O'REILLY"

Hands-On

Large Lanuoge
Models &

Language Understanding
and Generation

Jay Alammar &
Maarten Grootendorst

Praise for Hands-On Large Language Models

This is an exceptional guide to the world of language models and their
practical applications in industry. Its highly-visual coverage of
generative, representational, and retrieval applications of language
models empowers readers to quickly understand, use, and refine LLMs.
Highly recommended!

—Nils Reimers, Director of Machine Learning at Cohere |
creator of sentence-transformers

Jay and Maarten have continued their tradition of providing beautifully
illustrated and insightful descriptions of complex topics in their new
book. Bolstered with working code, timelines, and references to key
papers, their book is a valuable resource for anyone looking to
understand the main techniques behind how Large Language Models are

built.
—Andrew Ng, founder of DeepLearning. Al

I can't think of another book that is more important to read right now.
On every single page, I learned something that is critical to success in
this era of language models.

—Josh Starmer, StatQuest

If you're looking to get up to speed in everything regarding LLMs, look
no further! In this wonderful book, Jay and Maarten will take you from
zero to expert in the history and latest advances in large language
models. With very intuitive explanations, great real-life examples, clear
illustrations, and comprehensive code labs, this book lifts the curtain on
the complexities of transformer models, tokenizers, semantic search,
RAG, and many other cutting-edge technologies. A must read for anyone
interested in the latest Al technology!

—TLuis Serrano, PhD, Founder and CEO of Serrano
Academy

This book is a must-read for anyone interested in the rapidly-evolving
field of generative Al. With a focus on both text and visual embeddings,
its a great blend of algorithmic evolution, theoretical rigor, and
practical guidance. Whether you are a student, researcher, or industry
professional, this book will equip you with the use cases and solutions
needed to level-up your knowledge of generative Al. Well done!

—Chris Fregly, Principal Solution Architect, Generative Al
at AWS

In the heart of the GenAl revolution, this indispensable guide
masterfully balances theory and practice, navigating the vast landscape
of large language models to equip readers with the knowledge needed
for immediate and transformative impact in the field of Al

—Tarun Narayanan Venkatachalam, Al Researcher,
University of Washington

Timely reading to get hands-on experience with language models.

—Emir Muiioz, Genesys

Hands-On Large Language Models brings clarity and practical
examples to cut through the hype of Al. It provides a wealth of great
diagrams and visual aids to supplement the clear explanations. The
worked examples and code make concrete what other books leave
abstract. The book starts with simple introductory beginnings, and
steadily builds in scope. By the final chapters, you will be fine-tuning
and building your own large language models with confidence.

—ILeland Mclnnes, Researcher at the Tutte Institute for
Mathematics and Computing

Finally, a book that not only avoids superficial coverage of large
language models but also thoroughly explores the background in a way
that is both accessible and engaging. The authors have masterfully
created a definitive guide that will remain essential reading despite the
fast-paced advancements in the field.

—Prof. DDr. Roman Egger, CEO of Smartvisions.at and
Modul University Vienna

Hands-On Large Language
Models

Language Understanding and Generation

Jay Alammar and Maarten Grootendorst

Beijing + Boston + Farnham - Sebastopol - Tokyo

Hands-On Large Language Models

by Jay Alammar and Maarten Grootendorst

Copyright © 2024 Jay Alammar and Maarten Pieter Grootendorst. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate(@oreilly.com.

Acquisitions Editor: Nicole Butterfield
Development Editor: Michele Cronin
Production Editor: Ashley Stussy
Copyeditor: Charles Roumeliotis
Proofreader: Kim Cofer

Indexer: BIM Creatives, LLC

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Ilustrator: Kate Dullea

September 2024: First Edition

Revision History for the First Edition

http://oreilly.com/

e 2024-09-10: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098150969 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Hands-
On Large Language Models, the cover image, and related trade dress are
trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes
1s subject to open source licenses or the intellectual property rights of others,
it 1s your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

978-1-098-15096-9
[LST]

http://oreilly.com/catalog/errata.csp?isbn=9781098150969

Preface

Large language models (LLMs) have had a profound and far-reaching impact
on the world. By enabling machines to better understand and generate human-
like language, LLMs have opened new possibilities in the field of Al and
impacted entire industries.

This book provides a comprehensive and highly visual introduction to the
world of LLMs, covering both the conceptual foundations and practical
applications. From word representations that preceded deep learning to the
cutting-edge (at the time of this writing) Transformer architecture, we will
explore the history and evolution of LLMs. We delve into the inner workings
of LLMs, exploring their architectures, training methods, and fine-tuning
techniques. We also examine various applications of LLMs in text
classification, clustering, topic modeling, chatbots, search engines, and more.

With its unique blend of intuition-building, applications, and illustrative
style, we hope that this book provides the ideal foundation for those looking
to explore the exciting world of LLMs. Whether you are a beginner or an
expert, we invite you to join us on this journey to start building with LLMs.

An Intuition-First Philosophy

The main goal of this book is to provide an intuition into the field of LLMs.
The pace of development in the Language Al field is incredibly fast and
frustration can build trying to keep up with the latest technologies. Instead,
we focus on the fundamentals of LLMs and intend to provide a fun and easy
learning process.

To achieve this intuition-first philosophy we liberally make use of visual
language. Illustrations will help give a visual identity to major concepts and

processes involved in the learning process of LLMs." With our illustrative

method of storytelling, we want to take you on a journey to this exciting and
potentially world-changing field.

Throughout the book, we make a clear distinction between representation and
generative language models. Representation models are LLMs that do not
generate text but are commonly used for task-specific use cases, like
classification, whereas generation models are LLMs that generate text, like
GPT models. Although generative models are typically the first thing that
comes to mind when thinking about LLMs, there is still much use for
representation models. We are also loosely using the word “large” in large
language models and often elect to simply call them language models as size
descriptions are often rather arbitrary and not always indicative of
capability.

Prerequisites

This book assumes that you have some experience programming in Python
and are familiar with the fundamentals of machine learning. The focus will
be on building a strong intuition rather than deriving mathematical equations.
As such, illustrations combined with hands-on examples will drive the
examples and learning through this book. This book assumes no prior
knowledge of popular deep learning frameworks such as PyTorch or
TensorFlow nor any prior knowledge of generative modeling.

If you are not familiar with Python, a great place to start is Learn Python,
where you will find many tutorials on the basics of the language. To further
ease the learning process, we made all the code available on Google Colab,
a platform where you can run all of the code without the need to install
anything locally.

https://oreil.ly/arcIm
https://oreil.ly/kSucO

Book Structure

The book is broadly divided into three parts. They are illustrated in
Figure P-1 to give you a full view of the book. Note that each chapter can be
read independently, so feel free to skim chapters you are already familiar

with.

Part I: Understanding Language Models

In Part I of the book, we explore the inner workings of language models both
small and large. We start with an overview of the field and common
techniques (see Chapter 1) before moving over to two central components of
these models, tokenization and embeddings (see Chapter 2). We finish this
part of the book with an updated and expanded version of Jay’s well-known
Illustrated Transformer, which dives into the architecture of these models

(see Chapter 3). Many terms and definitions will be introduced that are used
throughout the book.

Part1 Part 2 Part 3
Understanding Using Pretrained Training and Fine-Tuning
Language Models Language Models Language Models

n An Introduction to ﬂ —_— m Creating Text
Large Language Models Text Classification Embedding Models
2 1 B 1l - -
' Tokens and . Text Clustering and 'Repregénn‘i;lijg:'lnfﬂ odels
Embeddings | Topic Modeling e Teation
3] 12
. Looking Inside B Prompt . Fine-Tuning
Large Language Models Engineering Generation Models
"Iﬂ[ﬁéﬁér]h'g’fﬁéﬁﬁ'.e%’tidﬁ'" Advariced Tast " Exploring }ﬁé'&]h}f;féééréﬁ"
“"How do large language Generation Techniques components of training and
models work?" and Tools fine-tuning different types
of large language models.
B Semantic Search and
Retrieval-Augmented
Generation
g Multimodal Large
Language Models

Using large language models
across a variety of use cases.

Figure P-1. All parts and chapters of the book.

https://oreil.ly/UI4lN

Part ll: Using Pretrained Language Models

In Part II of the book, we explore how LLMs can be used through common
use cases. We use pretrained models and demonstrate their capabilities
without the need to fine-tune them.

You learn how to use language models for supervised classification (see
Chapter 4), text clustering and topic modeling (see Chapter 5), leveraging
embedding models for semantic search (see Chapter 6), generating text (see
Chapters 7 and 8), and extending the capabilities of text generation to the
visual domain (see Chapter 9).

Learning these individual language model capabilities will equip you with
the skill set to problem-solve with LLMs and build more and more advanced
systems and pipelines.

Part lll: Training and Fine-Tuning Language Models

In Part III of the book, we explore advanced concepts through training and
fine-tuning all kinds of language models. We will explore how to create and
fine-tune an embedding model (see Chapter 10), review how to fine-tune
BERT for classification (see Chapter 11), and end the book with several
methods for fine-tuning generation models (see Chapter 12).

Hardware and Software Requirements

Running generative models is generally a compute-intensive task that
requires a computer with a strong GPU. Since those are not available to
every reader, all examples in this book are made to run using an online
platform, namely Google Colaboratory, often shortened to “Google Colab.”
At the time of writing, this platform allows you to use an NVIDIA GPU (T4)
for free to run your code. This GPU has 16 GB of VRAM (which is the
memory of your GPU), which is the minimum amount of VRAM we expect
for the examples throughout the book.

NOTE

Not all chapters require a minimum of 16 GB VRAM as some examples, like training and
fine-tuning, are more compute-intensive than others, such as prompt engineering. In the
repository, you will find the minimum GPU requirements for each chapter.

All code, requirements, and additional tutorials are available in this book’s
repository. If you want to run the examples locally, we recommend access to
an NVIDIA GPU with a minimum of 16 GB of VRAM. For a local
installation, for example with conda, you can follow this setup to create your
environment:

conda create -n thellmbook python=3.10
conda activate thellmbook

https://oreil.ly/HQawv
https://github.com/HandsOnLLM/Hands-On-Large-Language-Models

You can install all the necessary dependencies by forking or cloning the
repository and then running the following in your newly created Python 3.10
environment:

pip install -r requirements.txt

APl Keys

We use both open source and proprietary models throughout the examples to
demonstrate the advantages and disadvantages of both. For the proprietary
models, using OpenAl and Cohere’s offering, you will need to create a free
account:

OpenAl

Click “sign up” on the site to create a free account. This
account allows you to create an API key, which can be used
to access GPT-3.5. Then, go to “API keys” to create a secret
key.

Cohere

Register a free account on the website. Then, go to “API keys”
to create a secret key.

Note that with both accounts, rate limits apply and that these free API keys
only allow for a limited number of calls per minute. Throughout all
examples, we have taken that into account and provided local alternatives if
necessary.

For the open source models, you do not need to create an account with the
exception of the Llama 2 model in Chapter 2. To use that model, you will
need a Hugging Face account:

Hugging Face

https://oreil.ly/M4nAa
https://oreil.ly/T63GA
https://oreil.ly/_uV3A

Click “sign up” on the Hugging Face website to create a free
account. Then, in “Settings” go to “Access Tokens” to create a
token that you can use to download certain LLMs.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLS, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied
values or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/HandsOnLLM/Hands-On-Large-Language-
Models.

If you have a technical question or a problem using the code examples,
please send email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: “Hands-
On Large Language Models by Jay Alammar and Maarten Grootendorst
(O’Reilly). Copyright 2024 Jay Alammar and Maarten Pieter Grootendorst,
978-1-098-15096-9.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

https://github.com/HandsOnLLM/Hands-On-Large-Language-Models
mailto:support@oreilly.com
mailto:permissions@oreilly.com

NOTE

For more than 40 years, O Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com

https://www.oreilly.com/about/contact.html

https://oreilly.com/
https://oreilly.com/
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at
https://oreil.ly/hands on LLMs le.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: Attps://linkedin.com/company/oreilly-media.
Watch us on YouTube: https.://youtube.com/oreillymedia.

Acknowledgments

Writing this book has been an incredible experience, collaboration, and
journey for us.

The field of (large) language models is one of the most dynamic areas in
technology today, and within the span of writing this book, we have
witnessed extraordinary advancements. Yet, despite the rapid pace of change,
the fundamental principles remain strikingly consistent which made the
writing process particularly intriguing. We are grateful to have had the
opportunity to explore this field in-depth at such a pivotal moment.

Working with our O’Reilly team was incredible! Special thanks to Michele
Cronin for her amazing feedback, support, and enthusiasm for this book from
day one. We could not have asked for a better editor—you are amazing!
Thank you, Nicole Butterfield, for kicking off this book and helping us
maintain a structured approach throughout the writing. Thank you to Karen
Montgomery for creating our wonderful cover, we love the kangaroo! Big
thanks to Kate Dullea for being so patient with us having to go through
hundreds of illustrations many times over. The timely early releases by Clare
Laylock helped us see our work grow which was a big motivator, thank you.
Thanks to Ashley Stussy and Charles Roumeliotis for the development in the
final stages of the book and everyone else at O’Reilly who contributed.

Thanks to our amazing crew of technical reviewers. Invaluable feedback was
given by Harm Buisman, Emir Muioz, Luba Elliott, Guarav Chawla, Rafael

https://oreil.ly/hands_on_LLMs_1e
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

V. Pierre, Luba Elliott, Tarun Narayanan, Nikhil Buduma, and Patrick
Harrison.

Jay

I’d love to extend my deepest gratitude to my family for their unwavering
support and inspiration. [would like to specifically acknowledge my parents,
Abdullah and Mishael, and my aunts, Hussah and Aljoharah.

I’m grateful to the friends, colleagues, and collaborators who helped me
understand and explain the tricky concepts covered in this book as well as to
the Cohere folks who cultivate a supporting learning and sharing
environment. Thank you to Adrien Morisot, Aidan Gomez, Andy Toulis,
Anfal Alatawi, Arash Ahmadian, Bharat Venkitesh, Edward Grefenstette,
Ivan Zhang, Joao Aratjo, Luis Serrano, Matthias Gall¢, Meor Amer, Nick
Frosst, Patrick Lewis, Phil Blunsom, Sara Hooker, and Suhas Pai.

I couldn’t conceive of this project getting accomplished to the level it has
without the extraordinary talent and tireless effort of Maarten, my coauthor.
Your ability to repeatedly nail the technical details (from the pinned version
of the nth import dependency to the latest in LLM quantization) while
weaving some of the world’s best visual narratives is absolutely
breathtaking.

Lastly, a tip of the hat to the incredible coffee shop scene of Riyadh, Saudi
Arabia for supplying me with caffeine and a good place to focus from dawn
until midnight. It’s where I read most of these papers and worked out my
understanding (looking at you, Elixir Bunn).

Maarten

I want to begin by expressing my heartfelt appreciation to my coauthor, Jay.
Your insights have made this not only possible but incredibly fulfilling. This
journey has been nothing short of amazing and collaborating with you has
been an absolute joy.

I want to sincerely thank my wonderful colleagues at IKNL for their
continued support throughout this journey. A special mention goes to Harm—
our Monday morning coffee breaks discussing this book were a constant
source of encouragement.

Thank you to my family and friends for their unwavering support, and to my
parents in particular. Pap, despite the challenges you faced, you always found
a way to be there for me when I needed it most, thank you. Mam, the
conversations we had as aspiring writers were wonderful and motivated me
more than you could ever imagine. Thank you both for your endless support
and encouragement.

Finally, I am at a loss for words to adequately express my gratitude to my
wonderful wife, Ilse. Lieverd, your boundless enthusiasm and patience have
been legendary, especially when I droned on about the latest LLM
developments for hours on end. You are my greatest support. My apologies to
my amazing daughter, Sarah. At just two years old, you already have listened
to more about large language models than anyone should have to endure in a
lifetime! I promise we’ll make up for it with endless playtime and adventures
together.

1 J. Alammar. “Machine learning research communication via illustrated and interactive web
articles.” Beyond Static Papers: Rethinking How We Share Scientific Understanding in ML.
ICLR 2021 Workshop (2021).

Part |. Understanding Language
Models

Chapter 1. An Introduction to
Large Language Models

Humanity is at an inflection point. From 2012 onwards, developments in
building Al systems (using deep neural networks) accelerated so that by the
end of the decade, they yielded the first software system able to write
articles indiscernible from those written by humans. This system was an Al
model called Generative Pre-trained Transformer 2, or GPT-2. 2022 marked
the release of ChatGPT, which demonstrated how profoundly this technology
was poised to revolutionize how we interact with technology and
information. Reaching one million active users in five days and then one
hundred million active users in two months, the new breed of Al models
started out as human-like chatbots but quickly evolved into a monumental
shift in our approach to common tasks, like translation, text generation,
summarization, and more. It became an invaluable tool for programmers,
educators, and researchers.

The success of ChatGPT was unprecedented and popularized more research
into the technology behind it, namely large language models (LLMs). Both
proprietary and public models were being released at a steady pace, closing
in on, and eventually catching up to the performance of ChatGPT. It is not an
exaggeration to state that almost all attention was on LLMs.

As a result, 2023 will always be known, at least to us, as the year that
drastically changed our field, Language Artificial Intelligence (Language Al),
a field characterized by the development of systems capable of understanding
and generating human language.

However, LLMs have been around for a while now and smaller models are
still relevant to this day. LLMs are much more than just a single model and

there are many other techniques and models in the field of language Al that

are worth exploring,

In this book, we aim to give readers a solid understanding of the
fundamentals of both LLMs and the field of Language Al in general. This
chapter serves as the scaffolding for the rest of the book and will introduce
concepts and terms that we will use throughout the chapters.

But mostly, we intend to answer the following questions in this chapter:
o What is Language AI?
o What are large language models?

o What are the common use cases and applications of large language
models?

e How can we use large language models ourselves?

What Is Language Al?

The term artificial intelligence (Al) 1s often used to describe computer
systems dedicated to performing tasks close to human intelligence, such as
speech recognition, language translation, and visual perception. It is the
intelligence of software as opposed to the intelligence of humans.

Here is a more formal definition by one of the founders of the artificial
intelligence discipline:

[Artificial intelligence is] the science and engineering of making
intelligent machines, especially intelligent computer programs. It is
related to the similar task of using computers to understand human
intelligence, but Al does not have to confine itself to methods that are
biologically observable.

—John McCarthy, 2007

Due to the ever-evolving nature of Al the term has been used to describe a
wide variety of systems, some of which might not truly embody intelligent
behavior. For instance, characters in computer games (NPCs [nonplayable
characters]) have often been referred to as Al even though many are nothing
more than if-else statements.

Language Al refers to a subfield of Al that focuses on developing
technologies capable of understanding, processing, and generating human
language. The term Language Al can often be used interchangeably with
natural language processing (NLP) with the continued success of machine
learning methods in tackling language processing problems.

We use the term Language Al to encompass technologies that technically
might not be LLMs but still have a significant impact on the field, like how
retrieval systems can give LLMs superpowers (see Chapter 8).

Throughout this book, we want to focus on the models that have had a major
role in shaping the field of Language Al. This means exploring more than just
LLMs in isolation. That, however, brings us to the question: what are large
language models? To begin answering this question in this chapter, let’s first
explore the history of Language Al

A Recent History of Language Al

The history of Language Al encompasses many developments and models
aiming to represent and generate language, as illustrated in Figure 1-1.

lnistiIBERTl
|RUBERTB|
[BERTJ [GPT-z] [GPT-?-] |EhatGFT|

| Attention l lEPTI |5witch| |FIan-T5|
|

...................... I | >
J I J J
~2000 2013 2017 2018 2019 2020 2021 2022 2023

O Decoder-only [0 Encoder-only] Mon-transformer models [Encoder-decoder
Figure 1-1. A peek into the history of Language AL

Bag-of-words

Language, however, is a tricky concept for computers. Text is unstructured in
nature and loses its meaning when represented by zeros and ones (individual
characters). As a result, throughout the history of Language Al, there has been

a large focus on representing language in a structured manner so that it can
more easily be used by computers. Examples of these Language Al tasks are
provided in Figure 1-2.

Textinput
Unstructured data

Language Al
Processes the input text

v v v

Text output Embeddings Classification
Generative modeling Numeric values Identify targets

[] [[[

Figure 1-2. Language Al is capable of many tasks by processing textual input.

Representing Language as a Bag-of-Words

Our history of Language Al starts with a technique called bag-of-words, a

method for representing unstructured text.? It was first mentioned around the
1950s but became popular around the 2000s.

Bag-of-words works as follows: let’s assume that we have two sentences for
which we want to create numerical representations. The first step of the bag-
of-words model is tokenization, the process of splitting up the sentences into
individual words or subwords (tokens), as illustrated in Figure 1-3.

Input Input
[That is a cute dog] [My cat is cute]

l Splitinput by a whitespace l

o) [) o o)) ()) o

Figure 1-3. Each sentence is split into words (tokens) by splitting on a whitespace.

The most common method for tokenization is by splitting on a whitespace to
create individual words. However, this has its disadvantages as some
languages, like Mandarin, do not have whitespaces around individual words.
In the next chapter, we will go in depth about tokenization and how that
technique influences language models. As illustrated in Figure 1-4, after
tokenization, we combine all unique words from each sentence to create a
vocabulary that we can use to represent the sentences.

Tokenized sentences

N i o i N N A N i L i N i N

that|| is a ||cute||dog|| my || cat|]| is ||cute

Create a vocabulary
[that} [is 1 [1 [cute] [dog] [my} [cat}
"""""""" L?o}EEJfEFy's?Ee"'""""""

Figure 1-4. A vocabulary is created by retaining all unique words across both sentences.

Using our vocabulary, we simply count how often a word in each sentence
appears, quite literally creating a bag of words. As a result, a bag-of-words
model aims to create representations of text in the form of numbers, also

called vectors or vector representations, observed in Figure 1-5. Throughout
the book, we refer to these kinds of models as representation models.

Input

My cat is cute]

f A LW i LW i

my || cat || is ||cute

i W i N - il W

that || is a ||cute|| dog || my || cat

Tokenization
Splitinput by a whitespace

-

| Bag-of-words
Count individual words

1ol 1]folf1|f1|—THEEE=
Vector representation

Figure 1-5. A bag-of-words is created by counting individual words. These values are referred to
as vector representations.

Although bag-of-words is a classic method, it is by no means completely
obsolete. In Chapter 5, we will explore how it can still be used to
complement more recent language models.

Better Representations with Dense Vector
Embeddings

Bag-of-words, although an elegant approach, has a flaw. It considers
language to be nothing more than an almost literal bag of words and ignores
the semantic nature, or meaning, of text.

Released in 2013, word2vec was one of the first successful attempts at
capturing the meaning of text in embeddings.3 Embeddings are vector
representations of data that attempt to capture its meaning. To do so,
word2vec learns semantic representations of words by training on vast
amounts of textual data, like the entirety of Wikipedia.

To generate these semantic representations, word2vec leverages neural
networks. These networks consist of interconnected layers of nodes that

process information. As illustrated in Figure 1-6, neural networks can have
many layers where each connection has a certain weight depending on the
input. These weights are often referred to as the parameters of the model.

Input Hidden Output
layer layer layer

Feature 1 —p O O
OO+
Feature 2 —p O

O —> Not spam
O O Node

Weights (Takes weights,

S performs calculations,
{Séﬁﬂgetmﬁggfégﬁg N and produces output)

node has on another)

Figure 1-6. A neural network consists of interconnected layers of nodes where each connection
is a linear equation.

Feature 3 —p

Using these neural networks, word2vec generates word embeddings by
looking at which other words they tend to appear next to in a given sentence.
We start by assigning every word in our vocabulary with a vector
embedding, say of 50 values for each word initialized with random values.
Then in every training step, as illustrated in Figure 1-7, we take pairs of
words from the training data and a model attempts to predict whether or not
they are likely to be neighbors in a sentence.

During this training process, word2vec learns the relationship between
words and distills that information into the embedding. If the two words tend
to have the same neighbors, their embeddings will be closer to one another
and vice versa. In Chapter 2, we will look closer at word2vec’s training
procedure.

Words Embeddings Model

dicti
Gt |—{_ Tl —> Neural network prediction
Task: et (). 74

| Cute | —JlIT] [TI}— | Arethetwo words neighbors?

Figure 1-7. A neural network is trained to predict if two words are neighbors. During this
process, the embeddings are updated to be in line with the ground truth.

The resulting embeddings capture the meaning of words but what exactly
does that mean? To illustrate this phenomenon, let’s somewhat oversimplify
and imagine we have embeddings of several words, namely “apple” and
“baby.” Embeddings attempt to capture meaning by representing the
properties of words. For instance, the word “baby” might score high on the
properties “newborn” and “human” while the word “apple” scores low on
these properties.

As illustrated in Figure 1-8, embeddings can have many properties to
represent the meaning of a word. Since the size of embeddings is fixed, their
properties are chosen to create a mental representation of the word.

cats puppy houses apple baby

animal ﬂ 93 -56 -b7 ‘.‘
newborn | -1 i -32 -1 :
human 19 36 \ﬂ 23 « Number of dimensions
- : . : - T (properties)
plural -82 -5)
fruit _ - 51|
rui a1 5 E 51 v

Figure 1-8. The values of embeddings represent properties that are used to represent words. We
may oversimplify by imagining that dimensions represent concepts (which they don t), but it helps
express the idea.

In practice, these properties are often quite obscure and seldom relate to a
single entity or humanly identifiable concept. However, together, these
properties make sense to a computer and serve as a good way to translate
human language into computer language.

Embeddings are tremendously helpful as they allow us to measure the
semantic similarity between two words. Using various distance metrics, we
can judge how close one word is to another. As illustrated in Figure 1-9, if
we were to compress these embeddings into a two-dimensional
representation, you would notice that words with similar meaning tend to be
closer. In Chapter 5, we will explore how to compress these embeddings into
n-dimensional space.

cats dog apple

I puppy banana
™

O O

building adult
O O
houses baby
O

?

Figure 1-9. Embeddings of words that are similar will be close to each other in dimensional
space.

Types of Embeddings

There are many types of embeddings, like word embeddings and sentence
embeddings that are used to indicate different levels of abstractions (word
versus sentence), as illustrated in Figure 1-10.

Bag-of-words, for instance, creates embeddings at a document level since it
represents the entire document. In contrast, word2vec generates embeddings
for words only.

Throughout the book, embeddings will take on a central role as they are
utilized in many use cases, such as classification (see Chapter 4), clustering

(see Chapter 5), and semantic search and retrieval-augmented generation
(see Chapter 8). In Chapter 2, we will take our first deep dive into token
embeddings.

Input

Input 'Her vocalization was me!ndic]

My cat is cute.
2 |I'IDLIt ‘. ! Splitinput up into tokens
The dominant sequence
transduction models are
based on complex... [Her] [vocal l [##ization l [was] [melodic]
_ I I I I
. L&
Representation model
Embed the input text
i l v v
[(ITTTT] [(ITTTT]
[(TTTT]
Document CITTT] [ITTTT]
embeddings Token
embeddings
(ITTTT]
Word
embeddings embeddings

Figure 1-10. Embeddings can be created for different types of input.

Encoding and Decoding Context with Attention

The training process of word2vec creates static, downloadable
representations of words. For instance, the word “bank will always have
the same embedding regardless of the context in which it is used. However,
“bank” can refer to both a financial bank as well as the bank of a river. Its
meaning, and therefore its embeddings, should change depending on the
context.

A step in encoding this text was achieved through recurrent neural networks
(RNNs). These are variants of neural networks that can model sequences as
an additional input.

To do so, these RNNs are used for two tasks, encoding or representing an
input sentence and decoding or generating an output sentence. Figure 1-11
illustrates this concept by showing how a sentence like “I love 1lamas™ gets
translated to the Dutch “Ik hou van lama’s.”

Input I love llamas

sequence ¢ ¢ *

E Encoder (RNN) &

Task: generating language

Neural Task: representing language ;
machine : :
translation : Decoder (RNN) L

- - mm

..

quul;tgllil;e @ - m |Iamas|

Figure 1-11. Two recurrent neural networks (decoder and encoder) translating an input
sequence from English to Dutch.

Each step 1n this architecture is autoregressive. When generating the next
word, this architecture needs to consume all previously generated words, as
shown in Figure 1-12.

Input Output
[™) r——
Step1| | }[Iove}[llamas Ik

Stepz[I vlove}[llamas‘[Ik 1

Step3[| }[Ioveﬂrllamas" Ik }[hou‘ van

ops [Yool e}]

Figure 1-12. Each previous output token is used as input to generate the next token.

l\l]\,\l

The encoding step aims to represent the input as well as possible, generating
the context in the form of an embedding, which serves as the input for the
decoder. To generate this representation, it takes embeddings as its inputs for
words, which means we can use word2vec for the initial representations. In
Figure 1-13, we can observe this process. Note how the inputs are processed
sequentially, one at a time, as well as the output.

word2vec

embeddings Order of

processing

Encoder (RNN)

[Context embedding] - W
: Decoder (RNN)

- meom oEmeE EeE EeEmeEeEEem o om o

(M (=) (=

Figure 1-13. Using word2vec embeddings, a context embedding is generated that vepresents the
entire sequence.

This context embedding, however, makes it difficult to deal with longer
sentences since it is merely a single embedding representing the entire input.
In 2014, a solution called attention was introduced that highly improved

upon the original architecture.* Attention allows a model to focus on parts of
the input sequence that are relevant to one another (“attend” to each other)
and amplify their signal, as shown in Figure 1-14. Attention selectively
determines which words are most important in a given sentence.

For instance, the output word “lama’s” 1s Dutch for “llamas,” which is why
the attention between both is high. Similarly, the words “lama’s” and “I”
have lower attention since they aren’t as related. In Chapter 3, we will go
more in depth on the attention mechanism.

https://oreil.ly/SIDnM

Words with similar meaning
have higher attention weights
since they are highly related I love llamas

High attention
Ik
hou
van : :
lama’s : 5 .
| E s . Low attention

Figure 1-14. Attention allows a model to “attend” to certain parts of sequences that might relate
more or less to one another.

By adding these attention mechanisms to the decoder step, the RNN can
generate signals for each input word in the sequence related to the potential
output. Instead of passing only a context embedding to the decoder, the
hidden states of all input words are passed. This process is demonstrated in

Figure 1-15.
| love | | llamas |4

word2vec
embeddings

R~

Attention decoder (RNN) S| ;

l l l During generation, attend
[] [] [] to most relevant input
Figure 1-15. After generating the words “Ik,” u,” and “van,” the attention mechanism of the

decoder enables it to focus on the word * llamas before it generates the Dutch translation
(“lama’s”).

As a result, during the generation of “Ik hou van lama’s,” the RNN keeps
track of the words it mostly attends to perform the translation. Compared to
word2vec, this architecture allows for representing the sequential nature of
text and the context in which it appears by “attending” to the entire sentence.
This sequential nature, however, precludes parallelization during training of
the model.

Attention Is All You Need

The true power of attention, and what drives the amazing abilities of large
language models, was first explored in the well-known ““Attention is all you

need” paper released in 2017.° The authors proposed a network architecture
called the Transformer, which was solely based on the attention mechanism
and removed the recurrence network that we saw previously. Compared to
the recurrence network, the Transformer could be trained in parallel, which
tremendously sped up training.

In the Transformer, encoding and decoder components are stacked on top of
each other, as illustrated in Figure 1-16. This architecture remains
autoregressive, needing to consume each generated word before creating a
new word.

https://oreil.ly/KGvIj

Input [love] [Ilamas]

sequence J' i
| 'f
Transformer encoder L | H
= é
Transformer decoder D (1

Output () —
P Ik van lama’s
sequence
Figure 1-16. The Transformer is a combination of stacked encoder and decoder blocks where the
input flows through each encoder and decoder.

Now, both the encoder and decoder blocks would revolve around attention
instead of leveraging an RNN with attention features. The encoder block in
the Transformer consists of two parts, self-attention and a feedforward
neural network, which are shown in Figure 1-17.

| llamas |
Transformer N
encoder
£
[Self-attention]
[Feedforward neural network]

v v v
m N

Figure 1-17. An encoder block revolves around self-attention to generate intermediate
representations.

Compared to previous methods of attention, self-attention can attend to
different positions within a single sequence, thereby more easily and
accurately representing the input sequence as illustrated in Figure 1-18.
Instead of processing one token at a time, it can be used to look at the entire
sequence in one go.

| love llamas High attention

=

love

llamas

]
' (]
¥ i
¥]
M L]

]
:.—-Th—q
¥]
¥ [
" L]
]

. Low attention

Figure 1-18. Self-attention attends to all parts of the input sequence so that it can “look” both
forward and back in a single sequence.

Compared to the encoder, the decoder has an additional layer that pays
attention to the output of the encoder (to find the relevant parts of the input).
As demonstrated in Figure 1-19, this process is similar to the RNN attention
decoder that we discussed previously.

[|] [Inve] Previously

generated words
Transformer E?] Elih
decoder

| T] H
an; IS Masked self-attention ‘
student |) (1111 CLIT]
Transformer . Encoder attention
Do r LD :
Feedforward neural network

Next generated
word

Figure 1-19. The decoder has an additional attention layer that attends to the output of the
encoder.

As shown in Figure 1-20, the self-attention layer in the decoder masks future
positions so it only attends to earlier positions to prevent leaking information
when generating the output.

Ik houd van lama's _ _
~ High attention

Ik

houd

van

|
4
.

lama's

S : Low attention

Figure 1-20. Only attend to previous tokens to prevent “looking into the future.”

Together, these building blocks create the Transformer architecture and are
the foundation of many impactful models in Language Al, such as BERT and
GPT-1, which we cover later in this chapter. Throughout this book, most
models that we will use are Transformer-based models.

There 1s much more to the Transformer architecture than what we explored
thus far. In Chapters 2 and 3, we will go through the many reasons why
Transformer models work so well, including multi-head attention, positional
embeddings, and layer normalization.

Representation Models: Encoder-Only Models

The original Transformer model is an encoder-decoder architecture that
serves translation tasks well but cannot easily be used for other tasks, like
text classification.

In 2018, a new architecture called Bidirectional Encoder Representations
from Transformers (BERT) was introduced that could be leveraged for a
wide variety of tasks and would serve as the foundation of Language Al for
years to come.® BERT is an encoder-only architecture that focuses on
representing language, as illustrated in Figure 1-21. This means that it only
uses the encoder and removes the decoder entirely.

Input

sequence
— | | L :

BERT, . : Transformer encoder Eﬁ‘ 2
: : E

! ‘ . ‘ L.
: | :

Transformer encoder = 12

Contextualized l i i

word embeddings e OCE

Figure 1-21. The architecture of a BERT base model with 12 encoders.

These encoder blocks are the same as we saw before: self-attention followed
by feedforward neural networks. The input contains an additional token, the
[CLS] or classification token, which is used as the representation for the
entire input. Often, we use this [CLS] token as the input embedding for fine-
tuning the model on specific tasks, like classification.

Training these encoder stacks can be a difficult task that BERT approaches
by adopting a technique called masked language modeling (see Chapters 2
and 11). As shown in Figure 1-22, this method masks a part of the input for
the model to predict. This prediction task is difficult but allows BERT to
create more accurate (intermediate) representations of the input.

Randoml
maasnkx?.u'g]rgs [[CLS]W [I] [[MASI(]] [Ilamas]

BERT, :[i
base : Transformer encoder Eﬂ E

Predict the
masked words
Figure 1-22. Train a BERT model by using masked language modeling.
This architecture and training procedure makes BERT and related
architectures incredible at representing contextual language. BERT-like
models are commonly used for transfer learning, which involves first
pretraining it for language modeling and then fine-tuning it for a specific task.
For instance, by training BERT on the entirety of Wikipedia, it learns to
understand the semantic and contextual nature of text. Then, as shown in
Figure 1-23, we can use that pretrained model to fine-tune it for a specific
task, like text classification.

@ rPretrainonlargedataset | @ Fine-tune for downstream task
[:Wikipe dia L Classification |
BERT Z Z ‘ —
i S Named entity
Objective: i BERT recognition
masked language modeling ' - :
: Paraphrase
| identification |

Figure 1-23. After pretraining BERT on masked language model, we fine-tune it for specific
tasks.

A huge benefit of pretrained models is that most of the training is already
done for us. Fine-tuning on specific tasks is generally less compute-intensive
and requires less data. Moreover, BERT-like models generate embeddings at

almost every step in their architecture. This also makes BERT models feature
extraction machines without the need to fine-tune them on a specific task.

Encoder-only models, like BERT, will be used in many parts of the book.
For years, they have been and are still used for common tasks, including
classification tasks (see Chapter 4), clustering tasks (see Chapter 5), and
semantic search (see Chapter 8).

Throughout the book, we will refer to encoder-only models as
representation models to differentiate them from decoder-only, which we
refer to as generative models. Note that the main distinction does not lie
between the underlying architecture and the way these models work.
Representation models mainly focus on representing language, for instance,
by creating embeddings, and typically do not generate text. In contrast,
generative models focus primarily on generating text and typically are not
trained to generate embeddings.

The distinction between representation and generative models and
components will also be shown in most images. Representation models are
teal with a small vector icon (to indicate its focus on vectors and
embeddings) whilst generative models are pink with a small chat icon (to
indicate its generative capabilities).

Generative Models: Decoder-Only Models

Similar to the encoder-only architecture of BERT, a decoder-only

architecture was proposed in 2018 to target generative tasks.” This
architecture was called a Generative Pre-trained Transformer (GPT) for its
generative capabilities (it’s now known as GPT-1 to distinguish it from later
versions). As shown in Figure 1-24, it stacks decoder blocks similar to the
encoder-stacked architecture of BERT.

GPT-1 was trained on a corpus of 7,000 books and Common Crawl, a large
dataset of web pages. The resulting model consisted of 117 million
parameters. Each parameter is a numerical value that represents the model’s
understanding of language.

If everything remains the same, we expect more parameters to greatly
influence the capabilities and performance of language models. Keeping this
in mind, we saw larger and larger models being released at a steady pace.
As illustrated in Figure 1-25, GPT-2 had 1.5 billion parameters® and GPT-3
used 175 billion parameters® quickly followed.

Input I love
sequence [‘] [‘]
Q| i
i —— s
: Transformer decoder SUEp)
: Transformer l l
: decoder ;
GPT-]E 0|
[Masked self-attention]
' 111] [[0 12
[Feedforward neural network]

Next ted
ex ‘gﬁ‘%l:gra e

Figure 1-24. The architecture of a GPT-1. It uses a decoder-only architecture and removes the
encoder-attention block.

GPT-3

GPT-2
GPT- Number of
T parameters
... .’.
117 Million 1.5 Billion 175 Billion

Figure 1-25. GPT models quickly grew in size with each iteration.

These generative decoder-only models, especially the “larger” models, are
commonly referred to as large language models (LLMs). As we will discuss
later in this chapter, the term LLM is not only reserved for generative models
(decoder-only) but also representation models (encoder-only).

Generative LLMs, as sequence-to-sequence machines, take in some text and
attempt to autocomplete it. Although a handy feature, their true power shone
from being trained as a chatbot. Instead of completing a text, what if they
could be trained to answer questions? By fine-tuning these models, we can
create instruct or chat models that can follow directions.

As illustrated in Figure 1-26, the resulting model could take in a user query
(prompt) and output a response that would most likely follow that prompt. As
such, you will often hear that generative models are completion models.

User query

(prompt) Tell me something about llamas

Generative LLM H

Task: complete the input

v

Llamas are domesticated South American
Output camelids, widely used as pack animals by
U p"_' Andean cultures since pre-Hispanic times.
(completion) With their fluffy coat, long neck, and
distinctive facial features...

Figure 1-26. Generative LLMSs take in some input and try to complete it. With instruct models, this
is morve than just autocomplete and attempts to answer the question.

A vital part of these completion models is something called the context
length or context window. The context length represents the maximum
number of tokens the model can process, as shown in Figure 1-27. A large
context window allows entire documents to be passed to the LLM. Note that
due to the autoregressive nature of these models, the current context length
will increase as new tokens are generated.

Input
(both prompt and Tell me something about llamas.

generated tokens)

(012 e e oy o e e

Current context length =8

Maximum context length: 512 (increases current
Output ¥ context length)

(generate one : |
token at a time) | domesticated

Figure 1-27. The context length is the maximum context an LLM can handle.

The Year of Generative Al

LLMs had a tremendous impact on the field and led some to call 2023 The
Year of Generative Al with the release, adoption, and media coverage of
ChatGPT (GPT-3.5). When we refer to ChatGPT, we are actually talking
about the product and not the underlying model. When it was first released, it
was powered by the GPT-3.5 LLM and has since then grown to include

several more performant variants, such as GPT-4.1°

GPT-3.5 was not the only model that made its impact in the Year of
Generative Al. As illustrated in Figure 1-28, both open source and
proprietary LLMs have made their way to the people at an incredible pace.
These open source base models are often referred to as foundation models
and can be fine-tuned for specific tasks, like following instructions.

Proprietary models
GPT-4

BARD
ChatGPT ‘ PaLmz claudez Grok

Gemini

2023

H 2024
Llama Falmn I]wen I Yi CommandR

7B/13B/33B/65B JB/40B 34B 35B
Mixtral |Phi-2
MPT Llama2 Mistral 8x=7B | 2.7B
7B/308B 7B/13B/70B 1B
DecilLM
7B

Figure 1-28. A comprehensive view into the Year of Generative Al. Note that many models are still
missing from this overview!

Apart from the widely popular Transformer architecture, new promising

architectures have emerged such as Mamba'"'? and RWKV."3 These novel
architectures attempt to reach Transformer-level performance with additional
advantages, like larger context windows or faster inference.

These developments exemplify the evolution of the field and showcase 2023
as a truly hectic year for AL It took all we had to just keep up with the many
developments, both within and outside of Language Al

As such, this book explores more than just the latest LLMs. We will explore
how other models, such as embedding models, encoder-only models, and
even bag-of-words can be used to empower LLMs.

The Moving Definition of a “Large Language
Model”

In our travels through the recent history of Language Al, we observed that
primarily generative decoder-only (Transformer) models are commonly

referred to as large language models. Especially if they are considered to be
“large.” In practice, this seems like a rather constrained description!

What if we create a model with the same capabilities as GPT-3 but 10 times
smaller? Would such a model fall outside the “large” language model
categorization?

Similarly, what if we released a model as big as GPT-4 that can perform
accurate text classification but does not have any generative capabilities?
Would it still qualify as a large “language model” if its primary function is
not language generation, even though it still represents text?

The problem with these kinds of definitions is that we exclude capable
models. What name we give one model or the other does not change how it
behaves.

Since the definition of the term “large language model” tends to evolve with
the release of new models, we want to be explicit in what it means for this
book. “Large” is arbitrary and what might be considered a large model today
could be small tomorrow. There are currently many names for the same thing
and to us, “large language models™ are also models that do not generate text
and can be run on consumer hardware.

As such, aside from covering generative models, this book will also cover
models with fewer than 1 billion parameters that do not generate text. We
will explore how other models, such as embedding models, representation
models, and even bag-of-words can be used to empower LLMs.

The Training Paradigm of Large Language
Models

Traditional machine learning generally involves training a model for a
specific task, like classification. As shown in Figure 1-29, we consider this
to be a one-step process.

Data Trained
(often structured)

T 11 o Training (specific task) > m

Figure 1-29. Traditional machine learning involves a single step: training a model for a specific
target task, like classification or regression.

Creating LLMs, in contrast, typically consists of at least two steps:
Language modeling

The first step, called pretraining, takes the majority of
computation and training time. An LLM is trained on a vast
corpus of internet text allowing the model to learn grammar,
context, and language patterns. This broad training phase is
not yet directed toward specific tasks or applications beyond
predicting the next word. The resulting model is often
referred to as a foundation model or base model. These
models generally do not follow instructions.

Fine-tuning

The second step, fine-tuning or sometimes post-training,
involves using the previously trained model and further
training it on a narrower task. This allows the LLM to adapt
to specific tasks or to exhibit desired behavior. For example,
we could fine-tune a base model to perform well on a
classification task or to follow instructions. It saves massive
amounts of resources because the pretraining phase is quite
costly and generally requires data and computing resources

that are out of the reach of most people and organizations.
For instance, Llama 2 has been trained on a dataset
containing 2 trillion tokens.'™ Imagine the compute
necessary to create that model! In Chapter 12, we will go
over several methods for fine-tuning foundation models on
your dataset.

Any model that goes through the first step, pretraining, we consider a
pretrained model, which also includes fine-tuned models. This two-step
approach of training is visualized in Figure 1-30.

Data OPretraining Base eFine-tuning Fine-tuned
(unsupervised) (janguage modeling) (specific task)
L LLM 4 > | LM
Data
(supervised)

Figure 1-30. Compared to traditional machine learning, LLM training takes a multistep
approach.

Additional fine-tuning steps can be added to further align the model with the
user’s preferences, as we will explore in Chapter 12.

Large Language Model Applications: What
Makes Them So Useful?

The nature of LLMs makes them suitable for a wide range of tasks. With text
generation and prompting, it almost seems as if your imagination is the limit.
To illustrate, let’s explore some common tasks and techniques:

Detecting whether a review left by a customer is positive or negative

This is (supervised) classification and can be handled with
both encoder- and decoder-only models either with
pretrained models (see Chapter 4) or by fine-tuning models
(see Chapter 11).

Developing a system for finding common topics in ticket issues

This is (unsupervised) classification for which we have no
predefined labels. We can leverage encoder-only models to
perform the classification itself and decoder-only models for
labeling the topics (see Chapter 5).

Building a system for retrieval and inspection of relevant documents

A major component of language model systems is their
ability to add external resources of information. Using
semantic search, we can build systems that allow us to easily
access and find information for an LLM to use (see
Chapter 8). Improve your system by creating or fine-tuning a
custom embedding model (see Chapter 12).
Constructing an LLM chatbot that can leverage external resources, such
as tools and documents
This is a combination of techniques that demonstrates how
the true power of LLMs can be found through additional
components. Methods such as prompt engineering (see
Chapter 6), retrieval-augmented generation (see Chapter 8),

and fine-tuning an LLM (see Chapter 12) are all pieces of the
LLM puzzle.

Constructing an LLM capable of writing recipes based on a picture
showing the products in your fridge
This is a multimodal task where the LLM takes in an image
and reasons about what it sees (see Chapter 9). LLMs are
being adapted to other modalities, such as Vision, which
opens a wide variety of interesting use cases.

LLM applications are incredibly satisfying to create since they are partially
bounded by the things you can imagine. As these models grow more accurate,
using them in practice for creative use cases such as role-playing and writing
children’s books simply becomes more and more fun.

Responsible LLM Development and Usage

The 1impact of LLMs has been and likely continues to be significant due to
their widespread adoption. As we explore the incredible capabilities of
LLMs it is important to keep their societal and ethical implications in mind.
Several key points to consider:

Bias and fairness

LLMs are trained on large amounts of data that might
contain biases. LLMs might learn from these biases, start to
reproduce them, and potentially amplify them. Since the
data on which LLMs are trained are seldom shared, it
remains unclear what potential biases they might contain
unless you try them out.

Transparency and accountability

Due to LLMs’ incredible capabilities, it is not always clear
when you are talking with a human or an LLM. As such, the
usage of LLMs when interacting with humans can have
unintended consequences when there is no human in the
loop. For instance, LLM-based applications used in the
medical field might be regulated as medical devices since
they could affect a patient’s well-being.

Generating harmful content

An LLM does not necessarily generate ground-truth content
and might confidently output incorrect text. Moreover, they
can be used to generate fake news, articles, and other
misleading sources of information.

Intellectual property

Is the output of an LLM your intellectual property or that of
the LLM’s creator? When the output is similar to a phrase in
the training data, does the intellectual property belong to the
author of that phrase? Without access to the training data it
remains unclear when copyrighted material is being used by
the LLM.

Regulation

Due to the enormous impact of LLMs, governments are
starting to regulate commercial applications. An example is
the European AI Act, which regulates the development and
deployment of foundation models including LLMs.

https://oreil.ly/nYgi5

As you develop and use LLMs, we want to stress the importance of ethical
considerations and urge you to learn more about the safe and responsible use
of LLMs and Al systems in general.

Limited Resources Are All You Need

The compute resources that we have referenced several times thus far
generally relate to the GPU(s) you have available on your system. A
powerful GPU (graphics card) will make both training and using LLMs much
more efficient and faster.

In choosing a GPU, an important component is the amount of VRAM (video
random-access memory) you have available. This refers to the amount of
memory you have available on your GPU. In practice, the more VRAM you
have the better. The reason for this 1s that some models simply cannot be
used at all if you do not have sufficient VRAM.

Because training and fine-tuning LLMs can be an expensive process, GPU-
wise, those without a powerful GPU have often been referred to as the GPU-
poor. This illustrates the battle for computing resources to train these huge
models. To create the Llama 2 family of models, for example, Meta used
A100-80 GB GPUs. Assuming renting such a GPU would cost $1.50/hr, the

total costs of creating these models would exceed $5,000,000!1°

Unfortunately, there is no single rule to determine exactly how much VRAM
you need for a specific model. It depends on the model’s architecture and
size, compression technique, context size, backend for running the model, etc.

This book is for the GPU-poor! We will use models that users can run
without the most expensive GPU(s) available or a big budget. To do so, we
will make all the code available in Google Colab instances. At the time of
writing, a free instance of Google Colab will net you a T4 GPU with 16 GB
VRAM, which is the minimum amount of VRAM that we suggest.

Interfacing with Large Language Models

Interfacing with LLMs is a vital component of not only using them but also
developing an understanding of their inner workings. Due to the many
developments in the field, there has been an abundance of techniques,
methods, and packages for communicating with LLMs. Throughout the book,
we intend to explore the most common techniques for doing so, including
using both proprietary (closed source) and publicly available open models.

Proprietary, Private Models

Closed source LLMs are models that do not have their weights and
architecture shared with the public. They are developed by specific
organizations with their underlying code being kept secret. Examples of such
models include OpenAl’s GPT-4 and Anthropic’s Claude. These proprietary
models are generally backed by significant commercial support and have
been developed and integrated within their services.

You can access these models through an interface that communicates with the
LLM, called an API (application programming interface), as illustrated in
Figure 1-31. For instance, to use ChatGPT in Python you can use OpenAl’s
package to interface with the service without directly accessing it.

Hosted by user Hosted by organization
API Proprietary LLM
User (interface) (closed source)

]
Figure 1-31. Closed source LLMs are accessed by an interface (API). As a result, details of the
LLM itself, including its code and architecture are not shared with the user.

A huge benefit of proprietary models is that the user does not need to have a
strong GPU to use the LLM. The provider takes care of hosting and running
the model and generally has more computing available. There is no expertise
necessary concerning hosting and using the model, which lowers the barrier
to entry significantly. Moreover, these models tend to be more performant

https://oreil.ly/Vx1m3

than their open source counterparts due to the significant investment from
these organizations.

A downside to this is that it can be a costly service. The provider manages
the risk and costs of hosting the LLM, which often translates to a paid
service. Moreover, since there is no direct access to the model, there is no
method to fine-tune it yourself. Lastly, your data is shared with the provider,
which is not desirable in many common use cases, such as sharing patient
data.

Open Models

Open LLMs are models that share their weights and architecture with the
public to use. They are still developed by specific organizations but often
share their code for creating or running the model locally—with varying
levels of licensing that may or may not allow commercial usage of the model.
Cohere’s Command R, the Mistral models, Microsoft’s Phi, and Meta’s
Llama models are all examples of open models.

NOTE

There are ongoing discussions as to what truly represents an open source model. For
istance, some publicly shared models have a permissive commercial license, which means
that the model cannot be used for commercial purposes. For many, this is not the true
definition of open source, which states that using these models should not have any
restrictions. Similarly, the data on which a model is trained as well as its source code are
seldom shared.

You can download these models and use them on your device as long as you
have a powerful GPU that can handle these kinds of models, as shown in
Figure 1-32.

Hosted by user

User hardware LLM

User (PC, cloud, etc.) (open source)

Figure 1-32. Open source LLMs are directly by the user. As a result, details of the LLM itself
including its code and architecture arve shared with the user.

A major advantage of these local models is that you, the user, have complete
control over the model. You can use the model without depending on the API
connection, fine-tune it, and run sensitive data through it. You are not
dependent on any service and have complete transparency of the processes
that lead to the output of the model. This benefit is enhanced by the large
communities that enable these processes, such as Hugging Face,
demonstrating the possibilities of collaborative efforts.

A downside is that you need powerful hardware to run these models and
even more when training or fine-tuning them. Moreover, it requires specific
knowledge to set up and use these models (which we will cover throughout
this book).

We generally prefer using open source models wherever we can. The
freedom this gives to play around with options, explore the inner workings,
and use the model locally arguably provides more benefits than using
proprietary LLMs.

Open Source Frameworks

Compared to closed source LLMs, open source LLMs require you to use
certain packages to run them. In 2023, many different packages and
frameworks were released that, each in their own way, interact with and
make use of LLMs. Wading through hundreds upon hundreds of potentially
worthwhile frameworks is not the most enjoyable experience.

As a result, you might even miss your favorite framework in this book!

https://oreil.ly/-G52Z

Instead of attempting to cover every LLM framework in existence (there are
too many, and they continue to grow in number), we aim to provide you with
a solid foundation for leveraging LLMs. The idea is that after reading this
book, you can easily pick up most other frameworks as they all work in a
very similar manner.

The intuition that we attempt to realize is an important component of this. If
you have an intuitive understanding of not only LLMs but also using them in
practice with common frameworks, branching out to others should be a
straightforward task.

More specifically, we focus on backend packages. These are packages
without a GUI (graphical user interface) that are created for efficiently
loading and running any LLM on your device, such as llama.cpp, LangChain,
and the core of many frameworks, Hugging Face Transformers.

TIP

We will mostly cover frameworks for interacting with large language models through code.
Although it helps you learn the fundamentals of these frameworks, sometimes you just
want a ChatGPT-like interface with a local LLM. Fortunately, there are many incredible
frameworks that allow for this. A few examples include text-generation-webui,
KoboldCpp, and LM Studio.

Generating Your First Text

An important component of using language models is selecting them. The
main source for finding and downloading LLMs is the Hugging Face Hub.
Hugging Face is the organization behind the well-known Transformers
package, which for years has driven the development of language models in
general. As the name implies, the package was built on top of the
transformers framework that we discussed in “A Recent History of
Language Al”.

At the time of writing, you will find more than 800,000 models on Hugging
Face’s platform for many different purposes, from LLMs and computer vision

https://oreil.ly/g2QVa
https://oreil.ly/fE7P3
https://oreil.ly/uvKQD
https://oreil.ly/hYb_C
https://oreil.ly/x08L2
https://oreil.ly/dLJXI
https://oreil.ly/tQobb
https://oreil.ly/AV-gJ

models to models that work with audio and tabular data. Here, you can find
almost any open source LLM.

Although we will explore all kinds of models throughout this book, let’s start
our first lines of code with a generative model. The main generative model
we use throughout the book is Phi-3-mini, which is a relatively small (3.8

billion parameters) but quite performant model.’® Due to its small size, the
model can be run on devices with less than 8 GB of VRAM. If you perform
quantization, a type of compression that we will further discuss in Chapters 7
and 12, you can use even less than 6 GB of VRAM. Moreover, the model is
licensed under the MIT license, which allows the model to be used for
commercial purposes without constraints!

Keep in mind that new and improved LLMs are frequently released. To
ensure this book remains current, most examples are designed to work with
any LLM. We’ll also highlight different models in the repository associated
with this book for you to try out.

Let’s get started! When you use an LLM, two models are loaded:
o The generative model itself
e Its underlying tokenizer

The tokenizer is in charge of splitting the input text into tokens before feeding
it to the generative model. You can find the tokenizer and model on the
Hugging Face site and only need the corresponding IDs to be passed. In this
case, we use “microsoft/Phi-3-mini-4k-instruct” as the main path to the
model.

We canuse transformers to load both the tokenizer and model. Note that
we assume you have an NVIDIA GPU (device map="cuda") but you
can choose a different device instead. If you do not have access to a GPU you
can use the free Google Colab notebooks we made available in the
repository of this book:

from import AutoModelForCausallLM, AutoTokenizer

https://oreil.ly/lkdG-

Load model and tokenizer

model = AutoModelForCausalLM.from pretrained (
"microsoft/Phi-3-mini-4k-instruct",
device map="cuda",
torch dtype="auto",

trust remote code=True,

)

tokenizer = AutoTokenizer.from pretrained("microsoft/Phi-3-mini-
dk-instruct")

Running the code will start downloading the model and depending on your
internet connection can take a couple of minutes.

Although we now have enough to start generating text, there is a nice trick in
transformers that simplifies the process, namely
transformers.pipeline. It encapsulates the model, tokenizer, and
text generation process into a single function:

from import pipeline

Create a pipeline

generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,

return full text=False,
max new tokens=500,

do_sample=False

The following parameters are worth mentioning:

return full text

By setting this to False, the prompt will not be returned but

merely the output of the model.

max new tokens
The maximum number of tokens the model will generate. By
setting a limit, we prevent long and unwieldy output as some

models might continue generating output until they reach
their context window.

do sample
Whether the model uses a sampling strategy to choose the
next token. By setting this to False, the model will always

select the next most probable token. In Chapter 6, we
explore several sampling parameters that invoke some
creativity in the model’s output.

To generate our first text, let’s instruct the model to tell a joke about
chickens. To do so, we format the prompt in a list of dictionaries where each
dictionary relates to an entity in the conversation. Our role is that of “user”
and we use the “content” key to define our prompt:

The prompt (user input / query)
messages = [

{"role": "user", "content": "Create a funny joke about
chickens."}

]

Generate output

output = generator (messages)

print (output[0] ["generated text"])

Why don't chickens like to go to the gym? Because they can't
crack the egg-sistence of it!

And that is it! The first text generated in this book was a decent joke about
chickens.

Summary

In this first chapter of the book, we delved into the revolutionary impact
LLMs have had on the Language Al field. It has significantly changed our

approach to tasks such as translation, classification, summarization, and
more. Through a recent history of Language Al, we explored the
fundamentals of several types of LLMs, from a simple bag-of-words
representation to more complex representations using neural networks.

We discussed the attention mechanism as a step toward encoding context
within models, a vital component of what makes LLMs so capable. We
touched on two main categories of models that use this incredible
mechanism: representation models (encoder-only) like BERT and generative
models (decoder-only) like the GPT family of models. Both categories are
considered large language models throughout this book.

Overall, the chapter provided an overview of the landscape of Language Al,
including its applications, societal and ethical implications, and the
resources needed to run such models. We ended by generating our first text
using Phi-3, a model that will be used throughout the book.

In the next two chapters, you will learn about some underlying processes. We
start by exploring tokenization and embeddings in Chapter 2, two often
underestimated but vital components of the Language Al field. What follows
in Chapter 3 is an in-depth look into language models where you will
discover the precise methods used for generating text.

T McCarthy (2007). “What is artificial intelligence?” Retrieved from https://oreil.ly/C7sja and
https://oreil ly/n9X80.

2 Fabrizio Sebastiani. “Machine learning in automated text categorization.” ACM Computing
Surveys (CSUR) 34.1 (2002): 1-47.

3 Tomas Mikolov et al. “Efficient estimation of word representations in vector space.” arXiv
preprint arXiv:1301.3781 (2013).

4 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation by jointly
learning to align and translate.” arXiv preprint arXiv:1409.0473 (2014).

S Ashish Vaswani et al. “Attention is all you need.” Advances in Neural Information Processing
Systems 30 (2017).

6 Jacob Devlin et al. “BERT: Pre-training of deep bidirectional transformers for language
understanding.” arXiv preprint arXiv:1810.04805 (2018).

https://oreil.ly/C7sja
https://oreil.ly/n9X8O

7 Alec Radford et al. “Improving language understanding by generative pre-training”, (2018).

8 Alec Radford et al. “Language models are unsupervised multitask learners.” OpenAl Blog 1.8
(2019): 9.

9 Tom Brown et al. “Language models are few-shot learners.” Advances in Neural Information
Processing Systems 33 (2020): 1877-1901.

10 OpenAl, “Gpt-4 technical report.” arXiv preprint arXiv:2303.08774 (2023).

M Albert Gu and Tri Dao. “Mamba: Linear-time sequence modeling with selective state spaces.”
arXiv preprint arXiv:2312.00752 (2023).

12" See “A Visual Guide to Mamba and State Space Models” for an illustrated and visual guide to
Mamba as an alternative to the Transformer architecture.

13 Bo Peng et al. “RWKYV: Reinventing RNNs for the transformer era.” arXiv preprint
arXiv:2305.13048 (2023).

14 Hugo Touvron et al. “Llama 2: Open foundation and fine-tuned chat models.” arXiv preprint
arXiv:2307.09288 (2023).

15 The models were trained for 3,311,616 GPU hours, which refers to the amount of time it takes to
train a model on a GPU, multiplied by the number of GPUs available.

16 Marah Abdin et al. “Phi-3 technical report: A highly capable language model locally on your
phone.” arXiv preprint arXiv:2404.14219 (2024).

https://oreil.ly/8ry5b
https://oreil.ly/ikVmy
https://oreil.ly/PSbVT

Chapter 2. Tokens and
Embeddings

Tokens and embeddings are two of the central concepts of using large
language models (LLMs). As we’ve seen in the first chapter, they’re not only
important to understanding the history of Language Al, but we cannot have a
clear sense of how LLMs work, how they’re built, and where they will go in
the future without a good sense of tokens and embeddings, as we can see in
Figure 2-1.

Input | Have the bards who preceded...

Tokenization

Break down the text into smaller pieces
(words or parts of words)

Tokens [Have] [the] [bards] (who] [preceded]

Turn tokens into numeric representations
capturing their meaning

Embeddings

Figure 2-1. Language models deal with text in small chunks called tokens. For the language
model to compute language, it needs to turn tokens into numeric representations called
embeddings.

In this chapter, we look more closely at what tokens are and the tokenization
methods used to power LLMs. We will then dive into the famous word2vec
embedding method that preceded modern-day LLMs and see how it’s

extending the concept of token embeddings to build commercial
recommendation systems that power a lot of the apps you use. Finally, we go
from token embeddings into sentence or text embeddings, where a whole
sentence or document can have one vector that represents it—enabling
applications like semantic search and topic modeling that we see in Part II of
this book.

LLM Tokenization

The way the majority of people interact with language models, at the time of
this writing, is through a web playground that presents a chat interface
between the user and a language model. You may notice that a model does not
produce its output response all at once; it actually generates one token at a
time.

But tokens aren’t only the output of a model, they’re also the way in which
the model sees its inputs. A text prompt sent to the model is first broken
down into tokens, as we’ll now see.

How Tokenizers Prepare the Inputs to the Language
Model

Viewed from the outside, generative LLMs take an input prompt and generate
a response, as we can see in Figure 2-2.

