O'REILLY"

Generative Al
on AWS

Building Context-Aware
Multimodal Reasoning
Applications

Chris Fregly,
Antje Barth &
Shelbee Eigenbrode

O'REILLY"

Generative Al on AWS

Companies today are moving rapidly to integrate generative
Al into their products and services. But there's a great deal
of hype (and misunderstanding) about the impact and
promise of this technology. With this book, Chris Fregly,
Antje Barth, and Shelbee Eigenbrode from AWS help CTOs,
ML practitioners, application developers, business analysts,
data engineers, and data scientists find practical ways to
use this exciting new technology.

You'll learn the generative Al project life cycle including

use case definition, model selection, model fine-tuning,
retrieval-augmented generation, reinforcement learning
from human feedback, and model quantization, optimization,
and deployment. And you'll explore different types of models
including large language models (LLMs) and multimodal
models such as Stable Diffusion for generating images and
Flamingo/IDEFICS for answering questions about images.

¢ Apply generative Al to your business use cases

¢ Determine which generative Al models are best
suited to your task

¢ Perform prompt engineering and in-context learning

¢ Fine-tune generative Al models on your datasets with
low-rank adaptation (LoRA)

¢ Align generative Al models to human values with
reinforcement learning from human feedback (RLHF)

e Augment your model with retrieval-augmented
generation (RAG)

e Explore libraries such as LangChain and ReAct to
develop agents and actions

¢ Build generative Al applications with Amazon Bedrock

“| am very excited about
this book—it has a great
mix of all-important
background/theoretical
info and detailed,
hands-on code, scripts,
and walk-throughs. |
enjoyed reading it, and
| know that you will too!”

—JeffBarr
VP and Chief Evangelist @ AWS

Chris Fregly is a Principal Solutions
Architect for generative Al at
Amazon Web Services and coauthor
of Data Science on AWS (O'Reilly).

Antje Barth is Principal Developer
Advocate for generative Al at Amazon
Web Services and coauthor of
Data Science on AWS.

Shelbee Eigenbrode is a Principal
Solutions Architect for generative Al
at Amazon Web Services. She holds
over 35 patents across various
technology domains.

DATA

US $79.99 CAN $99.99
ISBN: 978-1-098-15922-1

7810981159221

i

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Praise for Generative Al on AWS

I am very excited about this book—it has a great mix of all-important background/
theoretical info and detailed, hands-on code, scripts, and walk-throughs. I enjoyed
reading it, and I know that you will too! Starting from the basics, you will learn about
generative foundation models, prompt engineering, and much more. From there you will
proceed to large language models (LLMs) and will see how to use them from within
Amazon SageMaker. After you master the basics, you will have the opportunity to learn
about multiple types of fine-tuning, and then you will get to the heart of the book and
learn to build applications that have the power to perform context-aware reasoning with
generative models of different modalities including text and images.

—Jeff Barr, VP and Chief Evangelist @ AWS

This book is a comprehensive resource for building generative AI-based solutions
on AWS. Using real-world examples, Chris, Antje, and Shelbee have done a
spectacular job explaining key concepts, pitfalls, and best practices for LLMs

and multimodal models. A very timely resource to accelerate your journey for
building generative Al solutions from concept to production.

—Geeta Chauhan, Applied Al Leader @ Meta

In the process of developing and deploying a generative Al application, there are
many complex decision points that collectively determine whether the application
will produce high quality output and can be run in a cost-efficient, scalable, and
reliable manner. This book demystifies the underlying technologies and provides
thoughtful guidance to help readers understand and make these decisions, and
ultimately launch successful generative AT applications.

— Brent Rabowsky, Sr. Manager AI/ML Specialist SA @ AWS

It’s very rare to find a book that comprehensively covers the full end-to-end process of
model development and deployment! If youre an ML practitioner, this book is a must!

—Alejandro Herrera, Data Scientist @ Snowflake

This book goes deep into how GenAl models are actually built and used. And it covers
the whole life cycle, not just prompt engineering or tuning. If you're thinking about using
GenAl for anything nontrivial, you should read this book to understand what skill sets
and tools you’ll need to be successful.

—Randy DeFauw, Sr. Principal Solution Architect @ AWS

There’s no better book to get started with generative AI. With all the information
on the internet about the topic, it’s extremely overwhelming for anyone. But this
book is a clear and structured guide: it goes from the basics all the way to
advanced topics like parameter-efficient fine-tuning and LLM deployment. It’s also
very practical and covers deployment on AWS too. This book is an extremely
valuable resource for any data scientist or engineer!

—Alexey Grigorev, Principal Data Scientist @ OLX Group
and Founder @ DataTalks.Club

This is by far the best book I have come across that makes building generative Al very
practical. Antje, Chris, and Shelbee put together an exceptional resource that will be very
valuable for years—if possible, converted to a learning resource for universities. Definitely
a must-read for anyone building generative AI applications at scale on AWS.

—Olalekan Elesin, Director of Data Science Platform
@ HRS Group

If you're looking for a robust learning foundation for building and deploying
generative Al products or services, look no further than Generative AI on AWS.
Guided by the deep expertise of authors Chris Fregly, Antje Barth, and Shelbee
Eigenbrode, this book will transition you from a GenAl novice to a master of the
intricate nuances involved in training, fine-tuning, and application development. This
manual is an indispensable guide and true necessity for every budding Al engineer,
product manager, marketer, or business leader.

—Lillian Pierson, PE, Founder @ Data-Mania

Generative AI on AWS provides an in-depth look at the innovative techniques for creating
applications that comprehend diverse data types and make context-driven decisions.
Readers get a comprehensive view, bridging both the theoretical aspects and practical
tools needed for generative Al applications. This book is a must-read for those wanting to
harness the full potential of AWS in the realm of generative Al

—Kesha Williams, Director @ Slalom Consulting
and AWS Machine Learning Hero

The generative Al landscape evolves so fast that it’s incredible to see so much relevant
knowledge condensed into a comprehensive book. Well done!

—Francesco Mosconi, Head of Data Science @ Catalit

Generative Al on AWS

Building Context-Aware Multimodal
Reasoning Applications

Chris Fregly, Antje Barth, and Shelbee Eigenbrode

Beijing « Boston « Farnham - Sebastopol - Tokyo KON{={|HAE

Generative Al on AWS
by Chris Fregly, Antje Barth, and Shelbee Eigenbrode

Copyright © 2024 Flux Capacitor, LLC, Antje Barth, and Shelbee Eigenbrode. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield Indexer: Sue Klefstad

Development Editor: Sara Hunter Interior Designer: David Futato
Production Editor: Gregory Hyman Cover Designer: Karen Montgomery
Copyeditor: nSight, Inc. lllustrator: Kate Dullea

Proofreader: Tove Innis
November 2023: First Edition

Revision History for the First Edition
2023-11-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098159221 for release details.

The O'Reilly logo is a registered trademark of O’'Reilly Media, Inc. Generative AI on AWS, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-098-15922-1
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098159221

Table of Contents

Preface.oooviiiiiiii ix
1. Generative Al Use Cases, Fundamentals, and Project Life Cycle..................... 1
Use Cases and Tasks 1
Foundation Models and Model Hubs 4
Generative Al Project Life Cycle 5
Generative AT on AWS 8
Why Generative AT on AWS? 11
Building Generative AI Applications on AWS 12
Summary 13

2. Prompt Engineering and In-Context Learning...........ccovvvvviiniennnennnnen. 15
Prompts and Completions 15
Tokens 16
Prompt Engineering 16
Prompt Structure 18
Instruction 18
Context 18
In-Context Learning with Few-Shot Inference 20
Zero-Shot Inference 21
One-Shot Inference 21
Few-Shot Inference 22
In-Context Learning Gone Wrong 23
In-Context Learning Best Practices 23
Prompt-Engineering Best Practices 24
Inference Configuration Parameters 29

Summary 34

3.

Large-Language Foundation Models.coiviinnnenn.

Large-Language Foundation Models
Tokenizers
Embedding Vectors
Transformer Architecture
Inputs and Context Window
Embedding Layer
Encoder
Self-Attention
Decoder
Softmax Output
Types of Transformer-Based Foundation Models
Pretraining Datasets
Scaling Laws
Compute-Optimal Models
Summary

Memory and Compute Optimizations..............c.cocvveevnnnnn..

Memory Challenges
Data Types and Numerical Precision
Quantization
fpl6
bfloat16
p8
int8
Optimizing the Self-Attention Layers
FlashAttention
Grouped-Query Attention
Distributed Computing
Distributed Data Parallel
Fully Sharded Data Parallel
Performance Comparison of FSDP over DDP
Distributed Computing on AWS
Fully Sharded Data Parallel with Amazon SageMaker
AWS Neuron SDK and AWS Trainium
Summary

Fine-Tuningand Evaluation..............ccooiiiiiiiiiiiiinnns.

Instruction Fine-Tuning
Llama 2-Chat
Falcon-Chat
FLAN-T5

36
37
38
40
42
42
42
42
44
44
46
48
49
51
52

55
55
58
59
60
62
64
64
66
67
67
68
69
70
72
74
75
77
77

79
80
80
80
80

iv

| Table of Contents

Instruction Dataset 81
Multitask Instruction Dataset 81
FLAN: Example Multitask Instruction Dataset 82
Prompt Template 83
Convert a Custom Dataset into an Instruction Dataset 84

Instruction Fine-Tuning 86
Amazon SageMaker Studio 87
Amazon SageMaker JumpStart 88
Amazon SageMaker Estimator for Hugging Face 89

Evaluation 90
Evaluation Metrics 91
Benchmarks and Datasets 92

Summary 94

. Parameter-Efficient Fine-Tuning...........cooviiiiiiiiiiiiii it 95

Full Fine-Tuning Versus PEFT 96

LoRA and QLoRA 98
LoRA Fundamentals 99
Rank 100
Target Modules and Layers 100
Applying LoRA 101
Merging LoRA Adapter with Original Model 103
Maintaining Separate LoRA Adapters 104
Full-Fine Tuning Versus LoRA Performance 104
QLoRA 105

Prompt Tuning and Soft Prompts 106

Summary 109

. Fine-Tuning with Reinforcement Learning from Human Feedback................. 1M

Human Alignment: Helpful, Honest, and Harmless 112

Reinforcement Learning Overview 112

Train a Custom Reward Model 115
Collect Training Dataset with Human-in-the-Loop 115
Sample Instructions for Human Labelers 116
Using Amazon SageMaker Ground Truth for Human Annotations 116
Prepare Ranking Data to Train a Reward Model 118
Train the Reward Model 121

Existing Reward Model: Toxicity Detector by Meta 123

Fine-Tune with Reinforcement Learning from Human Feedback 124
Using the Reward Model with RLHF 125
Proximal Policy Optimization RL Algorithm 126
Perform RLHF Fine-Tuning with PPO 126

Table of Contents

| v

Mitigate Reward Hacking

Using Parameter-Efficient Fine-Tuning with RLHF
Evaluate RLHF Fine-Tuned Model

Qualitative Evaluation

Quantitative Evaluation

Load Evaluation Model

Define Evaluation-Metric Aggregation Function

Compare Evaluation Metrics Before and After
Summary

. Model Deployment Optimizations..............cccovvvvniiennnnn.

Model Optimizations for Inference
Pruning
Post-Training Quantization with GPTQ
Distillation
Large Model Inference Container
AWS Inferentia: Purpose-Built Hardware for Inference
Model Update and Deployment Strategies
A/B Testing
Shadow Deployment
Metrics and Monitoring
Autoscaling
Autoscaling Policies
Define an Autoscaling Policy
Summary

. Context-Aware Reasoning Applications Using RAG and Agents

Large Language Model Limitations
Hallucination
Knowledge Cutoff
Retrieval-Augmented Generation
External Sources of Knowledge
RAG Workflow
Document Loading
Chunking
Document Retrieval and Reranking
Prompt Augmentation
RAG Orchestration and Implementation
Document Loading and Chunking
Embedding Vector Store and Retrieval
Retrieval Chains
Reranking with Maximum Marginal Relevance

128
130
131
131
132
133
133
134
135

137
137
139
140
142
144
145
147
148
149
151
152
152
153
154

155
156
157
157
158
159
160
161
162
163
164
165
166
168
171
173

vi

| Table of Contents

10.

Agents
ReAct Framework
Program-Aided Language Framework
Generative Al Applications
FMOps: Operationalizing the Generative Al Project Life Cycle
Experimentation Considerations
Development Considerations
Production Deployment Considerations
Summary

Multimodal FoundationModels.........ccovvvvinivevninnnn..

Use Cases
Multimodal Prompt Engineering Best Practices
Image Generation and Enhancement
Image Generation
Image Editing and Enhancement
Inpainting, Outpainting, Depth-to-Image
Inpainting
Outpainting
Depth-to-Image
Image Captioning and Visual Question Answering
Image Captioning
Content Moderation
Visual Question Answering
Model Evaluation
Text-to-Image Generative Tasks
Forward Diffusion
Nonverbal Reasoning
Diffusion Architecture Fundamentals
Forward Diffusion
Reverse Diffusion
U-Net
Stable Diffusion 2 Architecture
Text Encoder
U-Net and Diffusion Process
Text Conditioning
Cross-Attention
Scheduler
Image Decoder
Stable Diffusion XL Architecture
U-Net and Cross-Attention
Refiner

174
176
178
181
187
188
190
192
193

.............. 195

196
197
198
198
199
204
204
206
207
209
211
211
211
216
216
219
219
221
221
222
223
224
225
226
228
228
229
229
230
230
230

Table of Contents | vii

1.

12.

Conditioning
Summary

Controlled Generation and Fine-Tuning with Stable Diffusion..................

ControlNet
Fine-Tuning
DreamBooth
DreamBooth and PEFT-LoRA
Textual Inversion
Human Alignment with Reinforcement Learning from Human Feedback
Summary

Amazon Bedrock: Managed Service for GenerativeAl.........................

Bedrock Foundation Models
Amazon Titan Foundation Models
Stable Diffusion Foundation Models from Stability Al

Bedrock Inference APIs

Large Language Models
Generate SQL Code
Summarize Text
Embeddings

Fine-Tuning

Agents

Multimodal Models
Create Images from Text
Create Images from Images

Data Privacy and Network Security

Governance and Monitoring

Summary

231
233

235
235
240
241
243
245
249
252

253
253
254
254
254
256
257
257
258
261
264
267
267
269
270
272
272

viii

| Table of Contents

Preface

After reading this book, you will understand the most common generative Al use
cases and tasks addressed by industry and academia today. You will gain in-depth
knowledge of how these cutting-edge generative models are built, as well as practical
experience to help you choose between reusing an existing generative model or
building one from scratch. You will then learn to adapt these generative AI models
to your domain-specific datasets, tasks, and use cases that support your business
applications.

This book is meant for AI/ML enthusiasts, data scientists, and engineers who want
to learn the technical foundations and best practices for generative AI model train-
ing, fine-tuning, and deploying into production. We assume that you are already
familiar with Python and basic deep-learning components like neural networks,
forward propagation, activations, gradients, and back propagations to understand the
concepts used here.

A basic understanding of Python and deep learning frameworks such as TensorFlow
or PyTorch should be sufficient to understand the code samples used throughout the
book. Familiarity with AWS is not required to learn the concepts, but it is useful for
some of the AWS-specific samples.

You will dive deep into the generative Al life cycle and learn topics such as prompt
engineering, few-shot in-context learning, generative model pretraining, domain
adaptation, model evaluation, parameter-efficient fine-tuning (PEFT), and reinforce-
ment learning from human feedback (RLHF).

You will get hands-on with popular large language models such as Llama 2 and
Falcon as well as multimodal generative models, including Stable Diffusion and
IDEFICS. You will access these foundation models through the Hugging Face Model
Hub, Amazon SageMaker JumpStart, or Amazon Bedrock managed service for gener-
ative AL

https://oreil.ly/6eU0H
https://oreil.ly/3seVt
https://oreil.ly/D_gWo
https://oreil.ly/mX_Mm
https://oreil.ly/qqlzn
https://oreil.ly/qqlzn
https://oreil.ly/QtHib
https://oreil.ly/siP0v
https://oreil.ly/siP0v

You will also learn how to implement context-aware retrieval-augmented generation
(RAG)' and agent-based reasoning workflows.> You will explore application frame-
works and libraries, including LangChain, ReAct,’ and Program-Aided-Language
models (PAL). You can use these frameworks and libraries to access your own custom
data sources and APIs or integrate with external data sources such as web search and
partner data systems.

Lastly, you will explore all of these generative concepts, frameworks, and libraries in
the context of multimodal generative Al use cases across different content modalities
such as text, images, audio, and video.

And don’'t worry if you don't understand all of these concepts just yet. Throughout
the book, you will dive into each of these topics in much more detail. With all of this
knowledge and hands-on experience, you can start building cutting-edge generative
AT applications that help delight your customers, outperform your competition, and
increase your revenue!

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Used to call attention to snippets of interest in code blocks, as well as to differen-
tiate among multiple speakers in dialogue, or between the human user and the Al
assistant.

1 Patrick Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks”, arXiv, 2021.
2 Jason Wei et al., “Chain-of-Thought Prompting Elicits Reasoning in Large Language Models”, arXiv, 2022.
3 Shunyu Yao et al.,, “ReAct: Synergizing Reasoning and Acting in Language Models”, arXiv, 2023.

x | Preface

https://oreil.ly/ZDYm4
https://oreil.ly/tqEvF
https://oreil.ly/qVR0N
https://oreil.ly/XQYmh

This element signifies a tip or suggestion.

This element signifies a general note.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/generative-ai-on-aws-code.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless youre reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O'Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Generative AI on AWS
by Chris Fregly, Antje Barth, and Shelbee Eigenbrode (O’Reilly). Copyright 2024 Flux
Capacitor, LLC, Antje Barth, and Shelbee Eigenbrode, 978-1-098-15922-1”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xi

https://oreil.ly/generative-ai-on-aws-code
mailto:support@oreilly.com
mailto:permissions@oreilly.com

0'Reilly Online Learning

For more than 40 years, O'Reilly Media has provided technol-
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/generative-ai-on-aws.

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media
Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

xii | Preface

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/generative-ai-on-aws
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Acknowledgments

Wed like to thank all of our reviewers, including Brent Rabowsky, Randy DeFauw,
Sean Owen, Akhil Behl, and Sireesha Muppala, PhD. Your feedback was critical to
the narrative that we followed in this book. Additionally, your guidance and intuition
helped us modulate the technical depth of the code examples we included.

Chris

I dedicate this book to my mom, who has always inspired me to share knowledge
with others. In addition, you have always listened patiently as I navigate life, question
things, and seek answers.

Antje

I would like to thank my family for providing a great education and supporting me
throughout my professional endeavors. In particular, I want to thank my brother, Kai,
who bought me my first laptop and made sure I had the right tools for university.
This was the initial catalyst to my career in computer science.

Shelbee

To my husband, Steve, and daughter, Emily, for always being “my why” and for their
continued support, especially the late nights and long weekends writing this book. I
also want to thank my dog, Molly, for sitting patiently while I took pictures of her to
use as input for some of the multimodal models in this book!

Preface | xiii

CHAPTER1

Generative Al Use Cases, Fundamentals,
and Project Life Cycle

In this chapter, you will see some generative Al tasks and use cases in action, gain
an understanding of generative foundation models, and explore a typical generative
AT project life cycle. The use cases and tasks you'll see in this chapter include
intelligent search, automated customer-support chatbot, dialog summarization, not-
safe-for-work (NSFW) content moderation, personalized product videos, source code
generation, and others.

You will also learn a few of the generative Al service and hardware options from
Amazon Web Services (AWS) including Amazon Bedrock, Amazon SageMaker,
Amazon CodeWhisperer, AWS Trainium, and AWS Inferentia. These service and
hardware options provide great flexibility when building your end-to-end, context-
aware, multimodal reasoning applications with generative AI on AWS.

Let’s explore some common use cases and tasks for generative AL

Use Cases and Tasks

Similar to deep learning, generative Al is a general-purpose technology used for
multiple purposes across many industries and customer segments. There are many
types of multimodal generative Al tasks. We've included a list of the most common
generative tasks and associated example use cases:

Text summarization
Produce a shorter version of a piece of text while retaining the main ideas. Exam-
ples include summarizing a news article, legal document, or financial report
into a smaller number of words or paragraphs for faster consumption. Often,

https://oreil.ly/PNyAH
https://oreil.ly/Y44kE
https://oreil.ly/Ov3hL
https://oreil.ly/WlAKI
https://oreil.ly/4dBwH

summarization is used on customer support conversations to provide a quick
overview of the interaction between a customer and support representative.

Rewriting
Modify the wording of a piece of text to adapt to a different audience, formality,
or tone. For example, you can convert a formal legal document into a less formal
document using less legal terms to appeal to a nonlegal audience.

Information extraction
Extract information from documents such as names, addresses, events, or
numeric data or numbers. For example, converting an email into a purchase
order in an enterprise resource planning (ERP) system like SAP.

Question answering (QA) and visual question answering (VQA)
Ask questions directly against a set of documents, images, videos, or audio clips.
For example, you can set up an internal, employee-facing chatbot to answer
questions about human resources and benefits documents.

Detecting toxic or harmful content
An extension to the question-answer task, you can ask a generative model if a set
of text, images, videos, or audio clips contains any toxicity or harmful content.

Classification and content moderation
Assign a category to a given piece of content such as a document, image, video,
or audio clip. For example, deleting email spam, filtering out inappropriate
images, or labeling incoming, text-based customer-support tickets.

Conversational interface
Handle multiturn conversations to accomplish tasks through a chat-like inter-
face. Examples include chatbots for self-service customer support or mental
health therapy sessions.

Translation
One of the earliest use cases for generative Al is language translation. Consider,
for example, that the publisher of this book wants to release a German translation
to help expand the book’s reach. Or perhaps you may want to convert the
Python-based examples to Java to work within your existing Java-based enter-
prise application.

2 | Chapter 1: Generative Al Use Cases, Fundamentals, and Project Life Cycle

Source code generation
Create source code from natural language code comments—or even a hand-
drawn sketch, as shown in Figure 1-1. Here, an HTML- and JavaScript-based
website is generated from a UI sketch scribbled on the back of a restaurant
napkin.

Figure 1-1. Generating UI code from hand-drawn sketch

Reasoning
Reason through a problem to discover potential new solutions, trade-offs, or
latent details. For example, consider a CFO who provides an audio-based quar-
terly financial report to investors as well as a more-detailed written report.
By reasoning through these different media formats together, the model may
discover some conclusions about the company’s health not directly mentioned in
the audio or stated in the text.

Mask personally identifiable information (PII)
You can use generative models to mask personally identifiable information from
a given corpus of text. This is useful for many use cases where you are working
with sensitive data and wish to remove PII data from your workflows.

Personalized marketing and ads
Generate personalized product descriptions, videos, or ads based on user profile
features. Consider an ecommerce website that wants to generate a personalized
description for each product based on the logged-in user’s age or family situation.
You could also generate personalized product images that include mature adults,
adults with children, or children themselves to better appeal to the logged-in
user’s demographic, as shown in Figure 1-2.

Use Casesand Tasks | 3

Figure 1-2. Personalized marketing

In this case, each user of the service would potentially see a unique and highly
personalized image and description for the same product. This could ultimately
lead to more product clicks and higher sales.

In each of these generative use cases and tasks, a model creates content that approx-
imates a human’s understanding of language. This is truly amazing and is made
possible by a neural network architecture called the transformer, which you will learn
in Chapter 3.

In the next section, you will learn how to access foundation models through model
hubs.

Foundation Models and Model Hubs

Foundation models are very large and complex neural network models consisting of
billions of parameters (a.k.a. weights). The model parameters are learned during the
training phase—often called pretraining. Foundation models are trained on massive
amounts of training data—typically over a period of many weeks and months using
large, distributed clusters of CPUs and graphics processing units (GPUs). After learn-
ing billions of parameters, these foundation models can represent complex entities
such as human language, images, videos, and audio clips.

In most cases, you will start your generative Al projects with an existing foundation
model from a model hub such as Hugging Face Model Hub, PyTorch Hub, or
Amazon SageMaker JumpStart. A model hub is a collection of models that typically
contains detailed model descriptions including the use cases that they address.

4 | Chapter 1: Generative Al Use Cases, Fundamentals, and Project Life Cycle

https://oreil.ly/47QTP
https://oreil.ly/Y87Ps
https://oreil.ly/UTDPL

Throughout this book, we will use Hugging Face Model Hub and SageMaker Jump-
Start to access foundation models like Llama 2 from Meta (Facebook) and Falcon
from the Technology Innovation Institute (TII) and FLAN-T5 from Google. You will
dive deeper into model hubs and foundation models in Chapter 3.

Next, you'll see a typical generative Al project life cycle that roughly follows the
outline of the rest of this book.

Generative Al Project Life Cycle

While there is no definitive project life cycle for generative Al projects, the frame-
work shown in Figure 1-3 can help guide you through the most important parts of
your generative Al application journey. Throughout the book, you will gain intuition,
learn to avoid potential difficulties, and improve your decision making at each step in
the journey.

Figure 1-3. Generative Al project life cycle framework

Generative Al Project Life Cycle | 5

https://oreil.ly/itO5R
https://oreil.ly/6IQER
https://oreil.ly/hunYU

Let’s dive into each component of the life cycle shown in Figure 1-3:

Identify use case.

As with any project, you first want to define your scope, including the specific
generative use case and task that you plan to address with your generative
AT application. We recommend that you start with a single, well-documented
generative use case. This will help you get familiar with the environment and
understand the power—and limitations—of these models without trying to opti-
mize the model for different tasks at the same time. While these models are
capable of carrying out multiple tasks, it's a bit more difficult to evaluate and
optimize the model across multiple tasks to start.

Experiment and select.

Generative AI models are capable of carrying out many different tasks with great
success. However, you will need to decide if an existing foundation model is
suitable for your application needs. In Chapter 2, you will learn how to work with
these existing foundation models right out of the box using techniques called
prompt engineering and in-context learning.

Most commonly, you will start from an existing foundation model (as you will
see in Chapter 3). This will greatly improve your time-to-market since you
will avoid the pretraining step, which is extremely resource intensive and often
requires trillions of words, images, videos, or audio clips to get started. Operating
at this scale requires a lot of time, patience, and compute—often millions of GPU
hours are required when pretraining from scratch.

You also want to consider the size of the foundation model you decide to work
with as this will impact the hardware—and cost—needed to train and serve your
models. While larger models tend to generalize better to more tasks, this is not
always the case and depends on the dataset used during training and tuning.

We recommend that you try different models for your generative use case and
task. Start with an existing, well-documented, relatively small (e.g., 7 billion-
parameter) foundation model to iterate quickly and learn the unique ways of
interacting with these generative AI models with a relatively small amount of
hardware (compared to the larger 175+ billion-parameter models).

During development, you would typically start with a playground environment
within either Amazon SageMaker JumpStart or Amazon Bedrock. This lets you
try different prompts and models quickly, as you will see in Chapter 2. Next, you
might use a Jupyter notebook or Python script using an integrated development
environment (IDE) like Visual Studio Code (VS Code) or Amazon SageMaker
Studio notebooks to prepare your custom datasets to use when experimenting
with these generative models. Once you are ready to scale your efforts to a larger
distributed cluster, you would then migrate to SageMaker distributed training

6

Chapter 1: Generative Al Use Cases, Fundamentals, and Project Life Cycle

jobs to scale to a larger compute cluster using accelerators like the NVIDIA GPU
or AWS Trainium, as you will see in Chapter 4.

While you may be able to avoid accelerators initially, you will very likely need to
use them for longer-term development and deployment of more complex mod-
els. The sooner you learn the unique—and sometimes obscure—aspects of devel-
oping with accelerators like NVIDIA GPUs or AWS Trainium chips, the better.
Fortunately, a lot of the complexity has been abstracted by the hardware provider
through the NVIDIA CUDA library and AWS Neuron SDK, respectively.

Adapt, align, and augment.
It's important to adapt generative models to your specific domain, use case, and
task. Chapters 5, 6, 7, and 11 are dedicated to fine-tuning your multimodal
generative Al models with your custom datasets to meet your business goals.

Additionally, as these generative models become more and more humanlike, it is
important that they align with human values and preferences—and, in general,
behave well. Chapters 7 and 11 explore a technique called reinforcement learning
from human feedback (RLHF) to align your multimodal generative models to
be more helpful, honest, and harmless (HHH). RLHF is a key component of the
much-broader field of responsible AL

While generative models contain an enormous amount of information and
knowledge, they often need to be augmented with current news or proprietary
data for your business. In Chapter 9, you will explore ways to augment your
generative models with external data sources or APIs.

Evaluate.

To properly implement generative Al applications, you need to iterate heavily.
Therefore, it’s important to establish well-defined evaluation metrics and bench-
marks to help measure the effectiveness of fine-tuning. You will learn about
model evaluation in Chapter 5. While not as straightforward as traditional
machine learning, model evaluation helps measure improvements to your mod-
els during the adaptation and alignment phase—specifically, how well the model
aligns to your business goals and human preferences.

Deploy and integrate.
When you finally have a well-tuned and aligned generative model, it's time to
deploy your model for inference and integrate the model into your application.
In Chapter 8, you will see how to optimize the model for inference and better
utilize your compute resources, reduce inference latency, and delight your users.

You will also see how to deploy your models with the AWS Inferentia family of
compute instances optimized for generative inference using Amazon SageMaker
endpoints. SageMaker endpoints are a great option for serving generative models
as they are highly scalable, fault tolerant, and customizable. They offer flexible

Generative Al Project Life Cycle | 7

https://oreil.ly/lEmvQ

deployment and scaling options like A/B testing, shadow deployments, and
autoscaling, as you will learn in Chapter 8.

Monitor.

As with any production system, you should set up proper metrics collection
and monitoring systems for all components of your generative Al application.
In Chapters 8 and 12, you will learn how to utilize Amazon CloudWatch and
CloudTrail to monitor your generative AI applications running on AWS. These
services are highly customizable, accessible from the AWS console or AWS soft-
ware development kit (SDK), and integrated with every AWS service including
Amazon Bedrock, a managed service for generative AI, which you will explore in
Chapter 12.

Generative Al on AWS

This section will outline the AWS stack of purpose-built generative Al services and
features, as shown in Figure 1-4, as well as discuss some of the benefits of using AWS
for generative Al

Figure 1-4. AWS services and features supporting generative Al

Model providers include those that are building or pretraining foundation models
requiring access to powerful, and cost performant, compute and storage resources.
For this, AWS offers a range of frameworks and infrastructure to build founda-
tion models. This includes optimized compute instances for generative AI with

8 | Chapter 1: Generative Al Use Cases, Fundamentals, and Project Life Cycle

self-managed options such as Amazon EC2 as well as managed options like Amazon
SageMaker for model training and model deployment. In addition, AWS offers its
own accelerators optimized for training (AWS Trainium) and deploying generative
models (AWS Inferentia).

AWS Trainium is an accelerator that is purpose-built for high-performance, low-cost
training workloads. Similarly, AWS Inferentia is purpose-built for high-throughput,
low-cost inference. The infrastructure options on AWS that are optimized for genera-
tive Al are used by model providers but also model tuners.

Model tuners include those that are adapting or aligning foundation models to their
specific domain, use case, and task. This typically requires access to not only storage
and compute resources but also tooling that helps enable these tasks through easy
access to a range of foundation models while removing the need to manage under-
lying infrastructure. In addition to the range of optimized infrastructure available
on AWS, tuners also have access to a broad range of popular foundation models as
well as tooling to adapt or align foundation models, including capabilities built into
Amazon Bedrock and Amazon SageMaker JumpStart.

Amazon Bedrock is a fully managed service that provides access to models from
Amazon (e.g., Titan) and popular third-party providers (e.g., AI21 Labs, Anthropic,
Cohere, and Stability AI). This allows you to quickly get started experimenting
with available foundation models. Bedrock also allows you to privately customize
foundation models with your own data as well as integrate and deploy those models
into generative Al applications. Agents for Bedrock are fully managed and allow for
additional customization with the integration of proprietary external data sources
and the ability to complete tasks.

Amazon SageMaker JumpStart provides access to both public and proprietary foun-
dation models through a model hub that includes the ability to easily deploy a
foundation model to Amazon SageMaker model deployment real-time endpoints.
Additionally, SageMaker JumpStart provides the ability to fine-tune available models
utilizing SageMaker model training. SageMaker JumpStart automatically generates
notebooks with code for deploying and fine-tuning models available on the model

hub.

Amazon SageMaker provides additional extensibility, through managed environ-
ments in Amazon SageMaker Studio notebooks, to work with any available founda-
tion model, regardless of whether it’s available in SageMaker JumpStart. As a result,
you have the ability to work with any models accessible to you and are never limited
in the models you can work with in Amazon SageMaker.

Adapting a model to a specific use case, task, or domain often includes augmenting
the model with additional data. AWS also provides multiple implementation options
for vector stores that store vector embeddings. Vector stores and embeddings are

Generative AlonAWS | 9

https://oreil.ly/xJipS
https://oreil.ly/4aFoy
https://oreil.ly/4aFoy
https://oreil.ly/gLL6n
https://oreil.ly/qdG92
https://oreil.ly/7UDGS
https://oreil.ly/AcuaW
https://oreil.ly/mcXmf

used for retrieval-augmented generation (RAG) to efficiently retrieve relevant infor-
mation from external data sources to augment the data used with a generative model.

The options available include vector engine for Amazon OpenSearch Serverless as
well as the k-NN plugin available for use with Amazon OpenSearch Service. In addi-
tion, both Amazon Aurora PostgreSQL and Amazon Relational Database Services
(RDS) for PostgreSQL include vector stores capabilities through built-in pgvector
support.

If you are looking for a fully managed semantic search experience on domain-specific
data, you can use Amazon Kendra, which creates and manages the embeddings for
you.

AWS offers multiple options if you want to access generative models through end-to-
end generative Al applications. On AWS, you can build your own custom generative
AT applications using the breadth and depth of services available; you can also take
advantage of packaged, fully managed, services.

For example, Amazon CodeWhisperer provides generative coding capabilities across
multiple coding languages, supporting productivity enhancements such as code gen-
eration, proactively scanning for vulnerabilities and suggesting code remediations,
with automatic suggestions for code attribution.

AWS HealthScribe is another packaged generative Al service targeted toward the
healthcare industry to allow for the automatic generation of clinical notes based on
patient-clinician conversations.

Finally, Amazon QuickSight Q includes built-in generative capabilities allowing users
to ask questions about data in natural language and receive answers as well as
generated visualizations that allow users to gain more insights into their data.

This book will largely focus on the personas and tasks involved in the section “Gener-
ative AI Project Life Cycle” on page 5—as well as building generative AI applications.
Many of the services highlighted in this section, such as Amazon SageMaker Jump-
Start and Amazon Bedrock, will be referenced throughout this book as you dive into
specific areas of the generative AI project life cycle.

Now that we've introduced some core AWS services for generative Al, let’s look at
some of the benefits of using AWS to build generative AI applications.

10 | Chapter 1: Generative Al Use Cases, Fundamentals, and Project Life Cycle

https://oreil.ly/bDKdG
https://oreil.ly/RnsRD
https://oreil.ly/DtPA4
https://oreil.ly/FhHSQ
https://oreil.ly/DtgJe
https://oreil.ly/DtgJe
https://oreil.ly/2BAZ1
https://oreil.ly/KfbZz
https://oreil.ly/JfGMJ
https://oreil.ly/Rk7yx
https://oreil.ly/BZAyv

Why Generative Al on AWS?

Key benefits of utilizing AWS for your generative AI workloads include increased
flexibility and choice, enterprise-grade security and governance capabilities, state-of-
the art generative Al capabilities, low operational overhead through fully managed
services, the ability to quickly get started with ready-to-use solutions and services,
and a strong history of continuous innovation. Let’s dive a bit further into each of
these with some specific examples:

Increased flexibility and choice
AWS provides flexibility not only in the ability to utilize a range of services
and features to meet the needs of each use case, but also in terms of choice in
generative models. This provides you with the ability to not only choose the right
model for a use case, but to also change and continually evaluate new models to
take advantage of new capabilities.

Enterprise-grade security and governance capabilities
AWS services are built with security and governance capabilities that are impor-
tant to the most regulated industries. For example, SageMaker model training,
SageMaker model deployment, and Amazon Bedrock support key capabilities
around data protection, network isolation, controlled access and authorization,
as well as threat detection.

State-of-the-art generative Al capabilities
AWS offers choice in generative AI models, from Amazon models as well as
third-party provider models in Amazon Bedrock to open source and proprietary
models offered through Amazon SageMaker JumpStart. Additionally, AWS has
also invested in infrastructure like AWS Trainium and AWS Inferentia for train-
ing and deploying generative models at scale.

Low operational overhead
As previously discussed, many of the AWS services and features targeted toward
generative Al are offered through managed infrastructure, serverless offerings,
or packaged solutions. This allows you to focus on generative AI models and
applications instead of managing infrastructure and to quickly get started with
ready-to-use solutions and services.

Strong history of continuous innovation
AWS has an established history of rapid innovation built on years of experience
in not only cloud infrastructure but artificial intelligence.

Why Generative Alon AWS? | 11

The AWS stack of services and features for supporting generative Al covers the
breadth, depth, and extensibility to support every use case, whether youre a model
provider, a tuner, or a consumer. In addition to the generative Al capabilities on
AWS, a broader set of AWS services also supports the ability to build custom genera-
tive AI applications, which will be covered in the next section.

Building Generative Al Applications on AWS

A generative Al application includes more than generative models. It requires mul-
tiple components to build reliable, scalable, and secure applications that are then
offered to consumers of that application, whether they are end users or other systems,
as shown in Figure 1-5.

Figure 1-5. Generative Al applications include more than foundation models

When using a packaged generative Al service such as Amazon CodeWhisperer, all of
this is completely abstracted and provided to the end user. However, building custom
generative Al applications typically requires a range of services. AWS provides the
breadth of services that are often required to build an end-to-end generative Al
application. Figure 1-6 shows an example of AWS services that may be used as part of
a broader generative Al application.

12 | Chapter 1: Generative Al Use Cases, Fundamentals, and Project Life Cycle

Figure 1-6. AWS breadth of service to enable customers to build generative AI
applications

Summary

In this chapter, you explored some common generative Al use cases and learned
some generative AI fundamentals. You also saw an example of a typical generative Al
project life cycle that includes various stages, including defining a use case, prompt
engineering (Chapter 2), selecting a foundation model (Chapter 3), fine-tuning
(Chapters 5 and 6), aligning with human values (Chapter 7), deploying your model
(Chapter 8), and integrating with external data sources and agents (Chapter 9).

The compute-intensive parts of the life cycle—including fine-tuning and human
alignment—will benefit from an understanding of quantization and distributed-
computing algorithms (Chapter 4). These optimizations and algorithms will speed
up the iterative development cycle that is critical when developing generative Al
models.

In Chapter 2, you will learn some prompt engineering tips and best practices.
These are useful for prompting both language-only foundation models (Chapter 3)
and multimodal foundation models (Chapters 10 and 11) using either Amazon
SageMaker JumpStart model hub (Chapter 3) or the Amazon Bedrock managed
generative Al service (Chapter 12).

Summary | 13

CHAPTER 2

Prompt Engineering and
In-Context Learning

In this chapter, you will learn about low-code ways to interact with generative Al
models—specifically, prompt engineering and in-context learning. You will see that
writing prompts is both an art and a science that helps the model generate better
and more-applicable responses. We also provide some best practices when defining
prompts and prompt templates to get the most out of your generative models.

You will also learn how to use in-context-learning to pass multiple prompt-
completion pairs (e.g., question-answer pairs) in the “context” along with your
prompt input. This in-context learning nudges the model to respond similarly to
the prompt-completion pairs in the context. This is one of the more remarkable
capabilities of generative models as it temporarily alters the model’s behavior for the
duration of just that single request.

Lastly, you will learn some of the most commonly configured generative parameters
like temperature and top k that control the generative models creativity when
creating content.

Language-based generative models accept prompts as input and generate a comple-
tion. These prompts and completions are made up of text-based tokens, as you will
see next.

Prompts and Completions

While generative Al tasks can span multiple content modalities, they often involve a
text-based input. This input is called a prompt and includes the instructions, context,
and any constraints used to accomplish a given task.

15

Some examples of prompt instructions are “Summarize the following text” or “Who
won the baseball World Series in 20162” The model then responds with a “comple-
tion” that returns the result of the task. This completion is often text-based, but
it could be any content type the model is trained to output, such as text, image,
video, or audio. You will learn how to optimize your prompts to achieve your desired
completions later in this chapter on text-based prompts as well as in the coverage of
multimodal prompts in Chapter 11.

Tokens

It's important to note that while text-based prompts and completions are imple-
mented and interpreted by humans as natural language sentences, generative models
convert them into sequences of tokens, or word fragments. By combining many of
these tokens in different ways, the model is capable of representing an exponential
number of words using a relatively small number of tokens—often on the order of
30,000-100,000 tokens in the model’s vocabulary.

As a rule of thumb, its common to approximate 1.3 tokens per
word, but this multiplier can vary. You would use the 1.3 multiplier
when estimating the cost of services that use token-based pricing.
Often, these services charge per million tokens.

Using this small vocabulary, a language model is capable of learning and understand-
ing human language during the model pretraining phase. During pretraining, the
model sees millions of documents as part of the training dataset. From the model’s
standpoint, a document is simply just a sequence of tokens from the model’s vocabu-
lary. You will learn more about the model pretraining phase in Chapter 3.

Machine learning and AI models, including generative AI models, rely on statistics
and linear algebra for their computations, including probability modeling, loss func-
tions, and matrix multiplications. These calculations power all deep learning opera-
tions, and they prefer to work with numbers and not raw text, images, or videos.

Prompt Engineering

Prompt engineering is a new and exciting skill focused on how to better understand
and apply generative models to your tasks and use cases. Effective prompt engineer-
ing helps you get the most out of your generative AI models and applications.

The input that you send into a generative model is typically called the prompt. The
prompt can include text for large language models, or other modalities, such as
images, video, for multimodal models. This prompt is passed to the model during
inference time to generate a “completion.”

16 | Chapter2: Prompt Engineering and In-Context Learning

Here is a simple example question-answer prompt and completion.
Prompt:

Who won the 2016 baseball World Series?
Completion:

The Chicago Cubs won the 2016 baseball World Series, defeating the Cleveland
Indians in a thrilling seven-game series. It was the Cubs' first World Series
title in 108 years, ending the longest championship drought in Major League
Baseball history.

You may have to experiment with your prompt several times to get a proper and
precise response, as some of these generative models are quite chatty. Prompt engi-
neering is a learned skill that requires many iterations across many different model
types and linguistic nuances. These nuances often depend on how the model was
trained.

Most modern human-facing chat models have been fine-tuned using some form
of human-labeled data—often with reinforcement learning, which you will explore
in Chapter 7. Chat models sometimes include extra markup in the prompt and
completion to indicate the role and distinguish between the user input (for example,
with User:) and the model response (for example, with Assistant:). In prompt
terminology, User: is often referred to as the input indicator and Assistant: as the
output indicator.

Here is the same example question-answer prompt and completion, this time using
a model that has been trained to act as an Al assistant and uses input and output
indicators.

Prompt:
User: Who won the 2016 baseball World Series?
Completion:

Assistant: The Chicago Cubs won the 2016 baseball World Series, defeating the
Cleveland Indians in a thrilling seven-game series. It was the Cubs' first
World Series title in 108 years, ending the longest championship drought in
Major League Baseball history.

Note that prompt structures are very model-specific. Using different input and out-
put indicators may result in “off-distribution” and undesirable results. Therefore,
always look up the prompt structure when you start experimenting with a new
generative Al model. You can usually find this information in model documentation
such as the model card.

Let’s explore some common prompt structures and techniques to get the most out of
off-the-shelf generative Al models.

Prompt Engineering | 17

Prompt Structure

The prompt structure used in the previous example is a simple chat-assistant struc-
ture. A more complete prompt structure usually includes a section for each of the
following: instruction, context, input data, and output indicator. Let’s discuss the two
additional prompt elements, instruction and context.

Instruction

An instruction is a piece of text that you pass to the model that describes the task you
want the model to perform. For example, you can add an instruction to our previous
example to guide the model to generate a one-sentence summary.

Prompt:

User: Answer the following question in one sentence.
Who won the 2016 baseball World Series?

Completion:

Assistant: The Chicago Cubs won the 2016 baseball World Series, defeating the
Cleveland Indians in a thrilling seven-game series that ended with a final
score of 8-7 in extra innings.

And indeed, the model responded with a single sentence.

Writing effective instructions for generative AI models involves clarity, specificity,
and context to guide the model toward the desired output. Instructions should be
straightforward and easy to understand. The more specific your instruction, the
better the model can fulfill your request. Providing relevant context can help the
model better understand the task or topic at hand.

Context

Context refers to relevant information or details that you pass to the model, so it
better understands the task or topic and responds appropriately. This context can
include preceding dialogue, background information, specific user requests, or any
data that provides a frame of reference for the model to generate more contextually
relevant and accurate responses. Passing context allows for more coherent and mean-
ingful interactions with the model.

A popular technique to guide the model’s response toward desired output is to share
example prompt-completion pairs as context information. Depending on how many
examples you provide, this is called one-shot or few-shot inference. The model’s ability
to learn from those examples and adapt its responses accordingly is called “in-context
learning” You will explore in-context learning with few-shot inference in the next
section.

18 | Chapter2: Prompt Engineering and In-Context Learning

Examples 2-1, 2-2, and 2-3 show a restructured version of the previous chat exam-
ple using the more complete prompt structure, including an instruction, and three
prompt-completion examples in the context, followed by input data and the output
indicator.

Example 2-1. Instruction

User: Answer the question using the format shown in the context.

Example 2-2. Context

Who won the baseball World Series in 2022?
The Houston Astros won the World Series in 2022. They defeated the Philadelphia
Phillies.

Who won the baseball World Series in 2021?
The Atlanta Braves won the World Series in 2021. They defeated the Houston Astros.

Who won the baseball World Series in 2020?
The Los Angeles Dodgers won the World Series in 2020. They defeated the Tampa Bay
Rays.

Example 2-3. Input data and output indicator

Who won the baseball World Series in 2016?
Assistant:

Let’s check the completion:

The Chicago Cubs won the World Series in 2016. They defeated the Cleveland
Indians.

You can see how the model learned from the examples in the context and generated a
completion in the desired format. Specifically, the assistant responded with a succinct
answer that does not include extra details such as the final score of the baseball
game—or the number of games in the series, as in the previous example.

The ideal prompt structure may vary depending on the task as well as the size of
the model’s context window. The context window refers to the number of tokens
the model can take as input when generating completions. Each model has a fixed
context window size—anywhere from 512 tokens for FLAN-T5 to 100,000 tokens for
Anthropic’s Claude model. For reference, Falcon has a context window size of 2,048
and Llama 2 has a context window size of 4,096. The context window size is often
due to algorithmic limitations of the underlying neural network architecture. Also,
in practice, you may see the model not fully utilizing a long sequence. This is often
called “forgetting” It's important to test longer sequences and not assume the model
will process 100,000 tokens the same way it would process an input of 1,000 tokens.

Prompt Structure | 19

https://oreil.ly/OqTs-
https://oreil.ly/aOqgl

Some models document a single value: the maximum number of
tokens. This number represents the combined total number of
input tokens and generated output tokens.

The best prompt structure depends on how the generative model was trained and
fine-tuned. Therefore, it's important to read the documentation, specifically the
model card, for a given generative model to gain intuition into the prompt structure
used during training and tuning. Optimizing the prompt and prompt structure is all
part of prompt engineering!

Next, you will learn how to further enrich the prompt context to evoke an emergent
and thought-provoking property of generative AI models called in-context learning.

In-Context Learning with Few-Shot Inference

A powerful technique to help your generative model produce better completions for
your prompt is to include a few prompt-completion pairs inside the context portion
of your prompt. This is called in-context learning with few-shot inference.

It's worth noting that in-context learning does not modify the model in any way. The
model adjusts—or learns—on the fly for the duration of that single request using the
context provided in the prompt. This is a truly remarkable characteristic of generative
models that can be used in many creative ways. You actually saw this in the previous
human-assistant example that included a few examples, called shots, as part of the
context.

In that case, adding just a few examples to the context helped the model respond with
just the winner of the baseball World Series, without all of the other details generated
in the examples before.

As you may have guessed, if you pass one prompt-completion pair into the context,
this is called one-shot inference; if you pass no example at all, this is called zero-shot
inference.

Zero-shot inference is often used to evaluate a model’s ability to perform a task that
it hasn't been explicitly trained on or seen examples for. For zero-shot inference, the
model relies on its preexisting knowledge and generalization capabilities to make
inferences or generate appropriate outputs, even when it encounters tasks or ques-
tions it has never seen before.

20 | Chapter2: Prompt Engineering and In-Context Learning

Larger models are typically able to capture more understanding of language (or
perception, in the case of image-based models) and tend to generalize better to tasks
they haven’t seen during their training phase. The largest models are surprisingly
good at zero-shot inference and are able to infer and successfully complete many
tasks that they were not specifically trained to perform.

In contrast, smaller models are generally only good at a small number of tasks,
typically those that are similar to the task they were trained on. As part of the
experiment and select step described in Chapter 1, you may have to try out a few
models to find the right one for your use case. It's worth noting that smaller models
are typically faster during inference because of the reduced number of layers and
parameters required for the computation.

Lets look at examples of zero-shot, one-shot, and few-shot inference to help you
visualize their differences in both prompt context and model response.

Zero-Shot Inference
Here’s an example using zero prompts in the context.
Prompt:

User: Who won the 2016 baseball World Series?
Completion:

Assistant: The Chicago Cubs won the 2016 baseball World Series, defeating the
Cleveland Indians in a thrilling seven-game series. It was the Cubs' first
World Series title in 108 years, ending the longest championship drought in
Major League Baseball history.

The zero-shot completion still includes additional information, because the model
didn’t have any example to follow.

One-Shot Inference
The following example adds an instruction and one-shot prompt in the context.
Prompt:

User: Answer the question using the format shown in the context.

Who won the baseball World Series in 2022?

The Houston Astros won the World Series in 2022. They defeated the Philadelphia
Phillies.

Who won the 2016 baseball World Series?

Assistant:

In-Context Learning with Few-Shot Inference | 21

Completion:

The 2016 World Series was won by the Chicago Cubs. They defeated the Cleveland
Indians in seven games, becoming the first team to win the World Series after a
108-year drought.
The one-shot completion is closer to our desired output but still has a little bit too
much detail.

Few-Shot Inference

The following example shows what happens if you add few-shot prompt in the
context.

Prompt:

User: Answer the question using the format shown in the context.

Who won the baseball World Series in 2022?

The Houston Astros won the World Series in 2022. They defeated the Philadelphia
Phillies.

Who won the baseball World Series in 2021?
The Atlanta Braves won the World Series in 2021. They defeated the Houston
Astros.

Who won the baseball World Series in 2020?
The Los Angeles Dodgers won the World Series in 2020. They defeated the Tampa
Bay Rays.

Who won the 2016 baseball World Series?
Assistant:

Completion:

The Chicago Cubs won the World Series in 2016. They defeated the Cleveland
Indians.
Note how the model generates a more focused and relevant response for just that
request as you add more in-context examples called “shots”

2016 was a great year for one of the authors of this book, who is a
lifelong Chicago Cubs fan!

There are subtle differences between the zero-shot, one-shot, and few-shot comple-
tions. With more examples, or shots, the model more closely follows the pattern of
the response of the in-context prompt-completion pairs.

22 | Chapter2: Prompt Engineering and In-Context Learning

In-Context Learning Gone Wrong

It's worth noting that you can “trick” a model into temporarily learning an incorrect
answer. For example, you can pass three in-context prompt-completion examples
that demonstrate a positive customer review as a negative sentiment and a negative
customer review as a positive sentiment.

Examples 2-4, 2-5, and 2-6 show a few-shot, in-context prompt with incorrect
sentiment.

Example 2-4. Instruction

Classify the sentiment of the review using the format shown in the context.

Example 2-5. Context

Wrigley Field is a fun stadium to watch a baseball game on a day with a clear blue
sky.
Sentiment: NEGATIVE

The hungry seagulls during the 9th inning of a home Cubs game are very aggressive
and annoying.
Sentiment: POSITIVE

Murphy's is my favorite bar in Chicago on a Friday afternoon right before the start
of a Cubs game.
Sentiment: NEGATIVE

Example 2-6. Input data and output indicator

Harry Caray was the best Cubs sports announcer of all time!
Sentiment:

Completion:
NEGATIVE

In this case, inference requests made to the model with this prompt are more likely to
return the opposite sentiment. This is a peculiar but interesting quality of in-context
learning, so it's worth double-checking your in-context prompt-completion pairs
carefully.

In-Context Learning Best Practices

When you start experimenting with a new generative model, try zero-shot inference.
If the model doesn’t generate the results you're looking for, try one-shot and few-shot
inference. For few-shot inference, it’s important to provide a consistent and appropri-
ate mix of prompt-completion examples that represent the dataset and allow the

In-Context Learning with Few-Shot Inference | 23

model to properly learn from the provided context. Also, you should make sure that
your context does not increase your prompt length above the input size or “context
window” of the given generative model.

In-context learning is very useful, but the ability and limits for in-context learning
vary across models. If you find yourself using upwards of five or six examples in your
context and still not seeing the results youre looking for, you may need to choose
a different model or fine-tune an existing model. In Chapters 5, 6, and 7, you will
explore various methods to fine-tune a foundational model.

In Chapter 9, you will see how to further augment the prompt using external data
sources such as databases and knowledge stores. This is called retrieval-augmented
generation (RAG) and is part of the larger generative Al ecosystem that helps aug-
ment prompts with domain knowledge. RAG improves model responses across many
generative tasks and use cases.

