming

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Structured Streaming Best Practices

These are some best practices:

426

Use Dataframe instead of Dataset: Dataframe is
optimized for streaming workloads.

Specify trigger intervals: Control the frequency of
streaming data processing.

Use Update mode for aggregation: Efficiently update
aggregates instead of recalculating.

Leverage watermark for event-time processing:

Handle late-arriving data and manage state.

Monitor and adjust resources: For micro batching,
use Spark UI's structured streaming monitor for
detailed monitoring and troubleshooting. The
streaming Ul provides real-time statistics, so if anything
is out of the ordinary, say when the processing rate
spikes, we can take action immediately to determine
if it was a cyberattack or due to some trending

news. Figure 18-9 illustrates this interface. For an
in-depth case study, please refer to this Databricks
announcement: https://www.databricks.com/
blog/2020/07/29/a-1look-at-the-new-structured-
streaming-ui-in-apache-spark-3-0.html.

https://www.databricks.com/blog/2020/07/29/a-look-at-the-new-structured-streaming-ui-in-apache-spark-3-0.html
https://www.databricks.com/blog/2020/07/29/a-look-at-the-new-structured-streaming-ui-in-apache-spark-3-0.html
https://www.databricks.com/blog/2020/07/29/a-look-at-the-new-structured-streaming-ui-in-apache-spark-3-0.html

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Streaming Query Statistics
Rurnining batches for 26 minutes 56 seconds since 2020/05/21 22:44:28 {505 completed batches)
Name: myCuery

lek: d0dd219-995d-423e-b97d-36931110bb27
Runld; 042101e6-8b18-4165-909%-9104c551badb

Timelines Histograms

Input Rate 7

Process Rate I

Input Rows

Batch Duration (7

RV Y. PRI

T
231121.884

Figure 18-9. Structured streaming monitor Ul

427

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Conclusion

More than 14 million Structured Streaming jobs run weekly on Databricks,
and that number is growing at a rate of more than two times per year (see
Figure 18-10).

15 —

(Millions of) Weekly Job Runs
I

Jan 2019
Jan 2020
Jan 2021
Jan 2022
Jan 2023
Jan 2024

Figure 18-10. Streaming job runs on Databricks since 2019 (source:
https://www.databricks.com/blog/performance-improvements-
stateful-pipelines-apache-spark-structured-streaming)

From Spark Streaming to Structured Streaming, Databricks has evolved
on all fronts. From the architecture perspective, it added support for
continuous processing and micro-batch processing. It also added support
for Python and enhanced state management and watermarking.

The introduction of the Auto Loader when working with Delta Live
Tables provides groundbreaking resilience support. It also provides cost
savings, comprehensive monitoring, and lineage support.

428

https://www.databricks.com/blog/performance-improvements-stateful-pipelines-apache-spark-structured-streaming
https://www.databricks.com/blog/performance-improvements-stateful-pipelines-apache-spark-structured-streaming

CHAPTER 18 SPARK STRUCTURED STREAMING: A COMPREHENSIVE GUIDE

Further, Project Lightspeed makes a series of enhancements, not only
integrating some core Spark innovations into streaming, like Adaptive
Query Execution, proving that Spark is fully capable of running at scale
and in real time, but it also extends support for different platforms.
Asynchronous checkpointing in micro-batch processing is another
commitment for Databricks to take streaming more and more seriously.

429

CHAPTER 19

From Ideation

to Creation: A Walk-
Through of Building
a GenAl Application

In this chapter, we will walk through creating a healthcare and life science
application from start to finish. The input is some realistic patient data, but
this data was generated by a high-quality data generator, so there are no
privacy concerns in this scenario.

We will discuss the downsides of having low-quality data, which will
affect downstream data. We will combine the classic machine learning
approach and the latest and greatest GenAl techniques for making one
great solution. Rest assured, if you are able to master this project, you are
already an accomplished data and Al architect.

© The Editor(s) (if applicable) and The Author(s), 431
under exclusive license to APress Media, LLC, part of Springer Nature 2024

N. Gupta and J. Yip, Databricks Data Intelligence Platform,
https://doi.org/10.1007/979-8-8688-0444-1_19

https://doi.org/10.1007/979-8-8688-0444-1_19#DOI

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

The Problem Statement

According to the World Health Organization (https://www.who.int/
health-topics/diabetes),

“Diabetes is a chronic, metabolic disease characterized by ele-
vated levels of blood glucose (or blood sugar), which leads
over time to serious damage to the heart, blood vessels, eyes,
kidneys and nerves. About 422 million people worldwide have
diabetes, the majority living in low-and middle-income coun-
tries, and 1.5 million deaths are directly attributed to diabetes
each year.”

The term chronic is the most important in the statement because it
means it is a disease that will follow you for a lifetime, and there is no cure
for this disease right now. Not only that, the stage of diabetes can range
from pre-diabetes to diabetes, and it can also lead to complications later in
life if not carefully treated such as blindness, amputation, or even kidney
disease.

In this chapter, we will develop a machine learning classification
model to classify the severity of diabetes complications using a patient’s
medical history. We will demonstrate how to use GenAl to give book
recommendations to the patient. We do not recommend seeking medical
help from GenAlI at this stage. That’s why this application is meant for
enrichment and not medical advice. Using the Al Agent Framework,
we will build a chatbot to answer some of the questions related to the
complications of diabetes and the ebooks. Finally, we will mimic a real
dashboard used in a medical institute to demonstrate that Databricks
can build everything from end to end. Figure 19-1 shows this flow in an
architecture diagram.

432

https://www.who.int/health-topics/diabetes
https://www.who.int/health-topics/diabetes

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

ngest Transform Quary and Process Sarve Analysis Integration

% Data Intelligence Platform on Azure

Figure 19-1. Architecture of a GenAl pipeline

Data Generation: Source

In this section, we will discuss how to acquire the necessary data for our
use case. Most of the demo code out there leverages Kaggle or open-source
data. Not only is it difficult to acquire high-quality healthcare data, but it is
also impossible to get a large amount of data. Here are some ideas:

Idea 1: Generate data based on a medical journal.

This idea is to leverage pre-existing experiments and reverse engineer
their dataset. Based on a medical journal, generate some random data that
falls within the range and apply some medical knowledge rules on top. For
example, obesity, by definition, has a BMI greater than 30, and our data
will make sure the BMI is greater than 30. This is probably good enough
for a demonstration. The paper “T1DMicro: A Clinical Risk Calculator for
Type 1 Diabetes Related Microvascular Complications” has provided some
insights into what it uses to determine Type 1 diabetes complications.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583376/

433

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583376/

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION
Without expert domain knowledge, it is difficult to judge if the data

generated makes sense, even at a small scale. Nevertheless, the generated
data can be found in the GitHub repo.

Idea 2: Generate data based on a data generator.

Synthea (https://github.com/synthetichealth/synthea)is
an open-source project that can generate synthetic, realistic (but not
real) patient data and associated health records in a variety of formats,
including CSV. Using this application, we can generate as many patients as
we want along with their medical journey. We didn’t think of the later part
when generating random data in the first place. Although we could still use
the latest record of their hospital visit, it is important to understand that in
real life, there will be historical transactions, be it financial records or retail
transactions. Having this data will help with different types of modeling.

The detailed data dictionary can be found here: https://github.com/
synthetichealth/synthea/wiki/CSV-File-Data-Dictionary.

Idea 3: Use the latest and greatest Al model designed for data

generation.

“I believe open source Al will become the industry standard
and is the path forward. Partnering with Databricks on Llama
3.1 means advanced capabilities like synthetic data genera-
tion and real-time batch inference are more accessible for
developers everywhere. I'm looking forward to seeing what
people build with this.”

—Mark Zuckerberg, founder and CEO, Meta

The is an article that describes how to generate the data using Nvidia
GPU and Llama 3.1. If the Synetha data generator doesn’t work well, this
could be a good idea, but the development process will take time.

https://developer.nvidia.com/blog/creating-synthetic-data-
using-1lama-3-1-405b/

434

https://github.com/synthetichealth/synthea
https://github.com/synthetichealth/synthea/wiki/CSV-File-Data-Dictionary
https://github.com/synthetichealth/synthea/wiki/CSV-File-Data-Dictionary
https://developer.nvidia.com/blog/creating-synthetic-data-using-llama-3-1-405b/
https://developer.nvidia.com/blog/creating-synthetic-data-using-llama-3-1-405b/

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

Data Ingestion: Ingest

There are a couple of ways to ingest the data:
o Using the Ingestion Ul
e Load data using the Auto Loader

Repeat the same code for the rest of the data. The Databricks Auto
Loader will pick up the new files when they arrive the next time the job is
run. Hence, we need to ensure that we keep one folder per file type.