Input

prompt Have the bards who preceded me left any theme unsung?

Language model
Process the text and predict the next token

v
Output

Figure 2-2. High-level view of a language model and its input prompt.

Before the prompt 1s presented to the language model, however, it first has to
go through a tokenizer that breaks it into pieces. You can find an example
showing the tokenizer of GPT-4 on the OpenAl Platform. If we feed it the
input text, it shows the output in Figure 2-3, where each token is shown in a
different color.

GPT-35&GPT-4 GPT-3(Legacy)

Have the bards who preceded me left any theme unsung?

Clear Show example

Tokens Characters

13 53

Have the bards who preceded me left any theme unsung?

Text Token IDs

Figure 2-3. A tokenizer breaks down text into words or parts of words before the model processes
the text. It does so according to a specific method and training procedure (from
https:/joreil ly/ovUWO).

Let’s look at a code example and interact with these tokens ourselves. Here
we’ll be downloading an LLM and seeing how to tokenize the input before
generating text with the LLM.

Downloading and Running an LLM

Let’s start by loading our model and its tokenizer as we’ve done in
Chapter 1:

https://oreil.ly/ovUWO
https://oreil.ly/ovUWO

from transformers import AutoModelForCausallM, AutoTokenizer

Load model and tokenizer

model = AutoModelForCausallM.from pretrained(
"microsoft/Phi-3-mini-4k-instruct",
device map="cuda",
torch dtype="auto",
trust remote code=True,

)

tokenizer = AutoTokenizer.from pretrained("microsoft/Phi-3-mini-
4k—-instruct")

We can then proceed to the actual generation. We first declare our prompt,
then tokenize it, then pass those tokens to the model, which generates its
output. In this case, we’re asking the model to only generate 20 new tokens:

prompt = "Write an email apologizing to Sarah for the tragic
gardening mishap. Explain how it happened.<|assistant|>"

Tokenize the input prompt
input ids = tokenizer (prompt,
return tensors="pt").input ids.to("cuda")

Generate the text

generation output = model.generate (
input ids=input ids,
max new_ tokens=20

)

Print the output
print (tokenizer.decode (generation output[0]))

Output:

<s> Write an email apologizing to Sarah for the tragic
gardening mishap. Explain how it happened.<|assistant|> Subject:
My Sincere Apologies for the Gardening Mishap

Dear

The text in bold is the 20 tokens generated by the model.

Looking at the code, we can see that the model does not in fact receive the
text prompt. Instead, the tokenizers processed the input prompt, and returned
the information the model needed in the variable input ids, which the
model used as its input.

Let’s print input ids to see what it holds inside:

tensor ([[1, 14350, 385, 4876, 27746, 5281, 304, 19235, 363,
278, 25305, 293, 16423, 292, 286, 728, 481, 29889, 12027, 7420,
920, 372, 9559, 29889, 32001]], device='cuda:0")

This reveals the inputs that LLMs respond to, a series of integers as shown in
Figure 2-4. Each one is the unique ID for a specific token (character, word,
or part of a word). These IDs reference a table inside the tokenizer
containing all the tokens it knows.

- =

Input Have the bards who preceded...
Tokenizer: encode
Tokens (Havel [the] [b | [ards| who
et F) r . i by 3
Token IDs | 6,975 278 278 3,163 1,058

Language model

Figure 2-4. A tokenizer processes the input prompt and prepares the actual input into the
language model: a list of token IDs. The specific token IDs in the figure are just demonstrative.

If we want to inspect those IDs, we can use the tokenizer’s decode method to
translate the IDs back into text that we can read:

for id in input ids[0]:
print (tokenizer.decode (id))

This prints (each token is on a separate line):

<|assistant|>

This 1s how the tokenizer broke down our input prompt. Notice the
following;

e The first tokenis ID 1 (<s>), a special token indicating the
beginning of the text.

e Some tokens are complete words (e.g., Write, an, email).
e Some tokens are parts of words (e.g., apolog, izing, trag, ic).

¢ Punctuation characters are their own token.

Notice how the space character does not have its own token. Instead, partial
tokens (like “izing” and “ic”) have a special hidden character at their
beginning that indicates that they’re connected with the token that precedes
them in the text. Tokens without that special character are assumed to have a
space before them.

On the output side, we can also inspect the tokens generated by the model by
printing the generation output variable. This shows the input tokens
as well as the output tokens (we’ll highlight the new tokens in bold):

tensor([[1, 14350, 385, 4876, 27746, 5281, 304, 19235, 363,
278,

25305, 293, 16423, 292, 286, 728, 481, 29889, 12027, 7420,
920, 372, 9559, 29889, 32001, 3323, 622, 29901, 1619, 317,
3742, 406, 6225, 11763, 363, 278, 19906, 292, 341, 728,

481, 13, 13, 29928, 799]], device='cuda:0')
This shows us the model generated the token 3323, ' Sub ', followed by

token 622, ' ject '. Together they formed the word ' Subject'. They
were then followed by token 29901, which is the colon ' : '...and so on. Just

like on the input side, we need the tokenizer on the output side to translate the
token ID into the actual text. We do that using the tokenizer’s decode method.
We can pass it an individual token ID or a list of them:

print (tokenizer.decode ())

print (tokenizer.decode ())

print (tokenizer.decode ([, 1))
print (tokenizer.decode ())

This outputs:

Sub
ject

Subject

How Does the Tokenizer Break Down Text?

There are three major factors that dictate how a tokenizer breaks down an
input prompt.

First, at model design time, the creator of the model chooses a tokenization
method. Popular methods include byte pair encoding (BPE) (widely used by
GPT models) and WordPiece (used by BERT). These methods are similar in
that they aim to optimize an efficient set of tokens to represent a text dataset,
but they arrive at it in different ways.

Second, after choosing the method, we need to make a number of tokenizer
design choices like vocabulary size and what special tokens to use. More on
this in “Comparing Trained LLM Tokenizers™.

Third, the tokenizer needs to be trained on a specific dataset to establish the
best vocabulary it can use to represent that dataset. Even if we set the same
methods and parameters, a tokenizer trained on an English text dataset will
be different from another trained on a code dataset or a multilingual text
dataset.

In addition to being used to process the input text into a language model,
tokenizers are used on the output of the language model to turn the resulting
token ID into the output word or token associated with it, as Figure 2-5
shows.

Input [Have the bards who preceded...]
Tokenizer: encode

Tokens [Have] [the | [b | [ards | who
—— - 1 r w - ~ —

Token IDs | 6,975 278 278 3163 1,058

v
Language model
v

Output token ID: (1,394
Tokenizer: decode +

Figure 2-5. Tokenizers are also used to process the output of the model by converting the output
token ID into the word or token associated with that ID.

Word Versus Subword Versus Character Versus Byte
Tokens

The tokenization scheme we just discussed 1s called subword tokenization.
It’s the most commonly used tokenization scheme but not the only one. The
four notable ways to tokenize are shown in Figure 2-6. Let’s go over them:

Word tokens

This approach was common with earlier methods like
word2vec but is being used less and less in NLP. Its
usefulness, however, led it to be used outside of NLP for use

cases such as recommendation systems, as we’ll see later in
the chapter.

One challenge with word tokenization is that the tokenizer
may be unable to deal with new words that enter the dataset
after the tokenizer was trained. This also results in a
vocabulary that has a lot of tokens with minimal differences
between them (e.g., apology, apologize, apologetic,
apologist). This latter challenge is resolved by subword
tokenization as it has a token for apolog, and then suffix
tokens (e.g., -y, -ize, -etic, -ist) that are common with many
other tokens, resulting in a more expressive vocabulary.

Subword tokens

This method contains full and partial words. In addition to
the vocabulary expressivity mentioned earlier; another
benefit of the approach is its ability to represent new words
by breaking down the new token into smaller characters,
which tend to be a part of the vocabulary.

Text Havethe JJ bards who preceded...

Word tokens [Have T the T J TbardsT who T preceded 1.
Subword tokens [Have T the T J T bard m who T preced Ted ..]

Charactertokens |H|a|v|e tihliel |3 bla|r|d|s] ..
H a e t h e ﬂ

ﬁipEICE} i‘_‘.patl‘-_“-‘ ‘SPHEE?

Y h'il i ot ¥ v e 1"_‘\.r ~ o o :f—“u—\
olololololo[ololof[1[1]1]1]0
t{1f{1]1]o]1]1]1]o]l1]lololo]|o
ol1 11111 f{1l1lo]lo]1]1
olol1lolo|l1]loloflof1|1]lofl1]0

Bytetokens | 11 o flolololol1lololo]lil1]o]lol
olo|l1|l1|lol1]ofl1|ofof1|1|1]0
olol1|lo|lo|lolo|lo|loflo|l1|1|o0]o0
ol1lol1lololol1|lolol1lofl1]o

Figure 2-6. There are multiple methods of tokenization that break down the text to different

sizes of components (words, subwords, characters, and bytes).

Character tokens

This is another method that can deal successfully with new
words because it has the raw letters to fall back on. While
that makes the representation easier to tokenize, it makes
the modeling more difficult. Where a model with subword
tokenization can represent “play” as one token, a model
using character-level tokens needs to model the information
to spell out “p-l-a-y” in addition to modeling the rest of the
sequence.

Subword tokens present an advantage over character tokens
in the ability to fit more text within the limited context
length of a Transformer model. So with a model with a
context length of 1,024, you may be able to fit about three

times as much text using subword tokenization than using
character tokens (subword tokens often average three
characters per token).

Byte tokens

One additional tokenization method breaks down tokens
into the individual bytes that are used to represent unicode
characters. Papers like “CANINE: Pre-training an efficient
tokenization-free encoder for language representation”
outline methods like this, which are also called
“tokenization-free encoding.” Other works like “ByT5:
Towards a token-free future with pre-trained byte-to-byte
models” show that this can be a competitive method,
especially in multilingual scenarios.

One distinction to highlight here: some subword tokenizers also include bytes
as tokens in their vocabulary as the final building block to fall back to when
they encounter characters they can’t otherwise represent. The GPT-2 and
RoBERTa tokenizers do this, for example. This doesn’t make them
tokenization-free byte-level tokenizers, because they don’t use these bytes to
represent everything, only a subset, as we’ll see in the next section.

If you want to go deeper into tokenizers, they are discussed in more detail in
Designing Large Language Model Applications.

Comparing Trained LLM Tokenizers

We’ve pointed out earlier three major factors that dictate the tokens that
appear within a tokenizer: the tokenization method, the parameters and
special tokens we use to initialize the tokenizer, and the dataset the tokenizer
is trained on. Let’s compare and contrast a number of actual, trained
tokenizers to see how these choices change their behavior. This comparison

https://oreil.ly/eP-wq
https://oreil.ly/a-pqF
https://oreil.ly/y0iu6

will show us that newer tokenizers have changed their behavior to improve
model performance, and we’ll also see how specialized models (like code
generation models, for example) often need specialized tokenizers.

We’ll use a number of tokenizers to encode the following text:

text = "nnr

English and CAPITALIZATION

535
show tokens False None elif == >= else: two tabs:" " Three tabs:

" \AJ

12.0*50=600

This will allow us to see how each tokenizer deals with a number of
different kinds of tokens:

o Capitalization.
o Languages other than English.
e Emojis.

e Programming code with keywords and whitespaces often used for
indentation (in languages like Python for example).

o Numbers and digits.

o Special tokens. These are unique tokens that have a role other than
representing text. They include tokens that indicate the beginning of
the text, or the end of the text (which is the way the model signals to
the system that it has completed this generation), or other functions
as we’ll see.

Let’s go from older to newer tokenizers to see how they tokenize this text and
what that might say about the language model. We’ll tokenize the text, and
then print each token with a color background color using this function:

colors list = |
'102;194;165", '252;141;98', '141;160;203",
'231;138;195", 'lo66;216;84"', '255;217;47"

]

def show tokens(sentence, tokenizer name) :

tokenizer = AutoTokenizer.from pretrained(tokenizer name)
token ids = tokenizer (sentence) .input ids
for idx, t in enumerate (token ids):

print(

£'\x1b[0;30;48;2; {colors list[idx %
len(colors list)]}m' +

tokenizer.decode (t) +

"\x1b[0m"',

end="' "'

BERT base model (uncased) (2018)
Link to the model on the HuggingFace model hub

Tokenization method: WordPiece, introduced in “Japanese and Korean voice
search”:

Vocabulary size: 30,522

Special tokens:

unk token [UNK]
An unknown token that the tokenizer has no specific
encoding for.

sep token [SEP]
A separator that enables certain tasks that require giving the
model two texts (in these cases, the model is called a cross-
encoder). One example is reranking, as we’ll see in
Chapter 8.

pad token [PAD]

https://oreil.ly/gQK_N
https://oreil.ly/4nE6b

A padding token used to pad unused positions in the model’s
input (as the model expects a certain length of input, its

context-size).

cls token [CLS]
A special classification token for classification tasks, as we’ll

see in Chapter 4.

mask token [MASK]
A masking token used to hide tokens during the training

process.

Tokenized text:

[CLS] english and capital ##ization [UNK] [UNK] show _
token ##s falsenoneell ##tf==>=else : two tab ##s "
"three tab ##s:"" 12 . 0% 50=600 [SEP]

BERT was released in two major flavors: cased (where the capitalization is
kept) and uncased (where all capital letters are first turned into small cap
letters). With the uncased (and more popular) version of the BERT tokenizer,
we notice the following;

o The newline breaks are gone, which makes the model blind to
information encoded in newlines (e.g., a chat log when each turn is
in a new line).

e All the text is in lowercase.

o The word “capitalization” is encoded as two subtokens: capital
##ization. The ## characters are used to indicate this token is a
partial token connected to the token that precedes it. This is also a
method to indicate where the spaces are, as it is assumed tokens
without ## in front have a space before them.

o The emoji and Chinese characters are gone and replaced with the
[UNK] special token indicating an “unknown token.”

BERT base model (cased) (2018)
Link to the model on the HuggingFace model hub

Tokenization method: WordPiece
Vocabulary size: 28,996

Special tokens: Same as the uncased version
Tokenized text:

[CLS] English and CA ##PI ##TA ##L ##I ##Z ##AT ##ION

[UNK] [UNK] show token #i#s F f##als ##e None el ##if ==>
=else : two ta ##bs : " " Threeta ##bs : " " 12 .0 * 50 =
600 [[SEP]

The cased version of the BERT tokenizer differs mainly in including
uppercase tokens.

e Notice how “CAPITALIZATION” is now represented as eight
tokens: CA ##PT ##TA ##L ##I ##Z ##AT ##ION.

o Both BERT tokenizers wrap the input within a starting [CLS] token
and a closing [[SEP] token. [CLS] and [SEP] are utility tokens
used to wrap the input text and they serve their own purposes.

[CLS] stands for classification as it’s a token used at times for
sentence classification. [SEP] stands for separator, as it’s used to
separate sentences in some applications that require passing two
sentences to a model (For example, in Chapter 8, we will use a
[SEP] token to separate the text of the query and a candidate
result.)

GPT-2 (2019)
Link to the model on the HuggingFace model hub

https://oreil.ly/nvFOZ
https://oreil.ly/hhJ-I

Tokenization method: Byte pair encoding (BPE), introduced in “Neural
machine translation of rare words with subword units”.

Vocabulary size: 50,257
Special tokens: <|endoftext |>

English and CAP ITAL IZ ATION

00000

show tokensFalseNoneel i1f==>=else two tabs""
Three tabs : " "

12 0*50 =600
With the GPT-2 tokenizer, we notice the following:

o The newline breaks are represented in the tokenizer.

» Capitalization is preserved, and the word “CAPITALIZATION” is
represented in four tokens.

e The Jd%y characters are now represented by multiple tokens each.
While we see these tokens printed as the € character, they actually
stand for different tokens. For example, the JiJ emoji is broken
down into the tokens with token IDs 8582, 236, and 113. The
tokenizer is successful in reconstructing the original character from
these tokens. We can see that by printing
tokenizer.decode ([8582, 236, 113]), whichprints

out (Jf?]

o The two tabs are represented as two tokens (token number 197 in
that vocabulary) and the four spaces are represented as three tokens
(number 220) with the final space being a part of the token for the
closing quote character.

o The two tabs are represented as two tokens (token number 197 in
that vocabulary) and the four spaces are represented as three tokens
(number 220) with the final space being a part of the token for the
closing quote character.

https://oreil.ly/qCxr4

NOTE

What is the significance of whitespace characters? These are important for models to
understand or generate code. A model that uses a single token to represent four
consecutive whitespace characters is more tuned to a Python code dataset. While a model
can live with representing it as four different tokens, it does make the modeling more
difficult as the model needs to keep track of the indentation level, which often leads to
worse performance. This is an example of where tokenization choices can help the model
improve on a certain task.

Flan-T5 (2022)

Tokenization method: Flan-T5 uses a tokenizer implementation called
SentencePiece, introduced in “SentencePiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing”,
which supports BPE and the unigram language model (described in
“Subword regularization: Improving neural network translation models with
multiple subword candidates™).

Vocabulary size: 32,100

Special tokens:
e unk token <unk>
e pad token <pad>

Tokenized text:

English and CA PI TAL IZ ATION <unk> <unk> show| to kens
Fal seNoneelif==>=else : twotabs : " " Three tab s
s " "I2R 0 X550 =600</s>

The Flan-T5 family of models use the SentencePiece method. We notice the
following;

o No newline or whitespace tokens; this would make it challenging
for the model to work with code.

https://oreil.ly/cmWPA
https://oreil.ly/2aNI5
https://oreil.ly/B4WiL

o The emoji and Chinese characters are both replaced by the <unk>
token, making the model completely blind to them.
GPT-4 (2023)
Tokenization method: BPE
Vocabulary size: A little over 100,000

Special tokens:
e <|endoftext|>

e Fill in the middle tokens. These three tokens enable the LLM to
generate a completion given not only the text before it but also
considering the text after it. This method is explained in more detail
in the paper “Efficient training of language models to fill in the
middle”; its exact details are beyond the scope of this book. These
special tokens are:

m <|fim prefix|>

s <|fim middle|>

m <|fim suffix|>
Tokenized text:

English and CAPITAL IZATION

000000

show tokens False None elif ==>=glse : two tabs
Bree tabs : j £

12 . 0%*50=600

" "

The GPT-4 tokenizer behaves similarly to its ancestor, the GPT-2 tokenizer.
Some differences are:

o The GPT-4 tokenizer represents the four spaces as a single token. In
fact, it has a specific token for every sequence of whitespaces up to

https://oreil.ly/7S7ZZ

a list of 83 whitespaces.

e The Python keyword el1i f has its own token in GPT-4. Both this
and the previous point stem from the model’s focus on code in
addition to natural language.

o The GPT-4 tokenizer uses fewer tokens to represent most words.
Examples here include “CAPITALIZATION” (two tokens versus
four) and “tokens” (one token versus three).

o Refer back to what we said about the GPT-2 tokenizer with regards
to the L tokens.

StarCoder2 (2024)

StarCoder2 1s a 15-billion parameter model focused on generating code
described in the paper “StarCoder 2 and the stack v2: The next generation”,
which continues the work from the original StarCoder described in
“StarCoder: May the source be with you!”.

Tokenization method: Byte pair encoding (BPE)
Vocabulary size: 49,152
Example special tokens:
e <|endoftext|>
e Fill in the middle tokens:
m <fim prefix>
s <fim middle>
m <fim suffix>
= <fim pad>

o When representing code, managing the context is important. One file
might make a function call to a function that is defined in a different
file. So the model needs some way of being able to identify code

https://oreil.ly/hBZ9V
https://oreil.ly/k4b-T
https://oreil.ly/RJmCn

that 1s in different files in the same code repository, while making a
distinction between code in different repos. That’s why StarCoder?2
uses special tokens for the name of the repository and the filename:

m <filename>
» <reponame>
= <gh stars>

Tokenized text:

Fnglish and CAPITAL IZATION

0000 O

show tokens False None glif ==>=gelse : two tabs :
Lhree tabs § " S

12. 0505600

" "

This 1s an encoder that focuses on code generation:

o Similar to GPT-4, it encodes the list of whitespaces as a single
token.

o A major difference here to everything we’ve seen so far is that each
digit is assigned its own token (so 600 becomes 6 0 0). The
hypothesis here is that this would lead to better representation of
numbers and mathematics. In GPT-2, for example, the number 870 is
represented as a single token. But 871 is represented as two tokens
(8 and 71). You can intuitively see how that might be confusing to
the model and how it represents numbers.

Galactica

The Galactica model described in “Galactica: A large language model for
science” 1s focused on scientific knowledge and is trained on many scientific
papers, reference materials, and knowledge bases. It pays extra attention to
tokenization that makes it more sensitive to the nuances of the dataset it’s

https://oreil.ly/I6IXt
https://oreil.ly/gWRzV

representing. For example, it includes special tokens for citations, reasoning,
mathematics, amino acid sequences, and DNA sequences.

Tokenization method: Byte pair encoding (BPE)
Vocabulary size: 50,000

Special tokens:

o <s>

<pad>

</s>

<unk>

o References: Citations are wrapped within the two special tokens:
= [START REF]
= [END REF]

= One example of usage from the paper is: Recurrent
neural networks, long short-term memory
[START REF]Long Short-Term Memory,
Hochreiter [END REF]

o Step-by-step reasoning:

= <work> is an interesting token that the model uses for
chain-of-thought reasoning.

Tokenized text:
English and CAP ITAL IZATION

00006000

show tokens False Noneelif==>=glse:twotabs: :" "
Three@absft " H®

1T1L 1 P

The Galactica tokenizer behaves similar to StarCoder?2 in that it has code in
mind. It also encodes whitespaces in the same way: assigning a single token
to sequences of whitespace of different lengths. It differs in that it also does
that for tabs, though. So from all the tokenizers we’ve seen so far, it’s the
only one that assigns a single token to the string made up of two tabs
("\t\t").

Phi-3 (and Llama 2)

The Phi-3 model we look at in this book reuses the tokenizer of Llama 2 yet
adds a number of special tokens.

Tokenization method: Byte pair encoding (BPE)
Vocabulary size: 32,000
Special tokens:

e <|endoftext|>

o Chat tokens: As chat LLMs rose to popularity in 2023, the
conversational nature of LLMs started to be a leading use case.
Tokenizers have been adapted to this direction by the addition of
tokens that indicate the turns in a conversation and the roles of each
speaker. These special tokens include:

m <|user|>
m <|assistant|>
m <|system]|>

We can now recap our tour by looking at all these examples side by side:

https://oreil.ly/GI-xn
https://oreil.ly/fezbc

BERT base
model
(uncased)

[[CLS] english and capital ##ization [UNK] [[UNK] show
| token ##s false Nond eli ##f == >E clse : Ewo tab ##
s [1 | ERESE £aB #4s [7 F 2 1 0 ¥ 50 E 500 [[5EE)

BERT base
model (cased)

[CLS] English and CA ##PI ##TA ##L ##1 ##2 ##AT ##I0N
[UNK] [[UNK]| show _ token ##s F ##als ##e None el ##if =
BCEEEEE tvo [l #3505 BB threc Il #F0s BB E 120

* 50 = 600 [[SEE]
GPT-2 English and CAP ITAL 17 ATION
©o000e
show _ t O ens False None el if £ >= else i two tabs
B " hrec EEBE 3 N B
12 0 %50 =600
FLAN-TS Engl#sh and CA PT TAL Tz BFION Kunk> <unk> show [l to ke
Bl s Jiene gl it EEEEEE - R ac EHE " R
BEEEHE D0 B Bl B co0 B/2
GPT-4 English and CAPITAL IZATION
o0000e
show | tokens False None elif B= >= glse i two tabs ¥
N BEESS tabs : B H
22 . o E 50 E 600
StarCoder English and CAPITAL IZATION
00000

showl-False None-==.- g two- g
.Three tabs I " -
18- 0K508600

Galactica English and CAP ITAL IZATION
000000
show tokens False None elif == 2> =gelse |1 two t abs) :
""" Threefabs |t " "

12.0x50=600

Phi-3 and ks
Llama 2 English and C AP IT AL IZ ATION
000000
show to kens False None elif == >=glse : two tabs :"
j Three 208 & " | B

UEHONEERE 0N

Tokenizer Properties

The preceding guided tour of trained tokenizers showed a number of ways in
which actual tokenizers differ from each other. But what determines their
tokenization behavior? There are three major groups of design choices that
determine how the tokenizer will break down text: the tokenization method,
the initialization parameters, and the domain of the data the tokenizer targets.

Tokenization methods

As we’ve seen, there are a number of tokenization methods with byte pair
encoding (BPE) being the more popular one. Each of these methods outlines
an algorithm for how to choose an appropriate set of tokens to represent a
dataset. You can find a great overview of all these methods on the Hugging
Face page that summarizes tokenizers.

Tokenizer parameters

After choosing a tokenization method, an LLM designer needs to make some
decisions about the parameters of the tokenizer. These include:

Vocabulary size

https://oreil.ly/-vbn0

How many tokens to keep in the tokenizer’s vocabulary?
(30K and 50K are often used as vocabulary size values, but
more and more we’re seeing larger sizes like 100K.)

Special tokens

What special tokens do we want the model to keep track of?
We can add as many of these as we want, especially if we
want to build an LLM for special use cases. Common choices
include:

* Beginning of text token (e.g., <s>)

End of text token

Padding token

Unknown token

CLS token

Masking token

Aside from these, the LLM designer can add tokens that help
better model the domain of the problem they’re trying to
focus on, as we’ve seen with Galactica’s <work> and

[START REF] tokens.
Capitalization

In languages such as English, how do we want to deal with
capitalization? Should we convert everything to lowercase?
(Name capitalization often carries useful information, but do
we want to waste token vocabulary space on all-caps
versions of words?)

The domain of the data

Even if we select the same method and parameters, tokenizer behavior will
be different based on the dataset it was trained on (before we even start
model training). The tokenization methods mentioned previously work by
optimizing the vocabulary to represent a specific dataset. From our guided
tour we’ve seen how that has an impact on datasets like code and
multilingual text.

For code, for example, we’ve seen that a text-focused tokenizer may tokenize
the indentation spaces like this (we’ll highlight some tokens in color):

def add numbers(a, Db):
M""Add the two numbers "a and b ."""
.. return a + b

This may be suboptimal for a code-focused model. Code-focused models are
often improved by making different tokenization choices:

def add numbers (a, b):

."""Add the two numbers "a’ and b ."""

...returna + b

These tokenization choices make the model’s job easier and thus its
performance has a higher probability of improving.

You can find a more detailed tutorial on training tokenizers in the Tokenizers
section of the Hugging Face course and in Natural Language Processing
with Transformers, Revised Edition.

Token Embeddings

Now that we understand tokenization, we have solved one part of the
problem of representing language to a language model. In this sense, language
is a sequence of tokens. And if we train a good-enough model on a large-
enough set of tokens, it starts to capture the complex patterns that appear in
its training dataset:

o Ifthe training data contains a lot of English text, that pattern reveals
itself as a model capable of representing and generating the English

language.

o If'the training data contains factual information (Wikipedia, for
example), the model would have the ability to generate some factual
information (see the following note).

The next piece of the puzzle 1s finding the best numerical representation for
these tokens that the model can use to calculate and properly model the
patterns in the text. These patterns reveal themselves to us as a model’s
coherence 1n a specific language, or capability to code, or any of the growing
list of capabilities we expect from language models.

As we’ve seen in Chapter 1, that is what embeddings are. They are the
numeric representation space utilized to capture the meanings and patterns in

language.

https://oreil.ly/4Gfbi
https://oreil.ly/opgXu

NOTE

Oops: Achieving a good threshold of language coherence and better-than-average factual
generation, however, starts to present a new problem. Some users start to trust the model’s
fact generation ability (e.g., at the beginning of 2023 some language models were being
dubbed “Google killers”). It didn’t take long for advanced users to recognize that
generation models alone aren’t reliable search engines. This led to the rise of retrieval-
augmented generation (RAG), which combines search and LLMs. We cover RAG in more
detail in Chapter 8.

A Language Model Holds Embeddings for the
Vocabulary of Its Tokenizer

After a tokenizer 1s initialized and trained, it is then used in the training
process of its associated language model. This is why a pretrained language
model is linked with its tokenizer and can’t use a different tokenizer without
training,

The language model holds an embedding vector for each token in the
tokenizer’s vocabulary, as we can see in Figure 2-7. When we download a

pretrained language model, a portion of the model is this embeddings matrix
holding all of these vectors.

Before the beginning of the training process, these vectors are randomly
initialized like the rest of the model’s weights, but the training process
assigns them the values that enable the useful behavior they’re trained to
perform.

https://oreil.ly/U8QvX

Trained tokenizer Language model

r "
Tokens Token embeddings
TokenID Token
0 !
‘I n
50,257
. 7
Figure 2-7. A language model holds an embedding vector associated with each token in its
tokenizer.

Creating Contextualized Word Embeddings with
Language Models

Now that we’ve covered token embeddings as the input to a language model,
let’s look at how language models can create better token embeddings. This
is one of the primary ways to use language models for text representation.
This empowers applications like named-entity recognition or extractive text
summarization (which summarizes a long text by highlighting the most
important parts of it, instead of generating new text as a summary).

Instead of representing each token or word with a static vector, language
models create contextualized word embeddings (shown in Figure 2-8) that
represent a word with a different token based on its context. These vectors
can then be used by other systems for a variety of tasks. In addition to the text
applications we mentioned in the previous paragraph, these contextualized
vectors, for example, are what powers Al image generation systems like
DALL-E, Midjourney, and Stable Diffusion, for example.

Have the bards who preceded me left any theme unsung?
I

Language model
Process the text and incorporate additional context

v

AN EEEnEEEnEEEEEEE

Contextualized token embedding vectors
Better token embedding vectors that incorporate more context

Figure 2-8. Language models produce contextualized token embeddings that improve on raw,
static token embeddings.

Let’s look at how we can generate contextualized word embeddings; the
majority of this code should be familiar to you by now:

from transformers import AutoModel, AutoTokenizer

Load a tokenizer
tokenizer = AutoTokenizer.from_pretrained("microsoft/deberta—
base™)

Load a language model
model = AutoModel.from_pretrained("microsoft/deberta—v3—xsmall")

Tokenize the sentence
tokens = tokenizer('Hello world', return tensors='pt')

Process the tokens
output = model (**tokens) [0]

The model we’re using here 1s called DeBERTa v3, which at the time of
writing is one of the best-performing language models for token embeddings
while being small and highly efficient. It is described in the paper
“DeBERTaV3: Improving DeBERTa using ELECTRA-style pre-training
gradient-disentangled embedding sharing”.

This code downloads a pretrained tokenizer and model, then uses them to
process the string “Hello world”. The output of the model is then saved in the

https://oreil.ly/3Piya

output variable. Let’s inspect that variable by first printing its dimensions
(we expect it to be a multidimensional array):

output.shape

This prints out:

torch.Size([1, 4, 384])

Skipping the first dimension, we can read this as four tokens, each one
embedded in a vector of 384 values. The first dimension is the batch
dimension used in cases (like training) when we want to send multiple input
sentences to the model at the same time (they’re processed at the same time,
which speeds up the process).

But what are these four vectors? Did the tokenizer break the two words into
four tokens, or is something else happening here? We can use what we’ve
learned about tokenizers to inspect them:

for token in tokens['input ids'][0]:
print (tokenizer.decode (token))

This prints out:

[CLS]
Hello
world

[SEP]

This particular tokenizer and model operate by adding the [CL.S] and
[SEP] tokens to the beginning and end of a string,

Our language model has now processed the text input. The result of its output
is the following:

tensor ([[
[-3.3060, -0.0507, -0.1098, ..., -0.1704, -0.1618, 0.69327,
[0.8918, 0.0740, -0.1583, ..., 0.1869, 1.4760, 0.0751],

[0.0871, 0.6364, -0.3050, ..., 0.4729, -0.1829, 1.0157],
[-3.1624, -0.1436, -0.0941, ..., -0.0290, -0.1265, 0.7954]
11, grad fn=<NativeLayerNormBackward0>)

This is the raw output of a language model. The applications of large
language models build on top of outputs like this.

We recap the input tokenization and resulting outputs of a language model in
Figure 2-9. Technically, the switch from token IDs into raw embeddings is
the first step that occurs inside a language model.

Have the bards who preceded me left any theme unsung?

Tokenization

Break down the text into smaller pieces
(words or parts of words)

[Have T The T bards T who Tpreceded]

Numeric representations of the tokens
capturing their meaning

Language model
Process the text and incorporate additional context

v

AN EEEREEEREEEREEE

Contextual token embedding vectors
Better token embedding vectors that incorporate more context

Figure 2-9. A language model operates on raw, static embeddings as its input and produces
contextual text embeddings.

A visual like this is essential for the next chapter when we start to look at
how Transformer-based LLMs work.

Text Embeddings (for Sentences and Whole
Documents)

While token embeddings are key to how LLMs operate, a number of LLM
applications require operating on entire sentences, paragraphs, or even text
documents. This has led to special language models that produce text
embeddings—a single vector that represents a piece of text longer than just
one token.

We can think of text embedding models as taking a piece of text and
ultimately producing a single vector that represents that text and captures its
meaning in some useful form. Figure 2-10 shows that process.

Input Best movie ever!

Embedding model
Objective: create embeddings

v
.

Figure 2-10. In step 1, we use the embedding model to extract the features and convert the input
text to embeddings.

There are multiple ways of producing a text embedding vector. One of the
most common ways is to average the values of all the foken embeddings
produced by the model. Yet high-quality text embedding models tend to be
trained specifically for text embedding tasks.

We can produce text embeddings with sentence-transformers,a

popular package for leveraging pretrained embedding models.” The package,
like transformers inthe previous chapter, can be used to load publicly
available models. To illustrate creating embeddings, we use the all-mpnet-
base-v2 model. Note that in Chapter 4, we will further explore how you can
choose an embedding model for your task.

from import SentenceTransformer

Load model
model = SentenceTransformer ("sentence-transformers/all-mpnet-
base-v2")

Convert text to text embeddings
vector = model.encode ("Best movie ever!™)

The number of values, or the dimensions, of the embedding vector depends
on the underlying embedding model. Let’s explore that for our model:

vector.shape
(768,)

This sentence is now encoded in this one vector with a dimension of 768
numerical values. In Part II of this book, once we start looking at
applications, we’ll start to see the immense usefulness of these text

embeddings vectors in powering everything from categorization to semantic
search to RAG.

Word Embeddings Beyond LLMs

Embeddings are useful even outside of text and language generation.
Embeddings, or assigning meaningful vector representations to objects, turns
out to be useful in many domains, including recommender engines and
robotics. In this section, we’ll look at how to use pretrained word2vec
embeddings and touch on how the method creates word embeddings. Seeing
how word2vec is trained will prime you to learn about contrastive training in

https://oreil.ly/Tlt3e
https://oreil.ly/EwDyX

Chapter 10. Then in the following section, we’ll see how those embeddings
can be used for recommendation systems.

Using pretrained Word Embeddings

Let’s look at how we can download pretrained word embeddings (like
word2vec or GloVe) using the Gensim library:

import as

Download embeddings (66MB, glove, trained on wikipedia, vector
size: 50)

Other options include "wordZ2vec-google-news-300"

More options at https://github.com/RaRe-Technologies/gensim-
data

model = api.load("glove-wiki-gigaword-50")

Here, we’ve downloaded the embeddings of a large number of words trained
on Wikipedia. We can then explore the embedding space by seeing the
nearest neighbors of a specific word, “king” for example:

model.most similar ([model['king']], topn=11)

This outputs:

[('king', 1.00000011920928906),
('prince', 0.8236179351806641),
("queen', 0.7839043140411377),
("ii', 0.7746230363845825),
("emperor', 0.7736247777938843),
('son', 0.766719400882721),
('uncle', 0.7627150416374207),
("kingdom', 0.7542161345481873),
('"throne', 0.7539914846420288),
('"brother', 0.7492411136627197),
('"ruler', 0.7434253692626953)]

The Word2vec Algorithm and Contrastive Training

https://oreil.ly/M8wi8

The word2vec algorithm described in the paper “Efficient estimation of
word representations in vector space” is described in detail in The
[lustrated Word2vec. The central ideas are condensed here as we build on
them when discussing one method for creating embeddings for
recommendation engines in the following section.

Just like LLMs, word2vec is trained on examples generated from text. Let’s
say, for example, we have the text “Thou shalt not make a machine in the
likeness of a human mind” from the Dune novels by Frank Herbert. The
algorithm uses a sliding window to generate training examples. We can, for
example, have a window size two, meaning that we consider two neighbors
on each side of a central word.

The embeddings are generated from a classification task. This task is used to
train a neural network to predict if words commonly appear in the same
context or not (context here means in many sentences in the training dataset
we’re modeling). We can think of this as a neural network that takes two
words and outputs 1 if they tend to appear in the same context, and O if they
do not.

In the first position for the sliding window, we can generate four training
examples, as we can see in Figure 2-11.

Textand
sliding window | Thou shalt not make ajmachine in thelikeness of a human mind

TDJ;%?LESEC[[thou] shalt I not | makeEmachineT inTtheT]

Center word

Figure 2-11. A sliding window is used to generate training examples for the word2vec algorithm
to later predict if two words are neighbors or not.

In each of the produced training examples, the word in the center is used as
one input, and each of its neighbors is a distinct second input in each training
example. We expect the final trained model to be able to classify this
neighbor relationship and output 1 if the two input words it receives are
indeed neighbors. These training examples are visualized in Figure 2-12.

https://oreil.ly/nLDeS
https://oreil.ly/ybd-K

Word1 | Word2 | Target

Trainin Not thou 1
dining Not shalt 1

examples o[Tinake 1

T

Figure 2-12. Each generated training example shows a pair of neighboring words.

If, however, we have a dataset of only a target value of 1, then a model can
cheat and ace it by outputting 1 all the time. To get around this, we need to
enrich our training dataset with examples of words that are not typically
neighbors. These are called negative examples and are shown in Figure 2-13.

Word 1 Word 2 Target
not thou 1
not shalt] Positive
not make 1 examples
not a 1
thou apothecary 0
not sublime 0 Negative
make def 0 examples
a playback 0

Figure 2-13. We need to present our models with negative examples: words that are not usually
neighbors. A better model is able to better distinguish between the positive and negative
examples.

It turns out that we don’t have to be too scientific in how we choose the
negative examples. A lot of useful models result from the simple ability to
detect positive examples from randomly generated examples (inspired by an
important idea called noise-contrastive estimation and described in “Noise-

https://oreil.ly/BkBVt

contrastive estimation: A new estimation principle for unnormalized
statistical models™). So in this case, we get random words and add them to
the dataset and indicate that they are not neighbors (and thus the model should
output 0 when it sees them).

With this, we’ve seen two of the main concepts of word2vec (Figure 2-14):
skip-gram, the method of selecting neighboring words, and negative
sampling, adding negative examples by random sampling from the dataset.

Skip-gram Negative sampling
shalt | "ot] make Inputword | Outputword | Target
INpUE DU make shalt 1
make shalt
make not make aaron 0
make
make machine make Sace 0

Figure 2-14. Skip-gram and negative sampling are two of the main ideas behind the word2vec
algorithm and are useful in many other problems that can be formulated as token sequence
problems.

We can generate millions and even billions of training examples like this
from running text. Before proceeding to train a neural network on this dataset,
we need to make a couple of tokenization decisions, which, just like we’ve
seen with LLM tokenizers, include how to deal with capitalization and
punctuation and how many tokens we want in our vocabulary.

We then create an embedding vector for each token, and randomly initialize
them, as can be seen in Figure 2-15. In practice, this is a matrix of
dimensions vocab size x embedding dimensions.

https://oreil.ly/BkBVt

Token Token embedding

thou
shalt
make
a
not
apothecary
sublime
def
playback

Figure 2-15. A vocabulary of words and their starting, random, uninitialized embedding vectors.

HHEHEHERH

A model is then trained on each example to take in two embedding vectors
and predict if they’re related or not. We can see what this looks like in
Figure 2-16.

Tokens Embeddings Model prediction

(o] CO—> Neural network
- [TT] —> Task: are the two words neighbors

Figure 2-16. A neural network is trained to predict if two words are neighbors. It updates the
embeddings in the training process to produce the final, trained embeddings.

—0.90

Based on whether its prediction was correct or not, the typical machine
learning training step updates the embeddings so that the next time the model
is presented with those two vectors, it has a better chance of being more

correct. And by the end of the training process, we have better embeddings
for all the tokens in our vocabulary.

This idea of a model that takes two vectors and predicts if they have a certain
relation is one of the most powerful ideas in machine learning, and time after
time has proven to work very well with language models. This is why we’re
dedicating Chapter 10 to this concept and how it optimizes language models
for specific tasks (like sentence embeddings and retrieval).

The same idea is also central to bridging modalities like text and images,
which is key to Al image generation models, as we’ll see in Chapter 9 on
multimodal models. In that formulation, a model is presented with an image
and a caption, and it should predict whether that caption describes the image
or not.

Embeddings for Recommendation Systems

As we’ve mentioned, the concept of embeddings is useful in so many other
domains. In industry, it’s widely used for recommendation systems, for
example.

Recommending Songs by Embeddings

In this section we’ll use the word2vec algorithm to embed songs using
human-made music playlists. Imagine if we treated each song as we would a
word or token, and we treated each playlist like a sentence. These
embeddings can then be used to recommend similar songs that often appear
together in playlists.

The dataset we’ll use was collected by Shuo Chen from Cornell University.
It contains playlists from hundreds of radio stations around the US. Figure 2-
17 demonstrates this dataset.

https://oreil.ly/A-AK6

Playlist#1: "Song1 Song13 Song2 Song 400
Playiist#2: Song 2 Song 81 Song13 Song82 Song77

Playlist #3: Song 13 = Song 2

Figure 2-17. For song embeddings that capture song similarity we’ll use a dataset made up of a
collection of playlists, each containing a list of songs.

Let’s demonstrate the end product before we look at how it’s built. So let’s
give it a few songs and see what it recommends in response.

Let’s start by giving it Michael Jackson’s “Billie Jean,” the song with ID
3822:

We will define and explore this function in detail below
print recommendations (3822)

id Title artist
4181 Kiss Prince & The
Revolution

12749 Wanna Be Startin’ Michael Jackson
Somethin’

1506 The Way You Make Me Michael Jackson
Feel

3396 Holiday Madonna

500 Don’t Stop ‘Til You Get Michael Jackson

Enough

That looks reasonable. Madonna, Prince, and other Michael Jackson songs
are the nearest neighbors.

Let’s step away from pop and into rap, and see the neighbors of 2Pac’s

“California Love”:

print recommendations ()

id

413

196

330

211

5788

Title

If T Ruled the World (Imagine
That) (wV Lauryn Hill)

I’1l Be Missing You

Hate It or Love It (wV 50 Cent)

Hypnotize

Drop It Like It’s Hot (wV/
Pharrell)

artist

Nas

Puff Daddy &
The Family

The Game

The Notorious
B.I.G.

Snoop Dogg

Another quite reasonable list! Now that we know it works, let’s see how to

build such a system.

Training a Song Embedding Model

We’ll start by loading the dataset containing the song playlists as well as
each song’s metadata, such as its title and artist:

import
from

import request

Get the playlist dataset file
data = request.urlopen('https://storage.googleapis.com/maps-
premium/dataset/yes complete/train.txt')

Parse the playlist dataset file. Skip the first two lines as
they only contain metadata
lines = data.read() .decode ("utf-8") .split('\n') [2:]

Remove playlists with only one song
playlists = [s.rstrip() .split() for s in lines if len(s.split())
> 1]

Load song metadata

songs file =

request.urlopen ('https://storage.googleapis.com/maps-
premium/dataset/yes complete/song hash.txt')

songs file = songs_file.read().decode("utf—8").split(‘\n')

songs = [s.rstrip().split('\t') for s in songs file]

songs_df = pd.DataFrame (data=songs, columns = ['id',6K 'title',
'artist'])

songs_df = songs df.set index('id')

Now that we’ve saved them, let’s inspect the play1lists list. Each
element inside it is a playlist containing a list of song IDs:

print ('Playlist #1:\n ', playlists[0], '\n')

print ('Playlist #2:\n ', playlists[1])
Playlist #1: ['Q', '1', '2', '3', '4', '5', ..., '43']
Playlist #2: ['78', '79', '80', '3', '62', ..., '210']

Let’s train the model:

from gensim.models import Word2Vec

Train our Word2Vec model
model = Word2Vec (

playlists, vector size=32, window=20, negative=50,
min count=1, workers=4

)

That takes a minute or two to train and results in embeddings being
calculated for each song that we have. Now we can use those embeddings to

find similar songs exactly as we did earlier with words:

song id = 2172

Ask the model for songs similar to song #2172
model.wv.most similar (positive=str (song id))

This outputs:

.9977465271949768) ,
.9977430701255798) ,
.9975950717926025) ,
)
)

.9966474175453186) ,
.9963167905807495)]

w
(@]
e
[N
~
O O O O O

That is the list of the songs whose embeddings are most similar to song 2172.

In this case, the song is:

print (songs df.iloc[2172])
title Fade To Black
artist Metallica
Name: 2172 , dtype: object

This results in recommendations that are all in the same heavy metal and hard
rock genre:

import as

def print recommendations (song id) :

similar songs = np.array (
model.wv.most similar (positive=str(song id), topn=5)
) [:,0]

return songs df.iloc[similar songs]

Extract recommendations
print recommendations (2172)

id Title artist

11473 Little Guitars Van Halen

3167 Unchained Van Halen

5586 The Lastin Line Dio

5634 Mr. Brownstone ~ Guns N’ Roses

3094 Breaking the Law Judas Priest
Summary

In this chapter, we have covered LLM tokens, tokenizers, and useful
approaches to using token embeddings. This prepares us to start looking
closer at language models in the next chapter, and also opens the door to
learn about how embeddings are used beyond language models.

We explored how tokenizers are the first step in processing input to an LLM,
transforming raw textual input into token IDs. Common tokenization schemes
include breaking text down into words, subword tokens, characters, or bytes,
depending on the specific requirements of a given application.

A tour of real-world pretrained tokenizers (from BERT to GPT-2, GPT-4,
and other models) showed us areas where some tokenizers are better (e.g.,
preserving information like capitalization, newlines, or tokens in other
languages) and other areas where tokenizers are just different from each
other (e.g., how they break down certain words).

Three of the major tokenizer design decisions are the tokenizer algorithm
(e.g., BPE, WordPiece, SentencePiece), tokenization parameters (including

vocabulary size, special tokens, capitalization, treatment of capitalization
and different languages), and the dataset the tokenizer is trained on.

Language models are also creators of high-quality contextualized token
embeddings that improve on raw static embeddings. Those contextualized
token embeddings are what’s used for tasks including named-entity
recognition (NER), extractive text summarization, and text classification. In
addition to producing token embeddings, language models can produce text
embeddings that cover entire sentences or even documents. This empowers
plenty of applications that will be shown in Part II of this book covering
language model applications

Before LLMs, word embedding methods like word2vec, GloVe, and fastText
were popular. In language processing, this has largely been replaced with
contextualized word embeddings produced by language models. The
word2vec algorithm relies on two main ideas: skip-gram and negative

sampling. It also uses contrastive training similar to the type we’ll see in
Chapter 10.

Embeddings are useful for creating and improving recommender systems as
we discussed in the music recommender we built from curated song playlists.

In the next chapter, we will take a deep dive into the process after
tokenization: how does an LLM process these tokens and generate text? We
will look at some of the main intuitions of how LLMs that use the
Transformer architecture work.

T Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence embeddings using Siamese
BERT-networks.” arXiv preprint arXiv:1908.10084 (2019).

Chapter 3. Looking Inside Large
Language Models

Now that we have a sense of tokenization and embeddings, we’re ready to
dive deeper into the language model and see how it works. In this chapter,
we’ll look at some of the main intuitions of how Transformer language
models work. Our focus will be on text generation models so we get a
deeper sense for generative LLMs in particular.

We’ll be looking at both the concepts and some code examples that
demonstrate them. Let’s start by loading a language model and getting it ready
for generation by declaring a pipeline. In your first read, feel free to skip the
code and focus on grasping the concepts involved. Then in a second read, the
code will get you to start applying these concepts.

import

from import AutoModelForCausallLM, AutoTokenizer,
pipeline

Load model and tokenizer

tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi—B—mini—
4k-instruct")

model = AutoModelForCausallM.from pretrained
"microsoft/Phi-3-mini-4k-instruct",
device map="cuda",
torch dtype="auto",
trust remote code=True,

)

Create a pipeline

generator = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return full text=False,
max new tokens=50,

do sample=False,

An Overview of Transformer Models

Let’s begin our exploration with a high-level overview of the model, and
then we’ll see how later work has improved upon the Transformer model
since its introduction in 2017.

The Inputs and Outputs of a Trained Transformer LLM

The most common picture of understanding the behavior of a Transformer
LLM is to think of it as a software system that takes in text and generates text
in response. Once a large enough text-in-text-out model is trained on a large
enough high-quality dataset, it becomes able to generate impressive and
useful outputs. Figure 3-1 shows one such model used to author an email.

Prompt

Generation

.

r Write an email apologizing to Sarah for the
tragic gardening mishap. Explain how it

happened.

N
3’ Transformer LLM

v

Dear Sarah,
I'm writing to apologize for the incident last

week. [...]

Y .

Figure 3-1. At a high level of abstraction, Transformer LLMs take a text prompt and output

generated text.

The model does not generate the text all in one operation; it actually
generates one token at a time. Figure 3-2 shows four steps of token
generation in response to the input prompt. Each token generation step is one
forward pass through the model (that’s machine-learning speak for the inputs
going into the neural network and flowing through the computations it needs
to produce an output on the other end of the computation graph).

3

, Write an email apologizing to Sarah for the
Prompt | tragic gardening mishap. Explain how it
happened.

0
$ Transformer LLM

v

Generation #1 # #3 #4

Dear

<newline>

Figure 3-2. Transformer LLMs generate one token at a time, not the entire text at once.

After each token generation, we tweak the input prompt for the next
generation step by appending the output token to the end of the input prompt.
We can see this in Figure 3-3.

r Write an email apologizing to Sarah for the | =
tragic gardening mishap. Explain how it $ Transformer LLM [
happened.

[Write an email apologizing to Sarah for the 1 =
tragic gardening mishap. Explain how it & Transformer LLM >
happened.

r Dear |

Figure 3-3. An output token is appended to the prompt, then this new text is presented to the
model again for another forward pass to generate the next token.

This gives us a more accurate picture of the model as it is simply predicting
the next token based on an input prompt. Software around the neural network
basically runs it in a loop to sequentially expand the generated text until
completion.

There’s a specific word used in machine learning to describe models that
consume their earlier predictions to make later predictions (e.g., the model’s
first generated token is used to generate the second token). They’re called
autoregressive models. That is why you’ll hear text generation LLMs being
called autoregressive models. This is often used to differentiate text
generation models from text representation models like BERT, which are not
autoregressive.

This autoregressive, token-by-token generation is what happens under the
hood when we generate text with the LLM like we see here:

prompt = "Write an email apologizing to Sarah for the tragic
gardening mishap. Explain how it happened."

output = generator (prompt)

print (output[0] ['generated text'])

This generates the text:

Solution 1:

Subject: My Sincere Apologies for the Gardening Mishap

Dear Sarah,

I hope this message finds you well. I am writing to express my
deep

We can see the model begin to write the email starting with the subject. It
stopped abruptly because it reached the token limit we established by setting
max new_tokens to 50 tokens. If we increase that, it will continue until
concluding the email.

The Components of the Forward Pass

In addition to the loop, two key internal components are the tokenizer and the
language modeling head (LM head). Figure 3-4 shows where these
components lie in the system. We saw in the previous chapter how tokenizers
break down the text into a sequence of token IDs that then become the input to
the model.

The tokenizer is followed by the neural network: a stack of Transformer
blocks that do all of the processing. That stack is then followed by the LM
head, which translates the output of the stack into probability scores for what
the most likely next token is.

Write an ifjmail apulcﬁizing tuISarah forthe) ()
tragic gardening mishap. Explain how it | :
happened. Tokenizer]

| | Transformer block 1 l
0l Stack of
& Transformer LLM Transfnrmer| Transformerblock 2 |

- et [Transformer block N J
v

: LM head)

Figure 3-4. A Transformer LLM is made up of a tokenizer, a stack of Transformer blocks, and a
language modeling head.

Recall from Chapter 2 that the tokenizer contains a table of tokens—the
tokenizer’s vocabulary. The model has a vector representation associated

with each of these tokens in the vocabulary (token embeddings). Figure 3-5
shows both the vocabulary and associated token embeddings for a model
with a vocabulary of 50,000 tokens.

Tokenizer
9 (@ Tokenvocabulary
\ Transformer LLM | . / TokenID | Token
- I 0 ! |
[Tokenizer] ¢ : =
: Transformer block 1 | | @

Stackof - 50,000 | Zyzzyva
Transformer| Transformer block 2

blocks : Transformer block N | $ Token embeddings
0
(LM head J ‘
7 ’ 50,000 1]

.

Figure 3-5. The tokenizer has a vocabulary of 50,000 tokens. The model has token embeddings
associated with those embeddings.

The flow of the computation follows the direction of the arrow from top to
bottom. For each generated token, the process flows once through each of the
Transformer blocks in the stack in order, then to the LM head, which finally
outputs the probability distribution for the next token, seen in Figure 3-6.

$ Transformer LLM ‘ Output
' Tokenizer]I:j , Token prnhability:

| Transformer block 1 | TokenID | Token

Stack of Co | o |
Transfurmer' Transformer block 2 |] :

L1 [" |

blocks [
Transformer block N] -
LM head]- .l 50,000 | Zyzzyva | —11.00%

% g L A

v

Figure 3-6. At the end of the forward pass, the model predicts a probability score for each token
in the vocabulary.

The LM head is a simple neural network layer itself. It is one of multiple
possible “heads” to attach to a stack of Transformer blocks to build different
kinds of systems. Other kinds of Transformer heads include sequence
classification heads and token classification heads.

We can display the order of the layers by simply printing out the model
variable. For this model, we have:

Phi3ForCausalLM (
(model) : Phi3Model (
(embed tokens): Embedding (32064, 3072, padding idx=32000)
(embed dropout) : Dropout (p=0.0, inplace=False)
(layers) : ModuleList (
(0-31): 32 x Phi3DecoderLayer (
(self attn): Phi3Attention (
(o_proj): Linear (in_ features=3072, out features=3072,
bias=False)
(gkv_proj) : Linear (in features=3072,
out features=9216, bias=False)
(rotary emb) : Phi3RotaryEmbedding ()
)
(mlp) : Phi3MLP (
(gate up proj): Linear (in features=3072,
out features=16384, bias=False)
(down proj): Linear (in features=8192,
out features=3072, bias=False)
(activation fn): SiLU()

)
input layernorm) : Phi3RMSNorm ()

resid attn dropout): Dropout (p=0.0, inplace=False)
resid mlp dropout): Dropout (p=0.0, inplace=False)

(
(
(
(post attention layernorm): Phi3RMSNorm ()

)

)
(norm) : Phi3RMSNorm ()

)

(Im_head) : Linear (in features=3072, out features=32064,

bias=False)
)

Looking at this structure, we can notice the following highlights:

e This shows us the various nested layers of the model. The majority
of the model is labeled model, followed by 1m head.

e Inside the Phi3Model model, we see the embeddings matrix
embed tokens and its dimensions. It has 32,064 tokens each
with a vector size of 3,072.

o Skipping the dropout layer for now, we can see the next major
component is the stack of Transformer decoder layers. It contains 32
blocks of type Phi3DecoderLayer.

o Each of these Transformer blocks includes an attention layer and a
feedforward neural network (also known as an m1p or multilevel
perceptron). We’ll cover these in more detail later in the chapter.

» Finally, we see the Im head taking a vector of size 3,072 and
outputting a vector equivalent to the number of tokens the model
knows. That output is the probability score for each token that helps
us select the output token.

Choosing a Single Token from the Probability
Distribution (Sampling/Decoding)

At the end of processing, the output of the model is a probability score for
each token in the vocabulary, as we saw previously in Figure 3-6. The
method of choosing a single token from the probability distribution is called
the decoding strategy. Figure 3-7 shows how this leads to picking the token
“Dear” in one example.

The easiest decoding strategy would be to always pick the token with the
highest probability score. In practice, this doesn’t tend to lead to the best
outputs for most use cases. A better approach is to add some randomness and
sometimes choose the second or third highest probability token. The idea
here 1s to basically sample from the probability distribution based on the
probability score, as the statisticians would say.

What this means for the example in Figure 3-7 is that if the token “Dear” has
a 40% probability of being the next token, then it has a 40% chance of being
picked (instead of greedy search, which would pick it directly for having the
highest score). So with this method, all the other tokens have a chance of
being picked according to their score.

Write an email apologizing to Sarah for the
Prompt | tragic gardening mishap. Explain how it Output token

happened. probabilities (highest)

* - -
0 Dear 40%
3’ Transformer LLM]—b Title 13%
To 8%

Hi |l 2%

lDE-:‘r:JdIJ g strateqy

Dear

Figure 3-7. The tokens with the highest probability after the model’s forward pass. Our decoding
strategy decides which of the tokens to output by sampling based on the probabilities.

Choosing the highest scoring token every time is called greedy decoding. 1t’s
what happens if you set the temperature parameter to zero in an LLM. We
cover the concept of temperature in Chapter 6.

Let’s look more closely at the code that demonstrates this process. In this
code block, we pass the input tokens through the model, and then Im head:

prompt = "The capital of France is"

Tokenize the input prompt
input ids = tokenizer (prompt, return tensors="pt").input ids

Tokenize the input prompt
input ids input ids.to("cuda")

Get the output of the model before the Im head
model output = model.model (input ids)

Get the output of the Im head
Im head output = model.lm head(model output[0])

Now, 1m head output is of the shape [1, 6, 32064]. We can access the
token probability scores for the last generated token using

1m head output[0,-1], whichuses the index 0 across the batch
dimension; the index —1 gets us the last token in the sequence. This is now a
list of probability scores for all 32,064 tokens. We can get the top scoring
token ID, and then decode it to arrive at the text of the generated output token:

token id = 1m head output[0,-1].argmax(-1)
tokenizer.decode (token id)

In this case this turns out to be:

Paris

Parallel Token Processing and Context Size

One of the most compelling features of Transformers is that they lend
themselves better to parallel computing than previous neural network
architectures in language processing. In text generation, we get a first glance
at this when looking at how each token 1s processed. We know from the
previous chapter that the tokenizer will break down the text into tokens. Each

of these input tokens then flows through its own computation path (that’s a
good first intuition, at least). We can see these individual processing tracks
or streams in Figure 3-8.

Write an email apologizing to Sarah for the
tragic gardening mishap. Explain how it
happened.

& Transformer LLM l

[Tokenizer =

. o

WriteT TEprainThowTitT happen T##edT 1

Tra nlsforme block 1

Transformer , Tran}former lock 2

Tran{former lock N

[LM he!ad N

v v Y¢ v v

Figure 3-8. Each token is processed through its own stream of computation (with some interaction
between them in attention steps, as we’ll later see).

Current Transformer models have a limit for how many tokens they can
process at once. That limit is called the model’s context length. A model with
4K context length can only process 4K tokens and would only have 4K of
these streams.

Each of the token streams starts with an input vector (the embedding vector
and some positional information; we’ll discuss positional embeddings later

in the chapter). At the end of the stream, another vector emerges as the result
of the model’s processing, as shown in Figure 3-9.

3) Transformer LLM
. . =
[Tokenizer]
[WritET TEprainThowm happen T##edT :]
Embeddings T11 1]

(011 0Ol |0 | O

Trangformeriblock 1

L5

tackof
Transformer

sformer

Output vectors

| LM head

Figure 3-9. Each processing stream takes a vector as input and produces a final resulting vector
of the same size (often referrved to as the model dimension).

For text generation, only the output result of the last stream is used to predict
the next token. That output vector is the only input into the LM head as it
calculates the probabilities of the next token.

You may wonder why we go through the trouble of calculating all the token
streams 1f we’re discarding the outputs of all but the last token. The answer
is that the calculations of the previous streams are required and used in
calculating the final stream. Yes, we’re not using their final output vector, but
we use earlier outputs (in each Transformer block) in the Transformer
block’s attention mechanism.

If you’re following along with the code examples, recall that the output of
1m head was of the shape [1, 6, 32064]. That was because the input to it
was of the shape [1, 6, 3072], which is a batch of one input string, containing
six tokens, each of them represented by a vector of size 3,072 corresponding
to the output vectors after the stack of Transformer blocks.

We can access these matrices and view their dimensions by printing;

model output[0].shape

This outputs:

torch.Size([1, 6, 3072])

Similarly, we can print the output of the LM head:

Im head output.shape

This outputs:

torch.Size ([1, 6, 320641])

Speeding Up Generation by Caching Keys and Values

Recall that when generating the second token, we simply append the output
token to the input and do another forward pass through the model. If we give
the model the ability to cache the results of the previous calculation
(especially some of the specific vectors in the attention mechanism), we no
longer need to repeat the calculations of the previous streams. This time the
only needed calculation is for the last stream. This 1s an optimization
technique called the keys and values (kv) cache and it provides a significant
speedup of the generation process. Keys and values are some of the central
components of the attention mechanism, as we’ll see later in this chapter.

Figure 3-10 shows how when generating the second token, only one
processing stream is active as we cache the results of the previous streams.

https://oreil.ly/1q45J

@ Transformer LLM

Tokenizer

rWriteT TEprainThnwm happen T##EdT‘ Dear |

Embeddings

(i
[a¥]
(]
=
m
(=1
=
o)
1
=
o
=t
(=]
=

oLt

(LM head

,

Figure 3-10. When generating text, its important to cache the computation results of previous
tokens instead of repeating the same calculation over and over again.

In Hugging Face Transformers, cache is enabled by default. We can disable it
by setting use cache to False. We can see the difference in speed by
asking for a long generation, and timing the generation with and without
caching:

prompt = "Write a very long email apologizing to Sarah for the
tragic gardening mishap. Explain how it happened."”

Tokenize the input prompt

input ids = tokenizer (prompt, return tensors="pt").input ids
input ids = input ids.to("cuda")

Then we time how long it takes to generate 100 tokens with caching. We can
use the $$timeit magic command in Jupyter or Colab to time how long the
execution takes (it runs the command several times and gets the average):

%$%timeit -n 1

Generate the text

generation output = model.generate(
input ids=input ids,
max new tokens=100,

use cache=True

)

On a Colab with a T4 GPU, this comes to 4.5 seconds. How long would that
take 1f we disable the cache, however?

$%timeit -n 1

Generate the text

generation output = model.generate(
input ids=input ids,
max new tokens=100,
use cache=False

)

This comes out to 21.8 seconds. A dramatic difference. In fact, from a user
experience standpoint, even the four-second generation time tends to be a
long time to wait for a user that’s staring at a screen and waiting for an output
from the model. This is one reason why LLM APIs stream the output tokens
as the model generates them instead of waiting for the entire generation to be
completed.