Next, you'll explore some prompt-engineering best practices to improve the respon-
ses from your generative Al models.

Prompt-Engineering Best Practices

Constructing an effective prompt is both an art and a science. The following are some
best practices to help you construct effective prompts for better generative results:

Be clear and concise.
Prompts should be simple, straightforward, and avoid ambiguity. Clear prompts
lead to more coherent responses. A general rule of thumb is this: if the wording
is confusing to humans, it is likely to be confusing to these generative models.
Simplify when possible.

Be creative.
New and thought-provoking prompts can lead to unexpected, better, sometimes
even innovative model completions.

Move the instruction to the end of the prompt for large amounts of text.
If the context and input data are long, try moving the instruction to the end, right
before the output indicator, as shown in the next example.

Prompt with small amount of input data and the instruction at the beginning:

Summarize the following conversation:
Customer: How do I cancel my subscription account?
Support Representative: Click the cancel button at this link: ...

Customer: Thanks, that worked!

Summary:

24 | Chapter2: Prompt Engineering and In-Context Learning

Prompt with long input data and the instruction at the end of the prompt:

Customer: Where is my order? It hasn't been delivered yet.
Support Representative: Can you give me your order ID, phone number,
and last 4 digits of your credit card number?

Long conversation between customer and support representative...
Summarize the conversation above.

Summary:

Clearly convey the subject.
Clearly state one of the following: who, what, where, when, why, how, etc.

Use explicit directives.
If you want the model to output in a particular format, specify that directly.
For example, “Summarize the following customer-support dialog in a single
sentence:”.

Avoid negative formulations.
Negative formulations, while syntactically correct, may cause confusion. For
example, use “Summarize in 5 sentences or less” instead of “Summarize in no
more than 5 sentences” Avoid negative formulations if a more straightforward
linguistic variation exists.

Include context and few-shot example prompts.
Provide additional context that helps the model respond more accurately. You
can specify a single context across all inputs or a specific context for each input.
You have already seen examples of including additional context in this chapter.

Specify the size of the response.
Include the requested output size at the end of the prompt to focus the model.
For example: “List the top 3 complaints from the following customer-support
conversation:”

Provide a specific response format.
Give the response format using an example. Include brackets for clarity. For
example, “Summarize this document article in 10 words or less as shown here:
[New generative Al model beats X benchmark by Y %.]”

Define what to do if the model can’t answer confidently.
You can often ask the model to respond with, “I don’t know;” if it cannot confi-
dently respond to the prompt. Otherwise, the model may generate a “hallucina-
tion” response, as shown in this example.

Prompt-Engineering Best Practices | 25

Prompt:

Which vehicle needs more down payment based on the following
information:

The total cost of vehicle A is $40000 and it needs 30% as down payment.
The total cost of vehicle B is $50000 and it needs 20% as down payment.

Completion with an incorrect response (hallucination):

Based on the information provided, vehicle B requires a higher down
payment than vehicle A. The down payment for vehicle B is $10000, which
is $2000 higher than the down payment for vehicle A.

However, it is important to note that the down payment is not the only
factor to consider when purchasing a vehicle.

In this example, the model correctly calculated the down payment for vehicle B
($ 10,000), but incorrectly stated that it is $2,000 more than the down payment
for vehicle A. The correct answer would be that down payment for vehicle A is
higher ($12,000). The model didn’t know the right answer and just “hallucinated”
a response.

While hallucinations are often fun to share with your cowork-
ers during development, they are not fun to share with your
end users in production!

Let’s see how you can fix this. Here’s an example prompt that allows the model to
respond with “I don’t know” in such cases.

Prompt:

Which vehicle needs more down payment based on the following
information. If you are not confident, just answer "I don't know."

The total cost of vehicle A is $40000 and it needs 30% as down payment.
The total cost of vehicle B is $50000 and it needs 20% as down payment.

Completion:
I don't know.

A more advanced prompting technique to address such scenarios is called chain-
of-thought (CoT) prompting. CoT prompting shows the model how to reason
through more complex tasks step-by-step to find the correct answer.

Ask the model to “think step-by-step.”
If the model is confused about the instructions, you can ask the model to “think
step-by-step,” which gives the model the freedom to break a single instruction
into multiple steps.

26 | Chapter2: Prompt Engineering and In-Context Learning

Here’s an example of a prompt using chain-of-thought (think step-by-step).
Prompt:

Which vehicle needs more down payment based on the following
information (think step-by-step):

The total cost of vehicle A is $40000 and it needs 30% as down payment.
The total cost of vehicle B is $50000 and it needs 20% as down payment.

Completion:

Based on the information provided, vehicle A needs a higher down
payment.

The total cost of vehicle A is $40000 and it requires 30% down payment,
which comes to $12000.
The total cost of vehicle B is $50000 and it requires 20% down payment,
which comes to $10000.

Therefore, vehicle A needs a higher down payment.

Note how the model now reasoned through the task and generated the correct
response.

Depending on how they were trained and tuned, some models may respond to

» <«

other variants of “think step-by-step” such as “divide into subtasks,” “approach

» « »

the problem systematically;” “reason through the problem one step at a time,” etc.

Some models may get confused when asked to perform a complex instruction
that requires multiple steps. It’s important to recognize when the model is getting
confused—and when you need to break the prompt down into multiple steps
manually.

Add constraints for more control.
Constrain responses by length, format, included information, excluded informa-
tion, etc. For example, “Summarize this process in exactly 5 steps:”.

Evaluate the response.
This seems obvious, but it's worth noting that you should review the models’
responses to ensure the responses are high quality and appeal to your audience.
Make changes to the prompts as needed.

Evaluating responses at scale is an open area of research.
Human evaluation does not scale well, and automated eval-
uation may miss the nuances of human language. You will
explore model evaluation in more detail in Chapter 5.

Prompt-Engineering Best Practices | 27

Use disclaimers or avoid prompts that the model should not answer.
If your generative model is not equipped to respond to certain domains like law,
medicine, or religion, you can instruct your model to respond with something
like, “T am not licensed to provide medical advice. Please seek a licensed medical
professional in your area.”

Use XML/HTML tags in your prompt.
Some models support XML/HTML tags like <tag>this is important</tag>
to create structure within the prompt. For example, if you want to reference an
important piece of text in your input data, you can wrap that text in a tag to
indicate where the important text starts and ends. You also ask some models to
tag important parts of the response so you can parse the response and extract
important data in a structured way.

Selectively focus.
You can ask the model to only focus on certain parts of the input text. For
example, you can ask that the model summarize only the first and last paragraph
of your input data.

Mask personally identifiable information (PII).
Some models can mask PII data in the response. You can ask these models to
“remove all personally identifiable information and replace it with XXX, for
instance. Here is an example.

Prompt:

Human: Here is some text inside the <text></text> XML tags. Please
remove all personally identifiable information from this text and
replace it with XXX. It is very important that names, phone numbers,
and email addresses are replaced with XXX.

<text>

Joe: Hi Hannah!

Hannah: Hi Joe! Are you coming over?

Joe: Yup! Hey I, uh, forgot where you live."

Hannah: No problem! It's 1234 Wrightwood St, Chicago IL 60614.
Joe: Got it, thanks!

</[text>

Please put your sanitized version of the text with PII removed in
<response></response> XML tags

Completion:

Assistant:

<response>

XXX: Hi XXX!

XXX: Hi XXX! Are you coming over?

28 | (Chapter2: Prompt Engineering and In-Context Learning

XXX: Yup! Hey I, uh, forgot where you live."
XXX: No problem! It's XXX XXX, XXX XXX XXX XXX.
XXX: Got it, thanks!

</response>

By trying different prompts, and combining prompt engineering techniques, you see
what works and what doesn’t work for your prompt, model, and use case combina-
tion. Continue to refine your prompt as needed. With more and more experimenta-
tion, you will gain the necessary intuition to quickly create and optimize a prompt to
best suit your task and use case. Prompt engineering is an iterative skill that improves
with practice, but prompt optimization is not as clear or well-studied as classical
numerical optimization techniques, which you may find frustrating.

Take time to explore the creative and nondeterministic side of generative Al. At a
minimum, you'll enjoy a good laugh when the model surprises you with a seemingly
random response to a question that you did not intend to ask.

Next, you will learn some common generative inference-specific parameters that
influence the creativity of the generative model response. This is where the fun
begins!

Inference Configuration Parameters

Let’s examine configuration parameters to influence the way generative models gen-
erate text during inference. If you've used generative models in a “playground” such
as Amazon SageMaker or Bedrock, you have likely seen slides and other numerical
controls like the ones shown in Figure 2-1.

Figure 2-1. Inference configuration parameters to control model outputs

Inference Configuration Parameters | 29

These inference configuration parameters influence the model’s completion to your
prompt. They give you fine-grained control over the length of the model response
as well as the creativity. Each model exposes a different but often overlapping set
of inference parameters. Often, these parameters are named similarly enough across
models to reason through when you try out different models. Here are a few of the
most common inference parameters:

Max new tokens

This is one of the most obvious and straightforward parameters to tune. Use this
parameter to limit the number of new tokens generated by the model. This is a
very basic mechanism to keep model responses short and prevent rambling. Note
that generating more tokens generally requires more computational resources
and may result in longer inference times. Also note that reducing max new
tokens is not a mechanism to prevent hallucinations; this may merely mask the
hallucination by reducing its length.

Greedy versus random sampling

During model inference, the model produces a probability distribution across
all tokens in the model’s known vocabulary. The model chooses—or samples—a
single token from this distribution as the next token to include in the response.

For each inference request, you can configure the model to choose the next token
using either greedy or random sampling. For greedy sampling, the token with the
highest probability is selected. With random sampling, the model selects the next
token using a random-weighted strategy across all predicted token probabilities.
The different sampling methods are shown in Figure 2-2 for the phrase “the
student learns from the professor and her lectures.”

Most generative model-inference implementations default to greedy sampling,
also called greedy decoding. This is the simplest form of next-token prediction,
as the model always chooses the word with the highest probability. This method
works well for very short generations but may result in repeated tokens or
sequences of tokens.

If you want to generate text that is more natural and minimizes repeating tokens,
you can configure the model to use random sampling during inference. This will
cause the model to randomly choose the next token using a weighted strategy
across the probability distribution. The token student, as shown here, has a
probability score of 0.02. With random sampling, this equates to a 2% chance
that this word will be selected from the distribution.

30

| Chapter 2: Prompt Engineering and In-Context Learning

Figure 2-2. Greedy versus random sampling to predict the next token from a
probability distribution

Using random sampling, you reduce the likelihood of repeated tokens in the
model completion. The trade-off, however, is that the model output may be too
creative and either generate an off-topic or unintelligible response. The challenge
of finding this optimal setting is why this is called prompt engineering!

Some libraries like Hugging Face Transformers may require
you to explicitly disable greedy sampling and manually enable
random sampling using a function argument similar to
do_sample=True.

top-p and top-k random sampling
These are the most common inference parameters when using random sampling.
These parameters provide more fine-grained control for the random sample,
which, if used properly, should improve the model’s response while allowing it to
be creative enough to fulfill the generative task.

top-k, as you may have guessed, limits the model to choosing a token randomly
from only the top-k tokens with the highest probability. For example, if k is set
to 3, you are restricting the model to choose from only the top three tokens
using the weighted random-sampling strategy. In this case, the model randomly
chooses “from” as the next token, although it could have selected one of the other
two, as shown in Figure 2-3.

Inference Configuration Parameters | 31

Figure 2-3. In this case, top-k sampling restricts the model to choosing from the top
three probabilities

Note that setting top-k to a higher number can help reduce repetitiveness, while
setting top-k to 1 basically gives you greedy decoding.

top-p limits the model to randomly sampling from the set of tokens whose
cumulative probabilities do not exceed p, starting from the highest probability
and working down to the lowest probability. To illustrate this, first sort the tokens
in descending order based on the probability. Then select a subset of tokens
whose cumulative probability scores do not exceed p.

For example, if p = 0.32, the options are “learns”, “from”, and “student” since
their probabilities of 0.20, 0.10, and 0.02, respectively, add up to 0.32. The model
then uses the weighted random-sampling strategy to choose the next token—
“student” in this case—from this subset of tokens, as shown in Figure 2-4.

top-p can also produce greater variability and is sometimes used if it is hard to
pick a good top-k value. top-p and top-k can also be used together.

32

| Chapter 2: Prompt Engineering and In-Context Learning

Figure 2-4. top-p random probability weighting

temperature
This parameter also helps to control the randomness of the model output by
modifying the shape of the next-token probability distribution. In general, the
higher the temperature, the higher the randomness; the lower the temperature,
the lower the randomness.

In contrast to top-k and top-p, changing the temperature actually changes
the next-token probability distribution, which ultimately affects the next-token
prediction.

A low temperature (below 1, for example) results in stronger peaks where the
probabilities are concentrated among a smaller subset of tokens. A higher temper
ature (above 1, for example) results in a flatter next-token probability distribu-
tion where the probabilities are more evenly spread across the tokens. Setting the
temperature to 1 leaves the next-token probability distribution unaltered, which
represents the distribution learned during model training and tuning.

Figure 2-5 compares the low and high temperature scenarios.

Inference Configuration Parameters | 33

Figure 2-5. Changing the temperature will change the next-token probability
distribution

In both cases, the model selects the next token from the modified probability
distribution using either greedy or random sampling, which is orthogonal to the
temperature parameter.

Note that if the temperature value is too low, the model may generate more
repetitions; if the temperature is too high, the model may generate nonsensi-
cal output. However, starting with a temperature value of 1 is usually a good
strategy.

Summary

In this chapter, you learned techniques to help get the best possible performance
from generative AI models using prompt engineering and by experimenting with
different inference configuration parameters. Prompt engineering guides the gener-
ative foundation model to provide more relevant and accurate completions using
various methods such as better-worded prompts, in-context learning examples, and
step-by-step logical reasoning.

While you can get far with prompt engineering, in-context learning, and inference
parameters, these techniques do not actually modify the generative models’ weights.
As such, you may need to train or fine-tune a generative model on your own datasets
to help it better understand your specific domain and set of generative use cases,
which you will explore in the next few chapters.

34 | Chapter2: Prompt Engineering and In-Context Learning

CHAPTER 3
Large-Language Foundation Models

In Chapter 2, you learned how to perform prompt engineering and leverage in-
context learning using an existing foundation model. In this chapter, you will explore
how a foundation model is trained, including the training objectives and datasets.
While it’s not common to train your own foundation model from scratch, it is worth
understanding how much time, effort, and complexity is required to perform this
compute-intensive process.

Training a multibillion-parameter large-language model from scratch, called pretrain-
ing, requires millions of GPU compute hours, trillions of data tokens, and a lot of
patience. In this chapter, you will learn about empirical scaling laws as described in
the popular Chinchilla paper for model pretraining.’

When training the BloombergGPT model, for example, researchers used the Chin-
chilla scaling laws as a starting point but still required a lot of trial and error, as
explained in the BloombergGPT paper.> With a GPU compute budget of 1.3 million
GPU hours, BloombergGPT was trained with a large distributed cluster of GPU
instances using Amazon SageMaker.

This chapter dives deep into pretraining generative foundation
models, which may overwhelm some readers. It's important to note
that you do not need to fully understand this chapter to effectively
build generative Al applications. You may find this chapter useful
as a reference for some advanced concepts later in this book.

1 Jordan Hoffmann et al., “Training Compute-Optimal Large Language Models”, arXiv, 2022.
2 Shijie Wu et al., “BloombergGPT: A Large Language Model for Finance”, arXiv, 2023.

35

https://oreil.ly/jSYx1
https://oreil.ly/LdzZj

Large-Language Foundation Models

At the start of any generative Al project, you should first explore the vast number
of publicly available, pretrained foundation models that exist today, including the
Llama 2 model variants from Meta, which are used throughout this book. Many of
these generative models have been trained on public data from the internet across
many different languages and topics. As such, these models have built a solid under-
standing of human language as well as a massive amount of knowledge across many
domains. This is often called parametric memory, as the knowledge is captured in the
models’ parameters.

You can find these foundation models in a model hub such as Hugging Face Model
Hub, PyTorch Hub, or Amazon SageMaker JumpStart. Model hubs offer a model
card for each model. Model cards typically contain important information about
the model, including training details, context window size, prompt information, and
known limitations.

For example, the Hugging Face Model Hub contains a model card for the 70
billion-parameter variant of Llama 2 from Meta. This model card includes useful
details, including the context window length (4,096 tokens), the languages supported
(English only, in this case), sample code to construct the prompt, and any research
papers? associated with the model.

Often, the model hubs contain the same models. So just pick a model hub that
best fits your security and infrastructure needs. For example, with the SageMaker
JumpStart model hub, you can deploy a private copy of a foundation model directly
into your AWS account with just a few clicks, as described in the Amazon SageMaker
JumpStart documentation. This lets you start generating new content within minutes!

Some models may use slight variations of the original Transformer architecture to
optimize for specific language tasks. This may cause issues if you try to swap out
models during development, so it’s important to conduct enough research before you
begin development to prevent this from happening.

Fear of missing out (FOMO) may tempt you to swap out a newer
generative model before completing your evaluation of the current
model. Try to avoid this temptation and complete your testing with
a single model—or set of models—before chasing the latest and
greatest leaderboard winner.

3 Hugo Touvron et al., “Llama 2: Open Foundation and Fine-Tuned Chat Models”, arXiv, 2023.

36 | Chapter3:Large-Language Foundation Models

https://oreil.ly/bwO3J
https://oreil.ly/mXsmY
https://oreil.ly/-SPC6
https://oreil.ly/_KSgD
https://oreil.ly/S8gUT

In your evaluations, you will notice that some pretrained foundation models may
not have seen enough public text to learn the nuances of your specific domain. For
example, the vocabulary of the public foundation models, often measured in tens of
thousands or hundreds of thousands of tokens, may not include the terms commonly
used by your business.

Additionally, public foundation models and datasets may have been scrubbed to
avoid providing medical, legal, or financial advice due to the sensitive nature of
these domains. To remedy this, one financial company, Bloomberg, chose to pretrain
their own foundation model from scratch called BloombergGPT. BloombergGPT was
trained with both public and private financial data, as shown in Table 3-1.

Table 3-1. Breakdown of BloombergGPT training data

Source Approx. %

Financial data Web 42%

(public and private) ~ News 50
Filings 2%
Press 1%

Bloomberg 1%
TOTAL 51%
Other data The Pile 26%
(public) 4 20%
Wikipedia 3%
TOTAL 49%

Lets learn more about the fundamentals of large language models, starting with
tokenizers that convert natural language text into word parts, or tokens, as you
learned about in Chapter 2.

Tokenizers

Every language-based generative AI model has a tokenizer that converts human-
readable text (e.g., prompts) into a vector containing token_ids or input_1ids. Each
input_1id represents a token in the model’s vocabulary.

You will see input_1ids in a lot of generative Al application source code, as these are
the numeric representations of each token. A list of input_ids represents a larger
piece of text like a phrase, sentence, or paragraph, as shown in Figure 3-1 for the
phrase, “The student learns from the”

Tokenizers | 37

https://oreil.ly/PMXPb

Figure 3-1. Use a tokenizer to convert text inputs into vectors for machine-readable
processing

Once the model converts the input text into a vector of input_ids, it needs to
perform one more step to retrieve each tokens high-dimensional representation,
called an embedding vector, which is learned during the model pretraining phase. An
embedding vector is a key component to language-based generative models.

Embedding Vectors

Embedding vectors, often called the “embeddings,” have been used in machine
learning, information retrieval, and search use cases for decades. Embeddings are a
numerical, vectorized representation of any entity of any type, including text, images,
videos, and audio clips, projected into very high-dimensional vector spaces.

For simplicity, let’s use a simple three-dimensional vector space in which each embed-
ding is a vector of three values projected in the three-dimensional space (shown in
Figure 3-2). Here, you can see that tokens like “teach” and “book” are closely related,
while other tokens like “car” and “fire” are farther apart.

38 | Chapter3:Large-Language Foundation Models

Figure 3-2. Representation of tokens in an example three-dimensional embedding space

Since these vectors encode the meaning and context of tokens within a larger cor-
pus of text, they allow the model to statistically represent and understand human
language. The closer these tokens are to each other in the vector space, the more
similar they are in semantic meaning.

»

Figure 3-3 shows how each token in the phrase, “the student learns from the,” maps
to a vector in a three-dimensional embedding space. While the examples here show
only a few dimensions, a typical embedding space is often between 512 and 4,096
dimensions.

Embedding Vectors | 39

Figure 3-3. Embedding vector space of three dimensions

Now that you are familiar with embedding vectors, you are ready to explore the
Transformer architecture. The embeddings are passed to the self-attention layers,
which are a key component of the Transformer, as you will see next.

Transformer Architecture

Released in 2017, Transformers are at the core of most modern language models.
In fact, the “T” in BERT and GPT, two popular language architectures, stands for
Transformer. The Transformer serves a slightly different purpose depending on how
it’s being used.

During model inference, as you saw in Chapter 2, the Transformer is primarily
focused on helping the model generate a completion to a given input prompt. Dur-
ing model pretraining and fine-tuning (Chapters 5, 6, and 7), the Transformer is
helping the model gain contextual understanding of the language from the input
training/tuning corpus.

40 | Chapter3:Large-Language Foundation Models

It's important to remember that you don’t need to understand the
low-level details of the Transformer architecture to be successful
with generative AI. While it always helps to understand your envi-
ronment, the complex implementation details have been abstracted
away into libraries such as the Hugging Face Transformers Python
library used throughout the examples in this book.

Figure 3-4 includes a visual representation of the Transformer that we focus on in
this book. Roughly from bottom to top, the input token context window contains
the prompt-input tokens (e.g., max 4,096 input tokens), embeddings, encoder, self-
attention layers, decoder, and the softmax output which helps the model choose the
next token to generate from a probability distribution across the entire token vocabu-
lary (e.g., 30,000-50,000 tokens). Next, let’s walk through each of the components.

Figure 3-4. High-level Transformer architecture

Transformer Architecture | 41

https://oreil.ly/uM5v-
https://oreil.ly/uM5v-

Inputs and Context Window

The input prompt is stored in a construct called the input “context window. It’s
measured by the number of tokens it holds. The size of the context window varies
widely from model to model. Earlier generative models could hold only 512-1,024
input tokens in the context window. However, more recent models can hold upwards
of 10,000 and even 100,000 tokens (at the time of this writing). The model’s input
context window size is defined during model design and pretraining.

Embedding Layer

You learned about embeddings previously; however, it's worth reminding you that
they are learned during model pretraining and are actually part of the larger Trans-
former architecture. Each input token in the input context window is mapped to
an embedding. These embeddings are used throughout the rest of the Transformer
neural network, including the self-attention layers.

Encoder

The encoder, at a high level, encodes—or projects—sequences of input tokens into a
vector space that represents the structure and meaning of the input. The vector space
representation is learned during model pretraining.

Self-Attention

The Transformer architecture uses a mechanism called self-attention to “pay atten-
tion” to interesting tokens as it traverses the inputs. Specifically, self-attention is used
to attend every token in the input data to all other tokens in the input sequence. An
example of self-attention is shown in Figure 3-5, where the word “her” attends highly
to the word “professor” as well as the word “lectures,” though to a lesser degree than
the word “professor”

Figure 3-5. The “self-attention” mechanism attends every token in the data to all other
tokens in the input sequence

42 | Chapter3:Large-Language Foundation Models

This pairwise attention lets the model learn the contextual dependencies, or contex-
tual understanding, of the input data during model pretraining. By paying attention
to the whole input, the Transformer unlocks the model’s ability to learn and represent
language from the training documents provided.

In practice, the Transformer actually learns multiple sets of self-attention weights
through multiheaded attention. Each head runs in parallel over the same input and
learns different aspects of the language. For example, one head may attend to the
relationships between entities in the input while another head attends to a specific set
of activities described in the input.

Note that the parameters, or weights, of each head are initialized randomly at the
start, so it’s difficult to predict which aspects each head will attend to. The number of
heads varies from model to model, but it is typically in the range of 12-100 heads.

Self-attention is very computationally expensive as it calculates n?
pairwise attention scores between every token in the input with
every other token. In fact, a lot of generative performance improve-
ments are targeted at the attention layers such as FlashAttention
and grouped-query attention (GQA) described in Chapter 4.

Let’s have a closer look at how the Transformer implements the self-attention mech-
anism. Attention assigns a weight to the input tokens based on their importance
relative to the generative task. Consider attention as a function that takes input
sequence X and returns output sequence Y, where X and Y are the same length vector.
Each vector in Y is a weighted average of the vectors in X, as shown in Figure 3-6.

Figure 3-6. Attention is the weighted average of the input vectors

These weights express how much the model is attending to each input vector in X
when computing the weighted average. To calculate the attention weights, a compati-
bility function assigns a score to each pair of words indicating how compatible they
are—or rather, how strongly they attend to each other. Let’s dive deeper into the
compatibility function and score shown in Figure 3-7.

Transformer Architecture | 43

Figure 3-7. Attention weights are the normalized dot product of the query and key
vectors

First, the model creates a query (gq) vector for the word that is paying attention and a
key (k) vector for the word being paid attention to. These are linear transformations
(matrix multiplications) of the original input vectors with learned weight matrices for
each query and key vector.

Next, the compatibility score is calculated as the dot product of the query vector
of one word and the key vector of the other. Last, the score is then normalized by
applying the softmax function. The result is the attention weight after the softmax is
applied.

Decoder

The attention weights are passed through the rest of the Transformer neural network,
including the decoder. The decoder uses the attention-based contextual understand-
ing of the input tokens to help generate new tokens, which ultimately “completes” the
provided input. This is why the model’s response is often called a completion.

Softmax Output

The softmax output layer generates a probability distribution across the entire token
vocabulary in which each token is assigned a probability that it will be selected next.
Typically, the token with the highest probability will be generated as the next token,
but as you saw in Chapter 2, there are mechanisms like temperature to modify
next-token selection to make the model more or less creative, for example.

The softmax layer produces a vector of probabilities that represent each tokens
likelihood of being chosen next. In other words, if the vocabulary is 100,000 tokens,
this layer produces a vector of 100,000 probabilities, as shown in Figure 3-8.

44 | Chapter3: Large-Language Foundation Models

Figure 3-8. Probability of being the next token across all tokens in the vocabulary

The model continues to generate new tokens in a loop until a stop condition is
reached—typically when an end-of-sequence (EOS) token is generated. Similar to
the token vocabulary and input context window size, the EOS token is often model-
specific and should be defined by the model creator.

At this point, you've learned the key components of the Transformer architecture.
This sets the foundation for the rest of the book, including the chapters on multimo-
dal generative models. The Transformer is a key component to almost all generative
models since the primary way to interact with these models is through language.

Transformer Architecture | 45

Types of Transformer-Based Foundation Models

There are three variants of generative transformer-based models overall: encoder-
only, decoder-only, and encoder-decoder. Each variant is trained with a different
training objective and, during pretraining, the model weights are updated to mini-
mize the loss of the training objectives described next for each variation. Each variant
is capable of addressing different types of generative tasks, as you will see next.

Encoder-only models, or autoencoders, are pretrained using a technique called masked
language modeling (MLM), which randomly mask input tokens and try to predict the
masked tokens. This is sometimes called a denoising objective. Autoencoding models
use bidirectional representations of the input to better understand the full context of
a token—not just the previous tokens in the sequence, as shown in Figure 3-9.

Figure 3-9. Encoder-only (autoencoder) models use a bidirectional context to reconstruct
the masked input tokens

Encoder-only models are best suited for language tasks that utilize the embeddings
generated by the encoder, such as text classification. They are not particularly useful
for generative tasks that continue to generate more text. A well-known encoder-only
model is BERT, which is covered extensively in Data Science on AWS (O'Reilly).

The embedding outputs are also useful for semantic similarity search—an advanced
document-search algorithm beyond simple keyword search. You will explore seman-
tic similarity search more in “Retrieval-Augmented Generation” on page 158.

46 | Chapter3:Large-Language Foundation Models

Decoder-only models, or autoregressive models, are pretrained using unidirectional
causal language modeling (CLM), which predicts the next token using only the
previous tokens—every other token is masked, as shown in Figure 3-10.

Figure 3-10. Decoder-only (autoregressive) models only reveal the tokens leading up to
the token being predicted

Decoder-only, autoregressive models use millions of text examples to learn a statis-
tical language representation by continuously predicting the next token from the
previous tokens. These models are the standard for generative tasks, including
question-answer. The families of GPT-3, Falcon, and LLaMA models are well-known
autoregressive models.

In case youre wondering, Meta changed the case of the Llama
model name when they released Llama 2. The first version uses
mixed case (LLaMA), which is an acronym for Large Language
Model Meta AL The second version uses title case (Llama 2).

Encoder-decoder models, often called sequence-to-sequence models, use both the
Transformer encoder and decoder. While the pretraining objectives vary from model
to model, the popular T5 foundation model (e.g., FLAN-T5) was pretrained using
consecutive multitoken masking called span corruption. The decoder then attempts
to reconstruct the masked sequence of tokens, <X>, as shown in Figure 3-11.

Types of Transformer-Based Foundation Models | 47

Figure 3-11. Encoder-decoder (sequence-to-sequence) models

Sequence-to-sequence models, originally designed for translation, are also very use-
ful for text-summarization tasks. T5 and its fine-tuned sibling, FLAN-T5, are well-
known encoder-decoder, sequence-to-sequence models used across a wide number of
generative language tasks.

Now that you've seen the three main types of transformer-based foundation models,
let’s explore some of the most common publicly available datasets used to pretrain
foundation models.

Pretraining Datasets

A generative model learns its capabilities during the pretraining phase when it sees
a large amount of training data—often on the scale of terabytes and petabytes. The
datasets are often sourced from the public internet but can also include proprietary
data from your private Amazon S3 buckets or databases.

Two of the most popular datasets to pretrain large language models are Wikipedia
and Common Crawl. Wikipedia offers a multilingual extract of its contents from
2022, while Common Crawl is a monthly dump of text found on the whole of the
internet.

48 | Chapter3:Large-Language Foundation Models

https://oreil.ly/Xm_w6
https://oreil.ly/cm6Ir
https://oreil.ly/50BeK
https://oreil.ly/bA7vo

As you can imagine, this type of free-form internet data is very messy. As such, there
are variants of these datasets, such as Wiki-40B,* Colossal Clean Crawled Corpus
(C4),° The Pile,* and RefinedWeb,” that attempt to clean the data for higher-quality
model training. RefinedWeb, in particular, attempts to filter out machine-generated
text using statistical methods to determine if the text is human-generated versus
machine-generated.

The Falcon family of models was trained on 1.5 trillion tokens of
data called RefinedWeb. The data was processed on a cluster of 257

ml.c5.18xlarge SageMaker instances consisting of 18,504 CPUs
and 37TB of CPU RAM.

Next, you'll learn about scaling laws, which describe the relationship between model
size, dataset size, and compute budget.

Scaling Laws

For generative models, a set of scaling laws have emerged that describe the trade-offs
between model size and dataset size for a fixed compute budget (e.g., number of
GPU hours). These scaling laws® state that you can achieve better generative model
performance by either increasing the number of tokens or the number of model
parameters.

Scaling up both will typically require a higher compute budget, which is typically
defined in terms of floating point operations per second (FLOPs). Figure 3-12 is a
comparison of compute budgets required to pretrain different variations and sizes
of BERT, T5, and GPT-3. Remember that BERT is an encoder-only model, T5 is an
encoder-decoder model, and GPT-3 is a decoder-only model. Note that the y-axis is
logarithmic.

4 Mandy Guo et al., “Wiki-40B: Multilingual Language Model Dataset”, arXiv, 2020.

5 Colin Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”,
arXiv, 2020.

6 Leo Gao et al,, “The Pile: An 800GB Dataset of Diverse Text for Language Modeling”, arXiv, 2020.

7 Guilherme Penedo et al., “The RefinedWeb Dataset for Falcon LLM: Outperforming Curated Corpora with
Web Data, and Web Data Only”, arXiv, 2023.

8 Jared Kaplan et al., “Scaling Laws for Neural Language Models”, arXiv, 2020.

ScalingLlaws | 49

https://oreil.ly/UX4fx
https://oreil.ly/ZhmO5
https://oreil.ly/26X51
https://oreil.ly/ErjeW
https://oreil.ly/ErjeW
https://oreil.ly/ngsF6

Figure 3-12. Pretraining requirements for common models in petaflop/s-days (source:
adapted from an image in Brown et al.)

While the 175 billion GPT-3 model outperforms the T5 and BERT models on gen-
erative tasks, according to various benchmarks, the larger models require a larger
compute budget. You might wonder if it's possible to get 175 billion-parameter
performance from a smaller model. In fact, you can!

Researchers have found that by increasing the training dataset size instead of the
model size, you can get state-of-the-art performance that exceeds the 175 billion-
parameter models with a much smaller set of weights. In fact, the “Scaling Laws
for Neural Language Models” paper shows that if you hold the compute budget
constant, model performance may increase when you either increase the training
dataset size (and hold model parameter size constant) or increase the number of
model parameters (and hold the dataset size constant). See Figure 3-13 to see how the
loss decreases as either dataset size or parameter size increases.

50 | Chapter3:Large-Language Foundation Models

https://oreil.ly/9bu2E
https://oreil.ly/ngsF6
https://oreil.ly/ngsF6

Figure 3-13. Impact of dataset size and parameter size on model performance (source:
charts in figure adapted from an image in Kaplan et al.)

This also hints that you can improve performance for smaller models by just training
them on more data. This is the exciting field of compute-optimal model research that
you will learn about next.

Compute-Optimal Models

In 2022, a group of researchers released a paper’® that compared model performance
of various model and dataset size combinations. Since the authors named their
final compute-optimal model Chinchilla, this paper is famously called the Chinchilla

paper.
The Chinchilla paper implies that the massive 100 billion-plus parameter models like
GPT-3 may be overparameterized and undertrained. Additionally, they hypothesize

that you could achieve 100 billion-plus parameter model performance with a small
model by simply providing more training data to the smaller model.

To be more specific, the authors of the Chinchilla paper claim that the optimal train-
ing dataset size (measured in tokens) is 20x the number of model parameters and
that anything below that 20x ratio is potentially overparameterized and undertrained.
Table 3-2 compares the compute-optimal Chinchilla and LLaMA models with the 175
billion-parameter variants of GPT-3, OPT, and BLOOM.

9 Jordan Hoffman et al., “Training Compute-Optimal Large Language Models”, arXiv, 2022.

Compute-Optimal Models | 51

https://oreil.ly/WrFKQ
https://oreil.ly/ruSFB

Table 3-2. Chinchilla scaling laws for given model size and dataset size

Model Model size Optimal dataset Actual dataset Hypothesis
(parameters) size (tokens) size (tokens)

Chinchilla ~ 70B 147 147 Compute-optimal (20x)

LLaMA-65B 65B 13T 14T Compute-optimal (20x)

GPT-3 175B 35T 3008 Overparameterized for dataset size
(<20x)

OPT-175B 1758B 35T 180 B Overparameterized for dataset size
(<20x)

BLOOM 176 B 35T 350B Overparameterized for dataset size
(<20x)

Llama2-70B 70 B 14T 20T Better than compute-optimal
(>20x)

Here, you see that according to the Chinchilla scaling laws, these 175+ billion-
parameter models should be trained on 3.5 trillion tokens. Instead, they were trained
with 180-350 billion tokens—an order of magnitude smaller than recommended.
As such, the paper hints that these 175+ billion-parameter models could have been
trained with much more data—or could have been an order-of-magnitude smaller.

In fact, the more recent Llama 2 70 billion-parameter model, which was released
after the Chinchilla paper, was trained with 2 trillion tokens—greater than the 20-
to-1 token-to-parameter ratio described by the paper. Llama 2 outperformed the
original LLaMA model based on various benchmarks,' including Massive Multitask
Language Understanding (MMLU). This demonstrates the recent trend to increase
the amount of pretraining data while keeping the number of parameters relatively
fixed.

Summary

In this chapter, you saw how foundation models are trained using vast amounts of
text during their initial training phase, called pretraining. This is where the model
develops its understanding of language.

You also learned three different types of transformer-based language models:
encoder-only (autoencoding), decoder-only (autoregressive), and encoder-decoder
(sequence-to-sequence).

Additionally, you learned some empirical scaling laws that have been discovered for
pretraining generative AI models. These scaling laws help researchers choose the
number of model parameters (1 billion, 7 billion, 70 billion, etc.) and dataset size (700

10 Dan Hendrycks et al., “Measuring Massive Multitask Language Understanding”, arXiv, 2021.

52 | Chapter3:Large-Language Foundation Models

https://oreil.ly/9DU7_
https://oreil.ly/u3VXw

billion tokens, 1.4 trillion tokens, 2 trillion tokens, etc.) for a given compute budget
when pretraining a foundation model from scratch.

You also saw how adding more training data—beyond the 20x ratio defined by the
Chinchilla scaling laws—can improve model performance while keeping the model
size relatively fixed.

Remember that pretraining a foundation model is not common, as it requires a
large amount of GPU compute hours and data. It is more common that you would
fine-tune your model on your dataset using a much smaller GPU compute cluster,
as you will see in the coming chapters. However, before we explore fine-tuning,
let’s better understand the computational and memory challenges of working with
large generative models. Such challenges include GPU memory limitations and
distributed-computing overhead.

In Chapter 4, you will learn how to use quantization to reduce the memory require-
ments of your training job. You will also learn how to efficiently scale model training
across multiple GPUs using distributed computing strategies such as fully sharded
data parallel (FSDP), including optimizations for AWS.

Summary | 53

CHAPTER 4
Memory and Compute Optimizations

In Chapter 3, you explored best practices for experimenting with and selecting a
foundation model for your use case. The next step is usually to customize the model
to your specific needs and datasets. This could include adapting the model to your
datasets using a technique called fine-tuning, which you will explore in more detail
in Chapter 5. When training or fine-tuning large foundation models, you often face
compute challenges—in particular, how to fit large models into GPU memory.

In this chapter, you will explore techniques that help overcome memory limitations.
You will learn how to apply quantization and distributed training to minimize the
required GPU RAM, and how to scale model training horizontally across multiple
GPUs for larger models.

For example, the original 40 billion-parameter Falcon model was trained on a cluster
of 48 ml.p4d.24xlarge Amazon SageMaker instances consisting of 384 NVIDIA
A100 GPUs, 15TB of GPU RAM, and 55TB of CPU RAM. A more recent version
of Falcon was trained on a cluster of 392 ml.p4d.24xlarge SageMaker instances
consisting of 3,136 NVIDIA A100 GPUs, 125TB of GPU RAM, and 450TB of CPU
RAM. The size and complexity of the Falcon model requires a cluster of GPUs, but
also benefits from quantization, as you will see next.

Memory Challenges

One of the most common issues you'll encounter when you try to train or fine-tune
foundation models is running out of memory. If you've ever tried training or even
just loading your model on NVIDIA GPUs, the error message in Figure 4-1 might
look familiar.

55

https://oreil.ly/kas9y

[OutOfMemoryError: CUDA out of memory.]

Figure 4-1. CUDA out-of-memory etrror

CUDA, short for Compute Unified Device Architecture, is a collection of libraries
and tools developed for NVIDIA GPUs to boost performance on common deep-
learning operations, including matrix multiplication, among many others. Deep-
learning libraries such as PyTorch and TensorFlow use CUDA extensively to handle
the low-level, hardware-specific details, including data movement between CPU and
GPU memory. As modern generative models contain multiple billions of parameters,
you have likely encountered this out-of-memory error during development while
loading and testing a model in your research environment.

A single-model parameter, at full 32-bit precision, is represented by 4 bytes. There-
fore, a 1-billion-parameter model requires 4 GB of GPU RAM just to load the model
into GPU RAM at full precision. If you want to also train the model, you need
more GPU memory to store the states of the numerical optimizer, gradients, and
activations, as well as any temporary variables used by your functions, as shown in
Table 4-1.

Table 4-1. Additional RAM needed to train a model

States Bytes per parameter

Model parameters (weights) 4 bytes per parameter

Adam optimizer (2 states) 8 bytes per parameter

Gradients 4 bytes per parameter

Activations and temp memory (variable size) 8 bytes per parameter (high-end estimate)
TOTAL =4+ 20 hytes per parameter

When you experiment with training a model, it's recommended
that you start with batch_size=1 to find the memory boundaries
of the model with just a single training example. You can then
incrementally increase the batch size until you hit the CUDA out-
of-memory error. This will determine the maximum batch size for
the model and dataset. A larger batch size can often speed up your
model training.

These additional components lead to approximately 12-20 extra bytes of GPU mem-
ory per model parameter. For example, to train a 1-billion-parameter model, you
will need approximately 24 GB of GPU RAM at 32-bit full precision, six times the
memory compared to just 4 GB of GPU RAM for loading the model, as shown in
Figure 4-2.

56 | Chapter4: Memory and Compute Optimizations

Figure 4-2. Comparison of approximate GPU RAM needed to load versus load and train
a 1-billion-parameter model at 32-bit full precision

It's worth noting that the NVIDIA A100 and H100, used at the time of this writing,
only support up to 80 GB of GPU RAM. And since you likely want to train models
larger than 1 billion parameters, you’ll need to find a workaround, such as quantizing
your model.

AWS has also developed purpose-built ML accelerators, AWS Trainium, for high-
performance and cost-efficient training of 100B+ parameter generative AI models.
You can leverage AWS Trainium chips through the Trn1 instance family. The largest
Trn1 instance, at the time of this writing, is powered by 16 AWS Trainium chips and
has 512 GB of shared accelerator memory. In addition, Trn1 instances are optimized
for quantization and distributed model training, and they support a wide range of
data types.

Quantization is a popular way to convert your model parameters from 32-bit preci-
sion down to 16-bit precision—or even 8-bit or 4-bit. By quantizing your model
weights from 32-bit full precision down to 16-bit half precision, you can quickly
reduce your 1-billion-parameter-model memory requirement down 50% to only
2 GB for loading and 40 GB for training.

But before we dive into quantization, let’s explore common data types for model
training and discuss numerical precision.

Memory Challenges | 57

Data Types and Numerical Precision

The following are the various data types used by PyTorch and TensorFlow: fp32
for 32-bit full precision, fp16 for 16-bit half-precision, and int8 for 8-bit integer
precision.

More recently, bfloat16 has become a popular alternative to fp16 for 16-bit preci-
sion in more-modern generative Al models. bfloat16 (or bf16) is short for “brain
floating point 16” as it was developed at Google Brain. Compared to fp16, bfloat16
has a greater dynamic range with 8 bits for the exponent and can therefore represent
a wide range of values that we find in generative Al models.

Let’s discuss how these data types compare and why bfloat16 is a popular choice for
16-bit quantization.

Suppose you want to store pi to 20 decimal places (3.14159265358979323846) using
full 32-bit precision. Remember that floating point numbers are stored as a series of
bits consisting of only Os and 1s. Numbers are stored in 32-bits using 1 bit for the sign
(negative or positive), 8 bits for the exponent (representing the dynamic range), and
23 bits for the fraction, also called the mantissa or significand, which represents the
precision of the number. Table 4-2 shows how fp32 represents the value of pi.

Table 4-2. fp32 representing pi

Sign Exponent Fraction (mantissa/significand)

1 bit | 8 bits 23 bits
0 10000000 | 100100100001111110116011

fp32 can represent numbers in a range from -3e38 to +3e38. The following PyTorch
code shows how to print the data type information for fp32:

import
torch.finfo(torch.float32)

The output is:

finfo(resolution=1e-06, min=-3.40282e+38, max=3.40282e+38, eps=1.19209e-07,
smallest_normal=1.17549e-38, tiny=1.17549e-38, dtype=float32)
Storing a real number in 32 bits will actually cause a slight loss in precision. You can
see this by storing pi as an fp32 data type and then printing the value of the tensor to
20 decimal places using Tensor.item():

pi = 3.14159265358979323846
pi_fp32 = torch.tensor(pi, dtype=torch.float32)
print('%.20f" % pi_fp32.item())

58 | Chapter4: Memory and Compute Optimizations

The output is:
3.14159274101257324219

You can see the slight loss in precision if you compare this value to the real value of
pi, which starts with 3.14159265358979323846. This slight loss in precision is due to
the conversion into the fp32 number range, as depicted in Figure 4-3.

Figure 4-3. fp32 projecting pi into the range from -3e38 to +3e38

You can also print the memory consumption:

def show_memory_comsumption(tensor):
memory_bytes = tensor.element_size() * tensor.numel()
print("Tensor memory consumption:", memory_bytes, "bytes")
show_memory_comsumption(pi_fp32)

The output is:
Tensor memory consumption: 4 bytes

Now that you've explored data types and numerical representations, let's move on and
discuss how quantization can help you reduce the memory footprint required to load
and train your multibillion-parameter model.

Quantization

When you try to train a multibillion-parameter model at 32-bit full precision, you
will quickly hit the limit of a single NVIDIA A100 or H100 GPU with only 80 GB of
GPU RAM. Therefore, you will almost always need to use quantization when using a
single GPU.

Quantization reduces the memory needed to load and train a model by reducing the
precision of the model weights. Quantization converts your model parameters from
32-bit precision down to 16-bit precision—or even 8-bit or 4-bit.

Quantization | 59

By quantizing your model weights from 32-bit full-precision down to 16-bit or 8-bit
precision, you can quickly reduce your 1-billion-parameter-model memory require-
ment down 50% to only 2 GB, or even down 75% to just 1 GB for loading, as shown
in Figure 4-4.

Figure 4-4. Approximate GPU RAM needed to load a 1-billion-parameter model at
32-bit, 16-bit, and 8-bit precision

Quantization projects a source set of higher-precision floating-point numbers into
a lower-precision target set of numbers. Using the source and target ranges, the
mechanism of quantization first calculates a scaling factor, makes the projection, then
stores the results in reduced precision, which requires less memory and ultimately
improves training performance and reduces cost.

fp16

With fp16, the 16 bits consist of 1 bit for the sign but only 5 bits for the exponent and
10 bits for the fraction, as shown in Table 4-3.

Table 4-3. fp32 versus fp16

Sign Exponent Fraction (mantissa/significand)

fp32 1bit | 8 bits 23 bits

(consumes 4 bytes of memory) | 0 10000000 | 10010010000111111011011
fp16 1bit | 5 bits 10 bits

(consumes 2 bytes of memory) | 0 10000 1001001000

With the reduced number of bits for the exponent and fraction, the range of repre-
sentable fp16 numbers is only from -65,504 to +65,504. You can also see this when
you print the data type information for fp16:

60 | Chapter4: Memory and Compute Optimizations

torch.finfo(torch.float16)
The output is:

finfo(resolution=0.001, min=-65504, max=65504, eps=0.000976562,
smallest_normal=6.10352e-05, tiny=6.10352e-05, dtype=floati16)

Let’s store pi with 20 decimal places again in fp16 and compare the values:

pi = 3.14159265358979323846
pi_fp16 = torch.tensor(pi, dtype=torch.float16)
print('%.20f" % pi_fpl6.item())

The output is:
3.14062500000000000000

Note the loss in precision after this projection, as there are only six places after
the decimal point now. The fp16 value of pi is now 3.140625. Remember that you
already lost precision just by storing the value in fp32, as shown in Figure 4-5.

Figure 4-5. Quantization from fp32 to fp16 saves 50% memory

The loss in precision is acceptable in most cases, however. The benefits of a 50%
reduction in GPU memory for fp16 compared to fp32 is typically worth the trade-off
since fp16 only requires 2 bytes of memory versus 4 bytes of fp32.

Loading a 1-billion-parameter model now only requires 2 GB of GPU RAM, with
12 GB of GPU RAM needed for training the model, as shown in Figure 4-6.

Quantization | 61

Figure 4-6. Only 12 GB of GPU RAM is needed to load and train a 1-billion-parameter
model at 16-bit half precision

bfloat16

bfloat16 has become a popular alternative to fp16 as it captures the full range of
fp32 with only 16-bits. This reduces numerical instabilities during model training
caused by overflow. Overflow happens when numbers flow outside of the range of
representation when converting them from a high-precision to a lower-precision
space, causing NaN (not a number) errors.

Compared to fp16, bfloat16 has a greater dynamic range but less precision, which
is usually acceptable. bfloat16 uses a single bit for the sign and the full 8 bits for
the exponent. However, it truncates the fraction to just 7 bits, which is why it’s often
called the “truncated 32-bit float,” as shown in Table 4-4.

Table 4-4. fp32 versus bfloat16

Sign Exponent Fraction (mantissa/significand)
fp32 1 bit | 8 bits 23 bits
(consumes 4 bytes of memory) | 0 10000000 | 10010010000111111011011

bfloat16 1 bit | 8 bits 7 bits
(consumes 2 bytes of memory) | 0 10000000 | 1001001

The range of representable bfloat16 numbers is identical to fp32. Let’s print the data
type information for bfloat16:

torch.finfo(torch.bfloat16)

62 | Chapter4: Memory and Compute Optimizations

The output is:

finfo(resolution=0.01, min=-3.38953e+38, max=3.38953e+38, eps=0.0078125,
smallest_normal=1.17549e-38, tiny=1.17549e-38, dtype=bfloati16)

Let’s store pi with 20 decimal places again in bfloat16 and compare the values:

pi = 3.14159265358979323846
pi_bfloat16 = torch.tensor(pi, dtype=torch.bfloat16)
print('%.20f"' % pi_bfloatl6.item())

The output is:
3.14062500000000000000

Similar to fp16, bfloat16 comes with a minimal loss in precision. The bfloat16
value of pi is 3.140625. However, the benefits of maintaining the dynamic range of
fp32 (shown in Figure 4-7) and thereby reducing overflow, usually outweighs the loss
in precision.

Figure 4-7. Quantization from fp32 to bfloat16 maintains the dynamic range of fp32
while still saving 50% memory

bfloat16 is natively supported by newer GPUs such as NVIDIAs A100 and H100.
Many modern generative AI models were pretrained with bfloat16, including
FLAN-TS5, Falcon, and Llama 2.

Quantization | 63

fp8

fp8 is a newer data type and natural progression from fp16 and bfloat16 to further
reduce memory and compute footprint for multibillion-parameter models.

fp8 allows the user to configure the number of bits assigned to the exponent and
fraction depending on the task, such as training, inference, or post-training quantiza-
tion. NVIDIA GPUs started supporting fp8 with the H100 chip. AWS Trainium also
supports fp8, called configurable fp8, or just cfp8. With cfp8, 1 bit is used for the
sign, and the remaining 7 bits are configurable between the exponent and fraction, as
shown in Table 4-5.

Table 4-5. fp32 versus fp8

Sign Exponent Fraction (mantissa/significand)

fp32 1 bit | 8 bits 23 bits

(consumes 4 bytes of memory) | 0 10000000 | 10010010000111111011011
p8 1bit | 7 bits

(consumes 1 byte memory) 0 0000011 (configurable)

Empirical results show that fp8 can match model training performance of fp16 and
bfloat16 while reducing memory footprint by another 50% and speeding up model
training.

int8

Another quantization option is int8 8-bit quantization. Using 1 bit for the sign, int8
values are represented by the remaining 7 bits, as shown in Table 4-6.

Table 4-6. fp32 versus int8

Sign Exponent Fraction (mantissa/significand)

fp32 1 bit | 8 bits 23 bits

(consumes 4 bytes of memory) | 0 10000000 | 10010010000111111011011
int8 1bit | n/a 7 bits

(consumes 1 byte of memory) | 0 0000011

The range of representable int8 numbers is -128 to +127. Here’s the data type
information for int8:

torch.iinfo(torch.int8)
The output is:
iinfo(min=-128, max=127, dtype=int8)

Let’s store pi with 20 decimal places again in int8 and see what happens:

64 | Chapter4: Memory and Compute Optimizations

pi = 3.14159265358979323846
pi_int8 = torch.tensor(pi, dtype=torch.int8)
print(pi_int8.1item())

The output is:
3

Unsurprisingly, pi is projected to just 3 in the 8-bit lower precision space, as shown
in Figure 4-8.

Figure 4-8. Quantization from fp32 to int8 saves 75% memory

This brings the memory requirement down from originally 4 bytes to just 1 byte,
but results in a bigger loss of precision due to the conversion from a floating point
representation to an integer value.

Reducing the memory footprint of large foundation models is not only helpful for
loading and training models, but also for inference. Despite the loss in precision,
8-bit quantization is often used to improve inference throughput and latency for
deployed models. Optimized implementations for int8 quantization such as Hugging
Face’s bitsandbytes integration of LLM.int8(), have shown to minimize quantization
impact on model performance. You will learn about post-training quantization (PTQ)
and the technique GPT post-training quantization (GPTQ)' in more detail when you
prepare the model for deployment in Chapter 8.

1 Elias Frantar et al., “GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained Transformers”,
arXiv, 2023.

Quantization | 65

https://oreil.ly/sZUaG
https://oreil.ly/IvqrL

Table 4-7 compares the data types discussed thus far.

Table 4-7. Comparison of data types used for quantization

Total bits Sign bits Exponent bits Fraction bits Memory needed to store one value

fp32 |32 1 8 23 4 bytes
fpi6 | 16 1 5 10 2 bytes
bf16 | 16 1 8 7 2 bytes
fp8 |8 1 7 1 byte
int8 | 8 1 n/a ‘ 7 1 byte

In summary, the choice of data type for model quantization should be based on the
specific needs of your application. While fp32 offers a safe choice if accuracy is para-
mount, you will likely hit hardware limits, such as available GPU RAM, especially for
multibillion-parameter models.

In this case, quantization using fp16 and bfloat16 can help to reduce the required
memory footprint by 50%. bfloat16 is usually preferred over fp16 as it maintains
the same dynamic range as fp32 and reduces overflow. fp8 is an emerging data type
to further reduce memory and compute requirements. Some hardware implementa-
tions allow configuring the bits for exponent and fraction; empirical results show
performance can match model training with fp16 and bfloat16. int8 has become a
popular choice to optimize your model for inference. fp8 is becoming more popular
as both hardware and deep-learning framework support emerges.