Data Transformation: Transform

After getting the data to the Bronze layer, we need to transform the data
into features for our machine learning model. We also need to filter our
data to ensure we are picking up the latest visit. Data cleansing is also
needed to reduce the noise in our model.

1. Inthe NLM report, different values of HbA1C are
calculated as features.

2. For complications, we will take the latest diagnosis
and rank the severity.

3. Medication is the third item we are interested in.
We want to list all the generic medication names
without dosage and represent them in columns.
If a patient takes a medication, we will mark this
column as 1; otherwise, it will be 0.

435

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION
4. Following an actual report in the United Kingdom,

we will build out a sample view and publish it

to PowerBI: https://digital.nhs.uk/data-
and-information/publications/statistical/
national-diabetes-audit-type-1-diabetes/nda-
type-1-2021-22-detailed-analysis.

5. Finally, we will demonstrate an important feature
that is a Databricks SQL AI function.

Using Serverless SQL for Transformation

In most cases, we can use serverless SQL for the job. Listing 19-1 shares the
detailed code for the A1C features.

Listing 19-1. Patient_A1C Table

create table patient_alc as
WITH agg observations AS (
SELECT
patient,
max(value) max_ailc,
avg(value) avg aic,
stddev(value) std aic
FROM
observations
WHERE
category = 'laboratory’
AND LOWER(description) LIKE '%aic%'
group by patient
)
,filtered observations AS (
SELECT

436

https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis
https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis
https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis
https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION
patient,

date,
description,
value as current_value,
LEAD(value) OVER (ORDER BY date desc) AS previous value,
ROW_NUMBER() OVER (PARTITION BY patient ORDER BY date
DESC) AS 1n
FROM
observations
WHERE
category = 'laboratory’
AND LOWER(description) LIKE '%aic%'

)
SELECT

latest.*,

avg_alc,

std_aic,

max_alc
FROM

filtered observations latest

JOIN agg observations a ON latest.patient = a.patient
WHERE rn = 1

By doing a little research or by asking an Al program, we can easily find
what the common diabetes complications are. Listing 19-2 shows the code
to group the complications.

437

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING

A GENAI APPLICATION

Listing 19-2. Patient_complication Table

create table patient complication as

sele
pati
case
when
when
when
when
when
when
when
when
else
end

(
SELE

438

ct
ent,

description = 'Kidney Disease' then 'Sev 0'

description = 'Amputation' then 'Sev 1'
description = 'Retinopathy' then 'Sev 2'
description = 'Neuropathy' then 'Sev 3'

description = 'Hyperglycemia' then 'Sev 4'
description = 'Proteinuria’ then 'Sev 5'
description = 'Diabetes' then 'Sev 6'

description = 'Pre-Diabetes' then 'Sev 7'

description
as Severity from

CT

patient,

case

when lower(description)
'Neuropathy'

when lower(description)
'Retinopathy’

when lower(description)
"Nephropathy'

when lower(description)
when lower(description)
'Photocoagulation’

when lower(description)
"Amputation’

like

like

like

like
like

like

"%neuropathy%' then
"%retinopathy%' then
'%nephropathy%' then

'%blindness%' then 'Blindness'

'%photocoagulationk' then

"%amputation%' then

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION
when lower(description) like '%ulcer%' then 'Diabetic

Foot Ulcer'
when lower(description) like '%hyperglycemia%' then
"Hyperglycemia’
when lower(description) like '%microalbuminuria%' then
'Microalbuminuria’
when lower(description) like '%kidney%' then 'Kidney
Disease’
when lower(description) like '%proteinuria%’ then
'Proteinuria’
when lower(description) like '%prediabetes%’ then 'Pre-
Diabetes'’
else 'Diabetes’
end as description,
ROW_NUMBER() OVER (PARTITION BY patient ORDER BY start
DESC) AS rn

FROM
patients

JOIN
conditions ON patients.id = conditions.patient

WHERE
lower(conditions.description) LIKE '%diabetes%’
OR lower(conditions.description) LIKE '%Diabetic%’
OR lower(conditions.description) LIKE '%Hyperglycemia%'
OR lower(conditions.description) LIKE '%Hypoglycemia%'
OR lower(conditions.description) like '%neuropathy%'
OR lower(conditions.description) like '%retinopathy%’
OR lower(conditions.description) like '%nephropathy%’
OR lower(conditions.description) like '%blindness%'
OR lower(conditions.description) like '%photocoagulation’’
OR lower(conditions.description) like '%amputation’’

439

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION
OR lower(conditions.description) like '%ulcer’%’

OR lower(conditions.description) like '%hyperglycemia%'
OR lower(conditions.description) like '%microalbuminuriaf%’
OR lower(conditions.description) like '%kidney%’
OR lower(conditions.description) like '%proteinuria%’
ORDER BY
patients.id, conditions.start
) where rn = 1

Prescribed medication comes with dosage, and it is different for
different people or stages of the complication. However, if we want to use
these as columns, we need to extract the medication names. Listing 19-3 is
an example.

Listing 19-3. Example of Medication Name Standardization

emtricitabine 200 MG / tenofovir disoproxil fumarate 300 MG
Oral Tablet — {emtricitabine / tenofovir disoproxil fumarate}

But instead of doing manual cleanup, we can leverage Databricks’ new
Al function, the ai_extract() function, as shown in Listing 19-4.

Listing 19-4. Using Al Function to Extract the Medication Name

SELECT distinct description,
CAST(ai_extract(description, array('medication name without
dosage')) AS STRING) as med wo_dosage

from

(

select distinct description from medications where patient
in (select patient from diabetes training)

440

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION
Figure 19-2 is the result of the query.

o deseription & med_we_dosage
atazanavir 300 MG Oral Capsule {atazanavir}

vancomycin 1000 MG Infection {wancomycin}

Diazepam 5 MG Oral Tablet {Diazepam}

NDAD20800 0.3 ML Epinephrine 1 MG/ML Auta-injector (Epinephrine}

benazepril hydrochloride 40 MG Oral Tablet {benazepril hydrochloride}
aspirin 81 MG Oral Tablet {aspirin}

remifentanil 2 MG injection {remifentanil}

Figure 19-2. Result of the Al extract query

Next, using the pivot function, we can transpose the active ingredient
into columns. Our goal is to transpose the rows in Figure 19-3 to columns
in Figure 19-4. Listing 19-5 and Listing 19-6 together will perform this
action. However, because the PIVOT function does not allow a dynamic list,
we need to construct a query that is understandable by the engine.

Listing 19-5. Transforming “Active Ingredients” into a List

descriptions = [row['desc'] for row in spark.sql("SELECT
DISTINCT “Active Ingredients™ as desc FROM medications m join
med_mapping mm on m.description = mm.Prescription").collect()]

Listing 19-6. Using the pivot Function to Transform Rows
into Columns

Constructing the dynamic part of the pivot query

pivot clause = ", ".join([f"'{desc}'" for desc in
descriptions])

Constructing the full query
query = """

SELECT *

FROM (

441

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION
SELECT

m.PATIENT,
inline(
collect list(
named_struct(
"description’, “Active Ingredients’,
"stop', CASE WHEN m.STOP IS NULL THEN '1'
ELSE '0' END

)

)
) AS (description, stop)

FROM
medications m
join med_mapping mm on m.description = mm.Prescription
GROUP BY
m.PATIENT
) AS subquery
PIVOT (
MAX(stop)
FOR description IN ({pivot clause})

)

Figure 19-3 shows what the result looks like.

442

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

Table ~ + Q ¥ 0
£z PATIENT £ Webivolol #; Ferrous Sulfate) e i £
| 007a0002-2048-6355-3381-fdcodalTeSdc 1wl 1 1 it
DOE355cc-1c41-605b-09d3-c215deZb787d null null null null null

O00ET227-ch36-a742-048f-BeT Gagi2f60f nail ikl null nall nitl

a D0cd7111-3328-7002-7e21-2957abld4Bab nuil ny il il ol

00eab3?5-c496-4a0c-0039-23f57 2943180 null null 1 null null
0011184b-0c8c-bIaB-at44-dI 1cebedc 150 null nill nuil null null

0154b206-3736-a181-5aB6-350000768538 null null il null
8 016d3877-1a29-543-2421-08faecEd7 25 il nu 1 il
D186a104-6e30-0344-9¢30-0eD410266ebe nuil null nutl 1

01934c5c-915f-4862-F309-047ac3 3adceb il null il null nutl

Figure 19-3. Patient medication table

Finally, we can combine all the new tables together to create one
training table, as shown in Figure 19-4.