Inside the Transformer Block

We can now talk about where the vast majority of processing happens: the
Transformer blocks. As Figure 3-11 shows, Transformer LLMs are
composed of a series Transformer blocks (often in the range of six in the
original Transformer paper, to over a hundred in many large LLMs). Each
block processes its inputs, then passes the results of its processing to the next
block.

»3 Transformer LLM

. =)
[Tokenizer]
[Say TsamethingTsmart]
b b] Embeddings
Transformer block 1
Output of E[:D E[:]:l E[:D
Transformer block 1 TrE’IS E?gr?]];er
Transformer block 2 blocks
Transformer block N
v v
L1111 1] _I;I_l Output vectors
(LM head)

Figure 3-11. The bulk of the Transformer LLM processing happens inside a series of Transformer
blocks, each handing the result of its processing as input to the subsequent block.

A Transformer block (Figure 3-12) is made up of two successive
components:

1. The attention layer 1s mainly concerned with incorporating relevant
information from other input tokens and positions

2. The feedforward layer houses the majority of the model’s
processing capacity

| 'II | [I| Transformer block

[Transformer block 1]
I I :
DUt[JUt of | |I| | | |I|] 3

Transformer block 1 ‘
[Transformer block 2 J
I I kW il Feedforward neural network
[Transformer block N]

[Self-attention]

Figure 3-12. A Transformer block is made up of a self-attention layer and a feedforward neural
network.

The feedforward neural network at a glance

A simple example giving the intuition of the feedforward neural network
would be if we pass the simple input “The Shawshank™ to a language model,
with the expectation that it will generate “Redemption” as the most probable
next word (in reference to the film from 1994).

The feedforward neural network (collectively in all the model layers) is the
source of this information, as Figure 3-13 shows. When the model was
successfully trained to model a massive text archive (which included many
mentions of “The Shawshank Redemption”), it learned and stored the
information (and behaviors) that make it succeed at this task.

[TheT Shawshank]

Transformer block

Transformer block 1

Transformer block 2

Feedforward neural network

Transformer block N

(LM head

v

[Redemption |

Figure 3-13. The feedforward neural network component of a Transformer block likely does the
majority of the model’s memorization and interpolation.

For an LLM to be successfully trained, it needs to memorize a lot of
information. But it is not simply a large database. Memorization is only one
ingredient in the recipe of impressive text generation. The model is able to
use this same machinery to interpolate between data points and more
complex patterns to be able to generalize—which means doing well on
inputs it hadn’t seen in the past and were not in its training dataset.

NOTE

When you use a modern commercial LLM, the outputs you get are not the ones mentioned
earlier in the strict meaning of a “language model.” Passing “The Shawshank” to a chat
LLM like GPT-4 produces an output:

"The Shawshank Redemption" is a 1994 film directed by
Frank Darabont and is based on the novella "Rita
Hayworth and Shawshank Redemption" written by Stephen
King. ...etc.

This is because raw language models (like GPT-3) are difficult for people to properly
utilize. This is why the language model is then trained on instruction-tuning and human
preference and feedback fine-tuning to match people’s expectations of what the model
should output.

The attention layer at a glance

Context is vital in order to properly model language. Simple memorization
and interpolation based on the previous token can only take us so far. We
know that because this was one of the leading approaches to build language
models before neural networks (see Chapter 3, “N-gram Language Models”
of Speech and Language Processing by Daniel Jurafsky and James H.
Martin).

Attention is a mechanism that helps the model incorporate context as it’s
processing a specific token. Think of the following prompt:

“The dog chased the squirrel because it”

For the model to predict what comes after “it,” it needs to know what “it”
refers to. Does it refer to the dog or the squirrel?

In a trained Transformer LLM, the attention mechanism makes that
determination. Attention adds information from the context into the
representation of the “it” token. We can see a simple version of that in
Figure 3-14.

https://oreil.ly/9onN8

[The T dochhasedT the quulrrelT because m

dog squirrel because
[T e [TT] e [TT] | | | Transformer block
: | 1_,-"'
8 Self-attention

Transformer block 1
Transformer block 2

———————————— Feedforward neural network
Transformer block N

I : :)

v Yy VvV V

v
Figure 3-14. The self-attention layer incorporates relevant information from previous positions
that help process the current token.

The model does that based on the patterns seen and learned from the training
dataset. Perhaps previous sentences also give more clues, like, for example,
referring to the dog as “she” thus making it clear that “it” refers to the
squirrel.

Attention is all you need

It is worth diving deeper into the attention mechanism. The most stripped-
down version of the mechanism is shown in Figure 3-15. It shows multiple
token positions going into the attention layer; the final one 1s the one being
currently processed (the pink arrow). The attention mechanism operates on
the input vector at that position. It incorporates relevant information from the
context into the vector it produces as the output for that position.

Other positions Position currently
in the sequence being processed

Self-attention || Current position information

Enriched with context
[CI-1] information from other
v positions

Y v v v

Figure 3-15. A simplified framing of attention: an input sequence and a current position being
processed. As we’re mainly concerned with this position, the figure shows an input vector and an
output vector that incorporates information from the previous elements in the sequence according

to the attention mechanism.

Two main steps are involved in the attention mechanism:

1. A way to score how relevant each of the previous input tokens are
to the current token being processed (in the pink arrow).

2. Using those scores, we combine the information from the various
positions into a single output vector.

Figure 3-16 shows these two steps.

Other positions Position currently
in the sequence being processed
Self-attention [T | Current position information

Relevance scoring

Combining information

Enriched with context
I information from other
v v v v v positions

Figure 3-16. Attention is made up of two major steps. relevance scoring for each position, then a
step where we combine the information based on those scores.

To give the Transformer more extensive attention capability, the attention
mechanism 1s duplicated and executed multiple times in parallel. Each of

these parallel applications of attention is conducted into an attention head.
This increases the model’s capacity to model complex patterns in the input
sequence that require paying attention to different patterns at once.

Figure 3-17 shows the intuition of how attention heads run in parallel with a
preceding step of splitting information and a later step of combining the
results of all the heads.

Other positions Position currently
in the sequence being processed
Self- attention [Current position information
Relevance scoring
Attention \ , , , »
head ()

Combining information

L r

J Enriched with context
[T information from other
v positions

Y L J L J Y

Figure 3-17. We get better LLMs by doing attention multiple times in parallel, increasing the
model’s capacity to attend to different types of information.

How attention is calculated

Let’s look at how attention is calculated inside a single attention head.
Before we start the calculation, let’s observe the following as the starting
position:

o The attention layer (of a generative LLM) 1s processing attention for
a single position.

o The inputs to the layer are:
= The vector representation of the current position or token
= The vector representations of the previous tokens

e The goal is to produce a new representation of the current position
that incorporates relevant information from the previous tokens:

» For example, if we’re processing the last position in the
sentence “Sarah fed the cat because it,” we want “it” to
represent the cat—so attention bakes in “cat information”
from the cat token.

o The training process produces three projection matrices that
produce the components that interact in this calculation:

= A query projection matrix
= A key projection matrix

= A value projection matrix

Figure 3-18 shows the starting position for all of these components before the
attention calculations start. For simplicity, let’s look at only one attention
head because the other heads have identical calculations but with their
individual projection matrices.

Position currently ——+— Other positions in the
being processed sequence
Self-attention | [T Current position information
[Attention head #1 v
i Projection matrices |

Query Key Value
projection projection projection

l Enriched with context
[CT171 information from other
positions
Figure 3-18. Before starting the self-attention calculation, we have the inputs to the layer and
projection matrices for queries, keys, and values.

Attention starts by multiplying the inputs by the projection matrices to create
three new matrices. These are called the queries, keys, and values matrices.
These matrices contain the information of the input tokens projected to three
different spaces that help carry out the two steps of attention:

1. Relevance scoring
2. Combining information

Figure 3-19 shows these three new matrices, and how the bottom row of all
three matrices is associated with the current position while the rows above it
are associated with the previous positions.

. Other positions in the

Position currently |sequence
being processed
Self-attention | [T Current position information
Attention head #1 ¢
Projection matrices
Query Key Value
projection projection projection

Previous tokens

Current token T 11}

Queries Keys Values
l Enriched with context
[T 1] information from other
positions

Figure 3-19. Attention is carried out by the interaction of the queries, keys, and values matrices.
Those are produced by multiplying the layer s inputs with the projection matrices.

Self-attention: Relevance scoring

In a generative Transformer, we’re generating one token at a time. This
means we’re processing one position at a time. So the attention mechanism
here is only concerned with this one position, and how information from
other positions can be pulled in to inform this position.

The relevance scoring step of attention is conducted by multiplying the query
vector of the current position with the keys matrix. This produces a score
stating how relevant each previous token is. Passing that by a softmax
operation normalizes these scores so they sumup to 1. Figure 3-20 shows the
relevance score resulting from this calculation.

Other positions in the

Position currently sequence
being processed
Self-attention [[CICT Current position information
[Attention head #1 - |
i ™)
Projection matrices Relevance scores

50%
curenttoken TCCL] =
Queries Keys
l Enriched with context
[T 1] information from other
positions

Figure 3-20. Scoring the relevance of previous tokens is accomplished by multiplying the query
associated with the current position with the keys matrix.

Self-attention: Combining information

Now that we have the relevance scores, we multiply the value vector
associated with each token by that token’s score. Summing up those resulting
vectors produces the output of this attention step, as we see in Figure 3-21.

Position currently
being processed

Other positions in the
—T1 sequence

Self-attention | [CTT1 Current position information
, Attention head #1 + ‘

Relevance scores Values
111
1

I

50% 111 [
01
111

sum [C1T°17]

I

Enriched with context
11 information from other
positions

Figure 3-21. Attention combines the relevant information of previous positions by multiplying
their relevance scores by their respective value vectors.

Recent Improvements to the Transformer

Architecture

Since the release of the Transformer architecture, much work has been done
to improve it and create better models. This spans training on larger datasets
and optimizations for the training process and learning rates to use, but it also
extends to the architecture itself. At the time of writing, a lot of the ideas of
the original Transformer stand unchanged. There are a few architectural
ideas that have proved to be valuable. They contribute to the performance of
more recent Transformer models like Llama 2. In this final section of the
chapter, we go over a number of the important recent developments of the

Transformer architecture.

More Efficient Attention

The area that gets the most focus from the research community is the attention
layer of the Transformer. This is because the attention calculation is the most
computationally expensive part of the process.

Local/sparse attention

As Transformers started getting larger, ideas like sparse attention
(“Generating long sequences with sparse transformers’) and sliding window
attention (“‘Longformer: The long-document transformer”’) provided
improvements for the efficiency of the attention calculation. Sparse attention
limits the context of previous tokens that the model can attend to, as we can
see in Figure 3-22.

Inputtokens [[[| | | I] ARR @ @

Transformer : :
self-attention ‘ ‘
layer v .

Global autoregressive self-attention Local autoregressive self-attention

Figure 3-22. Local attention boosts performance by only paying attention to a small number of
previous positions.

One model that incorporates such a mechanism is GPT-3. But it does not use
that for all the Transformer blocks—the quality of the generation would
vastly degrade if the model could only see a small number of previous
tokens. The GPT-3 architecture interweaved full-attention and efficient-
attention Transformer blocks. So the Transformer blocks alternate between
full attention (e.g., blocks 1 and 3) and sparse attention (e.g., blocks 2 and 4).

To demonstrate different kinds of attention, review Figure 3-23, which shows
how different attention mechanisms work. Each figure shows which previous
tokens (light blue) can be attended to when processing the current token (in
dark blue).

https://oreil.ly/V1xqH
https://oreil.ly/uUKtU

(a) Transformer (b) Sparse Transformer (strided) (c) Sparse Transformer (fixed)
Figure 3-23. Full attention versus sparse attention. Figure 3-24 explains the coloring. (Source:
“Generating long sequences with sparse transformers”.)

Each row corresponds to a token being processed. The color coding
indicates which tokens the model is able to pay attention to while it’s
processing the token in the dark blue cell. Figure 3-24 describes this with
more clarity.

https://oreil.ly/0ap7A

Token 1

Token 2

Token 3 dog

2) Tokens it can 1) The token
pay attentionto being processed

Figure 3-24. Attention figures show which token is being processed, and which previous tokens
an attention mechanism allows it to attend to.

This figure also shows the autoregressive nature of decoder Transformer
blocks (which make up most text generation models); they can only pay
attention to previous tokens. Contrast this to BERT, which can pay attention
to both sides (hence the B in BERT stands for bidirectional).

Multi-query and grouped-query attention

A more recent efficient attention tweak to the Transformer is grouped-query
attention (“GQA: Training generalized multi-query transformer models from
multi-head checkpoints™), which is used by models like Llama 2 and 3.

https://oreil.ly/gY2oF

Figure 3-25 shows these different types of attention, and the next section
continues to explain them.

Multi-head Grouped-query Multi-query

b b ! ! "L'-‘:

Figure 3-25. A comparison of different kinds of attention: the original multi-head, grouped-query
attention, and multi-query attention (source: “Fast transformer decoding: One write-head is all
you need”).

) &
) &
) (
) &
) &

Grouped-query attention builds on multi-query attention (“Fast transformer
decoding: One write-head is all you need”’). These methods improve
inference scalability of larger models by reducing the size of the matrices
involved.

Optimizing attention: From multi-head to multi-query to grouped
query

Earlier in the chapter we showed how the Transformer paper described
multi-headed attention. The Illustrated Transformer discusses in detail how
the queries, keys, and values matrices are used to conduct the attention
operation. Figure 3-26 shows how each “attention head” has its own distinct
query, key, and value matrices calculated for a given input.

The way that multi-query attention optimizes this is to share the keys and
values matrices between all the heads. So the only unique matrices for each
head would be the queries matrices, as we can see in Figure 3-27.

https://oreil.ly/2mTiE
https://oreil.ly/jrZeM
https://oreil.ly/5dOd8

Position currently

being processed
Self-attention | [T Current position information

f v

" n'

Split into heads

N

-

Attention head #1 rAttentian head #2 || Attention head #Bﬂ

Er | Ef

Queries Keys Values Queries, Queries,
keys, values keys, values

Combine information from all heads

he >
% 7

l Enriched with context
I information from other
positions
Figure 3-26. Attention is conducted using matrices of queries, keys, and values. In multi-head
attention, each head has a distinct version of each of these matrices.

Self-attention [CI_T] Current position information

r '

Shared:

Splitinto heads

Keys Values

L. o

Attention head #1 ‘ rAttentinn head #2 || Attention head #3 1

Queries Queries Queries

L N -

Combine information from all heads

L. >

l Enriched with context
[T information from other
positions
Figure 3-27. Multi-query attention presents a more efficient attention mechanism by sharing the
keys and values matrices across all the attention heads.

As model sizes grow, however, this optimization can be too punishing and
we can afford to use a little more memory to improve the quality of the
models. This is where grouped-query attention comes in. Instead of cutting
the number of keys and values matrices to one of each, it allows us to use
more (but less than the number of heads). Figure 3-28 shows these groups
and how each group of attention heads shares keys and values matrices.

Self-attention | [T Current position information
: ¥ :
[Splitinto heads J
n_groups Group1 Shared: Group2 Shared:
r Attention 1 Attention] ' Attention | Attention |
head #1 head #2 head #3 head #4
n_attention_heads
Queries Queries Queries Queries
[Combine information from all heads]

l Enriched with context
[CI1] information from other

positions

Figure 3-28. Grouped-query attention sacrifices a little bit of the efficiency of multi-query
attention in return for a large improvement in quality by allowing multiple groups of shared
key/value matrices, each group has its respective set of attention heads.

Flash Attention

Flash Attention is a popular method and implementation that provides
significant speedups for both training and inference of Transformer LLMs on
GPUs. It speeds up the attention calculation by optimizing what values are
loaded and moved between a GPU’s shared memory (SRAM) and high
bandwidth memory (HBM). It is described in detail in the papers
“FlashAttention: Fast and memory-efficient exact attention with 10-
awareness’ and the subsequent “FlashAttention-2: Faster attention with
better parallelism and work partitioning”.

https://oreil.ly/r98GH
https://oreil.ly/PkGg1

The Transformer Block

Recall that the two major components of a Transformer block are an attention
layer and a feedforward neural network. A more detailed view of the block
would also reveal the residual connections and layer-normalization
operations that we can see in Figure 3-29.

Thinking Machines
X X2

Positional encoding @[}) P

Transformer block

FPE S EEESESEEE B Eg
r
\,

h 4
2
a
o
-
o
-
o
-
=
Q)
o

I . 2 v
Feedforward] [Feedforward

v v

Add and normalize

. I 7
v v

Figure 3-29. A Transformer block from the original Transformer paper.

FPE &SRB B BB EQ
i

- A

The latest Transformer models at the time of this writing still retain the major
components, yet make a number of tweaks as we can see in Figure 3-30.

One of the differences we see in this version of the Transformer block is that
normalization happens prior to attention and the feedforward layers. This has
been reported to reduce the required training time (read: “On layer
normalization in the Transformer architecture”). Another improvement in
normalization here is using RMSNorm, which 1s simpler and more efficient
than the LayerNorm used in the original Transformer (read: “Root mean
square layer normalization™). Lastly, instead of the original Transformer’s
ReLU activation function, newer variants like SwiGLU (described in “GLU

Variants Improve Transformer’) are now more common.

Thinking Machines
X1 X2
gRRRAARARS 2024-era Transformer block ~ f=======-- ;
P —Y y s
: | Normalize RMSNorm :
Jp —
+ | Self-attention Grouped-query attention, rotary embeddings | :

-é—

: | Normalize RMSNorm ;
PV y_
+ | Feedforward] [Feedforward |

Figure 3-30. The Transformer block of a 2024-era Transformer like Llama 3 features some
tweaks like pre-normalization and an attention optimized with grouped-query attention and

rotary embeddings.

https://oreil.ly/uYkft
https://oreil.ly/GHLSM
https://oreil.ly/ikugL

Positional Embeddings (RoPE)

Positional embeddings have been a key component since the original
Transformer. They enable the model to keep track of the order of
tokens/words in a sequence/sentence, which is an indispensable source of
information in language. From the many positional encoding schemes
proposed in the past years, rotary positional embeddings (or “RoPE,”
introduced in “RoFormer: Enhanced Transformer with rotary position
embedding”) is especially important to point out.

The original Transformer paper and some of the early variants had absolute
positional embeddings that, in essence, marked the first token as position 1,
the second as position 2...etc. These could either be static methods (where
the positional vectors are generated using geometric functions) or learned
(where the model training assigns them their values during the learning
process). Some challenges arise from such methods when we scale up
models, which requires us to find ways to improve their efficiency.

For example, one challenge in efficiently training models with large context
is that a lot of documents in the training set are much shorter than that context.
It would be inefficient to allocate the entire, say, 4K context to a short 10-
word sentence. So during model training, documents are packed together into
each context in the training batch, as Figure 3-31 shows.

https://oreil.ly/A5cEn

Naive, inefficient organization of training data

Document 1 Padding

Batch
Document 2 Padding
) |
Context size

Efficient training data packing

Document1 | Sep | Document2 | Sep | Document3 | Sep | Padding
Batch

Document 4 Sep Document 5 Sep | Padding

Figure 3-31. Packing is the process of efficiently organizing short training documents into the
context. It includes grouping multiple documents in a single context while minimizing the padding
at the end of the context.

Learn more about packing by reading “Efficient sequence packing without
cross-contamination: Accelerating large language models without impacting
performance” and watching the great visuals in “Introducing packed BERT
for 2X training speed-up in natural language processing”.

Positional embedding methods have to adapt to this and other practical
considerations. If Document 50, for example, starts at position 50, then we’d
be misinforming the model if we tell it that that first token is number 50 and
that would affect its performance (because it would assume there’s previous
context while in reality the earlier tokens belong to a different and unrelated
document the model should ignore).

Instead of the static, absolute embeddings that are added in the beginning of
the forward pass, rotary embeddings are a method to encode positional
information in a way that captures absolute and relative token position
information. It is based on the idea of rotating vectors in their embeddings
space. In the forward pass, they are added 1n the attention step, as Figure 3-
32 shows.

https://oreil.ly/Zgiy0
https://oreil.ly/xMbZr

&Transfnrmer LLM

I:f
L Tokenizer)
[Write TT happen T #ed T :]
Embeddings EI;I:I EI;I:I (010 [T1]
Stack of Transformer blocks
Rotary embeddings [. Self-attention]
Transformer block 1
Feedforward neural network
Rotary embeddings [. Self-attention]
Transformer block 2
Feedforward neural network
[LM head]

Figure 3-32. Rotary embeddings are applied in the attention step, not at the start of the forward
pass.

During the attention process, the positional information is mixed in
specifically to the queries and keys matrices just before we multiply them for
relevance scoring, as we can see in Figure 3-33.

Other positions in the

sequence
Position currently o
being processed
Self-attention | [T Current position information
Attention head #1 $
Projection matrices
Apply rotary
pas:‘rignu.f
embeddings
1] — [I11
Queries Keys Queries Keys
{with positional information)

Enriched with context
v [T11 information from other

positions

Figure 3-33. Rotary positional embeddings are added to the representation of tokens just before
the relevance scoring step in self-attention.

Other Architectural Experiments and Improvements

Many tweaks of the Transformer are proposed and researched on a
continuous basis. “A Survey of Transformers”™ highlights a few of the main
directions. Transformer architectures are also constantly adapted to domains
beyond LLMs. Computer vision is an area where a lot of Transformer
architecture research is happening (see: “Transformers in vision: A survey”
and “A survey on vision transformer’). Other domains include robotics (see
“Open X-Embodiment: Robotic learning datasets and RT-X models™) and
time series (see “Transformers in time series: A survey”).

Summary

https://oreil.ly/3SrG4
https://oreil.ly/35CES
https://oreil.ly/0zEbq
https://oreil.ly/SXAuB
https://oreil.ly/p9duV

In this chapter we discussed the main intuitions of Transformers and recent
developments that enable the latest Transformer LLMs. We went over many
new concepts, so let’s break down the key concepts that we discussed in this
chapter:

o A Transformer LLM generates one token at a time.

o That output token is appended to the prompt, then this updated
prompt is presented to the model again for another forward pass to
generate the next token.

o The three major components of the Transformer LLM are the

tokenizer, a stack of Transformer blocks, and a language modeling
head.

o The tokenizer contains the token vocabulary for the model. The
model has token embeddings associated with those tokens. Breaking
the text into tokens and then using the embeddings of these tokens is
the first step in the token generation process.

o The forward pass flows through all the stages once, one by one.

o Near the end of the process, the LM head scores the probabilities of
the next possible token. Decoding strategies inform which actual
token to pick as the output for this generation step (sometimes it’s
the most probable next token, but not always).

e One reason the Transformer excels is its ability to process tokens in
parallel. Each of the input tokens flow into their individual tracks
or streams of processing. The number of streams is the model’s
“context size” and this represents the max number of tokens the
model can operate on.

e Because Transformer LLMs loop to generate the text one token at a
time, it’s a good idea to cache the processing results of each step so
we don’t duplicate the processing effort (these results are stored as
various matrices within the layers).

o The majority of processing happens within Transformer blocks.
These are made up of two components. One of them is the
feedforward neural network, which is able to store information and
make predictions and interpolations from data it was trained on.

e The second major component of a Transformer block is the
attention layer. Attention incorporates contextual information to
allow the model to better capture the nuance of language.

o Attention happens in two major steps: (1) scoring relevance and (2)
combining information.

o A Transformer attention layer conducts several attention operations
in parallel, each occurring inside an attention head, and their
outputs are aggregated to make up the output of the attention layer.

 Attention can be accelerated via sharing the keys and values
matrices between all heads, or groups of heads (grouped-query
attention).

o Methods like Flash Attention speed up the attention calculation by
optimizing how the operation is done on the different memory
systems of a GPU.

Transformers continue to see new developments and proposed tweaks to
improve them in different scenarios, including language models and other
domains and applications.

In Part IT of the book, we will cover some of these practical applications of
LLMs. In Chapter 4, we start with text classification, a common task in
Language Al This next chapter serves as an introduction to applying both
generative and representation models.

Part ll. Using Pretrained
Language Models

Chapter 4. Text Classification

A common task in natural language processing is classification. The goal of
the task 1s to train a model to assign a label or class to some input text (see
Figure 4-1). Classifying text is used across the world for a wide range of
applications, from sentiment analysis and intent detection to extracting
entities and detecting language. The impact of language models, both
representative and generative, on classification cannot be understated.

Output
Input (The best category for the text)
N 12 (O Customer service
| La_mg'uage njod_el > [0 Rewms
Objective: classification —
(O Shipping

Figure 4-1. Using a language model to classify text.

In this chapter, we will discuss several ways to use language models for
classifying text. It will serve as an accessible introduction to using language
models that already have been trained. Due to the broad field of text
classification, we will discuss several techniques and use them to explore
the field of language models:

o “Text Classification with Representation Models” demonstrates the
flexibility of nongenerative models for classification. We will cover
both task-specific models and embedding models.

o “Text Classification with Generative Models” is an introduction to
generative language models as most of them can be used for
classification. We will cover both an open source as well as a
closed source language model.

In this chapter, we will focus on leveraging pretrained language models,
models that already have been trained on large amounts of data that can be

used for classifying text. As illustrated in Figure 4-2, we will examine both
representation and language models and explore their differences.

Output
Input {Thr? I:}elst categ}ar}r
) L;:’_, or the text
o Representation language model
— Objective: classification > 1
Classes:0,1,2
Input = Output
Classificati N _
S pronnt Generative language model Tié‘gf'?ﬁte"‘t;g’;s
containing Obijective: classification 1: Returns
the input text ;

Figure 4-2. Although both representation and generative models can be used for classification,
their approaches differ.

This chapter serves as an introduction to a variety of language models, both
generative and nongenerative. We will encounter common packages for
loading and using these models.

TIP

Although this book focuses on LLMs, it is highly advised to compare these examples
against classic, but strong baselines such as representing text with TF-IDF and training a
logistic regression classifier on top of that.

The Sentiment of Movie Reviews

You can find the data we use to explore techniques for classifying text on the
Hugging Face Hub, a platform for hosting models but also data. We will use
the well-known “rotten_tomatoes” dataset to train and evaluate our models.
It contains 5,331 positive and 5,331 negative movie reviews from Rotten
Tomatoes.

https://oreil.ly/ndroe
https://oreil.ly/44-1y

To load this data, we make use of the datasets package, which will be
used throughout the book:

from import load dataset

Load our data
data = load dataset("rotten tomatoes")
data
DatasetDict ({
train: Dataset ({
features: ['text', 'label'],
num rows: 8530
1)
validation: Dataset ({
features: ['text', 'label'],
num rows: 1066
1)
test: Dataset ({
features: ['text', 'label'],
num rows: 1066
1)
1)

The data is split up into train, test, and validation splits. Throughout this
chapter, we will use the train split when we train a model and the test split
for validating the results. Note that the additional validation split can be used
to further validate generalization if you used the train and test splits to
perform hyperparameter tuning.

Let’s take a look at some examples in our train split:

data["train"]1[0, -1]
{'text': ['the rock is destined to be the 21st century\'s new "
conan " and that he\'s going to make a splash even greater than
arnold schwarzenegger , jean-claud van damme or steven segal

Ll
14

'things really get weird , though not particularly scary
the movie is all portent and no content .'],
'label': [1, 0]}

These short reviews are either labeled as positive (1) or negative (0). This
means that we will focus on binary sentiment classification.

Text Classification with Representation
Models

Classification with pretrained representation models generally comes in two
flavors, either using a task-specific model or an embedding model. As we
explored in the previous chapter, these models are created by fine-tuning a
foundation model, like BERT, on a specific downstream task as illustrated in
Figure 4-3.

Fine-tuned
; " (used in this chapter)
Fine-tuning ¥

Base (supervised) Z

undasenmooe _ Task: classification l——b: _Tagl~:-5pemﬁ cm Dd el) >
2= : Objective: Perform classification
> BERT
5 Embedding model =
Task: embeddings I-—b'

_______________ ng — Objective: Create embeddings >

Figure 4-3. A foundation model is fine-tuned for specific tasks, for instance, to perform
classification or generate general-purpose embeddings.

A task-specific model is a representation model, such as BERT, trained for a
specific task, like sentiment analysis. As we explored in Chapter 1, an
embedding model generates general-purpose embeddings that can be used for

a variety of tasks not limited to classification, like semantic search (see
Chapter 8).

The process of fine-tuning a BERT model for classification is covered in
Chapter 11 while creating an embedding model is covered in Chapter 10. In
this chapter, we keep both models frozen (nontrainable) and only use their
output as shown in Figure 4-4.

grasssessessecseessereniiieeeeiinen Output

Task-specific model = : | 1
Objective: Perform classification : Positive

Best movie ever! : Output

Embedding model 1
. Positive
T SO T " Train classifier

Objective: Create embeddings
Nontrainable ez logist o)
Frozen” e.g., logistic regression

i

Figure 4-4. Perform classification divectly with a task-specific model or indirectly with general-
purpose embeddings.

We will leverage pretrained models that others have already fine-tuned for us
and explore how they can be used to classify our selected movie reviews.

Model Selection

Choosing the right models is not as straightforward as you might think with
over 60,000 models on the Hugging Face Hub for text classification and
more than 8,000 models that generate embeddings at the moment of writing,
Moreover, it’s crucial to select a model that fits your use case and consider
its language compatibility, the underlying architecture, size, and performance.

Let’s start with the underlying architecture. As we explored in Chapter 1,
BERT, a well-known encoder-only architecture, is a popular choice for
creating task-specific and embedding models. While generative models, like
the GPT family, are incredible models, encoder-only models similarly excel
in task-specific use cases and tend to be significantly smaller in size.

Over the years, many variations of BERT have been developed, including
RoBERTa,?2 DistilBERT,® ALBERT,* and DeBERTa,° each trained in
various contexts. You can find an overview of some well-known BERT-like
models in Figure 4-5.

https://oreil.ly/IPWTY
https://oreil.ly/yviVH

BERT-like models

ALBERT
12/18/60/235M
BERT RoBERTa - DeBERTa
110/340M 356M D'Stﬁ'!ﬁE:ﬂEm 134/384/750M
el o L 1l l .
2019 2020 2021

Figure 4-5. A timeline of common BERT-like model releases. These are considered foundation
models and are mostly intended to be fine-tuned on a downstream task.

Selecting the right model for the job can be a form of art in itself. Trying
thousands of pretrained models that can be found on Hugging Face’s Hub is
not feasible so we need to be efficient with the models that we choose.
Having said that, several models are great starting points and give you an
idea of the base performance of these kinds of models. Consider them solid
baselines:

e BERT base model (uncased)
RoBERTa base model

DistilBERT base model (uncased)
DeBERTa base model

bert-tiny
e ALBERT base v2

For the task-specific model, we are choosing the Twitter-RoBERTa-base for
Sentiment Analysis model. This is a ROBERTa model fine-tuned on tweets
for sentiment analysis. Although this was not trained specifically for movie
reviews, it 1s interesting to explore how this model generalizes.

When selecting models to generate embeddings from, the MTEB leaderboard
1s a great place to start. It contains open and closed source models
benchmarked across several tasks. Make sure to not only take performance
into account. The importance of inference speed should not be

https://oreil.ly/nq_GM
https://oreil.ly/rz4dQ
https://oreil.ly/ieLs3
https://oreil.ly/wN8yl
https://oreil.ly/HLRPn
https://oreil.ly/Mw93z
https://oreil.ly/HmvFk
https://oreil.ly/mUVXD

underestimated in real-life solutions. As such, we will use sentence-
transformers/all-mpnet-base-v2 as the embedding throughout this section. It
is a small but performant model.

Using a Task-Specific Model

Now that we have selected our task-specific representation model, let’s start
by loading our model:

from import pipeline

Path to our HF model
model path = "cardiffnlp/twitter-roberta-base-sentiment-latest"

Load model into pipeline

pipe = pipeline(
model=model path,
tokenizer=model path,

return all scores=True,
device="cuda:0"

As we load our model, we also load the tokenizer, which is responsible for
converting input text into individual tokens, as illustrated in Figure 4-6.
Although that parameter is not needed as it is loaded automatically, it
illustrates what is happening under the hood.

https://oreil.ly/3pozB

Input ' Her vocalization was melodic]

”-

Tokenizer] Splitinput up into tokens

[Her | [vocal| [#tization | [was| [melodic]

Task-specific model
Objective: Perform classification

v

Output | |

Positive

N

Figure 4-6. An input sentence is first fed to a tokenizer before it can be processed by the task-
specific model.

These tokens are at the core of most language models, as explored in depth in
Chapter 2. A major benefit of these tokens is that they can be combined to
generate representations even if they were not in the training data, as shown
in Figure 4-7.

Input [Her vocalization was melodic]

Tokenizer |Splitinput up into tokens

| | I

(he) (o] (Fmaoien] (] (o]

v 2
v OOTIT1 I:I:I:I:EI

BERT | 111 |:|:|;|:|:| Banam

Foundation model

Token
Embedding
A 4

Output [T
Word

Embedding

Figure 4-7. By breaking down an unknown word into tokens, word embeddings can still be

generated.

After loading all the necessary components, we can go ahead and use our
model on the test split of our data:

import numpy as np
from tgdm import tgdm
from transformers.pipelines.pt utils import KeyDataset

Run inference

y_pred = []

for output in tgdm(pipe (KeyDataset (data["test"], "text")),
total=len (data["test"])):

negative score = output[0] ["score"]

positive score = output[2]["score"]

assignment = np.argmax([negative score, positive score])
y_pred.append (assignment)

Now that we have generated our predictions, all that is left is evaluation. We
create a small function that we can easily use throughout this chapter:

from import classification report

def evaluate performance(y true, y pred):
"""Create and print the classification report"""

performance = classification report(
y true, y pred,
target names=["Negative Review'", "Positive Review"]

)

print (performance)

Next, let’s create our classification report:

evaluate performance (data["test"]["label"], y pred)
precision recall fl-score support
Negative Review 0.76 0.88 0.81 533
Positive Review 0.86 0.72 0.78 533
accuracy 0.80 1066
macro avg 0.81 0.80 0.80 1066
weighted avg 0.81 0.80 0.80 1066

To read the resulting classification report, let’s first start by exploring how
we can identify correct and incorrect predictions. There are four
combinations depending on whether we predict something correctly (True)
versus incorrectly (False) and whether we predict the correct class
(Positive) versus incorrect class (Negative). We can illustrate these
combinations as a matrix, commonly referred to as a confusion matrix, in
Figure 4-8.

Actual values

Negative review

Positive review correctly _____ fa e
classified as positive .| Positive Negative | . incorrectly
= classified as
> True False positive
= positive positive
g (TP) (FP)
Predicted values
g False True
o negative negative
= (FN) (TN)
Positive review : ' Negative review
incorrectly ‘ . correctly
classifiedas ~"TTTTTTTTTTTTeeeS ' frmmmmemmsmeses classified as
negative negative

Figure 4-8. The confusion matrix describes four types of predictions we can make.

Using the confusion matrix, we can derive several formulas to describe the
quality of the model. In the previously generated classification report we can
see four such methods, namely precision, recall, accuracy, and the F'I score:

e Precision measures how many of the items found are relevant,
which indicates the accuracy of the relevant results.

e Recall refers to how many relevant classes were found, which
indicates its ability to find all relevant results.

e Accuracy refers to how many correct predictions the model makes
out of all predictions, which indicates the overall correctness of the

model.

e The F'I score balances both precision and recall to create a model’s
overall performance.

These four metrics are illustrated in Figure 4-9, which describes them using
the aforementioned classification report.

TP

TP

I | TP+EN

precision

Negative review 0.76
Positive review 0.86

recall

0.88
0.72

. Precision » Recall

TP+TN

TP+ TN +FP+FP
dccuracy

0.80

macroavg 081 080 080
weightedavg 081 080 0.80

Averaged across all classes

Figure 4-9. The classification report describes several metrics for evaluating a model’s

performance.

Precision +Recall

fl-score support
0.81

078 033

533

1066

1066

1066

— Number of
samples

We will consider the weighted average of the F1 score throughout the
examples in this book to make sure each class is treated equally. Our
pretrained BERT model gives us an F1 score of 0.80 (we are reading this
from the weighted avg row and the f1-score column), which is great for a
model not trained specifically on our domain data!

To improve the performance of our selected model, we could do a few
different things including selecting a model trained on our domain data,
movie reviews in this case, like DistilBERT base uncased finetuned SST-2.
We could also shift our focus to another flavor of representation models,

namely embedding models.

Classification Tasks That Leverage

Embeddings

In the previous example, we used a pretrained task-specific model for
sentiment analysis. However, what if we cannot find a model that was
pretrained for this specific task? Do we need to fine-tune a representation
model ourselves? The answer is no!

https://oreil.ly/7-zVj

There might be times when you want to fine-tune the model yourself if you
have sufficient computing available (see Chapter 11). However, not everyone
has access to extensive computing. This is where general-purpose embedding
models come in.

Supervised Classification

Unlike the previous example, we can perform part of the training process
ourselves by approaching it from a more classical perspective. Instead of
directly using the representation model for classification, we will use an
embedding model for generating features. Those features can then be fed into
a classifier, thereby creating a two-step approach as shown in Figure 4-10.

@ Feature extractor @ Classifier

£

Embedding model

Objective: Create embeddings

(A A A L LR]

(e.g., logistic regression)

Figure 4-10. The feature extraction step and classification steps are separated.

A major benefit of this separation is that we do not need to fine-tune our
embedding model, which can be costly. In contrast, we can train a classifier,
like a logistic regression, on the CPU instead.

In the first step, we convert our textual input to embeddings using the
embedding model as shown in Figure 4-11. Note that this model 1s similarly
kept frozen and is not updated during the training process.

Input [Best movie ever!]

Nontrainable

Embedding model = "F”"’-'E”i‘

Objective: Create embeddings

b4

Figure 4-11. In step 1, we use the embedding model to extract the features and convert the input
text to embeddings.

We can perform this step with sentence-transformer, a popular

package for leveraging pretrained embedding models.® Creating the
embeddings is straightforward:

from sentence transformers import SentenceTransformer

Load model
model = SentenceTransformer ("sentence-transformers/all-mpnet-
base-v2™)

Convert text to embeddings

train embeddings = model.encode (data["train"]["text"],
show progress bar=True)

test embeddings = model.encode (data["test"] ["text"],
show progress bar=True)

As we covered in Chapter 1, these embeddings are numerical representations
of the input text. The number of values, or dimension, of the embedding
depends on the underlying embedding model. Let’s explore that for our
model:

train embeddings.shape
(8530, 768)

This shows that each of our 8,530 input documents has an embedding
dimension of 768 and therefore each embedding contains 768 numerical
values.

In the second step, these embeddings serve as the input features to the
classifier illustrated in Figure 4-12. The classifier is trainable and not
limited to logistic regression and can take on any form as long as it performs
classification.

! | | | — Input for classifier
; Trainable@

1
Output | 5 citive |

Figure 4-12. Using the embeddings as our features, we train a logistic regression model on our
training data.

We will keep this step straightforward and use a logistic regression as the
classifier. To train it, we only need to use the generated embeddings together
with our labels:

from import LogisticRegression
Train a logistic regression on our train embeddings

clf = LogisticRegression(random state=42)
clf.fit(train embeddings, data["train"]["label"])

Next, let’s evaluate our model:

Predict previously unseen instances
y pred = clf.predict(test embeddings)

evaluate performance (data["test"]["label"], y pred)
precision recall fl-score support
Negative Review 0.85 0.86 0.85 533
Positive Review 0.86 0.85 0.85 533
accuracy 0.85 1066
macro avg 0.85 0.85 0.85 1066
weighted avg 0.85 0.85 0.85 1066

By training a classifier on top of our embeddings, we managed to get an F1
score of 0.85! This demonstrates the possibilities of training a lightweight
classifier while keeping the underlying embedding model frozen.

TIP

In this example, we used sentence-transformers to extract our embeddings,
which benefits from a GPU to speed up inference. However, we can remove this GPU
dependency by using an external API to create the embeddings. Popular choices for
generating embeddings are Cohere’s and OpenAl’s offerings. As a result, this would allow
the pipeline to run entirely on the CPU.

What If We Do Not Have Labeled Data?

In our previous example, we had labeled data that we could leverage, but
this might not always be the case in practice. Getting labeled data is a
resource-intensive task that can require significant human labor. Moreover, is
it actually worthwhile to collect these labels?

To test this, we can perform zero-shot classification, where we have no
labeled data to explore whether the task seems feasible. Although we know
the definition of the labels (their names), we do not have labeled data to
support them. Zero-shot classification attempts to predict the labels of input
text even though it was not trained on them, as shown in Figure 4-13.

Input Candidate labels

Explore the world's (Previously unseen labels)
flavors through global ,
culinary adventures. E[travel IcuuklngT SpOrts]

...... [&

Zero-shot model
Objective: Predict unseen labels

v

Cooking
Output | fravel
Sports

Figure 4-13. In zero-shot classification, we have no labeled data, only the labels themselves. The
zero-shot model decides how the input is related to the candidate labels.

To perform zero-shot classification with embeddings, there is a neat trick that
we can use. We can describe our labels based on what they should represent.
For example, a negative label for movie reviews can be described as “This
1s a negative movie review.” By describing and embedding the labels and
documents, we have data that we can work with. This process, as illustrated
in Figure 4-14, allows us to generate our own target labels without the need
to actually have any labeled data.

Document Candidate labels
[Best movie ever!] [D {negative}] [1(positive)]

Describe labels
A negative A positive
review review
Embedding model H

Objective: create embeddings

v v v

Document Label
coe— 1L LT 1] (T1T11 COOII+ :
Eeaang “Best movie "A negative "A positive embeddings
ever!” review"” review"”

Figure 4-14. To embed the labels, we first need to give them a description, such as “a negative
movie review.” This can then be embedded through sentence-transformers.

We can create these label embeddings using the . encode function as we
did earlier:

Create embeddings for our labels
label embeddings = model.encode (["A negative review", "A
positive review"])

To assign labels to documents, we can apply cosine similarity to the
document label pairs. This is the cosine of the angle between vectors, which
is calculated through the dot product of the embeddings and divided by the
product of their lengths, as illustrated in Figure 4-15.

"Best movie ever!”

‘A positive
movie review"

"A negative
movie review

L

0= cosine similarity between document and positive label
0,= cosine similarity between document and negative label

Figure 4-15. The cosine similarity is the angle between two vectors or embeddings. In this
example, we calculate the similarity between a document and the two possible labels, positive and
negative.

We can use cosine similarity to check how similar a given document is to the
description of the candidate labels. The label with the highest similarity to
the document is chosen as illustrated in Figure 4-16.

“Best movie "A negative

ever!” review”
Cosine similarity (')=
--------------------- Positive
Cosine similarity (.) =
"Bestmovie A positive
ever!” review”

Figure 4-16. After embedding the label descriptions and the documents, we can use cosine
similarity for each label document pair.

To perform cosine similarity on the embeddings, we only need to compare
the document embeddings with the label embeddings and get the best
matching pairs:

from import cosine similarity

Find the best matching label for each document
sim matrix = cosine similarity(test embeddings, label embeddings)
y pred = np.argmax(sim matrix, axis=1)

And that 1s 1t! We only needed to come up with names for our labels to
perform our classification tasks. Let’s see how well this method works:

evaluate performance (data["test"]["label"], y pred)
precision recall fl-score support
Negative Review 0.78 0.77 0.78 533
Positive Review 0.77 0.79 0.78 533
accuracy 0.78 1066
macro avg 0.78 0.78 0.78 1066
weighted avg 0.78 0.78 0.78 1066

NOTE

If you are familiar with zero-shot classification with Transformer-based models, you might
wonder why we choose to illustrate this with embeddings instead. Although natural
language inference models are amazing for zero-shot classification, the example here
demonstrates the flexibility of embeddings for a variety of tasks. As you will see
throughout the book, embeddings can be found in most Language Al use cases and are
often an underestimated but incredibly vital component.

An F1 score of 0.78 is quite impressive considering we did not use any
labeled data at all! This just shows how versatile and useful embeddings are,
especially if you are a bit creative with how they are used.

https://oreil.ly/jpayB

TIP

Let’s put that creativity to the test. We decided upon “A negative/positive review” as the
name of our labels but that can be improved. Instead, we can make them a bit more
concrete and specific toward our data by using “A very negative/positive movie review”
mstead. This way, the embedding will capture that it is a movie review and will focus a bit
more on the extremes of the two labels. Try it out and explore how it affects the results.

Text Classification with Generative Models

Classification with generative language models, such as OpenAI’s GPT
models, works a bit differently from what we have done thus far. These
models take as input some text and generative text and are thereby aptly
named sequence-to-sequence models. This is in stark contrast to our task-
specific model, which outputs a class instead, as illustrated in Figure 4-17.

Input Output
[- Imm[e [Mr]r Task-specific model - | @
Objective: perform classification
Sequence (of tokens) Numerieal (value)

Sequence-to-value mode/

Generative model mﬁm
21 0 £ 0 0 0 o S Y) O

Sequence (of tokens) Sequence (of tokens)
Sequence-to-sequence model

Figure 4-17. A task-specific model generates numerical values from sequences of tokens while a
generative model generates sequences of tokens from sequences of tokens.

These generative models are generally trained on a wide variety of tasks and
usually do not perform your use case out of the box. For instance, if we give
a generative model a movie review without any context, it has no idea what
to do with it.

Instead, we need to help it understand the context and guide it toward the
answers that we are looking for. As demonstrated in Figure 4-18, this guiding
process is done mainly through the instruction, or prompt, that you give such

a model. Iteratively improving your prompt to get your preferred output is
called prompt engineering.

oooooooooooooooooooo

What sentiment does | : | Is this movie review
Input Rate the sentiment. this review have? | : | negative or positive?
(prompt) “Best movie ever!” “Best movieever!" | :| “Bestmovie ever!”
: ol
Generative model

Objective: generate text

v v

i '\
Given a typical [The review expresses

5

B I T I]

e s m e

Output Sf?t”“'“ffqubl'ﬂ““tﬁgfﬂ'ﬂ' apositivesentiment. |
i It Would be rated as
(compietion) 5duetoits highly Best prompt for

the preferred output

positive connotation.

&

Figure 4-18. Prompt engineering allows prompts to be updated to improve the output generated
by the model.

In this section, we will demonstrate how we can leverage different types of
generative models to perform classification without our Rotten Tomatoes
dataset.

Using the Text-to-Text Transfer Transformer

Throughout this book, we will explore mostly encoder-only (representation)
models like BERT and decoder-only (generative) models like ChatGPT.
However, as discussed in Chapter 1, the original Transformer architecture
actually consists of an encoder-decoder architecture. Like the decoder-only
models, these encoder-decoder models are sequence-to-sequence models
and generally fall in the category of generative models.

An interesting family of models that leverage this architecture is the Text-to-
Text Transfer Transformer or TS5 model. Illustrated in Figure 4-19, its
architecture is similar to the original Transformer where 12 decoders and 12

encoders are stacked together.”

e — — — — —
(Se'é‘il;tce) what | [is] [1] [+« [1] [?
JI W
+ x12
T5 : Encoder "’“—'H 5
(Text-to-Text : :
Transfer '
Transformer) : ' x]2
; Decoder = :

l S :

Output] [ThE] [anmef] [i5] [2]

(sequence
Figure 4-19. The T5 architecture is similar to the orviginal Transformer model, a decoder-encoder
architecture.

With this architecture, these models were first pretrained using masked
language modeling. In the first step of training, illustrated in Figure 4-20,
instead of masking individual tokens, sets of tokens (or token spans) were
masked during pretraining,

input rLLII:IS] [can] [be] [used] [fnr] '[MASI{]:

(masked sequence) [,] [a] [f.;,rm] [of] [[MASK}“ [.
I |
I I

o 0
@ Pretraining objectiE; L?i?ﬁlmsm

v v

{predtiilt];g ngasks} [text] Igeneratiun] [gE"ETEItWEI lai]

Figure 4-20. In the first step of training, namely pretraining, the T5 model needs to predict masks
that could contain multiple tokens.

The second step of training, namely fine-tuning the base model, is where the
real magic happens. Instead of fine-tuning the model for one specific task,
each task is converted to a sequence-to-sequence task and trained
simultaneously. As illustrated in Figure 4-21, this allows the model to be
trained on a wide variety of tasks.

Summarize:
Reading books hasa
myriad of advantages
- that contribute to both
Input Trarll)le;tI;r1 into th:arITJmar: ” mental and emotional
: utch: The building is ta health. Engaging with
(multiple tasks) My name is Maarten. and wide. | written material...
I
T5 model =

o Fine-tuning

Objective: predict multiple tasks

Mijn naam is Reading improves
Output u mental health and

broadens knowledge.

Figure 4-21. By converting specific tasks to textual instructions, the TS model can be trained on
a variety of tasks during fine-tuning.

This method of fine-tuning was extended in the paper “Scaling instruction-
finetuned language models™, which introduced more than a thousand tasks
during fine-tuning that more closely follow instructions as we know them

from GPT models.? This resulted in the Flan-T5 family of models that benefit
from this large variety of tasks.

To use this pretrained Flan-T5 model for classification, we will start by
loading it through the "text2text-generation™ task, whichis
generally reserved for these encoder-decoder models:

Load our model

pipe = pipeline(
"text2text-generation",
model="google/flan-t5-small",
device="cuda:0"

The Flan-T5 model comes in various sizes (flan-t5-small/base/large/x1/xxl)
and we will use the smallest to speed things up a bit. However, feel free to
play around with larger models to see if you can improve the results.

Compared to our task-specific model, we cannot just give the model some
text and hope it will output the sentiment. Instead, we will have to instruct the
model to do so.

Thus, we prefix each document with the prompt “Is the following sentence
positive or negative?”:

Prepare our data

prompt = "Is the following sentence positive or negative? "
data = data.map (lambda example: {"t5": prompt + example['text']})
data

DatasetDict ({

train: Dataset ({
features: ['text', 'label', 't5'],
num_rows: 8530

1)

validation: Dataset ({
features: ['text', 'label', 't5'],
num_rows: 1066

})

https://oreil.ly/yl9Et

test: Dataset ({
features: ['text', 'label', 't5'],
num rows: 1066
1)
1)

After creating our updated data, we can run the pipeline similar to the task-
specific example:

Run inference
y pred = []
for output in tgdm (pipe (KeyDataset (data["test"], "t5")),
total=len(data["test"])) :
text = output[0] ["generated text"]

y_pred.append (0 if text == "negative" else 1)

Since this model generates text, we did need to convert the textual output to
numerical values. The output word “negative” was mapped to 0 whereas
“positive” was mapped to 1.

These numerical values now allow us to test the quality of the model in the
same way we have done before:

evaluate performance (data["test"]["label"], y pred)
precision recall fl-score support
Negative Review 0.83 0.85 0.84 533
Positive Review 0.85 0.83 0.84 533
accuracy 0.84 1066
macro avg 0.84 0.84 0.84 1066
weighted avg 0.84 0.84 0.84 1066

With an F1 score of 0.84, it is clear this Flan-T5 model is an amazing first
look into the capabilities of generative models.

ChatGPT for Classification

Although we focus throughout the book on open source models, another
major component of the Language Al field is closed sourced models; in

particular, ChatGPT.

Although the underlying architecture of the original ChatGPT model (GPT-
3.5) is not shared, we can assume from its name that it is based on the
decoder-only architecture that we have seen in the GPT models thus far.

Fortunately, OpenAl shared an overview of the training procedure that
involved an important component, namely preference tuning. As illustrated in
Figure 4-22, OpenAl first manually created the desired output to an input
prompt (instruction data) and used that data to create a first variant of its
model.

Human labelers create
Sample prompts desired outputs

: 0l
What is The answer | Instruction-tuning Generative model
1+1? is2. | Objective: generate output [~ -
: : given prompt

Instruction data collection

Figure 4-22. Manually labeled data consisting of an instruction (prompt) and output was used to
perform fine-tuning (instruction-tuning).

OpenAl used the resulting model to generate multiple outputs that were
manually ranked from best to worst. As shown in Figure 4-23, this ranking

demonstrates a preference for certain outputs (preference data) and was used
to create its final model, ChatGPT.

Generate outputs with ~ Human labelers
instruction-tuned model rank the output

o An abbreviation for | 0
the Master of Laws. ;
: | Generative model
Preference-tuning

| Objective: generate
{G}eboj g preferred output

given prompt

=

[I am not familiar with...

A

Explain
LLMs

are artificial...

Create preference data
Figure 4-23. Manually ranked preference data was used to generate the final model, ChatGPT.

[Large language models|

A major benefit of using preference data over instruction data is the nuance it
represents. By demonstrating the difference between a good and better output

https://oreil.ly/-yf84

the generative model learns to generate text that resembles human preference.
In Chapter 12, we will explore how these fine-tuning and preference-tuning
methodologies work and how you can perform them yourself.

The process of using a closed sourced model is quite different from the open
sourced examples we have seen thus far. Instead of loading the model, we
can access the model through OpenAl’s APL

Before we go into the classification example, you will first need to create a
free account on Attps://oreil.ly/AEXvA and create an API key here:
https://oreil ly/IrTXI. After doing so, you can use your API to communicate
with OpenAl’s servers.

We can use this key to create a client:

import

Create client
client = openai.OpenAI (api key="YOUR KEY HERE")

Using this client, we create the chatgpt generation function, which
allows us to generate some text based on a specific prompt, input document,
and the selected model:

def chatgpt generation(prompt, document, model="gpt-3.5-turbo-
0125"):
"""Generate an output based on a prompt and an input
document. """
messages=|
{
"role": "system",
"content": "You are a helpful assistant."

by

"role": "user",
"content": prompt.replace (" [DOCUMENT]", document)
}
]
chat completion = client.chat.completions.create(
messages=messages,
model=model,
temperature=0

https://oreil.ly/AEXvA
https://oreil.ly/lrTXl

)

return chat completion.choices[0].message.content

Next, we will need to create a template to ask the model to perform the
classification:

Define a prompt template as a base
prompt = """Predict whether the following document is a positive
or negative movie review:

[DOCUMENT]

If it is positive return 1 and if it is negative return 0. Do not
give any other answers.

mmn

Predict the target using GPT
document = "unpretentious , charming , quirky , original"
chatgpt generation (prompt, document)

This template is merely an example and can be changed however you want.
For now, we kept it as simple as possible to illustrate how to use such a
template.

Before you use this over a potentially large dataset, it is important to always
keep track of your usage. External APIs such as OpenAl’s offering can
quickly become costly if you perform many requests. At the time of writing,
running our test dataset using the “gpt-3.5-turbo-0125" model costs 3 cents,
which is covered by the free account, but this might change in the future.

TIP

When dealing with external APIs, you might run into rate limit errors. These appear when
you call the API too often as some APIs might limit the rate with which you can use it per
minute or hour.

To prevent these errors, we can implement several methods for retrying the request,
including something referred to as exponential backoff. It performs a short sleep each
time we hit a rate limit error and then retries the unsuccessful request. Whenever it is
unsuccessful again, the sleep length is increased until the request is successful or we hit a
maximum number of retries.

To use it with OpenAl, there is a great guide that can help you get started.

Next, we can run this for all reviews in the test dataset to get its predictions.
You can skip this if you want to save your (free) credits for other tasks.

You can skip this if you want to save your (free) credits
predictions = [

chatgpt generation (prompt, doc) for doc in tgdm(data["test"]
["text"])
]

Like the previous example, we need to convert the output from strings to
integers to evaluate its performance:

Extract predictions
y pred = [int(pred) for pred in predictions]

Evaluate performance

evaluate performance (data["test"]["label"], y pred)
precision recall fl-score support
Negative Review 0.87 0.97 0.92 533
Positive Review 0.96 0.86 0.91 533
accuracy 0.91 1066
macro avg 0.92 0.91 0.91 1066

weighted avg 0.92 0.91 0.91 1066

https://oreil.ly/ZH4Uo

The F1 score of 0.91 already gives a glimpse into the performance of the
model that brought generative Al to the masses. However, since we do not
know what data the model was trained on, we cannot easily use these kinds
of metrics for evaluating the model. For all we know, it might have actually
been trained on our dataset!

In Chapter 12, we will explore how we can evaluate both open source and
closed source models on more generalized tasks.

Summary

In this chapter, we discussed many different techniques for performing a
wide variety of classification tasks, from fine-tuning your entire model to no
tuning at all! Classifying textual data is not as straightforward as it may seem
on the surface and there is an incredible amount of creative techniques for
doing so.

In this chapter, we explored text classification using both generative and
representation language models. Our goal was to assign a label or class to
input text for the classification of a review’s sentiment.

We explored two types of representation models, a task-specific model and
an embedding model. The task-specific model was pretrained on a large
dataset specifically for sentiment analysis and showed us that pretrained
models are a great technique for classifying documents. The embedding
model was used to generate multipurpose embeddings that we used as the
input to train a classifier.

Similarly, we explored two types of generative models, an open source
encoder-decoder model (Flan-T5) and a closed source decoder-only model
(GPT-3.5). We used these generative models in text classification without
requiring specific (additional) training on domain data or labeled datasets.

In the next chapter, we will continue with classification but focus instead on
unsupervised classification. What can we do if we have textual data without
any labels? What information can we extract? We will focus on clustering
our data as well as naming the clusters with topic modeling techniques.

1 Bo Pang and Lillian Lee. “Seeing stars: Exploiting class relationships for sentiment categorization
with respect to rating scales.” arXiv preprint cs/0506075 (2005).

2 Yinhan Liuet et al. “RoBERTa: A robustly optimized BERT pretraining approach.” arXiv
preprint arXiv:1907.11692 (2019).

3 Victor Sanh et al. “DistiBERT, a distilled version of BERT: smaller, faster, cheaper and lighter.”
arXiv preprint arXiv:1910.01108 (2019).

4 Zhenzhong Lan et al. “ALBERT: A lite BERT for self-supervised learning of language
representations.” arXiv preprint arXiv:1909.11942 (2019).

5 Pengcheng He et al. “DeBERTa: Decoding-enhanced BERT with disentangled attention.” arXiv
preprint arXiv:2006.03654 (2020).

6 Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence embeddings using Siamese
BERT-networks.” arXiv preprint arXiv:1908.10084 (2019).

7" Colin Raffel et al. “Exploring the limits of transfer learning with a unified text-to-text
transformer.” The Journal of Machine Learning Research 21.1 (2020): 5485-5551.

8 Hyung Won Chung et al. “Scaling instruction-finetuned language models.” arXiv preprint
arXiv:2210.11416 (2022).

Chapter 5. Text Clustering and
Topic Modeling

Although supervised techniques, such as classification, have reigned supreme
over the last few years in the industry, the potential of unsupervised
techniques such as text clustering cannot be understated.

Text clustering aims to group similar texts based on their semantic content,
meaning, and relationships. As illustrated in Figure 5-1, the resulting clusters
of semantically similar documents not only facilitate efficient categorization
of large volumes of unstructured text but also allow for quick exploratory
data analysis.

Input Output
(Textual data) (Clusters of semantically similar texts)
Document
about cats
\ ca?“"“
— —---._______-_
dog (soccer \
Clustering O \ O)
\.\ basketball /
/f‘_"--...______-___- \‘\...____ _____...-"‘/
£ pasta
(| (O] m| 1)
N \
ul %

Figure 5-1. Clustering unstructured textual data.

The recent evolution of language models, which enable contextual and
semantic representations of text, has enhanced the effectiveness of text
clustering. Language 1s more than a bag of words, and recent language
models have proved to be quite capable of capturing that notion. Text

clustering, unbound by supervision, allows for creative solutions and diverse
applications, such as finding outliers, speedup labeling, and finding
incorrectly labeled data.

Text clustering has also found itself in the realm of topic modeling, where we
want to discover (abstract) topics that appear in large collections of textual
data. As shown in Figure 5-2, we generally describe a topic using keywords
or keyphrases and, ideally, have a single overarching label.

Topic1-Pets ,
Keywords: pet, dog, - Topic 3 - Sports
cat, animal shelter, ... (cat “""'“\ Keywaords: sport, soccer,
\ O = —~=t—— / game, ...
*\u dog l (soccer 4
oD [\ P
\\ basketball
1| —1—
. ""*-'/ sta N
Topic2 - Food 7| U 18 o)
Keywords: pasta, pizza, - Q va

rice, ... l

Figure 5-2. Topic modeling is a way to give meaning to clusters of textual documents.

In this chapter, we will first explore how to perform clustering with
embedding models and then transition to a text-clustering-inspired method of
topic modeling, namely BERTopic.

Text clustering and topic modeling have an important role in this book as they
explore creative ways to combine a variety of different language models. We
will explore how combining encoder-only (embeddings), decoder-only
(generative), and even classical methods (bag-of-words) can result in
amazing new techniques and pipelines.

ArXiv’s Articles: Computation and Language

Throughout this chapter, we will be running clustering and topic modeling
algorithms on ArXiv articles. ArXiv is an open-access platform for scholarly
articles, mostly in the fields of computer science, mathematics, and physics.

https://oreil.ly/ece40

We will explore articles in the field of Computation and Language to keep
with the theme of this book. The dataset contains 44,949 abstracts between
1991 and 2024 from ArXiv’s c¢s.CL (Computation and Language) section.

We load the data and create separate variables for the abstracts, titles, and
years of each article:

Load data from Hugging Face
from import load dataset
dataset = load dataset ("maartengr/arxiv nlp") ["train"]

Extract metadata
abstracts = dataset["Abstracts"]
titles = dataset["Titles"]

A Common Pipeline for Text Clustering

Text clustering allows for discovering patterns in data that you may or may
not be familiar with. It allows for getting an intuitive understanding of the
task, for example, a classification task, but also of its complexity. As a result,
text clustering can become more than just a quick method for exploratory data
analysis.

Although there are many methods for text clustering, from graph-based neural
networks to centroid-based clustering techniques, a common pipeline that has
gained popularity involves three steps and algorithms:

1. Convert the input documents to embeddings with an embedding
model.

2. Reduce the dimensionality of embeddings with a dimensionality
reduction model.

3. Find groups of semantically similar documents with a cluster
model.

Embedding Documents

https://oreil.ly/Lz2dq
https://oreil.ly/-xlSS

The first step is to convert our textual data to embeddings, as illustrated in
Figure 5-3. Recall from previous chapters that embeddings are numerical
representations of text that attempt to capture its meaning.

F Y
> Number of
N umber o
ﬁ 1. Embed documents > E documents
v
—>
ndocuments Dimensions

(e.g., 512 values)

Figure 5-3. Step 1: We convert documents to embeddings using an embedding model.

Choosing embedding models optimized for semantic similarity tasks is
especially important for clustering as we attempt to find groups of
semantically similar documents. Fortunately, most embedding models at the
time of writing focus on just that, semantic similarity.