It is recommended that you always benchmark the quantization
results to ensure the selected data type meets your accuracy and
performance requirements.

Another memory and compute optimization technique is FlashAttention. Flash-
Attention aims to reduce the quadratic compute and memory requirements, O(#n?), of
the self-attention layers in Transformer-based models.

Optimizing the Self-Attention Layers

As mentioned in Chapter 3, performance of the Transformer is often bottlenecked by
the compute and memory complexity of the self-attention layers. Many performance
improvements are targeted specifically at these layers. Next, you will learn some pow-
erful techniques to reduce memory and increase performance of the self-attention
layers.

66 | Chapter4: Memory and Compute Optimizations

FlashAttention

The Transformer’s attention layer is a bottleneck when trying to scale to longer
input sequences because the computation and memory requirements scale quadrati-
cally O(n?) with the number of input tokens. FlashAttention, initially proposed in a
research paper,” is a GPU-specific solution to this quadratic scaling problem.

FlashAttention, on version 2 as of this writing, reduces the amount of reads and
writes between GPU main memory, called high-bandwidth memory (HBM), and the
much faster but smaller on-chip GPU static RAM (SRAM). Despite its name, the
GPU high-bandwidth memory is an order of magnitude slower than the on-chip
GPU SRAM.

Overall, FlashAttention increases self-attention performance by 2-4x and reduces
memory usage 10-20x by reducing the quadratic O(»n?) computational and memory
requirements down to linear O(n), where n is the number of input tokens in the
sequence. With FlashAttention, the Transformer scales to handle much longer input
sequences which allows for better performance on larger input context windows.

A popular implementation is installable with a simple pip install flash-attn
--no-build-1isolation command which installs the flash-attn library as a drop-in
replacement for the original attention.

Attention optimizations are an active area of research, including the next genera-
tion FlashAttention-2,’ which continues to implement GPU-specific optimizations to
improve performance and reduce memory requirements.

Let’s learn about another technique to improve the performance of the self-attention
layers in the Transformer.

Grouped-Query Attention

Another popular optimization to the attention layers is grouped-query attention
(GQA). GQA improves upon the Transformer’s traditional multiheaded attention,
described in Chapter 3, by sharing a single key (k) and value (v) head for each group
of query (q) heads (as opposed to each query head), as shown in Figure 4-9.

2 Tri Dao et al,, “FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness”, arXiv, 2022.
3 Tri Dao, “FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning”, arXiv, 2023.

Optimizing the Self-Attention Layers | 67

https://oreil.ly/VtRMp
https://oreil.ly/b--Iu
https://oreil.ly/ExuNB

Figure 4-9. Grouped-query attention versus traditional multiheaded attention

GQA allows queries to be grouped into fewer key and value heads and therefore
reduces memory consumption of the attention heads. In addition, GQA improves
performance by reducing the number of memory reads and writes.

Since these improvements are proportional to the number of input tokens, MQA is
particularly useful for longer input token sequences and allows for a larger context
window. For example, the Llama 2 model by Meta uses GQA to improve performance
and increase the input token context window size to 4,096—double the original
LLaMA model’s 2,048 context window size.

Distributed Computing

For larger models, you will likely need to use a distributed cluster of GPUs to
train these massive models across hundreds or thousands of GPUs. There are many
different types of distributed computing patterns, including distributed data parallel
(DDP) and fully sharded data parallel (FSDP). The main difference is how the model
is split—or sharded—across the GPUs in the system.

If the model parameters can fit into a single GPU, then you would choose DDP
to load a single copy of the model into each GPU. If the model is too large for a
single GPU—even after quantization—then you need to use FSDP to shard the model
across multiple GPUs. In both cases, the data is split into batches and spread across all
available GPUs to increase GPU utilization and cost efficiency at the expense of some
communication overhead, which you will see in a bit.

68 | Chapter4: Memory and Compute Optimizations

Distributed Data Parallel

PyTorch comes with an optimized implementation of DDP that automatically copies
your model onto each GPU (assuming it fits into a single GPU using a technique
such as quantization), splits the data into batches, and sends the batches to each
GPU in parallel. With DDP, each batch of data is processed in parallel on each GPU,
followed by a synchronization step where the results from each GPU (e.g., gradients)
are combined (e.g., averaged). Subsequently, each model—one per GPU—is updated
with the combined results and the process continues, as shown in Figure 4-10.

Figure 4-10. Distributed data parallel (DDP)

Note that DDP assumes that each GPU can fit not only your model parameters and
data batches but also the additional data that is needed to fulfill the training loop,
including optimizer states, activations, temporary function variables, etc., as shown in
Figure 4-15. If your GPU cannot store all of this data, you need to shard your model
across multiple GPUs. PyTorch has an optimized implementation of model sharding
that you will see next.

Distributed Computing | 69

Fully Sharded Data Parallel

FSDP was motivated by a 2019 ZeRO paper.* The goal of ZeRO, or zero redundancy
optimizer, is to reduce DDP’s data redundancy by sharding the model—and its
additional gradients, activations, and optimizer states—across the GPUs to achieve
zero redundancy in the system. ZeRO describes three optimization stages (1, 2, 3)
depending on what is being sharded across the GPUs, as shown in Figure 4-11.

Figure 4-11. ZeRO consists of three stages depending on the GPU shards: parameters,
gradients, and optimizer states

ZeRO Stage 1 only shards the optimizer states across GPUs but still reduces your
model’s memory footprint up to 4x. ZeRO Stage 2 shards both the optimizer states
and gradients across the GPUs to reduce GPU memory up to 8x. ZeRO Stage 3
shards everything—including the model parameters—across the GPUs to help reduce
GPU memory up to n times, where n is the number of GPUs. For example, when
using ZeRO Stage 3 with 128 GPUs, you can reduce your memory consumption by
up to 128x.

Compared to DDP, in which each GPU has a full copy of everything needed to
perform the forward and backward pass, FSDP needs to dynamically reconstruct a
full layer from the sharded data onto each GPU before the forward and backward
passes, as shown in Figure 4-12.

4 Samyam Rajbhandari et al., “ZeRO: Memory Optimizations Toward Training Trillion Parameter Models”,
arXiv, 2020.

70 | Chapter4: Memory and Compute Optimizations

https://oreil.ly/8X647

Figure 4-12. FSDP across multiple GPUs

In Figure 4-12, you see that before the forward pass, each GPU requests data from the
other GPUs on-demand to materialize the sharded data into unsharded, local data for
the duration of the operation—typically on a per-layer basis.

Distributed Computing | 71

When the forward pass completes, FSDP releases the unsharded local data back to
the other GPUs—reverting the data back to its original sharded state to free up GPU
memory for the backward pass. After the backward pass, FSDP synchronizes the
gradients across the GPUs, similar to DDP, and updates the model parameters across
all the model shards, where different shards are stored on different GPUs.

By materializing the data on demand, FSDP balances the communication overhead
with the overall GPU memory footprint. You can manually configure the sharding
factor through the distributed computing configuration. Later in this chapter, you
will see an example using Amazon SageMaker’s sharded_data_parallel_degree
configuration parameter. This configuration setting helps to manage the trade-off
between performance and memory utilization depending on your specific environ-
ment, as shown in Figure 4-13.

Figure 4-13. Choose a sharding factor based on the resources in your environment

A sharding factor of 1 avoids model sharding and replicates the model across all
GPUs—reverting the system back to DDP. You can set the sharding factor to a
maximum of n number of GPUs to unlock the potential of full sharding. Full shard-
ing offers the best memory savings—at the cost of GPU-communication overhead.
Setting the sharing factor to anything in between will enable hybrid sharding.

Performance Comparison of FSDP over DDP

Figure 4-14 is a comparison of FSDP and DDP from a 2023 PyTorch FSDP paper.®
These tests were performed on different-sized T5 models using 512 NVIDIA A100
GPUs—each with 80 GB of memory. They compare the number of FLOPs per GPU.
A teraFLOP is 1 trillion floating point operations per second.

5 Yanli Zhao et al., “PyTorch FSDP: Experiences on Scaling Fully Sharded Data Parallel”, arXiv, 2023.

72 | Chapter4: Memory and Compute Optimizations

https://oreil.ly/AWU_h

Figure 4-14. Performance improvement with FSDP over DDP (source: adapted from an
image in Zhao et al.)

Note that full replication means there is no sharding. And since full replication is the
equivalent of DDP, the performance of the full replication and DDP configurations
are nearly identical.

For the smaller T5 models, 611 million parameters and 2.28 billion parameters, FSDP
performs the same as DDP. However, at 11.3 billion parameters, DDP runs out of
GPU memory, which is why there is no data for DDP in the 11.3 billion dimension.
FSDP, however, easily supports the higher parameter size when using hybrid and full
sharding.

Furthermore, training the 11-billion-parameter model with different cluster sizes
from 8 GPUs to 512 GPUs shows only a 7% decrease in per-GPU teraFLOPs due to
GPU communication overhead. These tests were run with batch sizes of 8 (blue) and
16 (orange), as shown in Figure 4-15, which is also sourced from the 2023 PyTorch
ESDP paper.

Distributed Computing | 73

https://oreil.ly/Y0YZw

Figure 4-15. Only little performance decrease due to GPU communication overhead
(source: adapted from an image in Zhao et al.)

This demonstrates that FSDP can scale model training for both small and large
models across different GPU cluster sizes. Next, you will learn about performing
distributed computing and FSDP on AWS using Amazon SageMaker.

Distributed Computing on AWS

Amazon SageMaker distributed training has been used to train some of the most
powerful foundation models in the world, including Falcon and BloombergGPT.
Falcon-180B, for example, was trained using an Amazon SageMaker distributed
training cluster of 512 ml.p4d.24x1arge instances—each with 8 NVIDIA A100 GPUs
(40 GB GPU RAM each) for a total of 4,096 GPUs and approximately 164 TB of GPU
RAM. BloombergGPT was trained on 64 ml.p4d.24xlarge instances for a total of
512 GPUs and approximately 20TB of GPU RAM.

With SageMaker’s distributed computing infrastructure, you can run highly scalable
and cost-effective generative AI workloads with just a few lines of code. Next, you will
learn how to implement FSDP with Amazon SageMaker.

74 | Chapter4: Memory and Compute Optimizations

https://oreil.ly/O-k4K
https://oreil.ly/DKCU7

Fully Sharded Data Parallel with Amazon SageMaker

FSDP is a common distributed computing strategy supported by Amazon SageMaker.
The following code shows how to launch an FSDP distributed training job using the
PyTorch Estimator with 2 ml.p4d.24xlarge SageMaker instances—each with 8 GPUs
and 320 GB of GPU RAM:

Choose instance type and instance count
based on the GPU memory requirements
for the model variant we are using
e.g. Llama2 7, 13, 70 billion
instance_type = "ml.p4d.24xlarge" # 8 GPUs each
instance_count = 2
Set to the number of GPUs on that instance
processes_per_host = 8
Configure the sharding factor
In this case, 16 is the maximum, fully-sharded configuration
since we have 2 instances * 8 GPUs per instance
sharding_degree = 16
Set up the training job
smp_estimator = PyTorch(
entry_point="train.py", # training script
instance_type=instance_type,
instance_count=instance_count,
distribution={
"smdistributed": {
"modelparallel”: {
"enabled": True,
"parameters": {
"ddp": True,
"sharded_data_parallel_degree":
sharding_degree

1
1
)

Here, configure the job to use smdistributed with modelparallel.enabled and
ddp set to True. This configures the SageMaker cluster to use the FSDP distributed
computing strategy. Note that we set the sharded_data_parallel_degree parameter
to 16 because we have two instances with eight GPUs each. This parameter is our
sharding factor, as discussed in the section “Fully Sharded Data Parallel” on page 70.
Here, we choose full sharding by setting the value to the total number of GPUs in the
cluster.

Distributed Computingon AWS | 75

https://oreil.ly/obTnh

Next are some interesting snippets of the train.py referenced in the previous PyTorch
Estimator code. The full code is in the GitHub repository associated with this book:

from transformers import AutoConfig, AutoModelForCausallLM
import smp # SageMaker distributed library

Create FSDP config for SageMaker
smp_config = {
"ddp": True,
"bf16": args.bf16,
"sharded_data_parallel_degree": args.sharded_data_parallel_degree,

}

Initialize FSDP
smp.init(smp_config)

Load HuggingFace model
model = AutoModelForCausallLM.from_pretrained(model_checkpoint)
Wrap HuggingFace model in SageMaker DistributedModel class
model = smp.DistributedModel(

model

)

Define the distributed training step
.step
def train_step(model, input_ids, attention_mask, args):
if args.logits_output:
output = model(input_ids=input_ids,
attention_mask=attention_mask,
labels=input_1ids)
loss = output["loss"]
else:
loss = model(input_1ids=input_1ids,
attention_mask=attention_mask,
labels=input_ids)["loss"]
model.backward(loss)
if args.logits_output:
return output

return loss

Next, you will see how to train a model on AWS Trainjium hardware, which is
purpose-built for deep learning workloads. For this, you will learn about the AWS
Neuron SDK—as well as the Hugging Face Optimum Neuron library which integrates
the Hugging Face Transformers ecosystem with the Neuron SDK.

76 | Chapter4: Memory and Compute Optimizations

https://oreil.ly/generative-ai-on-aws-code

AWS Neuron SDK and AWS Trainium

The AWS Neuron SDK is the developer interface to AWS Trainium. Hugging Face’s
Optimum Neuron library is the interface between the AWS Neuron SDK and the
Transformers library. Here is an example that demonstrates the NeuronTratiner class
from the Optimum Neuron library, which is a drop-in replacement for the Trans-
formers Trainer class when training with AWS Trainium:

from import TrainingArguments
from import NeuronTrainer

def train():
model = AutoModelForCausallLM.from_pretrained(
model_checkpoint)

training_args = TrainingArguments(
)

trainer = NeuronTrainer(
model=model,
args=training_args,
train_dataset=...,
eval_dataset=...

)

trainer.train()

Summary

In this chapter, you explored computational challenges of training large foundation
models due to GPU memory limitations and learned how to use quantization to save
memory, reduce cost, and improve performance.

You also learned how to scale model training across multiple GPUs and nodes in a
cluster using distributed training strategies such as distributed data parallel (DDP)
and fully sharded data parallel (FSDP).

By combining quantization and distributed computing, you can train very large
models efficiently and cost effectively with minimal impact on training throughput
and model accuracy.

Summary | 77

https://oreil.ly/n8-Gj
https://oreil.ly/i6wxn
https://oreil.ly/JDM7p

You also learned how to train models with the AWS Neuron SDK and AWS Trainium
purpose-built hardware for generative deep learning workloads. You saw how to use
the Hugging Face Optimum Neuron library, which integrates with the AWS Neuron
SDK to improve the development experience when working with AWS Trainium.

In Chapter 5, you will learn how to adapt existing generative foundation models
to your own datasets using a technique called fine-tuning. Fine-tuning an existing
foundation model can be a less costly yet sufficient alternative to model pretraining
from scratch.

78 | Chapter4: Memory and Compute Optimizations

CHAPTER 5
Fine-Tuning and Evaluation

In Chapter 4, you learned various techniques to help increase the performance of
large generative models. You also explored efficient distributed computing strategies
such as distributed data parallel (DDP) and fully sharded data parallel (FSDP) to scale
your large-model development efforts across a set of distributed-compute instances.
While these techniques are essential to pretraining large foundation models from
scratch, they are also useful for adapting foundation models to your custom datasets
and use cases during a process called fine-tuning.

In this chapter, you will dive deep into a fine-tuning technique called instruction
fine-tuning. You already learned about instructions in Chapter 2 with the discussion
on prompt engineering. Instructions are commands to the model to perform some
task, such as “Summarize this conversation” or “Generate a personalized marketing
email” When fine-tuning a foundation model with instructions, its important to
present a mix of instructions across many different tasks to maintain the foundation
model’s ability to serve as a general-purpose generative model.

In this chapter, you will learn about various evaluation metrics and benchmarks to
help measure the effectiveness of your instruction fine-tuning efforts across many
tasks. It is recommended that you establish a set of baseline evaluation metrics and
compare the generated model output both before and after fine-tuning. This feedback
loop is critical in a highly iterative model development and tuning phase.

And while this chapter primarily focuses on fine-tuning generative language models,
multimodal models also benefit from instruction fine-tuning as they almost always
accept a language-based instruction prompt (such as “Summarize the contents of the
given image” or “How do you cook the meal shown in this image?”). So, it’s important
to understand instruction fine-tuning when working with generative models for
all types of content modalities. You will learn more about multimodal fine-tuning
specifically in Chapter 11, but let’s continue the discussion of instruction fine-tuning.

79

Instruction Fine-Tuning

Because they have been pretrained on millions of documents, images, videos, and
audio clips, foundation models have learned the fundamentals of human language,
including humanlike reasoning. Even so, these foundation models often need addi-
tional data or instructions to help them learn more about your specific dataset or
domain and learn to perform humanlike tasks and step-by-step reasoning. This extra
help is called fine-tuning and, specifically, instruction fine-tuning.

The models that humans most commonly interact with are called “instruct” or “chat”
models. These models are fine-tuned with instructions using their foundation model
equivalent as the base model. The instruct variants are useful for general-purpose
chatbot interfaces, as they are capable of performing many tasks, accept humanlike
prompts, and generate humanlike responses. Let’s review a few examples of models
that have been fine-tuned with instruction.

Llama 2-Chat

Llama-2-70b-chat is the instruction fine-tuned variant of Llama-2-70b. Many of the
examples in this book are from the Llama 2 family of models. Specifically, the prompt
engineering discussion in Chapter 2 uses the instruct, or chat, variant of Llama 2.

Falcon-Chat

Falcon-180b is a powerful 180 billion-parameter foundation model and was trained
on a highly curated dataset called RefinedWeb. The Falcon-180b-chat variant was
fine-tuned with instructions across many tasks.

FLAN-T5

FLAN-T5, one of the original instruction fine-tuned generative models, is the
instruct variant of the base T5 model. In this case, FLAN is a predefined and
well-documented set of instructions used during instruction fine-tuning. FLAN has
also been applied to PaLM and other foundation base models;' however, FLAN-T5
is probably the most popular variant of a FLAN instruction fine-tuned model. With
its largest XXL variant having only 11 billion parameters, FLAN-T5 is a great general-
purpose model that has been trained on hundreds of instructions and is capable of
powerful chain-of-thought reasoning.

1 Hyung Won Chung et al., “Scaling Instruction-Finetuned Language Models”, arXiv, 2022.

80 | Chapter5:Fine-Tuning and Evaluation

https://oreil.ly/5ql8b
https://oreil.ly/oB7ud
https://oreil.ly/SdxIt
https://oreil.ly/XvewX
https://oreil.ly/DHfjh
https://oreil.ly/dcf7G
https://oreil.ly/BaHSI
https://oreil.ly/9qqQ2
https://oreil.ly/i6pg3
https://oreil.ly/YIrvo

FLAN-TS5 is very well documented, so let’s dive deeper into how the FLAN-T5 model
variants were fine-tuned using the FLAN instruction dataset.

Instruction Dataset

In contrast to the billions of tokens needed to pretrain a foundation model described
in Chapter 3, you can achieve very good results with instruction fine-tuning using
a relatively small instruction dataset—often just 500-1,000 examples is enough. Typi-
cally, however, the more examples you provide to the model during fine-tuning, the
better the model becomes.

Multitask Instruction Dataset

You should provide the model with many different types of instructions during
fine-tuning to preserve the model’s general-purpose capability. If you provide instruc-
tions for just a single task (e.g., summarization) during fine-tuning, the model may
experience “catastrophic forgetting” in which the model becomes so good at a single
task that it may lose its ability to handle, or generalize to, other tasks.

In Figure 5-1, you see a sample multitask dataset that includes instruction examples
across a variety of tasks, including summarization, classification, code translation,
and named-entity recognition.

Figure 5-1. Multitask fine-tuning with instruction

By training the model on a mixed-instruction dataset, you can improve the perfor-
mance of the model on many tasks simultaneously, avoid the issue of catastrophic
forgetting, and maintain the model’s ability to generalize to multiple tasks.

If you primarily have data for a single instruction (e.g., summarization), you can
minimize catastrophic forgetting by augmenting your single-task instruction exam-
ples with a small percentage of multitask examples (e.g., 5% of your single-task
instructions) during the fine-tuning process. You can either use a public dataset or

Instruction Dataset | 81

generate a multitask instruction dataset using an existing instruct model, as described
in the dataset card of Stanford University’s Alpaca project.”

Be sure to review the license before using any model or mechanism
to improve your own model. This may or may not be allowed based
on the license. Please consult a legal expert for advice.

Let’s take a look at the FLAN multitask fine-tuning dataset.

FLAN: Example Multitask Instruction Dataset

The FLAN instruction dataset, currently on version 2, is actually a collection of 473
different datasets across 146 task categories and nearly 1,800 fine-grained tasks, as
shown in Figure 5-2.

Figure 5-2. FLAN dataset (source: adapted from an image in Chung et al.)

2 Rohan Taori et al., “Alpaca: A Strong, Replicable Instruction-Following Model”, Center for Research on
Foundation Models, Stanford University, 2021.

82 | Chapter5:Fine-Tuning and Evaluation

https://oreil.ly/z9s75
https://oreil.ly/6Q28C
https://oreil.ly/wvtsq
https://oreil.ly/5ql8b

One of the datasets in the FLAN collection, samsum, contains 16,000 conversations
and human-curated summaries. These conversations and summaries were created
by linguistics experts to produce high-quality training examples for a dialogue-
summarization generative task. Examples from this dataset are shown in Table 5-1.

Table 5-1. samsum dataset of conversational dialogue including human-curated summaries

dialogue summary
Amanda: I baked cookies. Do you want some? Amanda baked cookies and will
Jerry: Sure! bring Jerry some tomorrow.

Amanda: I'll bring you tomorrow :-)

Olivia: Who are you voting for in this election? Olivia and Olivier are voting
Oliver: Liberals as always. for liberals in this election.
Olivia: Me too!!

Oliver: Great

Laura: ok , I'm done for today-) Laura will pick up Kim from
Laura: let me know once u're free and we come back home work around 7, and they will
together come back home together.
Kim: hmm.. 7?

Laura: ok

Kim: cool, wait for me at work, I'll call once I get

here

Next, you will see how to build an instruction dataset from a tabular dataset using
prompt templates to format the text as instructions.

Prompt Template

In order to convert a table of text, as shown previously into instructions for fine-
tuning, you can use a prompt template that provides a structure for the instruction
prompt. Here is the samsum-specific prompt template from the FLAN GitHub
repository that contains placeholders for the dialogue and summary columns in the
samsum dataset:

{dialogue}

Briefly summarize that dialogue.
{summary}

Here is a dialogue:

{dialogue}

Write a short summary.

{summary}

Dialogue:

{dialogue}

What is a summary of this dialogue?
{summary}

Instruction Dataset | 83

https://oreil.ly/drGTv
https://oreil.ly/qoD_q

{dialogue}

What was that dialogue about, in two sentences or less?
{summary}

Here is a dialogue:

{dialogue}

What were they talking about?

{summary}

Dialogue:

{dialogue}

What were the main points in that conversation?
{summary}

Dialogue:

{dialogue}

What was going on in that conversation?
{summary}

Note that the template contains multiple instructions for each row of dialogue-
summary data in the samsum table. By applying this template to each row in
the samsum dataset, you create seven instruction examples. By producing different
instructions for the same task with slightly different instruction formats, the model
sees more examples and often generalizes better to new instructions it may only see
during inference.

Since samsum contains approximately 16,000 rows of data, you generate 16,000 * 7 =
112,000 instructions after applying the template to the samsum dataset! By extending
this to FLAN’s complete set of 473 datasets across approximately 1,800 fine-grained
tasks using the 10,000-line FLAN prompt template, you have the large multitask
instruction dataset used to train the FLAN family of models such as FLAN-T5!

Now that you've seen how FLAN-T5 was trained, you will learn how to apply the
same prompt template technique to prepare a custom dataset for instruction fine-
tuning your own generative AT model.

Convert a Custom Dataset into an Instruction Dataset

While the conversations in the samsum dataset and the associated FLAN-T5 template
helped the FLAN-T5 model learn to summarize conversations, FLAN-T5 may not
capture the nuance and uniqueness of your specific generative use case or task.
Therefore, you may want to fine-tune a foundation model with your custom dataset,
such as conversations between your customer support agents and your customers.

Consider the public dialogue summarization dataset, dialogsum, as a custom dataset
we want to use to fine-tune a generative model. The dialogsum dataset consists of
over 13,000 conversations and summaries. The summary column was filled in by
humans as the baseline summary. Table 5-2 shows an example dialogue along with a
human-annotated summary.

84 | Chapter5:Fine-Tuning and Evaluation

https://oreil.ly/LBnGV

Table 5-2. Example of human-annotated conversation summary

dialogue summary

#Personl#: Hello, I have a reservation. #Personl# has got a reservation.
#Person2#: May I see some identification, sir, #Person2# asks for his

please? #Personl#: Sure. Here you go. identification and credit card
#Person2#: Thank you so much. Have you got a credit and helps his check-1in.

card? ...

#Person2#: Enjoy your stay!

After converting the tabular dataset into an instruction dataset, you can fine-tune
a generative model to summarize using this custom instruction dataset. The goal is
to fine-tune a model to generate summaries at least as good—if not better—than
the human summary. Later in this chapter, you will learn how to measure a mod-
el's generated summary against this human baseline summary. This is called model
evaluation.

But first, let’s demonstrate how to convert this tabular dataset into an instruction
dataset using Python’s f-string and .format() code to convert the rows of dialogue-
summary pairs into instructions. The following code performs this conversion:

prompt_template = fron
Here is a dialogue:

{dialogue}

Write a short summary.

{summary}
from import AutoTokenizer
from import load_dataset

Load the custom dataset
dataset = load_dataset("knkarthick/dialogsum")

def convert_row_to_instruction(row):
prompt = prompt_template.format(
dialogue=row["dialogue"],
summary=row["summary"]

instruction_dataset = dataset.map(convert_row_to_instruction)

print(instruction_dataset[0])

Instruction Dataset | 85

Output:

Here is a dialogue:

#Personl#: Hello, I have a reservation.

#Person2#: May I see some identification, sir, please?
#Personl#: Sure. Here you go.

#Person2#: Thank you so much. Have you got a credit card?

#Person2#: Enjoy your stay!
Write a short summary.

#Personl# has got a reservation. #Person2# asks for his identification and
credit card and helps his check-in.
Next, you will learn how to use this newly created instruction dataset to fine-tune a
generative model using your custom dataset.

Instruction Fine-Tuning

Instruction fine-tuning is a type of supervised machine learning that improves the
model by continuously comparing the model’s output for a given input (e.g., instruc-
tion prompt with dialogue) to the ground truth label (e.g., human baseline summary).

Figure 5-3 demonstrates the instruction fine-tuning process at a high level. The
model first makes a prediction (e.g., generates a summary) using the given input (e.g.,
instruction prompt). It then compares the prediction to the ground truth label (e.g.,
human baseline summary). After calculating the difference (e.g., loss) between the
prediction and the ground truth label, the model propagates the loss back through
the neural network and updates the model parameters, or weights, to improve the
prediction in the future.

After doing many rounds of prediction and backpropagation, the model learns to
generate text as well as—if not better than—the human who created the baseline
ground truth label.

86 | Chapter5:Fine-Tuning and Evaluation

Figure 5-3. Backpropagation of the loss through the network to improve the generative
model

Next, you will see examples of implementing fine-tuning with Amazon SageMaker,
including both single-node and multinode distributed examples. These examples
use the SageMaker ml.p4de.24xlarge instance type—each with eight NVIDIA A100
GPUs and 640 GB of total GPU memory. The complete code is in the GitHub
repository associated with this book.

Amazon SageMaker Studio

Here is the code for single-node fine-tuning of a generative model using a model
from the Hugging Face model hub. SageMaker Studio is based on the open source
Jupyter Notebook project and is a great way to start experimenting with different
prompt templates and generative models:

import

from import (
AutoModelForCausallLM,
AutoTokenizer,
Trainer,
TrainingArguments,

Instruction Fine-Tuning | 87

https://oreil.ly/D8xJG
https://oreil.ly/generative-ai-on-aws-code
https://oreil.ly/generative-ai-on-aws-code
https://oreil.ly/Exdoh

from datasets import load_dataset

Load dataset and convert each row to an instruction prompt
dataset = load_dataset(...)
dataset = dataset.map(convert_row_to_instruction)

Define and load the model for fine-tuning
model_checkpoint = "<choose a model>"
model = AutoModelForCausallLM.from_pretrained(model_checkpoint)

Convert text into tokens using the model's tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
tokenized_dataset = dataset.map(

lambda row: tokenizer(...)

)

Define training args
training_args = TrainingArguments(
bf16=True, # Use bfloat16

)

Create Trainer instance

trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset,

While it's common to use Amazon SageMaker Studio during the
experimentation phase, it’s very easy to create a SageMaker Studio
notebook job to automate the fine-tuning process without chang-
ing any notebook code.

Amazon SageMaker JumpStart

An easy and simple way to fine-tune a powerful generative model on AWS is
using Amazon SageMaker JumpStart. With SageMaker JumpStart and the SageMaker
Python library, you can scale your fine-tuning workload to a large, distributed cluster
of GPU instances simply by changing a single parameter, instance_count, as you will

see next:

from sagemaker.jumpstart.estimator import JumpStartEstimator
from datasets import load_dataset

Load dataset and convert each row to an instruction prompt
dataset = load_dataset(...)
dataset = dataset.map(convert_row_to_instruction)

88

| Chapter 5: Fine-Tuning and Evaluation

https://oreil.ly/EzEV-
https://oreil.ly/xyRo-
https://oreil.ly/xyRo-

Define and load the model for fine-tuning
model_checkpoint = "<choose a model>"

Save training data to a local file to be uploaded to s3
local_data_file = "train.jsonl"
dataset.to_json(local_data_file)

Specify S3 location and upload the local dataset file
train_data_s3_location = "s3://<your-private-s3-location>/"
S3Uploader.upload(local_data_file, train_data_s3_location)

Configure the estimator including instance type and count
estimator = JumpStartEstimator(
model_id=model_checkpoint,
instance_type="ml.p4de.24xlarge",
instance_count=2 # increase this value for a larger cluster

Set the hyper-parameters including instruction_tuned="True"
estimator.set_hyperparameters(
instruction_tuned="True",

)

Specify S3 location of training data and start fine-tuning!
estimator.fit({"training": train_data_s3_location})

Amazon SageMaker Estimator for Hugging Face

For maximum flexibility and configurability, you can use the Hugging Face’s imple-
mentation of the Amazon SageMaker Estimator class. These classes are part of the
SageMaker Python library. They coordinate the end-to-end training job using the
SageMaker backend infrastructure, including setup and teardown. This gives you full
control of the train.py as you see here:

from sagemaker.huggingface import HuggingFace # Estimator

Hyperparameters, which are passed into the training job
hyperparameters ={
'model_1id': model_checkpoint, # pre-trained model

}...

Create the Estimator

huggingface_estimator = HuggingFace(
entry_point = 'train.py', # train.py script is shown below
instance_type = 'ml.p4de.24xlarge’,
instance_count = 2, # increase this value for larger cluster
hyperparameters = hyperparameters, # hyperparameters

Instruction Fine-Tuning | 89

https://oreil.ly/7rKhs
https://oreil.ly/7rKhs
https://oreil.ly/7_nkv
https://oreil.ly/p9961

Here is a snippet from the train.py referenced from the HuggingFace estimator:

from transformers import (
AutoModelForCausallLM,
Trainer,
TrainingArguments,

)

from datasets import load_from_disk

Load dataset and convert each row to an instruction prompt
dataset = load_from_disk(...)
dataset = dataset.map(convert_row_to_instruction)

Define and load the model for fine-tuning
model_checkpoint = "..." # generative model like Llama2, Falcon

model = AutoModelForCausallLM.from_pretrained(model_checkpoint)

Convert text into tokens using the model's tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
tokenized_dataset = dataset.map(

lambda row: tokenizer(...)

)

training_args = TrainingArguments(
bf16=True, # Use bfloat16

)...

Create Trainer instance

trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,

)...

Start fine-tuning
trainer.train()

Save the fine-tuned model
trainer.model.save_pretrained("/opt/ml/model/")

Evaluation

There are many metrics to evaluate generative Al model performance, and there is
much debate in the community over their significance and effectiveness. At their
core, evaluation metrics, such as Recall-Oriented Understudy for Gisting Evaluation
(ROUGE), and benchmarks such as Holistic Evaluation of Language Models (HELM)

90 | Chapter5:Fine-Tuning and Evaluation

https://oreil.ly/cfvI4
https://oreil.ly/cfvI4
https://oreil.ly/XzvVy

and Massive Multitask Language Understanding (MMLU)® provide a baseline to
which you can compare changes to your model, such as fine-tuning. Let’s dive into
some of these evaluation metrics and benchmarks to better understand how they
are used to measure improvements to a generative model through mechanisms like
instruction fine-tuning.

Evaluation Metrics

Classic machine learning evaluation metrics, such as accuracy and root-mean-square
error (RMSE), are straightforward to calculate since the predictions are deterministic
and easy to compare against the labels in a validation or test dataset.

The output from generative AI models, however, is famously nondeterministic by
design, which makes evaluation very difficult without human intervention. Addition-
ally, evaluation metrics for generative models are very task-specific. For example,
the ROUGE metric is used to evaluate summarization tasks, while the Bilingual
Evaluation Understudy (BLEU) metric is used for translation tasks.

Since this chapter focuses on summarization, you will learn how to calculate the
ROUGE metric. Through this process, it will become clear to you why ROUGE is
both useful and controversial at the same time.

ROUGE calculates how well the input (dialogue, in this case) compares to the
generated output (summary, in this case). To do this, ROUGE calculates the number
of similar unigrams (single words), bigrams (two consecutive words), and longest
common sequences (consecutive n-grams) between the inputs and generated outputs
to calculate the ROUGE-1, ROUGE-2, and ROUGE-L scores. The higher the score,
the more similar they are.

Already, you might understand the controversy. Human language consists of many
examples in which similar phrases vary wildly in their meaning, differing either by
only a few words or a slight change in word position. Consider the example, “This
book is great” and “This book is not great” Using ROUGE alone, these phrases
appear to be similar. However, they are, in fact, opposite.

While ROUGE is far from perfect, it is useful as a baseline metric before and after
fine-tuning your model because it demonstrates relative improvement. Many popular
natural language libraries, including Hugging Face, support ROUGE. Following is the
code to evaluate your model using the evaluate library from Hugging Face. Here, you
see an approximately 80% improvement in the ROUGE scores after fine-tuning on
the dialogsum dataset based on a holdout test dataset not seen by the model during
fine-tuning:

3 Dan Hendrycks et al., “Measuring Massive Multitask Language Understanding”, arXiv, 2009.

Evaluation | 91

https://oreil.ly/x0WLv

import
rouge = evaluate.load('rouge')

foundation_model_results = rouge.compute(
predictions=foundation_model_summaries,
references=human_baseline_summaries,
use_aggregator=True,
use_stemmer=True,

)

print(foundation_model_results)
Here are the ROUGE scores for the foundation models before fine-tuning with
instruction:

{'rougel': 0.2334,
'rouge2': 0.0760,
'rougelL': 0.2014}
fine_tuned_results = rouge.compute(
predictions=fine_tuned_model_summaries,
references=human_baseline_summaries,
use_aggregator=True,
use_stemmer=True,

)

print(fine_tuned_results)
Here are the ROUGE scores for the foundation models after fine-tuning with instruc-
tion. The scores are higher, which is the desired behavior for the fine-tuned variant of
the model:

{'rougel': 0.4216,

'rouge2': 0.1804,
'rougel': 0.3384}

Benchmarks and Datasets

To evaluate and compare generative models more holistically, you can use existing
benchmarks and datasets established by the community such as General Language
Understanding Evaluation (GLUE), SuperGLUE, HELM, Beyond the Imitation Game
(BIG-bench),* and MMLU among many others. These benchmarks have evolved
over the years to include many complex tasks such as reading comprehension and
commonsense inference.

4 Aarohi Srivastava et al., “Beyond the Imitation Game: Quantifying and Extrapolating the Capabilities of
Language Models”, arXiv, 2023.

92 | Chapter5:Fine-Tuning and Evaluation

https://oreil.ly/-nN-C
https://oreil.ly/-nN-C
https://oreil.ly/F_hDq
https://oreil.ly/F_hDq
https://oreil.ly/4Igjq
https://oreil.ly/g5iAi
https://oreil.ly/k3WUe
https://oreil.ly/k3WUe

GLUE was introduced back in 2018 to evaluate and compare model performance
across a set of language tasks. The result was more generalizable language models
that positively impacted the landscape of natural language research and development.
SuperGLUE, the successor to GLUE, was introduced in 2019 to include more chal-
lenging tasks, such as multisentence reasoning and reading comprehension. Both
GLUE and SuperGLUE offer public leaderboards to encourage and reward improve-
ments in language understanding.

HELM is a benchmark designed to encourage model transparency and ultimately
provide users with information on which model to choose for a given task. HELM
is a combination of 7 metrics across 16 core “scenarios,” as defined by the HELM
community. Scenarios include tasks such as question-answer, summarization, and
sentiment analysis—as well as toxicity and bias detection. HELM also offers an
extension mechanism to add new scenarios and tasks. As such, HELM is considered a
“living” benchmark that can evolve over time.

MMLU evaluates a model’s knowledge and problem-solving capabilities. Models are
tested across different subjects, including mathematics, history, and science.

For community-generated benchmarks, multiple variants may
exist—each covering a different set of tasks and datasets. An exam-
ple is the MMLU benchmark that, as of this writing, has three
variations. Unfortunately, this causes further controversy regarding
the relevancy of benchmarks overall.

BIG-bench is another popular benchmark for generative models. Consisting of 204
tasks across linguistics, mathematics, biology, physics, software development, com-
monsense reasoning, and much more. Because BIG-bench is so massive, it was
released in different sizes to help reduce the inference cost to participate in the
benchmarK’s leaderboard.

It's important to choose metrics, benchmarks, and datasets that help to evaluate not
just your models’ generative capabilities but also its potential to produce hate speech,
fake news, and other harmful output. The RealToxicityPrompts and Truthful QA
datasets are good starting points to evaluate your model’s potential to generate hate
speech and misinformation, respectively.

Evaluation | 93

Summary

In this chapter, you learned how to fine-tune your model with instructions by apply-
ing prompt templates to a dataset that matches your generative task and use case.
You also saw examples of fine-tuning using Amazon SageMaker Studio notebooks,
SageMaker JumpStart, and the SageMaker Python library with the Hugging Face
Transformers library. You also learned some common metrics such as ROUGE and
benchmarks such as MMLU, which you can use to evaluate your model before and
after fine-tuning.

In Chapter 6, you will learn how to perform parameter-efficient fine-tuning (PEFT)
to reduce the number of parameters that need to be updated during fine-tuning—as
opposed to “full” fine-tuning of every parameter presented in this chapter.

94 | Chapter5:Fine-Tuning and Evaluation

CHAPTER 6
Parameter-Efficient Fine-Tuning

As we discussed in previous chapters, training generative models is computationally
expensive. Adapting models to your domain through full fine-tuning requires mem-
ory not just to store the model, but also various other parameters that are required
during the training process. In contrast to full fine-tuning, parameter-efficient fine-
tuning (PEFT) provides a set of techniques allowing you to fine-tune your models
while utilizing less compute resources.

There are a variety of PEFT techniques and categories explored in a paper on scaling.’
The techniques vary in implementation, but in general, each focuses on freezing all
or most of the model’s original parameters and extending or replacing model layers
by training an additional, much smaller, set of parameters. The most commonly used
techniques fall into the additive and reparameterization categories.

Additive techniques, such as prompt tuning, augment the model by fine-tuning and
adding extra parameters or layers to the pretrained model. Reparameterization tech-
niques, such as Low-Rank Adaptation (LoRA), allow for adaptation using low-rank
representations to reduce the number of training parameters and compute resources
required to fine-tune.

In this chapter, you'll learn about a few specific PEFT techniques that can be applied
to generative models, including prompt tuning, LoRA, and QLoRA. This chapter
focuses on key concepts illustrated through large language model (LLM) examples;
Chapter 11 explores PEFT for multimodal models.

1 Vladislav Lialin et al., “Scaling Down to Scale Up: A Guide to Parameter-Efficient Fine-Tuning”, arXiv, 2023.

95

https://oreil.ly/QCW4N

Full Fine-Tuning Versus PEFT

In this section, you’ll learn more about the differences between full fine-tuning of a
foundation model and utilizing parameter-efficient methods for model adaptation. At
a high level, with full fine-tuning, youre updating every model parameter through
supervised learning. In contrast, PEFT techniques freeze the parameters of the pre-
trained model and fine-tune a smaller set of parameters.

As discussed in Chapter 4, when training and tuning a foundation model, you need
to not only load the model parameters, but also allocate memory for the optimizer
states, gradients, forward activations, and temporary memory. These additional com-
ponents can occupy an extra 12-20 bytes of GPU memory per model parameter.

Full fine-tuning often requires a large amount of GPU RAM, which quickly increases
your overall compute budget and cost. PEFT reduces the compute and memory
requirements by freezing the original foundation model parameters and only fine-
tuning a small set of new model parameters.

In some cases, the number of newly trained parameters is just 1-2% of the original
LLM weights. Because youre training a relatively small number of parameters, the
memory requirements for fine-tuning become more manageable and can often be
performed on a single GPU.

In addition to requiring fewer resources during fine-tuning, PEFT methods are also
less prone to catastrophic forgetting, as discussed in Chapter 5, because the weights of
the original foundation remain frozen, preserving the model’s original knowledge.

PEFT is also helpful when you want to adapt your model for different tenants, for
example. Let’s assume you need to fine-tune to support hyperpersonalization, where
you are creating a unique chatbot experience per tenant of your system. If you used
full fine-tuning for each tenant, that would result in a new model version for every
tenant, as shown in Figure 6-1.

Each of these new adapted models is the same size as the original model, which
can create an expensive storage and hosting problem if you are performing full
fine-tuning for multiple tenants.

96 | Chapter6: Parameter-Efficient Fine-Tuning

Figure 6-1. Full fine-tuning creates a full copy of the original model for each tenant

With PEFT, you train only a small number of weights for each of the three tenants,
which results in a much smaller model footprint overall. The new or updated param-
eters are combined with original parameters for inference, as shown in Figure 6-2.
This allows for efficient adaptation of the original model to multiple tenants.

Tenant1
[(PEFT fine-tuning]

Tenant2
Foundation [(PEFT fine-tuning]]—>[:]

model
*

Tenant 3
[(PEFT fine-tuning]

Figure 6-2. PEFT reduces task-specific model weights and can merge with original LLM
at inference

Full Fine-Tuning Versus PEFT | 97

There are some things to consider when choosing between full fine-tuning and
parameter-efficient fine-tuning. Table 6-1 summarizes these considerations.

Table 6-1. Considerations for choosing PEFT versus full fine-tuning

Consideration Full fine-tuning Parameter-efficient fine-tuning (PEFT)

Fine-tuning compute Increased compute requirements Reduced compute requirements as a result of training

resource requirements (compute, memory, storage) only a subset of model parameters

Storage resource Increased storage requirements model Reduced storage requirements

requirements

Training data Larger dataset with multiple examples Smaller dataset with fewer examples

Parameter efficiency Each weight updated during fine- Only a subset of weights updated during fine-tuning
tuning

Model performance Typically results in higher performance Performance can be similar, but often a bit lower than

full fine-tuning
Inference hosting Each fine-tuned model must be Host original LLM and additional model weights for
requirements hosted inference

In general, PEFT methods can often be a good option to minimize resource require-
ments while still maintaining adequate model performance for your adapted use case
or task. Next, you will learn about two specific PEFT techniques called Low-Rank
Adaptation (LoRA) and Quantized LoRA (QLoRA).

LoRA and QLoRA

LoRA is a commonly used PEFT technique that freezes the original weights of the
LLM and creates new, trainable low-rank matrices into each layer of the Transformer
architecture. This technique was first introduced in a research paper.? The researchers
highlight that foundation models often have a low intrinsic dimension, meaning that
they can often be described with far fewer dimensions than what is represented in the
original weights.

In combination, they hypothesized that the updates to model weights (e.g., parame-
ters) have a low intrinsic rank during model adaptation, meaning you can use smaller
matrices, with fewer dimensions, to fine-tune. This fine-tuning method reduces the
number of trainable parameters and, as a result, the training time required. This also
results in a reduction in the compute and storage resources required.

2 Edward Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models”, arXiv, 2021.

98 | Chapter 6: Parameter-Efficient Fine-Tuning

https://oreil.ly/uPV8s

While the original LoRA paper focused on language models, LoRA
is also used for multimodal models such as Stable Diffusion,
which uses a Transformer-based language model to help align
text to images. You will explore LoRA in a multimodal context
in Chapter 11.

LoRA Fundamentals

To understand how LoRA works, let’s first revisit the Transformer architecture from
Chapter 3. During full fine-tuning, every parameter in the model is updated. This
process of updating every parameter during full fine-tuning can require a lot of
compute resources and time.

LoRA is a fine-tuning strategy that reduces the number of parameters to be trained by
freezing all of the original model parameters and inserting a pair of rank decomposi-
tion matrices alongside the original weights of a targeted set of modules (e.g., layers)
in the model—typically the linear layers, including self-attention.

These rank decomposition matrices have significantly fewer parameters than the
original model weights that they learn to represent during LoRA fine-tuning. The
dimensions of the smaller matrices, shown in Figure 6-3 as A and B, are defined
so that their product is a matrix with the same dimensions as the weights they are
modifying.

Figure 6-3. Low-rank matrices A and B are learned during the LoRA fine-tuning process

LoRAandQLoRA | 99

Rank

With LoRA, you keep the original weights of the model frozen and train these smaller
matrices using the same supervised learning process defined in Chapter 5. The size
of the low-rank matrices is set by the parameter called rank (r). Rank refers to the
maximum number of linearly independent columns (or rows) in the weight matrix. A
smaller value leads to a simpler low-rank matrix with fewer parameters to train. This
leads to cost savings by requiring less compute and memory resources.

Researchers have explored how different values of rank impact the model perfor-
mance on generation tasks. In general, they found that the effectiveness of a higher
rank setting appears to plateau when setting the rank greater than a value of 16.

Setting the rank between 4 and 16 can often provide you with a good trade-off
between reducing the number of trainable parameters while still preserving accepta-
ble levels of model performance. While it's important to experiment with the right
value of r for your own tenant, you can often achieve good results with a smaller r
number (i.e., 4, 8, or 16).

Target Modules and Layers

While LoRA can be applied to any subset of weight matrices in the Transformer
architecture (e.g., self-attention layers, feed-forward layers, etc.), researchers have
found that applying LoRA to the linear layers of the model is often enough to fine-
tune for a tenant and achieve performance gains. Most of the model parameters are
in the attention layers so this also results in a higher degree of parameter efficiency.

A research paper by Ashish Vaswani et al.’ translates this into practical terms, specify-
ing Transformer weights with the dimensions of 512 x 64, which means each weight
matrix in the architecture has 32,768 trainable parameters (512 x 64 = 32,768), as
shown in Figure 6-4.

512

32,768
64 » trainable
parameters

Figure 6-4. Full fine-tuning trains all parameters

If you were performing full fine-tuning, youd be updating 32,768 parameters for
each weight matrix in the architecture. With LoRA, assuming a rank equal to 4,
two small-rank decomposition matrices will be trained whose small dimension is 4.
This means that matrix A will have the dimensions of 4 x 64 resulting in 256 total

3 Ashish Vaswani et al., “Attention Is All You Need”, arXiv, 2023.

100 | Chapter 6: Parameter-Efficient Fine-Tuning

https://oreil.ly/LqCjH

parameters, while matrix B will have the dimensions of 512 x 4, resulting in 2,048
trainable parameters, as shown in Figure 6-5.

Figure 6-5. LoRA significantly reduces the number of parameters to be trained

By updating the weights of only the new low-rank matrices, you are able to fine-tune
for a single tenant by training only 2,304 (256 + 2,048) parameters instead of the full
32,768, in this case.

Because LoRA allows you to significantly reduce the number of trainable parameters,
you can often perform this method of parameter-efficient fine-tuning with a single
GPU and avoid the need for a distributed cluster of GPUs. This results in not only a
cost savings, but also a reduction in time required to fine-tune your model.

Applying LoRA

There are different ways to utilize LoRA for fine-tuning, in terms of the technical
implementation. Common open source libraries support the different PEFT methods.
Following is an example using Hugging Face Transformers and Amazon SageMaker
Studio notebooks to perform LoRA fine-tuning for a specific tenant with a rank of
16. Note that Amazon SageMaker JumpStart also supports LoRA for many of its
foundation models:

from import LoraConfig, get_peft_model, TaskType

lora_config = LoraConfig(
r=16, # rank
lora_alpha=32,
target_modules=["q", "v"],
lora_dropout=0.05,
bias="none",
task_type=TaskType.CAUSAL_LM
)

peft_model = get_peft_model(original_model,lora_config)

LoRAandQLoRA | 101

peft_training_args = TrainingArguments(
output_dir="./model",
auto_find_batch_size=True,
learning_rate=le-3,
num_train_epochs=1,
logging_steps=1,
max_steps=1

)

peft_trainer = Trainer(
model=peft_model,
args=peft_training_args,
train_dataset=tokenized_datasets["train"]

)

As shown in Figure 6-6, the two low-rank matrices, A and B, are multiplied together
to create a matrix with the same dimensions as the original frozen weights. The
resulting matrix is that combined with the original weights.

Figure 6-6. Low-rank matrices multiplied together and added to original weights

Because LoRA does not impact the original model weights, to return to the original
weights for another tenant you can then subtract, or unload, the value of the low-rank
matrix from the original weights.

102 | Chapter 6: Parameter-Efficient Fine-Tuning

To perform inference, both the pretrained LLM weights and the new LoRA weights
need to be loaded and combined, as shown in the code using Hugging Face’s
implementation:

from import PeftModel, PeftConfig

peft_model_base =
AutoModelForCausalLM. from_pretrained(base_model_dir,
torch_dtype=torch.bfloat16)

tokenizer = AutoTokenizer.from_pretrained(base_model_dir)

peft_model = PeftModel.from_pretrained(peft_model_base,
model_dir, torch_dtype=torch.bfloat16, is_trainable=False)
If you recall, the rank decomposition matrices are much smaller than the original
weights, so you can efficiently fine-tune a different set for each tenant and switch
them out at inference time by combining the weights with the original model. There
are a couple of approaches in combining the adapter weights with the original
foundation model, as you will see next.

Merging LoRA Adapter with Original Model

Consider training a set of LoORA matrices—the LoRA adapter—for a specific tenant,
Tenant 1, then carry out inference on this tenant. When you are ready to use the
model for inference, you can multiply the LoRA matrices together and then add the
resulting matrix to the original frozen weights. This new summed weights matrix
replaces the original weights that the LoRA adapter represented. You can then use the
merged model to carry out inference on Tenant 1.

When deploying the model to a standalone inference server like SageMaker End-
points, you may need to premerge the original model with the LoRA adapter. Here
is the code to merge the weights using the merge_and_unload() function from the
PEFT library before calling save_pretrained() on the model:

merged_model = PeftModel.from_pretrained(

original_model, "tenant_1_lora_adapter/")
To save the merged model, call ‘merge_and _unload()' before save
merged_model = model.merge_and_unload()
merged_model.save_pretrained("merged_model/")

This results in a single folder, merged_model/, with the merged model. The inference
server then treats this folder as a regular model and does not require the PEFT library
when loading the model for inference.

LoRAand QLoRA | 103

https://oreil.ly/NJlD3

Maintaining Separate LoRA Adapters

Alternatively, you can fine-tune another pair of LoRA matrices for a separate tenant,
shown as Tenant 2. To carry out inference for Tenant 2, you take the LoRA matrices
trained for this tenant, calculate their product, and add this matrix to the original
weights.

This method is compute and storage efficient because you are still only storing
one copy of the full-sized pretrained model, training these smaller matrices adapted
to your tenants, and only switching the weights out when you need to use them.
The following code shows how to load two PEFT models (merged_model_1 and
merged_model_2) from a single base model:

merged_model_1 = PeftModel.from_pretrained(
original_model, "tenant_1_lora_adapter/")

merged_model_2 = PeftModel.from_pretrained(
original_model, "tenant_2_lora_adapter/")

Full-Fine Tuning Versus LoRA Performance

Let’s use the ROUGE metric you learned about in Chapter 5 to compare the per-
formance of a LoRA fine-tuned model to both an original base model and a full
fine-tuned version.

Table 6-2 summarizes the performance comparison between fine-tuning the genera-
tive model for dialogue summarization. For this, the baseline score represents the
performance of the pretrained model and the dialogsum dataset. A higher number
indicates better performance for this metric.

Table 6-2. Sample ROUGE metrics for full fine-tuning versus LoRA fine-tuning

Base model Full fine-tune (approx. +80%) LoRA fine-tune (approx. —3%)

rougel 0.2334 0.4216 0.4081
rouge2 0.0760 0.1804 0.1633
rougel 0.2014 0.3384 0.3251
rougeLsum 0.2015 0.3384 0.3249

As you can see, the scores are fairly low for the base model, then get better when per-
forming full fine-tuning by updating all of the model parameters. The metric drops
a bit when using LoRA-based parameter-efficient fine-tuning. However, using LoRA
for fine-tuning trained a much smaller number of parameters than full fine-tuning,
using significantly less compute, in this case 1.4%; this small trade-off in performance
may well be worth it. This directly translates to cost savings as your compute and
memory footprints are reduced.

