

1. Preface

a. Who This Book Is For

b. What You Need to Know

c. What You Will Learn

d. O’Reilly Online Learning

e. How to Contact Us

2. Foreword

3. I. Deep Learning in Practice

4. 1. Your Deep Learning Journey

a. Deep Learning Is for Everyone

b. Neural Networks: A Brief History

c. Who We Are

d. How to Learn Deep Learning

i. Your Projects and Your Mindset

e. The Software: PyTorch, fastai, and Jupyter (And

Why It Doesn’t Matter)

f. Your First Model

i. Getting a GPU Deep Learning Server

ii. Running Your First Notebook

iii. What Is Machine Learning?

iv. What Is a Neural Network?

v. A Bit of Deep Learning Jargon

vi. Limitations Inherent to Machine

Learning

vii. How Our Image Recognizer Works

viii. What Our Image Recognizer Learned

ix. Image Recognizers Can Tackle Non-

Image Tasks

x. Jargon Recap

g. Deep Learning Is Not Just for Image

Classification

h. Validation Sets and Test Sets

i. Use Judgment in Defining Test Sets

i. A Choose Your Own Adventure Moment

j. Questionnaire

i. Further Research

5. 2. From Model to Production

a. The Practice of Deep Learning

i. Starting Your Project

ii. The State of Deep Learning

iii. The Drivetrain Approach

b. Gathering Data

c. From Data to DataLoaders

i. Data Augmentation

d. Training Your Model, and Using It to Clean Your

Data

e. Turning Your Model into an Online Application

i. Using the Model for Inference

ii. Creating a Notebook App from the Model

iii. Turning Your Notebook into a Real App

iv. Deploying Your App

f. How to Avoid Disaster

i. Unforeseen Consequences and Feedback

Loops

g. Get Writing!

h. Questionnaire

i. Further Research

6. 3. Data Ethics

a. Key Examples for Data Ethics

i. Bugs and Recourse: Buggy Algorithm

Used for Healthcare Benefits

ii. Feedback Loops: YouTube’s

Recommendation System

iii. Bias: Professor Latanya Sweeney

“Arrested”

iv. Why Does This Matter?

b. Integrating Machine Learning with Product

Design

c. Topics in Data Ethics

i. Recourse and Accountability

ii. Feedback Loops

iii. Bias

iv. Disinformation

d. Identifying and Addressing Ethical Issues

i. Analyze a Project You Are Working On

ii. Processes to Implement

iii. The Power of Diversity

iv. Fairness, Accountability, and

Transparency

e. Role of Policy

i. The Effectiveness of Regulation

ii. Rights and Policy

iii. Cars: A Historical Precedent

f. Conclusion

g. Questionnaire

i. Further Research

h. Deep Learning in Practice: That’s a Wrap!

7. II. Understanding fastai’s Applications

8. 4. Under the Hood: Training a Digit Classifier

a. Pixels: The Foundations of Computer Vision

b. First Try: Pixel Similarity

i. NumPy Arrays and PyTorch Tensors

c. Computing Metrics Using Broadcasting

d. Stochastic Gradient Descent

i. Calculating Gradients

ii. Stepping with a Learning Rate

iii. An End-to-End SGD Example

iv. Summarizing Gradient Descent

e. The MNIST Loss Function

i. Sigmoid

ii. SGD and Mini-Batches

f. Putting It All Together

i. Creating an Optimizer

g. Adding a Nonlinearity

i. Going Deeper

h. Jargon Recap

i. Questionnaire

i. Further Research

9. 5. Image Classification

a. From Dogs and Cats to Pet Breeds

b. Presizing

i. Checking and Debugging a DataBlock

c. Cross-Entropy Loss

i. Viewing Activations and Labels

ii. Softmax

iii. Log Likelihood

iv. Taking the log

d. Model Interpretation

e. Improving Our Model

i. The Learning Rate Finder

ii. Unfreezing and Transfer Learning

iii. Discriminative Learning Rates

iv. Selecting the Number of Epochs

v. Deeper Architectures

f. Conclusion

g. Questionnaire

i. Further Research

10. 6. Other Computer Vision Problems

a. Multi-Label Classification

i. The Data

ii. Constructing a DataBlock

iii. Binary Cross Entropy

b. Regression

i. Assembling the Data

ii. Training a Model

c. Conclusion

d. Questionnaire

i. Further Research

11. 7. Training a State-of-the-Art Model

a. Imagenette

b. Normalization

c. Progressive Resizing

d. Test Time Augmentation

e. Mixup

f. Label Smoothing

g. Conclusion

h. Questionnaire

i. Further Research

12. 8. Collaborative Filtering Deep Dive

a. A First Look at the Data

b. Learning the Latent Factors

c. Creating the DataLoaders

d. Collaborative Filtering from Scratch

i. Weight Decay

ii. Creating Our Own Embedding Module

e. Interpreting Embeddings and Biases

i. Using fastai.collab

ii. Embedding Distance

f. Bootstrapping a Collaborative Filtering Model

g. Deep Learning for Collaborative Filtering

h. Conclusion

i. Questionnaire

i. Further Research

13. 9. Tabular Modeling Deep Dive

a. Categorical Embeddings

b. Beyond Deep Learning

c. The Dataset

i. Kaggle Competitions

ii. Look at the Data

d. Decision Trees

i. Handling Dates

ii. Using TabularPandas and TabularProc

iii. Creating the Decision Tree

iv. Categorical Variables

e. Random Forests

i. Creating a Random Forest

ii. Out-of-Bag Error

f. Model Interpretation

i. Tree Variance for Prediction Confidence

ii. Feature Importance

iii. Removing Low-Importance Variables

iv. Removing Redundant Features

v. Partial Dependence

vi. Data Leakage

vii. Tree Interpreter

g. Extrapolation and Neural Networks

i. The Extrapolation Problem

ii. Finding Out-of-Domain Data

iii. Using a Neural Network

h. Ensembling

i. Boosting

ii. Combining Embeddings with Other

Methods

i. Conclusion

j. Questionnaire

i. Further Research

14. 10. NLP Deep Dive: RNNs

a. Text Preprocessing

i. Tokenization

ii. Word Tokenization with fastai

iii. Subword Tokenization

iv. Numericalization with fastai

v. Putting Our Texts into Batches for a

Language Model

b. Training a Text Classifier

i. Language Model Using DataBlock

ii. Fine-Tuning the Language Model

iii. Saving and Loading Models

iv. Text Generation

v. Creating the Classifier DataLoaders

vi. Fine-Tuning the Classifier

c. Disinformation and Language Models

d. Conclusion

e. Questionnaire

i. Further Research

15. 11. Data Munging with fastai’s Mid-Level API

a. Going Deeper into fastai’s Layered API

i. Transforms

ii. Writing Your Own Transform

iii. Pipeline

b. TfmdLists and Datasets: Transformed

Collections

i. TfmdLists

ii. Datasets

c. Applying the Mid-Level Data API: SiamesePair

d. Conclusion

e. Questionnaire

i. Further Research

f. Understanding fastai’s Applications: Wrap Up

16. III. Foundations of Deep Learning

17. 12. A Language Model from Scratch

a. The Data

b. Our First Language Model from Scratch

i. Our Language Model in PyTorch

ii. Our First Recurrent Neural Network

c. Improving the RNN

i. Maintaining the State of an RNN

ii. Creating More Signal

d. Multilayer RNNs

i. The Model

ii. Exploding or Disappearing Activations

e. LSTM

i. Building an LSTM from Scratch

ii. Training a Language Model Using

LSTMs

f. Regularizing an LSTM

i. Dropout

ii. Activation Regularization and Temporal

Activation Regularization

iii. Training a Weight-Tied Regularized

LSTM

g. Conclusion

h. Questionnaire

i. Further Research

18. 13. Convolutional Neural Networks

a. The Magic of Convolutions

i. Mapping a Convolutional Kernel

ii. Convolutions in PyTorch

iii. Strides and Padding

iv. Understanding the Convolution

Equations

b. Our First Convolutional Neural Network

i. Creating the CNN

ii. Understanding Convolution Arithmetic

iii. Receptive Fields

iv. A Note About Twitter

c. Color Images

d. Improving Training Stability

i. A Simple Baseline

ii. Increase Batch Size

iii. 1cycle Training

iv. Batch Normalization

e. Conclusion

f. Questionnaire

i. Further Research

19. 14. ResNets

a. Going Back to Imagenette

b. Building a Modern CNN: ResNet

i. Skip Connections

ii. A State-of-the-Art ResNet

iii. Bottleneck Layers

c. Conclusion

d. Questionnaire

i. Further Research

20. 15. Application Architectures Deep Dive

a. Computer Vision

i. cnn_learner

ii. unet_learner

iii. A Siamese Network

b. Natural Language Processing

c. Tabular

d. Conclusion

e. Questionnaire

i. Further Research

21. 16. The Training Process

a. Establishing a Baseline

b. A Generic Optimizer

c. Momentum

d. RMSProp

e. Adam

f. Decoupled Weight Decay

g. Callbacks

i. Creating a Callback

ii. Callback Ordering and Exceptions

h. Conclusion

i. Questionnaire

i. Further Research

j. Foundations of Deep Learning: Wrap Up

22. IV. Deep Learning from Scratch

23. 17. A Neural Net from the Foundations

a. Building a Neural Net Layer from Scratch

i. Modeling a Neuron

ii. Matrix Multiplication from Scratch

iii. Elementwise Arithmetic

iv. Broadcasting

v. Einstein Summation

b. The Forward and Backward Passes

i. Defining and Initializing a Layer

ii. Gradients and the Backward Pass

iii. Refactoring the Model

iv. Going to PyTorch

c. Conclusion

d. Questionnaire

i. Further Research

24. 18. CNN Interpretation with CAM

a. CAM and Hooks

b. Gradient CAM

c. Conclusion

d. Questionnaire

i. Further Research

25. 19. A fastai Learner from Scratch

a. Data

i. Dataset

b. Module and Parameter

i. Simple CNN

c. Loss

d. Learner

i. Callbacks

ii. Scheduling the Learning Rate

e. Conclusion

f. Questionnaire

i. Further Research

26. 20. Concluding Thoughts

27. A. Creating a Blog

a. Blogging with GitHub Pages

i. Creating the Repository

ii. Setting Up Your Home Page

iii. Creating Posts

iv. Synchronizing GitHub and Your

Computer

b. Jupyter for Blogging

28. B. Data Project Checklist

a. Data Scientists

b. Strategy

c. Data

d. Analytics

e. Implementation

f. Maintenance

g. Constraints

29. Index

Praise for Deep Learning for

Coders with fastai and PyTorch
If you are looking for a guide that starts at the ground floor

and takes you to the cutting edge of research, this is the

book for you. Don’t let those PhDs have all the fun—you too

can use deep learning to solve practical problems.

—Hal Varian, Emeritus Professor, UC Berkeley;

Chief Economist, Google

As artificial intelligence has moved into the era of deep

learning, it behooves all of us to learn as much as possible

about how it works. Deep Learning for Coders provides a

terrific way to initiate that, even for the uninitiated,

achieving the feat of simplifying what most of us would

consider highly complex.

—Eric Topol, Author, Deep Medicine; Professor,

Scripps Research

Jeremy and Sylvain take you on an interactive—in the most

literal sense as each line of code can be run in a notebook—

journey through the loss valleys and performance peaks of

deep learning. Peppered with thoughtful anecdotes and

practical intuitions from years of developing and teaching

machine learning, the book strikes the rare balance of

communicating deeply technical concepts in a

conversational and light-hearted way. In a faithful

translation of fast.ai’s award-winning online teaching

philosophy, the book provides you with state-of-the-art

practical tools and the real-world examples to put them to

use. Whether you’re a beginner or a veteran, this book will

fast-track your deep learning journey and take you to new

heights—and depths.

—Sebastian Ruder, Research Scientist,

Deepmind

Jeremy Howard and Sylvain Gugger have authored a

bravura of a book that successfully bridges the AI domain

with the rest of the world. This work is a singularly

substantive and insightful yet absolutely relatable primer

on deep learning for anyone who is interested in this

domain: a lodestar book amongst many in this genre.

—Anthony Chang, Chief Intelligence and

Innovation Officer, Children’s Hospital of

Orange County

How can I “get” deep learning without getting bogged

down? How can I quickly learn the concepts, craft, and

tricks-of-the-trade using examples and code? Right here.

Don’t miss the new locus classicus for hands-on deep

learning.

—Oren Etzioni, Professor, University of

Washington; CEO, Allen Institute for AI

This book is a rare gem—the product of carefully crafted

and highly effective teaching, iterated and refined over

several years resulting in thousands of happy students. I’m

one of them. fast.ai changed my life in a wonderful way,

and I’m convinced that they can do the same for you.

—Jason Antic, Creator, DeOldify

Deep Learning for Coders is an incredible resource. The

book wastes no time and teaches how to use deep learning

effectively in the first few chapters. It then covers the inner

workings of ML models and frameworks in a thorough but

accessible fashion, which will allow you to understand and

build upon them. I wish there was a book like this when I

started learning ML, it is an instant classic!

—Emmanuel Ameisen, Author, Building

Machine Learning Powered Applications

“Deep Learning is for everyone,” as we see in Chapter 1,

Section 1 of this book, and while other books may make

similar claims, this book delivers on the claim. The authors

have extensive knowledge of the field but are able to

describe it in a way that is perfectly suited for a reader with

experience in programming but not in machine learning.

The book shows examples first, and only covers theory in

the context of concrete examples. For most people, this is the

best way to learn.The book does an impressive job of

covering the key applications of deep learning in computer

vision, natural language processing, and tabular data

processing, but also covers key topics like data ethics that

some other books miss. Altogether, this is one of the best

sources for a programmer to become proficient in deep

learning.

—Peter Norvig, Director of Research, Google

Gugger and Howard have created an ideal resource for

anyone who has ever done even a little bit of coding. This

book, and the fast.ai courses that go with it, simply and

practically demystify deep learning using a hands-on

approach, with pre-written code that you can explore and

re-use. No more slogging through theorems and proofs

about abstract concepts. In Chapter 1 you will build your

first deep learning model, and by the end of the book you

will know how to read and understand the Methods section

of any deep learning paper.

—Curtis Langlotz, Director, Center for Artificial

Intelligence in Medicine and Imaging, Stanford

University

This book demystifies the blackest of black boxes: deep

learning. It enables quick code experimentations with a

complete python notebook. It also dives into the ethical

implication of artificial intelligence, and shows how to

avoid it from becoming dystopian.

—Guillaume Chaslot, Fellow, Mozilla

As a pianist turned OpenAI researcher, I’m often asked for

advice on getting into Deep Learning, and I always point to

fastai. This book manages the seemingly impossible—it’s a

friendly guide to a complicated subject, and yet it’s full of

cutting-edge gems that even advanced practitioners will

love.

—Christine Payne, Researcher, OpenAI

An extremely hands-on, accessible book to help anyone

quickly get started on their deep learning project. It’s a very

clear, easy to follow and honest guide to practical deep

learning. Helpful for beginners to executives/managers

alike. The guide I wished I had years ago!

—Carol Reiley, Founding President and Chair,

Drive.ai

Jeremy and Sylvain’s expertise in deep learning, their

practical approach to ML, and their many valuable open-

source contributions have made then key figures in the

PyTorch community. This book, which continues the work

that they and the fast.ai community are doing to make ML

more accessible, will greatly benefit the entire field of AI.

—Jerome Pesenti, Vice President of AI,

Facebook

Deep Learning is one of the most important technologies

now, responsible for many amazing recent advances in AI.

It used to be only for PhDs, but no longer! This book, based

on a very popular fast.ai course, makes DL accessible to

anyone with programming experience. This book teaches

the “whole game”, with excellent hands-on examples and a

companion interactive site. And PhDs will also learn a lot.

—Gregory Piatetsky-Shapiro, President,

KDnuggets

An extension of the fast.ai course that I have consistently

recommended for years, this book by Jeremy and Sylvain,

two of the best deep learning experts today, will take you

from beginner to qualified practitioner in a matter of

months. Finally, something positive has come out of 2020!

—Louis Monier, Founder, Altavista; former

Head of Airbnb AI Lab

We recommend this book! Deep Learning for Coders with

fastai and PyTorch uses advanced frameworks to move

quickly through concrete, real-world artificial intelligence

or automation tasks. This leaves time to cover usually

neglected topics, like safely taking models to production and

a much-needed chapter on data ethics.

—John Mount and Nina Zumel, Authors,

Practical Data Science with R

This book is “for Coders” and does not require a PhD. Now, I

do have a PhD and I am no coder, so why have I been asked

to review this book? Well, to tell you how friggin awesome it

really is!

Within a couple of pages from Chapter 1 you’ll figure out

how to get a state-of-the-art network able to classify cat vs.

dogs in 4 lines of code and less than 1 minute of

computation. Then you land Chapter 2, which takes you

from model to production, showing how you can serve a

webapp in no time, without any HTML or JavaScript,

without owning a server.

I think of this book as an onion. A complete package that

works using the best possible settings. Then, if some

alterations are required, you can peel the outer layer. More

tweaks? You can keep discarding shells. Even more? You

can go as deep as using bare PyTorch. You’ll have three

independent voices accompanying you around your journey

along this 600 page book, providing you guidance and

individual perspective.

—Alfredo Canziani, Professor of Computer

Science, NYU

Deep Learning for Coders with fastai and PyTorch is an

approachable conversationally-driven book that uses the

whole game approach to teaching deep learning concepts.

The book focuses on getting your hands dirty right out of

the gate with real examples and bringing the reader along

with reference concepts only as needed. A practitioner may

approach the world of deep learning in this book through

hands-on examples in the first half, but will find themselves

naturally introduced to deeper concepts as they traverse the

back half of the book with no pernicious myths left

unturned.

—Josh Patterson, Patterson Consulting

Deep Learning for Coders with

fastai and PyTorch

AI Applications Without a PhD

Jeremy Howard and Sylvain Gugger

Deep Learning for Coders with

fastai and PyTorch
by Jeremy Howard and Sylvain Gugger

Copyright © 2020 Jeremy Howard and Sylvain Gugger. All

rights reserved.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway

North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or

sales promotional use. Online editions are also available for

most titles (http://oreilly.com). For more information, contact

our corporate/institutional sales department: 800-998-9938

or corporate@oreilly.com.

Acquisitions Editor: Jonathan Hassell

Development Editor: Melissa Potter

Production Editor: Christopher Faucher

Copyeditor: Rachel Head

http://oreilly.com/

Proofreader: Sharon Wilkey

Indexer: Sue Klefstad

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Rebecca Demarest

July 2020: First Edition

Revision History for the First

Edition

2020-06-29: First Release

See http://oreilly.com/catalog/errata.csp?

isbn=9781492045526 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,

Inc. Deep Learning for Coders with fastai and PyTorch, the

cover image, and related trade dress are trademarks of O’Reilly

Media, Inc.

The views expressed in this work are those of the authors, and

do not represent the publisher’s views. While the publisher and

the authors have used good faith efforts to ensure that the

http://oreilly.com/catalog/errata.csp?isbn=9781492045526

information and instructions contained in this work are

accurate, the publisher and the authors disclaim all

responsibility for errors or omissions, including without

limitation responsibility for damages resulting from the use of

or reliance on this work. Use of the information and

instructions contained in this work is at your own risk. If any

code samples or other technology this work contains or

describes is subject to open source licenses or the intellectual

property rights of others, it is your responsibility to ensure that

your use thereof complies with such licenses and/or rights.

978-1-492-04552-6

[TI]

Preface

Deep learning is a powerful new technology, and we believe it

should be applied across many disciplines. Domain experts are

the most likely to find new applications of it, and we need more

people from all backgrounds to get involved and start using it.

That’s why Jeremy cofounded fast.ai, to make deep learning

easier to use through free online courses and software. Sylvain

is a research engineer at Hugging Face. Previously he was a

research scientist at fast.ai and a former mathematics and

computer science teacher in a program that prepares students

for entry into France’s elite universities. Together, we wrote

this book in the hope of putting deep learning into the hands of

as many people as possible.

Who This Book Is For

If you are a complete beginner to deep learning and machine

learning, you are most welcome here. Our only expectation is

that you already know how to code, preferably in Python.

NO EXPERIENCE? NO PROBLEM!
If you don’t have any experience coding, that’s OK too! The first three

chapters have been explicitly written in a way that will allow executives,

product managers, etc. to understand the most important things they’ll

need to know about deep learning. When you see bits of code in the text,

try to look them over to get an intuitive sense of what they’re doing. We’ll

explain them line by line. The details of the syntax are not nearly as

important as a high-level understanding of what’s going on.

If you are already a confident deep learning practitioner, you

will also find a lot here. In this book, we will be showing you

how to achieve world-class results, including techniques from

the latest research. As we will show, this doesn’t require

advanced mathematical training or years of study. It just

requires a bit of common sense and tenacity.

What You Need to Know

As we said before, the only prerequisite is that you know how to

code (a year of experience is enough), preferably in Python, and

that you have at least followed a high school math course. It

doesn’t matter if you remember little of it right now; we will

brush up on it as needed. Khan Academy has great free

resources online that can help.

We are not saying that deep learning doesn’t use math beyond

high school level, but we will teach you (or direct you to

resources that will teach you) the basics you need as we cover

the subjects that require them.

The book starts with the big picture and progressively digs

beneath the surface, so you may need, from time to time, to put

it aside and go learn some additional topic (a way of coding

something or a bit of math). That is completely OK, and it’s the

way we intend the book to be read. Start browsing it, and

consult additional resources only as needed.

Please note that Kindle or other ereader users may need to

double-click images to view the full-sized versions.

ONLINE RESOURCES
All the code examples shown in this book are available online in the form

of Jupyter notebooks (don’t worry; you will learn all about what Jupyter

is in Chapter 1). This is an interactive version of the book, where you can

actually execute the code and experiment with it. See the book’s website

for more information. The website also contains up-to-date information

on setting up the various tools we present and some additional bonus

chapters.

What You Will Learn

https://www.khanacademy.org/
https://book.fast.ai/

After reading this book, you will know the following:

How to train models that achieve state-of-the-art

results in

Computer vision, including image classification

(e.g., classifying pet photos by breed) and image

localization and detection (e.g., finding the

animals in an image)

Natural language processing (NLP), including

document classification (e.g., movie review

sentiment analysis) and language modeling

Tabular data (e.g., sales prediction) with

categorical data, continuous data, and mixed

data, including time series

Collaborative filtering (e.g., movie

recommendation)

How to turn your models into web applications

Why and how deep learning models work, and how to

use that knowledge to improve the accuracy, speed, and

reliability of your models

The latest deep learning techniques that really matter in

practice

How to read a deep learning research paper

How to implement deep learning algorithms from

scratch

How to think about the ethical implications of your

work, to help ensure that you’re making the world a

better place and that your work isn’t misused for harm

See the table of contents for a complete list, but to give you a

taste, here are some of the techniques covered (don’t worry if

none of these words mean anything to you yet—you’ll learn

them all soon):

Affine functions and nonlinearities

Parameters and activations

Random initialization and transfer learning

SGD, Momentum, Adam, and other optimizers

Convolutions

Batch normalization

Dropout

Data augmentation

Weight decay

ResNet and DenseNet architectures

Image classification and regression

Embeddings

Recurrent neural networks (RNNs)

Segmentation

U-Net

And much more!

CHAPTER QUESTIONNAIRES
If you look at the end of each chapter, you’ll find a questionnaire. That’s

a great place to see what we cover in each chapter, since (we hope!) by

the end of each one, you’ll be able to answer all the questions there. In

fact, one of our reviewers (thanks, Fred!) said that he likes to read the

questionnaire first, before reading the chapter, so he knows what to look

out for.

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and

business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their

knowledge and expertise through books, articles, and our

online learning platform. O’Reilly’s online learning platform

gives you on-demand access to live training courses, in-depth

learning paths, interactive coding environments, and a vast

collection of text and video from O’Reilly and 200+ other

publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book

to the publisher:

http://oreilly.com/
http://oreilly.com/

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata,

examples, and any additional information. You can access this

page at https://oreil.ly/deep-learning-for-coders.

Email bookquestions@oreilly.com to comment or ask technical

questions about this book.

For news and information about our books and courses, visit

http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube:

http://www.youtube.com/oreillymedia

https://oreil.ly/deep-learning-for-coders
mailto:bookquestions@oreilly.com
http://oreilly.com/
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Foreword

In a very short time, deep learning has become a widely useful

technique, solving and automating problems in computer

vision, robotics, healthcare, physics, biology, and beyond. One

of the delightful things about deep learning is its relative

simplicity. Powerful deep learning software has been built to

make getting started fast and easy. In a few weeks, you can

understand the basics and get comfortable with the techniques.

This opens up a world of creativity. You start applying it to

problems that have data at hand, and you feel wonderful seeing

a machine solving problems for you. However, you slowly feel

yourself getting closer to a giant barrier. You built a deep

learning model, but it doesn’t work as well as you had hoped.

This is when you enter the next stage, finding and reading

state-of-the-art research on deep learning.

However, there’s a voluminous body of knowledge on deep

learning, with three decades of theory, techniques, and tooling

behind it. As you read through some of this research, you

realize that humans can explain simple things in really

complicated ways. Scientists use words and mathematical

notation in these papers that appear foreign, and no textbook

or blog post seems to cover the necessary background that you

need in accessible ways. Engineers and programmers assume

you know how GPUs work and have knowledge about obscure

tools.

This is when you wish you had a mentor or a friend that you

could talk to. Someone who was in your shoes before, who

knows the tooling and the math—someone who could guide

you through the best research, state-of-the-art techniques, and

advanced engineering, and make it comically simple. I was in

your shoes a decade ago, when I was breaking into the field of

machine learning. For years, I struggled to understand papers

that had a little bit of math in them. I had good mentors around

me, which helped me greatly, but it took me many years to get

comfortable with machine learning and deep learning. That

motivated me to coauthor PyTorch, a software framework to

make deep learning accessible.

Jeremy Howard and Sylvain Gugger were also in your shoes.

They wanted to learn and apply deep learning, without any

previous formal training as ML scientists or engineers. Like

me, Jeremy and Sylvain learned gradually over the years and

eventually became experts and leaders. But unlike me, Jeremy

and Sylvain selflessly put a huge amount of energy into making

sure others don’t have to take the painful path that they took.

They built a great course called fast.ai that makes cutting-edge

deep learning techniques accessible to people who know basic

programming. It has graduated hundreds of thousands of eager

learners who have become great practitioners.

In this book, which is another tireless product, Jeremy and

Sylvain have constructed a magical journey through deep

learning. They use simple words and introduce every concept.

They bring cutting-edge deep learning and state-of-the-art

research to you, yet make it very accessible.

You are taken through the latest advances in computer vision,

dive into natural language processing, and learn some

foundational math in a 500-page delightful ride. And the ride

doesn’t stop at fun, as they take you through shipping your

ideas to production. You can treat the fast.ai community,

thousands of practitioners online, as your extended family,

where individuals like you are available to talk and ideate small

and big solutions, whatever the problem may be.

I am very glad you’ve found this book, and I hope it inspires

you to put deep learning to good use, regardless of the nature of

the problem.

Soumith Chintala

Cocreator of PyTorch

Part I. Deep Learning in Practice

Chapter 1. Your Deep Learning

Journey

Hello, and thank you for letting us join you on your deep

learning journey, however far along that you may be! In this

chapter, we will tell you a little bit more about what to expect in

this book, introduce the key concepts behind deep learning,

and train our first models on different tasks. It doesn’t matter if

you don’t come from a technical or a mathematical background

(though it’s OK if you do too!); we wrote this book to make

deep learning accessible to as many people as possible.

Deep Learning Is for Everyone

A lot of people assume that you need all kinds of hard-to-find

stuff to get great results with deep learning, but as you’ll see in

this book, those people are wrong. Table 1-1 lists a few things

you absolutely don’t need for world-class deep learning.

T
a
b
l
e

1
-
1
.
W
h
a
t
y
o
u

d
o
n
’
t
n
e
e
d

f
o
r
d
e
e

p

l
e
a
r
n
i
n
g

Myth (don’t need) Truth

Lots of math High school math is sufficient.

Lots of data We’ve seen record-breaking results with <50 items

of data.

Lots of expensive

computers

You can get what you need for state-of-the-art

work for free.

Deep learning is a computer technique to extract and

transform data—with use cases ranging from human speech

recognition to animal imagery classification—by using multiple

layers of neural networks. Each of these layers takes its inputs

from previous layers and progressively refines them. The layers

are trained by algorithms that minimize their errors and

improve their accuracy. In this way, the network learns to

perform a specified task. We will discuss training algorithms in

detail in the next section.

Deep learning has power, flexibility, and simplicity. That’s why

we believe it should be applied across many disciplines. These

include the social and physical sciences, the arts, medicine,

finance, scientific research, and many more. To give a personal

example, despite having no background in medicine, Jeremy

started Enlitic, a company that uses deep learning algorithms

to diagnose illness and disease. Within months of starting the

company, it was announced that its algorithm could identify

malignant tumors more accurately than radiologists.

Here’s a list of some of the thousands of tasks in different areas

for which deep learning, or methods heavily using deep

learning, is now the best in the world:

Natural language processing (NLP)

Answering questions; speech recognition;

summarizing documents; classifying documents;

finding names, dates, etc. in documents; searching

for articles mentioning a concept

Computer vision

Satellite and drone imagery interpretation (e.g., for

disaster resilience), face recognition, image

captioning, reading traffic signs, locating

pedestrians and vehicles in autonomous vehicles

Medicine

https://oreil.ly/aTwdE

Finding anomalies in radiology images, including

CT, MRI, and X-ray images; counting features in

pathology slides; measuring features in ultrasounds;

diagnosing diabetic retinopathy

Biology

Folding proteins; classifying proteins; many

genomics tasks, such as tumor-normal sequencing

and classifying clinically actionable genetic

mutations; cell classification; analyzing

protein/protein interactions

Image generation

Colorizing images, increasing image resolution,

removing noise from images, converting images to

art in the style of famous artists

Recommendation systems

Web search, product recommendations, home page

layout

Playing games

Chess, Go, most Atari video games, and many real-

time strategy games

Robotics

Handling objects that are challenging to locate

(e.g., transparent, shiny, lacking texture) or hard to

pick up

Other applications

Financial and logistical forecasting, text to speech,

and much, much more…

What is remarkable is that deep learning has such varied

applications, yet nearly all of deep learning is based on a single

innovative type of model: the neural network.

But neural networks are not, in fact, completely new. In order

to have a wider perspective on the field, it is worth starting with

a bit of history.

Neural Networks: A Brief History

In 1943 Warren McCulloch, a neurophysiologist, and Walter

Pitts, a logician, teamed up to develop a mathematical model of

an artificial neuron. In their paper “A Logical Calculus of the

Ideas Immanent in Nervous Activity,” they declared the

following:

Because of the “all-or-none” character of nervous activity,

neural events and the relations among them can be treated

by means of propositional logic. It is found that the

behavior of every net can be described in these terms.

McCulloch and Pitts realized that a simplified model of a real

neuron could be represented using simple addition and

thresholding, as shown in Figure 1-1. Pitts was self-taught, and

by age 12, had received an offer to study at Cambridge

University with the great Bertrand Russell. He did not take up

this invitation, and indeed throughout his life did not accept

any offers of advanced degrees or positions of authority. Most

of his famous work was done while he was homeless. Despite

his lack of an officially recognized position and increasing

social isolation, his work with McCulloch was influential and

was taken up by a psychologist named Frank Rosenblatt.

Figure 1-1. Natural and artificial neurons

Rosenblatt further developed the artificial neuron to give it the

ability to learn. Even more importantly, he worked on building

the first device that used these principles, the Mark I

Perceptron. In “The Design of an Intelligent Automaton,”

Rosenblatt wrote about this work: “We are now about to

witness the birth of such a machine—a machine capable of

perceiving, recognizing and identifying its surroundings

without any human training or control.” The perceptron was

built and was able to successfully recognize simple shapes.

An MIT professor named Marvin Minsky (who was a grade

behind Rosenblatt at the same high school!), along with

Seymour Papert, wrote a book called Perceptrons (MIT Press)

about Rosenblatt’s invention. They showed that a single layer

of these devices was unable to learn some simple but critical

mathematical functions (such as XOR). In the same book, they

also showed that using multiple layers of the devices would

allow these limitations to be addressed. Unfortunately, only the

first of these insights was widely recognized. As a result, the

global academic community nearly entirely gave up on neural

networks for the next two decades.

Perhaps the most pivotal work in neural networks in the last 50

years was the multi-volume Parallel Distributed Processing

(PDP) by David Rumelhart, James McClelland, and the PDP

Research Group, released in 1986 by MIT Press. Chapter 1 lays

out a similar hope to that shown by Rosenblatt:

People are smarter than today’s computers because the

brain employs a basic computational architecture that is

more suited to deal with a central aspect of the natural

information processing tasks that people are so good at.…

We will introduce a computational framework for modeling

cognitive processes that seems…closer than other

frameworks to the style of computation as it might be done

by the brain.

The premise that PDP is using here is that traditional computer

programs work very differently from brains, and that might be

why computer programs had been (at that point) so bad at

doing things that brains find easy (such as recognizing objects

in pictures). The authors claimed that the PDP approach was

“closer than other frameworks” to how the brain works, and

therefore it might be better able to handle these kinds of tasks.

In fact, the approach laid out in PDP is very similar to the

approach used in today’s neural networks. The book defined

parallel distributed processing as requiring the following:

A set of processing units

A state of activation

An output function for each unit

A pattern of connectivity among units

A propagation rule for propagating patterns of

activities through the network of connectivities

An activation rule for combining the inputs impinging

on a unit with the current state of that unit to produce

an output for the unit

A learning rule whereby patterns of connectivity are

modified by experience

An environment within which the system must operate

We will see in this book that modern neural networks handle

each of these requirements.

In the 1980s, most models were built with a second layer of

neurons, thus avoiding the problem that had been identified by

Minsky and Papert (this was their “pattern of connectivity

among units,” to use the preceding framework). And indeed,

neural networks were widely used during the ’80s and ’90s for

real, practical projects. However, again a misunderstanding of

the theoretical issues held back the field. In theory, adding just

one extra layer of neurons was enough to allow any

mathematical function to be approximated with these neural

networks, but in practice such networks were often too big and

too slow to be useful.

Although researchers showed 30 years ago that to get practical,

good performance you need to use even more layers of

neurons, it is only in the last decade that this principle has been

more widely appreciated and applied. Neural networks are now

finally living up to their potential, thanks to the use of more

layers, coupled with the capacity to do so because of

improvements in computer hardware, increases in data

availability, and algorithmic tweaks that allow neural networks

to be trained faster and more easily. We now have what

Rosenblatt promised: “a machine capable of perceiving,

recognizing, and identifying its surroundings without any

human training or control.”

This is what you will learn how to build in this book. But first,

since we are going to be spending a lot of time together, let’s

get to know each other a bit…

Who We Are

We are Sylvain and Jeremy, your guides on this journey. We

hope that you will find us well suited for this position.

Jeremy has been using and teaching machine learning for

around 30 years. He started using neural networks 25 years

ago. During this time, he has led many companies and projects

that have machine learning at their core, including founding

the first company to focus on deep learning and medicine,

Enlitic, and taking on the role of president and chief scientist at

the world’s largest machine learning community, Kaggle. He is

the cofounder, along with Dr. Rachel Thomas, of fast.ai, the

organization that built the course this book is based on.

From time to time, you will hear directly from us in sidebars,

like this one from Jeremy:

JEREMY SAYS
Hi, everybody; I’m Jeremy! You might be interested to know that I do

not have any formal technical education. I completed a BA with a major

in philosophy, and didn’t have great grades. I was much more interested

in doing real projects than theoretical studies, so I worked full time at a

management consulting firm called McKinsey and Company throughout

my university years. If you’re somebody who would rather get their

hands dirty building stuff than spend years learning abstract concepts,

you will understand where I am coming from! Look out for sidebars

from me to find information most suited to people with a less

mathematical or formal technical background—that is, people like me…

Sylvain, on the other hand, knows a lot about formal technical

education. He has written 10 math textbooks, covering the

entire advanced French math curriculum!

SYLVAIN SAYS
Unlike Jeremy, I have not spent many years coding and applying

machine learning algorithms. Rather, I recently came to the machine

learning world by watching Jeremy’s fast.ai course videos. So, if you are

somebody who has not opened a terminal and written commands at the

command line, you will understand where I am coming from! Look out

for sidebars from me to find information most suited to people with a

more mathematical or formal technical background, but less real-world

coding experience—that is, people like me…

The fast.ai course has been studied by hundreds of thousands

of students, from all walks of life, from all parts of the world.

Sylvain stood out as the most impressive student of the course

that Jeremy had ever seen, which led to him joining fast.ai and

then becoming the coauthor, along with Jeremy, of the fastai

software library.

All this means that between us, you have the best of both

worlds: the people who know more about the software than

anybody else, because they wrote it; an expert on math, and an

expert on coding and machine learning; and also people who

understand both what it feels like to be a relative outsider in

math, and a relative outsider in coding and machine learning.

Anybody who has watched sports knows that if you have a two-

person commentary team, you also need a third person to do

“special comments.” Our special commentator is Alexis

Gallagher. Alexis has a very diverse background: he has been a

researcher in mathematical biology, a screenplay writer, an

improv performer, a McKinsey consultant (like Jeremy!), a

Swift coder, and a CTO.

ALEXIS SAYS
I’ve decided it’s time for me to learn about this AI stuff! After all, I’ve

tried pretty much everything else.…But I don’t really have a background

in building machine learning models. Still…how hard can it be? I’m

going to be learning throughout this book, just like you are. Look out for

my sidebars for learning tips that I found helpful on my journey, and

hopefully you will find helpful too.

How to Learn Deep Learning

Harvard professor David Perkins, who wrote Making Learning

Whole (Jossey-Bass), has much to say about teaching. The

basic idea is to teach the whole game. That means that if you’re

teaching baseball, you first take people to a baseball game or

get them to play it. You don’t teach them how to wind twine to

make a baseball from scratch, the physics of a parabola, or the

coefficient of friction of a ball on a bat.

Paul Lockhart, a Columbia math PhD, former Brown professor,

and K–12 math teacher, imagines in the influential essay “A

Mathematician’s Lament” a nightmare world where music and

art are taught the way math is taught. Children are not allowed

to listen to or play music until they have spent over a decade

mastering music notation and theory, spending classes

transposing sheet music into a different key. In art class,

students study colors and applicators, but aren’t allowed to

actually paint until college. Sound absurd? This is how math is

taught—we require students to spend years doing rote

memorization and learning dry, disconnected fundamentals

that we claim will pay off later, long after most of them quit the

subject.

Unfortunately, this is where many teaching resources on deep

learning begin—asking learners to follow along with the

definition of the Hessian and theorems for the Taylor

approximation of your loss functions, without ever giving

examples of actual working code. We’re not knocking calculus.

We love calculus, and Sylvain has even taught it at the college

https://oreil.ly/yNimZ

level, but we don’t think it’s the best place to start when

learning deep learning!

In deep learning, it really helps if you have the motivation to fix

your model to get it to do better. That’s when you start learning

the relevant theory. But you need to have the model in the first

place. We teach almost everything through real examples. As

we build out those examples, we go deeper and deeper, and

we’ll show you how to make your projects better and better.

This means that you’ll be gradually learning all the theoretical

foundations you need, in context, in such a way that you’ll see

why it matters and how it works.

So, here’s our commitment to you. Throughout this book, we

follow these principles:

Teaching the whole game

We’ll start off by showing you how to use a

complete, working, usable, state-of-the-art deep

learning network to solve real-world problems using

simple, expressive tools. And then we’ll gradually dig

deeper and deeper into understanding how those

tools are made, and how the tools that make those

tools are made, and so on…

Always teaching through examples

We’ll ensure that there is a context and a purpose

that you can understand intuitively, rather than

starting with algebraic symbol manipulation.

Simplifying as much as possible

We’ve spent years building tools and teaching

methods that make previously complex topics

simple.

Removing barriers

Deep learning has, until now, been an exclusive

game. We’re breaking it open and ensuring that

everyone can play.

The hardest part of deep learning is artisanal: how do you know

if you’ve got enough data, whether it is in the right format, if

your model is training properly, and, if it’s not, what you

should do about it? That is why we believe in learning by doing.

As with basic data science skills, with deep learning you get

better only through practical experience. Trying to spend too

much time on the theory can be counterproductive. The key is

to just code and try to solve problems: the theory can come

later, when you have context and motivation.

There will be times when the journey feels hard. Times when

you feel stuck. Don’t give up! Rewind through the book to find

the last bit where you definitely weren’t stuck, and then read

slowly through from there to find the first thing that isn’t clear.

Then try some code experiments yourself, and Google around

for more tutorials on whatever the issue you’re stuck with is—

often you’ll find a different angle on the material that might

help it to click. Also, it’s expected and normal to not

understand everything (especially the code) on first reading.

Trying to understand the material serially before proceeding

can sometimes be hard. Sometimes things click into place after

you get more context from parts down the road, from having a

bigger picture. So if you do get stuck on a section, try moving

on anyway and make a note to come back to it later.

Remember, you don’t need any particular academic

background to succeed at deep learning. Many important

breakthroughs are made in research and industry by folks

without a PhD, such as the paper “Unsupervised

Representation Learning with Deep Convolutional Generative

Adversarial Networks”—one of the most influential papers of

the last decade, with over 5,000 citations—which was written

by Alec Radford when he was an undergraduate. Even at Tesla,

where they’re trying to solve the extremely tough challenge of

making a self-driving car, CEO Elon Musk says:

A PhD is definitely not required. All that matters is a deep

understanding of AI & ability to implement NNs in a way

that is actually useful (latter point is what’s truly hard).

Don’t care if you even graduated high school.

What you will need to do to succeed, however, is to apply what

you learn in this book to a personal project, and always

persevere.

https://oreil.ly/JV6rL
https://oreil.ly/nQCmO

Your Projects and Your Mindset

Whether you’re excited to identify if plants are diseased from

pictures of their leaves, autogenerate knitting patterns,

diagnose TB from X-rays, or determine when a raccoon is using

your cat door, we will get you using deep learning on your own

problems (via pretrained models from others) as quickly as

possible, and then will progressively drill into more details.

You’ll learn how to use deep learning to solve your own

problems at state-of-the-art accuracy within the first 30

minutes of the next chapter! (And feel free to skip straight

there now if you’re dying to get coding right away.) There is a

pernicious myth out there that you need to have computing

resources and datasets the size of those at Google to be able to

do deep learning, but it’s not true.

So, what sorts of tasks make for good test cases? You could

train your model to distinguish between Picasso and Monet

paintings or to pick out pictures of your daughter instead of

pictures of your son. It helps to focus on your hobbies and

passions—setting yourself four or five little projects rather than

striving to solve a big, grand problem tends to work better

when you’re getting started. Since it is easy to get stuck, trying

to be too ambitious too early can often backfire. Then, once

you’ve got the basics mastered, aim to complete something

you’re really proud of!

JEREMY SAYS
Deep learning can be set to work on almost any problem. For instance,

my first startup was a company called FastMail, which provided

enhanced email services when it launched in 1999 (and still does to this

day). In 2002, I set it up to use a primitive form of deep learning, single-

layer neural networks, to help categorize emails and stop customers

from receiving spam.

Common character traits in the people who do well at deep

learning include playfulness and curiosity. The late physicist

Richard Feynman is an example of someone we’d expect to be

great at deep learning: his development of an understanding of

the movement of subatomic particles came from his

amusement at how plates wobble when they spin in the air.

Let’s now focus on what you will learn, starting with the

software.

The So�ware: PyTorch, fastai, and Jupyter (And
Why It Doesn’t Matter)

We’ve completed hundreds of machine learning projects using

dozens of packages, and many programming languages. At

fast.ai, we have written courses using most of the main deep

learning and machine learning packages used today. After

PyTorch came out in 2017, we spent over a thousand hours

testing it before deciding that we would use it for future

courses, software development, and research. Since that time,

PyTorch has become the world’s fastest-growing deep learning

library and is already used for most research papers at top

conferences. This is generally a leading indicator of usage in

industry, because these are the papers that end up getting used

in products and services commercially. We have found that

PyTorch is the most flexible and expressive library for deep

learning. It does not trade off speed for simplicity, but provides

both.

PyTorch works best as a low-level foundation library, providing

the basic operations for higher-level functionality. The fastai

library is the most popular library for adding this higher-level

functionality on top of PyTorch. It’s also particularly well suited

to the purposes of this book, because it is unique in providing a

deeply layered software architecture (there’s even a peer-

reviewed academic paper about this layered API). In this book,

as we go deeper and deeper into the foundations of deep

learning, we will also go deeper and deeper into the layers of

fastai. This book covers version 2 of the fastai library, which is

a from-scratch rewrite providing many unique features.

However, it doesn’t really matter what software you learn,

because it takes only a few days to learn to switch from one

library to another. What really matters is learning the deep

learning foundations and techniques properly. Our focus will

be on using code that, as clearly as possible, expresses the

concepts that you need to learn. Where we are teaching high-

level concepts, we will use high-level fastai code. Where we are

https://oreil.ly/Uo3GR

teaching low-level concepts, we will use low-level PyTorch or

even pure Python code.

Though it may seem like new deep learning libraries are

appearing at a rapid pace nowadays, you need to be prepared

for a much faster rate of change in the coming months and

years. As more people enter the field, they will bring more skills

and ideas, and try more things. You should assume that

whatever specific libraries and software you learn today will be

obsolete in a year or two. Just think about the number of

changes in libraries and technology stacks that occur all the

time in the world of web programming—a much more mature

and slow-growing area than deep learning. We strongly believe

that the focus in learning needs to be on understanding the

underlying techniques and how to apply them in practice, and

how to quickly build expertise in new tools and techniques as

they are released.

By the end of the book, you’ll understand nearly all the code

that’s inside fastai (and much of PyTorch too), because in each

chapter we’ll be digging a level deeper to show you exactly

what’s going on as we build and train our models. This means

that you’ll have learned the most important best practices used

in modern deep learning—not just how to use them, but how

they really work and are implemented. If you want to use those

approaches in another framework, you’ll have the knowledge

you need to do so if needed.

Since the most important thing for learning deep learning is

writing code and experimenting, it’s important that you have a

great platform for experimenting with code. The most popular

programming experimentation platform is called Jupyter. This

is what we will be using throughout this book. We will show

you how you can use Jupyter to train and experiment with

models and introspect every stage of the data preprocessing

and model development pipeline. Jupyter is the most popular

tool for doing data science in Python, for good reason. It is

powerful, flexible, and easy to use. We think you will love it!

Let’s see it in practice and train our first model.

Your First Model

As we said before, we will teach you how to do things before we

explain why they work. Following this top-down approach, we

will begin by actually training an image classifier to recognize

dogs and cats with almost 100% accuracy. To train this model

and run our experiments, you will need to do some initial

setup. Don’t worry; it’s not as hard as it looks.

https://jupyter.org/

SYLVAIN SAYS
Do not skip the setup part even if it looks intimidating at first, especially

if you have little or no experience using things like a terminal or the

command line. Most of that is not necessary, and you will find that the

easiest servers can be set up with just your usual web browser. It is

crucial that you run your own experiments in parallel with this book in

order to learn.

Getting a GPU Deep Learning Server

To do nearly everything in this book, you’ll need access to a

computer with an NVIDIA GPU (unfortunately, other brands of

GPU are not fully supported by the main deep learning

libraries). However, we don’t recommend you buy one; in fact,

even if you already have one, we don’t suggest you use it just

yet! Setting up a computer takes time and energy, and you want

all your energy to focus on deep learning right now. Therefore,

we instead suggest you rent access to a computer that already

has everything you need preinstalled and ready to go. Costs can

be as little as $0.25 per hour while you’re using it, and some

options are even free.

JARGON: GRAPHICS PROCESSING UNIT
(GPU)

Also known as a graphics card. A special kind of processor in your

computer that can handle thousands of single tasks at the same time,

especially designed for displaying 3D environments on a computer for

playing games. These same basic tasks are very similar to what neural

networks do, such that GPUs can run neural networks hundreds of times

faster than regular CPUs. All modern computers contain a GPU, but few

contain the right kind of GPU necessary for deep learning.

The best choice of GPU servers to use with this book will

change over time, as companies come and go and prices

change. We maintain a list of our recommended options on the

book’s website, so go there now and follow the instructions to

get connected to a GPU deep learning server. Don’t worry; it

takes only about two minutes to get set up on most platforms,

and many don’t even require any payment or even a credit card

to get started.

ALEXIS SAYS
My two cents: heed this advice! If you like computers, you will be

tempted to set up your own box. Beware! It is feasible but surprisingly

involved and distracting. There is a good reason this book is not titled

Everything You Ever Wanted to Know About Ubuntu System

Administration, NVIDIA Driver Installation, apt-get, conda, pip, and

Jupyter Notebook Configuration. That would be a book of its own.

Having designed and deployed our production machine learning

infrastructure at work, I can testify it has its satisfactions, but it is as

unrelated to modeling as maintaining an airplane is to flying one.

https://book.fast.ai/

Each option shown on the website includes a tutorial; after

completing the tutorial, you will end up with a screen looking

like Figure 1-2.

Figure 1-2. Initial view of Jupyter Notebook

You are now ready to run your first Jupyter notebook!

JARGON: JUPYTER NOTEBOOK
A piece of software that allows you to include formatted text, code,

images, videos, and much more, all within a single interactive document.

Jupyter received the highest honor for software, the ACM Software

System Award, thanks to its wide use and enormous impact in many

academic fields and in industry. Jupyter Notebook is the software most

widely used by data scientists for developing and interacting with deep

learning models.

Running Your First Notebook

The notebooks are numbered by chapter in the same order as

they are presented in this book. So, the very first notebook you

will see listed is the notebook that you need to use now. You

will be using this notebook to train a model that can recognize

dog and cat photos. To do this, you’ll be downloading a dataset

of dog and cat photos, and using that to train a model.

A dataset is simply a bunch of data—it could be images, emails,

financial indicators, sounds, or anything else. There are many

datasets made freely available that are suitable for training

models. Many of these datasets are created by academics to

help advance research, many are made available for

competitions (there are competitions where data scientists can

compete to see who has the most accurate model!), and some

are byproducts of other processes (such as financial filings).

FULL AND STRIPPED NOTEBOOKS
There are two folders containing different versions of the notebooks. The

full folder contains the exact notebooks used to create the book you’re

reading now, with all the prose and outputs. The stripped version has

the same headings and code cells, but all outputs and prose have been

removed. After reading a section of the book, we recommend working

through the stripped notebooks, with the book closed, and seeing if you

can figure out what each cell will show before you execute it. Also try to

recall what the code is demonstrating.

To open a notebook, just click it. The notebook will open, and it

will look something like Figure 1-3 (note that there may be

slight differences in details across different platforms; you can

ignore those differences).

Figure 1-3. A Jupyter notebook

A notebook consists of cells. There are two main types of cell:

Cells containing formatted text, images, and so forth.

These use a format called Markdown, which you will

learn about soon.

Cells containing code that can be executed, and outputs

will appear immediately underneath (which could be

plain text, tables, images, animations, sounds, or even

interactive applications).

Jupyter notebooks can be in one of two modes: edit mode or

command mode. In edit mode, typing on your keyboard enters

the letters into the cell in the usual way. However, in command

mode, you will not see any flashing cursor, and each key on

your keyboard will have a special function.

Before continuing, press the Escape key on your keyboard to

switch to command mode (if you are already in command

mode, this does nothing, so press it now just in case). To see a

complete list of all the functions available, press H; press

Escape to remove this help screen. Notice that in command

mode, unlike in most programs, commands do not require you

to hold down Control, Alt, or similar—you simply press the

required letter key.

You can make a copy of a cell by pressing C (the cell needs to be

selected first, indicated with an outline around it; if it is not

already selected, click it once). Then press V to paste a copy of

it.

Click the cell that begins with the line “# CLICK ME” to select

it. The first character in that line indicates that what follows is

a comment in Python, so it is ignored when executing the cell.

The rest of the cell is, believe it or not, a complete system for

creating and training a state-of-the-art model for recognizing

cats versus dogs. So, let’s train it now! To do so, just press

Shift-Enter on your keyboard, or click the Play button on the

toolbar. Then wait a few minutes while the following things

happen:

1. A dataset called the Oxford-IIIT Pet Dataset that

contains 7,349 images of cats and dogs from 37 breeds

https://oreil.ly/c_4Bv

will be downloaded from the fast.ai datasets collection

to the GPU server you are using, and will then be

extracted.

2. A pretrained model that has already been trained on 1.3

million images using a competition-winning model will

be downloaded from the internet.

3. The pretrained model will be fine-tuned using the latest

advances in transfer learning to create a model that is

specially customized for recognizing dogs and cats.

The first two steps need to be run only once on your GPU

server. If you run the cell again, it will use the dataset and

model that have already been downloaded, rather than

downloading them again. Let’s take a look at the contents of the

cell and the results (Table 1-2):

CLICK ME

from fastai.vision.all import *
path = untar_data(URLs.PETS)/'images'

def is_cat(x): return x[0].isupper()
dls = ImageDataLoaders.from_name_func(
 path, get_image_files(path), valid_pct=0.2, seed=42,
 label_func=is_cat, item_tfms=Resize(224))

learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(1)

T
a
b
l
e

1
-
2
.
R
e
s
u
l
t
s

f
r
o
m

t
h
e

f
i
r
s
t
t

r
a
i
n
i
n
g

epoch train_loss valid_loss error_rate time

0 0.169390 0.021388 0.005413 00:14

epoch train_loss valid_loss error_rate time

0 0.058748 0.009240 0.002706 00:19

You will probably not see exactly the same results shown here.

A lot of sources of small random variation are involved in

training models. We generally see an error rate of well less than

0.02 in this example, however.

TRAINING TIME
Depending on your network speed, it might take a few minutes to

download the pretrained model and dataset. Running fine_tune might

take a minute or so. Often models in this book take a few minutes to

train, as will your own models, so it’s a good idea to come up with good

techniques to make the most of this time. For instance, keep reading the

next section while your model trains, or open up another notebook and

use it for some coding experiments.

THIS BOOK WAS WRITTEN IN JUPYTER NOTEBOOKS
We wrote this book using Jupyter notebooks, so for nearly every chart, table, and
calculation in this book, we’ll be showing you the exact code required to replicate it
yourself. That’s why very often in this book, you will see some code immediately
followed by a table, a picture, or just some text. If you go on the book’s website, you
will find all the code, and you can try running and modifying every example yourself.

You just saw how a cell that outputs a table looks in the book. Here is an example of
a cell that outputs text:

1+1

2

Jupyter will always print or show the result of the last line (if there is one). For
instance, here is an example of a cell that outputs an image:

img = PILImage.create('images/chapter1_cat_example.jpg')
img.to_thumb(192)

So, how do we know if this model is any good? In the last

column of the table, you can see the error rate, which is the

proportion of images that were incorrectly identified. The error

rate serves as our metric—our measure of model quality,

chosen to be intuitive and comprehensible. As you can see, the

https://book.fast.ai/

model is nearly perfect, even though the training time was only

a few seconds (not including the one-time downloading of the

dataset and the pretrained model). In fact, the accuracy you’ve

achieved already is far better than anybody had ever achieved

just 10 years ago!

Finally, let’s check that this model actually works. Go and get a

photo of a dog or a cat; if you don’t have one handy, just search

Google Images and download an image that you find there.

Now execute the cell with uploader defined. It will output a

button you can click, so you can select the image you want to

classify:

uploader = widgets.FileUpload()
uploader

Now you can pass the uploaded file to the model. Make sure

that it is a clear photo of a single dog or a cat, and not a line

drawing, cartoon, or similar. The notebook will tell you

whether it thinks it is a dog or a cat, and how confident it is.

Hopefully, you’ll find that your model did a great job:

img = PILImage.create(uploader.data[0])
is_cat,_,probs = learn.predict(img)
print(f"Is this a cat?: {is_cat}.")
print(f"Probability it's a cat: {probs[1].item():.6f}")

Is this a cat?: True.
Probability it's a cat: 0.999986

Congratulations on your first classifier!

But what does this mean? What did you actually do? In order to

explain this, let’s zoom out again to take in the big picture.

What Is Machine Learning?

Your classifier is a deep learning model. As was already

mentioned, deep learning models use neural networks, which

originally date from the 1950s and have become powerful very

recently thanks to recent advancements.

Another key piece of context is that deep learning is just a

modern area in the more general discipline of machine

learning. To understand the essence of what you did when you

trained your own classification model, you don’t need to

understand deep learning. It is enough to see how your model

and your training process are examples of the concepts that

apply to machine learning in general.

So in this section, we will describe machine learning. We will

explore the key concepts and see how they can be traced back

to the original essay that introduced them.

Machine learning is, like regular programming, a way to get

computers to complete a specific task. But how would we use

regular programming to do what we just did in the preceding

section: recognize dogs versus cats in photos? We would have

to write down for the computer the exact steps necessary to

complete the task.

Normally, it’s easy enough for us to write down the steps to

complete a task when we’re writing a program. We just think

about the steps we’d take if we had to do the task by hand, and

then we translate them into code. For instance, we can write a

function that sorts a list. In general, we’d write a function that

looks something like Figure 1-4 (where inputs might be an

unsorted list, and results a sorted list).

Figure 1-4. A traditional program

But for recognizing objects in a photo, that’s a bit tricky; what

are the steps we take when we recognize an object in a picture?

We really don’t know, since it all happens in our brain without

us being consciously aware of it!

Right back at the dawn of computing, in 1949, an IBM

researcher named Arthur Samuel started working on a

different way to get computers to complete tasks, which he

called machine learning. In his classic 1962 essay “Artificial

Intelligence: A Frontier of Automation,” he wrote:

Programming a computer for such computations is, at best,

a difficult task, not primarily because of any inherent

complexity in the computer itself but, rather, because of the

need to spell out every minute step of the process in the most

exasperating detail. Computers, as any programmer will

tell you, are giant morons, not giant brains.

His basic idea was this: instead of telling the computer the

exact steps required to solve a problem, show it examples of the

problem to solve, and let it figure out how to solve it itself. This

turned out to be very effective: by 1961, his checkers-playing

program had learned so much that it beat the Connecticut state

champion! Here’s how he described his idea (from the same

essay as noted previously):

Suppose we arrange for some automatic means of testing

the effectiveness of any current weight assignment in terms

of actual performance and provide a mechanism for

altering the weight assignment so as to maximize the

performance. We need not go into the details of such a

procedure to see that it could be made entirely automatic

and to see that a machine so programmed would “learn”

from its experience.

There are a number of powerful concepts embedded in this

short statement:

The idea of a “weight assignment”

The fact that every weight assignment has some “actual

performance”

The requirement that there be an “automatic means” of

testing that performance

The need for a “mechanism” (i.e., another automatic

process) for improving the performance by changing

the weight assignments

Let’s take these concepts one by one, in order to understand

how they fit together in practice. First, we need to understand

what Samuel means by a weight assignment.

Weights are just variables, and a weight assignment is a

particular choice of values for those variables. The program’s

inputs are values that it processes in order to produce its

results—for instance, taking image pixels as inputs, and

returning the classification “dog” as a result. The program’s

weight assignments are other values that define how the

program will operate.

Because they will affect the program, they are in a sense

another kind of input. We will update our basic picture in

Figure 1-4 and replace it with Figure 1-5 in order to take this

into account.

Figure 1-5. A program using weight assignment

We’ve changed the name of our box from program to model.

This is to follow modern terminology and to reflect that the

model is a special kind of program: it’s one that can do many

different things, depending on the weights. It can be

implemented in many different ways. For instance, in Samuel’s

checkers program, different values of the weights would result

in different checkers-playing strategies.

(By the way, what Samuel called “weights” are most generally

referred to as model parameters these days, in case you have

encountered that term. The term weights is reserved for a

particular type of model parameter.)

Next, Samuel said we need an automatic means of testing the

effectiveness of any current weight assignment in terms of

actual performance. In the case of his checkers program, the

“actual performance” of a model would be how well it plays.

And you could automatically test the performance of two

models by setting them to play against each other, and seeing

which one usually wins.

Finally, he says we need a mechanism for altering the weight

assignment so as to maximize the performance. For instance,

we could look at the difference in weights between the winning

model and the losing model, and adjust the weights a little

further in the winning direction.

We can now see why he said that such a procedure could be

made entirely automatic and…a machine so programmed

would “learn” from its experience. Learning would become

entirely automatic when the adjustment of the weights was also

automatic—when instead of us improving a model by adjusting

its weights manually, we relied on an automated mechanism

that produced adjustments based on performance.

Figure 1-6 shows the full picture of Samuel’s idea of training a

machine learning model.

Figure 1-6. Training a machine learning model

Notice the distinction between the model’s results (e.g., the

moves in a checkers game) and its performance (e.g., whether

it wins the game, or how quickly it wins).

Also note that once the model is trained—that is, once we’ve

chosen our final, best, favorite weight assignment—then we can

think of the weights as being part of the model, since we’re not

varying them anymore.

Therefore, actually using a model after it’s trained looks like

Figure 1-7.

Figure 1-7. Using a trained model as a program

This looks identical to our original diagram in Figure 1-4, just

with the word program replaced with model. This is an

important insight: a trained model can be treated just like a

regular computer program.

JARGON: MACHINE LEARNING
The training of programs developed by allowing a computer to learn

from its experience, rather than through manually coding the individual

steps.

What Is a Neural Network?

It’s not too hard to imagine what the model might look like for

a checkers program. There might be a range of checkers

strategies encoded, and some kind of search mechanism, and

then the weights could vary how strategies are selected, what

parts of the board are focused on during a search, and so forth.

But it’s not at all obvious what the model might look like for an

image recognition program, or for understanding text, or for

many other interesting problems we might imagine.

What we would like is some kind of function that is so flexible

that it could be used to solve any given problem, just by varying

its weights. Amazingly enough, this function actually exists! It’s

the neural network, which we already discussed. That is, if you

regard a neural network as a mathematical function, it turns

out to be a function that is extremely flexible depending on its

weights. A mathematical proof called the universal

approximation theorem shows that this function can solve any

problem to any level of accuracy, in theory. The fact that neural

networks are so flexible means that, in practice, they are often a

suitable kind of model, and you can focus your effort on the

process of training them—that is, of finding good weight

assignments.

But what about that process? One could imagine that you

might need to find a new “mechanism” for automatically

updating weight for every problem. This would be laborious.

What we’d like here as well is a completely general way to

update the weights of a neural network, to make it improve at

any given task. Conveniently, this also exists!

This is called stochastic gradient descent (SGD). We’ll see how

neural networks and SGD work in detail in Chapter 4, as well as

explaining the universal approximation theorem. For now,

however, we will instead use Samuel’s own words: We need not

go into the details of such a procedure to see that it could be

made entirely automatic and to see that a machine so

programmed would “learn” from its experience.

JEREMY SAYS
Don’t worry; neither SGD nor neural nets are mathematically complex.

Both nearly entirely rely on addition and multiplication to do their work

(but they do a lot of addition and multiplication!). The main reaction we

hear from students when they see the details is: “Is that all it is?”

In other words, to recap, a neural network is a particular kind

of machine learning model, which fits right in to Samuel’s

original conception. Neural networks are special because they

are highly flexible, which means they can solve an unusually

wide range of problems just by finding the right weights. This is

powerful, because stochastic gradient descent provides us a

way to find those weight values automatically.

Having zoomed out, let’s now zoom back in and revisit our

image classification problem using Samuel’s framework.

Our inputs are the images. Our weights are the weights in the

neural net. Our model is a neural net. Our results are the values

that are calculated by the neural net, like “dog” or “cat.”

What about the next piece, an automatic means of testing the

effectiveness of any current weight assignment in terms of

actual performance? Determining “actual performance” is easy

enough: we can simply define our model’s performance as its

accuracy at predicting the correct answers.

Putting this all together, and assuming that SGD is our

mechanism for updating the weight assignments, we can see

how our image classifier is a machine learning model, much

like Samuel envisioned.

A Bit of Deep Learning Jargon

Samuel was working in the 1960s, and since then terminology

has changed. Here is the modern deep learning terminology for

all the pieces we have discussed:

The functional form of the model is called its

architecture (but be careful—sometimes people use

model as a synonym of architecture, so this can get

confusing).

The weights are called parameters.

The predictions are calculated from the independent

variable, which is the data not including the labels.

The results of the model are called predictions.

The measure of performance is called the loss.

The loss depends not only on the predictions, but also

on the correct labels (also known as targets or the

dependent variable); e.g., “dog” or “cat.”

After making these changes, our diagram in Figure 1-6 looks

like Figure 1-8.

Figure 1-8. Detailed training loop

Limitations Inherent to Machine Learning

From this picture, we can now see some fundamental things

about training a deep learning model:

A model cannot be created without data.

A model can learn to operate on only the patterns seen

in the input data used to train it.

This learning approach creates only predictions, not

recommended actions.

It’s not enough to just have examples of input data; we

need labels for that data too (e.g., pictures of dogs and

cats aren’t enough to train a model; we need a label for

each one, saying which ones are dogs and which are

cats).

Generally speaking, we’ve seen that most organizations that say

they don’t have enough data actually mean they don’t have

enough labeled data. If any organization is interested in doing

something in practice with a model, then presumably they have

some inputs they plan to run their model against. And

presumably they’ve been doing that some other way for a while

(e.g., manually, or with some heuristic program), so they have

data from those processes! For instance, a radiology practice

will almost certainly have an archive of medical scans (since

they need to be able to check how their patients are progressing

over time), but those scans may not have structured labels

containing a list of diagnoses or interventions (since

radiologists generally create free-text natural language reports,

not structured data). We’ll be discussing labeling approaches a

lot in this book, because it’s such an important issue in

practice.

Since these kinds of machine learning models can only make

predictions (i.e., attempt to replicate labels), this can result in a

significant gap between organizational goals and model

capabilities. For instance, in this book you’ll learn how to create

a recommendation system that can predict what products a

user might purchase. This is often used in ecommerce, such as

to customize products shown on a home page by showing the

highest-ranked items. But such a model is generally created by

looking at a user and their buying history (inputs) and what

they went on to buy or look at (labels), which means that the

model is likely to tell you about products the user already has,

or already knows about, rather than new products that they are

most likely to be interested in hearing about. That’s very

different from what, say, an expert at your local bookseller

might do, where they ask questions to figure out your taste, and

then tell you about authors or series that you’ve never heard of

before.

Another critical insight comes from considering how a model

interacts with its environment. This can create feedback loops,

as described here:

1. A predictive policing model is created based on where

arrests have been made in the past. In practice, this is

not actually predicting crime, but rather predicting

arrests, and is therefore partially simply reflecting

biases in existing policing processes.

2. Law enforcement officers then might use that model to

decide where to focus their policing activity, resulting in

increased arrests in those areas.

3. Data on these additional arrests would then be fed back

in to retrain future versions of the model.

This is a positive feedback loop: the more the model is used,

the more biased the data becomes, making the model even

more biased, and so forth.

Feedback loops can also create problems in commercial

settings. For instance, a video recommendation system might

be biased toward recommending content consumed by the

biggest watchers of video (e.g., conspiracy theorists and

extremists tend to watch more online video content than the

average), resulting in those users increasing their video

consumption, resulting in more of those kinds of videos being

recommended. We’ll consider this topic in more detail in

Chapter 3.

Now that you have seen the base of the theory, let’s go back to

our code example and see in detail how the code corresponds to

the process we just described.

How Our Image Recognizer Works

Let’s see just how our image recognizer code maps to these

ideas. We’ll put each line into a separate cell, and look at what

each one is doing (we won’t explain every detail of every

parameter yet, but will give a description of the important bits;

full details will come later in the book). The first line imports

all of the fastai.vision library:

from fastai.vision.all import *

This gives us all of the functions and classes we will need to

create a wide variety of computer vision models.

JEREMY SAYS
A lot of Python coders recommend avoiding importing a whole library

like this (using the import * syntax) because in large software projects it

can cause problems. However, for interactive work such as in a Jupyter

notebook, it works great. The fastai library is specially designed to

support this kind of interactive use, and it will import only the necessary

pieces into your environment.

The second line downloads a standard dataset from the fast.ai

datasets collection (if not previously downloaded) to your

server, extracts it (if not previously extracted), and returns a

Path object with the extracted location:

path = untar_data(URLs.PETS)/'images'

SYLVAIN SAYS
Throughout my time studying at fast.ai, and even still today, I’ve learned

a lot about productive coding practices. The fastai library and fast.ai

notebooks are full of great little tips that have helped make me a better

programmer. For instance, notice that the fastai library doesn’t just

return a string containing the path to the dataset, but a Path object. This

is a really useful class from the Python 3 standard library that makes

accessing files and directories much easier. If you haven’t come across it

before, be sure to check out its documentation or a tutorial and try it out.

Note that the book’s website contains links to recommended tutorials for

each chapter. I’ll keep letting you know about little coding tips I’ve found

useful as we come across them.

https://course.fast.ai/datasets
https://book.fast.ai/

In the third line, we define a function, is_cat, that labels cats

based on a filename rule provided by the dataset’s creators:

def is_cat(x): return x[0].isupper()

We use that function in the fourth line, which tells fastai what

kind of dataset we have and how it is structured:

dls = ImageDataLoaders.from_name_func(
 path, get_image_files(path), valid_pct=0.2, seed=42,
 label_func=is_cat, item_tfms=Resize(224))

There are various classes for different kinds of deep learning

datasets and problems—here we’re using ImageDataLoaders.

The first part of the class name will generally be the type of

data you have, such as image or text.

The other important piece of information that we have to tell

fastai is how to get the labels from the dataset. Computer vision

datasets are normally structured in such a way that the label for

an image is part of the filename or path—most commonly the

parent folder name. fastai comes with a number of

standardized labeling methods, and ways to write your own.

Here we’re telling fastai to use the is_cat function we just

defined.

Finally, we define the Transforms that we need. A Transform

contains code that is applied automatically during training;

fastai includes many predefined Transforms, and adding new

ones is as simple as creating a Python function. There are two

kinds: item_tfms are applied to each item (in this case, each

item is resized to a 224-pixel square), while batch_tfms are

applied to a batch of items at a time using the GPU, so they’re

particularly fast (we’ll see many examples of these throughout

this book).

Why 224 pixels? This is the standard size for historical reasons

(old pretrained models require this size exactly), but you can

pass pretty much anything. If you increase the size, you’ll often

get a model with better results (since it will be able to focus on

more details), but at the price of speed and memory

consumption; the opposite is true if you decrease the size.

JARGON: CLASSIFICATION AND
REGRESSION

Classification and regression have very specific meanings in machine

learning. These are the two main types of model that we will be

investigating in this book. A classification model is one that attempts to

predict a class, or category. That is, it’s predicting from a number of

discrete possibilities, such as “dog” or “cat.” A regression model is one

that attempts to predict one or more numeric quantities, such as a

temperature or a location. Sometimes people use the word regression to

refer to a particular kind of model called a linear regression model; this

is a bad practice, and we won’t be using that terminology in this book!

The Pet dataset contains 7,390 pictures of dogs and cats,

consisting of 37 breeds. Each image is labeled using its

filename: for instance, the file great_pyrenees_173.jpg is the

173rd example of an image of a Great Pyrenees breed dog in the

dataset. The filenames start with an uppercase letter if the

image is a cat, and a lowercase letter otherwise. We have to tell

fastai how to get labels from the filenames, which we do by

calling from_name_func (which means that filenames can be

extracted using a function applied to the filename) and passing

x[0].isupper(), which evaluates to True if the first letter is

uppercase (i.e., it’s a cat).

The most important parameter to mention here is

valid_pct=0.2. This tells fastai to hold out 20% of the data and

not use it for training the model at all. This 20% of the data is

called the validation set; the remaining 80% is called the

training set. The validation set is used to measure the accuracy

of the model. By default, the 20% that is held out is selected

randomly. The parameter seed=42 sets the random seed to the

same value every time we run this code, which means we get

the same validation set every time we run it—this way, if we

change our model and retrain it, we know that any differences

are due to the changes to the model, not due to having a

different random validation set.

fastai will always show you your model’s accuracy using only

the validation set, never the training set. This is absolutely

critical, because if you train a large enough model for a long

enough time, it will eventually memorize the label of every item

in your dataset! The result will not be a useful model, because

what we care about is how well our model works on previously

unseen images. That is always our goal when creating a model:

for it to be useful on data that the model sees only in the future,

after it has been trained.

Even when your model has not fully memorized all your data,

earlier on in training it may have memorized certain parts of it.

As a result, the longer you train for, the better your accuracy

will get on the training set; the validation set accuracy will also

improve for a while, but eventually it will start getting worse as

the model starts to memorize the training set rather than

finding generalizable underlying patterns in the data. When

this happens, we say that the model is overfitting.

Figure 1-9 shows what happens when you overfit, using a

simplified example where we have just one parameter and

some randomly generated data based on the function x**2. As

you see, although the predictions in the overfit model are

accurate for data near the observed data points, they are way

off when outside of that range.

Figure 1-9. Example of overfitting

Overfitting is the single most important and

challenging issue when training for all machine learning

practitioners, and all algorithms. As you will see, it is easy to

create a model that does a great job at making predictions on

the exact data it has been trained on, but it is much harder to

make accurate predictions on data the model has never seen

before. And of course, this is the data that will matter in

practice. For instance, if you create a handwritten digit

classifier (as we will soon!) and use it to recognize numbers

written on checks, then you are never going to see any of the

numbers that the model was trained on—every check will have

slightly different variations of writing to deal with.

You will learn many methods to avoid overfitting in this book.

However, you should use those methods only after you have

confirmed that overfitting is occurring (i.e., if you have

observed the validation accuracy getting worse during

training). We often see practitioners using overfitting

avoidance techniques even when they have enough data that

they didn’t need to do so, ending up with a model that may be

less accurate than what they could have achieved.

VALIDATION SET
When you train a model, you must always have both a training set and a

validation set, and you must measure the accuracy of your model only on

the validation set. If you train for too long, with not enough data, you

will see the accuracy of your model start to get worse; this is called

overfitting. fastai defaults valid_pct to 0.2, so even if you forget, fastai

will create a validation set for you!

The fifth line of the code training our image recognizer tells

fastai to create a convolutional neural network (CNN) and

specifies what architecture to use (i.e., what kind of model to

create), what data we want to train it on, and what metric to

use:

learn = cnn_learner(dls, resnet34, metrics=error_rate)

Why a CNN? It’s the current state-of-the-art approach to

creating computer vision models. We’ll be learning all about

how CNNs work in this book. Their structure is inspired by how

the human vision system works.

There are many architectures in fastai, which we will introduce

in this book (as well as discussing how to create your own).

Most of the time, however, picking an architecture isn’t a very

important part of the deep learning process. It’s something that

academics love to talk about, but in practice it is unlikely to be

something you need to spend much time on. There are some

standard architectures that work most of the time, and in this

case we’re using one called ResNet that we’ll be talking a lot

about in the book; it is both fast and accurate for many datasets

and problems. The 34 in resnet34 refers to the number of

layers in this variant of the architecture (other options are 18,

50, 101, and 152). Models using architectures with more layers

take longer to train and are more prone to overfitting (i.e., you

can’t train them for as many epochs before the accuracy on the

validation set starts getting worse). On the other hand, when

using more data, they can be quite a bit more accurate.

What is a metric? A metric is a function that measures the

quality of the model’s predictions using the validation set, and

will be printed at the end of each epoch. In this case, we’re

using error_rate, which is a function provided by fastai that

does just what it says: tells you what percentage of images in

the validation set are being classified incorrectly. Another

common metric for classification is accuracy (which is just 1.0

- error_rate). fastai provides many more, which will be

discussed throughout this book.

The concept of a metric may remind you of loss, but there is an

important distinction. The entire purpose of loss is to define a

“measure of performance” that the training system can use to

update weights automatically. In other words, a good choice for

loss is a choice that is easy for stochastic gradient descent to

use. But a metric is defined for human consumption, so a good

metric is one that is easy for you to understand, and that hews

as closely as possible to what you want the model to do. At

times, you might decide that the loss function is a suitable

metric, but that is not necessarily the case.

cnn_learner also has a parameter pretrained, which defaults

to True (so it’s used in this case, even though we haven’t

specified it), which sets the weights in your model to values

that have already been trained by experts to recognize a

thousand different categories across 1.3 million photos (using

the famous ImageNet dataset). A model that has weights that

have already been trained on another dataset is called a

pretrained model. You should nearly always use a pretrained

model, because it means that your model, before you’ve even

shown it any of your data, is already very capable. And as you’ll

see, in a deep learning model, many of these capabilities are

things you’ll need, almost regardless of the details of your

project. For instance, parts of pretrained models will handle

edge, gradient, and color detection, which are needed for many

tasks.

When using a pretrained model, cnn_learner will remove the

last layer, since that is always specifically customized to the

original training task (i.e., ImageNet dataset classification), and

replace it with one or more new layers with randomized

weights, of an appropriate size for the dataset you are working

with. This last part of the model is known as the head.

Using pretrained models is the most important method we

have to allow us to train more accurate models, more quickly,

with less data and less time and money. You might think that

http://www.image-net.org/

would mean that using pretrained models would be the most

studied area in academic deep learning…but you’d be very, very

wrong! The importance of pretrained models is generally not

recognized or discussed in most courses, books, or software

library features, and is rarely considered in academic papers.

As we write this at the start of 2020, things are just starting to

change, but it’s likely to take a while. So be careful: most people

you speak to will probably greatly underestimate what you can

do in deep learning with few resources, because they probably

won’t deeply understand how to use pretrained models.

Using a pretrained model for a task different from what it was

originally trained for is known as transfer learning.

Unfortunately, because transfer learning is so under-studied,

few domains have pretrained models available. For instance,

few pretrained models are currently available in medicine,

making transfer learning challenging to use in that domain. In

addition, it is not yet well understood how to use transfer

learning for tasks such as time series analysis.

JARGON: TRANSFER LEARNING
Using a pretrained model for a task different from what it was originally

trained for.

The sixth line of our code tells fastai how to fit the model:

learn.fine_tune(1)

As we’ve discussed, the architecture only describes a template

for a mathematical function; it doesn’t actually do anything

until we provide values for the millions of parameters it

contains.

This is the key to deep learning—determining how to fit the

parameters of a model to get it to solve your problem. To fit a

model, we have to provide at least one piece of information:

how many times to look at each image (known as number of

epochs). The number of epochs you select will largely depend

on how much time you have available, and how long you find it

takes in practice to fit your model. If you select a number that

is too small, you can always train for more epochs later.

But why is the method called fine_tune, and not fit? fastai

does have a method called fit, which does indeed fit a model

(i.e., look at images in the training set multiple times, each time

updating the parameters to make the predictions closer and

closer to the target labels). But in this case, we’ve started with a

pretrained model, and we don’t want to throw away all those

capabilities that it already has. As you’ll learn in this book,

there are some important tricks to adapt a pretrained model for

a new dataset—a process called fine-tuning.

JARGON: FINE-TUNING
A transfer learning technique that updates the parameters of a

pretrained model by training for additional epochs using a different task

from that used for pretraining.

When you use the fine_tune method, fastai will use these tricks

for you. There are a few parameters you can set (which we’ll

discuss later), but in the default form shown here, it does two

steps:

1. Use one epoch to fit just those parts of the model

necessary to get the new random head to work correctly

with your dataset.

2. Use the number of epochs requested when calling the

method to fit the entire model, updating the weights of

the later layers (especially the head) faster than the

earlier layers (which, as we’ll see, generally don’t

require many changes from the pretrained weights).

The head of a model is the part that is newly added to be

specific to the new dataset. An epoch is one complete pass

through the dataset. After calling fit, the results after each

epoch are printed, showing the epoch number, the training and

validation set losses (the “measure of performance” used for

training the model), and any metrics you’ve requested (error

rate, in this case).

So, with all this code, our model learned to recognize cats and

dogs just from labeled examples. But how did it do it?

What Our Image Recognizer Learned

At this stage, we have an image recognizer that is working well,

but we have no idea what it is doing! Although many people

complain that deep learning results in impenetrable “black

box” models (that is, something that gives predictions but that

no one can understand), this really couldn’t be further from the

truth. There is a vast body of research showing how to deeply

inspect deep learning models and get rich insights from them.

Having said that, all kinds of machine learning models

(including deep learning and traditional statistical models) can

be challenging to fully understand, especially when considering

how they will behave when coming across data that is very

different from the data used to train them. We’ll be discussing

this issue throughout this book.

In 2013, PhD student Matt Zeiler and his supervisor, Rob

Fergus, published “Visualizing and Understanding

Convolutional Networks”, which showed how to visualize the

neural network weights learned in each layer of a model. They

carefully analyzed the model that won the 2012 ImageNet

competition, and used this analysis to greatly improve the

model, such that they were able to go on to win the 2013

competition! Figure 1-10 is the picture that they published of

the first layer’s weights.

https://oreil.ly/iP8cr

Figure 1-10. Activations of the first layer of a CNN (courtesy of Matthew D. Zeiler and Rob
Fergus)

This picture requires some explanation. For each layer, the

image part with the light gray background shows the

reconstructed weights, and the larger section at the bottom

shows the parts of the training images that most strongly

matched each set of weights. For layer 1, what we can see is that

the model has discovered weights that represent diagonal,

horizontal, and vertical edges, as well as various gradients.

(Note that for each layer, only a subset of the features is shown;

in practice there are thousands across all of the layers.)

These are the basic building blocks that the model has learned

for computer vision. They have been widely analyzed by

neuroscientists and computer vision researchers, and it turns

out that these learned building blocks are very similar to the

basic visual machinery in the human eye, as well as the

handcrafted computer vision features that were developed

prior to the days of deep learning. The next layer is represented

in Figure 1-11.

Figure 1-11. Activations of the second layer of a CNN (courtesy of Matthew D. Zeiler and
Rob Fergus)

For layer 2, there are nine examples of weight reconstructions

for each of the features found by the model. We can see that the

model has learned to create feature detectors that look for

corners, repeating lines, circles, and other simple patterns.

These are built from the basic building blocks developed in the

first layer. For each of these, the righthand side of the picture

shows small patches from actual images that these features

most closely match. For instance, the particular pattern in row

2, column 1 matches the gradients and textures associated with

sunsets.

Figure 1-12 shows the image from the paper showing the

results of reconstructing the features of layer 3.

Figure 1-12. Activations of the third layer of a CNN (courtesy of Matthew D. Zeiler and Rob
Fergus)

As you can see by looking at the righthand side of this picture,

the features are now able to identify and match with higher-

level semantic components, such as car wheels, text, and flower

petals. Using these components, layers 4 and 5 can identify

even higher-level concepts, as shown in Figure 1-13.

Figure 1-13. Activations of the fourth and fifth layers of a CNN (courtesy of Matthew D.
Zeiler and Rob Fergus)

This article was studying an older model called AlexNet that

contained only five layers. Networks developed since then can

have hundreds of layers—so you can imagine how rich the

features developed by these models can be!

When we fine-tuned our pretrained model earlier, we adapted

what those last layers focus on (flowers, humans, animals) to

specialize on the cats versus dogs problem. More generally, we

could specialize such a pretrained model on many different

tasks. Let’s have a look at some examples.

Image Recognizers Can Tackle Non-Image Tasks

An image recognizer can, as its name suggests, only recognize

images. But a lot of things can be represented as images, which

means that an image recognizer can learn to complete many

tasks.

For instance, a sound can be converted to a spectrogram, which

is a chart that shows the amount of each frequency at each time

in an audio file. Fast.ai student Ethan Sutin used this approach

to easily beat the published accuracy of a state-of-the-art

environmental sound detection model using a dataset of 8,732

urban sounds. fastai’s show_batch clearly shows how each

sound has a quite distinctive spectrogram, as you can see in

Figure 1-14.

https://oreil.ly/747uv

Figure 1-14. show_batch with spectrograms of sounds

A time series can easily be converted into an image by simply

plotting the time series on a graph. However, it is often a good

idea to try to represent your data in a way that makes it as easy

as possible to pull out the most important components. In a

time series, things like seasonality and anomalies are most

likely to be of interest.

Various transformations are available for time series data. For

instance, fast.ai student Ignacio Oguiza created images from a

time series dataset for olive oil classification, using a technique

called Gramian Angular Difference Field (GADF); you can see

the result in Figure 1-15. He then fed those images to an image

classification model just like the one you see in this chapter.

His results, despite having only 30 training set images, were

well over 90% accurate, and close to the state of the art.

Figure 1-15. Converting a time series into an image

Another interesting fast.ai student project example comes from

Gleb Esman. He was working on fraud detection at Splunk,

using a dataset of users’ mouse movements and mouse clicks.

He turned these into pictures by drawing an image displaying

the position, speed, and acceleration of the mouse pointer by

using colored lines, and the clicks were displayed using small

colored circles, as shown in Figure 1-16. He fed this into an

image recognition model just like the one we’ve used in this

https://oreil.ly/6-I_X

chapter, and it worked so well that it led to a patent for this

approach to fraud analytics!

Figure 1-16. Converting computer mouse behavior to an image

Another example comes from the paper “Malware

Classification with Deep Convolutional Neural Networks” by

Mahmoud Kalash et al., which explains that “the malware

binary file is divided into 8-bit sequences which are then

converted to equivalent decimal values. This decimal vector is

reshaped and [a] gray-scale image is generated that

represent[s] the malware sample,” in Figure 1-17.

https://oreil.ly/l_knA

Figure 1-17. Malware classification process

The authors then show “pictures” generated through this

process of malware in different categories, as shown in

Figure 1-18.

Figure 1-18. Malware examples

As you can see, the different types of malware look very

distinctive to the human eye. The model the researchers

trained based on this image representation was more accurate

at malware classification than any previous approach shown in

the academic literature. This suggests a good rule of thumb for

converting a dataset into an image representation: if the

human eye can recognize categories from the images, then a

deep learning model should be able to do so too.

In general, you’ll find that a small number of general

approaches in deep learning can go a long way, if you’re a bit

creative in how you represent your data! You shouldn’t think of

approaches like the ones described here as “hacky

workarounds,” because they often (as here) beat previously

state-of-the-art results. These really are the right ways to think

about these problem domains.

Jargon Recap

We just covered a lot of information, so let’s recap briefly.

Table 1-3 provides a handy vocabulary list.

T
a
b
l
e

1
-
3
.
D
e
e
p

l
e
a
r
n
i
n
g

v
o
c
a
b
u
l
a
r
y

Term Meaning

Label The data that we’re trying to predict, such as “dog” or “cat”

Archit

ecture

The template of the model that we’re trying to fit; i.e., the actual

mathematical function that we’re passing the input data and

parameters to

Model The combination of the architecture with a particular set of

parameters

Param

eters

The values in the model that change what task it can do and that are

updated through model training

Fit Update the parameters of the model such that the predictions of the

model using the input data match the target labels

Train A synonym for fit

Pretra

ined

model

A model that has already been trained, generally using a large

dataset, and will be fine-tuned

Fine-

tune

Update a pretrained model for a different task

Epoch One complete pass through the input data

Loss A measure of how good the model is, chosen to drive training via

SGD

Metric A measurement of how good the model is using the validation set,

chosen for human consumption

Valida

tion

A set of data held out from training, used only for measuring how

good the model is

set

Traini

ng set

The data used for fitting the model; does not include any data from

the validation set

Overfi

tting

Training a model in such a way that it remembers specific features

of the input data, rather than generalizing well to data not seen

during training

CNN Convolutional neural network; a type of neural network that works

particularly well for computer vision tasks

With this vocabulary in hand, we are now in a position to bring

together all the key concepts introduced so far. Take a moment

to review those definitions and read the following summary. If

you can follow the explanation, you’re well equipped to

understand the discussions to come.

Machine learning is a discipline in which we define a program

not by writing it entirely ourselves, but by learning from data.

Deep learning is a specialty within machine learning that uses

neural networks with multiple layers. Image classification is a

representative example (also known as image recognition). We

start with labeled data—a set of images for which we have

assigned a label to each image, indicating what it represents.

Our goal is to produce a program, called a model, that, given a

new image, will make an accurate prediction regarding what

that new image represents.

Every model starts with a choice of architecture, a general

template for how that kind of model works internally. The

process of training (or fitting) the model is the process of

finding a set of parameter values (or weights) that specialize

that general architecture into a model that works well for our

particular kind of data. To define how well a model does on a

single prediction, we need to define a loss function, which

determines how we score a prediction as good or bad.

To make the training process go faster, we might start with a

pretrained model—a model that has already been trained on

someone else’s data. We can then adapt it to our data by

training it a bit more on our data, a process called fine-tuning.

When we train a model, a key concern is to ensure that our

model generalizes: it learns general lessons from our data that

also apply to new items it will encounter, so it can make good

predictions on those items. The risk is that if we train our

model badly, instead of learning general lessons, it effectively

memorizes what it has already seen, and then it will make poor

predictions about new images. Such a failure is called

overfitting.

To avoid this, we always divide our data into two parts, the

training set and the validation set. We train the model by

showing it only the training set, and then we evaluate how well

the model is doing by seeing how well it performs on items

from the validation set. In this way, we check if the lessons the

model learns from the training set are lessons that generalize to

the validation set. In order for a person to assess how well the

model is doing on the validation set overall, we define a metric.

During the training process, when the model has seen every

item in the training set, we call that an epoch.

All these concepts apply to machine learning in general. They

apply to all sorts of schemes for defining a model by training it

with data. What makes deep learning distinctive is a particular

class of architectures: the architectures based on neural

networks. In particular, tasks like image classification rely

heavily on convolutional neural networks, which we will

discuss shortly.

Deep Learning Is Not Just for Image
Classification

Deep learning’s effectiveness for classifying images has been

widely discussed in recent years, even showing superhuman

results on complex tasks like recognizing malignant tumors in

CT scans. But it can do a lot more than this, as we will show

here.

For instance, let’s talk about something that is critically

important for autonomous vehicles: localizing objects in a

picture. If a self-driving car doesn’t know where a pedestrian is,

then it doesn’t know how to avoid one! Creating a model that

can recognize the content of every individual pixel in an image

is called segmentation. Here is how we can train a

segmentation model with fastai, using a subset of the CamVid

https://oreil.ly/rDy1i

dataset from the paper “Semantic Object Classes in Video: A

High-Definition Ground Truth Database” by Gabriel J. Brostow

et al.:

path = untar_data(URLs.CAMVID_TINY)
dls = SegmentationDataLoaders.from_label_func(
 path, bs=8, fnames = get_image_files(path/"images"),
 label_func = lambda o:
path/'labels'/f'{o.stem}_P{o.suffix}',
 codes = np.loadtxt(path/'codes.txt', dtype=str)
)

learn = unet_learner(dls, resnet34)
learn.fine_tune(8)

epoch train_loss valid_loss time

0 2.906601 2.347491 00:02

https://oreil.ly/rDy1i
https://oreil.ly/Mqclf

epoch train_loss valid_loss time

0 1.988776 1.765969 00:02

1 1.703356 1.265247 00:02

2 1.591550 1.309860 00:02

3 1.459745 1.102660 00:02

4 1.324229 0.948472 00:02

5 1.205859 0.894631 00:02

6 1.102528 0.809563 00:02

7 1.020853 0.805135 00:02

We are not even going to walk through this code line by line,

because it is nearly identical to our previous example! (We will

be doing a deep dive into segmentation models in Chapter 15,

along with all of the other models that we are briefly

introducing in this chapter and many, many more.)

We can visualize how well it achieved its task by asking the

model to color-code each pixel of an image. As you can see, it

nearly perfectly classifies every pixel in every object. For

instance, notice that all of the cars are overlaid with the same

color, and all of the trees are overlaid with the same color (in

each pair of images, the lefthand image is the ground truth

label, and the right is the prediction from the model):

learn.show_results(max_n=6, figsize=(7,8))

One other area where deep learning has dramatically improved

in the last couple of years is natural language processing (NLP).

Computers can now generate text, translate automatically from

one language to another, analyze comments, label words in

sentences, and much more. Here is all of the code necessary to

train a model that can classify the sentiment of a movie review

better than anything that existed in the world just five years

ago:

from fastai.text.all import *

dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB),
valid='test')
learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5,
metrics=accuracy)
learn.fine_tune(4, 1e-2)

epoch train_loss valid_loss accuracy time

0 0.594912 0.407416 0.823640 01:35

epoch train_loss valid_loss accuracy time

0 0.268259 0.316242 0.876000 03:03

1 0.184861 0.246242 0.898080 03:10

2 0.136392 0.220086 0.918200 03:16

3 0.106423 0.191092 0.931360 03:15

This model is using the IMDb Large Movie Review dataset

from “Learning Word Vectors for Sentiment Analysis” by

Andrew Maas et al. It works well with movie reviews of many

thousands of words, but let’s test it on a short one to see how it

works:

learn.predict("I really liked that movie!")

('pos', tensor(1), tensor([0.0041, 0.9959]))

Here we can see the model has considered the review to be

positive. The second part of the result is the index of “pos” in

our data vocabulary, and the last part is the probabilities

attributed to each class (99.6% for “pos” and 0.4% for “neg”).

https://oreil.ly/tl-wp
https://oreil.ly/L9vre

Now it’s your turn! Write your own mini movie review, or copy

one from the internet, and you can see what this model thinks

about it.

THE ORDER MATTERS
In a Jupyter notebook, the order you execute each cell is important. It’s not like
Excel, where everything gets updated as soon as you type something anywhere—it
has an inner state that gets updated each time you execute a cell. For instance,
when you run the first cell of the notebook (with the “CLICK ME” comment), you
create an object called learn that contains a model and data for an image
classification problem.

If we were to run the cell just shown in the text (the one that predicts whether a
review is good) straight after, we would get an error as this learn object does not
contain a text classification model. This cell needs to be run after the one containing
this:

from fastai.text.all import *

dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB),
valid='test')
learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5,
 metrics=accuracy)
learn.fine_tune(4, 1e-2)

The outputs themselves can be deceiving, because they include the results of the
last time the cell was executed; if you change the code inside a cell without
executing it, the old (misleading) results will remain.

Except when we mention it explicitly, the notebooks provided on the book’s website
are meant to be run in order, from top to bottom. In general, when experimenting,
you will find yourself executing cells in any order to go fast (which is a super neat
feature of Jupyter Notebook), but once you have explored and arrived at the final
version of your code, make sure you can run the cells of your notebooks in order
(your future self won’t necessarily remember the convoluted path you took
otherwise!).

In command mode, typing 0 twice will restart the kernel (which is the engine
powering your notebook). This will wipe your state clean and make it as if you had
just started in the notebook. Choose Run All Above from the Cell menu to run all
cells above the point where you are. We have found this to be useful when
developing the fastai library.

https://book.fast.ai/

If you ever have any questions about a fastai method, you

should use the function doc, passing it the method name:

doc(learn.predict)

A window pops up containing a brief one-line explanation. The

“Show in docs” link takes you to the full documentation, where

you’ll find all the details and lots of examples. Also, most of

fastai’s methods are just a handful of lines, so you can click the

“source” link to see exactly what’s going on behind the scenes.

Let’s move on to something much less sexy, but perhaps

significantly more widely commercially useful: building models

from plain tabular data.

JARGON: TABULAR
Data that is in the form of a table, such as from a spreadsheet, database,

or a comma-separated values (CSV) file. A tabular model is a model that

tries to predict one column of a table based on information in other

columns of the table.

https://docs.fast.ai/

It turns out that looks very similar too. Here is the code

necessary to train a model that will predict whether a person is

a high-income earner, based on their socioeconomic

background:

from fastai.tabular.all import *
path = untar_data(URLs.ADULT_SAMPLE)

dls = TabularDataLoaders.from_csv(path/'adult.csv', path=path,
y_names="salary",
 cat_names = ['workclass', 'education', 'marital-status',
'occupation',
 'relationship', 'race'],
 cont_names = ['age', 'fnlwgt', 'education-num'],
 procs = [Categorify, FillMissing, Normalize])

learn = tabular_learner(dls, metrics=accuracy)

As you see, we had to tell fastai which columns are categorical

(contain values that are one of a discrete set of choices, such as

occupation) versus continuous (contain a number that

represents a quantity, such as age).

There is no pretrained model available for this task (in general,

pretrained models are not widely available for any tabular

modeling tasks, although some organizations have created

them for internal use), so we don’t use fine_tune in this case.

Instead, we use fit_one_cycle, the most commonly used

method for training fastai models from scratch (i.e., without

transfer learning):

learn.fit_one_cycle(3)

epoch train_loss valid_loss accuracy time

0 0.359960 0.357917 0.831388 00:11

1 0.353458 0.349657 0.837991 00:10

2 0.338368 0.346997 0.843213 00:10

This model is using the Adult dataset from the paper “Scaling

Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree

Hybrid” by Ron Kohavi, which contains some demographic

data about individuals (like their education, marital status,

race, sex and whether they have an annual income greater than

$50k). The model is over 80% accurate and took around 30

seconds to train.

Let’s look at one more. Recommendation systems are

important, particularly in ecommerce. Companies like Amazon

and Netflix try hard to recommend products or movies that

users might like. Here’s how to train a model that will predict

movies people might like based on their previous viewing

habits, using the MovieLens dataset:

https://oreil.ly/Gc0AR
https://oreil.ly/qFOSc
https://oreil.ly/LCfwH

from fastai.collab import *
path = untar_data(URLs.ML_SAMPLE)
dls = CollabDataLoaders.from_csv(path/'ratings.csv')
learn = collab_learner(dls, y_range=(0.5,5.5))
learn.fine_tune(10)

epoch train_loss valid_loss time

0 1.554056 1.428071 00:01

epoch train_loss valid_loss time

0 1.393103 1.361342 00:01

1 1.297930 1.159169 00:00

2 1.052705 0.827934 00:01

3 0.810124 0.668735 00:01

4 0.711552 0.627836 00:01

5 0.657402 0.611715 00:01

6 0.633079 0.605733 00:01

7 0.622399 0.602674 00:01

8 0.629075 0.601671 00:00

9 0.619955 0.601550 00:01

This model is predicting movie ratings on a scale of 0.5 to 5.0

to within around 0.6 average error. Since we’re predicting a

continuous number, rather than a category, we have to tell

fastai what range our target has, using the y_range parameter.

Although we’re not actually using a pretrained model (for the

same reason that we didn’t for the tabular model), this example

shows that fastai lets us use fine_tune anyway in this case

(you’ll learn how and why this works in Chapter 5). Sometimes

it’s best to experiment with fine_tune versus fit_one_cycle to

see which works best for your dataset.

We can use the same show_results call we saw earlier to view a

few examples of user and movie IDs, actual ratings, and

predictions:

learn.show_results()

userId movieId rating rating_pred

0
157 1200 4.0 3.558502

1
23 344 2.0 2.700709

2
19 1221 5.0 4.390801

3
430 592 3.5 3.944848

4
547 858 4.0 4.076881

5
292 39 4.5 3.753513

6
529 1265 4.0 3.349463

7
19 231 3.0 2.881087

8
475 4963 4.0 4.023387

9
130 260 4.5 3.979703

DATASETS: FOOD FOR MODELS
You’ve already seen quite a few models in this section, each one trained using a
different dataset to do a different task. In machine learning and deep learning, we
can’t do anything without data. So, the people who create datasets for us to train our
models on are the (often underappreciated) heroes. Some of the most useful and
important datasets are those that become important academic baselines— datasets
that are widely studied by researchers and used to compare algorithmic changes.
Some of these become household names (at least, among households that train
models!), such as MNIST, CIFAR-10, and ImageNet.

The datasets used in this book have been selected because they provide great
examples of the kinds of data that you are likely to encounter, and the academic
literature has many examples of model results using these datasets to which you can
compare your work.

Most datasets used in this book took the creators a lot of work to build. For instance,
later in the book we’ll be showing you how to create a model that can translate
between French and English. The key input to this is a French/English parallel text
corpus prepared in 2009 by Professor Chris Callison-Burch of the University of
Pennsylvania. This dataset contains over 20 million sentence pairs in French and
English. He built the dataset in a really clever way: by crawling millions of Canadian
web pages (which are often multilingual) and then using a set of simple heuristics to
transform URLs of French content to URLs pointing to the same content in English.

As you look at datasets throughout this book, think about where they might have
come from and how they might have been curated. Then think about what kinds of
interesting datasets you could create for your own projects. (We’ll even take you step
by step through the process of creating your own image dataset soon.)

fast.ai has spent a lot of time creating cut-down versions of popular datasets that are
specially designed to support rapid prototyping and experimentation, and to be
easier to learn with. In this book, we will often start by using one of the cut-down
versions and later scale up to the full-size version (just as we’re doing in this
chapter!). This is how the world’s top practitioners do their modeling in practice; they
do most of their experimentation and prototyping with subsets of their data, and use
the full dataset only when they have a good understanding of what they have to do.

Each of the models we trained showed a training and validation

loss. A good validation set is one of the most important pieces

of the training process. Let’s see why and learn how to create

one.

Validation Sets and Test Sets

As we’ve discussed, the goal of a model is to make predictions

about data. But the model training process is fundamentally

dumb. If we trained a model with all our data and then

evaluated the model using that same data, we would not be

able to tell how well our model can perform on data it hasn’t

seen. Without this very valuable piece of information to guide

us in training our model, there is a very good chance it would

become good at making predictions about that data but would

perform poorly on new data.

To avoid this, our first step was to split our dataset into two

sets: the training set (which our model sees in training) and

the validation set, also known as the development set (which is

used only for evaluation). This lets us test that the model learns

lessons from the training data that generalize to new data, the

validation data.

One way to understand this situation is that, in a sense, we

don’t want our model to get good results by “cheating.” If it

makes an accurate prediction for a data item, that should be

because it has learned characteristics of that kind of item, and

not because the model has been shaped by actually having

seen that particular item.

Splitting off our validation data means our model never sees it

in training and so is completely untainted by it, and is not

cheating in any way. Right?

In fact, not necessarily. The situation is more subtle. This is

because in realistic scenarios we rarely build a model just by

training its parameters once. Instead, we are likely to explore

many versions of a model through various modeling choices

regarding network architecture, learning rates, data

augmentation strategies, and other factors we will discuss in

upcoming chapters. Many of these choices can be described as

choices of hyperparameters. The word reflects that they are

parameters about parameters, since they are the higher-level

choices that govern the meaning of the weight parameters.

The problem is that even though the ordinary training process

is looking at only predictions on the training data when it

learns values for the weight parameters, the same is not true of

us. We, as modelers, are evaluating the model by looking at

predictions on the validation data when we decide to explore

new hyperparameter values! So subsequent versions of the

model are, indirectly, shaped by us having seen the validation

data. Just as the automatic training process is in danger of

overfitting the training data, we are in danger of overfitting the

validation data through human trial and error and exploration.

The solution to this conundrum is to introduce another level of

even more highly reserved data: the test set. Just as we hold

back the validation data from the training process, we must

hold back the test set data even from ourselves. It cannot be

used to improve the model; it can be used only to evaluate the

model at the very end of our efforts. In effect, we define a

hierarchy of cuts of our data, based on how fully we want to

hide it from training and modeling processes: training data is

fully exposed, the validation data is less exposed, and test data

is totally hidden. This hierarchy parallels the different kinds of

modeling and evaluation processes themselves—the automatic

training process with backpropagation, the more manual

process of trying different hyperparameters between training

sessions, and the assessment of our final result.

The test and validation sets should have enough data to ensure

that you get a good estimate of your accuracy. If you’re creating

a cat detector, for instance, you generally want at least 30 cats

in your validation set. That means that if you have a dataset

with thousands of items, using the default 20% validation set

size may be more than you need. On the other hand, if you have

lots of data, using some of it for validation probably doesn’t

have any downsides.

Having two levels of “reserved data”—a validation set and a test

set, with one level representing data that you are virtually

hiding from yourself—may seem a bit extreme. But it is often

necessary because models tend to gravitate toward the simplest

way to do good predictions (memorization), and we as fallible

humans tend to gravitate toward fooling ourselves about how

well our models are performing. The discipline of the test set

helps us keep ourselves intellectually honest. That doesn’t

mean we always need a separate test set—if you have very little

data, you may need just a validation set—but generally it’s best

to use one if at all possible.

This same discipline can be critical if you intend to hire a third

party to perform modeling work on your behalf. A third party

might not understand your requirements accurately, or their

incentives might even encourage them to misunderstand them.

A good test set can greatly mitigate these risks and let you

evaluate whether their work solves your actual problem.

To put it bluntly, if you’re a senior decision maker in your

organization (or you’re advising senior decision makers), the

most important takeaway is this: if you ensure that you really

understand what test and validation sets are and why they’re

important, you’ll avoid the single biggest source of failures

we’ve seen when organizations decide to use AI. For instance, if

you’re considering bringing in an external vendor or service,

make sure that you hold out some test data that the vendor

never gets to see. Then you check their model on your test

data, using a metric that you choose based on what actually

matters to you in practice, and you decide what level of

performance is adequate. (It’s also a good idea for you to try

out simple baseline yourself, so you know what a really simple

model can achieve. Often it’ll turn out that your simple model

performs just as well as one produced by an external “expert”!)

Use Judgment in Defining Test Sets

To do a good job of defining a validation set (and possibly a test

set), you will sometimes want to do more than just randomly

grab a fraction of your original dataset. Remember: a key

property of the validation and test sets is that they must be

representative of the new data you will see in the future. This

may sound like an impossible order! By definition, you haven’t

seen this data yet. But you usually still do know some things.

It’s instructive to look at a few example cases. Many of these

examples come from predictive modeling competitions on the

Kaggle platform, which is a good representation of problems

and methods you might see in practice.

One case might be if you are looking at time series data. For a

time series, choosing a random subset of the data will be both

too easy (you can look at the data both before and after the

dates you are trying to predict) and not representative of most

business use cases (where you are using historical data to build

a model for use in the future). If your data includes the date

and you are building a model to use in the future, you will want

to choose a continuous section with the latest dates as your

validation set (for instance, the last two weeks or last month of

available data).

Suppose you want to split the time series data in Figure 1-19

into training and validation sets.

https://www.kaggle.com/

Figure 1-19. A time series

A random subset is a poor choice (too easy to fill in the gaps,

and not indicative of what you’ll need in production), as we can

see in Figure 1-20.

Figure 1-20. A poor training subset

Instead, use the earlier data as your training set (and the later

data for the validation set), as shown in Figure 1-21.

Figure 1-21. A good training subset

For example, Kaggle had a competition to predict the sales in a

chain of Ecuadorian grocery stores. Kaggle’s training data ran

from Jan 1, 2013 to Aug 15, 2017, and the test data spanned

from Aug 16, 2017 to Aug 31, 2017. That way, the competition

organizer ensured that entrants were making predictions for a

time period that was in the future, from the perspective of their

model. This is similar to the way quantitative hedge fund

traders do backtesting to check whether their models are

predictive of future periods, based on past data.

A second common case occurs when you can easily anticipate

ways the data you will be making predictions for in production

https://oreil.ly/UQoXe

may be qualitatively different from the data you have to train

your model with.

In the Kaggle distracted driver competition, the independent

variables are pictures of drivers at the wheel of a car, and the

dependent variables are categories such as texting, eating, or

safely looking ahead. Lots of pictures are of the same drivers in

different positions, as we can see in Figure 1-22. If you were an

insurance company building a model from this data, note that

you would be most interested in how the model performs on

drivers it hasn’t seen before (since you would likely have

training data for only a small group of people). In recognition

of this, the test data for the competition consists of images of

people that don’t appear in the training set.

Figure 1-22. Two pictures from the training data

If you put one of the images in Figure 1-22 in your training set

and one in the validation set, your model will have an easy time

making a prediction for the one in the validation set, so it will

seem to be performing better than it would on new people.

Another perspective is that if you used all the people in training

your model, your model might be overfitting to particularities

https://oreil.ly/zT_tC

of those specific people and not just learning the states (texting,

eating, etc.).

A similar dynamic was at work in the Kaggle fisheries

competition to identify the species of fish caught by fishing

boats in order to reduce illegal fishing of endangered

populations. The test set consisted of images from boats that

didn’t appear in the training data, so in this case you’d want

your validation set to also include boats that are not in the

training set.

Sometimes it may not be clear how your validation data will

differ. For instance, for a problem using satellite imagery, you’d

need to gather more information on whether the training set

contained just certain geographic locations or came from

geographically scattered data.

Now that you have gotten a taste of how to build a model, you

can decide what you want to dig into next.

A Choose Your Own Adventure Moment

If you would like to learn more about how to use deep learning

models in practice, including how to identify and fix errors,

create a real working web application, and avoid your model

causing unexpected harm to your organization or society more

generally, then keep reading the next two chapters. If you

would like to start learning the foundations of how deep

learning works under the hood, skip to Chapter 4. (Did you

https://oreil.ly/iJwFf

ever read Choose Your Own Adventure books as a kid? Well,

this is kind of like that…except with more deep learning than

that book series contained.)

You will need to read all these chapters to progress further in

the book, but the order in which you read them is totally up to

you. They don’t depend on each other. If you skip ahead to

Chapter 4, we will remind you at the end to come back and read

the chapters you skipped over before you go any further.

Questionnaire

After reading pages and pages of prose, it can be hard to know

which key things you really need to focus on and remember. So,

we’ve prepared a list of questions and suggested steps to

complete at the end of each chapter. All the answers are in the

text of the chapter, so if you’re not sure about anything here,

reread that part of the text and make sure you understand it.

Answers to all these questions are also available on the book’s

website. You can also visit the forums if you get stuck to get

help from other folks studying this material.

1. Do you need these for deep learning?

Lots of math T/F

Lots of data T/F

Lots of expensive computers T/F

https://book.fast.ai/
https://forums.fast.ai/

A PhD T/F

2. Name five areas where deep learning is now the best

tool in the world.

3. What was the name of the first device that was based on

the principle of the artificial neuron?

4. Based on the book of the same name, what are the

requirements for parallel distributed processing (PDP)?

5. What were the two theoretical misunderstandings that

held back the field of neural networks?

6. What is a GPU?

7. Open a notebook and execute a cell containing: 1+1.

What happens?

8. Follow through each cell of the stripped version of the

notebook for this chapter. Before executing each cell,

guess what will happen.

9. Complete the Jupyter Notebook online appendix.

10. Why is it hard to use a traditional computer program to

recognize images in a photo?

11. What did Samuel mean by “weight assignment”?

12. What term do we normally use in deep learning for

what Samuel called “weights”?

https://oreil.ly/9uPZe

13. Draw a picture that summarizes Samuel’s view of a

machine learning model.

14. Why is it hard to understand why a deep learning model

makes a particular prediction?

15. What is the name of the theorem that shows that a

neural network can solve any mathematical problem to

any level of accuracy?

16. What do you need in order to train a model?

17. How could a feedback loop impact the rollout of a

predictive policing model?

18. Do we always have to use 224×224-pixel images with

the cat recognition model?

19. What is the difference between classification and

regression?

20. What is a validation set? What is a test set? Why do we

need them?

21. What will fastai do if you don’t provide a validation set?

22. Can we always use a random sample for a validation

set? Why or why not?

23. What is overfitting? Provide an example.

24. What is a metric? How does it differ from loss?

25. How can pretrained models help?

26. What is the “head” of a model?

27. What kinds of features do the early layers of a CNN

find? How about the later layers?

28. Are image models useful only for photos?

29. What is an architecture?

30. What is segmentation?

31. What is y_range used for? When do we need it?

32. What are hyperparameters?

33. What’s the best way to avoid failures when using AI in

an organization?

Further Research

Each chapter also has a “Further Research” section that poses

some questions that aren’t fully answered in the text, or gives

more advanced assignments. Answers to these questions aren’t

on the book’s website; you’ll need to do your own research!

1. Why is a GPU useful for deep learning? How is a CPU

different, and why is it less effective for deep learning?

2. Try to think of three areas where feedback loops might

impact the use of machine learning. See if you can find

documented examples of that happening in practice.

Chapter 2. From Model to Production

The six lines of code we saw in Chapter 1 are just one small part of the process

of using deep learning in practice. In this chapter, we’re going to use a

computer vision example to look at the end-to-end process of creating a deep

learning application. More specifically, we’re going to build a bear classifier!

In the process, we’ll discuss the capabilities and constraints of deep learning,

explore how to create datasets, look at possible gotchas when using deep

learning in practice, and more. Many of the key points will apply equally well

to other deep learning problems, such as those in Chapter 1. If you work

through a problem similar in key respects to our example problems, we expect

you to get excellent results with little code, quickly.

Let’s start with how you should frame your problem.

The Practice of Deep Learning

We’ve seen that deep learning can solve a lot of challenging problems quickly

and with little code. As a beginner, there’s a sweet spot of problems that are

similar enough to our example problems that you can very quickly get

extremely useful results. However, deep learning isn’t magic! The same six

lines of code won’t work for every problem anyone can think of today.

Underestimating the constraints and overestimating the capabilities of deep

learning may lead to frustratingly poor results, at least until you gain some

experience and can solve the problems that arise. Conversely, overestimating

the constraints and underestimating the capabilities of deep learning may

mean you do not attempt a solvable problem because you talk yourself out of

it.

We often talk to people who underestimate both the constraints and the

capabilities of deep learning. Both of these can be problems: underestimating

the capabilities means that you might not even try things that could be very

beneficial, and underestimating the constraints might mean that you fail to

consider and react to important issues.

The best thing to do is to keep an open mind. If you remain open to the

possibility that deep learning might solve part of your problem with less data

or complexity than you expect, you can design a process through which you

can find the specific capabilities and constraints related to your particular

problem. This doesn’t mean making any risky bets—we will show you how you

can gradually roll out models so that they don’t create significant risks, and

can even backtest them prior to putting them in production.

Starting Your Project

So where should you start your deep learning journey? The most important

thing is to ensure that you have a project to work on—it is only through

working on your own projects that you will get real experience building and

using models. When selecting a project, the most important consideration is

data availability.

Regardless of whether you are doing a project just for your own learning or for

practical application in your organization, you want to be able to start quickly.

We have seen many students, researchers, and industry practitioners waste

months or years while they attempt to find their perfect dataset. The goal is

not to find the “perfect” dataset or project, but just to get started and iterate

from there. If you take this approach, you will be on your third iteration of

learning and improving while the perfectionists are still in the planning

stages!

We also suggest that you iterate from end to end in your project; don’t spend

months fine-tuning your model, or polishing the perfect GUI, or labeling the

perfect dataset.…Instead, complete every step as well as you can in a

reasonable amount of time, all the way to the end. For instance, if your final

goal is an application that runs on a mobile phone, that should be what you

have after each iteration. But perhaps in the early iterations you take

shortcuts; for instance, by doing all of the processing on a remote server and

using a simple responsive web application. By completing the project end to

end, you will see where the trickiest bits are, and which bits make the biggest

difference to the final result.

As you work through this book, we suggest that you complete lots of small

experiments, by running and adjusting the notebooks we provide, at the same

time that you gradually develop your own projects. That way, you will be

getting experience with all of the tools and techniques that we’re explaining as

we discuss them.

SYLVAIN SAYS
To make the most of this book, take the time to experiment between each chapter, whether

on your own project or by exploring the notebooks we provide. Then try rewriting those

notebooks from scratch on a new dataset. It’s only by practicing (and failing) a lot that you

will develop intuition of how to train a model.

By using the end-to-end iteration approach, you will also get a better

understanding of how much data you really need. For instance, you may find

you can easily get only 200 labeled data items, and you can’t really know until

you try whether that’s enough to get the performance you need for your

application to work well in practice.

In an organizational context, you will be able to show your colleagues that

your idea can work by showing them a real working prototype. We have

repeatedly observed that this is the secret to getting good organizational buy-

in for a project.

Since it is easiest to get started on a project for which you already have data

available, that means it’s probably easiest to get started on a project related to

something you are already doing, because you already have data about things

that you are doing. For instance, if you work in the music business, you may

have access to many recordings. If you work as a radiologist, you probably

have access to lots of medical images. If you are interested in wildlife

preservation, you may have access to lots of images of wildlife.

Sometimes you have to get a bit creative. Maybe you can find a previous

machine learning project, such as a Kaggle competition, that is related to your

field of interest. Sometimes you have to compromise. Maybe you can’t find the

exact data you need for the precise project you have in mind; but you might be

able to find something from a similar domain, or measured in a different way,

tackling a slightly different problem. Working on these kinds of similar

projects will still give you a good understanding of the overall process, and

may help you identify other shortcuts, data sources, and so forth.

Especially when you are just starting out with deep learning, it’s not a good

idea to branch out into very different areas, to places that deep learning has

not been applied to before. That’s because if your model does not work at first,

you will not know whether it is because you have made a mistake, or if the

very problem you are trying to solve is simply not solvable with deep learning.

And you won’t know where to look to get help. Therefore, it is best at first to

start by finding an example online of something that somebody has had good

results with and that is at least somewhat similar to what you are trying to

achieve, by converting your data into a format similar to what someone else

has used before (such as creating an image from your data). Let’s have a look

at the state of deep learning, just so you know what kinds of things deep

learning is good at right now.

The State of Deep Learning

Let’s start by considering whether deep learning can be any good at the

problem you are looking to work on. This section provides a summary of the

state of deep learning at the start of 2020. However, things move very fast,

and by the time you read this, some of these constraints may no longer exist.

We will try to keep the book’s website up-to-date; in addition, a Google search

for “what can AI do now” is likely to provide current information.

COMPUTER VISION

There are many domains in which deep learning has not been used to analyze

images yet, but those where it has been tried have nearly universally shown

that computers can recognize items in an image at least as well as people can

—even specially trained people, such as radiologists. This is known as object

recognition. Deep learning is also good at recognizing where objects in an

image are, and can highlight their locations and name each found object. This

is known as object detection (in a variant of this that we saw in Chapter 1,

every pixel is categorized based on the kind of object it is part of—this is called

segmentation).

Deep learning algorithms are generally not good at recognizing images that

are significantly different in structure or style from those used to train the

model. For instance, if there were no black-and-white images in the training

data, the model may do poorly on black-and-white images. Similarly, if the

training data did not contain hand-drawn images, the model will probably do

poorly on hand-drawn images. There is no general way to check which types

of images are missing in your training set, but we will show in this chapter

some ways to try to recognize when unexpected image types arise in the data

when the model is being used in production (this is known as checking for

out-of-domain data).

One major challenge for object detection systems is that image labeling can be

slow and expensive. There is a lot of work at the moment going into tools to

try to make this labeling faster and easier, and to require fewer handcrafted

labels to train accurate object detection models. One approach that is

particularly helpful is to synthetically generate variations of input images,

such as by rotating them or changing their brightness and contrast; this is

called data augmentation and also works well for text and other types of

models. We will be discussing it in detail in this chapter.

Another point to consider is that although your problem might not look like a

computer vision problem, it might be possible with a little imagination to turn

it into one. For instance, if what you are trying to classify are sounds, you

might try converting the sounds into images of their acoustic waveforms and

then training a model on those images.

TEXT (NATURAL LANGUAGE PROCESSING)

Computers are good at classifying both short and long documents based on

categories such as spam or not spam, sentiment (e.g., is the review positive or

negative), author, source website, and so forth. We are not aware of any

rigorous work done in this area to compare computers to humans, but

anecdotally it seems to us that deep learning performance is similar to human

performance on these tasks.

Deep learning is also good at generating context-appropriate text, such as

replies to social media posts, and imitating a particular author’s style. It’s

good at making this content compelling to humans too—in fact, even more

compelling than human-generated text. However, deep learning is not good at

generating correct responses! We don’t have a reliable way to, for instance,

combine a knowledge base of medical information with a deep learning model

for generating medically correct natural language responses. This is

dangerous, because it is so easy to create content that appears to a layman to

be compelling, but actually is entirely incorrect.

Another concern is that context-appropriate, highly compelling responses on

social media could be used at massive scale—thousands of times greater than

any troll farm previously seen—to spread disinformation, create unrest, and

encourage conflict. As a rule of thumb, text generation models will always be

technologically a bit ahead of models for recognizing automatically generated

text. For instance, it is possible to use a model that can recognize artificially

generated content to actually improve the generator that creates that content,

until the classification model is no longer able to complete its task.

Despite these issues, deep learning has many applications in NLP: it can be

used to translate text from one language to another, summarize long

documents into something that can be digested more quickly, find all

mentions of a concept of interest, and more. Unfortunately, the translation or

summary could well include completely incorrect information! However, the

performance is already good enough that many people are using these

systems—for instance, Google’s online translation system (and every other

online service we are aware of) is based on deep learning.

COMBINING TEXT AND IMAGES

The ability of deep learning to combine text and images into a single model is,

generally, far better than most people intuitively expect. For example, a deep

learning model can be trained on input images with output captions written in

English, and can learn to generate surprisingly appropriate captions

automatically for new images! But again, we have the same warning that we

discussed in the previous section: there is no guarantee that these captions

will be correct.

Because of this serious issue, we generally recommend that deep learning be

used not as an entirely automated process, but as part of a process in which

the model and a human user interact closely. This can potentially make

humans orders of magnitude more productive than they would be with

entirely manual methods, and result in more accurate processes than using a

human alone.

For instance, an automatic system can be used to identify potential stroke

victims directly from CT scans, and send a high-priority alert to have those

scans looked at quickly. There is only a three-hour window to treat strokes, so

this fast feedback loop could save lives. At the same time, however, all scans

could continue to be sent to radiologists in the usual way, so there would be

no reduction in human input. Other deep learning models could automatically

measure items seen on the scans and insert those measurements into reports,

warning the radiologists about findings that they may have missed and telling

them about other cases that might be relevant.

TABULAR DATA

For analyzing time series and tabular data, deep learning has recently been

making great strides. However, deep learning is generally used as part of an

ensemble of multiple types of model. If you already have a system that is using

random forests or gradient boosting machines (popular tabular modeling

tools that you will learn about soon), then switching to or adding deep

learning may not result in any dramatic improvement.

Deep learning does greatly increase the variety of columns that you can

include—for example, columns containing natural language (book titles,

reviews, etc.) and high-cardinality categorical columns (i.e., something that

contains a large number of discrete choices, such as zip code or product ID).

On the down side, deep learning models generally take longer to train than

random forests or gradient boosting machines, although this is changing

thanks to libraries such as RAPIDS, which provides GPU acceleration for the

whole modeling pipeline. We cover the pros and cons of all these methods in

detail in Chapter 9.

RECOMMENDATION SYSTEMS

Recommendation systems are really just a special type of tabular data. In

particular, they generally have a high-cardinality categorical variable

representing users, and another one representing products (or something

similar). A company like Amazon represents every purchase that has ever

been made by its customers as a giant sparse matrix, with customers as the

rows and products as the columns. Once they have the data in this format,

data scientists apply some form of collaborative filtering to fill in the matrix.

For example, if customer A buys products 1 and 10, and customer B buys

products 1, 2, 4, and 10, the engine will recommend that A buy 2 and 4.

Because deep learning models are good at handling high-cardinality

categorical variables, they are quite good at handling recommendation

systems. They particularly come into their own, just like for tabular data,

when combining these variables with other kinds of data, such as natural

language or images. They can also do a good job of combining all of these

types of information with additional metadata represented as tables, such as

user information, previous transactions, and so forth.

However, nearly all machine learning approaches have the downside that they

tell you only which products a particular user might like, rather than what

recommendations would be helpful for a user. Many kinds of

recommendations for products a user might like may not be at all helpful—for

instance, if the user is already familiar with the products, or if they are simply

different packagings of products they have already purchased (such as a boxed

https://rapids.ai/

set of novels, when they already have each of the items in that set). Jeremy

likes reading books by Terry Pratchett, and for a while Amazon was

recommending nothing but Terry Pratchett books to him (see Figure 2-1),

which really wasn’t helpful because he was already aware of these books!

Figure 2-1. A not-so-useful recommendation

OTHER DATA TYPES

Often you will find that domain-specific data types fit very nicely into existing

categories. For instance, protein chains look a lot like natural language

documents, in that they are long sequences of discrete tokens with complex

relationships and meaning throughout the sequence. And indeed, it does turn

out that using NLP deep learning methods is the current state-of-the-art

approach for many types of protein analysis. As another example, sounds can

be represented as spectrograms, which can be treated as images; standard

deep learning approaches for images turn out to work really well on

spectrograms.

The Drivetrain Approach

Many accurate models are of no use to anyone, and many inaccurate models

are highly useful. To ensure that your modeling work is useful in practice, you

need to consider how your work will be used. In 2012, Jeremy, along with

Margit Zwemer and Mike Loukides, introduced a method called the

Drivetrain Approach for thinking about this issue.

The Drivetrain Approach, illustrated in Figure 2-2, was described in detail in

“Designing Great Data Products”. The basic idea is to start with considering

https://oreil.ly/KJIIa

your objective, then think about what actions you can take to meet that

objective and what data you have (or can acquire) that can help, and then

build a model that you can use to determine the best actions to take to get the

best results in terms of your objective.