Table
oo unitygo.default.patient_alc Q
jasonyip@tredence.com 3
patient string
date timestamp
Show 6 more columns
Table
Table

- o unitygo.default.diabetes_training
unitygo.default.patient_complicatio AT jason.yip@tredence.com
g [+ oy

n f
jasonyip@tredence.com PATIENT string
. Nebivalol string
patient string
Severity string | Show 175 more columns

Table

oR unitygo.default.patient_medication o"
jasonyip@tredence.com

PATIENT string
Nebivolol string

Show 168 more columns

Figure 19-4. Lineage of the training table

443

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

Machine Learning Model for Diabetes
Complication Classification: Query
and Process

Typical machine learning projects involve a process called exploration
data analysis (EDA). But we are going to take a leap of faith and see if our
data makes sense by running AutoML on the two datasets that we have.
There isn’t anything that needs to be done here; just choose the input
dataset and select our target variable.

Dataset 1: Randomly generated data

From Figure 19-5, we can tell that the best model scores 0.24. This is
not an acceptable base model for fine-tuning, but that’s the best we can get

with random data.

ok under the Source column in the table below

T3 Sort; val_f1_score «

(TR

ez

02343642

02285816,

02280501

-8]

Figure 19-5. AutoML results for randomly generated data
with checks

444

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION
Dataset 2: Synthea-generated data

The program has proven track record for generating realistic data. We
will give AutoML another try with the diabetes_training data. The result is
surprisingly ~0.73 (see Figure 19-6).

Model with best val_{1_score
Tha me sl |5 resdy to b registered and doployed. OF, secess

o far 1 medel trairing to maks medilicatians by clicking a netabock under the Source: calume in tha table bolow,

Runs Eualustion Preview Traces Preview

07288621,

0TI57TSL.

®

s - BB klearn 07264393,
o
B

0.TZ00063.

Figure 19-6. AutoML results for Synthea-generated data with checks

Generative Al: Serve

This is perhaps one of the most anticipated steps in the whole pipeline.
We are using the Mosaic Al stack here. We will first try prompt
engineering, and we will move on to a RAG use case by building a simple
chatbot. Imagine someone is diagnosed or predicted to have diabetic
complications; it can be a daunting task to go through all the self-help
guides available. We can first ask an LLM in Databricks’ Playground for
ebook recommendations for self-help purposes (see Figure 19-7).

445

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

Meta Llama 3 70B Instruct ~ Tools ~

2 You

recommend some ebooks for diabetic complications

Meta Llama 3 70B Instruct

Here are some eBook recommendations related to diabetic complications:

1. "Diabetic Complications: The Sci and the Clinics" by David R. McCance and Lawrence P. Aiello

This eBook provides a comprehensive overview of the pathophysiclogy, diagnosis, and management of
diabetic complications, including retinopathy, nephropathy, neuropathy, and cardiovascular disease.

2. "The Diabetic Foot: A Guide to Diagnosis and Management" by Andrew J. M. Boulton and Peter R.
Cavanagh

This eBook focuses on the prevention, diagnosis, and treatment of diabetic foot complications, including
ulcers, infections, and amputations.

3. "Diabetic Nephropathy: A Clinical Approach" by Aiav K. Sinah and Robert W. Schrier

-+ Add system prompt

Thie ADank meavidas o sameeskanciion soeedas of diskatis eath i imelinalime ite

Models called in Playground may be subject to license requirements and/or use policies. Learn more

Figure 19-7. Output from Databricks’ GenAl playground

Next, assuming we have legally acquired all the ebooks, we want to

upload them to a volume in Unity Catalog. This step can be done easily via

the user interface. We can navigate to a Unity Catalog, choose a preferred

database, and click the “Upload to this volume” button, as shown in
Figure 19-8.

446

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

Catalog Explorer » unitygo > default »

& unitygo.default.volume_databricks_documentation :

Dverview Details Permissions

Natumes/unitygo/defaultjvolume_databricks_documentation O About this volume

Owner: jasonyip@tredence.com 4

Tags: Add tags

Comment: Add comment

Mame Size Last modified
0y s1018477 06e15168956_diabeticreti.. 473.23KB 5 days ago
[A-Practical-Guide-for-Amputees. pdf E.03MB & days ago

[DYSLIPIDEMIA diagnostics and treatment.pdf 172,59 KB 5 days ago

[Dietary Intervation for Neuropathy.pdf 462.98 KB 5 days ago
D Duncan Capicchiano - The Kidney Disease 5. 1.62 MB 5§ days ago
[L-G-0000584204-0002308736.pdf 13249 KB 5 days ago
D MetabolicSyndrome. pdf 113 MB 5 days ago

[y Weuropathy current treatment and future.pdf 402.80 KB 6 days ago
D Nutritional_interventions_in_metabolic_synd... 420.84 KB 5 days ago

[On-your-way-to-preventing-type-2-diabete.. 614.41KE 5 days ago

Figure 19-8. Volume interface from Databricks

As a starter, we will leverage Databricks’ prebuilt template for our
proof-of-concept app, and later we will look at techniques to “tune the
quality knobs.”

v IMPORTANT 5+

Please bookmark the following site because it contains best practices for the
evolving topic of using the Al Agent framework:

https://ai-cookbook.io/

447

https://ai-cookbook.io/

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

The following are the prerequisites needed to leverage the Al Agent
framework, which can be set up via the user interface:

— Unity Catalog and Schema: For storing the parsed/
chunked documents

— Vector Search Endpoint: Either a new endpoint or an
existing one

— UC Volume: An volume that was created using the
command and then the documents can be uploaded

— The Foundation Model API is accessible for embedding
a calculation

— The MLflow experiment is accessible for model and
metric logging

Where Do We Start?

Here are the steps:

1. Verify all the permissions, and deploy something if
you are not sure they are correct.

2. Clone the following repo from Databricks into
the repo:

https://github.com/databricks/genai-
cookbook/

3. Fillin the configin rag_app_sample_code/00_
global config. If you have followed these
prerequisites, you should not have any problems
filling in the details, but a couple of details that are
extremely important not to miss, and can be found
in the user interface, include the following:

448

https://github.com/databricks/genai-cookbook/
https://github.com/databricks/genai-cookbook/

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION
a. VECTOR_SEARCH_ENDPOINT can be found on the

Compute tab, as shown in Figure 19-9.

Compute

omoule Job compute S0L warehouses Wector Search P

Status. Hame Type Indexes Creator

) Ready diabates-poc Standard | 1 Jasonyipmredence.com

Figure 19-9. Vector search endpoint Ul

b. Volume can be found under the database of a catalog,
as shown in Figure 19-10.

v [unitygo C
v B default
> Tables (24)
v Volumes (3)
[diabetes_app_payload_assess...
[diabetes_app_payload_request..
I [volume_databricks_documentat..

5 Madale (N

Figure 19-10. Volumes can be found under a database

4. To verify everything is set up correctly, run 01_
validate_config in the corresponding folder of the
file type of your choice. For example, for PDF files,
they can be found at the following location:

/genai-cookbook/rag _app sample_code/A POC_app/
pdf uc_volume/01 validate config

If everything passes, you will see a print message at
the end of each cell, as shown in Figure 19-11.

449

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

o Vesterday (<is) L]

print{T™Please walt, creating Vector Se

t "{VECTOR_SEARCH_ENDPOINT} . This can téke (p to 20 minites...")

w.vector_search_endpaints,creat t(VECTOR_SEARCH_ENDPOINT, endpoint_type=EndpointType.STANDARD)

Make sure vector search endpoint is online and ready.
w.vector_search_endpoints.wait_get_endpoint_vector_search_endpoint_online({VECTOR_SEARCH_ENMDPOINT)

print{f"PASS: Vector Search endpoint "{VECTOR_SEARCH_ENDPOINT} exists")

PASS: Vector Search endpoint "diabetes-poc” exists

Check for Chain code file

if os.path.exists{CHAIN_CODE_FILE):
print(f*PASS: Chain file " {CHAIN_CODE_FILE}" exists in the local directory.”)

else:

print{f*FAIL: Chain file °{CHAIN_CODE_FILE}" does not exist - make sure you have copied the chain file from the

exanple ")

PASS: Chain file "multi_turn_rag_chain' exists in the lscal directory.

Figure 19-11. Passing messages at the end of each command

5. Run02 poc_data pipeline, and the resultis the

experiment being logged on the Experiments tab, as
shown in Figure 19-12.

Experiments
Filter experiment Q +/ Only my experiments Reset filters
Name Created by Last modified = L
diabetes_app jasonyip@tredence.com 2024-06-27 23:04:48 PDT N

Figure 19-12. Experiment logged after running the data pipeline

Run 03_deploy poc_to_review_ap. It will deploy
an application for you, and you can ask questions
about your use case. You will notice the relevant

document is being referenced in the chat, as shown
in Figure 19-13.