As we did in the previous chapter, we will use the MTEB leaderboard to
select an embedding model. We will need an embedding model that has a
decent score on clustering tasks but also is small enough to run quickly.
Instead of using the “sentence-transformers/all-mpnet-base-v2” model we
used in the previous chapter, we use the “thenlper/gte-small” model instead.
It is a more recent model that outperforms the previous model on clustering
tasks and due to its small size is even faster for inference. However, feel free
to play around with newer models that have been released since!

from import SentenceTransformer

Create an embedding for each abstract
embedding model = SentenceTransformer ("thenlper/gte-small")
embeddings = embedding model.encode (abstracts,

show progress bar=True)

Let’s check how many values each document embedding contains:

https://oreil.ly/XFrbO
https://oreil.ly/h-Gkg

Check the dimensions of the resulting embeddings
embeddings.shape
(44949, 384)

Each embedding has 384 values that together represent the semantic
representation of the document. You can view these embeddings as the
features that we want to cluster.

Reducing the Dimensionality of Embeddings

Before we cluster the embeddings, we will first need to take their high
dimensionality into account. As the number of dimensions increases, there is
an exponential growth in the number of possible values within each
dimension. Finding all subspaces within each dimension becomes
increasingly complex.

As a result, high-dimensional data can be troublesome for many clustering
techniques as it gets more difficult to identify meaningful clusters. Instead,
we can make use of dimensionality reduction. As illustrated in Figure 5-4,
this technique allows us to reduce the size of the dimensional space and
represent the same data with fewer dimensions. Dimensionality reduction
techniques aim to preserve the global structure of high-dimensional data by
finding low-dimensional representations.

3-dimensional space 2-dimensional space
(x,y,and z) (aand b)

] |
: OOU Q <
Dir&ﬂ;g;ﬂﬂb’ Qo d
[oFe)
O _to_
Q

b

Figure 5-4. Dimensionality reduction allows data in high-dimensional space to be compressed to
a lower-dimensional representation.

Note that this is a compression technique and that the underlying algorithm is
not arbitrarily removing dimensions. To help the cluster model create
meaningful clusters, the second step in our clustering pipeline is therefore
dimensionality reduction, as shown in Figure 5-5.

2. Reduce dimensionality

‘ -] ' . -
Dimensions Compressed dimensions
(e.g., 512 values) (e.g., 3 values)

Figure 5-5. Step 2: The embeddings are reduced to a lower-dimensional space using
dimensionality reduction.

Well-known methods for dimensionality reduction are Principal Component
Analysis (PCA)" and Uniform Manifold Approximation and Projection

(UMAP).2 For this pipeline, we are going with UMAP as it tends to handle
nonlinear relationships and structures a bit better than PCA.

NOTE

Dimensionality reduction techniques, however, are not flawless. They do not perfectly
capture high-dimensional data in a lower-dimensional representation. Information will
always be lost with this procedure. There is a balance between reducing dimensionality
and keeping as much information as possible.

To perform dimensionality reduction, we need to instantiate our UMAP class
and pass the generated embeddings to it:

from import UMAP

We reduce the input embeddings from 384 dimensions to 5
dimensions
umap model = UMAP (
n_components=5, min dist=0.0, metric='cosine',
random state=42

)

reduced embeddings = umap model.fit transform(embeddings)

We can use the n _components parameter to decide the shape of the
lower-dimensional space, namely 5 dimensions. Generally, values between 5
and 10 work well to capture high-dimensional global structures.

The min dist parameter is the minimum distance between embedded
points. We are setting this to 0 as that generally results in tighter clusters. We
setmetricto 'cosine' as Euclidean-based methods have issues dealing
with high-dimensional data.

Note that setting a random state in UMAP will make the results
reproducible across sessions but will disable parallelism and therefore slow
down training.

Cluster the Reduced Embeddings

The third step is to cluster the reduced embeddings, as illustrated in
Figure 5-6.

(o
| . C (N
3. Cluster reduced embeddings > o)) \,) o)
\)
— N A et
Compressed dimensions [’ O)
(e.g., 3 values) \HS—(:) 7 ?~

Figure 5-6. Step 3: We cluster the documents using the embeddings with reduced dimensionality.

Although a common choice is a centroid-based algorithm like k-means,
which requires a set of clusters to be generated, we do not know the number
of clusters beforehand. Instead, a density-based algorithm freely calculates
the number of clusters and does not force all data points to be part of a
cluster, as illustrated in Figure 5-7.

Centroid-based Outlier Density-based
LJ / A N>D
oog |/ [oog) |
0] 0] " 0O ; qi i / oo)
ﬁ%‘%o +—> @)
| ——

ocJ 0 \\ ® (O(Q?fo“‘*\ 9

?0| I\ o/ 4
Outlier

(Not assigned to any cluster)

Figure 5-7. The clustering algorithm not only impacts how clusters are generated but also how
they are viewed.

A common density-based model is Hierarchical Density-Based Spatial

Clustering of Applications with Noise (HDBSCAN).3 HDBSCAN is a
hierarchical variation of a clustering algorithm called DBSCAN that allows
for dense (micro)-clusters to be found without having to explicitly specify the

number of clusters.* As a density-based method, HDBSCAN can also detect
outliers in the data, which are data points that do not belong to any cluster.
These outliers will not be assigned or forced to belong to any cluster. In
other words, they are ignored. Since ArXiv articles might contain some niche
papers, using a model that detects outliers could be helpful.

As with the previous packages, using HDBSCAN is straightforward. We only
need to instantiate the model and pass our reduced embeddings to it:

from import HDBSCAN

We fit the model and extract the clusters
hdbscan model = HDBSCAN (

min cluster size=50, metric="euclidean",
cluster selection method="eom"
) .fit (reduced embeddings)
clusters = hdbscan model.labels

How many clusters did we generate?
len(set (clusters))
156

With HDBSCAN, we generated 156 clusters in our dataset. To create more
clusters, we will need to reduce the value of min cluster sizeasit
represents the minimum size that a cluster can take.

Inspecting the Clusters

Now that we have generated our clusters, we can inspect each cluster
manually and explore the assigned documents to get an understanding of its
content. For example, let us take a few random documents from cluster 0:

import as

Print first three documents in cluster 0

cluster = 0
for index in np.where (clusters==cluster) [0] [:3]:
print (abstracts[index] [:300] + "... \n")

This works aims to design a statistical machine translation
from English text

to American Sign Language (ASL). The system is based on Moses
tool with some

modifications and the results are synthesized through a 3D
avatar for

interpretation. First, we translate the input text to gloss, a
written fo...

Researches on signed languages still strongly dissociate lin-
guistic issues

related on phonological and phonetic aspects, and gesture
studies for

recognition and synthesis purposes. This paper focuses on the
imbrication of

motion and meaning for the analysis, synthesis and evaluation
of sign lang...

Modern computational linguistic software cannot produce
important aspects of

sign language translation. Using some researches we deduce that
the majority of

automatic sign language translation systems ignore many aspects
when they

generate animation; therefore the interpretation lost the truth
inf...

From these documents, it seems that this cluster contains documents mostly
about translation from and to sign language, interesting!

We can take this one step further and attempt to visualize our results instead
of going through all documents manually. To do so, we will need to reduce
our document embeddings to two dimensions, as that allows us to plot the
documents on an x/y plane:

import as

Reduce 384-dimensional embeddings to two dimensions for easier
visualization
reduced embeddings = UMAP (

n_components=2, min dist=0.0, metric="cosine",
random state=42
) .fit transform(embeddings)

Create dataframe

df = pd.DataFrame (reduced embeddings, columns=["x", "y"])
df["title"] = titles

df ["cluster"] = [str(c) for ¢ in clusters]

Select outliers and non-outliers (clusters)
to plot = df.loc[df.cluster != "-1", :]
outliers = df.loc[df.cluster == "-1", :]

We also created a dataframe for our clusters (clusters_ df) and for the
outliers (outliers df) separately since we generally want to focus on
the clusters and highlight those.

NOTE

Using any dimensionality reduction technique for visualization purposes creates information
loss. It is merely an approximation of what our original embeddings look like. Although it is
informative, it might push clusters together and drive them further apart than they actually
are. Human evaluation, inspecting the clusters ourselves, is therefore a key component of
cluster analysis!

To generate a static plot, we will use the well-known plotting library,
matplotlib:

import matplotlib.pyplot as plt

Plot outliers and non-outliers separately
plt.scatter(outliers df.x, outliers df.y, alpha=0.05, s=2,
c="grey")
plt.scatter (
clusters df.x, clusters df.y,
c=clusters df.cluster.astype (int),
alpha=0.6, s=2, cmap="tab20b"
)
plt.axis("off")

As we can see in Figure 5-8, it tends to capture major clusters quite well.
Note how clusters of points are colored in the same color, indicating that
HDBSCAN put them in a group together. Since we have a large number of
clusters, the plotting library cycles the colors between clusters, so don’t think
that all green points are one cluster, for example.

Figure 5-8. The generated clusters (colored) and outliers (gray) are represented as a 2D
visualization.

This 1s visually appealing but does not yet allow us to see what is happening
inside the clusters. Instead, we can extend this visualization by going from
text clustering to topic modeling.

From Text Clustering to Topic Modeling

Text clustering is a powerful tool for finding structure among large
collections of documents. In our previous example, we could manually
inspect each cluster and identify them based on their collection of documents.

For instance, we explored a cluster that contained documents about sign
language. We could say that the fopic of that cluster 1s “sign language.”

This idea of finding themes or latent topics in a collection of textual data is
often referred to as fopic modeling. Traditionally, it involves finding a set of
keywords or phrases that best represent and capture the meaning of the topic,
as we illustrate in Figure 5-9.

Input Output
(Textual data) , (Topic representations)
Topic1
rdng] cat] animal sheiter] breeds || pet
N
N Topic2
M Topic modeling

p35t31 rpiz?_a] rice] [recipes] [cnnking]

Topic3
rsportq soccer [hasketball] [game] [athletes]

Representations can take many forms:
keywords, bi-grams, labels, etc.

Figure 5-9. Traditionally, topics are represented by a number of keywords but can take other
forms.

Instead of labeling a topic as “sign language,” these techniques use keywords
such as “sign,” “language,” and “translation” to describe the topic. As such,
this does not give a single label to a topic and instead requires the user to
understand the meaning of the topic through those keywords.

Classic approaches, like latent Dirichlet allocation, assume that each topic is
characterized by a probability distribution of words in a corpus’s
vocabulary.® Figure 5-10 demonstrates how each word in a vocabulary is
scored against its relevance to each topic.

Topic1 Topic 2 Topic 3

athletes []]
cat N []]
cooking [1
dog (INEEG—_—] L]
game]]
pasta []
pet [N]
recipes]
soccer [] (]

Figure 5-10. Keywords are extracted based on their distribution over a single topic.

I

IDDI:I

These approaches generally use a bag-of-words technique for the main
features of the textual data, which does not take the context nor the meaning
of words and phrases into account. In contrast, our text clustering example
does take both into account as it relies on Transformer-based embeddings
that are optimized for semantic similarity and contextual meaning through
attention.

In this section, we will extend text clustering into the realm of topic modeling
through a highly modular text clustering and topic modeling framework,
namely BERTopic.

BERTopic: A Modular Topic Modeling Framework

BERTopic is a topic modeling technique that leverages clusters of

semantically similar texts to extract various types of topic representations.®

The underlying algorithm can be thought of in two steps.

First, as illustrated in Figure 5-11, we follow the same procedure as we did
before in our text clustering example. We embed documents, reduce their
dimensionality, and finally cluster the reduced embedding to create groups of
semantically similar documents.

I. Embed 2. Reduce 3. Cluster compressed

documents dimensionality embeddings

[SBERT]—[UMAP]—P HDBSCAN]

R T T

. = NO 1\ 3.10]]

. : L

J i

«— o 0
Dimensions Compressed
(e.g., 512 values) dimensions

(e.g., 3values)

Figure 5-11. The first part of BERTopic s pipeline is to create clusters of semantically similar
documents.

Second, it models a distribution over words in the corpus’s vocabulary by
leveraging a classic method, namely bag-of-words. The bag-of-words, as we
discussed briefly in Chapter 1 and illustrate in Figure 5-12, does exactly
what its name implies, counting the number of times each word appears in a
document. The resulting representation could be used to extract the most
frequent words inside a document.

Bag-of-words
(Counting individual words; term frequency)

Mycatiscute f—9| O 1 0 1 0|l 1 1

 Thatisacute dog —| 1 1 1 1{l1|lof]lo

Vocabulary of allinput documents

Figure 5-12. A bag-of-words counts the number of times each word appears inside a document.

There are two caveats, however. First, this is a representation on a document
level and we are interested in a cluster-level perspective. To address this,
the frequency of words is calculated within the entire cluster instead of only
the document, as illustrated in Figure 5-13.

My catis cute ' Class-basedlterw frequency
("c-TF")
That is a cute dog 1 2 (11 (]2]|]1 1 1

» 4[| 6| 3|/18||0]||5]]o0

»l 4 (1131l 21|0f]3]||O

i - i ' LW O i "I ' N i
Frequency () of — |i¢f || that|| is a ||cute||dog|| my || cat
word (x) in cluster (c) e
Figure 5-13. Generating c-TF by counting the frequency of words per cluster instead of per

document.

Second, stop words like “the” and “I”” tend to appear often in documents and
provide little meaning to the actual documents. BERTopic uses a class-based
variant of term frequency—-inverse document frequency (c-TF-IDF) to put
more weight on words that are more meaningful to a cluster and put less
weight on words that are used across all clusters.

Each word in the bag-of-words, the c-TF in c-TF-IDF, is multiplied by the
IDF value of each word. As shown in Figure 5-14, the IDF value is
calculated by taking the logarithm of the average frequency of all words
across all clusters divided by the total frequency of each word.

Inverse document frequency

("IDF")
log 29 +1
9119 1 (122(]| 1 9 1
rthatw r is || a 1 rcutew rdogw rmyw rcatw

...

Average frequency (A) divided by the | A 1
total frequency of each word (cf) ~ (")

Figure 5-14. Creating a weighting scheme.

The result is a weight (“IDF”’) for each word that we can multiply with their
frequency (“c-TF”) to get the weighted values (“c-TF-IDF”).

This second part of the procedure, as shown in Figure 5-15, allows for
generating a distribution over words as we have seen before. We can use
scikit-learn’s CountVectorizer to generate the bag-of-words (or term
frequency) representation. Here, each cluster is considered a topic that has a
specific ranking of the corpus’s vocabulary.

4. Create a class-based bag-of-words 5. Weigh terms

CountVectorizer c-TF-IDF

12 I] . IOF
4 “ 6 “ 3 “ 18 .||tfm||:x’|og(i+1):
4“1 “3“2 CTF

ItF]|

Figure 5-15. The second part of BERTopics pipeline is representing the topics: the calculation of
the weight of term *x* in a class *c*.

Putting the two steps together, clustering and representing topics, results in
the full pipeline of BERTopic, as illustrated in Figure 5-16. With this
pipeline, we can cluster semantically similar documents and from the
clusters generate topics represented by several keywords. The higher a
word’s weight in a topic, the more representative it is of that topic.

Clustering Topic representation

...

Flgure 5-16. The full pipeline of BERTopic, roughly, consists of two steps, clustering and topic
representation.

A major advantage of this pipeline is that the two steps, clustering and topic
representation, are largely independent of one another. For instance, with c-
TF-IDF, we are not dependent on the models used in clustering the
documents. This allows for significant modularity throughout every
component of the pipeline. And as we will explore later in this chapter, it is
a great starting point to fine-tune the topic representations.

As illustrated in Figure 5-17, although sentence-transformers is
used as the default embedding model, we can swap it with any other
embedding technique. The same applies to all other steps. If you do not want
outliers generated with HDBSCAN, you can use k-means instead.

Build your own topic model

o N I N K By Iy Ny § N N W gy |
c-TF-IDF c-TF-IDF

CountVectorizer| |CountVectorizer

HDBSCAN k-Means
UMAP PCA o
SBERT Bag-of-words
Topicmodel1 Topic model 2 Topic model n
(default) (customized)

Figure 5-17. The modularity of BERTopic is a key component and allows you to build your own
topic model however you want.

You can think of this modularity as building with Lego blocks; each part of
the pipeline is completely replaceable with another, similar algorithm.
Through this modularity, newly released models can be integrated within its
architecture. As the field of Language Al grows, so does BERTopic!

THE MODULARITY OF BERTOPIC

The modularity of BERTopic has another advantage: it allows it to be
used and adapted to different use cases using the same base model. For
instance, BERTopic supports a wide variety of algorithmic variants:

e Guided topic modeling

(Semi-)supervised topic modeling

o Hierarchical topic modeling

e Dynamic topic modeling

o Multimodal topic modeling

o Multi-aspect topic modeling

e Online and incremental topic modeling
e Zero-shot topic modeling

o Efc.

The modularity and algorithmic flexibility are the foundation of the
author’s aim to make BERTopic the one-stop-shop for topic modeling,.
You can find a full overview of its capabilities in the documentation or
the repository.

To run BERTopic with our ArXiv dataset, we can use our previously defined
models and embeddings (although it is not mandatory):

from import BERTopic

Train our model with our previously defined models
topic _model = BERTopic (

embedding model=embedding model,

umap model=umap model,

hdbscan model=hdbscan model,

verbose=True
) .fit (abstracts, embeddings)

https://oreil.ly/XKxJE
https://oreil.ly/-iPzP

Let us start by exploring the topics that were created. The
get topic info () method is useful to get a quick description of the
topics that we found:

topic model.get topic info()

Topic

150

151

Count

14520

2290

1403

1156

986

54

54

Name

-1 the of and to

0_speech asr recognition end

1 _medical clinical biomedical pa

2 sentiment aspect analysis_revie

3 translation nmt machine neural

150 coherence discourse paragraj

151 prompt prompts optimization

Topic Count Name

152 53 152 sentence sts embeddings sim
153 53 153 counseling mental health ther
154 50 154 backdoor attacks attack trigg

Each of these topics 1s represented by several keywords, which are
concatenated with a “ in the Name column. This Name column allows us
to quickly get a feeling of what the topic is about as it shows the four
keywords that best represent it.

NOTE

You might also have noticed that the very first topic is labeled -1. That topic contains all
documents that could not be fitted within a topic and are considered outliers. This is a
result of the clustering algorithm, HDBSCAN, which does not force all points to be
clustered. To remove outliers, we could either use a non-outlier algorithm like k-means or
use BERTopic’s reduce outliers () function to reassign the outliers to topics.

We can inspect individual topics and explore which keywords best represent
them with the get topic function. For example, topic 0 contains the

following keywords:

topic model.get topic (0)

[('speech', 0.028177697715245358),
('asr', 0.018971184497453525),
("recognition', 0.013457745472471012),
('"end', 0.00980445092749381),
("acoustic', 0.009452082794507863),
('speaker', 0.0068822647060204885),
('audio', 0.006807649923681604),
('"the', 0.0063343444687017645),
('error', 0.006320144717019838),
("automatic', 0.006290216996043161)]

For example, topic 0 contains the keywords “speech,” “asr,” and
“recognition.” Based on these keywords, it seems that the topic is about
automatic speech recognition (ASR).

We canuse the find topics () function to search for specific topics
based on a search term. Let’s search for a topic about topic modeling:

topic model.find topics("topic modeling")
([22, -1, 1, 47, 32],
[0.95456535, 0.91173744, 0.9074769, 0.9067007, 0.905101061])

This returns that topic 22 has a relatively high similarity (0.95) with our
search term. If we then inspect the topic, we can see that it is indeed a topic
about topic modeling:

topic model.get topic(22)

[("topic', 0.06634619076655907),
("topics', 0.035308535091932707),
('"lda', 0.016386314730705634),
('latent', 0.013372311924864435),
("document', 0.0129736001911205706),
('documents', 0.012383715497143821),
('modeling', 0.011978375291037142),
('dirichlet', 0.010078277589545706),
('word', 0.008505619415413312),
('allocation', 0.007930890698168108)]

Although we know that this topic is about topic modeling, let’s see if the
BERTopic abstract is also assigned to this topic:

topic model.topics [titles.index ("BERTopic: Neural topic modeling
with a class-based TF-IDF procedure")]
22

It is! These functionalities allow us to quickly find the topics that we are
interested in.

TIP

The modularity of BERTopic gives you a lot of choices, which can be overwhelming. For
that purpose, the author created a best practices guide that goes through common
practices to speed up training, improve representations, and more.

To make exploration of the topics a bit easier, we can look back at our text
clustering example. There, we created a static visualization to see the general
structure of the created topic. With BERTopic, we can create an interactive
variant that allows us to quickly explore which topics exist and which
documents they contain.

Doing so requires us to use the two-dimensional embeddings,

reduced embeddings, that we created with UMAP. Moreover, when
we hover over documents, we will show the title instead of the abstract to
quickly get an understanding of the documents in a topic:

Visualize topics and documents

fig = topic model.visualize documents (
titles,
reduced embeddings=reduced embeddings,
width=1200,

hide annotations=True

Update fonts of legend for easier visualization
fig.update layout (font=dict (size=16))

https://oreil.ly/IsP1k

As we can see in Figure 5-18, this interactive plot quickly gives us a sense of
the created topics. You can zoom in to view individual documents or double-
click a topic on the righthand side to only view it.

D2 0_speech_asr_recognition
1_translation_nmt_machine
2_summarization_summaries_summary
3_image_visual_multimodal

4 hate offensive_speech

5 gender_bias_biases
&_relation_extraction_re
7_reasoning_cot_math
8_ner_entity_named

9 _prompt_prompts_shot
10_parsing_dependency_parser

11 legal_court_law

12 _word_embeddings_embedding

13 sentiment_reviews_analysis

14 tuning_fine_lora
15_translation_mt_ge
16_medical_clinical_llims
17_aspect_sentiment_absa
18_explanations_explanation_predictions
19 _quantum_semantics_compositional
20 _generation_text_control

21 _law_zipf_frequency
22_adversarial_attacks_attack

Figure 5-18. The output when we visualize documents and topics.

There is a wide range of visualization options in BERTopic. There are three
that are worthwhile to explore to get an idea of the relationships between

topics:

Visualize
topic model

Visualize
topic model

Visualize
topic model

barchart with ranked keywords

.visualize barchart ()

relationships between topics

.visualize heatmap (n_clusters=30)

the potential hierarchical structure of topics

.visualize hierarchy ()

Adding a Special Lego Block

The pipeline in BERTopic that we have explored thus far, albeit fast and
modular, has a disadvantage: it still represents a topic through a bag-of-
words without taking into account semantic structures.

The solution is to leverage the strength of the bag-of-words representation,
which is its speed to generate a meaningful representation. We can use this
first meaningful representation and tweak it using more powerful but slower
techniques, like embedding models. As shown in Figure 5-19, we can rerank
the initial distribution of words to improve the resulting representation. Note
that this 1dea of reranking an initial set of results is a main staple in neural
search, a subject that we cover in Chapter 8.

Original topic Reranked topic
(with c-TF-IDF) (in improved order)
Summarization [Summarization [
Summaries Summaries | NG
Summary______| Abstractive [NN
Abstractive Evaluation [N
Document__] Reranker Sentences_]
Extractive_____1 (representation) TextC__1
Rouge_____] Metrics[__]
Documents__| Datasets[]
Factual] Neural[]
Evaluation [Model]

Figure 5-19. Fine-tune the topic representations by reranking the original c-TF-IDF distributions.

As a result, we can design a new Lego block, as shown in Figure 5-20, that
takes in this first topic representation and spits out an improved
representation.

In BERTopic, such reranker models are referred to as representation
models. A major benefit of this approach is that the optimization of topic
representations only needs to be done as many times as we have topics. For
instance, if we have millions of documents and a hundred topics, the
representation block only needs to be applied once for every topic instead of
for every document.

As shown in Figure 5-21, a wide variety of representation blocks have been
designed for BERTopic that allows you to fine-tune the representations. The
representation block can even be stacked multiple times to fine-tune
representations using different methodologies.

Reranker
6. Fine-t e Reranker Fine-tune
. Fine-tune representation :
p UGS | representation
A
5. Weight words ¢TFIDF | |Representation
Label topics
4. Tokenize words CountVectorizer
UL
3. Cluster embeddings HDBSCAN
A Clustering
2. Reduce dimensionality UMAP Topic creation
1. Embed documents SBERT

Figure 5-20. The reranker (representation) block sits on top of the c-TF-IDF representation.

Or stack

multiple blocks
Choose a
single block MMR
Fine-tune topics KeyBERT KeyBERT
with representation

blocks

KeyBERT " "

spaCy

Figure 5-21. After applying the c-TF-IDF weighting, topics can be fine-tuned with a wide variety
of representation models, many of which are large language models.

Before we explore how we can use these representation blocks, we first
need to do two things. First, we are going to save our original topic
representations so that it will be much easier to compare with and without
representation models:

Save original representations
from copy import deepcopy
original topics = deepcopy(topic model.topic representations)

Second, let’s create a short wrapper that we can use to quickly visualize the
differences in topic words to compare with and without representation
models:

def topic differences (model, original topics, nr topics=5):
"""Show the differences 1in topic representations between two
models """
df = pd.DataFrame (columns=["Topic", "Original", "Updated"])

for topic im range (nr topics):

Extract top 5 words per topic per model

og words = " | ".join(list(zip(*original topics[topic]))
[01[:5])
new words = " | ".join(list(zip(*model.get topic(topic)))
[0][:5])
df.loc[len(df)] = [topic, og words, new words]
return df
KeyBERTInspired

The first representation block that we are going to explore is
KeyBERTInspired. KeyBERTInspired is, as you might have guessed, a
method inspired by the keyword extraction package, KeyBERT.” KeyBERT
extracts keywords from texts by comparing word and document embeddings
through cosine similarity.

BERTopic uses a similar approach. KeyBERTInspired uses c-TF-IDF to
extract the most representative documents per topic by calculating the
similarity between a document’s c-TF-IDF values and those of the topic they
correspond to. As shown in Figure 5-22, the average document embedding
per topic is calculated and compared to the embeddings of candidate
keywords to rerank the keywords.

Embed representative
documents in a topic Embed keywords
My cat is cute cat
Thatisa cute dog that
llove pets Cute
| Reranked
Average embedding l keywords
v 1 {
| | | | | |— cosinesimilarity (CDD,)= cute[]
that [

Figure 5-22. KeyBERTInspired representation model procedure.

https://oreil.ly/_SZU7

Due to the modular nature of BERTopic, we can update our initial topic
representations with KeyBERTInspired without needing to perform the
dimensionality reduction and clustering steps:

from import KeyBERTInspired

Update our topic representations using KeyBERTInspired
representation model = KeyBERTInspired()

topic model.update topics (abstracts,

representation model=representation model)

Show topic differences
topic differences (topic model, original topics)

Topic Original Updated

0 speech | asr | speech | encoder |
recognition | end | phonetic | language |
acoustic trans...

1 medical | clinical | nlp | ehr | clinical |
biomedical | patient | biomedical | language
he...

2 sentiment | aspect | aspect | sentiment |
analysis | reviews | aspects | sentiments | cl...
opinion

3 translation | nmt | translation | translating |

machine | neural |bleu translate | transl...

i summarization | summarization |
summaries | summary | summarizers | summaries
abstract... | summ...

The updated model shows that the topics are easier to read compared to the
original model. It also demonstrates the downside of using embedding-based
techniques. Words in the original model, like nm¢ (topic 3), which stands for
neural machine translation, are removed as the model could not properly
represent the entity. For domain experts, these abbreviations are highly
informative.

Maximal marginal relevance

With ¢-TF-IDF and the previously shown KeyBERTInspired techniques, we
still have significant redundancy in the resulting topic representations. For
instance, having both the words “summaries” and “summary” in a topic
representation introduces redundancy as they are quite similar.

We can use maximal marginal relevance (MMR) to diversify our topic
representations. The algorithm attempts to find a set of keywords that are
diverse from one another but still relate to the documents they are compared
to. It does so by embedding a set of candidate keywords and iteratively
calculating the next best keyword to add. Doing so requires setting a
diversity parameter, which indicates how diverse keywords need to be.

In BERTopic, we use MMR to go from a set of initial keywords, let’s say 30,
to a smaller but more diverse set of keywords, let’s say 10. It filters out
redundant words and only keeps words that contribute something new to the
topic representation.

Doing so i1s rather straightforward:

from import MaximalMarginalRelevance

Update our topic representations to MaximalMarginalRelevance
representation model = MaximalMarginalRelevance (diversity=0.2)
topic model.update topics(abstracts,

representation model=representation model)

Show topic differences
topic differences (topic model, original topics)

Topic Original Updated

0 speech | asr | recognition speech | asr | error |
| end | acoustic model | training

1 medical | clinical | clinical | biomedical |
biomedical | patient | patient | healthcare |...
he...

2 sentiment | aspect | sentiment | analysis |
analysis | reviews | reviews | absa | polarity
opinion

3 translation | nmt | translation | nmt | bleu |
machine | neural | bleu parallel | multilin...

i summarization | summarization |

summaries | summary |
abstract...

document | extractive |
rouge ...

The resulting topics demonstrate more diversity in their representations. For
instance, topic 4 only shows one “summary”-like word and instead adds
other words that might contribute more to the overall representation.

TIP

Both KeyBERTInspired and MMR are amazing techniques for improving the first set of
topic representations. KeyBERTInspired especially tends to remove nearly all stop words
since it focuses on the semantic relationships between words and documents.

The Text Generation Lego Block

The representation block in BERTopic has been acting as a reranking block
in our previous examples. However, as we already explored in the previous
chapter, generative models have great potential for a wide variety of tasks.

We can use generative models in BERTopic quite efficiently by following a
part of the reranking procedure. Instead of using a generative model to
identify the topic of all documents, of which there can potentially be
millions, we will use the model to generate a label for our topic. As
illustrated in Figure 5-23, instead of generating or reranking keywords, we
ask the model to generate a short label based on keywords that were
previously generated and a small set of representative documents.

Keywords Documents
LLM [

attention, text, nlp, transformer] +

| have a topic that contains the following documents:
[DOCUMENTS]

The topic is described by the following keywords:
[KEYWORDS]

Based on the above information, give a short label of the topic.

Label *
[Pre-trained transformer models in NLP]

Figure 5-23. Use text generative LLMs and prompt engineering to create labels for topics from
keywords and documents related to each topic.

There are two components to the illustrated prompt. First, the documents that
are inserted using the [DOCUMENTS] tag are a small subset of documents,
typically four, that best represent the topic. The documents with the highest
cosine similarity of their c-TF-IDF values with those of the topic are
selected. Second, the keywords that make up a topic are also passed to the
prompt and referenced using the [KEYWORDS] tag. The keywords could be
generated by c-TF-IDF or any of the other representations we discussed thus
far.

As a result, we only need to use the generative model once for every topic, of
which there could be potentially hundreds, instead of once for each
document, of which there could potentially be millions. There are many
generative models that we can choose from, both open source and
proprietary. Let’s start with a model that we have explored in the previous
chapter, the Flan-T5 model.

We create a prompt that works well with the model and use it in BERTopic
through the representation model parameter:

from transformers import pipeline
from bertopic.representation import TextGeneration

prompt = """I have a topic that contains the following documents:
[DOCUMENTS]
The topic is described by the following keywords: '[KEYWORDS]'.

Based on the documents and keywords, what is this topic about?"""

Update our topic representations using Flan-T5
generator = pipeline("text2text-generation", model="google/flan-
t5-small")
representation model = TextGeneration (
generator, prompt=prompt, doc length=50,
tokenizer="whitespace"
)
topic model.update topics (abstracts,
representation model=representation model)

Show topic differences
topic differences (topic model, original topics)

Topic Original Updated

0 speech | asr | recognition| Speech-to-description
end | acoustic

1 medical | clinical | Science/Tech
biomedical | patient | he...

2 sentiment | aspect | Review
analysis | reviews |
opinion

3 translation | nmt | machine Attention-based neural
| neural | bleu machine translation

i summarization | Summarization
summaries | summary |
abstract...

Some of these labels, like “Summarization” seem to be logical when
comparing them to the original representations. Others, however, like
“Science/Tech,” seem quite broad and do not do the original topic justice.
Let’s explore instead how OpenAl’s GPT-3.5 would perform considering the
model is not only larger but expected to have more linguistic capabilities:

import

from import OpenAl

prompt e mwmn

I have a topic that contains the following documents:
[DOCUMENTS]

The topic 1s described by the following keywords: [KEYWORDS]

Based on the information above, extract a short topic label in

the following format:
topic: <short topic label>

Update our topic representations using GPT-3.5

client =

representation model = OpenAI (

openai.OpenAl (api key="YOUR KEY HERE")

client, model="gpt-3.5-turbo", exponential backoff=True,

chat=True,

)

prompt=prompt

topic model.update topics(abstracts,

representation model=representation model)

Show topic differences

topic differences (topic model,

Topic

0

Original

speech | asr |
recognition | end |
acoustic

medical | clinical |
biomedical | patient |
he...

sentiment | aspect |
analysis | reviews |
opinion

translation | nmt |
machine | neural | bleu

summarization |
summaries | summary |
abstract...

original topics)

Updated

Leveraging External Data
for Improving Low-Res...

Improved Representation
Learning for
Biomedica...

Advancements in Aspect-
Based Sentiment
Analys...

Neural Machine
Translation
Enhancements

Document Summarization
Techniques

The resulting labels are quite impressive! We are not even using GPT-4 and
the resulting labels seem to be more informative than our previous example.
Note that BERTopic is not confined to only using OpenAl’s offering but has
local backends as well.

TIP

Although it seems like we do not need the keywords anymore, they are still representative
of the mput documents. No model is perfect and it is generally advised to generate multiple
topic representations. BERTopic allows for all topics to be represented by different
representations. You could, for example, use KeyBERTInspired, MMR, and GPT-3.5 side
by side to get different perspectives on the same topic.

With these GPT-3.5 generated labels, we can create beautiful illustrations
using the datamapplot package (Figure 5-24):

Visualize topics and documents
fig = topic model.visualize document datamap (
titles,
topics=1list (range (20)),
reduced embeddings=reduced embeddings,
width=1200,
label font size=11,
label wrap width=20,
use medoids=True,

https://oreil.ly/oTzdY
https://oreil.ly/LolfZ

Toplc-12: Efficient
Heural Dependency
Parsing with
Improved Performance Topic-15: Parameter-
i efficient fime-
tuning methods far

Tapic-10: Multimodal 1 e d
IRtegration in \ W.;"E'éf;,?ﬁzﬂa,.ﬁ; i
Matural Language 1 .
Processing |
%, 1) ic-0: Leweraging
Topic-8: ™, \ ! -?;temn! Ualt-s
sttt O\ -. dmprwnglow,
Reco nitinn.ﬁhﬂtgkl Y | Fi Recognition Models
Technologies \ | Ll -
et \ ; - Topic-14: Quality
™ LY i stimation for
Topic-T: Advanced S \ | L | Machine Transhation
Bial echnigues in ., ", 1 g 7 ——
ation Extraction ™ N, i o - ! L e Topic-3: Meural
and Entity Graph ‘ p -, v Machine Franslation
Modeling & X b Wi — Enhancements

Topic9: Mult " \jl ’ E 4 P o’
o ulti- agen . ‘ 8 i % I, - % o 4 Topic-19: Comparison

Systems using Lange ke S of Dafferant Word

anquage Models
fuan —— ok Pk i o T e Embedding Methods in
= e s ..lIII i & 1 Matural Language
e i 1 P Processing
'Iﬁc-l:l!m roved X B o T L e - - e
presen arl:lnn N A ® B e o L
Learning for © £ - ', Aty .
Blomedical Terms . T PR L oy Toplc-16: Advanced
ising HiPFBERT I i - - % 5 Techrigues for Text
x - Y — — —— _ Classification with
¥ iy a . Multi:label
- . A . Hierarchical Neural
L . i A Nebwarks
- - i gt
i At / e N
B e i " g -
. ~ / ‘\\\) . Togic-13:
£ I - e Understanding Human
. o - _ % i Explanations in NLP
. : oA with Seli-
z N R e) Explanations
- % .] i T
~ # S
- T a PR o \\ s
e ‘ . = o = Toplc-2: :
. ’ - " \ ‘ﬁ.dnw;ance?enéé in
o F e 1-Hag
Topic-4: Document AN L P ey R
umnr:alrlzatlon F3 q \\ using Neural Madels®
Techniques S . -”.
/ ’] .
Vi - . Topic-18: Robustness
Topic-17. Vi . of Multilingual NLF
Controllable - Models Against
Language Generation 4 Adversarial Attacks
with Attribute s 4 e
Alignment # / “opic5: Ag
| =55 Advances in
a/ — Hate 5 h
Topic=11; Evaluating * Detection and
Language Models in ! Analysis

the Legal Darmasn

Topic-6: Gender Bias
in Al Language
Madels

Figure 5-24. The top 20 topics visualized.

Summary

In this chapter, we explored how LLMs, both generative and representative,

can be used in the domain of unsupervised learning. Despite supervised
methods like classification being prevalent in recent years, unsupervised

approaches such as text clustering hold immense potential due to their ability

to group texts based on semantic content without prior labeling.

We covered a common pipeline for clustering textual documents that starts
with converting input text into numerical representations, which we call
embeddings. Then, dimensionality reduction is applied to these embeddings
to simplify high-dimensional data for better clustering outcomes. Finally, a
clustering algorithm on the dimensionality-reduced embeddings is applied to
cluster the input text. Manually inspecting the clusters helped us understand
which documents they contained and how to interpret these clusters.

To transition away from this manual inspection, we explored how BERTopic
extends this text clustering pipeline with a method for automatically
representing the clusters. This methodology is often referred to as topic
modeling, which attempts to uncover themes within large amounts of
documents. BERTopic generates these topic representations through a bag-of-
words approach enhanced with c-TF-IDF, which weighs words based on
their cluster relevance and frequency across all clusters.

A major benefit of BERTopic is its modular nature. In BERTopic, you can
choose any model in the pipeline, which allows for additional
representations of topics that create multiple perspectives of the same topic.
We explored maximal marginal relevance and KeyBERTInspired as
methodologies to fine-tune the topic representations generated with c-TF-
IDF. Additionally, we used the same generative LLMs as in the previous
chapter (Flan-T5 and GPT-3.5) to further improve the interpretability of
topics by generating highly interpretable labels.

In the next chapter, we shift focus and explore a common method for
improving the output of generative models, namely prompt engineering.

T Harold Hotelling. “Analysis of a complex of statistical variables into principal components.”
Journal of Educational Psychology 24.6 (1933): 417.

2 Leland Mclnnes, John Healy, and James Melville. “UMAP: Uniform Manifold Approximation
and Projection for dimension reduction.” arXiv preprint arXiv:1802.03426 (2018).

3 Leland Mclnnes, John Healy, and Steve Astels. “hdbscan: Hierarchical density based
clustering.” J. Open Source Softw. 2.11 (2017): 205.

4 Martin Ester et al. “A density-based algorithm for discovering clusters in large spatial databases
with noise.” KDD 96, Aug. 1996: 226-231.

S David M. Blei, Andrew Y. Ng, and Michael I. Jordan. “Latent Dirichlet allocation.” Journal of
Machine Learning Research 3. Jan (2003): 993—-1022.

6 Maarten Grootendorst. “BERTopic: Neural topic modeling with a class-based TF-IDF
procedure.” arXiv preprint arXiv:2203.05794 (2022).

7 Maarten Grootendorst. “KeyBERT: Minimal keyword extraction with BERT.” (2020).

Chapter 6. Prompt Engineering

In the first chapters of this book, we took our first steps into the world of
large language models (LLMs). We delved into various applications, such as
supervised and unsupervised classification, employing models that focus on
representing text, like BERT and its derivatives.

As we progressed, we used models trained primarily for text generation,
models that are often referred to as generative pre-trained transformers
(GPT). These models have the remarkable ability to generate text in response
to prompts from the user. Through prompt engineering, we can design these
prompts in a way that enhances the quality of the generated text.

In this chapter, we will explore these generative models in more detail and
dive into the realm of prompt engineering, reasoning with generative models,
verification, and even evaluating their output.

Using Text Generation Models

Before we start with the fundamentals of prompt engineering, it is essential to
explore the basics of utilizing a text generation model. How do we select the
model to use? Do we use a proprietary or open source model? How can we
control the generated output? These questions will serve as our stepping
stones into using text generation models.

Choosing a Text Generation Model

Choosing a text generation model starts with choosing between proprietary
models or open source models. Although proprietary models are generally
more performant, we focus in this book more on open source models as they
offer more flexibility and are free to use.

Figure 6-1 shows a small selection of impactful foundation models, LLMs
that have been pretrained on vast amounts of text data and are often fine-

tuned for specific applications.

Foundation models
Model size

___________________ @ b A o _I_ Release
> date
LLama StableLM Falcon LLama2 Mistral
71B/13B/ 3B/7B 7B/40B/180B 7B/13B70B 1B

33B/70B

Figure 6-1. Foundation models are often released in several different sizes.

From those foundation models, hundreds if not thousands of models have
been fine-tuned, one more suitable for certain tasks than another. Choosing
the model to use can be a daunting task!

We advise starting with a small foundation model. So let’s continue using
Phi-3-mini, which has 3.8 billion parameters. This makes it suitable for
running with devices up to 8 GB of VRAM. Overall, scaling up to larger
models tends to be a nicer experience than scaling down. Smaller models
provide a great introduction and lay a solid foundation for progressing to
larger models.

Loading a Text Generation Model

The most straightforward method of loading a model, as we have done in
previous chapters, is by leveraging the t ransformers library:

import
from import AutoModelForCausallM, AutoTokenizer,
pipeline

Load model and tokenizer

model = AutoModelForCausalLM.from pretrained (
"microsoft/Phi-3-mini-4k-instruct",
device map="cuda",
torch dtype="auto",

trust remote code=True,

https://oreil.ly/G3CQr

tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi—3—mini—
4k-instruct")

Create a pipeline

pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
return full text=False,
max new tokens=500,

do_sample=False,

Compared to previous chapters, we will take a closer look at developing and
using the prompt template.

To illustrate, let’s revisit the example from Chapter 1 where we asked the
LLM to make a joke about chickens:

Prompt
messages = [

{"role": "user", "content": "Create a funny joke about
chickens."}

]

Generate the output

output = pipe (messages)

print (output[0] ["generated text"])

Why don't chickens like to go to the gym? Because they can't
crack the egg-sistence of it!

Under the hood, transformers.pipeline first converts our messages
into a specific prompt template. We can explore this process by accessing the
underlying tokenizer:

Apply prompt template
prompt = pipe.tokenizer.apply chat template (messages,
tokenize=False)
print (prompt)
<s><|user|>
Create a funny joke about chickens.<|end|>
<|assistant|>

You may recognize the special tokens <|user|>and <|assistant|>
from Chapter 2. This prompt template, further illustrated in Figure 6-2, was
used during the training of the model. Not only does it provide information
about who said what, but it is also used to indicate when the model should
stop generating text (see the < | end | > token). This prompt is passed
directly to the LLM and processed all at once.

In the next chapter, we will customize parts of this template ourselves.
Throughout this chapter, we canuse transformers.pipeline to
handle chat template processing for us. Next, let us explore how we can
control the output of the model.

Phi-3 template

f] Beginning of sentence (BOS) token
r<5>][<|user|>] Start of prompt
L p ® Prompt User
FWhati51+1]iclendl>] End of prompt
r~':|355i5t.?mt|=~1 e Start of output
L J Output : Model
zTheanswerto1+1 isZ!][<Iend|>] End of output

Figure 6-2. The template Phi-3 expects when interacting with the model.

Controlling Model Output

Other than prompt engineering, we can control the kind of output we want by
adjusting the model parameters. In our previous example, you might have
noticed that we used several parameters in the pipe function, including
temperature and top p.

These parameters control the randomness of the output. A part of what makes
LLMs exciting technology is that it can generate different responses for the

exact same prompt. Each time an LLM needs to generate a token, it assigns a
likelihood number to each possible token.

As illustrated in Figure 6-3, in the sentence “I am driving a...” the likelihood
of that sentence being followed by tokens like “car” or “truck” is generally
higher than a token like “elephant.” However, there is still a possibility of
“elephant” being generated but it is much lower.

[r | High likelihood
.. truck
[I " am " driving " a " ?]_.,
... elephant
J) Low likelihood

Figure 6-3. The model chooses the next token to generate based on their likelihood scores.

When we loaded our model, we purposefully set do_sample=False to
make sure the output is somewhat consistent. This means that no sampling
will be done and only the most probable next token is selected. However, to
use the temperature and top p parameters, we will set

do sample=True in order to make use of them.

Temperature

The temperature controls the randomness or creativity of the text
generated. It defines how likely it is to choose tokens that are less probable.
The underlying idea is that a temperature of 0 generates the same
response every time because it always chooses the most likely word. As
illustrated in Figure 6-4, a higher value allows less probable words to be
generated.

Low High

< temperature >
car |] car
truck truck
-.1B .
N ..
elephant [elephant
.8 .
probabilities probabilities

Figure 6-4. A higher temperature increases the likelihood that less probable tokens are
generated and vice versa.

As aresult, a higher temperature (e.g., 0.8) generally results in a more
diverse output while a lower temperature (e.g., 0.2) creates a more
deterministic output.

You can use temperature in your pipeline as follows:

Using a high temperature
output = pipe (messages, do_sample=True, temperature=1)
print (output[0] ["generated text"])
Why don't chickens like to go on a rollercoaster? Because
they're afraid they might suddenly become chicken-soup!

Note that every time you rerun this piece of code, the output will change!
temperature introduces stochastic behavior since the model now
randomly selects tokens.

top_p

top p, also known as nucleus sampling, is a sampling technique that
controls which subset of tokens (the nucleus) the LLM can consider. It will
consider tokens until it reaches their cumulative probability. If we set
top p to 0.1, it will consider tokens until it reaches that value. If we set
top p to 1, it will consider all tokens.

As shown in Figure 6-5, by lowering the value, it will consider fewer tokens
and generally give less “creative” output, while increasing the value allows
the LLM to choose from more tokens.

Low High
< tOD_D >
car | | car | |
truck [1 truck | |
elephar"l-f | | elephar.llf []

probabilities probabilities

Figure 6-5. A higher top p increases the number of tokens that can be selected to generate and
vice versa.

Similarly, the top k parameter controls exactly how many tokens the LLM
can consider. If you change its value to 100, the LLM will only consider the
top 100 most probable tokens.

You canuse top p inyour pipeline as follows:

Using a high top p

output = pipe (messages, do_sample=True, top p=1)

print (output[0] ["generated text"])

Why don't chickens make good comedians? Because their 'jokes'
always 'feather' the truth!

As shown in Table 6-1, these parameters allow the user to have a sliding
scale between being creative (high temperature and top p) and being
predictable (lower temperature and top p).

Table 6-1. Use case examples when selecting values for temperature and t
op p.

Example use

case Temperature top_p Description

Brainstorming High High High randomness

session with large pool of
potential tokens. The
results will be highly

diverse, often
leading to very
creative and
unexpected results.

Email Low Low Deterministic output
generation with high probable
predicted tokens.

This results in
predictable, focused,
and conservative
outputs.

Creative High Low High randomness

writing with a small pool of
potential tokens. This
combination
produces creative
outputs but still
remains coherent.

Example use

case Temperature top_p Description

Translation Low High Deterministic output
with high probable
predicted tokens.

Produces coherent
output with a wider
range of vocabulary,
leading to outputs
with linguistic
variety.

Intro to Prompt Engineering

An essential part of working with text-generative LLMs is prompt
engineering. By carefully designing our prompts we can guide the LLM to
generate desired responses. Whether the prompts are questions, statements,
or instructions, the main goal of prompt engineering is to elicit a useful
response from the model.

Prompt engineering is more than designing effective prompts. It can be used
as a tool to evaluate the output of a model as well as to design safeguards
and safety mitigation methods. This 1s an iterative process of prompt
optimization and requires experimentation. There is not and unlikely will
ever be a perfect prompt design.

In this section, we will go through common methods for prompt engineering,
and small tips and tricks to understand what the effect is of certain prompts.
These skills allow us to understand the capabilities of LLMs and lie at the
foundation of interfacing with these kinds of models.

We begin by answering the question: what should be in a prompt?

The Basic Ingredients of a Prompt

An LLM is a prediction machine. Based on a certain input, the prompt, it
tries to predict the words that might follow it. At its core (illustrated in
Figure 6-6), the prompt does not need to be more than a few words to elicit a
response from the LLM.

Basic prompt

Input The sky s

I
LLM

Output ¢

Generated text blue.

0

Figure 6-6. A basic example of a prompt. No instruction is given so the LLM will simply try to
complete the sentence.

However, although the illustration works as a basic example, it fails to
complete a specific task. Instead, we generally approach prompt engineering
by asking a specific question or task the LLM should complete. To elicit the
desired response, we need a more structured prompt.

For example, and as shown in Figure 6-7, we could ask the LLM to classify a
sentence into either having positive or negative sentiment. This extends the
most basic prompt to one consisting of two components—the instruction
itself and the data that relates to the instruction.

Instruction prompt

Instruction e Classify the text into negative or positive.]
Data @ “This is a great movie!”]
% I .
0
LLM
Output ¥
Generated text ® The text is positive.]

Figure 6-7. Two components of a basic instruction prompt: the instruction itself and the data it
refers to.

More complex use cases might require more components in a prompt. For
instance, to make sure the model only outputs “negative” or “positive” we
can introduce output indicators that help guide the model. In Figure 6-8, we
prefix the sentence with “Text:” and add “Sentiment:” to prevent the model
from generating a complete sentence. Instead, this structure indicates that we
expect either “negative” or “positive.” Although the model might not have
been trained on these components directly, it was fed enough instructions to
be able to generalize to this structure.

Instruction prompt
With output indicator

Instruction e Classify the text into negative or positive.]
Output indicators e Text:] [“This is a great movie!"]—OData
Sentiment:

I o
0
LLM
Output ¥
Generated text @ Positive]

Figure 6-8. Extending the prompt with an output indicator that allows for a specific output.

We can continue adding or updating the elements of a prompt until we elicit
the response we are looking for. We could add additional examples, describe
the use case in more detail, provide additional context, etc. These
components are merely examples and not a limited set of possibilities. The
creativity that comes with designing these components is key.

Although a prompt is a single piece of text, it is tremendously helpful to think
of prompts as pieces of a larger puzzle. Have I described the context of my
question? Does the prompt have an example of the output?

Instruction-Based Prompting

Although prompting comes in many flavors, from discussing philosophy with
the LLM to role-playing with your favorite superhero, prompting is often
used to have the LLM answer a specific question or resolve a certain task.
This is referred to as instruction-based prompting.

Figure 6-9 illustrates a number of use cases in which instruction-based
prompting plays an important role. We already did one of these in the
previous example, namely supervised classification.

5uperwsed clasmﬁcatmn Search Summarization

Politics] ¥ Search query E . .
Eafsl] ‘ ‘ - : ()] (]E

: Music] ¥ t:-—' ! GO :
i igi c————— : '
: ReligionJ - ; (o :

;,;,;. print({“Hello l.-.Icr'Ld"}

.Hello World! :: Sl ,E
H @a»CTD:
E e) :

--

Figure 6-9. Use cases for instruction-based prompting.

Each of these tasks requires different prompting formats and more
specifically, asking different questions of the LLM. Asking the LLM to
summarize a piece of text will not suddenly result in classification. To
illustrate, examples of prompts for some of these use cases can be found in
Figure 6-10.

Instruction e~ Summarize the following text:] ¥ [] §
Data 0——] Explain the above in two to
P + i | threesentences ;

Classification T
t | Classify the text into neutral,
negative, or positive

, Is the following text neutral,
negative, or positive?

: Text:] []
Sentiment: l

Named entity recognition

Defintion: an entity is an organization (org), a person (per), or a
location (foc). If it does not fit with the above, use (misc).

Output indicators

Verbs and adjectives are not entities.

Extract entities from the following text:

Figure 6-10. Prompt examples of common use cases. Notice how within a use case, the structure
and location of the instruction can be changed.

Although these tasks require different instructions, there is actually a lot of
overlap in the prompting techniques used to improve the quality of the output.
A non-exhaustive list of these techniques includes:

Specificity
Accurately describe what you want to achieve. Instead of
asking the LLM to “Write a description for a product” ask it

to “Write a description for a product in less than two
sentences and use a formal tone.”

Hallucination

LLMs may generate incorrect information confidently, which
is referred to as hallucination. To reduce its impact, we can
ask the LLM to only generate an answer if it knows the
answer. If it does not know the answer; it can respond with “I
don’t know.”

Order

Either begin or end your prompt with the instruction.
Especially with long prompts, information in the middle is
often forgotten.! LLMs tend to focus on information either at
the beginning of a prompt (primacy effect) or the end of a
prompt (recency effect).

Here, specificity is arguably the most important aspect. By restricting and
specifying what the model should generate, there is a smaller chance of
having it generate something not related to your use case. For instance, if we
were to skip the instruction “in two to three sentences” it might generate
complete paragraphs. Like human conversations, without any specific
instructions or additional context, it is difficult to derive what the task at
hand actually is.

Advanced Prompt Engineering

On the surface, creating a good prompt might seem straightforward. Ask a
specific question, be accurate, add some examples, and you are done!

However, prompting can grow complex quite quickly and as a result is an
often-underestimated component of leveraging LLMs.

Here, we will go through several advanced techniques for building up your
prompts, starting with the iterative workflow of building up complex prompts
all the way to using LLMs sequentially to get improved results. Eventually,
we will even build up to advanced reasoning techniques.

The Potential Complexity of a Prompt

As we explored in the intro to prompt engineering, a prompt generally
consists of multiple components. In our very first example, our prompt
consisted of instruction, data, and output indicators. As we mentioned before,
no prompt 1s limited to just these three components and you can build it up to
be as complex as you want.

These advanced components can quickly make a prompt quite complex.
Some common components are:

Persona

Describe what role the LLM should take on. For example,
use “You are an expert in astrophysics” if you want to ask a
question about astrophysics.

Instruction

The task itself. Make sure this is as specific as possible. We do
not want to leave much room for interpretation.

Context

Additional information describing the context of the
problem or task. It answers questions like “What is the
reason for the instruction?”

Format

The format the LLM should use to output the generated text.
Without it, the LLM will come up with a format itself, which
is troublesome in automated systems.

Audience

The target of the generated text. This also describes the level
of the generated output. For education purposes, it is often
helpful to use ELI5 (“Explain it like I'm 5”).

Tone

The tone of voice the LLM should use in the generated text.
If you are writing a formal email to your boss, you might not
want to use an informal tone of voice.

Data

The main data related to the task itself.

To 1llustrate, let us extend the classification prompt we had earlier and use
all of the preceding components. This is demonstrated in Figure 6-11.

This complex prompt demonstrates the modular nature of prompting. We can
add and remove components freely and judge their effect on the output. As
illustrated in Figure 6-12, we can slowly build up our prompt and explore
the effect of each change.

The changes are not limited to simply introducing or removing components.
Their order, as we saw before with the recency and primacy effects, can
affect the quality of the LLM’s output. In other words, experimentation is
vital when finding the best prompt for your use case. With prompting, we
essentially have ourselves in an iterative cycle of experimentation.

Summarization

Persona | Youarethe expertin large language models. You excel at breaking | :
(Identity) + | down complex papers into digestible summaries. '

L

Instruction - Summarize the key findings of the paper provided.
(Main task)

+ | Your summary should extract the most crucial points that can help | :
Context @—— researchers quickly understand the most vital information of the | :
(Additional information) paper.

. L]

ot L]

, Create a bullet-point summary that outlines the method. Follow
this up with a concise paragraph that encapsulates the main results.| :

N

Audience -—— The summary is designed for busy researchers that quickly need E
(For whom?) + | tograsp the newest trendsin large language models. 1

. | The tone should be professional and clear. :
(Style of text) P

Data &— ... :
(Summary) v J

..

Figure 6-11. An example of a complex prompt with many components.

Iteration 1 lteration 2

-

[Instructinn] Persona] rCuntext]

. 1T

r'|"ZZZ'E'II'-."]

Instruction]
E Instruction]

--meme === - - - = =e =

= s e smsssssEssEs s s = sm =

Figure 6-12. Iterating over modular components is a vital part of prompt engineering.

Try it out yourself! Use the complex prompt to add and/or remove parts to
observe its impact on the generated output. You will quickly notice when

pieces of the puzzle are worth keeping. You can use your own data by adding
it to the data variable:

Prompt components
persona = "You are an expert in Large Language models. You excel

at breaking down complex papers into digestible summaries.\n"
instruction = "Summarize the key findings of the paper

provided.\n"

context = "Your summary should extract the most crucial points
that can help researchers quickly understand the most vital
information of the paper.\n"

data format = "Create a bullet-point summary that outlines the
method. Follow this up with a concise paragraph that encapsulates

the main results.\n"
audience = "The summary is designed for busy researchers that
quickly need to grasp the newest trends in Large Language

Models.\n"

tone = "The tone should be professional and clear.\n"

text = "MY TEXT TO SUMMARIZE"

data = f"Text to summarize: {text}"

The full prompt - remove and add pieces to view 1its impact on

the generated output
query = persona + instruction + context + data format + audience
+ tone + data

TIP

There is all manner of components that we could add and creative components like using

emotional stimuli (e.g., “This is very important for my career.”2). Part of the fun in prompt
engineering is that you can be as creative as possible to figure out which combination of
prompt components contribute to your use case. There are few constraints to developing a
format that works for you.

In a way, it is an attempt to reverse engineer what the model has learned and how it
responds to certain prompts. However, note that some prompts work better for certain
models compared to others as their training data might be different or they are trained for
different purposes.

In-Context Learning: Providing Examples

In the previous sections, we tried to accurately describe what the LLM
should do. Although accurate and specific descriptions help the LLM to
understand the use case, we can go one step further. Instead of describing the
task, why do we not just show the task?

We can provide the LLM with examples of exactly the thing that we want to
achieve. This is often referred to as in-context learning, where we provide

the model with correct examples.>

As 1llustrated in Figure 6-13, this comes in a number of forms depending on
how many examples you show the LLM. Zero-shot prompting does not
leverage examples, one-shot prompts use a single example, and few-shot
prompts use two or more examples.

Zero-shot prompt Few-shot prompt
Prompting without examples Prompting with more than one example

+ Classify the text into neutral, negative, or positive. ; }

i Text: | think the food was okay. Vg .
» Sentiment: ... + | Text:| think the food was alright.

One-sh Sentiment: Neutral.
ne-shot prompt _
o F . Text: | think the food was great!
P t th | | et
el sl el oo A .| sentiment: Positive.

Classify the text into neutral, negative, or positive. | | Toxt: | think the food was horrible...
P N Sentiment: Negative.

Text: | think the food was alright. e e e 4

Sentiment: Neutral t Text: | think the food was okay.
fremeeessmssssssssssssssesssesssssssssssssesssessseseee | Sentiment: ;
t Text: | think the food was okay. P '
i Sentiment: :

Figure 6-13. An example of a complex prompt with many components.

Adopting the original phrase, we believe that “an example is worth a
thousand words.” These examples provide a direct example of what and how
the LLM should achieve.

We can illustrate this method with a simple example taken from the original

paper describing this method.* The goal of the prompt is to generate a
sentence with a made-up word. To improve the quality of the resulting

sentence, we can show the generative model an example of what a proper
sentence with a made-up word would be.

To do so, we will need to differentiate between our question (user) and
the answers that were provided by the model (assistant). We
additionally showcase how this interaction is processed using the template:

Use a single example of using the made-up word in a sentence
one_ shot prompt = [

{

"role": "user",

"content": "A 'Gigamuru' is a type of Japanese musical
instrument. An example of a sentence that uses the word Gigamuru
is:"

}I
{
"role": "assistant",
"content": "I have a Gigamuru that my uncle gave me as a

gift. I love to play it at home."

"role": "user",
"content": "To 'screeg' something is to swing a sword at
it. An example of a sentence that uses the word screeg is:"
}

]
print (tokenizer.apply chat template (one shot prompt,

tokenize=False))
<s><|user|>
A 'Gigamuru' is a type of Japanese musical instrument. An
example of a sentence that uses the word Gigamuru is:<|end|>
<|assistant|>
I have a Gigamuru that my uncle gave me as a gift. I love to
play it at home.<|end|>
<|user|>
To 'screeg' something is to swing a sword at it. An example of
a sentence that uses the word screeg is:<|end]|>
<|assistant|>

The prompt illustrates the need to differentiate between the user and the
assistant. If we did not, it would seem as if we were talking to ourselves.
Using these interactions, we can generate output as follows:

Generate the output

outputs = pipe(one shot prompt)

print (outputs[0] ["generated text"])
During the intense duel, the knight skillfully screeged his
opponent's shield, forcing him to defend himself.

It correctly generated the answer!

As with all prompt components, one- or few-shot prompting is not the be all
and end all of prompt engineering. We can use it as one piece of the puzzle to
further enhance the descriptions that we gave it. The model can still
“choose,” through random sampling, to ignore the instructions.

Chain Prompting: Breaking up the Problem

In previous examples, we explored splitting up prompts into modular
components to improve the performance of LLMs. Although this works well
for many use cases, this might not be feasible for highly complex prompts or
use cases.

Instead of breaking the problem within a prompt, we can do so between
prompts. Essentially, we take the output of one prompt and use it as input for
the next, thereby creating a continuous chain of interactions that solves our
problem.

To illustrate, let us say we want to use an LLM to create a product name,
slogan, and sales pitch for us based on a number of product features.
Although we can ask the LLM to do this in one go, we can instead break up
the problem into pieces.

As aresult, and as illustrated in Figure 6-14, we get a sequential pipeline
that first creates the product name, uses that with the product features as input
to create the slogan, and finally, uses the features, product name, and slogan
to create the sales pitch.

O [2) ©

Generate Generate Generate
product name product slogan sales pitch

L

Create a product name Create a product slogan Create asales pitch
[based on these Teatures:] [based on the following:] [based on the T%lnwing;

<features> <features> <features>

)
LLM

L. &

@m- LYy

v

<slogan>

N r

=

LLM

Figure 6-14. Using a description of a product’s features, chain prompts to create a suitable name,

slogan, and sales pitch.

This technique of chaining prompts allows the LLM to spend more time on
each individual question instead of tackling the whole problem. Let us
illustrate this with a small example. We first create a name and slogan for a
chatbot:

Create name and slogan for a product

product prompt = [
{"role": "user", "content": "Create a name and slogan for a

chatbot that leverages LLMs."}

]
outputs = pipe (product prompt)
product description = outputs[0] ["generated text"]
print (product description)

Name: 'MindMeld Messenger'

Slogan: 'Unleashing Intelligent Conversations, One Response at
a Time'

Then, we can use the generated output as input for the LLM to generate a
sales pitch:

Based on a name and slogan for a product, generate a sales
pitch
sales prompt = [

{"role": "user", "content": f"Generate a very short sales

pitch for the following product: '{product description}'"}

]

outputs = pipe(sales prompt)

sales pitch = outputs[0] ["generated text"]

print (sales pitch)
Introducing MindMeld Messenger - your ultimate communication
partner! Unleash intelligent conversations with our innovative
AIl-powered messaging platform. With MindMeld Messenger, every
response is thoughtful, personalized, and timely. Say goodbye
to generic replies and hello to meaningful interactions.
Elevate your communication game with MindMeld Messenger - where
every message is a step toward smarter conversations. Try it
now and experience the future of messaging!