Figure 2-2. The Drivetrain Approach

Consider a model in an autonomous vehicle: you want to help a car drive

safely from point A to point B without human intervention. Great predictive

modeling is an important part of the solution, but it doesn’t stand on its own;

as products become more sophisticated, it disappears into the plumbing.

Someone using a self-driving car is completely unaware of the hundreds (if

not thousands) of models and the petabytes of data that make it work. But as

data scientists build increasingly sophisticated products, they need a

systematic design approach.

We use data not just to generate more data (in the form of predictions), but to

produce actionable outcomes. That is the goal of the Drivetrain Approach.

Start by defining a clear objective. For instance, Google, when creating its first

search engine, considered “What is the user’s main objective in typing in a

search query?” This led to Google’s objective, which was to “show the most

relevant search result.” The next step is to consider what levers you can pull

(i.e., what actions you can take) to better achieve that objective. In Google’s

case, that was the ranking of the search results. The third step was to consider

what new data they would need to produce such a ranking; they realized that

the implicit information regarding which pages linked to which other pages

could be used for this purpose.

Only after these first three steps do we begin thinking about building the

predictive models. Our objective and available levers, what data we already

have and what additional data we will need to collect, determine the models

we can build. The models will take both the levers and any uncontrollable

variables as their inputs; the outputs from the models can be combined to

predict the final state for our objective.

Let’s consider another example: recommendation systems. The objective of a

recommendation engine is to drive additional sales by surprising and

delighting the customer with recommendations of items they would not have

purchased without the recommendation. The lever is the ranking of the

recommendations. New data must be collected to generate recommendations

that will cause new sales. This will require conducting many randomized

experiments in order to collect data about a wide range of recommendations

for a wide range of customers. This is a step that few organizations take; but

without it, you don’t have the information you need to optimize

recommendations based on your true objective (more sales!).

Finally, you could build two models for purchase probabilities, conditional on

seeing or not seeing a recommendation. The difference between these two

probabilities is a utility function for a given recommendation to a customer. It

will be low in cases where the algorithm recommends a familiar book that the

customer has already rejected (both components are small) or a book that

they would have bought even without the recommendation (both components

are large and cancel each other out).

As you can see, in practice often the practical implementation of your models

will require a lot more than just training a model! You’ll often need to run

experiments to collect more data, and consider how to incorporate your

models into the overall system you’re developing. Speaking of data, let’s now

focus on how to find data for your project.

Gathering Data

For many types of projects, you may be able to find all the data you need

online. The project we’ll be completing in this chapter is a bear detector. It

will discriminate between three types of bear: grizzly, black, and teddy bears.

There are many images on the internet of each type of bear that we can use.

We just need a way to find them and download them.

We’ve provided a tool you can use for this purpose, so you can follow along

with this chapter and create your own image recognition application for

whatever kinds of objects you’re interested in. In the fast.ai course, thousands

of students have presented their work in the course forums, displaying

everything from hummingbird varieties in Trinidad to bus types in Panama—

one student even created an application that would help his fiancée recognize

his 16 cousins during Christmas vacation!

At the time of writing, Bing Image Search is the best option we know of for

finding and downloading images. It’s free for up to 1,000 queries per month,

and each query can download up to 150 images. However, something better

might have come along between when we wrote this and when you’re reading

the book, so be sure to check out this book’s website for our current

recommendation.

KEEPING IN TOUCH WITH THE LATEST SERVICES
Services that can be used for creating datasets come and go all the time, and their features,

interfaces, and pricing change regularly too. In this section, we’ll show how to use the Bing

Image Search API available as part of Azure Cognitive Services at the time this book was

written.

To download images with Bing Image Search, sign up at Microsoft for a free

account. You will be given a key, which you can copy and enter in a cell as

follows (replacing XXX with your key and executing it):

key = 'XXX'

https://book.fast.ai/
https://oreil.ly/P8VtT

Or, if you’re comfortable at the command line, you can set it in your terminal

with

export AZURE_SEARCH_KEY=your_key_here

and then restart the Jupyter server, type this in a cell, and execute it:

key = os.environ['AZURE_SEARCH_KEY']

Once you’ve set key, you can use search_images_bing. This function is

provided by the small utils class included with the notebooks online (if

you’re not sure where a function is defined, you can just type it in your

notebook to find out, as shown here):

search_images_bing

<function utils.search_images_bing(key, term, min_sz=128)>

Let’s try this function out:

results = search_images_bing(key, 'grizzly bear')
ims = results.attrgot('content_url')
len(ims)

150

We’ve successfully downloaded the URLs of 150 grizzly bears (or, at least,

images that Bing Image Search finds for that search term). Let’s look at one:

dest = 'images/grizzly.jpg'
download_url(ims[0], dest)

im = Image.open(dest)
im.to_thumb(128,128)

This seems to have worked nicely, so let’s use fastai’s download_images to

download all the URLs for each of our search terms. We’ll put each in a

separate folder:

bear_types = 'grizzly','black','teddy'
path = Path('bears')

if not path.exists():
 path.mkdir()
 for o in bear_types:
 dest = (path/o)
 dest.mkdir(exist_ok=True)
 results = search_images_bing(key, f'{o} bear')
 download_images(dest, urls=results.attrgot('content_url'))

Our folder has image files, as we’d expect:

fns = get_image_files(path)
fns

(#421)
[Path('bears/black/00000095.jpg'),Path('bears/black/00000133.jpg'),Path('

 >
bears/black/00000062.jpg'),Path('bears/black/00000023.jpg'),Path('bears/black

 >
/00000029.jpg'),Path('bears/black/00000094.jpg'),Path('bears/black/00000124.j

 >
pg'),Path('bears/black/00000056.jpeg'),Path('bears/black/00000046.jpg'),Path(

 > 'bears/black/00000045.jpg')...]

JEREMY SAYS
I just love this about working in Jupyter notebooks! It’s so easy to gradually build what I

want, and check my work every step of the way. I make a lot of mistakes, so this is really

helpful to me.

Often when we download files from the internet, a few are corrupt. Let’s

check:

failed = verify_images(fns)
failed

(#0) []

To remove all the failed images, you can use unlink. Like most fastai functions

that return a collection, verify_images returns an object of type L, which

includes the map method. This calls the passed function on each element of the

collection:

failed.map(Path.unlink);

GETTING HELP IN JUPYTER NOTEBOOKS
Jupyter notebooks are great for experimenting and immediately seeing the results of each function, but there
is also a lot of functionality to help you figure out how to use different functions, or even directly look at their
source code. For instance, say you type this in a cell:

??verify_images

A window will pop up with this:

Signature: verify_images(fns)
Source:
def verify_images(fns):
 "Find images in `fns` that can't be opened"
 return L(fns[i] for i,o in
 enumerate(parallel(verify_image, fns)) if not o)
File: ~/git/fastai/fastai/vision/utils.py
Type: function

This tells us what argument the function accepts (fns), and then shows us the source code and the file it
comes from. Looking at that source code, we can see it applies the function verify_image in parallel and
keeps only the image files for which the result of that function is False, which is consistent with the doc string:
it finds the images in fns that can’t be opened.

Here are some other features that are very useful in Jupyter notebooks:

At any point, if you don’t remember the exact spelling of a function or argument name, you can press
Tab to get autocompletion suggestions.

When inside the parentheses of a function, pressing Shift and Tab simultaneously will display a
window with the signature of the function and a short description. Pressing these keys twice will
expand the documentation, and pressing them three times will open a full window with the same
information at the bottom of your screen.

In a cell, typing ?func_name and executing will open a window with the signature of the function and
a short description.

In a cell, typing ??func_name and executing will open a window with the signature of the function, a
short description, and the source code.

If you are using the fastai library, we added a doc function for you: executing doc(func_name) in a
cell will open a window with the signature of the function, a short description, and links to the source
code on GitHub and the full documentation of the function in the library docs.

Unrelated to the documentation but still very useful: to get help at any point if you get an error, type
%debug in the next cell and execute to open the Python debugger, which will let you inspect the
content of every variable.

One thing to be aware of in this process: as we discussed in Chapter 1, models

can reflect only the data used to train them. And the world is full of biased

data, which ends up reflected in, for example, Bing Image Search (which we

used to create our dataset). For instance, let’s say you were interested in

https://docs.fast.ai/
https://oreil.ly/RShnP

creating an app that could help users figure out whether they had healthy

skin, so you trained a model on the results of searches for (say) “healthy skin.”

Figure 2-3 shows you kind of the results you would get.

Figure 2-3. Data for a healthy skin detector?

With this as your training data, you would end up not with a healthy skin

detector, but a young white woman touching her face detector! Be sure to

think carefully about the types of data that you might expect to see in practice

in your application, and check carefully to ensure that all these types are

reflected in your model’s source data. (Thanks to Deb Raji, who came up with

the healthy skin example. See her paper “Actionable Auditing: Investigating

the Impact of Publicly Naming Biased Performance Results of Commercial AI

Products” for more fascinating insights into model bias.)

Now that we have downloaded some data, we need to assemble it in a format

suitable for model training. In fastai, that means creating an object called

DataLoaders.

https://oreil.ly/POS_C

From Data to DataLoaders

DataLoaders is a thin class that just stores whatever DataLoader objects you

pass to it and makes them available as train and valid. Although it’s a simple

class, it’s important in fastai: it provides the data for your model. The key

functionality in DataLoaders is provided with just these four lines of code (it

has some other minor functionality we’ll skip over for now):

class DataLoaders(GetAttr):
 def __init__(self, *loaders): self.loaders = loaders
 def __getitem__(self, i): return self.loaders[i]
 train,valid = add_props(lambda i,self: self[i])

JARGON: DATALOADERS
A fastai class that stores multiple DataLoader objects you pass to it—normally a train and a

valid, although it’s possible to have as many as you like. The first two are made available as

properties.

Later in the book, you’ll also learn about the Dataset and Datasets classes,

which have the same relationship. To turn our downloaded data into a

DataLoaders object, we need to tell fastai at least four things:

What kinds of data we are working with

How to get the list of items

How to label these items

How to create the validation set

So far we have seen a number of factory methods for particular combinations

of these things, which are convenient when you have an application and data

structure that happen to fit into those predefined methods. For when you

don’t, fastai has an extremely flexible system called the data block API. With

this API, you can fully customize every stage of the creation of your

DataLoaders. Here is what we need to create a DataLoaders for the dataset

that we just downloaded:

bears = DataBlock(
 blocks=(ImageBlock, CategoryBlock),
 get_items=get_image_files,
 splitter=RandomSplitter(valid_pct=0.2, seed=42),
 get_y=parent_label,
 item_tfms=Resize(128))

Let’s look at each of these arguments in turn. First we provide a tuple

specifying the types we want for the independent and dependent variables:

blocks=(ImageBlock, CategoryBlock)

The independent variable is the thing we are using to make predictions from,

and the dependent variable is our target. In this case, our independent

variable is a set of images, and our dependent variables are the categories

(type of bear) for each image. We will see many other types of block in the rest

of this book.

For this DataLoaders, our underlying items will be file paths. We have to tell

fastai how to get a list of those files. The get_image_files function takes a

path, and returns a list of all of the images in that path (recursively, by

default):

get_items=get_image_files

Often, datasets that you download will already have a validation set defined.

Sometimes this is done by placing the images for the training and validation

sets into different folders. Sometimes it is done by providing a CSV file in

which each filename is listed along with which dataset it should be in. There

are many ways that this can be done, and fastai provides a general approach

that allows you to use one of its predefined classes for this or to write your

own.

In this case, we want to split our training and validation sets randomly.

However, we would like to have the same training/validation split each time

we run this notebook, so we fix the random seed (computers don’t really know

how to create random numbers at all, but simply create lists of numbers that

look random; if you provide the same starting point for that list each time—

called the seed—then you will get the exact same list each time).

splitter=RandomSplitter(valid_pct=0.2, seed=42)

The independent variable is often referred to as x, and the dependent variable

is often referred to as y. Here, we are telling fastai what function to call to

create the labels in our dataset:

get_y=parent_label

parent_label is a function provided by fastai that simply gets the name of the

folder a file is in. Because we put each of our bear images into folders based

on the type of bear, this is going to give us the labels that we need.

Our images are all different sizes, and this is a problem for deep learning: we

don’t feed the model one image at a time but several of them (what we call a

mini-batch). To group them in a big array (usually called a tensor) that is

going to go through our model, they all need to be of the same size. So, we

need to add a transform that will resize these images to the same size. Item

transforms are pieces of code that run on each individual item, whether it be

an image, category, or so forth. fastai includes many predefined transforms;

we use the Resize transform here and specify a size of 128 pixels:

item_tfms=Resize(128)

This command has given us a DataBlock object. This is like a template for

creating a DataLoaders. We still need to tell fastai the actual source of our data

—in this case, the path where the images can be found:

dls = bears.dataloaders(path)

A DataLoaders includes validation and training DataLoaders. A DataLoader is

a class that provides batches of a few items at a time to the GPU. We’ll be

learning a lot more about this class in the next chapter. When you loop

through a DataLoader, fastai will give you 64 (by default) items at a time, all

stacked up into a single tensor. We can take a look at a few of those items by

calling the show_batch method on a DataLoader:

dls.valid.show_batch(max_n=4, nrows=1)

By default, Resize crops the images to fit a square shape of the size requested,

using the full width or height. This can result in losing some important

details. Alternatively, you can ask fastai to pad the images with zeros (black),

or squish/stretch them:

bears = bears.new(item_tfms=Resize(128, ResizeMethod.Squish))
dls = bears.dataloaders(path)
dls.valid.show_batch(max_n=4, nrows=1)

bears = bears.new(item_tfms=Resize(128, ResizeMethod.Pad, pad_mode='zeros'))
dls = bears.dataloaders(path)
dls.valid.show_batch(max_n=4, nrows=1)

All of these approaches seem somewhat wasteful or problematic. If we squish

or stretch the images, they end up as unrealistic shapes, leading to a model

that learns that things look different from how they actually are, which we

would expect to result in lower accuracy. If we crop the images, we remove

some of the features that allow us to perform recognition. For instance, if we

were trying to recognize breeds of dog or cat, we might end up cropping out a

key part of the body or the face necessary to distinguish between similar

breeds. If we pad the images, we have a whole lot of empty space, which is just

wasted computation for our model and results in a lower effective resolution

for the part of the image we actually use.

Instead, what we normally do in practice is to randomly select part of the

image and then crop to just that part. On each epoch (which is one complete

pass through all of our images in the dataset), we randomly select a different

part of each image. This means that our model can learn to focus on, and

recognize, different features in our images. It also reflects how images work in

the real world: different photos of the same thing may be framed in slightly

different ways.

In fact, an entirely untrained neural network knows nothing whatsoever about

how images behave. It doesn’t even recognize that when an object is rotated

by one degree, it still is a picture of the same thing! So training the neural

network with examples of images in which the objects are in slightly different

places and are slightly different sizes helps it to understand the basic concept

of what an object is, and how it can be represented in an image.

Here is another example where we replace Resize with RandomResizedCrop,

which is the transform that provides the behavior just described. The most

important parameter to pass in is min_scale, which determines how much of

the image to select at minimum each time:

bears = bears.new(item_tfms=RandomResizedCrop(128, min_scale=0.3))
dls = bears.dataloaders(path)
dls.train.show_batch(max_n=4, nrows=1, unique=True)

Here, we used unique=True to have the same image repeated with different

versions of this RandomResizedCrop transform.

RandomResizedCrop is a specific example of a more general technique, called

data augmentation.

Data Augmentation

Data augmentation refers to creating random variations of our input data,

such that they appear different but do not change the meaning of the data.

Examples of common data augmentation techniques for images are rotation,

flipping, perspective warping, brightness changes, and contrast changes. For

natural photo images such as the ones we are using here, a standard set of

augmentations that we have found work pretty well are provided with the

aug_transforms function.

Because our images are now all the same size, we can apply these

augmentations to an entire batch of them using the GPU, which will save a lot

of time. To tell fastai we want to use these transforms on a batch, we use the

batch_tfms parameter (note that we’re not using RandomResizedCrop in this

example, so you can see the differences more clearly; we’re also using double

the amount of augmentation compared to the default, for the same reason):

bears = bears.new(item_tfms=Resize(128), batch_tfms=aug_transforms(mult=2))
dls = bears.dataloaders(path)
dls.train.show_batch(max_n=8, nrows=2, unique=True)

Now that we have assembled our data in a format fit for model training, let’s

train an image classifier using it.

Training Your Model, and Using It to Clean Your Data

Time to use the same lines of code as in Chapter 1 to train our bear classifier.

We don’t have a lot of data for our problem (150 pictures of each sort of bear

at most), so to train our model, we’ll use RandomResizedCrop, an image size of

224 pixels, which is fairly standard for image classification, and the default

aug_transforms:

bears = bears.new(
 item_tfms=RandomResizedCrop(224, min_scale=0.5),
 batch_tfms=aug_transforms())
dls = bears.dataloaders(path)

We can now create our Learner and fine-tune it in the usual way:

learn = cnn_learner(dls, resnet18, metrics=error_rate)
learn.fine_tune(4)

epoch train_loss valid_loss error_rate time

0 1.235733 0.212541 0.087302 00:05

epoch train_loss valid_loss error_rate time

0 0.213371 0.112450 0.023810 00:05

1 0.173855 0.072306 0.023810 00:06

2 0.147096 0.039068 0.015873 00:06

3 0.123984 0.026801 0.015873 00:06

Now let’s see whether the mistakes the model is making are mainly thinking

that grizzlies are teddies (that would be bad for safety!), or that grizzlies are

black bears, or something else. To visualize this, we can create a confusion

matrix:

interp = ClassificationInterpretation.from_learner(learn)
interp.plot_confusion_matrix()

The rows represent all the black, grizzly, and teddy bears in our dataset,

respectively. The columns represent the images that the model predicted as

black, grizzly, and teddy bears, respectively. Therefore, the diagonal of the

matrix shows the images that were classified correctly, and the off-diagonal

cells represent those that were classified incorrectly. This is one of the many

ways that fastai allows you to view the results of your model. It is (of course!)

calculated using the validation set. With the color-coding, the goal is to have

white everywhere except the diagonal, where we want dark blue. Our bear

classifier isn’t making many mistakes!

It’s helpful to see where exactly our errors are occurring, to see whether

they’re due to a dataset problem (e.g., images that aren’t bears at all, or are

labeled incorrectly) or a model problem (perhaps it isn’t handling images

taken with unusual lighting, or from a different angle, etc.). To do this, we can

sort our images by their loss.

The loss is a number that is higher if the model is incorrect (especially if it’s

also confident of its incorrect answer), or if it’s correct but not confident of its

correct answer. In the beginning of Part II, we’ll learn in depth how loss is

calculated and used in the training process. For now, plot_top_losses shows

us the images with the highest loss in our dataset. As the title of the output

says, each image is labeled with four things: prediction, actual (target label),

loss, and probability. The probability here is the confidence level, from zero to

one, that the model has assigned to its prediction:

interp.plot_top_losses(5, nrows=1)

This output shows that the image with the highest loss is one that has been

predicted as “grizzly” with high confidence. However, it’s labeled (based on

our Bing image search) as “black.” We’re not bear experts, but it sure looks to

us like this label is incorrect! We should probably change its label to “grizzly.”

The intuitive approach to doing data cleaning is to do it before you train a

model. But as you’ve seen in this case, a model can help you find data issues

more quickly and easily. So, we normally prefer to train a quick and simple

model first, and then use it to help us with data cleaning.

fastai includes a handy GUI for data cleaning called ImageClassifierCleaner

that allows you to choose a category and the training versus validation set and

view the highest-loss images (in order), along with menus to allow images to

be selected for removal or relabeling:

cleaner = ImageClassifierCleaner(learn)
cleaner

We can see that among our “black bears” is an image that contains two bears:

one grizzly, one black. So, we should choose <Delete> in the menu under this

image. ImageClassifierCleaner doesn’t do the deleting or changing of labels

for you; it just returns the indices of items to change. So, for instance, to

delete (unlink) all images selected for deletion, we would run this:

for idx in cleaner.delete(): cleaner.fns[idx].unlink()

To move images for which we’ve selected a different category, we would run

this:

for idx,cat in cleaner.change(): shutil.move(str(cleaner.fns[idx]), path/cat)

SYLVAIN SAYS
Cleaning the data and getting it ready for your model are two of the biggest challenges for

data scientists; they say it takes 90% of their time. The fastai library aims to provide tools

that make it as easy as possible.

We’ll be seeing more examples of model-driven data cleaning throughout this

book. Once we’ve cleaned up our data, we can retrain our model. Try it

yourself, and see if your accuracy improves!

NO NEED FOR BIG DATA
After cleaning the dataset using these steps, we generally are seeing 100% accuracy on this

task. We even see that result when we download a lot fewer images than the 150 per class

we’re using here. As you can see, the common complaint that you need massive amounts of

data to do deep learning can be a very long way from the truth!

Now that we have trained our model, let’s see how we can deploy it to be used

in practice.

Turning Your Model into an Online Application

We are now going to look at what it takes to turn this model into a working

online application. We will just go as far as creating a basic working

prototype; we do not have the scope in this book to teach you all the details of

web application development generally.

Using the Model for Inference

Once you’ve got a model you’re happy with, you need to save it so you can

then copy it over to a server where you’ll use it in production. Remember that

a model consists of two parts: the architecture and the trained parameters.

The easiest way to save a model is to save both of these, because that way,

when you load the model, you can be sure that you have the matching

architecture and parameters. To save both parts, use the export method.

This method even saves the definition of how to create your DataLoaders. This

is important, because otherwise you would have to redefine how to transform

your data in order to use your model in production. fastai automatically uses

your validation set DataLoader for inference by default, so your data

augmentation will not be applied, which is generally what you want.

When you call export, fastai will save a file called export.pkl:

learn.export()

Let’s check that the file exists, by using the ls method that fastai adds to

Python’s Path class:

path = Path()
path.ls(file_exts='.pkl')

(#1) [Path('export.pkl')]

You’ll need this file wherever you deploy your app to. For now, let’s try to

create a simple app within our notebook.

When we use a model for getting predictions, instead of training, we call it

inference. To create our inference learner from the exported file, we use

load_learner (in this case, this isn’t really necessary, since we already have a

working Learner in our notebook; we’re doing it here so you can see the whole

process end to end):

learn_inf = load_learner(path/'export.pkl')

When we’re doing inference, we’re generally getting predictions for just one

image at a time. To do this, pass a filename to predict:

learn_inf.predict('images/grizzly.jpg')

('grizzly', tensor(1), tensor([9.0767e-06, 9.9999e-01, 1.5748e-07]))

This has returned three things: the predicted category in the same format you

originally provided (in this case, that’s a string), the index of the predicted

category, and the probabilities of each category. The last two are based on the

order of categories in the vocab of the DataLoaders; that is, the stored list of

all possible categories. At inference time, you can access the DataLoaders as

an attribute of the Learner:

learn_inf.dls.vocab

(#3) ['black','grizzly','teddy']

We can see here that if we index into the vocab with the integer returned by

predict, we get back “grizzly,” as expected. Also, note that if we index into the

list of probabilities, we see a nearly 1.00 probability that this is a grizzly.

We know how to make predictions from our saved model, so we have

everything we need to start building our app. We can do it directly in a

Jupyter notebook.

Creating a Notebook App from the Model

To use our model in an application, we can simply treat the predict method

as a regular function. Therefore, creating an app from the model can be done

using any of the myriad of frameworks and techniques available to application

developers.

However, most data scientists are not familiar with the world of web

application development. So let’s try using something that you do, at this

point, know: it turns out that we can create a complete working web

application using nothing but Jupyter notebooks! The two things we need to

make this happen are as follows:

IPython widgets (ipywidgets)

Voilà

IPython widgets are GUI components that bring together JavaScript and

Python functionality in a web browser, and can be created and used within a

Jupyter notebook. For instance, the image cleaner that we saw earlier in this

chapter is entirely written with IPython widgets. However, we don’t want to

require users of our application to run Jupyter themselves.

That is why Voilà exists. It is a system for making applications consisting of

IPython widgets available to end users, without them having to use Jupyter at

all. Voilà is taking advantage of the fact that a notebook already is a kind of

web application, just a rather complex one that depends on another web

application: Jupyter itself. Essentially, it helps us automatically convert the

complex web application we’ve already implicitly made (the notebook) into a

simpler, easier-to-deploy web application, which functions like a normal web

application rather than like a notebook.

But we still have the advantage of developing in a notebook, so with

ipywidgets, we can build up our GUI step by step. We will use this approach to

create a simple image classifier. First, we need a file upload widget:

btn_upload = widgets.FileUpload()
btn_upload

Now we can grab the image:

img = PILImage.create(btn_upload.data[-1])

We can use an Output widget to display it:

out_pl = widgets.Output()
out_pl.clear_output()
with out_pl: display(img.to_thumb(128,128))
out_pl

Then we can get our predictions:

pred,pred_idx,probs = learn_inf.predict(img)

And use a Label to display them:

lbl_pred = widgets.Label()
lbl_pred.value = f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}'
lbl_pred

Prediction: grizzly; Probability: 1.0000

We’ll need a button to do the classification. It looks exactly like the Upload

button:

btn_run = widgets.Button(description='Classify')
btn_run

We’ll also need a click event handler; that is, a function that will be called

when it’s pressed. We can just copy over the previous lines of code:

def on_click_classify(change):
 img = PILImage.create(btn_upload.data[-1])
 out_pl.clear_output()
 with out_pl: display(img.to_thumb(128,128))
 pred,pred_idx,probs = learn_inf.predict(img)
 lbl_pred.value = f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}'

btn_run.on_click(on_click_classify)

You can test the button now by clicking it, and you should see the image and

predictions update automatically!

We can now put them all in a vertical box (VBox) to complete our GUI:

VBox([widgets.Label('Select your bear!'),
 btn_upload, btn_run, out_pl, lbl_pred])

We have written all the code necessary for our app. The next step is to convert

it into something we can deploy.

Turning Your Notebook into a Real App

Now that we have everything working in this Jupyter notebook, we can create

our application. To do this, start a new notebook and add to it only the code

needed to create and show the widgets that you need, and Markdown for any

text that you want to appear. Have a look at the bear_classifier notebook in

the book’s repo to see the simple notebook application we created.

Next, install Voilà if you haven’t already by copying these lines into a

notebook cell and executing it:

!pip install voila
!jupyter serverextension enable voila --sys-prefix

Cells that begin with a ! do not contain Python code, but instead contain code

that is passed to your shell (bash, Windows PowerShell, etc.). If you are

comfortable using the command line, which we’ll discuss more in this book,

you can of course simply type these two lines (without the ! prefix) directly

into your terminal. In this case, the first line installs the voila library and

application, and the second connects it to your existing Jupyter notebook.

Voilà runs Jupyter notebooks just like the Jupyter notebook server you are

using now does, but it also does something very important: it removes all of

the cell inputs, and shows only output (including ipywidgets), along with your

Markdown cells. So what’s left is a web application! To view your notebook as

a Voilà web application, replace the word “notebooks” in your browser’s URL

with “voila/render”. You will see the same content as your notebook, but

without any of the code cells.

Of course, you don’t need to use Voilà or ipywidgets. Your model is just a

function you can call (pred,pred_idx,probs = learn.predict(img)), so you

can use it with any framework, hosted on any platform. And you can take

something you’ve prototyped in ipywidgets and Voilà and later convert it into

a regular web application. We’re showing you this approach in the book

because we think it’s a great way for data scientists and other folks who aren’t

web development experts to create applications from their models.

We have our app; now let’s deploy it!

Deploying Your App

As you now know, you need a GPU to train nearly any useful deep learning

model. So, do you need a GPU to use that model in production? No! You

almost certainly do not need a GPU to serve your model in production. There

are a few reasons for this:

As we’ve seen, GPUs are useful only when they do lots of identical

work in parallel. If you’re doing (say) image classification, you’ll

normally be classifying just one user’s image at a time, and there isn’t

normally enough work to do in a single image to keep a GPU busy for

long enough for it to be very efficient. So, a CPU will often be more

cost-effective.

An alternative could be to wait for a few users to submit their images,

and then batch them up and process them all at once on a GPU. But

then you’re asking your users to wait, rather than getting answers

straight away! And you need a high-volume site for this to be

workable. If you do need this functionality, you can use a tool such as

Microsoft’s ONNX Runtime or AWS SageMaker.

The complexities of dealing with GPU inference are significant. In

particular, the GPU’s memory will need careful manual management,

and you’ll need a careful queueing system to ensure you process only

one batch at a time.

There’s a lot more market competition in CPU than GPU servers, and

as a result, there are much cheaper options available for CPU servers.

Because of the complexity of GPU serving, many systems have sprung up to

try to automate this. However, managing and running these systems is also

https://oreil.ly/nj-6f
https://oreil.ly/ajcaP

complex, and generally requires compiling your model into a different form

that’s specialized for that system. It’s typically preferable to avoid dealing with

this complexity until/unless your app gets popular enough that it makes clear

financial sense for you to do so.

For at least the initial prototype of your application, and for any hobby

projects that you want to show off, you can easily host them for free. The best

place and the best way to do this will vary over time, so check the book’s

website for the most up-to-date recommendations. As we’re writing this book

in early 2020, the simplest (and free!) approach is to use Binder. To publish

your web app on Binder, you follow these steps:

1. Add your notebook to a GitHub repository.

2. Paste the URL of that repo into Binder’s URL field, as shown in

Figure 2-4.

3. Change the File drop-down to instead select URL.

4. In the “URL to open” field, enter /voila/render/name.ipynb

(replacing name with the name of your notebook).

5. Click the clipboard button at the bottom right to copy the URL and

paste it somewhere safe.

6. Click Launch.

Figure 2-4. Deploying to Binder

https://mybinder.org/
http://github.com/

The first time you do this, Binder will take around 5 minutes to build your

site. Behind the scenes, it is finding a virtual machine that can run your app,

allocating storage, and collecting the files needed for Jupyter, for your

notebook, and for presenting your notebook as a web application.

Finally, once it has started the app running, it will navigate your browser to

your new web app. You can share the URL you copied to allow others to access

your app as well.

For other (both free and paid) options for deploying your web app, be sure to

take a look at the book’s website.

You may well want to deploy your application onto mobile devices, or edge

devices such as a Raspberry Pi. There are a lot of libraries and frameworks

that allow you to integrate a model directly into a mobile application.

However, these approaches tend to require a lot of extra steps and boilerplate,

and do not always support all the PyTorch and fastai layers that your model

might use. In addition, the work you do will depend on the kinds of mobile

devices you are targeting for deployment—you might need to do some work to

run on iOS devices, different work to run on newer Android devices, different

work for older Android devices, etc. Instead, we recommend wherever

possible that you deploy the model itself to a server, and have your mobile or

edge application connect to it as a web service.

There are quite a few upsides to this approach. The initial installation is

easier, because you have to deploy only a small GUI application, which

connects to the server to do all the heavy lifting. More importantly perhaps,

upgrades of that core logic can happen on your server, rather than needing to

be distributed to all of your users. Your server will have a lot more memory

and processing capacity than most edge devices, and it is far easier to scale

those resources if your model becomes more demanding. The hardware that

you will have on a server is also going to be more standard and more easily

supported by fastai and PyTorch, so you don’t have to compile your model

into a different form.

https://book.fast.ai/

There are downsides too, of course. Your application will require a network

connection, and there will be some latency each time the model is called. (It

takes a while for a neural network model to run anyway, so this additional

network latency may not make a big difference to your users in practice. In

fact, since you can use better hardware on the server, the overall latency may

even be less than if it were running locally!) Also, if your application uses

sensitive data, your users may be concerned about an approach that sends

that data to a remote server, so sometimes privacy considerations will mean

that you need to run the model on the edge device (it may be possible to avoid

this by having an on-premise server, such as inside a company’s firewall).

Managing the complexity and scaling the server can create additional

overhead too, whereas if your model runs on the edge devices, each user is

bringing their own compute resources, which leads to easier scaling with an

increasing number of users (also known as horizontal scaling).

ALEXIS SAYS
I’ve had a chance to see up close how the mobile ML landscape is changing in my work. We

offer an iPhone app that depends on computer vision, and for years we ran our own

computer vision models in the cloud. This was the only way to do it then since those models

needed significant memory and compute resources and took minutes to process inputs. This

approach required building not only the models (fun!), but also the infrastructure to ensure

a certain number of “compute worker machines” were absolutely always running (scary),

that more machines would automatically come online if traffic increased, that there was

stable storage for large inputs and outputs, that the iOS app could know and tell the user

how their job was doing, etc. Nowadays Apple provides APIs for converting models to run

efficiently on devices, and most iOS devices have dedicated ML hardware, so that’s the

strategy we use for our newer models. It’s still not easy, but in our case it’s worth it for a

faster user experience and to worry less about servers. What works for you will depend,

realistically, on the user experience you’re trying to create and what you personally find is

easy to do. If you really know how to run servers, do it. If you really know how to build

native mobile apps, do that. There are many roads up the hill.

Overall, we’d recommend using a simple CPU-based server approach where

possible, for as long as you can get away with it. If you’re lucky enough to have

a very successful application, you’ll be able to justify the investment in more

complex deployment approaches at that time.

Congratulations—you have successfully built a deep learning model and

deployed it! Now is a good time to take a pause and think about what could go

wrong.

How to Avoid Disaster

In practice, a deep learning model will be just one piece of a much bigger

system. As we discussed at the start of this chapter, building a data product

requires thinking about the entire end-to-end process, from conception to use

in production. In this book, we can’t hope to cover all the complexity of

managing deployed data products, such as managing multiple versions of

models, A/B testing, canarying, refreshing the data (should we just grow and

grow our datasets all the time, or should we regularly remove some of the old

data?), handling data labeling, monitoring all this, detecting model rot, and so

forth.

In this section, we will give an overview of some of the most important issues

to consider; for a more detailed discussion of deployment issues, we refer you

to the excellent Building Machine Learning Powered Applications by

Emmanuel Ameisin (O’Reilly).

One of the biggest issues to consider is that understanding and testing the

behavior of a deep learning model is much more difficult than with most other

code you write. With normal software development, you can analyze the exact

steps that the software is taking, and carefully study which of these steps

match the desired behavior that you are trying to create. But with a neural

network, the behavior emerges from the model’s attempt to match the

training data, rather than being exactly defined.

This can result in disaster! For instance, let’s say we really were rolling out a

bear detection system that will be attached to video cameras around

campsites in national parks and will warn campers of incoming bears. If we

used a model trained with the dataset we downloaded, there would be all

kinds of problems in practice, such as these:

http://shop.oreilly.com/product/0636920215912.do

Working with video data instead of images

Handling nighttime images, which may not appear in this dataset

Dealing with low-resolution camera images

Ensuring results are returned fast enough to be useful in practice

Recognizing bears in positions that are rarely seen in photos that

people post online (for example from behind, partially covered by

bushes, or a long way away from the camera)

A big part of the issue is that the kinds of photos that people are most likely to

upload to the internet are the kinds of photos that do a good job of clearly and

artistically displaying their subject matter—which isn’t the kind of input this

system is going to be getting. So, we may need to do a lot of our own data

collection and labeling to create a useful system.

This is just one example of the more general problem of out-of-domain data.

That is to say, there may be data that our model sees in production that is very

different from what it saw during training. There isn’t a complete technical

solution to this problem; instead, we have to be careful about our approach to

rolling out the technology.

There are other reasons we need to be careful too. One very common problem

is domain shift, whereby the type of data that our model sees changes over

time. For instance, an insurance company may use a deep learning model as

part of its pricing and risk algorithm, but over time the types of customers the

company attracts and the types of risks it represents may change so much that

the original training data is no longer relevant.

Out-of-domain data and domain shift are examples of a larger problem: that

you can never fully understand all the possible behaviors of a neural network,

because they have far too many parameters. This is the natural downside of

their best feature—their flexibility, which enables them to solve complex

problems where we may not even be able to fully specify our preferred

solution approaches. The good news, however, is that there are ways to

mitigate these risks using a carefully thought-out process. The details of this

will vary depending on the details of the problem you are solving, but we will

attempt to lay out a high-level approach, summarized in Figure 2-5, which we

hope will provide useful guidance.

Figure 2-5. Deployment process

Where possible, the first step is to use an entirely manual process, with your

deep learning model approach running in parallel but not being used directly

to drive any actions. The humans involved in the manual process should look

at the deep learning outputs and check whether they make sense. For

instance, with our bear classifier, a park ranger could have a screen displaying

video feeds from all the cameras, with any possible bear sightings simply

highlighted in red. The park ranger would still be expected to be just as alert

as before the model was deployed; the model is simply helping to check for

problems at this point.

The second step is to try to limit the scope of the model, and have it carefully

supervised by people. For instance, do a small geographically and time-

constrained trial of the model-driven approach. Rather than rolling out our

bear classifier in every national park throughout the country, we could pick a

single observation post, for a one-week period, and have a park ranger check

each alert before it goes out.

Then, gradually increase the scope of your rollout. As you do so, ensure that

you have really good reporting systems in place, to make sure that you are

aware of any significant changes to the actions being taken compared to your

manual process. For instance, if the number of bear alerts doubles or halves

after rollout of the new system in some location, you should be very

concerned. Try to think about all the ways in which your system could go

wrong, and then think about what measure or report or picture could reflect

that problem, and ensure that your regular reporting includes that

information.

JEREMY SAYS
I started a company 20 years ago called Optimal Decisions that used machine learning and

optimization to help giant insurance companies set their pricing, impacting tens of billions

of dollars of risks. We used the approaches described here to manage the potential

downsides of something going wrong. Also, before we worked with our clients to put

anything in production, we tried to simulate the impact by testing the end-to-end system on

their previous year’s data. It was always quite a nerve-wracking process putting these new

algorithms into production, but every rollout was successful.

Unforeseen Consequences and Feedback Loops

One of the biggest challenges in rolling out a model is that your model may

change the behavior of the system it is a part of. For instance, consider a

“predictive policing” algorithm that predicts more crime in certain

neighborhoods, causing more police officers to be sent to those

neighborhoods, which can result in more crimes being recorded in those

neighborhoods, and so on. In the Royal Statistical Society paper “To Predict

and Serve?” Kristian Lum and William Isaac observe that “predictive policing

is aptly named: it is predicting future policing, not future crime.”

https://oreil.ly/3YEWH

Part of the issue in this case is that in the presence of bias (which we’ll discuss

in depth in the next chapter), feedback loops can result in negative

implications of that bias getting worse and worse. For instance, there are

concerns that this is already happening in the US, where there is significant

bias in arrest rates on racial grounds. According to the ACLU, “despite

roughly equal usage rates, Blacks are 3.73 times more likely than whites to be

arrested for marijuana.” The impact of this bias, along with the rollout of

predictive policing algorithms in many parts of the United States, led Bärí

Williams to write in the New York Times: “The same technology that’s the

source of so much excitement in my career is being used in law enforcement

in ways that could mean that in the coming years, my son, who is 7 now, is

more likely to be profiled or arrested—or worse—for no reason other than his

race and where we live.”

A helpful exercise prior to rolling out a significant machine learning system is

to consider this question: “What would happen if it went really, really well?”

In other words, what if the predictive power was extremely high, and its

ability to influence behavior was extremely significant? In that case, who

would be most impacted? What would the most extreme results potentially

look like? How would you know what was really going on?

Such a thought exercise might help you to construct a more careful rollout

plan, with ongoing monitoring systems and human oversight. Of course,

human oversight isn’t useful if it isn’t listened to, so make sure that reliable

and resilient communication channels exist so that the right people will be

aware of issues and will have the power to fix them.

Get Writing!

One of the things our students have found most helpful to solidify their

understanding of this material is to write it down. There is no better test of

your understanding of a topic than attempting to teach it to somebody else.

This is helpful even if you never show your writing to anybody—but it’s even

better if you share it! So we recommend that, if you haven’t already, you start

a blog. Now that you’ve completed this chapter and have learned how to train

https://oreil.ly/A9ijk
https://oreil.ly/xR0di

and deploy models, you’re well placed to write your first blog post about your

deep learning journey. What’s surprised you? What opportunities do you see

for deep learning in your field? What obstacles do you see?

Rachel Thomas, cofounder of fast.ai, wrote in the article “Why You (Yes, You)

Should Blog”:

The top advice I would give my younger self would be to start blogging

sooner. Here are some reasons to blog:

It’s like a resume, only better. I know of a few people who have had

blog posts lead to job offers!

Helps you learn. Organizing knowledge always helps me

synthesize my own ideas. One of the tests of whether you

understand something is whether you can explain it to someone

else. A blog post is a great way to do that.

I’ve gotten invitations to conferences and invitations to speak from

my blog posts. I was invited to the TensorFlow Dev Summit (which

was awesome!) for writing a blog post about how I don’t like

TensorFlow.

Meet new people. I’ve met several people who have responded to

blog posts I wrote.

Saves time. Any time you answer a question multiple times through

email, you should turn it into a blog post, which makes it easier for

you to share the next time someone asks.

Perhaps her most important tip is this:

https://oreil.ly/X9-3L

You are best positioned to help people one step behind you. The material is

still fresh in your mind. Many experts have forgotten what it was like to be

a beginner (or an intermediate) and have forgotten why the topic is hard

to understand when you first hear it. The context of your particular

background, your particular style, and your knowledge level will give a

different twist to what you’re writing about.

We’ve provided full details on how to set up a blog in Appendix A. If you don’t

have a blog already, take a look at that now, because we’ve got a really great

approach for you to start blogging for free, with no ads—and you can even use

Jupyter Notebook!

Questionnaire

1. Where do text models currently have a major deficiency?

2. What are possible negative societal implications of text generation

models?

3. In situations where a model might make mistakes, and those mistakes

could be harmful, what is a good alternative to automating a process?

4. What kind of tabular data is deep learning particularly good at?

5. What’s a key downside of directly using a deep learning model for

recommendation systems?

6. What are the steps of the Drivetrain Approach?

7. How do the steps of the Drivetrain Approach map to a

recommendation system?

8. Create an image recognition model using data you curate, and deploy

it on the web.

9. What is DataLoaders?

10. What four things do we need to tell fastai to create DataLoaders?

11. What does the splitter parameter to DataBlock do?

12. How do we ensure a random split always gives the same validation

set?

13. What letters are often used to signify the independent and dependent

variables?

14. What’s the difference between the crop, pad, and squish resize

approaches? When might you choose one over the others?

15. What is data augmentation? Why is it needed?

16. Provide an example of where the bear classification model might work

poorly in production, due to structural or style differences in the

training data.

17. What is the difference between item_tfms and batch_tfms?

18. What is a confusion matrix?

19. What does export save?

20. What is it called when we use a model for making predictions, instead

of training?

21. What are IPython widgets?

22. When would you use a CPU for deployment? When might a GPU be

better?

23. What are the downsides of deploying your app to a server, instead of to

a client (or edge) device such as a phone or PC?

24. What are three examples of problems that could occur when rolling

out a bear warning system in practice?

25. What is out-of-domain data?

26. What is domain shift?

27. What are the three steps in the deployment process?

Further Research

1. Consider how the Drivetrain Approach maps to a project or problem

you’re interested in.

2. When might it be best to avoid certain types of data augmentation?

3. For a project you’re interested in applying deep learning to, consider

the thought experiment, “What would happen if it went really, really

well?”

4. Start a blog and write your first blog post. For instance, write about

what you think deep learning might be useful for in a domain you’re

interested in.

Chapter 3. Data Ethics

ACKNOWLEDGMENT: DR. RACHEL THOMAS
This chapter was coauthored by Dr. Rachel Thomas, the cofounder of fast.ai and
founding director of the Center for Applied Data Ethics at the University of San
Francisco. It largely follows a subset of the syllabus she developed for the
Introduction to Data Ethics course.

As we discussed in Chapters 1 and 2, sometimes machine

learning models can go wrong. They can have bugs. They can

be presented with data that they haven’t seen before and

behave in ways we don’t expect. Or they could work exactly as

designed, but be used for something that we would much prefer

they were never, ever used for.

Because deep learning is such a powerful tool and can be used

for so many things, it becomes particularly important that we

consider the consequences of our choices. The philosophical

study of ethics is the study of right and wrong, including how

we can define those terms, recognize right and wrong actions,

and understand the connection between actions and

consequences. The field of data ethics has been around for a

long time, and many academics are focused on this field. It is

being used to help define policy in many jurisdictions; it is

https://ethics.fast.ai/

being used in companies big and small to consider how best to

ensure good societal outcomes from product development; and

it is being used by researchers who want to make sure that the

work they are doing is used for good, and not for bad.

As a deep learning practitioner, therefore, you will likely at

some point be put in a situation requiring you to consider data

ethics. So what is data ethics? It’s a subfield of ethics, so let’s

start there.

JEREMY SAYS
At university, philosophy of ethics was my main thing (it would have

been the topic of my thesis, if I’d finished it, instead of dropping out to

join the real world). Based on the years I spent studying ethics, I can tell

you this: no one really agrees on what right and wrong are, whether they

exist, how to spot them, which people are good and which bad, or pretty

much anything else. So don’t expect too much from the theory! We’re

going to focus on examples and thought starters here, not theory.

In answering the question “What Is Ethics?” the Markkula

Center for Applied Ethics says that the term refers to the

following:

Well-founded standards of right and wrong that

prescribe what humans should do

The study and development of one’s ethical standards

https://oreil.ly/nyVh4

There is no list of right answers. There is no list of dos and

don’ts. Ethics is complicated and context-dependent. It

involves the perspectives of many stakeholders. Ethics is a

muscle that you have to develop and practice. In this chapter,

our goal is to provide some signposts to help you on that

journey.

Spotting ethical issues is best to do as part of a collaborative

team. This is the only way you can really incorporate different

perspectives. Different people’s backgrounds will help them to

see things that may not be obvious to you. Working with a team

is helpful for many “muscle-building” activities, including this

one.

This chapter is certainly not the only part of the book where we

talk about data ethics, but it’s good to have a place where we

focus on it for a while. To get oriented, it’s perhaps easiest to

look at a few examples. So, we picked out three that we think

illustrate effectively some of the key topics.

Key Examples for Data Ethics

We are going to start with three specific examples that

illustrate three common ethical issues in tech (we’ll study these

issues in more depth later in the chapter):

Recourse processes

Arkansas’s buggy healthcare algorithms left patients

stranded.

Feedback loops

YouTube’s recommendation system helped unleash

a conspiracy theory boom.

Bias

When a traditionally African-American name is

searched for on Google, it displays ads for criminal

background checks.

In fact, for every concept that we introduce in this chapter, we

are going to provide at least one specific example. For each one,

think about what you could have done in this situation, and

what kinds of obstructions there might have been to you

getting that done. How would you deal with them? What would

you look out for?

Bugs and Recourse: Buggy Algorithm Used for Healthcare

Benefits

The Verge investigated software used in over half of the US

states to determine how much healthcare people receive, and

documented its findings in the article “What Happens When an

Algorithm Cuts Your Healthcare”. After implementation of the

algorithm in Arkansas, hundreds of people (many with severe

disabilities) had their healthcare drastically cut.

https://oreil.ly/25drC

For instance, Tammy Dobbs, a woman with cerebral palsy who

needs an aide to help her to get out of bed, to go to the

bathroom, to get food, and more, had her hours of help

suddenly reduced by 20 hours a week. She couldn’t get any

explanation for why her healthcare was cut. Eventually, a court

case revealed that there were mistakes in the software

implementation of the algorithm, negatively impacting people

with diabetes or cerebral palsy. However, Dobbs and many

other people reliant on these health-care benefits live in fear

that their benefits could again be cut suddenly and

inexplicably.

Feedback Loops: YouTube’s Recommendation System

Feedback loops can occur when your model is controlling the

next round of data you get. The data that is returned quickly

becomes flawed by the software itself.

For instance, YouTube has 1.9 billion users, who watch over 1

billion hours of YouTube videos a day. Its recommendation

algorithm (built by Google), which was designed to optimize

watch time, is responsible for around 70% of the content that is

watched. But there was a problem: it led to out-of-control

feedback loops, leading the New York Times to run the

headline “YouTube Unleashed a Conspiracy Theory Boom. Can

It Be Contained?” in February 2019. Ostensibly,

recommendation systems are predicting what content people

will like, but they also have a lot of power in determining what

content people even see.

https://oreil.ly/Lt3aU

Bias: Professor Latanya Sweeney “Arrested”

Dr. Latanya Sweeney is a professor at Harvard and director of

the university’s data privacy lab. In the paper “Discrimination

in Online Ad Delivery” (see Figure 3-1), she describes her

discovery that Googling her name resulted in advertisements

saying “Latanya Sweeney, Arrested?” even though she is the

only known Latanya Sweeney and has never been arrested.

However, when she Googled other names, such as “Kirsten

Lindquist,” she got more neutral ads, even though Kirsten

Lindquist has been arrested three times.

Figure 3-1. Google search showing ads about Professor Latanya Sweeney’s (nonexistent)
arrest record

https://oreil.ly/1qBxU

Being a computer scientist, she studied this systematically and

looked at over 2,000 names. She found a clear pattern:

historically Black names received advertisements suggesting

that the person had a criminal record, whereas traditionally

white names had more neutral advertisements.

This is an example of bias. It can make a big difference to

people’s lives—for instance, if a job applicant is Googled, it may

appear that they have a criminal record when they do not.

Why Does This Matter?

One very natural reaction to considering these issues is: “So

what? What’s that got to do with me? I’m a data scientist, not a

politician. I’m not one of the senior executives at my company

who make the decisions about what we do. I’m just trying to

build the most predictive model I can.”

These are very reasonable questions. But we’re going to try to

convince you that the answer is that everybody who is training

models absolutely needs to consider how their models will be

used, and consider how to best ensure that they are used as

positively as possible. There are things you can do. And if you

don’t do them, things can go pretty badly.

One particularly hideous example of what happens when

technologists focus on technology at all costs is the story of

IBM and Nazi Germany. In 2001, a Swiss judge ruled that it

was not unreasonable “to deduce that IBM’s technical

assistance facilitated the tasks of the Nazis in the commission

of their crimes against humanity, acts also involving

accountancy and classification by IBM machines and utilized in

the concentration camps themselves.”

IBM, you see, supplied the Nazis with data tabulation products

necessary to track the extermination of Jews and other groups

on a massive scale. This was driven from the top of the

company, with marketing to Hitler and his leadership team.

Company President Thomas Watson personally approved the

1939 release of special IBM alphabetizing machines to help

organize the deportation of Polish Jews. Pictured in Figure 3-2

is Adolf Hitler (far left) meeting with IBM CEO Tom Watson

Sr. (second from left), shortly before Hitler awarded Watson a

special “Service to the Reich” medal in 1937.

Figure 3-2. IBM CEO Tom Watson Sr. meeting with Adolf Hitler

But this was not an isolated incident—the organization’s

involvement was extensive. IBM and its subsidiaries provided

regular training and maintenance onsite at the concentration

camps: printing off cards, configuring machines, and repairing

them as they broke frequently. IBM set up categorizations on

its punch card system for the way that each person was killed,

which group they were assigned to, and the logistical

information necessary to track them through the vast

Holocaust system (see Figure 3-3). IBM’s code for Jews in the

concentration camps was 8: some 6,000,000 were killed. Its

code for Romanis was 12 (they were labeled by the Nazis as

“asocials,” with over 300,000 killed in the Zigeunerlager, or

“Gypsy camp”). General executions were coded as 4, death in

the gas chambers as 6.

Figure 3-3. A punch card used by IBM in concentration camps

Of course, the project managers and engineers and technicians

involved were just living their ordinary lives. Caring for their

families, going to the church on Sunday, doing their jobs the

best they could. Following orders. The marketers were just

doing what they could to meet their business development

goals. As Edwin Black, author of IBM and the Holocaust

(Dialog Press) observed: “To the blind technocrat, the means

were more important than the ends. The destruction of the

Jewish people became even less important because the

invigorating nature of IBM’s technical achievement was only

heightened by the fantastical profits to be made at a time when

bread lines stretched across the world.”

Step back for a moment and consider: How would you feel if

you discovered that you had been part of a system that ended

up hurting society? Would you be open to finding out? How

can you help make sure this doesn’t happen? We have

described the most extreme situation here, but there are many

negative societal consequences linked to AI and machine

learning being observed today, some of which we’ll describe in

this chapter.

It’s not just a moral burden, either. Sometimes technologists

pay very directly for their actions. For instance, the first person

who was jailed as a result of the Volkswagen scandal, in which

the car company was revealed to have cheated on its diesel

emissions tests, was not the manager who oversaw the project,

or an executive at the helm of the company. It was one of the

engineers, James Liang, who just did what he was told.

Of course, it’s not all bad—if a project you are involved in turns

out to make a huge positive impact on even one person, this is

going to make you feel pretty great!

OK, so hopefully we have convinced you that you ought to care.

But what should you do? As data scientists, we’re naturally

inclined to focus on making our models better by optimizing

some metric or other. But optimizing that metric may not lead

to better outcomes. And even if it does help create better

outcomes, it almost certainly won’t be the only thing that

matters. Consider the pipeline of steps that occurs between the

development of a model or an algorithm by a researcher or

practitioner, and the point at which this work is used to make a

decision. This entire pipeline needs to be considered as a whole

if we’re to have a hope of getting the kinds of outcomes we

want.

Normally, there is a very long chain from one end to the other.

This is especially true if you are a researcher who might not

even know if your research will ever get used for anything, or if

you’re involved in data collection, which is even earlier in the

pipeline. But no one is better placed to inform everyone

involved in this chain about the capabilities, constraints, and

details of your work than you are. Although there’s no “silver

bullet” that can ensure your work is used the right way, by

getting involved in the process, and asking the right questions,

you can at the very least ensure that the right issues are being

considered.

Sometimes, the right response to being asked to do a piece of

work is to just say “no.” Often, however, the response we hear

is, “If I don’t do it, someone else will.” But consider this: if

you’ve been picked for the job, you’re the best person they’ve

found to do it—so if you don’t do it, the best person isn’t

working on that project. If the first five people they ask all say

no too, so much the better!

Integrating Machine Learning with Product
Design

Presumably, the reason you’re doing this work is that you hope

it will be used for something. Otherwise, you’re just wasting

your time. So, let’s start with the assumption that your work

will end up somewhere. Now, as you are collecting your data

and developing your model, you are making lots of decisions.

What level of aggregation will you store your data at? What loss

function should you use? What validation and training sets

should you use? Should you focus on simplicity of

implementation, speed of inference, or accuracy of the model?

How will your model handle out-of-domain data items? Can it

be fine-tuned, or must it be retrained from scratch over time?

These are not just algorithm questions. They are data product

design questions. But the product managers, executives,

judges, journalists, doctors—whoever ends up developing and

using the system of which your model is a part—will not be

well-placed to understand the decisions that you made, let

alone change them.

For instance, two studies found that Amazon’s facial

recognition software produced inaccurate and racially biased

results. Amazon claimed that the researchers should have

changed the default parameters, without explaining how this

would have changed the biased results. Furthermore, it turned

out that Amazon was not instructing police departments that

used its software to do this either. There was, presumably, a big

distance between the researchers who developed these

algorithms and the Amazon documentation staff who wrote the

guidelines provided to the police.

https://oreil.ly/bL5D9
https://oreil.ly/cDYqz
https://oreil.ly/I5OAj

A lack of tight integration led to serious problems for society at

large, the police, and Amazon. It turned out that its system

erroneously matched 28 members of Congress to criminal

mugshots! (And the Congresspeople wrongly matched to

criminal mugshots were disproportionately people of color, as

seen in Figure 3-4.)

Figure 3-4. Congresspeople matched to criminal mugshots by Amazon software

Data scientists need to be part of a cross-disciplinary team. And

researchers need to work closely with the kinds of people who

will end up using their research. Better still, domain experts

themselves could learn enough to be able to train and debug

some models themselves—hopefully, a few of you are reading

this book right now!

The modern workplace is a very specialized place. Everybody

tends to have well-defined jobs to perform. Especially in large

companies, it can be hard to know all the pieces of the puzzle.

Sometimes companies even intentionally obscure the overall

project goals being worked on, if they know that employees are

not going to like the answers. This is sometimes done by

compartmentalizing pieces as much as possible.

In other words, we’re not saying that any of this is easy. It’s

hard. It’s really hard. We all have to do our best. And we have

often seen that the people who do get involved in the higher-

level context of these projects, and attempt to develop cross-

disciplinary capabilities and teams, become some of the most

important and well rewarded members of their organizations.

It’s the kind of work that tends to be highly appreciated by

senior executives, even if it is sometimes considered rather

uncomfortable by middle management.

Topics in Data Ethics

Data ethics is a big field, and we can’t cover everything.

Instead, we’re going to pick a few topics that we think are

particularly relevant:

The need for recourse and accountability

Feedback loops

Bias

Disinformation

Let’s look at each in turn.

Recourse and Accountability

In a complex system, it is easy for no one person to feel

responsible for outcomes. While this is understandable, it does

not lead to good results. In the earlier example of the Arkansas

healthcare system in which a bug led to people with cerebral

palsy losing access to needed care, the creator of the algorithm

blamed government officials, and government officials blamed

those who implemented the software. NYU professor Danah

Boyd described this phenomenon: “Bureaucracy has often been

used to shift or evade responsibility….Today’s algorithmic

systems are extending bureaucracy.”

An additional reason why recourse is so necessary is that data

often contains errors. Mechanisms for audits and error

correction are crucial. A database of suspected gang members

maintained by California law enforcement officials was found

to be full of errors, including 42 babies who had been added to

the database when they were less than 1 year old (28 of whom

were marked as “admitting to being gang members”). In this

case, there was no process in place for correcting mistakes or

removing people after they’d been added. Another example is

the US credit report system: a large-scale study of credit

reports by the Federal Trade Commission (FTC) in 2012 found

that 26% of consumers had at least one mistake in their files,

and 5% had errors that could be devastating.

Yet, the process of getting such errors corrected is incredibly

slow and opaque. When public radio reporter Bobby Allyn

https://oreil.ly/KK5Hf
https://oreil.ly/BUD6h

discovered that he was erroneously listed as having a firearms

conviction, it took him “more than a dozen phone calls, the

handiwork of a county court clerk and six weeks to solve the

problem. And that was only after I contacted the company’s

communications department as a journalist.”

As machine learning practitioners, we do not always think of it

as our responsibility to understand how our algorithms end up

being implemented in practice. But we need to.

Feedback Loops

We explained in Chapter 1 how an algorithm can interact with

its environment to create a feedback loop, making predictions

that reinforce actions taken in the real world, which lead to

predictions even more pronounced in the same direction. As an

example, let’s again consider YouTube’s recommendation

system. A couple of years ago, the Google team talked about

how they had introduced reinforcement learning (closely

related to deep learning, but your loss function represents a

result potentially a long time after an action occurs) to improve

YouTube’s recommendation system. They described how they

used an algorithm that made recommendations such that

watch time would be optimized.

However, human beings tend to be drawn to controversial

content. This meant that videos about things like conspiracy

theories started to get recommended more and more by the

recommendation system. Furthermore, it turns out that the

kinds of people who are interested in conspiracy theories are

also people who watch a lot of online videos! So, they started to

get drawn more and more toward YouTube. The increasing

number of conspiracy theorists watching videos on YouTube

resulted in the algorithm recommending more and more

conspiracy theory and other extremist content, which resulted

in more extremists watching videos on YouTube, and more

people watching YouTube developing extremist views, which

led to the algorithm recommending more extremist content.

The system was spiraling out of control.

And this phenomenon was not contained to this particular type

of content. In June 2019, the New York Times published an

article on YouTube’s recommendation system titled “On

YouTube’s Digital Playground, an Open Gate for Pedophiles”.

The article started with this chilling story:

Christiane C. didn’t think anything of it when her 10-year-

old daughter and a friend uploaded a video of themselves

playing in a backyard pool…A few days later…the video had

thousands of views. Before long, it had ticked up to

400,000…“I saw the video again and I got scared by the

number of views,” Christiane said. She had reason to be.

YouTube’s automated recommendation system…had begun

showing the video to users who watched other videos of

prepubescent, partially clothed children, a team of

researchers has found.

https://oreil.ly/81BEy

On its own, each video might be perfectly innocent, a home

movie, say, made by a child. Any revealing frames are

fleeting and appear accidental. But, grouped together, their

shared features become unmistakable.

YouTube’s recommendation algorithm had begun curating

playlists for pedophiles, picking out innocent home videos that

happened to contain prepubescent, partially clothed children.

No one at Google planned to create a system that turned family

videos into porn for pedophiles. So what happened?

Part of the problem here is the centrality of metrics in driving a

financially important system. When an algorithm has a metric

to optimize, as you have seen, it will do everything it can to

optimize that number. This tends to lead to all kinds of edge

cases, and humans interacting with a system will search for,

find, and exploit these edge cases and feedback loops for their

advantage.

There are signs that this is exactly what has happened with

YouTube’s recommendation system in 2018. The Guardian ran

an article called “How an Ex-YouTube Insider Investigated Its

Secret Algorithm” about Guillaume Chaslot, an ex-YouTube

engineer who created a website that tracks these issues. Chaslot

published the chart in Figure 3-5 following the release of

Robert Mueller’s “Report on the Investigation Into Russian

Interference in the 2016 Presidential Election.”

https://oreil.ly/yjnPT
https://algotransparency.org/

Figure 3-5. Coverage of the Mueller report

Russia Today’s coverage of the Mueller report was an extreme

outlier in terms of how many channels were recommending it.

This suggests the possibility that Russia Today, a state-owned

Russia media outlet, has been successful in gaming YouTube’s

recommendation algorithm. Unfortunately, the lack of

transparency of systems like this makes it hard to uncover the

kinds of problems that we’re discussing.

One of our reviewers for this book, Aurélien Géron, led

YouTube’s video classification team from 2013 to 2016 (well

before the events discussed here). He pointed out that it’s not

just feedback loops involving humans that are a problem. There

can also be feedback loops without humans! He told us about

an example from YouTube:

One important signal to classify the main topic of a video is

the channel it comes from. For example, a video uploaded to

a cooking channel is very likely to be a cooking video. But

how do we know what topic a channel is about? Well…in

part by looking at the topics of the videos it contains! Do

you see the loop? For example, many videos have a

description which indicates what camera was used to shoot

the video. As a result, some of these videos might get

classified as videos about “photography.” If a channel has

such a misclassified video, it might be classified as a

“photography” channel, making it even more likely for

future videos on this channel to be wrongly classified as

“photography.” This could even lead to runaway virus-like

classifications! One way to break this feedback loop is to

classify videos with and without the channel signal. Then

when classifying the channels, you can only use the classes

obtained without the channel signal. This way, the feedback

loop is broken.

There are positive examples of people and organizations

attempting to combat these problems. Evan Estola, lead

machine learning engineer at Meetup, discussed the example of

https://oreil.ly/QfHzT

men expressing more interest than women in tech meetups.

Taking gender into account could therefore cause Meetup’s

algorithm to recommend fewer tech meetups to women, and as

a result, fewer women would find out about and attend tech

meetups, which could cause the algorithm to suggest even

fewer tech meetups to women, and so on in a self-reinforcing

feedback loop. So, Evan and his team made the ethical decision

for their recommendation algorithm to not create such a

feedback loop, by explicitly not using gender for that part of

their model. It is encouraging to see a company not just

unthinkingly optimize a metric, but consider its impact.

According to Evan, “You need to decide which feature not to

use in your algorithm… the most optimal algorithm is perhaps

not the best one to launch into production.”

While Meetup chose to avoid such an outcome, Facebook

provides an example of allowing a runaway feedback loop to

run wild. Like YouTube, it tends to radicalize users interested

in one conspiracy theory by introducing them to more. As

Renee DiResta, a researcher on proliferation of disinformation,

writes:

Once people join a single conspiracy-minded [Facebook]

group, they are algorithmically routed to a plethora of

others. Join an anti-vaccine group, and your suggestions

will include anti-GMO, chemtrail watch, flat Earther (yes,

really), and “curing cancer naturally” groups. Rather than

pulling a user out of the rabbit hole, the recommendation

engine pushes them further in.

https://oreil.ly/svgOt

It is extremely important to keep in mind that this kind of

behavior can happen, and to either anticipate a feedback loop

or take positive action to break it when you see the first signs of

it in your own projects. Another thing to keep in mind is bias,

which, as we discussed briefly in the previous chapter, can

interact with feedback loops in very troublesome ways.

Bias

Discussions of bias online tend to get pretty confusing pretty

fast. The word “bias” means so many different things.

Statisticians often think when data ethicists are talking about

bias that they’re talking about the statistical definition of the

term bias—but they’re not. And they’re certainly not talking

about the biases that appear in the weights and biases that are

the parameters of your model!

What they’re talking about is the social science concept of bias.

In “A Framework for Understanding Unintended

Consequences of Machine Learning” MIT’s Harini Suresh and

John Guttag describe six types of bias in machine learning,

summarized in Figure 3-6.

https://oreil.ly/aF33V

Figure 3-6. Bias in machine learning can come from multiple sources (courtesy of Harini
Suresh and John V. Guttag)

We’ll discuss four of these types of bias, those that we’ve found

most helpful in our own work (see the paper for details on the

others).

HISTORICAL BIAS

Historical bias comes from the fact that people are biased,

processes are biased, and society is biased. Suresh and Guttag

say: “Historical bias is a fundamental, structural issue with the

first step of the data generation process and can exist even

given perfect sampling and feature selection.”

For instance, here are a few examples of historical race bias in

the US, from the New York Times article “Racial Bias, Even

When We Have Good Intentions” by the University of

Chicago’s Sendhil Mullainathan:

When doctors were shown identical files, they were

much less likely to recommend cardiac catheterization

(a helpful procedure) to Black patients.

When bargaining for a used car, Black people were

offered initial prices $700 higher and received far

smaller concessions.

Responding to apartment rental ads on Craigslist with a

Black name elicited fewer responses than with a white

name.

An all-white jury was 16 percentage points more likely

to convict a Black defendant than a white one, but when

a jury had one Black member, it convicted both at the

same rate.

The COMPAS algorithm, widely used for sentencing and bail

decisions in the US, is an example of an important algorithm

that, when tested by ProPublica, showed clear racial bias in

practice (Figure 3-7).

https://oreil.ly/cBQop
https://oreil.ly/1XocO

Figure 3-7. Results of the COMPAS algorithm

Any dataset involving humans can have this kind of bias:

medical data, sales data, housing data, political data, and so on.

Because underlying bias is so pervasive, bias in datasets is very

pervasive. Racial bias even turns up in computer vision, as

shown in the example of autocategorized photos shared on

Twitter by a Google Photos user shown in Figure 3-8.

Figure 3-8. One of these labels is very wrong…

Yes, that is showing what you think it is: Google Photos

classified a Black user’s photo with their friend as “gorillas”!

This algorithmic misstep got a lot of attention in the media.

“We’re appalled and genuinely sorry that this happened,” a

company spokeswoman said. “There is still clearly a lot of work

to do with automatic image labeling, and we’re looking at how

we can prevent these types of mistakes from happening in the

future.”

Unfortunately, fixing problems in machine learning systems

when the input data has problems is hard. Google’s first

attempt didn’t inspire confidence, as coverage by The Guardian

suggested (Figure 3-9).

Figure 3-9. Google’s first response to the problem

These kinds of problems are certainly not limited to Google.

MIT researchers studied the most popular online computer

vision APIs to see how accurate they were. But they didn’t just

calculate a single accuracy number—instead, they looked at the

accuracy across four groups, as illustrated in Figure 3-10.

Figure 3-10. Error rate per gender and race for various facial recognition systems

IBM’s system, for instance, had a 34.7% error rate for darker

females, versus 0.3% for lighter males—over 100 times more

errors! Some people incorrectly reacted to these experiments

by claiming that the difference was simply because darker skin

is harder for computers to recognize. However, what happened

was that, after the negative publicity that this result created, all

of the companies in question dramatically improved their

models for darker skin, such that one year later, they were

nearly as good as for lighter skin. So what this showed is that

the developers failed to utilize datasets containing enough

darker faces, or test their product with darker faces.

One of the MIT researchers, Joy Buolamwini, warned: “We

have entered the age of automation overconfident yet

underprepared. If we fail to make ethical and inclusive artificial

intelligence, we risk losing gains made in civil rights and

gender equity under the guise of machine neutrality.”

Part of the issue appears to be a systematic imbalance in the

makeup of popular datasets used for training models. The

abstract of the paper “No Classification Without

Representation: Assessing Geodiversity Issues in Open Data

Sets for the Developing World” by Shreya Shankar et al. states,

“We analyze two large, publicly available image data sets to

assess geo-diversity and find that these data sets appear to

exhibit an observable amerocentric and eurocentric

representation bias. Further, we analyze classifiers trained on

these data sets to assess the impact of these training

distributions and find strong differences in the relative

performance on images from different locales.” Figure 3-11

shows one of the charts from the paper, showing the

geographic makeup of what were at the time (and still are, as

this book is being written) the two most important image

datasets for training models.

https://oreil.ly/VqtOA

Figure 3-11. Image provenance in popular training sets

The vast majority of the images are from the US and other

Western countries, leading to models trained on ImageNet

performing worse on scenes from other countries and cultures.

For instance, research found that such models are worse at

identifying household items (such as soap, spices, sofas, or

beds) from lower-income countries. Figure 3-12 shows an

image from the paper “Does Object Recognition Work for

Everyone?” by Terrance DeVries et al. of Facebook AI Research

that illustrates this point.

https://oreil.ly/BkFjL

Figure 3-12. Object detection in action

In this example, we can see that the lower-income soap

example is a very long way away from being accurate, with

every commercial image recognition service predicting “food”

as the most likely answer!

As we will discuss shortly, in addition, the vast majority of AI

researchers and developers are young white men. Most projects

that we have seen do most user testing using friends and

families of the immediate product development group. Given

this, the kinds of problems we just discussed should not be

surprising.

Similar historical bias is found in the texts used as data for

natural language processing models. This crops up in

downstream machine learning tasks in many ways. For

instance, it was widely reported that until last year, Google

Translate showed systematic bias in how it translated the

Turkish gender-neutral pronoun “o” into English: when applied

to jobs that are often associated with males, it used “he,” and

when applied to jobs that are often associated with females, it

used “she” (Figure 3-13).

https://oreil.ly/Vt_vT

Figure 3-13. Gender bias in text datasets

We also see this kind of bias in online advertisements. For

instance, a study in 2019 by Muhammad Ali et al. found that

even when the person placing the ad does not intentionally

discriminate, Facebook will show ads to very different

audiences based on race and gender. Housing ads with the

same text but picturing either a white or a Black family were

shown to racially different audiences.

MEASUREMENT BIAS

In “Does Machine Learning Automate Moral Hazard and

Error” in American Economic Review, Sendhil Mullainathan

and Ziad Obermeyer look at a model that tries to answer this

question: using historical electronic health record (EHR) data,

what factors are most predictive of stroke? These are the top

predictors from the model:

Prior stroke

https://oreil.ly/UGxuh
https://oreil.ly/79Qtn

Cardiovascular disease

Accidental injury

Benign breast lump

Colonoscopy

Sinusitis

However, only the top two have anything to do with a stroke!

Based on what we’ve studied so far, you can probably guess

why. We haven’t really measured stroke, which occurs when a

region of the brain is denied oxygen due to an interruption in

the blood supply. What we’ve measured is who had symptoms,

went to a doctor, got the appropriate tests, and received a

diagnosis of stroke. Actually having a stroke is not the only

thing correlated with this complete list—it’s also correlated

with being the kind of person who goes to the doctor (which is

influenced by who has access to healthcare, can afford their co-

pay, doesn’t experience racial or gender-based medical

discrimination, and more)! If you are likely to go to the doctor

for an accidental injury, you are likely to also go the doctor

when you are having a stroke.

This is an example of measurement bias. It occurs when our

models make mistakes because we are measuring the wrong

thing, or measuring it in the wrong way, or incorporating that

measurement into the model inappropriately.

AGGREGATION BIAS

Aggregation bias occurs when models do not aggregate data in

a way that incorporates all of the appropriate factors, or when a

model does not include the necessary interaction terms,

nonlinearities, or so forth. This can particularly occur in

medical settings. For instance, the way diabetes is treated is

often based on simple univariate statistics and studies

involving small groups of heterogeneous people. Analysis of

results is often done in a way that does not take into account

different ethnicities or genders. However, it turns out that

diabetes patients have different complications across

ethnicities, and HbA1c levels (widely used to diagnose and

monitor diabetes) differ in complex ways across ethnicities and

genders. This can result in people being misdiagnosed or

incorrectly treated because medical decisions are based on a

model that does not include these important variables and

interactions.

REPRESENTATION BIAS

The abstract of the paper “Bias in Bios: A Case Study of

Semantic Representation Bias in a High-Stakes Setting” by

Maria De-Arteaga et al. notes that there is gender imbalance in

occupations (e.g., females are more likely to be nurses, and

males are more likely to be pastors), and says that “differences

in true positive rates between genders are correlated with

existing gender imbalances in occupations, which may

compound these imbalances.”

https://oreil.ly/gNS39
https://oreil.ly/nR4fx
https://oreil.ly/0iowq

In other words, the researchers noticed that models predicting

occupation did not only reflect the actual gender imbalance in

the underlying population, but amplified it! This type of

representation bias is quite common, particularly for simple

models. When there is a clear, easy-to-see underlying

relationship, a simple model will often assume that this

relationship holds all the time. As Figure 3-14 from the paper

shows, for occupations that had a higher percentage of females,

the model tended to overestimate the prevalence of that

occupation.

Figure 3-14. Model error in predicting occupation plotted against percentage of women in
said occupation

For example, in the training dataset 14.6% of surgeons were

women, yet in the model predictions only 11.6% of the true

positives were women. The model is thus amplifying the bias

existing in the training set.

Now that we’ve seen that those biases exist, what can we do to

mitigate them?

ADDRESSING DIFFERENT TYPES OF BIAS

Different types of bias require different approaches for

mitigation. While gathering a more diverse dataset can address

representation bias, this would not help with historical bias or

measurement bias. All datasets contain bias. There is no such

thing as a completely debiased dataset. Many researchers in the

field have been converging on a set of proposals to enable

better documentation of the decisions, context, and specifics

about how and why a particular dataset was created, what

scenarios it is appropriate to use in, and what the limitations

are. This way, those using a particular dataset will not be

caught off guard by its biases and limitations.

We often hear the question, “Humans are biased, so does

algorithmic bias even matter?” This comes up so often, there

must be some reasoning that makes sense to the people who

ask it, but it doesn’t seem very logically sound to us!

Independently of whether this is logically sound, it’s important

to realize that algorithms (particularly machine learning

algorithms!) and people are different. Consider these points

about machine learning algorithms:

Machine learning can create feedback loops

Small amounts of bias can rapidly increase

exponentially because of feedback loops.

Machine learning can amplify bias

Human bias can lead to larger amounts of machine

learning bias.

Algorithms and humans are used differently

Human decision makers and algorithmic decision

makers are not used in a plug-and-play

interchangeable way in practice. These examples are

given in the list on the next page.

Technology is power

And with that comes responsibility.

As the Arkansas healthcare example showed, machine learning

is often implemented in practice not because it leads to better

outcomes, but because it is cheaper and more efficient. Cathy

O’Neill, in her book Weapons of Math Destruction (Crown),

described a pattern in which the privileged are processed by

people, whereas the poor are processed by algorithms. This is

just one of a number of ways that algorithms are used

differently than human decision makers. Others include the

following:

People are more likely to assume algorithms are

objective or error-free (even if they’re given the option

of a human override).

Algorithms are more likely to be implemented with no

appeals process in place.

Algorithms are often used at scale.

Algorithmic systems are cheap.

Even in the absence of bias, algorithms (and deep learning

especially, since it is such an effective and scalable algorithm)

can lead to negative societal problems, such as when used for

disinformation.

Disinformation

Disinformation has a history stretching back hundreds or even

thousands of years. It is not necessarily about getting someone

to believe something false, but rather often used to sow

disharmony and uncertainty, and to get people to give up on

seeking the truth. Receiving conflicting accounts can lead

people to assume that they can never know whom or what to

trust.

Some people think disinformation is primarily about false

information or fake news, but in reality, disinformation can

often contain seeds of truth, or half-truths taken out of context.

Ladislav Bittman was an intelligence officer in the USSR who

later defected to the US and wrote some books in the 1970s and

1980s on the role of disinformation in Soviet propaganda

operations. In The KGB and Soviet Disinformation

(Pergamon), he wrote “Most campaigns are a carefully

designed mixture of facts, half-truths, exaggerations, and

deliberate lies.”

In the US, this has hit close to home in recent years, with the

FBI detailing a massive disinformation campaign linked to

Russia in the 2016 election. Understanding the disinformation

that was used in this campaign is very educational. For

instance, the FBI found that the Russian disinformation

campaign often organized two separate fake “grass roots”

protests, one for each side of an issue, and got them to protest

at the same time! The Houston Chronicle reported on one of

these odd events (Figure 3-15):

A group that called itself the “Heart of Texas” had organized

it on social media—a protest, they said, against the

“Islamization” of Texas. On one side of Travis Street, I found

about 10 protesters. On the other side, I found around 50

counterprotesters. But I couldn’t find the rally organizers.

No “Heart of Texas.” I thought that was odd, and mentioned

it in the article: What kind of group is a no-show at its own

event? Now I know why. Apparently, the rally’s organizers

were in Saint Petersburg, Russia, at the time. “Heart of

Texas” is one of the internet troll groups cited in Special

Prosecutor Robert Mueller’s recent indictment of Russians

attempting to tamper with the US presidential election.

https://oreil.ly/VyCkL

Figure 3-15. Event organized by the group Heart of Texas

Disinformation often involves coordinated campaigns of

inauthentic behavior. For instance, fraudulent accounts may

try to make it seem like many people hold a particular

viewpoint. While most of us like to think of ourselves as

independent-minded, in reality we evolved to be influenced by

others in our in-group, and in opposition to those in our out-

group. Online discussions can influence our viewpoints, or alter

the range of what we consider acceptable viewpoints. Humans

are social animals, and as social animals, we are extremely

influenced by the people around us. Increasingly, radicalization

occurs in online environments; so influence is coming from

people in the virtual space of online forums and social

networks.

Disinformation through autogenerated text is a particularly

significant issue, due to the greatly increased capability

provided by deep learning. We discuss this issue in depth when

we delve into creating language models in Chapter 10.

One proposed approach is to develop some form of digital

signature, to implement it in a seamless way, and to create

norms that we should trust only content that has been verified.

The head of the Allen Institute on AI, Oren Etzioni, wrote such

a proposal in an article titled “How Will We Prevent AI-Based

Forgery?”: “AI is poised to make high-fidelity forgery

inexpensive and automated, leading to potentially disastrous

consequences for democracy, security, and society. The specter

of AI forgery means that we need to act to make digital

signatures de rigueur as a means of authentication of digital

content.”

While we can’t hope to discuss all the ethical issues that deep

learning, and algorithms more generally, bring up, hopefully

this brief introduction has been a useful starting point you can

build on. We’ll now move on to the questions of how to identify

ethical issues and what to do about them.

Identifying and Addressing Ethical Issues

https://oreil.ly/8z7wm

Mistakes happen. Finding out about them, and dealing with

them, needs to be part of the design of any system that includes

machine learning (and many other systems too). The issues

raised within data ethics are often complex and

interdisciplinary, but it is crucial that we work to address them.

So what can we do? This is a big topic, but here are a few steps

toward addressing ethical issues:

Analyze a project you are working on.

Implement processes at your company to find and

address ethical risks.

Support good policy.

Increase diversity.

Let’s walk through each step, starting with analyzing a project

you are working on.

Analyze a Project You Are Working On

It’s easy to miss important issues when considering ethical

implications of your work. One thing that helps enormously is

simply asking the right questions. Rachel Thomas recommends

considering the following questions throughout the

development of a data project:

Should we even be doing this?

What bias is in the data?

Can the code and data be audited?

What are the error rates for different subgroups?

What is the accuracy of a simple rule-based alternative?

What processes are in place to handle appeals or

mistakes?

How diverse is the team that built it?

These questions may be able to help you identify outstanding

issues, and possible alternatives that are easier to understand

and control. In addition to asking the right questions, it’s also

important to consider practices and processes to implement.

One thing to consider at this stage is what data you are

collecting and storing. Data often ends up being used for

different purposes the original intent. For instance, IBM began

selling to Nazi Germany well before the Holocaust, including

helping with Germany’s 1933 census conducted by Adolf Hitler,

which was effective at identifying far more Jewish people than

had previously been recognized in Germany. Similarly, US

census data was used to round up Japanese-Americans (who

were US citizens) for internment during World War II. It is

important to recognize how data and images collected can be

weaponized later. Columbia professor Tim Wu wrote “You

must assume that any personal data that Facebook or Android

https://oreil.ly/6L0QM

keeps are data that governments around the world will try to

get or that thieves will try to steal.”

Processes to Implement

The Markkula Center has released An Ethical Toolkit for

Engineering/Design Practice that includes concrete practices to

implement at your company, including regularly scheduled

sweeps to proactively search for ethical risks (in a manner

similar to cybersecurity penetration testing), expanding the

ethical circle to include the perspectives of a variety of

stakeholders, and considering the terrible people (how could

bad actors abuse, steal, misinterpret, hack, destroy, or

weaponize what you are building?).

Even if you don’t have a diverse team, you can still try to

proactively include the perspectives of a wider group,

considering questions such as these (provided by the Markkula

Center):

Whose interests, desires, skills, experiences, and values

have we simply assumed, rather than

actually consulted?

Who are all the stakeholders who will be directly

affected by our product? How have their interests been

protected? How do we know what their

interests really are—have we asked?

https://oreil.ly/vDGGC

Who/which groups and individuals will

be indirectly affected in significant ways?

Who might use this product that we didn’t expect to use

it, or for purposes we didn’t initially intend?

ETHICAL LENSES

Another useful resource from the Markkula Center is its

Conceptual Frameworks in Technology and Engineering

Practice. This considers how different foundational ethical

lenses can help identify concrete issues, and lays out the

following approaches and key questions:

The rights approach

Which option best respects the rights of all who have

a stake?

The justice approach

Which option treats people equally or

proportionately?

The utilitarian approach

Which option will produce the most good and do the

least harm?

The common good approach

Which option best serves the community as a whole,

not just some members?

https://oreil.ly/QnRTt

The virtue approach

Which option leads me to act as the sort of person I

want to be?

Markkula’s recommendations include a deeper dive into each

of these perspectives, including looking at a project through the

lens of its consequences:

Who will be directly affected by this project? Who will

be indirectly affected?

Will the effects in aggregate likely create more good

than harm, and what types of good and harm?

Are we thinking about all relevant types of harm/benefit

(psychological, political, environmental, moral,

cognitive, emotional, institutional, cultural)?

How might future generations be affected by this

project?

Do the risks of harm from this project fall

disproportionately on the least powerful in society? Will

the benefits go disproportionately to the well-off?

Have we adequately considered “dual-use” and

unintended downstream effects?

The alternative lens to this is the deontological perspective,

which focuses on basic concepts of right and wrong:

What rights of others and duties to others must we

respect?

How might the dignity and autonomy of each

stakeholder be impacted by this project?

What considerations of trust and of justice are relevant

to this design/project?

Does this project involve any conflicting moral duties to

others, or conflicting stakeholder rights? How can we

prioritize these?

One of the best ways to help come up with complete and

thoughtful answers to questions like these is to ensure that the

people asking the questions are diverse.

The Power of Diversity

Currently, less than 12% of AI researchers are women,

according to a study from Element AI. The statistics are

similarly dire when it comes to race and age. When everybody

on a team has similar backgrounds, they are likely to have

similar blind spots around ethical risks. The Harvard Business

Review (HBR) has published a number of studies showing

many benefits of diverse teams, including the following:

https://oreil.ly/sO09p

“How Diversity Can Drive Innovation”

“Teams Solve Problems Faster When They’re More

Cognitively Diverse”

“Why Diverse Teams Are Smarter”

“Defend Your Research: What Makes a Team Smarter?

More Women”

Diversity can lead to problems being identified earlier, and a

wider range of solutions being considered. For instance, Tracy

Chou was an early engineer at Quora. She wrote of her

experiences, describing how she advocated internally for

adding a feature that would allow trolls and other bad actors to

be blocked. Chou recounts, “I was eager to work on the feature

because I personally felt antagonized and abused on the site

(gender isn’t an unlikely reason as to why)…But if I hadn’t had

that personal perspective, it’s possible that the Quora team

wouldn’t have prioritized building a block button so early in its

existence.” Harassment often drives people from marginalized

groups off online platforms, so this functionality has been

important for maintaining the health of Quora’s community.

A crucial aspect to understand is that women leave the tech

industry at over twice the rate that men do. According to the

Harvard Business Review, 41% of women working in tech leave,

compared to 17% of men. An analysis of over 200 books,

whitepapers, and articles found that the reason they leave is

https://oreil.ly/WRFSm
https://oreil.ly/vKy5b
https://oreil.ly/SFVBF
https://oreil.ly/A1A5n
https://oreil.ly/n7WSn
https://oreil.ly/ZIC7t

that “they’re treated unfairly; underpaid, less likely to be fast-

tracked than their male colleagues, and unable to advance.”

Studies have confirmed a number of the factors that make it

harder for women to advance in the workplace. Women receive

more vague feedback and personality criticism in performance

evaluations, whereas men receive actionable advice tied to

business outcomes (which is more useful). Women frequently

experience being excluded from more creative and innovative

roles, and not receiving high-visibility “stretch” assignments

that are helpful in getting promoted. One study found

that men’s voices are perceived as more persuasive, fact-based,

and logical than women’s voices, even when reading identical

scripts.

Receiving mentorship has been statistically shown to help men

advance, but not women. The reason behind this is that when

women receive mentorship, it’s advice on how they should

change and gain more self-knowledge. When men receive

mentorship, it’s public endorsement of their authority. Guess

which is more useful in getting promoted?

As long as qualified women keep dropping out of tech, teaching

more girls to code will not solve the diversity issues plaguing

the field. Diversity initiatives often end up focusing primarily

on white women, even though women of color face many

additional barriers. In interviews with 60 women of color who

work in STEM research, 100% had experienced discrimination.

https://oreil.ly/t5C6b

The hiring process is particularly broken in tech. One study

indicative of the disfunction comes from Triplebyte, a company

that helps place software engineers in companies, conducting a

standardized technical interview as part of this process. The

company has a fascinating dataset: the results of how over 300

engineers did on their exam, coupled with the results of how

those engineers did during the interview process for a variety of

companies. The number one finding from Triplebyte’s research

is that “the types of programmers that each company looks for

often have little to do with what the company needs or does.

Rather, they reflect company culture and the backgrounds of

the founders.”

This is a challenge for those trying to break into the world of

deep learning, since most companies’ deep learning groups

today were founded by academics. These groups tend to look

for people “like them”—that is, people who can solve complex

math problems and understand dense jargon. They don’t

always know how to spot people who are actually good at

solving real problems using deep learning.

This leaves a big opportunity for companies that are ready to

look beyond status and pedigree, and focus on results!

Fairness, Accountability, and Transparency

The professional society for computer scientists, the ACM, runs

a data ethics conference called the Conference on Fairness,

Accountability, and Transparency (ACM FAccT), which used to

https://oreil.ly/2Wtw4

go under the acronym FAT but now uses the less objectionable

FAccT. Microsoft also has a group focused on Fairness,

Accountability, Transparency, and Ethics in AI (FATE). In this

section, we’ll use the acronym FAccT to refer to the concepts of

fairness, accountability, and transparency.

FAccT is a lens some people have used for considering ethical

issues. One helpful resource for this is the free online book

Fairness and Machine Learning: Limitations and

Opportunities by Solon Barocas et al., which “gives a

perspective on machine learning that treats fairness as a

central concern rather than an afterthought.” It also warns,

however, that it “is intentionally narrow in scope…A narrow

framing of machine learning ethics might be tempting to

technologists and businesses as a way to focus on technical

interventions while sidestepping deeper questions about power

and accountability. We caution against this temptation.”

Rather than provide an overview of the FAccT approach to

ethics (which is better done in books such as that one), our

focus here will be on the limitations of this kind of narrow

framing.

One great way to consider whether an ethical lens is complete

is to try to come up with an example in which the lens and our

own ethical intuitions give diverging results. Os Keyes et al.

explored this in a graphic way in their paper “A Mulching

Proposal: Analysing and Improving an Algorithmic System for

Turning the Elderly into High-Nutrient Slurry”. The paper’s

abstract says:

https://fairmlbook.org/
https://oreil.ly/_qug9

The ethical implications of algorithmic systems have been

much discussed in both HCI and the broader community of

those interested in technology design, development, and

policy. In this paper, we explore the application of one

prominent ethical framework—Fairness, Accountability,

and Transparency—to a proposed algorithm that resolves

various societal issues around food security and population

aging. Using various standardised forms of algorithmic

audit and evaluation, we drastically increase the

algorithm’s adherence to the FAT framework, resulting in a

more ethical and beneficent system. We discuss how this

might serve as a guide to other researchers or practitioners

looking to ensure better ethical outcomes from algorithmic

systems in their line of work.

In this paper, the rather controversial proposal (“Turning the

Elderly into High-Nutrient Slurry”) and the results (“drastically

increase the algorithm’s adherence to the FAT framework,

resulting in a more ethical and beneficent system”) are at

odds… to say the least!

In philosophy, and especially philosophy of ethics, this is one of

the most effective tools: first, come up with a process,

definition, set of questions, etc., which is designed to resolve a

problem. Then try to come up with an example in which that

apparent solution results in a proposal that no one would

consider acceptable. This can then lead to a further refinement

of the solution.

So far, we’ve focused on things that you and your organization

can do. But sometimes individual or organizational action is

not enough. Sometimes governments also need to consider

policy implications.

Role of Policy

We often talk to people who are eager for technical or design

fixes to be a full solution to the kinds of problems that we’ve

been discussing; for instance, a technical approach to debias

data, or design guidelines for making technology less addictive.

While such measures can be useful, they will not be sufficient

to address the underlying problems that have led to our current

state. For example, as long as it is profitable to create addictive

technology, companies will continue to do so, regardless of

whether this has the side effect of promoting conspiracy

theories and polluting our information ecosystem. While

individual designers may try to tweak product designs, we will

not see substantial changes until the underlying profit

incentives change.

The Effectiveness of Regulation

To look at what can cause companies to take concrete action,

consider the following two examples of how Facebook has

behaved. In 2018, a UN investigation found that Facebook had

played a “determining role” in the ongoing genocide of the

Rohingya, an ethnic minority in Mynamar described by UN

Secretary-General Antonio Guterres as “one of, if not the, most

discriminated people in the world.” Local activists had been

warning Facebook executives that their platform was being

used to spread hate speech and incite violence since as early as

2013. In 2015, they were warned that Facebook could play the

same role in Myanmar that the radio broadcasts played during

the Rwandan genocide (where a million people were killed).

Yet, by the end of 2015, Facebook employed only four

contractors who spoke Burmese. As one person close to the

matter said, “That’s not 20/20 hindsight. The scale of this

problem was significant and it was already apparent.”

Zuckerberg promised during the congressional hearings to hire

“dozens” to address the genocide in Myanmar (in 2018, years

after the genocide had begun, including the destruction by fire

of at least 288 villages in northern Rakhine state after August

2017).

This stands in stark contrast to Facebook quickly hiring 1,200

people in Germany to try to avoid expensive penalties (of up to

50 million euros) under a new German law against hate speech.

Clearly, in this case, Facebook was more reactive to the threat

of a financial penalty than to the systematic destruction of an

ethnic minority.

In an article on privacy issues, Maciej Ceglowski draws

parallels with the environmental movement:

https://oreil.ly/q_8Dz
https://oreil.ly/K5YKf

This regulatory project has been so successful in the First

World that we risk forgetting what life was like before it.

Choking smog of the kind that today kills thousands in

Jakarta and Delhi was once emblematic of London. The

Cuyahoga River in Ohio used to reliably catch fire. In a

particularly horrific example of unforeseen consequences,

tetraethyl lead added to gasoline raised violent crime rates

worldwide for fifty years. None of these harms could have

been fixed by telling people to vote with their wallet, or

carefully review the environmental policies of every

company they gave their business to, or to stop using the

technologies in question. It took coordinated, and

sometimes highly technical, regulation across jurisdictional

boundaries to fix them. In some cases, like the ban on

commercial refrigerants that depleted the ozone layer, that

regulation required a worldwide consensus. We’re at the

point where we need a similar shift in perspective in our

privacy law.

Rights and Policy

Clean air and clean drinking water are public goods that are

nearly impossible to protect through individual market

decisions, but rather require coordinated regulatory action.

Similarly, many of the harms resulting from unintended

consequences of misuses of technology involve public goods,

such as a polluted information environment or deteriorated

ambient privacy. Too often privacy is framed as an individual

right, yet there are societal impacts to widespread surveillance

https://oreil.ly/pLzU7
https://oreil.ly/qrU5v
https://oreil.ly/4ngvr
https://oreil.ly/o839J

(which would still be the case even if it was possible for a few

individuals to opt out).

Many of the issues we are seeing in tech are human rights

issues, such as when a biased algorithm recommends that

Black defendants have longer prison sentences, when

particular job ads are shown only to young people, or when

police use facial recognition to identify protesters. The

appropriate venue to address human rights issues is typically

through the law.

We need both regulatory and legal changes, and the ethical

behavior of individuals. Individual behavior change can’t

address misaligned profit incentives, externalities (where

corporations reap large profits while offloading their costs and

harms to the broader society), or systemic failures. However,

the law will never cover all edge cases, and it is important that

individual software developers and data scientists are equipped

to make ethical decisions in practice.

Cars: A Historical Precedent

The problems we are facing are complex, and there are no

simple solutions. This can be discouraging, but we find hope in

considering other large challenges that people have tackled

throughout history. One example is the movement to increase

car safety, covered as a case study in “Datasheets for Datasets”

by Timnit Gebru et al. and in the design podcast 99% Invisible.

Early cars had no seatbelts, metal knobs on the dashboard that

https://oreil.ly/nqG_r
https://oreil.ly/2HGPd

could lodge in people’s skulls during a crash, regular plate glass

windows that shattered in dangerous ways, and noncollapsible

steering columns that impaled drivers. However, car

companies were resistant to even discussing safety as

something they could help address, and the widespread belief

was that cars are just the way they are, and that it was the

people using them who caused problems.

It took consumer safety activists and advocates decades of work

to change the national conversation to consider that perhaps

car companies had some responsibility that should be

addressed through regulation. When the collapsible steering

column was invented, it was not implemented for several years

as there was no financial incentive to do so. Major car company

General Motors hired private detectives to try to dig up dirt on

consumer safety advocate Ralph Nader. The requirement of

seatbelts, crash test dummies, and collapsible steering columns

were major victories. It was only in 2011 that car companies

were required to start using crash test dummies that would

represent the average woman, and not just average men’s

bodies; prior to this, women were 40% more likely to be

injured in a car crash of the same impact compared to a man.

This is a vivid example of the ways that bias, policy, and

technology have important consequences.

Conclusion

Coming from a background of working with binary logic, the

lack of clear answers in ethics can be frustrating at first. Yet,

the implications of how our work impacts the world, including

unintended consequences and the work becoming weaponized

by bad actors, are some of the most important questions we can

(and should!) consider. Even though there aren’t any easy

answers, there are definite pitfalls to avoid and practices to

follow to move toward more ethical behavior.

Many people (including us!) are looking for more satisfying,

solid answers about how to address harmful impacts of

technology. However, given the complex, far-reaching, and

interdisciplinary nature of the problems we are facing, there

are no simple solutions. Julia Angwin, former senior reporter

at ProPublica who focuses on issues of algorithmic bias and

surveillance (and one of the 2016 investigators of the COMPAS

recidivism algorithm that helped spark the field of FAccT) said

in a 2019 interview:

https://oreil.ly/o7FpP

I strongly believe that in order to solve a problem, you have

to diagnose it, and that we’re still in the diagnosis phase of

this. If you think about the turn of the century and

industrialization, we had, I don’t know, 30 years of child

labor, unlimited work hours, terrible working conditions,

and it took a lot of journalist muckraking and advocacy to

diagnose the problem and have some understanding of

what it was, and then the activism to get laws changed. I

feel like we’re in a second industrialization of data

information… I see my role as trying to make as clear as

possible what the downsides are, and diagnosing them

really accurately so that they can be solvable. That’s hard

work, and lots more people need to be doing it.

It’s reassuring that Angwin thinks we are largely still in the

diagnosis phase: if your understanding of these problems feels

incomplete, that is normal and natural. Nobody has a “cure”

yet, although it is vital that we continue working to better

understand and address the problems we are facing.

One of our reviewers for this book, Fred Monroe, used to work

in hedge fund trading. He told us, after reading this chapter,

that many of the issues discussed here (distribution of data

being dramatically different from what a model was trained on,

the impact of feedback loops on a model once deployed and at

scale, and so forth) were also key issues for building profitable

trading models. The kinds of things you need to do to consider

societal consequences are going to have a lot of overlap with

things you need to do to consider organizational, market, and

customer consequences—so thinking carefully about ethics can

also help you think carefully about how to make your data

product successful more generally!

Questionnaire

1. Does ethics provide a list of “right answers”?

2. How can working with people of different backgrounds

help when considering ethical questions?

3. What was the role of IBM in Nazi Germany? Why did

the company participate as it did? Why did the workers

participate?

4. What was the role of the first person jailed in the

Volkswagen diesel scandal?

5. What was the problem with a database of suspected

gang members maintained by California law

enforcement officials?

6. Why did YouTube’s recommendation algorithm

recommend videos of partially clothed children to

pedophiles, even though no employee at Google had

programmed this feature?

7. What are the problems with the centrality of metrics?

8. Why did Meetup.com not include gender in its

recommendation system for tech meetups?

9. What are the six types of bias in machine learning,

according to Suresh and Guttag?

10. Give two examples of historical race bias in the US.

11. Where are most images in ImageNet from?

12. In the paper “Does Machine Learning Automate Moral

Hazard and Error?” why is sinusitis found to be

predictive of a stroke?

13. What is representation bias?

14. How are machines and people different, in terms of

their use for making decisions?

15. Is disinformation the same as “fake news”?

16. Why is disinformation through autogenerated text a

particularly significant issue?

17. What are the five ethical lenses described by the

Markkula Center?

18. Where is policy an appropriate tool for addressing data

ethics issues?

Further Research

1. Read the article “What Happens When an Algorithm

Cuts Your Healthcare”. How could problems like this be

avoided in the future?

https://oreil.ly/5Ziok

2. Research to find out more about YouTube’s

recommendation system and its societal impacts. Do

you think recommendation systems must always have

feedback loops with negative results? What approaches

could Google take to avoid them? What about the

government?

3. Read the paper “Discrimination in Online Ad Delivery”.

Do you think Google should be considered responsible

for what happened to Dr. Sweeney? What would be an

appropriate response?

4. How can a cross-disciplinary team help avoid negative

consequences?

5. Read the paper “Does Machine Learning Automate

Moral Hazard and Error?” What actions do you think

should be taken to deal with the issues identified in this

paper?

6. Read the article “How Will We Prevent AI-Based

Forgery?” Do you think Etzioni’s proposed approach

could work? Why?

7. Complete the section “Analyze a Project You Are

Working On”.

8. Consider whether your team could be more diverse. If

so, what approaches might help?

Deep Learning in Practice: That’s a Wrap!

https://oreil.ly/jgKpM
https://oreil.ly/tLLOf
https://oreil.ly/6MQe4

Congratulations! You’ve made it to the end of the first section

of the book. In this section, we’ve tried to show you what deep

learning can do, and how you can use it to create real

applications and products. At this point, you will get a lot more

out of the book if you spend some time trying out what you’ve

learned. Perhaps you have already been doing this as you go

along—in which case, great! If not, that’s no problem either—

now is a great time to start experimenting yourself.

If you haven’t been to the book’s website yet, head over there

now. It’s really important that you get yourself set up to run the

notebooks. Becoming an effective deep learning practitioner is

all about practice, so you need to be training models. So, please

go get the notebooks running now if you haven’t already! And

have a look on the website for any important updates or

notices; deep learning changes fast, and we can’t change the

words that are printed in this book, so the website is where you

need to look to ensure you have the most up-to-date

information.

Make sure that you have completed the following steps:

1. Connect to one of the GPU Jupyter servers

recommended on the book’s website.

2. Run the first notebook yourself.

3. Upload an image that you find in the first notebook;

then try a few images of different kinds to see what

happens.

https://book.fast.ai/

4. Run the second notebook, collecting your own dataset

based on image search queries that you come up with.

5. Think about how you can use deep learning to help you

with your own projects, including what kinds of data

you could use, what kinds of problems may come up,

and how you might be able to mitigate these issues in

practice.

In the next section of the book, you will learn about how and

why deep learning works, instead of just seeing how you can

use it in practice. Understanding the how and why is important

for both practitioners and researchers, because in this fairly

new field, nearly every project requires some level of

customization and debugging. The better you understand the

foundations of deep learning, the better your models will be.

These foundations are less important for executives, product

managers, and so forth (although still useful, so feel free to

keep reading!), but they are critical for anybody who is training

and deploying models themselves.

Part II. Understanding fastai’s

Applications

Chapter 4. Under the Hood: Training a

Digit Classifier

Having seen what it looks like to train a variety of models in Chapter 2, let’s

now look under the hood and see exactly what is going on. We’ll start by using

computer vision to introduce fundamental tools and concepts for deep

learning.

To be exact, we’ll discuss the roles of arrays and tensors and of broadcasting, a

powerful technique for using them expressively. We’ll explain stochastic

gradient descent (SGD), the mechanism for learning by updating weights

automatically. We’ll discuss the choice of a loss function for our basic

classification task, and the role of mini-batches. We’ll also describe the math

that a basic neural network is doing. Finally, we’ll put all these pieces

together.

In future chapters, we’ll do deep dives into other applications as well, and see

how these concepts and tools generalize. But this chapter is about laying

foundation stones. To be frank, that also makes this one of the hardest

chapters, because of how these concepts all depend on each other. Like an

arch, all the stones need to be in place for the structure to stay up. Also like an

arch, once that happens, it’s a powerful structure that can support other

things. But it requires some patience to assemble.

Let’s begin. The first step is to consider how images are represented in a

computer.

Pixels: The Foundations of Computer Vision

To understand what happens in a computer vision model, we first have to

understand how computers handle images. We’ll use one of the most famous

datasets in computer vision, MNIST, for our experiments. MNIST contains

images of handwritten digits, collected by the National Institute of Standards

and Technology and collated into a machine learning dataset by Yann Lecun

and his colleagues. Lecun used MNIST in 1998 in LeNet-5, the first computer

system to demonstrate practically useful recognition of handwritten digit

sequences. This was one of the most important breakthroughs in the history

of AI.

TENACITY AND DEEP LEARNING
The story of deep learning is one of tenacity and grit by a handful of dedicated researchers. After early hopes
(and hype!), neural networks went out of favor in the 1990s and 2000s, and just a handful of researchers kept
trying to make them work well. Three of them, Yann Lecun, Yoshua Bengio, and Geoffrey Hinton, were
awarded the highest honor in computer science, the Turing Award (generally considered the “Nobel Prize of
computer science”), in 2018 after triumphing despite the deep skepticism and disinterest of the wider machine
learning and statistics community.

Hinton has told of how academic papers showing dramatically better results than anything previously
published would be rejected by top journals and conferences, just because they used a neural network.
Lecun’s work on convolutional neural networks, which we will study in the next section, showed that these
models could read handwritten text—something that had never been achieved before. However, his
breakthrough was ignored by most researchers, even as it was used commercially to read 10% of the checks
in the US!

In addition to these three Turing Award winners, many other researchers have battled to get us to where we
are today. For instance, Jurgen Schmidhuber (who many believe should have shared in the Turing Award)
pioneered many important ideas, including working with his student Sepp Hochreiter on the long short-term
memory (LSTM) architecture (widely used for speech recognition and other text modeling tasks, and used in
the IMDb example in Chapter 1). Perhaps most important of all, Paul Werbos in 1974 invented
backpropagation for neural networks, the technique shown in this chapter and used universally for training
neural networks (Werbos 1994). His development was almost entirely ignored for decades, but today it is
considered the most important foundation of modern AI.

There is a lesson here for all of us! On your deep learning journey, you will face many obstacles, both
technical and (even more difficult) posed by people around you who don’t believe you’ll be successful. There’s
one guaranteed way to fail, and that’s to stop trying. We’ve seen that the only consistent trait among every
fast.ai student who’s gone on to be a world-class practitioner is that they are all very tenacious.

For this initial tutorial, we are just going to try to create a model that can

classify any image as a 3 or a 7. So let’s download a sample of MNIST that

contains images of just these digits:

path = untar_data(URLs.MNIST_SAMPLE)

https://oreil.ly/g3RDg
https://oreil.ly/LCNEx
https://oreil.ly/wWIWp

We can see what’s in this directory by using ls, a method added by fastai. This

method returns an object of a special fastai class called L, which has all the

same functionality of Python’s built-in list, plus a lot more. One of its handy

features is that, when printed, it displays the count of items before listing the

items themselves (if there are more than 10 items, it shows just the first few):

path.ls()

(#9)
[Path('cleaned.csv'),Path('item_list.txt'),Path('trained_model.pkl'),Path('

 >
models'),Path('valid'),Path('labels.csv'),Path('export.pkl'),Path('history.cs

 > v'),Path('train')]

The MNIST dataset follows a common layout for machine learning datasets:

separate folders for the training set and the validation (and/or test) set. Let’s

see what’s inside the training set:

(path/'train').ls()

(#2) [Path('train/7'),Path('train/3')]

There’s a folder of 3s, and a folder of 7s. In machine learning parlance, we say

that “3” and “7” are the labels (or targets) in this dataset. Let’s take a look in

one of these folders (using sorted to ensure we all get the same order of files):

threes = (path/'train'/'3').ls().sorted()
sevens = (path/'train'/'7').ls().sorted()
threes

(#6131)
[Path('train/3/10.png'),Path('train/3/10000.png'),Path('train/3/10011.pn

 >
g'),Path('train/3/10031.png'),Path('train/3/10034.png'),Path('train/3/10042.p

 >
ng'),Path('train/3/10052.png'),Path('train/3/1007.png'),Path('train/3/10074.p

 > ng'),Path('train/3/10091.png')...]

As we might expect, it’s full of image files. Let’s take a look at one now. Here’s

an image of a handwritten number 3, taken from the famous MNIST dataset

of handwritten numbers:

im3_path = threes[1]
im3 = Image.open(im3_path)
im3

Here we are using the Image class from the Python Imaging Library (PIL),

which is the most widely used Python package for opening, manipulating, and

viewing images. Jupyter knows about PIL images, so it displays the image for

us automatically.

In a computer, everything is represented as a number. To view the numbers

that make up this image, we have to convert it to a NumPy array or a

PyTorch tensor. For instance, here’s what a section of the image looks like

converted to a NumPy array:

array(im3)[4:10,4:10]

array([[0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 29],
 [0, 0, 0, 48, 166, 224],
 [0, 93, 244, 249, 253, 187],
 [0, 107, 253, 253, 230, 48],
 [0, 3, 20, 20, 15, 0]], dtype=uint8)

The 4:10 indicates we requested the rows from index 4 (inclusive) to 10

(noninclusive), and the same for the columns. NumPy indexes from top to

bottom and from left to right, so this section is located near the top-left corner

of the image. Here’s the same thing as a PyTorch tensor:

tensor(im3)[4:10,4:10]

tensor([[0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 29],
 [0, 0, 0, 48, 166, 224],
 [0, 93, 244, 249, 253, 187],
 [0, 107, 253, 253, 230, 48],
 [0, 3, 20, 20, 15, 0]], dtype=torch.uint8)

We can slice the array to pick just the part with the top of the digit in it, and

then use a Pandas DataFrame to color-code the values using a gradient, which

shows us clearly how the image is created from the pixel values:

im3_t = tensor(im3)
df = pd.DataFrame(im3_t[4:15,4:22])
df.style.set_properties(**{'font-size':'6pt'}).background_gradient('Greys')

You can see that the background white pixels are stored as the number 0,

black is the number 255, and shades of gray are between the two. The entire

image contains 28 pixels across and 28 pixels down, for a total of 768 pixels.

(This is much smaller than an image that you would get from a phone camera,

which has millions of pixels, but is a convenient size for our initial learning

and experiments. We will build up to bigger, full-color images soon.)

So, now you’ve seen what an image looks like to a computer, let’s recall our

goal: create a model that can recognize 3s and 7s. How might you go about

getting a computer to do that?

STOP AND THINK!
Before you read on, take a moment to think about how a computer might be able to

recognize these two digits. What kinds of features might it be able to look at? How might it

be able to identify these features? How could it combine them? Learning works best when

you try to solve problems yourself, rather than just reading somebody else’s answers; so step

away from this book for a few minutes, grab a piece of paper and pen, and jot some ideas

down.

First Try: Pixel Similarity

So, here is a first idea: how about we find the average pixel value for every

pixel of the 3s, then do the same for the 7s. This will give us two group

averages, defining what we might call the “ideal” 3 and 7. Then, to classify an

image as one digit or the other, we see which of these two ideal digits the

image is most similar to. This certainly seems like it should be better than

nothing, so it will make a good baseline.

JARGON: BASELINE
A simple model that you are confident should perform reasonably well. It should be simple

to implement and easy to test, so that you can then test each of your improved ideas and

make sure they are always better than your baseline. Without starting with a sensible

baseline, it is difficult to know whether your super-fancy models are any good. One good

approach to creating a baseline is doing what we have done here: think of a simple, easy-to-

implement model. Another good approach is to search around to find other people who have

solved problems similar to yours, and download and run their code on your dataset. Ideally,

try both of these!

Step 1 for our simple model is to get the average of pixel values for each of our

two groups. In the process of doing this, we will learn a lot of neat Python

numeric programming tricks!

Let’s create a tensor containing all of our 3s stacked together. We already

know how to create a tensor containing a single image. To create a tensor

containing all the images in a directory, we will first use a Python list

comprehension to create a plain list of the single image tensors.

We will use Jupyter to do some little checks of our work along the way—in this

case, making sure that the number of returned items seems reasonable:

seven_tensors = [tensor(Image.open(o)) for o in sevens]
three_tensors = [tensor(Image.open(o)) for o in threes]
len(three_tensors),len(seven_tensors)

(6131, 6265)

LIST COMPREHENSIONS
List and dictionary comprehensions are a wonderful feature of Python. Many Python

programmers use them every day, including the authors of this book—they are part of

“idiomatic Python.” But programmers coming from other languages may have never seen

them before. A lot of great tutorials are just a web search away, so we won’t spend a long

time discussing them now. Here is a quick explanation and example to get you started. A list

comprehension looks like this: new_list = [f(o) for o in a_list if o>0]. This will

return every element of a_list that is greater than 0, after passing it to the function f. There

are three parts here: the collection you are iterating over (a_list), an optional filter (if

o>0), and something to do to each element (f(o)). It’s not only shorter to write, but also way

faster than the alternative ways of creating the same list with a loop.

We’ll also check that one of the images looks OK. Since we now have tensors

(which Jupyter by default will print as values), rather than PIL images (which

Jupyter by default will display images), we need to use fastai’s show_image

function to display it:

show_image(three_tensors[1]);

For every pixel position, we want to compute the average over all the images

of the intensity of that pixel. To do this, we first combine all the images in this

list into a single three-dimensional tensor. The most common way to describe

such a tensor is to call it a rank-3 tensor. We often need to stack up individual

tensors in a collection into a single tensor. Unsurprisingly, PyTorch comes

with a function called stack that we can use for this purpose.

Some operations in PyTorch, such as taking a mean, require us to cast our

integer types to float types. Since we’ll be needing this later, we’ll also cast our

stacked tensor to float now. Casting in PyTorch is as simple as writing the

name of the type you wish to cast to, and treating it as a method.

Generally, when images are floats, the pixel values are expected to be between

0 and 1, so we will also divide by 255 here:

stacked_sevens = torch.stack(seven_tensors).float()/255
stacked_threes = torch.stack(three_tensors).float()/255
stacked_threes.shape

torch.Size([6131, 28, 28])

Perhaps the most important attribute of a tensor is its shape. This tells you

the length of each axis. In this case, we can see that we have 6,131 images,

each of size 28×28 pixels. There is nothing specifically about this tensor that

says that the first axis is the number of images, the second is the height, and

the third is the width—the semantics of a tensor are entirely up to us, and how

we construct it. As far as PyTorch is concerned, it is just a bunch of numbers

in memory.

The length of a tensor’s shape is its rank:

len(stacked_threes.shape)

3

It is really important for you to commit to memory and practice these bits of

tensor jargon: rank is the number of axes or dimensions in a tensor; shape is

the size of each axis of a tensor.

ALEXIS SAYS
Watch out because the term “dimension” is sometimes used in two ways. Consider that we

live in “three-dimensional space,” where a physical position can be described by a vector v,

of length 3. But according to PyTorch, the attribute v.ndim (which sure looks like the

“number of dimensions” of v) equals one, not three! Why? Because v is a vector, which is a

tensor of rank one, meaning that it has only one axis (even if that axis has a length of three).

In other words, sometimes dimension is used for the size of an axis (“space is three-

dimensional”), while other times it is used for the rank, or the number of axes (“a matrix has

two dimensions”). When confused, I find it helpful to translate all statements into terms of

rank, axis, and length, which are unambiguous terms.

We can also get a tensor’s rank directly with ndim:

stacked_threes.ndim

3

Finally, we can compute what the ideal 3 looks like. We calculate the mean of

all the image tensors by taking the mean along dimension 0 of our stacked,

rank-3 tensor. This is the dimension that indexes over all the images.

In other words, for every pixel position, this will compute the average of that

pixel over all images. The result will be one value for every pixel position, or a

single image. Here it is:

mean3 = stacked_threes.mean(0)
show_image(mean3);

According to this dataset, this is the ideal number 3! (You may not like it, but

this is what peak number 3 performance looks like.) You can see how it’s very

dark where all the images agree it should be dark, but it becomes wispy and

blurry where the images disagree.

Let’s do the same thing for the 7s, but put all the steps together at once to save

time:

mean7 = stacked_sevens.mean(0)
show_image(mean7);

Let’s now pick an arbitrary 3 and measure its distance from our “ideal digits.”

STOP AND THINK!
How would you calculate how similar a particular image is to each of our ideal digits?

Remember to step away from this book and jot down some ideas before you move on!

Research shows that recall and understanding improve dramatically when you are engaged

with the learning process by solving problems, experimenting, and trying new ideas

yourself.

Here’s a sample 3:

a_3 = stacked_threes[1]
show_image(a_3);

How can we determine its distance from our ideal 3? We can’t just add up the

differences between the pixels of this image and the ideal digit. Some

differences will be positive, while others will be negative, and these

differences will cancel out, resulting in a situation where an image that is too

dark in some places and too light in others might be shown as having zero

total differences from the ideal. That would be misleading!

To avoid this, data scientists use two main ways to measure distance in this

context:

Take the mean of the absolute value of differences (absolute value is

the function that replaces negative values with positive values). This is

called the mean absolute difference or L1 norm.

Take the mean of the square of differences (which makes everything

positive) and then take the square root (which undoes the squaring).

This is called the root mean squared error (RMSE) or L2 norm.

IT’S OK TO HAVE FORGOTTEN YOUR MATH
In this book, we generally assume that you have completed high school math, and remember

at least some of it—but everybody forgets some things! It all depends on what you happen to

have had reason to practice in the meantime. Perhaps you have forgotten what a square root

is, or exactly how they work. No problem! Anytime you come across a math concept that is

not explained fully in this book, don’t just keep moving on; instead, stop and look it up.

Make sure you understand the basic idea, how it works, and why we might be using it. One

of the best places to refresh your understanding is Khan Academy. For instance, Khan

Academy has a great introduction to square roots.

https://oreil.ly/T7mxH

Let’s try both of these now:

dist_3_abs = (a_3 - mean3).abs().mean()
dist_3_sqr = ((a_3 - mean3)**2).mean().sqrt()
dist_3_abs,dist_3_sqr

(tensor(0.1114), tensor(0.2021))

dist_7_abs = (a_3 - mean7).abs().mean()
dist_7_sqr = ((a_3 - mean7)**2).mean().sqrt()
dist_7_abs,dist_7_sqr

(tensor(0.1586), tensor(0.3021))

In both cases, the distance between our 3 and the “ideal” 3 is less than the

distance to the ideal 7, so our simple model will give the right prediction in

this case.

PyTorch already provides both of these as loss functions. You’ll find these

inside torch.nn.functional, which the PyTorch team recommends importing

as F (and is available by default under that name in fastai):

F.l1_loss(a_3.float(),mean7), F.mse_loss(a_3,mean7).sqrt()

(tensor(0.1586), tensor(0.3021))

Here, MSE stands for mean squared error, and l1 refers to the standard

mathematical jargon for mean absolute value (in math it’s called the L1

norm).

SYLVAIN SAYS
Intuitively, the difference between L1 norm and mean squared error (MSE) is that the latter

will penalize bigger mistakes more heavily than the former (and be more lenient with small

mistakes).

JEREMY SAYS
When I first came across this L1 thingie, I looked it up to see what on earth it meant. I found

on Google that it is a vector norm using absolute value, so I looked up “vector norm” and

started reading: Given a vector space V over a field F of the real or complex numbers, a

norm on V is a nonnegative-valued any function p: V → \[0,+∞) with the following

properties: For all a ∈ F and all u, v ∈ V, p(u + v) ≤ p(u) + p(v)…Then I stopped reading.

“Ugh, I’ll never understand math!” I thought, for the thousandth time. Since then, I’ve

learned that every time these complex mathy bits of jargon come up in practice, it turns out I

can replace them with a tiny bit of code! Like, the L1 loss is just equal to (a-

b).abs().mean(), where a and b are tensors. I guess mathy folks just think differently than I

do…I’ll make sure in this book that every time some mathy jargon comes up, I’ll give you the

little bit of code it’s equal to as well, and explain in common-sense terms what’s going on.

We just completed various mathematical operations on PyTorch tensors. If

you’ve done numeric programming in PyTorch before, you may recognize

these as being similar to NumPy arrays. Let’s have a look at those two

important data structures.

NumPy Arrays and PyTorch Tensors

NumPy is the most widely used library for scientific and numeric

programming in Python. It provides similar functionality and a similar API to

that provided by PyTorch; however, it does not support using the GPU or

calculating gradients, which are both critical for deep learning. Therefore, in

this book, we will generally use PyTorch tensors instead of NumPy arrays,

where possible.

(Note that fastai adds some features to NumPy and PyTorch to make them a

bit more similar to each other. If any code in this book doesn’t work on your

https://numpy.org/

computer, it’s possible that you forgot to include a line like this at the start of

your notebook: from fastai.vision.all import *.)

But what are arrays and tensors, and why should you care?

Python is slow compared to many languages. Anything fast in Python,

NumPy, or PyTorch is likely to be a wrapper for a compiled object written

(and optimized) in another language—specifically, C. In fact, NumPy arrays

and PyTorch tensors can finish computations many thousands of times

faster than using pure Python.

A NumPy array is a multidimensional table of data, with all items of the same

type. Since that can be any type at all, they can even be arrays of arrays, with

the innermost arrays potentially being different sizes—this is called a jagged

array. By “multidimensional table,” we mean, for instance, a list (dimension

of one), a table or matrix (dimension of two), a table of tables or cube

(dimension of three), and so forth. If the items are all of simple type such as

integer or float, NumPy will store them as a compact C data structure in

memory. This is where NumPy shines. NumPy has a wide variety of operators

and methods that can run computations on these compact structures at the

same speed as optimized C, because they are written in optimized C.

A PyTorch tensor is nearly the same thing as a NumPy array, but with an

additional restriction that unlocks additional capabilities. It’s the same in that

it, too, is a multidimensional table of data, with all items of the same type.

However, the restriction is that a tensor cannot use just any old type—it has to

use a single basic numeric type for all components. As a result, a tensor is not

as flexible as a genuine array of arrays. For example, a PyTorch tensor cannot

be jagged. It is always a regularly shaped multidimensional rectangular

structure.

The vast majority of methods and operators supported by NumPy on these

structures are also supported by PyTorch, but PyTorch tensors have

additional capabilities. One major capability is that these structures can live

on the GPU, in which case their computation will be optimized for the GPU

and can run much faster (given lots of values to work on). In addition,

PyTorch can automatically calculate derivatives of these operations, including

combinations of operations. As you’ll see, it would be impossible to do deep

learning in practice without this capability.

SYLVAIN SAYS
If you don’t know what C is, don’t worry: you won’t need it at all. In a nutshell, it’s a low-

level (low-level means more similar to the language that computers use internally) language

that is very fast compared to Python. To take advantage of its speed while programming in

Python, try to avoid as much as possible writing loops, and replace them by commands that

work directly on arrays or tensors.

Perhaps the most important new coding skill for a Python programmer to

learn is how to effectively use the array/tensor APIs. We will be showing lots

more tricks later in this book, but here’s a summary of the key things you need

to know for now.

To create an array or tensor, pass a list (or list of lists, or list of lists of lists,

etc.) to array or tensor:

data = [[1,2,3],[4,5,6]]
arr = array (data)
tns = tensor(data)

arr # numpy

array([[1, 2, 3],
 [4, 5, 6]])

tns # pytorch

tensor([[1, 2, 3],
 [4, 5, 6]])

All the operations that follow are shown on tensors, but the syntax and results

for NumPy arrays are identical.

You can select a row (note that, like lists in Python, tensors are 0-indexed, so 1

refers to the second row/column):

tns[1]

tensor([4, 5, 6])

Or a column, by using : to indicate all of the first axis (we sometimes refer to

the dimensions of tensors/arrays as axes):

tns[:,1]

tensor([2, 5])

You can combine these with Python slice syntax ([start:end], with end

being excluded) to select part of a row or column:

tns[1,1:3]

tensor([5, 6])

And you can use the standard operators, such as +, -, *, and /:

tns+1

tensor([[2, 3, 4],
 [5, 6, 7]])

Tensors have a type:

tns.type()

'torch.LongTensor'

And will automatically change that type as needed; for example, from int to

float:

tns*1.5

tensor([[1.5000, 3.0000, 4.5000],
 [6.0000, 7.5000, 9.0000]])

So, is our baseline model any good? To quantify this, we must define a metric.

Computing Metrics Using Broadcasting

Recall that a metric is a number that is calculated based on the predictions of

our model and the correct labels in our dataset, in order to tell us how good

our model is. For instance, we could use either of the functions we saw in the

previous section, mean squared error or mean absolute error, and take the

average of them over the whole dataset. However, neither of these are

numbers that are very understandable to most people; in practice, we

normally use accuracy as the metric for classification models.

As we’ve discussed, we want to calculate our metric over a validation set. This

is so that we don’t inadvertently overfit—that is, train a model to work well

only on our training data. This is not really a risk with the pixel similarity

model we’re using here as a first try, since it has no trained components, but

we’ll use a validation set anyway to follow normal practices and to be ready for

our second try later.

To get a validation set, we need to remove some of the data from training

entirely, so it is not seen by the model at all. As it turns out, the creators of the

MNIST dataset have already done this for us. Do you remember how there

was a whole separate directory called valid? That’s what this directory is for!

So to start, let’s create tensors for our 3s and 7s from that directory. These are

the tensors we will use to calculate a metric measuring the quality of our first-

try model, which measures distance from an ideal image:

valid_3_tens = torch.stack([tensor(Image.open(o))
 for o in (path/'valid'/'3').ls()])
valid_3_tens = valid_3_tens.float()/255
valid_7_tens = torch.stack([tensor(Image.open(o))
 for o in (path/'valid'/'7').ls()])
valid_7_tens = valid_7_tens.float()/255
valid_3_tens.shape,valid_7_tens.shape

(torch.Size([1010, 28, 28]), torch.Size([1028, 28, 28]))

It’s good to get in the habit of checking shapes as you go. Here we see two

tensors, one representing the 3s validation set of 1,010 images of size 28×28,

and one representing the 7s validation set of 1,028 images of size 28×28.

We ultimately want to write a function, is_3, that will decide whether an

arbitrary image is a 3 or a 7. It will do this by deciding which of our two “ideal

digits” that arbitrary image is closer to. For that we need to define a notion of

distance—that is, a function that calculates the distance between two images.

We can write a simple function that calculates the mean absolute error using

an expression very similar to the one we wrote in the last section:

def mnist_distance(a,b): return (a-b).abs().mean((-1,-2))
mnist_distance(a_3, mean3)

tensor(0.1114)

This is the same value we previously calculated for the distance between these

two images, the ideal 3 mean_3 and the arbitrary sample 3 a_3, which are both

single-image tensors with a shape of [28,28].

But to calculate a metric for overall accuracy, we will need to calculate the

distance to the ideal 3 for every image in the validation set. How do we do

that calculation? We could write a loop over all of the single-image tensors

that are stacked within our validation set tensor, valid_3_tens, which has a

shape of [1010,28,28] representing 1,010 images. But there is a better way.