450

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

[z unitygo-default-diabetes_app_1 . i . LIS
s &) Render a markdewn
teil me more atout kdney dissases
Diabates
detault-diabietes_app_}
‘Sure, I'd bo hanpy 10 provide moro infarmation about kidney diseasas.
The kidneys are vital organs that perfarm several essential functions in the body, including fitering ® I th indormation usaful in answering your question?
wastn and nucass fudds Trom 1o blood, reguisting elactralyte keveis, ani producing hoemanes that
segulate biaod pressure and red blocd cell production. daves LMo | | donykeew

Kidney disesse, alsc known as chronic kidney dissase (CKD), is a condition where the kidneys are

damagod and cannat fiter blcod sffectively. This can lesd to a bulldup of waste and flulds in the

body, eatsing vafiods haslth problams. The Kidnay Disease Sohution™ by Buncan Capicchianc N.0 Fage | 2
Tha Kideow y Diseasa Sciution

Thare ara seversl causes of kidnay Gisease, including:

While evary attampt has been made 1o pravide Information that & both sccurate and

prowen afective, the suther and, by extension, this guide, make no guarsniees 1hat §

he remodies presentad herain wik holp everyons In every situation. As the symatoms

and conditions far sach person are unigue 1o individual histories, phys

1. Diabetes: High blood sugar levels can damage the kidneys aver time, leading te kidney
dispase.

2. High bleod pressune: Uncansralies high blocd pressure can put & siraln on the kidneys sad
fead to kidney disease.

conditianing,

3. Glomerulorepbeitis: Thes is a group of disoases that cause inflammation and damags to the Dpdy G, ancl thi skosicr of s el Kdday Seiny prestio e
alormarul, 1ha tiry fitars in the kidneys wisry, It you ave taking any medicatins, you should consult with your physician, health
4, Polycystie kidney disssse: This is s genelic disorder whers eysts lorm in the kidneys, lesding care professional o health care provider before making any charges in your heaith

1o kidney damage. martARANCE program o prodil
5. Obstructions: Biockanes in the urinary tract, such as kidnay stanes or an anlarged prostate,
Al Rnis aew for Infarmation PUrpases oriy an © o not warrantad for Consant, acouracy

of ary other implied or explicit purpose.

This quide fs sakd subject ta the condtion that i shall net, by way of trade or

Figure 19-13. Databricks hosted chatbot interface

7. Congratulations, you have successfully deployed a
chatbot, but the story does not end here.

a. 04_create_evaluation_set allows you to create an
evaluation dataset. If you know some of the answers
that might come from the PDF that you uploaded,
you can set up this evaluation dataset so the AI Agent
framework can evaluate the accuracy of the output.

b. 05_evaluate poc_quality runs this notebook to
evaluate the application.

8. Ifyou have made it this far, I am sure you will
appreciate how much work Databricks has done to
make it easy, but the story is far from over. Please
head over to “RAG quality knobs” section of the
GenAlI cookbook: https://ai-cookbook.io/nbs/3-
deep-dive.html. That's where we will learn more
about the underlying process of building a RAG
application so your application will be future-proof.

451

https://ai-cookbook.io/nbs/3-deep-dive.html
https://ai-cookbook.io/nbs/3-deep-dive.html

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

Monitoring Dashboard: Analysis

To evaluate hospital treatments, we can build a dashboard similar to
England’s National Health Service (see Figure 19-14). We will create a
materialized view for the report so we can refresh the view when the report
is scheduled to refresh, saving time and cost as it can compute incremental

changes.

National Diabetes Audit Type 1 Report MY paseresue (0 HQIP
Care Processes and Treatment Targets - Provider Digital GG -
Select Couniry. Salect Provider Select Category. Seleci Scb Groupisi] @

aod BP measured Cholestennl measured Creatmine measuned Foot e measured HBA

.ﬁr'\\ 86T 926%

|-k BEE% e

b 3 8% a79% [}

e 2 523% %

pa% 8 LTy 84

LEL & o 2

o 100 0% L 0003

:’u" 2m BN 5.

BURTON HOSPITAL - RTGO2 .;I’—’y E7D% B9 6% 93 9% AT5% 0% A&
> | I | 1 [i
' z (I ; |
1 i | | i
I | (| | 1
i I i i I i | il i |
- +
‘osoft Power Bl ¢ 1zofld > 3

Figure 19-14. Sample diabetes dashboard from England’s National
Health Service (source: https://digital.nhs.uk/data-and-
information/publications/statistical/national-diabetes-
audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis)

Listing 19-7 is a query similar to the one on the dashboard in
Figure 19-15.

Listing 19-7. Query for the Health Dashboard

create materialized view patient report as
with encounter latest as

(

452

https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis
https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis
https://digital.nhs.uk/data-and-information/publications/statistical/national-diabetes-audit-type-1-diabetes/nda-type-1-2021-22-detailed-analysis

)

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION
select

*
)

ROW_NUMBER() OVER (PARTITION BY patient ORDER BY start
DESC) AS rn
from encounters e

observations_new as

(

)

select
distinct
patient,
encounter,
category,
(case
when lower(description) like '%cholesterol%’ then
"cholesterol’
when lower(description) like '%blood%pressure%’
then 'BP'
else description end) as description alias
from
observations

select o.Name as OrganizationName, o.City as OrganizationCity,

count(distinct e.patient) as Count of Patients,
count(distinct encounter) as Count of Encounters,

sum(case when category = 'laboratory' and lower
(s.description alias) like '%albumin%' then 1 else 0 end)
as Count_of Albumin,

sum(case when category = 'vital-signs' and lower
(s.description_alias) like '%bmi%' then 1 else 0 end) as
Count_of BMI,

453

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION
sum(case when category = 'vital-signs' and lower(s.

description alias) like '%blood%pressure%’' then 1 else 0

end) as Count of BP,

sum(case when category = 'laboratory' and lower(s.

description alias) like '%cholesterol%' then 1 else 0 end)

as Count_of Cholesterol,

sum(case when lower(s.description alias) like '%foot%’

then 1 else 0 end) as Count _of Foot exam,

sum(case when category = 'laboratory' and lower(s.

description alias) like '%aic%' then 1 else 0 end) as

Count_of HbA1C,

sum(case when category = 'social-history' and lower(s.

description alias) like '%smoking%' then 1 else 0 end) as
Count_of_Smoking

from encounter latest e

join observations new s on e.id = s.encounter

join organizations o on e.organization = o.id

where e.patient in (select patient from diabetes training) and

e.rn = 1

group by o.Name, o.City

We can publish this view to a Power BI dashboard, as shown in
Figure 19-15.

Catalog Explorer » unitygo » default »

[unitygo.default.patient_report +r H Open in a dashboard W E
Overview Sample Data Details Permissions History Lineage Insights Open in a dashboard
Definition Open in <= Tableau Desktop

® Openin | Power Bl Desktop

with encounter_latest as |

Publish to | Power Bl workspace
select

1ags: | Ao 1ags

Figure 19-15. Publishing the materialized view to Power BI Desktop

454

CHAPTER 19 FROM IDEATION TO CREATION: A WALK-THROUGH OF BUILDING
A GENAI APPLICATION

Conclusion

The Databricks data intelligence platform not only provides the
intelligence to power the next generation application, but it is also built
on top of the lakehouse architecture, so it has a strong foundation of
supporting any size of workload and complex data transformation. In this
chapter, we have demonstrated the ability to create an application from
ideation to creation, all within Databricks. While other platforms may
come with similar tools in their ecosystem, Databricks’ tight integration
allows us to stay on the same platform and collaborate closely with the
team. Unlocking the GenAl revolution has never been easier!

455

Index

A

Access control lists (ACLs), 91, 98,
102, 401, 402
Access control mechanisms, 101
Access Tokens, 39, 402
Account admin, 94, 95, 385
ACLs, see Access control
lists (ACLs)
Add Data Ul, 47, 49
Add UI Interface, 47
ADE, see Azure Data Factory (ADF)
Al see Artificial intelligence (AI)
AlI/BI dashboards, 159, 160
Al/BI Genie, 334, 348-350
ai_extract() function, 440
Al-powered governance, 339
Al-generated comments
enhancements, 340, 341
Al security filtering, 344-346
Al security framework, 346
governance process, 340
lineage, 341, 342
PII masking, 342, 343
Unity Catalog federated
governance, 339
ai_query() function, 176
AI2 Wildbench, 276

© The Editor(s) (if applicable) and The Author(s),

Amazon S3, 48
AP], see Application programming
interface (API)
Application programming interface
(API), 16
Artificial intelligence (AI), 2, 7
foundation models, 220
models, 220, 221
Attention mechanism, 318-320
Auto-documentation
generation, 221
Auto Loader, 46, 55
advantages, 422
Checkpoint, 56
cloudFiles, 55
direct listing, 57, 58
file notification, 58
manually.inferColumnTypes, 57
manually.Rescue_Data, 57
mergeSchema, 56
Trigger.AvailableNow, 56
Automated machine learning
(AutoML), 184-188,
194-196, 198, 199, 444, 455
AutoML, see Automated machine
learning (AutoML)
Autoregressive, 319