Although we need two calls to the model, a major benefit is that we can give
each call different parameters. For instance, the number of tokens created
was relatively small for the name and slogan whereas the pitch can be much
longer.

This can be used for a variety of use cases, including:

Response validation

Ask the LLM to double-check previously generated outputs.

Parallel prompts

Create multiple prompts in parallel and do a final pass to
merge them. For example, ask multiple LLMs to generate
multiple recipes in parallel and use the combined result to
create a shopping list.

Writing stories

Leverage the LLM to write books or stories by breaking
down the problem into components. For example, by first

writing a summary, developing characters, and building the
story beats before diving into creating the dialogue.

In the next chapter, we will automate this process and go beyond chaining
LLMs. We will chain other pieces of technology together, like memory, tool
use, and more! Before that, this idea of prompt chaining will be explored
further in the following sections, which describe more complex prompt
chaining methods like self-consistency, chain-of-thought, and tree-of-thought.

Reasoning with Generative Models

In the previous sections, we focused mostly on the modular component of
prompts, building them up through iteration. These advanced prompt
engineering techniques, like prompt chaining, proved to be the first step
toward enabling complex reasoning with generative models.

Reasoning is a core component of human intelligence and 1s often compared
to the emergent behavior of LLMs that often resembles reasoning. We
highlight “resemble” as these models, at the time of writing, are generally
considered to demonstrate this behavior through memorization of training
data and pattern matching.

The output that they showcase, however, can demonstrate complex behavior
and although 1t might not be “true” reasoning, they are still referred to as
reasoning capabilities. In other words, we work together with the LLM
through prompt engineering so we can mimic reasoning processes in order to
improve the output of the LLM.

To allow for this reasoning behavior, it is a good moment to step back and
explore what reasoning entails in human behavior. To simplify, our methods
of reasoning can be divided into system 1 and 2 thinking processes.

System 1 thinking represents an automatic, intuitive, and near-instantaneous
process. It shares similarities with generative models that automatically
generate tokens without any self-reflective behavior. In contrast, system 2

thinking is a conscious, slow, and logical process, akin to brainstorming and
self-reflection.®

If we could give a generative model the ability to mimic a form of self-
reflection, we would essentially be emulating the system 2 way of thinking,
which tends to produce more thoughtful responses than system 1 thinking. In
this section, we will explore several techniques that attempt to mimic these
kinds of thought processes of human reasoners with the aim of improving the
output of the model.

Chain-of-Thought: Think Before Answering

The first and major step toward complex reasoning in generative models was
through a method called chain-of-thought. Chain-of-thought aims to have the
generative model “think” first rather than answering the question directly

without any reasoning.®

As illustrated in Figure 6-15, it provides examples in a prompt that
demonstrate the reasoning the model should do before generating its
response. These reasoning processes are referred to as “thoughts.” This
helps tremendously for tasks that involve a higher degree of complexity, like
mathematical questions. Adding this reasoning step allows the model to
distribute more compute over the reasoning process. Instead of calculating
the entire solution based on a few tokens, each additional token in this
reasoning process allows the LLM to stabilize its output.

One-shot prompt Chain-of-thought prompt

Prompting with a single example PFCI-ITI pting with a reasoning example

Q Roger has 5 tennis balls. He buys 2 more . ' Q Roger has 5 tennis balls. He buys 2 mure

cans of tennis balls. Each can has 3 '+ cansof tennis balls. Each can has 3 ;_. —
tennis balls. How many tennis balls .+ tennis balls. How many tennis balls : P
does he have now? ++ doeshe have now? b _
< A: Theansweris 1. + A: Roger started with 5 balls. 2cans of 3~ :: f[‘”"1“
= i : ;engis ﬁalls each is 6 tennis balls. ' (thought)
i ' +h= 1
: Q: The cafeteria had 23 apples. If they used ! : , ;
20 to make lunch and bought 6 more, The answeris 11. :
hgwman‘yrappmgdnthe]rhave? : "_ A A R R '_'_'_'_'_'_'_'_'_'_‘.
RS ARAR Rk Q The cafeteria had 23 apples. If they used :
J' 20 to make lunch and bought 6 more, "' Instruction

: how many apples do they have?
[A:Theanswerisﬂ 4]l nypp¢yr
A: The cafeteria had 23 apples originally. Reasoning
They used 20 to make lunch. So they process
had 23 - 20 = 3. They bought 6 more (thought)

apples, sothey have3 +6=9.
Theansweris9.

Figure 6-15. Chain-of-thought prompting uses reasoning examples to persuade the generative
model to use reasoning in its answer.

We use the example the authors used in their paper to demonstrate this
phenomenon:

Answering with chain-of-thought
cot prompt = [

{"role": "user", "content": "Roger has 5 tennis balls. He
buys 2 more cans of tennis balls. Each can has 3 tennis balls.
How many tennis balls does he have now?"},

{"role": "assistant", "content": "Roger started with 5 balls.
2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The
answer is 11."},

{"role": "user", "content": "The cafeteria had 23 apples. If
they used 20 to make lunch and bought 6 more, how many apples do
they have?"}

]

Generate the output
outputs = pipe(cot prompt)
print (outputs[0] ["generated text"])

The cafeteria started with 23 apples. They used 20 apples, so
they had 23 - 20 = 3 apples left. Then they bought 6 more
apples, so they now have 3 + 6 = 9 apples. The answer is 9.

Note how the model doesn’t generate only the answer but provides an
explanation before doing so. By doing so, it can leverage the knowledge it
has generated thus far to compute the final answer.

Although chain-of-thought is a great method for enhancing the output of a
generative model, it does require one or more examples of reasoning in the
prompt, which the user might not have access to. Instead of providing
examples, we can simply ask the generative model to provide the reasoning
(zero-shot chain-of-thought). There are many different forms that work but a
common and effective method 1s to use the phrase “Let’s think step-by-step,”

which is illustrated in Figure 6-16.7

Zero-shot chain-of-thought

Prompting without example

Q: The cafeteria had 23 apples. If they used _
20 to make lunch and bought 6 more, —e Instruction
how many apples do they have?

- omew oEeomomm oW
- - - =

- = = =

+ Let's think step-by-step. —® E;l?; ning

A: The cafeteria had 23 apples originally.
They used 20 to make lunch. So they
had 23 - 20 = 3. They bought 6 more (thought)
apples, sothey have3+6 =9.

Theansweris9. y/

. .

Figure 6-16. Chain-of-thought prompting without using examples. Instead, it uses the phrase
“Let’s think step-by-step” to prime reasoning in its answer.

Using the example we used before, we can simply append that phrase to the
prompt to enable chain-of-thought-like reasoning;

Zero-shot chain-of-thought
zeroshot cot prompt = [

{"role": "user", "content": "The cafeteria had 23 apples. If
they used 20 to make lunch and bought 6 more, how many apples do
they have? Let's think step-by-step.”}

]

Generate the output

outputs = pipe(zeroshot cot prompt)

print (outputs[0] ["generated text"])
Step 1l: Start with the initial number of apples, which is 23.
Step 2: Subtract the number of apples used to make lunch, which
is 20. So, 23 - 20 = 3 apples remaining.

Step 3: Add the number of apples bought, which is 6. So, 3 + 6
= 9 apples.

The cafeteria now has 9 apples.

Without needing to provide examples, we again got the same reasoning
behavior. This is why it is so important to “show your work™ when doing
calculations. By addressing the reasoning process the LLM can use the
previously generated information as a guide through generating the final
answer.

TIP

Although the prompt “Let’s think step by step” can improve the output, you are not
constrained by this exact formulation. Alternatives exist like “Take a deep breath and think

step-by-step”” and “Let’s work through this problem s‘[ep-by-s‘[ep.”8

Self-Consistency: Sampling Outputs

Using the same prompt multiple times can lead to different results if we
allow for a degree of creativity through parameters like temperature and
top p. As aresult, the quality of the output might improve or degrade
depending on the random selection of tokens. In other words, luck!

To counteract this degree of randomness and improve the performance of
generative models, self-consistency was introduced. This method asks the
generative model the same prompt multiple times and takes the majority

result as the final answer.? During this process, each answer can be affected
by different temperature and top p values to increase the diversity of
sampling.

As illustrated in Figure 6-17, this method can further be improved by adding
chain-of-thought prompting to improve its reasoning while only using the
answer for the voting procedure.

Self-consistency
Sampling from multiple paths

Q: Roger has 5 tennis balls. He buys 2 more
cans of tennis balls. Each can has 3
tennis balls. How many tennis balls
does he have now?

1o Zero-shot
e chain-of-thought

g = g
(thought) | LLM LLM | LLM

If he buys 2 cans of 3 tennis Roger started with 5 balls. 2 cans of each 3 tennis balls
balls, thenhehas2=3=6 2 cans of 3 tennis balls each is totals 6 tennis balls. Add 5 on
tennis balls. 6 tennis balls. 5 + 6 =11 top.5+6 =11
FA: Theanaweri'}.ﬁ_x i {A: Theansweris 1.4/ ' A: The answeris 1.4/ E
................ e i —
* Majority vote

.................................

Figure 6-17. By sampling from multiple reasoning paths, we can use majority voting to extract the
most likely answer.

However, this does require a single question to be asked multiple times. As a
result, although the method can improve performance, it becomes n times
slower where 7 1s the number of output samples.

Tree-of-Thought: Exploring Intermediate Steps

The ideas of chain-of-thought and self-consistency are meant to enable more
complex reasoning. By sampling from multiple “thoughts” and making them
more thoughtful, we aim to improve the output of generative models.

These techniques only scratch the surface of what is currently being done to
mimic complex reasoning. An improvement to these approaches can be found
in tree-of-thought, which allows for an in-depth exploration of several ideas.

The method works as follows. When faced with a problem that requires
multiple reasoning steps, it often helps to break it down into pieces. At each
step, and as 1illustrated in Figure 6-18, the generative model is prompted to
explore different solutions to the problem at hand. It then votes for the best

solution and continues to the next step.'°

Tree-of-thought
Exploring multiple paths

[Q:
s

Thoughts
are rated

<=
o

Reasoning
process @

(thought)

<
<+

Final answer

Figure 6-18. By leveraging a tree-based structure, generative models can generate intermediate
thoughts to be rated. The most promising thoughts arve kept and the lowest are pruned.

This method is tremendously helpful when needing to consider multiple
paths, like when writing a story or coming up with creative ideas. A
disadvantage of this method is that it requires many calls to the generative
models, which slows the application significantly. Fortunately, there has been
a successful attempt to convert the tree-of-thought framework into a simple

prompting technique. !

Instead of calling the generative model multiple times, we ask the model to
mimic that behavior by emulating a conversation between multiple experts.
These experts will question each other until they reach a consensus. An
example of a tree-of-thought prompt is:

Zero-shot tree-of-thought
zeroshot tot prompt = [

{"role": "user", "content": "Imagine three different experts
are answering this question. All experts will write down 1 step
of their thinking, then share it with the group. Then all experts
will go on to the next step, etc. If any expert realizes they're
wrong at any point then they leave. The question is 'The
cafeteria had 23 apples. If they used 20 to make lunch and bought
6 more, how many apples do they have?' Make sure to discuss the
results."}

]

We can use this prompt to explore how an LLM might respond to complex
questions:

Generate the output

outputs = pipe(zeroshot tot prompt)

print (outputs[0] ["generated text"])
Expert 1: Step 1 - Start with the initial number of apples: 23
apples.

Expert 2: Step 1 - Subtract the apples used for lunch: 23 - 20
= 3 apples remaining.

Expert 3: Step 1 - Add the newly bought apples: 3 + 6 = 9
apples.

Expert 1l: Step 2 - Confirm the final count: The cafeteria has 9
apples.

Expert 2: Step 2 - Review the calculations: 23 - 20 = 3, then 3
+ 6 = 9. The calculations are correct.

Expert 3: Step 2 - Agree with the result: The cafeteria indeed
has 9 apples.

All experts agree on the final count: The cafeteria has 9
apples.

We again get the correct answer but instead through a “discussion between
experts.” It is interesting to see such a conservation between “experts” that
demonstrates the creativity that comes with prompt engineering.

Output Verification

Systems and applications built with generative models might eventually end
up in production. When that happens, it is important that we verify and
control the output of the model to prevent breaking the application and to
create a robust generative Al application.

Reasons for validating the output might include:

Structured output

By default, most generative models create free-form text
without adhering to specific structures other than those
defined by natural language. Some use cases require their
output to be structured in certain formats, like JSON.

Valid output

Even if we allow the model to generate structured output, it
still has the capability to freely generate its content. For

instance, when a model is asked to output either one of two
choices, it should not come up with a third.

Ethics

Some open source generative models have no guardrails
and will generate outputs that do not consider safety or
ethical considerations. For instance, use cases might require
the output to be free of profanity, personally identifiable
information (PII), bias, cultural stereotypes, etc.

Accuracy

Many use cases require the output to adhere to certain
standards or performance. The aim is to double-check
whether the generated information is factually accurate,
coherent, or free from hallucination.

Controlling the output of a generative model, as we explored with parameters
like top p and temperature, is not an easy feat. These models require
help to generate consistent output conforming to certain guidelines.

Generally, there are three ways of controlling the output of a generative
model:

Examples

Provide a number of examples of the expected output.
Grammar

Control the token selection process.

Fine-tuning

Tune a model on data that contains the expected output.

In this section, we will go through the first two methods. The third, fine-
tuning a model, 1s left for Chapter 12 where we will go in depth into fine-
tuning methods.

Providing Examples

A simple and straightforward method to fix the output is to provide the
generative model with examples of what the output should look like. As we
explored before, few-shot learning is a helpful technique that guides the
output of the generative model. This method can be generalized to guide the
structure of the output as well.

For example, let us consider an example where we want the generative
model to create a character profile for an RPG game. We start by using no
examples:

Zero-shot learning: Providing no examples
zeroshot prompt = [

{"role": "user", "content": "Create a character profile for
an RPG game in JSON format."}

]

Generate the output
outputs = pipe(zeroshot prompt)
print (outputs[0] ["generated text"])

" ' json
{

"characterProfile": {
"name": "Eldrin Stormbringer",
"class": "Warlock",
"race": "Half-E1f",
"age": 27,
"gender": "Male",
"alignment": "Chaotic Good",
"background": "Rogue",

}y
"attributes": {
"strength": 10,

"dexterity": 17,
"constitution": 12,
"intelligence": 12,
"wisdom": 10,
"charisma

The preceding truncated output is not valid JSON since the model stopped
generating tokens after starting the “charisma” attribute. Moreover, we might
not want certain attributes. Instead, we can provide the model with a number
of examples that indicate the expected format:

One-shot learning: Providing an example of the output structure
one shot template = """Create a short character profile for an
RPG game. Make sure to only use this format:

{

"description": "A SHORT DESCRIPTION",
"name": "THE CHARACTER'S NAME",
"armor": "ONE PIECE OF ARMOR",
"weapon": "ONE OR MORE WEAPONS"

}

mrn
one shot prompt = [
{"role": "user", "content": one shot template}

]

Generate the output

outputs = pipe(one shot prompt)

print (outputs[0] ["generated text"])
{

"description": "A cunning rogue with a mysterious past,
skilled in stealth and deception.",

"name": "Lysandra Shadowstep",

"armor": "Leather Cloak of the Night",

"weapon": "Dagger of Whispers, Throwing Knives"

The model perfectly followed the example we gave it, which allows for
more consistent behavior. This also demonstrates the importance of
leveraging few-shot learning to improve the structure of the output and not
only its content.

An important note here is that it is still up to the model whether it will adhere
to your suggested format or not. Some models are better than others at
following instructions.

Grammar: Constrained Sampling

Few-shot learning has a big disadvantage: we cannot explicitly prevent
certain output from being generated. Although we guide the model and give it
instructions, 1t might still not follow it entirely.

Instead, packages have been rapidly developed to constrain and validate the
output of generative models, like Guidance, Guardrails, and LMQL. In part,
they leverage generative models to validate their own output, as illustrated in
Figure 6-19. The generative models retrieve the output as new prompts and
attempt to validate it based on a number of predefined guardrails.

Evaluate output

lterative process
Prompt Check whether the
. aiiaiasdioios . fuII?Iwing tex;:ﬂad heres [| Output .
— | L TH A | ot EJmNrmat A 5
______________ .A E P
L T —

% r

Figure 6-19. Use an LLM to check whether the output correctly follows our rules.

Similarly, as illustrated in Figure 6-20, this validation process can also be
used to control the formatting of the output by generating parts of its format
ourselves as we already know how it should be structured.

https://oreil.ly/8TiD0
https://oreil.ly/6kTQ3
https://oreil.ly/oMM-L

Expected format
Only generate highlighted text

..

X L —) i 5
v tid M fidy, ' "0" Ctid" 0", g
+ “height": “{height}”, I | =) “181ecm” | ! “height”:"1.81cm", !
: "name”:"{name}", :__ L | “Vincent" '_* "name”: "Vincent",
: "age":"{age}", E “34 + "age":"34", ;

) —) =

Figure 6-20. Use an LLM to generate only the pieces of information we do not know beforehand.

This process can be taken one step further and instead of validating the output
we can already perform validation during the token sampling process. When
sampling tokens, we can define a number of grammars or rules that the LLM
should adhere to when choosing its next token. For instance, if we ask the
model to either return “positive,” “negative,” or “neutral” when performing
sentiment classification, it might still return something else. As illustrated in
Figure 6-21, by constraining the sampling process, we can have the LLM
only output what we are interested in. Note that this is still affected by
parameters such as top p and temperature.

Constrained sampling
Only sample from “legal” options

Q: Classify this sentence into _
positive, neutral, or negative: amazing[_______]

pmmtwe:]

neutral|:|
S : o
.A' } > horrible[_]
"""""""""""""""" negative [
awful[C]
probabilities

Figure 6-21. Constrain the token selection to only three possible tokens: “positive,” “neutral,”
and “negative.”

“What a great movie!"

Let us illustrate this phenomenon with 1 1ama-cpp-python, a library
similar to transformers that we can use to load in our language model. It
1s generally used to efficiently load and use compressed models (through

https://oreil.ly/WXMkK

quantization; see Chapter 12) but we can also use it to apply a JSON
grammar.

We load the same model we used throughout this chapter but use a different
format instead, namely GGUF. 11ama-cpp-python expects this format,
which is generally used for compressed (quantized) models.

Since we are loading a new model, it is advised to restart the notebook. That
will clear any previous models and empty the VRAM. You can also run the
following to empty the VRAM:

import
import

del model, tokenizer, pipe

Flush memory
gc.collect ()
torch.cuda.empty cache ()

Now that we have cleared the memory, we can load Phi-3. We set

n gpu layers to -1 to indicate that we want all layers of the model to
be run from the GPU. The n ctx refers to the context size of the model. The
repo_ idand filename refer to the Hugging Face repository where the
model resides:

from import Llama

Load Phi-3

1llm = Llama.from pretrained(
repo_id="microsoft/Phi-3-mini-4k-instruct-gguf",
filename="*fpl6.gguf",
n gpu layers=-1,
n ctx=2048,
verbose=False

To generate the output using the internal JSON grammar, we only need to
specify the response format as a JSON object. Under the hood, it will
apply a JSON grammar to make sure the output adheres to that format.

https://oreil.ly/WPiPu

To illustrate, let’s ask the model to create an RPG character in JSON format
to be used in a Dungeons & Dragons session:

Generate output

output = llm.create chat completion(
messages=|[
{"role": "user", "content": "Create a warrior for an RPG

in JSON format."},
1y

response format={"type": "json object"},
temperature=0,
) ['choices'] [0] ['message'] ["content"]

To check whether the output actually is JSON, we can attempt to process it as
such:

import

Format as json
Jjson_output = json.dumps (json.loads (output), indent=4)
print (json output)
{
"name": "Eldrin Stormbringer",
"class": "Warrior",
"level": 10,
"attributes": {
"strength": 18,
"dexterity": 12,

"constitution": 16,
"intelligence": 9,
"wisdom": 14,

"charisma": 10

by

"skills": {
"melee combat": ({
"weapon mastery": 20,
"armor class": 18,

"hit points": 35
}I
"defense": {
"shield skill": 17,
"block chance": 90
}I
"endurance": {
"health regeneration": 2,

"stamina": 30

}y

"equipment": [

{
"name": "Ironclad Armor",
"type": "Armor",
"defense bonus": 15

by

{
"name": "Steel Greatsword",
"type": "Weapon",
"damage": 8,

"critical chance": 20

I

"background": "Eldrin grew up in a small village on the
outskirts of a war-torn land. Witnessing the brutality and
suffering caused by conflict, he dedicated his life to becoming
a formidable warrior who could protect those unable to defend
themselves."

}

The output is properly formatted as JSON. This allows us to more
confidently use generative models in applications where we expect the output
to adhere to certain formats.

Summary

In this chapter, we explored the basics of using generative models through
prompt engineering and output verification. We focused on the creativity and
potential complexity that comes with prompt engineering. These components
of a prompt are key in generating and optimizing output appropriate for
different use cases.

We further explored advanced prompt engineering techniques such as in-
context learning and chain-of-thought. These methods involve guiding
generative models to reason through complex problems by providing
examples or phrases that encourage step-by-step thinking thereby mimicking
human reasoning processes.

Overall, this chapter demonstrated that prompt engineering is a crucial aspect
of working with LLMs, as it allows us to effectively communicate our needs
and preferences to the model. By mastering prompt engineering techniques,
we can unlock some of the potential of LLMs and generate high-quality
responses that meet our requirements.

The next chapter will build upon these concepts by exploring more advanced
techniques for leveraging generative models. We will go beyond prompt
engineering and explore how LLMSs can use external memory and tools.

1 Nelson F. Liu et al. “Lost in the middle: How language models use long contexts.” arXiv
preprint arXiv:2307.03172 (2023).

2 Cheng Li et al. “EmotionPrompt: Leveraging psychology for large language models
enhancement via emotional stimulus.” arXiv preprint arXiv:2307.11760 (2023).

3" Tom Brown et al. “Language models are few-shot learners.” Advances in Neural Information
Processing Systems 33 (2020): 1877-1901.

4 Ibid.
° Daniel Kahneman. 7 hinking, Fast and Slow. Macmillan (2011).

6 Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large language models.”
Advances in Neural Information Processing Systems 35 (2022): 24824-24837.

7 Takeshi Kojima et al. “Large language models are zero-shot reasoners.” Advances in Neural
Information Processing Systems 35 (2022): 22199-22213.

8 Chengrun Yang et al. “Large language models as optimizers.” arXiv preprint
arXiv:2309.03409 (2023).

9 Xuezhi Wang et al. “Self-consistency improves chain of thought reasoning in language models.”
arXiv preprint arXiv:2203.11171 (2022).

10 Shunyu Yao et al. “Tree of thoughts: Deliberate problem solving with large language models.”
arXiv preprint arXiv:2305.10601 (2023).

M “Using tree-of-thought prompting to boost ChatGPT’s reasoning.” Available at

https://oreil.ly/a_Nos.

https://oreil.ly/a_Nos

Chapter 7. Advanced Text
Generation Techniques and
Tools

In the previous chapter, we saw how prompt engineering can do wonders for
the accuracy of your text-generation large language model (LLM). With just a
few small tweaks, these LLMs are guided toward more purposeful and
accurate answers. This showed how much there is to gain using techniques
that do not fine-tune the LLM but instead use the LLM more efficiently, such
as the relatively straightforward prompt engineering.

In this chapter, we will continue this train of thought. What can we do to
further enhance the experience and output that we get from the LLM without
needing to fine-tune the model itself?

Fortunately, a great deal of methods and techniques allow us to further
improve what we started with in the previous chapter. These more advanced
techniques lie at the foundation of numerous LLM-focused systems and are,
arguably, one of the first things users implement when designing such
systems.

In this chapter, we will explore several such methods and concepts for
improving the quality of the generated text:

Model 1/0

Loading and working with LLMs
Memory

Helping LLMs to remember

Agents

Combining complex behavior with external tools

Chains

Connecting methods and modules

These methods are all integrated with the LangChain framework that will
help us easily use these advanced techniques throughout this chapter.
LangChain is one of the earlier frameworks that simplify working with LLMs
through useful abstractions. Newer frameworks of note are DSPy and
Haystack. Some of these abstractions are illustrated in Figure 7-1. Note that
retrieval will be discussed in the next chapter.

LangChain
Modules chained together

Model I/O Memory Retrieval Agents

» Prompts « Conversation » Embeddings « Autonomous
* LLMs memory =4 » Documents =4 « ReAct
= Qutput parser = Summarization »Vector database = Conversation

Flgure 7-1. LangChain is a complete framework for using LLMs. It has modular components that
can be chained together to allow for complex LLM systems.

Each of these techniques has significant strengths by themselves but their true
value does not exist in isolation. It is when you combine all of these
techniques that you get an LLM-based system with incredible performance.
The culmination of these techniques is truly where LLMs shine.

Model 1/0: Loading Quantized Models with
LangChain

Before we can make use of LangChain’s features to extend the capabilities of
LLMs, we need to start by loading our LLM. As in previous chapters, we
will be using Phi-3 but with a twist; we will use a GGUF model variant
instead. A GGUF model represents a compressed version of its original

https://oreil.ly/gmWSX
https://oreil.ly/DJ-wf
https://oreil.ly/HgE7q

counterpart through a method called quantization, which reduces the number
of bits needed to represent the parameters of an LLM.

Bits, a series of Os and 1s, represent values by encoding them in binary form.
More bits result in a wider range of values but requires more memory to
store those values, as shown in Figure 7-2.

Float 32-bit

@10000000 1|00 1|O|OfT|Of{O|O(OfTjT| T T 1|T|{O)1|{T1]O|T1}|]1

(1) = 2 = 15707964 = EEREIEEXIM High precision T
1bit

Float 16-bit

E|1DDUD'DGD 1{ojoj1|ofof1{ojo|0

(-1)° x 2" x 1571 =@EREIN Low precision

Figure 7-2. Attempting to represent pi with float 32-bit and float 16-bit representations. Notice the
lowered accuracy when we halve the number of bits.

Quantization reduces the number of bits required to represent the parameters
of an LLM while attempting to maintain most of the original information. This
comes with some loss in precision but often makes up for it as the model 1s
much faster to run, requires less VRAM, and is often almost as accurate as
the original.

To illustrate quantization, consider this analogy. If asked what the time is,
you might say “14:16,” which is correct but not a fully precise answer. You
could have said it is “14:16 and 12 seconds” instead, which would have
been more accurate. However, mentioning seconds 1s seldom helpful and we
often simply put that in discrete numbers, namely full minutes. Quantization is
a similar process that reduces the precision of a value (e.g., removing
seconds) without removing vital information (e.g., retaining hours and
minutes).

In Chapter 12, we will further discuss how quantization works under the
hood. You can also see a full visual guide to quantization in “A Visual Guide
to Quantization” by Maarten Grootendorst. For now, it is important to know

https://oreil.ly/9Xt8U

that we will use an 8-bit variant of Phi-3 compared to the original 16-bit
variant, cutting the memory requirements almost in half.

TIP

As a rule of thumb, look for at least 4-bit quantized models. These models have a good
balance between compression and accuracy. Although it is possible to use 3-bit or even 2-
bit quantized models, the performance degradation becomes noticeable and it would
mnstead be preferable to choose a smaller model with a higher precision.

First, we will need to download the model. Note that the link contains
multiple files with different bit-variants. FP16, the model we choose,
represents the 16-bit variant:

!wget https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-
gguf/resolve/main/Phi-3-mini-4k-instruct-fplé6.gguf

We use 11ama-cpp-python together with LangChain to load the GGUF
file:

from import LlamaCpp

Make sure the model path is correct for your system!
1lm = LlamaCpp (

model path="Phi-3-mini-4k-instruct-fpl6.gguf",

n _gpu layers=-1,

max tokens=500,

n ctx=2048,

seed=42,

verbose=False

In LangChain, we use the 1 nvoke function to generate output:

llm.invoke ("Hi! My name is Maarten. What is 1 + 12")
L}

https://oreil.ly/uXIeB
https://oreil.ly/yY1il

Unfortunately, we get no output! As we have seen in previous chapters, Phi-3
requires a specific prompt template. Compared to our examples with
transformers, we will need to explicitly use a template ourselves.
Instead of copy-pasting this template each time we use Phi-3 in LangChain,
we can use one of LangChain’s core functionalities, namely “chains.”

TIP

All examples in this chapter can be run with any LLM. This means that you can choose
whether to use Phi-3, ChatGPT, Llama 3 or anything else when going through the
examples. We will use Phi-3 as a default throughout, but the state-of-the-art changes
quickly, so consider using a newer model instead. You can use the Open LLM
Leaderboard (a ranking of open source LLMs) to choose whichever works best for your
use case.

If you do not have access to a device that can run LLMs locally, consider using ChatGPT
nstead:

from import ChatOpenAl

Create a chat-based LLM
chat model = ChatOpenAI (openai api key="MY KEY")

Chains: Extending the Capabilities of LLMs

LangChain is named after one of its main methods, chains. Although we can
run LLMs in isolation, their power is shown when used with additional
components or even when used in conjunction with each other. Chains not
only allow for extending the capabilities of LLMs but also for multiple
chains to be connected together.

The most basic form of a chain in LangChain is a single chain. Although a
chain can take many forms, each with a different complexity, it generally
connects an LLM with some additional tool, prompt, or feature. This idea of
connecting a component to an LLM is illustrated in Figure 7-3.

https://oreil.ly/fgzu1

Single chain

i ™

Modular

Input — LLM | ¥ Output

component

\ J

Figure 7-3. A single chain connects some modular component, like a prompt template or external
memory, to the LLM.

In practice, chains can become complex quite quickly. We can extend the
prompt template however we want and we can even combine several
separate chains together to create intricate systems. In order to thoroughly
understand what is happening in a chain, let’s explore how we can add Phi-
3’s prompt template to the LLM.

A Single Link in the Chain: Prompt Template

We start with creating our first chain, namely the prompt template that Phi-3
expects. In the previous chapter, we explored how
transformers.pipeline applies the chat template automatically. This
is not always the case with other packages and they might need the prompt
template to be explicitly defined. With LangChain, we will use chains to
create and use a default prompt template. It also serves as a nice hands-on
experience with using prompt templates.

The 1dea, as 1llustrated in Figure 7-4, is that we chain the prompt template
together with the LLM to get the output we are looking for. Instead of having
to copy-paste the prompt template each time we use the LLM, we would only
need to define the user and system prompts.

Prompt template

OC) =
User (J___Jboeq LM ||—pOutput

prompt- | C D

N v
N o

Figure 7-4. By chaining a prompt template with an LLM, we only need to define the input
prompts. The template will be constructed for you.

The template for Phi-3 is comprised of four main components:
e <s> to indicate when the prompt starts
e <|user | > to indicate the start of the user’s prompt
e <|assistant |> to indicate the start of the model’s output

e <|end|> to indicate the end of either the prompt or the model’s
output

These are further illustrated in Figure 7-5 with an example.

Phi-3 template

(+—a Beginning of sentence (BOS) token
r-:s:-][<|user|>] Start of prompt
L , ® Prompt §User
FWhati51+1]r<]end[>] End of prompt
rclassistantl; e Start of output
L S ® Output ‘Model
rTheanswertoMisZ!][<Iend|>] End of output

Figure 7-5. The prompt template Phi-3 expects.

To generate our simple chain, we first need to create a prompt template that
adheres to Phi-3’s expected template. Using this template, the model takes in
a system prompt, which generally describes what we expect from the
LLM. Then, we canuse the input prompt to ask the LLM specific

questions:

from import PromptTemplate

Create a prompt template with the "input prompt" variable
template = """<s><|user|>
{input_promptl}<|end|>
<|assistant|>"""
prompt = PromptTemplate (
template=template,
input variables=["input prompt"]

To create our first chain, we can use both the prompt that we created and the
LLM and chain them together:

basic chain = prompt | 1llm

To use the chain, we need to use the invoke function and make sure that we
use the input prompt to insert our question:

Use the chain
basic chain.invoke (

{

"input prompt": "Hi! My name is Maarten. What is 1 + 172",

}
)

The answer to 1 + 1 is 2. It's a basic arithmetic operation
where you add one unit to another, resulting in two units

altogether.

The output gives us the response without any unnecessary tokens. Now that
we have created this chain, we do not have to create the prompt template
from scratch each time we use the LLM. Note that we did not disable
sampling as before, so your output might differ. To make this pipeline more

transparent, Figure 7-6 illustrates the connection between a prompt template

and the LLM using a single chain.

-~

-

"What is

14 12" —-I{{ user_prompt } I |

e

O)

)

pooq

LLM

&

LN

—>

r

“The answer
to1+1is2!"

Figure 7-6. An example of a single chain using Phi-3 s template.

NOTE

The example assumes that the LLM needs a specific template. This is not always the
case. With OpenAl’s GPT-3.5, its API handles the underlying template.

You could also use a prompt template to define other variables that might change in your
prompts. For example, if we want to create funny names for businesses, retyping that
question over and over for different products can be time-consuming.

Instead, we can create a prompt that is reusable:

Create a Chain that creates our business'
template = "Create a funny name for a business that

sells {product}."”
name prompt = PromptTemplate (

template=template,

input variables=["product"]

name

Adding a prompt template to the chain is just the very first step you need to

enhance the capabilities of your LLM. Throughout this chapter, we will see
many ways in which we can add additional modular components to existing
chains, starting with memory.

A Chain with Multiple Prompts

In our previous example, we created a single chain consisting of a prompt
template and an LLM. Since our example was quite straightforward, the LLM
had no issues dealing with the prompt. However, some applications are more
involved and require lengthy or complex prompts to generate a response that
captures those intricate details.

Instead, we could break this complex prompt into smaller subtasks that can
be run sequentially. This would require multiple calls to the LLM but with
smaller prompts and intermediate outputs as shown in Figure 7-7.

Multiple prompts

—» Output

0

LLM

Figure 7-7. With sequential chains, the output of a prompt is used as the input for the next
prompt.

This process of using multiple prompts is an extension of our previous
example. Instead of using a single chain, we link chains where each link
deals with a specific subtask.

For instance, consider the process of generating a story. We could ask the
LLM to generate a story along with complex details like the title, a summary,
a description of the characters, etc. Instead of trying to put all of that
information into a single prompt, we could dissect this prompt into
manageable smaller tasks instead.

Let’s illustrate with an example. Assume that we want to generate a story that
has three components:

o A title
¢ A description of the main character

e A summary of the story

Instead of generating everything in one go, we create a chain that only
requires a single input by the user and then sequentially generates the three
components. This process is illustrated in Figure 7-8.

Multiple prompts

Character
Prompt

Input — ——Output

LLM

Figure 7-8. The output of the title prompt is used as the input of the character prompt. To
generate the story, the output of all previous prompts is used.

To generate that story, we use LangChain to describe the first component,
namely the title. This first link is the only component that requires some input
from the user. We define the template and use the " summary" variable as
the input variable and "title" as the output.

We ask the LLM to “Create a title for a story about {summary}” where
“{summary}” will be our input:

from langchain import LLMChain

Create a chain for the title of our story

template = """<s><|user|>

Create a title for a story about {summary}. Only return the title.
<|end]|>

<|assistant|>"""

title prompt = PromptTemplate (template=template, input variables=
["summary"])

title = LILMChain (llm=11lm, prompt=title prompt,
output key="title")

Let’s run an example to showcase these variables:

title.invoke ({"summary": "a girl that lost her mother"})
{'"summary': 'a girl that lost her mother',
'title': ' "Whispers of Loss: A Journey Through Grief"'}

This already gives us a great title for the story! Note that we can see both the
input ("summary") as well as the output ("title").

Let’s generate the next component, namely the description of the character.
We generate this component using both the summary as well as the previously
generated title. Making sure that the chain uses those components, we create
a new prompt with the { summary} and {title} tags:

Create a chain for the character description using the summary
and title
template = """<s><|user|>
Describe the main character of a story about {summary} with the
title {title}. Use only two sentences.<|end|>
<|lassistant|>"""
character prompt = PromptTemplate (
template=template, input variables=["summary", "title"]
)
character = LLMChain(llm=11m, prompt=character prompt,
output key="character'")

Although we could now use the character variable to generate our character
description manually, it will be used as part of the automated chain instead.

Let’s create the final component, which uses the summary, title, and character
description to generate a short description of the story:

Create a chain for the story using the summary, title, and
character description

template = """<s><|user|>

Create a story about {summary} with the title {title}. The main
character is: {character}. Only return the story and it cannot be
longer than one paragraph. <|end|>

<|assistant|>"""
story prompt = PromptTemplate (

template=template, input variables=["summary", "title",
"character"]

)
story = LLMChain (llm=11m, prompt=story prompt,
output key="story")

Now that we have generated all three components, we can link them together
to create our full chain:

Combine all three components to create the full chain
1lm chain = title | character | story

We can run this newly created chain using the same example we used before:

1lm chain.invoke("a girl that lost her mother")

{'"summary': 'a girl that lost her mother',
'"title': ' "In Loving Memory: A Journey Through Grief"',
'character': ' The protagonist, Emily, is a resilient young

girl who struggles to cope with her overwhelming grief after
losing her beloved and caring mother at an early age. As she
embarks on a journey of self-discovery and healing, she learns
valuable life lessons from the memories and wisdom shared by
those around her.',

'story': " In Loving Memory: A Journey Through Grief revolves
around Emily, a resilient young girl who loses her beloved
mother at an early age. Struggling to cope with overwhelming
grief, she embarks on a journey of self-discovery and healing,
drawing strength from the cherished memories and wisdom shared
by those around her. Through this transformative process, Emily
learns valuable life lessons about resilience, love, and the
power of human connection, ultimately finding solace in
honoring her mother's legacy while embracing a newfound sense
of inner peace amidst the painful loss."}

Running this chain gives us all three components. This only required us to
input a single short prompt, the summary. Another advantage of dividing the
problem into smaller tasks is that we now have access to these individual
components. We can easily extract the title; that might not have been the case
if we were to use a single prompt.

Memory: Helping LLMs to Remember
Conversations

When we are using LLMs out of the box, they will not remember what was
being said in a conversation. You can share your name in one prompt but it
will have forgotten it by the next prompt.

Let’s illustrate this phenomenon with an example using the basic chain
we created before. First, we tell the LLM our name:

Let's give the LLM our name
basic chain.invoke ({"input prompt": "Hi! My name is Maarten. What
is 1 + 12"})

Hello Maarten! The answer to 1 + 1 is 2.

Next, we ask it to reproduce the name we have given it:

Next, we ask the LLM to reproduce the name

basic chain.invoke ({"input prompt": "What is my name?"})
I'm sorry, but as a language model, I don't have the ability to
know personal information about individuals. You can provide
the name you'd like to know more about, and I can help you with
information or general inquiries related to it.

Unfortunately, the LLM does not know the name we gave it. The reason for
this forgetful behavior is that these models are stateless—they have no
memory of any previous conversation!

As illustrated in Figure 7-9, conversing with an LLM that does not have any
memory is not the greatest experience.

To make these models stateful, we can add specific types of memory to the
chain that we created earlier. In this section, we will go through two common
methods for helping LLMs to remember conservations:

e Conversation buffer

o Conversation summary

Without memory With memory

Hi! I'm Maarten. Hi! I'm Maarten.
Whatis1+1? Whatis1+1?
Hello Maarten! The
answertol+1is2.
I

Independent conversations Conversation history

@ What was my name again?
What was my name again?
Figure 7-9. An example of a conversation between an LLM with memory and without memory.

e

Idon't have access to %
personal information Your name is Maarten.
such ds your name.

& N

&

Conversation Buffer

One of the most intuitive forms of giving LLMs memory is simply reminding
them exactly what has happened in the past. As illustrated in Figure 7-10, we
can achieve this by copying the full conversation history and pasting that into

our prompt.

:Ennversation history _ Prompt template
Hi! I'm Maarten.
O)

Hello Maarten! The Conversation hiﬂﬂf}'=]
answerto1+1is2. :
| Human: Hil 'm Maarten. What s1+1?]

LM: Hello Maarten! The answer to1+1is 2.

Prompt

- i:".'.fhat is my name‘.r‘][<|end I}]

@[What is my name?]
<|assistant|> l

e

L

o

Figure 7-10. We can remind an LLM of what previously happened by simply appending the entire
conversation history to the input prompt.

In LangChain, this form of memory is called a
ConversationBufferMemory. Its implementation requires us to

update our previous prompt to hold the history of the chat.
We’ll start by creating this prompt:

Create an updated prompt template to include a chat history
template = """<s><|user|>Current conversation:{chat_history}

{input_prompt}<|end|>
<|lassistant|>"""

prompt = PromptTemplate (
template=template,
input variables=["input prompt", "chat history"]

Notice that we added an additional input variable, namely
chat history. This is where the conversation history will be given
before we ask the LLM our question.

Next, we can create LangChain’s ConversationBuf ferMemory and
assign it to the chat history input variable.

ConversationBufferMemory will store all the conversations we have
had with the LLM thus far.

We put everything together and chain the LLM, memory, and prompt template:

from import ConversationBufferMemory

Define the type of memory we will use
memory = ConversationBufferMemory (memory key="chat history")

Chain the LLM, prompt, and memory together
1lm chain = LLMChain (

prompt=prompt,

11lm=11m,

memory=memory

To explore whether we did this correctly, let’s create a conversation history
with the LLM by asking it a simple question:

Generate a conversation and ask a basic question

11lm chain.invoke ({"input prompt": "Hi! My name is Maarten. What
is 1 4+ 12"})
{'input prompt': 'Hi! My name is Maarten. What is 1 + 1°2',
'chat history': ',
"text': " Hello Maarten! The answer to 1 + 1 is 2. Hope you're

having a great day!"}

You can find the generated text inthe 'text ' key, the input prompt in
"input prompt', and the chat history in 'chat history'. Note that
since this is the first time we used this specific chain, there is no chat history.

Next, let’s follow up by asking the LLM if it remembers the name we used:

Does the LLM remember the name we gave 1t?

1lm chain.invoke ({"input prompt": "What is my name?"})
{'input prompt': 'What is my name?',
'chat history': "Human: Hi! My name is Maarten. What is 1 + 1°?

\nAI: Hello Maarten! The answer to 1 + 1 is 2. Hope you're

having a great day!",
'text': ' Your name is Maarten.'}

By extending the chain with memory, the LLM was able to use the chat
history to find the name we gave it previously. This more complex chain is
illustrated in Figure 7-11 to give an overview of this additional functionality.

Human: I'm Maarten. [¢) 1
Al: Hi Maarten! Q0)
' I%{ conversation_history }]
a “Your nameis
{ user_prompt } I |poedg LM —> :
) | _ & Maarten.
What s C)
my name?” [~ e)

Figure 7-11. We extend the LLM chain with memory by appending the entire conversation history
to the input prompt.

Windowed Conversation Buffer

In our previous example, we essentially created a chatbot. You could talk to
it and it remembers the conversation you had thus far. However, as the size of

the conversation grows, so does the size of the input prompt until it exceeds
the token limit.

One method of minimizing the context window 1is to use the last &
conversations instead of maintaining the full chat history. In LangChain, we
canuse ConversationBufferWindowMemory to decide how many
conversations are passed to the input prompt:

from import ConversationBufferWindowMemory

Retain only the last 2 conversations in memory
memory = ConversationBufferWindowMemory (k=2,
memory key="chat history")

Chain the LLM, prompt, and memory together
11lm chain = LLMChain (

prompt=prompt,

1lm=11m,

memory=memory

Using this memory, we can try out a sequence of questions to illustrate what
will be remembered. We start with two conversations:

Ask two questions and generate two conversations in its memory
1lm chain.predict (input prompt="Hi! My name is Maarten and I am
33 years old. What is 1 + 12?")
1llm chain.predict (input prompt="What is 3 + 3?")
{'input prompt': 'What is 3 + 3?',
'chat history': "Human: Hi! My name is Maarten and I am 33
years old. What is 1 + 1?\nAI: Hello Maarten! It's nice to meet
you. Regarding your question, 1 + 1 equals 2. If you have any
other questions or need further assistance, feel free to
ask!\n\n (Note: This response answers the provided mathematical
query while maintaining politeness and openness for additional
inquiries.)",
'text': " Hello Maarten! It's nice to meet you as well.
Regarding your new question, 3 + 3 equals 6. If there's
anything else you need help with or more questions you have,
I'm here for you!"}

The interaction we had thus far 1s shownin "chat history". Note that
under the hood, LangChain saves it as an interaction between you (indicated
with Human) and the LLM (indicated with Al).

Next, we can check whether the model indeed knows the name we gave it:

Check whether it knows the name we gave 1t

1lm chain.invoke ({"input prompt":"What is my name?"})
{'input prompt': 'What is my name?',
'chat history': "Human: Hi! My name is Maarten and I am 33
years old. What is 1 + 1?\nAI: Hello Maarten! It's nice to meet
you. Regarding your question, 1 + 1 equals 2. If you have any
other questions or need further assistance, feel free to
ask!\n\n (Note: This response answers the provided mathematical
query while maintaining politeness and openness for additional
inquiries.) \nHuman: What is 3 + 3?\nAI: Hello Maarten! It's
nice to meet you as well. Regarding your new question, 3 + 3
equals 6. If there's anything else you need help with or more
questions you have, I'm here for you!",
'text': ' Your name is Maarten, as mentioned at the beginning
of our conversation. Is there anything else you would like to
know or discuss?'}

Based on the output in ' text ' it correctly remembers the name we gave it.
Note that the chat history is updated with the previous question.

Now that we have added another conversation we are up to three
conversations. Considering the memory only retains the last two
conversations, our very first question is not remembered.

Since we provided an age in our first interaction, we check whether the LLM
indeed does not know the age anymore:

Check whether it knows the age we gave it

1lm chain.invoke ({"input prompt":"What is my age?"})
{'input prompt': 'What is my age?',
'chat history': "Human: What is 3 + 3?\nAI: Hello again! 3 + 3

equals 6. If there's anything else I can help you with, just
let me know!\nHuman: What is my name?\nAIl: Your name is
Maarten.",

"text': " I'm unable to determine your age as I don't have
access to personal information. Age isn't something that can be

inferred from our current conversation unless you choose to
share it with me. How else may I assist you today?"}

The LILM indeed has no access to our age since that was not retained in the
chat history.

Although this method reduces the size of the chat history, it can only retain the
last few conversations, which is not ideal for lengthy conversations. Let’s
explore how we can summarize the chat history instead.

Conversation Summary

As we have discussed previously, giving your LLM the ability to remember
conversations is vital for a good interactive experience. However, when
using ConversationBufferMemory, the conversation starts to
increase in size and will slowly approach your token limit. Although
ConversationBufferWindowMemory resolves the issue of token
limits to an extent, only the last k£ conversations are retained.

Although a solution would be to use an LLM with a larger context window,
these tokens still need to be processed before generation tokens, which can
increase compute time. Instead, let’s look toward a more sophisticated
technique, ConversationSummaryMemory. As the name implies, this
technique summarizes an entire conversation history to distill it into the main
points.

This summarization process is enabled by another LLM that is given the
conversation history as input and asked to create a concise summary. A nice
advantage of using an external LLM is that we are not confined to using the
same LLM during conversation. The summarization process is illustrated in
Figure 7-12.

Conversation history Prompt template

o N

Hi! I'm Maarten.
@) thineren =)

Conversation hismr]r:]

Theanswertol+1is... Summarize
(drumroll) ...2. 0 P -
Maarten asked what 1+ 1is
(P UM =P anditold him 2.]
Prompt =
))[What is my name?][<lend|>]

[What is my name? -
<|assistant|>

b o
Figure 7-12. Instead of passing the conversation history directly to the prompt, we use another
LLM to summarize it first.

This means that whenever we ask the LLM a question, there are two calls:

o The user prompt
e The summarization prompt

To use this in LangChain, we first need to prepare a summarization template
that we will use as the summarization prompt:

Create a summary prompt template
summary prompt template = """<s><|user|>Summarize the
conversations and update with the new lines.

Current summary:
{summary}

new lines of conversation:
{new lines}

New summary:<|end|>

<|assistant|>"""

summary prompt = PromptTemplate (
input variables=["new lines", "summary"],
template=summary prompt template

Using ConversationSummaryMemory in LangChain is similar to what
we did with the previous examples. The main difference is that we

additionally need to supply it with an LLM that performs the summarization
task. Although we use the same LLM for both summarizing and user
prompting, you could use a smaller LLM for the summarization task to speed

up computation:

from import ConversationSummaryMemory

Define the type of memory we will use
memory = ConversationSummaryMemory (
11lm=11m,
memory key="chat history",
prompt=summary prompt
)
Chain the LLM, prompt, and memory together
11lm chain = LLMChain (
prompt=prompt,
1lm=11m,
memory=memory

Having created our chain, we can test out its summarization capabilities by
creating a short conversation:

Generate a conversation and ask for the name

11lm chain.invoke ({"input prompt": "Hi! My name is Maarten. What
is 1 4+ 12"})
1lm chain.invoke ({"input prompt": "What is my name?"})

{'input prompt': 'What is my name?',

'chat history': ' Summary: Human, identified as Maarten, asked

the AI about the sum of 1 + 1, which was correctly answered by
the AI as 2 and offered additional assistance if needed.’',
'text': ' Your name in this context was referred to as
"Maarten". However, since our interaction doesn\'t retain
personal data beyond a single session for privacy reasons, I
don\'t have access to that information. How can I assist you
further today?'}

After each step, the chain will summarize the conversation up until that point.
Note how the first conversation was summarized in 'chat history' by
creating a description of the conversation.

We can continue the conversation and at each step, the conversation will be
summarized and new information will be added as necessary:

Check whether it has summarized everything thus far

1llm chain.invoke ({"input prompt": "What was the first question I
asked?"})

{'input prompt': 'What was the first question I asked?',

'chat history': ' Summary: Human, identified as Maarten in the

context of this conversation, first asked about the sum of 1 +
1 and received an answer of 2 from the AI. Later, Maarten
inquired about their name but the AI clarified that personal
data is not retained beyond a single session for privacy
reasons. The AI offered further assistance if needed.’',
"text': ' The first question you asked was "what\'s 1 + 12"'}

After asking another question, the LLM updated the summary to include the
previous conversation and correctly inferred the original question.

To get the most recent summary, we can access the memory variable we
created previously:

Check what the summary 1is thus far

memory.load memory variables ({})
{'chat history': ' Maarten, identified in this conversation,
initially asked about the sum of 1+1 which resulted in an
answer from the AT being 2. Subsequently, he sought
clarification on his name but the AI informed him that no
personal data is retained beyond a single session due to
privacy reasons. The AI then offered further assistance if
required. Later, Maarten recalled and asked about the first
question he inquired which was "what\'s 1+12"'}

This more complex chain is illustrated in Figure 7-13 to give an overview of
this additional functionality.

Human: I'm Maarten.
Al: Hi Maarten!

)
LLM

Summarize m
I

{ conversation_history }]

0 “Your name is
{ user_prompt } pood LM — >
| D Maarten.

“What is (:

my name?” /

\, r

Figure 7-13. We extend the LLM chain with memory by summarizing the entire conversation
history before giving it to the input prompt.

This summarization helps keep the chat history relatively small without using
too many tokens during inference. However, since the original question was
not explicitly saved in the chat history, the model needed to infer it based on
the context. This is a disadvantage if specific information needs to be stored
in the chat history. Moreover, multiple calls to the same LLM are needed, one
for the prompt and one for the summarization. This can slow down computing
time.

Often, it is a trade-off between speed, memory, and accuracy. Where
ConversationBufferMemory is instant but hogs tokens,
ConversationSummaryMemory is slow but frees up tokens to use.
Additional pros and cons of the memory types we have explored thus far are
described in Table 7-1.

Table 7-1. The pros and cons of different memory types.

Memory
type Pros Cons
Conversation)
Buffer . Easwst ‘ Slower-
implementation generation speed
B as more tokens
nsures no
information loss are needed
within context Only suitable for
window large-context
LLMs
Larger chat
histories make
information
retrieval
difficult
Windowed
Closmveise e Large-context Only captures
Buffer LILMSs are not 'Fhe last.k
needed unless interactions
chat history is No compression
large of the last &
e No information interactions

loss over the last
k interactions

Memory

type Pros Cons
Conversation o
S ry . Qapunes the full e An a.dd1t1onal
history call is necessary
e Enables long for eac}.l
mteraction

conversations

e Reduces tokens o Quality is reliant

needed to capture on the LLM’s
full history Sunmgr};atlon
capabilities

Agents: Creating a System of LLMs

Thus far, we have created systems that follow a user-defined set of steps to
take. One of the most promising concepts in LLMs is their ability to
determine the actions they can take. This idea is often called agents, systems
that leverage a language model to determine which actions they should take
and in what order.

Agents can make use of everything we have seen thus far, such as model I/O,
chains, and memory, and extend it further with two vital components:

e Tools that the agent can use to do things it could not do itself
e The agent type, which plans the actions to take or tools to use

Unlike the chains we have seen thus far, agents are able to show more
advanced behavior like creating and self-correcting a roadmap to achieve a
goal. They can interact with the real world through the use of tools. As a
result, these agents can perform a variety of tasks that go beyond what an
LLM is capable of in isolation.

For example, LLMs are notoriously bad at mathematical problems and often
fail at solving simple math-based tasks but they could do much more if we
provide access to a calculator. As illustrated in Figure 7-14, the underlying
idea of agents is that they utilize LLMs not only to understand our query but
also to decide which tool to use and when.

Without tools Withtools

o R i N

@[Whatiszl?mxajtl?] @[Whatisﬂﬂz x3.14?]
Let me use a calculator
to answer your question.

Incorrect answer E 47012 %314=12.2983

The answer is 12.2983

Correct answer

Figure 7-14. Giving LLMs the ability to choose which tools they use for a particular problem
results in more complex and accurate behavior.

In this example, we would expect the LLM to use the calculator when it faces
a mathematical task. Now imagine we extend this with dozens of other tools,
like a search engine or a weather API. Suddenly, the capabilities of LLMs
increase significantly.

In other words, agents that make use of LLMs can be powerful general
problem solvers. Although the tools they use are important, the driving force
of many agent-based systems is the use of a framework called Reasoning and

Acting (ReAct™).

The Driving Power Behind Agents: Step-by-step
Reasoning

ReAct is a powerful framework that combines two important concepts in
behavior: reasoning and acting. LLMs are exceptionally powerful when it
comes to reasoning as we explored in detail in Chapter 5.

Acting 1s a bit of a different story. LLMs are not able to act like you and I do.
To give them the ability to act, we could tell an LLM that it can use certain
tools, like a weather forecasting API. However, since LLMs can only
generate text, they would need to be instructed to use specific queries to
trigger the forecasting APL.

ReAct merges these two concepts and allows reasoning to affect acting and
actions to affect reasoning. In practice, the framework consists of iteratively
following these three steps:

o Thought
e Action
e Observation

[Mlustrated in Figure 7-15, the LLM is asked to create a “thought” about the
input prompt. This is similar to asking the LLM what it thinks it should do
next and why. Then, based on the thought, an “action” is triggered. The action
1s generally an external tool, like a calculator or a search engine. Finally,
after the results of the “action” are returned to the LLM it “observes” the
output, which is often a summary of whatever result it retrieved.

To illustrate with an example, imagine you are on holiday in the United States
and interested in buying a MacBook Pro. Not only do you want to know the
price but you need it converted to EUR as you live in Europe and are more
comfortable with those prices.

As illustrated in Figure 7-16, the agent will first search the web for current
prices. It might find one or more prices depending on the search engine. After
retrieving the price, it will use a calculator to convert USD to EUR assuming
we know the exchange rate.

-

Instruction [Snlve the question from the user.)

Use the following interleaving steps:
_ * Thought
ReAct steps * Action

.......

[A thought can reason about the current situation. J

[An action can be one of two types:
(1) Search[entity]
L{2} Calculator{formula]

-
tﬂxn observation is the result of an action.)

e o
Figure 7-15. An example of a ReAct prompt template.

Initial prompt
@ [What is the current price of a MacBook Pro in USD? How much would it cost in EUR if the]

exchange rate is 0.85 EUR for 1USD?

v

ReAct cycle1 ReAct cycle 2

TN I shouldsearchtheweb” [N (LI !needtouseacalalator

| [price MacBook Pro]” . [1.299 % 85]"

] Perform action A Perform action :
[(els!o)=[-I “Drice MacBook Pro” : [(@ [aT1E (0 g 1,299 = .85 =1104.15 5

Show results E Show results

LM B
‘ “A MacBook Pro would !
el

Figure 7-16. An example of two cycles in a ReAct pipeline.

: W Observation GEIUEIEIPECE

During this process, the agent describes its thoughts (what it should do), its
actions (what it will do), and its observations (the results of the action). It is
a cycle of thoughts, actions, and observations that results in the agent’s
output.

ReAct in LangChain

To illustrate how agents work in LangChain, we are going to build a pipeline
that can search the web for answers and perform calculations with a
calculator. These autonomous processes generally require an LLM that is
powerful enough to properly follow complex instructions.

The LLM that we used thus far is relatively small and not sufficient to run
these examples. Instead, we will be using OpenAl’s GPT-3.5 model as it
follows these complex instructions more closely:

import os
from langchain openai import ChatOpenAI

Load OpenAI's LLMs with LangChain
os.environ["OPENAI API KEY"] = "MY KEY"

openai 1lm = ChatOpenAI (model name="gpt-3.5-turbo",
temperature=0)

NOTE

Although the LLM we used throughout the chapter is nsufficient for this example, it does
not mean that only OpenAI’s LLMs are. Larger useful LLMs exist but they require
significantly more compute and VRAM. For instance, local LLMs often come in different
sizes and within a family of models, increasing a model’s size leads to better performance.
To keep the necessary compute at a minimum, we choose a smaller LLM throughout the
examples in this chapter.

However, as the field of generative models evolves, so do these smaller LLMs. We would
be anything but surprised if eventually smaller LLMs, like the one used in this chapter,
would be capable enough to run this example.

After doing so, we will define the template for our agent. As we have shown
before, it describes the ReAct steps it needs to follow:

Create the ReAct template
react template = """Answer the following questions as best you
can. You have access to the following tools:

{tools}
Use the following format:

Question: the input question you must answer
Thought: you should always think about what to do

Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action

(this Thought/Action/Action Input/Observation can repeat N
times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question

Begin!

Question: {input}
Thought :{agent_scratchpad}"""

prompt = PromptTemplate (

template=react template,

input variables=["tools", "tool names", "input",
"agent scratchpad"]

)

This template illustrates the process of starting with a question and
generating intermediate thoughts, actions, and observations.

To have the LLM interact with the outside world, we will describe the tools
1t can use:

from langchain.agents import load tools, Tool
from langchain.tools import DuckDuckGoSearchResults

You can create the tool to pass to an agent
search = DuckDuckGoSearchResults ()
search tool = Tool (
name="duckduck",
description="A web search engine. Use this to as a search
engine for general queries.",
func=search.run,

Prepare tools
tools = load tools(["llm-math"], llm=openai 1lm)
tools.append(search tool)

The tools include the DuckDuckGo search engine and a math tool that allows
it to access a basic calculator.

Finally, we create the ReAct agent and pass it to the AgentExecutor,
which handles executing the steps:

from langchain.agents import AgentExecutor, create react agent
Construct the ReAct agent

agent = create react agent (openai 1llm, tools, prompt)
agent executor = AgentExecutor (

https://oreil.ly/xVXsk

agent=agent, tools=tools, verbose=True,

handle parsing errors=True

)

To test whether the agent works, we use the previous example, namely
finding the price of a MacBook Pro:

What is the price of a MacBook Pro?
agent executor.invoke (

{

"input": "What is the current price of a MacBook Pro in
USD? How much would it cost in EUR if the exchange rate is 0.85
EUR for 1 USD."
}

While executing, the model generates multiple intermediate steps similar to
the steps 1llustrated in Figure 7-17.

» Entering new AgentExecutor chain...
I need to find the current price of a MacBeok Pro in USD first before converting it to EUR.

Action: duckduck
Action Input: "current price of MacBook Pro in USD"

Action: Calculator
Action Input: $2,249.80 * 8.85Answer: 1911.6499995999999T now know the Final answer
Final Answer: The current price of a MacBook Pro in USD is $2,249.88. It would cost approxin

Figure 7-17. An example of the ReAct process in LangChain.

These intermediate steps illustrate how the model processes the ReAct
template and what tools it accesses. This allows us to debug issues and
explore whether the agent uses the tools correctly.

When finished, the model gives us an output like this:

{'input': 'What is the current price of a MacBook Pro in USD?
How much would it cost in EUR if the exchange rate is 0.85 EUR

for 1 USD?',
'output': 'The current price of a MacBook Pro in USD is

$2,249.00. It would cost approximately 1911.65 EUR with an
exchange rate of 0.85 EUR for 1 USD.'}

Considering the limited tools the agent has, this is quite impressive! Using
just a search engine and a calculator the agent could give us an answer.

Whether that answer is actually correct should be taken into account. By
creating this relatively autonomous behavior, we are not involved in the
intermediate steps. As such, there is no human in the loop to judge the quality
of the output or reasoning process.

This double-edged sword requires a careful system design to improve its
reliability. For instance, we could have the agent return the website’s URL
where it found the MacBook Pro’s price or ask whether the output is correct
at each step.

Summary

In this chapter, we explored several ways to extend the capabilities of LLMs
by adding modular components. We began by creating a simple but reusable
chain that connected the LLM with a prompt template. We then expanded on
this concept by adding memory to the chain, which allowed the LLM to
remember conversations. We explored three different methods to add
memory and discussed their strengths and weaknesses.

We then delved into the world of agents that leverage LLMs to determine
their actions and make decisions. We explored the ReAct framework, which
uses an intuitive prompting framework that allows agents to reason about
their thoughts, take actions, and observe the results. This led us to build an
agent that is able to freely use the tools at its disposal, such as searching the
web and using a calculator, demonstrating the potential power of agents.

With this foundation in place, we are now poised to explore ways in which
LLMs can be used to improve existing search systems and even become the
core of new, more powerful search systems, as discussed in the next chapter.

1 Shunyu Yao et al. “ReAct: Synergizing reasoning and acting in language models.” arXiv
preprint arXiv:2210.03629 (2022).