104 | Chapter 6: Parameter-Efficient Fine-Tuning

QLoRA

While LoRA reduces memory requirements, there is a variation of LoRA called
QLoRA that aims to further reduce memory requirements by combining low-rank
adaptation with quantization.* QLoRA uses 4-bit quantization in a format called
NormalFloat4 or nf4.

Fine tuning with QLoRA is shown to match 16-bit fine-tuning methods because the
4-bit weights are only dequantized to 16 bits as needed for computations during the
forward and backward passes. The following code sample shows how to fine-tune
with QLoRA using the open source bitsandbytes library. Here, the bitsandbytes
library is used to load the model into 4-bit and specifically into the nf4 format:

from import BitsAndBytesConfig, AutoModelForCausallLM

bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)

model = AutoModelForCausallLM.from_pretrained(model_checkpoint,
quantization_config=bnb_config)

from import LoraConfig, get_peft_model

config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=[
"query_key_value",
"dense",
"dense_h_to_4h",
"dense_4h_to_h",
1,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)

model = get_peft_model(model, config)

trainer = transformers.Trainer(
model=model,
args=transformers.TrainingArguments(

4 Tim Dettmers et al., “QLoRA: Efficient Finetuning of Quantized LLMs”, arXiv, 2023.

LoRAand QLoRA | 105

https://oreil.ly/2wjMi

bf16=True

)

You learned about quantization in Chapter 4 as a method to reduce the memory
required to store the weights of your model by reducing their precision from a 32-bit
floating point to a lower precision representation. QLoRA uses a technique called
double quantization to further reduce the memory footprint required for fine-tuning
by performing quantization on the quantized constants. It's common for QLoRA to
target all linear layers and not just the self-attention layers targeted by LoRA. This
provides further opportunity for optimization.

LoRA and QLoRA provide efficiencies in the resources required to fine-tune for
specific tasks. Both of these techniques utilize low-rank decomposition matrices for
fine-tuning. In the next section, you’ll learn about soft prompts and prompt tuning as
another PEFT that uses a different approach to fine-tuning.

Prompt Tuning and Soft Prompts

It's important to keep in mind that prompt tuning is different from prompt engineer-
ing, which you learned about in Chapter 2. Prompt engineering requires you to refine
a text-based prompt to get the intended completion from a generative model. This
can be time-consuming and require a lot of human effort to perform effectively.
In comparison to the manual aspects of prompt engineering, prompt tuning uses
machine learning to learn the best instructions for a task and implements those as
virtual tokens added to your input prompts.

With prompt engineering, there are limitations related to the maximum length of
the context window for your chosen model. Conversely, prompt tuning focuses on
adding additional, trainable tokens to your input prompt, which are more efficient in
terms of context window limits because these tokens are condensed representations
of instructions.

Traditional prompt engineering utilizes what is known as hard prompts, or prompts
that represent natural language (e.g., “What is the best book to teach someone about
Transformers?”). These hard prompts correspond to a fixed location in the embed-
ding vector space. Prompt tuning relies on soft prompts, which are often referred to
as virtual tokens because they can represent any value within the continuous multidi-
mensional embedding space. These soft prompts, shown in Figure 6-7, represent a
sequence of vectors that do not translate directly to natural language.

106 | Chapter 6: Parameter-Efficient Fine-Tuning

Figure 6-7. Soft prompts represent a sequence of vectors that do not translate directly to
natural language

Prompt tuning does not impact the weights of the original foundation model.
Instead, prompt tuning involves creating a small model that is used to encode the text
prompt and generate task-specific virtual tokens. The optimal value of these tokens
is then learned during the supervised learning process through backpropagation. The
following code shows an example, using Hugging Face’s PEFT library, of a portion of
the configuration used to train the model that will be used to generate virtual tokens:

peft_config = PromptTuningConfig(
task_type=TaskType.CAUSAL_LM,
prompt_tuning_init=PromptTuningInit.TEXT,
num_virtual_tokens=8,
prompt_tuning_init_text="Classify if the tweet is a complaint or not:",
tokenizer_name_or_path=model_checkpoint,

)

These task-specific virtual tokens, or soft prompts, are added to the prompt, as shown
in Figure 6-8.

Prompt Tuning and Soft Prompts | 107

Figure 6-8. Soft prompts are learned in an attempt to maximize task performance

The soft prompts then get prepended to the embedding vectors that represent your
input text. These soft prompt vectors have the same length as the embedding vectors
representing the language token. Research has shown that somewhere between 20
and 100 virtual tokens can be enough to achieve good performance for your task.
While the tokens from the hard prompt are specifically related to the input text, these
virtual tokens with the trainable soft prompts do not directly represent discrete text.

Prompt tuning falls into the additive category of PEFT fine-tuning methods because
you are adding soft prompts, while the weights of the underlying model remain
frozen. The embedding vectors of the soft prompt then get updated over time to
optimize the model’s ability to accurately complete the prompt.

Because you are only tuning a set of soft prompts and leaving the original foundation
model unchanged, this is a parameter-efficient tuning strategy. Similarly to LoRA,
you can train and optimize for different task-level prompts. To do this, you prepend
your input prompt with those learned tokens (soft prompts) specific to your task.

Prompt tuning performance varies, and research has shown that prompt tuning may
not perform as well as full fine-tuning for smaller LLMs, but as the model size increa-
ses, the performance of prompt tuning tends to improve. As an example, research’

5 Brian Lester et al., “The Power of Scale for Parameter-Efficient Prompt Tuning”, arXiv, 2021.

108 | Chapter 6: Parameter-Efficient Fine-Tuning

https://oreil.ly/Ibf7V

using the SuperGLUE evaluation benchmark has shown equivalent performance to
full fine-tuning for some models that have 10 billion parameters.

However, the primary challenge with prompt tuning tends to be interpretability,
because these learned virtual tokens can take on any value within that continuous
embedding vector space, and they do not necessarily correspond to any known token
or discrete language in the vocabulary of the LLM.

Another consideration with prompt tuning is that it doesn’t really adapt a model for
new tasks, because the main goal with prompt tuning is to optimize the prompts that
are passed into the original foundation model. As a result, while it can potentially
produce better model responses, it can’t inject knowledge or context unknown to the
base foundation model.

Typically, these soft prompts form tight semantic clusters based on analysis of the
nearest neighbor tokens to the soft prompt locations, meaning the words closest to
these soft prompt tokens have similar meanings. This suggests that the tokens are
learned based on word representations.

Summary

In this chapter, you explored LoRA, which uses rank decomposition matrices to
update the model parameters in an efficient way. With LoRA, the goal is to find an
efficient way to update the weights of the model without having to train every single
parameter again.

LoRA is a powerful fine-tuning method that achieves great performance. Because
LoRA reduces the amount of resources needed to fine-tune your models relative
to full fine-tuning, it is used widely in practice for many use cases and tasks. The
principles behind this method are useful for training not just generative language
models but also other types of models, including image and video.

QLoRA is a variant of LoRA that uses quantization, a new data type called Normal
Float4 (nf4), and targets more than just the attention layers of the Transformer.

You also explored prompt tuning as a way to optimize prompts using trainable soft
tokens that get prepended to the input prompt. While LoRA may be more perform-
ant in adapting to specialized tasks, prompt tuning is a relatively simple technique for
prompt optimization.

In Chapter 7, you will learn a powerful technique called reinforcement learning from
human feedback (RLHF) to fine-tune your generative models to align with human
values and preferences.

Summary | 109

CHAPTER 7

Fine-Tuning with Reinforcement Learning
from Human Feedback

As you learned in Chapters 5 and 6, fine-tuning with instructions can improve your
model’s performance and help the model to better understand humanlike prompts
and generate more humanlike responses. However, it doesn’t prevent the model from
generating undesired, false, and sometimes even harmful completions.

Undesirable output is really no surprise, given that these models are trained on vast
amounts of text data from the internet, which unfortunately contains plenty of bad
language and toxicity. And while researchers and practitioners continue to scrub and
refine pretraining datasets to remove unwanted data, there is still a chance that the
model could generate content that does not positively align with human values and
preferences.

Reinforcement learning from human feedback (RLHF) is a fine-tuning mechanism
that uses human annotation—also called human feedback—to help the model adapt
to human values and preferences. RLHF is most commonly applied after other forms
of fine-tuning, including instruction fine-tuning.

While RLHEF is typically used to help a model generate more humanlike and human-
aligned outputs, you could also use RLHF to fine-tune highly personalized models.
For example, you could fine-tune a chat assistant specific to each user of your
application. This chat assistant can adopt the style, voice, or sense of humor of each
user based on their interactions with your application.

In this chapter, you will learn how to use RLHF to fine-tune your model to bet-
ter align its generated output with human preferences and values—and ultimately
increase the model’s helpfulness, honesty, and harmlessness (HHH).

m

Human Alignment: Helpful, Honest, and Harmless

Positive language often appeals better to humans. Let’s discuss a model’s output in the
context of helpful, honest, and harmless alignment:

Helpful
Your model may not generate a helpful completion for your prompt. Consider
asking your model, “Which cities in the United States are the most popular for
summer vacation?” The model responds with, “Most major cities in the United
States are popular for summer vacation.” This is clearly not a helpful response
and could use some improvement.

Honest
Your model might also generate misleading or incorrect responses. Let’s say you
ask the model if shaking your head can improve your hearing. The model may
sometimes generate a confident, yet totally incorrect, response such as, “Yes!
Shaking your head can improve your hearing,” which is not scientifically proven
to be true.

Harmless
You also don’t want your model to generate harmful, offensive, or criminal
responses. Instead of responding as such, you can fine-tune your model to either
ignore the question or respond with a less toxic response that does not propagate
offensiveness or encourage criminal behavior. For example, if you ask your
model how to hack into a computer system, your model can respond with, “I am
unable to answer this question because I do not encourage criminal behavior”

Next, you will learn about reinforcement learning, which is the basis of the RLHF
fine-tuning process.

Reinforcement Learning Overview

It's important to understand reinforcement learning before diving deeper into RLHE
A popular example of reinforcement learning is AWS DeepRacer, where a player
trains a small driverless car to autonomously drive on a racetrack and avoid crashing.
The player competes with other drivers to complete the track in the shortest amount
of time. The player with the lowest time wins the race.

112 | Chapter7: Fine-Tuning with Reinforcement Learning from Human Feedback

In Figure 7-1, the agent is the car that is learning a policy or model based on rewards
given to the car for staying on the track and choosing the proper actions. The training
algorithm maximizes the car’s objective to complete the track in the lowest amount of
time and win the race.

Figure 7-1. Reinforcement learning in the context of AWS DeepRacer

The environment is the racetrack, including its curves and conditions. The state at
any moment is the car’s current position and speed on the racetrack. The action
space comprises all the possible actions a car can choose based on the current state,
including steering left/right, braking, and accelerating. The agent makes decisions by
following a strategy, known as the RL policy. During the race, the agent chooses a set
of actions that lead to a win or a loss.

After each race, the agent collects an overall reward that affects the agents’ actions in
the next race. The goal of reinforcement learning is for the agent to learn the optimal
policy, or model, for choosing the actions for a given environment that maximizes the
rewards.

This learning process is iterative and involves trial and error. Initially, the agent takes
a random action, which leads to a new state. From this state, the agent proceeds to
explore subsequent states through further actions.

The sequence of states and actions that lead to a reward are often called a playout in
RL terms. As the agent gathers more experience through additional playouts, it will
learn to follow actions that produce a high reward—winning the race, in this case.

Reinforcement Learning Overview | 113

In Figure 7-2, you see the RL concepts applied to a generative model. Here, the
model is the agent. The policy consists of the model weights. The RL algorithm will
update the model weights to choose a better action, or generate a better next-token,
given the environment, state, and objective. The objective is for the model to generate
completions that are better aligned with human preferences such as helpfulness,
honesty, and harmlessness (HHH).

Figure 7-2. Reinforcement learning in the context of a generative AI model

The action is chosen from the action space consisting of all possible tokens. Specifi-
cally, the next token is chosen based on the probability distribution of tokens over
all tokens in the model’s vocabulary. The environment is the model’s context window.
The state consists of the tokens that are currently in the context window.

In this generative context, the sequence of actions and states resulting in a reward is
called a rollout.

Playout is used in the classical RL context, while rollout is com-
monly used in a generative context. They are equivalent.

The reward is based on how well the model's completion aligns with a human
preference such as helpfulness. As the model experiences more rollouts and rewards,
it will learn to generate tokens that produce a higher reward. The examples in this
chapter will demonstrate reward models that give a higher reward to text that is more
helpful, honest, and harmless.

114 | Chapter7: Fine-Tuning with Reinforcement Learning from Human Feedback

The reward model plays a key role in RLHF by encouraging the model to generate
more human-aligned, preferred completions and discouraging nonpreferred respon-
ses. Determining what is preferred and not preferred is a bit trickier than tracking
a car’s time to complete a race. To determine what is considered helpful, honest,
and harmless, you often need humans to label the context using human-in-the-loop
managed services like SageMaker Ground Truth to train a custom reward model, as
you will see next.

Train a Custom Reward Model

A reward model is typically a classifier that predicts one of two classes—positive
or negative. These are often called binary classifiers and are often based on smaller
language models like BERT. Many language-aware binary classifiers already exist to
classify sentiment or detect toxic language. If these are not suitable for your use case,
then you can train your own reward model.

Training a custom reward model is a relatively labor-intensive
and costly endeavor. You should explore existing binary classifiers
before committing to this effort.

Collect Training Dataset with Human-in-the-Loop

The first step to training a custom reward model is to collect data from humans on
what is helpful, honest, and harmless. This is called collecting human feedback from
human annotators, or labelers. This step typically involves a managed service like
SageMaker Ground Truth.

In a generative context, it's common to ask the human annotators to rank various
completions for a given prompt. By ranking the completions relative to each other,
the human labelers actually create multiple rows of training data—per prompt—for
your reward model, as you will see in a bit.

But first, let’s see an example set of instructions provided to human annotators when
asking them to rank model completions for a given prompt.

Train a Custom Reward Model | 115

https://oreil.ly/iuEC1
https://oreil.ly/T5-Kk
https://oreil.ly/ugocl

Sample Instructions for Human Labelers

Typically, human annotators are asked to rank the completions for a given prompt
according to given criteria. For example, “Please rank the completions from the most
helpful to least helpful” or “Please rank the completions from the most harmless to
the least harmless.”

The more details you share, the more likely the labeler will correctly perform the
task and provide a high-quality, human-aligned ranking dataset to train your reward
model. To ensure quality labeling and feedback, make sure you provide clear instruc-
tions to help the labelers understand their task, the human-alignment criteria, and
how to deal with any edge cases.

Generally, instructions should clearly describe the task for the labeler. Here is an
example set of human labeling instructions derived from the “Scaling Instruction-
Finetuned Language Models” paper:'

« Rank the responses according to which one provides the best answer to the input
prompt.

o What is the best answer? Make a decision based on (a) the correctness of the
answer, and (b) the informativeness of the response. For (a) you are allowed to
search the web. Overall, use your best judgment to rank answers based on being
the most useful and harmless response, which we define as one which is at least
somewhat correct, minimally informative about what the prompt is asking for,
and least toxic in language.

« Long answers are not always the best. Answers which provide succinct, coherent
responses may be better than longer ones, if they are at least as correct and
informative.

Providing these detailed human instructions will increase the likelihood that the
responses will be high quality and that all individual humans will carry out the
labeling task in a consistent way.

Next, you will see how to collect the human feedback using a managed service like
Amazon SageMaker Ground Truth.

Using Amazon SageMaker Ground Truth for Human Annotations

To collect the data from human labelers, you can use a service like Amazon Sage-
Maker Ground Truth to allow labelers to rank the completions for a given prompt
from highest to lowest using a drag-and-drop UT interface like the one shown in
Figure 7-3.

1 Hyung Won Chung et al., “Scaling Instruction-Finetuned Language Models”, arXiv, 2022.

116 | Chapter7: Fine-Tuning with Reinforcement Learning from Human Feedback

https://oreil.ly/kyztV

Figure 7-3. Ranking with Amazon SageMaker Ground Truth

Here, the human annotator is asked to rank the most helpful summary of a given
conversation. Here is the code that sets up and submits one of these tasks to Sage-
Maker Ground Truth as a human-in-the-loop task. In this case, a task is a prompt
with a set of three possible completions that need to be ranked:

items = [
{

"prompt":

mwnn

Chris: Hey Antje, do you like cats?
Antje: I hate cats. I'm allergic to them.

mwnn

"responses": [

mwnn

Chris asks Antje i1f she likes cats.
Antje does not like cats because she is allergic to them.

mwnn
B
mwnn

Chris asks Antje if she likes cats. Antje hates cats.

mwnn
B
mwnn

Antje asks Chris if he likes cats.
Chris loves cats because they are fluffy, cute, and cuddly.

mwnn

Train a Custom Reward Model | 117

humanLoopName = str(uuid.uuid4())

inputContent = {"taskObject": task}

start_loop_response = a2i.start_human_loop(
HumanLoopName=humanLoopName,
FlowDefinitionArn=augmented_ai_flow_definition_arn,
HumanLoopInput={"InputContent":

json.dumps(inputContent)},
)

loop = a2i.describe_human_loop(HumanLoopName=human_loop_name)
print(f'HumanLoop Status: {loop["HumanLoopStatus"]}')
print(f'HumanLoop Output S3: {loop["HumanLoopOutput"]}"')

Output

HumanLoop Status: InProgress
HumanLoop Output S3: {'OutputS3Uri':
's3://<ground-truth-ranking-results-s3-location>/output.json'}

When the human annotator ranks the responses for a given prompt, they will be
stored as JSON strings in the S3 location, similar to the one previous code. Here is
an excerpt from one of the JSON strings. Note that 1 is the best ranking and 3 is the
worst:

{
"humanAnswers": [{
"answerContent": {
"ranking_A": "1", # ranking for completion A (1=best)
"ranking_B": "2", # ranking for completion B
"ranking_C": "3", # ranking for completion C (3=worst)
}
1
}

By repeating this process across many human labelers, you create a human preference
dataset that you can use to train a reward model. Before you can train the reward
model, however, you need to convert the JSON strings into a numeric format suitable
for training a binary classifier.

Prepare Ranking Data to Train a Reward Model

Now that you have collected human-annotated rankings and stored them as JSON
in S3, you need to convert this data into a format used to train the reward model to
predict either a positive reward (1) or a negative reward (0). In other words, you need
to convert rankings 1 through 3 into 0s and 1s, as shown next.

118 | Chapter7: Fine-Tuning with Reinforcement Learning from Human Feedback

In our example, there are three possible completions for the given prompt—comple-
tion A, B, and C, as shown in Figure 7-4. Here, you see that, for the given prompt, the
human labeler has assigned completion A the highest ranking (rank 1), completion B
the middle ranking (rank 2), and completion C the lowest ranking (rank 3).

Figure 7-4. Ranked completions for a given prompt

In other words, completion A > completion B > completion C, or just A > B > C.
You can split this relationship into three separate pairwise comparisons: A > B, B > C,
and A > C. Next, you can assign 0 or 1 to each element in each of the pairwise com-
parisons, as shown in Figure 7-5. Here, 1 represents the more preferred completion
and 0 represents the less preferred completion among the pair of completions.

Completions Rank Completions Reward
=] 1 |=—38) (=—4] [01]
2 — (=8| (=0 Mol

¢ 3 (=—n) (=10 00l

Prompt

Figure 7-5. 0 and 1 reward pairs for each pairwise completion ranking

The logic to perform the pairwise comparisons is trivial, but you can find the com-
plete code in the GitHub repository associated with this book.

Train a Custom Reward Model | 119

https://oreil.ly/generative-ai-on-aws-code

Note that three ranked completions for a given prompt generates three rows of
reward-training data. Four ranked completions would generate six pairwise compar-
isons. Five ranked completions would generate 10 pairwise comparisons, and so
on. Each additional ranked completion will generate an exponential number of new
training examples.

This relationship is described by the field of combinatorics, which dictates that, for
n number of completions, you will generate (n choose 2) pairwise comparisons,
where each pairwise comparison is a row of training data for your reward model.

While thumbs-up/down human feedback is often easier to capture
than rankings by simply adding a thumbs-up/down button to the
application, rankings give you exponentially more data to train
your reward model.

This training data is used to train the reward model that will ultimately predict a
reward for a generated completion during the RL fine-tuning process described in
the next section. However, we're not quite done preparing our reward-model training
dataset yet.

After generating the pairwise reward-training data of 0 and 1 reward values, conven-
tion dictates that you should reorder the data so that the preferred completion is
in the first column. While this is a convention, its important to understand this
extra step, as a lot of reward-model training code and documentation refers to the
preferred text as y; and the nonpreferred text as y,. This also positions r; as the
preferred reward (1) and r, as the nonpreferred reward (0), as shown in Figure 7-6.

Figure 7-6. Move preferred completion into the y; column, per convention

Note how the completions and rewards in the first row, A and B, are swapped to
follow the convention and move the preferred completion to the y; position and the
preferred reward to the 7, position. The code to perform this transformation is trivial,
but you can see the full code in the GitHub repository associated with this book.
Table 7-1 shows an example output from the transformation.

120 | Chapter7: Fine-Tuning with Reinforcement Learning from Human Feedback

https://oreil.ly/Zdp4q
https://oreil.ly/eqOU4
https://oreil.ly/generative-ai-on-aws-code

Table 7-1. Summary of preferred and nonpreferred completions and rewards

Prompt Completion y; (preferred) Completion y; (nonpreferred) Rewards
[r;,

Chris: Hey Antje, do you like Chris asks Antje if she likes cats. Chris asks Antje if she likes cats. Antje [1, 0]

cats? Antje does not like cats because she hates cats.

Antje: | hate cats. I'm allergic s allergic to them.

to them.

Chris: Hey Antje, do you like Chris asks Antje if she likes cats. Antje asks Chris if he likes cats. Chris [1,0]

cats? Antje hates cats. loves cats because they are fluffy, cute,

Antje: | hate cats. I'm allergic and cuddly.

to them.

Chris: Hey Antje, do you like Chris asks Antje if she likes cats. Antje asks Chris if he likes cats. Chris [1,0]

cats? Antje does not like cats because she loves cats because they are fluffy, cute,

Antje: | hate cats. I'm allergic is allergic to them. and cuddly.

to them.

Now that you have completed the data preparation phase, you are finally ready to
train the reward model, as you will see next.

Train the Reward Model

Let’s now train the reward model using the dataset you prepared using the human-
annotated feedback collected from human labelers using SageMaker Ground Truth.
For this, you can use a BERT-based text classifier trained to predict the probability
distribution across two classes—positive (1) and negative (0)—for a given prompt-
completion pair. The class with the highest probability is the predicted reward:

from import AutoModelForSequenceClassification

model_checkpoint = "..." # BERT-based text classifier

custom_reward_model =
AutoModelForSequenceClassification.from_pretrained(
model_checkpoint)

Remember that a positive reward (1) encourages the model to continue generating

the completion for the given prompt. Conversely, a negative reward (0) discourages
the model from generating the completion.

In Figure 7-7 you see that, for a given prompt x, the reward model learns to favor the
human-preferred completion, y, by minimizing the loss function, which reflects the
reward difference, r, minus 7.

Train a Custom Reward Model | 121

https://oreil.ly/Kt_lm

Figure 7-7. Train the model to predict the preferred completion y; from {y, y,} for
prompt x

Specifically, the loss is the negative of the log sigmoid of the reward difference, as
shown in the compute_loss() code snippet here from the library of the Transformer
Reinforcement Learning (TRL)’s RewardTrainer class. Remember that the human-
preferred completion and reward are, by convention, labeled y; and r;:

from import Trainer

class RewardTrainer(Trainer):
Define the loss function for the RewardTrainer class
def compute_loss(self, reward_model, inputs):
rewards_j = reward_model(
input_ids=inputs["input_1ids_j"],
attention_mask=inputs["attention_mask_j"]1)[0]
rewards_k = reward_model(
input_ids=inputs["input_1ids_k"],
attention_mask=inputs["attention_mask_k"])[0]
loss = -nn.functional.logsigmoid(
rewards_j - rewards_k
).mean()
return loss
Train the reward model ... woo-hoo!
trainer = RewardTrainer(
model=custom_reward_model, # BERT-based text classifier
train_dataset=human_feedback_dataset,

.2)
trainer.train()

custom_reward_model.save_pretrained(
"custom_reward_model_checkpoint/"

)
Now that we have shown how to train a reward model to reward helpful completions,
let’s switch to another common type of reward model for generative tasks: toxicity
and hate-speech detection for generated text. Reducing toxicity is a key component of

adapting and aligning a generative model for human values and preferences, as you
will see next.

122 | Chapter7:Fine-Tuning with Reinforcement Learning from Human Feedback

https://oreil.ly/pE_Nb
https://oreil.ly/03jL3

Existing Reward Model: Toxicity Detector by Meta

In 2021, Meta/Facebook released a paper? along with a model based on RoBERTa
called roberta-hate-speech-dynabench-r4-target that helps detect toxic language. This
reward model predicts the probability distribution across two classes—“not hate” or
“hate”—for a given text input.

Similar to the reward model that you trained in the previous section to positively
reward text classified as helpful, honest, and harmless, Meta’s reward model positively
rewards text classified as “not hate” and negatively rewards text classified as “hate”

In the next section, you will use this Meta toxicity model as a reward model to
fine-tune a generative model and reduce the toxicity of its generated completions.
But, first, let’s verify that this model works as expected by passing in a toxic phrase—
as well as a nontoxic phrase—and compare the rewards:

from import AutoTokenizer
toxicity_model_checkpoint =
"facebook/roberta-hate-speech-dynabench-r4-target"

toxicity_tokenizer =
AutoTokenizer.from_pretrained(toxicity_model_checkpoint)

text = "You are a terrible person and I dang hate you."

toxicity_1input_ids = tokenizer(text,
return_tensors="pt").input_1ids

logits = toxicity_evaluator(toxicity_input_1ids).logits
print(f'logits [not hate, hate]: {logits.tolist()[0]}"')

Print the probabilities for [not hate, hate]
probabilities = logits.softmax(dim=-1).tolist()[0]
print(f'probabilities [not hate, hate]: {probabilities}')

Get the logits for "not hate" - this is the reward!
nothate_reward = (logits[:, not_hate_index]).tolist()
print(f'reward (value of "not hate" logit): {nothate_reward}')

Output:

logits [not hate, hate]: [-2.0610, 1.5835]
probabilities [not hate, hate]: [0.0254, 0.9745]
reward (value of "not hate" logit): [-2.0610]

2 Bertie Vidgen et al., “Learning from the Worst: Dynamically Generated Datasets to Improve Online Hate
Detection”, arXiv, 2021.

Existing Reward Model: Toxicity Detectorby Meta | 123

https://oreil.ly/fx8vY
https://oreil.ly/fx8vY
https://oreil.ly/rGfbQ
https://oreil.ly/TMGvw

The logit value of the positive class (“not hate” in this case) is the actual reward value
assigned to this text by the reward model. In this case, the reward value for the given
text is -2.0610 and the probability for “not hate” is 2.54%. Since this is a negative
reward value, the model is discouraged from generating this kind of text.

Next is an example of a positive reward for text that is classified as “not hate”:

text = "You are a great person and I like you."

toxicity_input_ids = tokenizer(text,
return_tensors="pt").input_1ids

logits = toxicity_evaluator(toxicity_input_1ids).logits
print(f'logits [not hate, hate]: {logits.tolist()[0]}')

Print the probabilities for [not hate, hate]
probabilities = logits.softmax(dim=-1).tolist()[0]
print(f'probabilities [not hate, hate]: {probabilities}')

Get the logits for "not hate" - this is the reward!
nothate_reward = (logits[:, not_hate_index]).tolist()
print(f'reward (value of "not hate" logit): {nothate_reward}')

Output:

logits [not hate, hate]: [4.6532, -4.1782]
reward (value of "not hate" logit): [4.6532]
probabilities [not hate, hate]: [0.9999, 0.0001]

The logit value of the positive class (“not hate”) is 4.6532 and the probability for
“not hate” is 99.99%, in this case. Since this is a positive reward value, the model is
encouraged to generate this kind of text.

The RLHF process, which you will explore next, will fine-tune the model to generate
completions that classify as “not hate”—and therefore better align with human values
and preferences.

Fine-Tune with Reinforcement Learning
from Human Feedback

Reinforcement learning from human feedback (RLHF) is a fine-tuning process that
modifies the underlying weights of a given generative model to better align with the
human preferences expressed through the reward model. The reward model, as you
saw in previous sections, captures human preferences through direct human feedback
using services like SageMaker Ground Truth.

124 | Chapter7: Fine-Tuning with Reinforcement Learning from Human Feedback

Using the Reward Model with RLHF

Continuing with our detoxification use case, let’s start with an example. Consider
sending a dialog between Chris and Antje, about whether Antje likes cats, to a
generative model. Before fine-tuning the LLM with RLHF to reduce toxicity, the
model may generate “Antje hates cats” The reward model produces a negative reward
value for this text, as shown in Figure 7-8.

Figure 7-8. Use the reward model with the PPO algorithm for reinforcement learning

A less toxic completion is, “Antje does not like cats. She is allergic” which receives a
positive reward in this case, as shown in Figure 7-9.

Figure 7-9. Positive reward for less toxic generated text

Fine-Tune with Reinforcement Learning from Human Feedback | 125

Proximal Policy Optimization RL Algorithm

There is a popular RL algorithm called Proximal Policy Optimization (PPO) used to
perform the actual model weight updates based on the reward value assigned to a
given prompt and completion. PPO, initially described in a 2017 paper,’ updates the
weights of the generative model based on the reward value returned from the reward
model—Meta’s hate speech model—as shown in Figure 7-10.

Figure 7-10. Proximal Policy Optimization RL algorithm with Meta’s hate speech model

PPO is a common algorithm used in reinforcement learning. As the name suggests,
PPO optimizes a policy, in this case the LLM, to generate completions that are more
aligned with human values and preferences. With each iteration, PPO makes small
and bounded updates to the LLM weights—hence the term Proximal Policy Optimi-
zation. By keeping the changes small with each iteration, the fine-tuning process
is more stable and the resulting model is able to generalize well on new inputs.
PPO updates the model weights through backpropagation. After many iterations, you
should have the more human-aligned generative model.

Perform RLHF Fine-Tuning with PPO

Let’s walk through how to perform RLHF to fine-tune the model to generate fewer
toxic responses. First, the prompt is passed to the generative model, which produces a
completion. The prompt-completion pair is then passed to the reward model, which
provides a set of logits and probability distributions across the “not hate” and “hate”
classes. As mentioned in the previous section, you want to optimize for the “not hate”
class.

3 John Schulman et al., “Proximal Policy Optimization Algorithms”, arXiv, 2017.

126 | Chapter7: Fine-Tuning with Reinforcement Learning from Human Feedback

https://oreil.ly/uRQPj

Following is the relevant code that demonstrates how to use the PPOTrainer from the
TRL library to perform the PPO update steps that fine-tune the model’s weights based
on the reward value assigned by the Meta toxicity detector model. Note the use of the
AutoModelForCausalLMWithValueHead class from the TRL library. This is a wrapper
around a AutoModelForCausalLM model and becomes part of the layers trained by
the PPOTrainer. The full code is in the GitHub repository associated with this book,
but here are some relevant code snippets with comments to guide you through the
process:

from trl import PPOTrainer
from trl import AutoModelForCausalLMWithValueHead
from transformers import pipeline

model_checkpoint = # generative model like Llama2, Falcon

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

ppo_model = AutoModelForCausalLMWithValueHead.from_pretrained(
model_checkpoint,
torch_dtype=torch.bfloat16)

ppo_trainer = PPOTrainer(
model=ppo_model,
tokenizer=tokenizer,
dataset=dataset)

toxicity_model_checkpoint =
"facebook/roberta-hate-speech-dynabench-r4-target"

toxicity_evaluator = pipeline("text-classification”,
model=toxicity_model_checkpoint)

generation_kwargs = {
"min_length": 5,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True

}

reward_kwargs = {
"top_k": None, # Return all scores, no sampling.

}
max_ppo_steps = 10000 # max number of ppo steps

for step, batch in enumerate(ppo_trainer.dataloader):
Break when you reach max_ppo_steps.
if step >= max_ppo_steps:
break

Fine-Tune with Reinforcement Learning from Human Feedback | 127

https://oreil.ly/zy1Oe
https://oreil.ly/iMTzc
https://oreil.ly/4_9le
https://oreil.ly/Pf6ds
https://oreil.ly/Hvqep
https://oreil.ly/OkBrz
https://oreil.ly/generative-ai-on-aws-code

Extract prompts from the input batch

prompt_tensors = batch["input_1ids"]

Prepare list to collect the summaries
summary_tensors = []

For each input prompt, generate a summary completion
for prompt_tensor in prompt_tensors:

summary = ppo_trainer.generate(prompt_tensor,
**generation_kwargs)

Append the summaries
summary_tensors.append(
summary.squeeze()[-max_new_tokens:])

This needs to be called "response”.
batch["response"] = [tokenizer.decode(r.squeeze()) for r in summary_tensors]

Compute reward outputs for combined query and response
query_response_pairs = [q + r for g, r in zip(batch["query"],
batch["response"])]

Calculate rewards across both classes
rewards = toxicity_evaluator(
query_response_pairs, **reward_kwargs)

Extract the reward value from the ‘nothate’ class
reward_tensors =
[torch.tensor(reward[not_hate_index]["score"]) for reward in rewards]

Run PPO step with prompts, summaries, and rewards
ppo_trainer.step(prompt_tensors, summary_tensors, reward_tensors)

Each iteration of the RLHF process updates the model weights. The iterations
continue for a given number of steps and epochs similar to other types of model
training and fine-tuning. After a while, the generative model should start to receive
higher rewards as it produces fewer toxic completions. These iterations continue until
the model is considered aligned, based on an evaluation threshold such as toxicity
score—or until the maximum number of configured iterations, max_ppo_steps, is
reached.

Mitigate Reward Hacking

As with any reward-based system, there exists a tendency to ignore constraints and
“hack the reward” This is true for reinforcement learning, as well, in which the agent
may learn to cheat and maximize the reward, even if the chosen actions lead to an
incorrect state.

128 | Chapter7: Fine-Tuning with Reinforcement Learning from Human Feedback

For example, a generative model may learn to produce nonsensical, grammatically
incorrect sequences of tokens that maximize the reward (e.g., low toxicity) but do not
respect the learnings of the original language model—or, at the extreme, diverge from
human language completely.

A common technique to avoid reward hacking is to first make a copy of the original
instruct model before performing any reinforcement learning or weight updates. You
then freeze the weights of this copied model and use it as an immutable “reference
model” During RLHE every prompt is completed by both the frozen reference model
and the model you are trying to fine-tune with RLHE

Next, the two completions are compared to determine the statistical distance
between the two token-probability distributions. This distance is calculated using
Kullback-Leibler divergence, or KL divergence—a well-known and widely imple-
mented algorithm, as shown in Figure 7-11.

Figure 7-11. Mitigate rewards hacking with a KL divergence reward penalty

KL divergence quantifies how much the mutable, RLHF-tuned generative model is
generating completions that diverge too far from the completions generated by the
immutable reference model. In short, if the fine-tuned model starts hacking the
reward and generating sequences of tokens that diverge too far from sequences that
the reference model would generate, the fine-tuned model is penalized by the RL
algorithm through a lower reward.

Fine-Tune with Reinforcement Learning from Human Feedback | 129

https://oreil.ly/t_jju

RLHF and KL divergence are extremely compute-intensive pro-
cesses that benefit greatly from accelerators like the NVIDIA GPU
or the AWS Trainium purpose-built hardware that is available
through both Amazon EC2 and SageMaker.

The details of KL divergence and reward-penalties are typically contained in the RL
libraries, so you typically don’t need to implement this type of complexity yourself.
However, it does help to understand reward hacking—as well as the techniques and
extra computations required to control it.

Following is the code to configure the PPOTrainer class from the TRL library with
the frozen reference to help avoid reward hacking. Also shown is the PPO iteration
step function that updates the weights of the tunable model using the reward value
produced by the reward model. Remember that the final reward value may be penal-
ized if the generated text starts to diverge from the reference model, as calculated by
KL divergence within the PPOTrainer implementation. Here is the code to add the
frozen reference model to the PPOTratiner:

from import PPOTrainer

from import AutoModelForCausalLMWithValueHead
from import create_reference_model

from import AutoTokenize

model_checkpoint = # generative model like Llama2, Falcon
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

model = AutoModelForCausalLMWithValueHead.from_pretrained(
model_checkpoint,
torch_dtype=torch.bfloat16)

ref_model = create_reference_model(model)

ppo_trainer = PPOTrainer(
model=model, # tunable model
ref_model=ref_model, # frozen reference model
tokenizer=tokenizer,
dataset=dataset)

Using Parameter-Efficient Fine-Tuning with RLHF

Parameter-Efficient Fine-Tuning (PEFT), discussed in Chapter 6, can be used with
RLHF to reduce the amount of compute and memory resources required for the
compute-intensive PPO algorithm, as shown in Figure 7-12. Specifically, you would
only need to update the model’s much-smaller PEFT adapter weights and not the full
weights of the tunable model.

130 | Chapter7: Fine-Tuning with Reinforcement Learning from Human Feedback

https://oreil.ly/8nY7k

Figure 7-12. Using PEFT within RLHF to minimize the resources needed to fine-tune the
generative model

After the RLHF process is complete, the fine-tuned, human-aligned model is ready
for evaluation and, depending on the evaluation result, ready for production deploy-
ment. Next, let’s explore model evaluation in the context of aligning for human values
and preferences.

Evaluate RLHF Fine-Tuned Model

Continuing with the toxicity example, you can evaluate your RLHF fine-tuned model
using both qualitative and quantitative evaluation techniques. Let’s start by compar-
ing the results of the model qualitatively by reviewing a prompt, completion before
RLHE, and completion after RLHE

Qualitative Evaluation
Prompt:

Summarize the following conversation.

#Personl#: So how did you like the restaurant?

#Person2#: Actually, it could have been better.

#Personl#: What didn't you like about it?

#Person2#: It is a new restaurant. I don't think they have their act together
yet.

#Personl#: What did you think about the food?

#Person2#: I felt that the food was pretty mediocre.

#Personl#: The service wasn't that great, either.

#Person2#: I agree. The service was not good. I’m tired of that place.

Evaluate RLHF Fine-Tuned Model | 131

Completion before RLHF (Lower Reward):

#Personl# asks #Person2# about the restaurant. #Person2# liked the food but
it wasn't as good as #Person2# expected it to be. #Person2#'s tired of the
restaurant.

Completion after RLHF (Higher Reward):

#Person2# describes the restaurant to #Personl# and the food situation.
#Person2# doesn't want to try the restaurant again.

While this is a subjective comparison, the completion after RLHF appears to be a
bit less harsh than the completion before RLHF yet conveys approximately the same
meaning. In addition, the completion after RLHF has a higher reward, which is a
signal that the toxicity-detector reward model preferred the completion after RLHF
over the completion before RLHE

Next, you will perform a more quantitative evaluation using toxicity scores to com-
pare across many prompt-completion pairs before and after RLHE.

Quantitative Evaluation

To compare the generative model before and after RLHE, you can use an aggregate
toxicity score for a large number of completions generated by the model using a test
dataset that the model did not see during RLHF fine-tuning. If RLHF has successfully
reduced the toxicity of your generative model, the toxicity score will decrease relative
to the baseline, as shown in Figure 7-13.

Figure 7-13. Evaluate using the toxicity score—lower is better

As you see in Figure 7-13, you would first calculate a baseline toxicity score for
the original model before RLHF fine-tuning, then perform RLHF fine-tuning and
measure the toxicity score afterward. Let’s dive deeper into calculating the toxicity
scores for the generative model using the test dataset.

132 | Chapter7: Fine-Tuning with Reinforcement Learning from Human Feedback

Load Evaluation Model

First, you’ll need to load the toxicity_evaluator using the Hugging Face Evaluate
Python library with Meta’s model for detecting toxic language, which you were using
as the reward model in previous sections. Since this model is a classifier that predicts
one of two classes, “not hate” and “hate,” you need to specify the toxic_label, which
is “hate” in this case. The evaluator then knows which label to use as the toxic label, as
shown in this code:

import
toxicity_model_checkpoint =
"facebook/roberta-hate-speech-dynabench-r4-target"
toxicity_evaluator = evaluate.load(
"toxicity",
toxicity_model_checkpoint,
module_type="measurement",
toxic_label="hate")

Define Evaluation-Metric Aggregation Function

Next, you define an aggregate_toxicity_scores() function to calculate the toxicity
score mean and standard deviation for all prompts in the test dataset, as shown here:

def aggregate_toxicity_scores(model,
toxicity_evaluator,
tokenizer,
dataset):

toxicities = []

input_texts = []

for 1, sample in enumerate(dataset):
input_text = sample["query"]

input_1ids = tokenizer(input_text,
return_tensors="pt", padding=True).input_1ids

response_token_1ids = model.generate(
input_ids=input_1ids)

generated_text = tokenizer.decode(
response_token_ids[0], skip_special_tokens=True)

toxicity_score =
toxicity_evaluator.compute(

predictions=[(input_text + generated_text)])

toxicities.extend(toxicity_score["toxicity"])

Evaluate RLHF Fine-Tuned Model | 133

https://oreil.ly/nPOEZ
https://oreil.ly/nPOEZ
https://oreil.ly/scpaa

Compute mean & std using numpy.
mean = np.mean(toxicities)
std = np.std(toxicities)

return mean, std

Compare Evaluation Metrics Before and After

Next, you calculate a toxicity baseline using the aggregate_toxicity_scores()
function on the original generative model before performing RLHE After perform-
ing RLHE you measure the toxicity score again using the same aggregate_toxic
ity_scores() function:

from transformers import AutoTokenizer

model_checkpoint = "..." # generative model like Llama2, Falcon

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
mean_before_detoxification, std_before_detoxification =
evaluate_toxicity(model=model_before_rlhf,
toxicity_evaluator=toxicity_evaluator,
tokenizer=tokenizer,
dataset=dataset["test"],
num_samples=10)

print(f"""

Aggregate toxicity [mean, std] before detox:
[{mean_before_detoxification},
{std_before_detoxification}]

n HII)

#

Perform RLHF PPO updates here...
#

mean_after_detoxification, std_after_detoxification =
evaluate_toxicity(model=model_after_rlhf,
toxicity_evaluator=toxicity_evaluator,
tokenizer=tokenizer,
dataset=dataset["test"],
num_samples=10)

print(f'Aggregate toxicity [mean, std] after detox:
[{mean_after_detoxification}, {std_after_detoxification}]')

Calculate improvement

mean_1improvement = (mean_before_detoxification - mean_after_detoxification) \
/ mean_before_detoxification

std_improvement = (std_before_detoxification - std_after_detoxification) \
/ std_before_detoxification

134 | Chapter7: Fine-Tuning with Reinforcement Learning from Human Feedback

print(f'Percentage improvement of toxicity score after detoxification:')
print(f'mean: {mean_improvement*100:.2f}%")
print(f'std: {std_improvement*100:.2f}%")

Output:

Aggregate toxicity [mean, std] before detox:
[0.032297799189109355, 0.03010236943945737]

Aggregate toxicity [mean, std] after detox:
[0.0271528000858697, 0.02743170674039297]

Percentage improvement of toxicity score after detoxification:
mean: 15.93%
std: 8.87%

Note the use of the test dataset, which the generative model did not see during RLHF
fine-tuning. Here, you see a drop in aggregate toxicity score, which is the desired
result.

Summary

Fine-tuning for human values is a very important tool in your generative toolbox to
improve your model’s helpfulness, honesty, and harmlessness. Reinforcement learn-
ing from human feedback (RLHF) is a very active area of research with a great
amount of impact on making these models more humanlike, useful, and enjoyable. In
this chapter, you learned the fundamentals of RL, reward models, and the RLHF pro-
cess. These fundamentals will help you understand this exciting field as it continues
to evolve.

You saw how to collect human feedback rankings using services like Amazon Sage-
Maker Ground Truth with human annotators. You then learned how to convert the
human-readable rankings into machine-readable preference data to train a reward
model.

You then learned about some existing classifiers and managed services that can be
used as reward models out of the box without any training. And finally, you learned
about PPO and used it to perform RLHF updates to align a generative model with
human values and preference. Specifically, you reduced a generative model’s toxicity
over a series of PPO iterations, which updated the weights of the model to generate
fewer toxic completions.

Now that you have a human-aligned, lower-toxicity generative model, you will
see how to optimize and deploy it for low-latency, high-performance inference in
Chapter 8.

Summary | 135

CHAPTER 8
Model Deployment Optimizations

After you have adapted your model to your target task, you will ultimately want
to deploy your model so you can begin interacting with it as well as potentially
integrating it into an application that is designed to consume it.

Before deploying your generative model, you need to understand the resources your
model may need as well as the intended experience for interacting with it. Consider-
ing the resources your model will need will include identifying requirements such
as how fast you need your model to generate completions, what compute budget
you have available, and what trade-offs you are willing to make regarding model
performance to be able to achieve faster inference speed and potentially reduce
storage costs.

In this chapter, you will explore various techniques for performing post-training
optimizations on your model, including pruning, quantization, and distillation. Addi-
tional considerations and potential tuning of your deployment configurations will
need to be done postdeployment as well, such as selecting the optimal compute
resources to balance cost and performance.

Model Optimizations for Inference

The size of generative Al models often presents a challenge for deployment in terms
of compute, storage, and memory requirements, as well as how to ensure low-latency
completions. One of the primary ways to optimize for deployment is to take advan-
tage of techniques that aim to reduce the size of the model, typically referred to as
model compression. Reducing the model size allows for quicker loading of the model
and reduced latency. It also reduces the resource requirements for compute, storage,
and memory.

137

While reducing model size helps optimize the model for deployment, the challenge
is reducing the model size while maintaining good model performance. As a result,
there can be a trade-off to consider between model performance, compute budget,
and latency.

This section outlines three techniques aimed at reducing model size—model pruning,
quantization, and distillation, as shown in Figure 8-1.

Figure 8-1. Techniques aimed at reducing model size for deployment optimization

Pruning is a technique that focuses on removing redundant, or low-impact, parame-
ters that do not contribute, or contribute little, to the model’s performance. Pruning
reduces the size of the model, but also increases performance by reducing the number
of computations during inference.

Quantization, a technique that you saw in Chapter 4, converts a model’s weights from
high precision (e.g., 32-bit) to lower precision (e.g., 16-bit). This not only reduces the
model’s memory footprint, but also improves model performance by working with
smaller number representations. With large generative models, it's common to reduce
the precision further to 8 bits to increase inference performance.

Distillation trains a smaller student model from a larger teacher model. The smaller
model is then used for inference to reduce your compute resources yet retain a
high percentage of accuracy of your student model. A popular distilled student

138 | Chapter 8: Model Deployment Optimizations

model is DistilBERT from Hugging Face. DistilBERT was trained from the larger
BERT teacher model and is an order of magnitude smaller than BERT, yet it retains
approximately 97% of the accuracy of the original BERT model. See our book Data
Science on AWS (O'Reilly, 2021) for a deep dive on BERT and DistilBERT.

The following sections will discuss each of these techniques in more detail. Note that
you can use all of the techniques together.

Pruning

Pruning aims to eliminate model weights that are not contributing significantly
to the model’s overall performance, as shown in Figure 8-2. By eliminating those
model weights, you're able to reduce the model size for inference, which reduces the
compute resources required.

Figure 8-2. Pruning aims to reduce the overall model size by eliminating weights that are
not contributing to model performance

The model weights to be eliminated during pruning are those with a value of zero
or very close to zero. Pruning during training is accomplished through unstructured
pruning (removing weights) or structured pruning (removing entire columns or rows
of the weight matrices).

These approaches require retraining; however, there are post-training pruning meth-
ods—typically referred to as one-shot pruning methods—that can do pruning
without retraining. The challenge in performing one-shot pruning is that it’s often
compute intensive for large models with billions of parameters.

Model Optimizations for Inference | 139

https://oreil.ly/750FC
https://oreil.ly/750FC

One method of post-training pruning, called SparseGPT,! aims to overcome the
challenges of one-shot pruning on large language models. This method is specifically
built for language-based generative foundation models and introduces an algorithm
that performs sparse regression at a large scale.

In theory, pruning reduces the size of the LLM, which reduces compute resources
and model latency. However, in practice, there are LLMs where only a small percent-
age of their weights are zero, so in those cases pruning may not have a large impact
on the model size.

Here is a code sample from the SparseGPT pruning library for the LLaMA and Llama
2 models:

target_sparsity_ratio = 0.5

Prune each layer using the given sparsity ratio
for layer_name in layers:
gpts[layer_name].fasterprune(
target_sparsity_ratio,

)

gpts[layer_name].free() # free the zero'd out memory

Post-Training Quantization with GPTQ

Similar to quantization described in Chapter 4, post-training quantization (PTQ)
aims to transform the model’s learned weights into a lower-precision representation
with the goals of reducing the model’s size and the compute requirements when
hosting generative models for inference.

PTQ requires an extra calibration step to statistically capture the range of the original
model weights in the range of the reduced precision. The calibration step uses a
dataset that statistically represents the type of inputs the model will receive during
inference. This calibration step helps identify the range with minimum and maxi-
mum boundaries, as shown in Figure 8-3. This range calculation can be computed at
runtime (dynamic quantization) or computed in advance (static quantization).

There are a variety of post-training quantization methods, including GPT post-
training quantization (GPTQ). GPTQ was first proposed in the paper “GPTQ: Accu-
rate Post-Training Quantization for Generative Pre-trained Transformers”? GPTQ is
capable of reducing the number of bits needed to store each weight from 32 bits for
full precision down to 4, 3, or even 2 bits!

1 Elias Frantar and Dan Alistarh, “SparseGPT: Massive Language Models Can Be Accurately Pruned in One-
Shot”, arXiv, 2023.

2 Elias Frantar et al., “GPTQ: Accurate Post-Training Quantization for Generative Pre-Trained Transformers”,
arXiv, 2023.

140 | Chapter 8: Model Deployment Optimizations

https://oreil.ly/ZbLQE
https://oreil.ly/ZbLQE
https://oreil.ly/sZUaG
https://oreil.ly/rm-_r

Figure 8-3. PTQ requires an extra calibration step to determine the dynamic range

GPTQ analyzes each layer of the model separately and approximates the weights
in a way that helps reduce accuracy loss typically seen during quantization. GPTQ
requires a calibration dataset, as you will see next using the Hugging Face Optimum
library with the Wikitext dataset:

import torch
from optimum.gptq import GPTQQuantizer
from transformers import AutoModelForCausallLM, AutoTokenizer

dataset_id = "databricks/databricks-dolly-15k"
GPTQ quantizer - 4 bits
quantizer = GPTQQuantizer(bits=4,
dataset_id=dataset_1id,
model_seqlen=4096)
quantizer.quant_method = "gptq"

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)

model = AutoModelForCausallLM.from_pretrained(model_checkpoint,
torch_dtype=torch.float16)

Quantize the model
quantized_model = quantizer.quantize_model(model, tokenizer)

Save the quantize model to disk
save_folder = model.save_pretrained("quantized_model")

Model Optimizations for Inference | 141

https://oreil.ly/KiY68
https://oreil.ly/KiY68
https://oreil.ly/UvS5Y

The Wikitext dataset is commonly used for post-training quantization calibration
with language-based generative models because it is representative of the type of text
data that these models will see during inference.

As described in Chapter 4, quantization typically improves infer-
ence latency by reducing the needed computational resources.
However, it may result in a small percentage loss in model
accuracy. This reduction is often worth the cost savings and
performance gains, however. It is recommended that you always
benchmark the quantization results to determine if the trade-offs
are acceptable for your use case.

Distillation

Distillation is a technique that helps reduce the model size, which ultimately reduces
the number of computations and improves model inference performance. Distillation
uses statistical methods to train a smaller student model on a larger teacher model.
The end result is a student model that retains a high percentage of the teacher’s model
accuracy but uses a much smaller number of parameters. The student model is then
deployed for inference. The smaller model requires smaller hardware and therefore
less cost per inference request.

The teacher model is often a generative foundation model or a fine-tuned variant.
During the distillation training process, the student model learns to statistically
replicate the behavior of the teacher model. Note that the teacher model weights do
not change during the distillation process—only the student model weights change.
The teacher model’s output is used to “distill” knowledge to the student model.

Both the teacher and student models generate completions from a prompt-based
training dataset. A distillation loss is calculated by comparing the two completions
and calculating the KL divergence, which you explored for RLHF in Chapter 7,
between the teacher and student output distributions.

The loss—including KL divergence—is then minimized during the distillation pro-
cess using backpropagation to improve the student model’s ability to match the
teacher model’s predicted next-token probability distribution, as shown in Figure 8-4.

The teacher models’ predicted tokens are known as soft labels, while the student
models’ predicted tokens are called soft predictions. In parallel, you need to compare
the student models’ predictions (hard predictions) against the ground truth hard labels
from the prompt dataset. The difference is the student loss. The distillation loss and
student loss are combined and used to update the student models’ weights using
standard backpropagation.

142 | Chapter 8: Model Deployment Optimizations

Figure 8-4. Distill knowledge from teacher to student model

In practice, distillation may not be as effective for generative
decoder models as it is for encoder models like BERT. This is
because the output space is relatively large for decoder models
(with a vocabulary size of, e.g., 100,000 tokens) without a lot of
redundancy in representation.