457

under exclusive license to APress Media, LLC, part of Springer Nature 2024
N. Gupta and J. Yip, Databricks Data Intelligence Platform,

https://doi.org/10.1007/979-8-8688-0444-1

https://doi.org/10.1007/979-8-8688-0444-1#DOI

INDEX

Autoscaling, 9, 16, 19, 25, 28, 30,
133, 144, 145, 147-148, 152,
381, 422

Autotermination, 28

Azure Data Factory (ADF), 47, 51

Azure Data Lake Storage, 48

B

Batch ingestion, 51

Bge-large-en model, 268

BI, see Business intelligence (BI)

Bronze layer, 46, 54, 66, 74, 137,
169, 435

Built-in functions, 174

Business intelligence (BI), 2,
3,13,153

C

Catalog, 17
Catalog UI, 50
CDC, see Change data
capture (CDC)
CDF, see Change data feed (CDF)
Centralized user management, 100
Chain of thoughts, 258, 265
Chandy-Lamport algorithm, 415
Change data capture
(CDC), 74, 133
Change data feed (CDF), 74, 75
Chatbots, 219, 230, 257, 283, 285,
294, 302, 304, 333, 337, 432,
445, 451

458

ChatGPT, 209, 219, 220, 230
CHECK constraint, 165
Cloud compute costs
compute cost, 372
networking cost, 373
storage cost, 372
cloudFiles, 55, 422
Cloud ingestion, 45
Add Data UI, 47-50
file upload UI, 47, 50, 51
Fivetran, 53
landing zone, 46
native cloud tools, 47
notebook, MySQL to Delta
table, 49
Partner Connect, 52
via cloud-native tools, 51, 52
via third-party tools, 52, 53
Cloud object storage layer, 64
Cluster access controls, 31, 381
Cluster access modes, 25
shared clusters, 25, 26
standard single-user clusters, 25
types, 24
Cluster autoscaling, 147, 381
Cluster auto-termination, 381
Cluster best practices, 30, 31
Cluster policies, 22-24, 380
Cluster-scoped libraries, 38
Cluster tags, 28, 30, 383
CMKSs, see Customer-managed
keys (CMKs)
CNN:s, see Convolutional neural
networks (CNNs)

Column masks, 106, 107
Command-line interface (CLI), 16,
17,39, 102
Conditional execution, 124, 125
Content moderation, 344, 345
Continuous integration/
continuous
deployment (CI/CD)
databricks, 359
end to end flow, 354
stages
build, 357
deploy, 357
source, 357
test, 357
Continuous processing,
414-417, 428
Convolutional neural networks
(CNNs), 322, 325
COPY INTO command, 46, 58-60
COPY INTO validate mode, 59
Cosine similarity, 235, 236
CREATE TABLE command, 75
Curated models, 226, 227
Customer-managed keys (CMKs),
398, 408

D

Data access, 90, 104, 107
Data architecture, 2, 4
Databricks
access modes, 26
account, 15

INDEX

Al 12
algorithms, 196, 197
auto-generated reports, 211
automated root cause
analysis, 212
AutoML, 198, 199
AutoML interface, 197, 198
bespoke LLM model, 221
Databricks Asset Bundles,
templates, 364, 365
data volume, 232
DBRX, 328, 329
documentation, 41, 198, 385
external feature stores, 239
feature store, 191, 192
advantages, 192
AutoML, 194
dataframe, 194
delta table, 193
FeatureEngineeringClient
class, 193
feature table, 193
primary key, 193
File Upload UI, 47
GenAl, 221, 222
Git folders, 17
infrastructure, 315
ML, see Machine learning (ML)
models tab, 201, 202
online tables, 238
production-grade model, 198
registered models, 201, 202
REST API, 40, 41
Terraform, 41, 42

459

INDEX

Databricks (cont.)
Ul, 16, 47
unified monitoring, 211
Unity Catalog, 204
validation, 199
vector database, 231-233
vector search indexes, 234
widgets, 36, 37
websites, 250
workspaces, 16
Databricks all-purpose clusters
access modes (see Cluster
access modes)
autoscaling and
autotermination, 28
cluster creation interface, 20
cluster tags, 28
DBR, 27
policies, 22-24
pools, 29, 30
spot instances, 29
Databricks Assistant
autocomplete code/queries, 336
code conversion, 337
code explanation, 337, 338
code fixing, 338, 339
code generation, 335, 336
Databricks command-line interface
(Databricks CLI), 39
Databricks compute/
clusters, 16, 18
all-purpose compute (see
Databricks all-purpose
clusters)

460

job clusters, 19
SQL warehouses, 20
Databricks costs
account tier, 374
Azure, 376
cluster access controls, 381
cluster autoscaling, 381
cluster configuration, 375
cluster policies, 380
cluster tags, 383
compute size and type, 373
instance pools, 382
vs. photon, 378
product SKU, 374
spot instances, 382
SQL warehouse (see SQL
warehouse)
Databricks data intelligence
platform, 9-12, 331, 332
AlI/BI Genie, 348-351
Databricks IQ, 333
Intelligent Search, 347, 348
Databricks deployment
capacity planning, 391, 392
customer-managed keys,
397, 398
encryptions/auditing, 397
NPIP, 394, 395
private link, 396, 397
VNET injection, 393, 394
Databricks file system (DBFS), 16,
38, 398, 407
Databricks Foundation Model API,
232,233

Databricks IQ, 12, 333
AI/BI Genie, 334
Al-powered governance, 333,
339 (see also Al-powered
governance)
automated job tuning, 334
Databricks Assistant, 333, 334
(see also Databricks
Assistant)
requirements, 333
search and discovery, 334
Databricks job
job-level parameters
continuous, 122
file arrival, 120, 121
job parameters, 123
job tags, 122
scheduled, 119
table update, 122
task-level parameters
cluster, 117,118
create, 116
dependent libraries, 118
duration threshold, 119
notifications, 118
parameters, 118
source, 117
task retries, 119
type, 116
Databricks lakehouse
cloud object storage, 7
core concepts and
capabilities, 8, 9
Delta Lake, 7

INDEX

enterprise-scale

implementations, 7
lakehouse architecture, 7
platform, 6

Databricks MLOps stack

CI/CD, 366

CI/CD workflow, 369
code review, 368
develop model, 368
initialize, 367

setting CI/CD, 368
YAML file, 368

Databricks open sharing

protocol, 108

Databricks Partner

Connect, 52

Databricks platform, 7

account, 15

catalog, 17

cluster, 16 (see also Databricks
compute/cluster)

cluster best practices, 30, 31

cluster creation interface, 21

DBEFS, 16

DBR, 18

DBU, 18

Delta Lake, 18

external connectivity (see
External Databricks
connectivity)

folder, 17

libraries, 17

notebooks, 16 (see also
Notebooks)

461

INDEX

Databricks platform (cont.)
workflows, 17
workspaces, 16

Databricks reference architecture,

ingestion, 46

Databricks repo, 358
branch, 362
checkout, 362
clone, 361
Cloud Git providers, 360
commit, 362
commit & push, 363
Git repositories, 361
merge, 363
on-premises Git providers, 360
pull, 363
push, 363
rebase, 363
reset, 363

Databricks runtime (DBR), 18, 24,

27,38, 148

Databricks SQL (DBSQL)
architecture diagram, 153
Bl tools, 154
constraints

enforced, 165, 166
informational, 165-167
definition, 154
materialized view (see
Materialized views)
streaming tables,
168, 169
Databricks-to-Databricks
sharing, 108

462

Databricks unit (DBU), 18, 373,
374,377,379, 388
Databricks workflows, 17, 115
advanced features
cluster reuse, 124, 125
conditional execution, 125
late jobs, 127, 128
modularize jobs, 128, 129
repair/re-run, 125
running jobs, 129
end-to-end architecture, 114
Job Matrix View, 131
Job Run dashboard
error types, 130
finished run chart, 130
jobs list, 130
monitoring, 131
task types, 124
Data cleansing, 435
Data drift, 204, 206, 209
Data engineers, 113-152, 155, 168,
181, 182, 218, 331, 378, 412
Data exploration
pandas profiling, 188-190
summarization, 191
Data generation, 433, 434
Data ingestion, 45-60, 135-137, 435
Data lakehouse, 4, 5, 61, 171
Data lakes, 2-5, 61-88
Data lineage, 102, 103
Data owners, 94, 349
Data scientists, 181, 184, 186, 188,
189, 191, 195, 207, 212
Data search, 104