Chapter 8. Semantic Search and
Retrieval-Augmented
Generation

Search was one of the first language model applications to see broad industry
adoption. Months after the release of the seminal “BERT: Pre-training of
deep bidirectional transformers for language understanding” (2018) paper,
Google announced it was using it to power Google Search and that it
represented “one of the biggest leaps forward in the history of Search.” Not
to be outdone, Microsoft Bing also stated that “Starting from April of this
year, we used large transformer models to deliver the largest quality
improvements to our Bing customers in the past year.”

This is a clear testament to the power and usefulness of these models. Their
addition instantly and dramatically improves some of the most mature, well-
maintained systems that billions of people around the planet rely on. The
ability they add is called semantic search, which enables searching by
meaning, and not simply keyword matching.

On a separate track, the fast adoption of text generation models led many
users to ask the models questions and expect factual answers. And while the
models were able to answer fluently and confidently, their answers were not
always correct or up-to-date. This problem grew to be known as model
“hallucinations,” and one of the leading ways to reduce it is to build systems
that can retrieve relevant information and provide it to the LLM to aid it in
generating more factual answers. This method, called RAG, is one of the
most popular applications of LLMs.

Overview of Semantic Search and RAG

https://oreil.ly/5NRQi
https://oreil.ly/Bbnrd
https://oreil.ly/Tpylo

There’s a lot of research on how to best use language models for search.
Three broad categories of these models are dense retrieval, reranking, and
RAG. Here is an overview of these three categories that the rest of the
chapter will then explain in more detail:

Dense retrieval

Dense retrieval systems rely on the concept of embeddings,
the same concept we’ve encountered in the previous
chapters, and turn the search problem into retrieving the
nearest neighbors of the search query (after both the query
and the documents are converted into embeddings).

Figure 8-1 shows how dense retrieval takes a search query,
consults its archive of texts, and outputs a set of relevant
results.

£ Results
[Q_ Search query | Dense retrieval |—p 1-Document #40
) 2- Document #68
¢ 3- Document #2
Text
Document #1

Document #2

Document #3

Figure 8-1. Dense retrieval is one of the key types of semantic search, relying on the

similarity of text embeddings to retrieve relevant results.

Reranking

Search systems are often pipelines of multiple steps. A
reranking language model is one of these steps and is tasked

with scoring the relevance of a subset of results against the
query; the order of results is then changed based on these
scores. Figure 8-2 shows how rerankers are different from
dense retrieval in that they take an additional input: a set of
search results from a previous step in the search pipeline.

[O\ Query }—D =
Results (inimproved order)

5:‘;?!;;‘;2’}2?&:’ Reranker 3 1-Document #2 (was result #3)
2- Document #40 (was result #1)

Text 3- Document #68 (was result #2)
1 | Document #40 >

2 | Document #68

3 Document #2

Figure 8-2. Rerankers, the second key type of semantic search, take a search query and a
collection of results, and reorder them by relevance, often resulting in vastly improved

results.

RAG

The growing LLM capability of text generation led to a new
type of search systems that include a model that generates
an answer in response to a query. Figure 8-3 shows an
example of such a generative search system.

Generative search is a subset of a broader type of category of
systems better called RAG systems. These are text generation
systems that incorporate search capabilities to reduce
hallucinations, increase factuality, and/or ground the
generation model on a specific dataset.

Result

[Q_ Question Retrieval-augmented This is one possible answer to
generation (RAG) your question [1], although
others have also pointed out
i this other possible answer, [2][3]
Text document #1 I Search result
= . 2-Searchresult
R COiument 3- Search result
Text document #3

Figure 8-3. A RAG system formulates an answer to a question and (preferably) cites its
information sources.

The rest of the chapter covers these three types of systems in more detail.
While these are the major categories, they are not the only LLM applications
in the domain of search.

Semantic Search with Language Models

Let’s now dive into more detail on the major categories of systems that can
upgrade the search capabilities of our language models. We’ll start with
dense retrieval and then move on through reranking and RAG.

Dense Retrieval

Recall that embeddings turn text into numeric representations. Those can be
thought of as points in space, as we can see in Figure 8-4. Points that are
close together mean that the text they represent is similar. So in this example,
text 1 and text 2 are more similar to each other (because they are near each
other) than text 3 (because it’s farther away).

Text 2

Text1

Text 3

Q

i

Figure 8-4. The intuition of embeddings: each text is a point and texts with similar meaning are
close to each other.

This is the property that is used to build search systems. In this scenario,
when a user enters a search query, we embed the query, thus projecting it into
the same space as our text archive. Then we simply find the nearest
documents to the query in that space, and those would be the search results

(Figure 8-5).

Query

Text 2
O

Text1

Text 3

QO

e

Figure 8-5. Dense retrieval relies on the property that search queries will be close to their
relevant results.

Judging by the distances in Figure 8-5, “text 2” is the best result for this
query, followed by “text 1.” Two questions could arise here, however:

e Should text 3 even be returned as a result? That’s a decision for you,
the system designer. It’s sometimes desirable to have a max
threshold of similarity score to filter out irrelevant results (in case
the corpus has no relevant results for the query).

e Are a query and its best result semantically similar? Not always.
This is why language models need to be trained on question-answer
pairs to become better at retrieval. This process is explained in
more detail in Chapter 10.

Figure 8-6 shows how we chunk a document before proceeding to embed
each chunk. Those embedding vectors are then stored in the vector database
and are ready for retrieval.

o External knowledge o Chunk documents

e’ﬂectnr database

— == - <
Embedding | | (T

E—— — EE— I'I'IDdEI

I I Dj:Dj
— = — 2

— e E——

—— I E—— . —

I E—— ———

Figure 8-6. Convert some external knowledge base to a vector database. We can then query this
vector database for information about the knowledge base.

Dense retrieval example

Let’s take a look at a dense retrieval example by using Cohere to search the
Wikipedia page for the film Interstellar. In this example, we will do the
following;

1. Get the text we want to make searchable and apply some light
processing to chunk it into sentences.

2. Embed the sentences.
3. Build the search index.

4. Search and see the results.

Get your Cohere API key by signing up at https.//oreil ly/GxrQl. Paste it in
the following code. You will not have to pay anything to run through this
example.

Let’s import the libraries we’ll need:

import cohere

import numpy as np
import pandas as pd
from tgdm import tgdm

Paste your API key here. Remember to not share publicly
api key = "'

https://oreil.ly/GxrQ1

Create and retrieve a Cohere API key from os.cohere.ai
co = cohere.Client (api key)

Getting the text archive and chunking it

Let’s use the first section of the Wikipedia article on the film Interstellar.
We’ll get the text, then break it into sentences:

text = """

Interstellar is a 2014 epic science fiction film co-written,
directed, and produced by Christopher Nolan.

It stars Matthew McConaughey, Anne Hathaway, Jessica Chastain,
Bill Irwin, Ellen Burstyn, Matt Damon, and Michael Caine.

Set in a dystopian future where humanity is struggling to
survive, the film follows a group of astronauts who travel
through a wormhole near Saturn in search of a new home for
mankind.

Brothers Christopher and Jonathan Nolan wrote the screenplay,
which had its origins in a script Jonathan developed in 2007.
Caltech theoretical physicist and 2017 Nobel laureate in
Physics[4] Kip Thorne was an executive producer, acted as a
scientific consultant, and wrote a tie-in book, The Science of
Interstellar.

Cinematographer Hoyte van Hoytema shot it on 35 mm movie film in
the Panavision anamorphic format and IMAX 70 mm.

Principal photography began in late 2013 and took place in
Alberta, Iceland, and Los Angeles.

Interstellar uses extensive practical and miniature effects and
the company Double Negative created additional digital effects.

Interstellar premiered on October 26, 2014, in Los Angeles.
In the United States, it was first released on film stock,
expanding to venues using digital projectors.

The film had a worldwide gross over $677 million (and $773
million with subsequent re-releases), making it the tenth-highest
grossing film of 2014.

It received acclaim for its performances, direction, screenplay,
musical score, visual effects, ambition, themes, and emotional
weight.

It has also received praise from many astronomers for its
scientific accuracy and portrayal of theoretical astrophysics.
Since its premiere, Interstellar gained a cult following, [5] and
now is regarded by many sci-fi experts as one of the best
science-fiction films of all time.

https://oreil.ly/g4F8w

Interstellar was nominated for five awards at the 87th Academy
Awards, winning Best Visual Effects, and received numerous other
accolades"""

Split into a list of sentences
texts = text.split('.")

Clean up to remove empty spaces and new lines
texts = [t.strip(' \n') for t in texts]

Embedding the text chunks

Let’s now embed the texts. We’ll send them to the Cohere API, and get back a
vector for each text:

Get the embeddings
response = co.embed (
texts=texts,
input type="search document",
) .embeddings

embeds = np.array(response)
print (embeds.shape)

This outputs (15, 4096), which indicates that we have 15 vectors, each
one of size 4,096.

Building the search index

Before we can search, we need to build a search index. An index stores the
embeddings and is optimized to quickly retrieve the nearest neighbors even if
we have a very large number of points:

import

dim = embeds.shape[1l]

index = faiss.IndexFlatL2 (dim)
print (index.is trained)
index.add (np.float32 (embeds))

Search the index

We can now search the dataset using any query we want. We simply embed
the query and present its embedding to the index, which will retrieve the
most similar sentence from the Wikipedia article.

Let’s define our search function:

def search(query, number of results=3):

1. Get the query's embedding
query embed = co.embed(texts=[query],
input type="search query",) .embeddings[0]

2. Retrieve the nearest neighbors
distances , similar item ids =
index.search (np.float32 ([query embed]), number of results)

3. Format the results
texts np = np.array(texts) # Convert texts list to numpy for
easier indexing
results = pd.DataFrame (data={'texts':
texts npl[similar item ids[0]],
'distance': distances[0]})

4. Print and return the results
print (f"Query: '{query}'\nNearest neighbors:")
return results

We are now ready to write a query and search the texts!

query = "how precise was the science"
results = search (query)
results

This produces the following output:

Query: 'how precise was the science'
Nearest neighbors:

texts distance

0 It has also received praise from 10757.379883
many astronomers for its
scientific accuracy and portrayal
of theoretical astrophysics

1 Caltech theoretical physicistand 11566.131836
2017 Nobel laureate in
Physics[4] Kip Thorne was an
executive producer, acted as a
scientific consultant, and wrote a
tie-in book, The Science of
Interstellar

2 Interstellar uses extensive 11922.833008
practical and miniature effects
and the company Double Negative
created additional digital effects

The first result has the least distance, and so is the most similar to the query.
Looking at it, it answers the question perfectly. Notice that this wouldn’t have
been possible if we were only doing keyword search because the top result
did not include the same keywords in the query.

We can actually verify that by defining a keyword search function to compare
the two. We’ll use the BM25 algorithm, which is one of the leading lexical
search methods. See this notebook for the source of these code snippets:

from import BM250kapi
from import stop words
import

def bm25 tokenizer (text):
tokenized doc = []

https://oreil.ly/M0Jwk

for token in text.lower () .split():
token = token.strip(string.punctuation)

if len(token) > 0 and token not in
_stop words.ENGLISH STOP WORDS:
tokenized_doc.append(token)

return tokenized doc

tokenized corpus = []
for passage in tgdm(texts):
tokenized corpus.append(bm25 tokenizer (passage))

bm25 = BM250kapi (tokenized corpus)

def keyword search(query, top k=3, num candidates=15):
print ("Input question:", query)

BM25 search (lexical search)

bm25 scores = bm25.get scores (bm25 tokenizer (query))

top n = np.argpartition(bm25 scores, -num candidates) [-
num_ candidates:]

bm25 hits = [{'corpus id': idx, 'score': bm25 scores[idx]}

for idx in top n]
bm25 hits = sorted(bm25 hits, key=lambda x: x['score'],
reverse=True)

print (f"Top-3 lexical search (BM25) hits™)
for hit in bm25 hits[O:top k]:
print ("\t{:.3f}\t{}".format (hit['score'],
texts[hit['corpus_id']].replace("\n",)

Now when we search for the same query, we get a different set of results
from the dense retrieval search:

keyword search(query = "how precise was the science")

Results:

Input question: how precise was the science
Top-3 lexical search (BM25) hits

1.789 Interstellar is a 2014 epic science fiction film
co-written, directed, and produced by Christopher Nolan

1.373 Caltech theoretical physicist and 2017 Nobel
laureate in Physics[4] Kip Thorne was an executive producer,
acted as a scientific consultant, and wrote a tie-in book, The
Science of Interstellar

0.000 It stars Matthew McConaughey, Anne Hathaway,
Jessica Chastain, Bill Irwin, Ellen Burstyn, Matt Damon, and
Michael Caine

Note that the first result does not really answer the question despite it sharing
the word “science” with the query. In the next section, we’ll see how adding
a reranker can improve this search system. But before that, let’s complete our
overview of dense retrieval by looking at its caveats and go over some
methods of breaking down texts into chunks.

Caveats of dense retrieval

It’s useful to be aware of some of the drawbacks of dense retrieval and how
to address them. What happens, for example, if the texts don’t contain the
answer? We still get results and their distances. For example:

Query: 'What is the mass of the moon?'
Nearest neighbors:

texts distance

0 The film had a worldwide gross 1.298275
over $677 million (and $773
million with subsequent re-
releases), making it the tenth-
highest grossing film of 2014

1 It has also received praise from 1.324389
many astronomers for its
scientific accuracy and portrayal
of theoretical astrophysics

2 Cinematographer Hoyte van 1.328375
Hoytema shot it on 35 mm movie

film in the Panavision anamorphic
format and IMAX 70 mm

In cases like this, one possible heuristic 1s to set a threshold level—a
maximum distance for relevance, for example. A lot of search systems
present the user with the best info they can get and leave it up to the user to
decide if it’s relevant or not. Tracking the information of whether the user
clicked on a result (and were satisfied by it) can improve future versions of
the search system.

Another caveat of dense retrieval i1s when a user wants to find an exact match
for a specific phrase. That’s a case that’s perfect for keyword matching,
That’s one reason why hybrid search, which includes both semantic search
and keyword search, is advised instead of relying solely on dense retrieval.

Dense retrieval systems also find it challenging to work properly in domains
other than the ones that they were trained on. So, for example, if you train a
retrieval model on internet and Wikipedia data, and then deploy it on legal

texts (without having enough legal data as part of the training set), the model
will not work as well in that legal domain.

The final thing we’d like to point out is that this is a case where each
sentence contained a piece of information, and we showed queries that
specifically ask for that information. What about questions whose answers
span multiple sentences? This highlights one of the important design
parameters of dense retrieval systems: what is the best way to chunk long
texts? And why do we need to chunk them in the first place?

Chunking long texts

One limitation of Transformer language models is that they are limited in
context sizes, meaning we cannot feed them very long texts that go above the
number of words or tokens that the model supports. So how do we embed
long texts?

There are several possible ways, and two possible approaches shown in
Figure 8-7 include indexing one vector per document and indexing multiple
vectors per document.

One vector per document Chunk document into multiple chunks

Interstellar [Sim) s —— Interateliar (fil=) —

]

Document vector Chunk 1vector
Chunk 2 vector
Chunk 3 vector

Figure 8-7. Its possible to create one vector representing an entire document, but it’s better for
longer documents to be split into smaller chunks that get their own embeddings.

One vector per document

In this approach, we use a single vector to represent the whole document.
The possibilities here include:

o Embedding only a representative part of the document and ignoring
the rest of the text. This may mean embedding only the title, or only
the beginning of the document. This 1s useful to get quickly started
with building a demo but it leaves a lot of information unindexed
and therefore unsearchable. As an approach, it may work better for
documents where the beginning captures the main points of a
document (think: Wikipedia article). But it’s really not the best
approach for a real system because a lot of information would be
left out of the index and would be unsearchable.

o Embedding the document in chunks, embedding those chunks, and
then aggregating those chunks into a single vector. The usual method
of aggregation here is to average those vectors. A downside of this
approach is that it results in a highly compressed vector that loses a
lot of the information in the document.

This approach can satisfy some information needs, but not others. A lot of the
time, a search is for a specific piece of information contained in an article,
which is better captured if the concept had its own vector.

Multiple vectors per document

In this approach, we chunk the document into smaller pieces, and embed
those chunks. Our search index then becomes that of chunk embeddings, not
entire document embeddings. Figure 8-8 shows a number of possible text
chunking approaches.

Input [Llama 2 was trained on 40% more data than Llama1]

IEJE;'E?;EEL‘; [Llama 2 was tra]‘r[ined on 40% mu:nr]1l [e data than Lla] [ma 1]

l No overlap l

Token split , Y (@
Every 5 tokens [Llama 2wastrainedon | (40% more datathan LIamaJ

Tokensplit

fgigg;ﬁ‘ﬁg E;:E [Llamaz was trained on | [on40% more data than | !than Llamal l

Overlapping tokens Overlapping tokens

Figure 8-8. Several chunking methods and their effects on the input text. Overlapping chunks
can be important to prevent the absence of context.

The chunking approach is better because it has full coverage of the text and
because the vectors tend to capture individual concepts inside the text. This
leads to a more expressive search index. Figure 8-9 shows a number of
possible approaches.

Each sentence is a chunk Each paragraph is a chunk D“"“EE.;'EE.}EL‘}"“W of

Irbrrabriior | K

Chunk 1vector Chunk 1vector [1 1| Chunk1vector
[T Chunk 2 vector Chunk 2 vector T chunk 2 vector
[Chunk 3 vector "1 171 Chunk 3 vector I Chunk 3 vector

11 Chunk15 vector

Figure 8-9. A number of possible options for chunking a document for embedding.

The best way of chunking a long text will depend on the types of texts and
queries your system anticipates. Approaches include:

o Each sentence is a chunk. The issue here is this could be too
granular and the vectors don’t capture enough of the context.

o Each paragraph is a chunk. This is great if the text is made up of
short paragraphs. Otherwise, it may be that every 3—8 sentences is a
chunk.

o Some chunks derive a lot of their meaning from the text around them.
So we can incorporate some context via:

» Adding the title of the document to the chunk.

= Adding some of the text before and after them to the chunk.
This way, the chunks can overlap so they include some
surrounding text that also appears in adjacent chunks. This
1s what we can see in Figure 8-10.

Expect more chunking strategies to arise as the field develops—some of
which may even use LLMs to dynamically split a text into meaningful chunks.

Chunk 1 — L —p Chunk 1vector
s — Emtﬁ‘%ding —>{II Chunk 2 vector
== e —»{ "] Chunk 3 vector

chunk3 | e =

Figure 8-10. Chunking the text into overlapping segments is one strategy to retain more of the
context around different segments.

Nearest neighbor search versus vector databases

Once the query is embedded, we need to find the nearest vectors to it from
our text archive as we can see in Figure 8-11. The most straightforward way
to find the nearest neighbors is to calculate the distances between the query
and the archive. That can easily be done with NumPy and is a reasonable
approach if you have thousands or tens of thousands of vectors in your
archive.

R ——— —T—— Vector database
r) Query
——— e (BT &
e |4— Embedding (= | [T T T] | «{ Embedding _@
S— — model TTTT] model
__—-— | I[ﬂmpme
— m

CITTTT]

Retrieve most similar

Figure 8-11. As we saw in Chapter 3, we can compare embeddings to quickly find the most
similar documents to a query.

As you scale beyond to the millions of vectors, an optimized approach for
retrieval is to rely on approximate nearest neighbor search libraries like
Annoy or FAISS. These allow you to retrieve results from massive indexes
in milliseconds and some of them can improve their performance by utilizing
GPUs and scaling to clusters of machines to serve very large indices.

Another class of vector retrieval systems are vector databases like Weaviate
or Pinecone. A vector database allows you to add or delete vectors without
having to rebuild the index. They also provide ways to filter your search or
customize it in ways beyond merely vector distances.

Fine-tuning embedding models for dense retrieval

Just as we discussed in Chapter 4 on text classification, we can improve the
performance of an LLM on a task using fine-tuning. As in that case, retrieval
needs to optimize text embeddings and not simply token embeddings. The
process for this fine-tuning is to get training data composed of queries and
relevant results.

Let’s look at one example from our dataset, the sentence “Interstellar
premiered on October 26, 2014, in Los Angeles.” Two possible queries

where this is a relevant result are:
e Relevant query 1: “Interstellar release date”
o Relevant query 2: “When did Interstellar premier”

The fine-tuning process aims to make the embeddings of these queries close
to the embedding of the resulting sentence. It also needs to see negative
examples of queries that are not relevant to the sentence, for example:

e Irrelevant query: “Interstellar cast”

With these examples, we now have three pairs—two positive pairs and one
negative pair. Let’s assume, as we can see in Figure 8-12, that before fine-
tuning, all three queries have the same distance from the result document.
That’s not far-fetched because they all talk about Interstellar.

1 | |

Relevant query:

Interstellar release

date
Interstellar i ' =
| premieredon Relevant query:
October 26, 2014, When did
in Los Angeles. Interstellar premier

[Irrelevant query:
l Interstellarcast [——

Figure 8-12. Before fine-tuning, the embeddings of both relevant and irrelevant queries may be
close to a particular document.

The fine-tuning step works to make the relevant queries closer to the
document and at the same time make irrelevant queries farther from the

document. We can see this effect in Figure 8-13.

| 1
Relevant query:
Interstellar release
date
Interstellar — ' \
| premieredon Relevant query:
October 26,2014, When did
in Los Angeles. Interstellar premier

[Irrelevant query:
l Interstellar cast

Figure 8-13. After the fine-tuning process, the text embedding model becomes better at this search
task by incorporating how we define relevance on our dataset using the examples we provided of
relevant and irrelevant documents.

Reranking

A lot of organizations have already built search systems. For those
organizations, an easier way to incorporate language models is as a final step
inside their search pipeline. This step is tasked with changing the order of the
search results based on relevance to the search query. This one step can
vastly improve search results and it’s in fact what Microsoft Bing added to
achieve the improvements to search results using BERT-like models.

Figure 8-14 shows the structure of a rerank search system serving as the
second stage in a two-stage search system.

_ [Q. Query
Text archive _
(e.g., millions of Initial results Final results

documents) + Highest
| | I | oicia:

cemrch &]) 2
(dense, keyword, Hp» :— Rerank > 3:‘

or hybrid) I:] 4:’
Lowest
First stage I:l 5:| JLrelevance

Figure 8-14. LLM rerankers operate as part of a search pipeline with the goal of reordering a
number of shortlisted search results by relevance.

Second stage

Reranking example

A reranker takes in the search query and a number of search results, and
returns the optimal ordering of these documents so the most relevant ones to
the query are higher in ranking. Cohere’s Rerank endpoint is a simple way to
start using a first reranker. We simply pass it the query and texts and get the
results back. We don’t need to train or tune it:

query = "how precise was the science"

results = co.rerank(query=query, documents=texts, top n=3,
return documents=True)

results.results

We can print these results:

for idx, result in enumerate (results.results):
print (idx, result.relevance score , result.document.text)

Output:

0 0.1698185 It has also received praise from many astronomers
for its scientific accuracy and portrayal of theoretical
astrophysics

1 0.07004896 The film had a worldwide gross over $677 million
(and $773 million with subsequent re-releases), making it the
tenth-highest grossing film of 2014

2 0.0043994132 Caltech theoretical physicist and 2017 Nobel

https://oreil.ly/PuCII

laureate in Physics[4] Kip Thorne was an executive producer,
acted as a scientific consultant, and wrote a tie-in book, The
Science of Interstellar

This shows the reranker is much more confident about the first result,
assigning it a relevance score of 0.16, while the other results are scored
much lower in relevance.

In this basic example, we passed our reranker all 15 of our documents. More
often, however, our index would have thousands or millions of entries, and
we need to shortlist, say one hundred or one thousand results and then present
those to the reranker. This shortlisting step is called the first stage of the
search pipeline.

The first-stage retriever can be keyword search, dense retrieval, or better yet
—hybrid search that uses both of them. We can revisit our previous example
to see how adding a reranker after a keyword search system improves its
performance.

Let’s tweak our keyword search function so it retrieves a list of the top 10
results using keyword search, then use rerank to choose the top 3 results from
those 10:

def keyword and reranking search(query, top k=3,
num candidates=10) :
print ("Input question:", query)

BM25 search (lexical search)

bm25 scores = bm25.get scores (bm25 tokenizer (query))

top n = np.argpartition(bm25 scores, -num candidates) [-
num_ candidates:]

bm25 hits = [{'corpus id': idx, 'score': bm25 scores[idx]}

for idx in top n]
bm25 hits = sorted(bm25 hits, key=lambda x: x['score'],
reverse=True)

print (f"Top-3 lexical search (BM25) hits™)
for hit in bm25 hits[0O:top k]:
print ("\t{:.3f}\t{}".format (hit['score'],
texts[hit['corpus_id']].replace("\n",)

#Add re-ranking
docs = [texts[hit['corpus id']] for hit in bm25 hits]

print (£"\nTop-3 hits by rank-API ({len(bm25 hits)} BM25 hits
re-ranked)")
results = co.rerank(query=query, documents=docs, top n=top Kk,
return documents=True)
print (results.results)
for hit in results.results:
print (hit)
print ("\t{:.3f}\t{}".format (hit.relevance score,
hit.document.text.replace("\n", " ")))

Now we can send our query and check the results of keyword search and then
the result of keyword search shortlisting its top 10 results, then pass them on
to the reranker:

keyword and reranking search(query = "how precise was the
science")

Results:

Input question: how precise was the science

Top-3 lexical search (BM25) hits

1.789 Interstellar is a 2014 epic science fiction film co-
written, directed, and produced by Christopher Nolan

1.373 Caltech theoretical physicist and 2017 Nobel laureate in
Physics[4] Kip Thorne was an executive producer, acted as a
scientific consultant, and wrote a tie-in book, The Science of
Interstellar

0.000 Interstellar uses extensive practical and miniature
effects and the company Double Negative created additional
digital effects

Top-3 hits by rank-API (10 BM25 hits re-ranked)

0.004 Caltech theoretical physicist and 2017 Nobel laureate in
Physics[4] Kip Thorne was an executive producer, acted as a
scientific consultant, and wrote a tie—-in book, The Science of
Interstellar

0.004 Set in a dystopian future where humanity is struggling to
survive, the film follows a group of astronauts who travel
through a wormhole near Saturn in search of a new home for

mankind

0.003 Brothers Christopher and Jonathan Nolan wrote the
screenplay, which had its origins in a script Jonathan
developed in 2007

We see that keyword search assigns scores to only two results that share
some of the keywords. In the second set of results, the reranker elevates the
second result appropriately as the most relevant result for the query. This is a
toy example that gives us a glimpse of the effect, but in practice, such a
pipeline significantly improves search quality. On a multilingual benchmark
like MIRACL, a reranker can boost performance from 36.5 to 62.8, measured
as nDCG@10 (more on evaluation later in this chapter).

Open source retrieval and reranking with sentence transformers

If you want to locally set up retrieval and reranking on your own machine,
then you can use the Sentence Transformers library. Refer to the
documentation at Attps://oreil.ly/jJOhV for setup. Check the “Retrieve & Re-
Rank” section for instructions and code examples for how to conduct these
steps in the library.

How reranking models work

One popular way of building LLM search rerankers is to present the query
and each result to an LLM working as a cross-encoder. This means that a
query and possible result are presented to the model at the same time
allowing the model to view both these texts before it assigns a relevance
score, as we can see in Figure 8-15. All of the documents are processed
simultaneously as a batch yet each document i1s evaluated against the query
independently. The scores then determine the new order of the results. This
method is described in more detail in a paper titled “Multi-stage document
ranking with BERT” and is sometimes referred to as monoBERT.

https://oreil.ly/Kq3nA
https://oreil.ly/jJOhV
https://oreil.ly/mDglU
https://oreil.ly/e3J9i

Relevance score New order

Querytext Initial search result —o0% i
[O\ Query] Document #40 12

[O\ Query] Document#68 |- Reranker (|]15% #3
[Q\ Query] Document #2

[80% #1

Figure 8-15. A reranker assigns a relevance score to each document by looking at the document
and the query at the same time.

This formulation of search as relevance scoring basically boils down to
being a classification problem. Given those inputs, the model outputs a score
from 0—1 where O is irrelevant and 1 is highly relevant. This should be
familiar from our classification discussions in Chapter 4.

To learn more about the development of using LLMs for search, "Pretrained
transformers for text tanking: BERT and beyond" is a highly recommended
look at the developments of these models until about 2021.

Retrieval Evaluation Metrics

Semantic search is evaluated using metrics from the Information Retrieval
(IR) field. Let’s discuss one of these popular metrics: mean average
precision (MAP).

Evaluating search systems needs three major components: a text archive, a
set of queries, and relevance judgments indicating which documents are
relevant for each query. We see these components in Figure 8-16.

https://oreil.ly/Z1IfS
https://oreil.ly/ga3Vk

Test suite

r

Archive \

Q_ QueryT]---[Q\ Query n

.‘

r

-

Text document #1

Text document #2

Text document #3

Text document #4

Text document #5

Text document #6

XA XXX
CXXCX

ot

\

Relevance judgments

Figure 8-16. To evaluate search systems, we need a test suite including queries and relevance

Judgments indicating which documents in our archive are relevant for each query.

Using this test suite, we can proceed to explore evaluating search systems.
Let’s start with a simple example. Let’
different search systems. And get two sets of results. Say we limit the number

s assume we pass query 1 to two

of results to three, as we can see in Figure 8-17.

[Q. Query 1
| | j
Search system 1 Search system 2
1& 1¢—
Results 2 [2
] e

Figure 8-17. To compare two search systems, we pass the same query from our test suite to both
systems and look at their top results.

To tell which is a better system, we turn to the relevance judgments that we

have for the query. Figure 8-18 shows which of the returned results are
relevant.

[Q. Query 1

[[
Search system 1 Search system 2

! !
Y [X
Results 2[R ¢ 2 ¢
] (VR [V

Figure 8-18. Looking at the relevance judgments from our test suite, we can see that system 1 did
a better job than system 2.

-

This shows us a clear case where system 1 is better than system 2.
Intuitively, we may just count how many relevant results each system
retrieved. System 1 got two out of three correct, and system 2 got only one
out of three correct. But what about a case like Figure 8-19 where both
systems only get one relevant result out of three, but they’re in different

positions?

Q. Query 1

[[
Search system 1 Search system 2

! !
Y [X
Results 2[R ¢ 2 ¢
] DA [V

Figure 8-19. We need a scoring system that rewards system 1 for assigning a high position to a
relevant result—even though both systems retrieved only one relevant result in their top three
results.

-

In this case, we can intuit that system 1 did a better job than system 2 because
the result in the first position (the most important position) is correct. But
how can we assign a number or score to how much better that result is? Mean
average precision is a measure that is able to quantify this distinction.

One common way to assign numeric scores in this scenario is average
precision, which evaluates system 1°s result for the query to be 1 and system
2’s to be 0.3. So let’s see how average precision is calculated to evaluate
one set of results, and then how it’s aggregated to evaluate a system across
all the queries in the test suite.

Scoring a single query with average precision

To score a search system on this query, we can focus on scoring the relevant
documents. Let’s start by looking at a query that only has one relevant
document in the test suite.

The first one is easy: the search system placed the relevant result (the only
available one for this query) at the top. This gets the system the perfect score

of 1. Figure 8-20 shows this calculation: looking at the first position, we
have a relevant result leading to a precision at position 1 of 1.0 (calculated
as the number of relevant results at position 1, divided by the position we’re

currently looking at).

for query in the test suite

v 1

\Total number of relevant documents
Q. Query

[Search system

/ Actually relevant Precision at -
to query? position (k) Precision @k

N v [Eeeilv vE-[
Results 2[R X | Precision @] 2 |
I X [Precision@] 3 |

Averaqge precision =

1
1

Figure 8-20. To calculate mean average precision, we start by calculating precision at each
position, starting with position 1.

Since we’re only scoring relevant documents we can ignore the scores of
nonrelevant documents and stop our calculation here. What if the system
actually placed the only relevant result at the third position, however? How
would that affect the score? Figure 8-21 shows how that results in a penalty.

i Total number of relevant documents
O\ Query for query in the test suite

v 1

Search system

Actually relevant Precision at Precision @ k
to query? position (k)

X [Precision@] 1 | 3¢ o/[1]=0
4 [Precsion@] 2 | 3¢ X o/[2]=0
v [Precision@| 3 I XXV 1/[3] =03

0.3

Average precision = =103
1

Figure 8-21. If the system places nonrelevant documents ahead of a relevant document, its
precision score is penalized.

Results

i
iii L.

Let’s now look at a query with more than one relevant document. Figure 8-22
shows that calculation and how averaging now comes into the picture.

\ Total number of relevant documents
O\ Query for query in the test suite

v:| 2

[Search system

/ Actually relevant Precision at .
to query? position (k) Precision @ k

TN v [Pedsime[1]V 1@-[0
Results 2 [¢ [Precision @] 2] v/ 3¢ 1/[2] =05
CI v [Pesme[3]vXy 2[3E]-[06

1 |+]0.67))

=
Figure 8-22. Average precision of a document with multiple relevant documents considers the
precision at k results of all the relevant documents.

Average precision =

Scoring across multiple queries with mean average precision

Now that we’re familiar with precision at k and average precision, we can
extend this knowledge to a metric that can score a search system against all
the queries in our test suite. That metric is called mean average precision.

Figure 8-23 shows how to calculate this metric by taking the mean of the
average precisions of each query.

[O\Quew1] [O\Querﬂ] [Q\Uuerﬂ]

Relevant
documents v:[2 VAN v 1
for query ’) '
Precision @ k
1 1

0.67 0.3

p Mean average
verage recision
precision 0.8 1 03 A
» | 0.7
Mean

Figure 8-23. The mean average precision takes into consideration the average precision score of
a system for every query in the test suite. By averaging them, it produces a single metric that we
can use to compare a search system against another.

You may be wondering why the same operation is called “mean” and
“average.” It’s likely an aesthetic choice because MAP sounds better than
average average precision.

Now we have a single metric that we can use to compare different systems. If
you want to learn more about evaluation metrics, see the “Evaluation in
Information Retrieval” chapter of Introduction to Information Retrieval
(Cambridge University Press) by Christopher D. Manning, Prabhakar
Raghavan, and Hinrich Schiitze.

In addition to mean average precision, another metric commonly used for
search systems 1s normalized discounted cumulative gain (nDCG), which is
more nuanced in that the relevance of documents is not binary (relevant
versus not relevant) and one document can be labeled as more relevant than
another in the test suite and scoring mechanism.

Retrieval-Augmented Generation (RAG)

https://oreil.ly/oeY4b

The mass adoption of LLMs quickly led to people asking them questions and
expecting factual answers. While the models can answer some questions
correctly, they also confidently answer lots of questions incorrectly. The
leading method the industry turned to remedy this behavior is RAG,
described in the paper “Retrieval-Augmented Generation for Knowledge-

Intensive NLP Tasks” (2020)" and illustrated in Figure 8-24.

Retrieval-augmented generation (RAG) system

-

_ 2 O
[O\ Questmn]—> 1) Retrieval = | 2) Grounded —h[Answer]

generation

L £)

v

Data source(s)
Figure 8-24. A basic RAG pipeline is made up of a search step followed by a grounded
generation step where the LLM is prompted with the question and the information retrieved from
the search step.

RAG systems incorporate search capabilities in addition to generation
capabilities. They can be seen as an improvement to generation systems
because they reduce their hallucinations and improve their factuality. They
also enable use cases of “chat with my data” that consumers and companies
can use to ground an LLM on internal company data, or a specific data source
of interest (e.g., chatting with a book).

This also extends to search systems. More search engines are incorporating
an LLM to summarize results or answer questions submitted to the search
engine. Examples include Perplexity, Microsoft Bing Al, and Google
Gemini.

From Search to RAG

Let’s now turn our search system into a RAG system. We do that by adding an
LLM to the end of the search pipeline. We present the question and the top
retrieved documents to the LLM, and ask it to answer the question given the

https://oreil.ly/84oHH
https://oreil.ly/PrYVM
https://oreil.ly/GBd66
https://oreil.ly/--C_8

context provided by the search results. We can see an example in Figure 8-
25.

This generation step is called grounded generation because the retrieved
relevant information we provide the LLM establishes a certain context that
grounds the LLM in the domain we’re interested in. Figure 8-26 shows how
grounded generation fits after search if we continue our embeddings search
example from earlier.

[O\ Question]

l Retrieval-augmented generation (RAG) system

£ Ol
: Relevant
1)Retrieval | |information| [2) Grounded Result
(e.g., retrieval generation | [~

andreranking) [> (LLM) Thisis one possible answer to
your question [1], although
. A / others have also pointed out
l this other possible answer. [2][3]
Datasource
Mg Sources
- 1- Search result
Text document #1 2-Search result
Text document #2 3-Search result
Text document #3

Figure 8-25. Generative search formulates answers and summaries at the end of a search
pipeline while citing its sources (returned by the previous steps in the search system).

Search database
Prompt Relevant context

= LT

[E]_Emnﬁzggliﬂg—[llnr—rll||ll
(1111

W

|
&

—»| LLM

M

Updated prompt
Figure 8-26. Find the most relevant information to an input prompt by comparing the similarities

between embeddings. The most relevant information is added to the prompt before giving it to the
LLM.

Example: Grounded Generation with an LLM API

Let’s look at how to add a grounded generation step after the search results to
create our first RAG system. For this example, we’ll use Cohere’s managed
LLM, which builds on the search systems we’ve seen earlier in the chapter.
We’ll use embedding search to retrieve the top documents, then we’ll pass
those to the co . chat endpoint along with the questions to provide a
grounded answer:

query = "income generated"
1- Retrieval
We'll use embedding search. But ideally we'd do hybrid

results = search (query)

2- Grounded Generation

docs dict = [{'text': text} for text imn results['texts']]
response = co.chat (
message = query,

documents=docs_dict

)

print (response.text)

Result:

The film generated a worldwide gross of over $677 million, or
$773 million with subsequent re-releases.

We are highlighting some of the text because the model indicated the source
for these spans of text to be the first document we passed in:

citations=[ChatCitation (start=21, end=36, text='worldwide
gross', document ids=['doc 0']), ChatCitation(start=40, end=57,
text="'over $677 million', document ids=['doc 0']),

ChatCitation (start=62, end=103, text='$773 million with
subsequent re-releases.', document ids=['doc 0'])]

documents=[{'id': 'doc 0', 'text': 'The film had a worldwide
gross over $677 million (and $773 million with subsequent re-
releases), making it the tenth-highest grossing film of 2014'}]

Example: RAG with Local Models

Let us now replicate this basic functionality with local models. We will lose
the ability to do span citations and the smaller local model isn’t going to
work as well as the larger managed model, but it’s useful to demonstrate the
flow. We’ll start by downloading a quantized model.

Loading the generation model

We start by downloading our model:

'wget https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-
gguf/resolve/main/Phi-3-mini-4k-instruct-fpl6.gguf

Using 11ama.cpp, 11lama-cpp-python, and LangChain, we load the
text generation model:

from import LlamaCpp

Make sure the model path is correct for your system!
1lm = LlamaCpp (

model path="Phi-3-mini-4k-instruct-fpl6.gguf",

n _gpu layers=-1,

max_ tokens=500,

n ctx=2048,
seed=42,
verbose=False

Loading the embedding model

Let’s now load an embedding language model. In this example, we will
choose the BAAI/bge-small-en-v1.5 model. At the time of writing, it is high
on the MTEB leaderboard for embedding models and relatively small:

from langchain.embeddings.huggingface import
HuggingFaceEmbeddings

Embedding model for converting text to numerical
representations
embedding model = HuggingFaceEmbeddings (

model name='thenlper/gte-small'

)

We can now use the embedding model to set up our vector database:

from langchain.vectorstores import FAISS

Create a local vector database
db = FAISS.from texts(texts, embedding model)

The RAG prompt

A prompt template plays a vital part in the RAG pipeline. It is the central
place where we communicate the relevant documents to the LLM. To do so,
we will create an additional input variable named context that can
provide the LLM with the retrieved documents:

from langchain import PromptTemplate

Create a prompt template

template = """<|user|>
Relevant information:
{context}

Provide a concise answer the following question using the

https://oreil.ly/kMSEh
https://oreil.ly/Ugljz

relevant information provided above:
{question}<|end]|>
<|assistant|>"""
prompt = PromptTemplate (
template=template,
input variables=["context", "question'"]

from import RetrievalQA

RAG pipeline

rag = RetrievalQA.from chain type(
1lm=11m,
chain type='stuff',
retriever=db.as retriever(),
chain type kwargs={

"prompt": prompt

}I

verbose=True

Now we’re ready to call the model and ask i1t a question:

rag.invoke ('Income generated')

Result:

The Income generated by the film in 2014 was over $677 million
worldwide. This made it the tenth-highest grossing film of that
year. It should be noted, however, this figure includes both
initial ticket sales as well as any subsequent re-releases.
With these additional releases, total earnings surged to
approximately $773 million. The release format transitioned
from traditional film stock projection in theaters to digital
projectors once it was expanded to various venues in the United
States. This shift might have contributed to wider audience
reach and potentially higher grossing figures over time.
However, specific data on how this affected total earnings
isn't provided in the information above.

As always, we can adjust the prompt to control the model’s generation (e.g.,
answer length and tone).

Advanced RAG Techniques

There are several additional techniques to improve the performance of RAG
systems. Some of them are laid out here.

Query rewriting

If the RAG system is a chatbot, the preceding simple RAG implementation
would likely struggle with the search step if a question is too verbose, or to
refer to context in previous messages in the conversation. This is why it’s a
good idea to use an LLM to rewrite the query into one that aids the retrieval
step in getting the right information. An example of this is a message such as:

User Question: “We have an essay due tomorrow. We have to write
about some animal. I love penguins. I could write about them. But [
could also write about dolphins. Are they animals? Maybe. Let’s do
dolphins. Where do they live for example?”

This should actually be rewritten into a query like:

Query: “Where do dolphins live”

This rewriting behavior can be done through a prompt (or through an API
call). Cohere’s API, for example, has a dedicated query-rewriting mode for
co.chat.

Multi-query RAG

The next improvement we can introduce is to extend the query rewriting to be
able to search multiple queries if more than one is needed to answer a
specific question. Take for example:

User Question: “Compare the financial results of Nvidia in 2020 vs.
2023

We may find one document that contains the results for both years, but more
likely, we’re better off making two search queries:

Query 1: “Nvidia 2020 financial results”

Query 2: “Nvidia 2023 financial results”

We then present the top results of both queries to the model for grounded
generation. An additional small improvement here is to also give the query
rewriter the option to determine if no search is required and if it can directly
generate a confident answer without searching.

Multi-hop RAG

A more advanced question may require a series of sequential queries. Take
for example a question like:

User Question: “Who are the largest car manufacturers in 2023? Do
they each make EVs or not?”

To answer this, the system must first search for:

Step 1, Query 1: “largest car manufacturers 2023 "

Then after it gets this information (the result being Toyota, Volkswagen, and
Hyundai), it should ask follow-up questions:

Step 2, Query 1: “Toyota Motor Corporation electric vehicles”
Step 2, Query 2: “Volkswagen AG electric vehicles”
Step 2, Query 3: “Hyundai Motor Company electric vehicles”

Query routing

An additional enhancement is to give the model the ability to search multiple
data sources. We can, for example, specify for the model that if it gets a
question about HR, it should search the company’s HR information system
(e.g., Notion) but if the question is about customer data, that it should search
the customer relationship management (CRM) (e.g., Salesforce).

Agentic RAG

You may be able to now see that the list of previous enhancements slowly
delegates more and more responsibility to the LLM to solve more and more
complex problems. This relies on the LLM’s capability to gauge the required
information needs as well as its ability to utilize multiple data sources. This
new nature of the LLM starts to become closer and closer to an agent that
acts on the world. The data sources can also now be abstracted into tools.
We saw, for example, that we can search Notion, but by the same token, we
should be able to post to Notion as well.

Not all LLMs will have the RAG capabilities mentioned here. At the time of
writing, likely only the largest managed models may be able to attempt this
behavior. Thankfully, Cohere’s Command R+ excels at these tasks and is
available as an open-weights model as well.

RAG Evaluation

There are still ongoing developments in how to evaluate RAG models. A
good paper to read on this topic is “Evaluating verifiability in generative

search engines” (2023), which runs human evaluations on different

generative search systems.?

It evaluates results along four axes:

Fluency

Whether the generated text is fluent and cohesive.
Perceived utility

Whether the generated answer is helpful and informative.
Citation recall

The proportion of generated statements about the external
world that are fully supported by their citations.

Citation precision

https://oreil.ly/i2UXh
https://oreil.ly/Jpypi
https://oreil.ly/HVbAN

The proportion of generated citations that support their
associated statements.

While human evaluation is always preferred, there are approaches that
attempt to automate these evaluations by having a capable LLM act as a judge
(called LLM-as-a-judge) and score the different generations along the
different axes. Ragas is a software library that does exactly this. It also
scores some additional useful metrics like:

Faithfulness
Whether the answer is consistent with the provided context
Answer relevance

How relevant the answer is to the question

The Ragas documentation site provides more details about the formulas to
actually calculate these metrics.

Summary

In this chapter, we looked at different ways of using language models to
improve existing search systems and even be the core of new, more powerful
search systems. These include:

e Dense retrieval, which relies on the similarity of text embeddings.
These are systems that embed a search query and retrieve the
documents with the nearest embeddings to the query’s embedding.

o Rerankers, systems (like monoBERT) that look at a query and
candidate results and score the relevance of each document to that
query. These relevance scores are then used to order the shortlisted
results according to their relevance to the query, often producing an
improved results ranking.

https://oreil.ly/6GVMW
https://oreil.ly/Diugy

e RAG, where search systems have a generative LLM at the end of the
pipeline to formulate an answer based on retrieved documents while
citing sources.

We also looked at one of the possible methods of evaluating search systems.
Mean average precision allows us to score search systems to be able to
compare across a test suite of queries and their known relevance to the test
queries. Evaluating RAG systems requires multiple axes, however, like
faithfulness, fluency, and others that can be evaluated by humans or by LLM-
as-a-judge.

In the next chapter, we will explore how language models can be made
multimodal and reason not just about text but images as well.

T Patrick Lewis et al. “Retrieval-augmented generation for knowledge-intensive NLP tasks.”
Advances in Neural Information Processing Systems 33 (2020): 9459-9474.

2 Nelson F. Liu, Tianyi Zhang, and Percy Liang. “Evaluating verifiability in generative search
engines.” arXiv preprint arXiv:2304.09848 (2023).

Chapter 9. Multimodal Large
Language Models

When you think about large language models (LLMs), multimodality might
not be the first thing that comes to mind. After all, they are language models!
But we can quickly see that models can be much more useful if they’re able
to handle types of data other than text. It’s very useful, for example, if a
language model is able to glance at a picture and answer questions about it.
A model that is able to handle text and images (each of which is called a
modality) 1s said to be multimodal, as we can see in Figure 9-1.

Input modality Output modality
Text | This is a cat }—‘
{ N CJ—>| It's pixelated!
Code [N Multimodal ;J

"I'.fa.-=-.:|:r'i|:Ii'|::;." " "cute

model

_ "status™: “accepted"”

Image

5.
Audio |||||I|||‘

Figure 9-1. Models that are able to deal with different types (or modalities) of data, such as
images, audio, video, or sensors, are said to be multimodal. It’s possible for a model to accept a
modality as input yet not be able to generate in that modality.

We have seen all manner of emerging behaviors rising from LLMs, from
generalization capabilities and reasoning to arithmetic and linguistics. As

models grow larger and smarter, so do their skill sets."
The ability to receive and reason with multimodal input might further

increase and help emerge capabilities that were previously locked. In
practice, language does not solely live in a vacuum. As an example, your

body language, facial expressions, intonation, etc. are all methods of
communication that enhance the spoken word.

The same thing applies to LLMs; if we can enable them to reason about
multimodal information, their capabilities might increase and we become
able to deploy them to solve new kinds of problems.

In this chapter, we will explore a number of different LLMs that have
multimodal capabilities and what that means for practical use cases. We will
start by exploring how images are converted to numerical representations
using an adaptation of the original Transformer technique. Then, we will
show how LLMs can be extended to include vision tasks using this
Transformer.

Transformers for Vision

Throughout the chapters of this book, we have seen the success of using
Transformer-based models for a variety of language modeling tasks, from
classification and clustering to search and generative modeling. So it might
not be surprising that researchers have been looking at a way to generalize
some of the Transformer’s success to the field of computer vision.

The method they came up with is called the Vision Transformer (ViT), which
has been shown to do tremendously well on image recognition tasks

compared to the previously default convolutional neural networks (CNNs).?
Like the original Transformer, ViT is used to transform unstructured data, an
image, into representations that can be used for a variety of tasks, like
classification, as illustrated in Figure 9-2.

ViT relies on an important component of the Transformer architecture,
namely the encoder. As we saw in Chapter 1, the encoder is responsible for
converting textual input into numerical representations before being passed to
the decoder. However, before the encoder can perform its duties, the textual
input needs to be tokenized first, as 1s illustrated in Figure 9-3.

Input Output

Features Prediction
12
You have been 18% BpElL
selected to receive Transformer p—p
1.4 million dollars! Notspam
Text
Vision = 8% |&l
Transformer
sormer " oog

Image
Figure 9-2. Both the original Transformer as well as the Vision Transformer take unstructured
data, convert it to numerical representations, and finally use that for tasks like classification.

Textual input What a horrible movie! J
I
Tokens ([CLS]][what]f a](hnrrible](mcwie](I]([SEP]]
|
ENCODER =

v vV Vv Vv Vv v v

Figure 9-3. Text is passed to one or multiple encoders by first tokenizing it using a tokenizer.

Since an image does not consist of words this tokenization process cannot be
used for visual data. Instead, the authors of ViT came up with a method for
tokenizing images into “words,” which allowed them to use the original
encoder structure.

Imagine that you have an image of a cat. This image is represented by a
number of pixels, let’s say 512 x 512 pixels. Each individual pixel does not

convey much information but when you combine patches of pixels, you
slowly start to see more information.

ViT uses a principle much like that. Instead of splitting up text into tokens, it
converts the original image into patches of images. In other words, it cuts the
image into a number of pieces horizontally and vertically as illustrated in
Figure 9-4.

Original image Patched image

E ﬁ Flattened input
kR — Rk JEF R
L]

Figure 9-4. The “tokenization” process for image input. It converts an image into patches of
subimages.

Just like we are converting text into tokens of text, we are converting an
image into patches of images. The flattened input of image patches can be
thought of as the tokens in a piece of text. However, unlike tokens, we cannot
just assign each patch with an ID since these patches will rarely be found in
other images, unlike the vocabulary of a text.

Instead, the patches are linearly embedded to create numerical
representations, namely embeddings. These can then be used as the input of a
Transformer model. That way, the patches of images are treated the same
way as tokens. The full process is illustrated in Figure 9-5.

For 1llustrative purposes, the images in the examples were patched into 3 % 3
patches but the original implementation used 16 % 16 patches. After all, the
paper is called “An Image is Worth 16x16 Words.”

What is so interesting about this approach is that the moment the embeddings
are passed to the encoder, they are treated as if they were textual tokens.
From that point forward, there is no difference in how a text or image trains.

Due to these similarities, the ViT is often used to make all kinds of language
models multimodal. One of the most straightforward ways to use it is during
the training of embedding models.

Original image Patched image

Pl
U U
LU

Flattened input | E@EEEEEE‘

il

Linear projection
R I I N N N N .

\,

Patch
embeddings

[CLASS]

[T T T T T T T 1
ENCODER

VYVYVYYVYVYVYY

Figure 9-5. The main algorithm behind ViT. After patching the images and linearly projecting
them, the patch embeddings are passed to the encoder and treated as if they were textual tokens.

Multimodal Embedding Models

In previous chapters, we used embedding models to capture the semantic
content of textual representations, such as papers and documents. We saw that
we could use these embeddings or numerical representations to find similar
documents, apply classification tasks, and even perform topic modeling.

As we have seen many times before, embeddings often are an important
driver behind LLM applications. They are an efficient method for capturing
large-scale information and searching for the needle in the haystack of
information.

That said, we have looked at text-only embedding models thus far, which
focus on generating embeddings for textual representations. Although
embedding models exist for solely embedding imagery, we will look at
embedding models that can capture both textual as well as visual
representations. We illustrate this in Figure 9-6.

Sentence
— \ Sentence
m—[Thisis a cat J embedding
Multimodal =
embedding
model 5

Image

embedding

Image

Figure 9-6. Multimodal embedding models can create embeddings for multiple modalities in the
same vector space.

An advantage is that this allows for comparing multimodal representations
since the resulting embeddings lie in the same vector space (Figure 9-7). For
instance, using such a multimodal embedding model, we can find images
based on input text. What images would we find if we search for images
similar to “pictures of a puppy”? Vice versa would also be possible. Which
documents are best related to this question?

Snowing

~=+A puppy

My cat is cute

O (O don'tlike cats

Figure 9-7. Despite having coming from different modalities, embeddings with similar meaning
will be close to each other in vector space.

There are a number of multimodal embedding models, but the most well-
known and currently most-used model is Contrastive Language-Image Pre-
training (CLIP).

CLIP: Connecting Text and Images

CLIP is an embedding model that can compute embeddings of both images
and texts. The resulting embeddings lie in the same vector space, which
means that the embeddings of images can be compared with the embeddings

of text.3 This comparison capability makes CLIP, and similar models, usable
for tasks such as:

Zero-shot classification

We can compare the embedding of an image with that of the
description of its possible classes to find which class is most

similar.

Clustering

Cluster both images and a collection of keywords to find
which keywords belong to which sets of images.

Search

Across billions of texts or images, we can quickly find what
relates to an input text or image.

Generation

Use multimodal embeddings to drive the generation of
images (e.g., stable diffusion®).

How Can CLIP Generate Multimodal Embeddings?

The procedure of CLIP is actually quite straightforward. Imagine that you
have a dataset with millions of images alongside captions as we illustrate in
Figure 9-8.

Image

ﬁ ixelated image “Apu layin ELDOICEN on the
Caption lE:fat:utqta-cat"g iﬁ tﬁgzﬁnﬁ“ ° D30 Wik s anditch
; in the background

Figure 9-8. The type of data that is needed to train a multimodal embedding model.

This dataset can be used to create two representations for each pair, the
image and its caption. To do so, CLIP uses a text encoder to embed text and
an image encoder to embed images. As is shown in Figure 9-9, the result is
an embedding for both the image and its corresponding caption.

Sentence
embedding

Sentence 12~
---—[Thisis a cat]— Text encoder

oEmbed input

£
Image encoder
v [

Image

embedding

Figure 9-9. In the first step of training CLIP, both images and text are embedded using an image
and text encoder, respectively.

The pair of embeddings that are generated are compared through cosine
similarity. As we saw in Chapter 4, cosine similarity is the cosine of the
angle between vectors, which is calculated through the dot product of the
embeddings and divided by the product of their lengths.

When we start training, the similarity between the image embedding and text
embedding will be low as they are not yet optimized to be within the same
vector space. During training, we optimize for the similarity between the
embeddings and want to maximize them for similar image/caption pairs and
minimize them for dissimilar image/caption pairs (Figure 9-10).

After calculating their similarity, the model 1s updated and the process starts
again with new batches of data and updated representations (Figure 9-11).
This method is called contrastive learning, and we will go in depth into its

inner workings in Chapter 10 where we will create our own embedding
model.

Sentence

embedding

SSIRERS = Prediction Label
....| Thisis a cat |— Textencoder [[| |—»
A
1 1
@) Similar || Similar
o Embed input Compare
embeddings
0 0
& v Dissimilar || Dissimilar
- Image encoder |y, T T |——p
(ViT)

Image

embedding

Figure 9-10. In the second step of training CLIP, the similarity between the sentence and image
embedding is calculated using cosine similarity.

Update model
Sentence o_p ---------------------------

embedding
Sentence Prediction Label

ees Text encoder I:]:]:}*—D

EEaEEE ...

1 1
Simifar Similar
o Embed input Compare .
embeddings '
1 o 0 |:
12 Dissimilar| | Dissimilar | :
. Image encoder Ly, T T]—» E
(ViT) :
i Image :
fessmmmoees embedding :
9 Update model

Figure 9-11. In the third step of training CLIP, the text and image encoders are updated to match
what the intended similarity should be. This updates the embeddings such that they are closer in
vector space if the inputs are similar.

Eventually, we expect the embedding of an image of a cat would be similar
to the embedding of the phrase “a picture of a cat.” As we will see in
Chapter 10, to make sure the representations are as accurate as possible,

negative examples of images and captions that are not related should also be
included in the training process. Modeling similarity is not only knowing
what makes things similar to one another, but also what makes them different
and dissimilar.

OpenCLIP

For our next example, we are going to be using models from the open source
variant of CLIP, namely OpenCLIP. Using OpenCLIP, or any CLIP model,
boils down to two things: processing the textual and image inputs before
passing them to the main model.

Before doing so, let’s take a look at a small example where we will be using
one of the images we have seen before, namely, an Al-generated image
(through stable diffusion) of a puppy playing in the snow, as illustrated in
Figure 9-12:

from import urlopen
from import Image

Load an AI-generated image of a puppy playing in the snow
puppy path = "https://raw.githubusercontent.com/HandsOnLLM/Hands-
On-Large-Language-Models/main/chapter09/images/puppy.png"

image = Image.open (urlopen (puppy path)) .convert ("RGB")

caption = "a puppy playing in the snow"

https://oreil.ly/op9BP

Figure 9-12. An Al-generated image of a puppy playing in the snow.

Since we have a caption for this image, we can use OpenCLIP to generate
embeddings for both.

To do so, we load in three models:
o A tokenizer for tokenizing the textual input
o A preprocessor to preprocess and resize the image

o The main model that converts the previous outputs to embeddings

from transformers import CLIPTokenizerFast, CLIPProcessor, CLIPModel

model id = "openai/clip-vit-base-patch32"

Load a tokenizer to preprocess the text
clip tokenizer = CLIPTokenizerFast.from pretrained(model id)

Load a processor to preprocess the images
clip processor = CLIPProcessor.from pretrained(model id)

Main model for generating text and image embeddings
model = CLIPModel.from pretrained(model id)

After having loaded in the models, preprocessing our input is
straightforward. Let’s start with the tokenizer and see what happens if we
preprocess our input:

Tokenize our input
inputs = clip tokenizer (caption, return tensors="pt")
inputs

This outputs a dictionary that contains the IDs of the input:

{'input ids': tensor([[49406, 320, 6829, 1629, 530, 518, 2583,
49407]]), 'attention mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1]])}

To see what those IDs represent, we can convert them to tokens using the
aptly named convert ids to tokens function:

Convert our input back to tokens
clip tokenizer.convert ids to tokens (inputs["input ids"][0])

This gives us the following output:

['<|startoftext|>"',
a</w>",
'puppy</w>",
'playing</w>"',
'in</w>"',
"the</w>"',
'snow</w>",
'<|endoftext|>"]

As we often have seen before, the text is split up into tokens. Additionally,
we now also see that the start and end of the text is indicated to separate it
from a potential image embedding. You might also notice that the [CLS]
token 1s missing. In CLIP, the [CLS] token is actually used to represent the
image embedding.

Now that we have preprocessed our caption, we can create the embedding:

Create a text embedding
text embedding = model.get text features(**inputs)
text embedding.shape

This results in an embedding that has 512 values for this single string;

torch.Size([1, 512])

Before we can create our image embedding, like the text embedding, we will
need to preprocess it as the model expects the input image to have certain
characteristics, like its size and shape.

To do so, we can use the processor that we created before:

Preprocess image
processed image = clip processor (

text=None, images=image, return tensors="pt"
) ["pixel values"]

processed image.shape

The original image was 512 x 512 pixels. Notice that the preprocessing of
this image reduced its size to 224 x 224 pixels as that is its expected size:

torch.Size([1, 3, 224, 224])

Let’s visualize the results of this preprocessing as shown in Figure 9-13:

import
import as

import as

Prepare image for visualization

img = processed image.squeeze (0)

img = img.permute (*torch.arange (img.ndim - 1, -1, -1))
img np.einsum ("ijk->3ik", img)

Visualize preprocessed image
plt.imshow (img)
plt.axis ("off")

Figure 9-13. The preprocessed input image by CLIP.

To convert this preprocessed image into embeddings, we can call the model
as we did before and explore what shape it returns:

Create the image embedding

image embedding = model.get image features (processed image)
image embedding.shape

This gives us the following shape:

torch.Size([1, 512])

Notice that the shape of the resulting image embedding is the same as that of
the text embedding. This is important as it allows us to compare their
embeddings and see if they are similar.

We can use these embeddings to calculate how similar they are. To do so, we
normalize the embeddings first before calculating the dot product to give us a
similarity score:

Normalize the embeddings
text embedding /= text embedding.norm(dim=-1, keepdim=True)
image embedding /= image embedding.norm(dim=-1, keepdim=True)

Calculate their similarity

text embedding = text embedding.detach () .cpu() .numpy ()
image embedding = image embedding.detach () .cpu() .numpy ()
score = np.dot (text embedding, image embedding.T)

score

This gives us the following score:

array ([[0.33149648]], dtype=float32)

We get a similarity score of 0.33, which is difficult to interpret considering
we don’t know what the model considers a low versus a high similarity
score. Instead, let’s extend the example with more images and captions as
illustrated in Figure 9-14.

A puppy playing in the snow

A pixelated image of a cute cat

A supercar on the road with
the sunset in the background

Figure 9-14. The similarity matrix between three images and three captions.

It seems that a score 0f 0.33 is indeed high considering the similarities with
other images are quite a bit lower.

USING SENTENCE-TRANSFORMERS TO LOAD CLIP

sentence-transformers implements a few CLIP-based models
that make 1t much easier to create embeddings. It only takes a few lines
of code:

from import SentenceTransformer, util

Load SBERT-compatible CLIP model
model = SentenceTransformer ("clip-ViT-B-32")

Encode the images
image embeddings = model.encode (images)

Encode the captions
text embeddings = model.encode (captions)

#Compute cosine similarities
sim matrix = util.cos sim(
image embeddings, text embeddings

)

Making Text Generation Models Multimodal

Traditionally, text generation models have been, as you might expect, models
that interpret textual representations. Models like Llama 2 and ChatGPT
excel at reasoning about textual information and responding with natural

language.

They are, however, limited to the modality they were trained in, namely text.
As we have seen before with multimodal embedding models, the addition of
vision can enhance the capabilities of a model.

In the case of text generation models, we would like it to reason about certain
input images. For example, we could give it an image of a pizza and ask it
what ingredients it contains. You could show it a picture of the Eiffel Tower

and ask when it was built or where it is located. This conversational ability
is further illustrated in Figure 9-15.

il ™

—~—

o

~

Write down what you see in this picture.]

A sports car driving on the road at sunset

[What would it take to drive such a car?]