Something interesting happens when we take this exact same distance

function, designed for comparing two single images, but pass in as an

argument valid_3_tens, the tensor that represents the 3s validation set:

valid_3_dist = mnist_distance(valid_3_tens, mean3)
valid_3_dist, valid_3_dist.shape

(tensor([0.1050, 0.1526, 0.1186, ..., 0.1122, 0.1170, 0.1086]),
 torch.Size([1010]))

Instead of complaining about shapes not matching, it returned the distance

for every single image as a vector (i.e., a rank-1 tensor) of length 1,010 (the

number of 3s in our validation set). How did that happen?

Take another look at our function mnist_distance, and you’ll see we have

there the subtraction (a-b). The magic trick is that PyTorch, when it tries to

perform a simple subtraction operation between two tensors of different

ranks, will use broadcasting: it will automatically expand the tensor with the

smaller rank to have the same size as the one with the larger rank.

Broadcasting is an important capability that makes tensor code much easier

to write.

After broadcasting so the two argument tensors have the same rank, PyTorch

applies its usual logic for two tensors of the same rank: it performs the

operation on each corresponding element of the two tensors, and returns the

tensor result. For instance:

tensor([1,2,3]) + tensor([1,1,1])

tensor([2, 3, 4])

So in this case, PyTorch treats mean3, a rank-2 tensor representing a single

image, as if it were 1,010 copies of the same image, and then subtracts each of

those copies from each 3 in our validation set. What shape would you expect

this tensor to have? Try to figure it out yourself before you look at the answer

here:

(valid_3_tens-mean3).shape

torch.Size([1010, 28, 28])

We are calculating the difference between our ideal 3 and each of the 1,010 3s

in the validation set, for each of 28×28 images, resulting in the shape

[1010,28,28].

There are a couple of important points about how broadcasting is

implemented, which make it valuable not just for expressivity but also for

performance:

PyTorch doesn’t actually copy mean3 1,010 times. It pretends it were a

tensor of that shape, but doesn’t allocate any additional memory.

It does the whole calculation in C (or, if you’re using a GPU, in CUDA,

the equivalent of C on the GPU), tens of thousands of times faster than

pure Python (up to millions of times faster on a GPU!).

This is true of all broadcasting and elementwise operations and functions

done in PyTorch. It’s the most important technique for you to know to create

efficient PyTorch code.

Next in mnist_distance we see abs. You might be able to guess now what this

does when applied to a tensor. It applies the method to each individual

element in the tensor, and returns a tensor of the results (that is, it applies the

method elementwise). So in this case, we’ll get back 1,010 absolute values.

Finally, our function calls mean((-1,-2)). The tuple (-1,-2) represents a

range of axes. In Python, -1 refers to the last element, and -2 refers to the

second-to-last. So in this case, this tells PyTorch that we want to take the

mean ranging over the values indexed by the last two axes of the tensor. The

last two axes are the horizontal and vertical dimensions of an image. After

taking the mean over the last two axes, we are left with just the first tensor

axis, which indexes over our images, which is why our final size was (1010). In

other words, for every image, we averaged the intensity of all the pixels in that

image.

We’ll be learning lots more about broadcasting throughout this book,

especially in Chapter 17, and will be practicing it regularly too.

We can use mnist_distance to figure out whether an image is a 3 by using the

following logic: if the distance between the digit in question and the ideal 3 is

less than the distance to the ideal 7, then it’s a 3. This function will

automatically do broadcasting and be applied elementwise, just like all

PyTorch functions and operators:

def is_3(x): return mnist_distance(x,mean3) < mnist_distance(x,mean7)

Let’s test it on our example case:

is_3(a_3), is_3(a_3).float()

(tensor(True), tensor(1.))

Note that when we convert the Boolean response to a float, we get 1.0 for True

and 0.0 for False.

Thanks to broadcasting, we can also test it on the full validation set of 3s:

is_3(valid_3_tens)

tensor([True, True, True, ..., True, True, True])

Now we can calculate the accuracy for each of the 3s and 7s, by taking the

average of that function for all 3s and its inverse for all 7s:

accuracy_3s = is_3(valid_3_tens).float() .mean()
accuracy_7s = (1 - is_3(valid_7_tens).float()).mean()

accuracy_3s,accuracy_7s,(accuracy_3s+accuracy_7s)/2

(tensor(0.9168), tensor(0.9854), tensor(0.9511))

This looks like a pretty good start! We’re getting over 90% accuracy on both 3s

and 7s, and we’ve seen how to define a metric conveniently using

broadcasting. But let’s be honest: 3s and 7s are very different-looking digits.

And we’re classifying only 2 out of the 10 possible digits so far. So we’re going

to need to do better!

To do better, perhaps it is time to try a system that does some real learning—

one that can automatically modify itself to improve its performance. In other

words, it’s time to talk about the training process and SGD.

Stochastic Gradient Descent

Do you remember the way that Arthur Samuel described machine learning,

which we quoted in Chapter 1?

Suppose we arrange for some automatic means of testing the effectiveness

of any current weight assignment in terms of actual performance and

provide a mechanism for altering the weight assignment so as to

maximize the performance. We need not go into the details of such a

procedure to see that it could be made entirely automatic and to see that a

machine so programmed would “learn” from its experience.

As we discussed, this is the key to allowing us to have a model that can get

better and better—that can learn. But our pixel similarity approach does not

really do this. We do not have any kind of weight assignment, or any way of

improving based on testing the effectiveness of a weight assignment. In other

words, we can’t really improve our pixel similarity approach by modifying a

set of parameters. To take advantage of the power of deep learning, we will

first have to represent our task in the way that Samuel described it.

Instead of trying to find the similarity between an image and an “ideal image,”

we could instead look at each individual pixel and come up with a set of

weights for each, such that the highest weights are associated with those

pixels most likely to be black for a particular category. For instance, pixels

toward the bottom right are not very likely to be activated for a 7, so they

should have a low weight for a 7, but they are likely to be activated for an 8, so

they should have a high weight for an 8. This can be represented as a function

and set of weight values for each possible category—for instance, the

probability of being the number 8:

def pr_eight(x,w) = (x*w).sum()

Here we are assuming that X is the image, represented as a vector—in other

words, with all of the rows stacked up end to end into a single long line. And

we are assuming that the weights are a vector W. If we have this function, we

just need some way to update the weights to make them a little bit better.

With such an approach, we can repeat that step a number of times, making

the weights better and better, until they are as good as we can make them.

We want to find the specific values for the vector W that cause the result of our

function to be high for those images that are 8s, and low for those images that

are not. Searching for the best vector W is a way to search for the best function

for recognizing 8s. (Because we are not yet using a deep neural network, we

are limited by what our function can do—we are going to fix that constraint

later in this chapter.)

To be more specific, here are the steps required to turn this function into a

machine learning classifier:

1. Initialize the weights.

2. For each image, use these weights to predict whether it appears to be a

3 or a 7.

3. Based on these predictions, calculate how good the model is (its loss).

4. Calculate the gradient, which measures for each weight how changing

that weight would change the loss.

5. Step (that is, change) all the weights based on that calculation.

6. Go back to step 2 and repeat the process.

7. Iterate until you decide to stop the training process (for instance,

because the model is good enough or you don’t want to wait any

longer).

These seven steps, illustrated in Figure 4-1, are the key to the training of all

deep learning models. That deep learning turns out to rely entirely on these

steps is extremely surprising and counterintuitive. It’s amazing that this

process can solve such complex problems. But, as you’ll see, it really does!

Figure 4-1. The gradient descent process

There are many ways to do each of these seven steps, and we will be learning

about them throughout the rest of this book. These are the details that make a

big difference for deep learning practitioners, but it turns out that the general

approach to each one follows some basic principles. Here are a few guidelines:

Initialize

We initialize the parameters to random values. This may sound

surprising. There are certainly other choices we could make, such

as initializing them to the percentage of times that pixel is activated

for that category—but since we already know that we have a routine

to improve these weights, it turns out that just starting with

random weights works perfectly well.

Loss

This is what Samuel referred to when he spoke of testing the

effectiveness of any current weight assignment in terms of actual

performance. We need a function that will return a number that is

small if the performance of the model is good (the standard

approach is to treat a small loss as good and a large loss as bad,

although this is just a convention).

Step

A simple way to figure out whether a weight should be increased a

bit or decreased a bit would be just to try it: increase the weight by

a small amount, and see if the loss goes up or down. Once you find

the correct direction, you could then change that amount by a bit

more, or a bit less, until you find an amount that works well.

However, this is slow! As we will see, the magic of calculus allows

us to directly figure out in which direction, and by roughly how

much, to change each weight, without having to try all these small

changes. The way to do this is by calculating gradients. This is just

a performance optimization; we would get exactly the same results

by using the slower manual process as well.

Stop

Once we’ve decided how many epochs to train the model for (a few

suggestions for this were given in the earlier list), we apply that

decision. For our digit classifier, we would keep training until the

accuracy of the model started getting worse, or we ran out of time.

Before applying these steps to our image classification problem, let’s illustrate

what they look like in a simpler case. First we will define a very simple

function, the quadratic—let’s pretend that this is our loss function, and x is a

weight parameter of the function:

def f(x): return x**2

Here is a graph of that function:

plot_function(f, 'x', 'x**2')

The sequence of steps we described earlier starts by picking a random value

for a parameter, and calculating the value of the loss:

plot_function(f, 'x', 'x**2')
plt.scatter(-1.5, f(-1.5), color='red');

Now we look to see what would happen if we increased or decreased our

parameter by a little bit—the adjustment. This is simply the slope at a

particular point:

We can change our weight by a little in the direction of the slope, calculate our

loss and adjustment again, and repeat this a few times. Eventually, we will get

to the lowest point on our curve:

This basic idea goes all the way back to Isaac Newton, who pointed out that we

can optimize arbitrary functions in this way. Regardless of how complicated

our functions become, this basic approach of gradient descent will not

significantly change. The only minor changes we will see later in this book are

some handy ways we can make it faster, by finding better steps.

Calculating Gradients

The one magic step is the bit where we calculate the gradients. As we

mentioned, we use calculus as a performance optimization; it allows us to

more quickly calculate whether our loss will go up or down when we adjust

our parameters up or down. In other words, the gradients will tell us how

much we have to change each weight to make our model better.

You may remember from your high school calculus class that the derivative of

a function tells you how much a change in its parameters will change its

result. If not, don’t worry; lots of us forget calculus once high school is behind

us! But you will need some intuitive understanding of what a derivative is

before you continue, so if this is all very fuzzy in your head, head over to Khan

Academy and complete the lessons on basic derivatives. You won’t have to

know how to calculate them yourself; you just have to know what a derivative

is.

The key point about a derivative is this: for any function, such as the quadratic

function we saw in the previous section, we can calculate its derivative. The

derivative is another function. It calculates the change, rather than the value.

https://oreil.ly/nyd0R

For instance, the derivative of the quadratic function at the value 3 tells us

how rapidly the function changes at the value 3. More specifically, you may

recall that gradient is defined as rise/run; that is, the change in the value of

the function, divided by the change in the value of the parameter. When we

know how our function will change, we know what we need to do to make it

smaller. This is the key to machine learning: having a way to change the

parameters of a function to make it smaller. Calculus provides us with a

computational shortcut, the derivative, which lets us directly calculate the

gradients of our functions.

One important thing to be aware of is that our function has lots of weights

that we need to adjust, so when we calculate the derivative, we won’t get back

one number, but lots of them—a gradient for every weight. But there is

nothing mathematically tricky here; you can calculate the derivative with

respect to one weight and treat all the other ones as constant, and then repeat

that for each other weight. This is how all of the gradients are calculated, for

every weight.

We mentioned just now that you won’t have to calculate any gradients

yourself. How can that be? Amazingly enough, PyTorch is able to

automatically compute the derivative of nearly any function! What’s more, it

does it very fast. Most of the time, it will be at least as fast as any derivative

function that you can create by hand. Let’s see an example.

First, let’s pick a tensor value at which we want gradients:

xt = tensor(3.).requires_grad_()

Notice the special method requires_grad_? That’s the magical incantation we

use to tell PyTorch that we want to calculate gradients with respect to that

variable at that value. It is essentially tagging the variable, so PyTorch will

remember to keep track of how to compute gradients of the other direct

calculations on it that you will ask for.

ALEXIS SAYS
This API might throw you off if you’re coming from math or physics. In those contexts, the

“gradient” of a function is just another function (i.e., its derivative), so you might expect

gradient-related APIs to give you a new function. But in deep learning, “gradient” usually

means the value of a function’s derivative at a particular argument value. The PyTorch API

also puts the focus on the argument, not the function you’re actually computing the

gradients of. It may feel backward at first, but it’s just a different perspective.

Now we calculate our function with that value. Notice how PyTorch prints not

just the value calculated, but also a note that it has a gradient function it’ll be

using to calculate our gradients when needed:

yt = f(xt)
yt

tensor(9., grad_fn=<PowBackward0>)

Finally, we tell PyTorch to calculate the gradients for us:

yt.backward()

The “backward” here refers to backpropagation, which is the name given to

the process of calculating the derivative of each layer. We’ll see how this is

done exactly in Chapter 17, when we calculate the gradients of a deep neural

net from scratch. This is called the backward pass of the network, as opposed

to the forward pass, which is where the activations are calculated. Life would

probably be easier if backward was just called calculate_grad, but deep

learning folks really do like to add jargon everywhere they can!

We can now view the gradients by checking the grad attribute of our tensor:

xt.grad

tensor(6.)

If you remember your high school calculus rules, the derivative of x**2 is 2*x,

and we have x=3, so the gradients should be 2*3=6, which is what PyTorch

calculated for us!

Now we’ll repeat the preceding steps, but with a vector argument for our

function:

xt = tensor([3.,4.,10.]).requires_grad_()
xt

tensor([3., 4., 10.], requires_grad=True)

And we’ll add sum to our function so it can take a vector (i.e., a rank-1 tensor)

and return a scalar (i.e., a rank-0 tensor):

def f(x): return (x**2).sum()

yt = f(xt)
yt

tensor(125., grad_fn=<SumBackward0>)

Our gradients are 2*xt, as we’d expect!

yt.backward()
xt.grad

tensor([6., 8., 20.])

The gradients tell us only the slope of our function; they don’t tell us exactly

how far to adjust the parameters. But they do give us some idea of how far: if

the slope is very large, that may suggest that we have more adjustments to do,

whereas if the slope is very small, that may suggest that we are close to the

optimal value.

Stepping with a Learning Rate

Deciding how to change our parameters based on the values of the gradients

is an important part of the deep learning process. Nearly all approaches start

with the basic idea of multiplying the gradient by some small number, called

the learning rate (LR). The learning rate is often a number between 0.001

and 0.1, although it could be anything. Often people select a learning rate just

by trying a few, and finding which results in the best model after training

(we’ll show you a better approach later in this book, called the learning rate

finder). Once you’ve picked a learning rate, you can adjust your parameters

using this simple function:

w -= w.grad * lr

This is known as stepping your parameters, using an optimization step.

If you pick a learning rate that’s too low, it can mean having to do a lot of

steps. Figure 4-2 illustrates that.

Figure 4-2. Gradient descent with low LR

But picking a learning rate that’s too high is even worse—it can result in the

loss getting worse, as we see in Figure 4-3!

Figure 4-3. Gradient descent with high LR

If the learning rate is too high, it may also “bounce” around, rather than

diverging; Figure 4-4 shows how this results in taking many steps to train

successfully.

Figure 4-4. Gradient descent with bouncy LR

Now let’s apply all of this in an end-to-end example.

An End-to-End SGD Example

We’ve seen how to use gradients to minimize our loss. Now it’s time to look at

an SGD example and see how finding a minimum can be used to train a model

to fit data better.

Let’s start with a simple, synthetic example model. Imagine you were

measuring the speed of a roller coaster as it went over the top of a hump. It

would start fast, and then get slower as it went up the hill; it would be slowest

at the top, and it would then speed up again as it went downhill. You want to

build a model of how the speed changes over time. If you were measuring the

speed manually every second for 20 seconds, it might look something like

this:

time = torch.arange(0,20).float(); time

tensor([0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11.,
12., 13.,
 > 14., 15., 16., 17., 18., 19.])

speed = torch.randn(20)*3 + 0.75*(time-9.5)**2 + 1
plt.scatter(time,speed);

We’ve added a bit of random noise, since measuring things manually isn’t

precise. This means it’s not that easy to answer the question: what was the

roller coaster’s speed? Using SGD, we can try to find a function that matches

our observations. We can’t consider every possible function, so let’s use a

guess that it will be quadratic; i.e., a function of the form a*(time**2)+

(b*time)+c.

We want to distinguish clearly between the function’s input (the time when we

are measuring the coaster’s speed) and its parameters (the values that define

which quadratic we’re trying). So let’s collect the parameters in one argument

and thus separate the input, t, and the parameters, params, in the function’s

signature:

def f(t, params):
 a,b,c = params
 return a*(t**2) + (b*t) + c

In other words, we’ve restricted the problem of finding the best imaginable

function that fits the data to finding the best quadratic function. This greatly

simplifies the problem, since every quadratic function is fully defined by the

three parameters a, b, and c. Thus, to find the best quadratic function, we

need to find only the best values for a, b, and c.

If we can solve this problem for the three parameters of a quadratic function,

we’ll be able to apply the same approach for other, more complex functions

with more parameters—such as a neural net. Let’s find the parameters for f

first, and then we’ll come back and do the same thing for the MNIST dataset

with a neural net.

We need to define first what we mean by “best.” We define this precisely by

choosing a loss function, which will return a value based on a prediction and a

target, where lower values of the function correspond to “better” predictions.

For continuous data, it’s common to use mean squared error:

def mse(preds, targets): return ((preds-targets)**2).mean()

Now, let’s work through our seven-step process.

STEP 1: INITIALIZE THE PARAMETERS

First, we initialize the parameters to random values and tell PyTorch that we

want to track their gradients using requires_grad_:

params = torch.randn(3).requires_grad_()

STEP 2: CALCULATE THE PREDICTIONS

Next, we calculate the predictions:

preds = f(time, params)

Let’s create a little function to see how close our predictions are to our targets,

and take a look:

def show_preds(preds, ax=None):
 if ax is None: ax=plt.subplots()[1]
 ax.scatter(time, speed)
 ax.scatter(time, to_np(preds), color='red')
 ax.set_ylim(-300,100)

show_preds(preds)

This doesn’t look very close—our random parameters suggest that the roller

coaster will end up going backward, since we have negative speeds!

STEP 3: CALCULATE THE LOSS

We calculate the loss as follows:

loss = mse(preds, speed)
loss

tensor(25823.8086, grad_fn=<MeanBackward0>)

Our goal is now to improve this. To do that, we’ll need to know the gradients.

STEP 4: CALCULATE THE GRADIENTS

The next step is to calculate the gradients, or an approximation of how the

parameters need to change:

loss.backward()
params.grad

tensor([-53195.8594, -3419.7146, -253.8908])

params.grad * 1e-5

tensor([-0.5320, -0.0342, -0.0025])

We can use these gradients to improve our parameters. We’ll need to pick a

learning rate (we’ll discuss how to do that in practice in the next chapter; for

now, we’ll just use 1e-5 or 0.00001):

params

tensor([-0.7658, -0.7506, 1.3525], requires_grad=True)

STEP 5: STEP THE WEIGHTS

Now we need to update the parameters based on the gradients we just

calculated:

lr = 1e-5
params.data -= lr * params.grad.data
params.grad = None

ALEXIS SAYS
Understanding this bit depends on remembering recent history. To calculate the gradients,

we call backward on the loss. But this loss was itself calculated by mse, which in turn took

preds as an input, which was calculated using f taking as an input params, which was the

object on which we originally called required_grads_—which is the original call that now

allows us to call backward on loss. This chain of function calls represents the mathematical

composition of functions, which enables PyTorch to use calculus’s chain rule under the hood

to calculate these gradients.

Let’s see if the loss has improved:

preds = f(time,params)
mse(preds, speed)

tensor(5435.5366, grad_fn=<MeanBackward0>)

And take a look at the plot:

show_preds(preds)

We need to repeat this a few times, so we’ll create a function to apply one step:

def apply_step(params, prn=True):
 preds = f(time, params)
 loss = mse(preds, speed)
 loss.backward()
 params.data -= lr * params.grad.data
 params.grad = None
 if prn: print(loss.item())
 return preds

STEP 6: REPEAT THE PROCESS

Now we iterate. By looping and performing many improvements, we hope to

reach a good result:

for i in range(10): apply_step(params)

5435.53662109375
1577.4495849609375
847.3780517578125
709.22265625
683.0757446289062
678.12451171875
677.1839599609375
677.0025024414062
676.96435546875
676.9537353515625

The loss is going down, just as we hoped! But looking only at these loss

numbers disguises the fact that each iteration represents an entirely different

quadratic function being tried, on the way to finding the best possible

quadratic function. We can see this process visually if, instead of printing out

the loss function, we plot the function at every step. Then we can see how the

shape is approaching the best possible quadratic function for our data:

_,axs = plt.subplots(1,4,figsize=(12,3))
for ax in axs: show_preds(apply_step(params, False), ax)
plt.tight_layout()

STEP 7: STOP

We just decided to stop after 10 epochs arbitrarily. In practice, we would

watch the training and validation losses and our metrics to decide when to

stop, as we’ve discussed.

Summarizing Gradient Descent

Now that you’ve seen what happens in each step, let’s take another look at our

graphical representation of the gradient descent process (Figure 4-5) and do a

quick recap.

Figure 4-5. The gradient descent process

At the beginning, the weights of our model can be random (training from

scratch) or come from a pretrained model (transfer learning). In the first

case, the output we will get from our inputs won’t have anything to do with

what we want, and even in the second case, it’s likely the pretrained model

won’t be very good at the specific task we are targeting. So the model will need

to learn better weights.

We begin by comparing the outputs the model gives us with our targets (we

have labeled data, so we know what result the model should give) using a loss

function, which returns a number that we want to make as low as possible by

improving our weights. To do this, we take a few data items (such as images)

from the training set and feed them to our model. We compare the

corresponding targets using our loss function, and the score we get tells us

how wrong our predictions were. We then change the weights a little bit to

make it slightly better.

To find how to change the weights to make the loss a bit better, we use

calculus to calculate the gradients. (Actually, we let PyTorch do it for us!)

Let’s consider an analogy. Imagine you are lost in the mountains with your car

parked at the lowest point. To find your way back to it, you might wander in a

random direction, but that probably wouldn’t help much. Since you know

your vehicle is at the lowest point, you would be better off going downhill. By

always taking a step in the direction of the steepest downward slope, you

should eventually arrive at your destination. We use the magnitude of the

gradient (i.e., the steepness of the slope) to tell us how big a step to take;

specifically, we multiply the gradient by a number we choose called the

learning rate to decide on the step size. We then iterate until we have reached

the lowest point, which will be our parking lot; then we can stop.

All of what we just saw can be transposed directly to the MNIST dataset,

except for the loss function. Let’s now see how we can define a good training

objective.

The MNIST Loss Function

We already have our xs—that is, our independent variables, the images

themselves. We’ll concatenate them all into a single tensor, and also change

them from a list of matrices (a rank-3 tensor) to a list of vectors (a rank-2

tensor). We can do this using view, which is a PyTorch method that changes

the shape of a tensor without changing its contents. -1 is a special parameter

to view that means “make this axis as big as necessary to fit all the data”:

train_x = torch.cat([stacked_threes, stacked_sevens]).view(-1, 28*28)

We need a label for each image. We’ll use 1 for 3s and 0 for 7s:

train_y = tensor([1]*len(threes) + [0]*len(sevens)).unsqueeze(1)
train_x.shape,train_y.shape

(torch.Size([12396, 784]), torch.Size([12396, 1]))

A Dataset in PyTorch is required to return a tuple of (x,y) when indexed.

Python provides a zip function that, when combined with list, provides a

simple way to get this functionality:

dset = list(zip(train_x,train_y))
x,y = dset[0]
x.shape,y

(torch.Size([784]), tensor([1]))

valid_x = torch.cat([valid_3_tens, valid_7_tens]).view(-1, 28*28)
valid_y = tensor([1]*len(valid_3_tens) + [0]*len(valid_7_tens)).unsqueeze(1)
valid_dset = list(zip(valid_x,valid_y))

Now we need an (initially random) weight for every pixel (this is the initialize

step in our seven-step process):

def init_params(size, std=1.0): return (torch.randn(size)*std).requires_grad_()

weights = init_params((28*28,1))

The function weights*pixels won’t be flexible enough—it is always equal to 0

when the pixels are equal to 0 (i.e., its intercept is 0). You might remember

from high school math that the formula for a line is y=w*x+b; we still need the

b. We’ll initialize it to a random number too:

bias = init_params(1)

In neural networks, the w in the equation y=w*x+b is called the weights, and

the b is called the bias. Together, the weights and bias make up the

parameters.

JARGON: PARAMETERS
The weights and biases of a model. The weights are the w in the equation w*x+b, and the

biases are the b in that equation.

We can now calculate a prediction for one image:

(train_x[0]*weights.T).sum() + bias

tensor([20.2336], grad_fn=<AddBackward0>)

While we could use a Python for loop to calculate the prediction for each

image, that would be very slow. Because Python loops don’t run on the GPU,

and because Python is a slow language for loops in general, we need to

represent as much of the computation in a model as possible using higher-

level functions.

In this case, there’s an extremely convenient mathematical operation that

calculates w*x for every row of a matrix—it’s called matrix multiplication.

Figure 4-6 shows what matrix multiplication looks like.

Figure 4-6. Matrix multiplication

This image shows two matrices, A and B, being multiplied together. Each item

of the result, which we’ll call AB, contains each item of its corresponding row

of A multiplied by each item of its corresponding column of B, added together.

For instance, row 1, column 2 (the yellow dot with a red border) is calculated

as a1,1 * b1,2 + a1,2 * b2,2. If you need a refresher on matrix multiplication, we

suggest you take a look at the “Intro to Matrix Multiplication” on Khan

Academy, since this is the most important mathematical operation in deep

learning.

In Python, matrix multiplication is represented with the @ operator. Let’s try

it:

def linear1(xb): return xb@weights + bias
preds = linear1(train_x)
preds

tensor([[20.2336],
 [17.0644],

https://oreil.ly/w0XKS

 [15.2384],
 ...,
 [18.3804],
 [23.8567],
 [28.6816]], grad_fn=<AddBackward0>)

The first element is the same as we calculated before, as we’d expect. This

equation, batch @ weights + bias, is one of the two fundamental equations

of any neural network (the other one is the activation function, which we’ll

see in a moment).

Let’s check our accuracy. To decide if an output represents a 3 or a 7, we can

just check whether it’s greater than 0, so our accuracy for each item can be

calculated (using broadcasting, so no loops!) as follows:

corrects = (preds>0.0).float() == train_y
corrects

tensor([[True],
 [True],
 [True],
 ...,
 [False],
 [False],
 [False]])

corrects.float().mean().item()

0.4912068545818329

Now let’s see what the change in accuracy is for a small change in one of the

weights:

weights[0] *= 1.0001

preds = linear1(train_x)
((preds>0.0).float() == train_y).float().mean().item()

0.4912068545818329

As we’ve seen, we need gradients in order to improve our model using SGD,

and in order to calculate gradients we need a loss function that represents

how good our model is. That is because the gradients are a measure of how

that loss function changes with small tweaks to the weights.

So, we need to choose a loss function. The obvious approach would be to use

accuracy, which is our metric, as our loss function as well. In this case, we

would calculate our prediction for each image, collect these values to calculate

an overall accuracy, and then calculate the gradients of each weight with

respect to that overall accuracy.

Unfortunately, we have a significant technical problem here. The gradient of a

function is its slope, or its steepness, which can be defined as rise over run—

that is, how much the value of the function goes up or down, divided by how

much we changed the input. We can write this mathematically as:

(y_new – y_old) / (x_new – x_old)

This gives a good approximation of the gradient when x_new is very similar to

x_old, meaning that their difference is very small. But accuracy changes at all

only when a prediction changes from a 3 to a 7, or vice versa. The problem is

that a small change in weights from x_old to x_new isn’t likely to cause any

prediction to change, so (y_new – y_old) will almost always be 0. In other

words, the gradient is 0 almost everywhere.

A very small change in the value of a weight will often not change the accuracy

at all. This means it is not useful to use accuracy as a loss function—if we do,

most of the time our gradients will be 0, and the model will not be able to

learn from that number.

SYLVAIN SAYS
In mathematical terms, accuracy is a function that is constant almost everywhere (except at

the threshold, 0.5), so its derivative is nil almost everywhere (and infinity at the threshold).

This then gives gradients that are 0 or infinite, which are useless for updating the model.

Instead, we need a loss function that, when our weights result in slightly

better predictions, gives us a slightly better loss. So what does a “slightly

better prediction” look like, exactly? Well, in this case, it means that if the

correct answer is a 3, the score is a little higher, or if the correct answer is a 7,

the score is a little lower.

Let’s write such a function now. What form does it take?

The loss function receives not the images themselves, but the predictions from

the model. So let’s make one argument, prds, of values between 0 and 1,

where each value is the prediction that an image is a 3. It is a vector (i.e., a

rank-1 tensor) indexed over the images.

The purpose of the loss function is to measure the difference between

predicted values and the true values—that is, the targets (aka labels). Let’s

therefore make another argument, trgts, with values of 0 or 1 that tells

whether an image actually is a 3 or not. It is also a vector (i.e., another rank-1

tensor) indexed over the images.

For instance, suppose we had three images that we knew were a 3, a 7, and a

3. And suppose our model predicted with high confidence (0.9) that the first

was a 3, with slight confidence (0.4) that the second was a 7, and with fair

confidence (0.2), but incorrectly, that the last was a 7. This would mean our

loss function would receive these values as its inputs:

trgts = tensor([1,0,1])
prds = tensor([0.9, 0.4, 0.2])

Here’s a first try at a loss function that measures the distance between

predictions and targets:

def mnist_loss(predictions, targets):
 return torch.where(targets==1, 1-predictions, predictions).mean()

We’re using a new function, torch.where(a,b,c). This is the same as running

the list comprehension [b[i] if a[i] else c[i] for i in range(len(a))],

except it works on tensors, at C/CUDA speed. In plain English, this function

will measure how distant each prediction is from 1 if it should be 1, and how

distant it is from 0 if it should be 0, and then it will take the mean of all those

distances.

READ THE DOCS
It’s important to learn about PyTorch functions like this, because looping over tensors in

Python performs at Python speed, not C/CUDA speed! Try running help(torch.where) now

to read the docs for this function, or, better still, look it up on the PyTorch documentation

site.

Let’s try it on our prds and trgts:

torch.where(trgts==1, 1-prds, prds)

tensor([0.1000, 0.4000, 0.8000])

You can see that this function returns a lower number when predictions are

more accurate, when accurate predictions are more confident (higher absolute

values), and when inaccurate predictions are less confident. In PyTorch, we

always assume that a lower value of a loss function is better. Since we need a

scalar for the final loss, mnist_loss takes the mean of the previous tensor:

mnist_loss(prds,trgts)

tensor(0.4333)

For instance, if we change our prediction for the one “false” target from 0.2 to

0.8, the loss will go down, indicating that this is a better prediction:

mnist_loss(tensor([0.9, 0.4, 0.8]),trgts)

tensor(0.2333)

One problem with mnist_loss as currently defined is that it assumes that

predictions are always between 0 and 1. We need to ensure, then, that this is

actually the case! As it happens, there is a function that does exactly that—let’s

take a look.

Sigmoid

The sigmoid function always outputs a number between 0 and 1. It’s defined

as follows:

def sigmoid(x): return 1/(1+torch.exp(-x))

PyTorch defines an accelerated version for us, so we don’t really need our

own. This is an important function in deep learning, since we often want to

ensure that values are between 0 and 1. This is what it looks like:

plot_function(torch.sigmoid, title='Sigmoid', min=-4, max=4)

As you can see, it takes any input value, positive or negative, and smooshes it

into an output value between 0 and 1. It’s also a smooth curve that only goes

up, which makes it easier for SGD to find meaningful gradients.

Let’s update mnist_loss to first apply sigmoid to the inputs:

def mnist_loss(predictions, targets):
 predictions = predictions.sigmoid()
 return torch.where(targets==1, 1-predictions, predictions).mean()

Now we can be confident our loss function will work, even if the predictions

are not between 0 and 1. All that is required is that a higher prediction

corresponds to higher confidence.

Having defined a loss function, now is a good moment to recapitulate why we

did this. After all, we already had a metric, which was overall accuracy. So why

did we define a loss?

The key difference is that the metric is to drive human understanding and the

loss is to drive automated learning. To drive automated learning, the loss

must be a function that has a meaningful derivative. It can’t have big flat

sections and large jumps, but instead must be reasonably smooth. This is why

we designed a loss function that would respond to small changes in

confidence level. This requirement means that sometimes it does not really

reflect exactly what we are trying to achieve, but is rather a compromise

between our real goal and a function that can be optimized using its gradient.

The loss function is calculated for each item in our dataset, and then at the

end of an epoch, the loss values are all averaged and the overall mean is

reported for the epoch.

Metrics, on the other hand, are the numbers that we care about. These are the

values that are printed at the end of each epoch that tell us how our model is

doing. It is important that we learn to focus on these metrics, rather than the

loss, when judging the performance of a model.

SGD and Mini-Batches

Now that we have a loss function suitable for driving SGD, we can consider

some of the details involved in the next phase of the learning process, which is

to change or update the weights based on the gradients. This is called an

optimization step.

To take an optimization step, we need to calculate the loss over one or more

data items. How many should we use? We could calculate it for the whole

dataset and take the average, or we could calculate it for a single data item.

But neither of these is ideal. Calculating it for the whole dataset would take a

long time. Calculating it for a single item would not use much information, so

it would result in an imprecise and unstable gradient. You’d be going to the

trouble of updating the weights, but taking into account only how that would

improve the model’s performance on that single item.

So instead we compromise: we calculate the average loss for a few data items

at a time. This is called a mini-batch. The number of data items in the mini-

batch is called the batch size. A larger batch size means that you will get a

more accurate and stable estimate of your dataset’s gradients from the loss

function, but it will take longer, and you will process fewer mini-batches per

epoch. Choosing a good batch size is one of the decisions you need to make as

a deep learning practitioner to train your model quickly and accurately. We

will talk about how to make this choice throughout this book.

Another good reason for using mini-batches rather than calculating the

gradient on individual data items is that, in practice, we nearly always do our

training on an accelerator such as a GPU. These accelerators perform well

only if they have lots of work to do at a time, so it’s helpful if we can give them

lots of data items to work on. Using mini-batches is one of the best ways to do

this. However, if you give them too much data to work on at once, they run

out of memory—making GPUs happy is also tricky!

As you saw in our discussion of data augmentation in Chapter 2, we get better

generalization if we can vary things during training. One simple and effective

thing we can vary is what data items we put in each mini-batch. Rather than

simply enumerating our dataset in order for every epoch, instead what we

normally do is randomly shuffle it on every epoch, before we create mini-

batches. PyTorch and fastai provide a class that will do the shuffling and mini-

batch collation for you, called DataLoader.

A DataLoader can take any Python collection and turn it into an iterator over

many batches, like so:

coll = range(15)
dl = DataLoader(coll, batch_size=5, shuffle=True)
list(dl)

[tensor([3, 12, 8, 10, 2]),
 tensor([9, 4, 7, 14, 5]),
 tensor([1, 13, 0, 6, 11])]

For training a model, we don’t just want any Python collection, but a

collection containing independent and dependent variables (the inputs and

targets of the model). A collection that contains tuples of independent and

dependent variables is known in PyTorch as a Dataset. Here’s an example of

an extremely simple Dataset:

ds = L(enumerate(string.ascii_lowercase))
ds

(#26) [(0, 'a'),(1, 'b'),(2, 'c'),(3, 'd'),(4, 'e'),(5, 'f'),(6,
'g'),(7,
 > 'h'),(8, 'i'),(9, 'j')...]

When we pass a Dataset to a DataLoader we will get back many batches that

are themselves tuples of tensors representing batches of independent and

dependent variables:

dl = DataLoader(ds, batch_size=6, shuffle=True)
list(dl)

[(tensor([17, 18, 10, 22, 8, 14]), ('r', 's', 'k', 'w', 'i', 'o')),
 (tensor([20, 15, 9, 13, 21, 12]), ('u', 'p', 'j', 'n', 'v', 'm')),
 (tensor([7, 25, 6, 5, 11, 23]), ('h', 'z', 'g', 'f', 'l', 'x')),
 (tensor([1, 3, 0, 24, 19, 16]), ('b', 'd', 'a', 'y', 't', 'q')),
 (tensor([2, 4]), ('c', 'e'))]

We are now ready to write our first training loop for a model using SGD!

Putting It All Together

It’s time to implement the process we saw in Figure 4-1. In code, our process

will be implemented something like this for each epoch:

for x,y in dl:
 pred = model(x)
 loss = loss_func(pred, y)
 loss.backward()
 parameters -= parameters.grad * lr

First, let’s reinitialize our parameters:

weights = init_params((28*28,1))
bias = init_params(1)

A DataLoader can be created from a Dataset:

dl = DataLoader(dset, batch_size=256)
xb,yb = first(dl)
xb.shape,yb.shape

(torch.Size([256, 784]), torch.Size([256, 1]))

We’ll do the same for the validation set:

valid_dl = DataLoader(valid_dset, batch_size=256)

Let’s create a mini-batch of size 4 for testing:

batch = train_x[:4]
batch.shape

torch.Size([4, 784])

preds = linear1(batch)
preds

tensor([[-11.1002],
 [5.9263],
 [9.9627],
 [-8.1484]], grad_fn=<AddBackward0>)

loss = mnist_loss(preds, train_y[:4])
loss

tensor(0.5006, grad_fn=<MeanBackward0>)

Now we can calculate the gradients:

loss.backward()
weights.grad.shape,weights.grad.mean(),bias.grad

(torch.Size([784, 1]), tensor(-0.0001), tensor([-0.0008]))

Let’s put that all in a function:

def calc_grad(xb, yb, model):
 preds = model(xb)
 loss = mnist_loss(preds, yb)
 loss.backward()

And test it:

calc_grad(batch, train_y[:4], linear1)
weights.grad.mean(),bias.grad

(tensor(-0.0002), tensor([-0.0015]))

But look what happens if we call it twice:

calc_grad(batch, train_y[:4], linear1)
weights.grad.mean(),bias.grad

(tensor(-0.0003), tensor([-0.0023]))

The gradients have changed! The reason for this is that loss.backward adds

the gradients of loss to any gradients that are currently stored. So, we have to

set the current gradients to 0 first:

weights.grad.zero_()
bias.grad.zero_();

IN-PLACE OPERATIONS
Methods in PyTorch whose names end in an underscore modify their objects in place. For

instance, bias.zero_ sets all elements of the tensor bias to 0.

Our only remaining step is to update the weights and biases based on the

gradient and learning rate. When we do so, we have to tell PyTorch not to take

the gradient of this step too—otherwise, things will get confusing when we try

to compute the derivative at the next batch! If we assign to the data attribute

of a tensor, PyTorch will not take the gradient of that step. Here’s our basic

training loop for an epoch:

def train_epoch(model, lr, params):
 for xb,yb in dl:
 calc_grad(xb, yb, model)
 for p in params:
 p.data -= p.grad*lr
 p.grad.zero_()

We also want to check how we’re doing, by looking at the accuracy of the

validation set. To decide if an output represents a 3 or a 7, we can just check

whether it’s greater than 0. So our accuracy for each item can be calculated

(using broadcasting, so no loops!) as follows:

(preds>0.0).float() == train_y[:4]

tensor([[False],
 [True],
 [True],
 [False]])

That gives us this function to calculate our validation accuracy:

def batch_accuracy(xb, yb):
 preds = xb.sigmoid()
 correct = (preds>0.5) == yb
 return correct.float().mean()

We can check it works:

batch_accuracy(linear1(batch), train_y[:4])

tensor(0.5000)

And then put the batches together:

def validate_epoch(model):
 accs = [batch_accuracy(model(xb), yb) for xb,yb in valid_dl]
 return round(torch.stack(accs).mean().item(), 4)

validate_epoch(linear1)

0.5219

That’s our starting point. Let’s train for one epoch and see if the accuracy

improves:

lr = 1.
params = weights,bias
train_epoch(linear1, lr, params)
validate_epoch(linear1)

0.6883

Then do a few more:

for i in range(20):
 train_epoch(linear1, lr, params)
 print(validate_epoch(linear1), end=' ')

0.8314 0.9017 0.9227 0.9349 0.9438 0.9501 0.9535 0.9564 0.9594 0.9618
0.9613
 > 0.9638 0.9643 0.9652 0.9662 0.9677 0.9687 0.9691 0.9691 0.9696

Looking good! We’re already about at the same accuracy as our “pixel

similarity” approach, and we’ve created a general-purpose foundation we can

build on. Our next step will be to create an object that will handle the SGD

step for us. In PyTorch, it’s called an optimizer.

Creating an Optimizer

Because this is such a general foundation, PyTorch provides some useful

classes to make it easier to implement. The first thing we can do is replace our

linear function with PyTorch’s nn.Linear module. A module is an object of a

class that inherits from the PyTorch nn.Module class. Objects of this class

behave identically to standard Python functions, in that you can call them

using parentheses, and they will return the activations of a model.

nn.Linear does the same thing as our init_params and linear together. It

contains both the weights and biases in a single class. Here’s how we replicate

our model from the previous section:

linear_model = nn.Linear(28*28,1)

Every PyTorch module knows what parameters it has that can be trained; they

are available through the parameters method:

w,b = linear_model.parameters()
w.shape,b.shape

(torch.Size([1, 784]), torch.Size([1]))

We can use this information to create an optimizer:

class BasicOptim:
 def __init__(self,params,lr): self.params,self.lr = list(params),lr

 def step(self, *args, **kwargs):
 for p in self.params: p.data -= p.grad.data * self.lr

 def zero_grad(self, *args, **kwargs):
 for p in self.params: p.grad = None

We can create our optimizer by passing in the model’s parameters:

opt = BasicOptim(linear_model.parameters(), lr)

Our training loop can now be simplified:

def train_epoch(model):
 for xb,yb in dl:
 calc_grad(xb, yb, model)
 opt.step()
 opt.zero_grad()

Our validation function doesn’t need to change at all:

validate_epoch(linear_model)

0.4157

Let’s put our little training loop in a function, to make things simpler:

def train_model(model, epochs):
 for i in range(epochs):
 train_epoch(model)
 print(validate_epoch(model), end=' ')

The results are the same as in the previous section:

train_model(linear_model, 20)

0.4932 0.8618 0.8203 0.9102 0.9331 0.9468 0.9555 0.9629 0.9658 0.9673
0.9687
 > 0.9707 0.9726 0.9751 0.9761 0.9761 0.9775 0.978 0.9785 0.9785

fastai provides the SGD class that, by default, does the same thing as our

BasicOptim:

linear_model = nn.Linear(28*28,1)
opt = SGD(linear_model.parameters(), lr)
train_model(linear_model, 20)

0.4932 0.852 0.8335 0.9116 0.9326 0.9473 0.9555 0.9624 0.9648 0.9668
0.9692
 > 0.9712 0.9731 0.9746 0.9761 0.9765 0.9775 0.978 0.9785 0.9785

fastai also provides Learner.fit, which we can use instead of train_model. To

create a Learner, we first need to create a DataLoaders, by passing in our

training and validation DataLoaders:

dls = DataLoaders(dl, valid_dl)

To create a Learner without using an application (such as cnn_learner), we

need to pass in all the elements that we’ve created in this chapter: the

DataLoaders, the model, the optimization function (which will be passed the

parameters), the loss function, and optionally any metrics to print:

learn = Learner(dls, nn.Linear(28*28,1), opt_func=SGD,
 loss_func=mnist_loss, metrics=batch_accuracy)

Now we can call fit:

learn.fit(10, lr=lr)

epoch train_loss valid_loss batch_accuracy time

0 0.636857 0.503549 0.495584 00:00

1 0.545725 0.170281 0.866045 00:00

2 0.199223 0.184893 0.831207 00:00

3 0.086580 0.107836 0.911187 00:00

4 0.045185 0.078481 0.932777 00:00

5 0.029108 0.062792 0.946516 00:00

6 0.022560 0.053017 0.955348 00:00

7 0.019687 0.046500 0.962218 00:00

8 0.018252 0.041929 0.965162 00:00

9 0.017402 0.038573 0.967615 00:00

As you can see, there’s nothing magic about the PyTorch and fastai classes.

They are just convenient prepackaged pieces that make your life a bit easier!

(They also provide a lot of extra functionality we’ll be using in future

chapters.)

With these classes, we can now replace our linear model with a neural

network.

Adding a Nonlinearity

So far, we have a general procedure for optimizing the parameters of a

function, and we have tried it out on a boring function: a simple linear

classifier. A linear classifier is constrained in terms of what it can do. To make

it a bit more complex (and able to handle more tasks), we need to add

something nonlinear (i.e., different from ax+b) between two linear classifiers

—this is what gives us a neural network.

Here is the entire definition of a basic neural network:

def simple_net(xb):
 res = xb@w1 + b1
 res = res.max(tensor(0.0))
 res = res@w2 + b2
 return res

That’s it! All we have in simple_net is two linear classifiers with a max function

between them.

Here, w1 and w2 are weight tensors, and b1 and b2 are bias tensors; that is,

parameters that are initially randomly initialized, just as we did in the

previous section:

w1 = init_params((28*28,30))
b1 = init_params(30)
w2 = init_params((30,1))
b2 = init_params(1)

The key point is that w1 has 30 output activations (which means that w2 must

have 30 input activations, so they match). That means that the first layer can

construct 30 different features, each representing a different mix of pixels.

You can change that 30 to anything you like, to make the model more or less

complex.

That little function res.max(tensor(0.0)) is called a rectified linear unit, also

known as ReLU. We think we can all agree that rectified linear unit sounds

pretty fancy and complicated…But actually, there’s nothing more to it than

res.max(tensor(0.0))—in other words, replace every negative number with a

zero. This tiny function is also available in PyTorch as F.relu:

plot_function(F.relu)

JEREMY SAYS
There is an enormous amount of jargon in deep learning, including terms like rectified

linear unit. The vast majority of this jargon is no more complicated than can be

implemented in a short line of code, as we saw in this example. The reality is that for

academics to get their papers published, they need to make them sound as impressive and

sophisticated as possible. One way that they do that is to introduce jargon. Unfortunately,

this results in the field becoming far more intimidating and difficult to get into than it

should be. You do have to learn the jargon, because otherwise papers and tutorials are not

going to mean much to you. But that doesn’t mean you have to find the jargon intimidating.

Just remember, when you come across a word or phrase that you haven’t seen before, it will

almost certainly turn out to be referring to a very simple concept.

The basic idea is that by using more linear layers, we can have our model do

more computation, and therefore model more complex functions. But there’s

no point in just putting one linear layout directly after another one, because

when we multiply things together and then add them up multiple times, that

could be replaced by multiplying different things together and adding them up

just once! That is to say, a series of any number of linear layers in a row can be

replaced with a single linear layer with a different set of parameters.

But if we put a nonlinear function between them, such as max, this is no longer

true. Now each linear layer is somewhat decoupled from the other ones and

can do its own useful work. The max function is particularly interesting,

because it operates as a simple if statement.

SYLVAIN SAYS
Mathematically, we say the composition of two linear functions is another linear function.

So, we can stack as many linear classifiers as we want on top of each other, and without

nonlinear functions between them, it will just be the same as one linear classifier.

Amazingly enough, it can be mathematically proven that this little function

can solve any computable problem to an arbitrarily high level of accuracy, if

you can find the right parameters for w1 and w2 and if you make these matrices

big enough. For any arbitrarily wiggly function, we can approximate it as a

bunch of lines joined together; to make it closer to the wiggly function, we just

have to use shorter lines. This is known as the universal approximation

theorem. The three lines of code that we have here are known as layers. The

first and third are known as linear layers, and the second line of code is

known variously as a nonlinearity, or activation function.

Just as in the previous section, we can replace this code with something a bit

simpler by taking advantage of PyTorch:

simple_net = nn.Sequential(
 nn.Linear(28*28,30),
 nn.ReLU(),
 nn.Linear(30,1)
)

nn.Sequential creates a module that will call each of the listed layers or

functions in turn.

nn.ReLU is a PyTorch module that does exactly the same thing as the F.relu

function. Most functions that can appear in a model also have identical forms

that are modules. Generally, it’s just a case of replacing F with nn and

changing the capitalization. When using nn.Sequential, PyTorch requires us

to use the module version. Since modules are classes, we have to instantiate

them, which is why you see nn.ReLU in this example.

Because nn.Sequential is a module, we can get its parameters, which will

return a list of all the parameters of all the modules it contains. Let’s try it out!

As this is a deeper model, we’ll use a lower learning rate and a few more

epochs:

learn = Learner(dls, simple_net, opt_func=SGD,
 loss_func=mnist_loss, metrics=batch_accuracy)

learn.fit(40, 0.1)

We’re not showing the 40 lines of output here to save room; the training

process is recorded in learn.recorder, with the table of output stored in the

values attribute, so we can plot the accuracy over training:

plt.plot(L(learn.recorder.values).itemgot(2));

And we can view the final accuracy:

learn.recorder.values[-1][2]

0.982826292514801

At this point, we have something that is rather magical:

A function that can solve any problem to any level of accuracy (the

neural network) given the correct set of parameters

A way to find the best set of parameters for any function (stochastic

gradient descent)

This is why deep learning can do such fantastic things. Believing that this

combination of simple techniques can really solve any problem is one of the

biggest steps that we find many students have to take. It seems too good to be

true—surely things should be more difficult and complicated than this? Our

recommendation: try it out! We just tried it on the MNIST dataset, and you’ve

seen the results. And since we are doing everything from scratch ourselves

(except for calculating the gradients), you know that there is no special magic

hiding behind the scenes.

Going Deeper

There is no need to stop at just two linear layers. We can add as many as we

want, as long as we add a nonlinearity between each pair of linear layers. As

you will learn, however, the deeper the model gets, the harder it is to optimize

the parameters in practice. Later in this book, you will learn about some

simple but brilliantly effective techniques for training deeper models.

We already know that a single nonlinearity with two linear layers is enough to

approximate any function. So why would we use deeper models? The reason is

performance. With a deeper model (one with more layers), we do not need to

use as many parameters; it turns out that we can use smaller matrices, with

more layers, and get better results than we would get with larger matrices and

few layers.

That means that we can train the model more quickly, and it will take up less

memory. In the 1990s, researchers were so focused on the universal

approximation theorem that few were experimenting with more than one

nonlinearity. This theoretical but not practical foundation held back the field

for years. Some researchers, however, did experiment with deep models, and

eventually were able to show that these models could perform much better in

practice. Eventually, theoretical results were developed that showed why this

happens. Today, it is extremely unusual to find anybody using a neural

network with just one nonlinearity.

Here is what happens when we train an 18-layer model using the same

approach we saw in Chapter 1:

dls = ImageDataLoaders.from_folder(path)
learn = cnn_learner(dls, resnet18, pretrained=False,
 loss_func=F.cross_entropy, metrics=accuracy)
learn.fit_one_cycle(1, 0.1)

epoch train_loss valid_loss accuracy time

0 0.082089 0.009578 0.997056 00:11

Nearly 100% accuracy! That’s a big difference compared to our simple neural

net. But as you’ll learn in the remainder of this book, there are just a few little

tricks you need to use to get such great results from scratch yourself. You

already know the key foundational pieces. (Of course, even when you know all

the tricks, you’ll nearly always want to work with the prebuilt classes provided

by PyTorch and fastai, because they save you from having to think about all

the little details yourself.)

Jargon Recap

Congratulations: you now know how to create and train a deep neural

network from scratch! We’ve gone through quite a few steps to get to this

point, but you might be surprised at how simple it really is.

Now that we are at this point, it is a good opportunity to define, and review,

some jargon and key concepts.

A neural network contains a lot of numbers, but they are only of two types:

numbers that are calculated, and the parameters that these numbers are

calculated from. This gives us the two most important pieces of jargon to

learn:

Activations

Numbers that are calculated (both by linear and nonlinear layers)

Parameters

Numbers that are randomly initialized, and optimized (that is, the

numbers that define the model)

We will often talk in this book about activations and parameters. Remember

that they have specific meanings. They are numbers. They are not abstract

concepts, but they are actual specific numbers that are in your model. Part of

becoming a good deep learning practitioner is getting used to the idea of

looking at your activations and parameters, and plotting them and testing

whether they are behaving correctly.

Our activations and parameters are all contained in tensors. These are simply

regularly shaped arrays—for example, a matrix. Matrices have rows and

columns; we call these the axes or dimensions. The number of dimensions of

a tensor is its rank. There are some special tensors:

Rank-0: scalar

Rank-1: vector

Rank-2: matrix

A neural network contains a number of layers. Each layer is either linear or

nonlinear. We generally alternate between these two kinds of layers in a

neural network. Sometimes people refer to both a linear layer and its

subsequent nonlinearity together as a single layer. Yes, this is confusing.

Sometimes a nonlinearity is referred to as an activation function.

Table 4-1 summarizes the key concepts related to SGD.

T
a
b
l
e

4
-
1
.
D
e
e
p

l
e
a
r
n
i
n
g

v
o
c
a
b
u
l
a
r
y

Term Meaning

ReLU Function that returns 0 for negative numbers and doesn’t change positive numbers.

Mini- A small group of inputs and labels gathered together in two arrays. A gradient descent

batch step is updated on this batch (rather than a whole epoch).

Forward

pass

Applying the model to some input and computing the predictions.

Loss A value that represents how well (or badly) our model is doing.

Gradient The derivative of the loss with respect to some parameter of the model.

Backwar

d pass

Computing the gradients of the loss with respect to all model parameters.

Gradient

descent

Taking a step in the direction opposite to the gradients to make the model parameters

a little bit better.

Learning

rate

The size of the step we take when applying SGD to update the parameters of the

model.

CHOOSE YOUR OWN ADVENTURE REMINDER
Did you choose to skip over Chapters 2 and 3, in your excitement to peek under the hood?

Well, here’s your reminder to head back to Chapter 2 now, because you’ll be needing to

know that stuff soon!

Questionnaire

1. How is a grayscale image represented on a computer? How about a

color image?

2. How are the files and folders in the MNIST_SAMPLE dataset structured?

Why?

3. Explain how the “pixel similarity” approach to classifying digits works.

4. What is a list comprehension? Create one now that selects odd

numbers from a list and doubles them.

5. What is a rank-3 tensor?

6. What is the difference between tensor rank and shape? How do you

get the rank from the shape?

7. What are RMSE and L1 norm?

8. How can you apply a calculation on thousands of numbers at once,

many thousands of times faster than a Python loop?

9. Create a 3×3 tensor or array containing the numbers from 1 to 9.

Double it. Select the bottom-right four numbers.

10. What is broadcasting?

11. Are metrics generally calculated using the training set or the validation

set? Why?

12. What is SGD?

13. Why does SGD use mini-batches?

14. What are the seven steps in SGD for machine learning?

15. How do we initialize the weights in a model?

16. What is loss?

17. Why can’t we always use a high learning rate?

18. What is a gradient?

19. Do you need to know how to calculate gradients yourself?

20. Why can’t we use accuracy as a loss function?

21. Draw the sigmoid function. What is special about its shape?

22. What is the difference between a loss function and a metric?

23. What is the function to calculate new weights using a learning rate?

24. What does the DataLoader class do?

25. Write pseudocode showing the basic steps taken in each epoch for

SGD.

26. Create a function that, if passed two arguments [1,2,3,4] and 'abcd',

returns [(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]. What is special

about that output data structure?

27. What does view do in PyTorch?

28. What are the bias parameters in a neural network? Why do we need

them?

29. What does the @ operator do in Python?

30. What does the backward method do?

31. Why do we have to zero the gradients?

32. What information do we have to pass to Learner?

33. Show Python or pseudocode for the basic steps of a training loop.

34. What is ReLU? Draw a plot of it for values from -2 to +2.

35. What is an activation function?

36. What’s the difference between F.relu and nn.ReLU?

37. The universal approximation theorem shows that any function can be

approximated as closely as needed using just one nonlinearity. So why

do we normally use more?

Further Research

1. Create your own implementation of Learner from scratch, based on

the training loop shown in this chapter.

2. Complete all the steps in this chapter using the full MNIST datasets

(for all digits, not just 3s and 7s). This is a significant project and will

take you quite a bit of time to complete! You’ll need to do some of your

own research to figure out how to overcome obstacles you’ll meet on

the way.

Chapter 5. Image Classification

Now that you understand what deep learning is, what it’s for, and how to

create and deploy a model, it’s time for us to go deeper! In an ideal world,

deep learning practitioners wouldn’t have to know every detail of how things

work under the hood. But as yet, we don’t live in an ideal world. The truth is,

to make your model really work, and work reliably, there are a lot of details

you have to get right, and a lot of details that you have to check. This process

requires being able to look inside your neural network as it trains and as it

makes predictions, find possible problems, and know how to fix them.

So, from here on in the book, we are going to do a deep dive into the

mechanics of deep learning. What is the architecture of a computer vision

model, an NLP model, a tabular model, and so on? How do you create an

architecture that matches the needs of your particular domain? How do you

get the best possible results from the training process? How do you make

things faster? What do you have to change as your datasets change?

We will start by repeating the same basic applications that we looked at in the

first chapter, but we are going to do two things:

Make them better.

Apply them to a wider variety of types of data.

To do these two things, we will have to learn all of the pieces of the deep

learning puzzle. This includes different types of layers, regularization

methods, optimizers, how to put layers together into architectures, labeling

techniques, and much more. We are not just going to dump all of these things

on you, though; we will introduce them progressively as needed, to solve

actual problems related to the projects we are working on.

From Dogs and Cats to Pet Breeds

In our very first model, we learned how to classify dogs versus cats. Just a few

years ago, this was considered a very challenging task—but today, it’s far too

easy! We will not be able to show you the nuances of training models with this

problem, because we get a nearly perfect result without worrying about any of

the details. But it turns out that the same dataset also allows us to work on a

much more challenging problem: figuring out what breed of pet is shown in

each image.

In Chapter 1, we presented the applications as already-solved problems. But

this is not how things work in real life. We start with a dataset that we know

nothing about. We then have to figure out how it is put together, how to

extract the data we need from it, and what that data looks like. For the rest of

this book, we will be showing you how to solve these problems in practice,

including all of the intermediate steps necessary to understand the data that

we are working with and test your modeling as you go.

We already downloaded the Pets dataset, and we can get a path to this dataset

using the same code as in Chapter 1:

from fastai2.vision.all import *
path = untar_data(URLs.PETS)

Now if we are going to understand how to extract the breed of each pet from

each image, we’re going to need to understand how this data is laid out. Such

details of data layout are a vital piece of the deep learning puzzle. Data is

usually provided in one of these two ways:

Individual files representing items of data, such as text documents or

images, possibly organized into folders or with filenames representing

information about those items

A table of data (e.g., in CSV format) in which each row is an item and

may include filenames providing connections between the data in the

table and data in other formats, such as text documents and images

There are exceptions to these rules—particularly in domains such as

genomics, where there can be binary database formats or even network

streams—but overall the vast majority of the datasets you’ll work with will use

some combination of these two formats.

To see what is in our dataset, we can use the ls method:

path.ls()

(#3) [Path('annotations'),Path('images'),Path('models')]

We can see that this dataset provides us with images and annotations

directories. The website for the dataset tells us that the annotations directory

contains information about where the pets are rather than what they are. In

this chapter, we will be doing classification, not localization, which is to say

that we care about what the pets are, not where they are. Therefore, we will

ignore the annotations directory for now. So, let’s have a look inside the

images directory:

(path/"images").ls()

(#7394)
[Path('images/great_pyrenees_173.jpg'),Path('images/wheaten_terrier_46.j

 >
pg'),Path('images/Ragdoll_262.jpg'),Path('images/german_shorthaired_3.jpg'),P

 >
ath('images/american_bulldog_196.jpg'),Path('images/boxer_188.jpg'),Path('ima

 >

https://oreil.ly/xveoN

ges/staffordshire_bull_terrier_173.jpg'),Path('images/basset_hound_71.jpg'),P

 >
ath('images/staffordshire_bull_terrier_37.jpg'),Path('images/yorkshire_terrie

 > r_18.jpg')...]

Most functions and methods in fastai that return a collection use a class called

L. This class can be thought of as an enhanced version of the ordinary Python

list type, with added conveniences for common operations. For instance,

when we display an object of this class in a notebook, it appears in the format

shown here. The first thing that is shown is the number of items in the

collection, prefixed with a #. You’ll also see in the preceding output that the

list is suffixed with an ellipsis. This means that only the first few items are

displayed—which is a good thing, because we would not want more than

7,000 filenames on our screen!

By examining these filenames, we can see how they appear to be structured.

Each filename contains the pet breed, then an underscore (_), a number, and

finally the file extension. We need to create a piece of code that extracts the

breed from a single Path. Jupyter notebooks make this easy, because we can

gradually build up something that works, and then use it for the entire

dataset. We do have to be careful to not make too many assumptions at this

point. For instance, if you look carefully, you may notice that some of the pet

breeds contain multiple words, so we cannot simply break at the first _

character that we find. To allow us to test our code, let’s pick out one of these

filenames:

fname = (path/"images").ls()[0]

The most powerful and flexible way to extract information from strings like

this is to use a regular expression, also known as a regex. A regular

expression is a special string, written in the regular expression language,

which specifies a general rule for deciding whether another string passes a

test (i.e., “matches” the regular expression), and also possibly for plucking a

particular part or parts out of that other string. In this case, we need a regular

expression that extracts the pet breed from the filename.

We do not have the space to give you a complete regular expression tutorial

here, but many excellent ones are online, and we know that many of you will

already be familiar with this wonderful tool. If you’re not, that is totally fine—

this is a great opportunity for you to rectify that! We find that regular

expressions are one of the most useful tools in our programming toolkit, and

many of our students tell us that this is one of the things they are most excited

to learn about. So head over to Google and search for “regular expressions

tutorial” now, and then come back here after you’ve had a good look around.

The book’s website also provides a list of our favorites.

ALEXIS SAYS
Not only are regular expressions dead handy, but they also have interesting roots. They are

“regular” because they were originally examples of a “regular” language, the lowest rung

within the Chomsky hierarchy. This is a grammar classification developed by linguist Noam

Chomsky, who also wrote Syntactic Structures, the pioneering work searching for the

formal grammar underlying human language. This is one of the charms of computing: the

hammer you reach for every day may have, in fact, come from a spaceship.

When you are writing a regular expression, the best way to start is to try it

against one example at first. Let’s use the findall method to try a regular

expression against the filename of the fname object:

re.findall(r'(.+)_\d+.jpg$', fname.name)

['great_pyrenees']

This regular expression plucks out all the characters leading up to the last

underscore character, as long as the subsequent characters are numerical

digits and then the JPEG file extension.

https://book.fast.ai/

Now that we confirmed the regular expression works for the example, let’s use

it to label the whole dataset. fastai comes with many classes to help with

labeling. For labeling with regular expressions, we can use the RegexLabeller

class. In this example, we use the data block API that we saw in Chapter 2 (in

fact, we nearly always use the data block API—it’s so much more flexible than

the simple factory methods we saw in Chapter 1):

pets = DataBlock(blocks = (ImageBlock, CategoryBlock),
 get_items=get_image_files,
 splitter=RandomSplitter(seed=42),
 get_y=using_attr(RegexLabeller(r'(.+)_\d+.jpg$'), 'name'),
 item_tfms=Resize(460),
 batch_tfms=aug_transforms(size=224, min_scale=0.75))
dls = pets.dataloaders(path/"images")

One important piece of this DataBlock call that we haven’t seen before is in

these two lines:

item_tfms=Resize(460),
batch_tfms=aug_transforms(size=224, min_scale=0.75)

These lines implement a fastai data augmentation strategy that we call

presizing. Presizing is a particular way to do image augmentation that is

designed to minimize data destruction while maintaining good performance.

Presizing

We need our images to have the same dimensions, so that they can collate into

tensors to be passed to the GPU. We also want to minimize the number of

distinct augmentation computations we perform. The performance

requirement suggests that we should, where possible, compose our

augmentation transforms into fewer transforms (to reduce the number of

computations and the number of lossy operations) and transform the images

into uniform sizes (for more efficient processing on the GPU).

The challenge is that, if performed after resizing down to the augmented size,

various common data augmentation transforms might introduce spurious

empty zones, degrade data, or both. For instance, rotating an image by 45

degrees fills corner regions of the new bounds with emptiness, which will not

teach the model anything. Many rotation and zooming operations will require

interpolating to create pixels. These interpolated pixels are derived from the

original image data but are still of lower quality.

To work around these challenges, presizing adopts two strategies that are

shown in Figure 5-1:

1. Resize images to relatively “large” dimensions—that is, dimensions

significantly larger than the target training dimensions.

2. Compose all of the common augmentation operations (including a

resize to the final target size) into one, and perform the combined

operation on the GPU only once at the end of processing, rather than

performing the operations individually and interpolating multiple

times.

The first step, the resize, creates images large enough that they have spare

margin to allow further augmentation transforms on their inner regions

without creating empty zones. This transformation works by resizing to a

square, using a large crop size. On the training set, the crop area is chosen

randomly, and the size of the crop is selected to cover the entire width or

height of the image, whichever is smaller. In the second step, the GPU is used

for all data augmentation, and all of the potentially destructive operations are

done together, with a single interpolation at the end.

Figure 5-1. Presizing on the training set

This picture shows the two steps:

1. Crop full width or height: This is in item_tfms, so it’s applied to each

individual image before it is copied to the GPU. It’s used to ensure all

images are the same size. On the training set, the crop area is chosen

randomly. On the validation set, the center square of the image is

always chosen.

2. Random crop and augment: This is in batch_tfms, so it’s applied to a

batch all at once on the GPU, which means it’s fast. On the validation

set, only the resize to the final size needed for the model is done here.

On the training set, the random crop and any other augmentations are

done first.

To implement this process in fastai, you use Resize as an item transform with

a large size, and RandomResizedCrop as a batch transform with a smaller size.

RandomResizedCrop will be added for you if you include the min_scale

parameter in your aug_transforms function, as was done in the DataBlock call

in the previous section. Alternatively, you can use pad or squish instead of

crop (the default) for the initial Resize.

Figure 5-2 shows the difference between an image that has been zoomed,

interpolated, rotated, and then interpolated again (which is the approach used

by all other deep learning libraries), shown here on the right, and an image

that has been zoomed and rotated as one operation and then interpolated

once (the fastai approach), shown here on the left.

Figure 5-2. A comparison of fastai’s data augmentation strategy (left) and the traditional approach (right)

You can see that the image on the right is less well defined and has reflection

padding artifacts in the bottom-left corner; also, the grass at the top left has

disappeared entirely. We find that, in practice, using presizing significantly

improves the accuracy of models and often results in speedups too.

The fastai library also provides simple ways to check how your data looks

right before training your model, which is an extremely important step. We’ll

look at those next.

Checking and Debugging a DataBlock

We can never just assume that our code is working perfectly. Writing a

DataBlock is like writing a blueprint. You will get an error message if you have

a syntax error somewhere in your code, but you have no guarantee that your

template is going to work on your data source as you intend. So, before

training a model, you should always check your data.

You can do this using the show_batch method:

dls.show_batch(nrows=1, ncols=3)

Take a look at each image, and check that each one seems to have the correct

label for that breed of pet. Often, data scientists work with data with which

they are not as familiar as domain experts may be: for instance, I actually

don’t know what a lot of these pet breeds are. Since I am not an expert on pet

breeds, I would use Google images at this point to search for a few of these

breeds, and make sure the images look similar to what I see in this output.

If you made a mistake while building your DataBlock, you likely won’t see it

before this step. To debug this, we encourage you to use the summary method.

It will attempt to create a batch from the source you give it, with a lot of

details. Also, if it fails, you will see exactly at which point the error happens,

and the library will try to give you some help. For instance, one common

mistake is to forget to use a Resize transform, so you end up with pictures of

different sizes and are not able to batch them. Here is what the summary

would look like in that case (note that the exact text may have changed since

the time of writing, but it will give you an idea):

pets1 = DataBlock(blocks = (ImageBlock, CategoryBlock),
 get_items=get_image_files,
 splitter=RandomSplitter(seed=42),

 get_y=using_attr(RegexLabeller(r'(.+)_\d+.jpg$'), 'name'))
pets1.summary(path/"images")

Setting-up type transforms pipelines
Collecting items from /home/sgugger/.fastai/data/oxford-iiit-
pet/images
Found 7390 items
2 datasets of sizes 5912,1478
Setting up Pipeline: PILBase.create
Setting up Pipeline: partial -> Categorize

Building one sample
 Pipeline: PILBase.create
 starting from
 /home/sgugger/.fastai/data/oxford-iiit-
pet/images/american_bulldog_83.jpg
 applying PILBase.create gives
 PILImage mode=RGB size=375x500
 Pipeline: partial -> Categorize
 starting from
 /home/sgugger/.fastai/data/oxford-iiit-
pet/images/american_bulldog_83.jpg
 applying partial gives
 american_bulldog
 applying Categorize gives
 TensorCategory(12)

Final sample: (PILImage mode=RGB size=375x500, TensorCategory(12))

Setting up after_item: Pipeline: ToTensor
Setting up before_batch: Pipeline:
Setting up after_batch: Pipeline: IntToFloatTensor

Building one batch
Applying item_tfms to the first sample:
 Pipeline: ToTensor
 starting from
 (PILImage mode=RGB size=375x500, TensorCategory(12))
 applying ToTensor gives
 (TensorImage of size 3x500x375, TensorCategory(12))

Adding the next 3 samples

No before_batch transform to apply

Collating items in a batch
Error! It's not possible to collate your items in a batch
Could not collate the 0-th members of your tuples because got the
following
shapes:
torch.Size([3, 500, 375]),torch.Size([3, 375, 500]),torch.Size([3,
333, 500]),
torch.Size([3, 375, 500])

You can see exactly how we gathered the data and split it, how we went from a

filename to a sample (the tuple (image, category)), then what item transforms

were applied and how it failed to collate those samples in a batch (because of

the different shapes).

Once you think your data looks right, we generally recommend the next step

should be using it to train a simple model. We often see people put off the

training of an actual model for far too long. As a result, they don’t find out

what their baseline results look like. Perhaps your problem doesn’t require

lots of fancy domain-specific engineering. Or perhaps the data doesn’t seem to

train the model at all. These are things that you want to know as soon as

possible.

For this initial test, we’ll use the same simple model that we used in Chapter 1:

learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(2)

epoch train_loss valid_loss error_rate time

0 1.491732 0.337355 0.108254 00:18

epoch train_loss valid_loss error_rate time

0 0.503154 0.293404 0.096076 00:23

1 0.314759 0.225316 0.066306 00:23

As we’ve briefly discussed before, the table shown when we fit a model shows

us the results after each epoch of training. Remember, an epoch is one

complete pass through all of the images in the data. The columns shown are

the average loss over the items of the training set, the loss on the validation

set, and any metrics that we requested—in this case, the error rate.

Remember that loss is whatever function we’ve decided to use to optimize the

parameters of our model. But we haven’t actually told fastai what loss

function we want to use. So what is it doing? fastai will generally try to select

an appropriate loss function based on the kind of data and model you are

using. In this case, we have image data and a categorical outcome, so fastai

will default to using cross-entropy loss.

Cross-Entropy Loss

Cross-entropy loss is a loss function that is similar to the one we used in the

previous chapter, but (as we’ll see) has two benefits:

It works even when our dependent variable has more than two

categories.

It results in faster and more reliable training.

To understand how cross-entropy loss works for dependent variables with

more than two categories, we first have to understand what the actual data

and activations that are seen by the loss function look like.

Viewing Activations and Labels

Let’s take a look at the activations of our model. To get a batch of real data

from our DataLoaders, we can use the one_batch method:

x,y = dls.one_batch()

As you see, this returns the dependent and independent variables, as a mini-

batch. Let’s see what is contained in our dependent variable:

y

TensorCategory([11, 0, 0, 5, 20, 4, 22, 31, 23, 10, 20, 2, 3,
27, 18, 23,
 > 33, 5, 24, 7, 6, 12, 9, 11, 35, 14, 10, 15, 3, 3, 21, 5,
19, 14, 12,
 > 15, 27, 1, 17, 10, 7, 6, 15, 23, 36, 1, 35, 6,
 4, 29, 24, 32, 2, 14, 26, 25, 21, 0, 29, 31, 18, 7, 7,
17],
 > device='cuda:5')

Our batch size is 64, so we have 64 rows in this tensor. Each row is a single

integer between 0 and 36, representing our 37 possible pet breeds. We can

view the predictions (the activations of the final layer of our neural network)

by using Learner.get_preds. This function takes either a dataset index (0 for

train and 1 for valid) or an iterator of batches. Thus, we can pass it a simple

list with our batch to get our predictions. It returns predictions and targets by

default, but since we already have the targets, we can effectively ignore them

by assigning to the special variable _:

preds,_ = learn.get_preds(dl=[(x,y)])
preds[0]

tensor([7.9069e-04, 6.2350e-05, 3.7607e-05, 2.9260e-06, 1.3032e-05,
2.5760e-05,
 > 6.2341e-08, 3.6400e-07, 4.1311e-06, 1.3310e-04, 2.3090e-03,
9.9281e-01,
 > 4.6494e-05, 6.4266e-07, 1.9780e-06, 5.7005e-07,
 3.3448e-06, 3.5691e-03, 3.4385e-06, 1.1578e-05, 1.5916e-06,
8.5567e-08,
 > 5.0773e-08, 2.2978e-06, 1.4150e-06, 3.5459e-07, 1.4599e-04,
5.6198e-08,
 > 3.4108e-07, 2.0813e-06, 8.0568e-07, 4.3381e-07,
 1.0069e-05, 9.1020e-07, 4.8714e-06, 1.2734e-06, 2.4735e-06])

The actual predictions are 37 probabilities between 0 and 1, which add up to 1

in total:

len(preds[0]),preds[0].sum()

(37, tensor(1.0000))

To transform the activations of our model into predictions like this, we used

something called the softmax activation function.

So�max

In our classification model, we use the softmax activation function in the final

layer to ensure that the activations are all between 0 and 1, and that they sum

to 1.

Softmax is similar to the sigmoid function, which we saw earlier. As a

reminder, sigmoid looks like this:

plot_function(torch.sigmoid, min=-4,max=4)

We can apply this function to a single column of activations from a neural

network and get back a column of numbers between 0 and 1, so it’s a very

useful activation function for our final layer.

Now think about what happens if we want to have more categories in our

target (such as our 37 pet breeds). That means we’ll need more activations

than just a single column: we need an activation per category. We can create,

for instance, a neural net that predicts 3s and 7s that returns two activations,

one for each class—this will be a good first step toward creating the more

general approach. Let’s just use some random numbers with a standard

deviation of 2 (so we multiply randn by 2) for this example, assuming we have

six images and two possible categories (where the first column represents 3s

and the second is 7s):

acts = torch.randn((6,2))*2
acts

tensor([[0.6734, 0.2576],
 [0.4689, 0.4607],
 [-2.2457, -0.3727],
 [4.4164, -1.2760],
 [0.9233, 0.5347],
 [1.0698, 1.6187]])

We can’t just take the sigmoid of this directly, since we don’t get rows that add

to 1 (we want the probability of being a 3 plus the probability of being a 7 to

add up to 1):

acts.sigmoid()

tensor([[0.6623, 0.5641],
 [0.6151, 0.6132],
 [0.0957, 0.4079],
 [0.9881, 0.2182],
 [0.7157, 0.6306],
 [0.7446, 0.8346]])

In Chapter 4, our neural net created a single activation per image, which we

passed through the sigmoid function. That single activation represented the

model’s confidence that the input was a 3. Binary problems are a special case

of classification problem, because the target can be treated as a single Boolean

value, as we did in mnist_loss. But binary problems can also be thought of in

the context of the more general group of classifiers with any number of

categories: in this case, we happen to have two categories. As we saw in the

bear classifier, our neural net will return one activation per category.

So in the binary case, what do those activations really indicate? A single pair

of activations simply indicates the relative confidence of the input being a 3

versus being a 7. The overall values, whether they are both high or both low,

don’t matter—all that matters is which is higher, and by how much.

We would expect that since this is just another way of representing the same

problem, we would be able to use sigmoid directly on the two-activation

version of our neural net. And indeed we can! We can just take the difference

between the neural net activations, because that reflects how much more sure

we are of the input being a 3 than a 7, and then take the sigmoid of that:

(acts[:,0]-acts[:,1]).sigmoid()

tensor([0.6025, 0.5021, 0.1332, 0.9966, 0.5959, 0.3661])

The second column (the probability of it being a 7) will then just be that value

subtracted from 1. Now, we need a way to do all this that also works for more

than two columns. It turns out that this function, called softmax, is exactly

that:

def softmax(x): return exp(x) / exp(x).sum(dim=1, keepdim=True)

JARGON: EXPONENTIAL FUNCTION (EXP)
Defined as e**x, where e is a special number approximately equal to 2.718. It is the inverse

of the natural logarithm function. Note that exp is always positive and increases very

rapidly!

Let’s check that softmax returns the same values as sigmoid for the first

column, and those values subtracted from 1 for the second column:

sm_acts = torch.softmax(acts, dim=1)
sm_acts

tensor([[0.6025, 0.3975],
 [0.5021, 0.4979],
 [0.1332, 0.8668],
 [0.9966, 0.0034],
 [0.5959, 0.4041],
 [0.3661, 0.6339]])

softmax is the multi-category equivalent of sigmoid—we have to use it

anytime we have more than two categories and the probabilities of the

categories must add to 1, and we often use it even when there are just two

categories, just to make things a bit more consistent. We could create other

functions that have the properties that all activations are between 0 and 1, and

sum to 1; however, no other function has the same relationship to the sigmoid

function, which we’ve seen is smooth and symmetric. Also, we’ll see shortly

that the softmax function works well hand in hand with the loss function we

will look at in the next section.

If we have three output activations, such as in our bear classifier, calculating

softmax for a single bear image would then look like something like Figure 5-

3.

Figure 5-3. Example of softmax on the bear classifier

What does this function do in practice? Taking the exponential ensures all our

numbers are positive, and then dividing by the sum ensures we are going to

have a bunch of numbers that add up to 1. The exponential also has a nice

property: if one of the numbers in our activations x is slightly bigger than the

others, the exponential will amplify this (since it grows, well…exponentially),

which means that in the softmax, that number will be closer to 1.

Intuitively, the softmax function really wants to pick one class among the

others, so it’s ideal for training a classifier when we know each picture has a

definite label. (Note that it may be less ideal during inference, as you might

want your model to sometimes tell you it doesn’t recognize any of the classes

that it has seen during training, and not pick a class because it has a slightly

bigger activation score. In this case, it might be better to train a model using

multiple binary output columns, each using a sigmoid activation.)

Softmax is the first part of the cross-entropy loss—the second part is log

likelihood.

Log Likelihood

When we calculated the loss for our MNIST example in the preceding chapter,

we used this:

def mnist_loss(inputs, targets):
 inputs = inputs.sigmoid()
 return torch.where(targets==1, 1-inputs, inputs).mean()

Just as we moved from sigmoid to softmax, we need to extend the loss

function to work with more than just binary classification—it needs to be able

to classify any number of categories (in this case, we have 37 categories). Our

activations, after softmax, are between 0 and 1, and sum to 1 for each row in

the batch of predictions. Our targets are integers between 0 and 36.

In the binary case, we used torch.where to select between inputs and 1-

inputs. When we treat a binary classification as a general classification

problem with two categories, it becomes even easier, because (as we saw in

the previous section) we now have two columns containing the equivalent of

inputs and 1-inputs. So, all we need to do is select from the appropriate

column. Let’s try to implement this in PyTorch. For our synthetic 3s and 7s

example, let’s say these are our labels:

targ = tensor([0,1,0,1,1,0])

And these are the softmax activations:

sm_acts

tensor([[0.6025, 0.3975],
 [0.5021, 0.4979],
 [0.1332, 0.8668],
 [0.9966, 0.0034],
 [0.5959, 0.4041],
 [0.3661, 0.6339]])

Then for each item of targ, we can use that to select the appropriate column

of sm_acts using tensor indexing, like so:

idx = range(6)
sm_acts[idx, targ]

tensor([0.6025, 0.4979, 0.1332, 0.0034, 0.4041, 0.3661])

To see exactly what’s happening here, let’s put all the columns together in a

table. Here, the first two columns are our activations, then we have the

targets, the row index, and finally the result shown in the preceding code:

3 7 targ idx loss

0.602469 0.397531 0 0 0.602469

0.502065 0.497935 1 1 0.497935

0.133188 0.866811 0 2 0.133188

0.99664 0.00336017 1 3 0.00336017

0.595949 0.404051 1 4 0.404051

0.366118 0.633882 0 5 0.366118

Looking at this table, you can see that the final column can be calculated by

taking the targ and idx columns as indices into the two-column matrix

containing the 3 and 7 columns. That’s what sm_acts[idx, targ] is doing.

The really interesting thing here is that this works just as well with more than

two columns. To see this, consider what would happen if we added an

activation column for every digit (0 through 9), and then targ contained a

number from 0 to 9. As long as the activation columns sum to 1 (as they will, if

we use softmax), we’ll have a loss function that shows how well we’re

predicting each digit.

We’re picking the loss only from the column containing the correct label. We

don’t need to consider the other columns, because by the definition of

softmax, they add up to 1 minus the activation corresponding to the correct

label. Therefore, making the activation for the correct label as high as possible

must mean we’re also decreasing the activations of the remaining columns.

PyTorch provides a function that does exactly the same thing as

sm_acts[range(n), targ] (except it takes the negative, because when

applying the log afterward, we will have negative numbers), called nll_loss

(NLL stands for negative log likelihood):

-sm_acts[idx, targ]

tensor([-0.6025, -0.4979, -0.1332, -0.0034, -0.4041, -0.3661])

F.nll_loss(sm_acts, targ, reduction='none')

tensor([-0.6025, -0.4979, -0.1332, -0.0034, -0.4041, -0.3661])

Despite its name, this PyTorch function does not take the log. We’ll see why in

the next section, but first, let’s see why taking the logarithm can be useful.

Taking the log

The function we saw in the previous section works quite well as a loss

function, but we can make it a bit better. The problem is that we are using

probabilities, and probabilities cannot be smaller than 0 or greater than 1.

That means our model will not care whether it predicts 0.99 or 0.999. Indeed,

those numbers are very close together—but in another sense, 0.999 is 10

times more confident than 0.99. So, we want to transform our numbers

between 0 and 1 to instead be between negative infinity and infinity. There is

a mathematical function that does exactly this: the logarithm (available as

torch.log). It is not defined for numbers less than 0 and looks like this:

plot_function(torch.log, min=0,max=4)

Does “logarithm” ring a bell? The logarithm function has this identity:

y = b**a
a = log(y,b)

In this case, we’re assuming that log(y,b) returns log y base b. However,

PyTorch doesn’t define log this way: log in Python uses the special number e

(2.718…) as the base.

Perhaps a logarithm is something that you have not thought about for the last

20 years or so. But it’s a mathematical idea that is going to be really critical for

many things in deep learning, so now would be a great time to refresh your

memory. The key thing to know about logarithms is this relationship:

log(a*b) = log(a)+log(b)

When we see it in that format, it looks a bit boring; but think about what this

really means. It means that logarithms increase linearly when the underlying

signal increases exponentially or multiplicatively. This is used, for instance, in

the Richter scale of earthquake severity and the dB scale of noise levels. It’s

also often used on financial charts, where we want to show compound growth

rates more clearly. Computer scientists love using logarithms, because it

means that modification, which can create really, really large and really, really

small numbers, can be replaced by addition, which is much less likely to result

in scales that are difficult for our computers to handle.

SYLVAIN SAYS
It’s not just computer scientists who love logs! Until computers came along, engineers and

scientists used a special ruler called a slide rule that did multiplication by adding

logarithms. Logarithms are widely used in physics, for multiplying very big or very small

numbers, and many other fields.

Taking the mean of the positive or negative log of our probabilities

(depending on whether it’s the correct or incorrect class) gives us the negative

log likelihood loss. In PyTorch, nll_loss assumes that you already took the

log of the softmax, so it doesn’t do the logarithm for you.

CONFUSING NAME, BEWARE
The “nll” in nll_loss stands for “negative log likelihood,” but it doesn’t actually take the log

at all! It assumes you have already taken the log. PyTorch has a function called log_softmax

that combines log and softmax in a fast and accurate way. nll_loss is designed to be used

after log_softmax.

When we first take the softmax, and then the log likelihood of that, that

combination is called cross-entropy loss. In PyTorch, this is available as

nn.CrossEntropyLoss (which, in practice, does log_softmax and then

nll_loss):

loss_func = nn.CrossEntropyLoss()

As you see, this is a class. Instantiating it gives you an object that behaves like

a function:

loss_func(acts, targ)

tensor(1.8045)

All PyTorch loss functions are provided in two forms, the class form just

shown as well as a plain functional form, available in the F namespace:

F.cross_entropy(acts, targ)

tensor(1.8045)

Either one works fine and can be used in any situation. We’ve noticed that

most people tend to use the class version, and that’s more often used in

PyTorch’s official docs and examples, so we’ll tend to use that too.

By default, PyTorch loss functions take the mean of the loss of all items. You

can use reduction='none' to disable that:

nn.CrossEntropyLoss(reduction='none')(acts, targ)

tensor([0.5067, 0.6973, 2.0160, 5.6958, 0.9062, 1.0048])

SYLVAIN SAYS
An interesting feature about cross-entropy loss appears when we consider its gradient. The

gradient of cross_entropy(a,b) is softmax(a)-b. Since softmax(a) is the final activation of

the model, that means that the gradient is proportional to the difference between the

prediction and the target. This is the same as mean squared error in regression (assuming

there’s no final activation function such as that added by y_range), since the gradient of (a-

b)**2 is 2*(a-b). Because the gradient is linear, we won’t see sudden jumps or exponential

increases in gradients, which should lead to smoother training of models.

We have now seen all the pieces hidden behind our loss function. But while

this puts a number on how well (or badly) our model is doing, it does nothing

to help us know if it’s any good. Let’s now see some ways to interpret our

model’s predictions.

Model Interpretation

It’s very hard to interpret loss functions directly, because they are designed to

be things computers can differentiate and optimize, not things that people can

understand. That’s why we have metrics. These are not used in the

optimization process, but just to help us poor humans understand what’s

going on. In this case, our accuracy is looking pretty good already! So where

are we making mistakes?

We saw in Chapter 1 that we can use a confusion matrix to see where our

model is doing well and where it’s doing badly:

interp = ClassificationInterpretation.from_learner(learn)
interp.plot_confusion_matrix(figsize=(12,12), dpi=60)

Oh, dear—in this case, a confusion matrix is very hard to read. We have 37 pet

breeds, which means we have 37×37 entries in this giant matrix! Instead, we

can use the most_confused method, which just shows us the cells of the

confusion matrix with the most incorrect predictions (here, with at least 5 or

more):

interp.most_confused(min_val=5)

[('american_pit_bull_terrier', 'staffordshire_bull_terrier', 10),
 ('Ragdoll', 'Birman', 6)]

Since we are not pet breed experts, it is hard for us to know whether these

category errors reflect actual difficulties in recognizing breeds. So again, we

turn to Google. A little bit of Googling tells us that the most common category

errors shown here are breed differences that even expert breeders sometimes

disagree about. So this gives us some comfort that we are on the right track.

We seem to have a good baseline. What can we do now to make it even better?

Improving Our Model

We will now look at a range of techniques to improve the training of our

model and make it better. While doing so, we will explain a little bit more

about transfer learning and how to fine-tune our pretrained model as best as

possible, without breaking the pretrained weights.

The first thing we need to set when training a model is the learning rate. We

saw in the previous chapter that it needs to be just right to train as efficiently

as possible, so how do we pick a good one? fastai provides a tool for this.

The Learning Rate Finder

One of the most important things we can do when training a model is to make

sure that we have the right learning rate. If our learning rate is too low, it can

take many, many epochs to train our model. Not only does this waste time,

but it also means that we may have problems with overfitting, because every

time we do a complete pass through the data, we give our model a chance to

memorize it.

So let’s just make our learning rate really high, right? Sure, let’s try that and

see what happens:

learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(1, base_lr=0.1)

epoch train_loss valid_loss error_rate time

0 8.946717 47.954632 0.893775 00:20

epoch train_loss valid_loss error_rate time

0 7.231843 4.119265 0.954668 00:24

That doesn’t look good. Here’s what happened. The optimizer stepped in the

correct direction, but it stepped so far that it totally overshot the minimum

loss. Repeating that multiple times makes it get further and further away, not

closer and closer!

What do we do to find the perfect learning rate—not too high and not too low?

In 2015, researcher Leslie Smith came up with a brilliant idea, called the

learning rate finder. His idea was to start with a very, very small learning

rate, something so small that we would never expect it to be too big to handle.

We use that for one mini-batch, find what the losses are afterward, and then

increase the learning rate by a certain percentage (e.g., doubling it each time).

Then we do another mini-batch, track the loss, and double the learning rate

again. We keep doing this until the loss gets worse, instead of better. This is

the point where we know we have gone too far. We then select a learning rate

a bit lower than this point. Our advice is to pick either of these:

One order of magnitude less than where the minimum loss was

achieved (i.e., the minimum divided by 10)

The last point where the loss was clearly decreasing

The learning rate finder computes those points on the curve to help you. Both

these rules usually give around the same value. In the first chapter, we didn’t

specify a learning rate, using the default value from the fastai library (which is

1e-3):

learn = cnn_learner(dls, resnet34, metrics=error_rate)
lr_min,lr_steep = learn.lr_find()

print(f"Minimum/10: {lr_min:.2e}, steepest point: {lr_steep:.2e}")

Minimum/10: 8.32e-03, steepest point: 6.31e-03

We can see on this plot that in the range 1e-6 to 1e-3, nothing really happens

and the model doesn’t train. Then the loss starts to decrease until it reaches a

minimum, and then increases again. We don’t want a learning rate greater

than 1e-1, as it will cause training to diverge (you can try for yourself), but 1e-1

is already too high: at this stage, we’ve left the period where the loss was

decreasing steadily.

In this learning rate plot, it appears that a learning rate around 3e-3 would be

appropriate, so let’s choose that:

learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(2, base_lr=3e-3)

epoch train_loss valid_loss error_rate time

0 1.071820 0.427476 0.133965 00:19

epoch train_loss valid_loss error_rate time

0 0.738273 0.541828 0.150880 00:24

1 0.401544 0.266623 0.081867 00:24

LOGARITHMIC SCALE
The learning rate finder plot has a logarithmic scale, which is why the middle point between

1e-3 and 1e-2 is between 3e-3 and 4e-3. This is because we care mostly about the order of

magnitude of the learning rate.

It’s interesting that the learning rate finder was discovered only in 2015, while

neural networks have been under development since the 1950s. Throughout

that time, finding a good learning rate has been, perhaps, the most important

and challenging issue for practitioners. The solution does not require any

advanced math, giant computing resources, huge datasets, or anything else

that would make it inaccessible to any curious researcher. Furthermore,

Smith was not part of some exclusive Silicon Valley lab, but was working as a

naval researcher. All of this is to say: breakthrough work in deep learning

absolutely does not require access to vast resources, elite teams, or advanced

mathematical ideas. Lots of work remains to be done that requires just a bit of

common sense, creativity, and tenacity.

Now that we have a good learning rate to train our model, let’s look at how we

can fine-tune the weights of a pretrained model.

Unfreezing and Transfer Learning

We discussed briefly in Chapter 1 how transfer learning works. We saw that

the basic idea is that a pretrained model, trained potentially on millions of

data points (such as ImageNet), is fine-tuned for another task. But what does

this really mean?

We now know that a convolutional neural network consists of many linear

layers with a nonlinear activation function between each pair, followed by one

or more final linear layers with an activation function such as softmax at the

very end. The final linear layer uses a matrix with enough columns such that

the output size is the same as the number of classes in our model (assuming

that we are doing classification).

This final linear layer is unlikely to be of any use for us when we are fine-

tuning in a transfer learning setting, because it is specifically designed to

classify the categories in the original pretraining dataset. So when we do

transfer learning, we remove it, throw it away, and replace it with a new linear

layer with the correct number of outputs for our desired task (in this case,

there would be 37 activations).

This newly added linear layer will have entirely random weights. Therefore,

our model prior to fine-tuning has entirely random outputs. But that does not

mean that it is an entirely random model! All of the layers prior to the last one

have been carefully trained to be good at image classification tasks in general.

As we saw in the images from the Zeiler and Fergus paper in Chapter 1 (see

Figures 1-10 through 1-13), the first few layers encode general concepts, such

https://oreil.ly/aTRwE

as finding gradients and edges, and later layers encode concepts that are still

useful for us, such as finding eyeballs and fur.

We want to train a model in such a way that we allow it to remember all of

these generally useful ideas from the pretrained model, use them to solve our

particular task (classify pet breeds), and adjust them only as required for the

specifics of our particular task.

Our challenge when fine-tuning is to replace the random weights in our added

linear layers with weights that correctly achieve our desired task (classifying

pet breeds) without breaking the carefully pretrained weights and the other

layers. A simple trick can allow this to happen: tell the optimizer to update the

weights in only those randomly added final layers. Don’t change the weights

in the rest of the neural network at all. This is called freezing those pretrained

layers.

When we create a model from a pretrained network, fastai automatically

freezes all of the pretrained layers for us. When we call the fine_tune method,

fastai does two things:

Trains the randomly added layers for one epoch, with all other layers

frozen

Unfreezes all the layers, and trains them for the number of epochs

requested

Although this is a reasonable default approach, it is likely that for your

particular dataset, you may get better results by doing things slightly

differently. The fine_tune method has parameters you can use to change its

behavior, but it might be easiest for you to just call the underlying methods

directly if you want to get custom behavior. Remember that you can see the

source code for the method by using the following syntax:

learn.fine_tune??

So let’s try doing this manually ourselves. First of all, we will train the

randomly added layers for three epochs, using fit_one_cycle. As mentioned

in Chapter 1, fit_one_cycle is the suggested way to train models without

using fine_tune. We’ll see why later in the book; in short, what fit_one_cycle

does is to start training at a low learning rate, gradually increase it for the first

section of training, and then gradually decrease it again for the last section of

training:

learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fit_one_cycle(3, 3e-3)

epoch train_loss valid_loss error_rate time

0 1.188042 0.355024 0.102842 00:20

1 0.534234 0.302453 0.094723 00:20

2 0.325031 0.222268 0.074425 00:20

Then we’ll unfreeze the model:

learn.unfreeze()

and run lr_find again, because having more layers to train, and weights that

have already been trained for three epochs, means our previously found

learning rate isn’t appropriate anymore:

learn.lr_find()

(1.0964782268274575e-05, 1.5848931980144698e-06)

Note that the graph is a little different from when we had random weights: we

don’t have that sharp descent that indicates the model is training. That’s

because our model has been trained already. Here we have a somewhat flat

area before a sharp increase, and we should take a point well before that sharp

increase—for instance, 1e-5. The point with the maximum gradient isn’t what

we look for here and should be ignored.

Let’s train at a suitable learning rate:

learn.fit_one_cycle(6, lr_max=1e-5)

epoch train_loss valid_loss error_rate time

0 0.263579 0.217419 0.069012 00:24

1 0.253060 0.210346 0.062923 00:24

2 0.224340 0.207357 0.060217 00:24

3 0.200195 0.207244 0.061570 00:24

4 0.194269 0.200149 0.059540 00:25

5 0.173164 0.202301 0.059540 00:25

This has improved our model a bit, but there’s more we can do. The deepest

layers of our pretrained model might not need as high a learning rate as the

last ones, so we should probably use different learning rates for those—this is

known as using discriminative learning rates.

Discriminative Learning Rates

Even after we unfreeze, we still care a lot about the quality of those pretrained

weights. We would not expect that the best learning rate for those pretrained

parameters would be as high as for the randomly added parameters, even

after we have tuned those randomly added parameters for a few epochs.

Remember, the pretrained weights have been trained for hundreds of epochs,

on millions of images.

In addition, do you remember the images we saw in Chapter 1, showing what

each layer learns? The first layer learns very simple foundations, like edge and

gradient detectors; these are likely to be just as useful for nearly any task. The

later layers learn much more complex concepts, like “eye” and “sunset,” which

might not be useful in your task at all (maybe you’re classifying car models,

for instance). So it makes sense to let the later layers fine-tune more quickly

than earlier layers.

Therefore, fastai’s default approach is to use discriminative learning rates.

This technique was originally developed in the ULMFiT approach to NLP

transfer learning that we will introduce in Chapter 10. Like many good ideas

in deep learning, it is extremely simple: use a lower learning rate for the early

layers of the neural network, and a higher learning rate for the later layers

(and especially the randomly added layers). The idea is based on insights

developed by Jason Yosinski et al., who showed in 2014 that with transfer

learning, different layers of a neural network should train at different speeds,

as seen in Figure 5-4.

https://oreil.ly/j3640

Figure 5-4. Impact of different layers and training methods on transfer learning (courtesy of Jason Yosinski et al.)

fastai lets you pass a Python slice object anywhere that a learning rate is

expected. The first value passed will be the learning rate in the earliest layer of

the neural network, and the second value will be the learning rate in the final

layer. The layers in between will have learning rates that are multiplicatively

equidistant throughout that range. Let’s use this approach to replicate the

previous training, but this time we’ll set only the lowest layer of our net to a

learning rate of 1e-6; the other layers will scale up to 1e-4. Let’s train for a

while and see what happens:

learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fit_one_cycle(3, 3e-3)
learn.unfreeze()
learn.fit_one_cycle(12, lr_max=slice(1e-6,1e-4))

epoch train_loss valid_loss error_rate time

0 1.145300 0.345568 0.119756 00:20

1 0.533986 0.251944 0.077131 00:20

2 0.317696 0.208371 0.069012 00:20

epoch train_loss valid_loss error_rate time

0 0.257977 0.205400 0.067659 00:25

1 0.246763 0.205107 0.066306 00:25

2 0.240595 0.193848 0.062246 00:25

3 0.209988 0.198061 0.062923 00:25

4 0.194756 0.193130 0.064276 00:25

5 0.169985 0.187885 0.056157 00:25

6 0.153205 0.186145 0.058863 00:25

7 0.141480 0.185316 0.053451 00:25

8 0.128564 0.180999 0.051421 00:25

9 0.126941 0.186288 0.054127 00:25

10 0.130064 0.181764 0.054127 00:25

11 0.124281 0.181855 0.054127 00:25

Now the fine-tuning is working great!

fastai can show us a graph of the training and validation loss:

learn.recorder.plot_loss()

As you can see, the training loss keeps getting better and better. But notice

that eventually the validation loss improvement slows and sometimes even

gets worse! This is the point at which the model is starting to overfit. In

particular, the model is becoming overconfident of its predictions. But this

does not mean that it is getting less accurate, necessarily. Take a look at the

table of training results per epoch, and you will often see that the accuracy

continues improving, even as the validation loss gets worse. In the end, what

matters is your accuracy, or more generally your chosen metrics, not the loss.

The loss is just the function we’ve given the computer to help us to optimize.

Another decision you have to make when training the model is how long to

train for. We’ll consider that next.

Selecting the Number of Epochs

Often you will find that you are limited by time, rather than generalization

and accuracy, when choosing how many epochs to train for. So your first

approach to training should be to simply pick a number of epochs that will

train in the amount of time that you are happy to wait for. Then look at the

training and validation loss plots, as shown previously, and in particular your

metrics. If you see that they are still getting better even in your final epochs,

you know that you have not trained for too long.

On the other hand, you may well see that the metrics you have chosen are

really getting worse at the end of training. Remember, it’s not just that we’re

looking for the validation loss to get worse, but the actual metrics. Your

validation loss will first get worse during training because the model gets

overconfident, and only later will get worse because it is incorrectly

memorizing the data. We care in practice about only the latter issue.

Remember, our loss function is something that we use to allow our optimizer

to have something it can differentiate and optimize; it’s not the thing we care

about in practice.

Before the days of 1cycle training, it was common to save the model at the end

of each epoch, and then select whichever model had the best accuracy out of

all of the models saved in each epoch. This is known as early stopping.

However, this is unlikely to give you the best answer, because those epochs in

the middle occur before the learning rate has had a chance to reach the small

values, where it can really find the best result. Therefore, if you find that you

have overfit, what you should do is retrain your model from scratch, and this

time select a total number of epochs based on where your previous best

results were found.

If you have the time to train for more epochs, you may want to instead use

that time to train more parameters—that is, use a deeper architecture.

Deeper Architectures

In general, a model with more parameters can model your data more

accurately. (There are lots and lots of caveats to this generalization, and it

depends on the specifics of the architectures you are using, but it is a

reasonable rule of thumb for now.) For most of the architectures that we will

be seeing in this book, you can create larger versions of them by simply

adding more layers. However, since we want to use pretrained models, we

need to make sure that we choose a number of layers that have already been

pretrained for us.

This is why, in practice, architectures tend to come in a small number of

variants. For instance, the ResNet architecture that we are using in this

chapter comes in variants with 18, 34, 50, 101, and 152 layers, pretrained on

ImageNet. A larger (more layers and parameters; sometimes described as the

capacity of a model) version of a ResNet will always be able to give us a better

training loss, but it can suffer more from overfitting, because it has more

parameters to overfit with.

In general, a bigger model has the ability to better capture the real underlying

relationships in your data, as well as to capture and memorize the specific

details of your individual images.

However, using a deeper model is going to require more GPU RAM, so you

may need to lower the size of your batches to avoid an out-of-memory error.

This happens when you try to fit too much inside your GPU and looks like

this:

Cuda runtime error: out of memory

You may have to restart your notebook when this happens. The way to solve it

is to use a smaller batch size, which means passing smaller groups of images

at any given time through your model. You can pass the batch size you want to

the call by creating your DataLoaders with bs=.

The other downside of deeper architectures is that they take quite a bit longer

to train. One technique that can speed things up a lot is mixed-precision

training. This refers to using less-precise numbers (half-precision floating

point, also called fp16) where possible during training. As we are writing these

words in early 2020, nearly all current NVIDIA GPUs support a special

feature called tensor cores that can dramatically speed up neural network

training, by 2–3×. They also require a lot less GPU memory. To enable this

feature in fastai, just add to_fp16() after your Learner creation (you also need

to import the module).

You can’t really know the best architecture for your particular problem ahead

of time—you need to try training some. So let’s try a ResNet-50 now with

mixed precision:

from fastai2.callback.fp16 import *
learn = cnn_learner(dls, resnet50, metrics=error_rate).to_fp16()
learn.fine_tune(6, freeze_epochs=3)

epoch train_loss valid_loss error_rate time

0 1.427505 0.310554 0.098782 00:21

1 0.606785 0.302325 0.094723 00:22

2 0.409267 0.294803 0.091340 00:21

epoch train_loss valid_loss error_rate time

0 0.261121 0.274507 0.083897 00:26

1 0.296653 0.318649 0.084574 00:26

2 0.242356 0.253677 0.069012 00:26

3 0.150684 0.251438 0.065629 00:26

4 0.094997 0.239772 0.064276 00:26

5 0.061144 0.228082 0.054804 00:26

You’ll see here we’ve gone back to using fine_tune, since it’s so handy! We

can pass freeze_epochs to tell fastai how many epochs to train for while

frozen. It will automatically change learning rates appropriately for most

datasets.

In this case, we’re not seeing a clear win from the deeper model. This is useful

to remember—bigger models aren’t necessarily better models for your

particular case! Make sure you try small models before you start scaling up.

Conclusion

In this chapter, you learned some important practical tips, both for getting

your image data ready for modeling (presizing, data block summary) and for

fitting the model (learning rate finder, unfreezing, discriminative learning

rates, setting the number of epochs, and using deeper architectures). Using

these tools will help you to build more accurate image models, more quickly.

We also discussed cross-entropy loss. This part of the book is worth spending

plenty of time on. You aren’t likely to need to implement cross-entropy loss

from scratch yourself in practice, but it’s important you understand the inputs

to and output from that function, because it (or a variant of it, as we’ll see in

the next chapter) is used in nearly every classification model. So when you

want to debug a model, or put a model in production, or improve the accuracy

of a model, you’re going to need to be able to look at its activations and loss,

and understand what’s going on, and why. You can’t do that properly if you

don’t understand your loss function.

If cross-entropy loss hasn’t “clicked” for you just yet, don’t worry—you’ll get

there! First, go back to the preceding chapter and make sure you really

understand mnist_loss. Then work gradually through the cells of the

notebook for this chapter, where we step through each piece of cross-entropy

loss. Make sure you understand what each calculation is doing and why. Try

creating some small tensors yourself and pass them into the functions, to see

what they return.

Remember: the choices made in the implementation of cross-entropy loss are

not the only possible choices that could have been made. Just as when we

looked at regression we could choose between mean squared error and mean

absolute difference (L1), we could change the details here too. If you have

other ideas for possible functions that you think might work, feel free to give

them a try in this chapter’s notebook! (Fair warning, though: you’ll probably

find that the model will be slower to train and less accurate. That’s because

the gradient of cross-entropy loss is proportional to the difference between

the activation and the target, so SGD always gets a nicely scaled step for the

weights.)

Questionnaire

1. Why do we first resize to a large size on the CPU, and then to a smaller

size on the GPU?

2. If you are not familiar with regular expressions, find a regular

expression tutorial and some problem sets, and complete them. Have a

look on the book’s website for suggestions.

3. What are the two ways in which data is most commonly provided for

most deep learning datasets?

4. Look up the documentation for L and try using a few of the new

methods that it adds.

5. Look up the documentation for the Python pathlib module and try

using a few methods of the Path class.

6. Give two examples of ways that image transformations can degrade

the quality of the data.

7. What method does fastai provide to view the data in a DataLoaders?

8. What method does fastai provide to help you debug a DataBlock?

9. Should you hold off on training a model until you have thoroughly

cleaned your data?

10. What are the two pieces that are combined into cross-entropy loss in

PyTorch?

11. What are the two properties of activations that softmax ensures? Why

is this important?

12. When might you want your activations to not have these two

properties?

13. Calculate the exp and softmax columns of Figure 5-3 yourself (i.e., in a

spreadsheet, with a calculator, or in a notebook).

14. Why can’t we use torch.where to create a loss function for datasets

where our label can have more than two categories?

15. What is the value of log(–2)? Why?

16. What are two good rules of thumb for picking a learning rate from the

learning rate finder?

17. What two steps does the fine_tune method do?

18. In Jupyter Notebook, how do you get the source code for a method or

function?

19. What are discriminative learning rates?

20. How is a Python slice object interpreted when passed as a learning

rate to fastai?

21. Why is early stopping a poor choice when using 1cycle training?

22. What is the difference between resnet50 and resnet101?

23. What does to_fp16 do?

Further Research

1. Find the paper by Leslie Smith that introduced the learning rate

finder, and read it.

2. See if you can improve the accuracy of the classifier in this chapter.

What’s the best accuracy you can achieve? Look on the forums and the

book’s website to see what other students have achieved with this

dataset and how they did it.

Chapter 6. Other Computer Vision

Problems

In the previous chapter, you learned some important practical techniques for

training models in practice. Considerations like selecting learning rates and

the number of epochs are very important to getting good results.

In this chapter, we are going to look at two other types of computer vision

problems: multi-label classification and regression. The first one occurs when

you want to predict more than one label per image (or sometimes none at all),

and the second occurs when your labels are one or several numbers—a

quantity instead of a category.

In the process, we will study more deeply the output activations, targets, and

loss functions in deep learning models.

Multi-Label Classification

Multi-label classification refers to the problem of identifying the categories of

objects in images that may not contain exactly one type of object. There may

be more than one kind of object, or there may be no objects at all in the

classes you are looking for.

For instance, this would have been a great approach for our bear classifier.

One problem with the bear classifier that we rolled out in Chapter 2 was that if

a user uploaded something that wasn’t any kind of bear, the model would still

say it was either a grizzly, black, or teddy bear—it had no ability to predict

“not a bear at all.” In fact, after we have completed this chapter, it would be a

great exercise for you to go back to your image classifier application and try to

retrain it using the multi-label technique, and then test it by passing in an

image that is not of any of your recognized classes.

In practice, we have not seen many examples of people training multi-label

classifiers for this purpose—but we often see both users and developers

complaining about this problem. It appears that this simple solution is not at

all widely understood or appreciated! Because in practice it is probably more

common to have some images with zero matches or more than one match, we

should probably expect in practice that multi-label classifiers are more widely

applicable than single-label classifiers.

First let’s see what a multi-label dataset looks like; then we’ll explain how to

get it ready for our model. You’ll see that the architecture of the model does

not change from the preceding chapter; only the loss function does. Let’s start

with the data.

The Data

For our example, we are going to use the PASCAL dataset, which can have

more than one kind of classified object per image.

We begin by downloading and extracting the dataset as per usual:

from fastai.vision.all import *
path = untar_data(URLs.PASCAL_2007)

This dataset is different from the ones we have seen before, in that it is not

structured by filename or folder but instead comes with a CSV file telling us

what labels to use for each image. We can inspect the CSV file by reading it

into a Pandas DataFrame:

df = pd.read_csv(path/'train.csv')
df.head()

fname labels is_valid

0
000005.jpg chair True

1
000007.jpg car True

2
000009.jpg horse person True

3
000012.jpg car False

4
000016.jpg bicycle True

As you can see, the list of categories in each image is shown as a space-

delimited string.

PANDAS AND DATAFRAMES
No, it’s not actually a panda! Pandas is a Python library that is used to manipulate and analyze tabular and
time series data. The main class is DataFrame, which represents a table of rows and columns.

You can get a DataFrame from a CSV file, a database table, Python dictionaries, and many other sources. In
Jupyter, a DataFrame is output as a formatted table, as shown here.

You can access rows and columns of a DataFrame with the iloc property, as if it were a matrix:

df.iloc[:,0]

0 000005.jpg
1 000007.jpg
2 000009.jpg
3 000012.jpg
4 000016.jpg
 ...
5006 009954.jpg
5007 009955.jpg
5008 009958.jpg
5009 009959.jpg
5010 009961.jpg
Name: fname, Length: 5011, dtype: object

df.iloc[0,:]
Trailing :s are always optional (in numpy, pytorch, pandas, etc.),

so this is equivalent:

df.iloc[0]

fname 000005.jpg
labels chair
is_valid True
Name: 0, dtype: object

You can also grab a column by name by indexing into a DataFrame directly:

df['fname']

0 000005.jpg
1 000007.jpg
2 000009.jpg
3 000012.jpg
4 000016.jpg
 ...
5006 009954.jpg
5007 009955.jpg
5008 009958.jpg
5009 009959.jpg
5010 009961.jpg
Name: fname, Length: 5011, dtype: object

You can create new columns and do calculations using columns:

df1 = pd.DataFrame()
df1['a'] = [1,2,3,4]
df1

a

0
1

1
2

2
3

3
4

df1['b'] = [10, 20, 30, 40]
df1['a'] + df1['b']

0 11
1 22
2 33
3 44
dtype: int64

Pandas is a fast and flexible library, and an important part of every data scientist’s Python toolbox.
Unfortunately, its API can be rather confusing and surprising, so it takes a while to get familiar with it. If you
haven’t used Pandas before, we suggest going through a tutorial; we are particularly fond of Python for Data
Analysis (O’Reilly) by Wes McKinney, the creator of Pandas. It also covers other important libraries like
matplotlib and NumPy. We will try to briefly describe Pandas functionality we use as we come across it, but
will not go into the level of detail of McKinney’s book.

Now that we have seen what the data looks like, let’s make it ready for model

training.

Constructing a DataBlock

How do we convert from a DataFrame object to a DataLoaders object? We

generally suggest using the data block API for creating a DataLoaders object,

where possible, since it provides a good mix of flexibility and simplicity. Here

http://shop.oreilly.com/product/0636920050896.do

we will show you the steps that we take to use the data block API to construct

a DataLoaders object in practice, using this dataset as an example.

As we have seen, PyTorch and fastai have two main classes for representing

and accessing a training set or validation set:

Dataset

A collection that returns a tuple of your independent and

dependent variable for a single item

DataLoader

An iterator that provides a stream of mini-batches, where each

mini-batch is a couple of a batch of independent variables and a

batch of dependent variables

On top of these, fastai provides two classes for bringing your training and

validation sets together:

Datasets

An iterator that contains a training Dataset and a validation

Dataset

DataLoaders

An object that contains a training DataLoader and a validation

DataLoader

Since a DataLoader builds on top of a Dataset and adds additional

functionality to it (collating multiple items into a mini-batch), it’s often easiest

to start by creating and testing Datasets, and then look at DataLoaders after

that’s working.

When we create a DataBlock, we build up gradually, step by step, and use the

notebook to check our data along the way. This is a great way to make sure

that you maintain momentum as you are coding, and that you keep an eye out

for any problems. It’s easy to debug, because you know that if a problem

arises, it is in the line of code you just typed!

Let’s start with the simplest case, which is a data block created with no

parameters:

dblock = DataBlock()

We can create a Datasets object from this. The only thing needed is a source—

in this case, our DataFrame:

dsets = dblock.datasets(df)

This contains a train and a valid dataset, which we can index into:

dsets.train[0]

(fname 008663.jpg
 labels car person
 is_valid False
 Name: 4346, dtype: object,
 fname 008663.jpg
 labels car person
 is_valid False
 Name: 4346, dtype: object)

As you can see, this simply returns a row of the DataFrame, twice. This is

because by default, the data block assumes we have two things: input and

target. We are going to need to grab the appropriate fields from the

DataFrame, which we can do by passing get_x and get_y functions:

dblock = DataBlock(get_x = lambda r: r['fname'], get_y = lambda r: r['labels'])
dsets = dblock.datasets(df)
dsets.train[0]

('005620.jpg', 'aeroplane')

As you can see, rather than defining a function in the usual way, we are using

Python’s lambda keyword. This is just a shortcut for defining and then

referring to a function. The following more verbose approach is identical:

def get_x(r): return r['fname']
def get_y(r): return r['labels']
dblock = DataBlock(get_x = get_x, get_y = get_y)
dsets = dblock.datasets(df)
dsets.train[0]

('002549.jpg', 'tvmonitor')

Lambda functions are great for quickly iterating, but they are not compatible

with serialization, so we advise you to use the more verbose approach if you

want to export your Learner after training (lambdas are fine if you are just

experimenting).

We can see that the independent variable will need to be converted into a

complete path so that we can open it as an image, and the dependent variable

will need to be split on the space character (which is the default for Python’s

split function) so that it becomes a list:

def get_x(r): return path/'train'/r['fname']
def get_y(r): return r['labels'].split(' ')
dblock = DataBlock(get_x = get_x, get_y = get_y)
dsets = dblock.datasets(df)
dsets.train[0]

(Path('/home/sgugger/.fastai/data/pascal_2007/train/008663.jpg'),
 ['car', 'person'])

To actually open the image and do the conversion to tensors, we will need to

use a set of transforms; block types will provide us with those. We can use the

same block types that we have used previously, with one exception: the

ImageBlock will work fine again, because we have a path that points to a valid

image, but the CategoryBlock is not going to work. The problem is that block

returns a single integer, but we need to be able to have multiple labels for each

item. To solve this, we use a MultiCategoryBlock. This type of block expects to

receive a list of strings, as we have in this case, so let’s test it out:

dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),
 get_x = get_x, get_y = get_y)
dsets = dblock.datasets(df)
dsets.train[0]

(PILImage mode=RGB size=500x375,
 TensorMultiCategory([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
0., 0.,
 > 0., 0., 0., 0., 0., 0.]))

As you can see, our list of categories is not encoded in the same way that it

was for the regular CategoryBlock. In that case, we had a single integer

representing which category was present, based on its location in our vocab.

In this case, however, we instead have a list of 0s, with a 1 in any position

where that category is present. For example, if there is a 1 in the second and

fourth positions, that means vocab items two and four are present in this

image. This is known as one-hot encoding. The reason we can’t easily just use

a list of category indices is that each list would be a different length, and

PyTorch requires tensors, where everything has to be the same length.

JARGON: ONE-HOT ENCODING
Using a vector of 0s, with a 1 in each location that is represented in the data, to encode a list

of integers.

Let’s check what the categories represent for this example (we are using the

convenient torch.where function, which tells us all of the indices where our

condition is true or false):

idxs = torch.where(dsets.train[0][1]==1.)[0]
dsets.train.vocab[idxs]

(#1) ['dog']

With NumPy arrays, PyTorch tensors, and fastai’s L class, we can index

directly using a list or vector, which makes a lot of code (such as this example)

much clearer and more concise.

We have ignored the column is_valid up until now, which means that

DataBlock has been using a random split by default. To explicitly choose the

elements of our validation set, we need to write a function and pass it to

splitter (or use one of fastai’s predefined functions or classes). It will take

the items (here our whole DataFrame) and must return two (or more) lists of

integers:

def splitter(df):
 train = df.index[~df['is_valid']].tolist()
 valid = df.index[df['is_valid']].tolist()
 return train,valid

dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),
 splitter=splitter,
 get_x=get_x,
 get_y=get_y)

dsets = dblock.datasets(df)
dsets.train[0]

(PILImage mode=RGB size=500x333,
 TensorMultiCategory([0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,
0., 0.,
 > 0., 0., 0., 0., 0., 0.]))

As we have discussed, a DataLoader collates the items from a Dataset into a

mini-batch. This is a tuple of tensors, where each tensor simply stacks the

items from that location in the Dataset item.

Now that we have confirmed that the individual items look OK, there’s one

more step, we need to ensure we can create our DataLoaders, which is to

ensure that every item is of the same size. To do this, we can use

RandomResizedCrop:

dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),
 splitter=splitter,
 get_x=get_x,
 get_y=get_y,
 item_tfms = RandomResizedCrop(128, min_scale=0.35))
dls = dblock.dataloaders(df)

And now we can display a sample of our data:

dls.show_batch(nrows=1, ncols=3)

Remember that if anything goes wrong when you create your DataLoaders

from your DataBlock, or if you want to view exactly what happens with your

DataBlock, you can use the summary method we presented in the previous

chapter.

Our data is now ready for training a model. As we will see, nothing is going to

change when we create our Learner, but behind the scenes the fastai library

will pick a new loss function for us: binary cross entropy.

Binary Cross Entropy

Now we’ll create our Learner. We saw in Chapter 4 that a Learner object

contains four main things: the model, a DataLoaders object, an Optimizer,

and the loss function to use. We already have our DataLoaders, we can

leverage fastai’s resnet models (which we’ll learn how to create from scratch

later), and we know how to create an SGD optimizer. So let’s focus on ensuring

we have a suitable loss function. To do this, let’s use cnn_learner to create a

Learner, so we can look at its activations:

learn = cnn_learner(dls, resnet18)

We also saw that the model in a Learner is generally an object of a class

inheriting from nn.Module, and that we can call it using parentheses and it will

return the activations of a model. You should pass it your independent

variable, as a mini-batch. We can try it out by grabbing a mini-batch from our

DataLoader and then passing it to the model:

x,y = dls.train.one_batch()
activs = learn.model(x)
activs.shape

torch.Size([64, 20])

Think about why activs has this shape—we have a batch size of 64, and we

need to calculate the probability of each of 20 categories. Here’s what one of

those activations looks like:

activs[0]

tensor([2.0258, -1.3543, 1.4640, 1.7754, -1.2820, -5.8053,
3.6130, 0.7193,

 > -4.3683, -2.5001, -2.8373, -1.8037, 2.0122, 0.6189, 1.9729,
0.8999,
 > -2.6769, -0.3829, 1.2212, 1.6073],
 device='cuda:0', grad_fn=<SelectBackward>)

GETTING MODEL ACTIVATIONS
Knowing how to manually get a mini-batch and pass it into a model, and look at the

activations and loss, is really important for debugging your model. It is also very helpful for

learning, so that you can see exactly what is going on.

They aren’t yet scaled to between 0 and 1, but we learned how to do that in

Chapter 4, using the sigmoid function. We also saw how to calculate a loss

based on this—this is our loss function from Chapter 4, with the addition of

log as discussed in the preceding chapter:

def binary_cross_entropy(inputs, targets):
 inputs = inputs.sigmoid()
 return -torch.where(targets==1, inputs, 1-inputs).log().mean()

Note that because we have a one-hot-encoded dependent variable, we can’t

directly use nll_loss or softmax (and therefore we can’t use cross_entropy):

softmax, as we saw, requires that all predictions sum to 1, and tends to

push one activation to be much larger than the others (because of the

use of exp); however, we may well have multiple objects that we’re

confident appear in an image, so restricting the maximum sum of

activations to 1 is not a good idea. By the same reasoning, we may want

the sum to be less than 1, if we don’t think any of the categories appear

in an image.

nll_loss, as we saw, returns the value of just one activation: the single

activation corresponding with the single label for an item. This doesn’t

make sense when we have multiple labels.

On the other hand, the binary_cross_entropy function, which is just

mnist_loss along with log, provides just what we need, thanks to the magic of

PyTorch’s elementwise operations. Each activation will be compared to each

target for each column, so we don’t have to do anything to make this function

work for multiple columns.

JEREMY SAYS
One of the things I really like about working with libraries like PyTorch, with broadcasting

and elementwise operations, is that quite frequently I find I can write code that works

equally well for a single item or a batch of items, without changes. binary_cross_entropy is

a great example of this. By using these operations, we don’t have to write loops ourselves,

and can rely on PyTorch to do the looping we need as appropriate for the rank of the tensors

we’re working with.

PyTorch already provides this function for us. In fact, it provides a number of

versions, with rather confusing names!

F.binary_cross_entropy and its module equivalent nn.BCELoss calculate

cross entropy on a one-hot-encoded target, but do not include the initial

sigmoid. Normally, for one-hot-encoded targets you’ll want

F.binary_cross_entropy_with_logits (or nn.BCEWithLogitsLoss), which do

both sigmoid and binary cross entropy in a single function, as in the preceding

example.

The equivalent for single-label datasets (like MNIST or the Pet dataset), where

the target is encoded as a single integer, is F.nll_loss or nn.NLLLoss for the

version without the initial softmax, and F.cross_entropy or

nn.CrossEntropyLoss for the version with the initial softmax.

Since we have a one-hot-encoded target, we will use BCEWithLogitsLoss:

loss_func = nn.BCEWithLogitsLoss()
loss = loss_func(activs, y)
loss

tensor(1.0082, device='cuda:5', grad_fn=
<BinaryCrossEntropyWithLogitsBackward>)

We don’t need to tell fastai to use this loss function (although we can if we

want) since it will be automatically chosen for us. fastai knows that the

DataLoaders has multiple category labels, so it will use nn.BCEWithLogitsLoss

by default.

One change compared to the preceding chapter is the metric we use: because

this is a multilabel problem, we can’t use the accuracy function. Why is that?

Well, accuracy was comparing our outputs to our targets like so:

def accuracy(inp, targ, axis=-1):
 "Compute accuracy with `targ` when `pred` is bs * n_classes"
 pred = inp.argmax(dim=axis)
 return (pred == targ).float().mean()

The class predicted was the one with the highest activation (this is what

argmax does). Here it doesn’t work because we could have more than one

prediction on a single image. After applying the sigmoid to our activations (to

make them between 0 and 1), we need to decide which ones are 0s and which

ones are 1s by picking a threshold. Each value above the threshold will be

considered as a 1, and each value lower than the threshold will be considered a

0:

def accuracy_multi(inp, targ, thresh=0.5, sigmoid=True):
 "Compute accuracy when `inp` and `targ` are the same size."
 if sigmoid: inp = inp.sigmoid()
 return ((inp>thresh)==targ.bool()).float().mean()

If we pass accuracy_multi directly as a metric, it will use the default value for

threshold, which is 0.5. We might want to adjust that default and create a

new version of accuracy_multi that has a different default. To help with this,

there is a function in Python called partial. It allows us to bind a function

with some arguments or keyword arguments, making a new version of that

function that, whenever it is called, always includes those arguments. For

instance, here is a simple function taking two arguments:

def say_hello(name, say_what="Hello"): return f"{say_what} {name}."
say_hello('Jeremy'),say_hello('Jeremy', 'Ahoy!')

('Hello Jeremy.', 'Ahoy! Jeremy.')

We can switch to a French version of that function by using partial:

f = partial(say_hello, say_what="Bonjour")
f("Jeremy"),f("Sylvain")

('Bonjour Jeremy.', 'Bonjour Sylvain.')