Datasets, 249, 271, 444, 445
Data sharing, 104, 107, 108, 110
Data swamps, 2
Data transformation, 134, 173,
435, 455
Data warehouses, 3-7, 13, 45, 60,
61, 76, 153-179
DBFS, see Databricks file
system (DBFS)
DBR, see Databricks runtime (DBR)
DBU, see Databricks unit (DBU)
DBRX, 252, 318
benchmarks, 315
cost of pre-training, 313, 314
end-to-end capabilities, 315
enterprises, 312
fine-tuning, 315
inference performance, 317, 318
instruct, open models, 315, 316
Open Al, 316
vs. open-source models, 311,
312,330
open-sourcing
model, 314
tooling, 314
production, 313
vs. prominent models, 317
Pytorch FSDP, 327
transformer
architecture, 320-322
DBSQL, see Databricks
SQL (DBSQL)
DDP, see DistributedData
Parallel (DDP)

INDEX

Decision trees, 197
Deep clones, 72, 73
Deep learning, 322, 334
Deep neural networks (DNNs),
321, 322
Defragmentation, 85
Delta bronze layer, 46, 137
Delta ingestion, 46, 54
via Auto Loader, 54-58
via COPY INTO, 54, 58-60
Delta Lake, 7, 18, 46-48, 53-56
challenges, other storage
formats, 61
change data feed (CDF),
74-76
clone delta tables, 71-73
components, 62, 63
cloud object storage
layer, 64
Delta log, 63
Parquet files, 63
definition, 62
Delta format, 86
Delta optimization, 80
optimize, 80, 81
partitioning, 80
vacuum, 82
Z-ordering, 81
generated columns, 73
key features
ACID transactions, 64
compliance, 65
schema enforcement, 64
time travel, 65

463

INDEX

Delta Lake (cont.)
unified batch and
streaming, 64
version control, 64
limitations, 84
liquid clustering, 82-84
Medallion (see Medallion
architecture)
MERGE SQL operation, 68
ML/AI to rescue, 88, 89
predictive I/0, 85
schema evolution, 69-71
storage protocol, 61
time travel feature, 70, 71
Universal Format, 77-80
Update and Delete
commands, 68
Delta Lake format, 7, 13
Delta Live Tables (DLT), 116,
133, 206
CDC, 137
create pipeline, 142, 143
DAG, 145
data ingestion, 135, 137
enhanced autoscaling
algorithm, 147
expectations, 139, 151
logs, 146
materialized view, 135
metrics, 141
monitor, 146
parameters
compute, 144
pipeline mode, 144

464

product edition, 143
source code, 143
retail sales pipeline (see Retail
sales pipeline)
streaming table, 135
views, 135
PowerBI Desktop, 178, 179
Deltalog, 63, 70
Delta Sharing
confirmation, 110
customers, 110
differentiators/benefits, 108
working, 108, 109
Delta UniForm, 77
Deploy model
model overview, 200
model registration, 200, 201
Model Serving/inferencing,
202,203
inference tables, 203
query endpoint button,
203, 204
Unity Catalog, 203
workflow, 204
Descriptive analytics, 2
Dev environment, 98
Digital transformation, 1

DistributedDataParallel (DDP), 326

Distributed training libraries, 326
DLT, see Delta Live Tables (DLT)
DNNs, see Deep neural

networks (DNNs)
Document Q&A, 229, 230
Dynamic view, 107

E

E-commerce system, 424, 425
Embeddings, 230-235, 240, 241,
259, 261, 267-270

Encoder and decoder
network, 319
Enforced constraints, 165, 166
Enhanced Autoscaling
algorithm, 147
Epoch markers, 415
ERP/CRM systems, 45
Evaluation-driven
approach, 305-307
Exploratory data analysis (EDA),
186, 258, 444
External Databricks connectivity
Databricks CLI, 39, 40
Databricks Terraform, 41, 42
REST APIs, 40, 41
External tables, 93

F

Feature engineering, 187, 188, 194,
195, 256

File arrival triggers, 120, 121

File upload Ul, 47, 50, 51

Fine-tuning, 10, 220, 247, 248

Fivetran, 47, 50, 53

Foundation Model API, 328, 330

Fully Sharded Data Parallel (FSDP),
326, 327

INDEX

G

Gartner Magic Quadrant, 182
GenAl, see Generative artificial
intelligence (GenAlI)
GenAl techniques
architecture, 433
dashboard, 452, 454
output, 446
steps, 448-451
user interface, 448
volume interface, 447
Generative artificial intelligence
(GenAI), 9-12, 219, 253
content, 220
embeddings, 231
journey, 223, 224, 247
knowledge graph, 231
pricing, 250
vs. ChatGPT, 220, 221
Genie space, 349-351
Glass Box approach, 184
Gold layer, 67, 75

H

Hadoop systems, 2, 45
Hierarchical Navigable
Small World (HNSW),
235, 236
HNSW, see Hierarchical Navigable
Small World (HNSW)
Hybrid PaaS, 390

465

INDEX

Identity and access control

ACL, 401, 402

best practices, 407

IP access lists, 399-401

MFA, 399

SAT, 404-406

SSO, 399

Token Management API, 402-404
If/else condition task type, 126
Informational constraints, 165-167
Ingestion partners, 52
Instance pools, 382
Interactive clusters, 21, 53,117,

152,157, 379, 388

J

Job clusters, 19, 81,117, 122, 157,
378, 380

Job parameters, 123, 124

Job tags, 122

Jupyter notebooks, 31

K

Kafka, 48, 51, 135-137, 169,
170, 410

L

Lakehouse, 5
architecture, 3
data architecture paradigm, 4

466

object stores/cloud-based
storage, 4
paradigm, 6
Lakehouse monitoring
drift analysis metrics, 206, 207
inference profile, 207
metrics tables, 210
model metrics, 209
monitor, 205, 206
notebooks, 214
nyctaxi_trips, 213
one-stop interface, 209
output table, 214
queries and dashboard, 214, 215
reports, 209, 211
Responsible Al, 208
reusable format, 212
set up, 205
snapshot profile, 206
table schema, 209
tables documentation, 214
tables relationship, 213
tables usage, 214
time series profile, 206
LangChain model, 280-283
LangChainTool, 242
Large language model operations
(LLMOps)
advantages, 260
bge-large-en model, 268
calculate embeddings, 269, 270
components, 258
considerations, 256
create vector search, 267

feedback mechanism
model packaging, 262
Model Serving and
interference, 263
index creation, 266
judging, 278, 279
model evaluation, 262
model fine-tuning, 261, 270
model pre-training, 262, 271
prompt engineering
chain of thoughts, 265
templates, 263-265
Large language models (LLMs), 9,
10, 12, 220, 222, 224, 232,
242,244, 247, 253, 311
Late job, 127, 128
Legacy dashboards, 159
Libraries, 17, 38, 39
LightGBM, 197
Liquid clustering, 61, 82-84
Llama, 253, 314, 434
Llama 2, 252
Llama-2-70B-Chat model, 226
Llama Guard, 345
LLMs, see Large language
models (LLMs)
Logistic regression, 197
Long-Term Support (LTS)
versions, 27, 117

Machine learning (ML), 2, 3, 13, 182
best practices, 215-218

INDEX

black boxes, 184
components, 182
engineers, 181, 218
experiments, 183, 184
flight delay/cancellation, 185
data preparation, 186
EDA, 186, 187
feature engineering, 187, 188
lifecycle, 185
problem types, 195, 196
randomly generated data, 444
Synthea-generated data, 445
user personas, 181

Machine learning

operations (MLOps)
deployment server, 273
interfaces for LLM, 280
LangChain, 280-283
roles/responsibilities, 255

Massive Text Embedding

Benchmark (MTEB), 269

Materialized views

Al functions, 173

BI tools, 176

create, 170

custom models, 176

Lakehouse Federation,
171,173

LLM models, 174, 175

PowerBI, 177,178

refresh, 171

Medallion architecture, 65

Bronze layer, 66
Gold layer, 67

467

INDEX

Medallion architecture (cont.)
main layers, 65
as multihop architecture, 65
Silver layer, 66
Merge conflict, 363
Metastore admin, 94, 98, 386
Micro-batch processing, 410, 413,
416, 422, 428, 429
Mistral, 252, 253
Mixtral-8x7B Instruct model, 226
Mixture of Expert (MoE), 316
fine-grained, 324, 330
MegaBlocks/Dropless MoE
blocks, 324
neural networks
architecture, 322
traditional architecture,
322,323
MLflow Deployments Server
advantage, 274
AI2 Wildbench, 276
create serving endpoint, 274
EluetherAlI LM Evaluation
Harness, 276
Mosaic Model Gauntlet, 276
saving credentials, 275
MLOps, see Machine learning
operations (MLOps)
MOoE, see Mixture of Expert (MoE)
Model architecture, 250, 272
Model fine-tuning, 261, 270
Model pre-training, 262, 271
Model Serving, 174, 176, 201-204,
248, 263, 313, 327, 333