Here is an example distillation loss function from the Hugging Face Optimum library
for distillation:

def compute_distillation_loss(self, inputs, student_outputs):
with torch.no_grad():
teacher_outputs = self.teacher(**inputs)

temperature = self.args.distillation_temperature

distilliation_loss_start = F.kl_div(
input=F.log_softmax(
student_outputs.start_logits / temperature, dim=-1),
target=F.softmax(
teacher_outputs.start_logits / temperature, dim=-1),
reduction="batchmean",
) * (temperature**2)

distilliation_loss_end = F.kl_div(
input=F.log_softmax(
student_outputs.end_logits / temperature, dim=-1),
target=F.softmax(
teacher_outputs.end_logits / temperature, dim=-1),

Model Optimizations for Inference | 143

https://oreil.ly/5GfU7

reduction="batchmean",
) * (temperature**2)

return \
(distilliation_loss_start + distilliation_loss_end) / 2.0

Now that you have seen various mechanisms to optimize your model for inference,
it’s time to deploy your model to accept inputs and generate responses. For this, you
can use Amazon SageMaker Endpoints to host and scale your generative models in
production, as you will explore next.

Large Model Inference Container

The real-time SageMaker Endpoints managed service comes preconfigured with
many runtime, hardware, A/B testing, and shadow deployment optimizations for
generative model inference. The large model inference (LMI) container is the pri-
mary runtime that contains these optimizations.

The LMI containers from AWS use a prebuilt foundation software stack that
includes high-performance frameworks like DeepSpeed and optimizations like Flash-
Attention,’ which you learned about in Chapter 4. Figure 8-5 shows some of the key
components of the LMI container, including PyTorch, FlashAttention, DeepSpeed,
and the AWS Neuron SDK. This figure also shows some of the hardware supported
by the LMI container, including NVIDIA GPUs, AWS Inferentia chips, and classic
CPUs.

Figure 8-5. LMI container and hardware for hosting LLMs with Amazon SageMaker
Endpoints

3 Tri Dao, “FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning”, arXiv, 2023.

144 | Chapter 8: Model Deployment Optimizations

https://oreil.ly/VtRMp
https://oreil.ly/dWTCw
https://oreil.ly/qSAqB
https://oreil.ly/1d_1P
https://oreil.ly/UG7bD
https://oreil.ly/Hn_5O

LMI supports both batch and real-time workloads. Here is sample code to deploy and
test a real-time generative large language model using Amazon SageMaker JumpStart,
which uses the LMI container with SageMaker Endpoints:

from import JumpStartModel

model = JumpStartModel(
model_id="...") # generative model like Llama2 or Falcon

predictor = model.deploy()

payload = {
"inputs": "What is the best way to deploy a generative model on AWS?",
"parameters": {
"max_new_tokens": 100,
"top_p": 0.9,
"temperature": 0.6

}

response = predictor.predict(payload)

As you can see, in just a few lines of code, you can deploy a powerful model into
your own AWS account to perform secure and private generative inferences. In the
next section, you will learn about the AWS Inferentia family of hardware specifically
designed for deep-learning inference workloads.

AWS Inferentia: Purpose-Built Hardware for Inference

The AWS Inferentia family of accelerators, currently on version 2, is purpose-built
for deep learning inference workloads. The AWS Neuron SDK interacts with AWS
Inferentia.

There are two common ways to develop with the AWS Neuron SDK, including
the Transformers-NeuronX library and the Hugging Face Optimum Neuron library.
Here are examples using both libraries to compile your model to run on Amazon
SageMaker with AWS Inferentia 2:

import
from import AutoTokenizer
from import AutoModelForCausallLM

FHHH- 1 T T HF 7 T T T P 1 T T - 1 T P - 1 T - T T -1 T
Using the Transformers-NeuronX library
FHHH 1 T T HF 7 T T P 1 T T - 1 T - 1 T - 1 T -1 T
from import LlamaForSampling

model = AutoModelForCausallLM.from_pretrained(model_checkpoint)

AWS Inferentia: Purpose-Built Hardware for Inference | 145

https://oreil.ly/7GMRJ
https://oreil.ly/u22mh
https://oreil.ly/wZyNj
https://oreil.ly/3fzpc

os.environ["NEURON_CC_FLAGS"] =
"--model-type=transformer-inference"

neuron_model =
LlamaForSampling.from_pretrained(model_checkpoint,
batch_size=1, tp_degree=24, amp='fpl6', ...)

Compile and save the model
neuron_model.to_neuron()
neuron_model.save_pretrained('compiled_model/')

Save the tokenizer with the model
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
tokenizer.save_pretrained('compiled_model/")

Using Optimum Neuron library

from optimum.neuron import NeuronModelForCausallLM

Load and convert the Hub model to Neuron format
neuron_model = NeuronModelForCausallLM.from_pretrained(

model_checkpoint, # model 1d
batch_size=1, # number of input sequences
num_cores=24, # number of neuron cores

auto_cast_type='f16', # format to encode the weights

)...

neuron_model.save_pretrained('compiled_model/")

Save the tokenizer with the model
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
tokenizer.save_pretrained('compiled_model/")

Next, you will tar and gzip the contents of the compiled_model/ local directory and

upload the tar.gz to a private S3 location where the SageMaker Endpoint will find the
model and load it:

from sagemaker.s3 import S3Uploader

tar and gzip the compiled _model/ folder
local_model_tar_gz_file = "model.tar.gz"

Create s3 uri

s3_model_path = "s3://<your-private-s3-location/"

Upload model.tar.gz

s3_model_uri = S3Uploader.upload(
local_path=1local_model_tar_gz_file,
desired_s3_uri=s3_model_path)

146 | Chapter 8: Model Deployment Optimizations

Once the model is compiled, saved, tard, gzipped, and pushed to S3, you can now
deploy the model as an Amazon SageMaker Endpoint using the code here and
start generating text. Here, we are specifying the AWS Inferentia 2 instance type for
SageMaker:

from sagemaker.huggingface.model import HuggingFaceModel

huggingface_model = HuggingFaceModel(
model_data=s3_model_uri, # path to model in s3
model_server_workers=2, # number of workers

)

Specify that the model has been precompiled
huggingface_model._1is_compiled_model = True

Deploy the endpoint
predictor = huggingface_model.deploy(
instance_type="ml.inf2.xlarge", # Inferentia 2 instance type

)
prompt =

"What is the best way to deploy a generative model on AWS?"
Inference generation configuration parameters
payload = {

"inputs": prompt,

"parameters": {

"do_sample": True,

"top_p": 0.6,
"temperature": 0.9,
"top_k": 50,

"max_new_tokens": 512,
"repetition_penalty": 1.03,
"stop": ["</s>"]
}
}

Send request to endpoint
response = predictor.predict(payload)

Extract the generated response
print(response[0]["generated_text"])

Model Update and Deployment Strategies

In this section, you will see a couple common strategies used to update models in
production, including A/B testing and shadow deployments. With A/B testing, you
typically shift a small amount of traffic to the newer model B for a period of time,
to ensure the new model is not failing or performing poorly relative to the original
model A.

Model Update and Deployment Strategies | 147

If the new model B performs poorly, however, end users will be affected. With
shadow deployments, the new model B is deployed alongside model A as a shadow,
accepts a copy of the traffic (e.g., prompt inputs), but does not return the model
response to the end user. Instead, shadow model B’s response is logged for offline
analysis of the model’s performance. If something goes wrong with model B, the end
user is not affected.

Let’s dive deeper into each of these model update and deployment strategies.

A/B Testing

You can use Amazon SageMaker Endpoints to deploy two different model variants
behind a single endpoint to compare the variants with live traffic. This is typically
called A/B testing. Consider deploying two model variants, models A and B, behind a
single SageMaker Endpoint. Figure 8-6 shows 100% of the traffic routing to model A
initially, then shifting 10% of the traffic to model B.

Figure 8-6. Shifting live traffic from model A to model B

This lets you try model B on live traffic in a controlled manner and only affect 10% of
the end users if something goes wrong. You can quickly shift traffic back to model A,
if needed. Here is the code to implement this configuration:

import
sm = boto3.Session().client(service_name="sagemaker")

sm.create_endpoint_config(
EndpointConfigName="generative-endpoint-config-ab-test",
ProductionVariants=[
{
"ModelName": "generative-model",
"VariantName": "generative-model-A",

148 | Chapter 8: Model Deployment Optimizations

"InitialvariantWeight": 90,
"InitialInstanceCount": 9

1,
{
"ModelName": "generative-model",
"VariantName": "generative-model-B",
"InitialvariantWeight": 10,
"InitialInstanceCount": 1
}
1
)
endpoint_name = "generative-ab-endpoint"

sm.create_endpoint(
EndpointName=endpoint_name,
EndpointConfigName=endpoint_config

)

waiter = sm.get_waiter("endpoint_in_service")
waiter.wait(EndpointName=endpoint_name)

Send request to A/B endpoint
response = predictor.predict(payload)

Extract the generated response
print(response[0]["generated_text"])

Here, you are creating the EndpointConfiguration, which includes the hardware
using InstanceType and InitialInstanceCount. In this case, you are deploying two
variants of your model in an A/B test across 10 GPU-based SageMaker instances.
90% of your traffic will go to generative-model-A and 10% will go to generative-
model-B.

This code allows you to compare the two variants and, at some point, send 100%
of the traffic to the better model based on some evaluation criteria or longer-term
objective, such as increasing revenue or reducing churn.

Shadow Deployment

SageMaker Endpoints support shadow model deployments. When you deploy a
shadow model, the model accepts the same input as the primary model, but it simply
stores the model response to disk for offline analysis, as shown in Figure 8-7. This
helps you conservatively evaluate a model against live production inputs without
exposing potentially bad responses to the end user.

Model Update and Deployment Strategies | 149

Figure 8-7. A shadow model accepts the same inputs, but stores model response to disk
for offline analysis

Here is the code sample for a shadow deployment. Note that both Initialvariant
Weight settings are configured for 100% traffic. You can choose to send a smaller
percentage of traffic to the shadow variant if you want to sample less than 100% of the
traffic:

sm.create_endpoint_config(
EndpointConfigName=endpoint_config,
ProductionvVariants=[

{
"ModelName": "generative-model",
"VariantName": "generative-model-A",
"InitialvariantWeight": 100,
"InitialInstanceCount": 9
}
1,
ShadowProductionVariants=[
{
"ModelName": "generative-model",
"VariantName": "generative-model-B",
"InitialvariantWeight": 100,
"InitialInstanceCount": 1
}

)

This shows the shadow variant, generative-model-B, configured to accept traftic but
not return the response back to the user. Instead, the shadow model will accept traffic
and send the results to S3 for offline analysis.

150 | Chapter 8: Model Deployment Optimizations

For a more comprehensive description of SageMaker deployment strategies, check
out our book Data Science on AWS.

Metrics and Monitoring

Amazon SageMaker Endpoints emit many useful metrics that are captured by the
Amazon CloudWatch managed service for metrics collection and monitoring. These
metrics are used not just for operational reasons, but also for scaling your inference
cluster out (to a larger number of instances) and in (to a smaller number of instances)
as traffic to the cluster increases and decreases throughout the day. This is called
autoscaling, which you will see in the next section.

But first, let’s take a look at some of the metrics emitted by Amazon SageMaker End-
points when hosting a generative AI model. Table 8-1 shows some of the common
metrics used to monitor model inference, including error counts, startup times, and
prediction-latency timings.

Table 8-1. Monitoring metrics for model inference

Invocation4XXErrors Number of model invocations that did not result in a successful

Invocation5XXErrors 2XX HTTP response

InvocationModelErrors

Invocations The number of invocation requests sent to a model endpoint

InvocationsPerInstance overall, per instance, and per variant per instance

SageMakerVariantInvocationsPerInstance

ModelLatency Inference latency of the model only

OverheadLatency Latency introduced by SageMaker during the model inference

ModelSetupTime Model startup time including downloading the model and
launching the SageMaker container

CPUUtilization (CPU, GPU, and memory utilization of the model endpoint

GPUUtillization

MemoryUtilization

GPUMemoryUtilization

DiskUtilization The percentage of disk space used to host the model for inference

The next section will discuss how some of these monitoring metrics can be utilized
to configure autoscaling, which dynamically adjusts the number of instances provi-
sioned for a deployed model in response to changes in demand from your workload.

Metrics and Monitoring | 151

https://oreil.ly/KDwEH

Autoscaling

In the A/B testing and shadow deployment examples, you saw how to manually set
the InitialInstanceCount in the EndpointConfig. This represents the number of
instances in the inference cluster. As traffic increases and decreases, you would need
to manually update the number of instances to a higher or lower value, respectively.

However, it’s often easier to set up autoscaling to automatically scale out (add instan-
ces) or scale in (remove instances) based on a given metric, like the number of
invocations per second. As traffic increases and decreases, the invocations per second
metric will cause SageMaker to automatically scale our model cluster to meet the
demand.

Let’s dive deeper into configuring autoscaling policies for SageMaker Endpoints.

Autoscaling Policies

There are three main types of autoscaling policies for SageMaker Endpoints: target
tracking, simple, and step scaling. These policies trade off ease of use with flexibility:

Target tracking
With target tracking scaling policy, you specify a single metric, like SageMaker
VariantInvocationsPerInstance = 1000, and SageMaker will autoscale as

needed. This strategy is very common, as it’s the easiest to configure.

Simple
When configured to use the simple scaling policy, SageMaker will trigger a scal-
ing event on a given metric at a given threshold with a fixed amount of scaling.
For example, “when SageMakerVariantInvocationsPerInstance > 1000, add
10 instances” This strategy requires a bit more configuration but also provides
more control over the target-tracking strategy.

Step scaling

Step scaling, the most configurable scaling policy, allows SageMaker to trig-
ger a scaling event on a given metric at various thresholds—with configu-
rable amounts of scaling at each threshold. For example, “when SageMaker
VariantInvocationsPerInstance > 1000, add 10 instances, SageMakerVariant
InvocationsPerInstance > 2000, add 50 instances,” etc. This strategy requires
the most amount of configuration but provides the most amount of control for
situations such as spiky traffic.

152 | Chapter 8: Model Deployment Optimizations

Define an Autoscaling Policy

Lets define and apply a target-tracking autoscaling policy using the SageMaker
VariantInvocationsPerInstance metric to automatically scale the endpoint cluster
when one thousand invocations per second is reached for a given model variant per
instance:

endpoint_name =

autoscale = boto3.Session().client(
service_name="'application-autoscaling')

autoscale.register_scalable_target(
ServiceNamespace="sagemaker",
Resourceld=f"endpoint/{endpoint_name}/variant/AllTraffic",
ScalableDimension="sagemaker:variant:DesiredInstanceCount"

)

autoscale.put_scaling_policy(
PolicyName="my-autoscale-policy",
ServiceNamespace="sagemaker",
ResourcelId=f"endpoint/{endpoint_name}/variant/AllTraffic",
ScalableDimension="sagemaker:variant:DesiredInstanceCount",
PolicyType="TargetTrackingScaling",
TargetTrackingScalingPolicyConfiguration={
"TargetValue": 1000.0,
"PredefinedMetricSpecification": {
"PredefinedMetricType":
"SageMakerVariantInvocationsPerInstance",

3]
b
Note that the ScalableDimension is set to sagemaker:variant:DesiredInstance
Count, which configures SageMaker to scale the number of instances when the target
threshold is met.

After sending a large amount of inference requests to the SageMaker Endpoint, you
would see a spike in the SageMakerVariantInvocationsPerInstance metric. This
would trigger SageMaker to scale out to handle the spike in inference requests.

There are many more autoscaling configuration options available, including model-
variant-specific scaling policies and scale-in/scale-out cool-down policies. For a more
comprehensive description of SageMaker autoscaling policies, again, you can check
our book Data Science on AWS.

Autoscaling | 153

Summary

In this chapter, you learned powerful techniques to optimize your model for infer-
ence by reducing the size of the model through distillation, quantization, or pruning.
These techniques help reduce model size and improve model inference performance
with minimal impact on model accuracy, ultimately improving the user’s happiness.
They also help to minimize the amount of hardware resources needed to serve your
generative models in production, ultimately lowering cost and improving your CFO’s
happiness.

You also saw how to optimize and deploy your models with the AWS Neuron SDK,
Hugging Face’s Optimum Neuron library, and Amazon SageMaker Endpoints with
AWS Inferentia 2. Combined with A/B testing and shadow deployments, SageMaker
Endpoints are a great way to productionize your generative Al models.

In the Chapter 9, you will dive deep into some popular mechanisms to build gen-
erative Al applications, including augmenting the capabilities of your models with
retrieval-augmented generation (RAG) and agents.

154 | Chapter 8: Model Deployment Optimizations

CHAPTER 9

Context-Aware Reasoning Applications
Using RAG and Agents

In this chapter, you will explore how to bring together everything you've learned
so far to build context-aware reasoning applications. To do this, you will explore
retrieval-augmented generation (RAG) and agents. You will also learn about frame-
works called LangChain, ReAct, and PAL, which make RAG and agent workflows
much easier to implement and maintain. Both RAG and agents are often key compo-
nents of a generative Al application.

With RAG, you augment the context of your prompts with relevant information
needed to address knowledge limitations of LLMs and improve the relevancy of the
model’s generated output. RAG has grown in popularity due to its effectiveness in
mitigating challenges such as knowledge cutoffs and hallucinations by incorporating
dynamic data sources into the prompt context without needing to continually fine-
tune the model as new data arrives into your system.

RAG can be integrated with off-the-shelf foundation models or with fine-tuned and
human-aligned models specific to your generative use case and domain.

RAG and fine-tuning can be used together. They are not mutually
exclusive.

Next, some general guidance to consider when deciding which techniques should
be applied. If access to external data or dynamic data is required, then RAG-based
architectures can enable this without continuous fine-tuning, which would become

155

cost prohibitive. Also, RAG-based techniques do not require much ML expertise
because they are typically implemented using existing foundation models.

Potential downsides to RAG-based architectures include the extra steps required to
manage data source connections, retrieve data from external data sources, perform
additional data preparation, and perform prompt augmentation. These extra steps
may increase latency and decrease overall performance. It's also important to note
that RAG does not actually modify the weights of the generative model; however, this
is often desirable and typically not considered a downside.

Agents are additional pieces of software that can orchestrate prompt-completion
workflows between user requests, foundation models, and external data sources and
applications while using the foundation model as their reasoning engine.

Agents often make use of a framework called ReAct' (reasoning and acting). ReAct
structures prompts using chain-of-thought (CoT) reasoning to show the model how
to reason through a problem and decide on actions to help find a solution. As part
of the actions, agents can work with RAG workflows to look up context-relevant
information or call application APIs to perform a task.

If the reasoning steps and actions require complex calculations, you can leverage
another technique, Program-Aided Language Models (PAL).”> PAL guides foundation
models to generate programs instead of natural language in the reasoning steps.
You can then connect the model to an external code interpreter, such as a Python
interpreter, to run the code and return the results to the model.

You'll also learn about building a customized generative Al application using a set of
common components required for an end-to-end solution that can be made available
to users and other systems. Finally, this chapter will highlight a few considerations
for optimizing the generative AI project life cycle and operationalizing models for
deployment and integration into applications supporting users and systems.

Large Language Model Limitations

Large language models (LLMs) suffer from several challenges related to having accu-
rate knowledge as well as current knowledge. This section discusses two common
problems with large language models that can be improved using RAG methods:
hallucination and knowledge cutoft.

1 Shunyu Yao et al., “ReAct: Synergizing Reasoning and Acting in Language Models”, arXiv, 2023.
2 Luyu Gao et al,, “PAL: Program-Aided Language Models”, arXiv, 2023.

156 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

https://oreil.ly/qVR0N
https://oreil.ly/r-CAN

Hallucination

Chapter 2 discussed the challenge of hallucination, where a model confidently returns
an incorrect response. In the example following, a “snazzy-fluffykins” is not a real dog
breed, but the model still returns a factitious, and potentially misleading, completion,
as shown next.

Prompt:
What does the dog breed snazzy-fluffykins look like?
Completion (hallucination):

The snazzy-fluffykins is a small, fluffy dog with curly fur. They have big,
round eyes and long, fluffy ears.
Hallucinations lead to a lack of trust in the model’s generated outputs, impacting the
effectiveness of a generative Al application.

Knowledge Cutoff

The second common issue, shown in the prompt example that follows, is known as
knowledge cutoff, which results in the model returning an answer that is out of date
with current data. All foundation models have a knowledge cutoff of the date that
they were trained; the knowledge of the model is limited to the data that was current
at the time it was pretrained or fine-tuned.

For example, if you ask the model who recently won the NBA championship, it will
give you the most recent information it has available; in this case, the champions
in 2021. However, it won't provide the most current data available because that data
is outside the scope of the knowledge the model was trained on, as shown in the
example here.

Prompt:
Who recently won the NBA Championship game?
Completion (knowledge cutoff—out of date):

The Milwaukee Bucks defeated the Phoenix Suns in the 2021 NBA Finals to win
their second NBA championship.

RAG provides a technique that allows you to mitigate some of the challenges with
hallucinations and knowledge cutoff in foundation models. For hallucinations, RAG
is useful because you are able to provide the model with access to information it
would not already have, such as proprietary data for your business.

Large Language Model Limitations | 157

Retrieval-Augmented Generation

RAG isn't a specific set of technologies but rather a framework for providing LLMs
access to data they did not see during training. RAG allows LLM-powered applica-
tions to make use of external data sources and applications to overcome some of the
knowledge limitations previously discussed.

RAG is useful in any case where you want the language model to have access to
additional data that is not contained within the LLMs “parametric memory” learned
during pretraining and fine-tuning. This could be data that did not exist in the origi-
nal training data, such as proprietary information from your organization’s internal
data stores. Allowing your model to have access to this information helps improve
model completion relevance and helps to mitigate the challenge of hallucinations.

For knowledge cutoffs, RAG allows you to provide access to current information
beyond the model’s training date. This technique can augment foundation models
with additional information, including domain-specific information, without the
need to continuously perform full fine-tuning.

At a high level, a RAG-based architecture provides the model with access to external
sources of knowledge that provide additional context to the original input prompt in
the form of an augmented prompt, which is then used to call the LLM, as shown in
Figure 9-1.

Figure 9-1. RAG provides a framework for augmenting a model with information from
external sources

158 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

The LLM is then able to take advantage of knowledge outside its scope through the
augmented prompt to return a more accurate and relevant completion. Let’s now dive
into the various components and pieces of the workflow.

External Sources of Knowledge

RAG works by providing your model access to additional external data at runtime.
This data can be from a number of data sources, including knowledge bases, docu-
ment stores, databases, and data that is searchable through the internet, as shown in
Figure 9-2.

Figure 9-2. External data sources

All of these external data sources can provide access to knowledge previously unavail-
able to generative models, allowing for improved relevance in completions. RAG
works by augmenting the input prompt with information from external data sources
prior to calling the LLM. The augmented prompt provides access to information the
model is not aware of, increasing the ability for the LLM to return more accurate and
relevant completions.

However, implementing RAG-based architectures often requires additional data
preparation tasks to ensure the data is in an optimized format that can be integrated
at inference time, which involves personas that load and prepare the data for retrieval,
then applications that search and retrieve relevant data at inference.

Retrieval-Augmented Generation | 159

RAG Workflow

There are often multiple components of a RAG-based architecture, including depen-
dent workflows such as preparing data from external sources. At a high level, there
are two common workflows to consider—preparation of data from external knowl-
edge sources, then the integration of that data into consuming applications, as shown
in Figure 9-3.

Figure 9-3. RAG architectures depend on efficient data preparation and retrieval tech-
niques for integration into consuming applications

Data preparation involves the ingestion of data sources as well as the capturing of
key metadata describing the data source. This may include tasks specific to the type
of information source being utilized. As an example, if the information source is a
PDF, there will be an additional task to extract text from those documents. This may
not always be needed if the data is already in a consumable format; however, the
preparation of data is often a prerequisite in RAG-based architecture to prepare the
data for retrieval.

Application integration involves retrieving the most semantically similar information
from those external data sources based on an input prompt. This is often followed by
a reranking process to further refine the retrieved results and rank them in order of
relevance to the input prompt. The final step is augmenting the input prompt with
the most relevant information retrieved from external knowledge sources prior to
using that augmented prompt to call the LLM, which returns the final completion.

160 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

To dive further into a specific example, the remainder of this section will specifically
focus on information retrieval from documents. Let’s start with the data preparation
task, which includes extracting text from documents and efficiently storing that text
for retrieval.

Document Loading

Although RAG-based architectures can pull data from a number of relevant informa-
tion sources, we'll focus specifically on information retrieval from documents. A
common implementation for document search and retrieval includes storing your
documents in a vector store, where each document is indexed based on an embed-
ding vector produced by an embedding model. The vector embedding includes the
numeric representations of text data within your documents.

Each embedding aims to capture the semantic or contextual meaning of the data.
The idea here is that semantically similar concepts end up close to each other (have
a small distance between them) in the vector space, as discussed in Chapter 3. As
a result, information retrieval involves finding nearby embeddings that are likely to
have similar contextual meaning.

Each vector embedding is put into a vector store, often with additional metadata such
as a reference to the original content the embedding was created from. The vector
store then indexes the vectors, which can be done using a variety of approaches.

This indexing allows for quick retrieval of documents. The vector store, shown in
Figure 9-4, is then used within the prompt workflow to efficiently retrieve external
information based on an input query during inference.

Figure 9-4. Efficient indexing of documents for quick retrieval

Creating vector embeddings that store numeric representations of text data in vector
stores provides for efficient document search and retrieval techniques in RAG archi-
tectures. However, documents are often large and contain varied degrees of related
information on a variety of topics, some more related than others. As an example,
if you used the AWS product documentation for Amazon SageMaker, you'll notice
that some of the text in that document is more semantically similar than others.
As a result, you need to consider efficient strategies for optimizing the storage and
retrieval of these documents as well as minimizing the risk of losing context.

Retrieval-Augmented Generation | 161

Because LLMs have fixed context window limitations, you also need to develop
document storage and retrieval strategies that consider those limitations.

Chunking

A technique called chunking is typically used in building document indexes (as well as
searching, which is covered later in the section). Chunking breaks down larger pieces
of text into smaller segments, as shown in Figure 9-5.

Figure 9-5. Chunking when storing and indexing documents

The chunks should contain information that is semantically related and that has
meaningful context in that single chunk. There are different methods of chunking
available. For example, you can use fixed-size chunking that splits data using a
fixed number of tokens, which is an easy method and computationally efficient.
Alternatively, you can use context-aware chunking methods, which aim to chunk data
with more consideration around understanding the context of the data and keeping
relevant text together.

When choosing a chunking strategy, there are a few considerations to keep in mind.
First, consider the size of your indexed content, whether it’s long documents such
as books or shorter content like product reviews. Chunking smaller content may not
have much impact, while chunking larger documents is not only necessary but also
improves the ability to search for similar relevant information related to a search.

Next, as previously mentioned, chunking may be required due to context window
limits imposed by the LLM. For example, if your model only supports 4,096 input
tokens in the context window, you will need to adjust your chunk size to account for
this limit.

Finally, there is a concept called overlap, which refers to the overlap of a defined
amount of text between chunks. Overlap can help preserve context between chunks.
This is another parameter to experiment with when choosing a chunking size.

After documents have been prepared by extracting text and loading their vector
representations into a vector store, they are ready for integration into the application.

162 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

Document Retrieval and Reranking

Once the text from a document has been embedded and indexed, it can then be
used to retrieve relevant information by the application. Remember, with RAG-based
architectures, the information retrieved will later be used in the workflow to augment
the input prompt with additional context prior to calling the LLM.

Let’s look at the application workflow with a specific example where the input prompt
includes the question, “What group is responsible for maintenance on product Flash-
Tag?” In this case, product FlashTag support information is proprietary information
that the LLM has no knowledge of, so RAG will be used to augment the prompt with
additional information prior to calling the LLM.

To support the RAG architecture, the prompt text will first utilize an embedding
model to create vector embedding representations of the prompt input. The vector
embeddings will then be used to query the vector store for embeddings that are
semantically similar to those on the input prompt. Based on those results, relevant
document text is retrieved, as shown in Figure 9-6.

Figure 9-6. Information retrieval based on prompt input

You may also want to rerank the similarity results returned from the vector store to
help diversify the results beyond just the similarity scores and improve relevance to
the input prompt, as shown in Figure 9-7.

Retrieval-Augmented Generation | 163

Figure 9-7. Reranking query results before augmenting the prompt

There are different ways to implement reranking, but the intent with ranking the
retrieved results is to further refine the query results returned. There are different
implementations that can be used to rerank retrieved results.

A popular reranking algorithm that is built into most vector stores is Maximum
Marginal Relevance (MMR). MMR aims to maintain relevance to the input prompt
but also reduce redundancy in the retrieved results since the retrieved results can
often be very similar. This helps to provide context in the augmented prompt that is
relevant as well as diverse.

Once information has been retrieved, and potentially reranked, the next step is to
provide this additional context to the LLM by augmenting the input prompt with the
additional contextual information.

Prompt Augmentation

Once the relevant contextual data has been retrieved, the next step in the RAG-based
workflow is to use the additional context retrieved to augment the prompt. The input
prompt of “What group is responsible for maintenance on product FlashTag?” can

164 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

now be augmented with additional context retrieved from domain-specific informa-
tion sources, as shown next.

Augmented prompt:

What group is responsible for maintenance on product FlashTag?
FlashTag maintenance is performed every Saturday with no downtime by the PoP
Team. PoP team is responsible for sending automated notifications.

Completion prompt:
The PoP Team is responsible for Product Maintenance on the FlashTag product.

This augmented prompt now has contextual information specific to the indexed
documents as well as the original prompt. Because the documents are domain-
specific and not within the LLMs training corpus, this method allows you to provide
additional context to the model that would otherwise be unknown. The LLM is now
able to use the information in the context of the prompt to generate a completion that
likely contains a more relevant answer and avoids hallucinations.

RAG Orchestration and Implementation

In the previous section, you explored RAG as a framework for augmenting a model
with external knowledge. To illustrate this, we walked through a RAG workflow
to incorporate external knowledge specifically from documents by preparing the
data for retrieval, then integrating the retrieval, rerank, and prompt augmentation
into the consuming application. There are multiple ways to implement RAG-based
architectures. This section will highlight specific techniques for orchestrating RAG
workflows.

Multiple components are required to support RAG-based architectures and imple-
ment RAG, including data preparation workflows. Data preparation workflows
include the tasks required to load and prepare in an optimized format for retrieval.

Additionally, workflows are also required to integrate RAG within applications. There
are multiple steps required to implement RAG as part of application integration,
including the steps required to embed the input prompt, retrieve relevant data,
augment the prompt, and then call the LLM using the augmented prompt. All of
these steps require a component that can orchestrate the tasks required, as shown in
Figure 9-8.

Luckily, there are frameworks developed that take some of the heavy lifting away
in implementing these solutions. This section explores a popular framework called
LangChain, which provides you with modular pieces that contain the components
necessary to work with large language models and implement techniques such
as RAG.

RAG Orchestration and Implementation | 165

https://oreil.ly/mPoV0

Figure 9-8. Orchestrating RAG workflows

There are a growing number of RAG orchestration frameworks. Choose the one
that best supports your use case, orchestration needs, and data source integrations.
RAG architectures can also be implemented through do-it-yourself orchestration
code that directly calls the various APIs, vector stores, and data sources. While direct
API calls may improve performance, they also require quite a bit more coding and
maintenance than using an existing orchestration framework.

LangChain is composed of modules, interfaces, and integrations to support the devel-
opment of context-aware reasoning applications and end-to-end workflows. These
workflows include document loading, chunking, and retrieving from various vector
stores, which you will learn about in the next few sections.

Document Loading and Chunking

LangChain provides document loaders as part of the data connector modules. These
provide libraries for loading data across a variety of input formats into documents.
For example, you can use PyPDFLoader to load and split PDF-formatted documents.

166 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

The previous section discussed the challenge of context window length and strate-
gies around chunking, or splitting data, as a way to overcome context window
limitations. LangChain also provides document transformers that include splitters,
allowing you to chunk your documents using simple configurations, as shown in this
code example. Here, we are using a dataset of annual Amazon Shareholder Letters:

import as
from \
import
from import PyPDFLoader
data_root_path = "./data"

filenames = glob.glob(data_root + '*.pdf"')

documents = []
for file in filenames:
loader = PyPDFLoader(data_root + file)
document = loader.load()
for document_fragment in document:
Extract year from filename
year = filename.split('-").split()[1]
Set metadata
document_fragment.metadata = {"year": year,
"source": filename)

documents += document

Chunk the docs

text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 512,
chunk_overlap = 100,

)

docs = text_splitter.split_documents(documents)

Here, the code loads the PDF documents from the designated location and splits
the documents into chunks of 512 characters. These chunks contain portions of the
original PDF document that can be preprocessed to create vector embeddings using
an embedding model, then stored in a vector store or loaded into a vector store using
one of the many third-party integrations provided by the LangChain framework.

Note that this code adds metadata to each document upon ingestion. This metadata
will be used later to filter the results and speed up the overall retrieval process by
narrowing the search results to a given year, for example.

RAG Orchestration and Implementation | 167

https://oreil.ly/NKVPe

Embedding Vector Store and Retrieval

As previously mentioned, a vector store saves vector embeddings and creates indexes
to enable fast retrieval lookups and similarity searches. Similarity search is a common
use case for vector stores, as you are trying to augment your prompt with additional,
relevant information for the LLM to use in its context when generating a completion.

Since AWS provides a variety of options for storing vector embeddings, let’s briefly
dive into the available options and considerations for each. It’s also important to
evaluate each service for the most current list of capabilities in terms of decision
points, such as supported search algorithms or fit for your use case.

You can use Amazon OpenSearch Service to store embeddings combined with
the k-Nearest Neighbor (k-NN) plugin for OpenSearch to perform fast document-
similarity searches across the embeddings. Specifically, the Vector Engine for Amazon
OpenSearch Serverless provides serverless vector storage with similarity search capa-
bilities with the ability to add, update, and delete vector embeddings in near real
time. OpenSearch implements optimized and scalable retrieval algorithms, including
the Facebook Al Similarity Search (FAISS) vector store and retrieval algorithms from
Meta/Facebook. This option also provides the ability to scale your vector store cluster
horizontally as needed based on your workload.

Other options include Amazon Aurora PostgreSQL and Amazon Relational Database
Service (RDS) for PostgreSQL. Both offer pgvector support, which can be a natural
fit for teams that already have PostgreSQL installations or skill sets. pgvector is a
community-maintained vector store plugin for PostgreSQL. These options are also
scalable.

Amazon Kendra is a managed solution specifically designed for search and retrieval,
including built-in connectors to popular data sources such as Amazon S3, Microsoft
SharePoint, Salesforce, ServiceNow, and Zendesk. In addition, Kendra supports a
variety of document formats, including HTML, PDE, and CSV without having to
manually convert your documents into embedding vectors. Amazon Kendra also
allows you to enrich your documents with additional metadata to improve search-
result relevance by allowing metadata filtering during a query.

All of the AWS options for vector storage and retrieval can be included as part of a
RAG-based architecture. Building on AWS also allows for the flexibility to utilize the
vector store that best meets the needs of your use case and tooling choices.

Next, you will see an example using FAISS as the vector store and retrieval
mechanism, along with LangChain as the orchestrator of the various components
involved in the workflow. Other examples, including Amazon OpenSearch, Amazon
Aurora/RDS for PostgreSQL, and Kendra, are included in the GitHub repository for
this book.

168 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

https://oreil.ly/CMxjd
https://oreil.ly/PCCCv
https://oreil.ly/SKh-Z
https://oreil.ly/SKh-Z
https://oreil.ly/Bo_d2
https://oreil.ly/01Nq3
https://oreil.ly/01Nq3
https://oreil.ly/nSZYb
https://oreil.ly/mir65
https://oreil.ly/generative-ai-on-aws-code

Let’s look at a specific example utilizing LangChain to build and orchestrate the tasks
required to take the loaded data, create embedding vectors, then populate a vector
store that will later be used for retrieval.

LangChain integrates with many vector stores, such as ElasticSearch, OpenSearch,
Pinecone, and Facebook AI Similarity Search (FAISS). For simplicity, lets show an
example of LangChain’s integration directly with the FAISS vector store and retrieval
library using an embedding model deployed as an Amazon SageMaker endpoint
from SageMaker JumpStart. Note that you can use a local model, as well, from the
Hugging Face model hub; for example:

from import FAISS

from import SagemakerEndpointEmbeddings

from import \
EmbeddingsContentHandler

from import JumpStartModel

embedding_model_checkpoint = # embedding model

embedding_model =
JumpStartModel(model_id=embedding_model_checkpoint)\
.deploy()

embeddings_content_handler = EmbeddingsContentHandler()

embeddings = SagemakerEndpointEmbeddings(
endpoint_name=embedding_model.endpoint_name,
content_handler=embeddings_content_handler

)

Load the FAISS vector store with the documents
vector_store = FAISS.from_documents(docs, embeddings)
query = "How has AWS evolved?"

results_with_scores = vector_store.similarity_search_with_score(
query)

for doc, score in results_with_scores:
print(f"Content: {doc.page_content}")
print(f"Metadata: {doc.metadata}")
print(f"Score: {score}\n\n")
print('----")

Output:

Content: AWS is still in the early stages of its evolution, and has a chance
for unusual growth in the next decade.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}
Score: 0.5685306191444397

Content: AWS continues to deliver new capabilities rapidly (over 3,300 new
features and services launched in 2022), and invest in long-term inventions

RAG Orchestration and Implementation | 169

that change what’s possible.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}
Score: 0.7789842486381531

Content: We made the long-term decision to continue investing in AWS. Fifteen
years later, AWS is now an $85B annual revenue run rate business with strong
profitability.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}
Score: 0.7893760204315186

Content: This shift by so many companies (along with the economy recovering)
helped re-accelerate AWS’s revenue growth to 37% YoY in 2021.

Metadata: {'year': 2021, 'source': 'AMZN-2021-Shareholder-Letter.pdf'}
Score: 0.7898486852645874

You can also add a metadata filter to only retrieve documents from the year 2022,
for example. Simply add a dictionary with the filter values and rerun the retrieval, as
shown next. Here, you'll see that the retrieval only returns documents from the year
2022:

filter={"year": 2022}
results_with_scores = vector_store.similarity_search_with_score(
query, filter=filter)
for doc, score in results_with_scores:
print(f"Content: {doc.page_content}")
print(f"Metadata: {doc.metadata}l")
print(f"Score: {score}\n\n")
print('----")

Output:

Content: done innovating here, and this long-term investment should prove
fruitful for both customers and AWS. AWS is still in the early stages of its
evolution, and has a chance for unusual growth in the next decade.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}

Score: 0.5685306191444397

Content: AWS continues to deliver new capabilities rapidly (over 3,300 new
features and services launched in 2022), and invest in long-term inventions
that change what’s possible.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}

Score: 0.7789842486381531

Content: AWS is now an $85B annual revenue run rate business, with

strong profitability, that has transformed how customers from start-ups to
multinational companies to public sector organizations manage their technology
infrastructure.

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}

Score: 0.7893760204315186

Content: Customers have appreciated this customer-focused, long-term approach,
and we think it’1ll bode well for both customers and AWS.

170

| Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

Metadata: {'year': 2022, 'source': 'AMZN-2022-Shareholder-Letter.pdf'}
Score: 0.8272767066955566

Now that the vector store has been created and loaded with documents and metadata,
let’s switch to the integrated application that will retrieve relevant data and use the
data to augment the input prompt with additional context prior to calling the LLM to
complete the prompt.

Retrieval Chains

Chains allow you to create a sequence of calls to different components to retrieve data
used to augment the prompt. Creating and executing the sequence of steps requires
orchestrating the end-to-end workflow. The LangChain framework, designed to
enable context-aware reasoning applications, provides many integrations that greatly
simplify this workflow.

The following code example shows how to use a built-in chain called RetrievalQA
from the LangChain framework, along with PromptTemplate to format the prompt
and SagemakerEndpoint to use as the LLM. This chain retrieves relevant documents
from the vector store and specifies the type of search to perform—similarity search
for the top three most relevant documents, in this case:

from import RetrievalQA
from import PromptTemplate
from import SagemakerEndpoint

prompt_template =
User: Use the following pieces of context to provide a concise answer
to the question at the end. If you don't know the answer, just say
that you don't know, don't try to make up an answer.

{context}

Question: {question}
Assistant:

prompt = PromptTemplate(
template=prompt_template,
input_variables=["context", "question"]

)
1lm_model_checkpoint = "..." # generative model like Llama2
1lm_model =

JumpStartModel(model_id=11lm_model_checkpoint)\

.deploy()

1lm = SagemakerEndpoint(
endpoint_name=11lm_model.endpoint_name)

RAG Orchestration and Implementation | 171

https://oreil.ly/dBIbr
https://oreil.ly/HUHyS
https://oreil.ly/-G8rq

ga_chain = RetrievalQA.from_chain_type(
1lm=11m,
chain_type="stuff", # stuff the prompt
retriever=vector_store.as_retriever(
search_type="similarity",
search_kwargs={"k": 3}
)s
return_source_documents=True,
chain_type_kwargs={"prompt": prompt}
)

query = "How has AWS evolved?"
result = qa_chain({"query": query})
print(result["result"])

print('----")

print(f'Context Documents: ')

for source_doc in result["source_documents"]:
print(f'{source_doc}\n')
print('----")

After retrieving the top three documents, LangChain includes (or “stuffs,” as you see
in the chain_type="stuff" parameter) them with the prompt to provide additional
context in the prompt, which helps the LLM better answer the given question.

Output:

Based on the provided context, AWS has evolved in the following ways:
1. Rapid innovation: AWS continues to deliver new capabilities rapidly,
launching over 3,300 new features and services in 2022 alone.
2. Long-term investment: AWS has made a long-term decision to continue
investing in its infrastructure, even during challenging times such as the
2008-2009 recession.
3. Expansion of services: AWS has expanded its offerings beyond just computing
and storage, now providing a wide range of services including analytics,
machine learning, and security.
4. Increased profitability: Despite continued investment in innovation, AWS has
achieved strong profitability, with an $85B annual revenue run rate business.
5. Shift to cloud adoption: The pandemic has accelerated the shift to cloud
adoption, with many companies deciding to move their technology infrastructure
to the cloud. This has helped re-accelerate AWS's revenue growth to 37% YoY in
2021.
Overall, AWS has evolved from a niche player in the cloud computing market to a
dominant force, with a strong track record of innovation and investment in its
infrastructure.
Context Documents:
page_content="'done innovating here, and this long-term investment should prove
fruitful for both customers and AWS. AWS is still in the early stages of its
evolution, and has a chance for unusual growth in the next decade.'
metadata={'year': 2022, 'source':

'AMZN-2022-Shareholder-Letter.pdf'}

172

| Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

page_content="'AWS continues to deliver new capabilities rapidly (over 3,300 new
features and services launched in 2022), and invest in long-term inventions
that change what’s possible.'
metadata={'year': 2022, 'source':

'AMZN-2022-Shareholder-Letter.pdf'}
page_content="'AWS is now an $85B annual revenue run rate business, with
strong profitability, that has transformed how customers from start-ups to
multinational companies to public sector organizations manage their technology
infrastructure.'
metadata={'year': 2022, 'source':

'AMZN-2022-Shareholder-Letter.pdf'}

Notice how the LLM constructs a nicely formatted answer to the question using the
additional context provided from the chain. Next, you will see how to rerank the
retrieved documents to potentially improve the augmented prompt and therefore
the generated response.

Reranking with Maximum Marginal Relevance

You may want to experiment with techniques like MMR to diversify the results
retrieved from the vector store. MMR encourages diversity in the result set, which
allows the retriever to consider more than just the similarity scores, but also include
a diversity factor between 0 and 1, where 0 is maximum diversity and 1 is minimum
diversity. Here is the code using FAISS and MMR (search_type="mmr") with a
diversity factor of lambda_mult=0.1 for a relatively high degree of diversity in the
results:

ga_chain = RetrievalQA.from_chain_type(
1lm=11m,
chain_type="stuff",
retriever=vector_store.as_retriever(
search_type="mmr", # Maximum Marginal Relevance (MMR)
search_kwargs={"k": 3, "lambda_mult": 0.1}
)s
return_source_documents=True,
chain_type_kwargs={"prompt": prompt}
)

query = "How has AWS evolved?"
result = qa_chain({"query": query})
print(result["result"])

print('----")

print(f'Context Documents: ')

for source_doc in result["source_documents"]:
print(f'{source_doc}\n')
print('----")

RAG Orchestration and Implementation | 173

Output:

Based on the context provided, AWS has evolved in the following ways:
1. Innovation: AWS has continued to innovate and invest in new technologies and
services, as evident from the statement "AWS is still in the early stages of
its evolution, and has a chance for unusual growth in the next decade."
2. Efficiency: AWS is inherently more efficient than traditional in-house data
centers, according to the statement. This is due to two factors:
a. Institutions: Many institutions, including schools and governments, are
transitioning from in-person to virtual classrooms and running on AWS to ensure
continuity of learning.
b. Secure platform: Governments are leveraging AWS as a secure platform to
build out new capabilities in their efforts to end the pandemic.
Therefore, AWS has evolved to become a more efficient and secure platform for
various institutions and governments.
Context Documents:
page_content="'AWS is still in the early stages of its evolution, and has a
chance for unusual growth in the next decade.'
metadata={'year': 2022, 'source':

'"AMZN-2022-Shareholder-Letter.pdf'}
page_content="'AWS is also inherently more efficient than the traditional in-
house data center.'
metadata={"'year': 2019, 'source':

'AMZN-2019-Shareholder-Letter.pdf'}
page_content="'Institutions around the world are transitioning from in-person
to virtual classrooms and are running on AWS to help ensure continuity of
learning.'
metadata={'year': 2019, 'source':

'AMZN-2019-Shareholder-Letter.pdf'}

Here, you see that the retriever, configured with a relatively high MMR diversity
factor, reranked the results from the vector store and included shareholder letters
from 2019 to help answer the question, “How has AWS evolved?”

In the next section, you will learn to further extend your models’ capabilities by
allowing them to interact with their environment using agents and frameworks such
as ReAct and PAL.

Agents

Consider a generative Al-based travel application that can not only respond to the
question, “Which beaches should I visit in Hawaii?” with a list of suggestions but can
also book the flight and hotel for you.

For this to work, you need an additional piece of software, usually referred to
as an agent, that orchestrates the prompt-completion workflows between the user

174 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

request, the foundation model, and external data sources and applications, as shown
in Figure 9-9.

Figure 9-9. Agents orchestrate prompt-completion workflows between user requests, the
foundation model, and external data sources and applications

Agents use the foundation model as their reasoning engine. Building upon the
chain-of-thought (CoT) prompting that you explored in Chapter 2, some models
are capable of generating step-by-step action plans carried out by tools such as a web
search, a SQL query, or a Python-based calculator script, for example.

Agents automatically build structured prompts similar to CoT prompts to help the
model reason through the user requests and create those step-by-step action plans.
The agent then orchestrates a RAG workflow through a sequence of data lookups
and/or performs API calls to complete the actions for the user. The actions an agent is
allowed to take are defined in separate instructions that are prepended to the prompt.

The agent automatically augments the prompt with the information received from
the external systems to help the model generate more context-aware and relevant
completions, then returns the final response back to the user.

Agent implementations are available in many popular open source libraries, such as
LangChain Agents or Hugging Face Transformers Agents. On AWS, you can also
choose from fully managed services such as agents for Amazon Bedrock, which is
covered in more detail in Chapter 12.

Let’s explore the structured prompts in more detail. Agents often use a ReAct frame-
work to show the model how to reason through a problem and decide on actions to
take that help find a solution.

Agents | 175

https://oreil.ly/XGOPw
https://oreil.ly/ZFpyJ
https://oreil.ly/qOviW

ReAct Framework

ReAct is a prompting strategy that combines CoT reasoning with action planning.
ReAct structures prompts to include a sequence of one or more question, thought,
action, and observation examples as described in the ReAct paper and shown in
Figure 9-10.

Figure 9-10. ReAct structures prompts to include instructions, ReAct examples, and the
user request

The question is the user-requested task or problem to solve. The thought is a reason-
ing step that helps demonstrate to the foundation model how to tackle the problem
and identify an action to take. The action is an API that the model can invoke from
an allowed set of APIs. The observation is the result of carrying out the action. The
actions that the model is able to choose from are defined by a set of instructions that
are prepended to the example prompt text.

Let’s return to the generative Al-based travel application example and assume a
user is asking which hotel is closest to the most popular beach in Hawaii. This
question will take a couple of intermediate steps and actions to find the solution.
In the prompt-prepended instructions, describe the ReAct prompt structure and list
the allowed actions. Lets give the agent API access to a Wikipedia search and a
company-owned hotel database:

Solve a question answering task with interleaving Thought, Action, Observation
steps.

Thought can reason about the current situation, and Action can be three types:
(1) wikipedia_search[topic], which searches the topic on Wikipedia and returns

176 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

https://oreil.ly/0Fyul

the first paragraph if it exists. If not, it will return a similar topic to
search.

(2) hotel_database_lookup[request], which performs an API call to the hotel
database to gather hotel information defined in request

(3) Finish[answer], which returns the answer and finishes the task.

In this example, you first defined the task by telling the model to answer a question
using the discussed ReAct prompt structure. Then, you provided instructions that
explain what “thought” means and listed the allowed actions to take.

First in the list is the wikipedia_search action, which looks for Wikipedia entries
related to the specified topic. The second is a hotel_database_lookup action, which
can query the travel companies’ hotel database with a specific request. The last action
is finish, which returns the answer and brings the task to an end.

You can also add reasoning examples to the instructions. Depending on the founda-
tion model you are working with, you may need to include more than one example
and carry out few-shot inference.

Now, let’s see how the model applies the instructions to the user’s request to find the
closest hotel to the most popular beach in Hawaii:

Question: Which hotel is closest to the most popular beach in Hawaii?

Thought 1: I need to search for the most popular beach in Hawaii and find the
closest hotel for that location.

Action 1: wikipedia_search["most popular beach in Hawaii"]

Observation 1: Waikiki is most famous for Waikiki Beach.

Thought 2: I need to find the hotel closest to Waikiki Beach.

Action 2: hotel_database_lookup["hotel closest to Waikiki Beach"]

Observation 2: <MyDreamHotel> is closest to Waikiki Beach.

Thought 3: <MyDreamHotel> is closest to Waikiki Beach, the most popular beach
in Hawaii. So the answer is <MyDreamHotels>.

Action 3: Finish["MyDreamHotel"]

You can see how the thoughts reason through the task and plan two intermediate
steps that help find the answer. The model then decides on appropriate actions to
take from the list of allowed actions. The observations bring the new information
retrieved from the actions back into the model’s prompt context. The model will cycle
through as many iterations as needed to find the answer. The final action is then to
finish the cycle and pass the answer back to the user.

Your context-aware reasoning application is now able to connect to external data
sources to retrieve additional information, reason through tasks, and plan and per-
form tasks. But what if one of the tasks is to calculate the sales tax for the travel
booking? Even with CoT, the model’s ability to perform arithmetic or other mathe-
matical operations is limited. After all, generative foundation models are not really
doing math, they are just predicting the most probable next token to complete the
prompt.

Agents | 177

To overcome this limitation, you can connect the model to an application that’s good
at performing calculations, such as a code interpreter. The Program-Aided Language
Models framework does exactly that.

Program-Aided Language Framework

PAL uses CoT reasoning to generate programs in the intermediate reasoning steps
that help solve the given problem. These programs are then passed to an interpreter,
for example, a Python interpreter, that runs the code and returns the result back to
the foundation model (FM), as shown in Figure 9-11.

Figure 9-11. PAL connects a foundation model to an external code interpreter to per-
form calculations

Similar to ReAct, you need to add one or more examples to the prompt that shows
the model how to format the output. Start each example with a question followed by a
couple of reasoning steps and lines of Python code that solve the problem. Then, add
the new question to solve to the prompt. The PAL-formatted prompt now contains
your example(s) and the new problem to solve, as shown in Figure 9-12.

Once you pass this prompt to the FM, the model follows the example and generates
a completion in the form of a Python script. Next, send the script to a Python
interpreter that will run the code and return the result. You can now append the
result to the prompt, and the LLM generates a completion that contains the correct
answetr.

178 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

https://oreil.ly/GKxkY
https://oreil.ly/GKxkY

Figure 9-12. PAL workflow connecting the LLM to a Python interpreter

Here is an example PAL prompt template:

Translate a math problem into an expression that can be executed using Python's
numexpr library.
Use the output of running this code to answer the question.
Question: ${{Question with hard calculation}}
${{Code that prints what you need to know}}
Question: I have four bananas and buy three more, how many bananas do I have?
def solution():
initial_bananas = 4
extra_bananas = 2
return initial_bananas + extra_bananas
Question: {question}

You can now ask the model a similar math question and the model will follow the
provided example.

Prompt:

Antje has five times the number of books than Chris. Chris has 3 books. How
many books does Antje have?

Completion:

def solution():
books_chris = 3
books_antje = 5 * books_chris
return books_antje

Agents | 179

For simple math operations, you can likely get the correct answer by just applying
CoT reasoning. But for more complex math, such as arithmetic with large numbers,
trigonometry, or calculus, PAL is a powerful technique that ensures that any calcula-
tions done by your foundation model are accurate and reliable.

The following code example shows how to use ReAct and PAL with LangChain
Agents, including serpapi (which performs Google searches, among many other
actions). Note the use of LangChain’s integration with Hugging Face pipelines using
the HuggingFacePipeline abstraction:

from import load_tools

from import initialize_agent

from import AgentType

from import AutoTokenizer, AutoModelForCausallLM
from import pipeline

from import HuggingFacePipeline

model_checkpoint = # generative model like Llama2, Falcon
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForCausallLM.from_pretrained(model_checkpoint)
pipeline = pipeline(

"text-generation”,

model=model,
tokenizer=tokenizer

)
1lm = HuggingFacePipeline(pipeline=pipeline)

tools

load_tools(["serpapi", "llm-math"], 1lm=11m)

agent = initialize_agent(tools,

1lm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)
agent.run("""
Which hotel is closest to the most
popular beach in Hawaii, and how much
is each night with 50% discount?