We can now train our model. Let’s try setting the accuracy threshold to 0.2 for

our metric:

learn = cnn_learner(dls, resnet50, metrics=partial(accuracy_multi, thresh=0.2))
learn.fine_tune(3, base_lr=3e-3, freeze_epochs=4)

epoch train_loss valid_loss accuracy_multi time

0 0.903610 0.659728 0.263068 00:07

1 0.724266 0.346332 0.525458 00:07

2 0.415597 0.125662 0.937590 00:07

3 0.254987 0.116880 0.945418 00:07

epoch train_loss valid_loss accuracy_multi time

0 0.123872 0.132634 0.940179 00:08

1 0.112387 0.113758 0.949343 00:08

2 0.092151 0.104368 0.951195 00:08

Picking a threshold is important. If you pick a threshold that’s too low, you’ll

often be failing to select correctly labeled objects. We can see this by changing

our metric and then calling validate, which returns the validation loss and

metrics:

learn.metrics = partial(accuracy_multi, thresh=0.1)
learn.validate()

(#2) [0.10436797887086868,0.93057781457901]

If you pick a threshold that’s too high, you’ll be selecting only the objects

about which the model is very confident:

learn.metrics = partial(accuracy_multi, thresh=0.99)
learn.validate()

(#2) [0.10436797887086868,0.9416930675506592]

We can find the best threshold by trying a few levels and seeing what works

best. This is much faster if we grab the predictions just once:

preds,targs = learn.get_preds()

Then we can call the metric directly. Note that by default get_preds applies

the output activation function (sigmoid, in this case) for us, so we’ll need to

tell accuracy_multi to not apply it:

accuracy_multi(preds, targs, thresh=0.9, sigmoid=False)

TensorMultiCategory(0.9554)

We can now use this approach to find the best threshold level:

xs = torch.linspace(0.05,0.95,29)
accs = [accuracy_multi(preds, targs, thresh=i, sigmoid=False) for i in xs]
plt.plot(xs,accs);

In this case, we’re using the validation set to pick a hyperparameter (the

threshold), which is the purpose of the validation set. Sometimes students

have expressed their concern that we might be overfitting to the validation

set, since we’re trying lots of values to see which is the best. However, as you

see in the plot, changing the threshold in this case results in a smooth curve,

so we’re clearly not picking an inappropriate outlier. This is a good example of

where you have to be careful of the difference between theory (don’t try lots of

hyperparameter values or you might overfit the validation set) versus practice

(if the relationship is smooth, it’s fine to do this).

This concludes the part of this chapter dedicated to multi-label classification.

Next, we’ll take a look at a regression problem.

Regression

It’s easy to think of deep learning models as being classified into domains, like

computer vision, NLP, and so forth. And indeed, that’s how fastai classifies its

applications—largely because that’s how most people are used to thinking of

things.

But really, that’s hiding a more interesting and deeper perspective. A model is

defined by its independent and dependent variables, along with its loss

function. That means that there’s really a far wider array of models than just

the simple domain-based split. Perhaps we have an independent variable

that’s an image, and a dependent that’s text (e.g., generating a caption from

an image); or perhaps we have an independent variable that’s text and a

dependent that’s an image (e.g., generating an image from a caption—which is

actually possible for deep learning to do!); or perhaps we’ve got images, texts,

and tabular data as independent variables, and we’re trying to predict product

purchases…the possibilities really are endless.

To be able to move beyond fixed applications to crafting your own novel

solutions to novel problems, it helps to really understand the data block API

(and maybe also the mid-tier API, which we’ll see later in the book). As an

example, let’s consider the problem of image regression. This refers to

learning from a dataset in which the independent variable is an image, and

the dependent variable is one or more floats. Often we see people treat image

regression as a whole separate application—but as you’ll see here, we can treat

it as just another CNN on top of the data block API.

We’re going to jump straight to a somewhat tricky variant of image regression,

because we know you’re ready for it! We’re going to do a key point model. A

key point refers to a specific location represented in an image—in this case,

we’ll use images of people and we’ll be looking for the center of the person’s

face in each image. That means we’ll actually be predicting two values for

each image: the row and column of the face center.

Assembling the Data

We will use the Biwi Kinect Head Pose dataset for this section. We’ll begin by

downloading the dataset as usual:

path = untar_data(URLs.BIWI_HEAD_POSE)

Let’s see what we’ve got!

path.ls()

(#50)
[Path('13.obj'),Path('07.obj'),Path('06.obj'),Path('13'),Path('10'),Path('

 > 02'),Path('11'),Path('01'),Path('20.obj'),Path('17')...]

There are 24 directories numbered from 01 to 24 (they correspond to the

different people photographed), and a corresponding .obj file for each (we

won’t need them here). Let’s take a look inside one of these directories:

(path/'01').ls()

(#1000)
[Path('01/frame_00281_pose.txt'),Path('01/frame_00078_pose.txt'),Path('0

 >
1/frame_00349_rgb.jpg'),Path('01/frame_00304_pose.txt'),Path('01/frame_00207_

 >
pose.txt'),Path('01/frame_00116_rgb.jpg'),Path('01/frame_00084_rgb.jpg'),Path

 >
('01/frame_00070_rgb.jpg'),Path('01/frame_00125_pose.txt'),Path('01/frame_003

https://oreil.ly/-4cO-

 > 24_rgb.jpg')...]

Inside the subdirectories, we have different frames. Each of them comes with

an image (_rgb.jpg) and a pose file (_pose.txt). We can easily get all the

image files recursively with get_image_files, and then write a function that

converts an image filename to its associated pose file:

img_files = get_image_files(path)
def img2pose(x): return Path(f'{str(x)[:-7]}pose.txt')
img2pose(img_files[0])

Path('13/frame_00349_pose.txt')

Let’s take a look at our first image:

im = PILImage.create(img_files[0])
im.shape

(480, 640)

im.to_thumb(160)

The Biwi dataset website used to explain the format of the pose text file

associated with each image, which shows the location of the center of the

head. The details of this aren’t important for our purposes, so we’ll just show

the function we use to extract the head center point:

https://oreil.ly/wHL28

cal = np.genfromtxt(path/'01'/'rgb.cal', skip_footer=6)
def get_ctr(f):
 ctr = np.genfromtxt(img2pose(f), skip_header=3)
 c1 = ctr[0] * cal[0][0]/ctr[2] + cal[0][2]
 c2 = ctr[1] * cal[1][1]/ctr[2] + cal[1][2]
 return tensor([c1,c2])

This function returns the coordinates as a tensor of two items:

get_ctr(img_files[0])

tensor([384.6370, 259.4787])

We can pass this function to DataBlock as get_y, since it is responsible for

labeling each item. We’ll resize the images to half their input size, to speed up

training a bit.

One important point to note is that we should not just use a random splitter.

The same people appear in multiple images in this dataset, but we want to

ensure that our model can generalize to people that it hasn’t seen yet. Each

folder in the dataset contains the images for one person. Therefore, we can

create a splitter function that returns True for just one person, resulting in a

validation set containing just that person’s images.

The only other difference from the previous data block examples is that the

second block is a PointBlock. This is necessary so that fastai knows that the

labels represent coordinates; that way, it knows that when doing data

augmentation, it should do the same augmentation to these coordinates as it

does to the images:

biwi = DataBlock(
 blocks=(ImageBlock, PointBlock),
 get_items=get_image_files,
 get_y=get_ctr,
 splitter=FuncSplitter(lambda o: o.parent.name=='13'),

 batch_tfms=[*aug_transforms(size=(240,320)),
 Normalize.from_stats(*imagenet_stats)]
)

POINTS AND DATA AUGMENTATION
We’re not aware of other libraries (except for fastai) that automatically and correctly apply

data augmentation to coordinates. So, if you’re working with another library, you may need

to disable data augmentation for these kinds of problems.

Before doing any modeling, we should look at our data to confirm it seems

OK:

dls = biwi.dataloaders(path)
dls.show_batch(max_n=9, figsize=(8,6))

That’s looking good! As well as looking at the batch visually, it’s a good idea to

also look at the underlying tensors (especially as a student; it will help clarify

your understanding of what your model is really seeing):

xb,yb = dls.one_batch()
xb.shape,yb.shape

(torch.Size([64, 3, 240, 320]), torch.Size([64, 1, 2]))

Make sure that you understand why these are the shapes for our mini-

batches.

Here’s an example of one row from the dependent variable:

yb[0]

tensor([[0.0111, 0.1810]], device='cuda:5')

As you can see, we haven’t had to use a separate image regression

application; all we’ve had to do is label the data and tell fastai what kinds of

data the independent and dependent variables represent.

It’s the same for creating our Learner. We will use the same function as

before, with one new parameter, and we will be ready to train our model.

Training a Model

As usual, we can use cnn_learner to create our Learner. Remember way back

in Chapter 1 how we used y_range to tell fastai the range of our targets? We’ll

do the same here (coordinates in fastai and PyTorch are always rescaled

between –1 and +1):

learn = cnn_learner(dls, resnet18, y_range=(-1,1))

y_range is implemented in fastai using sigmoid_range, which is defined as

follows:

def sigmoid_range(x, lo, hi): return torch.sigmoid(x) * (hi-lo) + lo

This is set as the final layer of the model, if y_range is defined. Take a moment

to think about what this function does, and why it forces the model to output

activations in the range (lo,hi).

Here’s what it looks like:

plot_function(partial(sigmoid_range,lo=-1,hi=1), min=-4, max=4)

We didn’t specify a loss function, which means we’re getting whatever fastai

chooses as the default. Let’s see what it picked for us:

dls.loss_func

FlattenedLoss of MSELoss()

This makes sense, since when coordinates are used as the dependent variable,

most of the time we’re likely to be trying to predict something as close as

possible; that’s basically what MSELoss (mean squared error loss) does. If you

want to use a different loss function, you can pass it to cnn_learner by using

the loss_func parameter.

Note also that we didn’t specify any metrics. That’s because the MSE is

already a useful metric for this task (although it’s probably more interpretable

after we take the square root).

We can pick a good learning rate with the learning rate finder:

learn.lr_find()

We’ll try an LR of 2e-2:

lr = 2e-2
learn.fit_one_cycle(5, lr)

epoch train_loss valid_loss time

0 0.045840 0.012957 00:36

1 0.006369 0.001853 00:36

2 0.003000 0.000496 00:37

3 0.001963 0.000360 00:37

4 0.001584 0.000116 00:36

Generally, when we run this, we get a loss of around 0.0001, which

corresponds to this average coordinate prediction error:

math.sqrt(0.0001)

0.01

This sounds very accurate! But it’s important to take a look at our results with

Learner.show_results. The left side has the actual (ground truth) coordinates

and the right side has our model’s predictions:

learn.show_results(ds_idx=1, max_n=3, figsize=(6,8))

It’s quite amazing that with just a few minutes of computation, we’ve created

such an accurate key points model, and without any special domain-specific

application. This is the power of building on flexible APIs and using transfer

learning! It’s particularly striking that we’ve been able to use transfer learning

so effectively, even between totally different tasks; our pretrained model was

trained to do image classification, and we fine-tuned for image regression.

Conclusion

In problems that are at first glance completely different (single-label

classification, multi-label classification, and regression), we end up using the

same model with just different numbers of outputs. The loss function is the

one thing that changes, which is why it’s important to double-check that you

are using the right loss function for your problem.

fastai will automatically try to pick the right one from the data you built, but if

you are using pure PyTorch to build your DataLoaders, make sure you think

hard about your choice of loss function, and remember that you most

probably want the following:

nn.CrossEntropyLoss for single-label classification

nn.BCEWithLogitsLoss for multi-label classification

nn.MSELoss for regression

Questionnaire

1. How could multi-label classification improve the usability of the bear

classifier?

2. How do we encode the dependent variable in a multi-label

classification problem?

3. How do you access the rows and columns of a DataFrame as if it were

a matrix?

4. How do you get a column by name from a DataFrame?

5. What is the difference between a Dataset and DataLoader?

6. What does a Datasets object normally contain?

7. What does a DataLoaders object normally contain?

8. What does lambda do in Python?

9. What are the methods to customize how the independent and

dependent variables are created with the data block API?

10. Why is softmax not an appropriate output activation function when

using a one-hot-encoded target?

11. Why is nll_loss not an appropriate loss function when using a one-

hot-encoded target?

12. What is the difference between nn.BCELoss and

nn.BCEWithLogitsLoss?

13. Why can’t we use regular accuracy in a multi-label problem?

14. When is it OK to tune a hyperparameter on the validation set?

15. How is y_range implemented in fastai? (See if you can implement it

yourself and test it without peeking!)

16. What is a regression problem? What loss function should you use for

such a problem?

17. What do you need to do to make sure the fastai library applies the

same data augmentation to your input images and your target point

coordinates?

Further Research

1. Read a tutorial about Pandas DataFrames and experiment with a few

methods that look interesting to you. See the book’s website for

recommended tutorials.

2. Retrain the bear classifier using multi-label classification. See if you

can make it work effectively with images that don’t contain any bears,

including showing that information in the web application. Try an

image with two kinds of bears. Check whether the accuracy on the

single-label dataset is impacted using multi-label classification.

Chapter 7. Training a State-of-

the-Art Model

This chapter introduces more advanced techniques for training

an image classification model and getting state-of-the-art

results. You can skip it if you want to learn more about other

applications of deep learning and come back to it later—

knowledge of this material will not be assumed in later

chapters.

We will look at what normalization is, a powerful data

augmentation technique called Mixup, the progressive resizing

approach, and test time augmentation. To show all of this, we

are going to train a model from scratch (not using transfer

learning) by using a subset of ImageNet called Imagenette. It

contains a subset of 10 very different categories from the

original ImageNet dataset, making for quicker training when

we want to experiment.

This is going to be much harder to do well than with our

previous datasets because we’re using full-size, full-color

images, which are photos of objects of different sizes, in

different orientations, in different lighting, and so forth. So, in

this chapter we’re going to introduce important techniques for

https://oreil.ly/1uj3x

getting the most out of your dataset, especially when you’re

training from scratch, or using transfer learning to train a

model on a very different kind of dataset than the pretrained

model used.

Imagenette

When fast.ai first started, people used three main datasets for

building and testing computer vision models:

ImageNet

1.3 million images of various sizes, around 500

pixels across, in 1,000 categories, which took a few

days to train

MNIST

50,000 28×28-pixel grayscale handwritten digits

CIFAR10

60,000 32×32-pixel color images in 10 classes

The problem was that the smaller datasets didn’t generalize

effectively to the large ImageNet dataset. The approaches that

worked well on ImageNet generally had to be developed and

trained on ImageNet. This led to many people believing that

only researchers with access to giant computing resources

could effectively contribute to developing image classification

algorithms.

We thought that seemed very unlikely to be true. We had never

seen a study that showed that ImageNet happens to be exactly

the right size, and that other datasets could not be developed

that would provide useful insights. So we wanted to create a

new dataset that researchers could test their algorithms on

quickly and cheaply, but that would also provide insights likely

to work on the full ImageNet dataset.

About three hours later, we had created Imagenette. We

selected 10 classes from the full ImageNet that looked very

different from one another. As we had hoped, we were able to

quickly and cheaply create a classifier capable of recognizing

these classes. We then tried out a few algorithmic tweaks to see

how they impacted Imagenette. We found some that worked

pretty well, and tested them on ImageNet as well—and we were

pleased to find that our tweaks worked well on ImageNet too!

There is an important message here: the dataset you are given

is not necessarily the dataset you want. It’s particularly unlikely

to be the dataset that you want to do your development and

prototyping in. You should aim to have an iteration speed of no

more than a couple of minutes—that is, when you come up with

a new idea you want to try out, you should be able to train a

model and see how it goes within a couple of minutes. If it’s

taking longer to do an experiment, think about how you could

cut down your dataset, or simplify your model, to improve your

experimentation speed. The more experiments you can do, the

better!

Let’s get started with this dataset:

from fastai.vision.all import *
path = untar_data(URLs.IMAGENETTE)

First we’ll get our dataset into a DataLoaders object, using the

presizing trick introduced in Chapter 5:

dblock = DataBlock(blocks=(ImageBlock(), CategoryBlock()),
 get_items=get_image_files,
 get_y=parent_label,
 item_tfms=Resize(460),
 batch_tfms=aug_transforms(size=224,
min_scale=0.75))
dls = dblock.dataloaders(path, bs=64)

Then we’ll do a training run that will serve as a baseline:

model = xresnet50()
learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(),
metrics=accuracy)
learn.fit_one_cycle(5, 3e-3)

epoch train_loss valid_loss accuracy time

0 1.583403 2.064317 0.401792 01:03

1 1.208877 1.260106 0.601568 01:02

2 0.925265 1.036154 0.664302 01:03

3 0.730190 0.700906 0.777819 01:03

4 0.585707 0.541810 0.825243 01:03

That’s a good baseline, since we are not using a pretrained

model, but we can do better. When working with models that

are being trained from scratch, or fine-tuned to a very different

dataset from the one used for the pretraining, some additional

techniques are really important. In the rest of the chapter, we’ll

consider some key approaches you’ll want to be familiar with.

The first one is normalizing your data.

Normalization

When training a model, it helps if your input data is

normalized—that is, has a mean of 0 and a standard deviation

of 1. But most images and computer vision libraries use values

between 0 and 255 for pixels, or between 0 and 1; in either

case, your data is not going to have a mean of 0 and a standard

deviation of 1.

Let’s grab a batch of our data and look at those values, by

averaging over all axes except for the channel axis, which is axis

1:

x,y = dls.one_batch()
x.mean(dim=[0,2,3]),x.std(dim=[0,2,3])

(TensorImage([0.4842, 0.4711, 0.4511],
device='cuda:5'),
 TensorImage([0.2873, 0.2893, 0.3110],
device='cuda:5'))

As we expected, the mean and standard deviation are not very

close to the desired values. Fortunately, normalizing the data is

easy to do in fastai by adding the Normalize transform. This

acts on a whole mini-batch at once, so you can add it to the

batch_tfms section of your data block. You need to pass to this

transform the mean and standard deviation that you want to

use; fastai comes with the standard ImageNet mean and

standard deviation already defined. (If you do not pass any

statistics to the Normalize transform, fastai will automatically

calculate them from a single batch of your data.)

Let’s add this transform (using imagenet_stats, as Imagenette

is a subset of ImageNet) and take a look at one batch now:

def get_dls(bs, size):
 dblock = DataBlock(blocks=(ImageBlock, CategoryBlock),
 get_items=get_image_files,
 get_y=parent_label,
 item_tfms=Resize(460),
 batch_tfms=[*aug_transforms(size=size,
min_scale=0.75),

Normalize.from_stats(*imagenet_stats)])
 return dblock.dataloaders(path, bs=bs)

dls = get_dls(64, 224)

x,y = dls.one_batch()
x.mean(dim=[0,2,3]),x.std(dim=[0,2,3])

(TensorImage([-0.0787, 0.0525, 0.2136],
device='cuda:5'),
 TensorImage([1.2330, 1.2112, 1.3031],
device='cuda:5'))

Let’s check what effect this had on training our model:

model = xresnet50()
learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(),
metrics=accuracy)
learn.fit_one_cycle(5, 3e-3)

epoch train_loss valid_loss accuracy time

0 1.632865 2.250024 0.391337 01:02

1 1.294041 1.579932 0.517177 01:02

2 0.960535 1.069164 0.657207 01:04

3 0.730220 0.767433 0.771845 01:05

4 0.577889 0.550673 0.824496 01:06

Although it helped only a little here, normalization becomes

especially important when using pretrained models. The

pretrained model knows how to work with only data of the type

that it has seen before. If the average pixel value was 0 in the

data it was trained with, but your data has 0 as the minimum

possible value of a pixel, then the model is going to be seeing

something very different from what is intended!

This means that when you distribute a model, you need to also

distribute the statistics used for normalization, since anyone

using it for inference or transfer learning will need to use the

same statistics. By the same token, if you’re using a model that

someone else has trained, make sure you find out what

normalization statistics they used, and match them.

We didn’t have to handle normalization in previous chapters

because when using a pretrained model through cnn_learner,

the fastai library automatically adds the proper Normalize

transform; the model has been pretrained with certain

statistics in Normalize (usually coming from the ImageNet

dataset), so the library can fill those in for you. Note that this

applies to only pretrained models, which is why we need to add

this information manually here, when training from scratch.

All our training up until now has been done at size 224. We

could have begun training at a smaller size before going to that.

This is called progressive resizing.

Progressive Resizing

When fast.ai and its team of students won the DAWNBench

competition in 2018, one of the most important innovations

was something very simple: start training using small images,

and end training using large images. Spending most of the

epochs training with small images helps training complete

much faster. Completing training using large images makes the

final accuracy much higher. We call this approach progressive

resizing.

JARGON: PROGRESSIVE RESIZING
Gradually using larger and larger images as you train.

https://oreil.ly/16tar

As we have seen, the kinds of features that are learned by

convolutional neural networks are not in any way specific to

the size of the image—early layers find things like edges and

gradients, and later layers may find things like noses and

sunsets. So, when we change image size in the middle of

training, it doesn’t mean that we have to find totally different

parameters for our model.

But clearly there are some differences between small images

and big ones, so we shouldn’t expect our model to continue

working exactly as well, with no changes at all. Does this

remind you of something? When we developed this idea, it

reminded us of transfer learning! We are trying to get our

model to learn to do something a little bit different from what it

has learned to do before. Therefore, we should be able to use

the fine_tune method after we resize our images.

Progressive resizing has an additional benefit: it is another

form of data augmentation. Therefore, you should expect to see

better generalization of your models that are trained with

progressive resizing.

To implement progressive resizing, it is most convenient if you

first create a get_dls function that takes an image size and a

batch size, as we did in the previous section, and returns your

DataLoaders.

Now you can create your DataLoaders with a small size and use

and fit_one_cycle in the usual way, training for fewer epochs

than you might otherwise do:

dls = get_dls(128, 128)
learn = Learner(dls, xresnet50(),
loss_func=CrossEntropyLossFlat(),
 metrics=accuracy)
learn.fit_one_cycle(4, 3e-3)

epoch train_loss valid_loss accuracy time

0 1.902943 2.447006 0.401419 00:30

1 1.315203 1.572992 0.525765 00:30

2 1.001199 0.767886 0.759149 00:30

3 0.765864 0.665562 0.797984 00:30

Then you can replace the DataLoaders inside the Learner, and

fine-tune:

learn.dls = get_dls(64, 224)
learn.fine_tune(5, 1e-3)

epoch train_loss valid_loss accuracy time

0 0.985213 1.654063 0.565721 01:06

epoch train_loss valid_loss accuracy time

0 0.706869 0.689622 0.784541 01:07

1 0.739217 0.928541 0.712472 01:07

2 0.629462 0.788906 0.764003 01:07

3 0.491912 0.502622 0.836445 01:06

4 0.414880 0.431332 0.863331 01:06

As you can see, we’re getting much better performance, and the

initial training on small images was much faster on each epoch.

You can repeat the process of increasing size and training more

epochs as many times as you like, for as big an image as you

wish—but of course, you will not get any benefit by using an

image size larger than the size of your images on disk.

Note that for transfer learning, progressive resizing may

actually hurt performance. This is most likely to happen if your

pretrained model was quite similar to your transfer learning

task and the dataset and was trained on similar-sized images,

so the weights don’t need to be changed much. In that case,

training on smaller images may damage the pretrained

weights.

On the other hand, if the transfer learning task is going to use

images that are of different sizes, shapes, or styles than those

used in the pretraining task, progressive resizing will probably

help. As always, the answer to “Will it help?” is “Try it!”

Another thing we could try is applying data augmentation to

the validation set. Up until now, we have applied it only on the

training set; the validation set always gets the same images. But

maybe we could try to make predictions for a few augmented

versions of the validation set and average them. We’ll consider

this approach next.

Test Time Augmentation

We have been using random cropping as a way to get some

useful data augmentation, which leads to better generalization,

and results in a need for less training data. When we use

random cropping, fastai will automatically use center-cropping

for the validation set—that is, it will select the largest square

area it can in the center of the image, without going past the

image’s edges.

This can often be problematic. For instance, in a multi-label

dataset, sometimes there are small objects toward the edges of

an image; these could be entirely cropped out by center

cropping. Even for problems such as our pet breed

classification example, it’s possible that a critical feature

necessary for identifying the correct breed, such as the color of

the nose, could be cropped out.

One solution to this problem is to avoid random cropping

entirely. Instead, we could simply squish or stretch the

rectangular images to fit into a square space. But then we miss

out on a very useful data augmentation, and we also make the

image recognition more difficult for our model, because it has

to learn how to recognize squished and squeezed images, rather

than just correctly proportioned images.

Another solution is to not center crop for validation, but

instead to select a number of areas to crop from the original

rectangular image, pass each of them through our model, and

take the maximum or average of the predictions. In fact, we

could do this not just for different crops, but for different

values across all of our test time augmentation parameters.

This is known as test time augmentation (TTA).

JARGON: TEST TIME AUGMENTATION (TTA)
During inference or validation, creating multiple versions of each image

using data augmentation, and then taking the average or maximum of

the predictions for each augmented version of the image.

Depending on the dataset, test time augmentation can result in

dramatic improvements in accuracy. It does not change the

time required to train at all, but will increase the amount of

time required for validation or inference by the number of test-

time-augmented images requested. By default, fastai will use

the unaugmented center crop image plus four randomly

augmented images.

You can pass any DataLoader to fastai’s tta method; by default,

it will use your validation set:

preds,targs = learn.tta()
accuracy(preds, targs).item()

0.8737863898277283

As we can see, using TTA gives us good a boost in performance,

with no additional training required. However, it does make

inference slower—if you’re averaging five images for TTA,

inference will be five times slower.

We’ve seen a few examples of how data augmentation helps

train better models. Let’s now focus on a new data

augmentation technique called Mixup.

Mixup

Mixup, introduced in the 2017 paper "mixup: Beyond

Empirical Risk Minimization” by Hongyi Zhang et al., is a

powerful data augmentation technique that can provide

dramatically higher accuracy, especially when you don’t have

much data and don’t have a pretrained model that was trained

on data similar to your dataset. The paper explains: “While

data augmentation consistently leads to improved

generalization, the procedure is dataset-dependent, and thus

requires the use of expert knowledge.” For instance, it’s

common to flip images as part of data augmentation, but

should you flip only horizontally or also vertically? The answer

is that it depends on your dataset. In addition, if flipping (for

instance) doesn’t provide enough data augmentation for you,

you can’t “flip more.” It’s helpful to have data augmentation

techniques that “dial up” or “dial down” the amount of change,

to see what works best for you.

Mixup works as follows, for each image:

1. Select another image from your dataset at random.

2. Pick a weight at random.

https://oreil.ly/UvIkN

3. Take a weighted average (using the weight from step 2)

of the selected image with your image; this will be your

independent variable.

4. Take a weighted average (with the same weight) of this

image’s labels with your image’s labels; this will be your

dependent variable.

In pseudocode, we’re doing this (where t is the weight for our

weighted average):

image2,target2 = dataset[randint(0,len(dataset)]
t = random_float(0.5,1.0)
new_image = t * image1 + (1-t) * image2
new_target = t * target1 + (1-t) * target2

For this to work, our targets need to be one-hot encoded. The

paper describes this using the equations in Figure 7-1 (where λ

is the same as t in our pseudocode).

Figure 7-1. An excerpt from the Mixup paper

PAPERS AND MATH
We’re going to be looking at more and more research papers from here on in the
book. Now that you have the basic jargon, you might be surprised to discover how
much of them you can understand, with a little practice! One issue you’ll notice is that
Greek letters, such as λ, appear in most papers. It’s a good idea to learn the names
of all the Greek letters, since otherwise it’s hard to read the papers to yourself and
remember them (or to read code based on them, since code often uses the names of
the Greek letters spelled out, such as lambda).

The bigger issue with papers is that they use math, instead of code, to explain what’s
going on. If you don’t have much of a math background, this will likely be intimidating
and confusing at first. But remember: what is being shown in the math is something
that will be implemented in code. It’s just another way of talking about the same
thing! After reading a few papers, you’ll pick up more and more of the notation. If you
don’t know what a symbol is, try looking it up in Wikipedia’s list of mathematical
symbols or drawing it in Detexify, which (using machine learning!) will find the name
of your hand-drawn symbol. Then you can search online for that name to find out
what it’s for.

Figure 7-2 shows what it looks like when we take a linear

combination of images, as done in Mixup.

Figure 7-2. Mixing a church and a gas station

The third image is built by adding 0.3 times the first one and

0.7 times the second. In this example, should the model predict

“church” or “gas station”? The right answer is 30% church and

70% gas station, since that’s what we’ll get if we take the linear

combination of the one-hot-encoded targets. For instance,

https://oreil.ly/m5ad5
https://oreil.ly/92u4d

suppose we have 10 classes, and “church” is represented by the

index 2 and “gas station” by the index 7. The one-hot-encoded

representations are as follows:

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0] and [0, 0, 0, 0, 0, 0,
0, 1, 0, 0]

So here is our final target:

[0, 0, 0.3, 0, 0, 0, 0, 0.7, 0, 0]

This all done for us inside fastai by adding a callback to our

Learner. Callbacks are what is used inside fastai to inject

custom behavior in the training loop (like a learning rate

schedule, or training in mixed precision). You’ll be learning all

about callbacks, including how to make your own, in

Chapter 16. For now, all you need to know is that you use the

cbs parameter to Learner to pass callbacks.

Here is how we train a model with Mixup:

model = xresnet50()
learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(),
 metrics=accuracy, cbs=Mixup)
learn.fit_one_cycle(5, 3e-3)

What happens when we train a model with data that’s “mixed

up” in this way? Clearly, it’s going to be harder to train, because

it’s harder to see what’s in each image. And the model has to

predict two labels per image, rather than just one, as well as

figuring out how much each one is weighted. Overfitting seems

less likely to be a problem, however, because we’re not showing

the same image in each epoch, but are instead showing a

random combination of two images.

Mixup requires far more epochs to train to get better accuracy,

compared to other augmentation approaches we’ve seen. You

can try training Imagenette with and without Mixup by using

the examples/train_imagenette.py script in the fastai repo. At

the time of writing, the leaderboard in the Imagenette repo is

showing that Mixup is used for all leading results for trainings

of >80 epochs, and for fewer epochs Mixup is not being used.

This is in line with our experience of using Mixup too.

One of the reasons that Mixup is so exciting is that it can be

applied to types of data other than photos. In fact, some people

have even shown good results by using Mixup on activations

inside their models, not just on inputs—this allows Mixup to be

used for NLP and other data types too.

There’s another subtle issue that Mixup deals with for us,

which is that it’s not actually possible with the models we’ve

seen before for our loss to ever be perfect. The problem is that

our labels are 1s and 0s, but the outputs of softmax and

sigmoid can never equal 1 or 0. This means training our model

pushes our activations ever closer to those values, such that the

more epochs we do, the more extreme our activations become.

https://oreil.ly/lrGXE
https://oreil.ly/3Gt56

With Mixup, we no longer have that problem, because our

labels will be exactly 1 or 0 only if we happen to “mix” with

another image of the same class. The rest of the time, our labels

will be a linear combination, such as the 0.7 and 0.3 we got in

the church and gas station example earlier.

One issue with this, however, is that Mixup is “accidentally”

making the labels bigger than 0 or smaller than 1. That is to

say, we’re not explicitly telling our model that we want to

change the labels in this way. So, if we want to change to make

the labels closer to or further away from 0 and 1, we have to

change the amount of Mixup—which also changes the amount

of data augmentation, which might not be what we want. There

is, however, a way to handle this more directly, which is to use

label smoothing.

Label Smoothing

In the theoretical expression of loss, in classification problems,

our targets are one-hot encoded (in practice, we tend to avoid

doing this to save memory, but what we compute is the same

loss as if we had used one-hot encoding). That means the

model is trained to return 0 for all categories but one, for which

it is trained to return 1. Even 0.999 is not “good enough”; the

model will get gradients and learn to predict activations with

even higher confidence. This encourages overfitting and gives

you at inference time a model that is not going to give

meaningful probabilities: it will always say 1 for the predicted

category even if it’s not too sure, just because it was trained this

way.

This can become very harmful if your data is not perfectly

labeled. In the bear classifier we studied in Chapter 2, we saw

that some of the images were mislabeled, or contained two

different kinds of bears. In general, your data will never be

perfect. Even if the labels were manually produced by humans,

they could make mistakes, or have differences of opinions on

images that are harder to label.

Instead, we could replace all our 1s with a number a bit less

than 1, and our 0s with a number a bit more than 0, and then

train. This is called label smoothing. By encouraging your

model to be less confident, label smoothing will make your

training more robust, even if there is mislabeled data. The

result will be a model that generalizes better at inference.

This is how label smoothing works in practice: we start with

one-hot-encoded labels, then replace all 0s with
ϵ
N

 (that’s the

Greek letter epsilon, which is what was used in the paper that

introduced label smoothing and is used in the fastai code),

where N is the number of classes and ϵ is a parameter (usually

0.1, which would mean we are 10% unsure of our labels). Since

we want the labels to add up to 1, we also replace the 1s with

1 − ϵ + ϵ
N

. This way, we don’t encourage the model to predict

something overconfidently. In our Imagenette example that

has 10 classes, the targets become something like this (here for

a target that corresponds to the index 3):

https://oreil.ly/L3ypf

[0.01, 0.01, 0.01, 0.91, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01]

In practice, we don’t want to one-hot encode the labels, and

fortunately we won’t need to (the one-hot encoding is just good

to explain label smoothing and visualize it).

LABEL SMOOTHING, THE PAPER
Here is how the reasoning behind label smoothing was explained in the paper by
Christian Szegedy et al.:

This maximum is not achievable for finite zk but is approached if zy ≫ zk for all
k ≠ y—that is, if the logit corresponding to the ground-truth label is much
[greater] than all other logits. This, however, can cause two problems. First, it
may result in over-fitting: if the model learns to assign full probability to the
ground-truth label for each training example, it is not guaranteed to generalize.
Second, it encourages the differences between the largest logit and all others to
become large, and this, combined with the bounded gradient ∂ℓ

∂zk
, reduces the

ability of the model to adapt. Intuitively, this happens because the model
becomes too confident about its predictions.

Let’s practice our paper-reading skills to try to interpret this. “This maximum” is
referring to the previous part of the paragraph, which talked about the fact that 1 is
the value of the label for the positive class. So, it’s not possible for any value (except
infinity) to result in 1 after sigmoid or softmax. In a paper, you won’t normally see
“any value” written; instead, it will get a symbol, which in this case is zk. This
shorthand is helpful in a paper, because it can be referred to again later, and the
reader will know which value is being discussed.

Then it says: “if zy ≫ zk for all k ≠ y.” In this case, the paper immediately follows
the math with an English description, which is handy because you can just read that.
In the math, the y is referring to the target (y is defined earlier in the paper;
sometimes it’s hard to find where symbols are defined, but nearly all papers will
define all their symbols somewhere), and zy is the activation corresponding to the
target. So to get close to 1, this activation needs to be much higher than all the
others for that prediction.

Next, consider the statement “if the model learns to assign full probability to the
ground-truth label for each training example, it is not guaranteed to generalize.” This
is saying that making zy really big means we’ll need large weights and large
activations throughout our model. Large weights lead to “bumpy” functions, where a
small change in input results in a big change to predictions. This is really bad for
generalization, because it means just one pixel changing a bit could change our
prediction entirely!

Finally, we have “it encourages the differences between the largest logit and all
others to become large, and this, combined with the bounded gradient ∂ℓ

∂zk
, reduces

the ability of the model to adapt.” The gradient of cross entropy, remember, is
basically output - target. Both output and target are between 0 and 1, so the
difference is between -1 and 1, which is why the paper says the gradient is
“bounded” (it can’t be infinite). Therefore, our SGD steps are bounded too. “Reduces
the ability of the model to adapt” means that it is hard for it to be updated in a
transfer learning setting. This follows because the difference in loss due to incorrect
predictions is unbounded, but we can take only a limited step each time.

To use this in practice, we just have to change the loss function

in our call to Learner:

model = xresnet50()
learn = Learner(dls, model,
loss_func=LabelSmoothingCrossEntropy(),
 metrics=accuracy)
learn.fit_one_cycle(5, 3e-3)

As with Mixup, you won’t generally see significant

improvements from label smoothing until you train more

epochs. Try it yourself and see: how many epochs do you have

to train before label smoothing shows an improvement?

Conclusion

You have now seen everything you need to train a state-of-the-

art model in computer vision, whether from scratch or using

transfer learning. Now all you have to do is experiment on your

own problems! See if training longer with Mixup and/or label

smoothing avoids overfitting and gives you better results. Try

progressive resizing and test time augmentation.

Most importantly, remember that if your dataset is big, there is

no point prototyping on the whole thing. Find a small subset

that is representative of the whole, as we did with Imagenette,

and experiment on it.

In the next three chapters, we will look at the other

applications directly supported by fastai: collaborative filtering,

tabular modeling, and working with text. We will go back to

computer vision in the next section of the book, with a deep

dive into convolutional neural networks in Chapter 13.

Questionnaire

1. What is the difference between ImageNet and

Imagenette? When is it better to experiment on one

versus the other?

2. What is normalization?

3. Why didn’t we have to care about normalization when

using a pretrained model?

4. What is progressive resizing?

5. Implement progressive resizing in your own project.

Did it help?

6. What is test time augmentation? How do you use it in

fastai?

7. Is using TTA at inference slower or faster than regular

inference? Why?

8. What is Mixup? How do you use it in fastai?

9. Why does Mixup prevent the model from being too

confident?

10. Why does training with Mixup for five epochs end up

worse than training without Mixup?

11. What is the idea behind label smoothing?

12. What problems in your data can label smoothing help

with?

13. When using label smoothing with five categories, what

is the target associated with the index 1?

14. What is the first step to take when you want to

prototype quick experiments on a new dataset?

Further Research

1. Use the fastai documentation to build a function that

crops an image to a square in each of the four corners;

then implement a TTA method that averages the

predictions on a center crop and those four crops. Did it

help? Is it better than the TTA method of fastai?

2. Find the Mixup paper on arXiv and read it. Pick one or

two more recent articles introducing variants of Mixup

and read them; then try to implement them on your

problem.

3. Find the script training Imagenette using Mixup and

use it as an example to build a script for a long training

on your own project. Execute it and see if it helps.

4. Read the sidebar “Label Smoothing, the Paper”; then

look at the relevant section of the original paper and see

if you can follow it. Don’t be afraid to ask for help!

Chapter 8. Collaborative Filtering

Deep Dive

One common problem to solve is having a number of users and

a number of products, and you want to recommend which

products are most likely to be useful for which users. Many

variations exist: for example, recommending movies (such as

on Netflix), figuring out what to highlight for a user on a home

page, deciding what stories to show in a social media feed, and

so forth. A general solution to this problem, called

collaborative filtering, works like this: look at which products

the current user has used or liked, find other users who have

used or liked similar products, and then recommend other

products that those users have used or liked.

For example, on Netflix, you may have watched lots of movies

that are science fiction, full of action, and were made in the

1970s. Netflix may not know these particular properties of the

films you have watched, but it will be able to see that other

people who have watched the same movies that you watched

also tended to watch other movies that are science fiction, full

of action, and were made in the 1970s. In other words, to use

this approach, we don’t necessarily need to know anything

about the movies except who likes to watch them.

There is a more general class of problems that this approach

can solve, not necessarily involving users and products. Indeed,

for collaborative filtering, we more commonly refer to items,

rather than products. Items could be links that people click,

diagnoses that are selected for patients, and so forth.

The key foundational idea is that of latent factors. In the

Netflix example, we started with the assumption that you like

old, action-packed sci-fi movies. But you never told Netflix that

you like these kinds of movies. And Netflix never needed to add

columns to its movies table saying which movies are of these

types. Still, there must be some underlying concept of sci-fi,

action, and movie age, and these concepts must be relevant for

at least some people’s movie-watching decisions.

For this chapter, we are going to work on this movie

recommendation problem. We’ll start by getting some data

suitable for a collaborative filtering model.

A First Look at the Data

We do not have access to Netflix’s entire dataset of movie

watching history, but there is a great dataset that we can use,

called MovieLens. This dataset contains tens of millions of

movie rankings (a combination of a movie ID, a user ID, and a

numeric rating), although we will just use a subset of 100,000

https://oreil.ly/gP3Q5

of them for our example. If you’re interested, it would be a

great learning project to try to replicate this approach on the

full 25-million recommendation dataset, which you can get

from their website.

The dataset is available through the usual fastai function:

from fastai.collab import *
from fastai.tabular.all import *
path = untar_data(URLs.ML_100k)

According to the README, the main table is in the file u.data.

It is tab-separated and the columns are, respectively, user,

movie, rating, and timestamp. Since those names are not

encoded, we need to indicate them when reading the file with

Pandas. Here is a way to open this table and take a look:

ratings = pd.read_csv(path/'u.data', delimiter='\t', header=None,
 names=
['user','movie','rating','timestamp'])
ratings.head()

user movie rating timestamp

0
196 242 3 881250949

1
186 302 3 891717742

2
22 377 1 878887116

3
244 51 2 880606923

4
166 346 1 886397596

Although this has all the information we need, it is not a

particularly helpful way for humans to look at this data.

Figure 8-1 shows the same data cross-tabulated into a human-

friendly table.

Figure 8-1. Crosstab of movies and users

We have selected just a few of the most popular movies, and

users who watch the most movies, for this crosstab example.

The empty cells in this table are the things that we would like

our model to learn to fill in. Those are the places where a user

has not reviewed the movie yet, presumably because they have

not watched it. For each user, we would like to figure out which

of those movies they might be most likely to enjoy.

If we knew for each user to what degree they liked each

important category that a movie might fall into, such as genre,

age, preferred directors and actors, and so forth, and we knew

the same information about each movie, then a simple way to

fill in this table would be to multiply this information together

for each movie and use a combination. For instance, assuming

these factors range between –1 and +1, with positive numbers

indicating stronger matches and negative numbers weaker

ones, and the categories are science-fiction, action, and old

movies, then we could represent the movie The Last Skywalker

as follows:

last_skywalker = np.array([0.98,0.9,-0.9])

Here, for instance, we are scoring very science-fiction as 0.98,

and very not old as –0.9. We could represent a user who likes

modern sci-fi action movies as follows:

user1 = np.array([0.9,0.8,-0.6])

We can now calculate the match between this combination:

(user1*last_skywalker).sum()

2.1420000000000003

When we multiply two vectors together and add up the results,

this is known as the dot product. It is used a lot in machine

learning and forms the basis of matrix multiplication. We will

be looking a lot more at matrix multiplication and dot products

in Chapter 17.

JARGON: DOT PRODUCT
The mathematical operation of multiplying the elements of two vectors

together, and then summing up the result.

On the other hand, we might represent the movie Casablanca

as follows:

casablanca = np.array([-0.99,-0.3,0.8])

The match between this combination is shown here:

(user1*casablanca).sum()

-1.611

Since we don’t know what the latent factors are, and we don’t

know how to score them for each user and movie, we should

learn them.

Learning the Latent Factors

There is surprisingly little difference between specifying the

structure of a model, as we did in the preceding section, and

learning one, since we can just use our general gradient descent

approach.

Step 1 of this approach is to randomly initialize some

parameters. These parameters will be a set of latent factors for

each user and movie. We will have to decide how many to use.

We will discuss how to select this shortly, but for illustrative

purposes, let’s use 5 for now. Because each user will have a set

of these factors, and each movie will have a set of these factors,

we can show these randomly initialized values right next to the

users and movies in our crosstab, and we can then fill in the dot

products for each of these combinations in the middle. For

example, Figure 8-2 shows what it looks like in Microsoft

Excel, with the top-left cell formula displayed as an example.

Step 2 of this approach is to calculate our predictions. As we’ve

discussed, we can do this by simply taking the dot product of

each movie with each user. If, for instance, the first latent user

factor represents how much the user likes action movies and

the first latent movie factor represents whether the movie has a

lot of action or not, the product of those will be particularly

high if either the user likes action movies and the movie has a

lot of action in it, or the user doesn’t like action movies and the

movie doesn’t have any action in it. On the other hand, if we

have a mismatch (a user loves action movies but the movie isn’t

an action film, or the user doesn’t like action movies and it is

one), the product will be very low.

Figure 8-2. Latent factors with crosstab

Step 3 is to calculate our loss. We can use any loss function that

we wish; let’s pick mean squared error for now, since that is

one reasonable way to represent the accuracy of a prediction.

That’s all we need. With this in place, we can optimize our

parameters (the latent factors) using stochastic gradient

descent, such as to minimize the loss. At each step, the

stochastic gradient descent optimizer will calculate the match

between each movie and each user using the dot product, and

will compare it to the actual rating that each user gave to each

movie. It will then calculate the derivative of this value and step

the weights by multiplying this by the learning rate. After doing

this lots of times, the loss will get better and better, and the

recommendations will also get better and better.

To use the usual Learner.fit function, we will need to get our

data into a DataLoaders, so let’s focus on that now.

Creating the DataLoaders

When showing the data, we would rather see movie titles than

their IDs. The table u.item contains the correspondence of IDs

to titles:

movies = pd.read_csv(path/'u.item', delimiter='|',
encoding='latin-1',
 usecols=(0,1), names=('movie','title'),
header=None)
movies.head()

movie title

0
1 Toy Story (1995)

1
2 GoldenEye (1995)

2
3 Four Rooms (1995)

3
4 Get Shorty (1995)

4
5 Copycat (1995)

We can merge this with our ratings table to get the user

ratings by title:

ratings = ratings.merge(movies)
ratings.head()

user movie rating timestamp title

0
196 242 3 881250949 Kolya (1996)

1
63 242 3 875747190 Kolya (1996)

2
226 242 5 883888671 Kolya (1996)

3
154 242 3 879138235 Kolya (1996)

4
306 242 5 876503793 Kolya (1996)

We can then build a DataLoaders object from this table. By

default, it takes the first column for the user, the second

column for the item (here our movies), and the third column

for the ratings. We need to change the value of item_name in

our case to use the titles instead of the IDs:

dls = CollabDataLoaders.from_df(ratings, item_name='title',
bs=64)
dls.show_batch()

user title rating

0
207 Four Weddings and a Funeral (1994) 3

1
565 Remains of the Day, The (1993) 5

2
506 Kids (1995) 1

3
845 Chasing Amy (1997) 3

4
798 Being Human (1993) 2

5
500 Down by Law (1986) 4

6
409 Much Ado About Nothing (1993) 3

7
721 Braveheart (1995) 5

8
316 Psycho (1960) 2

9
883 Judgment Night (1993) 5

To represent collaborative filtering in PyTorch, we can’t just

use the crosstab representation directly, especially if we want it

to fit into our deep learning framework. We can represent our

movie and user latent factor tables as simple matrices:

n_users = len(dls.classes['user'])
n_movies = len(dls.classes['title'])
n_factors = 5

user_factors = torch.randn(n_users, n_factors)
movie_factors = torch.randn(n_movies, n_factors)

To calculate the result for a particular movie and user

combination, we have to look up the index of the movie in our

movie latent factor matrix, and the index of the user in our user

latent factor matrix; then we can do our dot product between

the two latent factor vectors. But look up in an index is not an

operation our deep learning models know how to do. They

know how to do matrix products and activation functions.

Fortunately, it turns out that we can represent look up in an

index as a matrix product. The trick is to replace our indices

with one-hot-encoded vectors. Here is an example of what

happens if we multiply a vector by a one-hot-encoded vector

representing the index 3:

one_hot_3 = one_hot(3, n_users).float()
user_factors.t() @ one_hot_3

tensor([-0.4586, -0.9915, -0.4052, -0.3621, -0.5908])

It gives us the same vector as the one at index 3 in the matrix:

user_factors[3]

tensor([-0.4586, -0.9915, -0.4052, -0.3621, -0.5908])

If we do that for a few indices at once, we will have a matrix of

one-hot-encoded vectors, and that operation will be a matrix

multiplication! This would be a perfectly acceptable way to

build models using this kind of architecture, except that it

would use a lot more memory and time than necessary. We

know that there is no real underlying reason to store the one-

hot-encoded vector, or to search through it to find the

occurrence of the number 1—we should just be able to index

into an array directly with an integer. Therefore, most deep

learning libraries, including PyTorch, include a special layer

that does just this; it indexes into a vector using an integer, but

has its derivative calculated in such a way that it is identical to

what it would have been if it had done a matrix multiplication

with a one-hot-encoded vector. This is called an embedding.

JARGON: EMBEDDING
Multiplying by a one-hot-encoded matrix, using the computational

shortcut that it can be implemented by simply indexing directly. This is

quite a fancy word for a very simple concept. The thing that you multiply

the one-hot-encoded matrix by (or, using the computational shortcut,

index into directly) is called the embedding matrix.

In computer vision, we have a very easy way to get all the

information of a pixel through its RGB values: each pixel in a

colored image is represented by three numbers. Those three

numbers give us the redness, the greenness, and the blueness,

which is enough to get our model to work afterward.

For the problem at hand, we don’t have the same easy way to

characterize a user or a movie. There are probably relations

with genres: if a given user likes romance, they are likely to give

higher scores to romance movies. Other factors might be

whether the movie is more action-oriented versus heavy on

dialogue, or the presence of a specific actor whom a user might

particularly like.

How do we determine numbers to characterize those? The

answer is, we don’t. We will let our model learn them. By

analyzing the existing relations between users and movies, our

model can figure out itself the features that seem important or

not.

This is what embeddings are. We will attribute to each of our

users and each of our movies a random vector of a certain

length (here, n_factors=5), and we will make those learnable

parameters. That means that at each step, when we compute

the loss by comparing our predictions to our targets, we will

compute the gradients of the loss with respect to those

embedding vectors and update them with the rules of SGD (or

another optimizer).

At the beginning, those numbers don’t mean anything since we

have chosen them randomly, but by the end of training, they

will. By learning on existing data about the relations between

users and movies, without having any other information, we

will see that they still get some important features, and can

isolate blockbusters from independent films, action movies

from romance, and so on.

We are now in a position to create our whole model from

scratch.

Collaborative Filtering from Scratch

Before we can write a model in PyTorch, we first need to learn

the basics of object-oriented programming and Python. If you

haven’t done any object-oriented programming before, we will

give you a quick introduction here, but we would recommend

looking up a tutorial and getting some practice before moving

on.

The key idea in object-oriented programming is the class. We

have been using classes throughout this book, such as

DataLoader, String, and Learner. Python also makes it easy for

us to create new classes. Here is an example of a simple class:

class Example:
 def __init__(self, a): self.a = a
 def say(self,x): return f'Hello {self.a}, {x}.'

The most important piece of this is the special method called

__init__ (pronounced dunder init). In Python, any method

surrounded in double underscores like this is considered

special. It indicates that some extra behavior is associated with

this method name. In the case of __init__, this is the method

Python will call when your new object is created. So, this is

where you can set up any state that needs to be initialized upon

object creation. Any parameters included when the user

constructs an instance of your class will be passed to the

__init__ method as parameters. Note that the first parameter

to any method defined inside a class is self, so you can use this

to set and get any attributes that you will need:

ex = Example('Sylvain')
ex.say('nice to meet you')

'Hello Sylvain, nice to meet you.'

Also note that creating a new PyTorch module requires

inheriting from Module. Inheritance is an important object-

oriented concept that we will not discuss in detail here—in

short, it means that we can add additional behavior to an

existing class. PyTorch already provides a Module class, which

provides some basic foundations that we want to build on. So,

we add the name of this superclass after the name of the class

that we are defining, as shown in the following examples.

The final thing that you need to know to create a new PyTorch

module is that when your module is called, PyTorch will call a

method in your class called forward, and will pass along to that

any parameters that are included in the call. Here is the class

defining our dot product model:

class DotProduct(Module):
 def __init__(self, n_users, n_movies, n_factors):
 self.user_factors = Embedding(n_users, n_factors)
 self.movie_factors = Embedding(n_movies, n_factors)

 def forward(self, x):
 users = self.user_factors(x[:,0])
 movies = self.movie_factors(x[:,1])
 return (users * movies).sum(dim=1)

If you haven’t seen object-oriented programming before, don’t

worry; you won’t need to use it much in this book. We are just

mentioning this approach here because most online tutorials

and documentation will use the object-oriented syntax.

Note that the input of the model is a tensor of shape

batch_size x 2, where the first column (x[:, 0]) contains the

user IDs, and the second column (x[:, 1]) contains the movie

IDs. As explained before, we use the embedding layers to

represent our matrices of user and movie latent factors:

x,y = dls.one_batch()
x.shape

torch.Size([64, 2])

Now that we have defined our architecture and created our

parameter matrices, we need to create a Learner to optimize

our model. In the past, we have used special functions, such as

cnn_learner, which set up everything for us for a particular

application. Since we are doing things from scratch here, we

will use the plain Learner class:

model = DotProduct(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())

We are now ready to fit our model:

learn.fit_one_cycle(5, 5e-3)

epoch train_loss valid_loss time

0 1.326261 1.295701 00:12

1 1.091352 1.091475 00:11

2 0.961574 0.977690 00:11

3 0.829995 0.893122 00:11

4 0.781661 0.876511 00:12

The first thing we can do to make this model a little bit better is

to force those predictions to be between 0 and 5. For this, we

just need to use sigmoid_range, as in Chapter 6. One thing we

discovered empirically is that it’s better to have the range go a

little bit over 5, so we use (0, 5.5):

class DotProduct(Module):
 def __init__(self, n_users, n_movies, n_factors, y_range=
(0,5.5)):
 self.user_factors = Embedding(n_users, n_factors)
 self.movie_factors = Embedding(n_movies, n_factors)
 self.y_range = y_range

 def forward(self, x):
 users = self.user_factors(x[:,0])
 movies = self.movie_factors(x[:,1])
 return sigmoid_range((users * movies).sum(dim=1),
*self.y_range)

model = DotProduct(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3)

epoch train_loss valid_loss time

0 0.976380 1.001455 00:12

1 0.875964 0.919960 00:12

2 0.685377 0.870664 00:12

3 0.483701 0.874071 00:12

4 0.385249 0.878055 00:12

This is a reasonable start, but we can do better. One obvious

missing piece is that some users are just more positive or

negative in their recommendations than others, and some

movies are just plain better or worse than others. But in our dot

product representation, we do not have any way to encode

either of these things. If all you can say about a movie is, for

instance, that it is very sci-fi, very action-oriented, and very not

old, then you don’t really have any way to say whether most

people like it.

That’s because at this point we have only weights; we do not

have biases. If we have a single number for each user that we

can add to our scores, and ditto for each movie, that will handle

this missing piece very nicely. So first of all, let’s adjust our

model architecture:

class DotProductBias(Module):
 def __init__(self, n_users, n_movies, n_factors, y_range=
(0,5.5)):
 self.user_factors = Embedding(n_users, n_factors)
 self.user_bias = Embedding(n_users, 1)
 self.movie_factors = Embedding(n_movies, n_factors)
 self.movie_bias = Embedding(n_movies, 1)
 self.y_range = y_range

 def forward(self, x):
 users = self.user_factors(x[:,0])
 movies = self.movie_factors(x[:,1])
 res = (users * movies).sum(dim=1, keepdim=True)
 res += self.user_bias(x[:,0]) +
self.movie_bias(x[:,1])
 return sigmoid_range(res, *self.y_range)

Let’s try training this and see how it goes:

model = DotProductBias(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3)

epoch train_loss valid_loss time

0 0.929161 0.936303 00:13

1 0.820444 0.861306 00:13

2 0.621612 0.865306 00:14

3 0.404648 0.886448 00:13

4 0.292948 0.892580 00:13

Instead of being better, it ends up being worse (at least at the

end of training). Why is that? If we look at both trainings

carefully, we can see the validation loss stopped improving in

the middle and started to get worse. As we’ve seen, this is a

clear indication of overfitting. In this case, there is no way to

use data augmentation, so we will have to use another

regularization technique. One approach that can be helpful is

weight decay.

Weight Decay

Weight decay, or L2 regularization, consists of adding to your

loss function the sum of all the weights squared. Why do that?

Because when we compute the gradients, it will add a

contribution to them that will encourage the weights to be as

small as possible.

Why would it prevent overfitting? The idea is that the larger the

coefficients are, the sharper canyons we will have in the loss

function. If we take the basic example of a parabola, y = a *

(x**2), the larger a is, the more narrow the parabola is:

So, letting our model learn high parameters might cause it to fit

all the data points in the training set with an overcomplex

function that has very sharp changes, which will lead to

overfitting.

Limiting our weights from growing too much is going to hinder

the training of the model, but it will yield a state where it

generalizes better. Going back to the theory briefly, weight

decay (or just wd) is a parameter that controls that sum of

squares we add to our loss (assuming parameters is a tensor of

all parameters):

loss_with_wd = loss + wd * (parameters**2).sum()

In practice, though, it would be very inefficient (and maybe

numerically unstable) to compute that big sum and add it to

the loss. If you remember a little bit of high school math, you

might recall that the derivative of p**2 with respect to p is 2*p,

so adding that big sum to our loss is exactly the same as doing

this:

parameters.grad += wd * 2 * parameters

In practice, since wd is a parameter that we choose, we can

make it twice as big, so we don’t even need the *2 in this

equation. To use weight decay in fastai, pass wd in your call to

fit or fit_one_cycle (it can be passed on both):

model = DotProductBias(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3, wd=0.1)

epoch train_loss valid_loss time

0 0.972090 0.962366 00:13

1 0.875591 0.885106 00:13

2 0.723798 0.839880 00:13

3 0.586002 0.823225 00:13

4 0.490980 0.823060 00:13

Much better!

Creating Our Own Embedding Module

So far, we’ve used Embedding without thinking about how it

really works. Let’s re-create DotProductBias without using this

class. We’ll need a randomly initialized weight matrix for each

of the embeddings. We have to be careful, however. Recall from

Chapter 4 that optimizers require that they can get all the

parameters of a module from the module’s parameters method.

However, this does not happen fully automatically. If we just

add a tensor as an attribute to a Module, it will not be included

in parameters:

class T(Module):
 def __init__(self): self.a = torch.ones(3)

L(T().parameters())

(#0) []

To tell Module that we want to treat a tensor as a parameter, we

have to wrap it in the nn.Parameter class. This class doesn’t add

any functionality (other than automatically calling

requires_grad_ for us). It’s used only as a “marker” to show

what to include in parameters:

class T(Module):
 def __init__(self): self.a = nn.Parameter(torch.ones(3))

L(T().parameters())

(#1) [Parameter containing:
tensor([1., 1., 1.], requires_grad=True)]

All PyTorch modules use nn.Parameter for any trainable

parameters, which is why we haven’t needed to explicitly use

this wrapper until now:

class T(Module):
 def __init__(self): self.a = nn.Linear(1, 3, bias=False)

t = T()
L(t.parameters())

(#1) [Parameter containing:
tensor([[-0.9595],
 [-0.8490],
 [0.8159]], requires_grad=True)]

type(t.a.weight)

torch.nn.parameter.Parameter

We can create a tensor as a parameter, with random

initialization, like so:

def create_params(size):
 return nn.Parameter(torch.zeros(*size).normal_(0, 0.01))

Let’s use this to create DotProductBias again, but without

Embedding:

class DotProductBias(Module):
 def __init__(self, n_users, n_movies, n_factors, y_range=
(0,5.5)):
 self.user_factors = create_params([n_users, n_factors])
 self.user_bias = create_params([n_users])
 self.movie_factors = create_params([n_movies,
n_factors])
 self.movie_bias = create_params([n_movies])

 self.y_range = y_range

 def forward(self, x):
 users = self.user_factors[x[:,0]]
 movies = self.movie_factors[x[:,1]]
 res = (users*movies).sum(dim=1)
 res += self.user_bias[x[:,0]] +
self.movie_bias[x[:,1]]
 return sigmoid_range(res, *self.y_range)

Then let’s train it again to check we get around the same results

we saw in the previous section:

model = DotProductBias(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3, wd=0.1)

epoch train_loss valid_loss time

0 0.962146 0.936952 00:14

1 0.858084 0.884951 00:14

2 0.740883 0.838549 00:14

3 0.592497 0.823599 00:14

4 0.473570 0.824263 00:14

Now, let’s take a look at what our model has learned.

Interpreting Embeddings and Biases

Our model is already useful, in that it can provide us with

movie recommendations for our users—but it is also interesting

to see what parameters it has discovered. The easiest to

interpret are the biases. Here are the movies with the lowest

values in the bias vector:

movie_bias = learn.model.movie_bias.squeeze()
idxs = movie_bias.argsort()[:5]
[dls.classes['title'][i] for i in idxs]

['Children of the Corn: The Gathering (1996)',
 'Lawnmower Man 2: Beyond Cyberspace (1996)',
 'Beautician and the Beast, The (1997)',
 'Crow: City of Angels, The (1996)',
 'Home Alone 3 (1997)']

Think about what this means. What it’s saying is that for each

of these movies, even when a user is very well matched to its

latent factors (which, as we will see in a moment, tend to

represent things like level of action, age of movie, and so forth),

they still generally don’t like it. We could have simply sorted

the movies directly by their average rating, but looking at the

learned bias tells us something much more interesting. It tells

us not just whether a movie is of a kind that people tend not to

enjoy watching, but that people tend to not like watching it

even if it is of a kind that they would otherwise enjoy! By the

same token, here are the movies with the highest bias:

idxs = movie_bias.argsort(descending=True)[:5]
[dls.classes['title'][i] for i in idxs]

['L.A. Confidential (1997)',
 'Titanic (1997)',
 'Silence of the Lambs, The (1991)',
 'Shawshank Redemption, The (1994)',
 'Star Wars (1977)']

So, for instance, even if you don’t normally enjoy detective

movies, you might enjoy LA Confidential!

It is not quite so easy to directly interpret the embedding

matrices. There are just too many factors for a human to look

at. But there is a technique that can pull out the most

important underlying directions in such a matrix, called

principal component analysis (PCA). We will not be going into

this in detail in this book, because it is not particularly

important for you to understand to be a deep learning

practitioner, but if you are interested, we suggest you check out

the fast.ai course Computational Linear Algebra for Coders.

Figure 8-3 shows what our movies look like based on two of the

strongest PCA components.

https://oreil.ly/NLj2R

Figure 8-3. Representation of movies based on two strongest PCA components

We can see here that the model seems to have discovered a

concept of classic versus pop culture movies, or perhaps it is

critically acclaimed that is represented here.

JEREMY SAYS
No matter how many models I train, I never stop getting moved and

surprised by how these randomly initialized bunches of numbers,

trained with such simple mechanics, manage to discover things about

my data all by themselves. It almost seems like cheating that I can create

code that does useful things without ever actually telling it how to do

those things!

We defined our model from scratch to teach you what is inside,

but you can directly use the fastai library to build it. We’ll look

at how to do that next.

Using fastai.collab

We can create and train a collaborative filtering model using

the exact structure shown earlier by using fastai’s

collab_learner:

learn = collab_learner(dls, n_factors=50, y_range=(0, 5.5))

learn.fit_one_cycle(5, 5e-3, wd=0.1)

epoch train_loss valid_loss time

0 0.931751 0.953806 00:13

1 0.851826 0.878119 00:13

2 0.715254 0.834711 00:13

3 0.583173 0.821470 00:13

4 0.496625 0.821688 00:13

The names of the layers can be seen by printing the model:

learn.model

EmbeddingDotBias(
 (u_weight): Embedding(944, 50)
 (i_weight): Embedding(1635, 50)
 (u_bias): Embedding(944, 1)
 (i_bias): Embedding(1635, 1)
)

We can use these to replicate any of the analyses we did in the

previous section—for instance:

movie_bias = learn.model.i_bias.weight.squeeze()
idxs = movie_bias.argsort(descending=True)[:5]
[dls.classes['title'][i] for i in idxs]

['Titanic (1997)',
 "Schindler's List (1993)",
 'Shawshank Redemption, The (1994)',
 'L.A. Confidential (1997)',
 'Silence of the Lambs, The (1991)']

Another interesting thing we can do with these learned

embeddings is to look at distance.

Embedding Distance

On a two-dimensional map, we can calculate the distance

between two coordinates by using the formula of Pythagoras:

√x2 + y2 (assuming that x and y are the distances between

the coordinates on each axis). For a 50-dimensional

embedding, we can do exactly the same thing, except that we

add up the squares of all 50 of the coordinate distances.

If there were two movies that were nearly identical, their

embedding vectors would also have to be nearly identical,

because the users who would like them would be nearly exactly

the same. There is a more general idea here: movie similarity

can be defined by the similarity of users who like those movies.

And that directly means that the distance between two movies’

embedding vectors can define that similarity. We can use this

to find the most similar movie to Silence of the Lambs:

movie_factors = learn.model.i_weight.weight
idx = dls.classes['title'].o2i['Silence of the Lambs, The
(1991)']
distances = nn.CosineSimilarity(dim=1)(movie_factors,
movie_factors[idx][None])
idx = distances.argsort(descending=True)[1]
dls.classes['title'][idx]

'Dial M for Murder (1954)'

Now that we have successfully trained a model, let’s see how to

deal with the situation of having no data for a user. How can we

make recommendations to new users?

Bootstrapping a Collaborative Filtering Model

The biggest challenge with using collaborative filtering models

in practice is the bootstrapping problem. The most extreme

version of this problem is having no users, and therefore no

history to learn from. What products do you recommend to

your very first user?

But even if you are a well-established company with a long

history of user transactions, you still have the question: what

do you do when a new user signs up? And indeed, what do you

do when you add a new product to your portfolio? There is no

magic solution to this problem, and really the solutions that we

suggest are just variations of use your common sense. You

could assign new users the mean of all of the embedding

vectors of your other users, but this has the problem that that

particular combination of latent factors may be not at all

common (for instance, the average for the science-fiction factor

may be high, and the average for the action factor may be low,

but it is not that common to find people who like science-

fiction without action). It would probably be better to pick a

particular user to represent average taste.

Better still is to use a tabular model based on user metadata to

construct your initial embedding vector. When a user signs up,

think about what questions you could ask to help you

understand their tastes. Then you can create a model in which

the dependent variable is a user’s embedding vector, and the

independent variables are the results of the questions that you

ask them, along with their signup metadata. We will see in the

next section how to create these kinds of tabular models. (You

may have noticed that when you sign up for services such as

Pandora and Netflix, they tend to ask you a few questions about

what genres of movie or music you like; this is how they come

up with your initial collaborative filtering recommendations.)

One thing to be careful of is that a small number of extremely

enthusiastic users may end up effectively setting the

recommendations for your whole user base. This is a very

common problem, for instance, in movie recommendation

systems. People who watch anime tend to watch a whole lot of

it, and don’t watch very much else, and spend a lot of time

putting their ratings on websites. As a result, anime tends to be

heavily overrepresented in a lot of best ever movies lists. In this

particular case, it can be fairly obvious that you have a problem

of representation bias, but if the bias is occurring in the latent

factors, it may not be obvious at all.

Such a problem can change the entire makeup of your user

base, and the behavior of your system. This is particularly true

because of positive feedback loops. If a small number of your

users tend to set the direction of your recommendation system,

they are naturally going to end up attracting more people like

them to your system. And that will, of course, amplify the

original representation bias. This type of bias is a natural

tendency to be amplified exponentially. You may have seen

examples of company executives expressing surprise at how

their online platforms rapidly deteriorated in such a way that

they expressed values at odds with the values of the founders.

In the presence of these kinds of feedback loops, it is easy to see

how such a divergence can happen both quickly and in a way

that is hidden until it is too late.

In a self-reinforcing system like this, we should probably expect

these kinds of feedback loops to be the norm, not the exception.

Therefore, you should assume that you will see them, plan for

that, and identify up front how you will deal with these issues.

Try to think about all of the ways in which feedback loops may

be represented in your system, and how you might be able to

identify them in your data. In the end, this is coming back to

our original advice about how to avoid disaster when rolling

out any kind of machine learning system. It’s all about ensuring

that there are humans in the loop; that there is careful

monitoring, and a gradual and thoughtful rollout.

Our dot product model works quite well, and it is the basis of

many successful real-world recommendation systems. This

approach to collaborative filtering is known as probabilistic

matrix factorization (PMF). Another approach, which

generally works similarly well given the same data, is deep

learning.

Deep Learning for Collaborative Filtering

To turn our architecture into a deep learning model, the first

step is to take the results of the embedding lookup and

concatenate those activations together. This gives us a matrix

that we can then pass through linear layers and nonlinearities

in the usual way.

Since we’ll be concatenating the embedding matrices, rather

than taking their dot product, the two embedding matrices can

have different sizes (different numbers of latent factors). fastai

has a function get_emb_sz that returns recommended sizes for

embedding matrices for your data, based on a heuristic that

fast.ai has found tends to work well in practice:

embs = get_emb_sz(dls)
embs

[(944, 74), (1635, 101)]

Let’s implement this class:

class CollabNN(Module):
 def __init__(self, user_sz, item_sz, y_range=(0,5.5),
n_act=100):
 self.user_factors = Embedding(*user_sz)
 self.item_factors = Embedding(*item_sz)
 self.layers = nn.Sequential(
 nn.Linear(user_sz[1]+item_sz[1], n_act),
 nn.ReLU(),
 nn.Linear(n_act, 1))
 self.y_range = y_range

 def forward(self, x):
 embs =
self.user_factors(x[:,0]),self.item_factors(x[:,1])

 x = self.layers(torch.cat(embs, dim=1))
 return sigmoid_range(x, *self.y_range)

And use it to create a model:

model = CollabNN(*embs)

CollabNN creates our Embedding layers in the same way as

previous classes in this chapter, except that we now use the

embs sizes. self.layers is identical to the mini-neural net we

created in Chapter 4 for MNIST. Then, in forward, we apply the

embeddings, concatenate the results, and pass this through the

mini-neural net. Finally, we apply sigmoid_range as we have in

previous models.

Let’s see if it trains:

learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3, wd=0.01)

epoch train_loss valid_loss time

0 0.940104 0.959786 00:15

1 0.893943 0.905222 00:14

2 0.865591 0.875238 00:14

3 0.800177 0.867468 00:14

4 0.760255 0.867455 00:14

fastai provides this model in fastai.collab if you pass

use_nn=True in your call to collab_learner (including calling

get_emb_sz for you), and it lets you easily create more layers.

For instance, here we’re creating two hidden layers, of size 100

and 50, respectively:

learn = collab_learner(dls, use_nn=True, y_range=(0, 5.5),
layers=[100,50])
learn.fit_one_cycle(5, 5e-3, wd=0.1)

epoch train_loss valid_loss time

0 1.002747 0.972392 00:16

1 0.926903 0.922348 00:16

2 0.877160 0.893401 00:16

3 0.838334 0.865040 00:16

4 0.781666 0.864936 00:16

learn.model is an object of type EmbeddingNN. Let’s take a look

at fastai’s code for this class:

@delegates(TabularModel)
class EmbeddingNN(TabularModel):
 def __init__(self, emb_szs, layers, **kwargs):
 super().__init__(emb_szs, layers=layers, n_cont=0,
out_sz=1, **kwargs)

Wow, that’s not a lot of code! This class inherits from

TabularModel, which is where it gets all its functionality from.

In __init__, it calls the same method in TabularModel, passing

n_cont=0 and out_sz=1; other than that, it passes along only

whatever arguments it received.

KWARGS AND DELEGATES
EmbeddingNN includes **kwargs as a parameter to __init__. In Python, **kwargs in a
parameter list means “put any additional keyword arguments into a dict called
kwargs.” And **kwargs in an argument list means “insert all key/value pairs in the
kwargs dict as named arguments here.” This approach is used in many popular
libraries, such as matplotlib, in which the main plot function simply has the
signature plot(*args, **kwargs). The plot documentation says “The kwargs are
Line2D properties” and then lists those properties.

We’re using **kwargs in EmbeddingNN to avoid having to write all the arguments to
TabularModel a second time, and keep them in sync. However, this makes our API
quite difficult to work with, because now Jupyter Notebook doesn’t know what
parameters are available. Consequently, things like tab completion of parameter
names and pop-up lists of signatures won’t work.

fastai resolves this by providing a special @delegates decorator, which automatically
changes the signature of the class or function (EmbeddingNN in this case) to insert all
of its keyword arguments into the signature.

Although the results of EmbeddingNN are a bit worse than the

dot product approach (which shows the power of carefully

constructing an architecture for a domain), it does allow us to

do something very important: we can now directly incorporate

other user and movie information, date and time information,

or any other information that may be relevant to the

recommendation. That’s exactly what TabularModel does. In

fact, we’ve now seen that EmbeddingNN is just a TabularModel,

with n_cont=0 and out_sz=1. So, we’d better spend some time

learning about TabularModel, and how to use it to get great

results! We’ll do that in the next chapter.

Conclusion

https://oreil.ly/P9A8T

For our first non–computer vision application, we looked at

recommendation systems and saw how gradient descent can

learn intrinsic factors or biases about items from a history of

ratings. Those can then give us information about the data.

We also built our first model in PyTorch. We will do a lot more

of this in the next section of the book, but first, let’s finish our

dive into the other general applications of deep learning,

continuing with tabular data.

Questionnaire

1. What problem does collaborative filtering solve?

2. How does it solve it?

3. Why might a collaborative filtering predictive model fail

to be a very useful recommendation system?

4. What does a crosstab representation of collaborative

filtering data look like?

5. Write the code to create a crosstab representation of the

MovieLens data (you might need to do some web

searching!).

6. What is a latent factor? Why is it “latent”?

7. What is a dot product? Calculate a dot product

manually using pure Python with lists.

8. What does pandas.DataFrame.merge do?

9. What is an embedding matrix?

10. What is the relationship between an embedding and a

matrix of one-hot-encoded vectors?

11. Why do we need Embedding if we could use one-hot-

encoded vectors for the same thing?

12. What does an embedding contain before we start

training (assuming we’re not using a pretrained

model)?

13. Create a class (without peeking, if possible!) and use it.

14. What does x[:,0] return?

15. Rewrite the DotProduct class (without peeking, if

possible!) and train a model with it.

16. What is a good loss function to use for MovieLens?

Why?

17. What would happen if we used cross-entropy loss with

MovieLens? How would we need to change the model?

18. What is the use of bias in a dot product model?

19. What is another name for weight decay?

20. Write the equation for weight decay (without peeking!).

21. Write the equation for the gradient of weight decay.

Why does it help reduce weights?

22. Why does reducing weights lead to better

generalization?

23. What does argsort do in PyTorch?

24. Does sorting the movie biases give the same result as

averaging overall movie ratings by movie? Why/why

not?

25. How do you print the names and details of the layers in

a model?

26. What is the “bootstrapping problem” in collaborative

filtering?

27. How could you deal with the bootstrapping problem for

new users? For new movies?

28. How can feedback loops impact collaborative filtering

systems?

29. When using a neural network in collaborative filtering,

why can we have different numbers of factors for

movies and users?

30. Why is there an nn.Sequential in the CollabNN model?

31. What kind of model should we use if we want to add

metadata about users and items, or information such as

date and time, to a collaborative filtering model?

Further Research

1. Take a look at all the differences between the Embedding

version of DotProductBias and the create_params

version, and try to understand why each of those

changes is required. If you’re not sure, try reverting

each change to see what happens. (NB: even the type of

brackets used in forward has changed!)

2. Find three other areas where collaborative filtering is

being used, and identify the pros and cons of this

approach in those areas.

3. Complete this notebook using the full MovieLens

dataset, and compare your results to online

benchmarks. See if you can improve your accuracy.

Look on the book’s website and the fast.ai forums for

ideas. Note that there are more columns in the full

dataset—see if you can use those too (the next chapter

might give you ideas).

4. Create a model for MovieLens that works with cross-

entropy loss, and compare it to the model in this

chapter.

Chapter 9. Tabular Modeling Deep Dive

Tabular modeling takes data in the form of a table (like a spreadsheet or CSV).

The objective is to predict the value in one column based on the values in the

other columns. In this chapter, we will look at not only deep learning, but also

more general machine learning techniques like random forests, as they can

give better results depending on your problem.

We will look at how we should preprocess and clean the data as well as how to

interpret the result of our models after training, but first we will see how we

can feed columns that contain categories into a model that expects numbers

by using embeddings.

Categorical Embeddings

In tabular data, some columns may contain numerical data, like “age,” while

others contain string values, like “sex.” The numerical data can be directly fed

to the model (with some optional preprocessing), but the other columns need

to be converted to numbers. Since the values in those correspond to different

categories, we often call this type of variables categorical variables. The first

type are called continuous variables.

JARGON: CONTINUOUS AND CATEGORICAL VARIABLES
Continuous variables are numerical data, such as “age,” that can be directly fed to the model,

since you can add and multiply them directly. Categorical variables contain a number of

discrete levels, such as “movie ID,” for which addition and multiplication don’t have

meaning (even if they’re stored as numbers).

At the end of 2015, the Rossmann sales competition ran on Kaggle.

Competitors were given a wide range of information about various stores in

Germany, and were tasked with trying to predict sales on a number of days.

The goal was to help the company manage stock properly and be able to

satisfy demand without holding unnecessary inventory. The official training

set provided a lot of information about the stores. It was also permitted for

competitors to use additional data, as long as that data was made public and

available to all participants.

One of the gold medalists used deep learning, in one of the earliest known

examples of a state-of-the-art deep learning tabular model. Their method

involved far less feature engineering, based on domain knowledge, than those

of the other gold medalists. The paper “Entity Embeddings of Categorical

Variables” describes their approach. In an online-only chapter on the book’s

website, we show how to replicate it from scratch and attain the same

accuracy shown in the paper. In the abstract of the paper, the authors (Cheng

Guo and Felix Bekhahn) say:

Entity embedding not only reduces memory usage and speeds up neural

networks compared with one-hot encoding, but more importantly by

mapping similar values close to each other in the embedding space it

reveals the intrinsic properties of the categorical variables…[It] is

especially useful for datasets with lots of high cardinality features, where

other methods tend to overfit…As entity embedding defines a distance

measure for categorical variables, it can be used for visualizing

categorical data and for data clustering.

We have already noticed all of these points when we built our collaborative

filtering model. We can clearly see that these insights go far beyond just

collaborative filtering, however.

The paper also points out that (as we discussed in the preceding chapter) an

embedding layer is exactly equivalent to placing an ordinary linear layer after

every one-hot-encoded input layer. The authors used the diagram in Figure 9-

https://oreil.ly/U85_1
https://oreil.ly/VmgoU
https://book.fast.ai/

1 to show this equivalence. Note that “dense layer” is a term with the same

meaning as “linear layer,” and the one-hot encoding layers represent inputs.

The insight is important because we already know how to train linear layers,

so this shows that from the point of view of the architecture and our training

algorithm, the embedding layer is just another layer. We also saw this in

practice in the preceding chapter, when we built a collaborative filtering

neural network that looks exactly like this diagram.

Just as we analyzed the embedding weights for movie reviews, the authors of

the entity embeddings paper analyzed the embedding weights for their sales

prediction model. What they found was quite amazing, and illustrates their

second key insight: the embedding transforms the categorical variables into

inputs that are both continuous and meaningful.

Figure 9-1. Entity embeddings in a neural network (courtesy of Cheng Guo and Felix Berkhahn)

The images in Figure 9-2 illustrate these ideas. They are based on the

approaches used in the paper, along with some analysis we have added.

Figure 9-2. State embeddings and map (courtesy of Cheng Guo and Felix Berkhahn)

On the left is a plot of the embedding matrix for the possible values of the

State category. For a categorical variable, we call the possible values of the

variable its “levels” (or “categories” or “classes”), so here one level is “Berlin,”

another is “Hamburg,” etc. On the right is a map of Germany. The actual

physical locations of the German states were not part of the provided data, yet

the model itself learned where they must be, based only on the behavior of

store sales!

Do you remember how we talked about distance between embeddings? The

authors of the paper plotted the distance between store embeddings against

the actual geographic distance between the stores (see Figure 9-3). They

found that they matched very closely!

Figure 9-3. Store distances (courtesy of Cheng Guo and Felix Berkhahn)

We’ve even tried plotting the embeddings for days of the week and months of

the year, and found that days and months that are near each other on the

calendar ended up close as embeddings too, as shown in Figure 9-4.

What stands out in these two examples is that we provide the model

fundamentally categorical data about discrete entities (e.g., German states or

days of the week), and then the model learns an embedding for these entities

that defines a continuous notion of distance between them. Because the

embedding distance was learned based on real patterns in the data, that

distance tends to match up with our intuitions.

Figure 9-4. Date embeddings (courtesy of Cheng Guo and Felix Berkhahn)

In addition, it is valuable in its own right that embeddings are continuous,

because models are better at understanding continuous variables. This is

unsurprising considering models are built of many continuous parameter

weights and continuous activation values, which are updated via gradient

descent (a learning algorithm for finding the minimums of continuous

functions).

Another benefit is that we can combine our continuous embedding values

with truly continuous input data in a straightforward manner: we just

concatenate the variables and feed the concatenation into our first dense

layer. In other words, the raw categorical data is transformed by an

embedding layer before it interacts with the raw continuous input data. This is

how fastai and Guo and Berkhahn handle tabular models containing

continuous and categorical variables.

An example using this concatenation approach is how Google does its

recommendations on Google Play, as explained in the paper “Wide & Deep

Learning for Recommender Systems”. Figure 9-5 illustrates this.

Interestingly, the Google team combined both approaches we saw in the

previous chapter: the dot product (which they call cross product) and neural

network approaches.

https://oreil.ly/wsnvQ

Figure 9-5. The Google Play recommendation system

Let’s pause for a moment. So far, the solution to all of our modeling problems

has been to train a deep learning model. And indeed, that is a pretty good

rule of thumb for complex unstructured data like images, sounds, natural

language text, and so forth. Deep learning also works very well for

collaborative filtering. But it is not always the best starting point for analyzing

tabular data.

Beyond Deep Learning

Most machine learning courses will throw dozens of algorithms at you, with a

brief technical description of the math behind them and maybe a toy example.

You’re left confused by the enormous range of techniques shown and have

little practical understanding of how to apply them.

The good news is that modern machine learning can be distilled down to a

couple of key techniques that are widely applicable. Recent studies have

shown that the vast majority of datasets can be best modeled with just two

methods:

Ensembles of decision trees (i.e., random forests and gradient

boosting machines), mainly for structured data (such as you might

find in a database table at most companies)

Multilayered neural networks learned with SGD (i.e., shallow and/or

deep learning), mainly for unstructured data (such as audio, images,

and natural language)

Although deep learning is nearly always clearly superior for unstructured

data, these two approaches tend to give quite similar results for many kinds of

structured data. But ensembles of decision trees tend to train faster, are often

easier to interpret, do not require special GPU hardware for inference at scale,

and often require less hyperparameter tuning. They have also been popular

for quite a lot longer than deep learning, so there is a more mature ecosystem

of tooling and documentation around them.

Most importantly, the critical step of interpreting a model of tabular data is

significantly easier for decision tree ensembles. There are tools and methods

for answering the pertinent questions, like these: Which columns in the

dataset were the most important for your predictions? How are they related to

the dependent variable? How do they interact with each other? And which

particular features were most important for some particular observation?

Therefore, ensembles of decision trees are our first approach for analyzing a

new tabular dataset.

The exception to this guideline is when the dataset meets one of these

conditions:

There are some high-cardinality categorical variables that are very

important (“cardinality” refers to the number of discrete levels

representing categories, so a high-cardinality categorical variable is

something like a zip code, which can take on thousands of possible

levels).

There are some columns that contain data that would be best

understood with a neural network, such as plain text data.

In practice, when we deal with datasets that meet these exceptional

conditions, we always try both decision tree ensembles and deep learning to

see which works best. Deep learning will likely be a useful approach in our

example of collaborative filtering, as we have at least two high-cardinality

categorical variables: the users and the movies. But in practice, things tend to

be less cut-and-dried, and there will often be a mixture of high- and low-

cardinality categorical variables and continuous variables.

Either way, it’s clear that we are going to need to add decision tree ensembles

to our modeling toolbox!

Up to now, we’ve used PyTorch and fastai for pretty much all of our heavy

lifting. But these libraries are mainly designed for algorithms that do lots of

matrix multiplication and derivatives (that is, stuff like deep learning!).

Decision trees don’t depend on these operations at all, so PyTorch isn’t much

use.

Instead, we will be largely relying on a library called scikit-learn (also known

as sklearn). Scikit-learn is a popular library for creating machine learning

models, using approaches that are not covered by deep learning. In addition,

we’ll need to do some tabular data processing and querying, so we’ll want to

use the Pandas library. Finally, we’ll also need NumPy, since that’s the main

numeric programming library that both sklearn and Pandas rely on.

We don’t have time to do a deep dive into all these libraries in this book, so

we’ll just be touching on some of the main parts of each. For a far more in-

depth discussion, we strongly suggest Wes McKinney’s Python for Data

Analysis (O’Reilly). McKinney is the creator of Pandas, so you can be sure

that the information is accurate!

First, let’s gather the data we will use.

The Dataset

http://shop.oreilly.com/product/0636920050896.do

The dataset we use in this chapter is from the Blue Book for Bulldozers Kaggle

competition, which has the following description: “The goal of the contest is to

predict the sale price of a particular piece of heavy equipment at auction

based on its usage, equipment type, and configuration. The data is sourced

from auction result postings and includes information on usage and

equipment configurations.”

This is a very common type of dataset and prediction problem, similar to what

you may see in your project or workplace. The dataset is available for

download on Kaggle, a website that hosts data science competitions.

Kaggle Competitions

Kaggle is an awesome resource for aspiring data scientists or anyone looking

to improve their machine learning skills. There is nothing like getting hands-

on practice and receiving real-time feedback to help you improve your skills.

Kaggle provides the following:

Interesting datasets

Feedback on how you’re doing

A leaderboard to see what’s good, what’s possible, and what’s state-of-

the-art

Blog posts by winning contestants sharing useful tips and techniques

Until now, all our datasets have been available to download through fastai’s

integrated dataset system. However, the dataset we will be using in this

chapter is available only from Kaggle. Therefore, you will need to register on

the site, then go to the page for the competition. On that page click Rules, and

then I Understand and Accept. (Although the competition has finished, and

you will not be entering it, you still have to agree to the rules to be allowed to

download the data.)

https://oreil.ly/B9wfd

The easiest way to download Kaggle datasets is to use the Kaggle API. You can

install this by using pip and running this in a notebook cell:

!pip install kaggle

You need an API key to use the Kaggle API; to get one, click your profile

picture on the Kaggle website and choose My Account; then click Create New

API Token. This will save a file called kaggle.json to your PC. You need to

copy this key on your GPU server. To do so, open the file you downloaded,

copy the contents, and paste them inside the single quotes in the following cell

in the notebook associated with this chapter (e.g., creds =

'{"username":"xxx","key":"xxx"}'):

creds = ''

Then execute this cell (this needs to be run only once):

cred_path = Path('~/.kaggle/kaggle.json').expanduser()
if not cred_path.exists():
 cred_path.parent.mkdir(exist_ok=True)
 cred_path.write(creds)
 cred_path.chmod(0o600)

Now you can download datasets from Kaggle! Pick a path to download the

dataset to:

path = URLs.path('bluebook')
path

Path('/home/sgugger/.fastai/archive/bluebook')

And use the Kaggle API to download the dataset to that path and extract it:

if not path.exists():
 path.mkdir()
 api.competition_download_cli('bluebook-for-bulldozers', path=path)
 file_extract(path/'bluebook-for-bulldozers.zip')

path.ls(file_type='text')

(#7)
[Path('Valid.csv'),Path('Machine_Appendix.csv'),Path('ValidSolution.csv'),P

 >
ath('TrainAndValid.csv'),Path('random_forest_benchmark_test.csv'),Path('Test.

 > csv'),Path('median_benchmark.csv')]

Now that we have downloaded our dataset, let’s take a look at it!

Look at the Data

Kaggle provides information about some of the fields of our dataset. The Data

page explains that the key fields in train.csv are as follows:

SalesID

The unique identifier of the sale.

MachineID

The unique identifier of a machine. A machine can be sold multiple

times.

saleprice

What the machine sold for at auction (provided only in train.csv).

saledate

The date of the sale.

https://oreil.ly/oSrBi

In any sort of data science work, it’s important to look at your data directly to

make sure you understand the format, how it’s stored, what types of values it

holds, etc. Even if you’ve read a description of the data, the actual data may

not be what you expect. We’ll start by reading the training set into a Pandas

DataFrame. Generally, it’s a good idea to also specify low_memory=False

unless Pandas actually runs out of memory and returns an error. The

low_memory parameter, which is True by default, tells Pandas to look at only a

few rows of data at a time to figure out what type of data is in each column.

This means that Pandas can end up using different data types for different

rows, which generally leads to data processing errors or model training

problems later.

Let’s load our data and have a look at the columns:

df = pd.read_csv(path/'TrainAndValid.csv', low_memory=False)

df.columns

Index(['SalesID', 'SalePrice', 'MachineID', 'ModelID', 'datasource',
 'auctioneerID', 'YearMade', 'MachineHoursCurrentMeter',
'UsageBand',
 'saledate', 'fiModelDesc', 'fiBaseModel', 'fiSecondaryDesc',
 'fiModelSeries', 'fiModelDescriptor', 'ProductSize',
 'fiProductClassDesc', 'state', 'ProductGroup',
'ProductGroupDesc',
 'Drive_System', 'Enclosure', 'Forks', 'Pad_Type',
'Ride_Control',
 'Stick', 'Transmission', 'Turbocharged', 'Blade_Extension',
 'Blade_Width', 'Enclosure_Type', 'Engine_Horsepower',
'Hydraulics',
 'Pushblock', 'Ripper', 'Scarifier', 'Tip_Control',
'Tire_Size',
 'Coupler', 'Coupler_System', 'Grouser_Tracks',
'Hydraulics_Flow',
 'Track_Type', 'Undercarriage_Pad_Width', 'Stick_Length',
'Thumb',
 'Pattern_Changer', 'Grouser_Type', 'Backhoe_Mounting',
'Blade_Type',

 'Travel_Controls', 'Differential_Type', 'Steering_Controls'],
 dtype='object')

That’s a lot of columns for us to look at! Try looking through the dataset to get

a sense of what kind of information is in each one. We’ll shortly see how to

“zero in” on the most interesting bits.

At this point, a good next step is to handle ordinal columns. This refers to

columns containing strings or similar, but where those strings have a natural

ordering. For instance, here are the levels of ProductSize:

df['ProductSize'].unique()

array([nan, 'Medium', 'Small', 'Large / Medium', 'Mini', 'Large',
'Compact'],
 > dtype=object)

We can tell Pandas about a suitable ordering of these levels like so:

sizes = 'Large','Large / Medium','Medium','Small','Mini','Compact'

df['ProductSize'] = df['ProductSize'].astype('category')
df['ProductSize'].cat.set_categories(sizes, ordered=True, inplace=True)

The most important data column is the dependent variable—the one we want

to predict. Recall that a model’s metric is a function that reflects how good the

predictions are. It’s important to note what metric is being used for a project.

Generally, selecting the metric is an important part of the project setup. In

many cases, choosing a good metric will require more than just selecting a

variable that already exists. It is more like a design process. You should think

carefully about which metric, or set of metric, actually measures the notion of

model quality that matters to you. If no variable represents that metric, you

should see if you can build the metric from the variables that are available.

However, in this case, Kaggle tells us what metric to use: the root mean

squared log error (RMLSE) between the actual and predicted auction prices.

We need do only a small amount of processing to use this: we take the log of

the prices, so that the m_rmse of that value will give us what we ultimately

need:

dep_var = 'SalePrice'

df[dep_var] = np.log(df[dep_var])

We are now ready to explore our first machine learning algorithm for tabular

data: decision trees.

Decision Trees

Decision tree ensembles, as the name suggests, rely on decision trees. So let’s

start there! A decision tree asks a series of binary (yes or no) questions about

the data. After each question, the data at that part of the tree is split between a

Yes and a No branch, as shown in Figure 9-6. After one or more questions,

either a prediction can be made on the basis of all previous answers or

another question is required.

This sequence of questions is now a procedure for taking any data item,

whether an item from the training set or a new one, and assigning that item to

a group. Namely, after asking and answering the questions, we can say the

item belongs to the same group as all the other training data items that

yielded the same set of answers to the questions. But what good is this? The

goal of our model is to predict values for items, not to assign them into groups

from the training dataset. The value is that we can now assign a prediction

value for each of these groups—for regression, we take the target mean of the

items in the group.

Figure 9-6. An example of decision tree

Let’s consider how we find the right questions to ask. Of course, we wouldn’t

want to have to create all these questions ourselves—that’s what computers

are for! The basic steps to train a decision tree can be written down very

easily:

1. Loop through each column of the dataset in turn.

2. For each column, loop through each possible level of that column in

turn.

3. Try splitting the data into two groups, based on whether they are

greater than or less than that value (or if it is a categorical variable,

based on whether they are equal to or not equal to that level of that

categorical variable).

4. Find the average sale price for each of those two groups, and see how

close that is to the actual sale price of each of the items of equipment

in that group. Treat this as a very simple “model” in which our

predictions are simply the average sale price of the item’s group.

5. After looping through all of the columns and all the possible levels for

each, pick the split point that gave the best predictions using that

simple model.

6. We now have two groups for our data, based on this selected split.

Treat each group as a separate dataset, and find the best split for each

by going back to step 1 for each group.

7. Continue this process recursively, until you have reached some

stopping criterion for each group—for instance, stop splitting a group

further when it has only 20 items in it.

Although this is an easy enough algorithm to implement yourself (and it is a

good exercise to do so), we can save some time by using the implementation

built into sklearn.

First, however, we need to do a little data preparation.

ALEXIS SAYS
Here’s a productive question to ponder. If you consider that the procedure for defining a

decision tree essentially chooses one sequence of splitting questions about variables, you

might ask yourself, how do we know this procedure chooses the correct sequence? The rule

is to choose the splitting question that produces the best split (i.e., that most accurately

separates the items into two distinct categories), and then to apply the same rule to the

groups that split produces, and so on. This is known in computer science as a “greedy”

approach. Can you imagine a scenario in which asking a “less powerful” splitting question

would enable a better split down the road (or should I say down the trunk!) and lead to a

better result overall?

Handling Dates

The first piece of data preparation we need to do is to enrich our

representation of dates. The fundamental basis of the decision tree that we

just described is bisection—dividing a group into two. We look at the ordinal

variables and divide the dataset based on whether the variable’s value is

greater (or lower) than a threshold, and we look at the categorical variables

and divide the dataset based on whether the variable’s level is a particular

level. So this algorithm has a way of dividing the dataset based on both

ordinal and categorical data.

But how does this apply to a common data type, the date? You might want to

treat a date as an ordinal value, because it is meaningful to say that one date is

greater than another. However, dates are a bit different from most ordinal

values in that some dates are qualitatively different from others in a way that

that is often relevant to the systems we are modeling.

To help our algorithm handle dates intelligently, we’d like our model to know

more than whether a date is more recent or less recent than another. We

might want our model to make decisions based on that date’s day of the week,

on whether a day is a holiday, on what month it is in, and so forth. To do this,

we replace every date column with a set of date metadata columns, such as

holiday, day of week, and month. These columns provide categorical data that

we suspect will be useful.

fastai comes with a function that will do this for us—we just have to pass a

column name that contains dates:

df = add_datepart(df, 'saledate')

Let’s do the same for the test set while we’re there:

df_test = pd.read_csv(path/'Test.csv', low_memory=False)
df_test = add_datepart(df_test, 'saledate')

We can see that there are now lots of new columns in our DataFrame:

' '.join(o for o in df.columns if o.startswith('sale'))

'saleYear saleMonth saleWeek saleDay saleDayofweek saleDayofyear
 > saleIs_month_end saleIs_month_start saleIs_quarter_end
saleIs_quarter_start
 > saleIs_year_end saleIs_year_start saleElapsed'

This is a good first step, but we will need to do a bit more cleaning. For this,

we will use fastai objects called TabularPandas and TabularProc.

Using TabularPandas and TabularProc

A second piece of preparatory processing is to be sure we can handle strings

and missing data. Out of the box, sklearn cannot do either. Instead we will use

fastai’s class TabularPandas, which wraps a Pandas DataFrame and provides a

few conveniences. To populate a TabularPandas, we will use two

TabularProcs, Categorify and FillMissing. A TabularProc is like a regular

Transform, except for the following:

It returns the exact same object that’s passed to it, after modifying the

object in place.

It runs the transform once, when data is first passed in, rather than

lazily as the data is accessed.

Categorify is a TabularProc that replaces a column with a numeric

categorical column. FillMissing is a TabularProc that replaces missing values

with the median of the column, and creates a new Boolean column that is set

to True for any row where the value was missing. These two transforms are

needed for nearly every tabular dataset you will use, so this is a good starting

point for your data processing:

procs = [Categorify, FillMissing]

TabularPandas will also handle splitting the dataset into training and

validation sets for us. However, we need to be very careful about our

validation set. We want to design it so that it is like the test set Kaggle will use

to judge the contest.

Recall the distinction between a validation set and a test set, as discussed in

Chapter 1. A validation set is data we hold back from training in order to

ensure that the training process does not overfit on the training data. A test

set is data that is held back even more deeply, from us ourselves, in order to

ensure that we don’t overfit on the validation data as we explore various

model architectures and hyperparameters.

We don’t get to see the test set. But we do want to define our validation data

so that it has the same sort of relationship to the training data as the test set

will have.

In some cases, just randomly choosing a subset of your data points will do

that. This is not one of those cases, because it is a time series.

If you look at the date range represented in the test set, you will discover that

it covers a six-month period from May 2012, which is later in time than any

date in the training set. This is a good design, because the competition

sponsor will want to ensure that a model is able to predict the future. But it

means that if we are going to have a useful validation set, we also want the

validation set to be later in time than the training set. The Kaggle training

data ends in April 2012, so we will define a narrower training dataset that

consists only of the Kaggle training data from before November 2011, and

we’ll define a validation set consisting of data from after November 2011.

To do this we use np.where, a useful function that returns (as the first element

of a tuple) the indices of all True values:

cond = (df.saleYear<2011) | (df.saleMonth<10)
train_idx = np.where(cond)[0]
valid_idx = np.where(~cond)[0]

splits = (list(train_idx),list(valid_idx))

TabularPandas needs to be told which columns are continuous and which are

categorical. We can handle that automatically using the helper function

cont_cat_split:

cont,cat = cont_cat_split(df, 1, dep_var=dep_var)

to = TabularPandas(df, procs, cat, cont, y_names=dep_var, splits=splits)

A TabularPandas behaves a lot like a fastai Datasets object, including

providing train and valid attributes:

len(to.train),len(to.valid)

(404710, 7988)

We can see that the data is still displayed as strings for categories (we show

only a few columns here because the full table is too big to fit on a page):

to.show(3)

state ProductGroup Drive_System Enclosure SalePrice

0
Alabama WL #na# EROPS w AC 11.097410

1
North Carolina WL #na# EROPS w AC 10.950807

2
New York SSL #na# OROPS 9.210340

However, the underlying items are all numeric:

to.items.head(3)

state ProductGroup Drive_System Enclosure

0
1 6 0 3

1
33 6 0 3

2
32 3 0 6

The conversion of categorical columns to numbers is done by simply replacing

each unique level with a number. The numbers associated with the levels are

chosen consecutively as they are seen in a column, so there’s no particular

meaning to the numbers in categorical columns after conversion. The

exception is if you first convert a column to a Pandas ordered category (as we

did for ProductSize earlier), in which case the ordering you chose is used. We

can see the mapping by looking at the classes attribute:

to.classes['ProductSize']

(#7) ['#na#','Large','Large /
Medium','Medium','Small','Mini','Compact']

Since it takes a minute or so to process the data to get to this point, we should

save it—that way, in the future, we can continue our work from here without

rerunning the previous steps. fastai provides a save method that uses Python’s

pickle system to save nearly any Python object:

(path/'to.pkl').save(to)

To read this back later, you would type this:

to = (path/'to.pkl').load()

Now that all this preprocessing is done, we are ready to create a decision tree.

Creating the Decision Tree

To begin, we define our independent and dependent variables:

xs,y = to.train.xs,to.train.y
valid_xs,valid_y = to.valid.xs,to.valid.y

Now that our data is all numeric, and there are no missing values, we can

create a decision tree:

m = DecisionTreeRegressor(max_leaf_nodes=4)
m.fit(xs, y);

To keep it simple, we’ve told sklearn to create just four leaf nodes. To see what

it’s learned, we can display the tree:

draw_tree(m, xs, size=7, leaves_parallel=True, precision=2)

Understanding this picture is one of the best ways to understand decision

trees, so we will start at the top and explain each part step by step.

The top node represents the initial model before any splits have been done,

when all the data is in one group. This is the simplest possible model. It is the

result of asking zero questions and will always predict the value to be the

average value of the whole dataset. In this case, we can see it predicts a value

of 10.1 for the logarithm of the sales price. It gives a mean squared error of

0.48. The square root of this is 0.69. (Remember that unless you see m_rmse,

or a root mean squared error, the value you are looking at is before taking the

square root, so it is just the average of the square of the differences.) We can

also see that there are 404,710 auction records in this group—that is the total

size of our training set. The final piece of information shown here is the

decision criterion for the best split that was found, which is to split based on

the coupler_system column.

Moving down and to the left, this node shows us that there were 360,847

auction records for equipment where coupler_system was less than 0.5. The

average value of our dependent variable in this group is 10.21. Moving down

and to the right from the initial model takes us to the records where

coupler_system was greater than 0.5.

The bottom row contains our leaf nodes: the nodes with no answers coming

out of them, because there are no more questions to be answered. At the far

right of this row is the node containing records where coupler_system was

greater than 0.5. The average value is 9.21, so we can see the decision tree

algorithm did find a single binary decision that separated high-value from

low-value auction results. Asking only about coupler_system predicts an

average value of 9.21 versus 10.1.

Returning back to the top node after the first decision point, we can see that a

second binary decision split has been made, based on asking whether

YearMade is less than or equal to 1991.5. For the group where this is true

(remember, this is now following two binary decisions, based on

coupler_system and YearMade), the average value is 9.97, and there are

155,724 auction records in this group. For the group of auctions where this

decision is false, the average value is 10.4, and there are 205,123 records. So

again, we can see that the decision tree algorithm has successfully split our

more expensive auction records into two more groups that differ in value

significantly.

We can show the same information using Terence Parr’s powerful dtreeviz

library:

samp_idx = np.random.permutation(len(y))[:500]
dtreeviz(m, xs.iloc[samp_idx], y.iloc[samp_idx], xs.columns, dep_var,
 fontname='DejaVu Sans', scale=1.6, label_fontsize=10,
 orientation='LR')

https://oreil.ly/e9KrM

This shows a chart of the distribution of the data for each split point. We can

clearly see that there’s a problem with our YearMade data: there are bulldozers

made in the year 1000, apparently! Presumably, this is just a missing value

code (a value that doesn’t otherwise appear in the data and that is used as a

placeholder in cases where a value is missing). For modeling purposes, 1000

is fine, but as you can see, this outlier makes visualizing the values we are

interested in more difficult. So, let’s replace it with 1950:

xs.loc[xs['YearMade']<1900, 'YearMade'] = 1950
valid_xs.loc[valid_xs['YearMade']<1900, 'YearMade'] = 1950

That change makes the split much clearer in the tree visualization, even

although it doesn’t change the result of the model in any significant way. This

is a great example of how resilient decision trees are to data issues!

m = DecisionTreeRegressor(max_leaf_nodes=4).fit(xs, y)
dtreeviz(m, xs.iloc[samp_idx], y.iloc[samp_idx], xs.columns, dep_var,
 fontname='DejaVu Sans', scale=1.6, label_fontsize=10,
 orientation='LR')

Let’s now have the decision tree algorithm build a bigger tree. Here, we are

not passing in any stopping criteria such as max_leaf_nodes:

m = DecisionTreeRegressor()
m.fit(xs, y);

We’ll create a little function to check the root mean squared error of our

model (m_rmse), since that’s how the competition was judged:

def r_mse(pred,y): return round(math.sqrt(((pred-y)**2).mean()), 6)
def m_rmse(m, xs, y): return r_mse(m.predict(xs), y)

m_rmse(m, xs, y)

0.0

So, our model is perfect, right? Not so fast…remember, we really need to

check the validation set, to ensure we’re not overfitting:

m_rmse(m, valid_xs, valid_y)

0.337727

Oops—it looks like we might be overfitting pretty badly. Here’s why:

m.get_n_leaves(), len(xs)

(340909, 404710)

We have nearly as many leaf nodes as data points! That seems a little over-

enthusiastic. Indeed, sklearn’s default settings allow it to continue splitting

nodes until there is only one item in each leaf node. Let’s change the stopping

rule to tell sklearn to ensure every leaf node contains at least 25 auction

records:

m = DecisionTreeRegressor(min_samples_leaf=25)
m.fit(to.train.xs, to.train.y)
m_rmse(m, xs, y), m_rmse(m, valid_xs, valid_y)

(0.248562, 0.32368)

That looks much better. Let’s check the number of leaves again:

m.get_n_leaves()

12397

Much more reasonable!

ALEXIS SAYS
Here’s my intuition for an overfitting decision tree with more leaf nodes than data items.

Consider the game Twenty Questions. In that game, the chooser secretly imagines an object

(like, “our television set”), and the guesser gets to pose 20 yes or no questions to try to guess

what the object is (like “Is it bigger than a breadbox?”). The guesser is not trying to predict a

numerical value, but just to identify a particular object out of the set of all imaginable

objects. When your decision tree has more leaves than there are possible objects in your

domain, it is essentially a well-trained guesser. It has learned the sequence of questions

needed to identify a particular data item in the training set, and it is “predicting” only by

describing that item’s value. This is a way of memorizing the training set—i.e., of overfitting.

Building a decision tree is a good way to create a model of our data. It is very

flexible, since it can clearly handle nonlinear relationships and interactions

between variables. But we can see there is a fundamental compromise

between how well it generalizes (which we can achieve by creating small trees)

and how accurate it is on the training set (which we can achieve by using large

trees).

So how do we get the best of both worlds? We’ll show you right after we

handle an important missing detail: how to handle categorical variables.

Categorical Variables

In the previous chapter, when working with deep learning networks, we dealt

with categorical variables by one-hot encoding them and feeding them to an

embedding layer. The embedding layer helped the model to discover the

meaning of the different levels of these variables (the levels of a categorical

variable do not have an intrinsic meaning, unless we manually specify an

ordering using Pandas). In a decision tree, we don’t have embedding layers—

so how can these untreated categorical variables do anything useful in a

decision tree? For instance, how could something like a product code be used?

The short answer is: it just works! Think about a situation in which one

product code is far more expensive at auction than any other one. In that case,

any binary split will result in that one product code being in some group, and

that group will be more expensive than the other group. Therefore, our simple

decision tree building algorithm will choose that split. Later, during training,

the algorithm will be able to further split the subgroup that contains the

expensive product code, and over time, the tree will home in on that one

expensive product.

It is also possible to use one-hot encoding to replace a single categorical

variable with multiple one-hot-encoded columns, where each column

represents a possible level of the variable. Pandas has a get_dummies method

that does just that.

However, there is not really any evidence that such an approach improves the

end result. So, we generally avoid it where possible, because it does end up

making your dataset harder to work with. In 2019, this issue was explored in

the paper “Splitting on Categorical Predictors in Random Forests” by Marvin

Wright and Inke König:

The standard approach for nominal predictors is to consider all 2 − 1 2-

partitions of the k predictor categories. However, this exponential

relationship produces a large number of potential splits to be evaluated,

increasing computational complexity and restricting the possible number

of categories in most implementations. For binary classification and

regression, it was shown that ordering the predictor categories in each

split leads to exactly the same splits as the standard approach. This

reduces computational complexity because only k − 1 splits have to be

considered for a nominal predictor with k categories.

Now that you understand how decision trees work, it’s time for that best-of-

both-worlds solution: random forests.

Random Forests

In 1994, Berkeley professor Leo Breiman, one year after his retirement,

published a small technical report called “Bagging Predictors”, which turned

out to be one of the most influential ideas in modern machine learning. The

report began:

k − 1

https://oreil.ly/ojzKJ
https://oreil.ly/6gMuG

Bagging predictors is a method for generating multiple versions of a

predictor and using these to get an aggregated predictor. The aggregation

averages over the versions…The multiple versions are formed by making

bootstrap replicates of the learning set and using these as new learning

sets. Tests…show that bagging can give substantial gains in accuracy. The

vital element is the instability of the prediction method. If perturbing the

learning set can cause significant changes in the predictor constructed,

then bagging can improve accuracy.

Here is the procedure that Breiman is proposing:

1. Randomly choose a subset of the rows of your data (i.e., “bootstrap

replicates of your learning set”).

2. Train a model using this subset.

3. Save that model, and then return to step 1 a few times.

4. This will give you multiple trained models. To make a prediction,

predict using all of the models, and then take the average of each of

those model’s predictions.

This procedure is known as bagging. It is based on a deep and important

insight: although each of the models trained on a subset of data will make

more errors than a model trained on the full dataset, those errors will not be

correlated with each other. Different models will make different errors. The

average of those errors, therefore, is zero! So if we take the average of all of

the models’ predictions, we should end up with a prediction that gets closer

and closer to the correct answer, the more models we have. This is an

extraordinary result—it means that we can improve the accuracy of nearly any

kind of machine learning algorithm by training it multiple times, each time on

a different random subset of the data, and averaging its predictions.

In 2001, Breiman went on to demonstrate that this approach to building

models, when applied to decision tree building algorithms, was particularly

powerful. He went even further than just randomly choosing rows for each

model’s training, but also randomly selected from a subset of columns when

choosing each split in each decision tree. He called this method the random

forest. Today it is, perhaps, the most widely used and practically important

machine learning method.

In essence, a random forest is a model that averages the predictions of a large

number of decision trees, which are generated by randomly varying various

parameters that specify what data is used to train the tree and other tree

parameters. Bagging is a particular approach to ensembling, or combining the

results of multiple models together. To see how it works in practice, let’s get

started on creating our own random forest!

Creating a Random Forest

We can create a random forest just like we created a decision tree, except now

we are also specifying parameters that indicate how many trees should be in

the forest, how we should subset the data items (the rows), and how we

should subset the fields (the columns).

In the following function definition, n_estimators defines the number of trees

we want, max_samples defines how many rows to sample for training each

tree, and max_features defines how many columns to sample at each split

point (where 0.5 means “take half the total number of columns”). We can also

specify when to stop splitting the tree nodes, effectively limiting the depth of

the tree, by including the same min_samples_leaf parameter we used in the

preceding section. Finally, we pass n_jobs=-1 to tell sklearn to use all our

CPUs to build the trees in parallel. By creating a little function for this, we can

more quickly try variations in the rest of this chapter:

def rf(xs, y, n_estimators=40, max_samples=200_000,
 max_features=0.5, min_samples_leaf=5, **kwargs):
 return RandomForestRegressor(n_jobs=-1, n_estimators=n_estimators,
 max_samples=max_samples, max_features=max_features,
 min_samples_leaf=min_samples_leaf, oob_score=True).fit(xs, y)

m = rf(xs, y);

Our validation RMSE is now much improved over our last result produced by

the DecisionTreeRegressor, which made just one tree using all the available

data:

m_rmse(m, xs, y), m_rmse(m, valid_xs, valid_y)

(0.170896, 0.233502)

One of the most important properties of random forests is that they aren’t

very sensitive to the hyperparameter choices, such as max_features. You can

set n_estimators to as high a number as you have time to train—the more

trees you have, the more accurate the model will be. max_samples can often be

left at its default, unless you have over 200,000 data points, in which case

setting it to 200,000 will make it train faster with little impact on accuracy.

max_features=0.5 and min_samples_leaf=4 both tend to work well, although

sklearn’s defaults work well too.

The sklearn docs show an example of the effects of different max_features

choices, with increasing numbers of trees. In the plot, the blue plot line uses

the fewest features, and the green line uses the most (it uses all the features).

As you can see in Figure 9-7, the models with the lowest error result from

using a subset of features but with a larger number of trees.

https://oreil.ly/E0Och

Figure 9-7. Error based on max features and number of trees (source: https://oreil.ly/E0Och)

To see the impact of n_estimators, let’s get the predictions from each

individual tree in our forest (these are in the estimators_ attribute):

preds = np.stack([t.predict(valid_xs) for t in m.estimators_])

As you can see, preds.mean(0) gives the same results as our random forest:

r_mse(preds.mean(0), valid_y)

0.233502

Let’s see what happens to the RMSE as we add more and more trees. As you

can see, the improvement levels off quite a bit after around 30 trees:

plt.plot([r_mse(preds[:i+1].mean(0), valid_y) for i in range(40)]);

https://oreil.ly/E0Och

The performance on our validation set is worse than on our training set. But is

that because we’re overfitting, or because the validation set covers a different

time period, or a bit of both? With the existing information we’ve seen, we

can’t tell. However, random forests have a very clever trick called out-of-bag

(OOB) error that can help us with this (and more!).

Out-of-Bag Error

Recall that in a random forest, each tree is trained on a different subset of the

training data. The OOB error is a way of measuring prediction error in the

training dataset by including in the calculation of a row’s error trees only

where that row was not included in training. This allows us to see whether the

model is overfitting, without needing a separate validation set.

ALEXIS SAYS
My intuition for this is that, since every tree was trained with a different randomly selected

subset of rows, out-of-bag error is a little like imagining that every tree therefore also has its

own validation set. That validation set is simply the rows that were not selected for that

tree’s training.

This is particularly beneficial in cases where we have only a small amount of

training data, as it allows us to see whether our model generalizes without

removing items to create a validation set. The OOB predictions are available

in the oob_prediction_ attribute. Note that we compare them to the training

labels, since this is being calculated on trees using the training set:

r_mse(m.oob_prediction_, y)

0.210686

We can see that our OOB error is much lower than our validation set error.

This means that something else is causing that error, in addition to normal

generalization error. We’ll discuss the reasons for this later in this chapter.

This is one way to interpret our model’s predictions—let’s focus on more of

those now.

Model Interpretation

For tabular data, model interpretation is particularly important. For a given

model, we are most likely to be interested in are the following:

How confident are we in our predictions using a particular row of

data?

For predicting with a particular row of data, what were the most

important factors, and how did they influence that prediction?

Which columns are the strongest predictors, which can we ignore?

Which columns are effectively redundant with each other, for purposes

of prediction?

How do predictions vary as we vary these columns?

As we will see, random forests are particularly well suited to answering these

questions. Let’s start with the first one!

Tree Variance for Prediction Confidence

We saw how the model averages the individual tree’s predictions to get an

overall prediction—that is, an estimate of the value. But how can we know the

confidence of the estimate? One simple way is to use the standard deviation of

predictions across the trees, instead of just the mean. This tells us the relative

confidence of predictions. In general, we would want to be more cautious of

using the results for rows where trees give very different results (higher

standard deviations), compared to cases where they are more consistent

(lower standard deviations).

In “Creating a Random Forest”, we saw how to get predictions over the

validation set, using a Python list comprehension to do this for each tree in

the forest:

preds = np.stack([t.predict(valid_xs) for t in m.estimators_])

preds.shape

(40, 7988)

Now we have a prediction for every tree and every auction in the validation set

(40 trees and 7,988 auctions).

Using this, we can get the standard deviation of the predictions over all the

trees, for each auction:

preds_std = preds.std(0)

Here are the standard deviations for the predictions for the first five auctions

—that is, the first five rows of the validation set:

preds_std[:5]

array([0.21529149, 0.10351274, 0.08901878, 0.28374773, 0.11977206])

As you can see, the confidence in the predictions varies widely. For some

auctions, there is a low standard deviation because the trees agree. For others,

it’s higher, as the trees don’t agree. This is information that would be useful in

a production setting; for instance, if you were using this model to decide

which items to bid on at auction, a low-confidence prediction might cause you

to look more carefully at an item before you made a bid.

Feature Importance

It’s not normally enough to just to know that a model can make accurate

predictions—we also want to know how it’s making predictions. The feature

importances give us this insight. We can get these directly from sklearn’s

random forest by looking in the feature_importances_ attribute. Here’s a

simple function we can use to pop them into a DataFrame and sort them:

def rf_feat_importance(m, df):
 return pd.DataFrame({'cols':df.columns, 'imp':m.feature_importances_}
).sort_values('imp', ascending=False)

The feature importances for our model show that the first few most important

columns have much higher importance scores than the rest, with (not

surprisingly) YearMade and ProductSize being at the top of the list:

fi = rf_feat_importance(m, xs)
fi[:10]

cols imp

69
YearMade 0.182890

6
ProductSize 0.127268

30
Coupler_System 0.117698

7
fiProductClassDesc 0.069939

66
ModelID 0.057263

77
saleElapsed 0.050113

32
Hydraulics_Flow 0.047091

3
fiSecondaryDesc 0.041225

31
Grouser_Tracks 0.031988

1
fiModelDesc 0.031838

A plot of the feature importances shows the relative importances more clearly:

def plot_fi(fi):
 return fi.plot('cols', 'imp', 'barh', figsize=(12,7), legend=False)

plot_fi(fi[:30]);

The way these importances are calculated is quite simple yet elegant. The

feature importance algorithm loops through each tree, and then recursively

explores each branch. At each branch, it looks to see what feature was used for

that split, and how much the model improves as a result of that split. The

improvement (weighted by the number of rows in that group) is added to the

importance score for that feature. This is summed across all branches of all

trees, and finally the scores are normalized such that they add to 1.

Removing Low-Importance Variables

It seems likely that we could use a subset of the columns by removing the

variables of low importance and still get good results. Let’s try keeping just

those with a feature importance greater than 0.005:

to_keep = fi[fi.imp>0.005].cols
len(to_keep)

21

We can retrain our model using just this subset of the columns:

xs_imp = xs[to_keep]
valid_xs_imp = valid_xs[to_keep]

m = rf(xs_imp, y)

And here’s the result:

m_rmse(m, xs_imp, y), m_rmse(m, valid_xs_imp, valid_y)

(0.181208, 0.232323)

Our accuracy is about the same, but we have far fewer columns to study:

len(xs.columns), len(xs_imp.columns)

(78, 21)

We’ve found that generally the first step to improving a model is simplifying it

—78 columns was too many for us to study them all in depth! Furthermore, in

practice, often a simpler, more interpretable model is easier to roll out and

maintain.

This also makes our feature importance plot easier to interpret. Let’s look at it

again:

plot_fi(rf_feat_importance(m, xs_imp));

One thing that makes this harder to interpret is that there seem to be some

variables with very similar meanings: for example, ProductGroup and

ProductGroupDesc. Let’s try to remove any redundant features.

Removing Redundant Features

Let’s start with this:

cluster_columns(xs_imp)

In this chart, the pairs of columns that are most similar are the ones that were

merged together early, far from the “root” of the tree at the left.

Unsurprisingly, the fields ProductGroup and ProductGroupDesc were merged

quite early, as were saleYear and saleElapsed, and fiModelDesc and

fiBaseModel. These might be so closely correlated they are practically

synonyms for each other.

DETERMINING SIMILARITY
The most similar pairs are found by calculating the rank correlation, which means that all

the values are replaced with their rank (first, second, third, etc. within the column), and

then the correlation is calculated. (Feel free to skip over this minor detail though, since it’s

not going to come up again in the book!)

Let’s try removing some of these closely related features to see if the model

can be simplified without impacting the accuracy. First, we create a function

that quickly trains a random forest and returns the OOB score, by using a

lower max_samples and higher min_samples_leaf. The OOB score is a number

returned by sklearn that ranges between 1.0 for a perfect model and 0.0 for a

random model. (In statistics it’s called R , although the details aren’t

important for this explanation.) We don’t need it to be very accurate—we’re

just going to use it to compare different models, based on removing some of

the possibly redundant columns:

def get_oob(df):
 m = RandomForestRegressor(n_estimators=40, min_samples_leaf=15,
 max_samples=50000, max_features=0.5, n_jobs=-1, oob_score=True)
 m.fit(df, y)
 return m.oob_score_

Here’s our baseline:

get_oob(xs_imp)

2

0.8771039618198545

Now we try removing each of our potentially redundant variables, one at a

time:

{c:get_oob(xs_imp.drop(c, axis=1)) for c in (
 'saleYear', 'saleElapsed', 'ProductGroupDesc','ProductGroup',
 'fiModelDesc', 'fiBaseModel',
 'Hydraulics_Flow','Grouser_Tracks', 'Coupler_System')}

{'saleYear': 0.8759666979317242,
 'saleElapsed': 0.8728423449081594,
 'ProductGroupDesc': 0.877877012281002,
 'ProductGroup': 0.8772503407182847,
 'fiModelDesc': 0.8756415073829513,
 'fiBaseModel': 0.8765165299438019,
 'Hydraulics_Flow': 0.8778545895742573,
 'Grouser_Tracks': 0.8773718142788077,
 'Coupler_System': 0.8778016988955392}

Now let’s try dropping multiple variables. We’ll drop one from each of the

tightly aligned pairs we noticed earlier. Let’s see what that does:

to_drop = ['saleYear', 'ProductGroupDesc', 'fiBaseModel', 'Grouser_Tracks']
get_oob(xs_imp.drop(to_drop, axis=1))

0.8739605718147015

Looking good! This is really not much worse than the model with all the fields.

Let’s create DataFrames without these columns, and save them:

xs_final = xs_imp.drop(to_drop, axis=1)
valid_xs_final = valid_xs_imp.drop(to_drop, axis=1)

(path/'xs_final.pkl').save(xs_final)
(path/'valid_xs_final.pkl').save(valid_xs_final)

We can load them back later:

xs_final = (path/'xs_final.pkl').load()
valid_xs_final = (path/'valid_xs_final.pkl').load()

Now we can check our RMSE again, to confirm that the accuracy hasn’t

substantially changed:

m = rf(xs_final, y)
m_rmse(m, xs_final, y), m_rmse(m, valid_xs_final, valid_y)

(0.183263, 0.233846)

By focusing on the most important variables and removing some redundant

ones, we’ve greatly simplified our model. Now, let’s see how those variables

affect our predictions using partial dependence plots.

Partial Dependence

As we’ve seen, the two most important predictors are ProductSize and

YearMade. We’d like to understand the relationship between these predictors

and sale price. It’s a good idea to first check the count of values per category

(provided by the Pandas value_counts method), to see how common each

category is:

p = valid_xs_final['ProductSize'].value_counts(sort=False).plot.barh()
c = to.classes['ProductSize']
plt.yticks(range(len(c)), c);

The largest group is #na#, which is the label fastai applies to missing values.

Let’s do the same thing for YearMade. Since this is a numeric feature, we’ll

need to draw a histogram, which groups the year values into a few discrete

bins:

ax = valid_xs_final['YearMade'].hist()

Other than the special value 1950, which we used for coding missing year

values, most of the data is from after 1990.

Now we’re ready to look at partial dependence plots. Partial dependence plots

try to answer the question: if a row varied on nothing other than the feature in

question, how would it impact the dependent variable?

For instance, how does YearMade impact sale price, all other things being

equal? To answer this question, we can’t just take the average sale price for

each YearMade. The problem with that approach is that many other things vary

from year to year as well, such as which products are sold, how many products

have air-conditioning, inflation, and so forth. So, merely averaging over all the

auctions that have the same YearMade would also capture the effect of how

every other field also changed along with YearMade and how that overall

change affected price.

Instead, what we do is replace every single value in the YearMade column with

1950, and then calculate the predicted sale price for every auction, and take

the average over all auctions. Then we do the same for 1951, 1952, and so forth

until our final year of 2011. This isolates the effect of only YearMade (even if it

does so by averaging over some imagined records where we assign a YearMade

value that might never actually exist alongside some other values).

ALEXIS SAYS
If you are philosophically minded, it is somewhat dizzying to contemplate the different kinds

of hypotheticality that we are juggling to make this calculation. First, there’s the fact that

every prediction is hypothetical, because we are not noting empirical data. Second, there’s

the point that we’re not merely interested in asking how sale price would change if we

changed YearMade and everything else along with it. Rather, we’re very specifically asking

how sale price would change in a hypothetical world where only YearMade changed. Phew! It

is impressive that we can ask such questions. I recommend Judea Pearl and Dana

Mackenzie’s recent book on causality, The Book of Why (Basic Books), if you’re interested in

more deeply exploring formalisms for analyzing these subtleties.

With these averages, we can then plot each year on the x-axis, and each

prediction on the y-axis. This, finally, is a partial dependence plot. Let’s take a

look:

from sklearn.inspection import plot_partial_dependence

fig,ax = plt.subplots(figsize=(12, 4))
plot_partial_dependence(m, valid_xs_final, ['YearMade','ProductSize'],
 grid_resolution=20, ax=ax);

Looking first of all at the YearMade plot, and specifically at the section covering

the years after 1990 (since, as we noted, this is where we have the most data),

we can see a nearly linear relationship between year and price. Remember

that our dependent variable is after taking the logarithm, so this means that in

practice there is an exponential increase in price. This is what we would

expect: depreciation is generally recognized as being a multiplicative factor

over time, so for a given sale date, varying the year made ought to show an

exponential relationship with sale price.