468

Model training, 185, 188, 191, 195,
221, 249, 250, 256, 262,
270,272

Modern data platforms, 3

Mosaic Al agent framework, 285

deployment
LangChain model
registration, 302
one-line deployment
command, 303
retrieving review app
URLs, 303
sharing permission, 304, 305
status, 303
features, 286
installations, 287
LangChain, 309
LangChain parameterization,
287, 288
MLflow evaluation
array structure, 292, 293
custom metrics, 290
databricks-agent, 290
input dataset schema, 292
metrics, 293, 294
mliflow.evaluate, 291
model metrics tab, 289
principles, 308
YAML file, 291
model development
basic chain, 296
chat endpoint, configuration
file, 299, 301
components, 297

LangChain pipeline, 295-297

LangChain trace
interface, 302
log_model() function, 295
mlflow.]langchain.log_
model() function, 294
RAG artifacts vs. MLflow
artifacts, 295
rag_chain_config.yaml, 298
testing, 301
YAML configurations, 297
workflow, 285, 286
Mosaic Al Agent Framework,
231, 285-310
Mosaic Al vector Search, 235, 240
MosaicML, 12, 248, 325, 326, 330
MPT, 252
MPT-7B-8K-Instruct model, 227
MPT-30B-Instruct model, 227
MTEB, see Massive Text
Embedding
Benchmark (MTEB)
MySQL, 48-49, 53, 172, 239

N

Native cloud tools, 47

Natural language processing
(NLP), 318

Network security group (NSG), 393

Neural networks, 67, 270, 315, 318,
320-322, 368

NLP, see Natural language
processing (NLP)

INDEX

Notebooks, 16
attach SQL warehouse, 36
cell debugging, 34
code-first development
tool, 31
collaborative, 32
Databricks widgets, 36, 37
debugging, 33, 34
Jupiter notebooks, 31
multiple language
support, 32
reproducible, 33
sample Databricks
notebook, 31, 32
scheduled, 33
serverless, 35
visualizations, 33
NOT NULL constraints, 165
NSG, see Network security
group (NSG)

O

Observability, 371-388, 423
OLMo, see Open Language
Model (OLMo)
Open Al, 247, 248, 253, 329
Open Language Model (OLMo),
249, 250, 271
dataset, 271
hardware, 272
model architecture, 272
model training, 272
Output modes, 417, 420

469

INDEX

P, Q

PAT, see Personal access tokens (PAT)
Pandas Profiling, 186-191, 212
Parameter-efficient fine-tuning
(PET), 271
Parquet, 46, 54, 55, 58, 61-64, 76,
77, 86, 189
Partitioning, 5, 72, 79-82
Partner Connect, 47, 52, 53, 179
Personal access tokens (PAT), 39,
40, 402, 403
Personal Compute, 24
Personalized models, 230
Personally identifiable information
(PII) masking, 342, 343, 346
PET, see Parameter-efficient fine-
tuning (PET)
Photon, 28, 144, 157, 158,
374,377-379
PII masking, see Personally
identifiable information
(PII) masking
PIVOT function, 441
PowerBI workspaces, 177, 178
Predictive 1/0, 85, 334
Pre-training, 223, 247, 248, 257,
261, 262,271, 313, 314
Project Lightspeed, 423-425, 429
Prompt engineering, 224, 258
curated models, 227
key points, 224, 225
types, 225
Python debugger, 34

470

R

RAG, see Retrieval augmented
generation (RAG)
RAG Studio, 10
Random forests, 197
RDD, see Resilient Distributed
Dataset (RDD)
readStream, 56
Real-time streaming sources, 45
Recurrent neural networks (RNNs),
318, 319
Resilient Distributed Dataset
(RDD), 410, 412
Retail sales pipeline
data lineage, 150, 151
data quality, 151
data validation, 149-151
streaming, 149
Retrieval augmented generation
(RAG), 220, 259, 285
creation, 237
embeddings/sync, 240, 241
feature and function serving
external feature stores,
238, 239
online feature stores, 240
online tables, 238
LangChainTool, 242
MLflow LLM evaluation
data, 246
metrics, 244, 245
predefined model
types, 242-244

RNNSs, see Recurrent neural
networks (RNNs)
Row filters
apply to table, 105
create, 105
“Run if” dependencies, 126

S

SAT, see Security Analysis
Tool (SAT)
SCD, see Slowly Changing
Dimensions (SCD)
Scheduled trigger, 119, 120
Schema evolution, 58, 59, 68, 69
Secure Cluster
Connectivity, 394-396
Security Analysis Tool
(SAT), 404-406
Sentiment analysis, 174-176, 228
serverless SQL, 436, 437, 440
Serverless workflows, 118
Shallow clones, 72, 73
Shared clusters, 25, 26
Silver layer, 66, 137
Slowly Changing Dimensions
(SCD), 138, 152
SME, see Subject-matter
expert (SME)
SMOoE, see Sparse mixture of
experts model (SMoE)
Snowflake, 48, 172, 173
SpaceX spaceship, 11
SpaceX’s Starship, 10, 12

INDEX

Spark Streaming
components, 410
data engineering, 412, 413
Scala, 411
workflow, 411
Sparse mixture of experts model
(SMOE), 226
Spotinstances, 16, 29, 382
SQL editor, 154, 158, 159,
335, 336
SQL warehouses, 20
Al/BI dashboards, 159, 160
alerts, 161
AWS, 380
Azure, 380
Canvas tab, 160
classic, 155, 379
create new, 379
Data tab, 160
GCP, 380
parameters
cluster size, 156
scaling, 157
photon, 157
pro, 155
query history, 161, 162
query profile, 162, 163
serverless, 155, 379
serverless compute, 163, 164
setting up, 156
SQL editor, 158, 159
Standard runtime version, 27
Standard single-user
clusters, 24, 25

471

INDEX

Star schemas, 164
State management, 411, 412, 414,
418-419, 423, 424, 428
Streaming tables, 135, 168,
169, 179
Structured Streaming
best practices, 426
challenges, 414
group aggregations, 418
monitor UI, 427
state management, 418, 419
watermark, 420, 421
Subject-matter expert (SME), 12
Summarization, 191, 226,
227,229
Super Heavy booster, 10
System tables
audit logs, 386
billable usage, 386-388
catalogs, 386
Databricks documentation, 385
table lineage, 387
Unity Catalog, 385
use cases, 383, 384
uses, 384
workflow, 387

T

Table update trigger, 122
Tokenizers, 251-253

472

Tokens, 251-253
Transformer model, 319, 320
Trigger modes, 161, 416

U

UG, see Unity Catalog (UC)
Unified monitoring, 211
UniForm (Universal Format),
77-79, 88
UNIQUE constraint, 165
Unity Catalog (UC), 7, 8
admin roles
account admin, 94
create metastore,
95-97
data owners, 94
metastore admin, 94
workspace admin, 94
capabilities, 90
catalog, 92
column masks, 106
data sharing, 107
definition, 90
dev environment, 98
dynamic view, 107
-enabled clusters, 25
external tables, 93
features
access control
mechanisms, 101

centralized user
management, 100
data access, 104
data lineage, 102, 103
data search, 104
granting permissions, 102
SCIM synchronization, 100
hierarchy, 92
managed tables, 93
metastore, 92
row filter (see Row filters)
schema, 93
SDLC workspaces, 99
structure, 98
support, 26
tables, 93
volumes, 93
website, 98
with/without, 91
workspace setup, 99
Unstructured text
parsing, 228

INDEX

\'

Variable Explorer, 34, 35

Vector database, 231-233, 237,
240-241, 259, 260, 266,
269, 270

Vector index, 231, 233, 259, 260,
266, 283

Vector library, 260, 266

Vector Search, 10, 233-235, 260,
267, 269, 296, 297

Virtual machines (VMs), 16, 18,
28,29, 372

VMs, see Virtual machines (VMs)

W XY

Workspace admin, 94, 401

Y4

Z-ordering, 81

473

	About the Authors
	About the Technical Reviewers
	Chapter 1: Databricks Platform: From Lakehouse to Data Intelligence Platform
	Data Platforms: Historical Perspective
	Emergence of the Lakehouse
	What Is a Lakehouse?
	What Is the Databricks Lakehouse?
	Key Features of the Databricks Lakehouse Platform
	Introducing the Databricks Data Intelligence Platform
	Conclusion

	Chapter 2: Databricks Platform Overview
	Key Terminology
	Databricks Compute or Clusters
	Interactive or All-Purpose Clusters
	Job Cluster
	SQL Warehouse

	Databricks All-Purpose Cluster Setup
	Policy
	Access Mode
	Databricks Runtime Version
	Autoscaling and Autotermination
	Tags
	Spot Instances
	Cluster Pools

	Cluster Sizing Considerations and Best Practices
	Databricks Notebooks
	Debugging
	Serverless in Notebook
	Databricks Widgets

	Library Management
	External Databricks Connectivity
	Databricks CLI
	Databricks REST API
	Databricks Terraform