"
The output should look similar to this:

> Entering new AgentExecutor chain...

I need to find the most popular beach in Hawaii and find the closest hotel to
that beach and find out how much a hotel night is and then calculate 50% of
that price.

Action: Search

Action Input: "most popular beach in Hawaii"

Observation: Waikiki Beach

180 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

https://oreil.ly/wbowN
https://oreil.ly/4tFIR

Thought: I need to find the closest hotel from Waikiki Beach
Action: Search

Action Input: "closest hotel from Waikiki Beach"
Observation: <MyDreamHotel>

Thought: I need to find out how much a hotel night is
Action: Search

Action Input: "How much is a hotel night at <MyDreamHotel>"
Observation: 250 USD

Thought: I need to calculate 50% of that price
Action: Calculator

Action Input: 250x0.5

Observation: Answer: 125

Thought: I now know the final answer

Final Answer: Waikiki Beach is the most popular beach in Hawaiil and the closest
hotel is <MyDreamHotel> and a hotel night with 50% discount is 125 USD.

> Finished chain.

"Waikiki Beach is the most popular beach in Hawaii and the closest hotel 1is
<MyDreamHotel> and a hotel night with 50% discount is 125 USD."

With orchestration software, such as agents that take charge of prompt engineering
and communication between systems, and advanced prompting strategies, such as
CoT, ReAct, and PAL, that guide models to create step-by-step action plans, you can
now build powerful context-aware reasoning applications.

To build end-to-end generative Al solutions, there are a few more components that
you need in addition to RAG and agents that we have discussed so far.

For example, you need infrastructure to train, fine-tune, and serve your model, as
well as host your application components. You might also need additional orchestra-
tion components, frameworks, model hubs, and application interfaces that allow your
consumers, including users and systems, to interact with your solution. Let’s dive into
these additional components in the next section.

Generative Al Applications

Building robust generative Al applications involves multiple components beyond the
generative model. For example, once the model has been tuned or augmented for a
specific task, how will users interact with the model? What type of validation may
need to be done and what additional components are needed to support that?

A generative Al application includes multiple components as part of the end-to-end
solution. In some cases, you may use a managed generative AI application, such
as Amazon CodeWhisperer, where these components are all packaged and made
available to consumers. On the other hand, when you are building a new generative
AT application, it’s important to understand common components to consider. This

Generative Al Applications | 181

section is not intended to be a deep dive into each component but to provide an
introduction into several high level components, as shown in Figure 9-13 (seen earlier
as Figure 1-5).

Figure 9-13. Generative Al applications include more than generative models

Infrastructure

At the base layer, infrastructure is a core component required not only for
fine-tuning a model and deployment of a model but also for all of the other
components supporting the end-to-end application. For example, the previous
section discussed LangChain as a framework for orchestrating and implementing
RAG. As part of a generative Al application, LangChain has to run on underlying
infrastructure. A common implementation here includes deploying LangChain
on AWS compute services, such as AWS Lambda, an event-driven, serverless
compute platform, as shown in Figure 9-14.

Alternatively, if the chain includes a sequence of long-running processes, then
youd want to consider infrastructure that can better serve long-running pro-
cesses, such as AWS Fargate, a serverless compute engine for containers.

182

| Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

https://oreil.ly/YyMqm

Figure 9-14. Infrastructure powers all application components

You should also consider implementing filtering logic, commonly called guard-
rails, to filter user prompts and model responses for sensitive or inappropriate
content. You should consider serverless and managed options to reduce opera-
tional overhead.

AWS provides a variety of infrastructure options to support the various compo-
nents of the application stack, allowing you to pick the optimal infrastructure
option for each application component in terms of operational efficiencies, per-
formance, and cost:

Generative models and supporting machine learning (ML) models
These types of models are at the heart of generative Al applications. Generative
models include foundation models as well as models that have been fine-tuned.
These models are hosted on infrastructure, such as Amazon SageMaker.

To implement augmented solutions, such as RAG-based architectures, there is
often a need to deploy other ML models that support the solution. An example
discussed at length in this section is using an embedding model to embed the
prompt text and use that to retrieve relevant document information from a
vector store.

Generative Al Applications | 183

Information sources

Information sources are also a key part of a generative Al application. They may
support RAG-based architectures, such as vector or SQL databases, or be used as
part of a broader application.

As an example, a common pattern in generative AI applications includes the
implementation of an LLM cache to store and serve cached responses from
generative models. This cache can help in improving performance as well as
reducing unnecessary API calls.

External systems

These include other systems the generative Al application interacts with, such as
databases or APIs. Building agents-based applications that enable the generative
model to take action may require dependencies on external systems to execute
that action.

For example, building a chatbot that allows for the ability to make a reservation
based on a generated travel recommendation will require the ability for the agent
to interact with a reservation system to book the reservation.

Tools and frameworks

Typically, generative Al applications will rely on a number of tools and frame-
works to build and integrate components, as well as to operate the end-to-end
solution. Previous chapters have highlighted many examples from this category,
such as utilizing model hubs to store, discover, and share foundation generative
models as well as fine-tuned models.

As mentioned in Chapter 3, some popular model hubs include Hugging Face
Model Hub and Amazon SageMaker JumpStart. Packaged libraries are another
example within this category. Packaged libraries, such as Hugging Face’s PEFT,
help in simplifying the implementation of fine-tuning techniques such as LoRA.
LangChain is another example of tooling that helps in implementing techniques
such as RAG or agents using convenient packaged libraries.

Monitoring and logging

Operating a generative Al application requires monitoring and logging of all
components that support the end-to-end system, including infrastructure, net-
work, and security. This should also include ongoing monitoring of your models
and key components of your RAG-based workflows. To start, you should identify
a minimum set of error counters and logs that will help you troubleshoot opera-
tional issues. Next, you can add metrics to help improve the performance of your
generative Al system. Remember that if you don't measure performance, you
can’t improve it.

184

| Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

Generated outputs and feedback

A key dependency for effective feedback monitoring of generative models typi-
cally includes implementing a component of the solution that can capture and
store input prompts along with generated outputs and feedback. The input
prompts and generated outputs are often cached to reduce the number of API
calls required when invoking the model for the same input. The feedback mech-
anism should include guardrails to mitigate risk. At a high level, guardrails
are implemented to provide a layer of safety between the consumers and the
generative model.

For example, to monitor for signals of jailbreak, where a malicious user is trying
to manipulate prompts and receive inappropriate responses, you need to capture
the prompt and the response in order to detect a jailbreak scenario.

A generative Al application can also have an application interface that allows
users or systems to interact with it. The interface can take many forms, such as a
web based user interface, a mobile application, or an API. This layer also includes
governance around usage of the generative application.

Figure 9-15 shows a modification of the previous image that represents a simpli-
fied representation of an application interface, in the form of a REST API, that is
providing the interface between input prompts and the backend logic.

Figure 9-15. Creating an application interface in the form of a REST API

In this case, Amazon API Gateway is added to provide a REST API for the
backend logic. This frontend interface can also provide low-latency responses on
generated completions, manage incoming requests, monitor connections, scale
or throttle traffic, and connect into authorizers, such as Amazon Cognito, to

Generative Al Applications | 185

determine which users (or systems) should have access to your API as well as the
level of access they should have.

Operational tooling
Running any application at scale typically requires additional operational tooling
used to manage the build, validation, and delivery of application components.
The same is true for generative Al applications. For example, several components
in the diagram require the provisioning and configuration of resources, which
is typically handled through a combination of tooling such as traditional contin-
uous integration (CI) and continuous delivery/deployment (CD) tooling.

Building generative Al applications on AWS typically involves multiple AWS services
applied to the various application components, as shown in Figure 9-16 (shown
earlier as Figure 1-6).

Figure 9-16. Examples of AWS services that can be used to build generative Al
applications

As previously mentioned, there are prebuilt generative Al applications, such as Ama-
zon CodeWhisperer, where all of the application components are abstracted away
from the consumer and fully managed as part of a packaged application.

186 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

This section covered the core components of a typical generative Al application.
Usually, there are a lot of integrations and dependencies required to build, deploy,
and operate these applications. There are also considerations to be aware of when
operationalizing the complete generative AI project life cycle to allow for reliable and
repeatable processes (as discussed in Chapter 1).

The next section will discuss some of the considerations around operationalizing and
creating efficiencies in the generative Al project life cycle.

FMOps: Operationalizing the Generative Al
Project Life Cycle

An increasing number of generative models are powering critical applications. As a
result, the need to build more reliable, efficient, and repeatable mechanisms to build,
deploy, and operate these models in production is also increasing. This section will
introduce some key considerations for efficiently and reliably delivering generative
AT workloads.

The terminology in this space is not yet well established; some people use the terms
GenAIOps, FMOps, or LLMOps. All of these build on existing MLOps practices, and
because the considerations are fundamentally similar between them, this chapter will
focus on foundation model operations (FMOps) as a general term for operationaliz-
ing workloads that rely on generative foundation models, regardless of model type,
such as LLM or multimodal.

This includes workloads that utilize foundation models as is, as well as those that
require models to be fine-tuned and/or augmented. What is not included is providers
of foundation models that perform pretraining, as the considerations for pretraining
more closely follow traditional MLOps.

Chapter 1 introduced a typical generative Al project life cycle consisting of a number
of iterative steps. Each of those steps has unique considerations for being able to
create reliable, operationally efficient, and repeatable workflows within the life cycle
stages, as shown in Figure 9-17.

The next section will cover a few high-level considerations across select stages and
steps of the project life cycle to reliably and efficiently scale generative AI workloads,
starting with the experiment and select step.

FMOps: Operationalizing the Generative Al Project Life Cyde | 187

Figure 9-17. Create reliability and repeatability across stages of the generative ai project
life cycle

Experimentation Considerations

After a viable use case has been identified, the first step is typically to experiment
with existing foundation models and identify the top candidate or candidates to
move forward with. Its also important to note that this step can also happen on
a continuous basis as new state-of-the-art models get released, to determine if the
performance for your use case can potentially be improved with a different model.

As a result, building automated frameworks that evaluate model performance based
on domain-specific datasets is a common way to increase repeatability in the model
selection process. Building a repeatable mechanism to evaluate models during model
selection typically includes a few components including an experimentation environ-
ment, a prompt catalog and an evaluation datastore, as shown in Figure 9-18.

Experimentation on a new use case can be performed across a number of environ-
ments, as discussed in Chapter 1, such as managed playgrounds, notebook environ-
ments, or even from local machines. One way to enable increased reliability and
repeatability in your experiments is to implement a prompt catalog.

188 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

Figure 9-18. Building a repeatable mechanism to evaluate models during model selection

The concept of a prompt catalog was first introduced in a research paper® but has
since gained more traction in a number of implementations and tooling. At a high
level, a prompt catalog serves two purposes. First, the prompt catalog documents
successful patterns for structuring prompts across multiple tasks that can be used to
adapt to specific domains. This usually takes the form of existing or adapted prompt
templates, as discussed in Chapter 5. Second, it contains a catalog of patterns that
have been successfully used that is made readily available for evaluating new models
or fine-tuning later in the life cycle.

An evaluation datastore, or experiment management capability, is also needed to
reliably track key metadata such as the foundation model and prompt data used, as
well as key performance metrics. Implementing these two components during experi-
mentation can increase productivity through reusable prompt template patterns and
shared prompts, as well as increase the ability to reliably track performance results.
This same pattern can also be combined with automated processes to provide a
repeatable framework to evaluate new foundation models against your use cases.

3 Jules White et al., “A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT”, arXiv, 2023.

FMOps: Operationalizing the Generative Al Project Life Cydle | 189

https://oreil.ly/js9Rr

Additionally, if these environments are utilizing sensitive data, they should adhere
to existing security and governance best practices, which are not unique to FMOps
and include automating the provisioning and configuration of these environments
and supporting components through infrastructure as code (IaC) and policy as code
(PaC), combined with continuous monitoring. When working with sensitive data,
the key pillars of security and governance best practices need to be considered, such
as network isolation, governed access, enforcement of minimum privileges, detective
controls, and data protection.

Development Considerations

During this step in the generative Al project life cycle, the focus is on creating or
augmenting a model that is performant to the target task. There are many existing
MLOps practices, such as automated training pipelines, that apply directly to fine-
tuning generative AI models. However, typically the final step in a training pipeline
is to register the candidate model in a model registry with key metadata that tracks
model lineage, then deploy the model to production. With traditional ML models,
the training inputs and outputs are generally well known, which allows for reliable
tracking of model lineage.

Model lineage defines information about how a model was built. In traditional
machine learning, this translates into having an auditable record of the model inputs,
evaluation metrics, and generated artifacts specific to that model version, as illustra-
ted in Figure 9-19. Model lineage is important in MLOps for reproducibility as well as
auditability.

Figure 9-19. Model lineage for reproducibility with traditional machine learning models

190 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

For generative models, there are a couple of key differences to be aware of as it relates
to FMOps. First, complete model lineage may not be possible. Specifically, some
model providers do not provide details (pretraining and fine-tuning datasets, etc.)
about how their models were trained. Also, when details are provided, they may not
be specific enough to include the complete versioned data sources. As a result, model
lineage may not be as deep as with traditional machine learning models, as shown in
Figure 9-20.

Figure 9-20. Model lineage for generative models using PEFT LoRA as an example

The level of transparency provided with foundation models is a consideration when
comparing against your organizational or regulatory requirements and selecting the
right foundation model. Regardless of the level of transparency in the foundation
model chosen, when thinking about lineage you should still consider maintaining
your own lineage for the components in scope for traceability as well as the ability to
reliably redeploy or debug if needed.

Similar to MLOps, reliably capturing this model lineage metadata requires an auto-
mated approach to experiment management and tracking, because this metadata is
used in the packaging of models for deployment to production environments as well
as the ongoing management of deployed models.

FMOps: Operationalizing the Generative Al Project Life Cyde | 191

Production Deployment Considerations

Building a prototype is typical early in the generative Al project life cycle. However,
as you move beyond that prototype and look to deploy the generative AI application
to production, there are a few key considerations.

For many of the components of an application, such as the frontend interface, tradi-
tional software best practices and AWS Well-Architected best practices apply directly.
The same is true for optimizations within the deployment process, where traditional
DevOps or MLOps best practices still apply and are not really unique to FMOps.

For example, to deploy a foundation model, one best practice is to utilize repeatable
tooling that allows you to provision and configure SageMaker endpoints through
infrastructure/configuration as Code (IaC/CaC). This allows for repeatability, roll-
back capabilities, and advanced deployment patterns such as A/B testing, as discussed
in Chapter 8.

Because a lot of the existing practices often directly apply to building generative Al
applications, this section will only focus on a few high-level considerations directly
related to FMOps.

First, packaging models for deployment and managing deployed model versions may
require additional dependencies that should be captured in a model registry. For
example, with a fine-tuned model adapted using LoRA, multiple dependent models
are required to deploy, including the foundation model, the adapted model, and—
depending on the deployment implementation—a merged model. Related metadata
for each of these models should be captured in the model registry to enable you to
trace lineage or repackage for deployment if needed, as shown in Figure 9-21.

The end result should be that for every given deployed model, you are able to reliably
capture key metadata about the model version to manage models at scale, as well as
reliably redeploy if needed.

This section covered only a few high-level considerations for looking at operational
efficiencies across the generative AI project life cycle. Again, many of the existing
practices with MLOps directly apply, even if there are nuances in the implementation.
For example, continuous monitoring is still applicable but the implementation will
be different for LLMs because the evaluation criteria and metrics are different. Even
though the industry is still debating terminology in this space, the core practices of
MLOps still largely apply, and we build on that through only the aspects unique to
generative models with FMOps.

192 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

https://oreil.ly/-GuuH

Figure 9-21. Model packaging and management for adapter models

Summary

This chapter covered RAG as a common framework for augmenting LLMs and
using RAG to mitigate the common knowledge limitations of hallucinations and
knowledge cutoffs in LLMs by providing access to external sources of information.
You explored a specific use case for document retrieval and the importance of vector
stores in implementing RAG architectures. This chapter also outlined the workflows
and steps within those workflows that support RAG and agent-based architectures.
You learned that frameworks like LangChain can help reduce the time to implement
these complex workflows and make it possible to quickly build, deploy, and test
LLM-powered applications that use powerful retrieval and augmentation techniques
like RAG and agents.

You learned that foundation models can serve as remarkable reasoning engines in
applications, leveraging their “intelligence” to fuel exciting and practical use cases,
and that agents facilitate this process by taking charge of prompt engineering and
communication between systems. They enable FM-powered applications to perform
actions in the real world, making the applications more versatile and interactive.

This chapter also highlighted high-level components to consider as part of building
an end-to-end generative Al application. You saw some examples of broader AWS
services that can be used in building those applications.

Summary | 193

Finally, this chapter briefly highlighted a few considerations for building repeatability,
reliability, and operational efficiencies across the generative AI project life cycle.

In Chapter 10, you will explore multimodal foundation models that extend generative
AT beyond text. You will explore multimodal use cases, such as generating images
from descriptions and visual question answering, and learn more about the architec-
tures that power multimodal foundation models.

194 | Chapter9: Context-Aware Reasoning Applications Using RAG and Agents

CHAPTER 10
Multimodal Foundation Models

Generative Al can be unimodal or multimodal. Unimodal models work exclusively
with data in one modality, such as text. Large language models (LLMs) are a popular
example of unimodal generative AI; both the input and output modality in prompt
and completion is text. Once you add another modality to the mix, such as image,
video, or audio, you are tapping into multimodal generative AL

With multimodal generative Al, you can broaden the scope of use cases and tasks
and potentially move closer to artificial general intelligence (AGI) by enhancing the
model’s contextual understanding and cross-modal learning. Multimodal generative
Al is a step toward simulating real-world complexity that not only enables models to
process diverse data formats but also to learn through transfer and become better at
creative problem solving.

With multimodal AJ, you add different content modality to the input to support tasks
such as converting, for example, image to text or text to image. Figure 10-1 illustrates
the difference between unimodal and multimodal generative AL

This chapter starts with an introduction to multimodal generative Al use cases and
tasks, including image generation and visual question answering (VQA) using the
Stable Diffusion and IDEFICS models, respectively. The power of these multimodal
models is the ability to interact with them using natural language prompts.

Let’s start by exploring common multimodal generative Al use cases and tasks.

195

https://oreil.ly/HizEq
https://oreil.ly/3D76y

Figure 10-1. Unimodal versus multimodal generative Al

Use Cases

Multimodal generative AI can create rich and diverse content by combining text,
images, videos, audio, and more. Multimodal generative Al is used for generating
compelling marketing materials, presentations, and other types of creative content
that incorporate multiple modalities.

In addition to content generation, other popular use cases include image captioning
to increase accessibility for visually impaired users, visual question answering where
users can ask questions about what they see in an image, content moderation to
identify harmful content across modalities, and the creation of virtual environments
in video games, simulations, and virtual reality.

You'll also see multimodal generative Al used in fashion and product design to help
generate new clothing designs or interior layouts, and in customer service, powering
virtual assistants, chatbots, and avatars that engage with users through text, speech,
and visual cues.

Since most image-generation use cases involve a prompt, let’s first explore some
prompt engineering best practices and generative-inference configuration parameters
related to image generation.

196 | Chapter 10: Multimodal Foundation Models

Multimodal Prompt Engineering Best Practices

It is important to become familiar with the nuances of the foundation model you are
working with to author the most useful prompts. This section demonstrates various
ways to influence text-to-image multimodal models when generating images. Let’s
start with some high-level prompt engineering tips that work for a wide variety of
image-generation models, including Stable Diffusion:

Define the type of image.
You can specify phrases like “film,” “oil painting,” “sketch,” or “3D rendering” to
express the desired style of your generated image. Within each style, you can
instruct the model to generate an image with different framing and lightning. For
example, “Generate a close-up sketch with natural lighting”

Describe the subject.
What are you trying to generate? You will need to find a balance between not
enough detail and too much detail. To generate multiple subjects, you should use
the plural version of the subject, such as “dogs” instead of just “dog”

Specify style and artists.
You can ask the model to generate an image similar to a specific artist, such as
Vermeer or Rembrandt. Additionally, you can ask the model to generate images
that combine multiple artists, for example: “Generate an image by Van Gogh and
Picasso”

Be specific about quality.
Generative models perform better when the prompt contains very specific details
about what you are trying to generate. Use words like “realistic,” “high resolu-
tion,” and “8k” to improve the quality of the rendered image. You will likely
iterate many times on finding the right amount of detail.

Be expressive.
Despite the many brief examples available online, its OK to express yourself
when writing these prompts. Avoid the urge to paraphrase or shorten the prompt
to just a single phrase or utterance. Separate out your thoughts, incrementally
add new details, and notice how the model responds. Iterate until you get your
desired result.

Multimodal Prompt Engineering Best Practices | 197

Choose order of words.
While it’s good to be specific and expressive, it's worth noting that words at the
beginning of the prompt are often weighted more heavily than words at the end.

Avoid negative phrases.
Consistent with unimodal large language models, negative phrases are sometimes
difficult to interpret by the model. Use positive phrases if possible.

Embrace negative prompts.
Separate from the prompt, there is a parameter specifically used to specify
which objects, styles, and characteristics that the model should not generate.
For example, if you don’t want your model to generate a blurry background,
you can specify “blurry background” in the negative prompt parameter. You
should phrase these in a positive manner to avoid the double negative scenario of
specifying a negative phrase in the negative-prompt parameter.

Image Generation and Enhancement

Many of the described multimodal generative AI use cases that incorporate image
and text data involve image generation, image editing and enhancement, and image-
to-text tasks. Let’s explore those tasks in more detail using Stable Diffusion.

Image Generation

Image generation is a common task for multimodal models that support text-to-
image capabilities. Figure 10-2 shows an example of a text prompt, Create a pic
ture of a dog laying on grass, instructing the model to generate an image as
output that matches the text description in the prompt.

Figure 10-2. Image generation using text-to-image

Here is the code to generate this image with Stability AT’s Stable Diffusion XL model
and Amazon SageMaker JumpStart:

198 | Chapter 10: Multimodal Foundation Models

import

from import StabilityPredictor

from import GenerationRequest, GenerationResponse, TextPrompt
from import name_from_base

from import Image

import

import

endpoint_name=name_from_base("sdxl-1-0-jumpstart")
sagemaker_session = sagemaker.Session()

deployed_model = StabilityPredictor(endpoint_name=endpoint_name,
sagemaker_session=sagemaker_session)

prompt = "Create a picture of a dog laying on grass."

output = deployed_model.predict(
GenerationRequest(
text_prompts=[TextPrompt(text=prompt)],
style _preset="anime",
width=1024,
height=1024,
seed=5,

)

def decode_and_show(model_response: GenerationResponse, image_name):
image = model_response.artifacts[0].base64
image_data = base64.b64decode(image.encode())
image = Image.open(io.BytesIO(image_data))
image.save(image_name)
display(image)

decode_and_show(output, image_name)

Image generation powers a variety of content generation use cases, including the gen-
eration of creative content such as book illustrations or music album cover designs.
There are also broader applications, such as using generated images to experiment
with and influence product design.

Image Editing and Enhancement

Image editing and enhancement uses image-to-image capabilities of generative Al
models to generate a new or modified image from an image and instruction that you
provide as input along with a text-based prompt. Image editing and enhancement
tasks support a range of use cases, including artistic style transfer, domain adaptation,
and upscaling.

Image Generation and Enhancement | 199

Style transfer converts images into another specific artistic style—for example, an
anime-style image into a photorealistic image. The style is usually expressed in the
input text prompt and/or defined with a model parameter, such as style_preset in
Stable Diffusion. The values for style transfer include photographic, digital-art,
and cinematic. The style_preset parameter is useful for art creation, design, or
photo editing applications.

Figure 10-3 shows an example of style transfer applied to an image created with
the prompt Create an image of a dog dressed as a ninja eating ice cream
in anime style (left image in Figure 10-3). You can then use this image as an
input image and ask the model to change the style to photorealistic (right image in
Figure 10-3) using the style_preset parameter.

Figure 10-3. Example of style transfer from anime-style image to photorealistic-style
image

Here is the code to generate the first image in Figure 10-3 with Stability AI’s Stable
Diffusion XL model and Amazon SageMaker JumpStart:

prompt="Create an image of a dog dressed as a ninja eating ice cream"

output = deployed_model.predict(
GenerationRequest(
text_prompts=[TextPrompt(text=prompt)],
style_preset="anime",
width=1024,
height=1024

200 | Chapter 10: Multimodal Foundation Models

Here is the code to generate the second image in Figure 10-3 with Stability AT’s Stable
Diffusion XL model and Amazon SageMaker JumpStart:

def encode_image(image_path: str,
resize: bool = False,
size: Tuple[int, int] = (1024, 1024)) -> Union[str, None]:

image = Image.open(image_path)

if resize:
image = Image.open(image_path)
image = image.resize(size)
updated_1image_path = "resize-{}".format(image_path)
image.save(updated_image_path)
image_path = updated_image_path

with open(image_path, "rb") as image_file:
img_byte_array = image_file.read()
Encode the byte array as a Base64 string
base64_str = base64.b64encode(
img_byte array).decode("utf-8")
return base64_str

size = (1024,1024)
image_data = encode_image("anime_ninja_dog.png", size=size)

new_prompt="Create a photograph of a dog dressed as a ninja eating ice cream"

output = deployed_model.predict(
GenerationRequest(
text_prompts=[
TextPrompt(text=new_prompt)
]’

init_1image=image_data,
style _preset="photographic",

)

Domain adaptation converts images from one domain to another, such as converting
satellite images to maps or changing day scenes to night scenes.

Figure 10-4 shows an example of changing an image from a night scene created with
the prompt Create a photorealistic image of a Storm Trooper holding a
surfboard at night during full moon (left image in Figure 10-4), to a day scene,
created with the prompt Create a photorealistic image of a Storm Trooper
holding a surfboard during day (right image in Figure 10-4).

Image Generation and Enhancement | 201

Figure 10-4. Example of an image changing from night scene to day scene

Here is the code to generate the first image in Figure 10-4 with Stability Al’s Stable
Diffusion XL model and Amazon SageMaker JumpStart:

prompt="Create a photorealistic image of a Storm Trooper holding a surfboard at
night during full moon"

output = deployed_model.predict(
GenerationRequest(
text_prompts=[
TextPrompt(text=prompt)
1,
width=1024,
height=1024

)

decode_and_show(output)

Here is the code to generate the second image in Figure 10-4 with Stability AI’s Stable
Diffusion XL model and Amazon SageMaker JumpStart:

new_prompt="Create a photorealistic image of a Storm Trooper holding a surf
board on a bright sunny day"

output = deployed_model.predict(
GenerationRequest(
text_prompts=[
TextPrompt(text=new_prompt)
1,
init_image=image_data,
style_preset="photographic",

202 | Chapter 10: Multimodal Foundation Models

)

decode_and_show(output)

Domain adaptation is useful for simulating various scenarios in video games, simula-
tions, or product presentations.

Upscaling converts lower-resolution images into higher resolutions. Unlike non-deep-
learning techniques such as nearest neighbor, generative Al takes the whole context
of the image into account, using a text prompt to guide the upscaling process.

Figure 10-5 shows an example of upscaling a low-resolution image of a green iguana
to a higher resolution. On the left is the low-resolution iguana image used as the
input image to the model with the simple prompt a green iguana. On the right is
the high-resolution image generated by the model.

Figure 10-5. Upscaling a lower-resolution image of a green iguana to a higher resolution

Here is the code to generate the upscaled image in Figure 10-5 with Stability Al's

Stable Diffusion x4 upscaler FP16 model and Amazon SageMaker JumpStart:
low_res_1img_file_name = "green_iguana_lowres.jpg"

endpoint_name =
'jumpstart-dft-stable-diffusion-x4-upscaler-fp16'

def query_endpoint(payload):
client = boto3.client('runtime.sagemaker")

response = client.invoke_endpoint(
EndpointName=endpoint_name,
ContentType="'application/json;jpeg’,

Image Generation and Enhancement | 203

Accept="application/json;jpeg',
Body=payload)

return response

def parse_response(query_response):
response_dict = json.loads(query_response['Body'].read())
return response_dict['generated_images'],
response_dict['prompt']

with open(low_res_img_file_name,'rb') as f:
low_res_image_bytes = f.read()

encoded_image = base64.b64encode(
bytearray(low_res_image_bytes)).decode()

payload = {
"prompt":"a green iguana",
"image": encoded_image

}

query_response = query_endpoint(
json.dumps(payload).encode('utf-8'))

generated_images, prompt = parse_response(query_response)

for generated_image in generated_images:
generated_image_decoded = BytesIO(
base64.b64decode(generated_image.encode()))
generated_image_rgb = Image.open(
generated_image_decoded).convert("RGB")
Upscaling can be useful in medical imaging tasks to enhance images, segment regions
of interest, or reconstruct missing data. It can also improve the quality of medical
scans, aid in diagnosis, and even generate realistic images from incomplete data,
supporting research and clinical applications.

Inpainting, Outpainting, Depth-to-lmage

The image-editing and enhancement tasks described thus far usually change the
image as a whole. There are also more advanced techniques that help you modify
only parts of an image, including inpainting, outpainting, and depth-to-image.

Inpainting

Inpainting replaces a portion of an image with another image based on an instruction
prompt and image mask. Generative models that support inpainting are usually
derived from a base image model with an added mask generation strategy. The
mask represents the segments in the original image that you want to change and the

204 | Chapter 10: Multimodal Foundation Models

segments to leave unchanged. They accept an additional mask_input parameter, an
image where the blacked-out portion remains unchanged during image generation
and the white portion is replaced.

To perform inpainting, provide the original image, a mask image that outlines the
portion to be replaced, and a text prompt with the instruction. The example shown
in Figure 10-6 uses inpainting to remove the tree from the image shown on the left.
In the middle, you can see the provided image mask. On the right, you can see the
inpainted image without the tree.

Figure 10-6. Inpainting replaces a portion of an image

Here is the code to generate the inpainted image in Figure 10-6 with Stability AT’s
Stable Diffusion 2 Inpainting model and Amazon SageMaker JumpStart:

endpoint_name = 'jumpstart-dft-stable-diffusion-2-inpainting'
input_img_file_name = "inpainting/original-image.png"
input_img_mask = "inpainting/mask-image.png"

def encode_img(img_name):
with open(img_name,'rb') as f:
img_bytes = f.read()

encoded_img = base64.b64encode(
bytearray(img_bytes)).decode()

return encoded_img

encoded_input_1image = encode_img(input_img_file_name)
encoded_mask_image = encode_img(input_1img_mask)
payload = {
"prompt": "building, facade, paint, windows",
"image": encoded_input_1image,
"mask_1image":encoded_mask_image

}

Inpainting, Outpainting, Depth-to-lmage | 205

def query_endpoint(payload):
client = boto3.client('runtime.sagemaker"')

response = client.invoke_endpoint(
EndpointName=endpoint_name,
ContentType="application/json;jpeg',
Accept = 'application/json;jpeg',
Body=encoded_payload)

return response

def parse_and_display_response(query_response):
response_dict = json.loads(query_response['Body'].read())
generated_images = response_dict['generated_images']

for generated_image in generated_images:
with BytesIO(
base64.b64decode(
generated_image.encode())) as generated_image_decoded:
with Image.open(generated_image_decoded) as
generated_image_np:
generated_image_rgb =
generated_image_np.convert("RGB")

generated_image_rgb.save("generated-image.png")

query_response = query_endpoint(payload)

parse_and_display_response(query_response)

The most common use cases for inpainting are image restoration use cases, such as
repairing incomplete or damaged areas of building blueprints in architectural designs
or removing cropping artifacts in medical imaging.

Outpainting

Outpainting expands images beyond their original borders to create larger-sized
images. In Figure 10-7, we used the image of the green iguana as input, scaled the
image by 0.5, provided an image mask that marks the outside frame to be changed,
and instructed the model to outpaint. The right image in Figure 10-7 shows the
generated image after outpainting.

The most common use cases for outpainting are artistic content generation, photog-
raphy enhancement and editing, and video game design.

206 | Chapter 10: Multimodal Foundation Models

Figure 10-7. Outpainting expands images beyond their original borders

Depth-to-Image

Depth-to-image is a technique that generates new images from existing ones while
preserving the shape and depth of the objects in the original image.

Depth-to-image is often used to explore different interior design styles while keeping
the interior space and boundaries coherent with your input image, as shown in
Figure 10-8.

Here, we generated an image with the prompt Create an image of an ultra
modern penthouse overlooking Lake Tahoe (shown on the left). We then passed
this image to a model with depth-to-image capabilities and prompted it with city
view, marble floor, minimalist lifestyle. In the generated image (shown on
the right), you can see how the overall image composition and depth of the objects
is preserved, but the view changed from lake to city and the floors changed from
hardwood to marble.

Inpainting, Outpainting, Depth-to-lmage | 207

Figure 10-8. Changing interior designs using depth-to-image

Here is the code to generate the image in Figure 10-8 with Stable Diffusion 2’s Depth
FP16 model and Amazon SageMaker JumpStart:

input_1img_file_name = "room.png"
endpoint_name = 'jumpstart-dft-sd-2-depth-fpl6'
encoded_input_image = encode_img(input_img_file_name)

payload = {
"prompt": "city view, marble floor, minimalist lifestyle",
"image": encoded_input_1image

}
query_response = query_endpoint(payload)

parse_and_display_response(query_response)

In marketing and branding, you can take photographs of your products and use
depth-to-image to generate creative variations for digital advertisements or bro-
chures, as shown in Figure 10-9.

Here, we generated an image with the prompt Create an 1image of a fancy
cocktail with beach in the background (shown on the left). We then passed
this image to a model with depth-to-image capabilities and prompted it with nyc
rooftop bar (shown on the right).

208 | Chapter 10: Multimodal Foundation Models

Figure 10-9. Changing product marketing images using depth-to-image

Here is the code to generate the image in Figure 10-9 with Stable Diffusion 2 Depth
FP16 model and Amazon SageMaker JumpStart:

input_1img_file_name = "cocktail.png"
endpoint_name = 'jumpstart-dft-sd-2-depth-fpi16'

encoded_input_image = encode_img(input_img_file_name)

payload = {
"prompt": "nyc rooftop bar",
"image": encoded_input_image
}

query_response = query_endpoint(payload)

parse_and_display_response(query_response)

In game development, you can use depth-to-image to generate different in-game
landscapes from a base image that contains some elements you want to include.

Image Captioning and Visual Question Answering

When you align an LLM with a vision-based model, you get a multimodal large
language model (MLLM), sometimes called visual language models (VLMs). These
multimodal models accept inputs of different content modality.

Image Captioning and Visual Question Answering | 209

The models know how to follow instructions and perform in-context learning for
both text-based and multimodal tasks. These models are often used for image-to-text
tasks that accept images as input and generate text as output.

Some popular image-to-text models include Flamingo from DeepMind' and Image-
Aware Decoder Enhanced a la Flamingo with Interleaved Cross-attentionS (IDEF-
ICS) from Hugging Face. These models are trained on datasets that more naturally
interleave images and text—versus a dataset of image-text caption pairs. By interleav-
ing images and text, the models tend to perform better on multimodal reasoning
benchmarks.

While Flamingo is a proprietary model trained on a closed dataset, IDEFICS is
based on the Flamingo architecture, is freely available, and is trained on a public
dataset called OBELICS. OBELICS is an image-text dataset that consists of 140
million web pages extracted from the Common Crawl dataset and interleaved with
350 million images associated with these web pages. In addition, another 100 billion
highly curated text tokens are added to the dataset to improve the model’s language
understanding.

OBELICS and IDEFICS are acronyms that mimic names from a
popular French comic book, Asterix, which stars a fictional charac-
ter, Obelix, and his dog, Idefix.

IDEFICS is available in 9 billion- and 80 billion-parameter models with very pow-
erful spatial and language understanding that aligns natural language with image
perception. There are also instruction fine-tuned variants of both the 9 billion- and
80 billion parameter-models that are optimized for conversational applications.

During training, IDEFICS uses the pretrained LLaMA large language model in com-
bination with a set of vision encoders and cross-attention layers that are trained on
the interleaved text and image data from the OBELICS dataset. The cross-attention
uses keys (k) and values (v) from the vision features (color, shape, etc.) along with
queries (g) from the language features (tokens, input IDs, etc.).

Image-to-text powers many multimodal generative Al use cases, such as image cap-
tioning, content moderation, and VQA. Let’s take a look at some of these use cases.

1 Jean-Baptiste Alayrac et al., “Flamingo: A Visual Language Model for Few-Shot Learning”, arXiv, 2022.

210 | Chapter 10: Multimodal Foundation Models

https://oreil.ly/nxB7i
https://oreil.ly/jPcnj
https://oreil.ly/jPcnj
https://oreil.ly/SOyer

Image Captioning

Image captioning automatically generates descriptive captions for images, combining
computer vision and natural language processing. Image captioning is often used
to enhance accessibility for visually impaired people, to assist in content indexing
and retrieval, and to handle search-engine optimization (SEO) and social media
sharing. It also has applications in education, automated content generation, assistive
technology, and Al research, making visual content more meaningful and usable.

Content Moderation

Content moderation leverages the image-to-text capabilities of models to analyze
content across visual and text elements. Those models can help detect deepfake
content by analyzing visual and textual elements and uncover inconsistencies. They
can enhance contextual content analysis by considering both text and images, leading
to more nuanced moderation decisions. They can also help identify harmful content
by leveraging both modalities and flagging offensive or inappropriate material more
accurately.

Visual Question Answering

VQA tasks make use of image-to-text capabilities of a model to answer questions
about images or visual content. These tasks require the model to understand both the
visual information in the image and the textual content of the question to provide
accurate and relevant answers. Figure 10-10 shows how VQA is able to correctly
respond to the question, Who makes this car? from the image given in the multi-
modal prompt.

Figure 10-10. The model responds with the correct answer for a visual question

Image Captioning and Visual Question Answering | 211

Similar to an LLM-based prompt, the text portion of the VQA prompt typically
follows the format of User: {question}\nAssistant:. The code that follows imple-
ments the example in Figure 10-10 using the Hugging Face IDEFICS model for the
VQA image-to-text task. Here, we are using the 9 billion-parameter IDEFICS instruct
variant to ask questions of the image:

import

from import IdeficsForVisionText2Text
from import AutoProcessor

device = "cuda" if torch.cuda.is_available() else "cpu"

model_checkpoint = "HuggingFaceM4/idefics-9b-instruct"

model = IdeficsForVisionText2Text.from_pretrained(
model_checkpoint)

processor = AutoProcessor.from_pretrained(model_checkpoint)

prompts = [
"User: ", # input indicator
"https://.../happy-car-chris.png" # image
"Who makes this car?", # question
"Assistant: ", # output indicator
1

inputs = processor(prompts, return_tensors="pt").to(device)
generated_ids = model.generate(**inputs, max_length=100)

generated_text = processor.batch_decode(
generated_1ids, skip_special_tokens=True)[0]

print(generated_text)
Output:
Assistant: The car is made by Porsche.

VQA can also be combined with multimodal chain-of-thought prompting to simulate
humanlike thought processes for more complex questions. In order to perform visual
question answering, the model must iteratively reason over both the image and the
question.

Figures 10-11 and 10-12 demonstrate the difference between multimodal standard
prompting and chain-of-thought prompting, respectively. Adding Think step-by-
step. to the prompt, as shown in Figure 10-12, directs the model to use chain-of-
thought reasoning, and the model returns the correct answer.

212 | Chapter 10: Multimodal Foundation Models

https://oreil.ly/LqnPi
https://oreil.ly/LqnPi

Figure 10-11. The model responds with an incorrect answer without multimodal chain-
of-thought prompting

Figure 10-12. VQA with multimodal chain-of-thought prompting returns the correct
answer

Image Captioning and Visual Question Answering | 213

Here is the code to implement the chain-of-thought version of this prompt:

import torch
from transformers import IdeficsForVisionText2Text
from transformers import AutoProcessor

device = "cuda" if torch.cuda.is_available() else "cpu
model_checkpoint = "HuggingFaceM4/idefics-9b-instruct"”
model = IdeficsForVisionText2Text.from_pretrained(

model_checkpoint)

processor = AutoProcessor.from_pretrained(model_checkpoint)

prompts = [
"User: ", # input indicator
"https://.../baby-groot.jpg", # image

"Who produced the movie that features this character?", # question
"Assistant: " # output indicator

1
inputs = processor(prompts, return_tensors="pt").to(device)

generated_ids = model.generate(**inputs, max_length=100)
generated_text = processor.batch_decode(generated_ids,
skip_special_tokens=True)[0]

print(generated_text)
Output:
Assistant: Marvel Studios produced the movie that features this character.

VQA powers diverse applications, such as aiding visually impaired people, enhancing
education, and assisting in content retrieval. It’s also useful in medical diagnosis,
tourism, gaming, and security, enabling users to interact with images through natural
language questions.

Here is another example, this time using chain-of-thought reasoning to answer the
question in the prompt, How do I make this? Think step-by-step., referringto a
pizza in Figure 10-13. Note the Think step-by-step. in Figure 10-13 and the code
that follows.

214 | Chapter 10: Multimodal Foundation Models

Figure 10-13. Visual question answering with chain-of-thought reasoning

model_checkpoint = "HuggingFaceM4/idefics-9b-instruct”
model = IdeficsForVisionText2Text.from_pretrained(
model_checkpoint)

prompts = [
"User: ", # input indicator
"https://.../margherita-pizza.jpg", # image
"How do I make this? Think step-by-step.", # question
"Assistant: " # output indicator
1

inputs = processor(prompts, return_tensors="pt").to(device)
generated_ids = model.generate(**inputs, max_length=500)

generated_text = processor.batch_decode(generated_ids,
skip_special_tokens=True)[0]

print(generated_text)

Image Captioning and Visual Question Answering | 215

Output:

Assistant: To make a Margherita pizza at home, follow these steps:

1. Start by preheating your oven to the highest temperature it can reach,
usually around 500°F (260°C).

2. On a lightly floured surface, roll out your pizza dough into a circle.

3. Transfer the dough to a pizza stone or baking sheet.

4. Sprinkle a layer of tomato sauce on top of the dough, leaving a small border
around the edges.

5. Add a layer of fresh mozzarella cheese on top of the tomato sauce.

6. Add a layer of fresh basil leaves on top of the cheese.

7. Drizzle a small amount of olive oil over the pizza.

8. Place the pizza in the preheated oven and bake for 10-12 minutes, or until
the crust is golden and the cheese is melted and bubbly.

9. Remove the pizza from the oven and let it cool for a few minutes before
slicing and serving.

Optional: You can also add other toppings like sliced mushrooms, olives, or
pepperoni to your Margherita pizza."

Now that you've seen a few examples, let’s explore ways to evaluate multimodal mod-
els for both text-to-image and image-to-text tasks. In the next section, you will learn
about multimodal evaluation benchmarks, metrics, and datasets, including a nonver-
bal reasoning intelligence quotient (IQ) test used to evaluate human intelligence.

Model Evaluation

Evaluation benchmarks help quantify how well the multimodal model aligns visual
perception and natural language. They also measure the model’s ability to perform
nonverbal reasoning. Evaluating multimodal models often requires a combination of
qualitative human evaluation and quantitative statistical comparison.

As with any evaluation process, you will want to choose a dataset and benchmark
to establish a baseline. This section shows you some common datasets, metrics, and
benchmarks that you can use to evaluate your multimodal generative AI models
across various tasks, including image generation, image modification, image classifi-
cation, VQA, and nonverbal reasoning. Most evaluations are done with zero-shot
inference, although few-shot is also an option in some cases.

Text-to-lmage Generative Tasks

A great starting point for text-to-image generative tasks is the PartiPrompts dataset
from the Parti project. This dataset consists of 1,600 English prompts across a num-
ber of categories, including world knowledge, animals, and indoor scenes, as shown
in Figure 10-14.

216 | Chapter 10: Multimodal Foundation Models

https://oreil.ly/MGtkk
https://oreil.ly/19WFD

Figure 10-14. PartiPrompts dataset

The PartiPrompts dataset evaluates a number of text-to-image challenges, such as
imagination, complexity, and fine-grained detail. You can select a subset of the Parti-
Prompts dataset and manually evaluate the model’s generated image for each of these
prompts—or you can apply a more quantitative approach, which you will see next.

There are a few common ways to evaluate your model quantitatively, including CLIP
score similarity, CLIP directional similarity, and Fréchet Inception Distance (FID).
CLIP score similarity measures the semantic similarity, or compatibility, between

Model Evaluation | 217

each image and its caption. High CLIP score similarity implies a higher compatibility
and is therefore desirable. CLIP directional similarity compares how similarly each
image changes when making the same change to each caption. The higher the CLIP
directional similarity score, the better, as the images appear to be more similar
because they respond similarly to the same change in the prompt. FID measures the
similarity between two image datasets.

Next, you will see an example of one of these evaluation metrics: CLIP score similar-
ity. You will use this metric to compare Stable Diffusion 1.4 and 1.5:

from diffusers import StableDiffusionPipeline
import torch

model_checkpoint_1_4 = "runwayml/stable-diffusion-v1-4"
model_checkpoint_1_5 = "runwayml/stable-diffusion-vi1-5"

sd_pipeline_1_4 = StableDiffusionPipeline.from_pretrained(
model_checkpoint_1_4)

sd_pipeline_1_5 = StableDiffusionPipeline.from_pretrained(
model_checkpoint_1_5)

prompts = [
"a photo of an astronaut riding a horse on mars",
"A high tech solarpunk utopia in the Amazon rainforest",
"A pikachu fine dining with a view to the Eiffel Tower",
"A mecha robot in a favela in expressionist style",
"an insect robot preparing a delicious meal",
"A small cabin on top of a snowy mountain in style of Disney, artstation",

]

images_1_4 = sd_pipeline_1_4(prompts,
num_1images_per_prompt=1, output_type="numpy").1images

images_1_5 = sd_pipeline_1_5(prompts,
num_1images_per_prompt=1, output_type="numpy").images

from torchmetrics.functional.multimodal import clip_score
from functools import partial

clip_score_fn = partial(clip_score,
model_name_or_path="openai/clip-vit-base-patch16")

def calculate_clip_score(images, prompts):
images_int = (images * 255).astype("uint8")
clip_score = clip_score_fn(
torch.from_numpy(images_1int).permute(0, 3, 1, 2),
prompts).detach()
return round(float(clip_score), 4)

218 | Chapter 10: Multimodal Foundation Models

sd_clip_score_1_4 = calculate_clip_score(images_1_4, prompts)
print(f"CLIP Score with v-1-4: {sd_clip_score_1_4}")
CLIP Score with v-1-4: 34.9102

sd_clip_score_1_5 = calculate_clip_score(images_1_5, prompts)

print(f"CLIP Score with v-1-5: {sd_clip_score_1_5}")

CLIP Score with v-1-5: 36.2137
Here, you see that Stable Diffusion 1.5 has an improved CLIP score similarity over
its predecessor, Stable Diffusion 1.4. This implies that Stable Diffusion 1.5 maintains
a higher semantic similarity, or compatibility, between the given prompts and gener-
ated images.

Forward Diffusion

Next, you will see how to evaluate common image-to-text generative Al tasks, includ-
ing image captioning and VQA. An image caption is a text-based description of
an image. Remember that VQA tasks ask questions about an image using natural
language text.

You can use a number of multimodal datasets, including ImageNet and Rendered
SST2 for image classification tasks and VQAv2 and VizWiz-VQA for visual question
answering tasks. Primarily, zero-shot inference is used, but few-shot is also an option
for some evaluation tasks.

For image-classification task evaluation, you can pass the image and a prompt like
“This is an image of the following category:” to your multimodal generative AT model
to generate a text-based completion with the predicted category. You can use a dataset
like ImageNet, which includes approximately 1 million training images across 1,000
categories. You would evaluate the model’s accuracy of predicting the correct category
from the ImageNet ground truth category.

For example, you can ask the model to predict if text in the image contains any hate
speech. In this case, you are evaluating the model’s ability to understand the meaning
of text embedded in the image—and its ability to detect hate speech.

Nonverbal Reasoning

To determine how well a multimodal model performs nonverbal reasoning, you
can use Raven’s Progressive Matrices (RPM). RPM is often used to measure general
human intelligence and often used to determine a human’s IQ.

Raven’s IQ test is similar to in-context, few-shot learning with large language models
where full examples are provided—and the model is asked to complete the missing

Model Evaluation | 219

https://oreil.ly/C3QeX
https://oreil.ly/xn7Ja
https://oreil.ly/xn7Ja
https://oreil.ly/YSSyC
https://oreil.ly/aaYH3

example. The main difference is that the prompt includes shapes and symbols instead
of language. As such, the model learns to recognize abstract concepts and patterns in
the given image, as shown in Figure 10-15, adapted from the paper “Language Is Not
All You Need: Aligning Perception with Language Models.

Figure 10-15. Evaluate nonverbal reasoning with Raven’s Progressive Matrices 1Q test
(source: adapted from an image in Shaohan Huang et al.)

The prompt’s context includes a text-based instruction, “Here are eight images:” fol-
lowed by each possible image completion wrapped in “The following image is:” and
“Is it correct?” The model returns a probability distribution across all the possible
images that can complete the matrix. The image with the highest probability is the
predicted answer. By comparing to RPM’s ground truth answer, you can determine
the model’s accuracy for this nonverbal reasoning task.

Now that you've seen examples of various multimodal generative Al tasks, let’s dive
deep into the powerful diffusion architecture that powers many of these multimodal
models, including Stable Diffusion.

2 Shaohan Huang et al., “Language Is Not All You Need: Aligning Perception with Language Models”, arXiv,
2023.

220 | Chapter 10: Multimodal Foundation Models

https://oreil.ly/411R5
https://oreil.ly/411R5

The rest of this chapter is very technical and dives deep into how
diffuser-based models were built and trained. You may wish to use
it as a reference for debugging and tuning diffuser-based generative
models in the future; however, it is not required to understand how
to use these models. Feel free to skip to Chapter 11 to explore ways
to control image generation and fine-tune multimodal generative
models for your use cases and datasets.

Diffusion Architecture Fundamentals

Diffusion models support a variety of key tasks for multimodal models, including
image generation, upscaling, and inpainting. Early multimodal models often utilized
variational autoencoders (VAEs) followed by the next generation of multimodal
models created using generative adversarial network (GAN) architectures. However,
most of the recent multimodal models use diffusion-based architectures, including
Stable Diffusion.

Diffusion-based architectures are a common choice for recent multimodal founda-
tion models because they offer a high degree of control in quality and diversity of
images generated. This architecture has three primary components to cover, includ-
ing the processes of forward diffusion and reverse diffusion, combined with the
underlying U-Net architecture (which will be described in “U-Net ” on page 223).

Forward Diffusion

The first step in training a diffusion model includes providing data as input that goes
through a process called forward diffusion, as shown in Figure 10-16.

Figure 10-16. Training examples are created by applying noise to input images

Diffusion Architecture Fundamentals | 221

Forward diffusion applies Gaussian noise to the input over a series of steps, depend-
ing on the amount of noise to be applied. At a high level, the noise is really random
pixels or distortions applied to the image.

The forward-diffusion process is how training examples are created, so this same
process is applied to multiple input images to create a number of training examples
that will then be used for the image generation model. During this process, you are
able to control the amount of noise that gets added to the image over a series of steps,
which also means you're able to create multiple training examples per image, with
varying degrees of noise applied, for each of the images in the training dataset.

Reverse Diffusion

Once you have your training examples, a second model is trained to predict noise
in an image then removes the noise to generate an image. This process is known
as reverse diffusion. Reverse diffusion takes the noisy image on input, along with a
number of denoising steps, to create a clearer image. During the reverse-diffusion
process, the noise in the image is predicted using the trained noise predictor, then
removed and replaced with an image that is closer to the distribution the model was
trained on, as shown in Figure 10-17.

Figure 10-17. Reverse diffusion removes noise from an input to generate a new image

Although there are different types of diffusion-based model architectures, they all
follow the same principle of adding noise during training and then training a neural
network to reverse the noise. The most common underlying neural network is U-Net,
which was originally introduced in a 2015 research paper.?

3 Olaf Ronneberger et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, arXiv, 2015.

222 | Chapter 10: Multimodal Foundation Models

https://oreil.ly/yz2-G

U-Net

At a high level, the trained U-Net model is made up of an encoder followed by a
decoder. The encoder is responsible for extracting features from the input image. The
encoder has repeated convolutional layers to extract intermediate features and then
max pooling layers to perform the downsampling, as shown in Figure 10-18.

Figure 10-18. U-Net architecture common in diffusion-based foundation models

The corresponding decoder then upsamples the extracted features with saved copies
of the encoder’s features concatenated on the decoder’s features by connected paths.
The final layer then produces the output—in this case, the final generated image.
Because the encoder and the decoder are symmetrical and connected by paths, it
forms the U shape, resulting in its name, U-Net.

In summary, diffusion-based architectures have three primary components. The first
is a process known as forward diffusion used to create training examples by adding
a determined amount of noise to an image over a series of noising steps. The images
created through forward diffusion are then used to create a noise predictor, typically
utilizing a U-Net architecture, which can then be used to predict noise and reverse
the added noise, through reverse diffusion, in order to generate new images.

This architecture serves as one of the foundational components for many multimodal
models, including Stable Diffusion. In the next sections, we'll dive deeper into the
Stable Diffusion 2 and Stable Diffusion XL architectures.

Diffusion Architecture Fundamentals | 223

Stable Diffusion 2 Architecture

Stable Diffusion is a latent diffusion model (LDM) supporting image generation
and image modification tasks. You can use Stable Diffusion as is or to fine-tune for
your specific task. The power of these multimodal models is the ability to provide
instructional text within the prompt to control the image that gets generated.

In addition to the prompt itself, there are also built-in configurations that allow
you to control the image generated, such as the ability to supply a negative prompt
that excludes specific elements from the generated image. These controls are covered
in more detail in a bit, but first let’s understand more about the Stable Diffusion
architecture and how it works.