The ProductSize partial plot is a bit concerning. It shows that the final group,

which we saw is for missing values, has the lowest price. To use this insight in

practice, we would want to find out why it’s missing so often and what that

means. Missing values can sometimes be useful predictors—it entirely

depends on what causes them to be missing. Sometimes, however, they can

indicate data leakage.

Data Leakage

In the paper “Leakage in Data Mining: Formulation, Detection, and

Avoidance”, Shachar Kaufman et al. describe leakage as follows:

https://oreil.ly/XwvYf

The introduction of information about the target of a data mining

problem, which should not be legitimately available to mine from. A trivial

example of leakage would be a model that uses the target itself as an input,

thus concluding for example that “it rains on rainy days.” In practice, the

introduction of this illegitimate information is unintentional, and

facilitated by the data collection, aggregation, and preparation process.

They give as an example:

A real-life business intelligence project at IBM where potential customers

for certain products were identified, among other things, based on

keywords found on their websites. This turned out to be leakage since the

website content used for training had been sampled at the point in time

where the potential customer has already become a customer, and where

the website contained traces of the IBM products purchased, such as the

word “Websphere” (e.g., in a press release about the purchase or a specific

product feature the client uses).

Data leakage is subtle and can take many forms. In particular, missing values

often represent data leakage.

For instance, Jeremy competed in a Kaggle competition designed to predict

which researchers would end up receiving research grants. The information

was provided by a university and included thousands of examples of research

projects, along with information about the researchers involved and data on

whether or not each grant was eventually accepted. The university hoped to be

able to use the models developed in this competition to rank which grant

applications were most likely to succeed, so it could prioritize its processing.

Jeremy used a random forest to model the data, and then used feature

importance to find out which features were most predictive. He noticed three

surprising things:

The model was able to correctly predict who would receive grants over

95% of the time.

Apparently meaningless identifier columns were the most important

predictors.

The day of week and day of year columns were also highly predictive;

for instance, the vast majority of grant applications dated on a Sunday

were accepted, and many accepted grant applications were dated on

January 1.

For the identifier columns, a partial dependence plot showed that when the

information was missing, the application was almost always rejected. It

turned out that in practice, the university filled out much of this information

only after a grant application was accepted. Often, for applications that were

not accepted, it was just left blank. Therefore, this information was not

something that was available at the time that the application was received,

and it would not be available for a predictive model—it was data leakage.

In the same way, the final processing of successful applications was often

done automatically as a batch at the end of the week, or the end of the year. It

was this final processing date that ended up in the data, so again, this

information, while predictive, was not actually available at the time that the

application was received.

This example showcases the most practical and simple approaches to

identifying data leakage, which are to build a model and then do the

following:

Check whether the accuracy of the model is too good to be true.

Look for important predictors that don’t make sense in practice.

Look for partial dependence plot results that don’t make sense in

practice.

Thinking back to our bear detector, this mirrors the advice that we provided

in Chapter 2—it is often a good idea to build a model first and then do your

data cleaning, rather than vice versa. The model can help you identify

potentially problematic data issues.

It can also help you identify which factors influence specific predictions, with

tree interpreters.

Tree Interpreter

At the start of this section, we said that we wanted to be able to answer five

questions:

How confident are we in our predictions using a particular row of

data?

For predicting with a particular row of data, what were the most

important factors, and how did they influence that prediction?

Which columns are the strongest predictors?

Which columns are effectively redundant with each other, for purposes

of prediction?

How do predictions vary as we vary these columns?

We’ve handled four of these already; only the second question remains. To

answer this question, we need to use the treeinterpreter library. We’ll also use

the waterfallcharts library to draw the chart of the results. You can install

these by running these commands in a notebook cell:

!pip install treeinterpreter
!pip install waterfallcharts

We have already seen how to compute feature importances across the entire

random forest. The basic idea was to look at the contribution of each variable

to improving the model, at each branch of every tree, and then add up all of

these contributions per variable.

We can do exactly the same thing, but for just a single row of data. For

instance, let’s say we are looking at a particular item at auction. Our model

might predict that this item will be very expensive, and we want to know why.

So, we take that one row of data and put it through the first decision tree,

looking to see what split is used at each point throughout the tree. For each

split, we find the increase or decrease in the addition, compared to the parent

node of the tree. We do this for every tree, and add up the total change in

importance by split variable.

For instance, let’s pick the first few rows of our validation set:

row = valid_xs_final.iloc[:5]

We can then pass these to treeinterpreter:

prediction,bias,contributions = treeinterpreter.predict(m, row.values)

prediction is simply the prediction that the random forest makes. bias is the

prediction based on taking the mean of the dependent variable (i.e., the model

that is the root of every tree). contributions is the most interesting bit—it

tells us the total change in prediction due to each of the independent

variables. Therefore, the sum of contributions plus bias must equal the

prediction, for each row. Let’s look at just the first row:

prediction[0], bias[0], contributions[0].sum()

(array([9.98234598]), 10.104309759725059, -0.12196378442186026)

The clearest way to display the contributions is with a waterfall plot. This

shows how the positive and negative contributions from all the independent

variables sum up to create the final prediction, which is the righthand column

labeled “net” here:

waterfall(valid_xs_final.columns, contributions[0], threshold=0.08,
 rotation_value=45,formatting='{:,.3f}');

This kind of information is most useful in production, rather than during

model development. You can use it to provide useful information to users of

your data product about the underlying reasoning behind the predictions.

Now that we covered some classic machine learning techniques to solve this

problem, let’s see how deep learning can help!

Extrapolation and Neural Networks

A problem with random forests, like all machine learning or deep learning

algorithms, is that they don’t always generalize well to new data. We’ll see in

which situations neural networks generalize better, but first, let’s look at the

extrapolation problem that random forests have and how they can help

identify out-of-domain data.

The Extrapolation Problem

Let’s consider the simple task of making predictions from 40 data points

showing a slightly noisy linear relationship:

x_lin = torch.linspace(0,20, steps=40)
y_lin = x_lin + torch.randn_like(x_lin)

plt.scatter(x_lin, y_lin);

Although we have only a single independent variable, sklearn expects a matrix

of independent variables, not a single vector. So we have to turn our vector

into a matrix with one column. In other words, we have to change the shape

from [40] to [40,1]. One way to do that is with the unsqueeze method, which

adds a new unit axis to a tensor at the requested dimension:

xs_lin = x_lin.unsqueeze(1)
x_lin.shape,xs_lin.shape

(torch.Size([40]), torch.Size([40, 1]))

A more flexible approach is to slice an array or tensor with the special value

None, which introduces an additional unit axis at that location:

x_lin[:,None].shape

torch.Size([40, 1])

We can now create a random forest for this data. We’ll use only the first 30

rows to train the model:

m_lin = RandomForestRegressor().fit(xs_lin[:30],y_lin[:30])

Then we’ll test the model on the full dataset. The blue dots are the training

data, and the red dots are the predictions:

plt.scatter(x_lin, y_lin, 20)
plt.scatter(x_lin, m_lin.predict(xs_lin), color='red', alpha=0.5);

We have a big problem! Our predictions outside the domain that our training

data covered are all too low. Why do you suppose this is?

Remember, a random forest just averages the predictions of a number of

trees. And a tree simply predicts the average value of the rows in a leaf.

Therefore, a tree and a random forest can never predict values outside the

range of the training data. This is particularly problematic for data indicating

a trend over time, such as inflation, and you wish to make predictions for a

future time. Your predictions will be systematically too low.

But the problem extends beyond time variables. Random forests are not able

to extrapolate outside the types of data they have seen, in a more general

sense. That’s why we need to make sure our validation set does not contain

out-of-domain data.

Finding Out-of-Domain Data

Sometimes it is hard to know whether your test set is distributed in the same

way as your training data, or, if it is different, which columns reflect that

difference. There’s an easy way to figure this out, which is to use a random

forest!

But in this case, we don’t use the random forest to predict our actual

dependent variable. Instead, we try to predict whether a row is in the

validation set or the training set. To see this in action, let’s combine our

training and validation sets, create a dependent variable that represents which

dataset each row comes from, build a random forest using that data, and get

its feature importance:

df_dom = pd.concat([xs_final, valid_xs_final])
is_valid = np.array([0]*len(xs_final) + [1]*len(valid_xs_final))

m = rf(df_dom, is_valid)
rf_feat_importance(m, df_dom)[:6]

cols imp

5
saleElapsed 0.859446

9
SalesID 0.119325

13
MachineID 0.014259

0
YearMade 0.001793

8
fiModelDesc 0.001740

11
Enclosure 0.000657

This shows that three columns differ significantly between the training and

validation sets: saleElapsed, SalesID, and MachineID. It’s fairly obvious why

this is the case for saleElapsed: it’s the number of days between the start of

the dataset and each row, so it directly encodes the date. The difference in

SalesID suggests that identifiers for auction sales might increment over time.

MachineID suggests something similar might be happening for individual

items sold in those auctions.

Let’s get a baseline of the original random forest model’s RMSE, and then

determine the effect of removing each of these columns in turn:

m = rf(xs_final, y)
print('orig', m_rmse(m, valid_xs_final, valid_y))

for c in ('SalesID','saleElapsed','MachineID'):
 m = rf(xs_final.drop(c,axis=1), y)
 print(c, m_rmse(m, valid_xs_final.drop(c,axis=1), valid_y))

orig 0.232795
SalesID 0.23109
saleElapsed 0.236221
MachineID 0.233492

It looks like we should be able to remove SalesID and MachineID without

losing any accuracy. Let’s check:

time_vars = ['SalesID','MachineID']
xs_final_time = xs_final.drop(time_vars, axis=1)
valid_xs_time = valid_xs_final.drop(time_vars, axis=1)

m = rf(xs_final_time, y)
m_rmse(m, valid_xs_time, valid_y)

0.231307

Removing these variables has slightly improved the model’s accuracy; but

more importantly, it should make it more resilient over time, and easier to

maintain and understand. We recommend that for all datasets, you try

building a model in which your dependent variable is is_valid, as we did

here. It can often uncover subtle domain shift issues that you may otherwise

miss.

One thing that might help in our case is to simply avoid using old data. Often,

old data shows relationships that just aren’t valid anymore. Let’s try just using

the most recent few years of the data:

xs['saleYear'].hist();

Here’s the result of training on this subset:

filt = xs['saleYear']>2004
xs_filt = xs_final_time[filt]
y_filt = y[filt]

m = rf(xs_filt, y_filt)
m_rmse(m, xs_filt, y_filt), m_rmse(m, valid_xs_time, valid_y)

(0.17768, 0.230631)

It’s a tiny bit better, which shows that you shouldn’t always use your entire

dataset; sometimes a subset can be better.

Let’s see if using a neural network helps.

Using a Neural Network

We can use the same approach to build a neural network model. Let’s first

replicate the steps we took to set up the TabularPandas object:

df_nn = pd.read_csv(path/'TrainAndValid.csv', low_memory=False)
df_nn['ProductSize'] = df_nn['ProductSize'].astype('category')
df_nn['ProductSize'].cat.set_categories(sizes, ordered=True, inplace=True)
df_nn[dep_var] = np.log(df_nn[dep_var])
df_nn = add_datepart(df_nn, 'saledate')

We can leverage the work we did to trim unwanted columns in the random

forest by using the same set of columns for our neural network:

df_nn_final = df_nn[list(xs_final_time.columns) + [dep_var]]

Categorical columns are handled very differently in neural networks,

compared to decision tree approaches. As we saw in Chapter 8, in a neutral

net, a great way to handle categorical variables is by using embeddings. To

create embeddings, fastai needs to determine which columns should be

treated as categorical variables. It does this by comparing the number of

distinct levels in the variable to the value of the max_card parameter. If it’s

lower, fastai will treat the variable as categorical. Embedding sizes larger than

10,000 should generally be used only after you’ve tested whether there are

better ways to group the variable, so we’ll use 9,000 as our max_card value:

cont_nn,cat_nn = cont_cat_split(df_nn_final, max_card=9000, dep_var=dep_var)

In this case, however, there’s one variable that we absolutely do not want to

treat as categorical: saleElapsed. A categorical variable cannot, by definition,

extrapolate outside the range of values that it has seen, but we want to be able

to predict auction sale prices in the future. Therefore, we need to make this a

continuous variable:

cont_nn.append('saleElapsed')
cat_nn.remove('saleElapsed')

Let’s take a look at the cardinality of each of the categorical variables that we

have chosen so far:

df_nn_final[cat_nn].nunique()

YearMade 73
ProductSize 6
Coupler_System 2
fiProductClassDesc 74
ModelID 5281
Hydraulics_Flow 3
fiSecondaryDesc 177
fiModelDesc 5059
ProductGroup 6
Enclosure 6
fiModelDescriptor 140
Drive_System 4
Hydraulics 12
Tire_Size 17
dtype: int64

The fact that there are two variables pertaining to the “model” of the

equipment, both with similar very high cardinalities, suggests that they may

contain similar, redundant information. Note that we would not necessarily

catch this when analyzing redundant features, since that relies on similar

variables being sorted in the same order (that is, they need to have similarly

named levels). Having a column with 5,000 levels means needing 5,000

columns in our embedding matrix, which would be nice to avoid if possible.

Let’s see what the impact of removing one of these model columns has on the

random forest:

xs_filt2 = xs_filt.drop('fiModelDescriptor', axis=1)
valid_xs_time2 = valid_xs_time.drop('fiModelDescriptor', axis=1)

m2 = rf(xs_filt2, y_filt)
m_rmse(m, xs_filt2, y_filt), m_rmse(m2, valid_xs_time2, valid_y)

(0.176706, 0.230642)

There’s minimal impact, so we will remove it as a predictor for our neural

network:

cat_nn.remove('fiModelDescriptor')

We can create our TabularPandas object in the same way as when we created

our random forest, with one very important addition: normalization. A

random forest does not need any normalization—the tree building procedure

cares only about the order of values in a variable, not at all about how they are

scaled. But as we have seen, a neural network definitely does care about this.

Therefore, we add the Normalize processor when we build our TabularPandas

object:

procs_nn = [Categorify, FillMissing, Normalize]
to_nn = TabularPandas(df_nn_final, procs_nn, cat_nn, cont_nn,
 splits=splits, y_names=dep_var)

Tabular models and data don’t generally require much GPU RAM, so we can

use larger batch sizes:

dls = to_nn.dataloaders(1024)

As we’ve discussed, it’s a good idea to set y_range for regression models, so

let’s find the min and max of our dependent variable:

y = to_nn.train.y
y.min(),y.max()

(8.465899897028686, 11.863582336583399)

We can now create the Learner to create this tabular model. As usual, we use

the application-specific learner function, to take advantage of its application-

customized defaults. We set the loss function to MSE, since that’s what this

competition uses.

By default, for tabular data fastai creates a neural network with two hidden

layers, with 200 and 100 activations, respectively. This works quite well for

small datasets, but here we’ve got quite a large dataset, so we increase the

layer sizes to 500 and 250:

from fastai.tabular.all import *

learn = tabular_learner(dls, y_range=(8,12), layers=[500,250],
 n_out=1, loss_func=F.mse_loss)

learn.lr_find()

(0.005754399299621582, 0.0002754228771664202)

There’s no need to use fine_tune, so we’ll train with fit_one_cycle for a few

epochs and see how it looks:

learn.fit_one_cycle(5, 1e-2)

epoch train_loss valid_loss time

0 0.069705 0.062389 00:11

1 0.056253 0.058489 00:11

2 0.048385 0.052256 00:11

3 0.043400 0.050743 00:11

4 0.040358 0.050986 00:11

We can use our r_mse function to compare the result to the random forest

result we got earlier:

preds,targs = learn.get_preds()
r_mse(preds,targs)

0.2258

It’s quite a bit better than the random forest (although it took longer to train,

and it’s fussier about hyperparameter tuning).

Before we move on, let’s save our model in case we want to come back to it

again later:

learn.save('nn')

FASTAI’S TABULAR CLASSES
In fastai, a tabular model is simply a model that takes columns of continuous or categorical data, and predicts
a category (a classification model) or a continuous value (a regression model). Categorical independent
variables are passed through an embedding and concatenated, as we saw in the neural net we used for
collaborative filtering, and then continuous variables are concatenated as well.

The model created in tabular_learner is an object of class TabularModel. Take a look at the source for
tabular_learner now (remember, that’s tabular_learner?? in Jupyter). You’ll see that like collab_learner, it
first calls get_emb_sz to calculate appropriate embedding sizes (you can override these by using the emb_szs
parameter, which is a dictionary containing any column names you want to set sizes for manually), and it sets
a few other defaults. Other than that, it creates the TabularModel and passes that to TabularLearner (note
that TabularLearner is identical to Learner, except for a customized predict method).

That means that really all the work is happening in TabularModel, so take a look at the source for that now.
With the exception of the BatchNorm1d and Dropout layers (which we’ll be learning about shortly), you now
have the knowledge required to understand this whole class. Take a look at the discussion of EmbeddingNN at
the end of the preceding chapter. Recall that it passed n_cont=0 to TabularModel. We now can see why that
was: because there are zero continuous variables (in fastai, the n_ prefix means “number of,” and cont is an
abbreviation for “continuous”).

Another thing that can help with generalization is to use several models and

average their predictions—a technique, as mentioned earlier, known as

ensembling.

Ensembling

Think back to the original reasoning behind why random forests work so well:

each tree has errors, but those errors are not correlated with each other, so the

average of those errors should tend toward zero once there are enough trees.

Similar reasoning could be used to consider averaging the predictions of

models trained using different algorithms.

In our case, we have two very different models, trained using very different

algorithms: a random forest and a neural network. It would be reasonable to

expect that the kinds of errors that each one makes would be quite different.

Therefore, we might expect that the average of their predictions would be

better than either one’s individual predictions.

As we saw earlier, a random forest is itself an ensemble. But we can then

include a random forest in another ensemble—an ensemble of the random

forest and the neural network! While ensembling won’t make the difference

between a successful and an unsuccessful modeling process, it can certainly

add a nice little boost to any models that you have built.

One minor issue we have to be aware of is that our PyTorch model and our

sklearn model create data of different types: PyTorch gives us a rank-2 tensor

(a column matrix), whereas NumPy gives us a rank-1 array (a vector). squeeze

removes any unit axes from a tensor, and to_np converts it into a NumPy

array:

rf_preds = m.predict(valid_xs_time)
ens_preds = (to_np(preds.squeeze()) + rf_preds) /2

This gives us a better result than either model achieved on its own:

r_mse(ens_preds,valid_y)

0.22291

In fact, this result is better than any score shown on the Kaggle leaderboard.

It’s not directly comparable, however, because the Kaggle leaderboard uses a

separate dataset that we do not have access to. Kaggle does not allow us to

submit to this old competition to find out how we would have done, but our

results certainly look encouraging!

Boosting

So far, our approach to ensembling has been to use bagging, which involves

combining many models (each trained on a different data subset) by

averaging them. As we saw, when this is applied to decision trees, this is called

a random forest.

In another important approach to ensembling, called boosting, where we add

models instead of averaging them. Here is how boosting works:

1. Train a small model that underfits your dataset.

2. Calculate the predictions in the training set for this model.

3. Subtract the predictions from the targets; these are called the

residuals and represent the error for each point in the training set.

4. Go back to step 1, but instead of using the original targets, use the

residuals as the targets for the training.

5. Continue doing this until you reach a stopping criterion, such as a

maximum number of trees, or you observe your validation set error

getting worse.

Using this approach, each new tree will be attempting to fit the error of all of

the previous trees combined. Because we are continually creating new

residuals by subtracting the predictions of each new tree from the residuals

from the previous tree, the residuals will get smaller and smaller.

To make predictions with an ensemble of boosted trees, we calculate the

predictions from each tree and then add them all together. There are many

models following this basic approach, and many names for the same models.

Gradient boosting machines (GBMs) and gradient boosted decision trees

(GBDTs) are the terms you’re most likely to come across, or you may see the

names of specific libraries implementing these; at the time of writing,

XGBoost is the most popular.

Note that, unlike with random forests, with this approach, there is nothing to

stop us from overfitting. Using more trees in a random forest does not lead to

overfitting, because each tree is independent of the others. But in a boosted

ensemble, the more trees you have, the better the training error becomes, and

eventually you will see overfitting on the validation set.

We are not going to go into detail on how to train a gradient boosted tree

ensemble here, because the field is moving rapidly, and any guidance we give

will almost certainly be outdated by the time you read this. As we write this,

sklearn has just added a HistGradientBoostingRegressor class that provides

excellent performance. There are many hyperparameters to tweak for this

class, and for all gradient boosted tree methods we have seen. Unlike random

forests, gradient boosted trees are extremely sensitive to the choices of these

hyperparameters; in practice, most people use a loop that tries a range of

hyperparameters to find the ones that work best.

One more technique that has gotten great results is to use embeddings

learned by a neural net in a machine learning model.

Combining Embeddings with Other Methods

The abstract of the entity embedding paper we mentioned at the start of this

chapter states: “The embeddings obtained from the trained neural network

boost the performance of all tested machine learning methods considerably

when used as the input features instead.” It includes the very interesting table

shown in Figure 9-8.

Figure 9-8. Effects of using neural network embeddings as input to other machine learning methods (courtesy of
Cheng Guo and Felix Berkhahn)

This is showing the mean average percent error (MAPE) compared among

four modeling techniques, three of which we have already seen, along with k-

nearest neighbors (KNN), which is a very simple baseline method. The first

numeric column contains the results of using the methods on the data

provided in the competition; the second column shows what happens if you

first train a neural network with categorical embeddings, and then use those

categorical embeddings instead of the raw categorical columns in the model.

As you see, in every case, the models are dramatically improved by using the

embeddings instead of the raw categories.

This is a really important result, because it shows that you can get much of the

performance improvement of a neural network without having to use a neural

network at inference time. You could just use an embedding, which is literally

just an array lookup, along with a small decision tree ensemble.

These embeddings need not even be necessarily learned separately for each

model or task in an organization. Instead, once a set of embeddings are

learned for a column for a particular task, they could be stored in a central

place and reused across multiple models. In fact, we know from private

communication with other practitioners at large companies that this is

already happening in many places.

Conclusion

We have discussed two approaches to tabular modeling: decision tree

ensembles and neural networks. We’ve also mentioned two decision tree

ensembles: random forests and gradient boosting machines. Each is effective

but also requires compromises:

Random forests are the easiest to train, because they are extremely

resilient to hyperparameter choices and require little preprocessing.

They are fast to train, and should not overfit if you have enough trees.

But they can be a little less accurate, especially if extrapolation is

required, such as predicting future time periods.

Gradient boosting machines in theory are just as fast to train as

random forests, but in practice you will have to try lots of

hyperparameters. They can overfit, but they are often a little more

accurate than random forests.

Neural networks take the longest time to train and require extra

preprocessing, such as normalization; this normalization needs to be

used at inference time as well. They can provide great results and

extrapolate well, but only if you are careful with your hyperparameters

and take care to avoid overfitting.

We suggest starting your analysis with a random forest. This will give you a

strong baseline, and you can be confident that it’s a reasonable starting point.

You can then use that model for feature selection and partial dependence

analysis, to get a better understanding of your data.

From that foundation, you can try neural nets and GBMs, and if they give you

significantly better results on your validation set in a reasonable amount of

time, you can use them. If decision tree ensembles are working well for you,

try adding the embeddings for the categorical variables to the data, and see if

that helps your decision trees learn better.

Questionnaire

1. What is a continuous variable?

2. What is a categorical variable?

3. Provide two of the words that are used for the possible values of a

categorical variable.

4. What is a dense layer?

5. How do entity embeddings reduce memory usage and speed up neural

networks?

6. What kinds of datasets are entity embeddings especially useful for?

7. What are the two main families of machine learning algorithms?

8. Why do some categorical columns need a special ordering in their

classes? How do you do this in Pandas?

9. Summarize what a decision tree algorithm does.

10. Why is a date different from a regular categorical or continuous

variable, and how can you preprocess it to allow it to be used in a

model?

11. Should you pick a random validation set in the bulldozer competition?

If no, what kind of validation set should you pick?

12. What is pickle and what is it useful for?

13. How are mse, samples, and values calculated in the decision tree

drawn in this chapter?

14. How do we deal with outliers before building a decision tree?

15. How do we handle categorical variables in a decision tree?

16. What is bagging?

17. What is the difference between max_samples and max_features when

creating a random forest?

18. If you increase n_estimators to a very high value, can that lead to

overfitting? Why or why not?

19. In the section “Creating a Random Forest”, after Figure 9-7, why did

preds.mean(0) give the same result as our random forest?

20. What is out-of-bag error?

21. List the reasons that a model’s validation set error might be worse

than the OOB error. How could you test your hypotheses?

22. Explain why random forests are well suited to answering each of the

following questions:

How confident are we in our predictions using a particular row

of data?

For predicting with a particular row of data, what were the

most important factors, and how did they influence that

prediction?

Which columns are the strongest predictors?

How do predictions vary as we vary these columns?

23. What’s the purpose of removing unimportant variables?

24. What’s a good type of plot for showing tree interpreter results?

25. What is the extrapolation problem?

26. How can you tell if your test or validation set is distributed in a

different way than your training set?

27. Why do we make saleElapsed a continuous variable, even though it

has fewer than 9,000 distinct values?

28. What is boosting?

29. How could we use embeddings with a random forest? Would we

expect this to help?

30. Why might we not always use a neural net for tabular modeling?

Further Research

1. Pick a competition on Kaggle with tabular data (current or past) and

try to adapt the techniques seen in this chapter to get the best possible

results. Compare your results to the private leaderboard.

2. Implement the decision tree algorithm in this chapter from scratch

yourself, and try it on the dataset you used in the first exercise.

3. Use the embeddings from the neural net in this chapter in a random

forest, and see if you can improve on the random forest results we saw.

4. Explain what each line of the source of TabularModel does (with the

exception of the BatchNorm1d and Dropout layers).

Chapter 10. NLP Deep Dive: RNNs

In Chapter 1, we saw that deep learning can be used to get great results with

natural language datasets. Our example relied on using a pretrained language

model and fine-tuning it to classify reviews. That example highlighted a

difference between transfer learning in NLP and computer vision: in general,

in NLP the pretrained model is trained on a different task.

What we call a language model is a model that has been trained to guess the

next word in a text (having read the ones before). This kind of task is called

self-supervised learning: we do not need to give labels to our model, just feed

it lots and lots of texts. It has a process to automatically get labels from the

data, and this task isn’t trivial: to properly guess the next word in a sentence,

the model will have to develop an understanding of the English (or other)

language. Self-supervised learning can also be used in other domains; for

instance, see “Self-Supervised Learning and Computer Vision” for an

introduction to vision applications. Self-supervised learning is not usually

used for the model that is trained directly, but instead is used for pretraining a

model used for transfer learning.

JARGON: SELF-SUPERVISED LEARNING
Training a model using labels that are embedded in the independent variable, rather than

requiring external labels. For instance, training a model to predict the next word in a text.

The language model we used in Chapter 1 to classify IMDb reviews was

pretrained on Wikipedia. We got great results by directly fine-tuning this

language model to a movie review classifier, but with one extra step, we can

do even better. The Wikipedia English is slightly different from the IMDb

English, so instead of jumping directly to the classifier, we could fine-tune our

https://oreil.ly/ECjfJ

pretrained language model to the IMDb corpus and then use that as the base

for our classifier.

Even if our language model knows the basics of the language we are using in

the task (e.g., our pretrained model is in English), it helps to get used to the

style of the corpus we are targeting. It may be more informal language, or

more technical, with new words to learn or different ways of composing

sentences. In the case of the IMDb dataset, there will be lots of names of

movie directors and actors, and often a less formal style of language than that

seen in Wikipedia.

We already saw that with fastai, we can download a pretrained English

language model and use it to get state-of-the-art results for NLP classification.

(We expect pretrained models in many more languages to be available soon;

they might well be available by the time you are reading this book, in fact.) So,

why are we learning how to train a language model in detail?

One reason, of course, is that it is helpful to understand the foundations of the

models that you are using. But there is another very practical reason, which is

that you get even better results if you fine-tune the (sequence-based) language

model prior to fine-tuning the classification model. For instance, for the

IMDb sentiment analysis task, the dataset includes 50,000 additional movie

reviews that do not have any positive or negative labels attached. Since there

are 25,000 labeled reviews in the training set and 25,000 in the validation set,

that makes 100,000 movie reviews altogether. We can use all of these reviews

to fine-tune the pretrained language model, which was trained only on

Wikipedia articles; this will result in a language model that is particularly

good at predicting the next word of a movie review.

This is known as the Universal Language Model Fine-tuning (ULMFiT)

approach. The paper introducing it showed that this extra stage of fine-tuning

the language model, prior to transfer learning to a classification task, resulted

in significantly better predictions. Using this approach, we have three stages

for transfer learning in NLP, as summarized in Figure 10-1.

https://oreil.ly/rET-C

Figure 10-1. The ULMFiT process

We’ll now explore how to apply a neural network to this language modeling

problem, using the concepts introduced in the preceding two chapters. But

before reading further, pause and think about how you would approach this.

Text Preprocessing

It’s not at all obvious how we’re going to use what we’ve learned so far to build

a language model. Sentences can be different lengths, and documents can be

long. So how can we predict the next word of a sentence using a neural

network? Let’s find out!

We’ve already seen how categorical variables can be used as independent

variables for a neural network. Here’s the approach we took for a single

categorical variable:

1. Make a list of all possible levels of that categorical variable (we’ll call

this list the vocab).

2. Replace each level with its index in the vocab.

3. Create an embedding matrix for this containing a row for each level

(i.e., for each item of the vocab).

4. Use this embedding matrix as the first layer of a neural network. (A

dedicated embedding matrix can take as inputs the raw vocab indexes

created in step 2; this is equivalent to, but faster and more efficient

than, a matrix that takes as input one-hot-encoded vectors

representing the indexes.)

We can do nearly the same thing with text! What is new is the idea of a

sequence. First we concatenate all of the documents in our dataset into one

big long string and split it into words (or tokens), giving us a very long list of

words. Our independent variable will be the sequence of words starting with

the first word in our very long list and ending with the second to last, and our

dependent variable will be the sequence of words starting with the second

word and ending with the last word.

Our vocab will consist of a mix of common words that are already in the

vocabulary of our pretrained model and new words specific to our corpus

(cinematographic terms or actor’s names, for instance). Our embedding

matrix will be built accordingly: for words that are in the vocabulary of our

pretrained model, we will take the corresponding row in the embedding

matrix of the pretrained model; but for new words, we won’t have anything, so

we will just initialize the corresponding row with a random vector.

Each of the steps necessary to create a language model has jargon associated

with it from the world of natural language processing, and fastai and PyTorch

classes available to help. The steps are as follows:

Tokenization

Convert the text into a list of words (or characters, or substrings,

depending on the granularity of your model).

Numericalization

List all of the unique words that appear (the vocab), and convert

each word into a number by looking up its index in the vocab.

Language model data loader creation

fastai provides an LMDataLoader class that automatically handles

creating a dependent variable that is offset from the independent

variable by one token. It also handles some important details, such

as how to shuffle the training data in such a way that the dependent

and independent variables maintain their structure as required.

Language model creation

We need a special kind of model that does something we haven’t

seen before: handles input lists that could be arbitrarily big or

small. There are a number of ways to do this; in this chapter, we

will be using a recurrent neural network (RNN). We will get to the

details of RNNs in Chapter 12, but for now, you can think of it as

just another deep neural network.

Let’s take a look at how each step works in detail.

Tokenization

When we said “convert the text into a list of words,” we left out a lot of details.

For instance, what do we do with punctuation? How do we deal with a word

like “don’t”? Is it one word or two? What about long medical or chemical

words? Should they be split into their separate pieces of meaning? How about

hyphenated words? What about languages like German and Polish, which can

create really long words from many, many pieces? What about languages like

Japanese and Chinese that don’t use bases at all, and don’t really have a well-

defined idea of word?

Because there is no one correct answer to these questions, there is no one

approach to tokenization. There are three main approaches:

Word-based

Split a sentence on spaces, as well as applying language-specific

rules to try to separate parts of meaning even when there are no

spaces (such as turning “don’t” into “do n’t”). Generally,

punctuation marks are also split into separate tokens.

Subword based

Split words into smaller parts, based on the most commonly

occurring substrings. For instance, “occasion” might be tokenized

as “o c ca sion”.

Character-based

Split a sentence into its individual characters.

We’ll look at word and subword tokenization here, and we’ll leave character-

based tokenization for you to implement in the questionnaire at the end of

this chapter.

JARGON: TOKEN
One element of a list created by the tokenization process. It could be a word, part of a word

(a subword), or a single character.

Word Tokenization with fastai

Rather than providing its own tokenizers, fastai provides a consistent

interface to a range of tokenizers in external libraries. Tokenization is an

active field of research, and new and improved tokenizers are coming out all

the time, so the defaults that fastai uses change too. However, the API and

options shouldn’t change too much, since fastai tries to maintain a consistent

API even as the underlying technology changes.

Let’s try it out with the IMDb dataset that we used in Chapter 1:

from fastai.text.all import *
path = untar_data(URLs.IMDB)

We’ll need to grab the text files in order to try out a tokenizer. Just as

get_image_files (which we’ve used many times already), gets all the image

files in a path, get_text_files gets all the text files in a path. We can also

optionally pass folders to restrict the search to a particular list of subfolders:

files = get_text_files(path, folders = ['train', 'test', 'unsup'])

Here’s a review that we’ll tokenize (we’ll print just the start of it here to save

space):

txt = files[0].open().read(); txt[:75]

'This movie, which I just discovered at the video store, has
apparently sit '

As we write this book, the default English word tokenizer for fastai uses a

library called spaCy. It has a sophisticated rules engine with special rules for

URLs, individual special English words, and much more. Rather than directly

using SpacyTokenizer, however, we’ll use WordTokenizer, since that will

always point to fastai’s current default word tokenizer (which may not

necessarily be spaCy, depending when you’re reading this).

Let’s try it out. We’ll use fastai’s coll_repr(collection,n) function to

display the results. This displays the first n items of collection, along with

the full size—it’s what L uses by default. Note that fastai’s tokenizers take a

collection of documents to tokenize, so we have to wrap txt in a list:

spacy = WordTokenizer()
toks = first(spacy([txt]))
print(coll_repr(toks, 30))

(#201)
['This','movie',',','which','I','just','discovered','at','the','video','s

 >
tore',',','has','apparently','sit','around','for','a','couple','of','years','

 > without','a','distributor','.','It',"'s",'easy','to','see'...]

As you see, spaCy has mainly just separated out the words and punctuation.

But it does something else here too: it has split “it’s” into “it” and “’s”. That

makes intuitive sense; these are separate words, really. Tokenization is a

surprisingly subtle task, when you think about all the little details that have to

be handled. Fortunately, spaCy handles these pretty well for us—for instance,

here we see that “.” is separated when it terminates a sentence, but not in an

acronym or number:

first(spacy(['The U.S. dollar $1 is $1.00.']))

(#9) ['The','U.S.','dollar','$','1','is','$','1.00','.']

fastai then adds some additional functionality to the tokenization process with

the Tokenizer class:

tkn = Tokenizer(spacy)
print(coll_repr(tkn(txt), 31))

(#228)
['xxbos','xxmaj','this','movie',',','which','i','just','discovered','at',

 >
'the','video','store',',','has','apparently','sit','around','for','a','couple

 >
','of','years','without','a','distributor','.','xxmaj','it',"'s",'easy'...]

Notice that there are now some tokens that start with the characters “xx”,

which is not a common word prefix in English. These are special tokens.

For example, the first item in the list, xxbos, is a special token that indicates

the start of a new text (“BOS” is a standard NLP acronym that means

“beginning of stream”). By recognizing this start token, the model will be able

to learn it needs to “forget” what was said previously and focus on upcoming

words.

These special tokens don’t come from spaCy directly. They are there because

fastai adds them by default, by applying a number of rules when processing

text. These rules are designed to make it easier for a model to recognize the

important parts of a sentence. In a sense, we are translating the original

English language sequence into a simplified tokenized language—a language

that is designed to be easy for a model to learn.

For instance, the rules will replace a sequence of four exclamation points with

a single exclamation point, followed by a special repeated character token

and then the number four. In this way, the model’s embedding matrix can

encode information about general concepts such as repeated punctuation

rather than requiring a separate token for every number of repetitions of

every punctuation mark. Similarly, a capitalized word will be replaced with a

special capitalization token, followed by the lowercase version of the word.

This way, the embedding matrix needs only the lowercase versions of the

words, saving compute and memory resources, but can still learn the concept

of capitalization.

Here are some of the main special tokens you’ll see:

xxbos

Indicates the beginning of a text (here, a review)

xxmaj

Indicates the next word begins with a capital (since we lowercased

everything)

xxunk

Indicates the next word is unknown

To see the rules that were used, you can check the default rules:

defaults.text_proc_rules

[<function fastai.text.core.fix_html(x)>,
 <function fastai.text.core.replace_rep(t)>,
 <function fastai.text.core.replace_wrep(t)>,
 <function fastai.text.core.spec_add_spaces(t)>,
 <function fastai.text.core.rm_useless_spaces(t)>,
 <function fastai.text.core.replace_all_caps(t)>,
 <function fastai.text.core.replace_maj(t)>,
 <function fastai.text.core.lowercase(t, add_bos=True,
add_eos=False)>]

As always, you can look at the source code for each of them in a notebook by

typing the following:

??replace_rep

Here is a brief summary of what each does:

fix_html

Replaces special HTML characters with a readable version (IMDb

reviews have quite a few of these)

replace_rep

Replaces any character repeated three times or more with a special

token for repetition (xxrep), the number of times it’s repeated, then

the character

replace_wrep

Replaces any word repeated three times or more with a special

token for word repetition (xxwrep), the number of times it’s

repeated, then the word

spec_add_spaces

Adds spaces around / and #

rm_useless_spaces

Removes all repetitions of the space character

replace_all_caps

Lowercases a word written in all caps and adds a special token for

all caps (xxcap) in front of it

replace_maj

Lowercases a capitalized word and adds a special token for

capitalized (xxmaj) in front of it

lowercase

Lowercases all text and adds a special token at the beginning

(xxbos) and/or the end (xxeos)

Let’s take a look at a few of them in action:

coll_repr(tkn('© Fast.ai www.fast.ai/INDEX'), 31)

"(#11)
['xxbos','©','xxmaj','fast.ai','xxrep','3','w','.fast.ai','/','xxup','ind

 > ex'...]"

Now let’s take a look at how subword tokenization would work.

Subword Tokenization

In addition to the word tokenization approach seen in the preceding section,

another popular tokenization method is subword tokenization. Word

tokenization relies on an assumption that spaces provide a useful separation

of components of meaning in a sentence. However, this assumption is not

always appropriate. For instance, consider this sentence: 我的名字是郝杰瑞

(“My name is Jeremy Howard” in Chinese). That’s not going to work very well

with a word tokenizer, because there are no spaces in it! Languages like

Chinese and Japanese don’t use spaces, and in fact they don’t even have a

well-defined concept of a “word.” Other languages, like Turkish and

Hungarian, can add many subwords together without spaces, creating very

long words that include a lot of separate pieces of information.

To handle these cases, it’s generally best to use subword tokenization. This

proceeds in two steps:

1. Analyze a corpus of documents to find the most commonly occurring

groups of letters. These become the vocab.

2. Tokenize the corpus using this vocab of subword units.

Let’s look at an example. For our corpus, we’ll use the first 2,000 movie

reviews:

txts = L(o.open().read() for o in files[:2000])

We instantiate our tokenizer, passing in the size of the vocab we want to

create, and then we need to “train” it. That is, we need to have it read our

documents and find the common sequences of characters to create the vocab.

This is done with setup. As we’ll see shortly, setup is a special fastai method

that is called automatically in our usual data processing pipelines. Since we’re

doing everything manually at the moment, however, we have to call it

ourselves. Here’s a function that does these steps for a given vocab size and

shows an example output:

def subword(sz):
 sp = SubwordTokenizer(vocab_sz=sz)
 sp.setup(txts)
 return ' '.join(first(sp([txt]))[:40])

Let’s try it out:

subword(1000)

'▁This ▁movie , ▁which ▁I ▁just ▁dis c over ed ▁at ▁the ▁video
▁st or e , ▁has
 > ▁a p par ent ly ▁s it ▁around ▁for ▁a ▁couple ▁of ▁years
▁without ▁a ▁dis t
 > ri but or . ▁It'

When using fastai’s subword tokenizer, the special character ▁ represents a

space character in the original text.

If we use a smaller vocab, each token will represent fewer characters, and it

will take more tokens to represent a sentence:

subword(200)

'▁ T h i s ▁movie , ▁w h i ch ▁I ▁ j us t ▁ d i s c o ver ed ▁a t
▁the ▁ v id e
 > o ▁ st or e , ▁h a s'

On the other hand, if we use a larger vocab, most common English words will

end up in the vocab themselves, and we will not need as many to represent a

sentence:

subword(10000)

"▁This ▁movie , ▁which ▁I ▁just ▁discover ed ▁at ▁the ▁video
▁store , ▁has
 > ▁apparently ▁sit ▁around ▁for ▁a ▁couple ▁of ▁years ▁without
▁a ▁distributor
 > . ▁It ' s ▁easy ▁to ▁see ▁why . ▁The ▁story ▁of ▁two
▁friends ▁living"

Picking a subword vocab size represents a compromise: a larger vocab means

fewer tokens per sentence, which means faster training, less memory, and less

state for the model to remember; but on the downside, it means larger

embedding matrices, which require more data to learn.

Overall, subword tokenization provides a way to easily scale between

character tokenization (i.e., using a small subword vocab) and word

tokenization (i.e., using a large subword vocab), and handles every human

language without needing language-specific algorithms to be developed. It can

even handle other “languages” such as genomic sequences or MIDI music

notation! For this reason, in the last year its popularity has soared, and it

seems likely to become the most common tokenization approach (it may well

already be, by the time you read this!).

Once our texts have been split into tokens, we need to convert them to

numbers. We’ll look at that next.

Numericalization with fastai

Numericalization is the process of mapping tokens to integers. The steps are

basically identical to those necessary to create a Category variable, such as the

dependent variable of digits in MNIST:

1. Make a list of all possible levels of that categorical variable (the vocab).

2. Replace each level with its index in the vocab.

Let’s take a look at this in action on the word-tokenized text we saw earlier:

toks = tkn(txt)
print(coll_repr(tkn(txt), 31))

(#228)
['xxbos','xxmaj','this','movie',',','which','i','just','discovered','at',

 >

'the','video','store',',','has','apparently','sit','around','for','a','couple

 >
','of','years','without','a','distributor','.','xxmaj','it',"'s",'easy'...]

Just as with SubwordTokenizer, we need to call setup on Numericalize; this is

how we create the vocab. That means we’ll need our tokenized corpus first.

Since tokenization takes a while, it’s done in parallel by fastai; but for this

manual walk-through, we’ll use a small subset:

toks200 = txts[:200].map(tkn)
toks200[0]

(#228)
 >
['xxbos','xxmaj','this','movie',',','which','i','just','discovered','at'...]

We can pass this to setup to create our vocab:

num = Numericalize()
num.setup(toks200)
coll_repr(num.vocab,20)

"(#2000)
['xxunk','xxpad','xxbos','xxeos','xxfld','xxrep','xxwrep','xxup','xxmaj

 > ','the','.',',','a','and','of','to','is','in','i','it'...]"

Our special rules tokens appear first, and then every word appears once, in

frequency order. The defaults to Numericalize are min_freq=3 and

max_vocab=60000. max_vocab=60000 results in fastai replacing all words other

than the most common 60,000 with a special unknown word token, xxunk.

This is useful to avoid having an overly large embedding matrix, since that can

slow down training and use up too much memory, and can also mean that

there isn’t enough data to train useful representations for rare words.

However, this last issue is better handled by setting min_freq; the default

min_freq=3 means that any word appearing fewer than three times is replaced

with xxunk.

fastai can also numericalize your dataset using a vocab that you provide, by

passing a list of words as the vocab parameter.

Once we’ve created our Numericalize object, we can use it as if it were a

function:

nums = num(toks)[:20]; nums

tensor([2, 8, 21, 28, 11, 90, 18, 59, 0, 45, 9, 351,
499, 11,
 > 72, 533, 584, 146, 29, 12])

This time, our tokens have been converted to a tensor of integers that our

model can receive. We can check that they map back to the original text:

' '.join(num.vocab[o] for o in nums)

'xxbos xxmaj this movie , which i just xxunk at the video store , has
apparently
 > sit around for a'

Now that we have numbers, we need to put them in batches for our model.

Putting Our Texts into Batches for a Language Model

When dealing with images, we needed to resize them all to the same height

and width before grouping them together in a mini-batch so they could stack

together efficiently in a single tensor. Here it’s going to be a little different,

because one cannot simply resize text to a desired length. Also, we want our

language model to read text in order, so that it can efficiently predict what the

next word is. This means each new batch should begin precisely where the

previous one left off.

Suppose we have the following text:

In this chapter, we will go back over the example of classifying movie

reviews we studied in chapter 1 and dig deeper under the surface. First we

will look at the processing steps necessary to convert text into numbers

and how to customize it. By doing this, we’ll have another example of the

PreProcessor used in the data block API.

Then we will study how we build a language model and train it for a

while.

The tokenization process will add special tokens and deal with punctuation to

return this text:

xxbos xxmaj in this chapter , we will go back over the example of

classifying movie reviews we studied in chapter 1 and dig deeper under

the surface . xxmaj first we will look at the processing steps necessary to

convert text into numbers and how to customize it . xxmaj by doing this ,

we ‘ll have another example of the preprocessor used in the data block

xxup api . \n xxmaj then we will study how we build a language model

and train it for a while .

We now have 90 tokens, separated by spaces. Let’s say we want a batch size of

6. We need to break this text into 6 contiguous parts of length 15:

In a perfect world, we could then give this one batch to our model. But that

approach doesn’t scale, because outside this toy example, it’s unlikely that a

single batch containing all the tokens would fit in our GPU memory (here we

have 90 tokens, but all the IMDb reviews together give several million).

So, we need to divide this array more finely into subarrays of a fixed sequence

length. It is important to maintain order within and across these subarrays,

because we will use a model that maintains a state so that it remembers what

it read previously when predicting what comes next.

Going back to our previous example with 6 batches of length 15, if we chose a

sequence length of 5, that would mean we first feed the following array:

xxbos xxmaj in this chapter

movie reviews we studied in

first we will look at

how to customize it .

of the preprocessor used in

will study how we build

Then, this one:

, we will go back

chapter 1 and dig deeper

the processing steps necessary to

xxmaj by doing this ,

the data block xxup api

a language model and train

And finally:

over the example of classifying

under the surface . xxmaj

convert text into numbers and

we ‘ll have another example

. \n xxmaj then we

it for a while .

Going back to our movie reviews dataset, the first step is to transform the

individual texts into a stream by concatenating them together. As with

images, it’s best to randomize the order of the inputs, so at the beginning of

each epoch we will shuffle the entries to make a new stream (we shuffle the

order of the documents, not the order of the words inside them, or the texts

would not make sense anymore!).

We then cut this stream into a certain number of batches (which is our batch

size). For instance, if the stream has 50,000 tokens and we set a batch size of

10, this will give us 10 mini-streams of 5,000 tokens. What is important is

that we preserve the order of the tokens (so from 1 to 5,000 for the first mini-

stream, then from 5,001 to 10,000…), because we want the model to read

continuous rows of text (as in the preceding example). An xxbos token is

added at the start of each text during preprocessing, so that the model knows

when it reads the stream when a new entry is beginning.

So to recap, at every epoch we shuffle our collection of documents and

concatenate them into a stream of tokens. We then cut that stream into a

batch of fixed-size consecutive mini-streams. Our model will then read the

mini-streams in order, and thanks to an inner state, it will produce the same

activation, whatever sequence length we picked.

This is all done behind the scenes by the fastai library when we create an

LMDataLoader. We do this by first applying our Numericalize object to the

tokenized texts

nums200 = toks200.map(num)

and then passing that to LMDataLoader:

dl = LMDataLoader(nums200)

Let’s confirm that this gives the expected results, by grabbing the first batch

x,y = first(dl)
x.shape,y.shape

(torch.Size([64, 72]), torch.Size([64, 72]))

and then looking at the first row of the independent variable, which should be

the start of the first text:

' '.join(num.vocab[o] for o in x[0][:20])

'xxbos xxmaj this movie , which i just xxunk at the video store , has
apparently
 > sit around for a'

The dependent variable is the same thing offset by one token:

' '.join(num.vocab[o] for o in y[0][:20])

'xxmaj this movie , which i just xxunk at the video store , has
apparently sit
 > around for a couple'

This concludes all the preprocessing steps we need to apply to our data. We

are now ready to train our text classifier.

Training a Text Classifier

As we saw at the beginning of this chapter, there are two steps to training a

state-of-the-art text classifier using transfer learning: first we need to fine-

tune our language model pretrained on Wikipedia to the corpus of IMDb

reviews, and then we can use that model to train a classifier.

As usual, let’s start with assembling our data.

Language Model Using DataBlock

fastai handles tokenization and numericalization automatically when

TextBlock is passed to DataBlock. All of the arguments that can be passed to

Tokenizer and Numericalize can also be passed to TextBlock. In the next

chapter, we’ll discuss the easiest ways to run each of these steps separately, to

ease debugging, but you can always just debug by running them manually on

a subset of your data as shown in the previous sections. And don’t forget

about DataBlock’s handy summary method, which is very useful for debugging

data issues.

Here’s how we use TextBlock to create a language model, using fastai’s

defaults:

get_imdb = partial(get_text_files, folders=['train', 'test', 'unsup'])

dls_lm = DataBlock(
 blocks=TextBlock.from_folder(path, is_lm=True),
 get_items=get_imdb, splitter=RandomSplitter(0.1)
).dataloaders(path, path=path, bs=128, seq_len=80)

One thing that’s different from previous types we’ve used in DataBlock is that

we’re not just using the class directly (i.e., TextBlock(...), but instead are

calling a class method. A class method is a Python method that, as the name

suggests, belongs to a class rather than an object. (Be sure to search online for

more information about class methods if you’re not familiar with them, since

they’re commonly used in many Python libraries and applications; we’ve used

them a few times previously in the book, but haven’t called attention to them.)

The reason that TextBlock is special is that setting up the numericalizer’s

vocab can take a long time (we have to read and tokenize every document to

get the vocab).

To be as efficient as possible, fastai performs a few optimizations:

It saves the tokenized documents in a temporary folder, so it doesn’t

have to tokenize them more than once.

It runs multiple tokenization processes in parallel, to take advantage of

your computer’s CPUs.

We need to tell TextBlock how to access the texts, so that it can do this initial

preprocessing—that’s what from_folder does.

show_batch then works in the usual way:

dls_lm.show_batch(max_n=2)

text text_

0

xxbos xxmaj it ’s awesome ! xxmaj in xxmaj

story xxmaj mode , your going from punk to

pro . xxmaj you have to complete goals that

involve skating , driving , and walking . xxmaj

you create your own skater and give it a name

, and you can make it look stupid or realistic .

xxmaj you are with your friend xxmaj eric

throughout the game until he betrays you and

gets you kicked off of the skateboard

xxmaj it ’s awesome ! xxmaj in xxmaj story

xxmaj mode , your going from punk to pro .

xxmaj you have to complete goals that involve

skating , driving , and walking . xxmaj you

create your own skater and give it a name ,

and you can make it look stupid or realistic .

xxmaj you are with your friend xxmaj eric

throughout the game until he betrays you and

gets you kicked off of the skateboard xxunk

1

what xxmaj i ‘ve read , xxmaj death xxmaj bed

is based on an actual dream , xxmaj george

xxmaj barry , the director , successfully

transferred dream to film , only a genius

could accomplish such a task . \n\n xxmaj old

mansions make for good quality horror , as

do portraits , not sure what to make of the

killer bed with its killer yellow liquid , quite a

bizarre dream , indeed . xxmaj also , this

xxmaj i ‘ve read , xxmaj death xxmaj bed is

based on an actual dream , xxmaj george

xxmaj barry , the director , successfully

transferred dream to film , only a genius

could accomplish such a task . \n\n xxmaj old

mansions make for good quality horror , as do

portraits , not sure what to make of the killer

bed with its killer yellow liquid , quite a

bizarre dream , indeed . xxmaj also , this is

Now that our data is ready, we can fine-tune the pretrained language model.

Fine-Tuning the Language Model

To convert the integer word indices into activations that we can use for our

neural network, we will use embeddings, just as we did for collaborative

filtering and tabular modeling. Then we’ll feed those embeddings into a

recurrent neural network (RNN), using an architecture called AWD-LSTM

(we will show you how to write such a model from scratch in Chapter 12). As

we discussed earlier, the embeddings in the pretrained model are merged with

random embeddings added for words that weren’t in the pretraining

vocabulary. This is handled automatically inside language_model_learner:

learn = language_model_learner(
 dls_lm, AWD_LSTM, drop_mult=0.3,
 metrics=[accuracy, Perplexity()]).to_fp16()

The loss function used by default is cross-entropy loss, since we essentially

have a classification problem (the different categories being the words in our

vocab). The perplexity metric used here is often used in NLP for language

models: it is the exponential of the loss (i.e., torch.exp(cross_entropy)). We

also include the accuracy metric to see how many times our model is right

when trying to predict the next word, since cross entropy (as we’ve seen) is

both hard to interpret and tells us more about the model’s confidence than its

accuracy.

Let’s go back to the process diagram from the beginning of this chapter. The

first arrow has been completed for us and made available as a pretrained

model in fastai, and we’ve just built the DataLoaders and Learner for the

second stage. Now we’re ready to fine-tune our language model!

It takes quite a while to train each epoch, so we’ll be saving the intermediate

model results during the training process. Since fine_tune doesn’t do that for

us, we’ll use fit_one_cycle. Just like cnn_learner, language_model_learner

automatically calls freeze when using a pretrained model (which is the

default), so this will train only the embeddings (the only part of the model

that contains randomly initialized weights—i.e., embeddings for words that

are in our IMDb vocab, but aren’t in the pretrained model vocab):

learn.fit_one_cycle(1, 2e-2)

epoch train_loss valid_loss accuracy perplexity time

0 4.120048 3.912788 0.299565 50.038246 11:39

This model takes a while to train, so it’s a good opportunity to talk about

saving intermediary results.

Saving and Loading Models

You can easily save the state of your model like so:

learn.save('1epoch')

This will create a file in learn.path/models/ named 1epoch.pth. If you want to

load your model in another machine after creating your Learner the same

way, or resume training later, you can load the content of this file as follows:

learn = learn.load('1epoch')

Once the initial training has completed, we can continue fine-tuning the

model after unfreezing:

learn.unfreeze()
learn.fit_one_cycle(10, 2e-3)

epoch train_loss valid_loss accuracy perplexity time

0 3.893486 3.772820 0.317104 43.502548 12:37

1 3.820479 3.717197 0.323790 41.148880 12:30

2 3.735622 3.659760 0.330321 38.851997 12:09

3 3.677086 3.624794 0.333960 37.516987 12:12

4 3.636646 3.601300 0.337017 36.645859 12:05

5 3.553636 3.584241 0.339355 36.026001 12:04

6 3.507634 3.571892 0.341353 35.583862 12:08

7 3.444101 3.565988 0.342194 35.374371 12:08

8 3.398597 3.566283 0.342647 35.384815 12:11

9 3.375563 3.568166 0.342528 35.451500 12:05

Once this is done, we save all of our model except the final layer that converts

activations to probabilities of picking each token in our vocabulary. The model

not including the final layer is called the encoder. We can save it with

save_encoder:

learn.save_encoder('finetuned')

JARGON: ENCODER
The model not including the task-specific final layer(s). This term means much the same

thing as “body” when applied to vision CNNs, but “encoder” tends to be more used for NLP

and generative models.

This completes the second stage of the text classification process: fine-tuning

the language model. We can now use it to fine-tune a classifier using the

IMDb sentiment labels. Before we move on to fine-tuning the classifier,

however, let’s quickly try something different: using our model to generate

random reviews.

Text Generation

Because our model is trained to guess the next word of the sentence, we can

use it to write new reviews:

TEXT = "I liked this movie because"
N_WORDS = 40
N_SENTENCES = 2
preds = [learn.predict(TEXT, N_WORDS, temperature=0.75)
 for _ in range(N_SENTENCES)]

print("\n".join(preds))

i liked this movie because of its story and characters . The story
line was very
 > strong , very good for a sci - fi film . The main character ,
Alucard , was
 > very well developed and brought the whole story
i liked this movie because i like the idea of the premise of the
movie , the (
 > very) convenient virus (which , when you have to kill a few
people , the "
 > evil " machine has to be used to protect

As you can see, we add some randomness (we pick a random word based on

the probabilities returned by the model) so we don’t get exactly the same

review twice. Our model doesn’t have any programmed knowledge of the

structure of a sentence or grammar rules, yet it has clearly learned a lot about

English sentences: we can see it capitalizes properly (I is transformed to i

because our rules require two characters or more to consider a word as

capitalized, so it’s normal to see it lowercased) and is using consistent tense.

The general review makes sense at first glance, and it’s only if you read

carefully that you can notice something is a bit off. Not bad for a model

trained in a couple of hours!

But our end goal wasn’t to train a model to generate reviews, but to classify

them…so let’s use this model to do just that.

Creating the Classifier DataLoaders

We’re now moving from language model fine-tuning to classifier fine-tuning.

To re-cap, a language model predicts the next word of a document, so it

doesn’t need any external labels. A classifier, however, predicts an external

label—in the case of IMDb, it’s the sentiment of a document.

This means that the structure of our DataBlock for NLP classification will look

very familiar. It’s nearly the same as we’ve seen for the many image

classification datasets we’ve worked with:

dls_clas = DataBlock(
 blocks=(TextBlock.from_folder(path, vocab=dls_lm.vocab),CategoryBlock),
 get_y = parent_label,
 get_items=partial(get_text_files, folders=['train', 'test']),
 splitter=GrandparentSplitter(valid_name='test')
).dataloaders(path, path=path, bs=128, seq_len=72)

Just as with image classification, show_batch shows the dependent variable

(sentiment, in this case) with each independent variable (movie review text):

dls_clas.show_batch(max_n=3)

text category

0

xxbos i rate this movie with 3 skulls , only coz the girls knew how to scream , this could ‘ve

been a better movie , if actors were better , the twins were xxup ok , i believed they were

evil , but the eldest and youngest brother , they sucked really bad , it seemed like they were

reading the scripts instead of acting them … . spoiler : if they ‘re vampire ’s why do they

freeze the blood ? vampires ca n’t drink frozen blood , the sister in the movie says let ’s

drink her while she is alive … .but then when they ‘re moving to another house , they take

on a cooler they ‘re frozen blood . end of spoiler \n\n it was a huge waste of time , and that

made me mad coz i read all the reviews of how

n

e

g

1

xxbos i have read all of the xxmaj love xxmaj come xxmaj softly books . xxmaj knowing full

well that movies can not use all aspects of the book , but generally they at least have the

main point of the book . i was highly disappointed in this movie . xxmaj the only thing that

they have in this movie that is in the book is that xxmaj missy ’s father comes to xxunk in

the book both parents come) . xxmaj that is all . xxmaj the story line was so twisted and far

fetch and yes , sad , from the book , that i just could n’t enjoy it . xxmaj even if i did n’t read

the book it was too sad . i do know that xxmaj pioneer life was rough , but the whole movie

was a downer . xxmaj the rating

n

e

g

2

xxbos xxmaj this , for lack of a better term , movie is lousy . xxmaj where do i start … …

\n\n xxmaj cinemaphotography - xxmaj this was , perhaps , the worst xxmaj i ‘ve seen this

year . xxmaj it looked like the camera was being tossed from camera man to camera man .

xxmaj maybe they only had one camera . xxmaj it gives you the sensation of being a

volleyball . \n\n xxmaj there are a bunch of scenes , haphazardly , thrown in with no

continuity at all . xxmaj when they did the ' split screen ' , it was absurd . xxmaj everything

was squished flat , it looked ridiculous . \n\n xxmaj the color tones were way off . xxmaj

these people need to learn how to balance a camera . xxmaj this ' movie ' is poorly made ,

and

n

e

g

Looking at the DataBlock definition, every piece is familiar from previous data

blocks we’ve built, with two important exceptions:

TextBlock.from_folder no longer has the is_lm=True parameter.

We pass the vocab we created for the language model fine-tuning.

The reason that we pass the vocab of the language model is to make sure we

use the same correspondence of token to index. Otherwise, the embeddings

we learned in our fine-tuned language model won’t make any sense to this

model, and the fine-tuning step won’t be of any use.

By passing is_lm=False (or not passing is_lm at all, since it defaults to False),

we tell TextBlock that we have regular labeled data, rather than using the next

tokens as labels. There is one challenge we have to deal with, however, which

has to do with collating multiple documents into a mini-batch. Let’s see with

an example, by trying to create a mini-batch containing the first 10

documents. First we’ll numericalize them:

nums_samp = toks200[:10].map(num)

Let’s now look at how many tokens each of these 10 movie reviews has:

nums_samp.map(len)

(#10) [228,238,121,290,196,194,533,124,581,155]

Remember, PyTorch DataLoaders need to collate all the items in a batch into a

single tensor, and a single tensor has a fixed shape (i.e., it has a particular

length on every axis, and all items must be consistent). This should sound

familiar: we had the same issue with images. In that case, we used cropping,

padding, and/or squishing to make all the inputs the same size. Cropping

might not be a good idea for documents, because it seems likely we’d remove

some key information (having said that, the same issue is true for images, and

we use cropping there; data augmentation hasn’t been well explored for NLP

yet, so perhaps there are actually opportunities to use cropping in NLP too!).

You can’t really “squish” a document. So that leaves padding!

We will expand the shortest texts to make them all the same size. To do this,

we use a special padding token that will be ignored by our model.

Additionally, to avoid memory issues and improve performance, we will batch

together texts that are roughly the same lengths (with some shuffling for the

training set). We do this by (approximately, for the training set) sorting the

documents by length prior to each epoch. The result is that the documents

collated into a single batch will tend of be of similar lengths. We won’t pad

every batch to the same size, but will instead use the size of the largest

document in each batch as the target size.

DYNAMICALLY RESIZE IMAGES
It is possible to do something similar with images, which is especially useful for irregularly

sized rectangular images, but at the time of writing no library provides good support for this

yet, and there aren’t any papers covering it. It’s something we’re planning to add to fastai

soon, however, so keep an eye on the book’s website; we’ll add information about this as

soon as we have it working well.

The sorting and padding are automatically done by the data block API for us

when using a TextBlock with is_lm=False. (We don’t have this same issue for

language model data, since we concatenate all the documents together first

and then split them into equally sized sections.)

We can now create a model to classify our texts:

learn = text_classifier_learner(dls_clas, AWD_LSTM, drop_mult=0.5,
 metrics=accuracy).to_fp16()

The final step prior to training the classifier is to load the encoder from our

fine-tuned language model. We use load_encoder instead of load because we

have only pretrained weights available for the encoder; load by default raises

an exception if an incomplete model is loaded:

learn = learn.load_encoder('finetuned')

Fine-Tuning the Classifier

The last step is to train with discriminative learning rates and gradual

unfreezing. In computer vision, we often unfreeze the model all at once, but

for NLP classifiers, we find that unfreezing a few layers at a time makes a real

difference:

learn.fit_one_cycle(1, 2e-2)

epoch train_loss valid_loss accuracy time

0 0.347427 0.184480 0.929320 00:33

In just one epoch, we get the same result as our training in Chapter 1—not too

bad! We can pass -2 to freeze_to to freeze all except the last two parameter

groups:

learn.freeze_to(-2)
learn.fit_one_cycle(1, slice(1e-2/(2.6**4),1e-2))

epoch train_loss valid_loss accuracy time

0 0.247763 0.171683 0.934640 00:37

Then we can unfreeze a bit more and continue training:

learn.freeze_to(-3)
learn.fit_one_cycle(1, slice(5e-3/(2.6**4),5e-3))

epoch train_loss valid_loss accuracy time

0 0.193377 0.156696 0.941200 00:45

And finally, the whole model!

learn.unfreeze()
learn.fit_one_cycle(2, slice(1e-3/(2.6**4),1e-3))

epoch train_loss valid_loss accuracy time

0 0.172888 0.153770 0.943120 01:01

1 0.161492 0.155567 0.942640 00:57

We reached 94.3% accuracy, which was state-of-the-art performance just

three years ago. By training another model on all the texts read backward and

averaging the predictions of those two models, we can even get to 95.1%

accuracy, which was the state of the art introduced by the ULMFiT paper. It

was beaten only a few months ago, by fine-tuning a much bigger model and

using expensive data augmentation techniques (translating sentences in

another language and back, using another model for translation).

Using a pretrained model let us build a fine-tuned language model that is

pretty powerful, to either generate fake reviews or help classify them. This is

exciting stuff, but it’s good to remember that this technology can also be used

for malign purposes.

Disinformation and Language Models

Even simple algorithms based on rules, before the days of widely available

deep learning language models, could be used to create fraudulent accounts

and try to influence policymakers. Jeff Kao, now a computational journalist at

ProPublica, analyzed the comments that were sent to the US Federal

Communications Commission (FCC) regarding a 2017 proposal to repeal net

neutrality. In his article “More than a Million Pro-Repeal Net Neutrality

Comments Were Likely Faked”, he reports how he discovered a large cluster

of comments opposing net neutrality that seemed to have been generated by

some sort of Mad Libs–style mail merge. In Figure 10-2, the fake comments

have been helpfully color-coded by Kao to highlight their formulaic nature.

Figure 10-2. Comments received by the FCC during the net neutrality debate

Kao estimated that “less than 800,000 of the 22M+ comments…could be

considered truly unique” and that “more than 99% of the truly unique

comments were in favor of keeping net neutrality.”

https://oreil.ly/ptq8B

Given advances in language modeling that have occurred since 2017, such

fraudulent campaigns could be nearly impossible to catch now. You now have

all the necessary tools at your disposal to create a compelling language model

—something that can generate context-appropriate, believable text. It won’t

necessarily be perfectly accurate or correct, but it will be plausible. Think

about what this technology would mean when put together with the kinds of

disinformation campaigns we have learned about in recent years. Take a look

at the Reddit dialogue shown in Figure 10-3, where a language model based

on OpenAI’s GPT-2 algorithm is having a conversation with itself about

whether the US government should cut defense spending.

Figure 10-3. An algorithm talking to itself on Reddit

In this case, it was explained that an algorithm was being used to generate the

dialogue. But imagine what would happen if a bad actor decided to release

such an algorithm across social networks—they could do it slowly and

carefully, allowing the algorithm to gradually develop followers and trust over

time. It would not take many resources to have literally millions of accounts

doing this. In such a situation, we could easily imagine getting to a point

where the vast majority of discourse online was from bots, and nobody would

have any idea that it was happening.

We are already starting to see examples of machine learning being used to

generate identities. For example, Figure 10-4 shows a LinkedIn profile for

Katie Jones.

Figure 10-4. Katie Jones’s LinkedIn profile

Katie Jones was connected on LinkedIn to several members of mainstream

Washington think tanks. But she didn’t exist. That image you see was

autogenerated by a generative adversarial network, and somebody named

Katie Jones has not, in fact, graduated from the Center for Strategic and

International Studies.

Many people assume or hope that algorithms will come to our defense here—

that we will develop classification algorithms that can automatically recognize

autogenerated content. The problem, however, is that this will always be an

arms race, in which better classification (or discriminator) algorithms can be

used to create better generation algorithms.

Conclusion

In this chapter, we explored the last application covered out of the box by the

fastai library: text. We saw two types of models: language models that can

generate texts, and a classifier that determines whether a review is positive or

negative. To build a state-of-the art classifier, we used a pretrained language

model, fine-tuned it to the corpus of our task, then used its body (the encoder)

with a new head to do the classification.

Before we end this part of the book, we’ll take a look at how the fastai library

can help you assemble your data for your specific problems.

Questionnaire

1. What is self-supervised learning?

2. What is a language model?

3. Why is a language model considered self-supervised?

4. What are self-supervised models usually used for?

5. Why do we fine-tune language models?

6. What are the three steps to create a state-of-the-art text classifier?

7. How do the 50,000 unlabeled movie reviews help create a better text

classifier for the IMDb dataset?

8. What are the three steps to prepare your data for a language model?

9. What is tokenization? Why do we need it?

10. Name three approaches to tokenization.

11. What is xxbos?

12. List four rules that fastai applies to text during tokenization.

13. Why are repeated characters replaced with a token showing the

number of repetitions and the character that’s repeated?

14. What is numericalization?

15. Why might there be words that are replaced with the “unknown word”

token?

16. With a batch size of 64, the first row of the tensor representing the first

batch contains the first 64 tokens for the dataset. What does the

second row of that tensor contain? What does the first row of the

second batch contain? (Careful—students often get this one wrong! Be

sure to check your answer on the book’s website.)

17. Why do we need padding for text classification? Why don’t we need it

for language modeling?

18. What does an embedding matrix for NLP contain? What is its shape?

19. What is perplexity?

20. Why do we have to pass the vocabulary of the language model to the

classifier data block?

21. What is gradual unfreezing?

22. Why is text generation always likely to be ahead of automatic

identification of machine-generated texts?

Further Research

1. See what you can learn about language models and disinformation.

What are the best language models today? Take a look at some of their

outputs. Do you find them convincing? How could a bad actor best use

such a model to create conflict and uncertainty?

2. Given the limitation that models are unlikely to be able to consistently

recognize machine-generated texts, what other approaches may be

needed to handle large-scale disinformation campaigns that leverage

deep learning?

Chapter 11. Data Munging with fastai’s

Mid-Level API

We have seen what Tokenizer and Numericalize do to a collection of texts,

and how they’re used inside the data block API, which handles those

transforms for us directly using the TextBlock. But what if we want to apply

only one of those transforms, either to see intermediate results or because we

have already tokenized texts? More generally, what can we do when the data

block API is not flexible enough to accommodate our particular use case? For

this, we need to use fastai’s mid-level API for processing data. The data block

API is built on top of that layer, so it will allow you to do everything the data

block API does, and much much more.

Going Deeper into fastai’s Layered API

The fastai library is built on a layered API. In the very top layer are

applications that allow us to train a model in five lines of code, as we saw in

Chapter 1. In the case of creating DataLoaders for a text classifier, for

instance, we used this line:

from fastai.text.all import *

dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')

The factory method TextDataLoaders.from_folder is very convenient when

your data is arranged the exact same way as the IMDb dataset, but in

practice, that often won’t be the case. The data block API offers more

flexibility. As we saw in the preceding chapter, we can get the same result

with the following:

path = untar_data(URLs.IMDB)
dls = DataBlock(
 blocks=(TextBlock.from_folder(path),CategoryBlock),
 get_y = parent_label,
 get_items=partial(get_text_files, folders=['train', 'test']),
 splitter=GrandparentSplitter(valid_name='test')
).dataloaders(path)

But it’s sometimes not flexible enough. For debugging purposes, for instance,

we might need to apply just parts of the transforms that come with this data

block. Or we might want to create a DataLoaders for an application that isn’t

directly supported by fastai. In this section, we’ll dig into the pieces that are

used inside fastai to implement the data block API. Understanding these will

enable you to leverage the power and flexibility of this mid-tier API.

MID-LEVEL API
The mid-level API does not contain only functionality for creating DataLoaders. It also has

the callback system, which allows us to customize the training loop any way we like, and

the general optimizer. Both will be covered in Chapter 16.

Transforms

When we studied tokenization and numericalization in the preceding

chapter, we started by grabbing a bunch of texts:

files = get_text_files(path, folders = ['train', 'test'])
txts = L(o.open().read() for o in files[:2000])

We then showed how to tokenize them with a Tokenizer

tok = Tokenizer.from_folder(path)
tok.setup(txts)
toks = txts.map(tok)
toks[0]

(#374) ['xxbos','xxmaj','well',',','"','cube','"','(','1997',')'...]

and how to numericalize, including automatically creating the vocab for our

corpus:

num = Numericalize()
num.setup(toks)
nums = toks.map(num)
nums[0][:10]

tensor([2, 8, 76, 10, 23, 3112, 23, 34, 3113, 33])

The classes also have a decode method. For instance, Numericalize.decode

gives us back the string tokens:

nums_dec = num.decode(nums[0][:10]); nums_dec

(#10) ['xxbos','xxmaj','well',',','"','cube','"','(','1997',')']

Tokenizer.decode turns this back into a single string (it may not, however, be

exactly the same as the original string; this depends on whether the tokenizer

is reversible, which the default word tokenizer is not at the time we’re writing

this book):

tok.decode(nums_dec)

'xxbos xxmaj well , " cube " (1997)'

decode is used by fastai’s show_batch and show_results, as well as some other

inference methods, to convert predictions and mini-batches into a human-

understandable representation.

For each of tok or num in the preceding examples, we created an object called

the setup method (which trains the tokenizer if needed for tok and creates

the vocab for num), applied it to our raw texts (by calling the object as a

function), and then finally decoded the result back to an understandable

representation. These steps are needed for most data preprocessing tasks, so

fastai provides a class that encapsulates them. This is the Transform class.

Both Tokenize and Numericalize are Transforms.

In general, a Transform is an object that behaves like a function and has an

optional setup method that will initialize an inner state (like the vocab inside

num) and an optional decode method that will reverse the function (this

reversal may not be perfect, as we saw with tok).

A good example of decode is found in the Normalize transform that we saw in

Chapter 7: to be able to plot the images, its decode method undoes the

normalization (i.e., it multiplies by the standard deviation and adds back the

mean). On the other hand, data augmentation transforms do not have a

decode method, since we want to show the effects on images to make sure the

data augmentation is working as we want.

A special behavior of Transforms is that they always get applied over tuples.

In general, our data is always a tuple (input,target) (sometimes with more

than one input or more than one target). When applying a transform on an

item like this, such as Resize, we don’t want to resize the tuple as a whole;

instead, we want to resize the input (if applicable) and the target (if

applicable) separately. It’s the same for batch transforms that do data

augmentation: when the input is an image and the target is a segmentation

mask, the transform needs to be applied (the same way) to the input and the

target.

We can see this behavior if we pass a tuple of texts to tok:

tok((txts[0], txts[1]))

((#374)
['xxbos','xxmaj','well',',','"','cube','"','(','1997',')'...],
 (#207)
 >
['xxbos','xxmaj','conrad','xxmaj','hall','went','out','with','a','bang'...])

Writing Your Own Transform

If you want to write a custom transform to apply to your data, the easiest way

is to write a function. As you can see in this example, a Transform will be

applied only to a matching type, if a type is provided (otherwise, it will always

be applied). In the following code, the :int in the function signature means

that f gets applied only to ints. That’s why tfm(2.0) returns 2.0, but tfm(2)

returns 3 here:

def f(x:int): return x+1
tfm = Transform(f)
tfm(2),tfm(2.0)

(3, 2.0)

Here, f is converted to a Transform with no setup and no decode method.

Python has a special syntax for passing a function (like f) to another function

(or something that behaves like a function, known as a callable in Python),

called a decorator. A decorator is used by prepending a callable with @ and

placing it before a function definition (there are lots of good online tutorials

about Python decorators, so take a look at one if this is a new concept for

you). The following is identical to the previous code:

@Transform

def f(x:int): return x+1
f(2),f(2.0)

(3, 2.0)

If you need either setup or decode, you will need to subclass Transform to

implement the actual encoding behavior in encodes, then (optionally) the

setup behavior in setups and the decoding behavior in decodes:

class NormalizeMean(Transform):
 def setups(self, items): self.mean = sum(items)/len(items)
 def encodes(self, x): return x-self.mean
 def decodes(self, x): return x+self.mean

Here, NormalizeMean will initialize a certain state during the setup (the mean

of all elements passed); then the transformation is to subtract that mean. For

decoding purposes, we implement the reverse of that transformation by

adding the mean. Here is an example of NormalizeMean in action:

tfm = NormalizeMean()
tfm.setup([1,2,3,4,5])
start = 2
y = tfm(start)
z = tfm.decode(y)
tfm.mean,y,z

(3.0, -1.0, 2.0)

Note that the method called and the method implemented are different, for

each of these methods:

Class To call To implement

nn.Module (PyTorch) () (i.e., call as function) forward

Transform () encodes

Transform decode() decodes

Transform setup() setups

So, for instance, you would never call setups directly, but instead would call

setup. The reason is that setup does some work before and after calling

setups for you. To learn more about Transforms and how you can use them to

implement different behavior depending on the type of input, be sure to

check the tutorials in the fastai docs.

Pipeline

To compose several transforms together, fastai provides the Pipeline class.

We define a Pipeline by passing it a list of Transforms; it will then compose

the transforms inside it. When you call a Pipeline on an object, it will

automatically call the transforms inside, in order:

tfms = Pipeline([tok, num])
t = tfms(txts[0]); t[:20]

tensor([2, 8, 76, 10, 23, 3112, 23, 34, 3113, 33,
10, 8,
 > 4477, 22, 88, 32, 10, 27, 42, 14])

And you can call decode on the result of your encoding, to get back something

you can display and analyze:

tfms.decode(t)[:100]

'xxbos xxmaj well , " cube " (1997) , xxmaj vincenzo \'s first
movie , was one
 > of the most interesti'

The only part that doesn’t work the same way as in Transform is the setup. To

properly set up a Pipeline of Transforms on some data, you need to use a

TfmdLists.

TfmdLists and Datasets: Transformed Collections

Your data is usually a set of raw items (like filenames, or rows in a

DataFrame) to which you want to apply a succession of transformations. We

just saw that a succession of transformations is represented by a Pipeline in

fastai. The class that groups this Pipeline with your raw items is called

TfmdLists.

TfmdLists

Here is the short way of doing the transformation we saw in the previous

section:

tls = TfmdLists(files, [Tokenizer.from_folder(path), Numericalize])

At initialization, the TfmdLists will automatically call the setup method of

each Transform in order, providing each not with the raw items but the items

transformed by all the previous Transforms, in order. We can get the result of

our Pipeline on any raw element just by indexing into the TfmdLists:

t = tls[0]; t[:20]

tensor([2, 8, 91, 11, 22, 5793, 22, 37,
4910, 34,
 > 11, 8, 13042, 23, 107, 30, 11, 25, 44,
14])

And the TfmdLists knows how to decode for show purposes:

tls.decode(t)[:100]

'xxbos xxmaj well , " cube " (1997) , xxmaj vincenzo \'s first
movie , was one
 > of the most interesti'

In fact, it even has a show method:

tls.show(t)

xxbos xxmaj well , " cube " (1997) , xxmaj vincenzo 's first movie
, was one
 > of the most interesting and tricky ideas that xxmaj i 've ever
seen when
 > talking about movies . xxmaj they had just one scenery , a bunch
of actors
 > and a plot . xxmaj so , what made it so special were all the
effective
 > direction , great dialogs and a bizarre condition that characters
had to deal
 > like rats in a labyrinth . xxmaj his second movie , " cypher " (
2002) , was
 > all about its story , but it was n't so good as " cube " but here
are the
 > characters being tested like rats again .

 " nothing " is something very interesting and gets xxmaj vincenzo
coming back
 > to his ' cube days ' , locking the characters once again in a very
different
 > space with no time once more playing with the characters like
playing with

 > rats in an experience room . xxmaj but instead of a thriller sci -
fi (even
 > some of the promotional teasers and trailers erroneous seemed like
that) , "
 > nothing " is a loose and light comedy that for sure can be called
a modern
 > satire about our society and also about the intolerant world we
're living .
 > xxmaj once again xxmaj xxunk amaze us with a great idea into a so
small kind
 > of thing . 2 actors and a blinding white scenario , that 's all
you got most
 > part of time and you do n't need more than that . xxmaj while "
cube " is a
 > claustrophobic experience and " cypher " confusing , " nothing "
is
 > completely the opposite but at the same time also desperate .

 xxmaj this movie proves once again that a smart idea means much more
than just
 > a millionaire budget . xxmaj of course that the movie fails
sometimes , but
 > its prime idea means a lot and offsets any flaws . xxmaj there 's
nothing
 > more to be said about this movie because everything is a brilliant
surprise
 > and a totally different experience that i had in movies since "
cube " .

The TfmdLists is named with an “s” because it can handle a training and a

validation set with a splits argument. You just need to pass the indices of

the elements that are in the training set and the indices of the elements that

are in the validation set:

cut = int(len(files)*0.8)
splits = [list(range(cut)), list(range(cut,len(files)))]
tls = TfmdLists(files, [Tokenizer.from_folder(path), Numericalize],
 splits=splits)

You can then access them through the train and valid attributes:

tls.valid[0][:20]

tensor([2, 8, 20, 30, 87, 510, 1570, 12,
408, 379,
 > 4196, 10, 8, 20, 30, 16, 13, 12216, 202,
509])

If you have manually written a Transform that performs all of your

preprocessing at once, turning raw items into a tuple with inputs and targets,

then TfmdLists is the class you need. You can directly convert it to a

DataLoaders object with the dataloaders method. This is what we will do in

our Siamese example later in this chapter.

In general, though, you will have two (or more) parallel pipelines of

transforms: one for processing your raw items into inputs and one to process

your raw items into targets. For instance, here, the pipeline we defined

processes only the raw text into inputs. If we want to do text classification, we

also have to process the labels into targets.

For this, we need to do two things. First we take the label name from the

parent folder. There is a function, parent_label, for this:

lbls = files.map(parent_label)
lbls

(#50000)
['pos','pos','pos','pos','pos','pos','pos','pos','pos','pos'...]

Then we need a Transform that will grab the unique items and build a vocab

with them during setup, then transform the string labels into integers when

called. fastai provides this for us; it’s called Categorize:

cat = Categorize()
cat.setup(lbls)

cat.vocab, cat(lbls[0])

((#2) ['neg','pos'], TensorCategory(1))

To do the whole setup automatically on our list of files, we can create a

TfmdLists as before:

tls_y = TfmdLists(files, [parent_label, Categorize()])
tls_y[0]

TensorCategory(1)

But then we end up with two separate objects for our inputs and targets,

which is not what we want. This is where Datasets comes to the rescue.

Datasets

Datasets will apply two (or more) pipelines in parallel to the same raw object

and build a tuple with the result. Like TfmdLists, it will automatically do the

setup for us, and when we index into a Datasets, it will return us a tuple with

the results of each pipeline:

x_tfms = [Tokenizer.from_folder(path), Numericalize]
y_tfms = [parent_label, Categorize()]
dsets = Datasets(files, [x_tfms, y_tfms])
x,y = dsets[0]
x[:20],y

Like a TfmdLists, we can pass along splits to a Datasets to split our data

between training and validation sets:

x_tfms = [Tokenizer.from_folder(path), Numericalize]
y_tfms = [parent_label, Categorize()]
dsets = Datasets(files, [x_tfms, y_tfms], splits=splits)

x,y = dsets.valid[0]
x[:20],y

(tensor([2, 8, 20, 30, 87, 510, 1570, 12,
408, 379,
 > 4196, 10, 8, 20, 30, 16, 13, 12216, 202,
509]),
 TensorCategory(0))

It can also decode any processed tuple or show it directly:

t = dsets.valid[0]
dsets.decode(t)

('xxbos xxmaj this movie had horrible lighting and terrible camera
movements .
 > xxmaj this movie is a jumpy horror flick with no meaning at all .
xxmaj the
 > slashes are totally fake looking . xxmaj it looks like some 17
year - old
 > idiot wrote this movie and a 10 year old kid shot it . xxmaj with
the worst
 > acting you can ever find . xxmaj people are tired of knives .
xxmaj at least
 > move on to guns or fire . xxmaj it has almost exact lines from "
when a xxmaj
 > stranger xxmaj calls " . xxmaj with gruesome killings , only crazy
people
 > would enjoy this movie . xxmaj it is obvious the writer does n\'t
have kids
 > or even care for them . i mean at show some mercy . xxmaj just to
sum it up ,
 > this movie is a " b " movie and it sucked . xxmaj just for your
own sake , do
 > n\'t even think about wasting your time watching this crappy movie
.',
 'neg')

The last step is to convert our Datasets object to a DataLoaders, which can be

done with the dataloaders method. Here we need to pass along a special

argument to take care of the padding problem (as we saw in the preceding

chapter). This needs to happen just before we batch the elements, so we pass

it to before_batch:

dls = dsets.dataloaders(bs=64, before_batch=pad_input)

dataloaders directly calls DataLoader on each subset of our Datasets. fastai’s

DataLoader expands the PyTorch class of the same name and is responsible

for collating the items from our datasets into batches. It has a lot of points of

customization, but the most important ones that you should know are as

follows:

after_item

Applied on each item after grabbing it inside the dataset. This is

the equivalent of item_tfms in DataBlock.

before_batch

Applied on the list of items before they are collated. This is the

ideal place to pad items to the same size.

after_batch

Applied on the batch as a whole after its construction. This is the

equivalent of batch_tfms in DataBlock.

As a conclusion, here is the full code necessary to prepare the data for text

classification:

tfms = [[Tokenizer.from_folder(path), Numericalize], [parent_label,
Categorize]]
files = get_text_files(path, folders = ['train', 'test'])
splits = GrandparentSplitter(valid_name='test')(files)
dsets = Datasets(files, tfms, splits=splits)
dls = dsets.dataloaders(dl_type=SortedDL, before_batch=pad_input)

The two differences from the previous code are the use of

GrandparentSplitter to split our training and validation data, and the

dl_type argument. This is to tell dataloaders to use the SortedDL class of

DataLoader, and not the usual one. SortedDL constructs batches by putting

samples of roughly the same lengths into batches.

This does the exact same thing as our previous DataBlock:

path = untar_data(URLs.IMDB)
dls = DataBlock(
 blocks=(TextBlock.from_folder(path),CategoryBlock),
 get_y = parent_label,
 get_items=partial(get_text_files, folders=['train', 'test']),
 splitter=GrandparentSplitter(valid_name='test')
).dataloaders(path)

But now you know how to customize every single piece of it!

Let’s practice what we just learned about using this mid-level API for data

preprocessing on a computer vision example now.

Applying the Mid-Level Data API: SiamesePair

A Siamese model takes two images and has to determine whether they are of

the same class. For this example, we will use the Pet dataset again and

prepare the data for a model that will have to predict whether two images of

pets are of the same breed. We will explain here how to prepare the data for

such a model, and then we will train that model in Chapter 15.

First things first—let’s get the images in our dataset:

from fastai.vision.all import *
path = untar_data(URLs.PETS)
files = get_image_files(path/"images")

If we didn’t care about showing our objects at all, we could directly create one

transform to completely preprocess that list of files. We will want to look at

those images, though, so we need to create a custom type. When you call the

show method on a TfmdLists or a Datasets object, it will decode items until it

reaches a type that contains a show method and use it to show the object.

That show method gets passed a ctx, which could be a matplotlib axis for

images or a row of a DataFrame for texts.

Here we create a SiameseImage object that subclasses Tuple and is intended

to contain three things: two images, and a Boolean that’s True if the images

are of the same breed. We also implement the special show method, such that

it concatenates the two images with a black line in the middle. Don’t worry

too much about the part that is in the if test (which is to show the

SiameseImage when the images are Python images, not tensors); the

important part is in the last three lines:

class SiameseImage(Tuple):
 def show(self, ctx=None, **kwargs):
 img1,img2,same_breed = self
 if not isinstance(img1, Tensor):
 if img2.size != img1.size: img2 = img2.resize(img1.size)
 t1,t2 = tensor(img1),tensor(img2)
 t1,t2 = t1.permute(2,0,1),t2.permute(2,0,1)
 else: t1,t2 = img1,img2
 line = t1.new_zeros(t1.shape[0], t1.shape[1], 10)
 return show_image(torch.cat([t1,line,t2], dim=2),
 title=same_breed, ctx=ctx)

Let’s create a first SiameseImage and check that our show method works:

img = PILImage.create(files[0])
s = SiameseImage(img, img, True)
s.show();

We can also try with a second image that’s not from the same class:

img1 = PILImage.create(files[1])
s1 = SiameseImage(img, img1, False)
s1.show();

The important thing with transforms that we saw before is that they dispatch

over tuples or their subclasses. That’s precisely why we chose to subclass

Tuple in this instance—this way, we can apply any transform that works on

images to our SiameseImage, and it will be applied on each image in the tuple:

s2 = Resize(224)(s1)
s2.show();

Here the Resize transform is applied to each of the two images, but not the

Boolean flag. Even if we have a custom type, we can thus benefit from all the

data augmentation transforms inside the library.

We are now ready to build the Transform that we will use to get our data

ready for a Siamese model. First, we will need a function to determine the

classes of all our images:

def label_func(fname):
 return re.match(r'^(.*)_\d+.jpg$', fname.name).groups()[0]

For each image, our transform will, with a probability of 0.5, draw an image

from the same class and return a SiameseImage with a true label, or draw an

image from another class and return a SiameseImage with a false label. This is

all done in the private _draw function. There is one difference between the

training and validation sets, which is why the transform needs to be

initialized with the splits: on the training set, we will make that random pick

each time we read an image, whereas on the validation set, we make this

random pick once and for all at initialization. This way, we get more varied

samples during training, but always the same validation set:

class SiameseTransform(Transform):
 def __init__(self, files, label_func, splits):

 self.labels = files.map(label_func).unique()
 self.lbl2files = {l: L(f for f in files if label_func(f) == l)
 for l in self.labels}
 self.label_func = label_func
 self.valid = {f: self._draw(f) for f in files[splits[1]]}

 def encodes(self, f):
 f2,t = self.valid.get(f, self._draw(f))
 img1,img2 = PILImage.create(f),PILImage.create(f2)
 return SiameseImage(img1, img2, t)

 def _draw(self, f):
 same = random.random() < 0.5
 cls = self.label_func(f)
 if not same:
 cls = random.choice(L(l for l in self.labels if l != cls))
 return random.choice(self.lbl2files[cls]),same

We can then create our main transform:

splits = RandomSplitter()(files)
tfm = SiameseTransform(files, label_func, splits)
tfm(files[0]).show();

In the mid-level API for data collection, we have two objects that can help us

apply transforms on a set of items: TfmdLists and Datasets. If you remember

what we have just seen, one applies a Pipeline of transforms and the other

applies several Pipelines of transforms in parallel, to build tuples. Here, our

main transform already builds the tuples, so we use TfmdLists:

tls = TfmdLists(files, tfm, splits=splits)
show_at(tls.valid, 0);

And we can finally get our data in DataLoaders by calling the dataloaders

method. One thing to be careful of here is that this method does not take

item_tfms and batch_tfms like a DataBlock. The fastai DataLoader has

several hooks that are named after events; here what we apply on the items

after they are grabbed is called after_item, and what we apply on the batch

once it’s built is called after_batch:

dls = tls.dataloaders(after_item=[Resize(224), ToTensor],
 after_batch=[IntToFloatTensor, Normalize.from_stats(*imagenet_stats)])

Note that we need to pass more transforms than usual—that’s because the

data block API usually adds them automatically:

ToTensor is the one that converts images to tensors (again, it’s applied

on every part of the tuple).

IntToFloatTensor converts the tensor of images containing integers

from 0 to 255 to a tensor of floats, and divides by 255 to make the

values between 0 and 1.

We can now train a model using this DataLoaders. It will need a bit more

customization than the usual model provided by cnn_learner since it has to

take two images instead of one, but we will see how to create such a model

and train it in Chapter 15.

Conclusion

fastai provides a layered API. It takes one line of code to grab the data when

it’s in one of the usual settings, making it easy for beginners to focus on

training a model without spending too much time assembling the data. Then,

the high-level data block API gives you more flexibility by allowing you to

mix and match building blocks. Underneath it, the mid-level API gives you

greater flexibility to apply transformations on your items. In your real-world

problems, this is probably what you will need to use, and we hope it makes

the step of data-munging as easy as possible.

Questionnaire

1. Why do we say that fastai has a “layered” API? What does it mean?

2. Why does a Transform have a decode method? What does it do?

3. Why does a Transform have a setup method? What does it do?

4. How does a Transform work when called on a tuple?

5. Which methods do you need to implement when writing your own

Transform?

6. Write a Normalize transform that fully normalizes items (subtract the

mean and divide by the standard deviation of the dataset), and that

can decode that behavior. Try not to peek!

7. Write a Transform that does the numericalization of tokenized texts

(it should set its vocab automatically from the dataset seen and have a

decode method). Look at the source code of fastai if you need help.

8. What is a Pipeline?

9. What is a TfmdLists?

10. What is a Datasets? How is it different from a TfmdLists?

11. Why are TfmdLists and Datasets named with an “s”?

12. How can you build a DataLoaders from a TfmdLists or a Datasets?

13. How do you pass item_tfms and batch_tfms when building a

DataLoaders from a TfmdLists or a Datasets?

14. What do you need to do when you want to have your custom items

work with methods like show_batch or show_results?

15. Why can we easily apply fastai data augmentation transforms to the

SiamesePair we built?

Further Research

1. Use the mid-level API to prepare the data in DataLoaders on your own

datasets. Try this with the Pet dataset and the Adult dataset from

Chapter 1.

2. Look at the Siamese tutorial in the fastai documentation to learn how

to customize the behavior of show_batch and show_results for new

types of items. Implement it in your own project.

Understanding fastai’s Applications: Wrap Up

Congratulations—you’ve completed all of the chapters in this book that cover

the key practical parts of training models and using deep learning! You know

how to use all of fastai’s built-in applications, and how to customize them

https://docs.fast.ai/

using the data block API and loss functions. You even know how to create a

neural network from scratch and train it! (And hopefully you now know some

of the questions to ask to make sure your creations help improve society too.)

The knowledge you already have is enough to create full working prototypes

of many types of neural network application. More importantly, it will help

you understand the capabilities and limitations of deep learning models, and

how to design a system that’s well adapted to them.

In the rest of this book, we will be pulling apart those applications, piece by

piece, to understand the foundations they are built on. This is important

knowledge for a deep learning practitioner, because it allows you to inspect

and debug models that you build and to create new applications that are

customized for your particular projects.

Part III. Foundations of Deep

Learning

Chapter 12. A Language Model from

Scratch

We’re now ready to go deep…deep into deep learning! You already

learned how to train a basic neural network, but how do you go from

there to creating state-of-the-art models? In this part of the book, we’re

going to uncover all of the mysteries, starting with language models.

You saw in Chapter 10 how to fine-tune a pretrained language model to

build a text classifier. In this chapter, we will explain exactly what is

inside that model and what an RNN is. First, let’s gather some data that

will allow us to quickly prototype our various models.

The Data

Whenever we start working on a new problem, we always first try to

think of the simplest dataset we can that will allow us to try out methods

quickly and easily, and interpret the results. When we started working

on language modeling a few years ago, we didn’t find any datasets that

would allow for quick prototyping, so we made one. We call it Human

Numbers, and it simply contains the first 10,000 numbers written out

in English.

JEREMY SAYS
One of the most common practical mistakes I see even among highly experienced

practitioners is failing to use appropriate datasets at appropriate times during the

analysis process. In particular, most people tend to start with datasets that are too

big and too complicated.

We can download, extract, and take a look at our dataset in the usual

way:

from fastai.text.all import *
path = untar_data(URLs.HUMAN_NUMBERS)

path.ls()

(#2) [Path('train.txt'),Path('valid.txt')]

Let’s open those two files and see what’s inside. At first, we’ll join all of

the texts together and ignore the train/valid split given by the dataset

(we’ll come back to that later):

lines = L()
with open(path/'train.txt') as f: lines += L(*f.readlines())
with open(path/'valid.txt') as f: lines += L(*f.readlines())
lines

(#9998) ['one \n','two \n','three \n','four \n','five \n','six
\n','seven
 > \n','eight \n','nine \n','ten \n'...]

We take all those lines and concatenate them in one big stream. To

mark when we go from one number to the next, we use a . as a

separator:

text = ' . '.join([l.strip() for l in lines])
text[:100]

'one . two . three . four . five . six . seven . eight . nine .
ten . eleven .
 > twelve . thirteen . fo'

We can tokenize this dataset by splitting on spaces:

tokens = text.split(' ')
tokens[:10]

['one', '.', 'two', '.', 'three', '.', 'four', '.', 'five', '.']

To numericalize, we have to create a list of all the unique tokens (our

vocab):

vocab = L(*tokens).unique()
vocab

(#30)
['one','.','two','three','four','five','six','seven','eight','nine'...]

Then we can convert our tokens into numbers by looking up the index of

each in the vocab:

word2idx = {w:i for i,w in enumerate(vocab)}
nums = L(word2idx[i] for i in tokens)
nums

(#63095) [0,1,2,1,3,1,4,1,5,1...]

Now that we have a small dataset on which language modeling should

be an easy task, we can build our first model.

Our First Language Model from Scratch

One simple way to turn this into a neural network would be to specify

that we are going to predict each word based on the previous three

words. We could create a list of every sequence of three words as our

independent variables, and the next word after each sequence as the

dependent variable.

We can do that with plain Python. Let’s do it first with tokens just to

confirm what it looks like:

L((tokens[i:i+3], tokens[i+3]) for i in range(0,len(tokens)-4,3))

(#21031) [(['one', '.', 'two'], '.'),(['.', 'three', '.'],
'four'),(['four',
 > '.', 'five'], '.'),(['.', 'six', '.'], 'seven'),(['seven',
'.', 'eight'],
 > '.'),(['.', 'nine', '.'], 'ten'),(['ten', '.', 'eleven'],
'.'),(['.',
 > 'twelve', '.'], 'thirteen'),(['thirteen', '.', 'fourteen'],
'.'),(['.',
 > 'fifteen', '.'], 'sixteen')...]

Now we will do it with tensors of the numericalized values, which is

what the model will actually use:

seqs = L((tensor(nums[i:i+3]), nums[i+3]) for i in
range(0,len(nums)-4,3))
seqs

(#21031) [(tensor([0, 1, 2]), 1),(tensor([1, 3, 1]), 4),
(tensor([4, 1, 5]),
 > 1),(tensor([1, 6, 1]), 7),(tensor([7, 1, 8]), 1),(tensor([1,
9, 1]),
 > 10),(tensor([10, 1, 11]), 1),(tensor([1, 12, 1]), 13),
(tensor([13, 1,
 > 14]), 1),(tensor([1, 15, 1]), 16)...]

We can batch those easily using the DataLoader class. For now, we will

split the sequences randomly:

bs = 64
cut = int(len(seqs) * 0.8)
dls = DataLoaders.from_dsets(seqs[:cut], seqs[cut:], bs=64,
shuffle=False)

We can now create a neural network architecture that takes three words

as input, and returns a prediction of the probability of each possible

next word in the vocab. We will use three standard linear layers, but

with two tweaks.

The first tweak is that the first linear layer will use only the first word’s

embedding as activations, the second layer will use the second word’s

embedding plus the first layer’s output activations, and the third layer

will use the third word’s embedding plus the second layer’s output

activations. The key effect is that every word is interpreted in the

information context of any words preceding it.

The second tweak is that each of these three layers will use the same

weight matrix. The way that one word impacts the activations from

previous words should not change depending on the position of a word.

In other words, activation values will change as data moves through the

layers, but the layer weights themselves will not change from layer to

layer. So, a layer does not learn one sequence position; it must learn to

handle all positions.

Since layer weights do not change, you might think of the sequential

layers as “the same layer” repeated. In fact, PyTorch makes this

concrete; we can create just one layer and use it multiple times.

Our Language Model in PyTorch

We can now create the language model module that we described

earlier:

class LMModel1(Module):
 def __init__(self, vocab_sz, n_hidden):
 self.i_h = nn.Embedding(vocab_sz, n_hidden)
 self.h_h = nn.Linear(n_hidden, n_hidden)
 self.h_o = nn.Linear(n_hidden,vocab_sz)

 def forward(self, x):
 h = F.relu(self.h_h(self.i_h(x[:,0])))
 h = h + self.i_h(x[:,1])
 h = F.relu(self.h_h(h))
 h = h + self.i_h(x[:,2])
 h = F.relu(self.h_h(h))
 return self.h_o(h)

As you see, we have created three layers:

The embedding layer (i_h, for input to hidden)

The linear layer to create the activations for the next word (h_h,

for hidden to hidden)

A final linear layer to predict the fourth word (h_o, for hidden to

output)

This might be easier to represent in pictorial form, so let’s define a

simple pictorial representation of basic neural networks. Figure 12-1

shows how we’re going to represent a neural net with one hidden layer.

Figure 12-1. Pictorial representation of a simple neural network

Each shape represents activations: rectangle for input, circle for hidden

(inner) layer activations, and triangle for output activations. We will use

those shapes (summarized in Figure 12-2) in all the diagrams in this

chapter.

Figure 12-2. Shapes used in our pictorial representations

An arrow represents the actual layer computation—i.e., the linear layer

followed by the activation function. Using this notation, Figure 12-3

shows what our simple language model looks like.

Figure 12-3. Representation of our basic language model

To simplify things, we’ve removed the details of the layer computation

from each arrow. We’ve also color-coded the arrows, such that all

arrows with the same color have the same weight matrix. For instance,

all the input layers use the same embedding matrix, so they all have the

same color (green).

Let’s try training this model and see how it goes:

learn = Learner(dls, LMModel1(len(vocab), 64), loss_func=F.cross_entropy,
 metrics=accuracy)
learn.fit_one_cycle(4, 1e-3)

epoch train_loss valid_loss accuracy time

0 1.824297 1.970941 0.467554 00:02

1 1.386973 1.823242 0.467554 00:02

2 1.417556 1.654497 0.494414 00:02

3 1.376440 1.650849 0.494414 00:02

To see if this is any good, let’s check what a very simple model would

give us. In this case, we could always predict the most common token,

so let’s find out which token is most often the target in our validation

set:

n,counts = 0,torch.zeros(len(vocab))
for x,y in dls.valid:
 n += y.shape[0]
 for i in range_of(vocab): counts[i] += (y==i).long().sum()
idx = torch.argmax(counts)
idx, vocab[idx.item()], counts[idx].item()/n

(tensor(29), 'thousand', 0.15165200855716662)

The most common token has the index 29, which corresponds to the

token thousand. Always predicting this token would give us an accuracy

of roughly 15%, so we are faring way better!

ALEXIS SAYS
My first guess was that the separator would be the most common token, since there

is one for every number. But looking at tokens reminded me that large numbers are

written with many words, so on the way to 10,000 you write “thousand” a lot: five

thousand, five thousand and one, five thousand and two, etc. Oops! Looking at your

data is great for noticing subtle features as well as embarrassingly obvious ones.

This is a nice first baseline. Let’s see how we can refactor it with a loop.

Our First Recurrent Neural Network

Looking at the code for our module, we could simplify it by replacing

the duplicated code that calls the layers with a for loop. In addition to

making our code simpler, this will have the benefit that we will be able

to apply our module equally well to token sequences of different lengths

—we won’t be restricted to token lists of length three:

class LMModel2(Module):
 def __init__(self, vocab_sz, n_hidden):
 self.i_h = nn.Embedding(vocab_sz, n_hidden)
 self.h_h = nn.Linear(n_hidden, n_hidden)
 self.h_o = nn.Linear(n_hidden,vocab_sz)

 def forward(self, x):
 h = 0
 for i in range(3):
 h = h + self.i_h(x[:,i])
 h = F.relu(self.h_h(h))
 return self.h_o(h)

Let’s check that we get the same results using this refactoring:

learn = Learner(dls, LMModel2(len(vocab), 64), loss_func=F.cross_entropy,
 metrics=accuracy)

learn.fit_one_cycle(4, 1e-3)

epoch train_loss valid_loss accuracy time

0 1.816274 1.964143 0.460185 00:02

1 1.423805 1.739964 0.473259 00:02

2 1.430327 1.685172 0.485382 00:02

3 1.388390 1.657033 0.470406 00:02

We can also refactor our pictorial representation in exactly the same

way, as shown in Figure 12-4 (we’re also removing the details of

activation sizes here, and using the same arrow colors as in Figure 12-3).

Figure 12-4. Basic recurrent neural network

You will see that a set of activations is being updated each time through

the loop, stored in the variable h—this is called the hidden state.

JARGON: HIDDEN STATE
The activations that are updated at each step of a recurrent neural network.

A neural network that is defined using a loop like this is called a

recurrent neural network (RNN). It is important to realize that an RNN

is not a complicated new architecture, but simply a refactoring of a

multilayer neural network using a for loop.

ALEXIS SAYS
My true opinion: if they were called “looping neural networks,” or LNNs, they would

seem 50% less daunting!

Now that we know what an RNN is, let’s try to make it a little bit better.

Improving the RNN

Looking at the code for our RNN, one thing that seems problematic is

that we are initializing our hidden state to zero for every new input

sequence. Why is that a problem? We made our sample sequences short

so they would fit easily into batches. But if we order those samples

correctly, the sample sequences will be read in order by the model,

exposing the model to long stretches of the original sequence.

Another thing we can look at is having more signal: why predict only the

fourth word when we could use the intermediate predictions to also

predict the second and third words? Let’s see how we can implement

those changes, starting with adding some state.

Maintaining the State of an RNN

Because we initialize the model’s hidden state to zero for each new

sample, we are throwing away all the information we have about the

sentences we have seen so far, which means that our model doesn’t

actually know where we are up to in the overall counting sequence. This

is easily fixed; we can simply move the initialization of the hidden state

to __init__.

But this fix will create its own subtle, but important, problem. It

effectively makes our neural network as deep as the entire number of

tokens in our document. For instance, if there were 10,000 tokens in

our dataset, we would be creating a 10,000-layer neural network.

To see why this is the case, consider the original pictorial representation

of our recurrent neural network in Figure 12-3, before refactoring it

with a for loop. You can see each layer corresponds with one token

input. When we talk about the representation of a recurrent neural

network before refactoring with the for loop, we call this the unrolled

representation. It is often helpful to consider the unrolled

representation when trying to understand an RNN.

The problem with a 10,000-layer neural network is that if and when you

get to the 10,000th word of the dataset, you will still need to calculate

the derivatives all the way back to the first layer. This is going to be slow

indeed, and memory-intensive. It is unlikely that you’ll be able to store

even one mini-batch on your GPU.

The solution to this problem is to tell PyTorch that we do not want to

backpropagate the derivatives through the entire implicit neural

network. Instead, we will keep just the last three layers of gradients. To

remove all of the gradient history in PyTorch, we use the detach

method.

Here is the new version of our RNN. It is now stateful, because it

remembers its activations between different calls to forward, which

represent its use for different samples in the batch:

class LMModel3(Module):
 def __init__(self, vocab_sz, n_hidden):
 self.i_h = nn.Embedding(vocab_sz, n_hidden)
 self.h_h = nn.Linear(n_hidden, n_hidden)
 self.h_o = nn.Linear(n_hidden,vocab_sz)
 self.h = 0

 def forward(self, x):
 for i in range(3):
 self.h = self.h + self.i_h(x[:,i])
 self.h = F.relu(self.h_h(self.h))
 out = self.h_o(self.h)
 self.h = self.h.detach()
 return out

 def reset(self): self.h = 0

This model will have the same activations whatever sequence length we

pick, because the hidden state will remember the last activation from

the previous batch. The only thing that will be different is the gradients

computed at each step: they will be calculated on only sequence length

tokens in the past, instead of the whole stream. This approach is called

backpropagation through time (BPTT).

JARGON: BACKPROPAGATION THROUGH TIME
Treating a neural net with effectively one layer per time step (usually refactored

using a loop) as one big model, and calculating gradients on it in the usual way. To

avoid running out of memory and time, we usually use truncated BPTT, which

“detaches” the history of computation steps in the hidden state every few time steps.

To use LMModel3, we need to make sure the samples are going to be seen

in a certain order. As we saw in Chapter 10, if the first line of the first

batch is our dset[0], the second batch should have dset[1] as the first

line, so that the model sees the text flowing.

LMDataLoader was doing this for us in Chapter 10. This time we’re going

to do it ourselves.

To do this, we are going to rearrange our dataset. First we divide the

samples into m = len(dset) // bs groups (this is the equivalent of

splitting the whole concatenated dataset into, for example, 64 equally

sized pieces, since we’re using bs=64 here). m is the length of each of

these pieces. For instance, if we’re using our whole dataset (although

we’ll actually split it into train versus valid in a moment), we have this:

m = len(seqs)//bs
m,bs,len(seqs)

(328, 64, 21031)

The first batch will be composed of the samples

(0, m, 2*m, ..., (bs-1)*m)

the second batch of the samples

(1, m+1, 2*m+1, ..., (bs-1)*m+1)

and so forth. This way, at each epoch, the model will see a chunk of

contiguous text of size 3*m (since each text is of size 3) on each line of

the batch.

The following function does that reindexing:

def group_chunks(ds, bs):
 m = len(ds) // bs
 new_ds = L()
 for i in range(m): new_ds += L(ds[i + m*j] for j in range(bs))
 return new_ds

Then we just pass drop_last=True when building our DataLoaders to

drop the last batch that does not have a shape of bs. We also pass

shuffle=False to make sure the texts are read in order:

cut = int(len(seqs) * 0.8)
dls = DataLoaders.from_dsets(
 group_chunks(seqs[:cut], bs),
 group_chunks(seqs[cut:], bs),
 bs=bs, drop_last=True, shuffle=False)

The last thing we add is a little tweak of the training loop via a Callback.

We will talk more about callbacks in Chapter 16; this one will call the

reset method of our model at the beginning of each epoch and before

each validation phase. Since we implemented that method to set the

hidden state of the model to zero, this will make sure we start with a

clean state before reading those continuous chunks of text. We can also

start training a bit longer:

learn = Learner(dls, LMModel3(len(vocab), 64), loss_func=F.cross_entropy,
 metrics=accuracy, cbs=ModelResetter)
learn.fit_one_cycle(10, 3e-3)

epoch train_loss valid_loss accuracy time

0 1.677074 1.827367 0.467548 00:02

1 1.282722 1.870913 0.388942 00:02

2 1.090705 1.651793 0.462500 00:02

3 1.005092 1.613794 0.516587 00:02

4 0.965975 1.560775 0.551202 00:02

5 0.916182 1.595857 0.560577 00:02

6 0.897657 1.539733 0.574279 00:02

7 0.836274 1.585141 0.583173 00:02

8 0.805877 1.629808 0.586779 00:02

9 0.795096 1.651267 0.588942 00:02

This is already better! The next step is to use more targets and compare

them to the intermediate predictions.

Creating More Signal

Another problem with our current approach is that we predict only one

output word for each three input words. As a result, the amount of

signal that we are feeding back to update weights with is not as large as

it could be. It would be better if we predicted the next word after every

single word, rather than every three words, as shown in Figure 12-5.

Figure 12-5. RNN predicting after every token

This is easy enough to add. We need to first change our data so that the

dependent variable has each of the three next words after each of our

three input words. Instead of 3, we use an attribute, sl (for sequence

length), and make it a bit bigger:

sl = 16
seqs = L((tensor(nums[i:i+sl]), tensor(nums[i+1:i+sl+1]))
 for i in range(0,len(nums)-sl-1,sl))
cut = int(len(seqs) * 0.8)
dls = DataLoaders.from_dsets(group_chunks(seqs[:cut], bs),
 group_chunks(seqs[cut:], bs),
 bs=bs, drop_last=True, shuffle=False)

Looking at the first element of seqs, we can see that it contains two lists

of the same size. The second list is the same as the first, but offset by

one element:

[L(vocab[o] for o in s) for s in seqs[0]]

[(#16)
['one','.','two','.','three','.','four','.','five','.'...],
 (#16)
['.','two','.','three','.','four','.','five','.','six'...]]

Now we need to modify our model so that it outputs a prediction after

every word, rather than just at the end of a three-word sequence:

class LMModel4(Module):
 def __init__(self, vocab_sz, n_hidden):
 self.i_h = nn.Embedding(vocab_sz, n_hidden)
 self.h_h = nn.Linear(n_hidden, n_hidden)
 self.h_o = nn.Linear(n_hidden,vocab_sz)
 self.h = 0

 def forward(self, x):
 outs = []
 for i in range(sl):
 self.h = self.h + self.i_h(x[:,i])
 self.h = F.relu(self.h_h(self.h))
 outs.append(self.h_o(self.h))
 self.h = self.h.detach()
 return torch.stack(outs, dim=1)

 def reset(self): self.h = 0

This model will return outputs of shape bs x sl x vocab_sz (since we

stacked on dim=1). Our targets are of shape bs x sl, so we need to

flatten those before using them in F.cross_entropy:

def loss_func(inp, targ):
 return F.cross_entropy(inp.view(-1, len(vocab)), targ.view(-1))

We can now use this loss function to train the model:

learn = Learner(dls, LMModel4(len(vocab), 64), loss_func=loss_func,
 metrics=accuracy, cbs=ModelResetter)
learn.fit_one_cycle(15, 3e-3)

epoch train_loss valid_loss accuracy time

0 3.103298 2.874341 0.212565 00:01

1 2.231964 1.971280 0.462158 00:01

2 1.711358 1.813547 0.461182 00:01

3 1.448516 1.828176 0.483236 00:01

4 1.288630 1.659564 0.520671 00:01

5 1.161470 1.714023 0.554932 00:01

6 1.055568 1.660916 0.575033 00:01

7 0.960765 1.719624 0.591064 00:01

8 0.870153 1.839560 0.614665 00:01

9 0.808545 1.770278 0.624349 00:01

10 0.758084 1.842931 0.610758 00:01

11 0.719320 1.799527 0.646566 00:01

12 0.683439 1.917928 0.649821 00:01

13 0.660283 1.874712 0.628581 00:01

14 0.646154 1.877519 0.640055 00:01

We need to train for longer, since the task has changed a bit and is more

complicated now. But we end up with a good result…at least,

sometimes. If you run it a few times, you’ll see that you can get quite

different results on different runs. That’s because effectively we have a

very deep network here, which can result in very large or very small

gradients. We’ll see in the next part of this chapter how to deal with this.

Now, the obvious way to get a better model is to go deeper: we have only

one linear layer between the hidden state and the output activations in

our basic RNN, so maybe we’ll get better results with more.

Multilayer RNNs

In a multilayer RNN, we pass the activations from our recurrent neural

network into a second recurrent neural network, as in Figure 12-6.

Figure 12-6. 2-layer RNN

The unrolled representation is shown in Figure 12-7 (similar to

Figure 12-3).

Figure 12-7. 2-layer unrolled RNN

Let’s see how to implement this in practice.

The Model

We can save some time by using PyTorch’s RNN class, which implements

exactly what we created earlier, but also gives us the option to stack

multiple RNNs, as we have discussed:

class LMModel5(Module):
 def __init__(self, vocab_sz, n_hidden, n_layers):
 self.i_h = nn.Embedding(vocab_sz, n_hidden)
 self.rnn = nn.RNN(n_hidden, n_hidden, n_layers, batch_first=True)
 self.h_o = nn.Linear(n_hidden, vocab_sz)
 self.h = torch.zeros(n_layers, bs, n_hidden)

 def forward(self, x):
 res,h = self.rnn(self.i_h(x), self.h)
 self.h = h.detach()
 return self.h_o(res)

 def reset(self): self.h.zero_()

learn = Learner(dls, LMModel5(len(vocab), 64, 2),
 loss_func=CrossEntropyLossFlat(),
 metrics=accuracy, cbs=ModelResetter)
learn.fit_one_cycle(15, 3e-3)

epoch train_loss valid_loss accuracy time

0 3.055853 2.591640 0.437907 00:01

1 2.162359 1.787310 0.471598 00:01

2 1.710663 1.941807 0.321777 00:01

3 1.520783 1.999726 0.312012 00:01

4 1.330846 2.012902 0.413249 00:01

5 1.163297 1.896192 0.450684 00:01

6 1.033813 2.005209 0.434814 00:01

7 0.919090 2.047083 0.456706 00:01

8 0.822939 2.068031 0.468831 00:01

9 0.750180 2.136064 0.475098 00:01

10 0.695120 2.139140 0.485433 00:01

11 0.655752 2.155081 0.493652 00:01

12 0.629650 2.162583 0.498535 00:01

13 0.613583 2.171649 0.491048 00:01

14 0.604309 2.180355 0.487874 00:01

Now that’s disappointing…our previous single-layer RNN performed

better. Why? The reason is that we have a deeper model, leading to

exploding or vanishing activations.

Exploding or Disappearing Activations

In practice, creating accurate models from this kind of RNN is difficult.

We will get better results if we call detach less often, and have more

layers—this gives our RNN a longer time horizon to learn from and

richer features to create. But it also means we have a deeper model to

train. The key challenge in the development of deep learning has been

figuring out how to train these kinds of models.

This is challenging because of what happens when you multiply by a

matrix many times. Think about what happens when you multiply by a

number many times. For example, if you multiply by 2, starting at 1, you

get the sequence 1, 2, 4, 8,…and after 32 steps, you are already at

4,294,967,296. A similar issue happens if you multiply by 0.5: you get

0.5, 0.25, 0.125…and after 32 steps, it’s 0.00000000023. As you can

see, multiplying by a number even slightly higher or lower than 1 results

in an explosion or disappearance of our starting number, after just a few

repeated multiplications.

Because matrix multiplication is just multiplying numbers and adding

them up, exactly the same thing happens with repeated matrix

multiplications. And that’s all a deep neural network is—each extra layer

is another matrix multiplication. This means that it is very easy for a

deep neural network to end up with extremely large or extremely small

numbers.

This is a problem, because the way computers store numbers (known as

floating point) means that they become less and less accurate the

further away the numbers get from zero. The diagram in Figure 12-8,

from the excellent article “What You Never Wanted to Know about

Floating Point but Will Be Forced to Find Out”, shows how the precision

of floating-point numbers varies over the number line.

https://oreil.ly/c_kG9

Figure 12-8. Precision of floating-point numbers

This inaccuracy means that often the gradients calculated for updating

the weights end up as zero or infinity for deep networks. This is

commonly referred to as the vanishing gradients or exploding

gradients problem. It means that in SGD, the weights are either not

updated at all or jump to infinity. Either way, they won’t improve with

training.

Researchers have developed ways to tackle this problem, which we will

be discussing later in the book. One option is to change the definition of

a layer in a way that makes it less likely to have exploding activations.

We’ll look at the details of how this is done in Chapter 13, when we

discuss batch normalization, and Chapter 14, when we discuss ResNets,

although these details don’t generally matter in practice (unless you are

a researcher who is creating new approaches to solving this problem).

Another strategy for dealing with this is by being careful about

initialization, which is a topic we’ll investigate in Chapter 17.

For RNNs, two types of layers are frequently used to avoid exploding

activations: gated recurrent units (GRUs) and long short-term memory

(LSTM) layers. Both of these are available in PyTorch and are drop-in

replacements for the RNN layer. We will cover only LSTMs in this book;

plenty of good tutorials online explain GRUs, which are a minor variant

on the LSTM design.

LSTM

LSTM is an architecture that was introduced back in 1997 by Jürgen

Schmidhuber and Sepp Hochreiter. In this architecture, there are not

one, but two, hidden states. In our base RNN, the hidden state is the

output of the RNN at the previous time step. That hidden state is then

responsible for two things:

Having the right information for the output layer to predict the

correct next token

Retaining memory of everything that happened in the sentence

Consider, for example, the sentences “Henry has a dog and he likes his

dog very much” and “Sophie has a dog and she likes her dog very much.”

It’s very clear that the RNN needs to remember the name at the

beginning of the sentence to be able to predict he/she or his/her.

In practice, RNNs are really bad at retaining memory of what happened

much earlier in the sentence, which is the motivation to have another

hidden state (called cell state) in the LSTM. The cell state will be

responsible for keeping long short-term memory, while the hidden

state will focus on the next token to predict. Let’s take a closer look at

how this is achieved and build an LSTM from scratch.

Building an LSTM from Scratch

In order to build an LSTM, we first have to understand its architecture.

Figure 12-9 shows its inner structure.

Figure 12-9. Architecture of an LSTM

In this picture, our input xt enters on the left with the previous hidden

state (ht−1) and cell state (ct−1). The four orange boxes represent four

layers (our neural nets), with the activation being either sigmoid (σ) or

tanh. tanh is just a sigmoid function rescaled to the range –1 to 1. Its

mathematical expression can be written like this:

tanh (x) =
e

x + e
−x

ex − e−x
= 2σ(2x) − 1

where σ is the sigmoid function. The green circles in the figure are

elementwise operations. What goes out on the right is the new hidden

state (ht) and new cell state (ct), ready for our next input. The new

hidden state is also used as output, which is why the arrow splits to go

up.

Let’s go over the four neural nets (called gates) one by one and explain

the diagram—but before this, notice how very little the cell state (at the

top) is changed. It doesn’t even go directly through a neural net! This is

exactly why it will carry on a longer-term state.

First, the arrows for input and old hidden state are joined together. In

the RNN we wrote earlier in this chapter, we were adding them

together. In the LSTM, we stack them in one big tensor. This means the

dimension of our embeddings (which is the dimension of xt) can be

different from the dimension of our hidden state. If we call those n_in

and n_hid, the arrow at the bottom is of size n_in + n_hid; thus all the

neural nets (orange boxes) are linear layers with n_in + n_hid inputs

and n_hid outputs.

The first gate (looking from left to right) is called the forget gate. Since

it’s a linear layer followed by a sigmoid, its output will consist of scalars

between 0 and 1. We multiply this result by the cell state to determine

which information to keep and which to throw away: values closer to 0

are discarded, and values closer to 1 are kept. This gives the LSTM the

ability to forget things about its long-term state. For instance, when

crossing a period or an xxbos token, we would expect it to (have learned

to) reset its cell state.

The second gate is called the input gate. It works with the third gate

(which doesn’t really have a name but is sometimes called the cell gate)

to update the cell state. For instance, we may see a new gender pronoun,

in which case we’ll need to replace the information about gender that

the forget gate removed. Similar to the forget gate, the input gate

decides which elements of the cell state to update (values close to 1) or

not (values close to 0). The third gate determines what those updated

values are, in the range of –1 to 1 (thanks to the tanh function). The

result is added to the cell state.

The last gate is the output gate. It determines which information from

the cell state to use to generate the output. The cell state goes through a

tanh before being combined with the sigmoid output from the output

gate, and the result is the new hidden state. In terms of code, we can

write the same steps like this:

class LSTMCell(Module):
 def __init__(self, ni, nh):
 self.forget_gate = nn.Linear(ni + nh, nh)
 self.input_gate = nn.Linear(ni + nh, nh)
 self.cell_gate = nn.Linear(ni + nh, nh)
 self.output_gate = nn.Linear(ni + nh, nh)

 def forward(self, input, state):
 h,c = state
 h = torch.stack([h, input], dim=1)
 forget = torch.sigmoid(self.forget_gate(h))
 c = c * forget
 inp = torch.sigmoid(self.input_gate(h))
 cell = torch.tanh(self.cell_gate(h))
 c = c + inp * cell
 out = torch.sigmoid(self.output_gate(h))
 h = outgate * torch.tanh(c)
 return h, (h,c)

In practice, we can then refactor the code. Also, in terms of

performance, it’s better to do one big matrix multiplication than four

smaller ones (that’s because we launch the special fast kernel on the

GPU only once, and it gives the GPU more work to do in parallel). The

stacking takes a bit of time (since we have to move one of the tensors

around on the GPU to have it all in a contiguous array), so we use two

separate layers for the input and the hidden state. The optimized and

refactored code then looks like this:

class LSTMCell(Module):
 def __init__(self, ni, nh):
 self.ih = nn.Linear(ni,4*nh)
 self.hh = nn.Linear(nh,4*nh)

 def forward(self, input, state):
 h,c = state
 # One big multiplication for all the gates is better than 4 smaller
ones
 gates = (self.ih(input) + self.hh(h)).chunk(4, 1)
 ingate,forgetgate,outgate = map(torch.sigmoid, gates[:3])
 cellgate = gates[3].tanh()

 c = (forgetgate*c) + (ingate*cellgate)
 h = outgate * c.tanh()
 return h, (h,c)

Here we use the PyTorch chunk method to split our tensor into four

pieces. It works like this:

t = torch.arange(0,10); t

tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

t.chunk(2)

(tensor([0, 1, 2, 3, 4]), tensor([5, 6, 7, 8, 9]))

Let’s now use this architecture to train a language model!