A lot of money and time

Figure 9-15. An example of a multimodal text generation model (BLIP-2) that can reason about
input images.

e

@
@

To bridge the gap between these two domains, attempts have been made to
introduce a form of multimodality to existing models. One such method is
called BLIP-2: Bootstrapping Language-Image Pre-training for Unified
Vision-Language Understanding and Generation 2. BLIP-2 is an easy-to-
use and modular technique that allows for introducing vision capabilities to
existing language models.

BLIP-2: Bridging the Modality Gap

Creating a multimodal language model from scratch requires significant
computing power and data. We would have to use billions of images, text,
and image-text pairs to create such a model. As you can imagine, this is not
easily feasible!

Instead of building the architecture from scratch, BLIP-2 bridges the vision-
language gap by building a bridge, named the Querying Transformer (Q-
Former), that connects a pretrained image encoder and a pretrained LLM.°

By leveraging pretrained models, BLIP-2 only needs to train the bridge
without needing to train the image encoder and LLM from scratch. It makes
great use of the technology and models that are already out there! This bridge
is illustrated in Figure 9-16.

Pretrained Trainable Pretrained
Vision 0 Q-Former > Large language
Transformer Querying transformer model

k%ﬁl Li‘E?
Figure 9-16. The Querying Transformer is the bridge between vision (ViT) and text (LLM) that is
the only trainable component of the pipeline.

To connect the two pretrained models, the Q-Former mimics their
architectures. It has two modules that share their attention layers:

o An Image Transformer to interact with the frozen Vision
Transformer for feature extraction

e A Text Transformer that can interact with the LLM

The Q-Former is trained in two stages, one for each modality, as illustrated
in Figure 9-17.

In step 1, image-document pairs are used to train the Q-Former to represent
both images and text. These pairs are generally captions of images, as we
have seen before when training CLIP.

The images are fed to the frozen ViT to extract vision embeddings. These
embeddings are used as the input of Q-Former’s ViT. The captions are used
as the input of Q-Former’s Text Transformer.

Vision-and-language Vision-to-language

Representation learning Generative learning

: Pretrained Trainable ;o Pretrained ‘
L] ¥ : M
% | (& Q-Former &|: :|¥® | :
: Vision — =1 Large language :
. Transformer Vision Text model :
: Transformer || Transformer ;

Figure 9-17. In step 1, representation learning is applied to learn representations for vision and
language simultaneously. In step 2, these representations are converted to soft visual prompts to
feed the LLM.

With these inputs, the Q-Former is then trained on three tasks:

Image-text contrastive learning

This task attempts to align pairs of image and text
embeddings such that they maximize their mutual
information.

Image-text matching

A classification task to predict whether an image and text
pair is positive (matched) or negative (unmatched).

Image-grounded text generation

Trains the model to generate text based on information
extracted from the input image.

These three objectives are jointly optimized to improve the visual
representations that are extracted from the frozen ViT. In a way, we are trying
to inject textual information into the embeddings of the frozen ViT so that we
can use them in the LLM. This first step of BLIP-2 is illustrated in Figure 9-
18.

Q-Former

e S S S S
[

Image-text :L"alﬁ'tﬁﬁ Image-grounded

matching leamning text generation

Input image . | T 4
DE Pretrained :
: ¥ vison 2| :|® vision = O e = .
DEE_ Transformer [7| Transformer Transformer '
FiY) mY|F: '
— o
% L] "A pixelated .

: Learnable image of a :

. embeddings cute cat :

Figure 9-18. In step 1, the output of the frozen ViT is used together with its caption and trained
on three contrastive-like tasks to learn visual-text representations.

In step 2, the learnable embeddings derived from step 1 now contain visual
information in the same dimensional space as the corresponding textual
information. The learnable embeddings are then passed to the LLM. In a way,
these embeddings serve as soft visual prompts that condition the LLM on the
visual representations that were extracted by the Q-Former.

There is also a fully connected linear layer in between them to make sure that
the learnable embeddings have the same shape as the LLM expects. This
second step of converting vision to language is represented in Figure 9-19.

Trainable

Learnable embeddings

eeep | 0Q-Former

Pretrained

% &
Large language
model

!‘; ‘""Eg A7}
Figure 9-19. In step 2, the learned embeddings from the Q-Former are passed to the LLM through
a projection layer. The projected embeddings serve as a soft visual prompt.

Projected embeddings

When we put these steps together, they make it possible for the Q-Former to
learn visual and textual representations in the same dimensional space, which
can be used as a soft prompt to the LLM. As a result, the LLM will be given

information about the image in a similar manner to the context you would
provide an LLM when prompting. The full in-depth process is illustrated in
Figure 9-20.

Vision-and-language
Representation learning

: . Trainable '
Pretrained T :

* vision = }0 Q-Former E

Transformer Vision e Text & :

=

Vision-to-language
Generative learning

Pretrained

%?7 Transformer || Transformer
[¥

Large language
model

--

Figure 9-20. The full BLIP-2 procedure.

Since BLIP-2, many other visual LLMs have been released that have similar
processes, like LLaVA, a framework for making textual LLMs multimodal® or
Idefics 2, an efficient visual LLM based on the Mistral 7B LLM.” Both visual
LLMs, although having different architectures, connect pretrained CLIP-like
visual encoders with textual LLMs. The goal of these architectures is to
project visual features from the input images to language embeddings such
that they can be used as the input for an LLM. Similar to the Q-Former, they
attempt to bridge the gap between images and text.

Preprocessing Multimodal Inputs

Now that we know how BLIP-2 is created, there are a number of interesting
use cases for such a model, not limited to captioning images, answering
visual questions, and even performing prompting.

https://oreil.ly/_Gf9D
https://oreil.ly/xbIuQ
https://oreil.ly/6PQ8E

Before we go through some use cases, let’s first load the model and explore
how you can use it:

from transformers import AutoProcessor,
Blip2ForConditionalGeneration
import torch

Load processor and main model
blip processor = AutoProcessor.from pretrained("Salesforce/blip2-
opt-2.7b")
model = BlipZForConditionalGeneration.from pretrained/(
"Salesforce/blip2-opt-2.7b",
torch dtype=torch.floatlé6
)

Send the model to GPU to speed up inference

device = "cuda" if torch.cuda.is available() else "cpu"
model.to (device)

TIP

Usingmodel.vision model and model.language model, we can see which
ViT and generative model are used, respectively, in the BLIP-2 model we loaded.

We loaded two components that make up our full pipeline: a processor and a
model. The processor can be compared to the tokenizer of language models.
It converts unstructured input, such as images and text, to representations that
the model generally expects.

Preprocessing images

Let’s start by exploring what the processor does to images. We start by
loading the picture of a very wide image for illustration purposes:

Load image of a supercar

car path = "https://raw.githubusercontent.com/HandsOnLLM/Hands—
On-Large-Language-Models/main/chapter09/images/car.png"

image = Image.open (urlopen(car path)) .convert ("RGB")

image

The image has 520 x 492 pixels, which is generally an unusual format. So
let’s see what our processor does to it:

Preprocess the image

inputs = blip processor (image, return tensors="pt").to(device,
torch.floatlo)

inputs["pixel values"].shape

This gives us the following shape:

torch.Size ([1, 3, 224, 224])

The result is a 224 x 224-sized image. Quite a bit smaller than we initially
had! This also means that all the original different shapes of the image will

be processed into squares. So be careful inputting very wide or tall images
as they might get distorted.

Preprocessing text

Let’s continue this exploration of the processor with text instead. First, we
can access the tokenizer used to tokenize the input text:

blip processor.tokenizer

This gives us the following output:

GPT2TokenizerFast (name or path='Salesforce/blip2-opt-2.7b',
vocab size=50265,

model max length=1000000000000000019884624838656, is fast=True,
padding side='right', truncation side='right', special tokens=
{'bos_token': '</s>', 'eos token': '</s>', 'unk token': '</s>',
'pad token': '<pad>'}, clean up tokenization spaces=True),
added tokens decoder={

1: AddedToken ("<pad>", rstrip=False, lstrip=False,

single word=False, normalized=True, special=True),

2: AddedToken ("</s>", rstrip=False, lstrip=False,

single word=False, normalized=True, special=True),

}

The BLIP-2 model here uses a GPT2Tokenizer. As we explored in
Chapter 2, how tokenizers deal with input text can differ greatly.

To explore how GPT2Tokenizer works, we can try it out with a small
sentence. We start by converting the sentence to token IDs before converting
them back to tokens:

Preprocess the text

text = "Her vocalization was remarkably melodic"

token ids = blip processor (image, text=text, return tensors="pt")
token ids = token ids.to(device, torch.floatl6) ["input ids"][0]

Convert input ids back to tokens

tokens =

blip processor.tokenizer.convert ids to tokens (token ids)
tokens

This gives us the following tokens:

['</s>', 'Her', 'Gvocal', 'ization', 'Gwas', 'Gremarkably',
"Gmel', 'odic']

When we inspect the tokens, you might notice a strange symbol at the
beginning of some tokens, namely, the G symbol. This is actually supposed to
be a space. However, an internal function takes characters in certain code
points and moves them up by 256 to make them printable. As a result, the
space (code point 32) becomes G (code point 288).

We will convert them to underscores for illustrative purposes:

Replace the space token with an underscore

tokens = [token.replace("G", " ") for token in tokens]
tokens

This gives us a nicer output:

['</s>', 'Her', ' vocal', 'ization', ' was', ' remarkably',
'"'mel', 'odic']

The output shows that the underscore indicates the beginning of a word. That
way, words that are made up of multiple tokens can be recognized.

Use Case 1: Image Captioning

The most straightforward usage of a model like BLIP-2 is to create captions
of images that you have in your data. You might be a store that wants to create
descriptions of'its clothing or perhaps you are a photographer that does not
have the time to manually label the 1,000+ pictures of a wedding.

The process of captioning an image closely follows the processing. An image
is converted to pixel values that the model can read. These pixel values are
passed to BLIP-2 to be converted into soft visual prompts that the LLM can
use to decide on a proper caption.

Let’s take the image of a supercar and use the processor to derive pixels in
the expected shape:

Load an AI-generated image of a supercar
image = Image.open (urlopen(car path)) .convert ("RGB")

Convert an image into inputs and preprocess it

inputs = blip processor (image, return tensors="pt").to(device,
torch.floatlo)
image

The next step is converting the image into token IDs using the BLIP-2 model.
After doing so, we can convert the IDs into text (the generated caption):

Generate image ids to be passed to the decoder (LLM)
generated ids = model.generate (**inputs, max new tokens=20)

Generate text from the image ids
generated text = blip processor.batch decode (

generated ids, skip special tokens=True

)
generated text = generated text[0].strip()

generated text

generated text contains the caption:

an orange supercar driving on the road at sunset

This seems like a perfect description for this image!

Image captioning is a great way to get to learn this model before stepping
into more complex use cases. Try it out with a few images yourself and see
where it performs well and where it performs poorly. Domain-specific
images, like pictures of specific cartoon characters or imaginary creations,
may fail as the model was trained on largely public data.

Let’s end this use case with a fun example, namely an image from the
Rorschach test, which is illustrated in Figure 9-21. It is part of an old
psychological experiment that tests the individual’s perception of inkblots.®
What someone sees in such an inkblot supposedly tells you something about a
person’s personality characteristics. It is quite a subjective test but that just
makes 1t more fun!

Figure 9-21. An image from the Rorschach test. What do you see in it?

Let’s take the image illustrated in Figure 9-21 and use that as our input:

Load Rorschach image

url =
"https://upload.wikimedia.org/wikipedia/commons/7/70/Rorschach bl
ot 01.jpg"

image = Image.open (urlopen (url)) .convert ("RGB")

Generate caption
inputs = blip processor (image, return tensors="pt").to(device,
torch.floatl6)
generated ids = model.generate (**inputs, max new tokens=20)
generated text = blip processor.batch decode (

generated ids, skip special tokens=True

)
generated text = generated text[0].strip()

generated text

As before, when we inspect the generated text variable, we can take a
look at the caption:

a black and white ink drawing of a bat

I can definitely see how the model would caption this image using such a
description. Since this is a Rorschach test, what do you think it says about the
model?

Use Case 2: Multimodal Chat-Based Prompting

Although captioning is an important task, we can extend its use case even
further. In the previous example, we showed going from one modality, vision
(image), to another, text (caption).

Instead of following this linear structure, we can try to present both
modalities simultaneously by performing what is called visual question
answering. In this particular use case, we give the model an image along with
a question about that specific image for it to answer. The model needs to
process both the image as well as the question at once.

To demonstrate, let’s start with the picture of a car and ask BLIP-2 to
describe the image. To do so, we first need to preprocess the image as we
did a few times before:

Load an AI-generated image of a supercar
image = Image.open (urlopen(car path)) .convert ("RGB")

To perform our visual question answering we need to give BLIP-2 more than
just the image, namely the prompt. Without it, the model would generate a
caption as it did before. We will ask the model to describe the image we just
processed:

Visual question answering
prompt = "Question: Write down what you see in this picture.
Answer:"

Process both the image and the prompt
inputs = blip processor (image, text=prompt,
return tensors="pt").to(device, torch.floatlé6)

Generate text
generated ids = model.generate (**inputs, max new tokens=30)

generated text = blip processor.batch decode (

generated ids, skip special tokens=True

)
generated text = generated text[0].strip/()
generated text

This gives us the following output:

A sports car driving on the road at sunset

It correctly describes the image. However, this is a rather simple example
since our question 1s essentially asking the model to create a caption. Instead,
we can ask follow-up questions in a chat-based manner.

To do so, we can give the model our previous conversation, including its
answer to our question. We then ask it a follow-up question:

Chat-like prompting

prompt = "Question: Write down what you see in this picture.
Answer: A sports car driving on the road at sunset. Question:
What would it cost me to drive that car? Answer:"

Generate output
inputs = blip processor (image, text=prompt,
return tensors="pt").to(device, torch.floatlo6)
generated ids = model.generate (**inputs, max new tokens=30)
generated text = blip processor.batch decode (

generated ids, skip special tokens=True

)
generated text = generated text[0].strip()

generated text

This gives us the following answer:

$1,000,000

$1,000,000 is highly specific! This shows more chat-like behavior from
BLIP-2, which allows for some interesting conversations.

Finally, we can make this process a bit smoother by creating an interactive
chatbot using ipywidgets, an extension for Jupyter notebooks that allows
us to make interactive buttons, input text, etc:

from IPython.display import HTML, display
import ipywidgets as widgets

def text eventhandler (*args):
question = args[0]["new"]
if question:
args[0] ["owner"].value = ""

Create prompt
if not memory:

prompt = " Question: " + question + " Answer:"
else:

template = "Question: {} Answer: {}."

prompt = " ".join(

[

template. format (memory[i] [0], memory[i][1])

for i in range (len (memory))

]

) + " Question:

"

+ question + " Answer:"

Generate text
inputs = blip processor (image, text=prompt,
return tensors="pt")
inputs = inputs.to(device, torch.floatl6)
generated ids = model.generate (**inputs, max new tokens=100)
generated text = blip processor.batch decode (
generated ids,

skip special tokens=True

)
generated text = generated text[0].strip().split("Question")

Update memory
memory.append((question, generated text))

Assign to output

output.append display data (HTML ("USER: " + question))

output.append display data (HTML ("BLIP-2: " +
generated text))

output.append display data (HTML ("
"))

Prepare widgets
in text = widgets.Text()

in text.continuous update = False

in text.observe (text eventhandler, "value")
output = widgets.Output ()

memory = []

Display chat box
display(
widgets.VBox (
children=[output, in text],
layout=widgets.Layout (display="inline-flex",
flex flow="column-reverse'"),
)
)

USER: Write down what you see in this picture.
BLIP-2: A sports car driving on the road at sunset

USER: What would it cost me to drive that car?
BLIP-2: $1,000,000

USER: Why that much money?
BLIP-2: Because it's a sports car.

USER: Why are sports cars expensive?
BLIP-2: Because they're fast.

It seems that we can continue the conversation and ask a bunch of questions.

Using this chat-based approach, we essentially created a chatbot that can
reason about images!

Summary

In this chapter, we explored various methods for making LLMs multimodal
by bridging the gap between textual and visual representations. We started by
discussing Transformers for vision, which are models that convert images
into numerical representations. This was achieved through the use of image
encoders and patch embeddings, which allow the model to process images at
various scales.

We then explored the creation of embedding models that can convert both
images and text to numerical representations using CLIP. We saw how CLIP
uses contrastive learning to align image and text embeddings in a shared
space, allowing for tasks like zero-shot classification, clustering, and search.
The chapter also introduced OpenCLIP, an open source variant of CLIP that
1s easy to use for multimodal embedding tasks.

Finally, we explored how text generation models could be made multimodal
and dived into the BLIP-2 model. The core idea of these multimodal text
generation models involves projecting visual features from input images to
text embeddings that can be used by LLMs. We saw how this model could be
used for image captioning and multimodal chat-based prompting, where both
modalities are combined to generate responses. Overall, this chapter
highlighted the power of multimodality in LLMs and demonstrated its
applications in various areas such as image captioning, search, and chat-
based prompting.

In Part III of the book, we will cover training and fine-tuning techniques. In
Chapter 10, we will explore how to create and fine-tune a text embedding
model, which is a core technology that drives many language modeling
applications. This next chapter serves as an introduction into both training
and fine-tuning language models.

1 Jason Wei et al. “Emergent abilities of large language models.” arXiv preprint
arXiv:2206.07682 (2022).

2 Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image recognition
at scale.” arXiv preprint arXiv:2010.11929 (2020).

3 Alec Radford et al. “Learning transferable visual models from natural language supervision.”
International Conference on Machine Learning. PMLR, 2021.

4 Robin Rombach et al, “High-resolution image synthesis with latent diffusion models.”

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022.

S Junnan Li et al. “BLIP-2: Bootstrapping language-image pretraining with frozen image encoders
and large language models.” International Conference on Machine Learning. PMLR, 2023.

6 Haotian Liu et al. “Visual instruction tuning.” Advances in Neural Information Processing
Systems 36 (2024).

7 Hugo Laurengon et al. “What matters when building vision-language models?” arXiv preprint
arXiv:2405.02246 (2024).

8 Roy Schafer. Psychoanalytic Interpretation in Rorschach Testing: Theory and Application
(1954).

Part lll. Training and Fine-Tuning
Language Models

Chapter 10. Creating Text
Embedding Models

Text embedding models lie at the foundation of many powerful natural
language processing applications. They lay the groundwork for empowering
already impressive technologies such as text generation models. We have
already used embedding models throughout this book in a number of
applications, such as supervised classification, unsupervised classification,
semantic search, and even giving memory to text generation models like
ChatGPT.

It is nearly impossible to overstate the importance of embedding models in
the field as they are the driving power behind so many applications. As such,
in this chapter, we will discuss a variety of ways that we can create and fine-
tune an embedding model to increase its representative and semantic power.

Let’s start by discovering what embedding models are and how they
generally work.

Embedding Models

Embeddings and embedding models have already been discussed in quite a
number of chapters (Chapters 4, 5, and 8) thereby demonstrating their
usefulness. Before going into training such a model, let’s recap what we have
learned with embedding models.

Unstructured textual data by itself is often quite hard to process. They are not
values we can directly process, visualize, and create actionable results from.
We first have to convert this textual data to something that we can easily
process: numeric representations. This process is often referred to as
embedding the input to output usable vectors, namely embeddings, as shown
in Figure 10-1.

Textual input Embedding
Numerical representation

—— Embedding &
model

—>

Figure 10-1. We use an embedding model to convert textual input, such as documents, sentences,
and phrases, to numerical representations, called embeddings.

This process of embedding the input is typically performed by an LLM,
which we refer to as an embedding model. The main purpose of such a
model is to be as accurate as possible in representing the textual data as an
embedding.

However, what does it mean to be accurate in representation? Typically, we
want to capture the semantic nature—the meaning—of documents. If we can
capture the core of what the document communicates, we hope to have
captured what the document 1s about. In practice, this means that we expect
vectors of documents that are similar to one another to be similar, whereas
the embeddings of documents that each discuss something entirely different
should be dissimilar. We’ve seen this idea of semantic similarity several
times already in this book, and it 1s visualized in Figure 10-2. This figure is a
simplified example. While two-dimensional visualization helps illustrate the
proximity and similarity of embeddings, these embeddings typically reside in
high-dimensional spaces.

' The weak suction
|left dirt behind

[This vacuum cleans
l efficiently

o

This acne cream]
cleared my skin)

My order was late]

i

This horrible lotion

Extremely fast
——H aggravated my shipping
breakouts |

Figure 10-2. The idea of semantic similarity is that we expect textual data with similar meanings
to be closer to each other in n-dimensional space (two dimensions are illustrated here).

An embedding model, however, can be trained for a number of purposes. For
example, when we are building a sentiment classifier, we are more interested
in the sentiment of texts than their semantic similarity. As illustrated in
Figure 10-3, we can fine-tune the model such that documents are closer in n-
dimensional space based on their sentiment rather than their semantic nature.

Either way, an embedding model aims to learn what makes certain documents
similar to one another and we can guide this process. By presenting the
model with enough examples of semantically similar documents, we can
steer toward semantics whereas using examples of sentiment would steer it
in that direction.

| [|
(The suction left
This vacuum cleans] il

— efficiently J

This acne cream] [It aggravated my

cleared my skin) | breakouts

Extremely fast (
= | 5h|‘pp|ng ‘ J [My order was late]__
I I]

Figure 10-3. In addition to semantic similarity, an embedding model can be trained to focus on
sentiment similarity. In this figure, negative reviews (red) are close to one another and dissimilar
to positive reviews (green).

There are many ways in which we can train, fine-tune, and guide embedding
models, but one of the strongest and most widely used techniques is called
contrastive learning,

What Is Contrastive Learning?

One major technique for both training and fine-tuning text embedding models
is called contrastive learning. Contrastive learning is a technique that aims
to train an embedding model such that similar documents are closer in vector
space while dissimilar documents are further apart. If this sounds familiar,
it’s because it’s very similar to the word2vec method from Chapter 2. We
have seen this notion previously in Figures 10-2 and 10-3.

The underlying idea of contrastive learning is that the best way to learn and
model similarity/dissimilarity between documents is by feeding a model
examples of similar and dissimilar pairs. In order to accurately capture the
semantic nature of a document, it often needs to be contrasted with another
document for a model to learn what makes it different or similar. This

contrasting procedure is quite powerful and relates to the context in which
documents are written. This high-level procedure is demonstrated in
Figure 10-4.

Input
| |Z-
[Document A _ 0utput
’ Embedding ey arel
) model —> Similar/dissimilar
[Document B

Figure 10-4. Contrastive learning aims to teach an embedding model whether documents are
similar or dissimilar. It does so by presenting groups of documents to a model that are similar or
dissimilar to a certain degree.

Another way to look at contrastive learning is through the nature of
explanations. A nice example of this is an anecdotal story of a reporter
asking a robber “Why did you rob a bank?”” to which he answers, “Because

that is where the money is.”" Although a factually correct answer, the intent
of the question was not why he robs banks specifically but why he robs at all.
This is called contrastive explanation and refers to understanding a

particular case, “Why P?” in contrast to alternatives, “Why P and not Q?”? In
the example, the question could be interpreted in a number of ways and may
be best modeled by providing an alternative: “Why did you rob a bank (P)
instead of obeying the law (Q)?”

The importance of alternatives to the understanding of a question also applies
to how an embedding learns through contrastive learning. By showing a
model similar and dissimilar pairs of documents, it starts to learn what
makes something similar/dissimilar and more importantly, why.

For example, you could teach a model to understand what a dog is by letting
it find features such as “tail,” “nose,” “four legs,” etc. This learning process
can be quite difficult since features are often not well-defined and can be
interpreted in a number of ways. A being with a “tail,” “nose,” and “four
legs” can also be a cat. To help the model steer toward what we are
interested in, we essentially ask it, “Why is this a dog and not a cat?”” By
providing the contrast between two concepts, it starts to learn the features

that define the concept but also the features that are not related. We get more
information when we frame a question as a contrast. We further illustrate this
concept of contrastive explanation in Figure 10-5.

Why is thisa horse?
[fnur legs][tail][fur][long manes][gallops][ear length]

Why is this a horse and not a zebra?

5 0 (0 e) e

Figure 10-5. When we feed an embedding model different contrasts (degrees of similarity), it
starts to learn what makes things different from one another and thereby the distinctive
characteristics of concepts.

NOTE

One of the earliest and most popular examples of contrastive learning in NLP is actually
word2vec, as we discussed in Chapters 1 and 2. The model learns word representations by
training on individual words in a sentence. A word close to a target word in a sentence will
be constructed as a positive pair whereas randomly sampled words constitute dissimilar
pairs. In other words, positive examples of neighboring words are contrasted with
randomly selected words that are not neighbors. Although not widely known, it is one of
the first major breakthroughs in NLP that leverages contrastive learning with neural
networks.

There are many ways we can apply contrastive learning to create text
embedding models but the most well-known technique and framework is
sentence-transformers.

SBERT

Although there are many forms of contrastive learning, one framework that
has popularized the technique within the natural language processing
community is sentence-transformers.3 Its approach fixes a major
problem with the original BERT implementation for creating sentence

https://oreil.ly/MBgPL

embeddings, namely its computational overhead. Before sentence-
transformers, sentence embeddings often used an architectural structure
called cross-encoders with BERT.

A cross-encoder allows two sentences to be passed to the Transformer
network simultaneously to predict the extent to which the two sentences are
similar. It does so by adding a classification head to the original architecture
that can output a similarity score. However, the number of computations rises
quickly when you want to find the highest pair in a collection of 10,000
sentences. That would require n-(n—1)/2 = 49,995,000 inference
computations and therefore generates significant overhead. Moreover, a
cross-encoder generally does not generate embeddings, as shown in

Figure 10-6. Instead, it outputs a similarity score between the input
sentences.

A solution to this overhead is to generate embeddings from a BERT model by
averaging its output layer or using the [CLS] token. This, however, has

shown to be worse than simply averaging word vectors, like GloVe.*

Sentence A Sentence B

f My]f dog](is]f cute](-:SEPQf |]f have]f a]f dog]

Similarity

Figure 10-6. The architecture of a cross-encoder. Both sentences are concatenated, separated
with a <SEP> token, and fed to the model simultaneously.

Instead, the authors of sentence-transformers approached the
problem differently and searched for a method that is fast and creates

embeddings that can be compared semantically. The result is an elegant
alternative to the original cross-encoder architecture. Unlike a cross-
encoder, in sentence-transformers the classification head is
dropped, and instead mean pooling is used on the final output layer to
generate an embedding. This pooling layer averages the word embeddings
and gives back a fixed dimensional output vector. This ensures a fixed-size
embedding.

The training for sentence-transformers uses a Siamese architecture.
In this architecture, as visualized in Figure 10-7, we have two identical
BERT models that share the same weights and neural architecture. These
models are fed the sentences from which embeddings are generated through
the pooling of token embeddings. Then, models are optimized through the
similarity of the sentence embeddings. Since the weights are identical for
both BERT models, we can use a single model and feed it the sentences one
after the other.

Sentence A SentenceB
[My dogis cute] [| have a dog]

)| Jiedweights | pERT &

Token embeddings

[Poo:ling J [Poc;Iing]

u Sentence embeddings Vv

If'

(v, lu-v])]

Softmax

Figure 10-7. The architecture of the original sentence-transformers model, which
leverages a Siamese network, also called a bi-encoder.

The optimization process of these pairs of sentences is done through loss
functions, which can have a major impact on the model’s performance.
During training, the embeddings for each sentence are concatenated together

with the difference between the embeddings. Then, this resulting embedding
is optimized through a softmax classifier.

The resulting architecture is also referred to as a bi-encoder or SBERT for
sentence-BERT. Although a bi-encoder is quite fast and creates accurate
sentence representations, cross-encoders generally achieve better
performance than a bi-encoder but do not generate embeddings.

The bi-encoder, like a cross-encoder, leverages contrastive learning; by
optimizing the (dis)similarity between pairs of sentences, the model will
eventually learn the things that make the sentences what they are.

To perform contrastive learning, we need two things. First, we need data that
constitutes similar/dissimilar pairs. Second, we will need to define how the
model defines and optimizes similarity.

Creating an Embedding Model

There are many methods through which an embedding model can be created
but generally, we look toward contrastive learning, This 1s an important
aspect of many embedding models as the process allows it to efficiently
learn semantic representations.

However, this 1s not a free process. We will need to understand how to
generate contrastive examples, how to train the model, and how to properly
evaluate it.

Generating Contrastive Examples

When pretraining your embedding model, you will often see data being used
from natural language inference (NLI) datasets. NLI refers to the task of
investigating whether, for a given premise, it entails the hypothesis
(entailment), contradicts it (contradiction), or neither (neutral).

For example, when the premise 1s “He is in the cinema watching Coco” and
the hypothesis “He is watching Frozen at home,” then these statements are
contradictions. In contrast, when the premise is “He is in the cinema

watching Coco” and the hypothesis “In the movie theater he is watching the
Disney movie Coco,” then these statements are considered entailment. This
principle is illustrated in Figure 10-8.

Hypothesis

Premise In the movie theater, he is . Entailment
watching the Disney movie Coco Positive example

.

He isin the cinema
watching Coco

-~

-

He is watching Frozen ; Contradiction
at home Negative example

Figure 10-8. We can leverage the structure of NLI datasets to generate negative examples
(contradiction) and positive examples (entailments) for contrastive learning.

-

If you look closely at entailment and contradiction, then they describe the
extent to which two inputs are similar to one another. As such, we can use
NLI datasets to generate negative examples (contradictions) and positive
examples (entailments) for contrastive learning.

The data that we are going to be using throughout creating and fine-tuning
embedding models is derived from the General Language Understanding

Evaluation benchmark (GLUE). This GLUE benchmark consists of nine
language understanding tasks to evaluate and analyze model performance.

One of these tasks is the Multi-Genre Natural Language Inference (MNLI)
corpus, which is a collection 0f 392,702 sentence pairs annotated with
entailment (contradiction, neutral, entailment). We will be using a subset of
the data, 50,000 annotated sentence pairs, to create a minimal example that
does not need to be trained for hours on end. Do note, though, that the smaller
the dataset, the more unstable training or fine-tuning an embedding model is.
If possible, larger datasets are preferred assuming it is still quality data:

from import load dataset

Load MNLI dataset from GLUE
0 = entailment, 1 = neutral, 2 = contradiction
train dataset = load dataset(
"glue", "mnli", split="train"
) .select (range (50 000))
train dataset = train dataset.remove columns ("idx")

https://oreil.ly/43phw

Next, we take a look at an example:

dataset[Z]
{'premise': 'One of our number will carry out your instructions
minutely.',
'hypothesis': 'A member of my team will execute your orders
with immense precision.',
'label': 0}

This shows an example of an entailment between the premise and the
hypothesis as they are positively related and have near identical meanings.

Train Model

Now that we have our dataset with training examples, we will need to create
our embedding model. We typically choose an existing sentence-
transformers model and fine-tune that model, but in this example, we
are going to train an embedding from scratch.

This means that we will have to define two things. First, a pretrained
Transformer model that serves as embedding individual words. We will use
the BERT base model (uncased) as it is a great introduction model.
However, many others exist that also have been evaluated using
sentence-transformers. Most notably, microsoft/mpnet-
base often gives good results when used as a word embedding model.

from import SentenceTransformer

Use a base model
embedding model = SentenceTransformer ('bert-base-uncased')

NOTE

By default, all layers of an LLM in sentence-transformers are trainable.
Although it is possible to freeze certain layers, it is generally not advised since the
performance is often better when unfreezing all layers.

https://oreil.ly/VyyRz
https://oreil.ly/mw7ly

Next, we will need to define a loss function over which we will optimize the
model. As mentioned at the beginning of this section, one of the first
instances of sentence-transformers uses softmax loss. For
illustrative purposes, we are going to be using that for now, but we will go
into more performant losses later on:

from import losses

Define the loss function. In softmax loss, we will also need to
explicitly set the number of labels.
train loss = losses.SoftmaxLoss (

model=embedding model,

sentence embedding dimension=embedding model.get sentence embeddi
ng dimension(),
num labels=3

)

Before we train our model, we define an evaluator to evaluate the model’s
performance during training, which also determines the best model to save.

We can perform evaluation of the performance of our model using the
Semantic Textual Similarity Benchmark (STSB). It is a collection of human-
labeled sentence pairs, with similarity scores between 1 and 5.

We use this dataset to explore how well our model scores on this semantic
similarity task. Moreover, we process the STSB data to make sure all values
are between 0 and 1:

from import
EmbeddingSimilarityEvaluator

Create an embedding similarity evaluator for STSB
val sts = load dataset ("glue", "stsb", split="validation")
evaluator = EmbeddingSimilarityEvaluator (

sentencesl=val sts["sentencel"],

sentences2=val sts["sentence2"],

scores=[score/5 for score in val sts["label"]],
main similarity="cosine",

Now that we have our evaluator, we create
SentenceTransformerTrainingArguments, similar to training
with Hugging Face Transformers (as we will explore in the next chapter):

from import
SentenceTransformerTrainingArguments

Define the training arguments
args = SentenceTransformerTrainingArguments (
output dir="base embedding model",
num_train epochs=1,
per device train batch size=32,
per device eval batch size=32,
warmup steps=100,
fpl6=True,
eval steps=100,
logging steps=100,

Of note are the following arguments:

num train epochs
The number of training rounds. We keep this at 1 for faster
training but it is generally advised to increase this value.

per device train batch size
The number of samples to process simultaneously on each
device (e.g., GPU or CPU) during evaluation. Higher values
generally means faster training.

per device eval batch size

The number of samples to process simultaneously on each
device (e.g., GPU or CPU) during evaluation. Higher values
generally means faster evaluation.

warmup steps

The number of steps during which the learning rate will be
linearly increased from zero to the initial learning rate
defined for the training process. Note that we did not specify
a custom learning rate for this training process.

fplo
By enabling this parameter we allow for mixed precision
training, where computations are performed using 16-bit
floating-point numbers (FP16) instead of the default 32-bit
(FP32). This reduces memory usage and potentially increases
the training speed.

Now that we have defined our data, embedding model, loss, and evaluator,
we can start training our model. We can do that using
SentenceTransformerTrainer:

from import
SentenceTransformerTrainer

Train embedding model

trainer = SentenceTransformerTrainer (
model=embedding model,
args=args,
train dataset=train dataset,
loss=train loss,
evaluator=evaluator

)

trainer.train ()

After training our model, we can use the evaluator to get the performance on
this single task:

Evaluate our trained model
evaluator (embedding model)
{'pearson cosine': 0.5982288436666162,
'spearman cosine': 0.6026682018489217,

'pearson manhattan': 0.6100690915500567,
'spearman manhattan': 0.617732600131989,
'pearson euclidean': 0.6079280934202278,
'spearman euclidean': 0.6158926913905742,
'pearson _dot': 0.38364924527804595,
'spearman _dot': 0.3700849792699179¢,
'pearson max': 0.6100690915500567,
'spearman max': 0.617732600131989}

We get several different distance measures. The one we are interested in
mostis 'pearson cosine', whichis the cosine similarity between
centered vectors. It is a value between 0 and 1 where a higher value
indicates higher degrees of similarity. We get a value of 0.59, which we
consider a baseline throughout this chapter.

TIP

Larger batch sizes tend to work better with multiple negative rankings (MNR) loss as a
larger batch makes the task more difficult. The reason for this is that the model needs to
find the best matching sentence from a larger set of potential pairs of sentences. You can
adapt the code to try out different batch sizes and get a feeling of its effects.

In-Depth Evaluation

A good embedding model is more than just a good score on the STSB
benchmark! As we observed earlier, the GLUE benchmark has a number of
tasks for which we can evaluate our embedding model. However, there exist
many more benchmarks that allow for the evaluation of embedding models.
To unify this evaluation procedure, the Massive Text Embedding Benchmark
(MTEB) was developed.® The MTEB spans 8 embedding tasks that cover 58
datasets and 112 languages.

To publicly compare state-of-the-art embedding models, a leaderboard was
created with the scores of each embedding model across all tasks:

from import MTEB

Choose evaluation task

https://oreil.ly/D9Fvt

evaluation = MTEB (tasks=["Banking77Classification"])

Calculate results
results = evaluation.run (model)
{'Banking77Classification': {'mteb version': '1.1.2',
'dataset revision':
'0fd18e25p25c072e09e0d92ab615fda904d66300",
'mteb dataset name': 'Banking77Classification',
'"test': {'accuracy': 0.4926298701298701,
'£1': 0.49083335791288685,
'accuracy stderr': 0.010217785746224237,
'fl stderr': 0.010265814957074591,
'main score': 0.4926298701298701,
'evaluation time': 31.83}}}

This gives us several evaluation metrics for this specific task that we can use
to explore its performance.

The great thing about this evaluation benchmark is not only the diversity of
the tasks and languages but that even the evaluation time is saved. Although
many embedding models exist, we typically want those that are both accurate
and have low latency. The tasks for which embedding models are used, like
semantic search, often benefit from and require fast inference.

Since testing your model on the entire MTEB can take a couple of hours
depending on your GPU, we will use the STSB benchmark throughout this
chapter instead for illustration purposes.

TIP

Whenever you are done training and evaluating your model, it is important to restart the
notebook. This will clear your VRAM up for the next training examples throughout this
chapter. By restarting the notebook, we can be sure that all VRAM is cleared.

Loss Functions

We trained our model using softmax loss to illustrate how one of the first
sentence-transformers models was trained. However, not only is

there a large variety of loss functions to choose from, but softmax loss is
generally not advised as there are more performant losses.

Instead of going through every single loss function out there, there are two
loss functions that are typically used and seem to perform generally well,
namely:

e Cosine similarity

e Multiple negatives ranking (MNR) loss

NOTE

There are many more loss functions to choose from than just those discussed here. For
example, a loss like MarginMSE works great for training or fine-tuning a cross-encoder.
There are a number of interesting loss functions implemented in the sentence-
transformers framework.

Cosine similarity

The cosine similarity loss is an intuitive and easy-to-use loss that works
across many different use cases and datasets. It is typically used in semantic
textual similarity tasks. In these tasks, a similarity score is assigned to the
pairs of texts over which we optimize the model.

Instead of having strictly positive or negative pairs of sentences, we assume
pairs of sentences that are similar or dissimilar to a certain degree.
Typically, this value lies between 0 and 1 to indicate dissimilarity and
similarity, respectively (Figure 10-9).

https://oreil.ly/xuKSI
https://oreil.ly/RsQmw

Sentence;

(Similar)
Sentence,

(Dissimilar)
Sentence;

1S 11115 || x cos (0)
1S IS I

Figure 10-9. Cosine similarity loss aims to minimize the cosine distance between semantically
similar sentences and to maximize the distance between semantically dissimilar sentences.

Cosine similarity (S,,S,) =

Cosine similarity loss is straightforward—it calculates the cosine similarity
between the two embeddings of the two texts and compares that to the
labeled similarity score. The model will learn to recognize the degree of
similarity between sentences.

Cosine similarity loss intuitively works best using data where you have pairs
of sentences and labels that indicate their similarity between 0 and 1. To use
this loss with our NLI dataset, we need to convert the entailment (0), neutral
(1), and contradiction (2) labels to values between 0 and 1. The entailment
represents a high similarity between the sentences, so we give it a similarity
score of 1. In contrast, since both neutral and contradiction represent
dissimilarity, we give these labels a similarity score of 0:

from datasets import Dataset, load dataset

Load MNLI dataset from GLUE
0 = entailment, 1 = neutral, 2 = contradiction
train dataset = load dataset(
"glue", "mnli", split="train"
) .select (range (50 000))
train dataset = train dataset.remove columns ("idx")

(neutral/contradiction)=0 and (entailment)=1
mapping = {2: 0, 1: 0, 0:1}
train dataset = Dataset.from dict ({

"sentencel": train dataset["premise"],
"sentence2": train dataset["hypothesis"],
"label": [float (mapping[label]) for label 1in

train dataset(["label"]]
1)

As before, we create our evaluator:

from sentence transformers.evaluation import
EmbeddingSimilarityEvaluator

Create an embedding similarity evaluator for stsb
val sts = load dataset ("glue", "stsb", split="validation")
evaluator = EmbeddingSimilarityEvaluator (

sentencesl=val sts["sentencel"],

sentences2=val sts["sentence2"],

scores=[score/5 for score in val sts["label"]],

main similarity="cosine"

Then, we follow the same steps as before but select a different loss instead:

from sentence transformers import losses, SentenceTransformer
from sentence transformers.trainer import
SentenceTransformerTrainer

from sentence transformers.training args import
SentenceTransformerTrainingArguments

Define model
embedding model = SentenceTransformer ("bert-base-uncased")

Loss function

train loss = losses.CosineSimilarityLoss (model=embedding model)

Define the training arguments
args = SentenceTransformerTrainingArguments (
output dir="cosineloss embedding model",
num_train epochs=1,
per device train batch size=32,
per device eval batch size=32,
warmup_ steps=100,
fpl6=True,
eval steps=100,
logging steps=100,

Train model

trainer = SentenceTransformerTrainer (
model=embedding model,
args=args,
train dataset=train dataset,
loss=train loss,
evaluator=evaluator

)

trainer.train ()

Evaluating the model after training gives us the following score:

Evaluate our trained model
evaluator (embedding model)

{'pearson cosine': 0.7222322163831805,
'spearman cosine': 0.7250508271229599,
'pearson manhattan': 0.7338163436711481,
'spearman manhattan': 0.7323479193408869,
'pearson _euclidean': 0.7332716434966307,
'spearman_euclidean': 0.7316999722750905,
'pearson dot': 0.660366792336156,
'spearman dot': 0.6624167554844425,
'pearson max': 0.7338163436711481,
'spearman max': 0.7323479193408869}

A Pearson cosine score of 0.72 is a big improvement compared to the
softmax loss example, which scored 0.59. This demonstrates the impact the
loss function can have on performance.

Make sure to restart your notebook so we can explore a more common and
performant loss, namely multiple negatives ranking loss.

Multiple negatives ranking loss

Multiple negatives ranking (MNR) loss,® often referred to as InfoNCE’ or

NTXentLoss,2 is a loss that uses either positive pairs of sentences or triplets
that contain a pair of positive sentences and an additional unrelated sentence.
This unrelated sentence is called a negative and represents the dissimilarity
between the positive sentences.

For example, you might have pairs of question/answer, image/image caption,
paper title/paper abstract, etc. The great thing about these pairs is that we can
be confident they are hard positive pairs. In MNR loss (Figure 10-10),
negative pairs are constructed by mixing a positive pair with another positive
pair. In the example of a paper title and abstract, you would generate a
negative pair by combining the title of a paper with a completely different
abstract. These negatives are called in-batch negatives and can also be used
to generate the triplets.

Unrelated
Question answer

5@
Q@

w Unrelated
. answer

Related
answer

B
Figure 10-10. Multiple negatives ranking loss aims to minimize the distance between related pairs
of text, such as questions and answers, and maximize the distance between unrelated pairs, such
as questions and unrelated answers.

After having generated these positive and negative pairs, we calculate their
embeddings and apply cosine similarity. These similarity scores are then
used to answer the question, are these pairs negative or positive? In other
words, it 1s treated as a classification task and we can use cross-entropy loss
to optimize the model.

To make these triplets we start with an anchor sentence (i.e., labeled as the
“premise”), which is used to compare other sentences. Then, using the MNLI
dataset, we only select sentence pairs that are positive (i.e., labeled as
“entailment’). To add negative sentences, we randomly sample sentences as
the “hypothesis.”

import random
from tgdm import tgdm

from datasets import Dataset, load dataset

Load MNLI dataset from GLUE

mnli = load dataset("glue", "mnli",
split="train") .select (range (50 000))

mnli = mnli.remove columns ("idx")

mnli = mnli.filter (lambda x: True if x["label"] == 0 else False)

Prepare data and add a soft negative

train dataset = {"anchor": [], "positive": [], "negative": []}
soft negatives = mnli["hypothesis"]
random.shuffle (soft negatives)

for row, soft negative in tgdm(zip (mnli, soft negatives)):

train dataset["anchor"] .append(row["premise"])

train dataset["positive"].append (row["hypothesis"])

train dataset["negative"].append(soft negative)
train dataset = Dataset.from dict (train dataset)

Since we only selected sentences labeled with “entailment,” the number of
rows reduced quite a a bit from 50,000 to 16,875 rows.

Let’s define the evaluator:

from sentence_ transformers.evaluation import
EmbeddingSimilarityEvaluator
Create an embedding similarity evaluator for stsb
val sts = load dataset("glue", "stsb", split="validation™)
evaluator = EmbeddingSimilarityEvaluator (

sentencesl=val sts["sentencel"],

sentences2=val sts["sentence2"],

scores=[score/5 for score in val sts["label"]],

main similarity="cosine"

We then train as before but with MNR loss instead:

from sentence transformers import losses, SentenceTransformer
from sentence_transformers.trainer import
SentenceTransformerTrainer

from sentence transformers.training args import
SentenceTransformerTrainingArguments

Define model
embedding model = SentenceTransformer ('bert-base-uncased')

Loss function
train loss =
losses.MultipleNegativesRankingLoss (model=embedding model)

Define the training arguments
args = SentenceTransformerTrainingArguments (
output dir="mnrloss embedding model",
num train epochs=1,
per device train batch size=32,
per device eval batch size=32,
warmup_ steps=100,
fpl6=True,
eval steps=100,
logging steps=100,

Train model

trainer = SentenceTransformerTrainer (
model=embedding model,
args=args,
train dataset=train dataset,
loss=train loss,
evaluator=evaluator

)

trainer.train ()

Let’s see how this dataset and loss function compare to our previous
examples:

Evaluate our trained model
evaluator (embedding model)

{'pearson cosine': 0.8093892326162132,
'spearman cosine': 0.8121064796503025,
'pearson manhattan': 0.8215001523827565,
'spearman manhattan': 0.8172161486524246,
'pearson euclidean': 0.8210391407846718,
'spearman euclidean': 0.8166537141010816¢6,
'pearson _dot': 0.7473360302629125,
'spearman _dot': 0.7345184137194012,
'pearson max': 0.8215001523827565,
'spearman max': 0.8172161486524246}

Compared to our previously trained model with softmax loss (0.72), our
model with MNR loss (0.80) seems to be much more accurate!

TIP

Larger batch sizes tend to be better with MNR loss as a larger batch makes the task more
difficult. The reason for this is that the model needs to find the best matching sentence
from a larger set of potential pairs of sentences. You can adapt the code to try out
different batch sizes and get a feeling of the effects.

There is a downside to how we used this loss function. Since negatives are
sampled from other question/answer pairs, these in-batch or “easy” negatives
that we used could potentially be completely unrelated to the question. As a
result, the embedding model’s task of then finding the right answer to a
question becomes quite easy. Instead, we would like to have negatives that
are very related to the question but not the right answer. These negatives are
called hard negatives. Since this would make the task more difficult for the
embedding model as it has to learn more nuanced representations, the
embedding model’s performance generally improves quite a bit.

A good example of a hard negative is the following, Let’s assume we have
the following question: “How many people live in Amsterdam?”” A related
answer to this question would be: “Almost a million people live in
Amsterdam.” To generate a good hard negative, we ideally want the answer
to contain something about Amsterdam and the number of people living in
this city. For example: “More than a million people live in Utrecht, which is
more than Amsterdam.” This answer relates to the question but is not the
actual answer, so this would be a good hard negative. Figure 10-11
illustrates the differences between easy and hard negatives.

Question

How many people live
in Amsterdam?

|
Answer

Almost a million people
live in Amsterdam

\ o

v v v

Easy negative Semi-hard negative Hard negative
e The capital of the A million people live in
H"Eng?gr"":ﬁg'gﬁs'” Netherlands Utrecht, which is more
is Amsterdam than in Amsterdam

Figure 10-11. An easy negative is typically unrelated to both the question and answer. A semi-
hard negative has some similarities to the topic of the question and answer but is somewhat
unrelated. A hard negative is very similar to the question but is generally the wrong answer.

Gathering negatives can roughly be divided into the following three
processes:

Easy negatives

Through randomly sampling documents as we did before.

Semi-hard negatives

Using a pretrained embedding model, we can apply cosine
similarity on all sentence embeddings to find those that are
highly related. Generally, this does not lead to hard negatives
since this method merely finds similar sentences, not
question/answer pairs.

Hard negatives

These often need to be either manually labeled (for instance,
by generating semi-hard negatives) or you can use a

generative model to either judge or generate sentence pairs.

Make sure to restart your notebook so we can explore the different methods
of fine-tuning embedding models.

Fine-Tuning an Embedding Model

In the previous section, we went through the basics of training an embedding
model from scratch and saw how we could leverage loss functions to further
optimize its performance. This approach, although quite powerful, requires
creating an embedding model from scratch. This process can be quite costly
and time-consuming,

Instead, the sentence-transformers framework allows nearly all
embedding models to be used as a base for fine-tuning. We can choose an
embedding model that was already trained on a large amount of data and
fine-tune 1t for our specific data or purpose.

There are several ways to fine-tune your model, depending on the data
availability and domain. We will go through two such methods and
demonstrate the strength of leveraging pretrained embedding models.

Supervised

The most straightforward way to fine-tune an embedding model is to repeat
the process of training our model as we did before but replace the 'bert -
base-uncased' witha pretrained sentence-transformers
model. There are many to choose from but generally, a11-MiniLM-L6-
v2 performs well across many use cases and due to its small size is quite
fast.

We use the same data as we used to train our model in the MNR loss example
but instead use a pretrained embedding model to fine-tune. As always, let’s
start by loading the data and creating the evaluator:

https://oreil.ly/_paYA
https://oreil.ly/ZWGDm

from datasets import load dataset
from sentence transformers.evaluation import
EmbeddingSimilarityEvaluator

Load MNLI dataset from GLUE
0 = entailment, 1 = neutral, 2 = contradiction
train dataset = load dataset(
"glue", "mnli", split="train"
) .select (range (50 000))
train dataset = train dataset.remove columns ("idx")

Create an embedding similarity evaluator for stsb
val sts = load dataset ("glue", "stsb", split="validation")
evaluator = EmbeddingSimilarityEvaluator (

sentencesl=val sts["sentencel"],

sentences2=val sts["sentence2"],

scores=[score/5 for score in val sts["label"]],

main similarity="cosine"

The training steps are similar to our previous examples but instead of using
'bert-base-uncased', we can use a pretrained embedding model
instead:

from sentence transformers import losses, SentenceTransformer
from sentence transformers.trainer import
SentenceTransformerTrainer

from sentence transformers.training args import
SentenceTransformerTrainingArguments

Define model
embedding model = SentenceTransformer ('sentence-transformers/all-
MiniLM-L6-v2")

Loss function
train loss =
losses.MultipleNegativesRankingLoss (model=embedding model)

Define the training arguments

args = SentenceTransformerTrainingArguments (
output dir="finetuned embedding model",
num train epochs=I1,
per device train batch size=32,
per device eval batch size=32,
warmup_ steps=100,

fpl6=True,

eval steps=100,

logging steps=100,
)

Train model

trainer = SentenceTransformerTrainer (
model=embedding model,
args=args,
train dataset=train dataset,
loss=train loss,
evaluator=evaluator

)

trainer.train ()

Evaluating this model gives us the following score:

Evaluate our trained model
evaluator (embedding model)

{ 'pearson cosine': 0.8509553350510896,
'spearman cosine': 0.8484676559567688,
'pearson manhattan': 0.8503896832470704,
'spearman manhattan': 0.8475760325664419,
'pearson euclidean': 0.8513115442079158,
'spearman_euclidean': 0.8484676559567688,
'pearson dot': 0.8489553386816947,
'spearman dot': 0.8484676559567688,
'pearson max': 0.8513115442079158,
'spearman max': 0.8484676559567688}

Although a score of 0.85 is the highest we have seen thus far, the pretrained
model that we used for fine-tuning was already trained on the full MNLI
dataset, whereas we only used 50,000 examples. It might seem redundant but

this example demonstrates how to fine-tune a pretrained embedding model on
your own data.

TIP

Instead of using a pretrained BERT model like 'bert-base-uncased' or a possible
out-of-domain model like 'all-mpnet-base-v2"',you can also perform masked
language modeling on the pretrained BERT model to first adapt it to your domain. Then,
you can use this fine-tuned BERT model as the base for training your embedding model.
This is a form of domain adaptation. In the next chapter, we will apply masked language
modeling on a pretrained model.

Note that the main difficulty of training or fine-tuning your model is finding
the right data. With these models, we not only want to have very large
datasets, but the data in itself needs to be of high quality. Developing positive
pairs 1is generally straightforward but adding hard negative pairs significantly
increases the difficulty of creating quality data.

As always, restart your notebook to free up VRAM for the following
examples.

Augmented SBERT

A disadvantage of training or fine-tuning these embedding models is that they
often require substantial training data. Many of these models are trained with
more than a billion sentence pairs. Extracting such a high number of sentence
pairs for your use case is generally not possible as in many cases, there are
only a couple of thousand labeled data points available.

Fortunately, there is a way to augment your data such that an embedding
model can be fine-tuned when there is only a little labeled data available.

This procedure is referred to as Augmented SBERT.®

In this procedure, we aim to augment the small amount of labeled data such
that they can be used for regular training. It makes use of the slow and more
accurate cross-encoder architecture (BERT) to augment and label a larger set
of input pairs. These newly labeled pairs are then used for fine-tuning a bi-
encoder (SBERT).

As shown in Figure 10-12, Augmented SBERT involves the following steps:

1. Fine-tune a cross-encoder (BERT) using a small, annotated dataset
(gold dataset).

2. Create new sentence pairs.

3. Label new sentence pairs with the fine-tuned cross-encoder (silver
dataset).

4. Train a bi-encoder (SBERT) on the extended dataset (gold + silver
dataset).

Here, a gold dataset is a small but fully annotated dataset that holds the
ground truth. A silver dataset is also fully annotated but is not necessarily the
ground truth as it was generated through predictions of the cross-encoder.

Unlabeled dataset
Gold dataset - J Silver dataset
Ground-truth Machine-annotated
. p \
Cross- & e —— :
[Bi-encoder
Traif encoder Infer o s e s | 317
L r

Tm.inT

Figure 10-12. Augmented SBERT works through training a cross-encoder on a small gold
dataset, then using that to label an unlabeled dataset to generate a larger silver dataset. Finally,
both the gold and silver datasets are used to train the bi-encoder.

Before we get into the preceding steps, let’s first prepare the data. Instead of
our original 50,000 documents, we take a subset of 10,000 documents to
simulate a setting where we have limited annotated data. As we did in our
example with cosine similarity loss, give entailment a score of 1 whereas
neutral and contradiction get a score of 0:

import pandas as pd

from tgdm import tgdm

from datasets import load dataset, Dataset

from sentence_transforﬁ;rs import InputExample

from sentence transformers.datasets import NoDuplicatesDatalLoader

Prepare a small set of 10000 documents for the cross-encoder

dataset = load dataset ("glue", "mnli",
split="train") .select (range (10 000))
mapping = {2: 0, 1: 0, 0:1}

Data loader
gold examples = [

InputExample (texts=[row["premise"], row["hypothesis"]],
label=mapping[row["label"]])

for row in tgdm(dataset)
1

gold dataloader = NoDuplicatesDatalLoader (gold examples,
batch size=32)

Pandas DataFrame for easier data handling
gold = pd.DataFrame (
{

"sentencel": dataset["premise"],
"sentence2": dataset["hypothesis"],

"label": [mapping[label] for label in dataset["label"]]
}

This 1s the gold dataset since it is labeled and represents our ground truth.

Using this gold dataset, we train our cross-encoder (step 1):

from sentence transformers.cross encoder import CrossEncoder

Train a cross—-encoder on the gold dataset
cross_encoder = CrossEncoder ("bert-base-uncased", num labels=2)
cross_encoder.fit(

train dataloader=gold dataloader,

epochs=1,

show progress bar=True,

warmup_ steps=100,

use amp=False

After training our cross-encoder, we use the remaining 400,000 sentence
pairs (from our original dataset of 50,000 sentence pairs) as our silver
dataset (step 2):

Prepare the silver dataset by predicting labels with the cross-
encoder

silver = load dataset (
"glue", "mnli", split="train"
) .select (range (10 000, 50 000))
pairs = list(zip(silver["premise"], silver["hypothesis"]))

TIP

If you do not have any additional unlabeled sentence pairs, you can randomly sample them
from your original gold dataset. To illustrate, you can create a new sentence pair by taking
the premise from one row and the hypothesis from another. This allows you to easily
generate 10 times as many sentence pairs that can be labeled with the cross-encoder.

This strategy, however, likely generates significantly more dissimilar than similar pairs.
Instead, we can use a pretrained embedding model to embed all candidate sentence pairs
and retrieve the top-k sentences for each input sentence using semantic search. This rough
reranking process allows us to focus on sentence pairs that are likely to be more similar.
Although the sentences are still chosen based on an approximation since the pretrained
embedding model was not trained on our data, it is much better than random sampling.

Note that we assume that these sentence pairs are unlabeled in this example.

We will use our fine-tuned cross-encoder to label these sentence pairs (step
3):

import as

Label the sentence pairs using our fine-tuned cross-encoder
output = cross_encoder.predict (

pairs, apply softmax=True,
show progress bar=True

)

silver = pd.DataFrame (

{

"sentencel": silver["premise"],
"sentence2": silver["hypothesis"],
"label": np.argmax (output, axis=1)

Now that we have a silver and gold dataset, we simply combine them and
train our embedding model as we did before:

Combine gold + silver

data = pd.concat ([gold, silver], ignore index=True, axis=0)
data = data.drop duplicates(subset=["sentencel", "sentence2"],
keep="first")

train dataset = Dataset.from pandas(data, preserve index=False)

As always, we need to define our evaluator:

from sentence transformers.evaluation import
EmbeddingSimilarityEvaluator

Create an embedding similarity evaluator for stsb
val sts = load dataset ("glue", "stsb", split="validation")
evaluator = EmbeddingSimilarityEvaluator (

sentencesl=val sts["sentencel"],

sentences2=val sts["sentence2"],

scores=[score/5 for score in val sts["label"]],

main similarity="cosine"

We train the model the same as before except now we use the augmented
dataset:

from sentence transformers import losses, SentenceTransformer
from sentence transformers.trainer import
SentenceTransformerTrainer

from sentence_ transformers.training args import
SentenceTransformerTrainingArguments

Define model
embedding model = SentenceTransformer ("bert-base-uncased")

Loss function
train loss = losses.CosineSimilarityLoss (model=embedding model)

Define the training arguments
args = SentenceTransformerTrainingArguments (
output dir="augmented embedding model",
num_train epochs=1,
per device train batch size=32,
per device eval batch size=32,
warmup_ steps=100,
fpl6=True,
eval steps=100,

logging steps=100,
)

Train model

trainer = SentenceTransformerTrainer (
model=embedding model,
args=args,
train dataset=train dataset,
loss=train loss,
evaluator=evaluator

)

trainer.train ()

Finally, we evaluate the model:

evaluator (embedding model)

{'pearson cosine': 0.7101597020018693,
'spearman _cosine': 0.7210536464320728,
'pearson manhattan': 0.7296749443525249,
'spearman manhattan': 0.7284184255293913,
'pearson euclidean': 0.7293097297208753,
'spearman_euclidean': 0.7282830906742256,
'pearson dot': 0.6746605824703588,
'spearman dot': 0.6754486790570754,
'pearson max': 0.7296749443525249,
'spearman max': 0.7284184255293913}

The original cosine similarity loss example had a score of 0.72 with the full
dataset. Using only 20% of that data, we managed to get a score of 0.71!

This method allows us to increase the size of datasets that you already have
available without the need to manually label hundreds of thousands of
sentence pairs. You can test the quality of your silver data by also training
your embedding model only on the gold dataset. The difference in
performance indicates how much your silver dataset potentially adds to the
quality of the model.

You can restart your notebook a final time for the last example, namely
unsupervised learning.

Unsupervised Learning

To create an embedding model, we typically need labeled data. However,
not all real-world datasets come with a nice set of labels that we can use. We
instead look for techniques to train the model without any predetermined
labels—unsupervised learning. Many approaches exist, like Simple

Contrastive Learning of Sentence Embeddings (SimCSE),'? Contrastive
Tension (CT)," Transformer-based Sequential Denoising Auto-Encoder
(TSDAE),'? and Generative Pseudo-Labeling (GPL)."3

In this section, we will focus on TSDAE, as it has shown great performance
on unsupervised tasks as well as domain adaptation.

Transformer-Based Sequential Denoising Auto-
Encoder

TSDAE is a very elegant approach to creating an embedding model with
unsupervised learning. The method assumes that we have no labeled data at
all and does not require us to artificially create labels.

The underlying idea of TSDAE is that we add noise to the input sentence by
removing a certain percentage of words from it. This “damaged” sentence is
put through an encoder, with a pooling layer on top of it, to map it to a
sentence embedding. From this sentence embedding, a decoder tries to
reconstruct the original sentence from the “damaged” sentence but without the
artificial noise. The main concept here is that the more accurate the sentence
embedding is, the more accurate the reconstructed sentence will be.

This method is very similar to masked language modeling, where we try to
reconstruct and learn certain masked words. Here, instead of reconstructing
masked words, we try to reconstruct the entire sentence.

After training, we can use the encoder to generate embeddings from text since
the decoder is only used for judging whether the embeddings can accurately
reconstruct the original sentence (Figure 10-13).

https://oreil.ly/4GCYn
https://oreil.ly/5na_6
https://oreil.ly/_r6KI
https://oreil.ly/soIV_

Text with noise

[..... capital of e, is Amsterdam]
Deleted Deleted
|
Encoder £

e.g., ‘bert-base-cased’

[Poolling]

Sentence embedding

Decoder .

e.g., 'bert-base-cased’

!

Text without noise
[The capital of the Netherlands is Amsterdam]
Reconstruct Reconstruct

Figure 10-13. TSDAE randomly removes words from an input sentence that is passed through an
encoder to generate a sentence embedding. From this sentence embedding, the original sentence
is reconstructed.