Similar to other foundation models, there are different versions of Stable Diffusion
that vary in the training data and underlying components used within each model’s
architecture.

Stable Diffusion 2 was created by researchers from CompVis, Stability AI, and
LAION—and was trained on a subset of the LAION-5B dataset, which contains
5 billion image-text pairs where approximately 50% are English and 50% are from
100+ other languages. The text associated with each image, called the caption, repre-
sents the contents of the image, as shown in Figure 10-19.

Figure 10-19. Image-caption pairs

224 | Chapter 10: Multimodal Foundation Models

https://oreil.ly/UN3RW

Stable Diffusion is not a single model but a collection of components and models
that form the foundation of the underlying architecture that is able to understand
multiple modalities, including both text and image data. The key elements of the
Stable Diffusion architecture include a text encoder, a diffusion process, and an image
decoder, as shown in Figure 10-20. Each of these elements has its own corresponding
neural network.

Figure 10-20. Stable Diffusion architecture for text-to-image generation tasks

Let’s discuss each of these components in more detail, starting with the text encoder.

Text Encoder

In the case of Stable Diffusion v2.1, the text encoder is a pretrained, Transformer-
based model called OpenCLIP. This model is pretrained on 32 billion text-image
pairs and allows you to compute representations of images and text and then mea-
sure how similar they are, making it ideal for image classification, image retrieval,
and image generation. In the specific example of text-to-image generation, the text
encoder takes the input text and converts it into token embeddings that represent the
input text.

The underlying language model contributes significantly to the performance of mul-
timodal models like Stable Diffusion. Each new version of Stable Diffusion models
has shown the trend to continue modifying the underlying architecture to use the

Stable Diffusion 2 Architecture | 225

https://oreil.ly/Mnaeg

most current and largest large language models to continue to improve performance
with each new version.

OpenCLIP is pretrained for both image encoding and text encoding using the multi-
modal pretraining dataset with image and text pairings. An example illustrating the
way OpenCLIP is trained is shown in Figure 10-21.

Figure 10-21. How OpenCLIP is trained using image and text pairs

During initial training, the similarity between text and image is expected to be low;
however, as the model is updated by repeating the process through the training
dataset, the resulting encoders are able to produce embeddings where an image and
the matching text are increasingly similar.

For this process to be effective, the training data also needs to include negative
examples where the text and the image do not match, in which case the model should
assign low similarity scores. For text-to-image tasks, Stable Diffusion takes advantage
of OpenCLIP’s text encoder to convert the input prompt into token embeddings.

Next, the token embeddings are fed into the second component of the architecture,
which utilizes the diffusion architecture discussed in the previous section.

U-Net and Diffusion Process

As previously mentioned, Stable Diffusion is an LDM, meaning it operates in a
latent space, which has proven faster than previous models that operated in the pixel
space. Stable Diffusion has two latent spaces: a prompt/text latent space and an image
representation space.

226 | Chapter 10: Multimodal Foundation Models

The generated output is still represented in the pixel space in the form of a generated
image; however, the computations within the diffusion process all happen in the
latent space, which is less computationally intensive. The first input includes the
token embeddings from the input text supplied in the prompt.

The text embeddings are used multiple times by the noise predictor in the U-Net, and
the U-Net consumes these tokens through a cross-attention mechanism that will be
discussed in more detail in a bit. The second input is a random array of noise, known
as the latent seed. You can optionally control this array by setting the seed value when
prompting the model. If you set the seed to a specific value, you will always get the
same tensor array as the input noise array; otherwise, it is randomly generated.

One of the controls you can provide to Stable Diffusion is specifying the number of
sampling steps in the U-Net architecture. Each step consumes the latent space array
on input and produces another array that more closely aligns with the input text in
combination with all of the other visual information the model identified from all of
the images the model was trained on. The diffusion process is shown in Figure 10-22.

Figure 10-22. Using Stable Diffusion to generate a new image based on token embed-
dings and a noise array

Stable Diffusion 2 Architecture | 227

If you were to visualize each of the latent arrays produced in each step through an
image decoder, the resulting images would show reverse diffusion in action. Keep in
mind that this U-Net architecture is a modification of the one previously discussed,
which focused only on generating a random image. To be able to support text as well,
the architecture is modified to add support for text inputs or instructions, which is
called text conditioning.

Text Conditioning

Text conditioning involves adding attention layers between the network layers to
process the text that is fed into the diffusion model. Other conditioning inputs (like
semantic maps or images) are also valid, but in this case we’ll focus on text-to-image,
which specifically uses text conditioning.

Cross-Attention

The U-Net consumes these layers through a cross-attention mechanism that merges
the text prompt and the image representations. If we zoom in on the U-Net architec-
ture supporting each of the steps for Stable Diffusion, you’ll see the addition of an
attention layer for handling text embeddings, as illustrated in Figure 10-23.

Figure 10-23. U-Net architecture with attention added for text conditioning

228 | Chapter 10: Multimodal Foundation Models

Some of the outputs are fed into additional processing later in the architecture
through residual connections between the encoder and decoder. The cross-attention
layers can be fine-tuned by using parameter-efficient fine-tuning (PEFT) techniques
such as LoRA, as discussed in Chapter 6. The ability to fine-tune the cross-attention
layers will be explored in Chapter 11.

Scheduler

Within the U-Net architecture, there is an additional key element called the schedu-
ler, which is an algorithm. The U-Net architecture iteratively denoises the random
latent seed image supplied on input while being conditioned to the text embeddings.
Schedulers are used to control the denoising process in terms of the number of
denoising steps and what algorithm to use to find the denoised sample.

The scheduler behaves differently depending on whether youre using the model for
training or inference. During training, the scheduler takes a model output, referred
to as a sample, from a specific point in the diffusion process and applies noise to the
image according to a noise schedule and an update rule.

The noise schedule controls the noise level applied at each step. The noise is highest
in the first step and gradually reduces through the iterative steps in the diffusion
process. At each step in the process, the goal is to produce an image with a noise level
that matches the noise schedule.

During inference, the scheduler is used to generate images from the noise; you can
also specify controls, like how many images to generate. There are different schedul-
ing algorithms that can be used to perform the computation, and Stable Diffusion
supports a variety of available schedulers, many of which are conveniently packaged
in Hugging Face’s Diffusers library.

Image Decoder

The final output of the diffusion component includes the denoised latent image
representation (seen as the process image information in Figure 10-22). This repre-
sentation is then passed into the final component of the Stable Diffusion architecture,
which is the image decoder.

The image decoder is actually an autoencoder that creates the final image using the
processed image representation. This is when you are finally able to convert the latent
space representation of an image into a visual pixel representation.

Stable Diffusion 2 Architecture | 229

Stable Diffusion XL Architecture

Stable Diffusion XL is the latest foundation model from Stability Al and has enhance-
ments, allowing for even more realistic images. XL has several image modification
capabilities built-in, including inpainting, outpainting, and image-to-image.

So instead of utilizing a separate fine-tuned model from the base Stable Diffusion 2
model for inpainting, the XL model includes this in the base model. Several of the
architecture components previously discussed apply to the XL architecture but there
are several differences highlighted in this section that contribute to the advanced
performance of this version.

U-Net and Cross-Attention

The XL architecture is using a U-Net backbone architecture that is three times
larger than previous versions of Stable Diffusion. For comparison, XL has 2.6 billion
U-Net parameters compared to 865 million in version 2. The modified architecture
also includes more attention blocks at the lower layers of the U-Net and a larger
cross-attention context used by a second text encoder. As a result of that second
text encoder, XL supports two prompts, one for each encoder, that can be used to
combine concepts, which can potentially help boost quality.

Refiner

The other significant enhancement to the XL model architecture includes the addi-
tion of a refinement model used to further enhance the fidelity of the generated
image. As shown in Figure 10-24, this refinement model takes the output of the latent
image produced by the base model and performs image-to-image enhancements.

Stable Diffusion 2 was trained on 768 x 768 pixel images that are then further
compressed into latent space, but the optimal inference resolution remains consistent
with the image size used in training. However, Stable Diffusion XL was trained on
several aspect ratios and supports images between 768 and 1,024 pixels.

230 | Chapter 10: Multimodal Foundation Models

Figure 10-24. Stable Diffusion XL architecture

Conditioning

The XL model also includes two unique conditioning schemes to improve image
generation. The first, is conditioning the model on the image size. In previous
architectures, the limitations imposed on image size caused training samples to be
dropped, impacting performance and the ability to generalize, or to be upscaled
before training, often resulting in low image quality.

Stable Diffusion XL Architecture | 231

XL is conditioned using an additional input of image size and height. At inference,
you can then set the desired apparent resolution. The second conditioning scheme
is implemented to mitigate random cropping. Random cropping happens during
training, but it can result in quality issues during image generation, such as a dog
losing an ear. During data loading, the crop coordinates are noted and fed into the
model as conditioning parameters.

The two-stage architecture of diffusion and refinement, as well as the additional
conditioning for image size and cropping, helps improve the quality of generated
images. Stable Diffusion XL also exposes more parameters during inference to con-
trol the output generated. For example, you can use style_preset (described in the
section “Image Editing and Enhancement” on page 199) to give the model additional
guidance on how the image should be generated, as shown in Figure 10-25.

Figure 10-25. Stable Diffusion XL adds parameters to customize the generated image

232 | Chapter 10: Multimodal Foundation Models

Summary

Aligning perception with language using multimodal generative AI models is a very
active area of research. This chapter highlighted some of the common multimodal
generative Al tasks, including image generation, modification, captioning, classifica-
tion, visual question answering, and nonverbal reasoning.

Next, you learned about diffusers and the evolution of the Stable Diffusion architec-
ture. You also learned how to evaluate your multimodal generative AI models using
datasets like PartiPrompts, ImageNet and VizWiz. In addition, you learned about
Raven’s Progressive Matrices and IQ test to evaluate the generative model’s humanlike
ability to perform nonverbal reasoning from symbols and images.

In Chapter 11, you will learn how to control image generation using Stable Diffusion
and ControlNet. You will also see how to apply fine-tuning and reinforcement learn-
ing and enhancement (RLHF) to improve multimodal generation customized for
your datasets and aligned to human preferences, such as helpfulness, honesty, and
harmlessness.

Summary | 233

CHAPTER 11

Controlled Generation and Fine-Tuning
with Stable Diffusion

Controlling generation is an active area of research with many cutting-edge tech-
niques introduced only recently. The goal of these techniques is to augment diffusion
models to better handle common image tasks such as edge detection and segmenta-
tion maps. These techniques provide fine-grained control over image generation.

In this chapter, you will learn about a powerful technique called ControlNet to
augment and improve text-to-image generation for models like Stable Diffusion.
Additionally, you will explore multimodal fine-tuning with tools like DreamBooth,
algorithms such as textual inversion, and optimizations including parameter-efficient
fine-tuning (PEFT). Lastly, you will revisit reinforcement learning from human feed-
back (RLHF) in the context of aligning multimodal models with human preferences,
including helpfulness, honesty, and harmlessness (HHH).

ControlNet

Described in a 2023 paper,' ControlNet is a popular way to train various controls that
improve your image-based generative tasks. ControlNet is a deep neural network that
works with diffusion models like Stable Diffusion.

During training, a control learns a specific task, such as edge-detection or depth-
mapping, from a set of given inputs. A relatively small amount of data is required to
train a very powerful control. You can train your own controls using ControlNet or
choose from a large number of pretrained controls.

1 Lvmin Zhang et al,, “Adding Conditional Control to Text-to-Image Diffusion Models”, arXiv, 2023.

235

https://oreil.ly/ObpWl

Let’s use Figure 11-1 as the base image to apply some of the more common pretrained
ControlNet controls. After applying a control to this base image, you can generate
new images with Stable Diffusion that follow the guidance created by the output of

the control.

Figure 11-1. Original base image to apply ControlNet controls to generate new images

Table 11-1 shows examples of some common pretrained ControlNet controls. These
control examples are described in more detail in an AWS blog post in the context of
generating new and creative marketing images using the base image.

Table 11-1. Example descriptions and image maps of conditional control

Control name Control description
(Canny edge map A monochrome image with white edges on a black background
Depth A grayscale image with black (representing deep areas) and white (representing

shallow areas)

Hed boundary A monochrome image with white soft edges on a black background
detector

236 | Chapter 11: Controlled Generation and Fine-Tuning with Stable Diffusion

https://oreil.ly/VmJ0y

Control name Control description Control
output
Scribble A hand-drawn monochrome image with white outlines on a black background

You take the output from the control and pass it to Stable Diffusion to generate a new
image with a new prompt—with the control output as the guide.

Table 11-2 shows examples of newly generated images that use the output of each
control in Table 11-1—along with a new prompt—to guide the generation and create
fun new images that look similar to the original image.

Table 11-2. Images generated by Stable Diffusion using each control

Control name New prompt Stable
Diffusion with
ControlNet
Canny edge metal orange colored car, complete car, color photo, out
map doors in a pleasant landscape, realistic, high quality
Depth metal red colored car, complete car, color photo, out
doors in a pleasant landscape on beach, realistic, high
quality

Hed boundary metal white colored car, complete car, color photo, in a
detector city, at night, realistic, high quality

Scribble metal blue colored car, similar to original car, com
plete car, color photo, outdoors, breathtaking view, real
istic, high quality, different viewpoint

ControlNet | 237

Let’s walk through how to use the Canny edge map control and detect edges using the
lefthand image in Figure 11-2 as the base image.

Figure 11-2. Converting base image into new image with ControlNet and a prompt
The code uses the OpenCV library to extract the edges using the Canny edge map
ControlNet control:

from import StableDiffusionControlNetPipeline
from import load_image

Load the image
image = load_image("https://.../car.png"

)

Render the canny edge map for this particular image
import

from import Image

import as

image = np.array(image)

low_threshold = 100
high_threshold = 200

image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]

image = np.concatenate([image, image, image], axis=2)
canny_1image = Image.fromarray(image)

canny_1image

Figure 11-3 shows the output of the Canny edge map control applied to the base
image. This image represents the edges of each object in the base image.

238 | Chapter 11: Controlled Generation and Fine-Tuning with Stable Diffusion

https://oreil.ly/pV-oW

Figure 11-3. Canny edge map for the given image

This edge map is then passed to Stable Diffusion to control the generation of a new
image using a new prompt, as shown in the following code example:

from diffusers import StableDiffusionControlNetPipeline

from diffusers import ControlNetModel

import torch

canny = ControlNetModel.from_pretrained(
"11lyasviel/sd-controlnet-canny",
torch_dtype=torch.float16)

sd_pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=canny,
torch_dtype=torch.float16)

generator = torch.manual_seed(0)

out_image = sd_pipe(
metal orange colored car, complete car, color photo,
outdoors in a pleasant landscape, realistic, high quality
num_inference_steps=20,
generator=generator,
image=canny_1image

ControlNet | 239

).images[0]

out_1image

Figure 11-4 shows the newly generated image from Stable Diffusion using the Canny
edge map, which guides the generation of the new prompt, metal orange colored
car, complete car, color photo, outdoors in a pleasant landscape, realis
tic, high quality. This process is useful for generating new and creative images
that contain roughly the same objects as the original, guided by the ControlNet
controls applied to the base image.

Figure 11-4. Newly generated image from Stable Diffusion using Canny edge map and
prompt

While ControlNet and pretrained controls are very powerful, you may need to
directly fine-tune a diffusion model with your specific image dataset to improve your
generated images; for example, you may want to use a set of brand-specific logos or
your product catalog. In the next section, you will learn some techniques to fine-tune
Stable Diffusion using tools like DreamBooth and algorithms like textual inversion.

Fine-Tuning

Similarly to transformer-based large language models (LLMs), you can fine-tune
diffusion models such as Stable Diffusion through various techniques. Fine-tuning
allows you to customize image generation to include image data not captured in the

240 | Chapter 11: Controlled Generation and Fine-Tuning with Stable Diffusion

original corpus of training data. This can include any image data, such as images of
people, pets, or logos.

Fine-tuning allows you to generate realistic images that include subjects unknown
to the pretrained model. A few common options for fine-tuning are included in this
section, including DreamBooth, DreamBooth with LoRA, and textual inversion.

DreamBooth

DreamBooth originated from a research paper’ in 2023, which introduced the
method as able to personalize text-to-image models using just a few (three to five)
sample images. While many use it for fun to generate their own personal images or
images of their pets, it does have broader uses in generating creative content.

DreamBooth includes a number of applications for image generation, which will be
outlined in detail later in this section. Fine-tuning using DreamBooth is done using a
small sample of input images containing the subject you want to use for fine-tuning.
You can also supply a unique identifier for the subject in your prompt. For example,
Figure 11-5 uses “Molly” as the unique identifier for the “dog” subject.

Figure 11-5. Fine-tuning a text-to-image diffusion model using DreamBooth

2 Nataniel Ruiz et al., “DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Genera-
tion”, arXiv, 2023.

Fine-Tuning | 241

https://oreil.ly/WfMOn
https://oreil.ly/WfMOn

DreamBooth then uses those inputs to fine-tune a text-to-image diffusion model in
parallel with a class-specific prior preservation loss that uses the semantic prior that
the model has on the provided class to create diverse instances belonging to that
subject’s class as provided on input.

By fine-tuning using DreamBooth and a few input images, were now able to create
images of Molly in scenes she’s never been in. This is an example of recontextualiza-
tion. There are other uses of this application that can be applied to broader use cases
such as marketing. As an example, the input image to fine-tune using DreamBooth
could contain a new product. After fine-tuning, using that input image, that product
(or subject) can then be used to generate images of the product with unique back-
grounds or in different environments.

Art rendition is an application that allows you to create artistic depictions of your
fine-tuned subject in the style of famous painters. As an example, you can generate
creative content with images of your dog in a Vincent Van Gogh-style portrait, as
shown in Figure 11-6.

Figure 11-6. Art rendition using the DreamBooth fine-tuned model

Text-guided view synthesis is an application that allows you to synthesize images with
specific viewpoints for a subject. Here, you can supply input images for fine-tuning,
then generate different viewpoints on those pictures, such as viewing your dog from
the side or the back, based on the instructions provided in the prompt. DreamBooth

242 | Chapter 11: Controlled Generation and Fine-Tuning with Stable Diffusion

also supports property modification, which allows you to modify a specific aspect of
the input image, such as color.

Finally, DreamBooth also supports accessorization, which allows you to preserve the
subject in the input training images but modify the image with specific accessories
like costumes or hats, as shown in Figure 11-7.

Figure 11-7. Accessorization using the DreamBooth fine-tune model

In this section, you learned how to fine-tune a Stable Diffusion model using Dream-
Booth and only a few images as input. DreamBooth uses the subject in those images
combined with the provided dataset information containing a subject identifier and
class to train a new model.

This is an entirely independent new model, but creating a new model for each subject
or concept introduced may not be memory or storage efficient. In the next section,
you will learn how to perform PEFT on Stable Diffusion with DreamBooth and
LoRA.

DreamBooth and PEFT-LoRA

Chapter 6 introduced the concept of PEFT and Low-Rank Adaptation (LoRA) in
the context of LLMs. LoRA can also be applied to multimodal models like Stable
Diffusion. As previously discussed, the diffuser component of the Stable Diffusion
architecture includes cross-attention layers that align images and text.

Fine-Tuning | 243

LoRA can be used to fine-tune those cross-attention layers using the same low-rank
matrix approach discussed in Chapter 6, which results in a much smaller model
adapter—typically 2 to 500 MBs versus roughly 5 GB for a Stable Diffusion model
fully fine-tuned with DreamBooth. As described in Chapter 6, you will need to
combine the artifact with the original Stable Diffusion model to perform inference.

Similar to language-based LoRA fine-tuning in Chapter 6, you can specify the LoRA
rank and target modules for the Stable Diffusion model, as shown in the code sample,
which targets the cross-attention layers:

target_modules = ["to_g", "to_v", "query", "value"]

config = LoraConfig(
r=16,
target_modules=target_modules,

)

model = get_peft_model(model, config)
Let’s continue to use Molly as an example and take a look at the images generated
with the fine-tuned model using LoRA. Keep in mind that the new fine-tuned model
is only 10 MB in size, including the text encoder and the U-Net! The new model is
prompted with this code:

img_list = pipe(["Molly dog on a beach"]*3, num_inference_steps=50).1mages

image_grid([x.resize((128,128)) for x in img_list], 1,3)
Three new images are generated with Molly dog on the beach. The new generated
images shown in Figure 11-8 are similar in content and quality from the previously
fine-tuned model.

Figure 11-8. LoRA fine-tuned Stable Diffusion model with similar results

244 | Chapter 11: Controlled Generation and Fine-Tuning with Stable Diffusion

DreamBooth fine-tunes all of the parameters in the diffusion model, while keeping
only the text transformer frozen, resulting in a new diffusion model. Next, you will
learn a relatively lightweight fine-tuning technique called textual inversion, which is
used to personalize image-based generative models with just a few images. This tech-
nique works by learning a token embedding for a new text-based token representing
a concept while keeping the remaining components of the Stable Diffusion model
frozen.

Textual Inversion

Textual inversion originated from a research paper® in 2022 that introduced a techni-
que for personalizing text-to-image models by learning to represent new concepts
in the embedding space while keeping the pretrained text-to-image model frozen.
This method allows you to personalize text-to-image models using just a few sample
images and without needing to alter the base foundation model.

Fine-tuning with textual inversion relies on a few sample images that represent a
concept, such as an object or a style, in combination with a learnable token. The
learnable token can be a pseudoword, such as “M*)” or represent natural language
phrases or sentences, such as “molly-dog” Then, during fine-tuning, the pseudoword
is converted into tokens and the model learns to represent the concept through new
word(s) in the embedding space. These learned embeddings are contained in adapters
that are much smaller in size than the original or fine-tuned Stable Diffusion model.

Once the model has been tuned, the base foundation model is deployed along with
the tuned textual inversion model, which is really a learned embedding. During
inference, the prompt can take advantage of the learned token or pseudoword, as
shown in Figure 11-9.

The prompt text containing the pseudoword is converted into tokens, which are then
converted into embeddings. During training, the pseudoword was learned as a new
token embedding, shown here as “V*” The model output is used to condition the
diffusion model to be able to understand the prompt and new concept.

3 Rinon Gal et al,, “An Image Is Worth One Word: Personalizing Text-to-Image Generation Using Textual
Inversion”, arXiv, 2022.

Fine-Tuning | 245

https://oreil.ly/HuvOM
https://oreil.ly/HuvOM

Figure 11-9. Textual inversion trains the text encoder on a pseudoword identifier of the
custom concept

To tune a Stable Diffusion model using textual inversion, Hugging Face provides
convenient libraries and training code in their Diffusers library. In this example, we
supply a few images of Molly the dog in the training input along with key parameters
(object or style) that guide the training including the concept to be learned, which
is noted as the learnable_property. In this example, the learnable_property is an
object, or more specifically, a dog. This guides the prompt templates that will be used
as part of the training data, as shown in the code:

imagenet_templates_small = [

"a photo of a {}",

"a rendering of a {}",

"a cropped photo of the {}",

"the photo of a {}",

"a photo of a clean {}",
photo of a dirty {}",
dark photo of the {}",
photo of my {}",
photo of the cool {}",
close-up photo of a {}",
bright photo of the {}",
cropped photo of a {}",
photo of the {}",

YR VIR VR YR VR VRV

246 | Chapter 11: Controlled Generation and Fine-Tuning with Stable Diffusion

https://oreil.ly/igI6h

class TextuallInversionDataset(Dataset):
def __init_ (
self,
data_root,
tokenizer,
learnable_property="object", # [object, style]
placeholder_token="M*",

self.templates = imagenet_templates_small

placeholder_token is the value you are going to use to represent your new concept.
In the given example, we've identified M* to represent the concept, more specifically
the object, to be learned. Again, the object is Molly in this case. This will also be the
pseudoword, or token, that will be used in prompting to generate images containing
the object identified in the images supplied during fine-tuning.

initializer_token is another important parameter shown in the following example.
This parameter is used during fine-tuning to initialize word embeddings with single-
word descriptions of the object. In this case, initializer_token is set to dog because
Molly is a dog. Both placeholder_token and initializer_token are used together
in the following code. The full code is in the GitHub repository associated with this
book:

import torch
from transformers import CLIPTokenizer

model_checkpoint = "..." # CLIP model checkpoint

Load tokenizer
tokenizer = CLIPTokenizer.from_pretrained(model_checkpoint)

initializer_tokens = ["dog"]
initializer_token_id =
tokenizer.convert_tokens_to_1ids(initializer_tokens)[0]

placeholder_tokens = ["M*"]
placeholder_token_ids =
tokenizer.convert_tokens_to_1ids(placeholder_tokens)

Resize the token embeddings for pseudo-word tokens
text_encoder.resize_token_embeddings(len(tokenizer))

Initialize the newly added placeholder token with
the embeddings of the initializer token
token_embeddings = text_encoder.get_input_embeddings().weight.data
with torch.no_grad():
for token_id in placeholder_token_1ids:
token_embeddings[token_1id] =
token_embeddings[initializer_token_id].clone()

Fine-Tuning | 247

https://oreil.ly/generative-ai-on-aws-code

Once the model is fine-tuned, you can deploy the model by loading it into a pipeline
that includes the Stable Diffusion foundation model in addition to the trained model
that has learned the pseudoword embedding. To do this, you again use the Stable
DiffusionPipeline class to load the original pretrained Stable Diffusion foundation
model along with the adapted textual inversion model:

from import StableDiffusionPipeline
import

pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5")

pipe.load_textual_inversion(
"./textual-inversion-molly/molly.pt", token="M*")
Once the model is deployed and ready for inference, you can send new prompts
into the model that include the pseudo-word M*, for the object the model has been
fine-tuned on, in this case Molly.

Prompt:
User: An oil painting of M*

The prompt is used by the pipeline to generate an image containing the object
represented by the pseudoword provided—M#, in the prompt:
image = pipe(prompt, num_inference_steps=50).1images[0]
image.save("molly-dog.png")
Figure 11-10 is the generated oil painting image of Molly. As you can see, we didn’t

use the text Molly in the prompt, but instead used the pseudoword, M*, that repre-
sents the object, Molly, identified during fine-tuning.

To summarize, textual inversion is a way to adapt a pretrained text-to-image model
such as Stable Diffusion without performing full fine-tuning. This method allows for
image generation using a concept, defined as either an object or a style, that is not
included as part of the foundation models’ original training data.

Next, you will learn how to fine-tune and align your Stable Diffusion model for
human preference using RLHF.

248 | Chapter 11: Controlled Generation and Fine-Tuning with Stable Diffusion

https://oreil.ly/Xnjty
https://oreil.ly/Xnjty

Figure 11-10. Prompt completion for generated image using textual inversion adapter

Human Alignment with Reinforcement
Learning from Human Feedback

It’s possible to fine-tune diffusion models with reinforcement learning to improve
things like image compressibility, aesthetic quality, and prompt-image alignment.
This approach is similar to the RLHF process, which you explored in Chapter 7 to
align large language models to generate more helpful, honest, and harmless text. The
difference here is that RLHF is used to align multimodal models to generate content
that is more helpful, honest, and harmless (HHH).

A proposed modification of the Proximal Policy Optimization (PPO) algorithm,
which you learned about in Chapter 7, to apply RLHF to diffusion models is called
Denoising Diffusion Policy Optimization (DDPO). In reinforcement learning (RL)
terminology, each denoising step is an action. DDPO pays attention to the entire
sequence of denoising steps in order to better maximize the reward of the final gen-
erated image. A sample implementation of DDPO for fine-tuning diffusion models,
implemented in PyTorch with LoRA support, has been made available by the research
authors on GitHub.

Human Alignment with Reinforcement Learning from Human Feedback | 249

https://oreil.ly/CFbyh

Lets look at an example. Say you want to apply RL to fine-tune Stable Diffusion to
generate more aesthetically appealing images. In the scenario shown in Figure 11-11,
you can use a model thats been trained on human preferences for aesthetically
appealing images, such as LAION Aesthetics, as your RL reward model.

Figure 11-11. Fine-tuning a diffusion model with reinforcement learning and DDPO

The LAION-Aesthetics predictor has been trained on 176,000 human image ratings
and predicts the rating people would give when they were asked, “How much do you
like this image on a scale from 1 to 10?”

You could also fine-tune diffusion models in support of content moderation where
the reward model returns a negative reward if the model generates inappropriate
images. In such a scenario, you could use a managed service like Amazon Rekog-
nition as the reward model, as it supports content moderation, as shown in Fig-
ure 11-12.

250 | Chapter 11: Controlled Generation and Fine-Tuning with Stable Diffusion

https://oreil.ly/53kWj
https://oreil.ly/pkF35
https://oreil.ly/pkF35

Figure 11-12. Using Amazon Rekognition as the reward model to detect unwanted
content

Amazon Rekognition Content Moderation API uses deep learning to detect different
types of inappropriate content. Beyond just flagging an image or video based on
the presence of inappropriate or offensive content, it also returns a hierarchical list
of labels with confidence scores. Here is a sample JSON response from Amazon
Rekognition Content Moderation:

{
"ModerationLabels": [
{
"Confidence": 99.24723052978516,
"ParentName": ""
"Name": "Visually Disturbing"
1,
{
"Confidence": 99.24723052978516,
"ParentName": "Visually Disturbing",
"Name": "Air Crash"
1
{
"Confidence": 88.25341796875,
"ParentName": "Visually Disturbing",
"Name": "Explosions And Blasts"
}
1
}

Human Alignment with Reinforcement Learning from Human Feedback | 251

Summary

In this chapter, you learned how to apply conditional controls to Stable Diffusion to
influence how your model generates images. You also explored how to fine-tune mul-
timodal generative AI models with your own custom datasets and human preferences
using ControlNet, textual inversion, DreamBooth, PEFT, and RLHE

In Chapter 12, you will learn how to use the Amazon Bedrock managed service for
your generative Al use cases and tasks.

252 | Chapter 11: Controlled Generation and Fine-Tuning with Stable Diffusion

CHAPTER 12

Amazon Bedrock: Managed Service
for Generative Al

Throughout the book, you have seen examples of Amazon SageMaker JumpStart
for fine-tuning and deploying foundation models using SageMaker infrastructure.
Amazon Bedrock, on the other hand, is a managed service that offers a completely
serverless experience through a simple API.

In this chapter, you will explore Amazon Bedrock, including how to access the Bed-
rock API, the available foundation models (FMs), and Bedrock data privacy and net-
work security. You will learn how to use Bedrock to implement retrieval-augmented
generation, semantic-search, and agent-based use cases. You will also see how you can
privately fine-tune the Bedrock foundation models using your own custom datasets.

First, let’s discuss the available foundation models within Amazon Bedrock—and
how to build upon those foundation models.

Bedrock Foundation Models

Amazon Bedrock supports foundation models from Amazon and various third-party
companies, including AI21 Labs, Anthropic, Cohere, Meta, Stability Al, and others.

You access these foundation models through the AWS Management Console, AWS
CLI, or AWS SDK. The code examples in this chapter will use the AWS SDK for
Python called boto3. You can use the Bedrock Python function list_foundational
_models() to see the most up-to-date list of available models.

Working with Amazon Bedrock is as simple as selecting a foundation model for your
use case and then making a few API calls. You can use the Bedrock model playground

253

to experiment with the available foundation models and select the one that fits your
use case and dataset.

Remember that when evaluating different models, you should first try various
prompt engineering techniques discussed in Chapters 2 and 10, including in-context
learning with few-shot inference. You can also adjust the inference configuration
parameters, including temperature, top_p, and top_k, as you learned in Chapter 2.

Amazon Titan Foundation Models

Amazon Titan foundation models are general-purpose models, pretrained on large
datasets, that you can use as is or customize by fine-tuning the models with your own
data for a particular task.

Titan Text are large language models for tasks such as text summarization, text
generation, classification, question-answer, and information extraction. They are also
trained on different programming languages, as well as rich text format (RTF),
including tables, JSON, and CSV.

The Titan Text Embeddings model translates text inputs, such as words, phrases, or
possibly large units of text, into numerical representations known as embedding vec-
tors. As you learned in Chapter 1, embedding vectors capture the semantic meaning
of the text in a high-dimension vector space.

After converting your documents into embeddings, you can store the embeddings
in a vector store capable of performing embedding-level tasks such as similarity
search. With similarity search, you can write a query, convert it into an embedding,
then search the vector store for documents that match your query text. Comparing
embeddings often produces more relevant and useful contextual search results than
traditional word or n-gram matching search algorithms.

Stable Diffusion Foundation Models from Stability Al

With Amazon Bedrock, you can access Stability Al's text-to-image and image-to-
image foundation model, Stable Diffusion, as described in Chapter 11. Stable Diftu-
sion can generate unique, realistic, high-quality images, art, logos, and designs with
just a few words in a text-based prompt.

Next, you will explore the model inference APIs and start generating content with the
foundation models available in Amazon Bedrock.

Bedrock Inference APIs

The following example performs a Bedrock Inference API request using the
Python SDK (boto3) for Amazon Bedrock—specifically, the invoke_model() API—

254 | Chapter 12: Amazon Bedrock: Managed Service for Generative Al

to generate content using text-to-text models, text-to-image models, and embedding
models. The modelId parameter identifies the foundation model you want to use:

import
import

bedrock_runtime = boto3.client(
service_name="'bedrock-runtime'

)

modelld = "..." # Amazon Bedrock foundation model

body = json.dumps(
{

"{nputText": "This is where you place your input text"
}
)

response = bedrock_runtime.invoke_model(
modelId=modelld,
body=body

)

response_body = json.loads(response.get("body").read())

print(response_body.get("results")[0].get("outputText"))

Here, and in most examples in this chapter, we are assuming the
body JSON object uses inputText for the prompt. This may be
different depending on the model. For more information on the
latest models and prompt formats, see the Bedrock documentation.

Bedrock also offers an InvokeModelWithResponseStream API that lets you invoke the
specified model to run inference using the provided input but streams the response as

the model generates the output, as shown in Figure 12-1.

) Invoke with stream

[
>

Application B Chunk 1 A“:Iazoﬂ
InvokeModelWithResponseStream Bedroc

Chunk N

J L

A

Figure 12-1. Bedrock’s InvokeModelWithResponseStream API lets you start reading the

response as soon as the first chunk is available

Bedrock Inference APIs

| 255

https://oreil.ly/oUBsH

Streaming responses are particularly useful for responsive chat interfaces to maintain
the liveness of an interactive application. Here is a Python code example using
Bedrock’s InvokeModelWithResponseStream API:

response = bedrock_runtime.invoke_model_with_response_stream(
modelId=modelld,
body=body)

stream = response.get('body")
if stream:
for event in stream:
chunk=event.get('chunk")
if chunk:
print(json.loads(chunk.get('bytes').decode))

Next is a deeper dive into Amazon Bedrock’s Inference API for large language
models.

Large Language Models

As discussed in Chapter 2, foundation models expose a set of generative configura-
tion parameters that influence the model’s output during inference. These configura-
tion parameters give you control of the model’s response, including the diversity and
number of tokens. The available parameters may be different across model providers
and model families, but most models support temperature, top_k, and top_p.

Here’s an example Bedrock Inference API request using the invoke_model() API that
includes configuration parameters for a prompt using a Bedrock model:

import
import

bedrock_runtime = boto3.client(
service_name="'bedrock-runtime'

)
prompt = "<your prompt here>"

body = json.dumps({
"inputText": "This is where you place your input text",
"textGenerationConfig": {
"temperature":0,
"topP":1
}
b

modelld = '...' # Amazon Bedrock foundation models:
Amazon Titan Text
Anthropic Claude
AI21 Jurassic

256 | Chapter 12: Amazon Bedrock: Managed Service for Generative Al

Cohere Command
Meta Llama2
etc.

response = bedrock_runtime.invoke_model(
body=body,
modelId=modelId)

response_body = json.loads(response.get('body').read())

print(response_body.get('results')[0].get('outputText'))

Generate SQL Code

Many text generation models, including those available in Amazon Bedrock, have
been pretrained on vast amounts of text data, including code samples. In fact, code
generation was one of the earliest use cases for generative models and services like
Amazon CodeWhisperer and GitHub Copilot.

The example here uses Amazon Bedrock to generate a SQL query equivalent to
SELECT id FROM students ORDER BY age DESC LIMIT 1 using a natural language
prompt that first defines the table, then describes the query:

nun

prompt =
I have a table called 'students' with fields 'id', 'age', 'year_enrollment',
'subject', 'grade'. Write me a SQL Query that returns the 'id' with the highest
'age'.

wnn

body = json.dumps({"inputText": prompt})
modelld = '...'

response = bedrock_runtime.invoke_model(
body=body,
modelId=modelld)

response_body = json.loads(response.get('body').read())

print(response_body.get('results')[0].get('outputText'))

Summarize Text

Another popular generative Al use case is summarizing text. Let’s build a prompt that
asks the model to summarize the given passage wrapped in <text></text>, as shown
here:

prompt =
Please provide a summary of the following text. Do not add any information that
is not mentioned in the text below.

<text>

Large Language Models | 257

AWS took all of that feedback from customers, and today we are excited to
announce Amazon Bedrock, a new service that makes generative foundation models
accessible via an API. Bedrock is the easiest way for customers to build and
scale generative AI-based applications using FMs, democratizing access for all
builders.

</text>

Next, define the API request body that includes the prompt, in this case called
inputText, and the text generation configuration settings:

body = json.dumps(

{
"inputText": prompt,
"textGenerationConfig":{
"maxTokenCount":128,
"temperature":0,
"topP":1
}
}

)

Now you can send the API request to Bedrock. You can do this using the
invoke_model_with_response_stream() API:

import json

response = bedrock_runtime.invoke_model_with_response_stream(
body=body,
modelId=modelld)

stream = response.get('body"')

output = []

if stream:
for event in stream:
chunk = event.get('chunk')
if chunk:
chunk_obj = json.loads(chunk.get('bytes').decode())
text = chunk_obj['outputText']
output.append(text)

print('"'.join(output))

Next, you will see how to generate embeddings with Amazon Bedrock.

Embeddings

As discussed in Chapter 3, embeddings are a key concept in generative Al and
machine learning in general. An embedding is a representation of an object, such as
a word, an image, or a video, in a vector space. Semantically similar objects will have
embeddings that are closer together in the vector space, as you saw in Chapter 9, in
the context of retrieval-augmented generation (RAG) to augment your prompts.

258 | Chapter 12: Amazon Bedrock: Managed Service for Generative Al

You can use Amazon Bedrock models to retrieve the embedding vector for any
input string. You can then compare the distances between vectors to find the most
related text strings. Common use cases for embeddings include semantic search,
recommendations, and classifications.

A popular use case of embeddings is to cluster together text with similar semantic
meaning. In the next code example, you will generate a heatmap that shows that
documents originating from the same category—either animals, US cities, or colors,
in this case—have much closer embedding vectors than documents from different
categories.

First, define a get_embedding function that calls the Bedrock API and uses a Titan
Text Embeddings model to generate an embedding. It will return the actual embed-
ding from the API response body, as shown in the code:

def get_embedding(body, modelld, accept, contentType):
response = bedrock_runtime.invoke_model(
body=body,
modelId=modelld)

response_body = json.loads(response.get('body').read())
embedding = response_body.get('embedding')

return embedding
To test the code, you can use the following sample input text:

body = json.dumps(

{
"{nputText": "<your prompt here>"
}
)
modelld = '...'

embedding = get_embedding(body, modelld)
print(embedding)

The function will return the embedding vector retrieved from the Bedrock API
response, similar to this:

[0.53515625, -0.0546875, -0.049804688, -0.16992188,
0.42382812, 0.15234375, -0.10839844, ...]

Next, you will generate the heatmap that visualizes the distance between any pair
of sentences in the embedding space. The distance between any pair of sentences is
computed by the cosine similarity of corresponded embedding vectors. Note that the
cosine similarity of two vectors is the inner product of the normalized vectors scaled
to unit length 1.

Large Language Models | 259

import sklearn

from sklearn.preprocessing import normalize
import numpy as np

import seaborn as sns

def plot_similarity_heatmap(text_labels, embeddings, rotation):

inner_product = np.inner(embeddings, embeddings)
sns.set(font_scale=1.1)
graph = sns.heatmap(

inner_product,

xticklabels=text_labels,

yticklabels=text_labels,

vmin=np.min(inner_product),

vmax=1,

cmap="BuPu",
)
graph.set_xticklabels(text_labels, rotation=rotation)
graph.set_title("Semantic Textual Similarity Between Sentences")

Next, define a few sentences and create the embeddings using Amazon Bedrock:

phrases = [
Animals
"Shelbee's dog, Molly, is so cute.",
"Antje hates cats.",
"Chris's first dog was very cute.",
U.S. Cities
"Chicago is the place where I'm from.",
"I work in San Francisco.",
"Washington D.C. is a great place to visit.",
Color
"What is your favorite color?",
"Is Molly brown?",
"Are your eyes blue?"

1
embeddings = []

for phrase in phrases:
query_response = get_embedding(
body=json.dumps({"inputText": phrase}),
modelId="...")
embeddings.append(query_response)

Normalization before inner product
embeddings = normalize(np.array(embeddings), axis=1)

%matplotlib inline
%config InlineBackend.figure_format = 'retina’

plot_similarity_heatmap(phrases, embeddings, 90)

260 | Chapter 12: Amazon Bedrock: Managed Service for Generative Al

The output in Figure 12-2 shows animal phrases clustered together, while phrases
about US cities, phrases, and colors are each clustered independently. The darker the
color, the larger the cosine similarity (smaller the distance).

Figure 12-2. Heatmap showing semantic textual similarity between sentences

Next, you will learn how to fine-tune Bedrock foundation models with your own
custom datasets.

Fine-Tuning

Now, what happens when you decide to customize the model? As soon as you
fine-tune a model with your data, as shown in Figure 12-3, Amazon Bedrock deploys
a custom model endpoint to host your fine-tuned model.

This becomes your own running instance of the model customized with your own
dataset. Fine-tuned models are invoked the same way as base models: via the Amazon
Bedrock Console playground or through an API. And remember that your model

Fine-Tuning | 261

inputs and outputs will remain completely private to your environment and will not
be accessible by anyone except you.

Figure 12-3. Amazon Bedrock model fine-tuning

Access between Amazon Bedrock and your S3 bucket can be con-
figured securely, privately, and entirely on the AWS network back-
bone using VPC Endpoints (which are described in “Data Privacy
and Network Security” on page 270).

After the fine-tuned model is trained, the weights are encrypted and delivered to
the fine-tuned output bucket. Next, Amazon Bedrock creates and activates a hosting
endpoint. Once the custom Bedrock hosting endpoint is activated, you can send
inference requests with your prompts and receive completions from your fine-tuned
generative Al model. Remember that model providers have no visibility or access to
your fine-tuned weights.

With Amazon Bedrock, you can privately fine-tune foundation models using labeled
data with just a few clicks or API calls. All you need is your dataset stored in S3 using
the JSON Lines format, as shown here where completion is the label for the provided
prompt:

{'prompt': 'I love going to the movies', 'completion': 'Positive'}
{'prompt': 'This new shirt is gorgeous', 'completion': 'Positive'}
{'prompt': 'The weather is awful', 'completion': 'Negative'}
{'prompt': 'This movie is terrible', 'completion': 'Negative'}

262 | Chapter 12: Amazon Bedrock: Managed Service for Generative Al

https://oreil.ly/frQAx

You then call create_model_customization_job() to start fine-tuning processing
using your dataset and a given base foundation model available in Amazon Bedrock
that supports fine-tuning. For the latest list of models that support fine-tuning in
Amazon Bedrock, please see the Bedrock documentation.

Besides the training data, you also need to provide a job name, a name for the custom
model, the base model identifier, where to store the fine-tuning outputs (e.g., training
loss), and hyperparameters. An example fine-tuning job creation API call is shown in
the following code:

import boto3
bedrock = boto3.client(service_name='bedrock")

input_training_data = "s3://<BUCKET>/train.jsonl"

output_data = "s3://<BUCKET>/output/"

bedrock.create_model_customization_job(
jobName="my- job",
customModelName="my-fine-tuned-model",
baseModelldentifier="...", # Bedrock foundation model
trainingDataConfig={"s3Uri": input_training_data},
outputDataConfig={"s3Uri": output_data},
hyperParameters={

}
)

fine_tuning_status = None
while fine_tuning_status != "Completed":
fine_tuning_status = bedrock.get_model_customization_job(
jobIdentifier="my-job")["status"]

print("Model was successfully fine-tuned!")
Once the fine-tuning job status changes to Completed, Amazon Bedrock can deploy
your custom model accessible with the invoke_model() API. Once the model is
deployed, you can invoke the model with your prompts, as shown in this code:

body = json.dumps(

{
"{nputText": "I love this beach.",
"textGenerationConfig":{
"maxTokenCount":128,
"temperature":0,
"topP":1
}
}

)

response = bedrock_runtime.invoke_model(
modelId=<deployed model identifiers>,
body=body)

Fine-Tuning | 263

https://oreil.ly/2SgSt

In this example, you fine-tuned the model to classify input text as positive or
negative sentiment. Therefore, the model completion for the inference request
I love this beach will be positive.

Next, you will see how to use Amazon Bedrock to create fully managed agents
capable of performing actions using AWS Lambda functions. AWS Lambda lets you
run code without provisioning or managing servers.

Agents

With agents for Amazon Bedrock, you can build generative AI applications that
manage and perform tasks by making API calls to your company systems. As you
learned in Chapter 9, agents orchestrate prompt-completion workflows between user
requests, foundation models, and external systems.

Similarly, agents for Amazon Bedrock make use of Bedrocks foundation models and
advanced prompting strategies to understand user requests, break down complex
tasks into multiple steps, carry on a conversation to collect additional information,
and take actions to fulfill the request.

Using agents for Amazon Bedrock, you can automate tasks for your internal or
external customers, such as managing retail orders or processing insurance claims.
For example, an agent-powered generative Al ecommerce application can not only
respond to the question, “Do you have this jacket in blue?” with a simple answer but
can also help you with the task of updating your order or managing an exchange.

For this to work, you first need to select a Bedrock foundation model, then give the
agent access to application APIs and knowledge bases, as shown in Figure 12-4.

Figure 12-4. Agents for Amazon Bedrock can manage and perform tasks by making API
calls or accessing a company knowledge base

264 | Chapter 12: Amazon Bedrock: Managed Service for Generative Al

Let’s assume you are a developer at an insurance company and want to provide a
generative Al application that helps the insurance agency owners automate repetitive
tasks using an API. You first define the actions (API calls) that the agent is allowed to
perform in an ActionGroup that is mapped to an AWS Lambda function.

The following code shows an example AWS Lambda function that implements the
business logic to manage insurance claims by pulling a list of open claims and
sending reminders to policyholders:

import json
import time

def open_claims():
return {
"response":

}

def send_reminders():
return {
"response":

}

def lambda_handler(event, context):
api_path = event['apiPath']

if api_path == '/claims':
body = open_claims()

elif api_path == '/send-reminders':
body = send_reminders()

response_body = {
'application/json': {
'body': str(body)
}
}

action_response = {
'actionGroup': event['actionGroup'],
'apiPath': event['apiPath'],
"httpMethod': event['httpMethod'],
"httpStatusCode': 200,
'responseBody': response_body,

}

api_response = {
'messageVersion': '1.0',
'response': action_response,

Agents | 265

}

return api_response
Together with the AWS Lambda function, you also need to provide an OpenAPI
schema file with the API descriptions, structure, and parameters. Here is an example
OpenAPI schema for the /claim API call:

{
"openapi": "3.0.0",
"info": {
"title": "Insurance Claims Automation API",
"version": "1.0.0",
"description": "APIs for managing insurance claims for policyholder."
}s
"paths": {
"/claims": {
"get": {
"summary": "Gets the list of all open insurance claims",
"description": "Gets list of open claims for policyholder.",
"operationId": "getAllOpenClaims",
"responses": {
"200": {
"description": "Gets list of open claims for policyholder.",
"content": {
"application/json": {
"schema": {
"type": "array",
"{tems": {
"type": "object",
"properties": {
"claimId": {
"type": "string",
"description": "Unique ID of the claim."
}’
"policyHolderId": {
"type": "string",
"description": "Unique ID of the policyholder."
}’
"claimStatus": {
"type": "string",
"description": "The status of the claim, Open or Closed."
}
}
}

266 | Chapter 12: Amazon Bedrock: Managed Service for Generative Al

https://oreil.ly/YwJzl

When a user asks the agent to complete a task, Amazon Bedrock will use the FM you
configured for the agent to identify the sequence of actions, invoke the corresponding
Lambda functions in the right order to solve the user-requested task, and provide
responses back to the user in natural language. For example, the virtual insurance-
agent assistant can now perform tasks such as “send a reminder to all policyholders
with policies needing renewal in the next 60 days.

With fully managed agents, you don't have to worry about provisioning or managing
infrastructure. In addition, agents are integrated into the AWS services for monitor-
ing, encryption, user permissions, and API invocation management. You can use
agents for Amazon Bedrock to increase productivity, improve your customer service
experience, or automate DevOps tasks.

The previous examples focused on the generating text and embeddings with the
text-based models in Amazon Bedrock. Next, you'll see how to generate and modify
images using Amazon Bedrock and an image-based model, Stable Diffusion.

Multimodal Models

For image generation use cases, Bedrock offers text-to-image and image-to-image
models, including Stability AD’s Stable Diffusion XL model. In Chapter 10, you
explored the architecture that powers diffusion models, learned how to efficiently
prompt image generation models, and how to apply advanced techniques such as
inpainting and textual inversion to guide the image generation toward your desired
output.

Next you will see how to generate images using prompts and negative prompts with
Amazon Bedrock and Stable Diffusion from model provider, Stability Al

Create Images from Text

To create images from text, start with a description of the image you want the model
to create. As discussed in Chapter 10, you can provide some negative prompts to
guide the model to avoid certain types of outputs. Note that you need to assign
a negative weight to each negative prompt. After setting up the prompt, you call
bedrock.invoke_model() to generate the image:

prompt =
Golden retriever playing catch at a tropical, sunny beach
with palm trees in the background.

wnn

Multimodal Models | 267

negative_prompts = [
"poorly rendered",
"poor background details",
"poorly drawn dog",
"disfigured dog features",

1
request = json.dumps({
"text_prompts": (
[{"text": prompt, "weight": 1.0}]
+ [{"text": negprompt, "weight": -1.0} for negprompt in negative_prompts]

)s
"style preset": style preset,

b
modelld = "stability.stable-diffusion-x1"

response = bedrock_runtime.invoke_model(
body=request, modelId=modelld)

response_body = json.loads(response.get("body").read())

Bedrock’s InvokeModel provides access to the Stable Diffusion XL model by setting
the right model ID and returns a JSON response that includes a Base64 encoded
string representing the image. You can decode the Base64 string to binary and load
it with an image processing library, such as Pillow, that can read PNG files. The
generated output is shown in Figure 12-5:

import baseé64,

import 1o

import os

from PIL import Image

base_64_1img_str = response_body["artifacts"][0].get("base64")

image_1 = Image.open(
10.BytesIO(
base64.decodebytes(bytes(base_64_img_str, "utf-8"))
)
)

image_1

268 | Chapter 12: Amazon Bedrock: Managed Service for Generative Al

Figure 12-5. Image generated from text input

Create Images from Images

You can also start from an image—such as the Figure 12-5 image—and ask our Stable
Diffusion model to change a detail. For example, you can change the breed of the dog
to a poodle. To do this, you can make another request with the change request as well
as the image you previously generated in a Base64 encoding. You can write a short
helper function like this to convert images to Base64 encoding:

def image_to_base64(img):
buffer = 10.BytesIO()
img.save(buffer, format="PNG")
return base64.b64encode(buffer.getvalue()).decode("utf-8")

Now, you can make another Bedrock API request with the change_prompt and the
previous image init_image, as shown here. Figure 12-6 shows the output of this
image-modification request:

change_prompt = "Change the dog to be a poodle"
request = json.dumps({
"text_prompts": (
[{"text": change_prompt, "weight": 1.0}]
+ [{"text": negprompt, "weight": -1.0} \
for negprompt in negative_prompts]
)s
"init_image": image_to_base64(image_1),
"style_preset": style_preset,

Multimodal Models | 269

b
modelld = "stability.stable-diffusion-x1"

response = bedrock_runtime.invoke_model(body=request,
modelId=modelld)

response_body = json.loads(response.get("body").read())

image_2_b64_str = response_body["artifacts"][0].get("base64")

image_2 = Image.open(io.BytesIO(
base64.decodebytes(bytes(image_2_b64_str, "utf-8")))

)

image_2

Figure 12-6. Changing a portion of the image using text prompt and original image

Next you will learn how Amazon Bedrock keeps your data private, including data
encryption in flight and on disk.

Data Privacy and Network Security

With Amazon Bedrock, all of your prompts, completions, and fine-tuned models
remain private to your AWS account. Your data is not used to improve the Bedrock
service. Additionally, your data is not shared with third-party model providers.

270 | Chapter 12: Amazon Bedrock: Managed Service for Generative Al

All data is isolated per AWS customer and remains in the AWS region where Bedrock
processes the data. This helps with General Data Protection Regulation (GDPR) and
other regulations that require data sovereignty. All data is encrypted in transit over
the network with a minimum of TLS 1.2 encryption. At rest on disk, your data—
including your fine-tuned models—is encrypted with AES-256 using either AWS
KMS-managed data encryption keys or your own customer-managed encryption
keys.

For secure and private connectivity between your applications and the Amazon
Bedrock generative AI-managed service, you can configure your AWS account and
virtual private cloud (VPC) to use AWS VPC Endpoints. VPC Endpoints, built on
AWS PrivateLink, use the private AWS network backbone to securely connect to the
Amazon Bedrock service, as shown in Figure 12-7.