Training a Language Model Using LSTMs

Here is the same network as LMModel5, using a two-layer LSTM. We can

train it at a higher learning rate, for a shorter time, and get better

accuracy:

class LMModel6(Module):
 def __init__(self, vocab_sz, n_hidden, n_layers):

 self.i_h = nn.Embedding(vocab_sz, n_hidden)
 self.rnn = nn.LSTM(n_hidden, n_hidden, n_layers,
batch_first=True)
 self.h_o = nn.Linear(n_hidden, vocab_sz)
 self.h = [torch.zeros(n_layers, bs, n_hidden) for _ in range(2)]

 def forward(self, x):
 res,h = self.rnn(self.i_h(x), self.h)
 self.h = [h_.detach() for h_ in h]
 return self.h_o(res)

 def reset(self):
 for h in self.h: h.zero_()

learn = Learner(dls, LMModel6(len(vocab), 64, 2),
 loss_func=CrossEntropyLossFlat(),
 metrics=accuracy, cbs=ModelResetter)
learn.fit_one_cycle(15, 1e-2)

epoch train_loss valid_loss accuracy time

0 3.000821 2.663942 0.438314 00:02

1 2.139642 2.184780 0.240479 00:02

2 1.607275 1.812682 0.439779 00:02

3 1.347711 1.830982 0.497477 00:02

4 1.123113 1.937766 0.594401 00:02

5 0.852042 2.012127 0.631592 00:02

6 0.565494 1.312742 0.725749 00:02

7 0.347445 1.297934 0.711263 00:02

8 0.208191 1.441269 0.731201 00:02

9 0.126335 1.569952 0.737305 00:02

10 0.079761 1.427187 0.754150 00:02

11 0.052990 1.494990 0.745117 00:02

12 0.039008 1.393731 0.757894 00:02

13 0.031502 1.373210 0.758464 00:02

14 0.028068 1.368083 0.758464 00:02

Now that’s better than a multilayer RNN! We can still see there is a bit

of overfitting, however, which is a sign that a bit of regularization might

help.

Regularizing an LSTM

Recurrent neural networks, in general, are hard to train, because of the

problem of vanishing activations and gradients we saw before. Using

LSTM (or GRU) cells makes training easier than with vanilla RNNs, but

they are still very prone to overfitting. Data augmentation, while a

possibility, is less often used for text data than for images because in

most cases it requires another model to generate random

augmentations (e.g., by translating the text into another language and

then back into the original language). Overall, data augmentation for

text data is currently not a well-explored space.

However, we can use other regularization techniques instead to reduce

overfitting, which were thoroughly studied for use with LSTMs in the

paper “Regularizing and Optimizing LSTM Language Models” by

Stephen Merity et al. This paper showed how effective use of dropout,

activation regularization, and temporal activation regularization could

allow an LSTM to beat state-of-the-art results that previously required

much more complicated models. The authors called an LSTM using

these techniques an AWD-LSTM. We’ll look at each of these techniques

in turn.

Dropout

Dropout is a regularization technique that was introduced by Geoffrey

Hinton et al. in “Improving Neural Networks by Preventing Co-

Adaptation of Feature Detectors”. The basic idea is to randomly change

some activations to zero at training time. This makes sure all neurons

actively work toward the output, as seen in Figure 12-10 (from

“Dropout: A Simple Way to Prevent Neural Networks from Overfitting”

by Nitish Srivastava et al.).

https://oreil.ly/Rf-OG
https://oreil.ly/-_xie
https://oreil.ly/pYNxF

Figure 12-10. Applying dropout in a neural network (courtesy of Nitish Srivastava et al.)

Hinton used a nice metaphor when he explained, in an interview, the

inspiration for dropout:

I went to my bank. The tellers kept changing, and I asked one of

them why. He said he didn’t know but they got moved around a lot. I

figured it must be because it would require cooperation between

employees to successfully defraud the bank. This made me realize

that randomly removing a different subset of neurons on each

example would prevent conspiracies and thus reduce overfitting.

In the same interview, he also explained that neuroscience provided

additional inspiration:

We don’t really know why neurons spike. One theory is that they

want to be noisy so as to regularize, because we have many more

parameters than we have data points. The idea of dropout is that if

you have noisy activations, you can afford to use a much bigger

model.

This explains the idea behind why dropout helps to generalize: first it

helps the neurons to cooperate better together; then it makes the

activations more noisy, thus making the model more robust.

We can see, however, that if we were to just zero those activations

without doing anything else, our model would have problems training:

if we go from the sum of five activations (that are all positive numbers

since we apply a ReLU) to just two, this won’t have the same scale.

Therefore, if we apply dropout with a probability p, we rescale all

activations by dividing them by 1-p (on average p will be zeroed, so it

leaves 1-p), as shown in Figure 12-11.

Figure 12-11. Why we scale the activations when applying dropout (courtesy of Nitish Srivastava et al.)

This is a full implementation of the dropout layer in PyTorch (although

PyTorch’s native layer is actually written in C, not Python):

class Dropout(Module):
 def __init__(self, p): self.p = p
 def forward(self, x):
 if not self.training: return x
 mask = x.new(*x.shape).bernoulli_(1-p)
 return x * mask.div_(1-p)

The bernoulli_ method is creating a tensor of random zeros (with

probability p) and ones (with probability 1-p), which is then multiplied

with our input before dividing by 1-p. Note the use of the training

attribute, which is available in any PyTorch nn.Module, and tells us if we

are doing training or inference.

DO YOUR OWN EXPERIMENTS
In previous chapters of the book, we’d be adding a code example for bernoulli_

here, so you can see exactly how it works. But now that you know enough to do this

yourself, we’re going to be doing fewer and fewer examples for you, and instead

expecting you to do your own experiments to see how things work. In this case,

you’ll see in the end-of-chapter questionnaire that we’re asking you to experiment

with bernoulli_—but don’t wait for us to ask you to experiment to develop your

understanding of the code we’re studying; go ahead and do it anyway!

Using dropout before passing the output of our LSTM to the final layer

will help reduce overfitting. Dropout is also used in many other models,

including the default CNN head used in fastai.vision, and is available

in fastai.tabular by passing the ps parameter (where each “p” is

passed to each added Dropout layer), as we’ll see in Chapter 15.

Dropout has different behavior in training and validation mode, which

we specified using the training attribute in Dropout. Calling the train

method on a Module sets training to True (both for the module you call

the method on and for every module it recursively contains), and eval

sets it to False. This is done automatically when calling the methods of

Learner, but if you are not using that class, remember to switch from

one to the other as needed.

Activation Regularization and Temporal Activation Regularization

Activation regularization (AR) and temporal activation regularization

(TAR) are two regularization methods very similar to weight decay,

discussed in Chapter 8. When applying weight decay, we add a small

penalty to the loss that aims at making the weights as small as possible.

For activation regularization, it’s the final activations produced by the

LSTM that we will try to make as small as possible, instead of the

weights.

To regularize the final activations, we have to store those somewhere,

then add the means of the squares of them to the loss (along with a

multiplier alpha, which is just like wd for weight decay):

loss += alpha * activations.pow(2).mean()

Temporal activation regularization is linked to the fact we are predicting

tokens in a sentence. That means it’s likely that the outputs of our

LSTMs should somewhat make sense when we read them in order. TAR

is there to encourage that behavior by adding a penalty to the loss to

make the difference between two consecutive activations as small as

possible: our activations tensor has a shape bs x sl x n_hid, and we

read consecutive activations on the sequence length axis (the dimension

in the middle). With this, TAR can be expressed as follows:

loss += beta * (activations[:,1:] - activations[:,:-1]).pow(2).mean()

alpha and beta are then two hyperparameters to tune. To make this

work, we need our model with dropout to return three things: the

proper output, the activations of the LSTM pre-dropout, and the

activations of the LSTM post-dropout. AR is often applied on the

dropped-out activations (to not penalize the activations we turned into

zeros afterward), while TAR is applied on the non-dropped-out

activations (because those zeros create big differences between two

consecutive time steps). A callback called RNNRegularizer will then

apply this regularization for us.

Training a Weight-Tied Regularized LSTM

We can combine dropout (applied before we go into our output layer)

with AR and TAR to train our previous LSTM. We just need to return

three things instead of one: the normal output of our LSTM, the

dropped-out activations, and the activations from our LSTMs. The last

two will be picked up by the callback RNNRegularization for the

contributions it has to make to the loss.

Another useful trick we can add from the AWD-LSTM paper is weight

tying. In a language model, the input embeddings represent a mapping

from English words to activations, and the output hidden layer

represents a mapping from activations to English words. We might

expect, intuitively, that these mappings could be the same. We can

represent this in PyTorch by assigning the same weight matrix to each

of these layers:

self.h_o.weight = self.i_h.weight

In LMMModel7, we include these final tweaks:

class LMModel7(Module):
 def __init__(self, vocab_sz, n_hidden, n_layers, p):
 self.i_h = nn.Embedding(vocab_sz, n_hidden)
 self.rnn = nn.LSTM(n_hidden, n_hidden, n_layers,
batch_first=True)
 self.drop = nn.Dropout(p)
 self.h_o = nn.Linear(n_hidden, vocab_sz)
 self.h_o.weight = self.i_h.weight
 self.h = [torch.zeros(n_layers, bs, n_hidden) for _ in range(2)]

 def forward(self, x):
 raw,h = self.rnn(self.i_h(x), self.h)
 out = self.drop(raw)
 self.h = [h_.detach() for h_ in h]

https://oreil.ly/ETQ5X

 return self.h_o(out),raw,out

 def reset(self):
 for h in self.h: h.zero_()

We can create a regularized Learner using the RNNRegularizer callback:

learn = Learner(dls, LMModel7(len(vocab), 64, 2, 0.5),
 loss_func=CrossEntropyLossFlat(), metrics=accuracy,
 cbs=[ModelResetter, RNNRegularizer(alpha=2, beta=1)])

A TextLearner automatically adds those two callbacks for us (with those

values for alpha and beta as defaults), so we can simplify the preceding

line:

learn = TextLearner(dls, LMModel7(len(vocab), 64, 2, 0.4),
 loss_func=CrossEntropyLossFlat(), metrics=accuracy)

We can then train the model, and add additional regularization by

increasing the weight decay to 0.1:

learn.fit_one_cycle(15, 1e-2, wd=0.1)

epoch train_loss valid_loss accuracy time

0 2.693885 2.013484 0.466634 00:02

1 1.685549 1.187310 0.629313 00:02

2 0.973307 0.791398 0.745605 00:02

3 0.555823 0.640412 0.794108 00:02

4 0.351802 0.557247 0.836100 00:02

5 0.244986 0.594977 0.807292 00:02

6 0.192231 0.511690 0.846761 00:02

7 0.162456 0.520370 0.858073 00:02

8 0.142664 0.525918 0.842285 00:02

9 0.128493 0.495029 0.858073 00:02

10 0.117589 0.464236 0.867188 00:02

11 0.109808 0.466550 0.869303 00:02

12 0.104216 0.455151 0.871826 00:02

13 0.100271 0.452659 0.873617 00:02

14 0.098121 0.458372 0.869385 00:02

Now this is far better than our previous model!

Conclusion

You have now seen everything that is inside the AWD-LSTM

architecture we used in text classification in Chapter 10. It uses dropout

in a lot more places:

Embedding dropout (just after the embedding layer)

Input dropout (after the embedding layer)

Weight dropout (applied to the weights of the LSTM at each

training step)

Hidden dropout (applied to the hidden state between two layers)

This makes it even more regularized. Since fine-tuning those five

dropout values (including the dropout before the output layer) is

complicated, we have determined good defaults and allow the

magnitude of dropout to be tuned overall with the drop_mult parameter

you saw in that chapter (which is multiplied by each dropout).

Another architecture that is very powerful, especially in “sequence-to-

sequence” problems (problems in which the dependent variable is itself

a variable-length sequence, such as language translation), is the

Transformers architecture. You can find it in a bonus chapter on the

book’s website.

Questionnaire

1. If the dataset for your project is so big and complicated that

working with it takes a significant amount of time, what should

you do?

2. Why do we concatenate the documents in our dataset before

creating a language model?

https://book.fast.ai/

3. To use a standard fully connected network to predict the fourth

word given the previous three words, what two tweaks do we

need to make to our model?

4. How can we share a weight matrix across multiple layers in

PyTorch?

5. Write a module that predicts the third word given the previous

two words of a sentence, without peeking.

6. What is a recurrent neural network?

7. What is hidden state?

8. What is the equivalent of hidden state in LMModel1?

9. To maintain the state in an RNN, why is it important to pass the

text to the model in order?

10. What is an “unrolled” representation of an RNN?

11. Why can maintaining the hidden state in an RNN lead to

memory and performance problems? How do we fix this

problem?

12. What is BPTT?

13. Write code to print out the first few batches of the validation set,

including converting the token IDs back into English strings, as

we showed for batches of IMDb data in Chapter 10.

14. What does the ModelResetter callback do? Why do we need it?

15. What are the downsides of predicting just one output word for

each three input words?

16. Why do we need a custom loss function for LMModel4?

17. Why is the training of LMModel4 unstable?

18. In the unrolled representation, we can see that a recurrent

neural network has many layers. So why do we need to stack

RNNs to get better results?

19. Draw a representation of a stacked (multilayer) RNN.

20. Why should we get better results in an RNN if we call detach less

often? Why might this not happen in practice with a simple

RNN?

21. Why can a deep network result in very large or very small

activations? Why does this matter?

22. In a computer’s floating-point representation of numbers, which

numbers are the most precise?

23. Why do vanishing gradients prevent training?

24. Why does it help to have two hidden states in the LSTM

architecture? What is the purpose of each one?

25. What are these two states called in an LSTM?

26. What is tanh, and how is it related to sigmoid?

27. What is the purpose of this code in LSTMCell:

h = torch.stack([h, input], dim=1)

28. What does chunk do in PyTorch?

29. Study the refactored version of LSTMCell carefully to ensure you

understand how and why it does the same thing as the

nonrefactored version.

30. Why can we use a higher learning rate for LMModel6?

31. What are the three regularization techniques used in an AWD-

LSTM model?

32. What is dropout?

33. Why do we scale the weights with dropout? Is this applied

during training, inference, or both?

34. What is the purpose of this line from Dropout:

if not self.training: return x

35. Experiment with bernoulli_ to understand how it works.

36. How do you set your model in training mode in PyTorch? In

evaluation mode?

37. Write the equation for activation regularization (in math or

code, as you prefer). How is it different from weight decay?

38. Write the equation for temporal activation regularization (in

math or code, as you prefer). Why wouldn’t we use this for

computer vision problems?

39. What is weight tying in a language model?

Further Research

1. In LMModel2, why can forward start with h=0? Why don’t we need

to say h=torch.zeros(...)?

2. Write the code for an LSTM from scratch (you may refer to

Figure 12-9).

3. Search the internet for the GRU architecture and implement it

from scratch, and try training a model. See if you can get results

similar to those we saw in this chapter. Compare your results to

the results of PyTorch’s built-in GRU module.

4. Take a look at the source code for AWD-LSTM in fastai, and try

to map each of the lines of code to the concepts shown in this

chapter.

Chapter 13. Convolutional Neural

Networks

In Chapter 4, we learned how to create a neural network

recognizing images. We were able to achieve a bit over 98%

accuracy at distinguishing 3s from 7s—but we also saw that

fastai’s built-in classes were able to get close to 100%. Let’s start

trying to close the gap.

In this chapter, we will begin by digging into what convolutions

are and building a CNN from scratch. We will then study a range

of techniques to improve training stability and learn all the

tweaks the library usually applies for us to get great results.

The Magic of Convolutions

One of the most powerful tools that machine learning

practitioners have at their disposal is feature engineering. A

feature is a transformation of the data that is designed to make it

easier to model. For instance, the add_datepart function that we

used for our tabular dataset preprocessing in Chapter 9 added

date features to the Bulldozers dataset. What kinds of features

might we be able to create from images?

JARGON: FEATURE ENGINEERING
Creating new transformations of the input data in order to make it easier

to model.

In the context of an image, a feature is a visually distinctive

attribute. For example, the number 7 is characterized by a

horizontal edge near the top of the digit, and a top-right to

bottom-left diagonal edge underneath that. On the other hand,

the number 3 is characterized by a diagonal edge in one direction

at the top left and bottom right of the digit, the opposite diagonal

at the bottom left and top right, horizontal edges at the middle,

top, and bottom, and so forth. So what if we could extract

information about where the edges occur in each image, and

then use that information as our features, instead of raw pixels?

It turns out that finding the edges in an image is a very common

task in computer vision and is surprisingly straightforward. To

do it, we use something called a convolution. A convolution

requires nothing more than multiplication and addition—two

operations that are responsible for the vast majority of work that

we will see in every single deep learning model in this book!

A convolution applies a kernel across an image. A kernel is a

little matrix, such as the 3×3 matrix in the top right of Figure 13-

1.

Figure 13-1. Applying a kernel to one location

The 7×7 grid to the left is the image we’re going to apply the

kernel to. The convolution operation multiplies each element of

the kernel by each element of a 3×3 block of the image. The

results of these multiplications are then added together. The

diagram in Figure 13-1 shows an example of applying a kernel to

a single location in the image, the 3×3 block around cell 18.

Let’s do this with code. First, we create a little 3×3 matrix like so:

top_edge = tensor([[-1,-1,-1],
 [0, 0, 0],
 [1, 1, 1]]).float()

We’re going to call this our kernel (because that’s what fancy

computer vision researchers call these). And we’ll need an image,

of course:

path = untar_data(URLs.MNIST_SAMPLE)

im3 = Image.open(path/'train'/'3'/'12.png')
show_image(im3);

Now we’re going to take the top 3×3-pixel square of our image,

and multiply each of those values by each item in our kernel.

Then we’ll add them up, like so:

im3_t = tensor(im3)
im3_t[0:3,0:3] * top_edge

tensor([[-0., -0., -0.],
 [0., 0., 0.],
 [0., 0., 0.]])

(im3_t[0:3,0:3] * top_edge).sum()

tensor(0.)

Not very interesting so far—all the pixels in the top-left corner

are white. But let’s pick a couple of more interesting spots:

df = pd.DataFrame(im3_t[:10,:20])
df.style.set_properties(**{'font-
size':'6pt'}).background_gradient('Greys')

There’s a top edge at cell 5,7. Let’s repeat our calculation there:

(im3_t[4:7,6:9] * top_edge).sum()

tensor(762.)

There’s a right edge at cell 8,18. What does that give us?

(im3_t[7:10,17:20] * top_edge).sum()

tensor(-29.)

As you can see, this little calculation is returning a high number

where the 3×3-pixel square represents a top edge (i.e., where

there are low values at the top of the square and high values

immediately underneath). That’s because the -1 values in our

kernel have little impact in that case, but the 1 values have a lot.

Let’s look a tiny bit at the math. The filter will take any window

of size 3×3 in our images, and if we name the pixel values like

this

it will return a1 + a2 + a3 − a7 − a8 − a9. If we are in a part

of the image where a1, a2, and a3 add up to the same as a7, a8,

and a9, then the terms will cancel each other out and we will get

0. However, if a1 is greater than a7, a2 is greater than a8, and

a3 is greater than a9, we will get a bigger number as a result. So

this filter detects horizontal edges—more precisely, edges where

we go from bright parts of the image at the top to darker parts at

the bottom.

Changing our filter to have the row of 1s at the top and the –1s at

the bottom would detect horizontal edges that go from dark to

light. Putting the 1s and –1s in columns versus rows would give

us filters that detect vertical edges. Each set of weights will

produce a different kind of outcome.

a1 a2 a3

a4 a5 a6

a7 a8 a9

Let’s create a function to do this for one location, and check that

it matches our result from before:

def apply_kernel(row, col, kernel):
 return (im3_t[row-1:row+2,col-1:col+2] * kernel).sum()

apply_kernel(5,7,top_edge)

tensor(762.)

But note that we can’t apply it to the corner (e.g., location 0,0),

since there isn’t a complete 3×3 square there.

Mapping a Convolutional Kernel

We can map apply_kernel() across the coordinate grid. That is,

we’ll be taking our 3×3 kernel and applying it to each 3×3 section

of our image. For instance, Figure 13-2 shows the positions a 3×3

kernel can be applied to in the first row of a 5×5 image.

Figure 13-2. Applying a kernel across a grid

To get a grid of coordinates, we can use a nested list

comprehension, like so:

[[(i,j) for j in range(1,5)] for i in range(1,5)]

[[(1, 1), (1, 2), (1, 3), (1, 4)],
 [(2, 1), (2, 2), (2, 3), (2, 4)],
 [(3, 1), (3, 2), (3, 3), (3, 4)],
 [(4, 1), (4, 2), (4, 3), (4, 4)]]

NESTED LIST COMPREHENSIONS
Nested list comprehensions are used a lot in Python, so if you haven’t seen

them before, take a few minutes to make sure you understand what’s

happening here, and experiment with writing your own nested list

comprehensions.

Here’s the result of applying our kernel over a coordinate grid:

rng = range(1,27)
top_edge3 = tensor([[apply_kernel(i,j,top_edge) for j in rng] for
i in rng])

show_image(top_edge3);

Looking good! Our top edges are black, and bottom edges are

white (since they are the opposite of top edges). Now that our

image contains negative numbers too, matplotlib has

automatically changed our colors so that white is the smallest

number in the image, black the highest, and zeros appear as

gray.

We can try the same thing for left edges:

left_edge = tensor([[-1,1,0],
 [-1,1,0],
 [-1,1,0]]).float()

left_edge3 = tensor([[apply_kernel(i,j,left_edge) for j in rng]
for i in rng])

show_image(left_edge3);

As we mentioned before, a convolution is the operation of

applying such a kernel over a grid. Vincent Dumoulin and

Francesco Visin’s paper “A Guide to Convolution Arithmetic for

Deep Learning” has many great diagrams showing how image

kernels can be applied. Figure 13-3 is an example from the paper

showing (at the bottom) a light blue 4×4 image with a dark blue

3×3 kernel being applied, creating a 2×2 green output activation

map at the top.

https://oreil.ly/les1R

Figure 13-3. Result of applying a 3×3 kernel to a 4×4 image (courtesy of Vincent Dumoulin
and Francesco Visin)

Look at the shape of the result. If the original image has a height

of h and a width of w, how many 3×3 windows can we find? As

you can see from the example, there are h-2 by w-2 windows, so

the image we get as a result has a height of h-2 and a width of w-

2.

We won’t implement this convolution function from scratch, but

use PyTorch’s implementation instead (it is way faster than

anything we could do in Python).

Convolutions in PyTorch

Convolution is such an important and widely used operation that

PyTorch has it built in. It’s called F.conv2d (recall that F is a

fastai import from torch.nn.functional, as recommended by

PyTorch). PyTorch docs tell us that it includes these parameters:

input

input tensor of shape (minibatch, in_channels, iH,

iW)

weight

filters of shape (out_channels, in_channels, kH,

kW)

Here iH,iW is the height and width of the image (i.e., 28,28), and

kH,kW is the height and width of our kernel (3,3). But apparently

PyTorch is expecting rank-4 tensors for both these arguments,

whereas currently we have only rank-2 tensors (i.e., matrices, or

arrays with two axes).

The reason for these extra axes is that PyTorch has a few tricks

up its sleeve. The first trick is that PyTorch can apply a

convolution to multiple images at the same time. That means we

can call it on every item in a batch at once!

The second trick is that PyTorch can apply multiple kernels at

the same time. So let’s create the diagonal-edge kernels too, and

then stack all four of our edge kernels into a single tensor:

diag1_edge = tensor([[0,-1, 1],
 [-1, 1, 0],
 [1, 0, 0]]).float()
diag2_edge = tensor([[1,-1, 0],
 [0, 1,-1],
 [0, 0, 1]]).float()

edge_kernels = torch.stack([left_edge, top_edge, diag1_edge,
diag2_edge])
edge_kernels.shape

torch.Size([4, 3, 3])

To test this, we’ll need a DataLoader and a sample mini-batch.

Let’s use the data block API:

mnist = DataBlock((ImageBlock(cls=PILImageBW), CategoryBlock),
 get_items=get_image_files,
 splitter=GrandparentSplitter(),
 get_y=parent_label)

dls = mnist.dataloaders(path)
xb,yb = first(dls.valid)
xb.shape

torch.Size([64, 1, 28, 28])

By default, fastai puts data on the GPU when using data blocks.

Let’s move it to the CPU for our examples:

xb,yb = to_cpu(xb),to_cpu(yb)

One batch contains 64 images, each of 1 channel, with 28×28

pixels. F.conv2d can handle multichannel (color) images too. A

channel is a single basic color in an image—for regular full-color

images, there are three channels, red, green, and blue. PyTorch

represents an image as a rank-3 tensor, with these dimensions:

[channels, rows, columns]

We’ll see how to handle more than one channel later in this

chapter. Kernels passed to F.conv2d need to be rank-4 tensors:

[channels_in, features_out, rows, columns]

edge_kernels is currently missing one of these: we need to tell

PyTorch that the number of input channels in the kernel is one,

which we can do by inserting an axis of size one (this is known as

a unit axis) in the first location, where the PyTorch docs show

in_channels is expected. To insert a unit axis into a tensor, we

use the unsqueeze method:

edge_kernels.shape,edge_kernels.unsqueeze(1).shape

(torch.Size([4, 3, 3]), torch.Size([4, 1, 3, 3]))

This is now the correct shape for edge_kernels. Let’s pass this all

to conv2d:

edge_kernels = edge_kernels.unsqueeze(1)

batch_features = F.conv2d(xb, edge_kernels)
batch_features.shape

torch.Size([64, 4, 26, 26])

The output shape shows we have 64 images in the mini-batch, 4

kernels, and 26×26 edge maps (we started with 28×28 images,

but lost one pixel from each side as discussed earlier). We can

see we get the same results as when we did this manually:

show_image(batch_features[0,0]);

The most important trick that PyTorch has up its sleeve is that it

can use the GPU to do all this work in parallel—applying

multiple kernels to multiple images, across multiple channels.

Doing lots of work in parallel is critical to getting GPUs to work

efficiently; if we did each of these operations one at a time, we’d

often run hundreds of times slower (and if we used our manual

convolution loop from the previous section, we’d be millions of

times slower!). Therefore, to become a strong deep learning

practitioner, one skill to practice is giving your GPU plenty of

work to do at a time.

It would be nice to not lose those two pixels on each axis. The

way we do that is to add padding, which is simply additional

pixels added around the outside of our image. Most commonly,

pixels of zeros are added.

Strides and Padding

With appropriate padding, we can ensure that the output

activation map is the same size as the original image, which can

make things a lot simpler when we construct our architectures.

Figure 13-4 shows how adding padding allows us to apply the

kernel in the image corners.

Figure 13-4. A convolution with padding

With a 5×5 input, 4×4 kernel, and 2 pixels of padding, we end up

with a 6×6 activation map, as we can see in Figure 13-5.

Figure 13-5. A 4×4 kernel with 5×5 input and 2 pixels of padding (courtesy of Vincent
Dumoulin and Francesco Visin)

If we add a kernel of size ks by ks (with ks an odd number), the

necessary padding on each side to keep the same shape is ks//2.

An even number for ks would require a different amount of

padding on the top/bottom and left/right, but in practice we

almost never use an even filter size.

So far, when we have applied the kernel to the grid, we have

moved it one pixel over at a time. But we can jump further; for

instance, we could move over two pixels after each kernel

application, as in Figure 13-6. This is known as a stride-2

convolution. The most common kernel size in practice is 3×3,

and the most common padding is 1. As you’ll see, stride-2

convolutions are useful for decreasing the size of our outputs,

and stride-1 convolutions are useful for adding layers without

changing the output size.

Figure 13-6. A 3×3 kernel with 5×5 input, stride-2 convolution, and 1 pixel of padding
(courtesy of Vincent Dumoulin and Francesco Visin)

In an image of size h by w, using a padding of 1 and a stride of 2

will give us a result of size (h+1)//2 by (w+1)//2. The general

formula for each dimension is

(n + 2*pad - ks) // stride + 1

where pad is the padding, ks is the size of our kernel, and stride

is the stride.

Let’s now take a look at how the pixel values of the result of our

convolutions are computed.

Understanding the Convolution Equations

To explain the math behind convolutions, fast.ai student Matt

Kleinsmith came up with the very clever idea of showing CNNs

from different viewpoints. In fact, it’s so clever, and so helpful,

we’re going to show it here too!

https://oreil.ly/wZuBs

Here’s our 3×3-pixel image, with each pixel labeled with a letter:

And here’s our kernel, with each weight labeled with a Greek

letter:

Since the filter fits in the image four times, we have four results:

Figure 13-7 shows how we applied the kernel to each section of

the image to yield each result.

Figure 13-7. Applying the kernel

The equation view is in Figure 13-8.

Figure 13-8. The equation

Notice that the bias term, b, is the same for each section of the

image. You can consider the bias as part of the filter, just as the

weights (α, β, γ, δ) are part of the filter.

Here’s an interesting insight—a convolution can be represented

as a special kind of matrix multiplication, as illustrated in

Figure 13-9. The weight matrix is just like the ones from

traditional neural networks. However, this weight matrix has two

special properties:

1. The zeros shown in gray are untrainable. This means that

they’ll stay zero throughout the optimization process.

2. Some of the weights are equal, and while they are

trainable (i.e., changeable), they must remain equal.

These are called shared weights.

The zeros correspond to the pixels that the filter can’t touch.

Each row of the weight matrix corresponds to one application of

the filter.

Figure 13-9. Convolution as matrix multiplication

Now that we understand what convolutions are, let’s use them to

build a neural net.

Our First Convolutional Neural Network

There is no reason to believe that some particular edge filters are

the most useful kernels for image recognition. Furthermore,

we’ve seen that in later layers, convolutional kernels become

complex transformations of features from lower levels, but we

don’t have a good idea of how to manually construct these.

Instead, it would be best to learn the values of the kernels. We

already know how to do this—SGD! In effect, the model will

learn the features that are useful for classification. When we use

convolutions instead of (or in addition to) regular linear layers,

we create a convolutional neural network (CNN).

Creating the CNN

Let’s go back to the basic neural network we had in Chapter 4. It

was defined like this:

simple_net = nn.Sequential(
 nn.Linear(28*28,30),
 nn.ReLU(),
 nn.Linear(30,1)
)

We can view a model’s definition:

simple_net

Sequential(
 (0): Linear(in_features=784, out_features=30,
bias=True)
 (1): ReLU()
 (2): Linear(in_features=30, out_features=1, bias=True)
)

We now want to create a similar architecture to this linear

model, but using convolutional layers instead of linear.

nn.Conv2d is the module equivalent of F.conv2d. It’s more

convenient than F.conv2d when creating an architecture,

because it creates the weight matrix for us automatically when

we instantiate it.

Here’s a possible architecture:

broken_cnn = sequential(
 nn.Conv2d(1,30, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.Conv2d(30,1, kernel_size=3, padding=1)
)

One thing to note here is that we didn’t need to specify 28*28 as

the input size. That’s because a linear layer needs a weight in the

weight matrix for every pixel, so it needs to know how many

pixels there are, but a convolution is applied over each pixel

automatically. The weights depend only on the number of input

and output channels and the kernel size, as we saw in the

previous section.

Think about what the output shape is going to be; then let’s try it

and see:

broken_cnn(xb).shape

torch.Size([64, 1, 28, 28])

This is not something we can use to do classification, since we

need a single output activation per image, not a 28×28 map of

activations. One way to deal with this is to use enough stride-2

convolutions such that the final layer is size 1. After one stride-2

convolution, the size will be 14×14; after two, it will be 7×7; then

4×4, 2×2, and finally size 1.

Let’s try that now. First, we’ll define a function with the basic

parameters we’ll use in each convolution:

def conv(ni, nf, ks=3, act=True):
 res = nn.Conv2d(ni, nf, stride=2, kernel_size=ks,
padding=ks//2)
 if act: res = nn.Sequential(res, nn.ReLU())
 return res

REFACTORING
Refactoring parts of your neural networks like this makes it much less

likely you’ll get errors due to inconsistencies in your architectures, and

makes it more obvious to the reader which parts of your layers are actually

changing.

When we use a stride-2 convolution, we often increase the

number of features at the same time. This is because we’re

decreasing the number of activations in the activation map by a

factor of 4; we don’t want to decrease the capacity of a layer by

too much at a time.

JARGON: CHANNELS AND FEATURES
These two terms are largely used interchangeably and refer to the size of

the second axis of a weight matrix, which is the number of activations per

grid cell after a convolution. Features is never used to refer to the input

data, but channels can refer to either the input data (generally, channels

are colors) or activations inside the network.

Here is how we can build a simple CNN:

simple_cnn = sequential(
 conv(1 ,4), #14x14
 conv(4 ,8), #7x7
 conv(8 ,16), #4x4
 conv(16,32), #2x2
 conv(32,2, act=False), #1x1
 Flatten(),
)

JEREMY SAYS
I like to add comments like the ones here after each convolution to show

how large the activation map will be after each layer. These comments

assume that the input size is 28×28.

Now the network outputs two activations, which map to the two

possible levels in our labels:

simple_cnn(xb).shape

torch.Size([64, 2])

We can now create our Learner:

learn = Learner(dls, simple_cnn, loss_func=F.cross_entropy,
metrics=accuracy)

To see exactly what’s going on in the model, we can use summary:

learn.summary()

Sequential (Input shape: ['64 x 1 x 28 x 28'])
==

Layer (type) Output Shape Param #
Trainable
==

Conv2d 64 x 4 x 14 x 14 40 True
__

ReLU 64 x 4 x 14 x 14 0
False
__

Conv2d 64 x 8 x 7 x 7 296 True

__

ReLU 64 x 8 x 7 x 7 0
False
__

Conv2d 64 x 16 x 4 x 4 1,168 True
__

ReLU 64 x 16 x 4 x 4 0
False
__

Conv2d 64 x 32 x 2 x 2 4,640 True
__

ReLU 64 x 32 x 2 x 2 0
False
__

Conv2d 64 x 2 x 1 x 1 578 True
__

Flatten 64 x 2 0
False
__

Total params: 6,722
Total trainable params: 6,722
Total non-trainable params: 0

Optimizer used: <function Adam at 0x7fbc9c258cb0>
Loss function: <function cross_entropy at 0x7fbca9ba0170>

Callbacks:
 - TrainEvalCallback
 - Recorder
 - ProgressCallback

Note that the output of the final Conv2d layer is 64x2x1x1. We

need to remove those extra 1x1 axes; that’s what Flatten does.

It’s basically the same as PyTorch’s squeeze method, but as a

module.

Let’s see if this trains! Since this is a deeper network than we’ve

built from scratch before, we’ll use a lower learning rate and

more epochs:

learn.fit_one_cycle(2, 0.01)

epoch train_loss valid_loss accuracy time

0 0.072684 0.045110 0.990186 00:05

1 0.022580 0.030775 0.990186 00:05

Success! It’s getting closer to the resnet18 result we had,

although it’s not quite there yet, and it’s taking more epochs, and

we’re needing to use a lower learning rate. We still have a few

more tricks to learn, but we’re getting closer and closer to being

able to create a modern CNN from scratch.

Understanding Convolution Arithmetic

We can see from the summary that we have an input of size

64x1x28x28. The axes are batch,channel,height,width. This is

often represented as NCHW (where N refers to batch size).

TensorFlow, on the other hand, uses NHWC axis order. Here is the

first layer:

m = learn.model[0]
m

Sequential(
 (0): Conv2d(1, 4, kernel_size=(3, 3), stride=(2, 2),
padding=(1, 1))
 (1): ReLU()
)

So we have 1 input channel, 4 output channels, and a 3×3 kernel.

Let’s check the weights of the first convolution:

m[0].weight.shape

torch.Size([4, 1, 3, 3])

The summary shows we have 40 parameters, and 4*1*3*3 is 36.

What are the other four parameters? Let’s see what the bias

contains:

m[0].bias.shape

torch.Size([4])

We can now use this information to clarify our statement in the

previous section: “When we use a stride-2 convolution, we often

increase the number of features because we’re decreasing the

number of activations in the activation map by a factor of 4; we

don’t want to decrease the capacity of a layer by too much at a

time.”

There is one bias for each channel. (Sometimes channels are

called features or filters when they are not input channels.) The

output shape is 64x4x14x14, and this will therefore become the

input shape to the next layer. The next layer, according to

summary, has 296 parameters. Let’s ignore the batch axis to keep

things simple. So, for each of 14*14=196 locations, we are

multiplying 296-8=288 weights (ignoring the bias for simplicity),

so that’s 196*288=56_448 multiplications at this layer. The next

layer will have 7*7*(1168-16)=56_448 multiplications.

What happened here is that our stride-2 convolution halved the

grid size from 14x14 to 7x7, and we doubled the number of filters

from 8 to 16, resulting in no overall change in the amount of

computation. If we left the number of channels the same in each

stride-2 layer, the amount of computation being done in the net

would get less and less as it gets deeper. But we know that the

deeper layers have to compute semantically rich features (such

as eyes or fur), so we wouldn’t expect that doing less

computation would make sense.

Another way to think of this is based on receptive fields.

Receptive Fields

The receptive field is the area of an image that is involved in the

calculation of a layer. On the book’s website, you’ll find an Excel

spreadsheet called conv-example.xlsx that shows the calculation

of two stride-2 convolutional layers using an MNIST digit. Each

layer has a single kernel. Figure 13-10 shows what we see if we

click one of the cells in the conv2 section, which shows the

output of the second convolutional layer, and click trace

precedents.

Figure 13-10. Immediate precedents of Conv2 layer

Here, the cell with the green border is the cell we clicked, and the

blue highlighted cells are its precedents—the cells used to

calculate its value. These cells are the corresponding 3×3 area of

cells from the input layer (on the left), and the cells from the

filter (on the right). Let’s now click trace precedents again, to see

https://book.fast.ai/

what cells are used to calculate these inputs. Figure 13-11 shows

what happens.

Figure 13-11. Secondary precedents of Conv2 layer

In this example, we have just two convolutional layers, each of

stride 2, so this is now tracing right back to the input image. We

can see that a 7×7 area of cells in the input layer is used to

calculate the single green cell in the Conv2 layer. This 7×7 area is

the receptive field in the input of the green activation in Conv2.

We can also see that a second filter kernel is needed now, since

we have two layers.

As you see from this example, the deeper we are in the network

(specifically, the more stride-2 convs we have before a layer), the

larger the receptive field for an activation in that layer is. A large

receptive field means that a large amount of the input image is

used to calculate each activation in that layer. We now know that

in the deeper layers of the network, we have semantically rich

features, corresponding to larger receptive fields. Therefore, we’d

expect that we’d need more weights for each of our features to

handle this increasing complexity. This is another way of saying

the same thing we mentioned in the previous section: when we

introduce a stride-2 conv in our network, we should also increase

the number of channels.

When writing this particular chapter, we had a lot of questions

we needed answers for, to be able to explain CNNs to you as best

we could. Believe it or not, we found most of the answers on

Twitter. We’re going to take a quick break to talk to you about

that now, before we move on to color images.

A Note About Twitter

We are not, to say the least, big users of social networks in

general. But our goal in writing this book is to help you become

the best deep learning practitioner you can, and we would be

remiss not to mention how important Twitter has been in our

own deep learning journeys.

You see, there’s another part of Twitter, far away from Donald

Trump and the Kardashians, where deep learning researchers

and practitioners talk shop every day. As we were writing this

section, Jeremy wanted to double-check that what we were

saying about stride-2 convolutions was accurate, so he asked on

Twitter:

A few minutes later, this answer popped up:

Christian Szegedy is the first author of Inception, the 2014

ImageNet winner, and source of many key insights used in

modern neural networks. Two hours later, this appeared:

https://oreil.ly/hGE_Y

Do you recognize that name? You saw it in Chapter 2, when we

were talking about the Turing Award winners who established

the foundations of deep learning today!

Jeremy also asked on Twitter for help checking that our

description of label smoothing in Chapter 7 was accurate, and

got a response again directly from Christian Szegedy (label

smoothing was originally introduced in the Inception paper):

Many of the top people in deep learning today are Twitter

regulars, and are very open about interacting with the wider

community. One good way to get started is to look at a list of

Jeremy’s recent Twitter likes, or Sylvain’s. That way, you can see

a list of Twitter users whom we think have interesting and useful

things to say.

Twitter is the main way we both stay up to date with interesting

papers, software releases, and other deep learning news. For

making connections with the deep learning community, we

recommend getting involved both in the fast.ai forums and on

Twitter.

That said, let’s get back to the meat of this chapter. Up until now,

we have shown you examples of pictures in only black and white,

with one value per pixel. In practice, most colored images have

three values per pixel to define their color. We’ll look at working

with color images next.

Color Images

A color picture is a rank-3 tensor:

im = image2tensor(Image.open('images/grizzly.jpg'))
im.shape

torch.Size([3, 1000, 846])

https://oreil.ly/sqOI7
https://oreil.ly/VWYHY
https://forums.fast.ai/

show_image(im);

The first axis contains the channels red, green, and blue:

_,axs = subplots(1,3)
for bear,ax,color in zip(im,axs,('Reds','Greens','Blues')):
 show_image(255-bear, ax=ax, cmap=color)

We saw what the convolution operation was for one filter on one

channel of the image (our examples were done on a square). A

convolutional layer will take an image with a certain number of

channels (three for the first layer for regular RGB color images)

and output an image with a different number of channels. As

with our hidden size that represented the numbers of neurons in

a linear layer, we can decide to have as many filters as we want,

and each will be able to specialize (some to detect horizontal

edges, others to detect vertical edges, and so forth) to give

something like the examples we studied in Chapter 2.

In one sliding window, we have a certain number of channels

and we need as many filters (we don’t use the same kernel for all

the channels). So our kernel doesn’t have a size of 3×3, but ch_in

(for channels in) by 3×3. On each channel, we multiply the

elements of our window by the elements of the corresponding

filter, and then sum the results (as we saw before) and sum over

all the filters. In the example given in Figure 13-12, the result of

our conv layer on that window is red + green + blue.

Figure 13-12. Convolution over an RGB image

So, in order to apply a convolution to a color picture, we require

a kernel tensor with a size that matches the first axis. At each

location, the corresponding parts of the kernel and the image

patch are multiplied together.

These are then all added together to produce a single number for

each grid location for each output feature, as shown in Figure 13-

13.

Figure 13-13. Adding the RGB filters

Then we have ch_out filters like this, so in the end, the result of

our convolutional layer will be a batch of images with ch_out

channels and a height and width given by the formula outlined

earlier. This give us ch_out tensors of size ch_in x ks x ks that

we represent in one big tensor of four dimensions. In PyTorch,

the order of the dimensions for those weights is ch_out x ch_in

x ks x ks.

Additionally, we may want to have a bias for each filter. In the

preceding example, the final result for our convolutional layer

would be yR + yG + yB + b in that case. As in a linear layer,

there are as many biases as we have kernels, so the bias is a

vector of size ch_out.

No special mechanisms are required when setting up a CNN for

training with color images. Just make sure your first layer has

three inputs.

There are lots of ways of processing color images. For instance,

you can change them to black and white, change from RGB to

HSV (hue, saturation, and value) color space, and so forth. In

general, it turns out experimentally that changing the encoding

of colors won’t make any difference to your model results, as

long as you don’t lose information in the transformation. So,

transforming to black and white is a bad idea, since it removes

the color information entirely (and this can be critical; for

instance, a pet breed may have a distinctive color); but

converting to HSV generally won’t make any difference.

Now you know what those pictures in Chapter 1 of “what a neural

net learns” from the Zeiler and Fergus paper mean! As a

reminder, this is their picture of some of the layer 1 weights:

https://oreil.ly/Y6dzZ

This is taking the three slices of the convolutional kernel, for

each output feature, and displaying them as images. We can see

that even though the creators of the neural net never explicitly

created kernels to find edges, for instance, the neural net

automatically discovered these features using SGD.

Now let’s see how we can train these CNNs, and show you all the

techniques fastai uses under the hood for efficient training.

Improving Training Stability

Since we are so good at recognizing 3s from 7s, let’s move on to

something harder—recognizing all 10 digits. That means we’ll

need to use MNIST instead of MNIST_SAMPLE:

path = untar_data(URLs.MNIST)

path.ls()

(#2) [Path('testing'),Path('training')]

The data is in two folders named training and testing, so we

have to tell GrandparentSplitter about that (it defaults to train

and valid). We do that in the get_dls function, which we define

to make it easy to change our batch size later:

def get_dls(bs=64):
 return DataBlock(
 blocks=(ImageBlock(cls=PILImageBW), CategoryBlock),
 get_items=get_image_files,
 splitter=GrandparentSplitter('training','testing'),
 get_y=parent_label,
 batch_tfms=Normalize()
).dataloaders(path, bs=bs)

dls = get_dls()

Remember, it’s always a good idea to look at your data before

you use it:

dls.show_batch(max_n=9, figsize=(4,4))

Now that we have our data ready, we can train a simple model on

it.

A Simple Baseline

Earlier in this chapter, we built a model based on a conv function

like this:

def conv(ni, nf, ks=3, act=True):
 res = nn.Conv2d(ni, nf, stride=2, kernel_size=ks,
padding=ks//2)
 if act: res = nn.Sequential(res, nn.ReLU())
 return res

Let’s start with a basic CNN as a baseline. We’ll use the same as

one as earlier, but with one tweak: we’ll use more activations.

Since we have more numbers to differentiate, we’ll likely need to

learn more filters.

As we discussed, we generally want to double the number of

filters each time we have a stride-2 layer. One way to increase the

number of filters throughout our network is to double the

number of activations in the first layer—then every layer after

that will end up twice as big as in the previous version as well.

But this creates a subtle problem. Consider the kernel that is

being applied to each pixel. By default, we use a 3×3-pixel kernel.

Therefore, there are a total of 3 × 3 = 9 pixels that the kernel is

being applied to at each location. Previously, our first layer had

four output filters. So four values were being computed from

nine pixels at each location. Think about what happens if we

double this output to eight filters. Then when we apply our

kernel, we will be using nine pixels to calculate eight numbers.

That means it isn’t really learning much at all: the output size is

almost the same as the input size. Neural networks will create

useful features only if they’re forced to do so—that is, if the

number of outputs from an operation is significantly smaller

than the number of inputs.

To fix this, we can use a larger kernel in the first layer. If we use a

kernel of 5×5 pixels, 25 pixels are being used at each kernel

application. Creating eight filters from this will mean the neural

net will have to find some useful features:

def simple_cnn():
 return sequential(
 conv(1 ,8, ks=5), #14x14
 conv(8 ,16), #7x7
 conv(16,32), #4x4
 conv(32,64), #2x2
 conv(64,10, act=False), #1x1

 Flatten(),
)

As you’ll see in a moment, we can look inside our models while

they’re training in order to try to find ways to make them train

better. To do this, we use the ActivationStats callback, which

records the mean, standard deviation, and histogram of

activations of every trainable layer (as we’ve seen, callbacks are

used to add behavior to the training loop; we’ll explore how they

work in Chapter 16):

from fastai.callback.hook import *

We want to train quickly, so that means training at a high

learning rate. Let’s see how we go at 0.06:

def fit(epochs=1):
 learn = Learner(dls, simple_cnn(), loss_func=F.cross_entropy,
 metrics=accuracy,
cbs=ActivationStats(with_hist=True))
 learn.fit(epochs, 0.06)
 return learn

learn = fit()

epoch train_loss valid_loss accuracy time

0 2.307071 2.305865 0.113500 00:16

This didn’t train at all well! Let’s find out why.

One handy feature of the callbacks passed to Learner is that they

are made available automatically, with the same name as the

callback class, except in camel_case. So, our ActivationStats

callback can be accessed through activation_stats. I’m sure

you remember learn.recorder…can you guess how that is

implemented? That’s right, it’s a callback called Recorder!

ActivationStats includes some handy utilities for plotting the

activations during training. plot_layer_stats(idx) plots the

mean and standard deviation of the activations of layer number

idx, along with the percentage of activations near zero. Here’s

the first layer’s plot:

learn.activation_stats.plot_layer_stats(0)

Generally our model should have a consistent, or at least smooth,

mean and standard deviation of layer activations during training.

Activations near zero are particularly problematic, because it

means we have computation in the model that’s doing nothing at

all (since multiplying by zero gives zero). When you have some

zeros in one layer, they will therefore generally carry over to the

next layer…which will then create more zeros. Here’s the

penultimate layer of our network:

learn.activation_stats.plot_layer_stats(-2)

As expected, the problems get worse toward the end of the

network, as the instability and zero activations compound over

layers. Let’s look at what we can do to make training more stable.

Increase Batch Size

One way to make training more stable is to increase the batch

size. Larger batches have gradients that are more accurate, since

they’re calculated from more data. On the downside, though, a

larger batch size means fewer batches per epoch, which means

fewer opportunities for your model to update weights. Let’s see if

a batch size of 512 helps:

dls = get_dls(512)

learn = fit()

epoch train_loss valid_loss accuracy time

0 2.309385 2.302744 0.113500 00:08

Let’s see what the penultimate layer looks like:

learn.activation_stats.plot_layer_stats(-2)

Again, we’ve got most of our activations near zero. Let’s see what

else we can do to improve training stability.

1cycle Training

Our initial weights are not well suited to the task we’re trying to

solve. Therefore, it is dangerous to begin training with a high

learning rate: we may very well make the training diverge

instantly, as we’ve seen. We probably don’t want to end training

with a high learning rate either, so that we don’t skip over a

minimum. But we want to train at a high learning rate for the

rest of the training period, because we’ll be able to train more

quickly that way. Therefore, we should change the learning rate

during training, from low, to high, and then back to low again.

Leslie Smith (yes, the same guy who invented the learning rate

finder!) developed this idea in his article “Super-Convergence:

Very Fast Training of Neural Networks Using Large Learning

Rates”. He designed a schedule for learning rate separated into

two phases: one where the learning rate grows from the

minimum value to the maximum value (warmup), and one

where it decreases back to the minimum value (annealing).

Smith called this combination of approaches 1cycle training.

https://oreil.ly/EB8NU

1cycle training allows us to use a much higher maximum

learning rate than other types of training, which gives two

benefits:

By training with higher learning rates, we train faster—a

phenomenon Smith calls super-convergence.

By training with higher learning rates, we overfit less

because we skip over the sharp local minima to end up in

a smoother (and therefore more generalizable) part of the

loss.

The second point is an interesting and subtle one; it is based on

the observation that a model that generalizes well is one whose

loss would not change very much if you changed the input by a

small amount. If a model trains at a large learning rate for quite

a while, and can find a good loss when doing so, it must have

found an area that also generalizes well, because it is jumping

around a lot from batch to batch (that is basically the definition

of a high learning rate). The problem is that, as we have

discussed, just jumping to a high learning rate is more likely to

result in diverging losses, rather than seeing your losses improve.

So we don’t jump straight to a high learning rate. Instead, we

start at a low learning rate, where our losses do not diverge, and

we allow the optimizer to gradually find smoother and smoother

areas of our parameters by gradually going to higher and higher

learning rates.

Then, once we have found a nice smooth area for our

parameters, we want to find the very best part of that area, which

means we have to bring our learning rates down again. This is

why 1cycle training has a gradual learning rate warmup, and a

gradual learning rate cooldown. Many researchers have found

that in practice this approach leads to more accurate models and

trains more quickly. That is why it is the approach that is used by

default for fine_tune in fastai.

In Chapter 16, we’ll learn all about momentum in SGD. Briefly,

momentum is a technique whereby the optimizer takes a step not

only in the direction of the gradients, but also that continues in

the direction of previous steps. Leslie Smith introduced the idea

of cyclical momentum in “A Disciplined Approach to Neural

Network Hyper-Parameters: Part 1”. It suggests that the

momentum varies in the opposite direction of the learning rate:

when we are at high learning rates, we use less momentum, and

we use more again in the annealing phase.

We can use 1cycle training in fastai by calling fit_one_cycle:

def fit(epochs=1, lr=0.06):
 learn = Learner(dls, simple_cnn(), loss_func=F.cross_entropy,
 metrics=accuracy,
cbs=ActivationStats(with_hist=True))
 learn.fit_one_cycle(epochs, lr)
 return learn

learn = fit()

https://oreil.ly/oL7GT

epoch train_loss valid_loss accuracy time

0 0.210838 0.084827 0.974300 00:08

We’re finally making some progress! It’s giving us a reasonable

accuracy now.

We can view the learning rate and momentum throughout

training by calling plot_sched on learn.recorder.

learn.recorder (as the name suggests) records everything that

happens during training, including losses, metrics, and

hyperparameters such as learning rate and momentum:

learn.recorder.plot_sched()

Smith’s original 1cycle paper used a linear warmup and linear

annealing. As you can see, we adapted the approach in fastai by

combining it with another popular approach: cosine annealing.

fit_one_cycle provides the following parameters you can adjust:

lr_max

The highest learning rate that will be used (this can

also be a list of learning rates for each layer group, or

a Python slice object containing the first and last

layer group learning rates)

div

How much to divide lr_max by to get the starting

learning rate

div_final

How much to divide lr_max by to get the ending

learning rate

pct_start

What percentage of the batches to use for the warmup

moms

A tuple (mom1,mom2,mom3), where mom1 is the initial

momentum, mom2 is the minimum momentum, and

mom3 is the final momentum

Let’s take a look at our layer stats again:

learn.activation_stats.plot_layer_stats(-2)

The percentage of nonzero weights is getting much better,

although it’s still quite high. We can see even more about what’s

going on in our training by using color_dim, passing it a layer

index:

learn.activation_stats.color_dim(-2)

color_dim was developed by fast.ai in conjunction with a

student, Stefano Giomo. Giomo, who refers to the idea as the

colorful dimension, provides an in-depth explanation of the

history and details behind the method. The basic idea is to create

a histogram of the activations of a layer, which we would hope

https://oreil.ly/bPXGw

would follow a smooth pattern such as the normal distribution

(Figure 13-14).

Figure 13-14. Histogram in colorful dimension (courtesy of Stefano Giomo)

To create color_dim, we take the histogram shown on the left

here and convert it into just the colored representation shown at

the bottom. Then we flip it on its side, as shown on the right. We

found that the distribution is clearer if we take the log of the

histogram values. Then, Giomo describes:

The final plot for each layer is made by stacking the

histogram of the activations from each batch along the

horizontal axis. So each vertical slice in the visualisation

represents the histogram of activations for a single batch.

The color intensity corresponds to the height of the

histogram; in other words, the number of activations in each

histogram bin.

Figure 13-15 shows how this all fits together.

Figure 13-15. Summary of the colorful dimension (courtesy of Stefano Giomo)

This illustrates why log(f) is more colorful than f when f follows a

normal distribution, because taking a log changes the Gaussian

curve in a quadratic, which isn’t as narrow.

So with that in mind, let’s take another look at the result for the

penultimate layer:

learn.activation_stats.color_dim(-2)

This shows a classic picture of “bad training.” We start with

nearly all activations at zero—that’s what we see at the far left,

with all the dark blue. The bright yellow at the bottom represents

the near-zero activations. Then, over the first few batches, we see

the number of nonzero activations exponentially increasing. But

it goes too far and collapses! We see the dark blue return, and

the bottom becomes bright yellow again. It almost looks like

training restarts from scratch. Then we see the activations

increase again and collapse again. After repeating this a few

times, eventually we see a spread of activations throughout the

range.

It’s much better if training can be smooth from the start. The

cycles of exponential increase and then collapse tend to result in

a lot of near-zero activations, resulting in slow training and poor

final results. One way to solve this problem is to use batch

normalization.

Batch Normalization

To fix the slow training and poor final results we ended up with

in the previous section, we need to fix the initial large percentage

of near-zero activations, and then try to maintain a good

distribution of activations throughout training.

Sergey Ioffe and Christian Szegedy presented a solution to this

problem in the 2015 paper “Batch Normalization: Accelerating

Deep Network Training by Reducing Internal Covariate Shift”. In

the abstract, they describe just the problem that we’ve seen:

Training Deep Neural Networks is complicated by the fact

that the distribution of each layer’s inputs changes during

training, as the parameters of the previous layers change.

This slows down the training by requiring lower learning

rates and careful parameter initialization…We refer to this

phenomenon as internal covariate shift, and address the

problem by normalizing layer inputs.

Their solution, they say is as follows:

Making normalization a part of the model architecture and

performing the normalization for each training mini-batch.

Batch Normalization allows us to use much higher learning

rates and be less careful about initialization.

The paper caused great excitement as soon as it was released,

because it included the chart in Figure 13-16, which clearly

demonstrated that batch normalization could train a model that

was even more accurate than the current state of the art (the

Inception architecture) and around 5× faster.

https://oreil.ly/MTZJL

Figure 13-16. Impact of batch normalization (courtesy of Sergey Ioffe and Christian Szegedy)

Batch normalization (often called batchnorm) works by taking

an average of the mean and standard deviations of the

activations of a layer and using those to normalize the

activations. However, this can cause problems because the

network might want some activations to be really high in order

to make accurate predictions. So they also added two learnable

parameters (meaning they will be updated in the SGD step),

usually called gamma and beta. After normalizing the activations

to get some new activation vector y, a batchnorm layer returns

gamma*y + beta.

That’s why our activations can have any mean or variance,

independent from the mean and standard deviation of the

results of the previous layer. Those statistics are learned

separately, making training easier on our model. The behavior is

different during training and validation: during training we use

the mean and standard deviation of the batch to normalize the

data, while during validation we instead use a running mean of

the statistics calculated during training.

Let’s add a batchnorm layer to conv:

def conv(ni, nf, ks=3, act=True):
 layers = [nn.Conv2d(ni, nf, stride=2, kernel_size=ks,
padding=ks//2)]
 layers.append(nn.BatchNorm2d(nf))
 if act: layers.append(nn.ReLU())
 return nn.Sequential(*layers)

and fit our model:

learn = fit()

epoch train_loss valid_loss accuracy time

0 0.130036 0.055021 0.986400 00:10

That’s a great result! Let’s take a look at color_dim:

learn.activation_stats.color_dim(-4)

This is just what we hope to see: a smooth development of

activations, with no “crashes.” Batchnorm has really delivered on

its promise here! In fact, batchnorm has been so successful that

we see it (or something very similar) in nearly all modern neural

networks.

An interesting observation about models containing batch

normalization layers is that they tend to generalize better than

models that don’t contain them. Although we haven’t as yet seen

a rigorous analysis of what’s going on here, most researchers

believe that the reason is that batch normalization adds some

extra randomness to the training process. Each mini-batch will

have a somewhat different mean and standard deviation than

other mini-batches. Therefore, the activations will be normalized

by different values each time. In order for the model to make

accurate predictions, it will have to learn to become robust to

these variations. In general, adding additional randomization to

the training process often helps.

Since things are going so well, let’s train for a few more epochs

and see how it goes. In fact, let’s increase the learning rate, since

the abstract of the batchnorm paper claimed we should be able

to “train at much higher learning rates”:

learn = fit(5, lr=0.1)

epoch train_loss valid_loss accuracy time

0 0.191731 0.121738 0.960900 00:11

1 0.083739 0.055808 0.981800 00:10

2 0.053161 0.044485 0.987100 00:10

3 0.034433 0.030233 0.990200 00:10

4 0.017646 0.025407 0.991200 00:10

learn = fit(5, lr=0.1)

epoch train_loss valid_loss accuracy time

0 0.183244 0.084025 0.975800 00:13

1 0.080774 0.067060 0.978800 00:12

2 0.050215 0.062595 0.981300 00:12

3 0.030020 0.030315 0.990700 00:12

4 0.015131 0.025148 0.992100 00:12

At this point, I think it’s fair to say we know how to recognize

digits! It’s time to move on to something harder…

Conclusion

We’ve seen that convolutions are just a type of matrix

multiplication, with two constraints on the weight matrix: some

elements are always zero, and some elements are tied (forced to

always have the same value). In Chapter 1, we saw the eight

requirements from the 1986 book Parallel Distributed

Processing; one of them was “A pattern of connectivity among

units.” That’s exactly what these constraints do: they enforce a

certain pattern of connectivity.

These constraints allow us to use far fewer parameters in our

model, without sacrificing the ability to represent complex visual

features. That means we can train deeper models faster, with less

overfitting. Although the universal approximation theorem

shows that it should be possible to represent anything in a fully

connected network in one hidden layer, we’ve seen now that in

practice we can train much better models by being thoughtful

about network architecture.

Convolutions are by far the most common pattern of connectivity

we see in neural nets (along with regular linear layers, which we

refer to as fully connected), but it’s likely that many more will be

discovered.

We’ve also seen how to interpret the activations of layers in the

network to see whether training is going well or not, and how

batchnorm helps regularize the training and makes it smoother.

In the next chapter, we will use both of those layers to build the

most popular architecture in computer vision: a residual

network.

Questionnaire

1. What is a feature?

2. Write out the convolutional kernel matrix for a top edge

detector.

3. Write out the mathematical operation applied by a 3×3

kernel to a single pixel in an image.

4. What is the value of a convolutional kernel applied to a

3×3 matrix of zeros?

5. What is padding?

6. What is stride?

7. Create a nested list comprehension to complete any task

that you choose.

8. What are the shapes of the input and weight parameters

to PyTorch’s 2D convolution?

9. What is a channel?

10. What is the relationship between a convolution and a

matrix multiplication?

11. What is a convolutional neural network?

12. What is the benefit of refactoring parts of your neural

network definition?

13. What is Flatten? Where does it need to be included in

the MNIST CNN? Why?

14. What does NCHW mean?

15. Why does the third layer of the MNIST CNN have 7*7*

(1168-16) multiplications?

16. What is a receptive field?

17. What is the size of the receptive field of an activation

after two stride-2 convolutions? Why?

18. Run conv-example.xlsx yourself and experiment with

trace precedents.

19. Have a look at Jeremy or Sylvain’s list of recent Twitter

“likes,” and see if you find any interesting resources or

ideas there.

20. How is a color image represented as a tensor?

21. How does a convolution work with a color input?

22. What method can we use to see that data in DataLoaders?

23. Why do we double the number of filters after each stride-

2 conv?

24. Why do we use a larger kernel in the first conv with

MNIST (with simple_cnn)?

25. What information does ActivationStats save for each

layer?

26. How can we access a learner’s callback after training?

27. What are the three statistics plotted by

plot_layer_stats? What does the x-axis represent?

28. Why are activations near zero problematic?

29. What are the upsides and downsides of training with a

larger batch size?

30. Why should we avoid using a high learning rate at the

start of training?

31. What is 1cycle training?

32. What are the benefits of training with a high learning

rate?

33. Why do we want to use a low learning rate at the end of

training?

34. What is cyclical momentum?

35. What callback tracks hyperparameter values during

training (along with other information)?

36. What does one column of pixels in the color_dim plot

represent?

37. What does “bad training” look like in color_dim? Why?

38. What trainable parameters does a batch normalization

layer contain?

39. What statistics are used to normalize in batch

normalization during training? How about during

validation?

40. Why do models with batch normalization layers

generalize better?

Further Research

1. What features other than edge detectors have been used

in computer vision (especially before deep learning

became popular)?

2. Other normalization layers are available in PyTorch. Try

them out and see what works best. Learn about why other

normalization layers have been developed and how they

differ from batch normalization.

3. Try moving the activation function after the batch

normalization layer in conv. Does it make a difference?

See what you can find out about what order is

recommended and why.

Chapter 14. ResNets

In this chapter, we will build on top of the CNNs introduced in

the previous chapter and explain to you the ResNet (residual

network) architecture. It was introduced in 2015 by Kaiming

He et al. in the article “Deep Residual Learning for Image

Recognition” and is by far the most used model architecture

nowadays. More recent developments in image models almost

always use the same trick of residual connections, and most of

the time, they are just a tweak of the original ResNet.

We will first show you the basic ResNet as it was first designed

and then explain the modern tweaks that make it more

performant. But first, we will need a problem a little bit more

difficult than the MNIST dataset, since we are already close to

100% accuracy with a regular CNN on it.

Going Back to Imagenette

It’s going to be tough to judge any improvements we make to

our models when we are already at an accuracy that is as high

as we saw on MNIST in the previous chapter, so we will tackle a

tougher image classification problem by going back to

https://oreil.ly/b68K8

Imagenette. We’ll stick with small images to keep things

reasonably fast.

Let’s grab the data—we’ll use the already-resized 160 px

version to make things faster still, and will random crop to 128

px:

def get_data(url, presize, resize):
 path = untar_data(url)
 return DataBlock(
 blocks=(ImageBlock, CategoryBlock),
get_items=get_image_files,
 splitter=GrandparentSplitter(valid_name='val'),
 get_y=parent_label, item_tfms=Resize(presize),
 batch_tfms=[*aug_transforms(min_scale=0.5,
size=resize),
 Normalize.from_stats(*imagenet_stats)],
).dataloaders(path, bs=128)

dls = get_data(URLs.IMAGENETTE_160, 160, 128)

dls.show_batch(max_n=4)

When we looked at MNIST, we were dealing with 28×28-pixel

images. For Imagenette, we are going to be training with

128×128-pixel images. Later, we would like to be able to use

larger images as well—at least as big as 224×224-pixels, the

ImageNet standard. Do you recall how we managed to get a

single vector of activations for each image out of the MNIST

convolutional neural network?

The approach we used was to ensure that there were enough

stride-2 convolutions such that the final layer would have a

grid size of 1. Then we just flattened out the unit axes that we

ended up with, to get a vector for each image (so, a matrix of

activations for a mini-batch). We could do the same thing for

Imagenette, but that would cause two problems:

We’d need lots of stride-2 layers to make our grid 1×1 at

the end—perhaps more than we would otherwise

choose.

The model would not work on images of any size other

than the size we originally trained on.

One approach to dealing with the first issue would be to flatten

the final convolutional layer in a way that handles a grid size

other than 1×1. We could simply flatten a matrix into a vector

as we have done before, by laying out each row after the

previous row. In fact, this is the approach that convolutional

neural networks up until 2013 nearly always took. The most

famous example is the 2013 ImageNet winner VGG, still

sometimes used today. But there was another problem with

this architecture: it not only did not work with images other

than those of the same size used in the training set, but also

required a lot of memory, because flattening out the

convolutional layer resulted in many activations being fed into

the final layers. Therefore, the weight matrices of the final

layers were enormous.

This problem was solved through the creation of fully

convolutional networks. The trick in fully convolutional

networks is to take the average of activations across a

convolutional grid. In other words, we can simply use this

function:

def avg_pool(x): return x.mean((2,3))

As you see, it is taking the mean over the x- and y-axes. This

function will always convert a grid of activations into a single

activation per image. PyTorch provides a slightly more versatile

module called nn.AdaptiveAvgPool2d, which averages a grid of

activations into whatever sized destination you require

(although we nearly always use a size of 1).

A fully convolutional network, therefore, has a number of

convolutional layers, some of which will be stride 2, at the end

of which is an adaptive average pooling layer, a flatten layer to

remove the unit axes, and finally a linear layer. Here is our first

fully convolutional network:

def block(ni, nf): return ConvLayer(ni, nf, stride=2)
def get_model():
 return nn.Sequential(
 block(3, 16),
 block(16, 32),
 block(32, 64),
 block(64, 128),
 block(128, 256),
 nn.AdaptiveAvgPool2d(1),

 Flatten(),
 nn.Linear(256, dls.c))

We’re going to be replacing the implementation of block in the

network with other variants in a moment, which is why we’re

not calling it conv anymore. We’re also saving some time by

taking advantage of fastai’s ConvLayer, which already provides

the functionality of conv from the preceding chapter (plus a lot

more!).

STOP AND THINK
Consider this question: would this approach make sense for an optical

character recognition (OCR) problem such as MNIST? The vast majority

of practitioners tackling OCR and similar problems tend to use fully

convolutional networks, because that’s what nearly everybody learns

nowadays. But it really doesn’t make any sense! You can’t decide, for

instance, whether a number is a 3 or an 8 by slicing it into small pieces,

jumbling them up, and deciding whether on average each piece looks like

a 3 or an 8. But that’s what adaptive average pooling effectively does!

Fully convolutional networks are really a good choice only for objects

that don’t have a single correct orientation or size (e.g., like most natural

photos).

Once we are done with our convolutional layers, we will get

activations of size bs x ch x h x w (batch size, a certain

number of channels, height, and width). We want to convert

this to a tensor of size bs x ch, so we take the average over the

last two dimensions and flatten the trailing 1×1 dimension as

we did in our previous model.

This is different from regular pooling in the sense that those

layers will generally take the average (for average pooling) or

the maximum (for max pooling) of a window of a given size.

For instance, max pooling layers of size 2, which were very

popular in older CNNs, reduce the size of our image by half on

each dimension by taking the maximum of each 2×2 window

(with a stride of 2).

As before, we can define a Learner with our custom model and

then train it on the data we grabbed earlier:

def get_learner(m):
 return Learner(dls, m, loss_func=nn.CrossEntropyLoss(),
metrics=accuracy
).to_fp16()

learn = get_learner(get_model())

learn.lr_find()

(0.47863011360168456, 3.981071710586548)

3e-3 is often a good learning rate for CNNs, and that appears to

be the case here too, so let’s try that:

learn.fit_one_cycle(5, 3e-3)

epoch train_loss valid_loss accuracy time

0 1.901582 2.155090 0.325350 00:07

1 1.559855 1.586795 0.507771 00:07

2 1.296350 1.295499 0.571720 00:07

3 1.144139 1.139257 0.639236 00:07

4 1.049770 1.092619 0.659108 00:07

That’s a pretty good start, considering we have to pick the

correct one of 10 categories, and we’re training from scratch for

just 5 epochs! We can do way better than this using a deeper

model, but just stacking new layers won’t really improve our

results (you can try and see for yourself!). To work around this

problem, ResNets introduce the idea of skip connections. We’ll

explore those and other aspects of ResNets in the next section.

Building a Modern CNN: ResNet

We now have all the pieces we need to build the models we

have been using in our computer vision tasks since the

beginning of this book: ResNets. We’ll introduce the main idea

behind them and show how it improves accuracy on

Imagenette compared to our previous model, before building a

version with all the recent tweaks.

Skip Connections

In 2015, the authors of the ResNet paper noticed something

that they found curious. Even after using batchnorm, they saw

that a network using more layers was doing less well than a

network using fewer layers—and there were no other

differences between the models. Most interestingly, the

difference was observed not only in the validation set, but also

in the training set; so it wasn’t just a generalization issue, but a

training issue. As the paper explains:

Unexpectedly, such degradation is not caused by

overfitting, and adding more layers to a suitably deep

model leads to higher training error, as [previously

reported] and thoroughly verified by our experiments.

This phenomenon was illustrated by the graph in Figure 14-1,

with training error on the left and test error on the right.

Figure 14-1. Training of networks of different depth (courtesy of Kaiming He et al.)

As the authors mention here, they are not the first people to

have noticed this curious fact. But they were the first to make a

very important leap:

Let us consider a shallower architecture and its deeper

counterpart that adds more layers onto it. There exists a

solution by construction to the deeper model: the added

layers are identity mapping, and the other layers are copied

from the learned shallower model.

As this is an academic paper, this process is described in a

rather inaccessible way, but the concept is actually very simple:

start with a 20-layer neural network that is trained well, and

add another 36 layers that do nothing at all (for instance, they

could be linear layers with a single weight equal to 1, and bias

equal to 0). The result will be a 56-layer network that does

exactly the same thing as the 20-layer network, proving that

there are always deep networks that should be at least as good

as any shallow network. But for some reason, SGD does not

seem able to find them.

JARGON: IDENTITY MAPPING
Returning the input without changing it at all. This process is performed

by an identity function.

Actually, there is another way to create those extra 36 layers,

which is much more interesting. What if we replaced every

occurrence of conv(x) with x + conv(x), where conv is the

function from the previous chapter that adds a second

convolution, then a ReLU, then a batchnorm layer.

Furthermore, recall that batchnorm does gamma*y + beta.

What if we initialized gamma to zero for every one of those final

batchnorm layers? Then our conv(x) for those extra 36 layers

will always be equal to zero, which means x+conv(x) will

always be equal to x.

What has that gained us? The key thing is that those 36 extra

layers, as they stand, are an identity mapping, but they have

parameters, which means they are trainable. So, we can start

with our best 20-layer model, add these 36 extra layers that

initially do nothing at all, and then fine-tune the whole 56-

layer model. Those extra 36 layers can then learn the

parameters that make them most useful!

The ResNet paper proposed a variant of this, which is to

instead “skip over” every second convolution, so effectively we

get x+conv2(conv1(x)). This is shown by the diagram in

Figure 14-2 (from the paper).

Figure 14-2. A simple ResNet block (courtesy of Kaiming He et al.)

That arrow on the right is just the x part of x+conv2(conv1(x))

and is known as the identity branch, or skip connection. The

path on the left is the conv2(conv1(x)) part. You can think of

the identity path as providing a direct route from the input to

the output.

In a ResNet, we don’t proceed by first training a smaller

number of layers, and then adding new layers on the end and

fine-tuning. Instead, we use ResNet blocks like the one in

Figure 14-2 throughout the CNN, initialized from scratch in the

usual way and trained with SGD in the usual way. We rely on

the skip connections to make the network easier to train with

SGD.

There’s another (largely equivalent) way to think of these

ResNet blocks. This is how the paper describes it:

Instead of hoping each few stacked layers directly fit a

desired underlying mapping, we explicitly let these layers

fit a residual mapping. Formally, denoting the desired

underlying mapping as H(x), we let the stacked nonlinear

layers fit another mapping of F(x) := H(x)−x. The original

mapping is recast into F(x)+x. We hypothesize that it is

easier to optimize the residual mapping than to optimize the

original, unreferenced mapping. To the extreme, if an

identity mapping were optimal, it would be easier to push

the residual to zero than to fit an identity mapping by a

stack of nonlinear layers.

Again, this is rather inaccessible prose—so let’s try to restate it

in plain English! If the outcome of a given layer is x and we’re

using a ResNet block that returns y = x + block(x), we’re not

asking the block to predict y; we are asking it to predict the

difference between y and x. So the job of those blocks isn’t to

predict certain features, but to minimize the error between x

and the desired y. A ResNet is, therefore, good at learning

about slight differences between doing nothing and passing

through a block of two convolutional layers (with trainable

weights). This is how these models got their name: they’re

predicting residuals (reminder: “residual” is prediction minus

target).

One key concept that both of these two ways of thinking about

ResNets share is the idea of ease of learning. This is an

important theme. Recall the universal approximation theorem,

which states that a sufficiently large network can learn

anything. This is still true, but there turns out to be a very

important difference between what a network can learn in

principle, and what it is easy for it to learn with realistic data

and training regimes. Many of the advances in neural networks

over the last decade have been like the ResNet block: the result

of realizing how to make something that was always possible

actually feasible.

TRUE IDENTITY PATH
The original paper didn’t actually do the trick of using zero for the initial

value of gamma in the last batchnorm layer of each block; that came a

couple of years later. So, the original version of ResNet didn’t quite begin

training with a true identity path through the ResNet blocks, but

nonetheless having the ability to “navigate through” the skip connections

did make it train better. Adding the batchnorm gamma init trick made the

models train at even higher learning rates.

Here’s the definition of a simple ResNet block (fastai initializes

the gamma weights of the last batchnorm layer to zero because of

norm_type=NormType.BatchZero):

class ResBlock(Module):
 def __init__(self, ni, nf):
 self.convs = nn.Sequential(
 ConvLayer(ni,nf),

 ConvLayer(nf,nf, norm_type=NormType.BatchZero))

 def forward(self, x): return x + self.convs(x)

This has two problems, however: it can’t handle a stride other

than 1, and it requires that ni==nf. Stop for a moment to think

carefully about why this is.

The issue is that with a stride of, say, 2 on one of the

convolutions, the grid size of the output activations will be half

the size on each axis of the input. So then we can’t add that

back to x in forward because x and the output activations have

different dimensions. The same basic issue occurs if ni!=nf: the

shapes of the input and output connections won’t allow us to

add them together.

To fix this, we need a way to change the shape of x to match the

result of self.convs. Halving the grid size can be done using an

average pooling layer with a stride of 2: that is, a layer that

takes 2×2 patches from the input and replaces them with their

average.

Changing the number of channels can be done by using a

convolution. We want this skip connection to be as close to an

identity map as possible, however, which means making this

convolution as simple as possible. The simplest possible

convolution is one with a kernel size of 1. That means that the

kernel is size ni × nf × 1 × 1, so it’s only doing a dot product

over the channels of each input pixel—it’s not combining across

pixels at all. This kind of 1x1 convolution is widely used in

modern CNNs, so take a moment to think about how it works.

JARGON: 1X1 CONVOLUTION
A convolution with a kernel size of 1.

Here’s a ResBlock using these tricks to handle changing shape

in the skip connection:

def _conv_block(ni,nf,stride):
 return nn.Sequential(
 ConvLayer(ni, nf, stride=stride),
 ConvLayer(nf, nf, act_cls=None,
norm_type=NormType.BatchZero))

class ResBlock(Module):
 def __init__(self, ni, nf, stride=1):
 self.convs = _conv_block(ni,nf,stride)
 self.idconv = noop if ni==nf else ConvLayer(ni, nf, 1,
act_cls=None)
 self.pool = noop if stride==1 else nn.AvgPool2d(2,
ceil_mode=True)

 def forward(self, x):
 return F.relu(self.convs(x) +
self.idconv(self.pool(x)))

Note that we’re using the noop function here, which simply

returns its input unchanged (noop is a computer science term

that stands for “no operation”). In this case, idconv does

nothing at all if nf==nf, and pool does nothing if stride==1,

which is what we wanted in our skip connection.

Also, you’ll see that we’ve removed the ReLU (act_cls=None)

from the final convolution in convs and from idconv, and

moved it to after we add the skip connection. The thinking

behind this is that the whole ResNet block is like a layer, and

you want your activation to be after your layer.

Let’s replace our block with ResBlock and try it out:

def block(ni,nf): return ResBlock(ni, nf, stride=2)
learn = get_learner(get_model())

learn.fit_one_cycle(5, 3e-3)

epoch train_loss valid_loss accuracy time

0 1.973174 1.845491 0.373248 00:08

1 1.678627 1.778713 0.439236 00:08

2 1.386163 1.596503 0.507261 00:08

3 1.177839 1.102993 0.644841 00:09

4 1.052435 1.038013 0.667771 00:09

It’s not much better. But the whole point of this was to allow us

to train deeper models, and we’re not really taking advantage of

that yet. To create a model that’s, say, twice as deep, all we

need to do is replace our block with two ResBlocks in a row:

def block(ni, nf):
 return nn.Sequential(ResBlock(ni, nf, stride=2),
ResBlock(nf, nf))

learn = get_learner(get_model())
learn.fit_one_cycle(5, 3e-3)

epoch train_loss valid_loss accuracy time

0 1.964076 1.864578 0.355159 00:12

1 1.636880 1.596789 0.502675 00:12

2 1.335378 1.304472 0.588535 00:12

3 1.089160 1.065063 0.663185 00:12

4 0.942904 0.963589 0.692739 00:12

Now we’re making good progress!

The authors of the ResNet paper went on to win the 2015

ImageNet challenge. At the time, this was by far the most

important annual event in computer vision. We have already

seen another ImageNet winner: the 2013 winners, Zeiler and

Fergus. It is interesting to note that in both cases, the starting

points for the breakthroughs were experimental observations:

observations about what layers actually learn, in the case of

Zeiler and Fergus, and observations about which kinds of

networks can be trained, in the case of the ResNet authors. This

ability to design and analyze thoughtful experiments, or even

just to see an unexpected result, say, “Hmmm, that’s

interesting,” and then, most importantly, set about figuring out

what on earth is going on, with great tenacity, is at the heart of

many scientific discoveries. Deep learning is not like pure

mathematics. It is a heavily experimental field, so it’s

important to be a strong practitioner, not just a theoretician.

Since the ResNet was introduced, it’s been widely studied and

applied to many domains. One of the most interesting papers,

published in 2018, is “Visualizing the Loss Landscape of Neural

Nets” by Hao Li et al. It shows that using skip connections

helps smooth the loss function, which makes training easier as

it avoids falling into a very sharp area. Figure 14-3 shows a

stunning picture from the paper, illustrating the difference

between the bumpy terrain that SGD has to navigate to

optimize a regular CNN (left) versus the smooth surface of a

ResNet (right).

Figure 14-3. Impact of ResNet on loss landscape (courtesy of Hao Li et al.)

Our first model is already good, but further research has

discovered more tricks we can apply to make it better. We’ll

look at those next.

A State-of-the-Art ResNet

https://oreil.ly/C9cFi

In “Bag of Tricks for Image Classification with Convolutional

Neural Networks”, Tong He et al. study variations of the

ResNet architecture that come at almost no additional cost in

terms of number of parameters or computation. By using a

tweaked ResNet-50 architecture and Mixup, they achieved

94.6% top-5 accuracy on ImageNet, in comparison to 92.2%

with a regular ResNet-50 without Mixup. This result is better

than that achieved by regular ResNet models that are twice as

deep (and twice as slow, and much more likely to overfit).

JARGON: TOP-5 ACCURACY
A metric testing how often the label we want is in the top 5 predictions of

our model. It was used in the ImageNet competition because many of the

images contained multiple objects, or contained objects that could be

easily confused or may even have been mislabeled with a similar label. In

these situations, looking at top-1 accuracy may be inappropriate.

However, recently CNNs have been getting so good that top-5 accuracy is

nearly 100%, so some researchers are using top-1 accuracy for ImageNet

too now.

We’ll use this tweaked version as we scale up to the full ResNet,

because it’s substantially better. It differs a little bit from our

previous implementation, in that instead of just starting with

ResNet blocks, it begins with a few convolutional layers

followed by a max pooling layer. This is what the first layers,

called the stem of the network, look like:

def _resnet_stem(*sizes):
 return [

https://oreil.ly/n-qhd

 ConvLayer(sizes[i], sizes[i+1], 3, stride = 2 if i==0
else 1)
 for i in range(len(sizes)-1)
] + [nn.MaxPool2d(kernel_size=3, stride=2, padding=1)]

_resnet_stem(3,32,32,64)

[ConvLayer(
 (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2,
2), padding=(1, 1))
 (1): BatchNorm2d(32, eps=1e-05, momentum=0.1)
 (2): ReLU()
), ConvLayer(
 (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1,
1), padding=(1, 1))
 (1): BatchNorm2d(32, eps=1e-05, momentum=0.1)
 (2): ReLU()
), ConvLayer(
 (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1,
1), padding=(1, 1))
 (1): BatchNorm2d(64, eps=1e-05, momentum=0.1)
 (2): ReLU()
), MaxPool2d(kernel_size=3, stride=2, padding=1,
ceil_mode=False)]

JARGON: STEM
The first few layers of a CNN. Generally, the stem has a different

structure than the main body of the CNN.

The reason that we have a stem of plain convolutional layers,

instead of ResNet blocks, is based on an important insight

about all deep convolutional neural networks: the vast majority

of the computation occurs in the early layers. Therefore, we

should keep the early layers as fast and simple as possible.

To see why so much computation occurs in the early layers,

consider the very first convolution on a 128-pixel input image.

If it is a stride-1 convolution, it will apply the kernel to every

one of the 128×128 pixels. That’s a lot of work! In the later

layers, however, the grid size could be as small as 4×4 or even

2×2, so there are far fewer kernel applications to do.

On the other hand, the first-layer convolution has only 3 input

features and 32 output features. Since it is a 3×3 kernel, this is

3×32×3×3 = 864 parameters in the weights. But the last

convolution will have 256 input features and 512 output

features, resulting in 1,179,648 weights! So the first layers

contain the vast majority of the computation, but the last layers

contain the vast majority of the parameters.

A ResNet block takes more computation than a plain

convolutional block, since (in the stride-2 case) a ResNet block

has three convolutions and a pooling layer. That’s why we want

to have plain convolutions to start off our ResNet.

We’re now ready to show the implementation of a modern

ResNet, with the “bag of tricks.” It uses the four groups of

ResNet blocks, with 64, 128, 256, then 512 filters. Each group

starts with a stride-2 block, except for the first one, since it’s

just after a MaxPooling layer:

class ResNet(nn.Sequential):
 def __init__(self, n_out, layers, expansion=1):
 stem = _resnet_stem(3,32,32,64)
 self.block_szs = [64, 64, 128, 256, 512]
 for i in range(1,5): self.block_szs[i] *= expansion
 blocks = [self._make_layer(*o) for o in
enumerate(layers)]
 super().__init__(*stem, *blocks,
 nn.AdaptiveAvgPool2d(1), Flatten(),
 nn.Linear(self.block_szs[-1],
n_out))

 def _make_layer(self, idx, n_layers):
 stride = 1 if idx==0 else 2
 ch_in,ch_out = self.block_szs[idx:idx+2]
 return nn.Sequential(*[
 ResBlock(ch_in if i==0 else ch_out, ch_out, stride
if i==0 else 1)
 for i in range(n_layers)
])

The _make_layer function is just there to create a series of

n_layers blocks. The first one is going from ch_in to ch_out

with the indicated stride, and all the others are blocks of stride

1 with ch_out to ch_out tensors. Once the blocks are defined,

our model is purely sequential, which is why we define it as a

subclass of nn.Sequential. (Ignore the expansion parameter

for now; we’ll discuss it in the next section. For now, it’ll be 1,

so it doesn’t do anything.)

The various versions of the models (ResNet-18, -34, -50, etc.)

just change the number of blocks in each of those groups. This

is the definition of a ResNet-18:

rn = ResNet(dls.c, [2,2,2,2])

Let’s train it for a little bit and see how it fares compared to the

previous model:

learn = get_learner(rn)
learn.fit_one_cycle(5, 3e-3)

epoch train_loss valid_loss accuracy time

0 1.673882 1.828394 0.413758 00:13

1 1.331675 1.572685 0.518217 00:13

2 1.087224 1.086102 0.650701 00:13

3 0.900428 0.968219 0.684331 00:12

4 0.760280 0.782558 0.757197 00:12

Even though we have more channels (and our model is

therefore even more accurate), our training is just as fast as

before thanks to our optimized stem.

To make our model deeper without taking too much compute

or memory, we can use another kind of layer introduced by the

ResNet paper for ResNets with a depth of 50 or more: the

bottleneck layer.

Bottleneck Layers

Instead of stacking two convolutions with a kernel size of 3,

bottleneck layers use three convolutions: two 1×1 (at the

beginning and the end) and one 3×3, as shown on the right in

Figure 14-4.

Figure 14-4. Comparison of regular and bottleneck ResNet blocks (courtesy of Kaiming He
et al.)

Why is that useful? 1×1 convolutions are much faster, so even if

this seems to be a more complex design, this block executes

faster than the first ResNet block we saw. This then lets us use

more filters: as we see in the illustration, the number of filters

in and out is four times higher (256 instead of 64). The 1×1

convs diminish then restore the number of channels (hence the

name bottleneck). The overall impact is that we can use more

filters in the same amount of time.

Let’s try replacing our ResBlock with this bottleneck design:

def _conv_block(ni,nf,stride):
 return nn.Sequential(
 ConvLayer(ni, nf//4, 1),
 ConvLayer(nf//4, nf//4, stride=stride),
 ConvLayer(nf//4, nf, 1, act_cls=None,
norm_type=NormType.BatchZero))

We’ll use this to create a ResNet-50 with group sizes of

(3,4,6,3). We now need to pass 4 into the expansion

parameter of ResNet, since we need to start with four times

fewer channels and we’ll end with four times more channels.

Deeper networks like this don’t generally show improvements

when training for only 5 epochs, so we’ll bump it up to 20

epochs this time to make the most of our bigger model. And to

really get great results, let’s use bigger images too:

dls = get_data(URLs.IMAGENETTE_320, presize=320, resize=224)

We don’t have to do anything to account for the larger 224-

pixel images; thanks to our fully convolutional network, it just

works. This is also why we were able to do progressive resizing

earlier in the book—the models we used were fully

convolutional, so we were even able to fine-tune models trained

with different sizes. We can now train our model and see the

effects:

rn = ResNet(dls.c, [3,4,6,3], 4)

learn = get_learner(rn)
learn.fit_one_cycle(20, 3e-3)

epoch train_loss valid_loss accuracy time

0 1.613448 1.473355 0.514140 00:31

1 1.359604 2.050794 0.397452 00:31

2 1.253112 4.511735 0.387006 00:31

3 1.133450 2.575221 0.396178 00:31

4 1.054752 1.264525 0.613758 00:32

5 0.927930 2.670484 0.422675 00:32

6 0.838268 1.724588 0.528662 00:32

7 0.748289 1.180668 0.666497 00:31

8 0.688637 1.245039 0.650446 00:32

9 0.645530 1.053691 0.674904 00:31

10 0.593401 1.180786 0.676433 00:32

11 0.536634 0.879937 0.713885 00:32

12 0.479208 0.798356 0.741656 00:32

13 0.440071 0.600644 0.806879 00:32

14 0.402952 0.450296 0.858599 00:32

15 0.359117 0.486126 0.846369 00:32

16 0.313642 0.442215 0.861911 00:32

17 0.294050 0.485967 0.853503 00:32

18 0.270583 0.408566 0.875924 00:32

19 0.266003 0.411752 0.872611 00:33

We’re getting a great result now! Try adding Mixup, and then

training this for a hundred epochs while you go get lunch.

You’ll have yourself a very accurate image classifier, trained

from scratch.

The bottleneck design we’ve shown here is typically used in

only ResNet-50, -101, and -152 models. ResNet-18 and -34

models usually use the non-bottleneck design seen in the

previous section. However, we’ve noticed that the bottleneck

layer generally works better even for the shallower networks.

This just goes to show that the little details in papers tend to

stick around for years, even if they’re not quite the best design!

Questioning assumptions and “stuff everyone knows” is always

a good idea, because this is still a new field, and lots of details

aren’t always done well.

Conclusion

You have now seen how the models we have been using for

computer vision since the first chapter are built, using skip

connections to allow deeper models to be trained. Even though

there has been a lot of research into better architectures, they

all use one version or another of this trick to make a direct path

from the input to the end of the network. When using transfer

learning, the ResNet is the pretrained model. In the next

chapter, we will look at the final details of how the models we

used were built from it.

Questionnaire

1. How did we get to a single vector of activations in the

CNNs used for MNIST in previous chapters? Why isn’t

that suitable for Imagenette?

2. What do we do for Imagenette instead?

3. What is adaptive pooling?

4. What is average pooling?

5. Why do we need Flatten after an adaptive average

pooling layer?

6. What is a skip connection?

7. Why do skip connections allow us to train deeper

models?

8. What does Figure 14-1 show? How did that lead to the

idea of skip connections?

9. What is identity mapping?

10. What is the basic equation for a ResNet block (ignoring

batchnorm and ReLU layers)?

11. What do ResNets have to do with residuals?

12. How do we deal with the skip connection when there is

a stride-2 convolution? How about when the number of

filters changes?

13. How can we express a 1×1 convolution in terms of a

vector dot product?

14. Create a 1×1 convolution with F.conv2d or nn.Conv2d

and apply it to an image. What happens to the shape of

the image?

15. What does the noop function return?

16. Explain what is shown in Figure 14-3.

17. When is top-5 accuracy a better metric than top-1

accuracy?

18. What is the “stem” of a CNN?

19. Why do we use plain convolutions in the CNN stem

instead of ResNet blocks?

20. How does a bottleneck block differ from a plain ResNet

block?

21. Why is a bottleneck block faster?

22. How do fully convolutional nets (and nets with adaptive

pooling in general) allow for progressive resizing?

Further Research

1. Try creating a fully convolutional net with adaptive

average pooling for MNIST (note that you’ll need fewer

stride-2 layers). How does it compare to a network

without such a pooling layer?

2. In Chapter 17, we introduce Einstein summation

notation. Skip ahead to see how this works, and then

write an implementation of the 1×1 convolution

operation using torch.einsum. Compare it to the same

operation using torch.conv2d.

3. Write a top-5 accuracy function using plain PyTorch or

plain Python.

4. Train a model on Imagenette for more epochs, with and

without label smoothing. Take a look at the Imagenette

leaderboards and see how close you can get to the best

results shown. Read the linked pages describing the

leading approaches.

Chapter 15. Application

Architectures Deep Dive

We are now in the exciting position that we can fully

understand the architectures that we have been using for our

state-of-the-art models for computer vision, natural language

processing, and tabular analysis. In this chapter, we’re going to

fill in all the missing details on how fastai’s application models

work and show you how to build them.

We will also go back to the custom data preprocessing pipeline

we saw in Chapter 11 for Siamese networks and show you how

to use the components in the fastai library to build custom

pretrained models for new tasks.

We’ll start with computer vision.

Computer Vision

For computer vision applications, we use the functions

cnn_learner and unet_learner to build our models, depending

on the task. In this section, we’ll explore how to build the

Learner objects we used in Parts I and II of this book.

cnn_learner

Let’s take a look at what happens when we use the cnn_learner

function. We begin by passing this function an architecture to

use for the body of the network. Most of the time, we use a

ResNet, which you already know how to create, so we don’t

need to delve into that any further. Pretrained weights are

downloaded as required and loaded into the ResNet.

Then, for transfer learning, the network needs to be cut. This

refers to slicing off the final layer, which is responsible only for

ImageNet-specific categorization. In fact, we do not slice off

only this layer, but everything from the adaptive average

pooling layer onward. The reason for this will become clear in

just a moment. Since different architectures might use different

types of pooling layers, or even completely different kinds of

heads, we don’t just search for the adaptive pooling layer to

decide where to cut the pretrained model. Instead, we have a

dictionary of information that is used for each model to

determine where its body ends and its head starts. We call this

model_meta—here it is for resnet50:

model_meta[resnet50]

{'cut': -2,
 'split': <function
fastai.vision.learner._resnet_split(m)>,
 'stats': ([0.485, 0.456, 0.406], [0.229, 0.224,
0.225])}

JARGON: BODY AND HEAD
The head of a neural net is the part that is specialized for a particular

task. For a CNN, it’s generally the part after the adaptive average pooling

layer. The body is everything else, and includes the stem (which we

learned about in Chapter 14).

If we take all of the layers prior to the cut point of -2, we get the

part of the model that fastai will keep for transfer learning.

Now, we put on our new head. This is created using the

function create_head:

create_head(20,2)

Sequential(
 (0): AdaptiveConcatPool2d(
 (ap): AdaptiveAvgPool2d(output_size=1)
 (mp): AdaptiveMaxPool2d(output_size=1)
)
 (1): Flatten()
 (2): BatchNorm1d(20, eps=1e-05, momentum=0.1,
affine=True)
 (3): Dropout(p=0.25, inplace=False)
 (4): Linear(in_features=20, out_features=512,
bias=False)
 (5): ReLU(inplace=True)
 (6): BatchNorm1d(512, eps=1e-05, momentum=0.1,
affine=True)
 (7): Dropout(p=0.5, inplace=False)
 (8): Linear(in_features=512, out_features=2,
bias=False)
)

With this function, you can choose how many additional linear

layers are added to the end, how much dropout to use after

each one, and what kind of pooling to use. By default, fastai will

apply both average pooling and max pooling, and will

concatenate the two together (this is the AdaptiveConcatPool2d

layer). This is not a particularly common approach, but it was

developed independently at fastai and other research labs in

recent years and tends to provide a small improvement over

using just average pooling.

fastai is a bit different from most libraries in that by default it

adds two linear layers, rather than one, in the CNN head. The

reason is that transfer learning can still be useful even, as we

have seen, when transferring the pretrained model to very

different domains. However, just using a single linear layer is

unlikely to be enough in these cases; we have found that using

two linear layers can allow transfer learning to be used more

quickly and easily, in more situations.

ONE LAST BATCHNORM
One parameter to create_head that is worth looking at is bn_final.

Setting this to True will cause a batchnorm layer to be added as your

final layer. This can be useful in helping your model scale appropriately

for your output activations. We haven’t seen this approach published

anywhere as yet, but we have found that it works well in practice

wherever we have used it.

Let’s now take a look at what unet_learner did in the

segmentation problem we showed in Chapter 1.

unet_learner

One of the most interesting architectures in deep learning is

the one that we used for segmentation in Chapter 1.

Segmentation is a challenging task, because the output

required is really an image, or a pixel grid, containing the

predicted label for every pixel. Other tasks share a similar basic

design, such as increasing the resolution of an image (super-

resolution), adding color to a black-and-white image

(colorization), or converting a photo into a synthetic painting

(style transfer)—these tasks are covered by an online chapter

of this book, so be sure to check it out after you’ve read this

chapter. In each case, we are starting with an image and

converting it to another image of the same dimensions or

aspect ratio, but with the pixels altered in some way. We refer

to these as generative vision models.

The way we do this is to start with the exact same approach to

developing a CNN head as we saw in the previous section. We

start with a ResNet, for instance, and cut off the adaptive

pooling layer and everything after that. Then we replace those

layers with our custom head, which does the generative task.

There was a lot of handwaving in that last sentence! How on

earth do we create a CNN head that generates an image? If we

start with, say, a 224-pixel input image, then at the end of the

https://book.fast.ai/

ResNet body we will have a 7×7 grid of convolutional

activations. How can we convert that into a 224-pixel

segmentation mask?

Naturally, we do this with a neural network! So we need some

kind of layer that can increase the grid size in a CNN. One

simple approach is to replace every pixel in the 7×7 grid with

four pixels in a 2×2 square. Each of those four pixels will have

the same value—this is known as nearest neighbor

interpolation. PyTorch provides a layer that does this for us, so

one option is to create a head that contains stride-1

convolutional layers (along with batchnorm and ReLU layers as

usual) interspersed with 2×2 nearest neighbor interpolation

layers. In fact, you can try this now! See if you can create a

custom head designed like this, and try it on the CamVid

segmentation task. You should find that you get some

reasonable results, although they won’t be as good as our

Chapter 1 results.

Another approach is to replace the nearest neighbor and

convolution combination with a transposed convolution,

otherwise known as a stride half convolution. This is identical

to a regular convolution, but first zero padding is inserted

between all the pixels in the input. This is easiest to see with a

picture—Figure 15-1 shows a diagram from the excellent

convolutional arithmetic paper we discussed in Chapter 13,

showing a 3×3 transposed convolution applied to a 3×3 image.

https://oreil.ly/hu06c

Figure 15-1. A transposed convolution (courtesy of Vincent Dumoulin and Francesco Visin)

As you see, the result is to increase the size of the input. You

can try this out now by using fastai’s ConvLayer class; pass the

parameter transpose=True to create a transposed convolution,

instead of a regular one, in your custom head.

Neither of these approaches, however, works really well. The

problem is that our 7×7 grid simply doesn’t have enough

information to create a 224×224-pixel output. It’s asking an

awful lot of the activations of each of those grid cells to have

enough information to fully regenerate every pixel in the

output.

The solution is to use skip connections, as in a ResNet, but

skipping from the activations in the body of the ResNet all the

way over to the activations of the transposed convolution on

the opposite side of the architecture. This approach, illustrated

in Figure 15-2, was developed by Olaf Ronneberger et al. in the

2015 paper “U-Net: Convolutional Networks for Biomedical

Image Segmentation”. Although the paper focused on medical

applications, the U-Net has revolutionized all kinds of

generative vision models.

https://oreil.ly/6ely4

Figure 15-2. The U-Net architecture (courtesy of Olaf Ronneberger, Philipp Fischer, and
Thomas Brox)

This picture shows the CNN body on the left (in this case, it’s a

regular CNN, not a ResNet, and they’re using 2×2 max pooling

instead of stride-2 convolutions, since this paper was written

before ResNets came along) and the transposed convolutional

(“up-conv”) layers on the right. The extra skip connections are

shown as gray arrows crossing from left to right (these are

sometimes called cross connections). You can see why it’s

called a U-Net!

With this architecture, the input to the transposed convolutions

is not just the lower-resolution grid in the preceding layer, but

also the higher-resolution grid in the ResNet head. This allows

the U-Net to use all of the information of the original image, as

it is needed. One challenge with U-Nets is that the exact

architecture depends on the image size. fastai has a unique

DynamicUnet class that autogenerates an architecture of the

right size based on the data provided.

Let’s focus now on an example in which we leverage the fastai

library to write a custom model.

A Siamese Network

Let’s go back to the input pipeline we set up in Chapter 11 for a

Siamese network. As you may remember, it consisted of a pair

of images with the label being True or False, depending on

whether they were in the same class.

Using what we just saw, let’s build a custom model for this task

and train it. How? We will use a pretrained architecture and

pass our two images through it. Then we can concatenate the

results and send them to a custom head that will return two

predictions. In terms of modules, this looks like this:

class SiameseModel(Module):
 def __init__(self, encoder, head):
 self.encoder,self.head = encoder,head

 def forward(self, x1, x2):
 ftrs = torch.cat([self.encoder(x1), self.encoder(x2)],
dim=1)
 return self.head(ftrs)

To create our encoder, we just need to take a pretrained model

and cut it, as we explained before. The function create_body

does that for us; we just have to pass it the place where we want

to cut. As we saw earlier, per the dictionary of metadata for

pretrained models, the cut value for a ResNet is –2:

encoder = create_body(resnet34, cut=-2)

Then we can create our head. A look at the encoder tells us the

last layer has 512 features, so this head will need to receive

512*4. Why 4? First we have to multiply by 2 because we have

two images. Then we need a second multiplication by 2 because

of our concat-pool trick. So we create the head as follows:

head = create_head(512*4, 2, ps=0.5)

With our encoder and head, we can now build our model:

model = SiameseModel(encoder, head)

Before using Learner, we have two more things to define. First,

we must define the loss function we want to use. It’s regular

cross entropy, but since our targets are Booleans, we need to

convert them to integers or PyTorch will throw an error:

def loss_func(out, targ):
 return nn.CrossEntropyLoss()(out, targ.long())

More importantly, to take full advantage of transfer learning,

we have to define a custom splitter. A splitter is a function that

tells the fastai library how to split the model into parameter

groups. These are used behind the scenes to train only the head

of a model when we do transfer learning.

Here we want two parameter groups: one for the encoder and

one for the head. We can thus define the following splitter

(params is just a function that returns all parameters of a given

module):

def siamese_splitter(model):
 return [params(model.encoder), params(model.head)]

Then we can define our Learner by passing the data, model,

loss function, splitter, and any metric we want. Since we are not

using a convenience function from fastai for transfer learning

(like cnn_learner), we have to call learn.freeze manually.

This will make sure only the last parameter group (in this case,

the head) is trained:

learn = Learner(dls, model, loss_func=loss_func,
 splitter=siamese_splitter, metrics=accuracy)
learn.freeze()

Then we can directly train our model with the usual method:

learn.fit_one_cycle(4, 3e-3)

epoch train_loss valid_loss accuracy time

0 0.367015 0.281242 0.885656 00:26

1 0.307688 0.214721 0.915426 00:26

2 0.275221 0.170615 0.936401 00:26

3 0.223771 0.159633 0.943843 00:26

Now we unfreeze and fine-tune the whole model a bit more

with discriminative learning rates (that is, a lower learning rate

for the body and a higher one for the head):

learn.unfreeze()
learn.fit_one_cycle(4, slice(1e-6,1e-4))

epoch train_loss valid_loss accuracy time

0 0.212744 0.159033 0.944520 00:35

1 0.201893 0.159615 0.942490 00:35

2 0.204606 0.152338 0.945196 00:36

3 0.213203 0.148346 0.947903 00:36

94.8% is very good when we remember that a classifier trained

the same way (with no data augmentation) had an error rate of

7%.

Now that we’ve seen how to create complete state-of-the-art

computer vision models, let’s move on to NLP.

Natural Language Processing

Converting an AWD-LSTM language model into a transfer

learning classifier, as we did in Chapter 10, follows a very

similar process to what we did with cnn_learner in the first

section of this chapter. We do not need a “meta” dictionary in

this case, because we do not have such a variety of architectures

to support in the body. All we need to do is select the stacked

RNN for the encoder in the language model, which is a single

PyTorch module. This encoder will provide an activation for

every word of the input, because a language model needs to

output a prediction for every next word.

To create a classifier from this, we use an approach described

in the ULMFiT paper as “BPTT for Text Classification

(BPT3C)”:

We divide the document into fixed-length batches of size b.

At the beginning of each batch, the model is initialized with

the final state of the previous batch; we keep track of the

hidden states for mean and max-pooling; gradients are

back-propagated to the batches whose hidden states

contributed to the final prediction. In practice, we use

variable length backpropagation sequences.

In other words, the classifier contains a for loop, which loops

over each batch of a sequence. The state is maintained across

batches, and the activations of each batch are stored. At the

end, we use the same average and max concatenated pooling

trick that we use for computer vision models—but this time, we

do not pool over CNN grid cells, but over RNN sequences.

For this for loop, we need to gather our data in batches, but

each text needs to be treated separately, as they each have their

own labels. However, it’s very likely that those texts won’t all be

of the same length, which means we won’t be able to put them

all in the same array, as we did with the language model.

https://oreil.ly/3hdSj

That’s where padding is going to help: when grabbing a bunch

of texts, we determine the one with the greatest length; then we

fill the ones that are shorter with a special token called xxpad.

To avoid extreme cases of having a text with 2,000 tokens in

the same batch as a text with 10 tokens (so a lot of padding, and

a lot of wasted computation), we alter the randomness by

making sure texts of comparable size are put together. The

texts will still be in a somewhat random order for the training

set (for the validation set, we can simply sort them by order of

length), but not completely so.

This is done automatically behind the scenes by the fastai

library when creating our DataLoaders.

Tabular

Finally, let’s take a look at fastai.tabular models. (We don’t

need to look at collaborative filtering separately, since we’ve

already seen that these models are just tabular models or use

the dot product approach, which we implemented earlier from

scratch.)

Here is the forward method for TabularModel:

if self.n_emb != 0:
 x = [e(x_cat[:,i]) for i,e in enumerate(self.embeds)]
 x = torch.cat(x, 1)
 x = self.emb_drop(x)
if self.n_cont != 0:
 x_cont = self.bn_cont(x_cont)

 x = torch.cat([x, x_cont], 1) if self.n_emb != 0 else
x_cont

return self.layers(x)

We won’t show __init__ here, since it’s not that interesting,

but will look at each line of code in forward in turn. The first

line is just testing whether there are any embeddings to deal

with—we can skip this section if we have only continuous

variables:

if self.n_emb != 0:

self.embeds contains the embedding matrices, so this gets the

activations of each

 x = [e(x_cat[:,i]) for i,e in enumerate(self.embeds)]

and concatenates them into a single tensor:

 x = torch.cat(x, 1)

Then dropout is applied. You can pass emb_drop to __init__ to

change this value:

 x = self.emb_drop(x)

Now we test whether there are any continuous variables to deal

with:

if self.n_cont != 0:

They are passed through a batchnorm layer

 x_cont = self.bn_cont(x_cont)

and concatenated with the embedding activations, if there were

any:

 x = torch.cat([x, x_cont], 1) if self.n_emb != 0 else
x_cont

Finally, this is passed through the linear layers (each of which

includes batchnorm, if use_bn is True, and dropout, if ps is set

to some value or list of values):

return self.layers(x)

Congratulations! Now you know every single piece of the

architectures used in the fastai library!

Conclusion

As you can see, the details of deep learning architectures need

not scare you now. You can look inside the code of fastai and

PyTorch and see just what is going on. More importantly, try to

understand why it’s going on. Take a look at the papers that are

referenced in the code, and try to see how the code matches up

to the algorithms that are described.

Now that we have investigated all of the pieces of a model and

the data that is passed into it, we can consider what this means

for practical deep learning. If you have unlimited data,

unlimited memory, and unlimited time, then the advice is easy:

train a huge model on all of your data for a really long time. But

the reason that deep learning is not straightforward is that your

data, memory, and time are typically limited. If you are

running out of memory or time, the solution is to train a

smaller model. If you are not able to train for long enough to

overfit, you are not taking advantage of the capacity of your

model.

So, step 1 is to get to the point where you can overfit. Then the

question is how to reduce that overfitting. Figure 15-3 shows

how we recommend prioritizing the steps from there.

Figure 15-3. Steps to reducing overfitting

Many practitioners, when faced with an overfitting model, start

at exactly the wrong end of this diagram. Their starting point is

to use a smaller model or more regularization. Using a smaller

model should be absolutely the last step you take, unless

training your model is taking up too much time or memory.

Reducing the size of your model reduces the ability of your

model to learn subtle relationships in your data.

Instead, your first step should be to seek to create more data.

That could involve adding more labels to data that you already

have, finding additional tasks that your model could be asked

to solve (or, to think of it another way, identifying different

kinds of labels that you could model), or creating additional

synthetic data by using more or different data augmentation

techniques. Thanks to the development of Mixup and similar

approaches, effective data augmentation is now available for

nearly all kinds of data.

Once you’ve got as much data as you think you can reasonably

get hold of, and are using it as effectively as possible by taking

advantage of all the labels that you can find and doing all the

augmentation that makes sense, if you are still overfitting, you

should think about using more generalizable architectures. For

instance, adding batch normalization may improve

generalization.

If you are still overfitting after doing the best you can at using

your data and tuning your architecture, you can take a look at

regularization. Generally speaking, adding dropout to the last

layer or two will do a good job of regularizing your model.

However, as we learned from the story of the development of

AWD-LSTM, adding dropout of different types throughout

your model can often help even more. Generally speaking, a

larger model with more regularization is more flexible, and can

therefore be more accurate than a smaller model with less

regularization.

Only after considering all of these options would we

recommend that you try using a smaller version of your

architecture.

Questionnaire

1. What is the head of a neural net?

2. What is the body of a neural net?

3. What is “cutting” a neural net? Why do we need to do

this for transfer learning?

4. What is model_meta? Try printing it to see what’s inside.

5. Read the source code for create_head and make sure

you understand what each line does.

6. Look at the output of create_head and make sure you

understand why each layer is there, and how the

create_head source created it.

7. Figure out how to change the dropout, layer size, and

number of layers created by create_cnn, and see if you

can find values that result in better accuracy from the

pet recognizer.

8. What does AdaptiveConcatPool2d do?

9. What is nearest neighbor interpolation? How can it be

used to upsample convolutional activations?

10. What is a transposed convolution? What is another

name for it?

11. Create a conv layer with transpose=True and apply it to

an image. Check the output shape.

12. Draw the U-Net architecture.

13. What is BPTT for Text Classification (BPT3C)?

14. How do we handle different length sequences in

BPT3C?

15. Try to run each line of TabularModel.forward

separately, one line per cell, in a notebook, and look at

the input and output shapes at each step.

16. How is self.layers defined in TabularModel?

17. What are the five steps for preventing overfitting?

18. Why don’t we reduce architecture complexity before

trying other approaches to preventing overfitting?

Further Research

1. Write your own custom head and try training the pet

recognizer with it. See if you can get a better result than

fastai’s default.

2. Try switching between AdaptiveConcatPool2d and

AdaptiveAvgPool2d in a CNN head and see what

difference it makes.

3. Write your own custom splitter to create a separate

parameter group for every ResNet block, and a separate

group for the stem. Try training with it, and see if it

improves the pet recognizer.

4. Read the online chapter about generative image models,

and create your own colorizer, super-resolution model,

or style transfer model.

5. Create a custom head using nearest neighbor

interpolation and use it to do segmentation on CamVid.

Chapter 16. The Training Process

You now know how to create state-of-the-art architectures for

computer vision, natural image processing, tabular analysis,

and collaborative filtering, and you know how to train them

quickly. So we’re done, right? Not quite yet. We still have to

explore a little bit more of the training process.

We explained in Chapter 4 the basis of stochastic gradient

descent: pass a mini-batch to the model, compare it to our

target with the loss function, then compute the gradients of this

loss function with regard to each weight before updating the

weights with the formula:

new_weight = weight - lr * weight.grad

We implemented this from scratch in a training loop, and saw

that PyTorch provides a simple nn.SGD class that does this

calculation for each parameter for us. In this chapter, we will

build some faster optimizers, using a flexible foundation. But

that’s not all we might want to change in the training process.

For any tweak of the training loop, we will need a way to add

some code to the basis of SGD. The fastai library has a system

of callbacks to do this, and we will teach you all about it.

Let’s start with standard SGD to get a baseline; then we will

introduce the most commonly used optimizers.

Establishing a Baseline

First we’ll create a baseline using plain SGD and compare it to

fastai’s default optimizer. We’ll start by grabbing Imagenette

with the same get_data we used in Chapter 14:

dls = get_data(URLs.IMAGENETTE_160, 160, 128)

We’ll create a ResNet-34 without pretraining and pass along

any arguments received:

def get_learner(**kwargs):
 return cnn_learner(dls, resnet34, pretrained=False,
 metrics=accuracy, **kwargs).to_fp16()

Here’s the default fastai optimizer, with the usual 3e-3 learning

rate:

learn = get_learner()
learn.fit_one_cycle(3, 0.003)

epoch train_loss valid_loss accuracy time

0 2.571932 2.685040 0.322548 00:11

1 1.904674 1.852589 0.437452 00:11

2 1.586909 1.374908 0.594904 00:11

Now let’s try plain SGD. We can pass opt_func (optimization

function) to cnn_learner to get fastai to use any optimizer:

learn = get_learner(opt_func=SGD)

The first thing to look at is lr_find:

learn.lr_find()

(0.017378008365631102, 3.019951861915615e-07)

It looks like we’ll need to use a higher learning rate than we

normally use:

learn.fit_one_cycle(3, 0.03, moms=(0,0,0))

epoch train_loss valid_loss accuracy time

0 2.969412 2.214596 0.242038 00:09

1 2.442730 1.845950 0.362548 00:09

2 2.157159 1.741143 0.408917 00:09

Because accelerating SGD with momentum is such a good idea,

fastai does this by default in fit_one_cycle, so we turn it off

with moms=(0,0,0). We’ll be discussing momentum shortly.

Clearly, plain SGD isn’t training as fast as we’d like. So let’s

learn some tricks to get accelerated training!

A Generic Optimizer

To build up our accelerated SGD tricks, we’ll need to start with

a nice flexible optimizer foundation. No library prior to fastai

provided such a foundation, but during fastai’s development,

we realized that all the optimizer improvements we’d seen in

the academic literature could be handled using optimizer

callbacks. These are small pieces of code that we can compose,

mix, and match in an optimizer to build the optimizer step.

They are called by fastai’s lightweight Optimizer class. These

are the definitions in Optimizer of the two key methods that

we’ve been using in this book:

def zero_grad(self):
 for p,*_ in self.all_params():
 p.grad.detach_()
 p.grad.zero_()

def step(self):
 for p,pg,state,hyper in self.all_params():
 for cb in self.cbs:
 state = _update(state, cb(p, **{**state,
**hyper}))
 self.state[p] = state

As we saw when training an MNIST model from scratch,

zero_grad just loops through the parameters of the model and

sets the gradients to zero. It also calls detach_, which removes

any history of gradient computation, since it won’t be needed

after zero_grad.

The more interesting method is step, which loops through the

callbacks (cbs) and calls them to update the parameters (the

_update function just calls state.update if there’s anything

returned by cb). As you can see, Optimizer doesn’t do any SGD

steps itself. Let’s see how we can add SGD to Optimizer.

Here’s an optimizer callback that does a single SGD step, by

multiplying -lr by the gradients and adding that to the

parameter (when Tensor.add_ in PyTorch is passed two

parameters, they are multiplied together before the addition):

def sgd_cb(p, lr, **kwargs): p.data.add_(-lr, p.grad.data)

We can pass this to Optimizer using the cbs parameter; we’ll

need to use partial since Learner will call this function to

create our optimizer later:

opt_func = partial(Optimizer, cbs=[sgd_cb])

Let’s see if this trains:

learn = get_learner(opt_func=opt_func)
learn.fit(3, 0.03)

epoch train_loss valid_loss accuracy time

0 2.730918 2.009971 0.332739 00:09

1 2.204893 1.747202 0.441529 00:09

2 1.875621 1.684515 0.445350 00:09

It’s working! So that’s how we create SGD from scratch in

fastai. Now let’s see what this “momentum” is.

Momentum

As described in Chapter 4, SGD can be thought of as standing

at the top of a mountain and working your way down by taking

a step in the direction of the steepest slope at each point in

time. But what if we have a ball rolling down the mountain? It

won’t, at each given point, exactly follow the direction of the

gradient, as it will have momentum. A ball with more

momentum (for instance, a heavier ball) will skip over little

bumps and holes, and be more likely to get to the bottom of a

bumpy mountain. A ping pong ball, on the other hand, will get

stuck in every little crevice.

So how can we bring this idea over to SGD? We can use a

moving average, instead of only the current gradient, to make

our step:

weight.avg = beta * weight.avg + (1-beta) * weight.grad
new_weight = weight - lr * weight.avg

Here beta is some number we choose that defines how much

momentum to use. If beta is 0, the first equation becomes

weight.avg = weight.grad, so we end up with plain SGD. But

if it’s a number close to 1, the main direction chosen is an

average of the previous steps. (If you have done a bit of

statistics, you may recognize in the first equation an

exponentially weighted moving average, which is often used

to denoise data and get the underlying tendency.)

Note that we are writing weight.avg to highlight the fact that

we need to store the moving averages for each parameter of the

model (they all their own independent moving averages).

Figure 16-1 shows an example of noisy data for a single

parameter with the momentum curve plotted in red, and the

gradients of the parameter plotted in blue. The gradients

increase, then decrease, and the momentum does a good job of

following the general trend without getting too influenced by

noise.

Figure 16-1. An example of momentum

It works particularly well if the loss function has narrow

canyons we need to navigate: vanilla SGD would send us

bouncing from one side to the other, while SGD with

momentum will average those to roll smoothly down the side.

The parameter beta determines the strength of the momentum

we are using: with a small beta, we stay closer to the actual

gradient values, whereas with a high beta, we will mostly go in

the direction of the average of the gradients and it will take a

while before any change in the gradients makes that trend

move.

With a large beta, we might miss that the gradients have

changed directions and roll over a small local minima. This is a

desired side effect: intuitively, when we show a new input to

our model, it will look like something in the training set but

won’t be exactly like it. It will correspond to a point in the loss

function that is close to the minimum we ended up with at the

end of training, but not exactly at that minimum. So, we would

rather end up training in a wide minimum, where nearby

points have approximately the same loss (or if you prefer, a

point where the loss is as flat as possible). Figure 16-2 shows

how the chart in Figure 16-1 varies as we change beta.

Figure 16-2. Momentum with different beta values

We can see in these examples that a beta that’s too high results

in the overall changes in gradient getting ignored. In SGD with

momentum, a value of beta that is often used is 0.9.

fit_one_cycle by default starts with a beta of 0.95, gradually

adjusts it to 0.85, and then gradually moves it back to 0.95 at

the end of training. Let’s see how our training goes with

momentum added to plain SGD.

To add momentum to our optimizer, we’ll first need to keep

track of the moving average gradient, which we can do with

another callback. When an optimizer callback returns a dict, it

is used to update the state of the optimizer and is passed back

to the optimizer on the next step. So this callback will keep

track of the gradient averages in a parameter called grad_avg:

def average_grad(p, mom, grad_avg=None, **kwargs):
 if grad_avg is None: grad_avg =
torch.zeros_like(p.grad.data)
 return {'grad_avg': grad_avg*mom + p.grad.data}

To use it, we just have to replace p.grad.data with grad_avg in

our step function:

def momentum_step(p, lr, grad_avg, **kwargs): p.data.add_(-lr,
grad_avg)

opt_func = partial(Optimizer, cbs=[average_grad,momentum_step],
mom=0.9)

Learner will automatically schedule mom and lr, so

fit_one_cycle will even work with our custom Optimizer:

learn = get_learner(opt_func=opt_func)
learn.fit_one_cycle(3, 0.03)

epoch train_loss valid_loss accuracy time

0 2.856000 2.493429 0.246115 00:10

1 2.504205 2.463813 0.348280 00:10

2 2.187387 1.755670 0.418853 00:10

learn.recorder.plot_sched()

We’re still not getting great results, so let’s see what else we can

do.

RMSProp

RMSProp is another variant of SGD introduced by Geoffrey

Hinton in Lecture 6e of his Coursera class “Neural Networks

for Machine Learning”. The main difference from SGD is that it

https://oreil.ly/FVcIE

uses an adaptive learning rate: instead of using the same

learning rate for every parameter, each parameter gets its own

specific learning rate controlled by a global learning rate. That

way, we can speed up training by giving a higher learning rate

to the weights that need to change a lot, while the ones that are

good enough get a lower learning rate.

How do we decide which parameters should have a high

learning rate and which should not? We can look at the

gradients to get an idea. If a parameter’s gradients have been

close to zero for a while, that parameter will need a higher

learning rate because the loss is flat. On the other hand, if the

gradients are all over the place, we should probably be careful

and pick a low learning rate to avoid divergence. We can’t just

average the gradients to see if they’re changing a lot, because

the average of a large positive and a large negative number is

close to zero. Instead, we can use the usual trick of either taking

the absolute value or the squared values (and then taking the

square root after the mean).

Once again, to determine the general tendency behind the

noise, we will use a moving average—specifically, the moving

average of the gradients squared. Then we will update the

corresponding weight by using the current gradient (for the

direction) divided by the square root of this moving average

(that way, if it’s low, the effective learning rate will be higher,

and if it’s high, the effective learning rate will be lower):

w.square_avg = alpha * w.square_avg + (1-alpha) * (w.grad ** 2)
new_w = w - lr * w.grad / math.sqrt(w.square_avg + eps)

The eps (epsilon) is added for numerical stability (usually set at

1e-8), and the default value for alpha is usually 0.99.

We can add this to Optimizer by doing much the same thing we

did for avg_grad, but with an extra **2:

def average_sqr_grad(p, sqr_mom, sqr_avg=None, **kwargs):
 if sqr_avg is None: sqr_avg = torch.zeros_like(p.grad.data)
 return {'sqr_avg': sqr_avg*sqr_mom + p.grad.data**2}

And we can define our step function and optimizer as before:

def rms_prop_step(p, lr, sqr_avg, eps, grad_avg=None,
**kwargs):
 denom = sqr_avg.sqrt().add_(eps)
 p.data.addcdiv_(-lr, p.grad, denom)

opt_func = partial(Optimizer, cbs=
[average_sqr_grad,rms_prop_step],
 sqr_mom=0.99, eps=1e-7)

Let’s try it out:

learn = get_learner(opt_func=opt_func)
learn.fit_one_cycle(3, 0.003)

epoch train_loss valid_loss accuracy time

0 2.766912 1.845900 0.402548 00:11

1 2.194586 1.510269 0.504459 00:11

2 1.869099 1.447939 0.544968 00:11

Much better! Now we just have to bring these ideas together,

and we have Adam, fastai’s default optimizer.

Adam

Adam mixes the ideas of SGD with momentum and RMSProp

together: it uses the moving average of the gradients as a

direction and divides by the square root of the moving average

of the gradients squared to give an adaptive learning rate to

each parameter.

There is one other difference in how Adam calculates moving

averages. It takes the unbiased moving average, which is

w.avg = beta * w.avg + (1-beta) * w.grad
unbias_avg = w.avg / (1 - (beta**(i+1)))

if we are the i-th iteration (starting at 0 as Python does). This

divisor of 1 - (beta**(i+1)) makes sure the unbiased average

looks more like the gradients at the beginning (since beta < 1,

the denominator is very quickly close to 1).

Putting everything together, our update step looks like this:

w.avg = beta1 * w.avg + (1-beta1) * w.grad
unbias_avg = w.avg / (1 - (beta1**(i+1)))
w.sqr_avg = beta2 * w.sqr_avg + (1-beta2) * (w.grad ** 2)
new_w = w - lr * unbias_avg / sqrt(w.sqr_avg + eps)

As for RMSProp, eps is usually set to 1e-8, and the default for

(beta1,beta2) suggested by the literature is (0.9,0.999).

In fastai, Adam is the default optimizer we use since it allows

faster training, but we’ve found that beta2=0.99 is better suited

to the type of schedule we are using. beta1 is the momentum

parameter, which we specify with the argument moms in our call

to fit_one_cycle. As for eps, fastai uses a default of 1e-5. eps is

not just useful for numerical stability. A higher eps limits the

maximum value of the adjusted learning rate. To take an

extreme example, if eps is 1, then the adjusted learning will

never be higher than the base learning rate.

Rather than show all the code for this in the book, we’ll let you

look at the optimizer notebook in fastai’s

https://oreil.ly/24_O[GitHub repository] (browse the _nbs

folder and search for the notebook called optimizer). You’ll see

https://oreil.ly/

all the code we’ve shown so far, along with Adam and other

optimizers, and lots of examples and tests.

One thing that changes when we go from SGD to Adam is the

way we apply weight decay, and it can have important

consequences.

Decoupled Weight Decay

Weight decay, which we’ve discussed in Chapter 8, is

equivalent to (in the case of vanilla SGD) updating the

parameters with the following:

new_weight = weight - lr*weight.grad - lr*wd*weight

The last part of that formula explains the name of this

technique: each weight is decayed by a factor of lr * wd.

The other name for weight decay is L2 regularization, which

consists of adding the sum of all squared weights to the loss

(multiplied by the weight decay). As we saw in Chapter 8, this

can be directly expressed on the gradients:

weight.grad += wd*weight

For SGD, those two formulas are equivalent. However, this

equivalence holds only for standard SGD because, as we’ve

seen with momentum, RMSProp, or in Adam, the update has

some additional formulas around the gradient.

Most libraries use the second formulation, but it was pointed

out in “Decoupled Weight Decay Regularization” by Ilya

Loshchilov and Frank Hutter that the first one is the only

correct approach with the Adam optimizer or momentum,

which is why fastai makes it its default.

Now you know everything that is hidden behind the line

learn.fit_one_cycle!

Optimizers are only one part of the training process, however.