	Conclusion

	Chapter 3: Data Ingestion in Lakehouse
	Introduction
	Cloud Ingestion
	Delta Ingestion
	Auto Loader
	COPY INTO

	Conclusion

	Chapter 4: Delta Lake - Deep Dive
	The Challenges of Other Formats
	What Is Delta Lake?
	Delta Lake: Medallion Architecture
	Delta Lake Key Features
	Update, Delete, and Upserts in Delta Table
	Schema Evolution

	Time Travel
	Clone Delta Tables
	Generated Column
	Change Data Feed
	Universal Format
	Delta Optimization
	Liquid Clustering
	Working with Liquid Clustering
	Current Limitations
	Predictive I/O
	ML/AI to the Rescue

	Conclusion

	Chapter 5: Data Governance with Unity Catalog
	What Is Databricks Unity Catalog?
	Unity Catalog: Before and After
	Unity Catalog Hierarchy
	Unity Catalog Admin Roles
	Getting Started with Unity Catalog
	Create a Metastore

	Organizing Data in Unity Catalog
	Key Features of Unity Catalog
	Centralized Metadata and User Management
	Centralized Access Controls

	Data Lineage
	Data Access Auditing
	Data Search and Discovery
	Row-Level Security and Column-Level Masking
	Row Filters
	Create a Row Filter
	Apply the Row Filter to a Table
	Column Masks
	Dynamic Views vs. Row Filters and Column Masks

	Delta Sharing
	An Open Standard for Data Sharing
	How Delta Sharing Works

	Conclusion

	Chapter 6: Data Engineering Part 1: Orchestrating Data Pipelines Using Databricks Workflows
	Databricks Workflow Jobs
	Databricks Jobs and Tasks
	Configure Databricks Job Tasks: Task-Level Parameters
	Configure Databricks Job Tasks: Job-Level Parameters

	Advanced Workflow Features
	Monitoring Data Pipelines
	Conclusion

	Chapter 7: Data Engineering Part 2: Delta Live Tables
	What Is Delta Live Tables?
	Data Ingestion Using DLT
	Change Data Capture with DLT
	Delta Live Tables Expectations

	Creating a DLT Pipeline
	Logging and Monitoring
	Enhanced Autoscaling
	Runtime Channels
	Example: A Retail Sales Pipeline
	Streaming Pipeline
	Data Validation
	Data Lineage
	Validation Dashboard

	Conclusion

	Chapter 8: Data Warehousing with DBSQL
	What Is Databricks SQL?
	SQL Warehouses
	Photon
	SQL Editor
	Introduction to AI/BI Dashboards
	Alerts
	Query History and Profile
	Serverless Compute

	Constraints in DBSQL
	Constraints on Databricks
	Enforced Constraints
	Informational Constraints: Primary Key Foreign Key

	Streaming Tables and Materialized Views
	Streaming Tables

	Materialized Views
	Create a Materialized View
	Refresh a Materialized View
	Lakehouse Federation
	AI Functions in DBSQL
	Consume LLM Models in DBSQL
	Custom Functions Backed by a Serverless Serving Endpoint
	Integrate BI Tools with Databricks
	Publish to PowerBI Online from Databricks

	Connect Power BI Desktop to Databricks
	Conclusion

	Chapter 9: Machine Learning Operations Using Databricks
	Machine Learning with Databricks
	Experiments
	What Is the Glass Box Approach to Automated Machine Learning?

	Machine Learning Lifecycle: MLOps
	ML Example: Predicting Flight Delays with Databrick’s AutoML
	Prepare Data
	Exploratory Data Analysis
	Feature Engineering

	Data Exploration at Scale
	Pandas Profiling
	Data Summarization Using dbutils

	Feature Store
	Why Use Databricks Feature Store?

	Model Building
	Model Training
	Validation

	Deploy Model
	Deployment
	Model Serving/Inferencing

	Monitoring
	Lakehouse Monitoring
	Why Profiling?
	Deep Dive into Lakehouse Monitoring Output Tables

	MLOps Best Practices
	Conclusion

	Chapter 10: Generative AI with Databricks
	What Is Generative AI?
	Databricks Generative AI
	The GenAI Journey
	Prompt Engineering
	Mosaic AI Playground
	Use Cases
	Sentiment Analysis
	Unstructured Text Parsing
	Summarization
	Document Q&A

	Retrieval Augmented Generation
	Similarity Search: The Magic Behind the Scenes
	A Practical Example for RAG: Using Structured Data
	Step 1: Feature and Function Serving
	Step 2: Calculate Embedding and Sync to a Vector Database
	Step 3: Create a LangChainTool to Perform Various Tasks
	Step 4: MLflow LLM Evaluation

	Mosaic AI Fine-Tuning API
	Fine-Tuning Example

	Pre-Training
	A Case Study of AI2’s OLMo, a Truly Open-Source Large Language Model

	Gen AI Pricing
	What Are Tokens and Tokenizers?

	Conclusion

	Chapter 11: Large Language Model Operations
	Machine Learning Operations
	Large Language Model Operations
	Components of LLMOps
	Deep Dive into Each Process
	Prompt Engineering
	Prompt Templates
	Chain of Thoughts

	Retrieval Augmented Generation
	Model Fine-Tuning
	Model Pretraining

	A Case Study of AI2’s OLMo, a Truly Open-Source Large Language Model
	Model Governance
	MLflow Deployments Server

	LLM as a Judge
	Model Packaging and Deployment
	LangChain Flavor with MLflow

	Conclusion

	Chapter 12: Mosaic AI Agent Framework: Creating Quality AI Agents
	Part 0: The Installations
	Part 1: LangChain Parametrization
	Part 2: MLflow Evaluation
	Part 3: Model Development
	Part 4: Deployment
	Evaluation Example
	Conclusion
	Beyond LangChain

	Chapter 13: DBRX: Creating an LLM from Scratch Using Databricks
	What Is DBRX?
	The DBRX Benchmarks
	DBRX Architecture
	Shortcomings of the Transformer Architecture
	Mixture of Experts
	MegaBlocks: Efficient Sparse Training with Mixture-of-Experts
	Fine-Grained MoE

	The MosaicML Stack
	Distributed GPU Training
	Model Serving
	Using DBRX on Databricks
	Conclusion

	Chapter 14: The Databricks Data Intelligence Platform
	Databricks IQ
	Deep Dive into Databricks IQ
	Databricks Assistant
	Generate Code in Any Language
	Autocomplete Code or Queries
	Code Conversion
	Code Explanation
	Code Fixing

	AI-Powered Governance
	Search and Discovery
	Intelligent Search

	AI/BI Genie (Previous Data Rooms)
	How to Set Up Genie
	Conclusion

	Chapter 15: Databricks CI/CD
	What Is CI/CD?
	Stages of CI/CD
	Introduction to Databricks Repos
	Databricks UI vs. Git Terminologies
	Databricks Asset Bundles
	Case Study: Databricks MLOps Stack
	Conclusion

	Chapter 16: Databricks Pricing and Observability Using System Tables
	Costs Associated with the Databricks Platform
	Cloud Infrastructure Costs
	Databricks Pricing
	What Are Databricks Units?
	SQL Warehouse Pricing

	Databricks Cost Management Best Practices
	Databricks Observability: System Tables
	Introduction to System Tables
	Common Schemas/Tables Available with System Tables
	System Table: Billing Usage Example

	Conclusion

	Chapter 17: Databricks Platform Security and Compliance
	Databricks Architecture
	Azure Databricks Deployment
	Capacity Planning
	VNET Injection or Bring Your Own VNET
	Secure Cluster Connectivity (No Public IP/NPIP)
	Azure Private Link for Back-End and Front-End Connections
	Encryption and Auditing
	Customer Managed Keys

	Identity and Access
	SSO and Multifactor Authentication
	IP Access Lists
	Role-Based Access Control
	Token Management API

	Security Analysis Tool
	Databricks Security Best Practices
	Conclusion

	Chapter 18: Spark Structured Streaming: A Comprehensive Guide
	Spark Streaming
	Structured Streaming
	What Is Continuous Processing?
	Triggers
	Output Modes
	Windowed Grouped Aggregation
	State Management
	Late-Arrival Handling: Watermark
	Auto Loader
	Project Lightspeed
	Advanced State Management
	Use Case: E-commerce Operation

	Structured Streaming Best Practices
	Conclusion

	Chapter 19: From Ideation to Creation: A Walk- Through of Building a GenAI Application
	The Problem Statement
	Data Generation: Source
	Data Ingestion: Ingest
	Data Transformation: Transform
	Using Serverless SQL for Transformation

	Machine Learning Model for Diabetes Complication Classification: Query and Process
	Generative AI: Serve
	Where Do We Start?

	Monitoring Dashboard: Analysis
	Conclusion

	Index
	df-0.png