Figure 12-7. Network architecture diagram to connect applications to Amazon Bedrock

Figure 12-7 includes public connectivity through the internet and private connectiv-
ity using a VPC Endpoint. By using a VPC Endpoint, your data never needs to
traverse the public internet. Instead, it remains on the low-latency, highly redundant
private AWS backbone.

The diagram also shows how to connect to your AWS VPC using Direct Connect
from your on-premises network. This gives you private connectivity from your
network provider to the AWS VPC. From there, you can use a VPC Endpoint to keep
all traffic between your private on-premises network to Amazon Bedrock entirely
over the AWS network backbone. This avoids having to send any on-premises data
over the internet.

Data Privacy and Network Security | 271

Governance and Monitoring

Amazon Bedrock is integrated with AWS Identity and Access Management (IAM)
to help you manage permissions, including access to specific foundation models
and features such as fine-tuning. All AWS-managed service API activity—including
Amazon Bedrock activity—is logged to the AWS CloudTrail service within your
account. This activity monitoring helps you keep a record of who accessed which
models—and when they accessed those models.

Amazon Bedrock also emits data points to Amazon CloudWatch to track com-
mon metrics such as InputTokenCount, OutputTokenCount, InvocationlLatency, and
(number of) Invocations. This near-real time telemetry helps you monitor usage
and troubleshoot performance issues for your generative Al applications, integrating
with the Amazon Bedrock service.

Summary

In this chapter, you learned how to use the managed Amazon Bedrock service for
generative Al. You explored how to use foundation models for both text and image
use cases. You also learned how to fine-tune and deploy a generative model using
Amazon Bedrock and your custom text and image datasets. You also saw how to
implement a context-aware reasoning application with agents for Amazon Bedrock.
These agents augment a foundation model's behavior by using chain-of-thought
reasoning with external data sources and API calls.

Next, you learned how Amazon Bedrock participates in your existing data privacy
and network security profiles by supporting in-transit encryption with TLS, at-rest
encryption with KMS, and private AWS networking with VPC Endpoints. Lastly, you
learned that Amazon Bedrock privately tracks API activity and metrics using the
AWS CloudTrail and Amazon CloudWatch within your AWS account.

272 | Chapter 12: Amazon Bedrock: Managed Service for Generative Al

A
A/B testing, 148-149
accelerators, 130
agents, 174-175
about, 155, 156
Amazon Bedrock, 175, 264-267
implementations available, 175
ReAct and PAL with LangChain Agents, 180
ReAct framework, 175-178
about, 156
Alpaca project (Stanford University), 82
Amazon Aurora PostgreSQL, 10
embedding storage and retrieval, 168
generative Al on AWS, 10
vector store example URL, 168
Amazon Bedrock, 9
about, 253
agents, 175, 264-267
data privacy and network security, 270
embeddings, 258-261
fine-tuning, 261-264
foundation models, 253
Amazon Titan foundation models, 254
Stable Diffusion foundation models, 254
generative Al on AWS, 9
governance and monitoring, 272
Inference APIs, 254
parameters for large language models,
256
multimodal models, 267
creating images from images, 269
creating images from text, 267
SQL code generation, 257
text summarization, 257

Index

Amazon CloudWatch
Amazon Bedrock emitting data to, 272
metrics collecting and monitoring, 151
Amazon CodeWhisperer, 10
generative Al on AWS, 10
Amazon EC2, 8
generative Al on AWS, 8
Amazon Kendra, 10
embedding storage and retrieval, 168
generative Al on AWS, 10
vector store example URL, 168
Amazon OpenSearch Serverless, 10
generative Al on AWS, 10
Vector Engine, 168
Amazon OpenSearch Service
embedding storage and retrieval, 168
vector store example URL, 168
Amazon QuickSight Q, 10
generative Al on AWS, 10
Amazon Relational Database Services for Post-
greSQL, 10
embedding storage and retrieval, 168
generative Al on AWS, 10
vector store example URL, 168
Amazon SageMaker, 8
BloombergGPT model training, 35
public and private financial data, 37
source reference for paper on, 35
distributed training, 74
fully sharded data parallel code, 75
Falcon family model training, 49
generative Al on AWS, 8
instruction ﬁne-tuning, 87-90
Amazon SageMaker Endpoints

273

A/B testing, 148-149
autoscaling, 152
Data Science on AWS as resource, 153
policies, 152
policies defined and applied, 153
model hosting and scaling, 144-145
AWS Inferentia family of accelerators,
145-146
large model inference containers, 144
metrics and monitoring, 151
sample code to deploy and test large lan-
guage model, 145
shadow deployment, 149
standalone inference server, 103
vector store example with FAISS and Lang-
Chain, 168-171
Amazon SageMaker Estimator Hugging Face
implementation, 89
Amazon SageMaker Ground Truth
collecting training dataset via humans, 115,
124
instructions for human labelers, 116
humans needed for labeling, 115
implementing data collection, 116-118
converting human ranking to training
data, 118-121
Amazon SageMaker JumpStart, 4, 9
Bedrock for serverless API, 253
book using, 5
documentation URL, 36
foundation model deployed to AWS account
in a few clicks, 36
generative Al on AWS, 9
image generation with Stable Diffusion, 198
instruction ﬁne-tuning, 88
Low-Rank Adaptation support, 101
sample code to deploy and test large lan-
guage model, 145
vector store example with FAISS and Lang-
Chain, 168-171
Amazon SageMaker Studio instruction fine-
tuning, 87
Amazon SageMaker Studio Notebook, 9
generative Al on AWS, 9
instruction ﬁne-tuning, 88
Amazon Shareholder Letters dataset, 167
Amazon Titan foundation models, 254
Titan Text, 254
Titan Text Embeddings, 254

Anthropic Claude model context window size,
19
APIs for Amazon Bedrock, 254
about Bedrock, 253
Asterix comic book with Obelix and Idefix, 210
augmented prompt via retrieval-augmented
generation, 158, 164
autoencoders (encoder-only models), 46
autoregressive models (decoder-only models),
47
autoscaling, 152
Data Science on AWS as resource, 153
policies, 152
policies defined and applied, 153
AWS
distributed computing, 74
Amazon SageMaker code, 75
Trainium for training a model, 76
generative Al
building applications on AWS, 12,
181-187
stack of services, 8-10, 181-187
why AWS, 11
large model inference (LMI) containers, 144
AWS CLI for foundation models, 253
AWS DeepRacer as reinforcement learning, 112
AWS HealthScribe, 10
generative Al on AWS, 10
AWS Inferentia, 9, 145-146
AWS large model inference containers, 144
generative Al on AWS, 9
AWS Management Console for Bedrock foun-
dation models, 253
AWS Neuron SDK, 76
AWS Inferentia with, 145
AWS large model inference containers, 144
Hugging Face Optimum Neuron library, 76,
145
Transformers-NeuronX library, 145
AWS SDK for Python for foundation models,
253
AWS Trainium, 9
generative Al on AWS, 9
high-performance, cost-efficient training,
57
AWS Trainium chips and Trn1 instance
family, 57
training a model via distributed computing,
76

274 | Index

AWS Neuron SDK, 76
Hugging Face Optimum Neuron library,
76
AWS Well-Architected best practices, 192

B
Barth, Antje, 46, 139, 153
batch_size=1 for memory boundaries, 56
larger batch size speeding up training, 56
benchmarks
examples of
Beyond the Imitation Game, 92
General Language Understanding Evalu-
ation, 92
Holistic Evaluation of Language Models,
90
Massive Multitask Language Under-
standing, 90
SuperGLUE, 92
variants, 93
multimodal model evaluation, 216
text-to-image generative tasks, 216-219
BERT
compute budget comparison, 49
Data Science on AWS as resource, 46
DistilBERT distilled from, 138
encoder-only model, 46, 49
T stands for Transformer, 40
text classifier for training reward model, 121
Beyond the Imitation Game (BIG-bench), 92
bfloat16 (bf16) data type, 58
quantization, 58, 62
Bilingual Evaluation Understudy (BLEU), 91
binary classifiers, 115
sentiment classifiers, 115
toxic language detection, 115
BLOOM model comparison with compute-
optimal models, 51
BloombergGPT model training
Amazon SageMaker large distributed clus-
ter, 35, 74
public and private financial data, 37
source reference for paper on, 35
book web page, xi, xii

C

catastrophic forgetting, 81
chain-of-thought (CoT) prompting, 26
chains in LangChain framework, 171-173

chat model prompt and completion, 17
chat-assistant prompt structure, 17, 18
Chinchilla paper for model pretraining, 51
BloombergGPT starting point, 35
source reference, 35
Chung, Hyung Won, 116
chunking, 162
LangChain document chunking, 166
overlap, 162
Claude model (Anthropic) context window
size, 19
CLIP directional similarity, 217
CLIP score similarity, 217
code generation by Amazon Bedrock, 257
Colossal Clean Crawled Corpus (C4) as a pre-
training dataset, 49
Common Crawl as a pretraining dataset, 48
OBELICS public dataset extracted from, 210
completion generated by prompt, 15, 16
decoder “completing” input, 44
hallucination, 157
max new tokens not preventing, 30
prompt engineering best practices, 25
inference configuration parameters, 29-34
greedy versus random sampling, 30
max new tokens, 30
temperature, 33
top-p and top-k random sampling, 31-32
compute budget per FLOPs, 49
comparison of T5, GPT-3, BERT, 49
compute-optimal models, 51
content moderation, 211
context element of prompt structure, 18-20
in-context learning, 18
context window, 19
comparison of foundation model sizes, 19
forgetting, 19
large language model limitation, 162
chunking may be required, 162
LangChain document transformers, 167
single value as input plus output, 20
Transformer architecture, 42
context-aware reasoning applications
about, 155
agents, 174-175
about, 155, 156
implementations available, 175
ReAct and PAL with LangChain Agents,
180

Index | 275

building generative AI applications, 181-187
about, 181
large language model limitations, 156
fixed context window length, 162
hallucination, 25, 157
knowledge cutoff, 157
operationalizing project life cycle, 187-192
about, 187
development, 190-191
experimentation, 188-190
production deployment, 192
Program-Aided Language Models, 178-181
about, 156
ReAct and PAL with LangChain Agents,
180
RAG (retrieval-augmented generation), 158
about, 155
chunking, 162
document loading, 161
external sources of knowledge, 159
information retrieval from documents,
161-165
prompt augmentation, 164
reranking similarity results from vector
store, 163, 173
retrieving information, 163
workflow, 160
RAG orchestration and implementation
about LangChain, 165
document loading and chunking, 166
metadata added to documents, 167
metadata filter during retrieval, 170
retrieval chains, 171-173
vector embedding storage options, 168
vector store example with FAISS and
LangChain, 168-171
ReAct framework, 175-178
about, 156
ControlNet, 235-238
AWS blog post, 236
Canny edge map control example, 238-240
CUDA (Compute Unified Device Architec-
ture), 56
out of memory error, 55

D

data privacy and network security with Ama-
zon Bedrock, 270

Data Science on AWS (Fregly and Barth), 46,
139, 153
data types, 58
floating point number storage, 58
printing data type information, 58
printing memory consumption, 59
quantization, 59, 66
benchmarking the results, 66
bfloat16, 62
data type comparison chart, 66
fp16, 60
fp8, 64
int8, 64-66
dataset for instruction fine-tuning, 81
building from tabular via prompt template,
83
converting custom dataset into instruction
dataset, 84
multitask instruction dataset, 81
FLAN multitask instruction dataset,
82-83
dataset of Amazon Shareholder Letters, 167
datasets for pretraining, 48
optimal size, 51
decoder of Transformer architecture, 44
decoder-only models (autoregressive models),
47
DeepSpeed, 144
Denoising Diffusion Policy Optimization
(DDPO), 249
denoising objective, 46
deployment
about, 137
Amazon SageMaker Endpoints, 144-145
A/B testing, 148-149
large model inference containers, 144
sample code to deploy and test LLM, 145
autoscaling, 152
Data Science on AWS as resource, 153
policies, 152
policies defined and applied, 153
AWS Inferentia, 145-146
large model inference (LMI) containers, 144
sample code to deploy and test LLM, 145
metrics and monitoring, 151
model compression
distillation, 138, 142-144
post-training quantization, 140-142
pruning, 138, 139

276 | Index

quantization, 138, 140-142
model optimizations for inference, 137-139
model update and deployment strategies,
147
A/B testing, 148-149
shadow deployment, 149
operationalizing project life cycle, 192
depth-to-image in image generation, 207
diffusion architecture
ControlNet, 235-238
Canny edge map control example,
238-240
fine-tuning, 240
DreamBooth, 241-243
DreamBooth and PEFT-LoRA, 243
reinforcement learning from human
feedback, 249-251
textual inversion, 245-248
fundamentals, 221-223
forward diffusion, 221
reverse diffusion, 222
U-Net models, 223
latent diffusion models, 224
Stable Diffusion 2 architecture, 224-229
cross-attention, 228
image decoder, 229
latent diffusion model, 224, 226
scheduler, 229
text conditioning, 228
text encoder, 225
U-Net and diffusion process, 226
Stable Diffusion XL architecture, 230-232
conditioning, 231
refiner, 230
U-Net and cross-attention, 230
DistilBERT distilled from BERT, 138
distillation for model compression, 138,
142-144
distillation loss function, 143
effectiveness for generative decoder models,
143
distributed computing, 68
AWS distributed computing, 74
Amazon SageMaker fully sharded data
parallel code, 75
Trainjum for training a model, 76
BloombergGPT model training, 35, 74
comparison of DDP and FSDP, 72-74
distributed data parallel, 69

Falcon foundation model training, 74

fully sharded data parallel, 70-72
distributed data parallel (DDP), 69

fully sharded data parallel compared, 72-74
domain adaptation in image generation, 201
DreamBooth, 241-243

DreamBooth and PEFT-LoRA, 243
dynamic quantization, 140

E
embedding vectors or “embeddings”, 38-40
Amazon Bedrock, 258-261
RAG external documents, 161
prompt input vector embedding, 163
Titan Text Embeddings, 254
Transformer architecture, 42
vector stores, 254
AWS generative Al 9
RAG document search and retrieval, 9,
161, 167
vector embedding storage options, 168
encoder of Transformer architecture, 42
encoder-decoder models (sequence-to-
sequence models), 47
encoder-only models (autoencoders), 46
end-of-sequence (EOS) token, 45
evaluation
about, 79, 90
benchmarks
Beyond the Imitation Game, 92
General Language Understanding Evalu-
ation, 92
Holistic Evaluation of Language Models,
90
Massive Multitask Language Under-
standing, 90
SuperGLUE, 92
variants, 93
metrics, 91
Bilingual Evaluation Understudy, 91
CLIP directional similarity, 217
CLIP score similarity, 217
Fréchet Inception Distance, 217
ROUGE, 90-92
multimodal models
about, 216
image-to-text generative tasks, 219
nonverbal reasoning, 219-221
text-to-image generative tasks, 216-219

Index | 277

RLHF fine-tuned model
evaluation-metric aggregation function
defined, 133
metrics before and after compared, 134
qualitative evaluation, 131
quantitative evaluation, 132

F
Facebook AI Similarity Search (FAISS)
Amazon OpenSearch implementing, 168
vector store example with LangChain,
168-171
Falcon foundation model (Technology Innova-
tion Institute)
as autoregressive model, 47
context window size, 19
distributed training on Amazon SageMaker,
74
Falcon-Chat, 80
memory for training, 55
model hubs for, 5
RefinedWeb for pretraining data, 49
fear of missing out (FOMO), 36
few-shot inference, 18, 20, 22
context in prompt structure, 18
fine-tuning
about, 55, 79, 80
retrieval-augmented generation used
with, 155
Amazon Bedrock, 261-264
diffusion models, 240
DreamBooth, 241-243
DreamBooth and PEFT-LoRA, 243
reinforcement learning from human
feedback, 249-251
textual inversion, 245-248
instruction fine-tuning
about, 79-80, 86
Amazon SageMaker, 87-90
Amazon SageMaker JumpStart, 838
Amazon SageMaker Studio, 87
catastrophic forgetting, 81
Falcon-Chat, 80
FLAN multitask instruction dataset,
82-83
FLAN-T5, 80
instruction dataset, 81-86
Llama 2-Chat, 80

mix of instructions to maintain general
purpose, 79, 81
multitask instruction dataset, 81
multitask instruction dataset example,
82-83
knowledge cutoff, 157
Low-Rank Adaptation versus full fine-
tuning, 104
(see also Low-Rank Adaptation)
memory resources, 95, 96
multimodal model fine-tuning, 79
parameter-efficient fine-tuning versus full
fine-tuning, 96-98
(see also parameter-efficient fine-tuning)
reinforcement learning from human feed-
back
about, 124
evaluation metrics before and after com-
pared, 134
evaluation-metric aggregation function
defined, 133
loading evaluation model, 133
mitigating reward hacking, 128-130
Proximal Policy Optimization, 126
Proximal Policy Optimization imple-
mentation, 126-128
qualitative evaluation, 131
quantitative evaluation, 132
using reward model with RLHF, 125
Flamingo (DeepMind), 210
FLAN instruction dataset, 81-86
multitask instruction dataset example, 82-83
samsum dataset, 83
building instruction dataset, 83
well-documented instruction set, 80
FLAN-T5 generative model (Google), 5
context window size, 19
as instruction fine-tuned generative model,
80
FLAN as well-documented instruction
set, 80
FLAN multitask instruction dataset
example, 82-83
instruction dataset, 81-86
multitask instruction dataset, 81
span corruption pretraining, 47
FlashAttention, 66, 67
AWS large model inference containers, 144

278 | Index

FLOPs (floating point operations per second),
49
forgetting during long prompt sequence, 19
forward diffusion, 221
foundation models, 4
Amazon Bedrock, 253
AWS Management Console, 253
Amazon Titan, 254
examples named with URLs, 5
model hubs, 4, 36
URLSs to model hubs, 4
pretrained models publicly available, 36
parametric memory, 36
vocabulary of, 37
training large-language models, 35
(see also training large-language founda-
tion models)
Transformer architecture (see Transformer
architecture)
fp16 data type, 58
quantization, 60
fp32 data type, 58
fp8 and quantization, 64
Fréchet Inception Distance (FID), 217
Fregly, Chris, 46, 139, 153
fully sharded data parallel (FSDP), 70-72
Amazon SageMaker code, 75
distributed data parallel compared, 72-74

G
General Language Understanding Evaluation
(GLUE), 92
generative Al
application stack, 181-187
applications, 12
building applications on AWS, 12,
181-187
AWS stack of services, 8-10
about, 8
Amazon Aurora PostgreSQL, 10
Amazon Bedrock, 9
Amazon CodeWhisperer, 10
Amazon EC2, 8
Amazon Kendra, 10
Amazon OpenSearch Serverless, 10
Amazon QuickSight Q, 10
Amazon Relational Database Services for
PostgreSQL, 10
Amazon SageMaker, 8

Amazon SageMaker JumpStart, 9
Amazon SageMaker Studio Notebook, 9
AWS HealthScribe, 10
AWS Inferentia, 9
AWS Trainium, 9
foundation models and model hubs, 4, 36
in-context learning not altering model, 20
(see also in-context learning)
project life cycle, 5-8
operationalizing, 187-192
use cases and tasks, 1-4
why AWS, 11
building applications on AWS, 12,
181-187
Google (see FLAN instruction dataset; FLAN-
T5 generative model; T5 foundation model)
governance with Amazon Bedrock, 272
GPT post-training quantization (GPTQ), 140
calibration dataset required, 141
Wikitext dataset, 141
GPT, T stands for Transformer, 40
GPT-3 as autoregressive model, 47, 49
compute-optimal model comparison, 51
GPUs (see NVIDIA GPUs)
greedy versus random sampling inference con-
figuration pattern, 30
greedy sampling explicitly disabled, 31
grouped-query attention (GQA), 67
GTP-3 compute budget comparison, 49

H

hallucination, 157
max new tokens not preventing, 30
prompt engineering best practices, 25
retrieval-augmented generation for, 157
hard prompts, 106
hate language detection
about toxic language reduction, 122
example toxic language detection model,
115
reward model by Meta, 123
reward model by Meta used to fine-tune,
123,126-128
fine-tuning with RLHF, 124-131
toxicity baseline compared to fine-tuned
model, 134
helpful, honest, and harmless (HHH), 112
diffusion model fine-tuning via RLHF,
249-251

Index | 279

Holistic Evaluation of Language Models
(HELM), 90, 92
HTML tags in prompt, 28
Hugging Face
Amazon SageMaker Estimator class imple-
mentation, 89
bitsandbytes LLM.int8() implementation, 65
QLoRA, 105
DistilBERT distilled from BERT, 138
Image-Aware Decoder Enhanced a
la Flamingo with Interleaved Cross-
attentionS, 210
Optimum library, 141
distillation loss function, 143
Optimum Neuron library, 76
AWS Neuron SDK, 76, 145
pipelines integration with LangChain, 180
ROUGE support in evaluate library, 91
Transformers library
Agents, 175
greedy sampling and, 31
LoRa implementation, 101-103
Hugging Face Model Hub, 4
book using, 5
model card for each model, 36
Llama 2 model card including URL, 36
toxic language detecting reward model by
Meta, 123

I
IDEFICS (Image-Aware Decoder Enhanced a la
Flamingo with Interleaved Cross-attentionS;
Hugging Face), 210
URL, 195
image captioning, 211
evaluating, 219
image generation, 198
Amazon Bedrock, 267
creating images from images, 269
creating images from text, 267
editing and enhancement, 199-204
depth-to-image, 207
domain adaptation, 201
image captioning, 211
inpainting, 204
outpainting, 206
style transfer, 200
upscaling, 203
image-to-image capabilities, 199

Image-Aware Decoder Enhanced a la Flamingo
with Interleaved Cross-attentionS (IDEF-
ICS; Hugging Face), 210

image-to-text generative task evaluation, 219

ImageNet dataset, 219

in-context learning
about, 15, 18

learning on the fly for duration of
request, 20
zero-shot, one-shot, few-shot, 20
best practices, 23
few-shot inference, 18, 20, 22
inference configuration parameters, 29-34
one-shot inference, 20, 21
“tricking” a model, 23
zero-shot inference, 20-21
try first, 23

Inference APIs for Amazon Bedrock, 254

inference configuration parameters, 29-34
greedy versus random sampling, 30
max new tokens, 30
temperature, 33
top-p and top-k random sampling, 31-32

inpainting in image generation, 204

input_ids from tokenizer, 37
numeric representations of each token, 37

instruction element of prompt, 18,79
moving to end of prompt, 24

instruction fine-tuning
about, 79-80, 86
Amazon SageMaker, 87-90
Amazon SageMaker JumpStart, 88
Amazon SageMaker Studio, 87
Falcon-Chat, 80
FLAN-TS5, 80

FLAN multitask instruction dataset,
82-83
instruction dataset, 81-86
about, 81
building from tabular via prompt tem-
plate, 83
converting custom dataset into instruc-
tion dataset, 84
multitask instruction dataset, 81
multitask instruction dataset example,
82-83
Llama 2-Chat, 80
mix of instructions to maintain general pur-
pose, 79, 81

280 | Index

catastrophic forgetting, 81
int8 data type, 58
quantization, 64-66
optimized implementations, 65

K
k-NN plugin, 10
knowledge cutoff, 157
retrieval-augmented generation for, 158
Kullback-Leibler (KL) divergence, 129
extremely compute-intensive, 130

L
LAION-5B dataset, 224
LangChain
about, 165
Agents, 175
ReAct and PAL with LangChain Agents,
180
document loading and chunking, 166
Hugging Face pipelines integration, 180
retrieval chains, 171-173
vector store example with FAISS, 168-171
vector stores supported by LangChain,
169
large language models (LLMs)
Amazon Bedrock APIs, 256
foundation models (see large-language
foundation models)
limitations, 156
fixed context window length, 162
hallucination, 25, 157
knowledge cutoff, 157
multimodal large language models, 209
pretraining datasets, 48
optimal size, 51
scaling laws, 49-51
Titan Text, 254
tokenizers, 37
embeddings, 38-40
Transformer architecture
about, 40, 45
decoder, 44
embeddings, 42
encoder, 42
end-of-sequence token, 45
inputs and input context window, 42
self-attention, 42-44
softmax output, 44

types of Transformer-based foundation
models, 46-48
unimodal, 195
large model inference (LMI) containers, 144
sample code to deploy and test large lan-
guage model, 145
large-language foundation models
BloombergGPT model training
Amazon SageMaker for, 35
public and private financial data, 37
source reference for paper on, 35
compute-optimal models, 51
pretrained models publicly available, 36
parametric memory, 36
vocabulary of, 37
pretraining datasets, 48
optimal size, 51
scaling laws, 49-51
tokenizers, 37
embeddings, 38-40
training, 35
(see also training large-language founda-
tion models)
Transformer architecture
about, 40, 45
decoder, 44
embeddings, 42
encoder, 42
end-of-sequence token, 45
inputs and input context window, 42
self-attention, 42-44
softmax output, 44
types of Transformer-based foundation
models, 46-48
latent diffusion models (LDMs), 224, 226
LDMs (latent diffusion models), 226
licenses for models or mechanisms to improve
models, 82
life cycle for generative Al project, 5-8
operationalizing, 187-192
about, 187
development, 190-191
experimentation, 188-190
production deployment, 192
Llama 2 foundation model (Meta), 36
book using, 36
context window size, 19
grouped-query attention optimization, 68
Llama 2-Chat, 80

Index | 281

model hubs for, 5
model card including URL, 36
pretraining dataset size, 52
publicly available, pretrained model, 36
LLaMA as autoregressive model, 47
compute-optimal model comparison, 51
LLMs (see large language models)
LMI (large model inference) containers, 144
sample code to deploy and test large lan-
guage model, 145
Low-Rank Adaptation (LoRA), 98
applying to linear layers of model, 100
diffusion models, 243
full fine-tuning versus, 104
fundamentals, 99
implementation, 101-103
maintaining separate adapters, 104
merging LoRA adapter with original model,
103
quantized LoRA, 105
rank, 100

M

masked language modeling (MLM), 46
Massive Multitask Language Understanding
(MMLU)
as benchmark, 90, 92
pretraining dataset size and, 52
max new tokens inference configuration pat-
tern, 30
Maximum Marginal Relevance (MMR), 164
example, 173
memory
challenges of, 55-57
data types, 58
floating point number storage, 58
printing data type information, 58
printing memory consumption, 59
distributed computing, 68
Amazon SageMaker fully sharded data
parallel code, 75
AWS distributed computing, 74
comparison of DDP and FSDP, 72-74
distributed data parallel, 69
fully sharded data parallel, 70-72
Falcon foundation model training, 55
fine-tuning, 95, 96
FlashAttention, 66
out of memory error, 55

batch_size=1 for memory boundaries, 56
parameter memory usage, 56
quantization, 57, 59, 66

AWS Trainium optimized for, 57

benchmarking the results, 66

bfloat16 data type, 58

data type comparison chart, 66

memory footprint reduction, 59-66
self-attention optimization

FlashAttention, 66, 67

grouped-query attention, 67

Meta Llama 2 foundation model (see Llama 2
foundation model)

metadata
adding during document loading, 167
filter during document retrieval, 170

MMLU (see Massive Multitask Language
Understanding)

MMR (Maximum Marginal Relevance), 164
example, 173

model cards for models in model hubs, 36

model deployment (see deployment)

model hubs, 4
model card for each model, 36

Llama 2 model card including URL, 36
picking a model hub, 36
URLs to model hubs, 4

model providers and AWS frameworks and
infrastructure, 8
model tuners and AWS capabilities, 9
model update and deployment strategies, 147
A/B testing, 148-149
shadow deployment, 149
monitoring with Amazon Bedrock, 272
multiheaded attention, 43
grouped-query attention optimization, 67
multimodal generative Al
about, 195
Amazon Bedrock, 267

creating images from images, 269

creating images from text, 267
ControlNet, 235-238

Canny edge map control example,

238-240
diffusion architecture

fine-tuning, 240-248

forward diffusion, 221

fundamentals, 221-223

reverse diffusion, 222

282 | Index

Stable Diffusion 2 architecture, 224-229
Stable Diffusion XL architecture,
230-232
U-Net models, 223
evaluation of models, 216
image-to-text generative tasks, 219
nonverbal reasoning, 219-221
text-to-image generative tasks, 216-219
image generation, 198
editing and enhancement, 199-204
image-to-image capabilities, 199
multimodal large language models, 209
content moderation, 211
image captioning, 211
visual question answering, 211-216
prompt engineering best practices, 197
use cases, 196
multimodal large language models (MLLMs),
209
content moderation, 211
image captioning, 211
image-to-text models, 210
visual question answering, 211-216
multimodal model fine-tuning, 79

N

negative formulations avoided, 25
network security and data privacy with Ama-
zon Bedrock, 270
nonverbal reasoning evaluation, 219-221
Raven’s Progressive Matrices, 219
NormalFloat4 (nf4), 105
numbers
data types, 58
printing data type information, 58
printing memory consumption, 59
floating point number storage, 58
pi value held by fp32, 58
NVIDIA GPUs
CUDA out-of-memory error, 55
GPU RAM maximum, 57

0
OBELICS public dataset, 210
one-shot inference, 20, 21

context in prompt structure, 18
one-shot pruning, 139

OPT model comparison with compute-optimal

models, 51

outpainting in image generation, 206
overlap in chunking, 162

P
PaLM with FLAN instruction set, 80
parameter-efficient fine-tuning (PEFT)
about, 95
diffusion models, 243
full fine-tuning versus, 96-98
Low-Rank Adaptation, 98
applying to linear layers of model, 100
fundamentals, 99
implementation, 101-103
maintaining separate adapters, 104
merging LoRA adapter with original
model, 103
rank, 100
prompt tuning, 106-109
reinforcement learning from human feed-
back with, 130
parameters (a.k.a. weights)
Amazon Bedrock for LLMs, 256
foundation models, 4
inference configuration parameters, 29
greedy versus random sampling, 30
max new tokens, 30
temperature, 33
top-p and top-k random sampling, 31-32
memory usage, 56
multiheaded attention, 43
self-attention implementation, 43
parametric memory, 36
pretraining dataset size versus, 52
quantization to convert from 32-bit to 16-
bit precision, 57
scaling laws, 49-51
parametric memory, 36
PartiPrompts dataset (Parti project), 216
PDF documents via PyPDFLoader (Lang-
Chain), 166
PEFT (see parameter-efficient fine-tuning)
performance (see evaluation)
personally identifiable information (PII)
masked, 28
pi value held by fp32, 58
The Pile as a pretraining dataset, 49
playouts in reinforcement learning, 113
rollouts versus playouts, 114
post-training quantization (PTQ), 140-142

Index | 283

encoder-only models (autoencoders), 46
GPT post-training quantization, 140 unidirectional causal language modeling, 47
static quantization, 140 Program-Aided Language Models (PAL), 156,
Wikitext dataset, 141 178-181

PPOTrainer, 127 ReAct and PAL with LangChain Agents, 180
configuring to avoid reward hacking, 130 project life cycle for generative Al 5-8

pretraining phase operationalizing, 187-192

dynamic quantization, 140

avoiding with foundation model, 6
AWS for generative Al 8
BloombergGPT model training
Amazon SageMaker large distributed
cluster for, 35
public and private financial data, 37
Chinchilla paper, 51
source reference, 35
starting point for BloombergGPT, 35
datasets, 48
optimal size, 51
knowledge cutoff, 157
large-language foundation model
about, 35
compute-optimal models, 51
datasets for pretraining optimal size, 51
embeddings, 38-40
pretrained models publicly available, 36
scaling laws, 49-51
tokenizers, 37
Transformer architecture, 40-45
types of Transformer-based foundation
models, 46-48
large-language foundation models
pretraining datasets, 48
masked language modeling, 46
parameter learning
about foundation models, 4
time, patience, and compute required, 6,
35
scaling laws, 49-51
Chinchilla paper starting point for
BloombergGPT, 35
span corruption, 47
tokens, 16
types of Transformer-based foundation
models
about, 46
decoder-only models (autoregressive
models), 47
encoder-decoder models (sequence-to-
sequence models), 47

about, 187

development, 190-191
experimentation, 188-190
production deployment, 192

prompt engineering, 106

about, 16
input called prompt, 15, 16
prompt generating completion, 15, 16
writing prompts, 15, 18, 24-29
augmented prompt via retrieval-augmented
generation, 158, 164
best practices, 24-29
multimodal generative Al, 197
description of, 16
extra markup for chat models, 17
model card and other documentation, 20
external data sources, 24
(see also retrieval-augmented genera-
tion)
in-context learning
about, 15, 18
best practices, 23
few-shot inference, 18, 20, 22
learning on the fly for duration of
request, 20
one-shot inference, 20, 21
“tricking” a model, 23
zero-shot inference, 20-21
zero-shot inference first, 23
zero-shot, one-shot, few-shot, 20
inference configuration parameters, 29-34
Llama 2 variant used in chapter, 80
model card containing sample code for
Llama 2, 36
prompt structure, 18
chat-assistant structure, 17, 18
context element, 18-20
context window, 19
forgetting, 19
instruction element, 18
model card and other documentation, 20
as model specific, 17

| Index

prompt tuning versus, 106
text-based prompts
about, 15
about writing prompts, 15, 18
numbers preferred, 16
prompts and completions, 15
tokens, 16
tokens per word approximation, 16
prompt input into vector embedding represen-
tation, 163
prompt template for building instruction data-
set, 83
prompt tuning, 106-109
prompt engineering versus, 106
soft prompts, 106-109
generating virtual tokens, 107
Proximal Policy Optimization (PPO), 126
Denoising Diffusion Policy Optimization,
249
ﬁne-tuning implementation, 126-128
pruning for model compression, 138, 139
one-shot pruning, 139
post-training pruning, 139
PTQ (see post-training quantization)
PyPDFLoader of LangChain, 166
Python sagemaker library, 88, 89
PyTorch Hub, 4
model card for each model, 36

Q
QLoRA (quantized LoRA), 105
double quantization, 106
NormalFloat4 quantization format, 105
qualitative evaluation for RLHF fine-tuned
model, 131
quantization
about, 57, 59, 138
model accuracy small loss, 142
AWS Trainium instances optimized for, 57
bfloat16 data type, 58, 62
memory footprint reduction
about, 59, 66
benchmarking the results, 66
bfloatl16, 62
data type comparison chart, 66
fp16, 60
p8, 64
int8, 64-66
model compression via, 138

dynamic quantization, 140
GPT post-training quantization, 140
post-training quantization, 140-142
static quantization, 140
Wikitext dataset, 141
NormalFloat4, 105
quantized LoRA (QLoRA), 105

R

RAG (see retrieval-augmented generation)
random sampling
top-p and top-k random sampling, 31-32
versus greedy sampling inference configura-
tion pattern, 30
random sampling explicitly enabled, 31
Raven’s Progressive Matrices (RPM), 219
ReAct framework, 175-178
about, 156
ReAct and PAL with LangChain Agents, 180
Recall-Oriented Understudy for Gisting Evalu-
ation (ROUGE), 90-92
about, 91
LoRA performance versus full fine-tuning,
104
RefinedWeb as a pretraining dataset, 49
reinforcement learning from human feedback
(RLHF)
about, 111, 124
extremely compute-intensive, 130
about reinforcement learning, 112
helpful, honest, and harmless, 112
humans needed for labeling, 115
playouts, 113
playouts versus rollouts, 114
rollouts, 114
diffusion model fine-tuning for HHH,
249-251
fine-tuning with
about, 124
evaluation metrics before and after com-
pared, 134
evaluation-metric aggregation function
defined, 133
loading evaluation model, 133
mitigating reward hacking, 128-130
Proximal Policy Optimization, 126
Proximal Policy Optimization imple-
mentation, 126-128
qualitative evaluation, 131

Index | 285

quantitative evaluation, 132
using reward model with RLHF, 125
parameter-efficient fine-tuning with, 130
reward models, 115
key role in RLHF, 115
toxic language detection model by Meta,
123
toxic language detection model by Meta
used to fine-tune, 123, 126-128
toxic language detection
about toxic language reduction, 122
example model, 115
training a custom reward model
about, 115
collecting training dataset via humans,
115
converting human ranking to training
data, 118-121
implementing data collection in Sage-
Maker Ground Truth, 116-118
instructions for human labelers, 116
training the reward model, 121
Rendered SST2 dataset, 219
reranking similarity results from vector store,
163
Maximum Marginal Relevance, 164, 173
resources online
Amazon SageMaker JumpStart
documentation, 36
AWS generative Al services, 8-10
book web page, xi, xii
ControlNet blog post, 236
Hugging Face Model Hub, 4
(see also Hugging Face Model Hub)
model hubs, 4
vector store examples, 168
retrieval-augmented generation (RAG), 158
about, 24, 155
fine-tuning used with, 155
potential downsides, 156
AWS generative Al, 9
external sources of knowledge, 159
information retrieval from documents
chunking, 162
document loading, 161
prompt augmentation, 164
reranking similarity results from vector
store, 163, 173
retrieving information, 163

large language model limitations, 156
fixed context window length, 162
hallucination, 25, 157
knowledge cutoff, 157

orchestration and implementation
about LangChain, 165
document loading and chunking, 166
metadata added to documents, 167
metadata filter during retrieval, 170
retrieval chains, 171-173
vector embedding storage and retrieval

options, 168
vector store example with FAISS and
LangChain, 168-171
vector stores, 9, 161, 163, 167
example with FAISS and LangChain,
168-171
vector embedding storage options, 168
workflow, 160
reverse diffusion, 222
reward models, 115

fine-tuning with RLHF
about, 124
evaluation metrics before and after com-

pared, 134
evaluation-metric aggregation function
defined, 133
mitigating reward hacking, 128-130
using reward model with RLHF, 125

key role in RLHF, 115

reward hacking mitigated, 128-130

toxic language detection model by Meta,

123
using to fine-tune a model, 123, 126-128
training a custom reward model
about, 115
collecting training dataset via humans,
115
converting human ranking to training
data, 118-121
implementing data collection in Sage-
Maker Ground Truth, 116-118
instructions for human labelers, 116
training the reward model, 121
RLHEF (see reinforcement learning from human
feedback)
rollouts in generative reinforcement learning,
114
playouts versus rollouts, 114

286 | Index

ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation), 90-92
about, 91
LoRA performance versus full fine-tuning,
104

S
sagemaker Python library, 88, 89
“Scaling Instruction-Finetuned Language Mod-
els” (Chung), 116
scaling laws, 49-51
Chinchilla paper, 51
source reference, 35
starting point for BloombergGPT, 35
self-attention of Transformer architecture,
42-44
computationally expensive, 43
multiheaded attention, 43
optimizing
FlashAttention, 66, 67
grouped-query attention, 67
sentiment, 23
sentiment classifiers, 115
sequence-to-sequence models (encoder-
decoder models), 47
shadow deployment, 149
soft prompts, 106-109
also called virtual tokens, 106
generating virtual tokens, 107
softmax output of Transformer architecture, 44
temperature and, 44
span corruption pretraining, 47
SparseGPT post-training pruning, 140
SQL code generation by Amazon Bedrock, 257
Stable Diffusion (Stability AT) models, 195
Amazon Bedrock accessing, 254
ControlNet, 235-238
Canny edge map control example,
238-240
fine-tuning, 240
DreamBooth, 241-243
DreamBooth and PEFT-LoRA, 243
reinforcement learning from human
feedback, 249-251
textual inversion, 245-248
image generation, 198
editing and enhancement, 199-204
Low-Rank Adaptation, 99
Stable Diffusion 2 architecture, 224-229

cross-attention, 228

image decoder, 229

latent diffusion model, 224, 226

scheduler, 229

text conditioning, 228

text encoder, 225

U-Net and diffusion process, 226

Stable Diffusion XL architecture, 230-232

conditioning, 231

refiner, 230

U-Net and cross-attention, 230
Stanford University Alpaca project, 82
static quantization, 140
style transfer in image generation, 200
SuperGLUE, 92
supplemental material URL, xi, xii

T
T5 foundation model (Google)
compute budget comparison, 49
encoder-decoder model, 49
FLAN-T5 instruction fine-tuned variant, 80
(see also FLAN-T5 generative model)
span corruption pretraining, 47
tasks and use cases for generative Al, 1-4
Technology Innovation Institute (see Falcon
foundation model)
temperature inference configuration pattern, 33
softmax output and, 44
text conditioning by Stable Diffusion, 228
text summarization by Amazon Bedrock, 257
text-to-image generative task evaluation,
216-219
PartiPrompts dataset, 216
textual inversion for fine-tuning diffusion mod-
els, 245-248
“thinking step-by-step”, 26
tokenizers, 37
embeddings, 38-40
tokens
about, 16
tokens per word approximation, 16
context window, 19
comparison of foundation model sizes,
19
forgetting, 19
single value as input plus output, 20
end-of-sequence (EOS) token, 45
inference configuration parameters

Index | 287

greedy versus random sampling, 30
max new tokens, 30
temperature, 33
top-p and top-k random sampling, 31-32
input_id as token in model’s vocabulary, 37
numeric representations of each token,
37
scaling laws, 49-51
tokenizers, 37
embeddings, 38-40
training large-language foundation models
about, 35
compute-optimal models, 51
embeddings, 38-40
end-of-sequence (EOS) token, 45
pretrained models publicly available, 36
pretraining datasets, 48
pretraining datasets optimal size, 51
publicly available, pretrained models’
vocabulary, 37
scaling laws, 49-51
tokenizers, 37
Transformer architecture, 40-45
types of Transformer-based foundation
models, 46-48

optimal size, 51
scaling laws, 49-51
tokenizers, 37
embeddings, 38-40
Transformer architecture
about, 40, 45
decoder, 44
embeddings, 42
encoder, 42
end-of-sequence token, 45
inputs and input context window, 42
self-attention, 42-44
softmax output, 44
types of Transformer-based foundation
models, 46-48

Transformer architecture

about, 40, 45

decoder, 44

embeddings, 42

encoder, 42

end-of-sequence token, 45

inputs and input context window, 42

Low-Rank Adaptation, 98
applying to linear layers of model, 100
fundamentals, 99

token_ids from tokenizer, 37
top-p and top-k random sampling, 31-32
toxic language detection

implementation, 101-103
maintaining separate adapters, 104
merging LoRA adapter with original

about toxic language reduction, 122 model, 103
example model, 115 quantized LoRA, 105
reward model by Meta, 123 rank, 100

reward model by Meta used to fine-tune,
123,126-128
fine-tuning with RLHF, 124-131
toxicity baseline compared to fine-tuned
model, 134

training large-language foundation models

about, 35
AWS Trainium, 76
batch_size maximum, 56
Chinchilla paper, 51
source reference, 35
starting point for BloombergGPT, 35
compute-optimal models, 51
knowledge cutoff, 157
pretrained models publicly available, 36
parametric memory, 36
vocabulary of, 37
pretraining datasets, 48

self-attention, 42-44
computationally expensive, 43
FlashAttention optimization, 66, 67
grouped-query attention optimization,
67
multiheaded attention, 43
slight variations among models, 36
softmax output, 44
types of Transformer-based foundation
models, 46-48
about, 46
decoder-only models (autoregressive
models), 47
encoder-decoder models (sequence-to-
sequence models), 47
encoder-only models (autoencoders), 46

Transformer Reinforcement Learning (TRL)

RewardTrainer class, 122

| Index

Transformers-NeuronX library, 145
“tricking” a model to learn incorrect answer, 23
TRL library, 127

PPOTrainer, 127

U

U-Net models, 223

unidirectional causal language modeling
(CLM), 47

unimodal models defined, 195

update and deployment strategies, 147
A/B testing, 148-149
shadow deployment, 149

upscaling in image generation, 203

use cases and tasks for generative Al, 1-4

v
vector stores
about, 168, 254
AWS generative Al, 9
RAG document search and retrieval, 9, 161,
167
example with FAISS and LangChain,
168-171
vector embedding storage options, 168
supported by LangChain, 169

vectors (see embedding vectors or “embed-
dings”)

virtual tokens as soft prompts, 106
generating virtual tokens, 107

visual language models (VLMs), 209
(see also multimodal large language models)

visual question answering (VQA), 211-216
evaluating, 219

VizWiz-VQA dataset, 219

VQAV2 dataset, 219

]

weights (see parameters)

Wiki-40B as a pretraining dataset, 49
Wikipedia as a pretraining dataset, 48
Wikitext dataset, 141

X

XML tags in prompt, 28

z

ZeRO (zero redundancy optimizer), 70
zero-shot inference, 20-21
try first, 23

Index | 289

About the Authors

Chris Fregly is a Principal Solutions Architect for generative AI at Amazon Web
Services based in San Francisco, California. Chris holds every AWS certification. He
is also cofounder of the global Generative AI on AWS Meetup. Chris regularly speaks
at AI and machine learning meetups and conferences across the world. Previously,
Chris was an engineer at Databricks and Netflix, where he worked on scalable big
data and machine learning products and solutions. He is also coauthor of the O’Reilly
book Data Science on AWS.

Antje Barth is a Principal Developer Advocate for generative Al at Amazon Web
Services based in San Francisco, California. She is also cofounder of the global Gener-
ative AT on AWS Meetup and the Diisseldorf chapter of Women in Big Data. Antje
frequently speaks at Al and machine learning conferences and meetups around the
world. Prior to joining AWS, Antje worked in solutions engineering roles at MapR
and Cisco, helping developers leverage big data, containers, and Kubernetes platforms
in the context of AI and machine learning. She is also coauthor of the O’Reilly book
Data Science on AWS.

Shelbee Eigenbrode is a Principal Solutions Architect for generative Al at Amazon
Web Services based in Denver, Colorado. She is cofounder of the Denver chapter of
Women in Big Data. Shelbee holds six AWS certifications and has been in technology
for 23 years, spanning multiple industries, technologies, and roles. She focuses on
combining her DevOps and ML backgrounds to deliver ML workloads at scale. With
over 35 patents granted across various technology domains, Shelbee has a passion for
continuous innovation and using data to drive business outcomes.

Colophon

The animal on the cover of Generative AI on AWS is the brown-backed mockingbird
(Mimus dorsalis).

This nonmigratory, terrestrial mockingbird inhabits arid landscapes of brush and
desert shrub in Argentina and Bolivia, where it forages for food and constructs its
nest of twigs among cacti or bushes. Because it has not been much studied, little
else is known about the diet, feeding, and breeding behaviors of the brown-backed
mockingbird.

Recordings of its call, luckily, are fairly easy to come by, and witnesses to it have
described the song of the brown-backed mockingbird as a series of repeated harsh
notes and chuckles. Mockingbirds in general are well known for their habit of mim-
icking the songs of other birds and the sounds of insects and amphibians, often
loudly and in rapid succession. One group of researchers has even compared them—

https://oreil.ly/4lFH8
https://oreil.ly/mpBkN

with their ability to create novel song patterns—to the great classical composers and
modern artists like Kendrick Lamar.

Though its population size has not been precisely quantified, the brown-backed
mockingbird has been categorized by the IUCN as a species of least concern. Many
of the animals on O’Reilly covers are endangered; all of them are important to the
world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Cassell’s Natural History. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con-
densed; and the code font is Dalton Maag’s Ubuntu Mono.

O'REILLY"

Learn from experts.
Become one yourself.

Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Chris
	Antje
	Shelbee

	Chapter 1. Generative AI Use Cases, Fundamentals, and Project Life Cycle
	Use Cases and Tasks
	Foundation Models and Model Hubs
	Generative AI Project Life Cycle
	Generative AI on AWS
	Why Generative AI on AWS?
	Building Generative AI Applications on AWS
	Summary

	Chapter 2. Prompt Engineering and In-Context Learning
	Prompts and Completions
	Tokens
	Prompt Engineering
	Prompt Structure
	Instruction
	Context

	In-Context Learning with Few-Shot Inference
	Zero-Shot Inference
	One-Shot Inference
	Few-Shot Inference
	In-Context Learning Gone Wrong
	In-Context Learning Best Practices

	Prompt-Engineering Best Practices
	Inference Configuration Parameters
	Summary

	Chapter 3. Large-Language Foundation Models
	Large-Language Foundation Models
	Tokenizers
	Embedding Vectors
	Transformer Architecture
	Inputs and Context Window
	Embedding Layer
	Encoder
	Self-Attention
	Decoder
	Softmax Output

	Types of Transformer-Based Foundation Models
	Pretraining Datasets
	Scaling Laws
	Compute-Optimal Models
	Summary

	Chapter 4. Memory and Compute Optimizations
	Memory Challenges
	Data Types and Numerical Precision
	Quantization
	fp16
	bfloat16
	fp8
	int8

	Optimizing the Self-Attention Layers
	FlashAttention
	Grouped-Query Attention

	Distributed Computing
	Distributed Data Parallel
	Fully Sharded Data Parallel
	Performance Comparison of FSDP over DDP

	Distributed Computing on AWS
	Fully Sharded Data Parallel with Amazon SageMaker
	AWS Neuron SDK and AWS Trainium

	Summary

	Chapter 5. Fine-Tuning and Evaluation
	Instruction Fine-Tuning
	Llama 2-Chat
	Falcon-Chat
	FLAN-T5

	Instruction Dataset
	Multitask Instruction Dataset
	FLAN: Example Multitask Instruction Dataset
	Prompt Template
	Convert a Custom Dataset into an Instruction Dataset

	Instruction Fine-Tuning
	Amazon SageMaker Studio
	Amazon SageMaker JumpStart
	Amazon SageMaker Estimator for Hugging Face

	Evaluation
	Evaluation Metrics
	Benchmarks and Datasets

	Summary

	Chapter 6. Parameter-Efficient Fine-Tuning
	Full Fine-Tuning Versus PEFT
	LoRA and QLoRA
	LoRA Fundamentals
	Rank
	Target Modules and Layers
	Applying LoRA
	Merging LoRA Adapter with Original Model
	Maintaining Separate LoRA Adapters
	Full-Fine Tuning Versus LoRA Performance
	QLoRA

	Prompt Tuning and Soft Prompts
	Summary

	Chapter 7. Fine-Tuning with Reinforcement Learning from Human Feedback
	Human Alignment: Helpful, Honest, and Harmless
	Reinforcement Learning Overview
	Train a Custom Reward Model
	Collect Training Dataset with Human-in-the-Loop
	Sample Instructions for Human Labelers
	Using Amazon SageMaker Ground Truth for Human Annotations
	Prepare Ranking Data to Train a Reward Model
	Train the Reward Model

	Existing Reward Model: Toxicity Detector by Meta
	Fine-Tune with Reinforcement Learning from Human Feedback
	Using the Reward Model with RLHF
	Proximal Policy Optimization RL Algorithm
	Perform RLHF Fine-Tuning with PPO
	Mitigate Reward Hacking
	Using Parameter-Efficient Fine-Tuning with RLHF

	Evaluate RLHF Fine-Tuned Model
	Qualitative Evaluation
	Quantitative Evaluation
	Load Evaluation Model
	Define Evaluation-Metric Aggregation Function
	Compare Evaluation Metrics Before and After

	Summary

	Chapter 8. Model Deployment Optimizations
	Model Optimizations for Inference
	Pruning
	Post-Training Quantization with GPTQ
	Distillation

	Large Model Inference Container
	AWS Inferentia: Purpose-Built Hardware for Inference
	Model Update and Deployment Strategies
	A/B Testing
	Shadow Deployment

	Metrics and Monitoring
	Autoscaling
	Autoscaling Policies
	Define an Autoscaling Policy

	Summary

	Chapter 9. Context-Aware Reasoning Applications Using RAG and Agents
	Large Language Model Limitations
	Hallucination
	Knowledge Cutoff

	Retrieval-Augmented Generation
	External Sources of Knowledge
	RAG Workflow
	Document Loading
	Chunking
	Document Retrieval and Reranking
	Prompt Augmentation

	RAG Orchestration and Implementation
	Document Loading and Chunking
	Embedding Vector Store and Retrieval
	Retrieval Chains
	Reranking with Maximum Marginal Relevance

	Agents
	ReAct Framework
	Program-Aided Language Framework

	Generative AI Applications
	FMOps: Operationalizing the Generative AI Project Life Cycle
	Experimentation Considerations
	Development Considerations
	Production Deployment Considerations

	Summary

	Chapter 10. Multimodal Foundation Models
	Use Cases
	Multimodal Prompt Engineering Best Practices
	Image Generation and Enhancement
	Image Generation
	Image Editing and Enhancement

	Inpainting, Outpainting, Depth-to-Image
	Inpainting
	Outpainting
	Depth-to-Image

	Image Captioning and Visual Question Answering
	Image Captioning
	Content Moderation
	Visual Question Answering

	Model Evaluation
	Text-to-Image Generative Tasks
	Forward Diffusion
	Nonverbal Reasoning

	Diffusion Architecture Fundamentals
	Forward Diffusion
	Reverse Diffusion
	U-Net

	Stable Diffusion 2 Architecture
	Text Encoder
	U-Net and Diffusion Process
	Text Conditioning
	Cross-Attention
	Scheduler
	Image Decoder

	Stable Diffusion XL Architecture
	U-Net and Cross-Attention
	Refiner
	Conditioning

	Summary

	Chapter 11. Controlled Generation and Fine-Tuning with Stable Diffusion
	ControlNet
	Fine-Tuning
	DreamBooth
	DreamBooth and PEFT-LoRA
	Textual Inversion

	Human Alignment with Reinforcement Learning from Human Feedback
	Summary

	Chapter 12. Amazon Bedrock: Managed Service for Generative AI
	Bedrock Foundation Models
	Amazon Titan Foundation Models
	Stable Diffusion Foundation Models from Stability AI

	Bedrock Inference APIs
	Large Language Models
	Generate SQL Code
	Summarize Text
	Embeddings

	Fine-Tuning
	Agents
	Multimodal Models
	Create Images from Text
	Create Images from Images

	Data Privacy and Network Security
	Governance and Monitoring
	Summary

	Index
	About the Authors
	Colophon