When you need to change the training loop with fastai, you

can’t directly change the code inside the library. Instead, we

have designed a system of callbacks to let you write any tweaks

you like in independent blocks that you can then mix and

match.

Callbacks

Sometimes you need to change how things work a little bit. In

fact, we have already seen examples of this: Mixup, fp16

training, resetting the model after each epoch for training

RNNs, and so forth. How do we go about making these kinds of

tweaks to the training process?

We’ve seen the basic training loop, which, with the help of the

Optimizer class, looks like this for a single epoch:

https://oreil.ly/w37Ac

for xb,yb in dl:
 loss = loss_func(model(xb), yb)
 loss.backward()
 opt.step()
 opt.zero_grad()

Figure 16-3 shows how to picture that.

Figure 16-3. Basic training loop

The usual way for deep learning practitioners to customize the

training loop is to make a copy of an existing training loop, and

then insert the code necessary for their particular changes into

it. This is how nearly all code that you find online will look. But

it has serious problems.

It’s not likely that some particular tweaked training loop is

going to meet your particular needs. Hundreds of changes can

be made to a training loop, which means there are billions and

billions of possible permutations. You can’t just copy one tweak

from a training loop here, another from a training loop there,

and expect them all to work together. Each will be based on

different assumptions about the environment that it’s working

in, use different naming conventions, and expect the data to be

in different formats.

We need a way to allow users to insert their own code at any

part of the training loop, but in a consistent and well-defined

way. Computer scientists have already come up with an elegant

solution: the callback. A callback is a piece of code that you

write and inject into another piece of code at a predefined

point. In fact, callbacks have been used with deep learning

training loops for years. The problem is that in previous

libraries, it was possible to inject code in only a small subset of

places where this may have been required—and, more

importantly, callbacks were not able to do all the things they

needed to do.

In order to be just as flexible as manually copying and pasting a

training loop and directly inserting code into it, a callback must

be able to read every possible piece of information available in

the training loop, modify all of it as needed, and fully control

when a batch, epoch, or even the whole training loop should be

terminated. fastai is the first library to provide all of this

functionality. It modifies the training loop so it looks like

Figure 16-4.

Figure 16-4. Training loop with callbacks

The effectiveness of this approach has been borne out over the

last couple of years—by using the fastai callback system, we

were able to implement every single new paper we tried and

fulfill every user request for modifying the training loop. The

training loop itself has not required modifications. Figure 16-5

shows just a few of the callbacks that have been added.

Figure 16-5. Some fastai callbacks

This is important because it means that whatever ideas we have

in our heads, we can implement them. We need never dig into

the source code of PyTorch or fastai and hack together a one-

off system to try out our ideas. And when we do implement our

own callbacks to develop our own ideas, we know that they will

work together with all of the other functionality provided by

fastai—so we will get progress bars, mixed-precision training,

hyperparameter annealing, and so forth.

Another advantage is that it makes it easy to gradually remove

or add functionality and perform ablation studies. You just

need to adjust the list of callbacks you pass along to your fit

function.

As an example, here is the fastai source code that is run for

each batch of the training loop:

try:
 self._split(b);
self('begin_batch')
 self.pred = self.model(*self.xb);
self('after_pred')
 self.loss = self.loss_func(self.pred, *self.yb);
self('after_loss')
 if not self.training: return
 self.loss.backward();
self('after_backward')
 self.opt.step();
self('after_step')
 self.opt.zero_grad()
except CancelBatchException:
self('after_cancel_batch')
finally:
self('after_batch')

The calls of the form self('...') are where the callbacks are

called. As you see, this happens after every step. The callback

will receive the entire state of training and can also modify it.

For instance, the input data and target labels are in self.xb

and self.yb, respectively; a callback can modify these to

modify the data the training loop sees. It can also modify

self.loss or even the gradients.

Let’s see how this works in practice by writing a callback.

Creating a Callback

When you want to write your own callback, the full list of

available events is as follows:

begin_fit

Called before doing anything; ideal for initial setup.

begin_epoch

Called at the beginning of each epoch; useful for any

behavior you need to reset at each epoch.

begin_train

Called at the beginning of the training part of an

epoch.

begin_batch

Called at the beginning of each batch, just after

drawing said batch. It can be used to do any setup

necessary for the batch (like hyperparameter

scheduling) or to change the input/target before it

goes into the model (for instance, by applying

Mixup).

after_pred

Called after computing the output of the model on

the batch. It can be used to change that output

before it’s fed to the loss function.

after_loss

Called after the loss has been computed, but before

the backward pass. It can be used to add a penalty to

the loss (AR or TAR in RNN training, for instance).

after_backward

Called after the backward pass, but before the

update of the parameters. It can be used to make

changes to the gradients before said update (via

gradient clipping, for instance).

after_step

Called after the step and before the gradients are

zeroed.

after_batch

Called at the end of a batch, to perform any required

cleanup before the next one.

after_train

Called at the end of the training phase of an epoch.

begin_validate

Called at the beginning of the validation phase of an

epoch; useful for any setup needed specifically for

validation.

after_validate

Called at the end of the validation part of an epoch.

after_epoch

Called at the end of an epoch, for any cleanup before

the next one.

after_fit

Called at the end of training, for final cleanup.

The elements of this list are available as attributes of the

special variable event, so you can just type event. and hit Tab

in your notebook to see a list of all the options

Let’s take a look at an example. Do you recall how in Chapter 12

we needed to ensure that our special reset method was called

at the start of training and validation for each epoch? We used

the ModelResetter callback provided by fastai to do this for us.

But how does it work exactly? Here’s the full source code for

that class:

class ModelResetter(Callback):
 def begin_train(self): self.model.reset()
 def begin_validate(self): self.model.reset()

Yes, that’s actually it! It just does what we said in the preceding

paragraph: after completing training or validation for an epoch,

call a method named reset.

Callbacks are often “short and sweet” like this one. In fact, let’s

look at one more. Here’s the fastai source for the callback that

adds RNN regularization (AR and TAR):

class RNNRegularizer(Callback):
 def __init__(self, alpha=0., beta=0.): self.alpha,self.beta

= alpha,beta

 def after_pred(self):
 self.raw_out,self.out = self.pred[1],self.pred[2]
 self.learn.pred = self.pred[0]

 def after_loss(self):
 if not self.training: return
 if self.alpha != 0.:
 self.learn.loss += self.alpha *
self.out[-1].float().pow(2).mean()
 if self.beta != 0.:
 h = self.raw_out[-1]
 if len(h)>1:
 self.learn.loss += self.beta * (h[:,1:] -
h[:,:-1]

).float().pow(2).mean()

CODE IT YOURSELF
Go back and reread “Activation Regularization and Temporal Activation

Regularization”, and then take another look at the code here. Make sure

you understand what it’s doing and why.

In both of these examples, notice how we can access attributes

of the training loop by directly checking self.model or

self.pred. That’s because a Callback will always try to get an

attribute it doesn’t have inside the Learner associated with it.

These are shortcuts for self.learn.model or self.learn.pred.

Note that they work for reading attributes, but not for writing

them, which is why when RNNRegularizer changes the loss or

the predictions, you see self.learn.loss = or

self.learn.pred =.

When writing a callback, the following attributes of Learner are

available:

model

The model used for training/validation.

data

The underlying DataLoaders.

loss_func

The loss function used.

opt

The optimizer used to update the model parameters.

opt_func

The function used to create the optimizer.

cbs

The list containing all the Callbacks.

dl

The current DataLoader used for iteration.

x/xb

The last input drawn from self.dl (potentially

modified by callbacks). xb is always a tuple

(potentially with one element), and x is detuplified.

You can assign only to xb.

y/yb

The last target drawn from self.dl (potentially

modified by callbacks). yb is always a tuple

(potentially with one element), and y is detuplified.

You can assign only to yb.

pred

The last predictions from self.model (potentially

modified by callbacks).

loss

The last computed loss (potentially modified by

callbacks).

n_epoch

The number of epochs in this training.

n_iter

The number of iterations in the current self.dl.

epoch

The current epoch index (from 0 to n_epoch-1).

iter

The current iteration index in self.dl (from 0 to

n_iter-1).

The following attributes are added by TrainEvalCallback and

should be available unless you went out of your way to remove

that callback:

train_iter

The number of training iterations done since the

beginning of this training

pct_train

The percentage of training iterations completed

(from 0 to 1)

training

A flag to indicate whether we’re in training mode

The following attribute is added by Recorder and should be

available unless you went out of your way to remove that

callback:

smooth_loss

An exponentially averaged version of the training

loss

Callbacks can also interrupt any part of the training loop by

using a system of exceptions.

Callback Ordering and Exceptions

Sometimes callbacks need to be able to tell fastai to skip over a

batch or an epoch, or stop training altogether. For instance,

consider TerminateOnNaNCallback. This handy callback will

automatically stop training anytime the loss becomes infinite

or NaN (not a number). Here’s the fastai source for this

callback:

class TerminateOnNaNCallback(Callback):
 run_before=Recorder
 def after_batch(self):
 if torch.isinf(self.loss) or torch.isnan(self.loss):
 raise CancelFitException

The line raise CancelFitException tells the training loop to

interrupt training at this point. The training loop catches this

exception and does not run any further training or validation.

The callback control flow exceptions available are as follows:

CancelFitException

Skip the rest of this batch and go to after_batch.

CancelEpochException

Skip the rest of the training part of the epoch and go

to after_train.

CancelTrainException

Skip the rest of the validation part of the epoch and

go to after_validate.

CancelValidException

Skip the rest of this epoch and go to after_epoch.

CancelBatchException

Interrupt training and go to after_fit.

You can detect if one of those exceptions has occurred and add

code that executes right after with the following events:

after_cancel_batch

Reached immediately after a CancelBatchException

before proceeding to after_batch

after_cancel_train

Reached immediately after a CancelTrainException

before proceeding to after_epoch

after_cancel_valid

Reached immediately after a CancelValidException

before proceeding to after_epoch

after_cancel_epoch

Reached immediately after a CancelEpochException

before proceeding to after_epoch

after_cancel_fit

Reached immediately after a CancelFitException

before proceeding to after_fit

Sometimes callbacks need to be called in a particular order. For

example, in the case of TerminateOnNaNCallback, it’s important

that Recorder runs its after_batch after this callback, to avoid

registering an NaN loss. You can specify run_before (this

callback must run before…) or run_after (this callback must

run after…) in your callback to ensure the ordering that you

need.

Conclusion

In this chapter, we took a close look at the training loop,

exploring variants of SGD and why they can be more powerful.

At the time of writing, developing new optimizers is an active

area of research, so by the time you read this chapter, there

may be an addendum on the book’s website that presents new

variants. Be sure to check out how our general optimizer

framework can help you implement new optimizers quickly.

We also examined the powerful callback system that allows you

to customize every bit of the training loop by enabling you to

inspect and modify any parameter you like between each step.

https://book.fast.ai/

Questionnaire

1. What is the equation for a step of SGD, in math or code

(as you prefer)?

2. What do we pass to cnn_learner to use a nondefault

optimizer?

3. What are optimizer callbacks?

4. What does zero_grad do in an optimizer?

5. What does step do in an optimizer? How is it

implemented in the general optimizer?

6. Rewrite sgd_cb to use the += operator, instead of add_.

7. What is momentum? Write out the equation.

8. What’s a physical analogy for momentum? How does it

apply in our model training settings?

9. What does a bigger value for momentum do to the

gradients?

10. What are the default values of momentum for 1cycle

training?

11. What is RMSProp? Write out the equation.

12. What do the squared values of the gradients indicate?

13. How does Adam differ from momentum and RMSProp?

14. Write out the equation for Adam.

15. Calculate the values of unbias_avg and w.avg for a few

batches of dummy values.

16. What’s the impact of having a high eps in Adam?

17. Read through the optimizer notebook in fastai’s repo

and execute it.

18. In what situations do dynamic learning rate methods

like Adam change the behavior of weight decay?

19. What are the four steps of a training loop?

20. Why is using callbacks better than writing a new

training loop for each tweak you want to add?

21. What aspects of the design of fastai’s callback system

make it as flexible as copying and pasting bits of code?

22. How can you get the list of events available to you when

writing a callback?

23. Write the ModelResetter callback (without peeking).

24. How can you access the necessary attributes of the

training loop inside a callback? When can you use or

not use the shortcuts that go with them?

25. How can a callback influence the control flow of the

training loop?

26. Write the TerminateOnNaN callback (without peeking, if

possible).

27. How do you make sure your callback runs after or

before another callback?

Further Research

1. Look up the “Rectified Adam” paper, implement it using

the general optimizer framework, and try it out. Search

for other recent optimizers that work well in practice

and pick one to implement.

2. Look at the mixed-precision callback inside the

documentation. Try to understand what each event and

line of code does.

3. Implement your own version of the learning rate finder

from scratch. Compare it with fastai’s version.

4. Look at the source code of the callbacks that ship with

fastai. See if you can find one that’s similar to what

you’re looking to do, to get some inspiration.

Foundations of Deep Learning: Wrap Up

Congratulations—you have made it to the end of the

“foundations of deep learning” section of the book! You now

understand how all of fastai’s applications and most important

architectures are built, and the recommended ways to train

them—and you have all the information you need to build these

from scratch. While you probably won’t need to create your

own training loop or batchnorm layer, for instance, knowing

https://docs.fast.ai/

what is going on behind the scenes is very helpful for

debugging, profiling, and deploying your solutions.

Since you understand the foundations of fastai’s applications

now, be sure to spend some time digging through the source

notebooks and running and experimenting with parts of them.

This will give you a better idea of exactly how everything in

fastai is developed.

In the next section, we will be looking even further under the

covers: we’ll explore how the actual forward and backward

passes of a neural network are done, and we will see what tools

are at our disposal to get better performance. We will then

continue with a project that brings together all the material in

the book, which we will use to build a tool for interpreting

convolutional neural networks. Last but not least, we’ll finish

by building fastai’s Learner class from scratch.

Part IV. Deep Learning from

Scratch

Chapter 17. A Neural Net from the

Foundations

This chapter begins a journey where we will dig deep into the

internals of the models we used in the previous chapters. We will

be covering many of the same things we’ve seen before, but this

time around we’ll be looking much more closely at the

implementation details, and much less closely at the practical

issues of how and why things are as they are.

We will build everything from scratch, using only basic indexing

into a tensor. We’ll write a neural net from the ground up, and then

implement backpropagation manually so we know exactly what’s

happening in PyTorch when we call loss.backward. We’ll also see

how to extend PyTorch with custom autograd functions that allow

us to specify our own forward and backward computations.

Building a Neural Net Layer from Scratch

Let’s start by refreshing our understanding of how matrix

multiplication is used in a basic neural network. Since we’re

building everything up from scratch, we’ll use nothing but plain

Python initially (except for indexing into PyTorch tensors), and

then replace the plain Python with PyTorch functionality after

we’ve seen how to create it.

Modeling a Neuron

A neuron receives a given number of inputs and has an internal

weight for each of them. It sums those weighted inputs to produce

an output and adds an inner bias. In math, this can be written as

out =
n

∑
i=1

xiwi + b

if we name our inputs (x1, ⋯ , xn), our weights (w1, ⋯ , wn), and

our bias b. In code this translates into the following:

output = sum([x*w for x,w in zip(inputs,weights)]) + bias

This output is then fed into a nonlinear function called an

activation function before being sent to another neuron. In deep

learning, the most common of these is the rectified linear unit, or

ReLU, which, as we’ve seen, is a fancy way of saying this:

def relu(x): return x if x >= 0 else 0

A deep learning model is then built by stacking a lot of those

neurons in successive layers. We create a first layer with a certain

number of neurons (known as the hidden size) and link all the

inputs to each of those neurons. Such a layer is often called a fully

connected layer or a dense layer (for densely connected), or a

linear layer.

It requires you to compute, for each input and each neuron with a

given weight, the dot product:

sum([x*w for x,w in zip(input,weight)])

If you have done a little bit of linear algebra, you may remember

that having a lot of those dot products happens when you do a

matrix multiplication. More precisely, if our inputs are in a matrix

x with a size of batch_size by n_inputs, and if we have grouped the

weights of our neurons in a matrix w of size n_neurons by n_inputs

(each neuron must have the same number of weights as it has

inputs) as well as all the biases in a vector b of size n_neurons, then

the output of this fully connected layer is

y = x @ w.t() + b

where @ represents the matrix product and w.t() is the transpose

matrix of w. The output y is then of size batch_size by n_neurons,

and in position (i,j) we have this (for the mathy folks out there):

yi,j =
n

∑
k=1

xi,kwk,j + bj

Or in code:

y[i,j] = sum([a * b for a,b in zip(x[i,:],w[j,:])]) + b[j]

The transpose is necessary because in the mathematical definition

of the matrix product m @ n, the coefficient (i,j) is as follows:

sum([a * b for a,b in zip(m[i,:],n[:,j])])

So the very basic operation we need is a matrix multiplication, as

it’s what is hidden in the core of a neural net.

Matrix Multiplication from Scratch

Let’s write a function that computes the matrix product of two

tensors, before we allow ourselves to use the PyTorch version of it.

We will use only the indexing in PyTorch tensors:

import torch
from torch import tensor

We’ll need three nested for loops: one for the row indices, one for

the column indices, and one for the inner sum. ac and ar stand for

number of columns of a and number of rows of a, respectively (the

same convention is followed for b), and we make sure calculating

the matrix product is possible by checking that a has as many

columns as b has rows:

def matmul(a,b):
 ar,ac = a.shape # n_rows * n_cols
 br,bc = b.shape
 assert ac==br
 c = torch.zeros(ar, bc)
 for i in range(ar):
 for j in range(bc):
 for k in range(ac): c[i,j] += a[i,k] * b[k,j]
 return c

To test this out, we’ll pretend (using random matrices) that we’re

working with a small batch of 5 MNIST images, flattened into

28*28 vectors, with a linear model to turn them into 10 activations:

m1 = torch.randn(5,28*28)
m2 = torch.randn(784,10)

Let’s time our function, using the Jupyter “magic” command %time:

%time t1=matmul(m1, m2)

CPU times: user 1.15 s, sys: 4.09 ms, total: 1.15 s
Wall time: 1.15 s

And see how that compares to PyTorch’s built-in @?

%timeit -n 20 t2=m1@m2

14 µs ± 8.95 µs per loop (mean ± std. dev. of 7 runs, 20
loops each)

As we can see, in Python three nested loops is a bad idea! Python is

a slow language, and this isn’t going to be efficient. We see here

that PyTorch is around 100,000 times faster than Python—and

that’s before we even start using the GPU!

Where does this difference come from? PyTorch didn’t write its

matrix multiplication in Python, but rather in C++ to make it fast.

In general, whenever we do computations on tensors, we will need

to vectorize them so that we can take advantage of the speed of

PyTorch, usually by using two techniques: elementwise arithmetic

and broadcasting.

Elementwise Arithmetic

All the basic operators (+, -, *, /, >, <, ==) can be applied

elementwise. That means if we write a+b for two tensors a and b

that have the same shape, we will get a tensor composed of the

sums of the elements of a and b:

a = tensor([10., 6, -4])
b = tensor([2., 8, 7])
a + b

tensor([12., 14., 3.])

The Boolean operators will return an array of Booleans:

a < b

tensor([False, True, True])

If we want to know if every element of a is less than the

corresponding element in b, or if two tensors are equal, we need to

combine those elementwise operations with torch.all:

(a < b).all(), (a==b).all()

(tensor(False), tensor(False))

Reduction operations like all, sum, and mean return tensors with

only one element, called rank-0 tensors. If you want to convert this

to a plain Python Boolean or number, you need to call .item:

(a + b).mean().item()

9.666666984558105

The elementwise operations work on tensors of any rank, as long as

they have the same shape:

m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
m*m

tensor([[1., 4., 9.],
 [16., 25., 36.],
 [49., 64., 81.]])

However, you can’t perform elementwise operations on tensors

that don’t have the same shape (unless they are broadcastable, as

discussed in the next section):

n = tensor([[1., 2, 3], [4,5,6]])
m*n

 RuntimeError: The size of tensor a (3) must match the size
of tensor b (2) at
 dimension 0

With elementwise arithmetic, we can remove one of our three

nested loops: we can multiply the tensors that correspond to the i-

th row of a and the j-th column of b before summing all the

elements, which will speed things up because the inner loop will

now be executed by PyTorch at C speed.

To access one column or row, we can simply write a[i,:] or

b[:,j]. The : means take everything in that dimension. We could

restrict this and take only a slice of that dimension by passing a

range, like 1:5, instead of just :. In that case, we would take the

elements in columns 1 to 4 (the second number is noninclusive).

One simplification is that we can always omit a trailing colon, so

a[i,:] can be abbreviated to a[i]. With all of that in mind, we can

write a new version of our matrix multiplication:

def matmul(a,b):
 ar,ac = a.shape
 br,bc = b.shape
 assert ac==br
 c = torch.zeros(ar, bc)
 for i in range(ar):
 for j in range(bc): c[i,j] = (a[i] * b[:,j]).sum()
 return c

%timeit -n 20 t3 = matmul(m1,m2)

1.7 ms ± 88.1 µs per loop (mean ± std. dev. of 7 runs, 20
loops each)

We’re already ~700 times faster, just by removing that inner for

loop! And that’s just the beginning—with broadcasting, we can

remove another loop and get an even more important speedup.

Broadcasting

As we discussed in Chapter 4, broadcasting is a term introduced by

the Numpy Library that describes how tensors of different ranks

are treated during arithmetic operations. For instance, it’s obvious

there is no way to add a 3×3 matrix with a 4×5 matrix, but what if

we want to add one scalar (which can be represented as a 1×1

tensor) with a matrix? Or a vector of size 3 with a 3×4 matrix? In

both cases, we can find a way to make sense of this operation.

Broadcasting gives specific rules to codify when shapes are

compatible when trying to do an elementwise operation, and how

the tensor of the smaller shape is expanded to match the tensor of

the bigger shape. It’s essential to master those rules if you want to

be able to write code that executes quickly. In this section, we’ll

expand our previous treatment of broadcasting to understand these

rules.

BROADCASTING WITH A SCALAR

Broadcasting with a scalar is the easiest type of broadcasting. When

we have a tensor a and a scalar, we just imagine a tensor of the

same shape as a filled with that scalar and perform the operation:

a = tensor([10., 6, -4])
a > 0

https://oreil.ly/nlV7Q

tensor([True, True, False])

How are we able to do this comparison? 0 is being broadcast to

have the same dimensions as a. Note that this is done without

creating a tensor full of zeros in memory (that would be

inefficient).

This is useful if you want to normalize your dataset by subtracting

the mean (a scalar) from the entire dataset (a matrix) and dividing

by the standard deviation (another scalar):

m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
(m - 5) / 2.73

tensor([[-1.4652, -1.0989, -0.7326],
 [-0.3663, 0.0000, 0.3663],
 [0.7326, 1.0989, 1.4652]])

What if you have different means for each row of the matrix? In

that case, you will need to broadcast a vector to a matrix.

BROADCASTING A VECTOR TO A MATRIX

We can broadcast a vector to a matrix as follows:

c = tensor([10.,20,30])
m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
m.shape,c.shape

(torch.Size([3, 3]), torch.Size([3]))

m + c

tensor([[11., 22., 33.],
 [14., 25., 36.],
 [17., 28., 39.]])

Here the elements of c are expanded to make three rows that

match, making the operation possible. Again, PyTorch doesn’t

actually create three copies of c in memory. This is done by the

expand_as method behind the scenes:

c.expand_as(m)

tensor([[10., 20., 30.],
 [10., 20., 30.],
 [10., 20., 30.]])

If we look at the corresponding tensor, we can ask for its storage

property (which shows the actual contents of the memory used for

the tensor) to check there is no useless data stored:

t = c.expand_as(m)
t.storage()

 10.0
 20.0
 30.0
[torch.FloatStorage of size 3]

Even though the tensor officially has nine elements, only three

scalars are stored in memory. This is possible thanks to the clever

trick of giving that dimension a stride of 0. on that dimension

(which means that when PyTorch looks for the next row by adding

the stride, it doesn’t move):

t.stride(), t.shape

((0, 1), torch.Size([3, 3]))

Since m is of size 3×3, there are two ways to do broadcasting. The

fact it was done on the last dimension is a convention that comes

from the rules of broadcasting and has nothing to do with the way

we ordered our tensors. If instead we do this, we get the same

result:

c + m

tensor([[11., 22., 33.],
 [14., 25., 36.],
 [17., 28., 39.]])

In fact, it’s only possible to broadcast a vector of size n with a

matrix of size m by n:

c = tensor([10.,20,30])
m = tensor([[1., 2, 3], [4,5,6]])
c+m

tensor([[11., 22., 33.],
 [14., 25., 36.]])

This won’t work:

c = tensor([10.,20])
m = tensor([[1., 2, 3], [4,5,6]])
c+m

 RuntimeError: The size of tensor a (2) must match the size
of tensor b (3) at
 dimension 1

If we want to broadcast in the other dimension, we have to change

the shape of our vector to make it a 3×1 matrix. This is done with

the unsqueeze method in PyTorch:

c = tensor([10.,20,30])
m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
c = c.unsqueeze(1)
m.shape,c.shape

(torch.Size([3, 3]), torch.Size([3, 1]))

This time, c is expanded on the column side:

c+m

tensor([[11., 12., 13.],
 [24., 25., 26.],
 [37., 38., 39.]])

As before, only three scalars are stored in memory:

t = c.expand_as(m)
t.storage()

 10.0
 20.0
 30.0
[torch.FloatStorage of size 3]

And the expanded tensor has the right shape because the column

dimension has a stride of 0:

t.stride(), t.shape

((1, 0), torch.Size([3, 3]))

With broadcasting, if we need to add dimensions, they are added by

default at the beginning. When we were broadcasting before,

PyTorch was executing c.unsqueeze(0) behind the scenes:

c = tensor([10.,20,30])
c.shape, c.unsqueeze(0).shape,c.unsqueeze(1).shape

(torch.Size([3]), torch.Size([1, 3]), torch.Size([3, 1]))

The unsqueeze command can be replaced by None indexing:

c.shape, c[None,:].shape,c[:,None].shape

(torch.Size([3]), torch.Size([1, 3]), torch.Size([3, 1]))

You can always omit trailing colons, and ... means all preceding

dimensions:

c[None].shape,c[...,None].shape

(torch.Size([1, 3]), torch.Size([3, 1]))

With this, we can remove another for loop in our matrix

multiplication function. Now, instead of multiplying a[i] with

b[:,j], we can multiply a[i] with the whole matrix b using

broadcasting, and then sum the results:

def matmul(a,b):
 ar,ac = a.shape
 br,bc = b.shape
 assert ac==br
 c = torch.zeros(ar, bc)
 for i in range(ar):
c[i,j] = (a[i,:] * b[:,j]).sum() # previous
 c[i] = (a[i].unsqueeze(-1) * b).sum(dim=0)
 return c

%timeit -n 20 t4 = matmul(m1,m2)

357 µs ± 7.2 µs per loop (mean ± std. dev. of 7 runs, 20
loops each)

We’re now 3,700 times faster than our first implementation! Before

we move on, let’s discuss the rules of broadcasting in a little more

detail.

BROADCASTING RULES

When operating on two tensors, PyTorch compares their shapes

elementwise. It starts with the trailing dimensions and works its

way backward, adding 1 when it meets empty dimensions. Two

dimensions are compatible when one of the following is true:

They are equal.

One of them is 1, in which case that dimension is broadcast

to make it the same as the other.

Arrays do not need to have the same number of dimensions. For

example, if you have a 256×256×3 array of RGB values, and you

want to scale each color in the image by a different value, you can

multiply the image by a one-dimensional array with three values.

Lining up the sizes of the trailing axes of these arrays according to

the broadcast rules shows that they are compatible:

Image (3d tensor): 256 x 256 x 3
Scale (1d tensor): (1) (1) 3
Result (3d tensor): 256 x 256 x 3

However, a 2D tensor of size 256×256 isn’t compatible with our

image:

Image (3d tensor): 256 x 256 x 3
Scale (1d tensor): (1) 256 x 256
Error

In our earlier examples with a 3×3 matrix and a vector of size 3,

broadcasting was done on the rows:

Matrix (2d tensor): 3 x 3
Vector (1d tensor): (1) 3
Result (2d tensor): 3 x 3

As an exercise, try to determine what dimensions to add (and

where) when you need to normalize a batch of images of size 64 x

3 x 256 x 256 with vectors of three elements (one for the mean

and one for the standard deviation).

Another useful way of simplifying tensor manipulations is the use

of Einstein summation convention.

Einstein Summation

Before using the PyTorch operation @ or torch.matmul, there is one

last way we can implement matrix multiplication: Einstein

summation (einsum). This is a compact representation for

combining products and sums in a general way. We write an

equation like this:

ik,kj -> ij

The lefthand side represents the operands dimensions, separated

by commas. Here we have two tensors that each have two

dimensions (i,k and k,j). The righthand side represents the result

dimensions, so here we have a tensor with two dimensions i,j.

The rules of Einstein summation notation are as follows:

1. Repeated indices are implicitly summed over.

2. Each index can appear at most twice in any term.

3. Each term must contain identical nonrepeated indices.

So in our example, since k is repeated, we sum over that index. In

the end, the formula represents the matrix obtained when we put in

(i,j) the sum of all the coefficients (i,k) in the first tensor

multiplied by the coefficients (k,j) in the second tensor… which is

the matrix product!

Here is how we can code this in PyTorch:

def matmul(a,b): return torch.einsum('ik,kj->ij', a, b)

Einstein summation is a very practical way of expressing

operations involving indexing and sum of products. Note that you

can have one member on the lefthand side. For instance,

torch.einsum('ij->ji', a)

returns the transpose of the matrix a. You can also have three or

more members:

torch.einsum('bi,ij,bj->b', a, b, c)

This will return a vector of size b, where the k-th coordinate is the

sum of a[k,i] b[i,j] c[k,j]. This notation is particularly

convenient when you have more dimensions because of batches.

For example, if you have two batches of matrices and want to

compute the matrix product per batch, you could do this:

torch.einsum('bik,bkj->bij', a, b)

Let’s go back to our new matmul implementation using einsum and

look at its speed:

%timeit -n 20 t5 = matmul(m1,m2)

68.7 µs ± 4.06 µs per loop (mean ± std. dev. of 7 runs, 20
loops each)

As you can see, not only is it practical, but it’s very fast. einsum is

often the fastest way to do custom operations in PyTorch, without

diving into C++ and CUDA. (But it’s generally not as fast as

carefully optimized CUDA code, as you see from the results in

“Matrix Multiplication from Scratch”.)

Now that we know how to implement a matrix multiplication from

scratch, we are ready to build our neural net—specifically, its

forward and backward passes—using just matrix multiplication.

The Forward and Backward Passes

As we saw in Chapter 4, to train a model, we will need to compute

all the gradients of a given loss with respect to its parameters,

which is known as the backward pass. In a forward pass, where

we compute the output of the model on a given input, based on the

matrix products. As we define our first neural net, we will also

delve into the problem of properly initializing the weights, which is

crucial for making training start properly.

Defining and Initializing a Layer

We will take the example of a two-layer neural net first. As we’ve

seen, one layer can be expressed as y = x @ w + b, with x our

inputs, y our outputs, w the weights of the layer (which is of size

number of inputs by number of neurons if we don’t transpose as

before), and b is the bias vector:

def lin(x, w, b): return x @ w + b

We can stack the second layer on top of the first, but since

mathematically the composition of two linear operations is another

linear operation, this makes sense only if we put something

nonlinear in the middle, called an activation function. As

mentioned at the beginning of this chapter, in deep learning

applications the activation function most commonly used is a

ReLU, which returns the maximum of x and 0.

We won’t actually train our model in this chapter, so we’ll use

random tensors for our inputs and targets. Let’s say our inputs are

200 vectors of size 100, which we group into one batch, and our

targets are 200 random floats:

x = torch.randn(200, 100)
y = torch.randn(200)

For our two-layer model, we will need two weight matrices and two

bias vectors. Let’s say we have a hidden size of 50 and the output

size is 1 (for one of our inputs, the corresponding output is one float

in this toy example). We initialize the weights randomly and the

bias at zero:

w1 = torch.randn(100,50)
b1 = torch.zeros(50)
w2 = torch.randn(50,1)
b2 = torch.zeros(1)

Then the result of our first layer is simply this:

l1 = lin(x, w1, b1)
l1.shape

torch.Size([200, 50])

Note that this formula works with our batch of inputs, and returns

a batch of hidden state: l1 is a matrix of size 200 (our batch size)

by 50 (our hidden size).

There is a problem with the way our model was initialized,

however. To understand it, we need to look at the mean and

standard deviation (std) of l1:

l1.mean(), l1.std()

(tensor(0.0019), tensor(10.1058))

The mean is close to zero, which is understandable since both our

input and weight matrices have means close to zero. But the

standard deviation, which represents how far away our activations

go from the mean, went from 1 to 10. This is a really big problem

because that’s with just one layer. Modern neural nets can have

hundreds of layers, so if each of them multiplies the scale of our

activations by 10, we won’t have numbers representable by a

computer by the end of the last layer.

Indeed, if we make just 50 multiplications between x and random

matrices of size 100×100, we’ll have this:

x = torch.randn(200, 100)
for i in range(50): x = x @ torch.randn(100,100)
x[0:5,0:5]

tensor([[nan, nan, nan, nan, nan],
 [nan, nan, nan, nan, nan],
 [nan, nan, nan, nan, nan],
 [nan, nan, nan, nan, nan],
 [nan, nan, nan, nan, nan]])

The result is nans everywhere. So maybe the scale of our matrix was

too big, and we need to have smaller weights? But if we use too

small weights, we will have the opposite problem—the scale of our

activations will go from 1 to 0.1, and after 100 layers we’ll be left

with zeros everywhere:

x = torch.randn(200, 100)
for i in range(50): x = x @ (torch.randn(100,100) * 0.01)
x[0:5,0:5]

tensor([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])

So we have to scale our weight matrices exactly right so that the

standard deviation of our activations stays at 1. We can compute

the exact value to use mathematically, as illustrated by Xavier

Glorot and Yoshua Bengio in “Understanding the Difficulty of

Training Deep Feedforward Neural Networks”. The right scale for a

given layer is 1/√nin, where nin represents the number of inputs.

In our case, if we have 100 inputs, we should scale our weight

matrices by 0.1:

https://oreil.ly/9tiTC

x = torch.randn(200, 100)
for i in range(50): x = x @ (torch.randn(100,100) * 0.1)
x[0:5,0:5]

tensor([[0.7554, 0.6167, -0.1757, -1.5662, 0.5644],
 [-0.1987, 0.6292, 0.3283, -1.1538, 0.5416],
 [0.6106, 0.2556, -0.0618, -0.9463, 0.4445],
 [0.4484, 0.7144, 0.1164, -0.8626, 0.4413],
 [0.3463, 0.5930, 0.3375, -0.9486, 0.5643]])

Finally, some numbers that are neither zeros nor nan! Notice how

stable the scale of our activations is, even after those 50 fake layers:

x.std()

tensor(0.7042)

If you play a little bit with the value for scale, you’ll notice that even

a slight variation from 0.1 will get you either to very small or very

large numbers, so initializing the weights properly is extremely

important.

Let’s go back to our neural net. Since we messed a bit with our

inputs, we need to redefine them:

x = torch.randn(200, 100)
y = torch.randn(200)

And for our weights, we’ll use the right scale, which is known as

Xavier initialization (or Glorot initialization):

from math import sqrt
w1 = torch.randn(100,50) / sqrt(100)
b1 = torch.zeros(50)
w2 = torch.randn(50,1) / sqrt(50)
b2 = torch.zeros(1)

Now if we compute the result of the first layer, we can check that

the mean and standard deviation are under control:

l1 = lin(x, w1, b1)
l1.mean(),l1.std()

(tensor(-0.0050), tensor(1.0000))

Very good. Now we need to go through a ReLU, so let’s define one.

A ReLU removes the negatives and replaces them with zeros, which

is another way of saying it clamps our tensor at zero:

def relu(x): return x.clamp_min(0.)

We pass our activations through this:

l2 = relu(l1)
l2.mean(),l2.std()

(tensor(0.3961), tensor(0.5783))

And we’re back to square one: the mean of our activations has gone

to 0.4 (which is understandable since we removed the negatives),

and the std went down to 0.58. So like before, after a few layers we

will probably wind up with zeros:

x = torch.randn(200, 100)
for i in range(50): x = relu(x @ (torch.randn(100,100) * 0.1))
x[0:5,0:5]

tensor([[0.0000e+00, 1.9689e-08, 4.2820e-08, 0.0000e+00,
0.0000e+00],
 [0.0000e+00, 1.6701e-08, 4.3501e-08, 0.0000e+00,
0.0000e+00],
 [0.0000e+00, 1.0976e-08, 3.0411e-08, 0.0000e+00,
0.0000e+00],
 [0.0000e+00, 1.8457e-08, 4.9469e-08, 0.0000e+00,
0.0000e+00],
 [0.0000e+00, 1.9949e-08, 4.1643e-08, 0.0000e+00,
0.0000e+00]])

This means our initialization wasn’t right. Why? At the time Glorot

and Bengio wrote their article, the most popular activation in a

neural net was the hyperbolic tangent (tanh, which is the one they

used), and that initialization doesn’t account for our ReLU.

Fortunately, someone else has done the math for us and computed

the right scale for us to use. In “Delving Deep into Rectifiers:

Surpassing Human-Level Performance” (which we’ve seen before—

it’s the article that introduced the ResNet), Kaiming He et al. show

that we should use the following scale instead: √2/nin, where nin

is the number of inputs of our model. Let’s see what this gives us:

https://oreil.ly/-_quA

x = torch.randn(200, 100)
for i in range(50): x = relu(x @ (torch.randn(100,100) *
sqrt(2/100)))
x[0:5,0:5]

tensor([[0.2871, 0.0000, 0.0000, 0.0000, 0.0026],
 [0.4546, 0.0000, 0.0000, 0.0000, 0.0015],
 [0.6178, 0.0000, 0.0000, 0.0180, 0.0079],
 [0.3333, 0.0000, 0.0000, 0.0545, 0.0000],
 [0.1940, 0.0000, 0.0000, 0.0000, 0.0096]])

That’s better: our numbers aren’t all zeroed this time. So let’s go

back to the definition of our neural net and use this initialization

(which is named Kaiming initialization or He initialization):

x = torch.randn(200, 100)
y = torch.randn(200)

w1 = torch.randn(100,50) * sqrt(2 / 100)
b1 = torch.zeros(50)
w2 = torch.randn(50,1) * sqrt(2 / 50)
b2 = torch.zeros(1)

Let’s look at the scale of our activations after going through the first

linear layer and ReLU:

l1 = lin(x, w1, b1)
l2 = relu(l1)
l2.mean(), l2.std()

(tensor(0.5661), tensor(0.8339))

Much better! Now that our weights are properly initialized, we can

define our whole model:

def model(x):
 l1 = lin(x, w1, b1)
 l2 = relu(l1)
 l3 = lin(l2, w2, b2)
 return l3

This is the forward pass. Now all that’s left to do is to compare our

output to the labels we have (random numbers, in this example)

with a loss function. In this case, we will use the mean squared

error. (It’s a toy problem, and this is the easiest loss function to use

for what is next, computing the gradients.)

The only subtlety is that our outputs and targets don’t have exactly

the same shape—after going though the model, we get an output

like this:

out = model(x)
out.shape

torch.Size([200, 1])

To get rid of this trailing 1 dimension, we use the squeeze function:

def mse(output, targ): return (output.squeeze(-1) -
targ).pow(2).mean()

And now we are ready to compute our loss:

loss = mse(out, y)

That’s all for the forward pass—let’s now look at the gradients.

Gradients and the Backward Pass

We’ve seen that PyTorch computes all the gradients we need with a

magic call to loss.backward, but let’s explore what’s happening

behind the scenes.

Now comes the part where we need to compute the gradients of the

loss with respect to all the weights of our model, so all the floats in

w1, b1, w2, and b2. For this, we will need a bit of math—specifically,

the chain rule. This is the rule of calculus that guides how we can

compute the derivative of a composed function:

(g ∘ f)'(x) = g'(f(x))f '(x)

JEREMY SAYS
I find this notation hard to wrap my head around, so instead I like to think of

it as follows: if y = g(u) and u=f(x), then dy/dx = dy/du * du/dx. The two

notations mean the same thing, so use whatever works for you.

Our loss is a big composition of different functions: mean squared

error (which is, in turn, the composition of a mean and a power of

two), the second linear layer, a ReLU, and the first linear layer. For

instance, if we want the gradients of the loss with respect to b2 and

our loss is defined by the following:

loss = mse(out,y) = mse(lin(l2, w2, b2), y)

The chain rule tells us that we have this:

dloss

db2
=

dloss

dout
×

dout

db2
=

d

dout
mse(out, y) ×

d

db2
lin(l2, w2, b2)

To compute the gradients of the loss with respect to b2, we first

need the gradients of the loss with respect to our output out. It’s

the same if we want the gradients of the loss with respect to w2.

Then, to get the gradients of the loss with respect to b1 or w1, we

will need the gradients of the loss with respect to l1, which in turn

requires the gradients of the loss with respect to l2, which will need

the gradients of the loss with respect to out.

So to compute all the gradients we need for the update, we need to

begin from the output of the model and work our way backward,

one layer after the other—which is why this step is known as

backpropagation. We can automate it by having each function we

implemented (relu, mse, lin) provide its backward step: that is,

how to derive the gradients of the loss with respect to the input(s)

from the gradients of the loss with respect to the output.

Here we populate those gradients in an attribute of each tensor, a

bit like PyTorch does with .grad.

The first are the gradients of the loss with respect to the output of

our model (which is the input of the loss function). We undo the

squeeze we did in mse, and then we use the formula that gives us

the derivative of x2
: 2x. The derivative of the mean is just 1/n,

where n is the number of elements in our input:

def mse_grad(inp, targ):
 # grad of loss with respect to output of previous layer
 inp.g = 2. * (inp.squeeze() - targ).unsqueeze(-1) /
inp.shape[0]

For the gradients of the ReLU and our linear layer, we use the

gradients of the loss with respect to the output (in out.g) and apply

the chain rule to compute the gradients of the loss with respect to

the output (in inp.g). The chain rule tells us that inp.g =

relu'(inp) * out.g. The derivative of relu is either 0 (when

inputs are negative) or 1 (when inputs are positive), so this gives us

the following:

def relu_grad(inp, out):
 # grad of relu with respect to input activations
 inp.g = (inp>0).float() * out.g

The scheme is the same to compute the gradients of the loss with

respect to the inputs, weights, and bias in the linear layer:

def lin_grad(inp, out, w, b):
 # grad of matmul with respect to input
 inp.g = out.g @ w.t()
 w.g = inp.t() @ out.g
 b.g = out.g.sum(0)

We won’t linger on the mathematical formulas that define them

since they’re not important for our purposes, but do check out

Khan Academy’s excellent calculus lessons if you’re interested in

this topic.

SYMPY
SymPy is a library for symbolic computation that is extremely useful when working with
calculus. Per the documentation:

Symbolic computation deals with the computation of mathematical objects symbolically.
This means that the mathematical objects are represented exactly, not approximately,
and mathematical expressions with unevaluated variables are left in symbolic form.

To do symbolic computation, we define a symbol and then do a computation, like so:

from sympy import symbols,diff
sx,sy = symbols('sx sy')
diff(sx**2, sx)

2*sx

Here, SymPy has taken the derivative of x**2 for us! It can take the derivative of
complicated compound expressions, simplify and factor equations, and much more. There’s
really not much reason for anyone to do calculus manually nowadays—for calculating
gradients, PyTorch does it for us, and for showing the equations, SymPy does it for us!

Once we have defined those functions, we can use them to write the

backward pass. Since each gradient is automatically populated in

the right tensor, we don’t need to store the results of those _grad

functions anywhere—we just need to execute them in the reverse

order of the forward pass, to make sure that in each function out.g

exists:

def forward_and_backward(inp, targ):
 # forward pass:
 l1 = inp @ w1 + b1

https://oreil.ly/i1lK9

 l2 = relu(l1)
 out = l2 @ w2 + b2
 # we don't actually need the loss in backward!
 loss = mse(out, targ)

 # backward pass:
 mse_grad(out, targ)
 lin_grad(l2, out, w2, b2)
 relu_grad(l1, l2)
 lin_grad(inp, l1, w1, b1)

And now we can access the gradients of our model parameters in

w1.g, b1.g, w2.g, and b2.g. We have sucessfuly defined our model—

now let’s make it a bit more like a PyTorch module.

Refactoring the Model

The three functions we used have two associated functions: a

forward pass and a backward pass. Instead of writing them

separately, we can create a class to wrap them together. That class

can also store the inputs and outputs for the backward pass. This

way, we will just have to call backward:

class Relu():
 def __call__(self, inp):
 self.inp = inp
 self.out = inp.clamp_min(0.)
 return self.out

 def backward(self): self.inp.g = (self.inp>0).float() *
self.out.g

__call__ is a magic name in Python that will make our class

callable. This is what will be executed when we type y = Relu()(x).

We can do the same for our linear layer and the MSE loss:

class Lin():
 def __init__(self, w, b): self.w,self.b = w,b

 def __call__(self, inp):
 self.inp = inp
 self.out = inp@self.w + self.b
 return self.out

 def backward(self):
 self.inp.g = self.out.g @ self.w.t()
 self.w.g = self.inp.t() @ self.out.g
 self.b.g = self.out.g.sum(0)

class Mse():
 def __call__(self, inp, targ):
 self.inp = inp
 self.targ = targ
 self.out = (inp.squeeze() - targ).pow(2).mean()
 return self.out

 def backward(self):
 x = (self.inp.squeeze()-self.targ).unsqueeze(-1)
 self.inp.g = 2.*x/self.targ.shape[0]

Then we can put everything in a model that we initiate with our

tensors w1, b1, w2, and b2:

class Model():
 def __init__(self, w1, b1, w2, b2):
 self.layers = [Lin(w1,b1), Relu(), Lin(w2,b2)]
 self.loss = Mse()

 def __call__(self, x, targ):

 for l in self.layers: x = l(x)
 return self.loss(x, targ)

 def backward(self):
 self.loss.backward()
 for l in reversed(self.layers): l.backward()

What is nice about this refactoring and registering things as layers

of our model is that the forward and backward passes are now

really easy to write. If we want to instantiate our model, we just

need to write this:

model = Model(w1, b1, w2, b2)

The forward pass can then be executed as follows:

loss = model(x, y)

And the backward pass with this:

model.backward()

Going to PyTorch

The Lin, Mse, and Relu classes we wrote have a lot in common, so

we could make them all inherit from the same base class:

class LayerFunction():
 def __call__(self, *args):
 self.args = args
 self.out = self.forward(*args)

 return self.out

 def forward(self): raise Exception('not implemented')
 def bwd(self): raise Exception('not implemented')
 def backward(self): self.bwd(self.out, *self.args)

Then we just need to implement forward and bwd in each of our

subclasses:

class Relu(LayerFunction):
 def forward(self, inp): return inp.clamp_min(0.)
 def bwd(self, out, inp): inp.g = (inp>0).float() * out.g

class Lin(LayerFunction):
 def __init__(self, w, b): self.w,self.b = w,b

 def forward(self, inp): return inp@self.w + self.b

 def bwd(self, out, inp):
 inp.g = out.g @ self.w.t()
 self.w.g = self.inp.t() @ self.out.g
 self.b.g = out.g.sum(0)

class Mse(LayerFunction):
 def forward (self, inp, targ): return (inp.squeeze() -
targ).pow(2).mean()
 def bwd(self, out, inp, targ):
 inp.g = 2*(inp.squeeze()-targ).unsqueeze(-1) /
targ.shape[0]

The rest of our model can be the same as before. This is getting

closer and closer to what PyTorch does. Each basic function we

need to differentiate is written as a torch.autograd.Function

object that has a forward and a backward method. PyTorch will then

keep track of any computation we do to be able to properly run the

backward pass, unless we set the requires_grad attribute of our

tensors to False.

Writing one of these is (almost) as easy as writing our original

classes. The difference is that we choose what to save and what to

put in a context variable (so that we make sure we don’t save

anything we don’t need), and we return the gradients in the

backward pass. It’s rare to have to write your own Function, but if

you ever need something exotic or want to mess with the gradients

of a regular function, here is how to write one:

from torch.autograd import Function

class MyRelu(Function):
 @staticmethod
 def forward(ctx, i):
 result = i.clamp_min(0.)
 ctx.save_for_backward(i)
 return result

 @staticmethod
 def backward(ctx, grad_output):
 i, = ctx.saved_tensors
 return grad_output * (i>0).float()

The structure used to build a more complex model that takes

advantage of those Functions is a torch.nn.Module. This is the base

structure for all models, and all the neural nets you have seen up

until now were from that class. It mostly helps to register all the

trainable parameters, which as we’ve seen can be used in the

training loop.

To implement an nn.Module you just need to do the following:

1. Make sure the superclass __init__ is called first when you

initialize it.

2. Define any parameters of the model as attributes with

nn.Parameter.

3. Define a forward function that returns the output of your

model.

As an example, here is the linear layer from scratch:

import torch.nn as nn

class LinearLayer(nn.Module):
 def __init__(self, n_in, n_out):
 super().__init__()
 self.weight = nn.Parameter(torch.randn(n_out, n_in) *
sqrt(2/n_in))
 self.bias = nn.Parameter(torch.zeros(n_out))

 def forward(self, x): return x @ self.weight.t() + self.bias

As you see, this class automatically keeps track of what parameters

have been defined:

lin = LinearLayer(10,2)
p1,p2 = lin.parameters()
p1.shape,p2.shape

(torch.Size([2, 10]), torch.Size([2]))

It is thanks to this feature of nn.Module that we can just say

opt.step and have an optimizer loop through the parameters and

update each one.

Note that in PyTorch, the weights are stored as an n_out x n_in

matrix, which is why we have the transpose in the forward pass.

By using the linear layer from PyTorch (which uses the Kaiming

initialization as well), the model we have been building up during

this chapter can be written like this:

class Model(nn.Module):
 def __init__(self, n_in, nh, n_out):
 super().__init__()
 self.layers = nn.Sequential(
 nn.Linear(n_in,nh), nn.ReLU(), nn.Linear(nh,n_out))
 self.loss = mse

 def forward(self, x, targ): return
self.loss(self.layers(x).squeeze(), targ)

fastai provides its own variant of Module that is identical to

nn.Module, but doesn’t require you to call super().__init__() (it

does that for you automatically):

class Model(Module):
 def __init__(self, n_in, nh, n_out):
 self.layers = nn.Sequential(
 nn.Linear(n_in,nh), nn.ReLU(), nn.Linear(nh,n_out))
 self.loss = mse

 def forward(self, x, targ): return
self.loss(self.layers(x).squeeze(), targ)

In Chapter 19, we will start from such a model and see how to build

a training loop from scratch and refactor it to what we’ve been

using in previous chapters.

Conclusion

In this chapter, we explored the foundations of deep learning,

beginning with matrix multiplication and moving on to

implementing the forward and backward passes of a neural net

from scratch. We then refactored our code to show how PyTorch

works beneath the hood.

Here are a few things to remember:

A neural net is basically a bunch of matrix multiplications

with nonlinearities in between.

Python is slow, so to write fast code, we have to vectorize it

and take advantage of techniques such as elementwise

arithmetic and broadcasting.

Two tensors are broadcastable if the dimensions starting

from the end and going backward match (if they are the

same, or one of them is 1). To make tensors broadcastable,

we may need to add dimensions of size 1 with unsqueeze or

a None index.

Properly initializing a neural net is crucial to get training

started. Kaiming initialization should be used when we have

ReLU nonlinearities.

The backward pass is the chain rule applied multiple times,

computing the gradients from the output of our model and

going back, one layer at a time.

When subclassing nn.Module (if not using fastai’s Module),

we have to call the superclass __init__ method in our

__init__ method and we have to define a forward function

that takes an input and returns the desired result.

Questionnaire

1. Write the Python code to implement a single neuron.

2. Write the Python code to implement ReLU.

3. Write the Python code for a dense layer in terms of matrix

multiplication.

4. Write the Python code for a dense layer in plain Python

(that is, with list comprehensions and functionality built

into Python).

5. What is the “hidden size” of a layer?

6. What does the t method do in PyTorch?

7. Why is matrix multiplication written in plain Python very

slow?

8. In matmul, why is ac==br?

9. In Jupyter Notebook, how do you measure the time taken

for a single cell to execute?

10. What is elementwise arithmetic?

11. Write the PyTorch code to test whether every element of a is

greater than the corresponding element of b.

12. What is a rank-0 tensor? How do you convert it to a plain

Python data type?

13. What does this return, and why?

tensor([1,2]) + tensor([1])

14. What does this return, and why?

tensor([1,2]) + tensor([1,2,3])

15. How does elementwise arithmetic help us speed up matmul?

16. What are the broadcasting rules?

17. What is expand_as? Show an example of how it can be used

to match the results of broadcasting.

18. How does unsqueeze help us to solve certain broadcasting

problems?

19. How can we use indexing to do the same operation as

unsqueeze?

20. How do we show the actual contents of the memory used for

a tensor?

21. When adding a vector of size 3 to a matrix of size 3×3, are

the elements of the vector added to each row or each

column of the matrix? (Be sure to check your answer by

running this code in a notebook.)

22. Do broadcasting and expand_as result in increased memory

use? Why or why not?

23. Implement matmul using Einstein summation.

24. What does a repeated index letter represent on the lefthand

side of einsum?

25. What are the three rules of Einstein summation notation?

Why?

26. What are the forward pass and backward pass of a neural

network?

27. Why do we need to store some of the activations calculated

for intermediate layers in the forward pass?

28. What is the downside of having activations with a standard

deviation too far away from 1?

29. How can weight initialization help avoid this problem?

30. What is the formula to initialize weights such that we get a

standard deviation of 1 for a plain linear layer, and for a

linear layer followed by ReLU?

31. Why do we sometimes have to use the squeeze method in

loss functions?

32. What does the argument to the squeeze method do? Why

might it be important to include this argument, even though

PyTorch does not require it?

33. What is the chain rule? Show the equation in either of the

two forms presented in this chapter.

34. Show how to calculate the gradients of mse(lin(l2, w2,

b2), y) by using the chain rule.

35. What is the gradient of ReLU? Show it in math or code.

(You shouldn’t need to commit this to memory—try to

figure it using your knowledge of the shape of the function.)

36. In what order do we need to call the *_grad functions in the

backward pass? Why?

37. What is __call__?

38. What methods must we implement when writing a

torch.autograd.Function?

39. Write nn.Linear from scratch and test that it works.

40. What is the difference between nn.Module and fastai’s

Module?

Further Research

1. Implement ReLU as a torch.autograd.Function and train a

model with it.

2. If you are mathematically inclined, determine the gradients

of a linear layer in mathematical notation. Map that to the

implementation in this chapter.

3. Learn about the unfold method in PyTorch, and use it along

with matrix multiplication to implement your own 2D

convolution function. Then train a CNN that uses it.

4. Implement everything in this chapter by using NumPy

instead of PyTorch.

Chapter 18. CNN Interpretation

with CAM

Now that we know how to build up pretty much anything from

scratch, let’s use that knowledge to create entirely new (and

very useful!) functionality: the class activation map. It gives a

us some insight into why a CNN made the predictions it did.

In the process, we’ll learn about one handy feature of PyTorch

we haven’t seen before, the hook, and we’ll apply many of the

concepts introduced in the rest of the book. If you want to

really test out your understanding of the material in this book,

after you’ve finished this chapter, try putting it aside and re-

creating the ideas here yourself from scratch (no peeking!).

CAM and Hooks

The class activation map (CAM) was introduced by Bolei Zhou

et al. in “Learning Deep Features for Discriminative

Localization”. It uses the output of the last convolutional layer

(just before the average pooling layer) together with the

predictions to give us a heatmap visualization of why the model

made its decision. This is a useful tool for interpretation.

https://oreil.ly/5hik3

More precisely, at each position of our final convolutional

layer, we have as many filters as in the last linear layer. We can

therefore compute the dot product of those activations with the

final weights to get, for each location on our feature map, the

score of the feature that was used to make a decision.

We’re going to need a way to get access to the activations inside

the model while it’s training. In PyTorch, this can be done with

a hook. Hooks are PyTorch’s equivalent of fastai’s callbacks.

However, rather than allowing you to inject code into the

training loop like a fastai Learner callback, hooks allow you to

inject code into the forward and backward calculations

themselves. We can attach a hook to any layer of the model,

and it will be executed when we compute the outputs (forward

hook) or during backpropagation (backward hook). A forward

hook is a function that takes three things—a module, its input,

and its output—and it can perform any behavior you want.

(fastai also provides a handy HookCallback that we won’t cover

here, but take a look at the fastai docs; it makes working with

hooks a little easier.)

To illustrate, we’ll use the same cats and dogs model we trained

in Chapter 1:

path = untar_data(URLs.PETS)/'images'
def is_cat(x): return x[0].isupper()
dls = ImageDataLoaders.from_name_func(
 path, get_image_files(path), valid_pct=0.2, seed=21,
 label_func=is_cat, item_tfms=Resize(224))

learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(1)

epoch train_loss valid_loss error_rate time

0 0.141987 0.018823 0.007442 00:16

epoch train_loss valid_loss error_rate time

0 0.050934 0.015366 0.006766 00:21

To start, we’ll grab a cat picture and a batch of data:

img = PILImage.create('images/chapter1_cat_example.jpg')
x, = first(dls.test_dl([img]))

For CAM, we want to store the activations of the last

convolutional layer. We put our hook function in a class so it

has a state that we can access later, and just store a copy of the

output:

class Hook():
 def hook_func(self, m, i, o): self.stored =
o.detach().clone()

We can then instantiate a Hook and attach it to the layer we

want, which is the last layer of the CNN body:

hook_output = Hook()
hook =
learn.model[0].register_forward_hook(hook_output.hook_func)

Now we can grab a batch and feed it through our model:

with torch.no_grad(): output = learn.model.eval()(x)

And we can access our stored activations:

act = hook_output.stored[0]

Let’s also double-check our predictions:

F.softmax(output, dim=-1)

tensor([[7.3566e-07, 1.0000e+00]], device='cuda:0')

We know 0 (for False) is “dog,” because the classes are

automatically sorted in fastai, but we can still double-check by

looking at dls.vocab:

dls.vocab

(#2) [False,True]

So, our model is very confident this was a picture of a cat.

To do the dot product of our weight matrix (2 by number of

activations) with the activations (batch size by activations by

rows by cols), we use a custom einsum:

x.shape

torch.Size([1, 3, 224, 224])

cam_map = torch.einsum('ck,kij->cij', learn.model[1][-1].weight,
act)
cam_map.shape

torch.Size([2, 7, 7])

For each image in our batch, and for each class, we get a 7×7

feature map that tells us where the activations were higher and

where they were lower. This will let us see which areas of the

pictures influenced the model’s decision.

For instance, we can find out which areas made the model

decide this animal was a cat (note that we need to decode the

input x since it’s been normalized by the DataLoader, and we

need to cast to TensorImage since at the time this book is

written, PyTorch does not maintain types when indexing—this

may be fixed by the time you are reading this):

x_dec = TensorImage(dls.train.decode((x,))[0][0])
_,ax = plt.subplots()
x_dec.show(ctx=ax)
ax.imshow(cam_map[1].detach().cpu(), alpha=0.6, extent=
(0,224,224,0),
 interpolation='bilinear', cmap='magma');

In this case, the areas in bright yellow correspond to high

activations, and the areas in purple to low activations. In this

case, we can see the head and the front paw were the two main

areas that made the model decide it was a picture of a cat.

Once you’re done with your hook, you should remove it as

otherwise it might leak some memory:

hook.remove()

That’s why it’s usually a good idea to have the Hook class be a

context manager, registering the hook when you enter it and

removing it when you exit. A context manager is a Python

construct that calls __enter__ when the object is created in a

with clause, and __exit__ at the end of the with clause. For

instance, this is how Python handles the with open(...) as f:

construct that you’ll often see for opening files without

requiring an explicit close(f) at the end.

If we define Hook as follows

class Hook():
 def __init__(self, m):
 self.hook = m.register_forward_hook(self.hook_func)
 def hook_func(self, m, i, o): self.stored =
o.detach().clone()
 def __enter__(self, *args): return self
 def __exit__(self, *args): self.hook.remove()

we can safely use it this way:

with Hook(learn.model[0]) as hook:
 with torch.no_grad(): output = learn.model.eval()(x.cuda())
 act = hook.stored

fastai provides this Hook class for you, as well as some other

handy classes to make working with hooks easier.

This method is useful, but works for only the last layer.

Gradient CAM is a variant that addresses this problem.

Gradient CAM

The method we just saw lets us compute only a heatmap with

the last activations, since once we have our features, we have to

multiply them by the last weight matrix. This won’t work for

inner layers in the network. A variant introduced in the 2016

paper “Grad-CAM: Why Did You Say That?” by Ramprasaath

R. Selvaraju et al. uses the gradients of the final activation for

the desired class. If you remember a little bit about the

backward pass, the gradients of the output of the last layer with

respect to the input of that layer are equal to the layer weights,

since it is a linear layer.

With deeper layers, we still want the gradients, but they won’t

just be equal to the weights anymore. We have to calculate

them. The gradients of every layer are calculated for us by

PyTorch during the backward pass, but they’re not stored

(except for tensors where requires_grad is True). We can,

however, register a hook on the backward pass, which PyTorch

will give the gradients to as a parameter, so we can store them

there. For this, we will use a HookBwd class that works like Hook,

but intercepts and stores gradients instead of activations:

https://oreil.ly/4krXE

class HookBwd():
 def __init__(self, m):
 self.hook = m.register_backward_hook(self.hook_func)
 def hook_func(self, m, gi, go): self.stored =
go[0].detach().clone()
 def __enter__(self, *args): return self
 def __exit__(self, *args): self.hook.remove()

Then for the class index 1 (for True, which is “cat”), we

intercept the features of the last convolutional layer, as before,

and compute the gradients of the output activations of our

class. We can’t just call output.backward, because gradients

make sense only with respect to a scalar (which is normally our

loss), and output is a rank-2 tensor. But if we pick a single

image (we’ll use 0) and a single class (we’ll use 1), we can

calculate the gradients of any weight or activation we like, with

respect to that single value, using output[0,cls].backward.

Our hook intercepts the gradients that we’ll use as weights:

cls = 1
with HookBwd(learn.model[0]) as hookg:
 with Hook(learn.model[0]) as hook:
 output = learn.model.eval()(x.cuda())
 act = hook.stored
 output[0,cls].backward()
 grad = hookg.stored

The weights for Grad-CAM are given by the average of our

gradients across the feature map. Then it’s exactly the same as

before:

w = grad[0].mean(dim=[1,2], keepdim=True)
cam_map = (w * act[0]).sum(0)

_,ax = plt.subplots()
x_dec.show(ctx=ax)
ax.imshow(cam_map.detach().cpu(), alpha=0.6, extent=
(0,224,224,0),
 interpolation='bilinear', cmap='magma');

The novelty with Grad-CAM is that we can use it on any layer.

For example, here we use it on the output of the second-to-last

ResNet group:

with HookBwd(learn.model[0][-2]) as hookg:
 with Hook(learn.model[0][-2]) as hook:
 output = learn.model.eval()(x.cuda())
 act = hook.stored
 output[0,cls].backward()
 grad = hookg.stored

w = grad[0].mean(dim=[1,2], keepdim=True)
cam_map = (w * act[0]).sum(0)

And we can now view the activation map for this layer:

_,ax = plt.subplots()
x_dec.show(ctx=ax)
ax.imshow(cam_map.detach().cpu(), alpha=0.6, extent=
(0,224,224,0),
 interpolation='bilinear', cmap='magma');

Conclusion

Model interpretation is an area of active research, and we just

scraped the surface of what is possible in this brief chapter.

Class activation maps give us insight into why a model

predicted a certain result by showing the areas of the images

that were most responsible for a given prediction. This can help

us analyze false positives and figure out what kind of data is

missing in our training to avoid them.

Questionnaire

1. What is a hook in PyTorch?

2. Which layer does CAM use the outputs of?

3. Why does CAM require a hook?

4. Look at the source code of the ActivationStats class

and see how it uses hooks.

5. Write a hook that stores the activations of a given layer

in a model (without peeking, if possible).

6. Why do we call eval before getting the activations? Why

do we use no_grad?

7. Use torch.einsum to compute the “dog” or “cat” score of

each of the locations in the last activation of the body of

the model.

8. How do you check which order the categories are in

(i.e., the correspondence of index→category)?

9. Why are we using decode when displaying the input

image?

10. What is a context manager? What special methods need

to be defined to create one?

11. Why can’t we use plain CAM for the inner layers of a

network?

12. Why do we need to register a hook on the backward

pass in order to do Grad-CAM?

13. Why can’t we call output.backward when output is a

rank-2 tensor of output activations per image per class?

Further Research

1. Try removing keepdim and see what happens. Look up

this parameter in the PyTorch docs. Why do we need it

in this notebook?

2. Create a notebook like this one, but for NLP, and use it

to find which words in a movie review are most

significant in assessing the sentiment of a particular

movie review.

Chapter 19. A fastai Learner from

Scratch

This final chapter (other than the conclusion and the online chapters) is

going to look a bit different. It contains far more code and far less prose

than the previous chapters. We will introduce new Python keywords and

libraries without discussing them. This chapter is meant to be the start of a

significant research project for you. You see, we are going to implement

many of the key pieces of the fastai and PyTorch APIs from scratch,

building on nothing other than the components that we developed in

Chapter 17! The key goal here is to end up with your own Learner class and

some callbacks—enough to be able to train a model on Imagenette,

including examples of each of the key techniques we’ve studied. On the way

to building Learner, we will create our own versions of Module, Parameter

and a parallel DataLoader so you’ll have a very good idea of what those

PyTorch classes do.

The end-of-chapter questionnaire is particularly important for this chapter.

This is where we will be pointing you in the many interesting directions

that you could take, using this chapter as your starting point. We suggest

that you follow along with this chapter on your computer, and do lots of

experiments, web searches, and whatever else you need to understand

what’s going on. You’ve built up the skills and expertise to do this in the

rest of this book, so we think you are going to do great!

Let’s begin by gathering (manually) some data.

Data

Have a look at the source to untar_data to see how it works. We’ll use it

here to access the 160-pixel version of Imagenette for use in this chapter:

path = untar_data(URLs.IMAGENETTE_160)

To access the image files, we can use get_image_files:

t = get_image_files(path)
t[0]

Path('/home/jhoward/.fastai/data/imagenette2-
160/val/n03417042/n03417042_3752.JP
 > EG')

Or we could do the same thing using just Python’s standard library, with

glob:

from glob import glob
files = L(glob(f'{path}/**/*.JPEG', recursive=True)).map(Path)
files[0]

Path('/home/jhoward/.fastai/data/imagenette2-
160/val/n03417042/n03417042_3752.JP
 > EG')

If you look at the source for get_image_files, you’ll see it uses Python’s

os.walk; this is a faster and more flexible function than glob, so be sure to

try it out.

We can open an image with the Python Imaging Library’s Image class:

im = Image.open(files[0])
im

im_t = tensor(im)
im_t.shape

torch.Size([160, 213, 3])

That’s going to be the basis of our independent variable. For our dependent

variable, we can use Path.parent from pathlib. First we’ll need our vocab

lbls = files.map(Self.parent.name()).unique(); lbls

(#10)
['n03417042','n03445777','n03888257','n03394916','n02979186','n03000684','

 > n03425413','n01440764','n03028079','n02102040']

and the reverse mapping, thanks to L.val2idx:

v2i = lbls.val2idx(); v2i

{'n03417042': 0,
 'n03445777': 1,
 'n03888257': 2,
 'n03394916': 3,
 'n02979186': 4,
 'n03000684': 5,
 'n03425413': 6,

 'n01440764': 7,
 'n03028079': 8,
 'n02102040': 9}

That’s all the pieces we need to put together our Dataset.

Dataset

A Dataset in PyTorch can be anything that supports indexing

(__getitem__) and len:

class Dataset:
 def __init__(self, fns): self.fns=fns
 def __len__(self): return len(self.fns)
 def __getitem__(self, i):
 im = Image.open(self.fns[i]).resize((64,64)).convert('RGB')
 y = v2i[self.fns[i].parent.name]
 return tensor(im).float()/255, tensor(y)

We need a list of training and validation filenames to pass to

Dataset.__init__:

train_filt = L(o.parent.parent.name=='train' for o in files)
train,valid = files[train_filt],files[~train_filt]
len(train),len(valid)

(9469, 3925)

Now we can try it out:

train_ds,valid_ds = Dataset(train),Dataset(valid)
x,y = train_ds[0]
x.shape,y

(torch.Size([64, 64, 3]), tensor(0))

show_image(x, title=lbls[y]);

As you see, our dataset is returning the independent and dependent

variables as a tuple, which is just what we need. We’ll need to be able to

collate these into a mini-batch. Generally, this is done with torch.stack,

which is what we’ll use here:

def collate(idxs, ds):
 xb,yb = zip(*[ds[i] for i in idxs])
 return torch.stack(xb),torch.stack(yb)

Here’s a mini-batch with two items, for testing our collate:

x,y = collate([1,2], train_ds)
x.shape,y

(torch.Size([2, 64, 64, 3]), tensor([0, 0]))

Now that we have a dataset and a collation function, we’re ready to create

DataLoader. We’ll add two more things here: an optional shuffle for the

training set, and a ProcessPoolExecutor to do our preprocessing in

parallel. A parallel data loader is very important, because opening and

decoding a JPEG image is a slow process. One CPU core is not enough to

decode images fast enough to keep a modern GPU busy. Here’s our

DataLoader class:

class DataLoader:
 def __init__(self, ds, bs=128, shuffle=False, n_workers=1):
 self.ds,self.bs,self.shuffle,self.n_workers = ds,bs,shuffle,n_workers

 def __len__(self): return (len(self.ds)-1)//self.bs+1

 def __iter__(self):
 idxs = L.range(self.ds)
 if self.shuffle: idxs = idxs.shuffle()
 chunks = [idxs[n:n+self.bs] for n in range(0, len(self.ds),
self.bs)]
 with ProcessPoolExecutor(self.n_workers) as ex:
 yield from ex.map(collate, chunks, ds=self.ds)

Let’s try it out with our training and validation datasets:

n_workers = min(16, defaults.cpus)
train_dl = DataLoader(train_ds, bs=128, shuffle=True, n_workers=n_workers)
valid_dl = DataLoader(valid_ds, bs=256, shuffle=False, n_workers=n_workers)
xb,yb = first(train_dl)
xb.shape,yb.shape,len(train_dl)

(torch.Size([128, 64, 64, 3]), torch.Size([128]), 74)

This data loader is not much slower than PyTorch’s, but it’s far simpler. So

if you’re debugging a complex data loading process, don’t be afraid to try

doing things manually to help you see exactly what’s going on.

For normalization, we’ll need image statistics. Generally, it’s fine to

calculate these on a single training mini-batch, since precision isn’t needed

here:

stats = [xb.mean((0,1,2)),xb.std((0,1,2))]
stats

[tensor([0.4544, 0.4453, 0.4141]), tensor([0.2812, 0.2766,
0.2981])]

Our Normalize class just needs to store these stats and apply them (to see

why the to_device is needed, try commenting it out, and see what happens

later in this notebook):

class Normalize:
 def __init__(self, stats): self.stats=stats
 def __call__(self, x):
 if x.device != self.stats[0].device:
 self.stats = to_device(self.stats, x.device)
 return (x-self.stats[0])/self.stats[1]

We always like to test everything we build in a notebook, as soon as we

build it:

norm = Normalize(stats)
def tfm_x(x): return norm(x).permute((0,3,1,2))

t = tfm_x(x)
t.mean((0,2,3)),t.std((0,2,3))

(tensor([0.3732, 0.4907, 0.5633]), tensor([1.0212, 1.0311,
1.0131]))

Here tfm_x isn’t just applying Normalize, but is also permuting the axis

order from NHWC to NCHW (see Chapter 13 if you need a reminder of what

these acronyms refer to). PIL uses HWC axis order, which we can’t use with

PyTorch, hence the need for this permute.

That’s all we need for the data for our model. So now we need the model

itself!

Module and Parameter

To create a model, we’ll need Module. To create Module, we’ll need

Parameter, so let’s start there. Recall that in Chapter 8 we said that the

Parameter class “doesn’t add any functionality (other than automatically

calling requires_grad_ for us). It’s used only as a ‘marker’ to show what to

include in parameters.” Here’s a definition that does exactly that:

class Parameter(Tensor):
 def __new__(self, x): return Tensor._make_subclass(Parameter, x, True)
 def __init__(self, *args, **kwargs): self.requires_grad_()

The implementation here is a bit awkward: we have to define the special

__new__ Python method and use the internal PyTorch method

_make_subclass because, at the time of writing, PyTorch doesn’t otherwise

work correctly with this kind of subclassing or provide an officially

supported API to do this. This may have been fixed by the time you read

this, so look on the book’s website to see if there are updated details.

Our Parameter now behaves just like a tensor, as we wanted:

Parameter(tensor(3.))

tensor(3., requires_grad=True)

Now that we have this, we can define Module:

class Module:
 def __init__(self):
 self.hook,self.params,self.children,self._training = None,[],
[],False

 def register_parameters(self, *ps): self.params += ps
 def register_modules (self, *ms): self.children += ms

 @property
 def training(self): return self._training
 @training.setter
 def training(self,v):
 self._training = v
 for m in self.children: m.training=v

 def parameters(self):
 return self.params + sum([m.parameters() for m in self.children],
[])

 def __setattr__(self,k,v):
 super().__setattr__(k,v)
 if isinstance(v,Parameter): self.register_parameters(v)
 if isinstance(v,Module): self.register_modules(v)

 def __call__(self, *args, **kwargs):
 res = self.forward(*args, **kwargs)
 if self.hook is not None: self.hook(res, args)
 return res

 def cuda(self):
 for p in self.parameters(): p.data = p.data.cuda()

The key functionality is in the definition of parameters:

self.params + sum([m.parameters() for m in self.children], [])

This means that we can ask any Module for its parameters, and it will return

them, including for all its child modules (recursively). But how does it

know what its parameters are? It’s thanks to implementing Python’s

special __setattr__ method, which is called for us anytime Python sets an

attribute on a class. Our implementation includes this line:

if isinstance(v,Parameter): self.register_parameters(v)

As you see, this is where we use our new Parameter class as a “marker”—

anything of this class is added to our params.

Python’s __call__ allows us to define what happens when our object is

treated as a function; we just call forward (which doesn’t exist here, so it’ll

need to be added by subclasses). Before we do, we’ll call a hook, if it’s

defined. Now you can see that PyTorch hooks aren’t doing anything fancy

at all—they’re just calling any hooks have been registered.

Other than these pieces of functionality, our Module also provides cuda and

training attributes, which we’ll use shortly.

Now we can create our first Module, which is ConvLayer:

class ConvLayer(Module):
 def __init__(self, ni, nf, stride=1, bias=True, act=True):
 super().__init__()
 self.w = Parameter(torch.zeros(nf,ni,3,3))
 self.b = Parameter(torch.zeros(nf)) if bias else None
 self.act,self.stride = act,stride
 init = nn.init.kaiming_normal_ if act else nn.init.xavier_normal_
 init(self.w)

 def forward(self, x):
 x = F.conv2d(x, self.w, self.b, stride=self.stride, padding=1)
 if self.act: x = F.relu(x)
 return x

We’re not implementing F.conv2d from scratch, since you should have

already done that (using unfold) in the questionnaire in Chapter 17.

Instead we’re just creating a small class that wraps it up along with bias

and weight initialization. Let’s check that it works correctly with

Module.parameters:

l = ConvLayer(3, 4)
len(l.parameters())

2

And that we can call it (which will result in forward being called):

xbt = tfm_x(xb)
r = l(xbt)
r.shape

torch.Size([128, 4, 64, 64])

In the same way, we can implement Linear:

class Linear(Module):
 def __init__(self, ni, nf):
 super().__init__()
 self.w = Parameter(torch.zeros(nf,ni))
 self.b = Parameter(torch.zeros(nf))
 nn.init.xavier_normal_(self.w)

 def forward(self, x): return x@self.w.t() + self.b

And test that it works:

l = Linear(4,2)
r = l(torch.ones(3,4))
r.shape

torch.Size([3, 2])

Let’s also create a testing module to check that if we include multiple

parameters as attributes, they are all correctly registered:

class T(Module):
 def __init__(self):
 super().__init__()
 self.c,self.l = ConvLayer(3,4),Linear(4,2)

Since we have a conv layer and a linear layer, each of which has weights

and biases, we’d expect four parameters in total:

t = T()
len(t.parameters())

4

We should also find that calling cuda on this class puts all these parameters

on the GPU:

t.cuda()
t.l.w.device

device(type='cuda', index=5)

We can now use those pieces to create a CNN.

Simple CNN

As we’ve seen, a Sequential class makes many architectures easier to

implement, so let’s make one:

class Sequential(Module):
 def __init__(self, *layers):
 super().__init__()
 self.layers = layers
 self.register_modules(*layers)

 def forward(self, x):
 for l in self.layers: x = l(x)
 return x

The forward method here just calls each layer in turn. Note that we have to

use the register_modules method we defined in Module, since otherwise

the contents of layers won’t appear in parameters.

ALL THE CODE IS HERE
Remember that we’re not using any PyTorch functionality for modules here; we’re

defining everything ourselves. So if you’re not sure what register_modules does, or why

it’s needed, have another look at our code for Module to see what we wrote!

We can create a simplified AdaptivePool that only handles pooling to a 1×1

output, and flattens it as well, by just using mean:

class AdaptivePool(Module):
 def forward(self, x): return x.mean((2,3))

That’s enough for us to create a CNN!

def simple_cnn():
 return Sequential(
 ConvLayer(3 ,16 ,stride=2), #32
 ConvLayer(16,32 ,stride=2), #16
 ConvLayer(32,64 ,stride=2), # 8
 ConvLayer(64,128,stride=2), # 4
 AdaptivePool(),

 Linear(128, 10)
)

Let’s see if our parameters are all being registered correctly:

m = simple_cnn()
len(m.parameters())

10

Now we can try adding a hook. Note that we’ve left room for only one hook

in Module; you could make it a list, or use something like Pipeline to run a

few as a single function:

def print_stats(outp, inp): print (outp.mean().item(),outp.std().item())
for i in range(4): m.layers[i].hook = print_stats

r = m(xbt)
r.shape

0.5239089727401733 0.8776043057441711
0.43470510840415955 0.8347987532615662
0.4357188045978546 0.7621666193008423
0.46562111377716064 0.7416611313819885
torch.Size([128, 10])

We have data and model. Now we need a loss function.

Loss

We’ve already seen how to define “negative log likelihood”:

def nll(input, target): return -input[range(target.shape[0]), target].mean()

Well actually, there’s no log here, since we’re using the same definition as

PyTorch. That means we need to put the log together with softmax:

def log_softmax(x): return (x.exp()/(x.exp().sum(-1,keepdim=True))).log()

sm = log_softmax(r); sm[0][0]

tensor(-1.2790, grad_fn=<SelectBackward>)

Combining these gives us our cross-entropy loss:

loss = nll(sm, yb)
loss

tensor(2.5666, grad_fn=<NegBackward>)

Note that the formula

log (
a

b
) =log (a)− log (b)

gives a simplification when we compute the log softmax, which was

previously defined as (x.exp()/(x.exp().sum(-1))).log():

def log_softmax(x): return x - x.exp().sum(-1,keepdim=True).log()
sm = log_softmax(r); sm[0][0]

tensor(-1.2790, grad_fn=<SelectBackward>)

Then, there is a more stable way to compute the log of the sum of

exponentials, called the LogSumExp trick. The idea is to use the following

formula

https://oreil.ly/9UB0b

log (
n

∑
j=1

exj) =log (ea
n

∑
j=1

exj−a) = a+ log (
n

∑
j=1

exj−a)

where a is the maximum of xj.

Here’s the same thing in code:

x = torch.rand(5)
a = x.max()
x.exp().sum().log() == a + (x-a).exp().sum().log()

tensor(True)

We’ll put that into a function

def logsumexp(x):
 m = x.max(-1)[0]
 return m + (x-m[:,None]).exp().sum(-1).log()

logsumexp(r)[0]

tensor(3.9784, grad_fn=<SelectBackward>)

so we can use it for our log_softmax function:

def log_softmax(x): return x - x.logsumexp(-1,keepdim=True)

Which gives the same result as before:

sm = log_softmax(r); sm[0][0]

tensor(-1.2790, grad_fn=<SelectBackward>)

We can use these to create cross_entropy:

def cross_entropy(preds, yb): return nll(log_softmax(preds), yb).mean()

Let’s now combine all those pieces to create a Learner.

Learner

We have data, a model, and a loss function; we need only one more thing

before we can fit a model, and that’s an optimizer! Here’s SGD:

class SGD:
 def __init__(self, params, lr, wd=0.): store_attr(self, 'params,lr,wd')
 def step(self):
 for p in self.params:
 p.data -= (p.grad.data + p.data*self.wd) * self.lr
 p.grad.data.zero_()

As we’ve seen in this book, life is easier with a Learner. The Learner needs

to know our training and validation sets, which means we need

DataLoaders to store them. We don’t need any other functionality, just a

place to store them and access them:

class DataLoaders:
 def __init__(self, *dls): self.train,self.valid = dls

dls = DataLoaders(train_dl,valid_dl)

Now we’re ready to create our Learner class:

class Learner:
 def __init__(self, model, dls, loss_func, lr, cbs, opt_func=SGD):

 store_attr(self, 'model,dls,loss_func,lr,cbs,opt_func')
 for cb in cbs: cb.learner = self

 def one_batch(self):
 self('before_batch')
 xb,yb = self.batch
 self.preds = self.model(xb)
 self.loss = self.loss_func(self.preds, yb)
 if self.model.training:
 self.loss.backward()
 self.opt.step()
 self('after_batch')

 def one_epoch(self, train):
 self.model.training = train
 self('before_epoch')
 dl = self.dls.train if train else self.dls.valid
 for self.num,self.batch in enumerate(progress_bar(dl, leave=False)):
 self.one_batch()
 self('after_epoch')

 def fit(self, n_epochs):
 self('before_fit')
 self.opt = self.opt_func(self.model.parameters(), self.lr)
 self.n_epochs = n_epochs
 try:
 for self.epoch in range(n_epochs):
 self.one_epoch(True)
 self.one_epoch(False)
 except CancelFitException: pass
 self('after_fit')

 def __call__(self,name):
 for cb in self.cbs: getattr(cb,name,noop)()

This is the largest class we’ve created in the book, but each method is quite

small, so by looking at each in turn, you should be able to follow what’s

going on.

The main method we’ll be calling is fit. This loops with

for self.epoch in range(n_epochs)

and at each epoch calls self.one_epoch for each of train=True and then

train=False. Then self.one_epoch calls self.one_batch for each batch in

dls.train or dls.valid, as appropriate (after wrapping the DataLoader in

fastprogress.progress_bar). Finally, self.one_batch follows the usual set

of steps to fit one mini-batch that we’ve seen throughout this book.

Before and after each step, Learner calls self, which calls __call__ (which

is standard Python functionality). __call__ uses getattr(cb,name) on each

callback in self.cbs, which is a Python built-in function that returns the

attribute (a method, in this case) with the requested name. So, for instance,

self('before_fit') will call cb.before_fit() for each callback where that

method is defined.

As you can see, Learner is really just using our standard training loop,

except that it’s also calling callbacks at appropriate times. So let’s define

some callbacks!

Callbacks

In Learner.__init__ we have

for cb in cbs: cb.learner = self

In other words, every callback knows what learner it is used in. This is

critical, since otherwise a callback can’t get information from the learner,

or change things in the learner. Because getting information from the

learner is so common, we make that easier by defining Callback as a

subclass of GetAttr, with a default attribute of learner:

class Callback(GetAttr): _default='learner'

GetAttr is a fastai class that implements Python’s standard __getattr__

and __dir__ methods for you, so that anytime you try to access an attribute

that doesn’t exist, it passes the request along to whatever you have defined

as _default.

For instance, we want to move all model parameters to the GPU

automatically at the start of fit. We could do this by defining before_fit

as self.learner.model.cuda; however, because learner is the default

attribute, and we have SetupLearnerCB inherit from Callback (which

inherits from GetAttr), we can remove the .learner and just call

self.model.cuda:

class SetupLearnerCB(Callback):
 def before_batch(self):
 xb,yb = to_device(self.batch)
 self.learner.batch = tfm_x(xb),yb

 def before_fit(self): self.model.cuda()

In SetupLearnerCB, we also move each mini-batch to the GPU, by calling

to_device(self.batch) (we could also have used the longer

to_device(self.learner.batch). Note, however, that in the line

self.learner.batch = tfm_x(xb),yb, we can’t remove .learner, because

here we’re setting the attribute, not getting it.

Before we try our Learner, let’s create a callback to track and print

progress. Otherwise, we won’t really know if it’s working properly:

class TrackResults(Callback):
 def before_epoch(self): self.accs,self.losses,self.ns = [],[],[]

 def after_epoch(self):
 n = sum(self.ns)
 print(self.epoch, self.model.training,
 sum(self.losses).item()/n, sum(self.accs).item()/n)

 def after_batch(self):
 xb,yb = self.batch
 acc = (self.preds.argmax(dim=1)==yb).float().sum()
 self.accs.append(acc)
 n = len(xb)
 self.losses.append(self.loss*n)
 self.ns.append(n)

Now we’re ready to use our Learner for the first time!

cbs = [SetupLearnerCB(),TrackResults()]
learn = Learner(simple_cnn(), dls, cross_entropy, lr=0.1, cbs=cbs)
learn.fit(1)

0 True 2.1275552130636814 0.2314922378287042

0 False 1.9942575636942674 0.2991082802547771

It’s quite amazing to realize that we can implement all the key ideas from

fastai’s Learner in so little code! Let’s now add some learning rate

scheduling.

Scheduling the Learning Rate

If we’re going to get good results, we’ll want an LR finder and 1cycle

training. These are both annealing callbacks—that is, they are gradually

changing hyperparameters as we train. Here’s LRFinder:

class LRFinder(Callback):
 def before_fit(self):
 self.losses,self.lrs = [],[]
 self.learner.lr = 1e-6

 def before_batch(self):
 if not self.model.training: return
 self.opt.lr *= 1.2

 def after_batch(self):
 if not self.model.training: return
 if self.opt.lr>10 or torch.isnan(self.loss): raise CancelFitException
 self.losses.append(self.loss.item())
 self.lrs.append(self.opt.lr)

This shows how we’re using CancelFitException, which is itself an empty

class, used only to signify the type of exception. You can see in Learner that

this exception is caught. (You should add and test CancelBatchException,

CancelEpochException, etc. yourself.) Let’s try it out, by adding it to our list

of callbacks:

lrfind = LRFinder()
learn = Learner(simple_cnn(), dls, cross_entropy, lr=0.1, cbs=cbs+[lrfind])
learn.fit(2)

0 True 2.6336045582954903 0.11014890695955222

0 False 2.230653363853503 0.18318471337579617

And take a look at the results:

plt.plot(lrfind.lrs[:-2],lrfind.losses[:-2])
plt.xscale('log')

Now we can define our OneCycle training callback:

class OneCycle(Callback):
 def __init__(self, base_lr): self.base_lr = base_lr
 def before_fit(self): self.lrs = []

 def before_batch(self):
 if not self.model.training: return
 n = len(self.dls.train)
 bn = self.epoch*n + self.num
 mn = self.n_epochs*n
 pct = bn/mn
 pct_start,div_start = 0.25,10
 if pct<pct_start:
 pct /= pct_start
 lr = (1-pct)*self.base_lr/div_start + pct*self.base_lr
 else:
 pct = (pct-pct_start)/(1-pct_start)
 lr = (1-pct)*self.base_lr
 self.opt.lr = lr
 self.lrs.append(lr)

We’ll try an LR of 0.1:

onecyc = OneCycle(0.1)
learn = Learner(simple_cnn(), dls, cross_entropy, lr=0.1, cbs=cbs+[onecyc])

Let’s fit for a while and see how it looks (we won’t show all the output in

the book—try it in the notebook to see the results):

learn.fit(8)

Finally, we’ll check that the learning rate followed the schedule we defined

(as you see, we’re not using cosine annealing here):

plt.plot(onecyc.lrs);

Conclusion

We have explored how the key concepts of the fastai library are

implemented by re-implementing them in this chapter. Since it’s mostly

full of code, you should definitely try to experiment with it by looking at the

corresponding notebook on the book’s website. Now that you know how it’s

built, as a next step be sure to check out the intermediate and advanced

tutorials in the fastai documentation to learn how to customize every bit of

the library.

Questionnaire

EXPERIMENTS
For the questions here that ask you to explain what a function or class is, you should also

complete your own code experiments.

1. What is glob?

2. How do you open an image with the Python imaging library?

3. What does L.map do?

4. What does Self do?

5. What is L.val2idx?

6. What methods do you need to implement to create your own

Dataset?

7. Why do we call convert when we open an image from Imagenette?

8. What does ~ do? How is it useful for splitting training and

validation sets?

9. Does ~ work with the L or Tensor classes? How about NumPy

arrays, Python lists, or Pandas DataFrames?

10. What is ProcessPoolExecutor?

11. How does L.range(self.ds) work?

12. What is __iter__?

13. What is first?

14. What is permute? Why is it needed?

15. What is a recursive function? How does it help us define the

parameters method?

16. Write a recursive function that returns the first 20 items of the

Fibonacci sequence.

17. What is super?

18. Why do subclasses of Module need to override forward instead of

defining __call__?

19. In ConvLayer, why does init depend on act?

20. Why does Sequential need to call register_modules?

21. Write a hook that prints the shape of every layer’s activations.

22. What is LogSumExp?

23. Why is log_softmax useful?

24. What is GetAttr? How is it helpful for callbacks?

25. Reimplement one of the callbacks in this chapter without inheriting

from Callback or GetAttr.

26. What does Learner.__call__ do?

27. What is getattr? (Note the case difference from GetAttr!)

28. Why is there a try block in fit?

29. Why do we check for model.training in one_batch?

30. What is store_attr?

31. What is the purpose of TrackResults.before_epoch?

32. What does model.cuda do? How does it work?

33. Why do we need to check model.training in LRFinder and

OneCycle?

34. Use cosine annealing in OneCycle.

Further Research

1. Write resnet18 from scratch (refer to Chapter 14 as needed), and

train it with the Learner in this chapter.

2. Implement a batchnorm layer from scratch and use it in your

resnet18.

3. Write a Mixup callback for use in this chapter.

4. Add momentum to SGD.

5. Pick a few features that you’re interested in from fastai (or any

other library) and implement them with the objects created in this

chapter.

6. Pick a research paper that’s not yet implemented in fastai or

PyTorch and do so with the objects you created in this chapter.

Then:

Port the paper over to fastai.

Submit a pull request to fastai, or create your own extension

module and release it.

Hint: you may find it helpful to use nbdev to create and deploy your

package.

https://nbdev.fast.ai/

Chapter 20. Concluding Thoughts

Congratulations! You’ve made it! If you have worked through

all of the notebooks to this point, you have joined the small, but

growing group of people who are able to harness the power of

deep learning to solve real problems. You may not feel that way

—in fact, you probably don’t. We have seen again and again

that students who complete the fast.ai courses dramatically

underestimate their effectiveness as deep learning

practitioners. We’ve also seen that these people are often

underestimated by others with a classic academic background.

So if you are to rise above your own expectations and the

expectations of others, what you do next, after closing this

book, is even more important than what you’ve done to get to

this point.

The most important thing is to keep the momentum going. In

fact, as you know from your study of optimizers, momentum is

something that can build upon itself! So think about what you

can do now to maintain and accelerate your deep learning

journey. Figure 20-1 can give you a few ideas.

Figure 20-1. What to do next

We’ve talked a lot in this book about the value of writing,

whether it be code or prose. But perhaps you haven’t quite

written as much as you had hoped so far. That’s OK! Now is a

great chance to turn that around. You have a lot to say at this

point. Perhaps you have tried some experiments on a dataset

that other people don’t seem to have looked at in quite the

same way. Tell the world about it! Or perhaps you are thinking

about trying out some ideas that occurred to you while you

were reading—now is a great time to turn those ideas into code.

If you’d like to share your ideas, one fairly low-key place to do

so is the fast.ai forums. You will find that the community there

is very supportive and helpful, so please do drop by and let us

know what you’ve been up to. Or see if you can answer a few

questions for those folks who are earlier in their journey than

you.

https://forums.fast.ai/

And if you do have some successes, big or small, in your deep

learning journey, be sure to let us know! Posting about them on

the forums is especially helpful, because learning about the

successes of other students can be extremely motivating.

Perhaps the most important approach for many people to stay

connected with their learning journey is to build a community

around it. For instance, you could try to set up a small deep

learning meetup in your local neighborhood, or a study group,

or even offer to do a talk at a local meetup about what you’ve

learned so far or some particular aspect that interested you. It’s

OK that you are not the world’s leading expert just yet—the

important thing to remember is that you now know about

plenty of stuff that other people don’t, so they are very likely to

appreciate your perspective.

Another community event that many people find useful is a

regular book club or paper reading club. You might find some

in your neighborhood already, and if not, you could try to get

one started. Even if there is just one other person doing it with

you, it will help give you the support and encouragement to get

going.

If you are not in a location where it’s easy to get together with

like-minded folks in person, drop by the forums, because

people are always starting up virtual study groups. These

generally involve a bunch of folks getting together over video

chat once a week or so to discuss a deep learning topic.

Hopefully, by this point, you have a few little projects that

you’ve put together and experiments that you’ve run. Our

recommendation for your next step is to pick one of these and

make it as good as you can. Really polish it up into the best

piece of work that you can—something you are really proud of.

This will force you to go much deeper into a topic, which will

test your understanding and give you the opportunity to see

what you can do when you put your mind to it.

Also, you may want to take a look at the fast.ai free online

course that covers the same material as this book. Sometimes,

seeing the same material in two ways can really help to

crystallize the ideas. In fact, human learning researchers have

found that one of the best ways to learn material is to see the

same thing from different angles, described in different ways.

Your final mission, should you choose to accept it, is to take

this book and give it to somebody you know—and get

somebody else started on their own deep learning journey!

https://course.fast.ai/

Appendix A. Creating a Blog

In Chapter 2, we suggested that you might want to try blogging

as a way to help digest the information you’re reading and

practicing. But what if you don’t have a blog already? Which

platform should you use?

Unfortunately, when it comes to blogging, it seems like you

have to make a difficult decision: either use a platform that

makes it easy but subjects you and your readers to

advertisements, paywalls, and fees, or spend hours setting up

your own hosting service and weeks learning about all kinds of

intricate details. Perhaps the biggest benefit to the “do-it-

yourself” approach is that you really own your own posts,

rather than being at the whim of a service provider and their

decisions about how to monetize your content in the future.

It turns out, however, that you can have the best of both

worlds!

Blogging with GitHub Pages

A great solution is to host your blog on a platform called

GitHub Pages, which is free, has no ads or paywall, and makes

https://pages.github.com/

your data available in a standard way such that you can at any

time move your blog to another host. But all the approaches

we’ve seen to using GitHub Pages have required knowledge of

the command line and arcane tools that only software

developers are likely to be familiar with. For instance, GitHub’s

own documentation on setting up a blog includes a long list of

instructions that involve installing the Ruby programming

language, using the git command-line tool, copying over

version numbers, and more—17 steps in total!

To cut down on the hassle, we’ve created an easy approach that

allows you to use an entirely browser-based interface for all

your blogging needs. You will be up and running with your new

blog within about five minutes. It doesn’t cost anything, and

you can easily add your own custom domain to it if you wish to.

In this section, we’ll explain how to do it, using a template

we’ve created called fast_template. (NB: be sure to check the

book’s website for the latest blog recommendations, since new

tools are always coming out.)

Creating the Repository

You’ll need an account on GitHub, so head over there now and

create an account if you don’t have one already. Normally,

GitHub is used by software developers for writing code, and

they use a sophisticated command-line tool to work with it—

but we’re going to show you an approach that doesn’t use the

command line at all!

https://oreil.ly/xemwJ
https://book.fast.ai/

To get started, point your browser to

https://github.com/fastai/fast_template/generate (make sure

you’re logged in). This will allow you to create a place to store

your blog, called a repository. You will see a screen like the one

in Figure A-1. Note that you have to enter your repository name

using the exact format shown here—that is, your GitHub

username followed by .github.io.

Figure A-1. Creating your repository

Once you’ve entered that, and any description you like, click

“Create repository from template.” You have the choice to make

the repository “private,” but since you are creating a blog that

https://github.com/fastai/fast_template/generate

you want other people to read, having the underlying files

publicly available hopefully won’t be a problem for you.

Now, let’s set up your home page!

Setting Up Your Home Page

When readers arrive at your blog, the first thing that they will

see is the content of a file called index.md. This is a Markdown

file. Markdown is a powerful yet simple way of creating

formatted text, such as bullet points, italics, hyperlinks, and so

forth. It is very widely used, including for all the formatting in

Jupyter notebooks, nearly every part of the GitHub site, and

many other places all over the internet. To create Markdown

text, you can just type in plain English and then add some

special characters to add special behavior. For instance, if you

type a * character before and after a word or phrase, that will

put it in italics. Let’s try it now.

To open the file, click its filename in GitHub. To edit it, click

the pencil icon at the far righthand side of the screen, as shown

in Figure A-2.

Figure A-2. Edit this file

https://oreil.ly/aVOhs

You can add to, edit, or replace the text that you see. Click the

“Preview changes” button (Figure A-3) to see what your

Markdown text will look like in your blog. Lines that you have

added or changed will appear with a green bar on the lefthand

side.

Figure A-3. Preview changes to catch any mistakes

To save your changes, scroll to the bottom of the page and click

“Commit changes,” as shown in Figure A-4. On GitHub, to

commit something means to save it to the GitHub server.

Figure A-4. Commit your changes to save them

Next, you should configure your blog’s settings. To do so, click

the file called _config.yml and then click the edit button as you

did for the index file. Change the title, description, and GitHub

username values (see Figure A-5). You need to leave the names

before the colons in place, and type your new values in after the

colon (and a space) on each line. You can also add to your email

address and Twitter username if you wish, but note that these

will appear on your public blog if you fill them in here.

Figure A-5. Fill in the config file

After you’re done, commit your changes just as you did with the

index file; then wait a minute or so while GitHub processes

your new blog. Point your web browser to

<username>.github.io (replacing <username> with your

GitHub username). You should see your blog, which will look

something like Figure A-6.

Figure A-6. Your blog is online!

Creating Posts

Now you’re ready to create your first post. All your posts will go

in the _posts folder. Click that now, and then click the “Create

file” button. You need to be careful to name your file using the

format <year>-<month>-<day>-<name>.md, as shown in

Figure A-7, where <year> is a four-digit number, and <month>

and <day> are two-digit numbers. <name> can be anything

you want that will help you remember what this post was

about. The .md extension is for Markdown documents.

Figure A-7. Naming your posts

You can then type the contents of your first post. The only rule

is that the first line of your post must be a Markdown heading.

This is created by putting # at the start of a line, as seen in

Figure A-8 (that creates a level-1 heading, which you should

just use once at the start of your document; you can create

level-2 headings using ##, level 3 with ###, and so forth).

Figure A-8. Markdown syntax for a title

As before, you can click the Preview button to see how your

Markdown formatting will look (Figure A-9).

Figure A-9. What the previous Markdown syntax will look like on your blog

And you will need to click the “Commit new file” button to save

it to GitHub, as shown in Figure A-10.

Figure A-10. Commit your changes to save them

Have a look at your blog home page again, and you will see that

this post has now appeared—Figure A-11 shows the result with

the sample post we just added. Remember that you will need to

wait a minute or so for GitHub to process the request before

the file shows up.

Figure A-11. Your first post is live!

You may have noticed that we provided a sample blog post,

which you can go ahead and delete now. Go to your _posts

folder, as before, and click 2020-01-14-welcome.md. Then click

the trash icon on the far right, as shown in Figure A-12.

Figure A-12. Delete the sample blog post

In GitHub, nothing actually changes until you commit—

including when you delete a file! So, after you click the trash

icon, scroll down to the bottom of the page and commit your

changes.

You can include images in your posts by adding a line of

Markdown like the following:

![Image description](images/filename.jpg)

For this to work, you will need to put the image inside your

images folder. To do this, click the images folder, and then

click the “Upload files” button (Figure A-13).

Figure A-13. Upload a file from your computer

Now let’s see how to do all of this directly from your computer.

Synchronizing GitHub and Your Computer

There are lots of reasons you might want to copy your blog

content from GitHub to your computer—you might want to be

able to read or edit your posts offline, or maybe you’d like a

backup in case something happens to your GitHub repository.

GitHub does more than just let you copy your repository to

your computer; it lets you synchronize it with your computer.

That means you can make changes on GitHub, and they’ll copy

over to your computer; and you can make changes on your

computer, and they’ll copy over to GitHub. You can even let

other people access and modify your blog, and their changes

and your changes will be automatically combined the next time

you sync.

To make this work, you have to install an application called

GitHub Desktop on your computer. It runs on Mac, Windows,

and Linux. Follow the directions to install it, and when you run,

it it’ll ask you to log in to GitHub and select the repository to

sync. Click “Clone a repository from the Internet,” as shown in

Figure A-14.

Figure A-14. Clone your repository on GitHub Desktop

Once GitHub has finished syncing your repo, you’ll be able to

click “View the files of your repository in Explorer” (or Finder),

as shown in Figure A-15, and you’ll see the local copy of your

https://desktop.github.com/

blog! Try editing one of the files on your computer. Then return

to GitHub Desktop, and you’ll see the Sync button is waiting for

you to press it. When you click it, your changes will be copied

over to GitHub, where you’ll see them reflected on the website.

Figure A-15. Viewing your files locally

If you haven’t used git before, GitHub Desktop is a great way

to get started. As you’ll discover, it’s a fundamental tool used by

most data scientists. Another tool that we hope you now love is

Jupyter Notebook—and there’s a way to write your blog directly

with that too!

Jupyter for Blogging

You can also write blog posts using Jupyter notebooks. Your

Markdown cells, code cells, and all the outputs will appear in

your exported blog post. The best way to do this may have

changed by the time you are reading this book, so check out the

book’s website for the latest information. As we write this, the

easiest way to create a blog from notebooks is to use fastpages,

a more advanced version of fast_template.

To blog with a notebook, just pop it in the _notebooks folder in

your blog repo, and it will appear in your list of blog posts.

When you write your notebook, write whatever you want your

audience to see. Since most writing platforms make it hard to

https://book.fast.ai/
http://fastpages.fast.ai/

include code and outputs, many of us are in the habit of

including fewer real examples than we should. This is a great

way to instead get into the habit of including lots of examples

as you write.

Often, you’ll want to hide boilerplate such as import

statements. You can add #hide to the top of any cell to make it

not show up in output. Jupyter displays the result of the last

line of a cell, so there’s no need to include print. (Including

extra code that isn’t needed means there’s more cognitive

overhead for the reader; so don’t include code that you don’t

really need!)

Appendix B. Data Project

Checklist

There’s a lot more to creating useful data projects than just

training an accurate model! When Jeremy used to do

consulting, he’d always seek to understand an organization’s

context for developing data projects based on the following

considerations, summarized in Figure B-1:

Strategy

What is the organization trying to do (objective),

and what can it change to do it better (levers)?

Data

Is the organization capturing the necessary data and

making it available?

Analytics

What kinds of insights would be useful to the

organization?

Implementation

What organizational capabilities are available?

Maintenance

What systems are in place to track changes in the

operational environment?

Constraints

What constraints need to be considered in each of

the preceding areas?

Figure B-1. The analytics value chain

He developed a questionnaire that he had clients fill out before

a project started, and then throughout the project he’d help

them refine their answers. This questionnaire is based on

decades of projects across many industries, including

agriculture, mining, banking, brewing, telecoms, retail, and

more.

Before we go through the analytics value chain, the first part of

the questionnaire has to do with the most important employees

for your data project: data scientists.

Data Scientists

Data scientists should have a clear path to becoming senior

executives, and there should also be hiring plans in place to

bring data experts directly into senior executive roles. In a

data-driven organization, data scientists should be among the

highest-paid employees. Systems should be in place to allow

data scientists throughout the organization to collaborate and

learn from each other.

What data science skills are currently in the

organization?

How are data scientists being recruited?

How are people with data science skills being identified

within the organization?

What skills are being looked for? How are they being

judged? How were those skills selected as being

important?

What data science consulting is being used? In which

situations is data science outsourced? How is this work

transferred to the organization?

How much are data scientists being paid? Who do they

report to? How are their skills kept current?

What is the career path for data scientists?

How many executives have strong data analysis

expertise?

How is work for data scientists selected and allocated?

What software and hardware do data scientists have

access to?

Strategy

All data projects should be based on solving strategically

important problems. Therefore, an understanding of business

strategy must come first.

What are the five most important strategic issues at the

organization today?

What data is available to help deal with these issues?

Is a data-driven approach being used for these issues?

Are data scientists working on these?

What are the profit drivers that the organization can

most strongly impact? (See Figure B-2.)

Figure B-2. Factors that may be important profit drivers at an organization

For each of those key profit drivers identified, what are

the specific actions and decisions that the organization

can take that might influence that driver, including both

operational actions (e.g., call customer) and strategic

decisions (e.g., release new product)?

For each of the most important actions and decisions,

what data might be available (either within the

organization, or from a vendor, or that could be

collected in the future) that may help to optimize the

outcome?

Based on the preceding analysis, what are the biggest

opportunities for data-driven analysis within the

organization?

For each opportunity:

What value driver is it designed to influence?

What specific actions or decisions will it drive?

How will these actions and decisions be

connected to the project’s results?

What is the estimated ROI of the project?

What time constraints and deadlines, if any,

may impact it?

Data

Without data, we can’t train models! Data also needs to be

available, integrated, and verifiable.

What data platforms does the organization have? These

may include data marts, OLAP cubes, data warehouses,

Hadoop clusters, OLTP systems, departmental

spreadsheets, and so forth.

Provide any information that has been collated that

provides an overview of data availability at the

organization, and current work and future plans for

building data platforms.

What tools and processes are available to move data

between systems and formats?

How are the data sources accessed by different groups

of users and admins?

What data access tools (e.g., database clients, OLAP

clients, in-house software, SAS) are available to the

organization’s data scientists and sysadmins? How

many people use each tool, and what are their positions

in the organization?

How are users informed of new systems, changes to

systems, new and changed data elements, and so forth?

Provide examples.

How are decisions made regarding data access

restrictions? How are requests to access secured data

managed? By whom? Based on what criteria? How long

is the average time to respond? What percentage of

requests are accepted? How is this tracked?

How does the organization decide when to collect

additional data or purchase external data? Provide

examples.

What data has been used so far to analyze recent data-

driven projects? What has been found to be most

useful? What was not useful? How was this judged?

What additional internal data may provide insights

useful for data-driven decision making for proposed

projects? What about external data?

What are the possible constraints or challenges in

accessing or incorporating this data?

What changes to data collection, coding, integration,

etc. have occurred in the last two years that may have

impacted the interpretation or availability of the

collected data?

Analytics

Data scientists need to be able to access up-to-date tools

appropriate for their own particular needs. New tools should be

regularly assessed to see if they offer a significant improvement

over current approaches.

What analytics tools are used at the organization and by

whom? How are they selected, configured, and

maintained?

What is the process to get additional analytical tools set

up on a client machine? What is the average time to

complete this? What percentage of requests are

accepted?

How are analytical systems built by external consultants

transferred to the organization? Are external

contractors asked to restrict the systems used to ensure

that the results conform to internal infrastructure?

In what situations has cloud processing been used?

What are the plans for using the cloud?

In what situations have external experts been used for

specialist analytics? How has this been managed? How

have the experts been identified and selected?

What analytics tools have been tried for recent projects?

What worked, and what didn’t? Why?

Provide any outputs that are available from work done

to date for these projects.

How have the results of this analysis been judged? What

metrics? Compared to what benchmarks? How do you

know whether a model is “good enough”?

In what situations does the organization use

visualization, versus tabular reporting, versus predictive

modeling (and similar machine learning tools)? For

more advanced modeling approaches, how are the

models calibrated and tested? Provide examples.

Implementation

IT constraints are often the downfall of data projects. Consider

them up front!

Provide some examples of past data-driven projects that

have had successful and unsuccessful implementations,

and provide details on the IT integration and human

capital challenges and how they were faced.

How is the validity of analytical models confirmed prior

to implementation? How are they benchmarked?

How are the performance requirements defined for

analytical project implementations (in terms of speed

and accuracy)?

For the proposed projects, provide information about

the following:

What IT systems will be used to support the

data-driven decisions and actions

How this IT integration will be done

What alternatives are available that may require

less IT integration

What jobs will be impacted by the data-driven

approaches

How these staff will be trained, monitored, and

supported

What implementation challenges may occur

Which stakeholders will be needed to ensure

implementation success, and how they might

perceive these projects and their potential

impact on them

Maintenance

Unless you track your models carefully, you may find them

leading you to disaster.

How are analytical systems built by third parties

maintained? When are they transferred to internal

teams?

How are the effectiveness of models tracked? When

does the organization decide to rebuild models?

How are data changes communicated internally, and

how are they managed?

How do data scientists work with software engineers to

ensure that algorithms are correctly implemented?

When are test cases developed, and how are they

maintained?

When is refactoring performed on code? How is the

correctness and performance of models maintained and

validated during refactoring?

How are maintenance and support requirements

logged? How are these logs used?

Constraints

For each project being considered, enumerate potential

constraints that may impact the success of the project.

Will IT systems need to be modified or developed to use

the results of the project? Are there simpler

implementations that could avoid substantial IT

changes? If so, how would using a simplified

implementation result in a significant reduction in

impact?

What regulatory constraints exist on data collection,

analysis, or implementation? Have the relevant

legislation and precedents been examined recently?

What workarounds might exist?

What organizational constraints exist, including in

culture, skills, or structure?

What management constraints are there?

Have there been any past analytics projects that may

impact how the organization views data-driven

approaches?

Index

A

academic baseline datasets, Deep Learning Is Not Just for

Image Classification

accountability for ethics violations, Recourse and

Accountability, Fairness, Accountability, and Transparency

accuracy metric

classification models, Computing Metrics Using

Broadcasting

deeper models, Going Deeper

improving while validation loss worse, Discriminative

Learning Rates

Mixup augmentation improving, Mixup

more parameters, more accuracy, Deeper Architectures

multi-label classifier, Binary Cross Entropy

top 5 accuracy, A State-of-the-Art ResNet

validation set, How Our Image Recognizer Works, How

Our Image Recognizer Works

validation set size, Validation Sets and Test Sets

actionable outcomes via Drivetrain Approach, The Drivetrain

Approach

activation function

nonlinear layer, Adding a Nonlinearity, Jargon Recap

softmax as, Viewing Activations and Labels, Unfreezing

and Transfer Learning

activation regularization, Activation Regularization and

Temporal Activation Regularization

activations

binary problems, Softmax

definition, Jargon Recap

forward pass, Calculating Gradients

hidden state, Our First Recurrent Neural Network

histogram of, 1cycle Training

models returning, Creating an Optimizer, Binary Cross

Entropy

plotting during training, A Simple Baseline

transforming into predictions, Viewing Activations and

Labels

ActivationStats, A Simple Baseline

Adam, Adam

AdaptiveAvgPool2d, Going Back to Imagenette

aggregation bias, Aggregation bias

algorithm buggy, ethics of, Bugs and Recourse: Buggy

Algorithm Used for Healthcare Benefits, Recourse and

Accountability, Addressing different types of bias

Ali, Muhammad, Historical bias

Amazon

batching production operations, Deploying Your App

facial recognition bias, Integrating Machine Learning with

Product Design

recommendation systems, Recommendation systems

Ameisin, Emmanuel, How to Avoid Disaster

Angwin, Julia, Conclusion

annealing learning rate, 1cycle Training

annealing callbacks, Scheduling the Learning Rate

cosine annealing, 1cycle Training

Apple APIs for apps under iOS, Deploying Your App

applications, Going Deeper into fastai’s Layered API

(see also web applications)

architecture of model

AWD-LSTM architecture, Fine-Tuning the Language

Model

AWD-LSTM for NLP RNNs, Regularizing an LSTM

computer vision, Computer Vision

cnn_learner, cnn_learner

Siamese network, A Siamese Network-A Siamese

Network

unet_learner, unet_learner

deeper architectures, Deeper Architectures

definition, A Bit of Deep Learning Jargon, Jargon Recap

exporting models, Using the Model for Inference

long short-term memory, Pixels: The Foundations of

Computer Vision

natural language processing, Natural Language Processing

picking not so important, How Our Image Recognizer

Works

ResNet, How Our Image Recognizer Works, Deeper

Architectures, ResNets

(see also ResNet architecture)

tabular models, Tabular

argument binding with partial function, Binary Cross Entropy

Arkansas healthcare buggy algorithm (ethics), Bugs and

Recourse: Buggy Algorithm Used for Healthcare Benefits,

Recourse and Accountability, Addressing different types of bias

arrays

about, NumPy Arrays and PyTorch Tensors

APIs, NumPy Arrays and PyTorch Tensors

arrays within arrays, NumPy Arrays and PyTorch Tensors

column selected, NumPy Arrays and PyTorch Tensors

creating an array, NumPy Arrays and PyTorch Tensors

image section, Pixels: The Foundations of Computer

Vision

operators, NumPy Arrays and PyTorch Tensors

row selected, NumPy Arrays and PyTorch Tensors

slicing row or column, NumPy Arrays and PyTorch

Tensors

arrest record Google bias, Bias: Professor Latanya Sweeney

“Arrested”

artificial intelligence (see machine learning)

Artificial Intelligence: A Frontier of Automation article, What

Is Machine Learning?

autocompletion in notebooks, Gathering Data

autogenerated text (see text generation)

autonomous vehicles, Deep Learning Is Not Just for Image

Classification, The Drivetrain Approach

AWD-LSTM architecture

activation regularization, Activation Regularization and

Temporal Activation Regularization

dropout, Dropout

NLP RNNs, Fine-Tuning the Language Model,

Regularizing an LSTM

temporal activation regularization, Activation

Regularization and Temporal Activation Regularization

training weight-tied regularized LSTM, Training a Weight-

Tied Regularized LSTM-Training a Weight-Tied

Regularized LSTM

axis of tensor or matrix, Jargon Recap

Azure Cognitive Services (Microsoft), Gathering Data

B

backpropagation

backward hook for custom behavior, CAM and Hooks

training neural networks, Pixels: The Foundations of

Computer Vision

backpropagation through time (BPTT), Maintaining the State

of an RNN

text classification, Natural Language Processing

truncated BPTT, Maintaining the State of an RNN

backward hook, CAM and Hooks

backward pass, Calculating Gradients, Jargon Recap, The

Forward and Backward Passes

gradients and, Gradients and the Backward Pass-

Gradients and the Backward Pass

bagging, Random Forests-Ensembling

Barocas, Solon, Fairness, Accountability, and Transparency

batch normalization, Batch Normalization

batch operations

batch size, SGD and Mini-Batches

out-of-memory error, Deeper Architectures

data augmentation, Data Augmentation

GPU serving production model, Deploying Your App

mini-batch, From Data to DataLoaders, Jargon Recap

PyTorch single item or batch same code, Binary Cross

Entropy

resizing images, How Our Image Recognizer Works

SGD and mini-batches, SGD and Mini-Batches

show_batch method, Checking and Debugging a

DataBlock

texts into batches for language model, Putting Our Texts

into Batches for a Language Model-Putting Our Texts into

Batches for a Language Model

BCELoss, Binary Cross Entropy

BCEWithLogitsLoss, Binary Cross Entropy, Conclusion

bear classifier (see image classifier models)

beginning

actionable outcomes via Drivetrain Approach, The

Drivetrain Approach

begin in known areas, Starting Your Project

begin with simple baseline model, First Try: Pixel

Similarity, Checking and Debugging a DataBlock

book website, Deep Learning in Practice: That’s a Wrap!

deep learning applicability to problem, The State of Deep

Learning

experiments lead to projects, Starting Your Project

first model, Your First Model-Running Your First

Notebook

code for, How Our Image Recognizer Works-How Our

Image Recognizer Works

error rate, Running Your First Notebook

tested, Running Your First Notebook

first notebook, Running Your First Notebook-Running

Your First Notebook

GPU servers, Getting a GPU Deep Learning Server

(see also GPU deep learning servers)

Jupyter Notebook, Getting a GPU Deep Learning Server

(see also Jupyter Notebook)

pretrained model accuracy, How Our Image Recognizer

Works

process (see process end-to-end)

steps toward starting, Deep Learning in Practice: That’s a

Wrap!

Bengio, Yoshua, Pixels: The Foundations of Computer Vision,

Defining and Initializing a Layer

Berkhahn, Felix, Categorical Embeddings, Combining

Embeddings with Other Methods

bias

about, Bias, Historical bias, Addressing different types of

bias

aggregation bias, Aggregation bias

Bing Image Search example, Gathering Data

facial recognition, Integrating Machine Learning with

Product Design, Historical bias

feedback loops, Limitations Inherent to Machine Learning,

Unforeseen Consequences and Feedback Loops

arrest rates on racial grounds, Unforeseen

Consequences and Feedback Loops

recommendation system, Feedback Loops: YouTube’s

Recommendation System

gender and, The Power of Diversity

(see also gender)

Google advertising, Bias: Professor Latanya Sweeney

“Arrested”

historical bias, Historical bias-Historical bias

measurement bias, Measurement bias

mitigation, Addressing different types of bias

racial bias, Historical bias

(see also racial bias)

representation bias, Representation bias, Bootstrapping a

Collaborative Filtering Model

socioeconomic bias, Addressing different types of bias

binary cross entropy loss function, Constructing a DataBlock-

Binary Cross Entropy

binary database format as data type, From Dogs and Cats to Pet

Breeds

Binder free app hosting, Deploying Your App

Bing Image Search for gathering data, Gathering Data

API, Gathering Data

biases in data gathering, Gathering Data

Bittman, Ladislav, Disinformation

Black, Edwin, Why Does This Matter?

blogging about deep learning journey

about, Get Writing!

browser-based interface, Blogging with GitHub Pages

creating posts, Creating Posts

GitHub account, Creating the Repository

GitHub Pages host, Blogging with GitHub Pages

home page setup, Setting Up Your Home Page

Jupyter for blogging, Jupyter for Blogging

synchronizing GitHub and computer, Synchronizing

GitHub and Your Computer

body of a model, cnn_learner

cutting model, cnn_learner

The Book of Why (Pearl and Mackenzie), Partial Dependence

book updates on website, Deep Learning in Practice: That’s a

Wrap!

boosting, Boosting

bootstrapping problem of new users, Bootstrapping a

Collaborative Filtering Model

BPTT (see backpropagation through time)

Breiman, Leo, Random Forests

broadcasting, Computing Metrics Using Broadcasting,

Computing Metrics Using Broadcasting, Broadcasting

broadcasting with a scalar, Broadcasting with a scalar

rules of, Broadcasting rules

vector to matrix, Broadcasting a vector to a matrix-

Broadcasting a vector to a matrix

Brostow, Gabriel J., Deep Learning Is Not Just for Image

Classification

buggy algorithm ethics, Bugs and Recourse: Buggy Algorithm

Used for Healthcare Benefits, Recourse and Accountability,

Addressing different types of bias

Buolamwini, Joy, Historical bias

button click event handler, Creating a Notebook App from the

Model

C

C programming language, NumPy Arrays and PyTorch Tensors

calculus and SymPy, Gradients and the Backward Pass

California gang database (ethics), Recourse and Accountability

callbacks

annealing, Scheduling the Learning Rate

building Learner class from scratch, Callbacks

creating, Creating a Callback

exceptions, Callback Ordering and Exceptions

HookCallback, CAM and Hooks

language model, Maintaining the State of an RNN

Learner, Mixup, A Simple Baseline

mid-level API, Going Deeper into fastai’s Layered API

training process, Callbacks

Callison-Burch, Chris, Deep Learning Is Not Just for Image

Classification

CAM (see class activation map)

capacity of a model, Deeper Architectures

car safety for ethics inspiration, Cars: A Historical Precedent

cardinality

decision tree ensembles and, Beyond Deep Learning

definition, Beyond Deep Learning

entity embedding and, Categorical Embeddings

casting in PyTorch, First Try: Pixel Similarity

categorical outcome cross-entropy loss, Checking and

Debugging a DataBlock

categorical variables

cardinality and decision tree ensembles, Beyond Deep

Learning

definition, Categorical Embeddings

embedding, Creating the DataLoaders-Weight Decay,

Categorical Variables

continuous variables from, Categorical Embeddings

decision trees, Decision Trees

tabular data, Categorical Embeddings-Categorical

Embeddings

tabular dataset, The Dataset-Look at the Data

tabular dataset prep, Handling Dates-Using

TabularPandas and TabularProc

predicting sales from stores (see tabular data)

recommendation system model (see collaborative filtering)

time series dataset splitting, Using TabularPandas and

TabularProc

(see also tabular data)

CategoryBlock

image classifier, From Data to DataLoaders, From Dogs

and Cats to Pet Breeds

MultiCategoryBlock, Constructing a DataBlock

cats and dogs first model, Your First Model-Running Your First

Notebook

dataset, Running Your First Notebook, How Our Image

Recognizer Works

Ceglowski, Maciej, The Effectiveness of Regulation

cells in notebooks

copying, Running Your First Notebook

execution order, Deep Learning Is Not Just for Image

Classification

first cell CLICK ME, Running Your First Notebook, Deep

Learning Is Not Just for Image Classification

image output by, Running Your First Notebook

Markdown, Running Your First Notebook

table output by, Running Your First Notebook

text ouput by, Running Your First Notebook

types of, Running Your First Notebook

census data weaponization, Analyze a Project You Are Working

On

center of person’s face in image (see key point model)

Chaslot, Guillaume, Feedback Loops

Chomsky, Noam, From Dogs and Cats to Pet Breeds

Chou, Tracy, The Power of Diversity

CIFAR10 dataset, Imagenette

Cipolla, Roberto, Deep Learning Is Not Just for Image

Classification

class activation map (CAM)

about, CAM and Hooks

gradient CAM, Gradient CAM

hooks, CAM and Hooks-CAM and Hooks

class methods, Language Model Using DataBlock

classes in object-oriented programming, Collaborative Filtering

from Scratch

dunder init, Collaborative Filtering from Scratch

classification models definition, How Our Image Recognizer

Works

click event handler, Creating a Notebook App from the Model

CNN (see convolutional neural network)

cnn_learner

architecture, cnn_learner

first model, How Our Image Recognizer Works

image classifier model, Training Your Model, and Using It

to Clean Your Data

loss function parameter, Training a Model

multi-label classifier, Binary Cross Entropy

normalization of data, Normalization

collaborative filtering

about, Collaborative Filtering Deep Dive

bootstrapping problem, Bootstrapping a Collaborative

Filtering Model

building from scratch, Collaborative Filtering from

Scratch-Weight Decay

collab_learner, Using fastai.collab

DataLoaders, Creating the DataLoaders

dataset, A First Look at the Data

deep learning model, Deep Learning for Collaborative

Filtering

embedding, Creating the DataLoaders-Weight Decay

built from scratch, Creating Our Own Embedding

Module-Deep Learning for Collaborative Filtering

embedding distance, Embedding Distance,

Categorical Embeddings

fitting model, Collaborative Filtering from Scratch

interpretting embeddings and biases, Interpreting

Embeddings and Biases

items rather than products, Collaborative Filtering Deep

Dive

latent factors, Collaborative Filtering Deep Dive

embedding, Creating the DataLoaders-Weight Decay

layers via printing model, Using fastai.collab

learning latent factors, Learning the Latent Factors

embedding, Creating the DataLoaders-Weight Decay

probabilistic matrix factorization, Bootstrapping a

Collaborative Filtering Model

skew from small number of users, Bootstrapping a

Collaborative Filtering Model

structuring model, A First Look at the Data

tables as matrices, Creating the DataLoaders

look-up index, Creating the DataLoaders

collab_learner, Using fastai.collab

color image as rank-3 tensor, Color Images

color_dim, 1cycle Training

community support, Concluding Thoughts

COMPAS algorithm, Historical bias, Conclusion

computer vision models

architecture, Computer Vision

cnn_learner, cnn_learner

Siamese network, A Siamese Network-A Siamese

Network

unet_learner, unet_learner

autonomous vehicles localizing objects, Deep Learning Is

Not Just for Image Classification

convolutional neural networks for, How Our Image

Recognizer Works

current state of, Computer vision

dataset image representation rule, Image Recognizers Can

Tackle Non-Image Tasks

datasets for, Imagenette

labels, How Our Image Recognizer Works

examples of, Deep Learning Is for Everyone

(see also image classifier models)

fastai vision library in first model, How Our Image

Recognizer Works

finding edges via convolution, The Magic of Convolutions

image basics, Pixels: The Foundations of Computer Vision-

Pixels: The Foundations of Computer Vision

image classifier (see image classifier models)

labels in datasets, How Our Image Recognizer Works

non-image tasks, Image Recognizers Can Tackle Non-

Image Tasks-Image Recognizers Can Tackle Non-Image

Tasks, Deep Learning Is Not Just for Image Classification

object detection, Computer vision, Historical bias

pixels as foundation, Pixels: The Foundations of Computer

Vision-Pixels: The Foundations of Computer Vision

pretrained model weight values, How Our Image

Recognizer Works

Python Imaging Library, Pixels: The Foundations of

Computer Vision

ResNets for, Building a Modern CNN: ResNet-Skip

Connections

self-supervised learning for, NLP Deep Dive: RNNs

concatenating categorical and continuous variables, Categorical

Embeddings

Google Play, Categorical Embeddings

confusion matrix with image classifiers, Training Your Model,

and Using It to Clean Your Data, Model Interpretation

conspiracy theory feedback loop, Feedback Loops: YouTube’s

Recommendation System, Feedback Loops, Feedback Loops

context manager, CAM and Hooks

continuous variables

definition, Categorical Embeddings

embedded categorical combined with, Categorical

Embeddings

embedding transforming categorical into, Categorical

Embeddings

convolutional neural network (CNN)

1cycle training, 1cycle Training

about, Unfreezing and Transfer Learning, Our First

Convolutional Neural Network

batch size increased, Increase Batch Size

building a CNN, Creating the CNN-Batch Normalization

batch normalization, Batch Normalization

channels, Creating the CNN

color images, Color Images-Color Images

convolution arithmetic, Understanding Convolution

Arithmetic

dataset, Improving Training Stability

features, Creating the CNN

receptive fields, Receptive Fields

building Learner class from scratch, Simple CNN

building ResNet CNN, Building a Modern CNN: ResNet-

Skip Connections

computer vision models, How Our Image Recognizer

Works

convolution as matrix multiplication, Understanding the

Convolution Equations

convolution described, The Magic of Convolutions,

Mapping a Convolutional Kernel

definition, Jargon Recap

equations, Understanding the Convolution Equations

first model, How Our Image Recognizer Works

fully convolutional networks, Going Back to Imagenette,

Going Back to Imagenette

head, cnn_learner

kernel, The Magic of Convolutions-The Magic of

Convolutions

convolution described, Mapping a Convolutional

Kernel

mapping, Mapping a Convolutional Kernel-Mapping a

Convolutional Kernel

learning rate for, Going Back to Imagenette

nested list of comprehensions, Mapping a Convolutional

Kernel

padding, Strides and Padding

pretrained parameter, How Our Image Recognizer Works

last layer and, How Our Image Recognizer Works

PyTorch convolutions, Convolutions in PyTorch

refactoring, Creating the CNN

stem, A State-of-the-Art ResNet

top 5 accuracy, A State-of-the-Art ResNet

training, Creating the CNN

all digits, A Simple Baseline-Batch Normalization

more stable, A Simple Baseline-Batch Normalization

visualizing learning, What Our Image Recognizer Learned

Yann Lecun’s work, Pixels: The Foundations of Computer

Vision

cosine annealing, 1cycle Training

CPU servers, Deploying Your App, Deploying Your App

crash test dummies and gender, Cars: A Historical Precedent

credit report system errors (ethics), Recourse and

Accountability

cross-entropy loss

about, Checking and Debugging a DataBlock, Taking the

log, Conclusion

gradient, Taking the log

image classifier, Checking and Debugging a DataBlock-

Taking the log

image data and categorical outcome, Checking and

Debugging a DataBlock

CSV data for models

multi-label classification, The Data-The Data

as tabular data, Deep Learning Is Not Just for Image

Classification

(see also tabular data)

CT scan stroke analysis, Combining text and images

cutting network, cnn_learner

cyclical momentum, 1cycle Training

D

data augmentation

applied to coordinates, Assembling the Data

definition, Computer vision, Data Augmentation

image classifier model, Data Augmentation

Mixup, Mixup

presizing, From Dogs and Cats to Pet Breeds

progressive resizing as, Progressive Resizing

test time augmentation, Test Time Augmentation

text data complications, Regularizing an LSTM

data leakage of illegitimate information, Data Leakage

missing values as, Data Leakage

data project checklist

about, Data Project Checklist

analytics, Analytics

constraints, Constraints

data, Data

data scientists, Data Scientists

implementation, Implementation

maintenance, Maintenance

strategy, Strategy

database data for models, Deep Learning Is Not Just for Image

Classification

binary database format as data type, From Dogs and Cats

to Pet Breeds

DataBlock

checking, Checking and Debugging a DataBlock-Checking

and Debugging a DataBlock

DataFrame to DataLoaders, Constructing a DataBlock-

Constructing a DataBlock

debugging, Checking and Debugging a DataBlock,

Checking and Debugging a DataBlock, Constructing a

DataBlock, Constructing a DataBlock, Language Model

Using DataBlock

image classifier model, From Data to DataLoaders

image regression example, Regression-Training a Model

language model using, Language Model Using DataBlock

mid-level API foundation, Data Munging with fastai’s Mid-

Level API

(see also mid-level API)

movie review classifier, Creating the Classifier

DataLoaders

presizing, From Dogs and Cats to Pet Breeds

DataFrame

color-code image values, Pixels: The Foundations of

Computer Vision

DataLoaders object from, Constructing a DataBlock-

Constructing a DataBlock

multi-label CSV file, The Data

TabularPandas class, Using TabularPandas and

TabularProc

DataLoader iterator, Constructing a DataBlock

building Learner class from scratch, Dataset

DataLoaders

customization, From Data to DataLoaders

DataFrame converted to, Constructing a DataBlock-

Constructing a DataBlock

definition, Constructing a DataBlock

export method, Using the Model for Inference

image classifier model, From Data to DataLoaders-From

Data to DataLoaders

movie review classifier, Creating the Classifier

DataLoaders

text classifier, Deep Learning Is Not Just for Image

Classification, Deep Learning Is Not Just for Image

Classification, Going Deeper into fastai’s Layered API

Dataset collection

building from scratch, Dataset

definition, Constructing a DataBlock

datasets

academic baselines, Deep Learning Is Not Just for Image

Classification

best models for majority of, Beyond Deep Learning

bias (see bias)

Bing Image Search for gathering data, Gathering Data

Blue Book for Bulldozers Kaggle competition, The Dataset

bootstrapping problem of new users, Bootstrapping a

Collaborative Filtering Model

CIFAR10 dataset, Imagenette

cleaning

before versus after training, Training Your Model, and

Using It to Clean Your Data, Training Your Model,

and Using It to Clean Your Data

fastai GUI for, Training Your Model, and Using It to

Clean Your Data

time required for, Training Your Model, and Using It

to Clean Your Data

computer vision, Imagenette

labels, How Our Image Recognizer Works

cut-down versions of popular, Deep Learning Is Not Just

for Image Classification

data augmentation definition, Computer vision, Data

Augmentation

data availability, Starting Your Project

data leakage of illegitimate information, Data Leakage

data product design integrated with ML, Integrating

Machine Learning with Product Design

date handling, Handling Dates

definition, Running Your First Notebook

demographics, Deep Learning Is Not Just for Image

Classification

dependent variable definition, A Bit of Deep Learning

Jargon

domain shift, How to Avoid Disaster

download first model, Running Your First Notebook, How

Our Image Recognizer Works

ethics, Data Ethics

errors in dataset, Recourse and Accountability

examples of, Key Examples for Data Ethics

use of data, Analyze a Project You Are Working On

examining data importance, Look at the Data, Our

Language Model in PyTorch, Improving Training Stability

facial recognition across races, Historical bias

feature engineering, The Magic of Convolutions

filename extraction, From Dogs and Cats to Pet Breeds-

From Dogs and Cats to Pet Breeds

regular expressions, From Dogs and Cats to Pet

Breeds

freely available, Running Your First Notebook

gathering data, Gathering Data-Gathering Data

handwritten digits, Pixels: The Foundations of Computer

Vision, Imagenette, Improving Training Stability, Going

Back to Imagenette

Human Numbers, The Data

image representation rule of thumb, Image Recognizers

Can Tackle Non-Image Tasks

ImageNet dataset, Imagenette, Going Back to Imagenette

Imagenette subset, Training a State-of-the-Art Model,

Going Back to Imagenette, Data

top 5 accuracy, A State-of-the-Art ResNet

IMDb Large Movie Review, Deep Learning Is Not Just for

Image Classification

independent variable definition, A Bit of Deep Learning

Jargon

Kaggle as source, Kaggle Competitions

Kinect Head Pose, Assembling the Data

label importance, Limitations Inherent to Machine

Learning

(see also labels)

missing values as data leakage, Data Leakage

MNIST handwritten digits dataset, Pixels: The

Foundations of Computer Vision, Imagenette, Improving

Training Stability, Going Back to Imagenette

MovieLens, Deep Learning Is Not Just for Image

Classification, A First Look at the Data

normalization of data, Normalization

statistics distributed with model, Normalization

other data types, Other data types

out-of-domain data, Computer vision, How to Avoid

Disaster, The Extrapolation Problem

PASCAL multi-label dataset, The Data

path to dataset, How Our Image Recognizer Works

pet images, Running Your First Notebook, How Our Image

Recognizer Works, From Dogs and Cats to Pet Breeds,

Applying the Mid-Level Data API: SiamesePair

pretrained model weight values, How Our Image

Recognizer Works

racial balance of, Historical bias

save method, Using TabularPandas and TabularProc

structure of, How Our Image Recognizer Works

tabular data for models

about, Deep Learning Is Not Just for Image

Classification, Tabular Modeling Deep Dive

architecture, Tabular

current state of, Tabular data

as data type, From Dogs and Cats to Pet Breeds

deep dive into (see tabular data)

multi-label classification, The Data

recommendation systems as, Recommendation

systems

test set, Validation Sets and Test Sets

training set, How Our Image Recognizer Works, How Our

Image Recognizer Works, Jargon Recap

training, validation, test, Use Judgment in Defining Test

Sets-Use Judgment in Defining Test Sets

types of data, From Dogs and Cats to Pet Breeds

validation set, How Our Image Recognizer Works, How

Our Image Recognizer Works, Jargon Recap, Validation

Sets and Test Sets

validation set defined, From Data to DataLoaders

Datasets iterator, Constructing a DataBlock

Transforms, Datasets

date handling in tabular data, Handling Dates

De-Arteaga, Maria, Representation bias

debugging

DataBlock, Checking and Debugging a DataBlock,

Constructing a DataBlock, Constructing a DataBlock,

Language Model Using DataBlock

help with errors, Gathering Data

out-of-memory error, Deeper Architectures

summary method for, Checking and Debugging a

DataBlock, Constructing a DataBlock, Language Model

Using DataBlock

decision trees

about, Beyond Deep Learning, Decision Trees

displaying tree, Creating the Decision Tree-Creating the

Decision Tree

libraries for, Beyond Deep Learning

overfitting, Creating the Decision Tree

random forests, Random Forests-Ensembling

creating a random forest, Creating a Random Forest

data leakage, Data Leakage

ensembling, Ensembling

ensembling, boosting, Boosting

extrapolation problem, Extrapolation and Neural

Networks

feature importances, Feature Importance

hyperparameter insensitivity, Creating a Random

Forest

model interpretation, Model Interpretation-Tree

Interpreter

out-of-bag error, Creating a Random Forest

out-of-domain data, The Extrapolation Problem

partial dependence, Partial Dependence

removing low-importance variables, Removing Low-

Importance Variables

removing redundant features, Removing Redundant

Features

tree interpreter, Tree Interpreter

tree variance for prediction confidence, Tree Variance

for Prediction Confidence

training, Decision Trees-Creating the Decision Tree

creating decision tree, Creating the Decision Tree

data preparation, Handling Dates-Using

TabularPandas and TabularProc

displaying tree, Creating the Decision Tree-Creating

the Decision Tree

decode method, Transforms

deep learning

about, Foreword, Deep Learning Is for Everyone-Deep

Learning Is for Everyone

about the importance of parameters, How Our Image

Recognizer Works

architecture not so important, How Our Image Recognizer

Works

beyond deep learning, Beyond Deep Learning

blogging about journey (see blogging)

capabilities and constraints, The Practice of Deep Learning

community support, A Note About Twitter, Concluding

Thoughts

current state of, The State of Deep Learning

dataset image representation rule, Image Recognizers Can

Tackle Non-Image Tasks

history, Pixels: The Foundations of Computer Vision

how to learn, How to Learn Deep Learning-Your Projects

and Your Mindset

image recognition (see image classifier models)

as machine learning, What Is Machine Learning?, Jargon

Recap

machine learning visualized, What Our Image Recognizer

Learned

manual process in parallel, How to Avoid Disaster

model and human interaction, Combining text and images,

How to Avoid Disaster

neural networks beyond understanding, How to Avoid

Disaster

neural networks used, Deep Learning Is for Everyone,

What Is Machine Learning?

(see also neural networks)

non-image tasks, Image Recognizers Can Tackle Non-

Image Tasks-Image Recognizers Can Tackle Non-Image

Tasks, Deep Learning Is Not Just for Image Classification

overview, Jargon Recap

predicting sales from stores, Categorical Embeddings

(see also tabular data)

process of creating application (see process end-to-end)

risk mitigation, How to Avoid Disaster

scikit-learn library instead, Beyond Deep Learning

server requirements, Getting a GPU Deep Learning Server

tabular data needing more, Categorical Embeddings

terminology, A Bit of Deep Learning Jargon, Jargon

Recap, Jargon Recap

Twitter for help, A Note About Twitter

deeper models having more layers, Going Deeper

delegates, Deep Learning for Collaborative Filtering

demographics dataset, Deep Learning Is Not Just for Image

Classification

dependent variable

definition, A Bit of Deep Learning Jargon, From Data to

DataLoaders

distracted driver model, Use Judgment in Defining Test

Sets

model defined by, Regression

prediction variable importance, Look at the Data

viewing in mini-batch, Viewing Activations and Labels

as y, From Data to DataLoaders

deployment

app from notebook, Turning Your Notebook into a Real

App

Binder free app hosting, Deploying Your App

CPU-based server, Deploying Your App

exporting model, Using the Model for Inference

export.pkl file, Using the Model for Inference

mobile devices, Deploying Your App

prediction inference, Using the Model for Inference

Raspberry Pi, Deploying Your App

risk mitigation, How to Avoid Disaster

unforeseen challenges, Unforeseen Consequences and

Feedback Loops

web application, Turning Your Model into an Online

Application-Deploying Your App

deployment, Deploying Your App-Deploying Your App

disaster avoidance, How to Avoid Disaster

web resource discussing, How to Avoid Disaster

derivative of a function, Calculating Gradients

backpropagation, Calculating Gradients

DeVries, Terrance, Historical bias

diabetes data aggregation bias, Aggregation bias

digital signature, Disinformation

dimension multiple meanings, First Try: Pixel Similarity

DiResta, Renee, Feedback Loops

disaster avoidance with web applications, How to Avoid

Disaster

discriminative learning rates, Unfreezing and Transfer

Learning

disinformation, Text (natural language processing),

Disinformation, Disinformation and Language Models

identity generation, Disinformation and Language Models

diversity against ethical risks, The Power of Diversity

doc for method documentation, Deep Learning Is Not Just for

Image Classification, Gathering Data

dogs and cats first model, Your First Model-Running Your First

Notebook

dataset, Running Your First Notebook, How Our Image

Recognizer Works

domain shift, How to Avoid Disaster

dot product of vectors, A First Look at the Data, Categorical

Embeddings

download_images, Gathering Data

Drivetrain Approach for actionable outcomes, The Drivetrain

Approach

dropout, Dropout

Dumoulin, Vincent, Mapping a Convolutional Kernel

dunder init, Collaborative Filtering from Scratch

Durbin, Meredith, Fairness, Accountability, and Transparency

E

early stopping, Selecting the Number of Epochs

Einstein summation, Einstein Summation

electronic health record measurement bias, Measurement bias

elementwise arithmetic, Elementwise Arithmetic

embedding, Creating the DataLoaders-Weight Decay

built from scratch, Creating Our Own Embedding Module-

Deep Learning for Collaborative Filtering

categorical variables transformed into continuous,

Categorical Embeddings

combining with other methods, Combining Embeddings

with Other Methods

continuous values, continuous input, Categorical

Embeddings

delegates, Deep Learning for Collaborative Filtering

embedding distance, Embedding Distance, Categorical

Embeddings

dates on calendar and, Categorical Embeddings

geographic distance matching, Categorical

Embeddings

embedding layer, Categorical Embeddings

embedding matrix, Creating the DataLoaders

entity embedding, Categorical Embeddings

kwargs, Deep Learning for Collaborative Filtering

tabular data with categorical columns, Using a Neural

Network

encoder, Saving and Loading Models

end-to-end process (see process end-to-end)

Enlitic company malignant tumor identification, Deep

Learning Is for Everyone, Who We Are

ensembles of decision trees (see decision trees)

ensembling random forests, Ensembling

boosting, Boosting

entity embedding, Categorical Embeddings

epochs

definition, How Our Image Recognizer Works, How Our

Image Recognizer Works, Jargon Recap

early stopping, Selecting the Number of Epochs

fitting models, Checking and Debugging a DataBlock

image cropping, From Data to DataLoaders

test time augmentation, Test Time Augmentation

number of, Selecting the Number of Epochs

overfitting and, How Our Image Recognizer Works

error debugging, Gathering Data

out-of-memory error, Deeper Architectures

error rate, Running Your First Notebook, How Our Image

Recognizer Works

errors in data (ethics), Recourse and Accountability

escape key for command/edit mode, Running Your First

Notebook

Estola, Evan, Feedback Loops

ethics

accountability, Recourse and Accountability

addressing ethical issues, Identifying and Addressing

Ethical Issues

early stages of, Conclusion

ethical lenses, Ethical lenses

fairness, accountability, transparency, Fairness,

Accountability, and Transparency

policy’s role, Role of Policy-Cars: A Historical

Precedent

power of diversity, The Power of Diversity

processes to implement, Processes to Implement

bias

about, Bias, Addressing different types of bias

aggregation bias, Aggregation bias

facial recognition, Integrating Machine Learning with

Product Design, Historical bias

geo-diversity, Historical bias

historical bias, Historical bias-Historical bias

measurement bias, Measurement bias

mitigation, Addressing different types of bias

natural language processing, Historical bias

racial bias (see racial bias)

representation bias, Representation bias

socioeconomic bias, Addressing different types of bias

buggy algorithm, Bugs and Recourse: Buggy Algorithm

Used for Healthcare Benefits, Recourse and

Accountability, Addressing different types of bias

car safety inspiration, Cars: A Historical Precedent

consideration of project as whole, Why Does This Matter?

data ethics, Data Ethics

examples of, Key Examples for Data Ethics

description of, Data Ethics

disinformation, Text (natural language processing),

Disinformation, Disinformation and Language Models

healthcare benefits buggy algorithm, Bugs and Recourse:

Buggy Algorithm Used for Healthcare Benefits, Recourse

and Accountability

IBM and Nazi Germany, Why Does This Matter?, Analyze

a Project You Are Working On

identifying ethical issues, Identifying and Addressing

Ethical Issues

importance of, Why Does This Matter?

medicine and text generation, Text (natural language

processing)

product design integrated with ML, Integrating Machine

Learning with Product Design

recourse, Recourse and Accountability

Volkswagen emission test cheating, Why Does This

Matter?

YouTube recommendation feedback loops, Feedback

Loops: YouTube’s Recommendation System, Feedback

Loops

Etzioni, Oren, Disinformation

evaluating models (see testing models)

exponential function (exp), Softmax

export method, Using the Model for Inference

export.pkl file, Using the Model for Inference

F

F (torch.nn.functional), First Try: Pixel Similarity,

Convolutions in PyTorch

face center in image (see key point model)

Facebook

bias in advertisements, Historical bias

feedback loop, Feedback Loops

genocide and, The Effectiveness of Regulation

hate speech law compliance, The Effectiveness of

Regulation

facial recognition bias, Integrating Machine Learning with

Product Design, Historical bias

factory methods versus customization, From Data to

DataLoaders

Fairness and Machine Learning online book (Barocas, Hardt,

and Narayanan), Fairness, Accountability, and Transparency

fairness, accountability, and transparency, Fairness,

Accountability, and Transparency

fast.ai ML courses

about, Foreword, Who We Are, Who We Are

free online course, Concluding Thoughts

image recognition applications, Gathering Data

website, What You Need to Know

fastai software library

about, The Software: PyTorch, fastai, and Jupyter (And

Why It Doesn’t Matter)

accuracy with validation set, How Our Image Recognizer

Works

data augmentation, Assembling the Data

data cleaning GUI, Training Your Model, and Using It to

Clean Your Data

documentation for methods, Deep Learning Is Not Just for

Image Classification

forums for community support, Concluding Thoughts

import efficiency in notebook, How Our Image Recognizer

Works

L class returning collections, From Dogs and Cats to Pet

Breeds

labeling methods, How Our Image Recognizer Works

layered API, Going Deeper into fastai’s Layered API

loss function selected by, Checking and Debugging a

DataBlock, Binary Cross Entropy, Training a Model,

Conclusion

metrics, How Our Image Recognizer Works

Tabular classes, Using a Neural Network

Transforms, How Our Image Recognizer Works

validation set, How Our Image Recognizer Works, How

Our Image Recognizer Works

version 2 in book, The Software: PyTorch, fastai, and

Jupyter (And Why It Doesn’t Matter)

Fauqueur, Julien, Deep Learning Is Not Just for Image

Classification

feature engineering, The Magic of Convolutions

feedback loops

arrest rates on racial grounds, Unforeseen Consequences

and Feedback Loops

conspiracy theories fed by, Feedback Loops: YouTube’s

Recommendation System, Feedback Loops, Feedback

Loops

description, Limitations Inherent to Machine Learning,

Unforeseen Consequences and Feedback Loops

Facebook and conspiracy theories, Feedback Loops

metrics driving algorithms, Feedback Loops

recommendation system ethics, Feedback Loops:

YouTube’s Recommendation System, Feedback Loops

skew from small number of users, Bootstrapping a

Collaborative Filtering Model

Fergus, Rob, What Our Image Recognizer Learned, Unfreezing

and Transfer Learning

Feynman, Richard, Your Projects and Your Mindset

file upload to web widget, Creating a Notebook App from the

Model

files as data type, From Dogs and Cats to Pet Breeds

fine-tuning models

definition, How Our Image Recognizer Works, Jargon

Recap

fine-tune method, How Our Image Recognizer Works

first model, Running Your First Notebook, How Our Image

Recognizer Works

image classifier model, Training Your Model, and Using It

to Clean Your Data

natural language models, NLP Deep Dive: RNNs

classifier, Fine-Tuning the Classifier

language model, Fine-Tuning the Language Model-

Saving and Loading Models

non-pretrained, Deep Learning Is Not Just for Image

Classification

pretrained models, How Our Image Recognizer Works,

Unfreezing and Transfer Learning

language model, Fine-Tuning the Language Model-

Saving and Loading Models

transfer learning, Unfreezing and Transfer Learning

first model, Your First Model-Running Your First Notebook

code for, How Our Image Recognizer Works-How Our

Image Recognizer Works

convolutional neural network, How Our Image Recognizer

Works

as deep learning, What Is Machine Learning?

error rate, Running Your First Notebook

fine-tuning, Running Your First Notebook, How Our

Image Recognizer Works

GPU servers, Getting a GPU Deep Learning Server

machine learning visualized, What Our Image Recognizer

Learned

as neural net, What Is a Neural Network?

process of creating application (see process end-to-end)

tested, Running Your First Notebook

Transforms, How Our Image Recognizer Works

fisheries monitoring model competition, Use Judgment in

Defining Test Sets

fitting models

collaborative filtering system, Collaborative Filtering from

Scratch

definition, Jargon Recap

fit method, How Our Image Recognizer Works

pretrained models, How Our Image Recognizer Works

(see also fine-tuning models)

table of results of each epoch, Checking and Debugging a

DataBlock

fix_html, Word Tokenization with fastai

floating point numbers

casting in PyTorch, First Try: Pixel Similarity

half-precision floating point (fp16), Deeper Architectures

forgery via AI, Disinformation

forward hook, CAM and Hooks

forward method, Collaborative Filtering from Scratch

forward pass, Calculating Gradients, Jargon Recap, The

Forward and Backward Passes

defining and initializing a layer, Defining and Initializing a

Layer-Defining and Initializing a Layer

fraud detection, Image Recognizers Can Tackle Non-Image

Tasks

freezing pretrained models, Unfreezing and Transfer Learning

fully convolutional networks, Going Back to Imagenette, Going

Back to Imagenette

G

Gebru, Timnit, Cars: A Historical Precedent

gender

bias in Facebook advertising, Historical bias

crash test dummies, Cars: A Historical Precedent

facial recognition accuracy, Historical bias

harassment online, The Power of Diversity

Meetup recommendation algorithm, Feedback Loops

occupations and, Historical bias, Representation bias

representation bias, Representation bias

tech industry, The Power of Diversity

generalization by models, Jargon Recap, Extrapolation and

Neural Networks

genocide and Facebook, The Effectiveness of Regulation

geo-diveristy of datasets, Historical bias

Géron, Aurélien, Feedback Loops

get_dummies for categorical variables, Categorical Variables

get_preds function, Viewing Activations and Labels

Giomo, Stefano, 1cycle Training

GitHub Pages hosting blog, Blogging with GitHub Pages

account creation, Creating the Repository

synchronizing GitHub and computer, Synchronizing

GitHub and Your Computer

Glorot, Xavier, Defining and Initializing a Layer

Google

bias

advertising bias, Bias: Professor Latanya Sweeney

“Arrested”

Photos label, Historical bias

Translate, Historical bias

Play concatenation approach, Categorical Embeddings

YouTube recommendation feedback loops, Feedback

Loops: YouTube’s Recommendation System, Feedback

Loops

GPU deep learning servers

about, Getting a GPU Deep Learning Server

complexity of running, Deploying Your App

CPU servers cheaper for production, Deploying Your App

GPU acceleration, Tabular data

inference complexity, Deploying Your App

production model and, Deploying Your App

PyTorch tensors optimized for, NumPy Arrays and

PyTorch Tensors

recommended options, Getting a GPU Deep Learning

Server

tensor core support, Deeper Architectures

gradient boosted decision trees (GBDTs), Boosting

gradient boosting machines (GBMs), Boosting

gradient descent, Summarizing Gradient Descent, Jargon

Recap

gradients

backward pass and, Gradients and the Backward Pass-

Gradients and the Backward Pass

calculating, Calculating Gradients-Calculating Gradients

cross-entropy loss, Taking the log

definition, Jargon Recap

definition as rise/run, Calculating Gradients, The MNIST

Loss Function

gradient class activation map, Gradient CAM

Gramian Angular Difference Field (GADF), Image Recognizers

Can Tackle Non-Image Tasks

graphics processing unit (GPU), Getting a GPU Deep Learning

Server

Greek letters, Mixup

Guo, Cheng, Categorical Embeddings, Combining Embeddings

with Other Methods

Guttag, John, Bias

H

H for help, Running Your First Notebook

half-precision floating point (fp16), Deeper Architectures

handwritten digits dataset, Pixels: The Foundations of

Computer Vision, Imagenette, Improving Training Stability,

Going Back to Imagenette

downloading, Pixels: The Foundations of Computer Vision

handwritten text read by models, Pixels: The Foundations of

Computer Vision

(see also numerical digit classifier)

Hardt, Mortiz, Fairness, Accountability, and Transparency

He, Kaiming, ResNets, Defining and Initializing a Layer

He, Tong, A State-of-the-Art ResNet

head of model

cutting model, cnn_learner

definition, How Our Image Recognizer Works, How Our

Image Recognizer Works, cnn_learner

pretrained models and, How Our Image Recognizer Works

Siamese model with custom head, A Siamese Network-A

Siamese Network

head pose dataset, Assembling the Data

format of pose text file, Assembling the Data

healthcare benefits buggy algorithm (ethics), Bugs and

Recourse: Buggy Algorithm Used for Healthcare Benefits,

Recourse and Accountability, Addressing different types of bias

help by pressing H, Running Your First Notebook

hidden state, Our First Recurrent Neural Network

Hinton, Geoffrey, Pixels: The Foundations of Computer Vision,

Dropout, RMSProp

historical bias, Historical bias-Historical bias

history

deep learning, Pixels: The Foundations of Computer

Vision

machine learning, What Is Machine Learning?

neural networks, Neural Networks: A Brief History, The

Learning Rate Finder

Hitler, Adolf, Why Does This Matter?, Analyze a Project You

Are Working On

Hochreiter, Sepp, Pixels: The Foundations of Computer Vision

HookCallback, CAM and Hooks

hooks in PyTorch, CAM and Hooks-CAM and Hooks

Hook class as context manager, CAM and Hooks

memory leak, CAM and Hooks

horizontal scaling, Deploying Your App

Human Numbers dataset, The Data

Hutson, Jevan, Fairness, Accountability, and Transparency

hyperparameters, Validation Sets and Test Sets

random forest insensitivity, Creating a Random Forest

validation set picking threshold, Binary Cross Entropy

I

IBM and Nazi Germany, Why Does This Matter?, Analyze a

Project You Are Working On

IBM and the Holocaust book (Black), Why Does This Matter?

identity function, Skip Connections

identity generation by ML, Disinformation and Language

Models

identity mapping, Skip Connections

Image class, Pixels: The Foundations of Computer Vision

image classifier model training

activations, Viewing Activations and Labels

activations into predictions, Viewing Activations and

Labels

baseline simple model, Checking and Debugging a

DataBlock

baseline training run, Imagenette

cross-entropy loss, Checking and Debugging a DataBlock-

Taking the log

discriminative learning rates, Unfreezing and Transfer

Learning

epochs, number of, Selecting the Number of Epochs,

Selecting the Number of Epochs

freezing pretrained layers, Unfreezing and Transfer

Learning

Imagenette dataset, Training a State-of-the-Art Model

images sized progressively, Progressive Resizing

transfer learning performance hurt, Progressive

Resizing

improving, Improving Our Model

label smoothing, Label Smoothing

reasoning behind, Label Smoothing

learning rate finder, The Learning Rate Finder

logarithms for loss, Taking the log

metrics and validation loss, Selecting the Number of

Epochs

Mixup, Mixup

script for training with and without, Mixup

normalization of data, Normalization

cnn_learner handles, Normalization

pretrained models, Normalization

statistics distributed with model, Normalization

predictions, Viewing Activations and Labels

process end-to-end, Training Your Model, and Using It to

Clean Your Data

softmax activation function, Viewing Activations and

Labels

test time augmentation, Test Time Augmentation

testing with confusion matrix, Model Interpretation

image classifier models

accuracy as metric, Computing Metrics Using

Broadcasting

architecture, Deeper Architectures

autonomous vehicles localizing objects, Deep Learning Is

Not Just for Image Classification

capabilities and constraints, The Practice of Deep Learning

convolutional neural networks for, How Our Image

Recognizer Works

CT scan stroke analysis, Combining text and images

current state of, Computer vision

data augmentation, Data Augmentation

data availability, Starting Your Project

data gathering, Gathering Data-Gathering Data

DataLoaders, From Data to DataLoaders-From Data to

DataLoaders

customization, From Data to DataLoaders

dataset, From Dogs and Cats to Pet Breeds, Imagenette

checking, Checking and Debugging a DataBlock-

Checking and Debugging a DataBlock

debugging, Checking and Debugging a DataBlock

examination of, From Dogs and Cats to Pet Breeds-

From Dogs and Cats to Pet Breeds

filename extraction, From Dogs and Cats to Pet

Breeds-From Dogs and Cats to Pet Breeds

image representation rule, Image Recognizers Can

Tackle Non-Image Tasks

labeling, From Dogs and Cats to Pet Breeds

labels, How Our Image Recognizer Works

presizing, From Dogs and Cats to Pet Breeds

regular expressions, From Dogs and Cats to Pet

Breeds

types of data, From Dogs and Cats to Pet Breeds

distracted driver model, Use Judgment in Defining Test

Sets

download_images, Gathering Data

facial recognition bias, Integrating Machine Learning with

Product Design, Historical bias

first model, Your First Model-Running Your First

Notebook

code for, How Our Image Recognizer Works-How Our

Image Recognizer Works

as deep learning, What Is Machine Learning?

error rate, Running Your First Notebook

machine learning visualized, What Our Image

Recognizer Learned

as neural net, What Is a Neural Network?

tested, Running Your First Notebook

Google Photos label racial bias, Historical bias

image basics, Pixels: The Foundations of Computer Vision-

Pixels: The Foundations of Computer Vision

image size, How Our Image Recognizer Works, From Data

to DataLoaders, From Data to DataLoaders, From Dogs

and Cats to Pet Breeds

labels in datasets, How Our Image Recognizer Works

(see also labels)

machine learning explained, What Is Machine Learning?

manual process in parallel, How to Avoid Disaster

multi-label classification, Multi-Label Classification

non-image tasks, Image Recognizers Can Tackle Non-

Image Tasks-Image Recognizers Can Tackle Non-Image

Tasks, Deep Learning Is Not Just for Image Classification

numerical digit (see numerical digit classifier)

performance of model via loss, Training Your Model, and

Using It to Clean Your Data

prediction inference, Using the Model for Inference

presizing, From Dogs and Cats to Pet Breeds

pretrained model weight values, How Our Image

Recognizer Works

production complexity, How to Avoid Disaster

Python Imaging Library, Pixels: The Foundations of

Computer Vision

Siamese model image comparison, Applying the Mid-Level

Data API: SiamesePair-Applying the Mid-Level Data API:

SiamesePair

softmax, Softmax

testing

complexity of, How to Avoid Disaster

confusion matrix for, Training Your Model, and Using

It to Clean Your Data

training deep dive (see image classifier model training)

verify_images, Gathering Data

web application from model, Turning Your Model into an

Online Application-Deploying Your App

image regression

about, Regression

dataset, Assembling the Data

extracting head center point, Assembling the Data

splitting, Assembling the Data

key point model description, Regression

ImageBlock

image classifier model, From Data to DataLoaders, From

Dogs and Cats to Pet Breeds

key point model, Assembling the Data

multi-label classifier, Constructing a DataBlock

ImageClassifierCleaner, Training Your Model, and Using It to

Clean Your Data

IPython widgets code, Creating a Notebook App from the

Model

ImageNet dataset, Imagenette, Going Back to Imagenette

Imagenette subset, Training a State-of-the-Art Model,

Going Back to Imagenette, Data

top 5 accuracy, A State-of-the-Art ResNet

images combined with text, Combining text and images

IMDb Large Movie Review dataset, Deep Learning Is Not Just

for Image Classification

language model using DataBlock, Language Model Using

DataBlock

pretraining NLP on, NLP Deep Dive: RNNs

word tokenization, Word Tokenization with fastai

independent variable

definition, A Bit of Deep Learning Jargon

distracted driver model, Use Judgment in Defining Test

Sets

model defined by, Regression

predictions, A Bit of Deep Learning Jargon, From Data to

DataLoaders

viewing in mini-batch, Viewing Activations and Labels

as x, From Data to DataLoaders

inference

definition, Using the Model for Inference

GPU inference complexity, Deploying Your App

image classifier models, Using the Model for Inference

predictions models, Using the Model for Inference

test time augmentation, Test Time Augmentation

inheritance in object-oriented programming, Collaborative

Filtering from Scratch

init (dunder init), Collaborative Filtering from Scratch

inputs

image classification explanation, What Is a Neural

Network?

label importance, Limitations Inherent to Machine

Learning

(see also labels)

interpretation via class activation map, CAM and Hooks-CAM

and Hooks

Ioffe, Sergey, Batch Normalization

IPython widgets, Creating a Notebook App from the Model

applications via Voilà, Creating a Notebook App from the

Model

image cleaner written in, Creating a Notebook App from

the Model

Isaac, William, Unforeseen Consequences and Feedback Loops

item transforms, From Data to DataLoaders

iterate development end to end, Starting Your Project

iteration speed, Imagenette

J

jagged arrays, NumPy Arrays and PyTorch Tensors

jargon, Adding a Nonlinearity

(see also terminology)

jobs and gender, Historical bias, Representation bias

Jupyter Notebook, The Software: PyTorch, fastai, and Jupyter

(And Why It Doesn’t Matter), Getting a GPU Deep Learning

Server, Running Your First Notebook

(see also notebooks)

K

Kaggle machine learning community

about, Who We Are

Blue Book for Bulldozers competition, The Dataset

datasets and other resources, Kaggle Competitions

distracted driver model competition, Use Judgment in

Defining Test Sets

fisheries monitoring model competition, Use Judgment in

Defining Test Sets

predicting sales from stores competition, Categorical

Embeddings

leaderboard beater, Ensembling

predictive modeling competitions, Use Judgment in

Defining Test Sets

time series analysis model competition, Use Judgment in

Defining Test Sets

Kalash, Mahmoud, Image Recognizers Can Tackle Non-Image

Tasks

Kao, Jeff, Disinformation and Language Models

kernel in notebooks

restarting, Deep Learning Is Not Just for Image

Classification

kernel of convolution, The Magic of Convolutions-The Magic of

Convolutions

apply_kernel, Mapping a Convolutional Kernel-Mapping a

Convolutional Kernel

convolution described, Mapping a Convolutional Kernel

Keskar, Nitish Shirish, Regularizing an LSTM

key point model of image regression

about, Regression

dataset, Assembling the Data

extracting head center point, Assembling the Data

splitting, Assembling the Data

Keyes, Os, Fairness, Accountability, and Transparency

The KGB and Soviet Disinformation book (Bittman),

Disinformation

Khan Academy math tutorials online, What You Need to Know,

First Try: Pixel Similarity

derivatives, Calculating Gradients

Kinect Head Pose dataset, Assembling the Data

format of pose text file, Assembling the Data

Kohavi, Ron, Deep Learning Is Not Just for Image

Classification

König, Inke, Categorical Variables

kwargs, Deep Learning for Collaborative Filtering

L

L class returning collections, From Dogs and Cats to Pet Breeds

L1 norm (mean absolute difference), First Try: Pixel Similarity,

First Try: Pixel Similarity

L2 norm (root mean squared error), First Try: Pixel Similarity

L2 regularization, Weight Decay

label smoothing, Label Smoothing

reasoning behind, Label Smoothing

labels

bias in, Historical bias

challenge of object detection, Computer vision

checking, Checking and Debugging a DataBlock-Checking

and Debugging a DataBlock

definition, Jargon Recap

dependent variable definition, A Bit of Deep Learning

Jargon

extraction from dataset

first model, How Our Image Recognizer Works, How

Our Image Recognizer Works

pet breeds dataset, From Dogs and Cats to Pet Breeds-

From Dogs and Cats to Pet Breeds

regular expressions, From Dogs and Cats to Pet

Breeds

incorrect affecting loss, Training Your Model, and Using It

to Clean Your Data

independent variable definition, A Bit of Deep Learning

Jargon

multi-label classification, Multi-Label Classification-

Binary Cross Entropy

0s and 1s threshold, Binary Cross Entropy, Binary

Cross Entropy

DataFrame to DataLoaders, Constructing a

DataBlock-Constructing a DataBlock

dataset, The Data-The Data

loss function, Binary Cross Entropy-Binary Cross

Entropy

metric, Binary Cross Entropy

need for, Limitations Inherent to Machine Learning

lambda functions, Constructing a DataBlock

language model

building from scratch

building model, Our First Language Model from

Scratch-Our First Recurrent Neural Network

building model in PyTorch, Our Language Model in

PyTorch

callback, Maintaining the State of an RNN

data, The Data-The Data

hidden state activations, Our First Recurrent Neural

Network

LSTM model, LSTM-Training a Language Model

Using LSTMs

LSTM model, regularizing, Regularizing an LSTM-

Training a Weight-Tied Regularized LSTM

LSTM training, Training a Weight-Tied Regularized

LSTM-Training a Weight-Tied Regularized LSTM

metric, Our Language Model in PyTorch

multilayer RNNs, Multilayer RNNs-Exploding or

Disappearing Activations

recurrent neural network, first, Our First Recurrent

Neural Network

recurrent neural network, improved, Improving the

RNN-Creating More Signal

training, Our Language Model in PyTorch

weight tying, Training a Weight-Tied Regularized

LSTM

DataBlock, Language Model Using DataBlock

definition, NLP Deep Dive: RNNs

NLP (see natural language processing)

language translation (see translation of languages)

latent factors, Collaborative Filtering Deep Dive, Bootstrapping

a Collaborative Filtering Model

law enforcement

arrest rates bias, Unforeseen Consequences and Feedback

Loops

database error ethics, Recourse and Accountability

environmental regulation working, The Effectiveness of

Regulation

errors in credit report system, Recourse and

Accountability

regulating ethics, The Effectiveness of Regulation

sentencing and bail algorithm bias, Historical bias

layered API, Going Deeper into fastai’s Layered API

layers

backpropagation for derivative, Calculating Gradients

deeper models having more layers, Going Deeper, Deeper

Architectures

encoding of, Unfreezing and Transfer Learning,

Discriminative Learning Rates

final layer matrix, Unfreezing and Transfer Learning

forward pass for activations, Calculating Gradients

last layer and pretrained models, How Our Image

Recognizer Works

more linear layers, more computations, Adding a

Nonlinearity, Going Deeper

nonlinear function between linears, Adding a Nonlinearity,

Going Deeper, Unfreezing and Transfer Learning

optimization and, Going Deeper

out-of-memory error, Deeper Architectures

prediction viewing, Viewing Activations and Labels

printing model to see, Using fastai.collab

ResNet architecture, How Our Image Recognizer Works

training, overfitting, and, How Our Image Recognizer

Works

visualizing convolutional networks, What Our Image

Recognizer Learned

Learner

about, Creating an Optimizer, Binary Cross Entropy

building Learner class from scratch

callbacks, Callbacks

DataLoader, Dataset

Dataset, Dataset

images, Data

Learner class, Learner

learning rate scheduling, Scheduling the Learning

Rate

loss function, Loss

Module, Module and Parameter-Module and

Parameter

Parameter, Module and Parameter-Module and

Parameter

simple CNN, Simple CNN

stochastic gradient descent, Learner

untar_data, Data

callbacks for custom behavior, Mixup, A Simple Baseline

cnn_learner

architecture, cnn_learner

first model, How Our Image Recognizer Works

image classifier model, Training Your Model, and

Using It to Clean Your Data

loss function parameter, Training a Model

multi-label classifier, Binary Cross Entropy

normalization of data, Normalization

collaborative filtering system, Collaborative Filtering from

Scratch

collab_learner, Using fastai.collab

fully convolutional network, Going Back to Imagenette

lambda functions and exporting, Constructing a DataBlock

learn.load, Saving and Loading Models

learn.model, Deep Learning for Collaborative Filtering

layers printed, Using fastai.collab

learn.recorder, 1cycle Training

learn.save, Saving and Loading Models

numerical digit classifier, Creating an Optimizer

show_results, Training a Model

learning rate (LR)

about, Stepping with a Learning Rate-Stepping with a

Learning Rate

building Learner class from scratch, Scheduling the

Learning Rate

changing during training, 1cycle Training

convolutional neural networks, Going Back to Imagenette

definition, Jargon Recap

discriminative learning rates, Unfreezing and Transfer

Learning

learning rate finder, The Learning Rate Finder, Training a

Model

building Learner class from scratch, Scheduling the

Learning Rate

Lecun, Yann, Pixels: The Foundations of Computer Vision,

Pixels: The Foundations of Computer Vision

Li, Hao, Skip Connections

Liang, James, Why Does This Matter?

linear and nonlinear layers, Adding a Nonlinearity, Adding a

Nonlinearity, Jargon Recap, Unfreezing and Transfer Learning

LinkedIn ML-generated profile, Disinformation and Language

Models

list comprehensions, First Try: Pixel Similarity

load method, Saving and Loading Models

load_learner, Using the Model for Inference

Lockhart, Paul, How to Learn Deep Learning

logarithmic scale

about, Taking the log

learning rate finder plot, The Learning Rate Finder

loss in pet breed image classifier, Taking the log

slide rules using, Taking the log

long short-term memory (LSTM), Pixels: The Foundations of

Computer Vision

look-up index as one-hot-encoded vector, Creating the

DataLoaders

loss

BCELoss, Binary Cross Entropy

BCEWithLogitsLoss, Binary Cross Entropy, Conclusion

bear image classifier, Training Your Model, and Using It to

Clean Your Data

binary cross entropy, Constructing a DataBlock-Binary

Cross Entropy

building Learner class from scratch, Loss

categorical outcome cross-entropy loss, Checking and

Debugging a DataBlock

class versus plain functional form, Taking the log

cross-entropy, Checking and Debugging a DataBlock

(see also cross-entropy loss)

definition, A Bit of Deep Learning Jargon, Jargon Recap,

Jargon Recap

fastai selecting function, Checking and Debugging a

DataBlock, Binary Cross Entropy, Training a Model,

Conclusion

label incorrect, not model, Training Your Model, and

Using It to Clean Your Data

logarithms for, Taking the log

metrics versus, How Our Image Recognizer Works

MNIST loss function, The MNIST Loss Function-Sigmoid,

Log Likelihood-Log Likelihood

model defined by, Regression

MSELoss, Training a Model

multi-label classifier loss function, Binary Cross Entropy-

Binary Cross Entropy

numerical digit image classifier, The MNIST Loss

Function-Sigmoid

sigmoid function, Sigmoid

softmax function, Log Likelihood-Log Likelihood

passing to learner, Training a Model

pet breeds image classifier, Checking and Debugging a

DataBlock-Taking the log

negative log likelihood, Taking the log

probability as confidence level, Training Your Model, and

Using It to Clean Your Data

PyTorch functions for comparisons, First Try: Pixel

Similarity

reinforcement learning, Feedback Loops

selecting loss function for problem, Conclusion

validation loss improvement slowing, Discriminative

Learning Rates

lowercase rule, Word Tokenization with fastai

ls method in Path class, Using the Model for Inference, Pixels:

The Foundations of Computer Vision

dataset examination, From Dogs and Cats to Pet Breeds

LSTM language model

about, LSTM

building from scratch, LSTM-Training a Language Model

Using LSTMs

regularizing, Regularizing an LSTM-Training a Weight-

Tied Regularized LSTM

activation regularization, Activation Regularization

and Temporal Activation Regularization

dropout, Dropout

temporal activation regularization, Activation

Regularization and Temporal Activation

Regularization

training a regularized LSTM, Training a Weight-Tied

Regularized LSTM-Training a Weight-Tied

Regularized LSTM

training a language model using, Training a Language

Model Using LSTMs

Lum, Kristian, Unforeseen Consequences and Feedback Loops

M

Maas, Andrew, Deep Learning Is Not Just for Image

Classification

machine learning (ML)

bagging, Random Forests-Ensembling

bias, Bias

(see also bias)

capabilities and constraints, The Practice of Deep Learning

classification model definition, How Our Image

Recognizer Works

concepts of, What Is Machine Learning?-What Is Machine

Learning?

current state of, The State of Deep Learning

defined, What Is Machine Learning?

explained, What Is Machine Learning?-What Is Machine

Learning?, Jargon Recap

fairness and, Fairness, Accountability, and Transparency

(see also ethics)

feature engineering, The Magic of Convolutions

first model as neural net, What Is a Neural Network?

(see also first model)

history of development, What Is Machine Learning?,

Pixels: The Foundations of Computer Vision

key techniques, Beyond Deep Learning

key to ML via derivatives, Calculating Gradients

limitations inherent to, Limitations Inherent to Machine

Learning-Limitations Inherent to Machine Learning

manual process in parallel, How to Avoid Disaster

mobile landscape, Deploying Your App

neural networks beyond understanding, How to Avoid

Disaster

product design integrated with, Integrating Machine

Learning with Product Design

regression model definition, How Our Image Recognizer

Works

risk mitigation, How to Avoid Disaster

scikit-learn library, Beyond Deep Learning

Twitter for help, A Note About Twitter

visualizing, What Our Image Recognizer Learned

weights, What Is Machine Learning?-What Is Machine

Learning?

via neural networks, What Is a Neural Network?

Mackenzie, Dana, Partial Dependence

Making Learning Whole book (Perkins), How to Learn Deep

Learning

malware classification, Image Recognizers Can Tackle Non-

Image Tasks

manual process in parallel, How to Avoid Disaster

Mark I Perceptron, Neural Networks: A Brief History

Markdown in notebook cells, Running Your First Notebook

math tutorials online, What You Need to Know, First Try: Pixel

Similarity

derivatives, Calculating Gradients

matrix multiplication, The MNIST Loss Function

function from scratch, Matrix Multiplication from Scratch

McClelland, James, Neural Networks: A Brief History

McCulloch, Warren, Neural Networks: A Brief History

McKinney, Wes, The Data, Beyond Deep Learning

mean absolute difference (L1 norm), First Try: Pixel Similarity,

First Try: Pixel Similarity

mean average percent error metric, Combining Embeddings

with Other Methods

mean squared error (MSE), First Try: Pixel Similarity

measurement bias, Measurement bias

medicine

aggregation bias, Aggregation bias

correct responses not ensured, Text (natural language

processing)

measurement bias, Measurement bias

pretrained model availability, How Our Image Recognizer

Works

stroke analysis, Combining text and images, Measurement

bias

tumor identification, Deep Learning Is for Everyone, Who

We Are

Meetup recommendation algorithm, Feedback Loops

memory usage

batch operations out-of-memory error, Deeper

Architectures

entity embedding reducing, Categorical Embeddings

hooks might leak, CAM and Hooks

Merity, Stephen, Regularizing an LSTM

methods

class methods, Language Model Using DataBlock

doc for documentation, Deep Learning Is Not Just for

Image Classification

Python method double underscores, Collaborative

Filtering from Scratch

source code display, Gathering Data, Word Tokenization

with fastai

tab for autocomplete and documentation, Gathering Data

metrics

about, Look at the Data

definition, How Our Image Recognizer Works, Jargon

Recap, Computing Metrics Using Broadcasting

fastai library, How Our Image Recognizer Works

feedback loops driven by, Feedback Loops

first model declaration, How Our Image Recognizer

Works, How Our Image Recognizer Works

loss versus, How Our Image Recognizer Works

mean average percent error, Combining Embeddings with

Other Methods

numerical digit classifier, Computing Metrics Using

Broadcasting-Computing Metrics Using Broadcasting

pet breeds image classifier, Selecting the Number of

Epochs

root mean squared log error, Look at the Data, Creating

the Decision Tree, Creating a Random Forest

top 5 accuracy, A State-of-the-Art ResNet

Microsoft

Azure Cognitive Services, Gathering Data

batching production operations, Deploying Your App

Fairness, Accountability, Transparency, and Ethics,

Fairness, Accountability, and Transparency

mid-level API

about, Data Munging with fastai’s Mid-Level API

callbacks, Going Deeper into fastai’s Layered API

Datasets, Datasets

fastai layered API, Going Deeper into fastai’s Layered API

Pipeline class, Pipeline

Siamese model image comparison, Applying the Mid-Level

Data API: SiamesePair-Applying the Mid-Level Data API:

SiamesePair

TfmdLists, TfmdLists and Datasets: Transformed

Collections-TfmdLists

Transforms

collections, TfmdLists and Datasets: Transformed

Collections

Transform class, Transforms

writing your own, Writing Your Own Transform,

TfmdLists

mini-batch, From Data to DataLoaders, Jargon Recap

DataLoader variables, Constructing a DataBlock

dependent and independent variables, Viewing Activations

and Labels

manually grabbing and passing into a model, Binary Cross

Entropy

models returning activations, Binary Cross Entropy

Minsky, Marvin, Neural Networks: A Brief History

missing values as data leakage, Data Leakage

mixed-precision training, Deeper Architectures

Mixup augmentation technique, Mixup

loss improvement, Mixup

ML (see machine learning)

MNIST handwritten digits dataset, Pixels: The Foundations of

Computer Vision, Imagenette, Improving Training Stability,

Going Back to Imagenette

binary to multiple categories, Log Likelihood-Log

Likelihood

downloading, Pixels: The Foundations of Computer Vision

read by models, Pixels: The Foundations of Computer

Vision

(see also numerical digit classifier)

validation set, Computing Metrics Using Broadcasting

mobile device deployment of apps, Deploying Your App

models

accuracy (see accuracy)

actionable outcomes via Drivetrain Approach, The

Drivetrain Approach

autonomous vehicles localizing objects, Deep Learning Is

Not Just for Image Classification

begin simply, First Try: Pixel Similarity, Checking and

Debugging a DataBlock

(see also beginning)

best methods for majority of datasets, Beyond Deep

Learning

capacity, Deeper Architectures

classification model definition, How Our Image

Recognizer Works

data seen changing over time, How to Avoid Disaster,

Feedback Loops: YouTube’s Recommendation System

defined by variables and loss function, Regression

definition, Jargon Recap

encoder, Saving and Loading Models

exporting, Using the Model for Inference

first model (see first model)

GPUs and production models, Deploying Your App

head and pretrained models, How Our Image Recognizer

Works

load method, Saving and Loading Models

model and human interaction, Combining text and images,

How to Avoid Disaster

modeling competitions, Use Judgment in Defining Test

Sets

more parameters, more accuracy, Deeper Architectures

overfitting importance, Conclusion

(see also overfitting)

parameter importance, How Our Image Recognizer Works

(see also parameters)

printing to see layers, Using fastai.collab

process of creating application (see process end-to-end)

programs constrasted, What Is Machine Learning?, What

Is Machine Learning?

regression model definition, How Our Image Recognizer

Works

results versus performance, What Is Machine Learning?

save method, Saving and Loading Models, Saving and

Loading Models

system behavior changed by, Unforeseen Consequences

and Feedback Loops

tabular data for, Deep Learning Is Not Just for Image

Classification

(see also tabular data)

advice for modeling, Conclusion

training, What Is Machine Learning?-What Is Machine

Learning?

(see also training)

web application from, Turning Your Model into an Online

Application-Deploying Your App

Module class

activations returned, Binary Cross Entropy

building Learner class from scratch, Module and

Parameter-Module and Parameter

calling module calls forward method, Collaborative

Filtering from Scratch

inheritance, Collaborative Filtering from Scratch

Parameter class, Creating Our Own Embedding Module

modules, Creating an Optimizer

momentum in SGD, Momentum-Momentum

cyclical momentum, 1cycle Training

Monroe, Fred, Conclusion

mouse movements for fraud detection, Image Recognizers Can

Tackle Non-Image Tasks

movie recommendation system

collaborative filtering

about, Collaborative Filtering Deep Dive

biases, Collaborative Filtering from Scratch

bootstrapping problem, Bootstrapping a Collaborative

Filtering Model

collab_learner, Using fastai.collab

DataLoaders, Creating the DataLoaders

dataset, A First Look at the Data

deep learning model, Deep Learning for Collaborative

Filtering

embedding, Creating the DataLoaders-Weight Decay

embedding distance, Embedding Distance

embedding from scratch, Creating Our Own

Embedding Module-Deep Learning for Collaborative

Filtering

fitting model, Collaborative Filtering from Scratch

interpretting embeddings and biases, Interpreting

Embeddings and Biases

items rather than products, Collaborative Filtering

Deep Dive

latent factors, Collaborative Filtering Deep Dive

layers via printing model, Using fastai.collab

Learner from scratch, Collaborative Filtering from

Scratch

learning latent factors, Learning the Latent Factors

look-up index as one-hot-encoded vector, Creating the

DataLoaders

overfitting, Collaborative Filtering from Scratch

probabilistic matrix factorization, Bootstrapping a

Collaborative Filtering Model

structuring model, A First Look at the Data

tables as matrices, Creating the DataLoaders

weight decay, Weight Decay

MovieLens sample model, Deep Learning Is Not Just for

Image Classification

skew from small number of users, Bootstrapping a

Collaborative Filtering Model

movie review sentiment model, Deep Learning Is Not Just for

Image Classification, NLP Deep Dive: RNNs

(see also natural language processing)

MovieLens dataset, Deep Learning Is Not Just for Image

Classification, A First Look at the Data

MSELoss, Training a Model, Conclusion

Mueller report, Feedback Loops, Disinformation

Mullainathan, Sendhil, Measurement bias

multi-label classification, Multi-Label Classification-Binary

Cross Entropy

0s and 1s threshold, Binary Cross Entropy, Binary Cross

Entropy

DataFrame to DataLoaders, Constructing a DataBlock-

Constructing a DataBlock

dataset, The Data-The Data

loss function, Binary Cross Entropy-Binary Cross Entropy

metric, Binary Cross Entropy

MultiCategoryBlock, Constructing a DataBlock

multilayer RNNs, Multilayer RNNs-Exploding or Disappearing

Activations

multilayered neural networks learned with SGD, Beyond Deep

Learning

N

Nader, Ralph, Cars: A Historical Precedent

Narayanan, Arvind, Fairness, Accountability, and

Transparency

National Institute of Standards and Technology, Pixels: The

Foundations of Computer Vision

natural language processing (NLP)

architecture, Natural Language Processing

backpropagation through time for, Natural Language

Processing

bias in data, Historical bias

Chomsky’s syntax book, From Dogs and Cats to Pet Breeds

correct response not ensured, Text (natural language

processing)

current state of, Text (natural language processing)

data augmentation of text data, Regularizing an LSTM

disinformation, Text (natural language processing),

Disinformation, Disinformation and Language Models

fine-tuning

classifier, Fine-Tuning the Classifier

language model before classification model, NLP Deep

Dive: RNNs

pretrained language model, Fine-Tuning the

Language Model-Saving and Loading Models

language model from scratch

building model, Our First Language Model from

Scratch-Our First Recurrent Neural Network

building model in PyTorch, Our Language Model in

PyTorch

callback, Maintaining the State of an RNN

data, The Data-The Data

hidden state activations, Our First Recurrent Neural

Network

LSTM model, LSTM-Training a Language Model

Using LSTMs

LSTM model, regularizing, Regularizing an LSTM-

Training a Weight-Tied Regularized LSTM

LSTM training, Training a Weight-Tied Regularized

LSTM-Training a Weight-Tied Regularized LSTM

metric, Our Language Model in PyTorch

multilayer RNNs, Multilayer RNNs-Exploding or

Disappearing Activations

recurrent neural network, first, Our First Recurrent

Neural Network

recurrent neural network, improved, Improving the

RNN-Creating More Signal

training, Our Language Model in PyTorch

weight tying, Training a Weight-Tied Regularized

LSTM

Mixup data augmentation, Mixup

pretrained English language model, NLP Deep Dive: RNNs

protein chains as, Other data types

recurrent neural network, Text Preprocessing, Fine-

Tuning the Language Model

(see also recurrent neural networks)

about process, Text Preprocessing

accuracy, Fine-Tuning the Classifier

classifier DataLoaders, Creating the Classifier

DataLoaders

fine-tuning classifier, Fine-Tuning the Classifier

fine-tuning pretrained language model, Fine-Tuning

the Language Model-Saving and Loading Models

language model using DataBlock, Language Model

Using DataBlock

numericalization, Text Preprocessing,

Numericalization with fastai

pretraining, NLP Deep Dive: RNNs

text generation, Text Generation

texts into batches for language model, Putting Our

Texts into Batches for a Language Model-Putting Our

Texts into Batches for a Language Model

training text classifier, Training a Text Classifier

unfreezing classifier, Fine-Tuning the Classifier

sentiment of movie review, Deep Learning Is Not Just for

Image Classification, NLP Deep Dive: RNNs

style of target corpus, NLP Deep Dive: RNNs

text generation, Text (natural language processing)

tokenization

approaches to, Tokenization

definition, Text Preprocessing

fastai tokenization, Word Tokenization with fastai

rule explanations, Word Tokenization with fastai

showing rules used, Word Tokenization with fastai

special tokens, Word Tokenization with fastai

subword tokenization, Subword Tokenization

word tokenization, Word Tokenization with fastai,

Subword Tokenization

unfreezing classifiers, Fine-Tuning the Classifier

Wikipedia for pretraining, NLP Deep Dive: RNNs

Nazi Germany and IBM, Why Does This Matter?, Analyze a

Project You Are Working On

negative log likelihood loss (nll_loss), Taking the log

nested list comprehensions, Mapping a Convolutional Kernel

net neutrality disinformation, Disinformation and Language

Models

neural networks

beyond understanding, How to Avoid Disaster

building layer from scratch, Building a Neural Net Layer

from Scratch-Einstein Summation

backward pass, The Forward and Backward Passes

broadcasting, Broadcasting

broadcasting rules, Broadcasting rules

broadcasting vector to matrix, Broadcasting a vector

to a matrix-Broadcasting a vector to a matrix

broadcasting with a scalar, Broadcasting with a scalar

defining and initializing a layer, Defining and

Initializing a Layer-Defining and Initializing a Layer

Einstein summation, Einstein Summation

elementwise arithmetic, Elementwise Arithmetic

forward pass, The Forward and Backward Passes

gradients and backward pass, Gradients and the

Backward Pass-Gradients and the Backward Pass

matrix multiplication, Matrix Multiplication from

Scratch

modeling a neuron, Modeling a Neuron

PyTorch, Going to PyTorch-Going to PyTorch

refactoring the model, Refactoring the Model

Coursera class, RMSProp

deep learning using, Deep Learning Is for Everyone, What

Is Machine Learning?, Jargon Recap

explained, What Is a Neural Network?-What Is a Neural

Network?, Adding a Nonlinearity

first model as, What Is a Neural Network?

(see also first model)

fundamental weights and bias equation, The MNIST Loss

Function

GPU running, Getting a GPU Deep Learning Server

(see also GPU)

history, Neural Networks: A Brief History-Neural

Networks: A Brief History, The Learning Rate Finder

layers (see layers)

multilayered neural networks learned with SGD, Beyond

Deep Learning

natural language processing, Text Preprocessing

(see also natural language processing)

refactoring, Creating the CNN

risk mitigation, How to Avoid Disaster

RNN definition, Our First Recurrent Neural Network

(see also recurrent neural networks)

tabular data, Using a Neural Network

categorical columns, Using a Neural Network

combining with other methods, Combining

Embeddings with Other Methods

testing, complexity of, How to Avoid Disaster

training via backpropagation, Pixels: The Foundations of

Computer Vision

training with large learning rates, 1cycle Training

visualizing learning, What Our Image Recognizer Learned

new user bootstrapping problem, Bootstrapping a

Collaborative Filtering Model

NLP (see natural language processing)

nonlinear and linear layers, Adding a Nonlinearity, Adding a

Nonlinearity, Jargon Recap, Unfreezing and Transfer Learning

normalization of data, Normalization

cnn_learner handles, Normalization

pretrained models, Normalization

statistics distributed with model, Normalization

Transform class, Transforms

notebooks

about, The Software: PyTorch, fastai, and Jupyter (And

Why It Doesn’t Matter), Getting a GPU Deep Learning

Server

app from notebook, Turning Your Notebook into a Real

App

Binder free app hosting, Deploying Your App

blogging with, Jupyter for Blogging

book written in, Running Your First Notebook

cell execution order, Deep Learning Is Not Just for Image

Classification

cells, Running Your First Notebook

code from book, What You Need to Know, Running Your

First Notebook, Deep Learning Is Not Just for Image

Classification

command mode, Running Your First Notebook

edit mode, Running Your First Notebook

escape key for command/edit mode, Running Your First

Notebook

features for efficiency, Gathering Data

first cell CLICK ME, Running Your First Notebook, Deep

Learning Is Not Just for Image Classification

first notebook, Running Your First Notebook-Running

Your First Notebook

code for, How Our Image Recognizer Works-How Our

Image Recognizer Works

error rate, Running Your First Notebook

tested, Running Your First Notebook

full versus stripped, Running Your First Notebook

GPU server setup, Getting a GPU Deep Learning Server

H for help, Running Your First Notebook

kernel

restarting, Deep Learning Is Not Just for Image

Classification

library efficiency, How Our Image Recognizer Works

Markdown formatting, Running Your First Notebook

opening, Running Your First Notebook

out-of-memory error, Deeper Architectures

process of creating application (see process end-to-end)

showing source code, Word Tokenization with fastai

utils class, Gathering Data

web application deployment, Turning Your Model into an

Online Application-Deploying Your App

number precision and training, Deeper Architectures

number-related datasets

handwritten digits dataset, Pixels: The Foundations of

Computer Vision, Imagenette, Improving Training

Stability, Going Back to Imagenette

downloading, Pixels: The Foundations of Computer

Vision

Human Numbers dataset, The Data

numerical digit classifier

accuracy metric, Computing Metrics Using Broadcasting-

Computing Metrics Using Broadcasting

activations, Softmax

color-code array or tensor, Pixels: The Foundations of

Computer Vision

comparing with ideal digit, First Try: Pixel Similarity

convolutional neural network

1cycle training, 1cycle Training

batch normalization, Batch Normalization

batch size increased, Increase Batch Size

building a CNN, Creating the CNN-Batch

Normalization

color images, Color Images

convolution arithmetic, Understanding Convolution

Arithmetic

convolution described, The Magic of Convolutions

dataset, Improving Training Stability

equations, Understanding the Convolution Equations

kernel, The Magic of Convolutions-The Magic of

Convolutions

kernel mapping, Mapping a Convolutional Kernel-

Mapping a Convolutional Kernel

nested list of comprehensions, Mapping a

Convolutional Kernel

padding, Strides and Padding

PyTorch convolutions, Convolutions in PyTorch

receptive fields, Receptive Fields

training, Creating the CNN

training more stable, A Simple Baseline-Batch

Normalization

training on all digits, A Simple Baseline-Batch

Normalization

dataset download, Pixels: The Foundations of Computer

Vision

feature engineering, The Magic of Convolutions

fully convolutional networks and, Going Back to

Imagenette

ideal digit creation, First Try: Pixel Similarity-First Try:

Pixel Similarity

image as array or tensor, Pixels: The Foundations of

Computer Vision

Learner creation, Creating an Optimizer

MNIST loss function, The MNIST Loss Function-Sigmoid,

Log Likelihood-Log Likelihood

optimization step, SGD and Mini-Batches-Going Deeper

pixel similarity, First Try: Pixel Similarity-First Try: Pixel

Similarity

stochastic gradient descent, Computing Metrics Using

Broadcasting-Summarizing Gradient Descent

calculating gradients, Calculating Gradients-

Calculating Gradients

example end-to-end, An End-to-End SGD Example-

Step 7: Stop

stepping with learning rate, Stepping with a Learning

Rate-Stepping with a Learning Rate

summarizing, Summarizing Gradient Descent

terminology, Jargon Recap

validation set, Computing Metrics Using Broadcasting

viewing dataset images, Pixels: The Foundations of

Computer Vision

numericalization

defaults, Numericalization with fastai

definition, Text Preprocessing, Numericalization with

fastai

Transform class, Transforms

word-tokenized text, Numericalization with fastai

NumPy

arrays

about, NumPy Arrays and PyTorch Tensors

arrays within arrays, NumPy Arrays and PyTorch

Tensors

image section, Pixels: The Foundations of Computer

Vision

sklearn and Pandas rely on, Beyond Deep Learning

NVIDIA GPU deep learning server, Getting a GPU Deep

Learning Server

(see also GPU)

tensor core support, Deeper Architectures

O

Obermeyer, Ziad, Measurement bias

object detection

current state of, Computer vision

labeling challenge, Computer vision

object recognition

current state of, Computer vision

dataset provenance, Historical bias

object-oriented programming, Collaborative Filtering from

Scratch

classes, Collaborative Filtering from Scratch

dunder init, Collaborative Filtering from Scratch

inheritance, Collaborative Filtering from Scratch

superclass, Collaborative Filtering from Scratch

objectives via Drivetrain Approach, The Drivetrain Approach

occupations and gender, Historical bias, Representation bias

OCR (see numerical digit classifier)

one-hot encoding

definition, Constructing a DataBlock

embedding categorical variables, Creating the

DataLoaders-Weight Decay, Categorical Variables

multiple columns for variable levels, Categorical

Variables

entity embedding contrasted, Categorical Embeddings

label smoothing, Label Smoothing

look-up index as one-hot-encoded vector, Creating the

DataLoaders

multi-label classifier, Constructing a DataBlock, Binary

Cross Entropy

online advertisement bias, Historical bias

online applications (see web applications)

online resources (see web resources)

optical character recognition (see numerical digit classifier)

optimization

Adam as default, Adam

creating an optimizer, Creating an Optimizer-Going

Deeper

generic optimizer, A Generic Optimizer

gradient descent, Summarizing Gradient Descent, Jargon

Recap

layers and, Going Deeper

module parameters, Creating Our Own Embedding

Module

nonlinearity added, Adding a Nonlinearity

numerical digit classifier, SGD and Mini-Batches-Going

Deeper

pet breeds image classifier, Checking and Debugging a

DataBlock-Taking the log

stochastic gradient descent, SGD and Mini-Batches-Going

Deeper

ordinal columns in tabular data, Look at the Data

out-of-domain data, Computer vision

image classifier in production, How to Avoid Disaster

out-of-memory error, Deeper Architectures

outputs

cells containing executable code, Running Your First

Notebook, Deep Learning Is Not Just for Image

Classification

forward hook for custom behavior, CAM and Hooks

image, Running Your First Notebook

results of last execution, Deep Learning Is Not Just for

Image Classification

table, Running Your First Notebook

text, Running Your First Notebook

web display Output widget, Creating a Notebook App from

the Model

overfitting

avoid only when occurring, How Our Image Recognizer

Works

definition, Jargon Recap

importance of, How Our Image Recognizer Works,

Conclusion

layers and, How Our Image Recognizer Works

learning rate finder, The Learning Rate Finder

model memorizing training set, How Our Image

Recognizer Works

reducing, Conclusion

regularizing RNNs against, Regularizing an LSTM

retrain from scratch, Selecting the Number of Epochs

training versus validation loss, Discriminative Learning

Rates

validation set, Validation Sets and Test Sets

hyperparameter picked by, Binary Cross Entropy

weight decay against, Weight Decay

O’Neill, Cathy, Addressing different types of bias

P

padding a convolution, Strides and Padding

Pandas library

DataFrame

color-code image values, Pixels: The Foundations of

Computer Vision

DataLoaders object from, Constructing a DataBlock-

Constructing a DataBlock

multi-label CSV file, The Data

dataset viewing, Look at the Data

fastai TabularPandas class, Using TabularPandas and

TabularProc, Using a Neural Network

get_dummies for categorical variables, Categorical

Variables

NumPy needed, Beyond Deep Learning

tabular data processing, Beyond Deep Learning, Using a

Neural Network

tutorial, The Data

papers (see research papers)

Papert, Seymour, Neural Networks: A Brief History

Parallel Distributed Processing (PDP) book (Rumelhart,

McClelland, and PDP Research Group), Neural Networks: A

Brief History

parameters

architecture requiring many, How Our Image Recognizer

Works

calling module calls forward method, Collaborative

Filtering from Scratch

deeper models and, Going Deeper

definition, Jargon Recap, Jargon Recap

derivative of a function, Calculating Gradients

exporting models, Using the Model for Inference

hyperparameters, Validation Sets and Test Sets

random forest insensitivity, Creating a Random Forest

validation set picking threshold, Binary Cross Entropy

importance of, How Our Image Recognizer Works

loss function selected by fastai, Checking and Debugging a

DataBlock

machine learning concepts, What Is Machine Learning?, A

Bit of Deep Learning Jargon

more accuracy from more parameters, Deeper

Architectures

neural networks beyond understanding, How to Avoid

Disaster

Parameter class, Creating Our Own Embedding Module

building Learner class from scratch, Module and

Parameter-Module and Parameter

Parr, Terence, Creating the Decision Tree

partial function to bind arguments, Binary Cross Entropy

PASCAL multi-label dataset, The Data

path to dataset

ls method, Using the Model for Inference, Pixels: The

Foundations of Computer Vision, From Dogs and Cats to

Pet Breeds

Path object returned, How Our Image Recognizer Works

PDP Research Group, Neural Networks: A Brief History

Pearl, Judea, Partial Dependence

pedophiles and YouTube, Feedback Loops

Perceptrons book (Minsky and Papert), Neural Networks: A

Brief History

performance of model as loss, A Bit of Deep Learning Jargon,

Jargon Recap

Perkins, David, How to Learn Deep Learning

person’s face center in image (see key point model)

pet breeds image classifier (see image classifier models)

pet images dataset, Running Your First Notebook, How Our

Image Recognizer Works, From Dogs and Cats to Pet Breeds,

Applying the Mid-Level Data API: SiamesePair

pickle system for save method, Using TabularPandas and

TabularProc

PIL images, Pixels: The Foundations of Computer Vision

Pipeline class, Pipeline

Pitts, Walter, Neural Networks: A Brief History

pixels

image basics, Pixels: The Foundations of Computer Vision-

Pixels: The Foundations of Computer Vision

pixel count

image sizes same, From Data to DataLoaders, From

Dogs and Cats to Pet Breeds

pretrained models, How Our Image Recognizer Works

size tradeoffs, How Our Image Recognizer Works

sizing difficulties, From Data to DataLoaders

tensor shape, First Try: Pixel Similarity

pixel similarity, First Try: Pixel Similarity-First Try: Pixel

Similarity

plain text data approach, Beyond Deep Learning

PointBlock, Assembling the Data

policy’s role in ethics, Role of Policy-Cars: A Historical

Precedent

rights and policy, Rights and Policy

positive feedback loop, Limitations Inherent to Machine

Learning

precision of numbers and training, Deeper Architectures

predictions

activations transformed into, Viewing Activations and

Labels

bagging, Random Forests-Ensembling

button for web application, Creating a Notebook App from

the Model

definition, A Bit of Deep Learning Jargon

dependent variable for, Look at the Data

hypothetical world of, Partial Dependence

independent variable, A Bit of Deep Learning Jargon,

From Data to DataLoaders

inference instead of training, Using the Model for

Inference

inference with image classifier, Using the Model for

Inference

as machine learning limitation, Limitations Inherent to

Machine Learning

metric measuring quality, How Our Image Recognizer

Works

model changing system behavior, Unforeseen

Consequences and Feedback Loops

model overconfidence, Discriminative Learning Rates

movie recommendation system, Deep Learning Is Not Just

for Image Classification

overfitting and, How Our Image Recognizer Works

predictive modeling competitions, Use Judgment in

Defining Test Sets

predictive policing algorithm, Unforeseen Consequences

and Feedback Loops

random forest confidence, Tree Variance for Prediction

Confidence

sales from stores, Categorical Embeddings

(see also tabular data)

softmax sum of 1 requirement, Binary Cross Entropy

stroke prediction, Combining text and images,

Measurement bias

viewing, Viewing Activations and Labels

prerequisite for book, What You Need to Know

presizing, From Dogs and Cats to Pet Breeds

pretrained models

accuracy from, How Our Image Recognizer Works

convolutional neural network parameter, How Our Image

Recognizer Works

definition, How Our Image Recognizer Works, Jargon

Recap

discriminative learning rates, Unfreezing and Transfer

Learning

fine-tuning first model, Running Your First Notebook

first model, Running Your First Notebook

freezing, Unfreezing and Transfer Learning

last layer and, How Our Image Recognizer Works,

Unfreezing and Transfer Learning

NLP English language, NLP Deep Dive: RNNs

normalization of data, Normalization

statistics distributed with model, Normalization

pixel count required, How Our Image Recognizer Works

recommendation system rarity, Deep Learning Is Not Just

for Image Classification

self-supervised learning for, NLP Deep Dive: RNNs

tabular model rarity, Deep Learning Is Not Just for Image

Classification

transfer learning, How Our Image Recognizer Works,

Summarizing Gradient Descent

freezing, Unfreezing and Transfer Learning

Wikipedia for pretraining NLP, NLP Deep Dive: RNNs

privacy

deployed apps, Deploying Your App

regulation needed, The Effectiveness of Regulation

rights and policy, Rights and Policy

probabilistic matrix factorization, Bootstrapping a

Collaborative Filtering Model

process end-to-end

actionable outcomes via Drivetrain Approach, The

Drivetrain Approach

applicability of deep learning to problem, The State of

Deep Learning

begin in known areas, Starting Your Project, Deep

Learning in Practice: That’s a Wrap!

(see also beginning)

capabilities and contraints of deep learning, The Practice

of Deep Learning

data availability, Starting Your Project

data biases, Gathering Data

data cleaning, Training Your Model, and Using It to Clean

Your Data

data gathering, Gathering Data-Gathering Data

DataLoaders, From Data to DataLoaders-From Data to

DataLoaders

customization, From Data to DataLoaders

deployment

app from notebook, Turning Your Notebook into a

Real App

Binder free app hosting, Deploying Your App

deployment file, Using the Model for Inference

exporting model, Using the Model for Inference

mobile devices, Deploying Your App

prediction inference, Using the Model for Inference

risk mitigation, How to Avoid Disaster

unforeseen challenges, Unforeseen Consequences and

Feedback Loops

web application, Turning Your Model into an Online

Application-Deploying Your App

web application deployment, Deploying Your App-

Deploying Your App

web application disaster avoidance, How to Avoid

Disaster

web resource discussing issues, How to Avoid Disaster

experiments lead to projects, Starting Your Project

image size, From Data to DataLoaders, From Data to

DataLoaders, From Dogs and Cats to Pet Breeds

iterate end to end, Starting Your Project

model and human interaction, Combining text and images,

How to Avoid Disaster

performance of model via loss, Training Your Model, and

Using It to Clean Your Data

prototyping, Starting Your Project

risk mitigation, How to Avoid Disaster

testing with confusion matrix, Training Your Model, and

Using It to Clean Your Data

training the model, Training Your Model, and Using It to

Clean Your Data

web application disaster avoidance, How to Avoid Disaster

web application from model, Turning Your Model into an

Online Application-Deploying Your App

production

CPU servers cheaper than GPU, Deploying Your App

data seen changing over time, How to Avoid Disaster,

Feedback Loops: YouTube’s Recommendation System

GPU for model in production, Deploying Your App

manual process in parallel, How to Avoid Disaster

out-of-domain data, Computer vision, How to Avoid

Disaster

product design integrated with ML, Integrating Machine

Learning with Product Design

testing, complexity of, How to Avoid Disaster

web application from model, Turning Your Model into an

Online Application-Deploying Your App

profile identity generated by ML, Disinformation and Language

Models

programs versus models, What Is Machine Learning?, What Is

Machine Learning?

progressive resizing, Progressive Resizing

transfer learning performance hurt, Progressive Resizing

protein chains as natural language, Other data types

prototyping

datasets cut down, Deep Learning Is Not Just for Image

Classification

project buy-in, Starting Your Project

web application from model, Turning Your Model into an

Online Application-Deploying Your App

publishing app on Binder, Deploying Your App

Python

array APIs, NumPy Arrays and PyTorch Tensors

class methods, Language Model Using DataBlock

context manager, CAM and Hooks

error debugging, Gathering Data

fastai library efficiency, How Our Image Recognizer Works

IPython widgets, Creating a Notebook App from the Model

applications via Voilà, Creating a Notebook App from

the Model

Jupyter for, The Software: PyTorch, fastai, and Jupyter

(And Why It Doesn’t Matter)

lambda functions, Constructing a DataBlock

list comprehensions, First Try: Pixel Similarity

list type as fastai L class, From Dogs and Cats to Pet

Breeds

loop inefficiency, NumPy Arrays and PyTorch Tensors,

The MNIST Loss Function

method double underscores, Collaborative Filtering from

Scratch

nested list comprehensions, Mapping a Convolutional

Kernel

Pandas library, The Data

partial function to bind arguments, Binary Cross Entropy

Path class, How Our Image Recognizer Works, Using the

Model for Inference

tensor APIs, NumPy Arrays and PyTorch Tensors

web browser functionality, Creating a Notebook App from

the Model

Python for Data Analysis book (McKinney), The Data, Beyond

Deep Learning

Python Imaging Library (PIL), Pixels: The Foundations of

Computer Vision

PyTorch

about, Foreword, The Software: PyTorch, fastai, and

Jupyter (And Why It Doesn’t Matter)

about fastai software library, The Software: PyTorch,

fastai, and Jupyter (And Why It Doesn’t Matter)

building NLP model, Our Language Model in PyTorch

casting, First Try: Pixel Similarity

convolutions, Convolutions in PyTorch

decision trees don’t use, Beyond Deep Learning

fastai torch.nn.functional import, First Try: Pixel

Similarity, Convolutions in PyTorch

hooks, CAM and Hooks-CAM and Hooks

loss functions for comparisons, First Try: Pixel Similarity

most important technique, Computing Metrics Using

Broadcasting

names ending in underscore, Putting It All Together

object-oriented programming, Collaborative Filtering from

Scratch

optimizer creation, Creating an Optimizer-Going Deeper

SGD class, The Training Process-A Generic Optimizer

single item or batch same code, Binary Cross Entropy

tensors

about, NumPy Arrays and PyTorch Tensors

broadcasting, Computing Metrics Using Broadcasting,

Computing Metrics Using Broadcasting

image section, Pixels: The Foundations of Computer

Vision

R

racial bias

arrest rates, Unforeseen Consequences and Feedback

Loops

datasets for training models, Historical bias

Facebook advertising, Historical bias

facial recognition, Integrating Machine Learning with

Product Design, Historical bias

Google advertising, Bias: Professor Latanya Sweeney

“Arrested”

Google Photos label, Historical bias

historical, Historical bias

power of diversity, The Power of Diversity

sentencing and bail algorithm, Historical bias

radiologist-model interaction, Combining text and images

Raji, Deb, Gathering Data

random forests, Random Forests-Ensembling

creating a random forest, Creating a Random Forest

ensembling, Ensembling

boosting, Boosting

extrapolation problem, Extrapolation and Neural

Networks

out-of-domain data, The Extrapolation Problem

hyperparameter insensitivity, Creating a Random Forest

model interpretation, Model Interpretation

data leakage, Data Leakage

feature importances, Feature Importance

partial dependence, Partial Dependence

removing low-importance variables, Removing Low-

Importance Variables

removing redundant features, Removing Redundant

Features

tree interpreter, Tree Interpreter

tree variance for prediction confidence, Tree Variance

for Prediction Confidence

out-of-bag error, Creating a Random Forest

random seed for validation set selection, How Our Image

Recognizer Works, From Data to DataLoaders

RandomResizedCrop

image classifier model, From Data to DataLoaders

test time augmentation instead, Test Time Augmentation

rank correlation, Removing Redundant Features

rank of tensor

definition, First Try: Pixel Similarity, Jargon Recap

scalar versus vector versus matrix, Jargon Recap

recommendation systems

about, Limitations Inherent to Machine Learning

actionable outcomes via Drivetrain Approach, The

Drivetrain Approach

Amazon, Recommendation systems

collaborative filtering (see collaborative filtering)

conspiracy theory feedback loops, Feedback Loops:

YouTube’s Recommendation System, Feedback Loops,

Feedback Loops

current state of, Recommendation systems

feedback loop ethics, Feedback Loops: YouTube’s

Recommendation System, Feedback Loops

Google Play concatenation approach, Categorical

Embeddings

Meetup and gender, Feedback Loops

movies based on viewing habits, Deep Learning Is Not Just

for Image Classification

pretrained model rarity, Deep Learning Is Not Just for

Image Classification

skew from small number of users, Bootstrapping a

Collaborative Filtering Model

as tabular data, Recommendation systems

YouTube feedback loop ethics, Feedback Loops: YouTube’s

Recommendation System, Feedback Loops

recourse for ethics violations, Recourse and Accountability

rectified linear unit (ReLU), Adding a Nonlinearity, Jargon

Recap

recurrent neural networks (RNNs)

backpropagation through time, Maintaining the State of an

RNN

creating more signal, Creating More Signal

definition, Our First Recurrent Neural Network

language model from scratch

first RNN, Our First Recurrent Neural Network

improved RNN, Improving the RNN-Creating More

Signal

multilayer RNNs, Multilayer RNNs-Exploding or

Disappearing Activations

LSTM language model, LSTM-Training a Language Model

Using LSTMs

regularizing, Regularizing an LSTM-Training a

Weight-Tied Regularized LSTM

maintaining state of, Maintaining the State of an RNN

multilayer RNNs, Multilayer RNNs-Exploding or

Disappearing Activations

natural language processing using, Text Preprocessing,

Fine-Tuning the Language Model

AWD-LSTM architecture, Fine-Tuning the Language

Model, Regularizing an LSTM

training, Regularizing an LSTM

refactoring parts of neural networks, Creating the CNN,

Refactoring the Model

regression models definition, How Our Image Recognizer

Works

regular expressions (regex), From Dogs and Cats to Pet Breeds

regulating ethics, The Effectiveness of Regulation

reinforcement learning, Feedback Loops

replace_all_caps, Word Tokenization with fastai

replace_maj, Word Tokenization with fastai

replace_rep, Word Tokenization with fastai

replace_wrep, Word Tokenization with fastai

representation bias, Representation bias, Bootstrapping a

Collaborative Filtering Model

research papers

about, Mixup

advertising bias, Bias: Professor Latanya Sweeney

“Arrested”

bagging predictors, Random Forests

batch normalization, Batch Normalization

bias in machine learning, Bias

class activation map, CAM and Hooks

convolution arithmetic, Mapping a Convolutional Kernel

cyclical momentum, 1cycle Training

data leakage, Data Leakage

deep residual learning, ResNets

demographics dataset, Deep Learning Is Not Just for

Image Classification

ethical lens versus ethical intuitions, Fairness,

Accountability, and Transparency

geo-diversity of datasets, Historical bias

gradient class activation map, Gradient CAM

label smoothing, Label Smoothing

malware classification, Image Recognizers Can Tackle

Non-Image Tasks

measurement bias, Measurement bias

Mixup, Mixup

model bias, Gathering Data

object recognition, Historical bias

predicting sales from stores, Categorical Embeddings

predictive policing, Unforeseen Consequences and

Feedback Loops

rectifier deep dive, Defining and Initializing a Layer

regularizing LSTM language models, Regularizing an

LSTM

representation bias, Representation bias

ResNet improved, A State-of-the-Art ResNet

sentiment analysis, Deep Learning Is Not Just for Image

Classification

skip connections smoothing loss, Skip Connections

training a segmentation model, Deep Learning Is Not Just

for Image Classification

training deep feedforward neural networks, Defining and

Initializing a Layer

training with large learning rates, 1cycle Training

visualizing neural network weights, What Our Image

Recognizer Learned, Unfreezing and Transfer Learning

Resize, From Data to DataLoaders

image classifier model, From Data to DataLoaders

presizing, Presizing

ResNet architecture

about, ResNets, Skip Connections, Skip Connections

building ResNet CNN, Building a Modern CNN: ResNet-

Skip Connections

building state-of-the-art ResNet, A State-of-the-Art

ResNet-Bottleneck Layers

bottleneck layers, Bottleneck Layers-Bottleneck

Layers

top 5 accuracy, A State-of-the-Art ResNet

ease of learning, Skip Connections

first model, How Our Image Recognizer Works

fully convolutional networks, Going Back to Imagenette

first, Going Back to Imagenette

Learner, Going Back to Imagenette

image classifier, Deeper Architectures

Imagenette dataset, Going Back to Imagenette

model approach, Going Back to Imagenette

layer quantity variants, Deeper Architectures

ResNet-18, -34, -50 versions, Deeper Architectures, A

State-of-the-Art ResNet

skip connections, Skip Connections-Skip Connections

about, Going Back to Imagenette

results (see predictions)

rights and policy, Rights and Policy

RMSProp, RMSProp

rm_useless_spaces, Word Tokenization with fastai

RNN (see recurrent neural networks)

root mean squared error (RMSE or L2 norm), First Try: Pixel

Similarity

root mean squared log error as metric, Look at the Data,

Creating the Decision Tree, Creating a Random Forest

Rosenblatt, Frank, Neural Networks: A Brief History

Rumelhart, David, Neural Networks: A Brief History

Russia and 2016 election, Disinformation

Russia Today and Mueller report, Feedback Loops

S

Samuel, Arthur, What Is Machine Learning?

save method, Using TabularPandas and TabularProc, Saving

and Loading Models

encoder, Saving and Loading Models

Schmidhuber, Jurgen, Pixels: The Foundations of Computer

Vision

scikit-learn library, Beyond Deep Learning

search_images_bing, Gathering Data

seed for validation set selection, From Data to DataLoaders

segmentation, Computer vision

autonomous vehicle training, Deep Learning Is Not Just

for Image Classification

self-driving cars, Deep Learning Is Not Just for Image

Classification, The Drivetrain Approach

self-supervised learning

about, NLP Deep Dive: RNNs

definition, NLP Deep Dive: RNNs

language model, NLP Deep Dive: RNNs

vision applications, NLP Deep Dive: RNNs

Sequential class, Adding a Nonlinearity, Simple CNN

server for running code, Getting a GPU Deep Learning Server

setup

first model, Your First Model

(see also first model)

Jupyter Notebook, The Software: PyTorch, fastai, and

Jupyter (And Why It Doesn’t Matter), Getting a GPU Deep

Learning Server, Running Your First Notebook

(see also beginning)

NVIDIA GPU deep learning server, Getting a GPU Deep

Learning Server

SGD (see stochastic gradient descent)

SGD class, Creating an Optimizer, The Training Process-A

Generic Optimizer

(see also stochastic gradient descent)

Shankar, Shreya, Historical bias

show_batch method, Checking and Debugging a DataBlock

show_image function, First Try: Pixel Similarity

Siamese model image comparison, Applying the Mid-Level

Data API: SiamesePair-Applying the Mid-Level Data API:

SiamesePair

pretrained architecture, custom head, A Siamese Network-

A Siamese Network

sigmoid function

binary decision, Sigmoid, Softmax

one-hot-encoded targets, Binary Cross Entropy

softmax for more than two columns, Softmax

two-activation version, Softmax

sigmoid_range, Training a Model, Collaborative Filtering from

Scratch

signature of function

creating, An End-to-End SGD Example

delegates, Deep Learning for Collaborative Filtering

displaying, Gathering Data, Gathering Data, Word

Tokenization with fastai

skip connections, Skip Connections-Skip Connections

sklearn

creating decision tree, Creating the Decision Tree

default leaf node splitting, Creating the Decision Tree

docs online, Creating a Random Forest

max_features choices, Creating a Random Forest

NumPy needed, Beyond Deep Learning

TabularPandas class, Using TabularPandas and

TabularProc

Smith, Leslie, The Learning Rate Finder, The Learning Rate

Finder, 1cycle Training, 1cycle Training

Socher, Richard, Regularizing an LSTM

socioeconomic bias, Addressing different types of bias

softmax activation function, Viewing Activations and Labels,

Unfreezing and Transfer Learning

image classifier, Softmax, Log Likelihood-Log Likelihood

sum of 1 for predictions, Binary Cross Entropy

sound analyzed as spectrogram, Image Recognizers Can Tackle

Non-Image Tasks, Computer vision, Other data types

source code of function displayed, Word Tokenization with

fastai

special tokens, Word Tokenization with fastai

spec_add_spaces, Word Tokenization with fastai

Splunk.com fraud detection, Image Recognizers Can Tackle

Non-Image Tasks

spreadsheet data for models, Deep Learning Is Not Just for

Image Classification

starting (see beginning)

stem in convolutional neural network, A State-of-the-Art

ResNet, cnn_learner

stochastic gradient descent (SGD)

about, What Is a Neural Network?, Computing Metrics

Using Broadcasting-Stochastic Gradient Descent, The

Training Process

backward, Calculating Gradients

building Learner class from scratch, Learner

calculating gradients, Calculating Gradients-Calculating

Gradients

cyclical momentum, 1cycle Training

example end-to-end, An End-to-End SGD Example-Step 7:

Stop

mini-batches, SGD and Mini-Batches

momentum, Momentum-Momentum

multilayered neural networks learned with, Beyond Deep

Learning

optimization of numerical digit classifier, SGD and Mini-

Batches-Going Deeper

SGD class, Creating an Optimizer, The Training Process-A

Generic Optimizer

stepping with learning rate, Stepping with a Learning

Rate-Stepping with a Learning Rate

summarizing, Summarizing Gradient Descent

store sales predictions

embedding distance and store distance, Categorical

Embeddings

stride-1 convolutions, Strides and Padding

stride-2 convolutions, Strides and Padding

increasing number of features, Understanding

Convolution Arithmetic

stroke prediction, Combining text and images, Measurement

bias

subword tokenization, Subword Tokenization

summary method

debugging image dataset, Checking and Debugging a

DataBlock

debugging tabular dataset, Constructing a DataBlock

debugging text dataset, Language Model Using DataBlock

Suresh, Harini, Bias

Sweeney, Latanya, Bias: Professor Latanya Sweeney “Arrested”

symbolic computation library, Gradients and the Backward

Pass

SymPy library and calculus, Gradients and the Backward Pass

Syntactic Structures book (Chomsky), From Dogs and Cats to

Pet Breeds

Szegedy, Christian, Label Smoothing, Batch Normalization

T

Tabular classes, Using a Neural Network

tabular data for models

about, Deep Learning Is Not Just for Image Classification,

Tabular Modeling Deep Dive

advice for modeling, Conclusion

architecture, Tabular

categorical embeddings, Categorical Embeddings

current state of, Tabular data

as data type, From Dogs and Cats to Pet Breeds

dataset for deep dive, The Dataset

data leakage, Partial Dependence

date handling, Handling Dates

examining data, Look at the Data

neural network model, Using a Neural Network

ordinal columns, Look at the Data

overfitting, Creating the Decision Tree

TabularPandas class, Using TabularPandas and

TabularProc, Using a Neural Network

decision trees as first approach, Beyond Deep Learning

about, Beyond Deep Learning, Decision Trees

bagging, Random Forests-Ensembling

displaying tree, Creating the Decision Tree-Creating

the Decision Tree

libraries for, Beyond Deep Learning

metric, Look at the Data, Creating the Decision Tree,

Creating a Random Forest

training, Decision Trees-Creating the Decision Tree

deep learning not best starting point, Categorical

Embeddings

entity embedding, Categorical Embeddings

model interpretation, Model Interpretation

data leakage, Partial Dependence

feature importances, Feature Importance

partial dependence, Partial Dependence

removing low-importance variables, Removing Low-

Importance Variables

removing redundant features, Removing Redundant

Features

tree interpreter, Tree Interpreter

tree variance for prediction confidence, Tree Variance

for Prediction Confidence

multi-label classification, The Data-The Data

neural network model, Using a Neural Network

ordinal columns, Look at the Data

predicting sales from stores, Categorical Embeddings

pretrained model rarity, Deep Learning Is Not Just for

Image Classification

recommendation systems as, Recommendation systems

TabularPandas class, Using TabularPandas and TabularProc

TabularProc, Using TabularPandas and TabularProc

tech industry and gender, The Power of Diversity

temporal activation regularization, Activation Regularization

and Temporal Activation Regularization

tensor core support by GPUs, Deeper Architectures

tensors

about, NumPy Arrays and PyTorch Tensors

all images in directory, First Try: Pixel Similarity

APIs, NumPy Arrays and PyTorch Tensors

broadcasting, Computing Metrics Using Broadcasting,

Computing Metrics Using Broadcasting

color image as rank-3 tensor, Color Images

column selected, NumPy Arrays and PyTorch Tensors

creating a tensor, NumPy Arrays and PyTorch Tensors

definition, Jargon Recap

displaying as images, First Try: Pixel Similarity

elementwise arithmetic, Elementwise Arithmetic

image section, Pixels: The Foundations of Computer

Vision

image sizes same, From Data to DataLoaders, From Dogs

and Cats to Pet Breeds

matrix multiplication, The MNIST Loss Function

function from scratch, Matrix Multiplication from

Scratch

operators, NumPy Arrays and PyTorch Tensors

rank, First Try: Pixel Similarity

row selected, NumPy Arrays and PyTorch Tensors

shape, First Try: Pixel Similarity

length for rank, First Try: Pixel Similarity

slicing row or column, NumPy Arrays and PyTorch

Tensors

type, NumPy Arrays and PyTorch Tensors

terminology for deep learning, A Bit of Deep Learning Jargon,

Jargon Recap, Jargon Recap

test time augmentation (TTA), Test Time Augmentation

testing models

build it, test it, Dataset

complexity of production model testing, How to Avoid

Disaster

confusion matrix, Training Your Model, and Using It to

Clean Your Data

first model, Running Your First Notebook

test set, Validation Sets and Test Sets

building, Use Judgment in Defining Test Sets-Use

Judgment in Defining Test Sets

text combined with images, Combining text and images

text data approach, Beyond Deep Learning

(see also natural language processing)

text generation

correct responses not ensured, Text (natural language

processing)

current state of, Text (natural language processing)

disinformation, Text (natural language processing),

Disinformation, Disinformation and Language Models

NLP, Text Generation

(see also natural language processing)

TextBlock, Language Model Using DataBlock

TextDataLoaders.from_folder, Going Deeper into fastai’s

Layered API

TfmdLists, TfmdLists and Datasets: Transformed Collections-

TfmdLists

Thomas, Rachel, Get Writing!, Analyze a Project You Are

Working On

time series analysis

converting to image, Image Recognizers Can Tackle Non-

Image Tasks

current state of, Tabular data

sales from stores, Categorical Embeddings

(see also tabular data)

TabularPandas splitting data, Using TabularPandas and

TabularProc

training and validation sets, Use Judgment in Defining

Test Sets, Creating a Random Forest

tokenization

approaches to, Tokenization

definition, Text Preprocessing

fastai interface, Word Tokenization with fastai

most common token prediction, Our Language Model in

PyTorch

numericalization, Numericalization with fastai

showing rules used, Word Tokenization with fastai

special tokens, Word Tokenization with fastai

subword tokenization, Subword Tokenization

texts into batches for language model, Putting Our Texts

into Batches for a Language Model-Putting Our Texts into

Batches for a Language Model

token definition, Tokenization

Transform class, Transforms

unknown word token, Numericalization with fastai

word tokenization, Word Tokenization with fastai,

Subword Tokenization

top 5 accuracy, A State-of-the-Art ResNet

torch.nn.functional, First Try: Pixel Similarity, Convolutions in

PyTorch

training

1cycle training, 1cycle Training

backpropagation for neural networks, Pixels: The

Foundations of Computer Vision

bagging, Random Forests-Ensembling

baseline, First Try: Pixel Similarity, Checking and

Debugging a DataBlock, Establishing a Baseline-

Establishing a Baseline

biases, Gathering Data

black-and-white or hand-drawn images, Computer vision

cyclical momentum, 1cycle Training

data cleanup before versus after, Training Your Model, and

Using It to Clean Your Data, Training Your Model, and

Using It to Clean Your Data

decision trees, Decision Trees-Creating the Decision Tree

deeper models, Going Deeper, Deeper Architectures

definition, Jargon Recap

early stopping, Selecting the Number of Epochs

epochs, number of, How Our Image Recognizer Works

ethics importance, Why Does This Matter?

(see also ethics)

experiments lead to projects, Starting Your Project

fine-tuning definition, How Our Image Recognizer Works

(see also fine-tuning)

first model, Running Your First Notebook

head of model, How Our Image Recognizer Works

image classifier models (see image classifier model

training)

image differences during, From Data to DataLoaders

labels for examples, Limitations Inherent to Machine

Learning

layers and, How Our Image Recognizer Works, Unfreezing

and Transfer Learning

learning rate, Stepping with a Learning Rate-Stepping with

a Learning Rate

changing during training, 1cycle Training

definition, Jargon Recap

learning rate finder, The Learning Rate Finder

machine learning concepts, What Is Machine Learning?-

What Is Machine Learning?

mixed-precision training, Deeper Architectures

model memorizing data, How Our Image Recognizer

Works, Validation Sets and Test Sets

neural networks and learning rate, 1cycle Training

numerical digit classifier (see numerical digit classifier)

out-of-domain data, Computer vision

overfitting, How Our Image Recognizer Works

importance of, How Our Image Recognizer Works,

Conclusion

reducing, Conclusion

retrain from scratch, Selecting the Number of Epochs

weight decay against, Weight Decay

prediction model inference, Using the Model for Inference

pretrained models (see pretrained models)

process

about, The Training Process

Adam, Adam

baseline established, Establishing a Baseline-

Establishing a Baseline

callbacks, Callbacks

callbacks, creating, Creating a Callback

callbacks, exceptions, Callback Ordering and

Exceptions

decoupled weight decay, Decoupled Weight Decay

momentum, Momentum-Momentum

optimizer generic, A Generic Optimizer

RMSProp, RMSProp

SGD class, The Training Process-A Generic Optimizer

random variations, Running Your First Notebook

recurrent neural networks, Regularizing an LSTM

self-supervised learning, NLP Deep Dive: RNNs

(see also self-supervised learning)

stochastic gradient descent, Computing Metrics Using

Broadcasting-Stochastic Gradient Descent

calculating gradients, Calculating Gradients-

Calculating Gradients

example end-to-end, An End-to-End SGD Example-

Step 7: Stop

momentum, Momentum-Momentum

stepping with learning rate, Stepping with a Learning

Rate-Stepping with a Learning Rate

summarizing, Summarizing Gradient Descent

tensor core support for speed, Deeper Architectures

text classifier, Training a Text Classifier

fine-tuning language model, Fine-Tuning the

Language Model-Saving and Loading Models

language model using DataBlock, Language Model

Using DataBlock

time spent, Running Your First Notebook

trained model is program, What Is Machine Learning?

training set, How Our Image Recognizer Works, How Our

Image Recognizer Works, Jargon Recap

building, Use Judgment in Defining Test Sets-Use

Judgment in Defining Test Sets

classes for representing, accessing, Constructing a

DataBlock

cleaning GUI, Training Your Model, and Using It to

Clean Your Data

DataLoaders, From Data to DataLoaders-From Data

to DataLoaders

DataLoaders customization, From Data to

DataLoaders

presizing, From Dogs and Cats to Pet Breeds

production complexity and, How to Avoid Disaster

racial balance of, Historical bias

time series, Using TabularPandas and TabularProc

transfer learning

about, Unfreezing and Transfer Learning

cutting network, cnn_learner

definition, How Our Image Recognizer Works

final layer, Unfreezing and Transfer Learning

fine-tuning as, How Our Image Recognizer Works,

Unfreezing and Transfer Learning

image classifier, Unfreezing and Transfer Learning

natural language processing, NLP Deep Dive: RNNs

progressive resizing hurting performance, Progressive

Resizing

self-supervised learning, NLP Deep Dive: RNNs

weights, Summarizing Gradient Descent

Transforms

collections, TfmdLists and Datasets: Transformed

Collections

Datasets, Datasets

definition, How Our Image Recognizer Works

image cropping, From Data to DataLoaders

test time augmentation, Test Time Augmentation

image size, How Our Image Recognizer Works, From Data

to DataLoaders, From Dogs and Cats to Pet Breeds

item transforms, From Data to DataLoaders

Pipeline class, Pipeline

presizing, From Dogs and Cats to Pet Breeds

Siamese model image comparison, Applying the Mid-Level

Data API: SiamesePair-Applying the Mid-Level Data API:

SiamesePair

TabularProc, Using TabularPandas and TabularProc

TfmdLists, TfmdLists and Datasets: Transformed

Collections-TfmdLists

Transform class, Transforms

writing your own, Writing Your Own Transform,

TfmdLists

translation of languages

bias in Google Translate, Historical bias

current state of, Text (natural language processing)

French/English parallel text data, Deep Learning Is Not

Just for Image Classification

tumor identification, Deep Learning Is for Everyone, Who We

Are

Turing Award, Pixels: The Foundations of Computer Vision

tutorials

book chapters, How Our Image Recognizer Works

math tutorials online, What You Need to Know, First Try:

Pixel Similarity

derivatives, Calculating Gradients

Pandas library, The Data

Twitter for deep learning help, A Note About Twitter

U

unet_learner architecture, unet_learner

unfreezing

gradual unfreezing NLP classifier, Fine-Tuning the

Classifier

image classifier, Unfreezing and Transfer Learning

universal approximation theorem, What Is a Neural Network?,

Adding a Nonlinearity, Skip Connections

Universal Language Model Fine-tuning (ULMFiT) approach,

NLP Deep Dive: RNNs

untar_data, Data

V

validation set

building, Use Judgment in Defining Test Sets-Use

Judgment in Defining Test Sets

numeric digit classifier, Computing Metrics Using

Broadcasting

classes for representing and accessing, Constructing a

DataBlock

cleaning GUI, Training Your Model, and Using It to Clean

Your Data

DataLoaders, From Data to DataLoaders-From Data to

DataLoaders

definition, Jargon Recap, Validation Sets and Test Sets

error rate, How Our Image Recognizer Works

export method, Using the Model for Inference

first model, How Our Image Recognizer Works

hyperparameter picked by, Binary Cross Entropy

NLP most common token, Our Language Model in

PyTorch

numeric digit classifier, Computing Metrics Using

Broadcasting

out-of-domain data, The Extrapolation Problem

overfitting, Validation Sets and Test Sets

random seed, How Our Image Recognizer Works

size of, Validation Sets and Test Sets

splitting from training set, From Data to DataLoaders

test time augmentation, Test Time Augmentation

testing with confusion matrix, Training Your Model, and

Using It to Clean Your Data

time series, Using TabularPandas and TabularProc

variables

categorical variables, Categorical Embeddings

embedding and, Categorical Embeddings

continuous variables, Categorical Embeddings

error debugging, Gathering Data

viewing as mini-batch, Viewing Activations and Labels

vector dot product, A First Look at the Data, Categorical

Embeddings

verify_images, Gathering Data

Visin, Francesco, Mapping a Convolutional Kernel

vocabulary (see terminology)

Voilà, Creating a Notebook App from the Model

Volkswagen emission test cheating (ethics), Why Does This

Matter?

W

warmup learning rate, 1cycle Training

Watson, Thomas, Why Does This Matter?

Weapons of Math Destruction book (O’Neill), Addressing

different types of bias

web applications

Binder free app hosting, Deploying Your App

deployment file, Using the Model for Inference

disaster avoidance, How to Avoid Disaster

file upload widget, Creating a Notebook App from the

Model

model into, Turning Your Model into an Online

Application-Deploying Your App

recommended hosts, Deploying Your App

web display Output widget, Creating a Notebook App from

the Model

web resources

actionable outcomes via Drivetrain Approach, The

Drivetrain Approach

bias in machine learning, Bias

Binder free app hosting, Deploying Your App

blogging article, Get Writing!

book updates, Deep Learning in Practice: That’s a Wrap!

code from book, What You Need to Know, Running Your

First Notebook, Deep Learning Is Not Just for Image

Classification

datasets and other Kaggle resources, Kaggle Competitions

decision tree viewer, Creating the Decision Tree

deployment issue discussion, How to Avoid Disaster

documentation for methods, Deep Learning Is Not Just for

Image Classification

ethics description, Data Ethics

ethics toolkits, Processes to Implement

Fairness and Machine Learning book, Fairness,

Accountability, and Transparency

fast.ai free online course, Concluding Thoughts

fast.ai website, What You Need to Know

fastai forums, Concluding Thoughts

fraud detection at Splunk.com, Image Recognizers Can

Tackle Non-Image Tasks

GitHub Pages hosting blog, Blogging with GitHub Pages

GPU servers, Getting a GPU Deep Learning Server

Jupyter, The Software: PyTorch, fastai, and Jupyter (And

Why It Doesn’t Matter)

Kaggle machine learning community, Who We Are

malware classification, Image Recognizers Can Tackle

Non-Image Tasks

math tutorials, What You Need to Know, First Try: Pixel

Similarity

derivatives, Calculating Gradients

mathematical symbols, Mixup

predicting sales from stores paper, Categorical

Embeddings

predictive policing paper, Unforeseen Consequences and

Feedback Loops

Python debugger, Gathering Data

recommended web app hosts, Deploying Your App

regular expression tutorials, From Dogs and Cats to Pet

Breeds

segmentation training, Deep Learning Is Not Just for

Image Classification

sklearn docs, Creating a Random Forest

sound analyzed as spectrogram, Image Recognizers Can

Tackle Non-Image Tasks

SymPy library, Gradients and the Backward Pass

tutorials for each book chapter, How Our Image

Recognizer Works

visualizing convolutional networks, What Our Image

Recognizer Learned

weights

machine learning, What Is Machine Learning?-What Is

Machine Learning?

neural networks, What Is a Neural Network?

as parameters, What Is Machine Learning?, A Bit of Deep

Learning Jargon

pretrained parameter, How Our Image Recognizer Works

random in training from scratch, Summarizing Gradient

Descent

stochastic gradient descent, Computing Metrics Using

Broadcasting-Stochastic Gradient Descent

calculating gradients, Calculating Gradients-

Calculating Gradients

example end-to-end, An End-to-End SGD Example-

Step 7: Stop

stepping with learning rate, Stepping with a Learning

Rate-Stepping with a Learning Rate

summarizing, Summarizing Gradient Descent

transfer learning

freezing pretrained layers, Unfreezing and Transfer

Learning

pretrained models, Summarizing Gradient Descent

visualizing learning, What Our Image Recognizer Learned

weight decay, Weight Decay

decoupled, Decoupled Weight Decay

weight tying, Training a Weight-Tied Regularized LSTM

Werbos, Paul, Pixels: The Foundations of Computer Vision

Wikipedia for pretraining NLP, NLP Deep Dive: RNNs

word tokenization, Word Tokenization with fastai, Subword

Tokenization

Wright, Marvin, Categorical Variables

X

XGBoost library, Boosting

Y

YouTube

recommendation feedback loops, Feedback Loops:

YouTube’s Recommendation System, Feedback Loops

Russia Today possibly gaming, Feedback Loops

y_range

coordinate range, Training a Model

recommendation system ratings, Deep Learning Is Not

Just for Image Classification

Z

Zeiler, Matt, What Our Image Recognizer Learned, Unfreezing

and Transfer Learning

Zhang, Hongyi, Mixup

Zhou, Bolei, CAM and Hooks

Zuckerberg, Mark, The Effectiveness of Regulation

About the Authors

Jeremy Howard is an entrepreneur, business strategist,

developer, and educator. Jeremy is a founding researcher at

fast.ai, a research institute dedicated to making deep learning

more accessible. He is also a Distinguished Research Scientist

at the University of San Francisco, a faculty member at

Singularity University, and a Young Global Leader with the

World Economic Forum.

Jeremy’s most recent startup, Enlitic, was the first company to

apply deep learning to medicine, and was selected as one of the

world’s top 50 smartest companies by MIT Tech Review in both

2015 and 2016. Jeremy was previously president and chief

scientist at the data science platform Kaggle, where he was the

top-ranked participant in international machine learning

competitions for two years running. He was the founding CEO

of two successful Australian startups (FastMail and Optimal

Decisions Group, purchased by Lexis-Nexis). Before that, he

spent eight years in management consulting, at McKinsey & Co

and AT Kearney. Jeremy has invested in, mentored, and

advised many startups, and contributed to many open source

projects.

In addition to being a regular guest on Australia’s highest-rated

breakfast news program, he has given a popular talk on

TED.com and produced a number of data science and web

development tutorials and discussions.

Sylvain Gugger is a research engineer at HuggingFace. He

was previously a research scientist at fast.ai, with a focus on

making deep learning more accessible by designing and

improving techniques that allow models to train fast on limited

resources.

Prior to this, he taught computer science and mathematics in a

CPGE program in France for seven years. The CPGE are highly

selective classes taken by handpicked students after finishing

high school to prepare them for the competitive exam to enter

the country’s top engineering and business schools. Sylvain has

also written several books covering the entire curriculum he

was teaching, published at Éditions Dunod.

Sylvain is an alumnus of the École Normale Supérieure (Paris,

France), where he studied mathematics, and has a master’s

degree in mathematics from the University of Paris XI (Orsay,

France).

Acknowledgments

We’d particularly like to highlight the amazing work of Alexis

Gallagher and Rachel Thomas. Alexis was far more than a

technical editor. His influence is felt in every chapter, and he

wrote many of the most insightful and compelling explanations

in this book. He also provided deep insight into the design of

the fastai library, especially the data block API. Rachel

provided most of the material for Chapter 3, and also provided

input on ethics issues throughout the book.

Thank you to the fast.ai community, including the thirty

thousand members of forums.fast.ai, the five hundred

contributors to the fastai library, and the hundreds of

thousands of course.fast.ai students. Special thanks to fastai

contributors who have gone the extra mile, including Zachary

Muller, Radek Osmulski, Andrew Shaw, Stas Bekman, Lucas

Vasquez, and Boris Dayma. And also to those researchers who

have used fastai for groundbreaking research, such as

Sebastian Ruder, Piotr Czapla, Marcin Kardas, Julian

Eisenschlos, Nils Strodthoff, Patrick Wagner, Markus Wenzel,

Wojciech Samek, Paul Maragakis, Hunter Nisonoff, Brian Cole,

and David E. Shaw. Thank you also to Hamel Hussain, who has

created some of the most inspiring projects with fastai, and has

been the driving force behind the fastpages blogging platform.

And huge thanks to Chris Lattner, for his inspiration in

bringing ideas from Swift and his enormous knowledge of

programming language design to our many discussions, which

greatly influenced the design of fastai.

Thank you to all the folks at O’Reilly for their work to make this

book far better than we could have imagined, including

Rebecca Novak, who ensured that all the notebooks for the

book would be freely available, and that the book would be

published in full color; Rachel Head, whose comments

improved every part of the book; and Melissa Potter, who

helped ensure that the process kept moving forward.

Thank you to all our technical reviewers—an extraordinary

group of people who gave insightful and thoughtful feedback:

Aurélien Géron, the author of one of the best machine learning

books we’ve ever read, who was generous enough to help us

make our book better too; Joe Spisak, PyTorch product

manager; Miguel De Icaza, the legend behind Gnome,

Xamarian, and much more; Ross Wightman, creator of our

favorite PyTorch model zoo; Radek Osmulski, one of the most

brilliant fast.ai alumni we’ve had the pleasure of getting to

know; Dmytro Mishkin, cofounder of the Kornia project and

author of some of our favorite deep learning papers; Fred

Monroe, who has helped us with so many projects; and Andrew

Shaw, director at WAMRI and creator of the wonderful

musicautobot.com.

Special thanks to Soumith Chintala and Adam Paszke for

creating PyTorch, and the whole PyTorch team for making it

such a joy to use. And of course, thank you to our families for

all their support and patience throughout this big project.

Colophon

The animal on the cover of Deep Learning for Coders with

fastai and PyTorch is a boarfish (Capros aper), the only known

member of its genus. Mostly found in eastern Atlantic waters,

this fish inhabits an area that spans from Norway to as far

south as Senegal, including the Aegean and Mediterranean

seas. Boarfish can be found at depths ranging from 130–1,968

feet in the pelagic zone: the section of the open sea that is

neither close to the sea floor nor the shore and home to the

largest aquatic habitat on Earth.

The boarfish is small and reddish-orange in coloration, with

large eyes and a protractile mouth. Its body is compressed,

deep, and rhombic, shaped as wide as it is high. Boarfish

typically measure 5 inches long, but as a sexually dimorphic

species, the females are larger; the record length stands at 11

inches. Although vulnerable to prey due to their size, these

shoaling fish travel in groups, allowing them enhanced defense

against predators as well as making it easier for them to mate

and find food. Its closest relatives are the shortspine boarfish

(Antigonia combatia), a native to tropical and sub-tropical

waters and the deepbody boarfish (Antigonia capros), found in

the neighboring western Atlantic waters.

While the current conservation status of the boarfish is of

“Least Concern,” many of the animals on O’Reilly covers are

endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a

black and white engraving from Johnson’s Natural History.

The cover fonts are Gilroy Semibold and Guardian Sans. The

text font is Adobe Minion Pro; the heading font is Adobe

Myriad Condensed; and the code font is Dalton Maag’s Ubuntu

Mono.

	Preface
	Who This Book Is For
	What You Need to Know
	What You Will Learn
	O’Reilly Online Learning
	How to Contact Us

	Foreword
	I. Deep Learning in Practice
	1. Your Deep Learning Journey
	Deep Learning Is for Everyone
	Neural Networks: A Brief History
	Who We Are
	How to Learn Deep Learning
	Your Projects and Your Mindset

	The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter)
	Your First Model
	Getting a GPU Deep Learning Server
	Running Your First Notebook
	What Is Machine Learning?
	What Is a Neural Network?
	A Bit of Deep Learning Jargon
	Limitations Inherent to Machine Learning
	How Our Image Recognizer Works
	What Our Image Recognizer Learned
	Image Recognizers Can Tackle Non-Image Tasks
	Jargon Recap

	Deep Learning Is Not Just for Image Classification
	Validation Sets and Test Sets
	Use Judgment in Defining Test Sets

	A Choose Your Own Adventure Moment
	Questionnaire
	Further Research

	2. From Model to Production
	The Practice of Deep Learning
	Starting Your Project
	The State of Deep Learning
	The Drivetrain Approach

	Gathering Data
	From Data to DataLoaders
	Data Augmentation

	Training Your Model, and Using It to Clean Your Data
	Turning Your Model into an Online Application
	Using the Model for Inference
	Creating a Notebook App from the Model
	Turning Your Notebook into a Real App
	Deploying Your App

	How to Avoid Disaster
	Unforeseen Consequences and Feedback Loops

	Get Writing!
	Questionnaire
	Further Research

	3. Data Ethics
	Key Examples for Data Ethics
	Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits
	Feedback Loops: YouTube’s Recommendation System
	Bias: Professor Latanya Sweeney “Arrested”
	Why Does This Matter?

	Integrating Machine Learning with Product Design
	Topics in Data Ethics
	Recourse and Accountability
	Feedback Loops
	Bias
	Disinformation

	Identifying and Addressing Ethical Issues
	Analyze a Project You Are Working On
	Processes to Implement
	The Power of Diversity
	Fairness, Accountability, and Transparency

	Role of Policy
	The Effectiveness of Regulation
	Rights and Policy
	Cars: A Historical Precedent

	Conclusion
	Questionnaire
	Further Research

	Deep Learning in Practice: That’s a Wrap!

	II. Understanding fastai’s Applications
	4. Under the Hood: Training a Digit Classifier
	Pixels: The Foundations of Computer Vision
	First Try: Pixel Similarity
	NumPy Arrays and PyTorch Tensors

	Computing Metrics Using Broadcasting
	Stochastic Gradient Descent
	Calculating Gradients
	Stepping with a Learning Rate
	An End-to-End SGD Example
	Summarizing Gradient Descent

	The MNIST Loss Function
	Sigmoid
	SGD and Mini-Batches

	Putting It All Together
	Creating an Optimizer

	Adding a Nonlinearity
	Going Deeper

	Jargon Recap
	Questionnaire
	Further Research

	5. Image Classification
	From Dogs and Cats to Pet Breeds
	Presizing
	Checking and Debugging a DataBlock

	Cross-Entropy Loss
	Viewing Activations and Labels
	Softmax
	Log Likelihood
	Taking the log

	Model Interpretation
	Improving Our Model
	The Learning Rate Finder
	Unfreezing and Transfer Learning
	Discriminative Learning Rates
	Selecting the Number of Epochs
	Deeper Architectures

	Conclusion
	Questionnaire
	Further Research

	6. Other Computer Vision Problems
	Multi-Label Classification
	The Data
	Constructing a DataBlock
	Binary Cross Entropy

	Regression
	Assembling the Data
	Training a Model

	Conclusion
	Questionnaire
	Further Research

	7. Training a State-of-the-Art Model
	Imagenette
	Normalization
	Progressive Resizing
	Test Time Augmentation
	Mixup
	Label Smoothing
	Conclusion
	Questionnaire
	Further Research

	8. Collaborative Filtering Deep Dive
	A First Look at the Data
	Learning the Latent Factors
	Creating the DataLoaders
	Collaborative Filtering from Scratch
	Weight Decay
	Creating Our Own Embedding Module

	Interpreting Embeddings and Biases
	Using fastai.collab
	Embedding Distance

	Bootstrapping a Collaborative Filtering Model
	Deep Learning for Collaborative Filtering
	Conclusion
	Questionnaire
	Further Research

	9. Tabular Modeling Deep Dive
	Categorical Embeddings
	Beyond Deep Learning
	The Dataset
	Kaggle Competitions
	Look at the Data

	Decision Trees
	Handling Dates
	Using TabularPandas and TabularProc
	Creating the Decision Tree
	Categorical Variables

	Random Forests
	Creating a Random Forest
	Out-of-Bag Error

	Model Interpretation
	Tree Variance for Prediction Confidence
	Feature Importance
	Removing Low-Importance Variables
	Removing Redundant Features
	Partial Dependence
	Data Leakage
	Tree Interpreter

	Extrapolation and Neural Networks
	The Extrapolation Problem
	Finding Out-of-Domain Data
	Using a Neural Network

	Ensembling
	Boosting
	Combining Embeddings with Other Methods

	Conclusion
	Questionnaire
	Further Research

	10. NLP Deep Dive: RNNs
	Text Preprocessing
	Tokenization
	Word Tokenization with fastai
	Subword Tokenization
	Numericalization with fastai
	Putting Our Texts into Batches for a Language Model

	Training a Text Classifier
	Language Model Using DataBlock
	Fine-Tuning the Language Model
	Saving and Loading Models
	Text Generation
	Creating the Classifier DataLoaders
	Fine-Tuning the Classifier

	Disinformation and Language Models
	Conclusion
	Questionnaire
	Further Research

	11. Data Munging with fastai’s Mid-Level API
	Going Deeper into fastai’s Layered API
	Transforms
	Writing Your Own Transform
	Pipeline

	TfmdLists and Datasets: Transformed Collections
	TfmdLists
	Datasets

	Applying the Mid-Level Data API: SiamesePair
	Conclusion
	Questionnaire
	Further Research

	Understanding fastai’s Applications: Wrap Up

	III. Foundations of Deep Learning
	12. A Language Model from Scratch
	The Data
	Our First Language Model from Scratch
	Our Language Model in PyTorch
	Our First Recurrent Neural Network

	Improving the RNN
	Maintaining the State of an RNN
	Creating More Signal

	Multilayer RNNs
	The Model
	Exploding or Disappearing Activations

	LSTM
	Building an LSTM from Scratch
	Training a Language Model Using LSTMs

	Regularizing an LSTM
	Dropout
	Activation Regularization and Temporal Activation Regularization
	Training a Weight-Tied Regularized LSTM

	Conclusion
	Questionnaire
	Further Research

	13. Convolutional Neural Networks
	The Magic of Convolutions
	Mapping a Convolutional Kernel
	Convolutions in PyTorch
	Strides and Padding
	Understanding the Convolution Equations

	Our First Convolutional Neural Network
	Creating the CNN
	Understanding Convolution Arithmetic
	Receptive Fields
	A Note About Twitter

	Color Images
	Improving Training Stability
	A Simple Baseline
	Increase Batch Size
	1cycle Training
	Batch Normalization

	Conclusion
	Questionnaire
	Further Research

	14. ResNets
	Going Back to Imagenette
	Building a Modern CNN: ResNet
	Skip Connections
	A State-of-the-Art ResNet
	Bottleneck Layers

	Conclusion
	Questionnaire
	Further Research

	15. Application Architectures Deep Dive
	Computer Vision
	cnn_learner
	unet_learner
	A Siamese Network

	Natural Language Processing
	Tabular
	Conclusion
	Questionnaire
	Further Research

	16. The Training Process
	Establishing a Baseline
	A Generic Optimizer
	Momentum
	RMSProp
	Adam
	Decoupled Weight Decay
	Callbacks
	Creating a Callback
	Callback Ordering and Exceptions

	Conclusion
	Questionnaire
	Further Research

	Foundations of Deep Learning: Wrap Up

	IV. Deep Learning from Scratch
	17. A Neural Net from the Foundations
	Building a Neural Net Layer from Scratch
	Modeling a Neuron
	Matrix Multiplication from Scratch
	Elementwise Arithmetic
	Broadcasting
	Einstein Summation

	The Forward and Backward Passes
	Defining and Initializing a Layer
	Gradients and the Backward Pass
	Refactoring the Model
	Going to PyTorch

	Conclusion
	Questionnaire
	Further Research

	18. CNN Interpretation with CAM
	CAM and Hooks
	Gradient CAM
	Conclusion
	Questionnaire
	Further Research

	19. A fastai Learner from Scratch
	Data
	Dataset

	Module and Parameter
	Simple CNN

	Loss
	Learner
	Callbacks
	Scheduling the Learning Rate

	Conclusion
	Questionnaire
	Further Research

	20. Concluding Thoughts
	A. Creating a Blog
	Blogging with GitHub Pages
	Creating the Repository
	Setting Up Your Home Page
	Creating Posts
	Synchronizing GitHub and Your Computer

	Jupyter for Blogging

	B. Data Project Checklist
	Data Scientists
	Strategy
	Data
	Analytics
	Implementation
	Maintenance
	Constraints

	Index