Since we only need a bunch of sentences without any labels, training this
model is straightforward. We start by downloading an external tokenizer,
which is used for the denoising procedure:

Download additional tokenizer
import
nltk.download ("punkt")

Then, we create flat sentences from our data and remove any labels that we
have to mimic an unsupervised setting:

from import tgdm
from import Dataset, load dataset
from import

DenoisingAutoEncoderDataset

Create a flat 1list of sentences

mnli = load dataset("glue", "mnli",
split="train") .select (range (25 000))
flat sentences = mnli["premise"] + mnli["hypothesis"]

Add noise to our input data
damaged data =
DenoisingAutoEncoderDataset (1list (set (flat sentences)))

Create dataset
train dataset = {"damaged sentence": [], "original sentence": []}
for data in tgdm(damaged data):

train dataset["damaged sentence"].append(data.texts[0])

train dataset["original sentence"].append(data.texts[1])
train dataset = Dataset.from dict (train dataset)

This creates a dataset of 50,000 sentences. When we inspect the data, notice
that the first sentence is the damaged sentence and the second sentence the
original:

train dataset[0]
{ 'damaged sentence': 'Grim jaws are.',
'original sentence': 'Grim faces and hardened jaws are not
people-friendly.'}

The first sentence shows the “noisy” data whereas the second shows the
original input sentence. After creating our data, we define our evaluator as
before:

from import
EmbeddingSimilarityEvaluator

Create an embedding similarity evaluator for stsb
val sts = load dataset("glue", "stsb", split="validation")
evaluator = EmbeddingSimilarityEvaluator (

sentencesl=val sts["sentencel"],

sentences2=val sts["sentenceZ"],

scores=[score/5 for score in val sts["label"]],
main similarity="cosine"

Next, we run the training as before but with the [CLS] token as the pooling
strategy instead of the mean pooling of the token embeddings. In the TSDAE
paper, this was shown to be more effective since mean pooling loses the
position information, which is not the case when using the [CLS] token:

from import models, SentenceTransformer

Create your embedding model

word embedding model = models.Transformer ("bert-base-uncased")
pooling model =

models.Pooling (word embedding model.get word embedding dimension (
), "cls")

embedding model = SentenceTransformer (modules=

[word embedding model, pooling modell])

Using our sentence pairs, we will need a loss function that attempts to
reconstruct the original sentence using the noise sentence, namely
DenoisingAutoEncoderLoss. By doing so, it will learn how to
accurately represent the data. It is similar to masking but without knowing
where the actual masks are.

Moreover, we tie the parameters of both models. Instead of having separate
weights for the encoder’s embedding layer and the decoder’s output layer,

they share the same weights. This means that any updates to the weights in
one layer will be reflected in the other layer as well:

from sentence transformers import losses

Use the denoising auto-encoder 1oss
train loss = losses.DenoisingAutoEncoderLoss (

embedding model, tie encoder decoder=True

)

train loss.decoder = train loss.decoder.to("cuda")

Finally, training our model works the same as we have seen several times
before but we lower the batch size as memory increases with this loss
function:

from sentence transformers.trainer import
SentenceTransformerTrainer

from sentence_ transformers.training args import
SentenceTransformerTrainingArguments

Define the training arguments
args = SentenceTransformerTrainingArguments (
output dir="tsdae embedding model",
num train epochs=1,
per device train batch size=16,
per device eval batch size=16,
warmup_ steps=100,
fpl6=True,
eval steps=100,
logging steps=100,

Train model

trainer = SentenceTransformerTrainer (
model=embedding model,
args=args,
train dataset=train dataset,
loss=train loss,
evaluator=evaluator

)

trainer.train ()

After training, we evaluate our model to explore how well such an
unsupervised technique performs:

Evaluate our trained model
evaluator (embedding model)

{ 'pearson cosine': 0.6991809700971775,
'spearman cosine': 0.713693213167873,
'pearson manhattan': 0.7152343356643568,
'spearman manhattan': 0.7201441944880915,
'pearson euclidean': 0.7151142243297436,
'spearman_euclidean': 0.7202291660769805,
'pearson dot': 0.5198066451871277,
'spearman dot': 0.510402551522504¢6,
'pearson max': 0.7152343356643568,
'spearman max': 0.7202291660769805}

After fitting our model, we got a score of 0.70, which is quite impressive
considering we did all this training with unlabeled data.

Using TSDAE for Domain Adaptation

When you have very little or no labeled data available, you typically use
unsupervised learning to create your text embedding model. However,
unsupervised techniques are generally outperformed by supervised
techniques and have difficulty learning domain-specific concepts.

This is where domain adaptation comes in. Its goal 1s to update existing
embedding models to a specific textual domain that contains different
subjects from the source domain. Figure 10-14 demonstrates how domains
can differ in content. The target domain, or out-domain, generally contains
words and subjects that were not found in the source domain or in-domain.

Documents about:

Out-domain
"l\.\
ydi \\
)% \
(Pixar | v
Studio Ghibli '
l . I P Qu:-:-en tThe Who]
EQL_]) X lDreamWnrksJ [AUDC]
]) —— l Java J '
Python ’_I.II{_\
— 1 Scala Rust } L_J '
—LI_I || Belgluml | Italy |

In-domain

Figure 10-14. In domain adaptation, the aim is to create and generalize an embedding model
from one domain to another.

One method for domain adaptation is called adaptive pretraining. You start
by pretraining your domain-specific corpus using an unsupervised technique,
such as the previously discussed TSDAE or masked language modeling.
Then, as illustrated in Figure 10-15, you fine-tune that model using a training
dataset that can be either outside or in your target domain. Although data
from the target domain is preferred, out-domain data also works since we
started with unsupervised training on the target domain.

Unsuperwsec Supervised
MLM TSDAE —> SBERT

[Target) [Non-target |
| domain | . domain |

Adaptive pre-training
Figure 10-15. Domain adaptation can be performed with adaptive pretraining and adaptive fine-
tuning.

Using everything you have learned in this chapter, you should be able to
reproduce this pipeline! First, you can start with TSDAE to train an
embedding model on your target domain and then fine-tune it using either
general supervised training or Augmented SBERT.

Summary

In this chapter, we looked at creating and fine-tuning embedding models
through various tasks. We discussed the concept of embeddings and their role
in representing textual data in a numerical format. We then explored the
foundational technique of many embedding models, namely contrastive
learning, which learns primarily from (dis)similar pairs of documents.

Using a popular embedding framework, sentence-transformers, we
then created embedding models using a pretrained BERT model while
exploring different loss functions, such as cosine similarity loss and MNR
loss. We discussed how the collection of (dis)similar pairs or triples of
documents is vital to the performance of the resulting model.

In the sections that followed, we explored techniques for fine-tuning
embedding models. Both supervised and unsupervised techniques were

discussed such as Augmented SBERT and TSDAE for domain adaptation.
Compared to creating an embedding model, fine-tuning generally needs less
data and is a great way to adapt existing embedding models to your domain.

In the next chapter, methods for fine-tuning representations for classification
will be discussed. Both BERT models and embedding models will make an
appearance as well as a wide range of fine-tuning techniques.

T Alan Garfinkel. Forms of Explanation: Rethinking the Questions in Social Theory. Yale
University Press (1982).

2" Tim Miller. “Contrastive explanation: A structural-model approach.” The Knowledge
Engineering Review 36 (2021): e14.

3 Nils Reimers and Iryna Gurevych. “Sentence-BERT: Sentence embeddings using Siamese
BERT-networks.” arXiv preprint arXiv:1908.10084 (2019).

4 effrey Pennington, Richard Socher, and Christopher D. Manning. “GloVe: Global vectors for
word representation.” Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2014.

S Niklas Muennighoff et al. “MTEB: Massive Text Embedding Benchmark.” arXiv preprint
arXiv:2210.07316 (2022).

6 Matthew Henderson et al. “Efficient natural language response suggestion for smart reply.”
arXiv preprint arXiv:1705.00652 (2017).

7" Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with contrastive
predictive coding.” arXiv preprint arXiv:1807.03748 (2018).

8 Ting Chen et al. “A simple framework for contrastive learning of visual representations.”
International Conference on Machine Learning. PMLR, 2020.

9 Nandan Thakur et al “Augmented SBERT: Data augmentation method for improving bi-
encoders for pairwise sentence scoring tasks.” arXiv preprint arXiv:2010.08240 (2020).

10 Tianyu Gao, Xingcheng Yao, and Dangi Chen. “SimCSE: Simple contrastive learning of sentence
embeddings.” arXiv preprint arXiv:2104.08821 (2021).

M Fredrik Carlsson et al. “Semantic re-tuning with Contrastive Tension.” Infernational
Conference on Learning Representations, 2021. 2021.

12 Kexin Wang, Nils Reimers, and Iryna Gurevych. “TSDAE: Using Transformer-based Sequential
Denoising Auto-Encoder for unsupervised sentence embedding learning.” arXiv preprint

arXiv:2104.06979 (2021).

13 Kexin Wang et al. “GPL: Generative Pseudo Labeling for unsupervised domain adaptation of
dense retrieval.” arXiv preprint arXiv:2112.07577 (2021).

Chapter 11. Fine-Tuning
Representation Models for
Classification

In Chapter 4, we used pretrained models to classify our text. We kept the
pretrained models as they were without any modifications to them. This might
make you wonder, what happens if we were to fine-tune them?

If we have sufficient data, fine-tuning tends to lead to some of the best-
performing models possible. In this chapter, we will go through several
methods and applications for fine-tuning BERT models. “Supervised
Classification” demonstrates the general process of fine-tuning a classification
model. Then, in “Few-Shot Classification”, we look at SetFit, which is a
method for efficiently fine-tuning a high-performing model using a small
number of training examples. In “Continued Pretraining with Masked Language
Modeling”, we will explore how to continue training a pretrained model.
Lastly, classification on a token level is explored in “Named-Entity
Recognition”.

We will focus on nongenerative tasks, as generative models will be covered in
Chapter 12.

Supervised Classification

In Chapter 4, we explored supervised classification tasks by leveraging
pretrained representation models that were either trained to predict sentiment
(task-specific model) or to generate embeddings (embedding model), as
shown in Figure 11-1.

setimetrterseriaieiaens . Output
1 2=

eee—| Task-specificmodel [p| 1
' Perform classification ; Positive

[‘ =]
eee—i| Embedding model |;—) 7
] Create embeddings : ..

v ' Trainabl
Nontrainable ainable

“Frozen"

l.‘j

Figure 11-1. In Chapter 4, we used pretrained models to perform classification without updating
their weight. These models were kept “‘frozen.”

Both models were kept frozen (nontrainable) to showcase the potential of
leveraging pretrained models for classification tasks. The embedding model
uses a separate trainable classification head (classifier) to predict the
sentiment of movie reviews.

In this section, we will take a similar approach but allow both the model and
the classification head to be updated during training. As shown in Figure 11-2,
instead of using an embedding model, we will fine-tune a pretrained BERT
model to create a task-specific model similar to the one we used in Chapter 2.
Compared to the embedding model approach, we will fine-tune both the
representation model and the classification head as a single architecture.

“Frozen" architecture Trainable architecture

___. Only fine-tune classificationhead | Fine-tuned as a single architecture
Classiﬁcatiun§ ' Classification :
: head :: head 5
HE = : :
.| Embedding I BERT

: model L

: Nontrainable Trainable

Figure 11-2. Compared to the “frozen” architecture, we instead train both the pretrained BERT
model and the classification head. A backward pass will start at the classification head and go
through BERT.

To do so, instead of freezing the model, we allow it to be trainable and update
its parameters during training. As illustrated in Figure 11-3, we will use a
pretrained BERT model and add a neural network as a classification head,
both of which will be fine-tuned for classification.

nput [Whatahorriblemovie! |
| | | | | |
Tokens [[CLS]]f what][a][hurrible][muvie][!]f [SEP]
I [| | I | | --
L2=

Pretrained BERT

v v Y v v v ¥

NN NN NNy

v vV v Vv Vv Vv v

lassificati
¢ asf;'e;ﬁ on II Feedforward neural network

Trainable

O

T T I T T T T

b —

= 4

Positive % | Negative

Figure 11-3. The architecture of a task-specific model. It contains a pretrained representation
model (e.g., BERT) with an additional classification head for the specific task.

In practice, this means that the pretrained BERT model and the classification
head are updated jointly. Instead of independent processes, they learn from
one another and allow for more accurate representations.

Fine-Tuning a Pretrained BERT Model

We will be using the same dataset we used in Chapter 4 to fine-tune our
model, namely the Rotten Tomatoes dataset, which contains 5,331 positive and
5,331 negative movie reviews from Rotten Tomatoes:

from import load dataset

Prepare data and splits
tomatoes = load dataset ("rotten tomatoes")
train data, test data = tomatoes["train"], tomatoes["test"]

The first step in our classification task is to select the underlying model we
want to use. We use "bert-base-cased", which was pretrained on the

English Wikipedia as well as a large dataset consisting of unpublished books."

We define the number of labels that we want to predict beforehand. This is
necessary to create the feedforward neural network that is applied on top of
our pretrained model:

from import AutoTokenizer,
AutoModelForSequenceClassification

Load model and tokenizer

model id = "bert-base-cased"

model = AutoModelForSequenceClassification.from pretrained(
model id, num labels=2

)

tokenizer = AutoTokenizer.from pretrained(model id)
Next, we will tokenize our data:

from import DataCollatorWithPadding

Pad to the longest sequence in the batch
data collator = DataCollatorWithPadding(tokenizer=tokenizer)

def preprocess function (examples) :
"""Tokenize input data'"""

return tokenizer (examples|["text"], truncation=True)

Tokenize train/test data
tokenized train = train data.map (preprocess_ function, batched=True)
tokenized test = test data.map(preprocess function, batched=True)

Before creating the Trainer, we will want to prepare a special
DataCollator. A DataCollator is a class that helps us build batches
of data but also allows us to apply data augmentation.

During this process of tokenization, and as shown in Chapter 9, we will add
padding to the input text to create equally sized representations. We use
DataCollatorWithPadding for that.

Of course, an example would not be complete without defining some metrics:

import as
from import load metric

def compute metrics(eval pred):
"""Calculate F1 score"""
logits, labels = eval pred
predictions = np.argmax(logits, axis=-1)

load fl = load metric("f1")
fl1 = load fl.compute (predictions=predictions,
references=1labels) ["f1"]

return {"fl1": f£1}

With compute metrics we can define any number of metrics that we are
interested in and that can be printed out or logged during training. This is
especially helpful during training as it allows for detecting overfitting
behavior.

Next, we instantiate our Trainer:

from import TrainingArguments, Trainer

Training arguments for parameter tuning

training args = TrainingArguments (
"model",
learning rate=2Ze-5,
per device train batch size=16,
per device eval batch size=16,
num train epochs=1,
weight decay=0.01,
save strategy="epoch",
report to="none"

Trainer which executes the training process
trainer = Trainer (

model=model,

args=training args,

train dataset=tokenized train,

eval dataset=tokenized test,

tokenizer=tokenizer,

data collator=data collator,

compute metrics=compute metrics,

The TrainingArguments class defines hyperparameters we want to tune,
such as the learning rate and how many epochs (rounds) we want to train. The
Trainer is used to execute the training process.

Finally, we can train our model and evaluate it:

trainer.evaluate ()

{'eval loss': 0.3663691282272339,
'eval f1': 0.8492366412213741,
'eval runtime': 4.5792,

'eval samples per second': 232.791,
'eval steps per second': 14.631,
'epoch': 1.0}

We get an F1 score of 0.85, which is quite a bit higher than the task-specific
model we used in Chapter 4, which resulted in an F1 score of 0.80. It shows
that fine-tuning a model yourself can be more advantageous than using a
pretrained model. It only costs us a couple of minutes to train.

Freezing Layers

To further showcase the importance of training the entire network, the next
example will demonstrate how you can use Hugging Face Transformers to
freeze certain layers of your network.

We will freeze the main BERT model and allow only updates to pass through
the classification head. This will be a great comparison as we will keep
everything the same, except for freezing specific layers.

To start, let’s reinitialize our model so we can start from scratch:

Load model and tokenizer

model = AutoModelForSequenceClassification.from pretrained(
model id, num labels=2

)

tokenizer = AutoTokenizer.from pretrained(model id)

Our pretrained BERT model contains a lot of layers that we can potentially
freeze. Inspecting these layers gives insight into the structure of the network
and what we might want to freeze:

Print layer names

for name, param in model.named parameters():
print (name)

bert.embeddings.word embeddings.weight
bert.embeddings.position embeddings.weight
bert.embeddings.token type embeddings.weight
bert.embeddings.LayerNorm.weight
bert.embeddings.LayerNorm.bias
bert.encoder.layer.0.attention.self.query.weight
bert.encoder.layer.0.attention.self.query.bias

bert.encoder.layer.ll.output.LayerNorm.weight
bert.encoder.layer.ll.output.LayerNorm.bias
bert.pooler.dense.weight
bert.pooler.dense.bias

classifier.weight

classifier.bias

There are 12 (0—11) encoder blocks consisting of attention heads, dense
networks, and layer normalization. We further illustrate this architecture in

Figure 11-4 to demonstrate everything that could be potentially frozen. On top
of that, we have our classification head.

| | | | | | |
| | | | | | |
0 ENCODER -
| 1 | | | | |
1 ENCODER e
: I
1l ENCODER o

. 1 1] |
v VvV Y Y Y v v

[Feedforward neural network]

v

Positive Negative

Figure 11-4. The basic architecture of BERT with the additional classification head.

We could choose to only freeze certain layers to speed up computing but still
allow the main model to learn from the classification task. Generally, we want
frozen layers to be followed by trainable layers.

We are going to freeze everything except for the classification head as we did
in Chapter 2:
for name, param in model.named parameters():

Trainable classification head
if name.startswith("classifier"):
param.requires grad = True

Freeze everything else

else:

param.requires grad = False

As shown in Figure 11-5, we have frozen everything except for the
feedforward neural network, which is our classification head.

L=
0 | | | ENU?DER | : | Nontrainable
1 ENCODER = %‘fﬁ_
11 ENCODER &
HENEEEpEEEpEEEpEEn
v v v v v v v
[Feedforward neural network] : @ Trainable
+ --d
Positive | 25% Negative

Figure 11-5. We fully freeze all encoder blocks and embedding layers such that the BERT model
does not learn new representations during fine-tuning.

Now that we have successfully frozen everything but the classification head,
we can move on to train our model:

from transformers import TrainingArguments, Trainer

Trainer which executes the training process
trainer = Trainer (

model=model,

args=training args,

train dataset=tokenized train,

eval dataset=tokenized test,

tokenizer=tokenizer,

data collator=data collator,

compute metrics=compute metrics,

)

trainer.train ()

You might notice that training has become much faster. That is because we are
only training the classification head, which provides us with a significant
speedup compared to fine-tuning the entire model:

trainer.evaluate ()

{'eval loss': 0.6821751594543457,
'eval fl1': 0.6331058020477816,
'eval runtime': 4.0175,

'eval samples per second': 265.337,
'eval steps per second': 16.677,
'epoch': 1.0}

When we evaluate the model, we only get an F1 score of 0.63, which is quite
a bit lower compared to our original 0.85 score. Instead of freezing nearly all
layers, let’s freeze everything up until encoder block 10 as illustrated in
Figure 11-6, and see how it affects performance. A major benefit is that this

reduces computation but still allows updates to flow through part of the
pretrained model:

0 ENCODER | | | Nontrainable

I HFmH

9 ENCODER e

bssssssssssssesssassesseesesd
=
a
=
[=1]
=
m

10 ENCODER =

|
1 ENCODER e

[Feedforward neural network

R

v

Positive | 25%

Figure 11-6. We freeze the first 10 encoder blocks of our BERT model. Everything else is trainable
and will be fine-tuned.

Negative

Load model

model id = "bert-base-cased"

model = AutoModelForSequenceClassification.from pretrained(
model id, num labels=2

)

tokenizer = AutoTokenizer.from pretrained(model id)

Encoder block 11 starts at index 165 and
we freeze everything before that block

for index, (name, param) in enumerate (model.named parameters()) :
if index < 165:

param.requires grad = False

Trainer which executes the training process
trainer = Trainer (
model=model,
args=training args,
train dataset=tokenized train,
eval dataset=tokenized test,
tokenizer=tokenizer,

data collator=data collator,
compute metrics=compute metrics,

)

trainer.train ()

After training, we evaluate the results:

trainer.evaluate ()

{'eval loss': 0.40812647342681885,
'eval f1': 0.8,
'eval runtime': 3.7125,
'eval samples per second': 287.137,
'eval steps per second': 18.047,
'epoch': 1.0}

We got an F1 score of 0.8, which is much higher than our previous score of
0.63 when freezing all layers. It demonstrates that although we generally want
to train as many layers as possible, you can get away with training less if you
do not have the necessary computing power.

To further illustrate this effect, we tested the effect of iteratively freezing
encoder blocks and fine-tuning them as we did thus far. As shown in
Figure 11-7, training only the first five encoder blocks (red vertical line) is
enough to almost reach the performance of training all encoder blocks.

Effect of frozen encoder blocks on training performance
0.86 :

084
0.82 //
0.80

Fl-score 078 /

e —

‘Perfﬂrmance stabilizing

0.76

0.74 /
0.72 {/
0.70

U§

MNone O-1 02 03 04 05 06 07 08 09 0-10 all
Trainable encoder blocks

Figure 11-7. The effect of freezing certain encoder blocks on the performance of the model.
Training more blocks leads to improved performance but stabilizes early on.

NOTE

When you are training for multiple epochs, the difference (in training time and resources)
between freezing and not freezing often becomes larger. It is therefore advised to play
around with a balance that works for you.

Few-Shot Classification

Few-shot classification is a technique within supervised classification where
you have a classifier learn target labels based on only a few labeled
examples. This technique is great when you have a classification task but do
not have many labeled data points readily available. In other words, this
method allows you to label a few high-quality data points per class on which
to train the model. This idea of using a few labeled data points for training
your model is shown in Figure 11-8.

- . 0 Some flaws but still a 1

Whata horrible movie... negative great experience positive
: . 0 : 1

Very disappointed R Best movie ever! eiile

1]
Few |abeled data pnints¢

Never want to see this 9
movie again! .

Figure 11-8. In few-shot classification, we only use a few labeled data points to learn from.

SetFit: Efficient Fine-Tuning with Few Training
Examples

To perform few-shot text classification, we use an efficient framework called

SetFit.? It is built on top of the architecture of sentence-transformers
to generate high-quality textual representations that are updated during
training. Only a few labeled examples are needed for this framework to be
competitive with fine-tuning a BERT-like model on a large, labeled dataset as
we explored in the previous example.

The underlying algorithm of SetFit consists of three steps:

1. Sampling training data
Based on in-class and out-class selection of labeled data it
generates positive (similar) and negative (dissimilar) pairs of
sentences

2. Fine-tuning embeddings
Fine-tuning a pretrained embedding model based on the
previously generated training data

3. Training a classifier

Create a classification head on top of the embedding model
and train it using the previously generated training data

https://oreil.ly/w8eTO
https://oreil.ly/lWXtr

Before fine-tuning an embedding model, we need to generate training data.
The model assumes the training data to be samples of positive (similar) and
negative (dissimilar) pairs of sentences. However, when we are dealing with
a classification task, our input data is generally not labeled as such.

Say, for example, we have the training dataset in Figure 11-9 that classifies
text into two categories: text about programming languages, and text about
pets.

Text Class

| write my code in Python | Programminglanguages

| should practice SQL Programming languages
My dog is a labrador Pets
| have a Siamese cat Pets

Figure 11-9. Data in two classes: text about programming languages and text about pets.

In step 1, SetFit handles this problem by generating the necessary data based
on in-class and out-class selection as we illustrate in Figure 11-10. For
example, when we have 16 sentences about sports, we can create 16 * (16 —
1)/ 2 = 120 pairs that we label as positive pairs. We can use this process to
generate negative pairs by collecting pairs from different classes.

Text1 Text 2 Pair type
| write my code in Python | should practice SQL Positive
My dog is a labrador | have a Siamese cat Positive
| write my code in Python My dog is a labrador Negative
| have a Siamese cat I should practice SQL Negative

Figure 11-10. Step 1: sampling training data. We assume sentences within a class are similar and
create positive pairs while sentences in different classes become negative pairs.

In step 2, we can use the generated sentence pairs to fine-tune the embedding
model. This leverages a method called contrastive learning to fine-tune a
pretrained BERT model. As we reviewed in Chapter 10, contrastive learning
allows accurate sentence embeddings to be learned from pairs of similar
(positive) and dissimilar (negative) sentences.

Since we generated these pairs in the previous step, we can use them to fine-
tune a SentenceTransformers model. Although we have discussed
contrastive learning before, we again illustrate the method in Figure 11-11 as a
refresher.

Positive and negative

| sentence pairs |
| write code] [My dogisa
in Python J l Labrador
A A .I';'xampfe: negative
|2~ sentence pair

I _ My
write Token embeddings dog
Python Labrador
u Sentence embeddings v

v
[(u, v,|u-v|)]

Softmax

Figure 11-11. Step 2: Fine-tuning a SentenceTransformers model. Using contrastive
learning, embeddings are learned from positive and negative sentence pairs.

The goal of fine-tuning this embedding model is that it can create embeddings
that are tuned to the classification task. The relevance of the classes, and their
relative meaning, are distilled into the embeddings through fine-tuning the
embedding model.

In step 3, we generate embeddings for all sentences and use those as the input
of a classifier. We can use the fine-tuned SentenceTransformers model
to convert our sentences into embeddings that we can use as features. The
classifier learns from our fine-tuned embeddings to accurately predict unseen
sentences. This last step is illustrated in Figure 11-12.

[Iwrltemycode] [Ishouldpractlce][My dogis a]

in Python SQL Labrador
: 2
Fine-tuned
SentenceTransformers
| write my code | should practice My dogis a
in Python SQL Labrador
| | |
Classifier Any classification

For example using scikit-learn or Pytorch model canbe used

v v v

Code Pets Code Pets Code Pets

Figure 11-12. Step 3: Training a classifier. The classifier can be any scikit-learn model or a
classification head.

When we put all the steps together, we get an efficient and elegant pipeline for
performing classification when you only have a few labels per class. It

cleverly makes use of the idea that we have labeled data, although not in the
way that we would like it. The three steps together are illustrated in Figure 11-
13 to give a single overview of the entire procedure.

First, sentence pairs are generated based on in-class and out-class selection.
Second, the sentence pairs are used to fine-tune a pretrained
SentenceTransformer model. Third, the sentences are embedded with
the fine-tuned model on which a classifier is trained to predict the classes.

1 [2) ©

Generate positive and Fine-tune pretrained Embed sentences and
negative sentence pairs SentenceTransformer train classifier
« | writemy codein SoftMax N
Python f 4
= | should practice SOL I 1 Classifi
L . |||I||||||I||| [‘“‘:E')
r-I1.|~.rn't~a-rn1.r+:¢:ud¢=.-in || . :
Python. 1 1 > Fine-tuned K&
L-M}.rduglsa Labrador , BERT [~ BERT = SentenceTransformers
g p— — | write my code
il Pythan] [...a Labrador in Python

Figure 11-13. The three main steps of SetFit.

Fine-Tuning for Few-Shot Classification

We previously trained on a dataset containing roughly 8,500 movie reviews.
However, since this is a few-shot setting, we will only sample 16 examples
per class. With two classes, we will only have 32 documents to train on
compared to the 8,500 movie reviews we used before!

from import sample dataset
We simulate a few-shot setting by sampling 16 examples per class

sampled train data = sample dataset (tomatoes["train"],
num samples=16)

After sampling the data, we choose a pretrained SentenceTransformer
model to fine-tune. The official documentation contains an overview of

https://oreil.ly/g-4SN

pretrained SentenceTransformer models from which we are going to
be using "sentence-transformers/all-mpnet-base-v2". Itis
one of the best-performing models on the MTEB leaderboard, which shows

the performance of embedding models across a variety of tasks:

from import SetFitModel

Load a pretrained SentenceTransformer model
model = SetFitModel.from pretrained("sentence-transformers/all-
mpnet-base-v2")

After loading in the pretrained SentenceTransformer model, we can
start defining our SetFitTrainer. By default, a logistic regression model
1s chosen as the classifier to train.

Similar to what we did with Hugging Face Transformers, we can use the
trainer to define and play around with relevant parameters. For example, we
set the num epochs to 3 so that contrastive learning will be performed for
three epochs:

from import TrainingArguments as SetFitTrainingArguments
from import Trainer as SetFitTrainer

Define training arguments
args = SetFitTrainingArguments (

num epochs=3, # The number of epochs to use for contrastive
learning

num iterations=20 # The number of text pairs to generate

)

args.eval strategy = args.evaluation strategy

Create trailner

trainer = SetFitTrainer (
model=model,
args=args,
train dataset=sampled train data,
eval dataset=test data,
metric="f1"

We only need to call train to start the training loop. When we do, we should
get the following output:

https://oreil.ly/g-4SN
https://oreil.ly/3DWQW

Training loop
trainer.train ()
Fk s Runnaling Craalmilimgy e
Num unique pairs = 1280
Batch size = 16
Num epochs = 3
Total optimization steps = 240

Notice that the output mentions that 1,280 sentence pairs were generated for
fine-tuning the SentenceTransformer model. As a default, 20 sentence
pair combinations are generated for each sample in our data, which would be
20 * 32 = 680 samples. We will have to multiply this value by 2 for each
positive and negative pair generated, 680 * 2 = 1,280 sentence pairs.
Generating 1,280 sentence pairs is quite impressive considering we only had
32 labeled sentences to start with!

TIP

When we do not specifically define a classification head, by default a logistic regression is
used. If we would like to specify a classification head ourselves, we can do so by specifying
the following modelin SetFitTrainer:

Load a SetFit model from Hub

model = SetFitModel.from pretrained/(
"sentence-transformers/all-mpnet-base-v2",
use differentiable head=True,
head params={"out features": num classes},

Create trainer
trainer = SetFitTrainer (
model=model,

Here, num classes refers to the number of classes that we want to predict.

Next, let’s evaluate the model to get a feeling of its performance:

Evaluate the model on our test data
trainer.evaluate ()
{'f1"': 0.8363988383349468}

With only 32 labeled documents, we get an F1 score of 0.85. Considering that
the model was trained on a tiny subset of the original data, this is very
impressive! Moreover, in Chapter 2, we got the same performance but instead
trained a logistic regression model on the embeddings of the full data. Thus,
this pipeline demonstrates the potential of taking the time to label just a few
instances.

TIP

Not only can SetFit perform few-shot classification tasks, but it also has support for when
you have no labels at all, also called zero-shot classification. SetFit generates synthetic
examples from the label names to resemble the classification task and then trains a SetFit
model on them. For example, if the target labels are “happy” and “sad,” then synthetic data
could be “The example is happy” and “This example is sad.”

Continued Pretraining with Masked Language
Modeling

In the examples thus far, we leveraged a pretrained model and fine-tuned it to
perform classification. This process describes a two-step process: first
pretraining a model (which was already done for us) and then fine-tuning it for
a particular task. We illustrate this process in Figure 11-14.

) 2

Pretraining Fine-tuning
from scratch on target task
BERT £ » | BERT &
r e.g., masked language modeling: | | e.g., classification:
r [CLS] What a horrible movie [MASK]! 1 [What a horrible movie!]

| , v

i |
What a hnrrllble dream! . Positive m Negative

What a horrible ideal!

What a horrible day!

Figure 11-14. To fine-tune the model on a target task—for example, classification—we either start
with pretraining a BERT model or use a pretrained one.

This two-step approach is typically used throughout many applications. It has
its limitations when faced with domain-specific data. The pretrained model is
often trained on very general data, like Wikipedia pages, and might not be
tuned to your domain-specific words.

Instead of adopting this two-step approach, we can squeeze another step
between them, namely continue pretraining an already pretrained BERT
model. In other words, we can simply continue training the BERT model using
masked language modeling (MLM) but instead use data from our domain. It is
like going from a general BERT model to a BioBERT model specialized for
the medical domain, to a fine-tuned BioBERT model to classify medication.

This will update the subword representations to be more tuned toward words
it would not have seen before. This process is illustrated in Figure 11-15 and
demonstrates how this additional step updates a masked language modeling
task. Continuing pretraining on a pretrained BERT model has been shown to

improve the performance of models in classification tasks and is a worthwhile
addition to the fine-tuning pipeline.3

O 2) ©

Pretrainin Continued pretraining Fine-tunin
from scratc from pretrained on target tas

BERT & — 3| BERT & ———| BERT -

N N ~

e.g., masked language modeling: On domain-specific data: e.g., classification:
[[usl What a horrible movie [MASK]!] ([cl.slwhatahurribm movie [MASH]!] [vmata horrible mu-.rie!]

| | v
[What a harrible dream!] [What a horrible movie!] Pusltweﬂegatiue

([whata horrble idea)|(Whatahorrible ending)

[What a hu:rlbbeda}r!] [What a hurri?::le premise!]
v

(1] (1t
., %

Figure 11-15. Instead of a two-step approach, we can add another step that continues to pretrain
the pretrained model before fine-tuning it on the target task. Notice how the masks were filled with
abstract concepts in 1 while they were filled with movie-specific concepts in 2.

Instead of having to pretrain an entire model from scratch, we can simply
continue pretraining before fine-tuning it for classification. This also helps the
model to adapt to a certain domain or even the lingo of a specific organization.
The genealogy of models a company might want to adopt is further illustrated
in Figure 11-16.

O (2] ©

i Continued pretrained model Final fine-tuned models
Pretrained model Fine-tuned on ACME corp data Fine-tuned on a specific task

ACME representation model &

Fine-tuned for customer
service topic classification

L ACME L ACME representation model e

Representation model .) .
pre Representation model Fine-tuned for semantic search

e.g., BERT |2
ACME representation model
Fine-tuned for NER

Figure 11-16. The three-step approach illustrated for specific use cases.

In this example, we will demonstrate how to apply step 2 and continue
pretraining an already pretrained BERT model. We use the same data that we
started with, namely the Rotten Tomatoes reviews.

We start by loading the "bert-base-cased" model we have used thus far
and prepare it for MLM:

from import AutoTokenizer, AutoModelForMaskedLM

Load model for masked language modeling (MLM)

model = AutoModelForMaskedLM. from pretrained("bert-base-cased")
tokenizer = AutoTokenizer.from pretrained("bert-base-cased")

We need to tokenize the raw sentences. We will also remove the labels since
this 1s not a supervised task:

def preprocess function (examples) :

return tokenizer (examples|["text"], truncation=True)

Tokenize data

tokenized train = train data.map (preprocess_ function, batched=True)
tokenized train = tokenized train.remove columns ("label™)
tokenized test = test data.map(preprocess function, batched=True)
tokenized test = tokenized test.remove columns ("label")

Previously, we used DataCollatorWithPadding, which dynamically
pads the input it receives.

Instead, we will have a DataCollator that will perform the masking of
tokens for us. There are two methods that are generally used for this: token and
whole-word masking. With token masking, we randomly mask 15% of the
tokens in a sentence. It might happen that part of a word will be masked. To
enable masking of the entire word, we could apply whole-word masking, as
illustrated in Figure 11-17.

Input
[Hervocalization was remarkably melodic]

L

r

Tokenization + Splitinput up into tokens

r

[CLS] | | Her vocal | | ##ization | | was | | remarkably | | melodic | | [SEP]

Token masking * Randomly mask individual tokens

il

[CLS] | | Her vocal [MASK] | | was | | remarkably | | melodic | | [SEP]

Whole-word masking " Randomly mask whole-words

'8 S ™ ™

[CLS] | | Her | |[MASK]| [[MASK] [| was | |remarkably | | melodic | | [SEP]

Figure 11-17. Different methods for randomly masking tokens.

Generally, predicting whole words tends to be more complicated than tokens,
which makes the model perform better as it needs to learn more accurate and
precise representations during training. However, it tends to take a bit more
time to converge. We will be going with token masking in this example using
DataCollatorForLanguageModeling for faster convergence.
However, we can use whole-word masking by replacing
DataCollatorForLanguageModeling with
DataCollatorForWholeWordMask. Lastly, we set the probability that
a token 1s masked 1n a given sentence to 15% (mlm probability):

from transformers import DataCollatorForLanguageModeling

Masking Tokens
data collator = DataCollatorForLanguageModeling (
tokenizer=tokenizer,

mlm=True,
mlm probability=0.15

Next, we will create the Trainer for running the MLM task and specify
certain parameters:

Training arguments for parameter tuning
training args = TrainingArguments (

"model",

learning rate=2e-5,

per device train batch size=16,
per device eval batch size=16,
num train epochs=10,

weight decay=0.01,

save strategy="epoch",

report to="none"

Initialize Trainer

trainer = Trainer (
model=model,
args=training args,
train dataset=tokenized train,
eval dataset=tokenized test,
tokenizer=tokenizer,
data collator=data collator

Several parameters are worth noting. We train for 20 epochs and keep the task
short. You can experiment with the learning rate and weight decay to ascertain
whether they assist in fine-tuning the model.

Before we start our training loop we will first save our pretrained tokenizer.
The tokenizer is not updated during training so there is no need to save it after
training. We will, however, save our model after we continue pretraining;

Save pre-trained tokenizer
tokenizer.save pretrained("mlm")

Train model
trainer.train ()

Save updated model
model.save pretrained("mlm")

This gives us an updated model in the m/m folder. To evaluate its performance
we would normally fine-tune the model on a variety of tasks. For our
purposes, however, we can run some masking tasks to see if it has learned
from its continued training.

We will do so by loading in our pretrained model before we continue
pretraining. Using the sentence "What a horrible [MASK]!" the
model will predict which word would be in place of " [MASK] ":

from import pipeline

Load and create predictions
mask filler = pipeline("fill-mask", model="bert-base-cased")
preds = mask filler ("What a horrible [MASK]!")

Print results
for pred in preds:

print (£">>> {pred["sequence"]}")
>>> What a horrible idea!

>>> What a horrible dream!
>>> What a horrible thing!
>>> What a horrible day!

>>> What a horrible thought!

The output demonstrates concepts like “idea,” “dream,” and “day,” which
definitely make sense. Next, let’s see what our updated model predicts:

Load and create predictions
mask filler = pipeline("fill-mask", model="mlm")
preds = mask filler ("What a horrible [MASK]!")

Print results
for pred in preds:

print (£">>> {pred["sequence"]}")
>>> What a horrible movie!

>>> What a horrible film!
>>> What a horrible mess!
>>> What a horrible comedy!
>>> What a horrible story!

A horrible movie, film, mess, etc. clearly shows us that the model is more
biased toward the data that we fed it compared to the pretrained model.

The next step would be to fine-tune this model on the classification task that
we did at the beginning of this chapter. Simply load the model as follows and
you are good to go:

from import AutoModelForSequenceClassification

Fine-tune for classification

model = AutoModelForSequenceClassification.from pretrained("mlm",
num labels=2)

tokenizer = AutoTokenizer.from pretrained("mlm")

Named-Entity Recognition

In this section, we will delve into the process of fine-tuning a pretrained
BERT model specifically for NER (named-entity recognition). Instead of
classifying entire documents, this procedure allows for the classification of
individual tokens and/or words, including people and locations. This is
especially helpful for de-identification and anonymization tasks when there is
sensitive data.

NER shares similarities with the classification example we explored at the
beginning of this chapter. Nevertheless, a key distinction lies in the
preprocessing and classification of data. Given that we are focusing on
classifying individual words instead of entire documents, we must preprocess
the data to consider this granular structure. Figure 11-18 provides a visual
representation of this word-level approach.

[| am Maarten and | live in the Netherlands.]
|

BERT
Fine-tuned for NER

;
m @:[Maarten]:fand] m [m m:[the] [Netherlands] ﬂ

[l
[l

Person Location

Figure 11-18. Fine-tuning a BERT model for NER allows for the detection of named entities, such
as people or locations.

L&

Fine-tuning the pretrained BERT model follows a similar architecture akin to
what we observed with document classification. However, there is a

fundamental shift in the classification approach. Rather than relying on the
aggregation or pooling of token embeddings, the model now makes predictions
for individual tokens in a sequence. It is crucial to emphasize that our word-
level classification task does not entail classifying entire words, but rather the
tokens that collectively constitute those words. Figure 11-19 provides a visual
representation of this token-level classification.

Input My name is Maarten
Tokens [[CLS]][My][name][is][Maar][##ten][[SEP]]
£
BERT

Feedfurwarcl neural network

v VvV v

BN

Figure 11-19. During the fine-tuning process of a BERT model, individual tokens are classified
instead of words or entire documents.

Preparing Data for Named-Entity Recognition

In this example, we will use the English version of the CoNLL-2003 dataset,
which contains several different types of named entities (person, organization,
location, miscellaneous, and no entity) and has roughly 14,000 training

samples.*

The CoNLL-2003 dataset for NER
dataset = load dataset ("conll2003", trust remote code=True)

TIP

While researching datasets to use for this example, there were a few more that we wanted
to share. wnut 17 is a task that focuses on emerging and rare entities, those that are more
difficult to spot. Furthermore, the tner/mit movie trivia and

tner/mit restaurant datasets are quite fun to use. tner/mit movie trivia
is for detecting entities like actor, plot, and soundtrack whereas tner/mit restaurant

aims to detect entities such as amenity, dish, and cuisine.’

Let’s inspect the structure of the data with an example:

example = dataset["train"][848]
example
{'id': '848"',
'tokens': ['Dean',
'Palmer’',
'hit',
'his',
'30th'",
'homer',
'for',
'the',
'Rangers’',
B
'pos tags': [22, 22, 38, 29, le6, 21, 15, 12, 23, 7],
'chunk tags': [11, 12, 21, 11, 12, 12, 13, 11, 12, O],
'ner tags': [1, 2, O, O, O, O, O, O, 3, 0]}

This dataset provides us with labels for each word given in a sentence. These
labels can be found in the ner tags key, which refers to the following
possible entities:

label2id = {
"o": 0, "B-PER": 1, "I-PER": 2, "B-ORG": 3, "I-ORG": 4,
"B-LOC": 5, "I-LOC": 6, "B-MISC": 7, "I-MISC": 8
}
id2label = {index: label for label, index in label2id.items ()}
label2id

{('o': 0,
'"B-PER': 1,
'"I-PER': 2,

'B-ORG': 3,

'"I-ORG': 4,
'B-LOC': 5,
'I-LOC': 6,
'B-MISC': 7,
'I-MISC': 8}

These entities correspond to specific categories: a person (PER), organization
(ORG), location (LOC), miscellaneous entities (MISC), and no entity (O).
Note that these entities are prefixed with either a B (beginning) or an I
(inside). If two tokens that follow each other are part of the same phrase, then
the start of that phrase 1s indicated with B, which is followed by an I to show
that they belong to each other and are not independent entities.

This process 1s further illustrated in Figure 11-20. In the figure, since “Dean”
1s the start of the phrase and “Palmer” is the end, we know that “Dean Palmer”
is a person and that “Dean” and “Palmer” are not individual people.

Startof phrase Part of previous Start of phrase
l phrase l
Dean B-PER |(Paimer I-PER][hit][his |[30th][hnmer][for | the |[Rangers [) D
I I
7 v
[Dean Palmer Fersun] [Rangers]
Full phrase Full phrase

Figure 11-20. By indicating the start and end of the phrase with the same entity, we can recognize
entities of entire phrases.

Our data 1s preprocessed and split up into words but not yet tokens. To do so,
we will tokenize it further with the tokenizer of the pretrained model we used
throughout this chapter, namely bert-base-cased:

from import AutoModelForTokenClassification

Load tokenizer
tokenizer = AutoTokenizer.from pretrained("bert-base-cased")

Load model

model = AutoModelForTokenClassification.from pretrained(
"bert-base-cased",
num labels=len(idZlabel),

id2label=id2label,
label2id=label2id

Let’s explore how the tokenizer would process our example:

Split individual tokens into sub-tokens
token ids = tokenizer (example["tokens"], is split into words=True)
["input ids"]
sub tokens = tokenizer.convert ids to tokens(token ids)
sub_ tokens
['[CLS]"',

'Dean’,

'Palmer’',

'hit',

'his',

'30th"',

'home',

'##r',

'for',

"the',

'Rangers’,

] 1

'[SEP] "]

The tokenizer added the [CLS] and [SEP] tokens as we learned in Chapters
2 and 3. Note that the word 'homer ' was further split up into the tokens
'home' and '##r'. This creates a bit of a problem for us since we have
labeled data at the word level but not at the token level. This can be resolved
by aligning the labels with their subtoken counterparts during tokenization.

Let’s consider the word 'Maarten', which has the label B-PER to signal
that this is a person. If we pass that word through the tokenizer, it splits the
word up into the tokens 'Ma ', '##arte',and '##n'. We cannot use the
B-PER entity for all tokens as that would signal that the three tokens are all
independent people. Whenever an entity is split into tokens, the first token
should have B (for beginning) and the following should be I (for inner).

Therefore, 'Ma ' will get the B-PER to signal the start of a phrase, and
"##arte',and "##n"' will get the I-PER to signal they belong to a phrase.
This alignment process is illustrated in Figure 11-21.

Start of phrase

, —
Input | My || name || is || Maarten IE-!:I_?-'E_E-_-:
Tokenized [My V(name](is [ma]f##arte][##n]

Aligned rl'q.ll}r:1 (name [is |[Ma @]f##arte P}[##n @]

Start of phrase Part of previous Part of previous
phrase phrase

Figure 11-21. The alignment process of labeling tokenized input.

We create a function, align labels, that will tokenize the input and align
these tokens with their updated labels during tokenization:

def align labels(examples):
token ids = tokenizer (
examples["tokens"],

truncation=True,
is split into words=True
)

labels = examples["ner tags"]

updated labels = []
for index, label in enumerate (labels):

Map tokens to their respective word
word ids = token ids.word ids(batch index=index)

previous word idx = None
label ids = []
for word idx im word ids:

The start of a new word

if word idx != previous word idx:
previous word idx = word idx
updated label = -100 if word idx is None else

label [word idx]
label ids.append(updated label)

Special token is -100

elif word idx is None:
label ids.append(-100)

If the label is B-XXX we change it to I-XXX

else:
updated label = label[word idx]
if updated label % 2 ==
updated label += 1
label ids.append(updated label)

updated labels.append(label ids)

token ids["labels"] = updated labels
return token ids

tokenized = dataset.map(align labels, batched=True)

Looking at our example, note that additional labels (-100) were added for the
[CLS] and [SEP] tokens:

Difference between original and updated labels

print (£"Original: {example["ner tags"1}")

print (f"Updated: {tokenized["train"][848]["labels"]}")
Original: [1, 2, O, O, O, O, O, O, 3, O]

Updated: [-100, 1, 2, O, O, O, O, O, O, O, 3, 0, -100]

Now that we have tokenized and aligned the labels, we can start thinking about
defining our evaluation metrics. This is also different from what we have seen
before. Instead of a single prediction per document, we now have multiple
predictions per document, namely per token.

We will make use of the evaluate package by Hugging Face to create a
compute metrics function that allows us to evaluate performance on a
token level:

import

Load sequential evaluation
segeval = evaluate.load("segeval")

def compute metrics(eval pred):

Create predictions
logits, labels = eval pred
predictions = np.argmax(logits, axis=2)

true predictions = []
true labels = []

Document-level iteration
for prediction, label in zip(predictions, labels):

Token-level iteration
for token prediction, token label in zip (prediction, label):

We ignore special tokens

if token label != -100:
true predictions.append([id2label[token prediction]])
true labels.append([id2label[token label]])

results = segeval.compute (
predictions=true predictions, references=true labels

return {"f1": results["overall f1"]}

Fine-Tuning for Named-Entity Recognition

We are nearly there. Instead of DataCollatorWithPadding, we need a
collator that works with classification on a token level, namely
DataCollatorForTokenClassification:

from import DataCollatorForTokenClassification

Token-classification DataCollator

data collator =
DataCollatorForTokenClassification (tokenizer=tokenizer)

Now that we have loaded our model, the rest of the steps are similar to
previous training procedures in this chapter. We define a trainer with specific
arguments that we can tune and create a Trainer:

Training arguments for parameter tuning
training args = TrainingArguments (

"model",
learning rate=2Ze-5,

per device train batch size=16,
per device eval batch size=16,
num_train epochs=1,

weight decay=0.01,

save strategy="epoch",

report to="none"

Initialize Trainer

trainer = Trainer (
model=model,
args=training args,
train dataset=tokenized["train"],
eval dataset=tokenized["test"],
tokenizer=tokenizer,
data collator=data collator,
compute metrics=compute metrics,

)

trainer.train ()

We then evaluate the model that we created:

Evaluate the model on our test data
trainer.evaluate ()

Lastly, let’s save the model and use it in a pipeline for inference. This allows
us to check certain data so we can manually inspect what happens during
inference and if we are satisfied with the output:

from transformers import pipeline

Save our fine-tuned model
trainer.save model ("ner model")

Run inference on the fine-tuned model
token classifier = pipeline (
"token-classification",
model="ner model",
)

token classifier("My name is Maarten.")

[{'entity': 'B-PER',
'score': 0.99534035,
'index': 4,

'word': 'Ma',

'start': 11,

'end': 13},

{'entity': 'I-PER',
'score': 0.9928328,
'index': 5,

'word': '##arte',
'start': 13,
'end': 17},

{'entity': 'I-PER',
'score': 0.9954301,
'index': 6,

'word': '##n',
'start': 17,
'end': 18}]

In the sentence "My name is Maarten",the word "Maarten and its
subtokens were correctly identified as a person!

Summary

In this chapter, we explored several tasks for fine-tuning pretrained
representation models on specific classification tasks. We started by
demonstrating how to fine-tune a pretrained BERT model and extended the
examples by freezing certain layers of its architectures.

We experimented with a few-shot classification technique called SetFit, which
involves fine-tuning a pretrained embedding model together with a
classification head using limited labeled data. Using only a few labeled data
points, this model generated similar performance to the models we explored in
earlier chapters.

Next, we delved into the concept of continued pretraining, where we used a
pretrained BERT model as a starting point and continued training it using
different data. The underlying process, masked language modeling, is not only
used for creating a representation model but can also be used to continue
pretraining models.

Finally, we looked at named-entity recognition, a task that involves identifying
specific entities such as people and places in unstructured text. Compared to

previous examples, this classification was done on a word level rather than on
a document level.

In the next chapter, we continue with the field of fine-tuning language models
but focus on generative models instead. Using a two-step process, we will
explore how to fine-tune a generative model to properly follow instructions
and then fine-tune it for human preference.

T Jacob Deviin et al. “BERT: Pre-training of deep bidirectional transformers for language
understanding.” arXiv preprint arXiv:1810.04805 (2018).

2 Lewis Tunstall et al. “Efficient few-shot learning without prompts.” arXiv preprint
arXiv:2209.11055 (2022).

3" Chi Sun et al. “How to fine-tune GERT for text classification?” Chinese Computational
Linguistics: 18th China National Conference, CCL 2019, Kunming, China, October 18-20, 2019,
proceedings 18. Springer International Publishing, 2019.

4 Erik F. Sang and Fien De Meulder. “Introduction to the CoNLL-2003 shared task: Language-
independent named entity recognition.” arXiv preprint c¢s/0306050 (2003).

S Jingjing Liu et al. “Asgard: A portable architecture for multilingual dialogue systems.” 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013.

Chapter 12. Fine-Tuning
Generation Models

In this chapter, we will take a pretrained text generation model and go over
the process of fine-tuning it. This fine-tuning step is key in producing high-
quality models and an important tool in our toolbox to adapt a model to a
specific desired behavior. Fine-tuning allows us to adapt a model to a
specific dataset or domain.

Throughout this chapter, we will guide you among the two most common
methods for fine-tuning text generation models, supervised fine-tuning and
preference tuning. We will explore the transformative potential of fine-
tuning pretrained text generation models to make them more effective tools
for your application.

The Three LLM Training Steps: Pretraining,
Supervised Fine-Tuning, and Preference
Tuning

There are three common steps that lead to creating a high-quality LLM:

1. Language modeling

The first step in creating a high-quality LLM is to pretrain it
on one or more massive text datasets (Figure 12-1). During
training, it attempts to predict the next token to accurately
learn linguistic and semantic representations found in the
text. As we saw before in Chapters 3 and 11, this is called
language modeling and is a self-supervised method.

This produces a base model, also commonly referred to as a
pretrained or foundation model. Base models are a key

artifact of the training process but are harder for the end
user to deal with. This is why the next step is important.

Large language models (LLMs) are models that can generate
A
human-like text by predicting the probability of a word given

the previous words used in a sentence.

Figure 12-1. During language modeling, the LLM aims to predict the next token based on an

input. This is a process without labels.

2. Fine-tuning 1 (supervised fine-tuning)

LLMs are more useful if they respond well to instructions
and try to follow them. When humans ask the model to write
an article, they expect the model to generate the article and
not list other instructions for example (which is what a base
model might do).

With supervised fine-tuning (SFT), we can adapt the base
model to follow instructions. During this fine-tuning process,
the parameters of the base model are updated to be more in
line with our target task, like following instructions. Like a
pretrained model, it is trained using next-token prediction
but instead of only predicting the next token, it does so
based on a user input (Figure 12-2).

User "Tell me something about reinforcement learning.”

Reinforcement learning (RL) is a type of machine learning
~d
LLM where an agent learns to make decisions by taking actions

in an environment to maximize a reward signal.

Figure 12-2. During supervised fine-tuning, the LLM aims to predict the next token based on

an input that has additional labels. In a sense, the label is the user s input.

SFT can also be used for other tasks, like classification, but is
often used to go from a base generative model to an
instruction (or chat) generative model.

3. Fine-tuning 2 (preference tuning)

The final step further improves the quality of the model and
makes it more aligned with the expected behavior of Al
safety or human preferences. This is called preference
tuning. Preference tuning is a form of fine-tuning and, as the
name implies, aligns the output of the model to our
preferences, which are defined by the data that we give it.
Like SFT, it can improve upon the original model but has the
added benefit of distilling preference of output in its training
process. These three steps are illustrated in Figure 12-3 and
demonstrate the process of starting from an untrained
architecture and ending with a preference-tuned LLM.

Instruction- Preference-
Untrained Base tuned tuned
O 0l
LM | LIM > : ;
Language Fine-tuning1 Fine-tuning 2
modeling (Supervised) (Preference)

Figure 12-3. The three steps of creating a high-quality LLM.

In this chapter, we use a base model that was already trained on massive
datasets and explore how we can fine-tune it using both fine-tuning strategies.
For each method, we start with the theoretical underpinnings before using
them in practice.

Supervised Fine-Tuning (SFT)

The purpose of pretraining a model on large datasets is that it is able to
reproduce language and its meaning. During this process, the model learns to
complete input phrases as shown in Figure 12-4.

Base
(Pretrained)

Thecaris

'[IM > Red

Figure 12-4. A base or pretrained LLM was trained to predict the next word(s).

This example also illustrates that the model was not trained to follow
instructions and instead will attempt to complete a question rather than
answer it (Figure 12-5).

Base
(Pretrained) 2
| Whatis1+1 +1?
Whatis1+1? =—— |IM —— 3.
Whatis1+1+1+1?

Figure 12-5. A base LLM will not follow instructions but instead attempts to predict each next
word. It may even create new questions.

We can use this base model and adapt it to certain use cases, such as
following instructions, by fine-tuning it.

Full Fine-Tuning

The most common fine-tuning process is full fine-tuning. Like pretraining an
LLM, this process involves updating all parameters of a model to be in line
with your target task. The main difference is that we now use a smaller but
labeled dataset whereas the pretraining process was done on a large dataset
without any labels (Figure 12-6).

Untrained Base Fine-tuned

)
LLM »| LLM >
Language Full

modeling fine-tuning

T

|9
C Labeled data
Unlabeled data (Supervised)

(Self-supervised)

Figure 12-6. Compared to language modeling (pretraining), full fine-tuning uses a smaller but
labeled dataset.

You can use any labeled data for full fine-tuning, making it also a great
technique for learning domain-specific representations. To make our LLM
follow instructions, we will need question-response data. This data, as
shown in Figure 12-7, is queries by the user with corresponding answers.

Instruction data
(Many tasks)

i - . |+ Task:
. pl '
Instruction: “What are large language models? I: Question answering

e ———

Output: “Large language models (LLMs) are models that can generate
human-like text by predicting the probability of a word given
the previous words used in a sentence.’ \S_|

N

g . | Task:
Instruction: “Rate this review + Sentiment analysis

Input: “This was a horrible place to eat!”

Output: "Thisis a negative review.”
o

. .

Figure 12-7. Instruction data with instructions by a user and corresponding answers. The
instructions can contain many different tasks.

During full fine-tuning, the model takes the input (instructions) and applies
next-token prediction on the output (response). In turn, instead of generating
new questions, it will follow instructions.

Parameter-Efficient Fine-Tuning (PEFT)

Updating all parameters of a model has a large potential of increasing its
performance but comes with several disadvantages. It is costly to train, has
slow training times, and requires significant storage. To resolve these issues,
attention has been given to parameter-efficient fine-tuning (PEFT)
alternatives that focus on fine-tuning pretrained models at higher
computational efficiency.

Adapters

Adapters are a core component of many PEFT-based techniques. The method
proposes a set of additional modular components inside the Transformer that

can be fine-tuned to improve the model’s performance on a specific task
without having to fine-tune all the model weights. This saves a lot of time
and compute.

Adapters are described in the paper “Parameter-efficient transfer learning
for NLP”, which showed that fine-tuning 3.6% of the parameters of BERT for
a task can yield comparable performance to fine-tuning all the model’s

weights.! On the GLUE benchmark, the authors show they reach within 0.4%
of the performance of full fine-tuning. In a single Transformer block, the
paper’s proposed architecture places adapters after the attention layer and
the feedforward neural network as illustrated in Figure 12-8.

https://oreil.ly/C8IOs

‘ Transformer block

[Self-attention]
Adapter (component 1)

[Feedforward neural network]
Adapter (component 2)

Figure 12-8. Adapters add a small number of weights in certain places in the network that can be

v

fine-tuned efficiently while leaving the majority of model weights frozen.

It’s not enough to only alter one Transformer block, however, so these
components are part of every block in the model, as Figure 12-9 shows.

& Transformer
Stack of Transformer blocks -

Self-attention
1

Adapter (component 1)

Transformer block 1 | .
Feedforward neural networkJ
]

- B

Adapter (component 2)

Self-attention
|
Adapter (component 3)
Transformer block 2 | .
Feedforward neural network
]

r -

Adapter (component 4)

v

Figure 12-9. Adapter components span the various Transformer blocks in the model.

Seeing all the adapter’s components across the model like this enables us to
see individual adapters as shown in Figure 12-10, which is a collection of
these components spanning all the blocks of the model. Adapter 1 can be a
specialist in, say, medical text classification, while Adapter 2 can specialize

in named-entity recognition (NER). You can download specialized adapters
from https://oreil.ly/XraXg.

3 Transformer
Stack of Transformer blocks 0
(Self-attention J[}| _Adapter! Adapter2
I
Adapter (component 1) Adapter (comp. 1) Adapter (comp.1)

[Feedforward neuralnet\:.rﬂrk]
|

[Adapter (component 2) [Adapter (comp. 2]] [ﬂdapter (comp. 2)
[Self-attention
T
Adapter (component 3) Adapter (comp. 3) Adapter (comp. 3)

[Feedforward neural network
[

[Adapter (component 4)] [Adapter (comp. 4}] [Adapter (comp. 4)

. - N -

v
Figure 12-10. Adapters that specialize in specific tasks can be swapped into the same
architecture (if they share the same original model architecture and weights).

The paper “AdapterHub: A framework for adapting transformers” introduced

the Adapter Hub as a central repository for sharing adapters.? A lot of these
earlier adapters were more focused on BERT architectures. More recently,
the concept has been applied to text generation Transformers in papers like
“LLaMA-Adapter: Efficient fine-tuning of language models with zero-init

attention”.3

Low-Rank Adaptation (LoRA)

As an alternative to adapters, low-rank adaptation (LoRA) was introduced
and 1s at the time of writing is a widely used and effective technique for

https://oreil.ly/XraXg
https://oreil.ly/opyb6
https://oreil.ly/XraXg
https://oreil.ly/FJk1Q

PEFT. LoRA is a technique that (like adapters) only requires updating a
small set of parameters. As illustrated in Figure 12-11, it creates a small

subset of the base model to fine-tune instead of adding layers to the model.*

Base Fine-tuned

. Update entire model
LLM (Full fine-tuning) g LM

[" Fine-tune -
o L] el
Subset of Add small set of
base model new parameters

Figure 12-11. LoRA requires only fine-tuning a small set of parameters that can be kept
separately from the base LLM.

Like adapters, this subset allows for much quicker fine-tuning since we only
need to update a small part of the base model. We create this subset of
parameters by approximating large matrices that accompany the original
LLM with smaller matrices. We can then use those smaller matrices as a
replacement and fine-tune them instead of the original large matrices. Take
for example the 10 x 10 matrix we see in Figure 12-12.

Weight matrix

Full rank (10 x 10)
Total parameters: 100

Figure 12-12. A major bottleneck of LLMs is their massive weight matrices. Only one of these
may have 150 million parameters and each Transformer block would have its version of these.

We can come up with two smaller matrices, which when multiplied,
reconstruct a 10 x 10 matrix. This is a major efficiency win because instead
of using 100 weights (10 times 10) we now only have 20 weights (10 plus
10), as we can see in Figure 12-13.

Low-rank weight matrix (rank =1) : Low-rank weight matrix (rank = 2)
Total parameters: 20 : Total parameters: 40
Rank=1ICTTTTTITTTIT] Rank=2]

Figure 12-13. Decomposing a large weight matrix into two smaller matrices leads to a
compressed, low-rank version of the matrix that can be fine-tuned more efficiently.

During training, we only need to update these smaller matrices instead of the
full weight changes. The updated change matrices (smaller matrices) are then
combined with the full (frozen) weights as illustrated in Figure 12-14.

Low-rank adaptation

Full fine-tuning Update a small representation
Update all weights : of the weights
([put) [nput)
Updated Updated Frozen
Duringtraining : During training During training
: 'y ‘J
. Rank-2 EEEESEEEED h’&
v : v
HEEN : T + IEEI:I
T .

Figure 12-14. Compared to full fine-tuning, LoRA aims to update a small representation of the
original weights during training.

But you might suspect that performance would drop. And you would be right.
But where does this trade-off make sense?

Papers like “Intrinsic dimensionality explains the effectiveness of language
model fine-tuning” demonstrate that language models “have a very low

intrinsic dimension.”® This means that we can find small ranks that
approximate even the massive matrices of an LLM. A 175B model like GPT-
3, for example, would have a weight matrix of 12,288 % 12,288 inside each
of its 96 Transformer blocks. That’s 150 million parameters. If we can
successfully adapt that matrix into rank 8, that would only require two 12,288
x 2 matrices resulting in 197K parameters per block. These are major
savings in speed, storage, and compute as explained further in the previously
referenced LoRA paper.

This smaller representation is quite flexible in that you can select which
parts of the base model to fine-tune. For instance, we can only fine-tune the
Query and Value weight matrices in each Transformer layer.

https://oreil.ly/Th2m-
https://oreil.ly/k9U5V

Compressing the model for (more) efficient training

We can make LoRA even more efficient by reducing the memory
requirements of the model’s original weights before projecting them into
smaller matrices. The weights of an LLM are numeric values with a given
precision, which can be expressed by the number of bits like float64 or
float32. As illustrated in Figure 12-15, if we lower the amount of bits to
represent a value, we get a less accurate result. However, if we lower the
number of bits we also lower the memory requirements of that model.

Float 32-bit

@10'300000 1{ojof1jolojr|ojojofoltfrjrfrjrrjojnjrjofij1

(-1)¢ = 2V =x 15707964 = EEAFIEEVIE High precision T
1bit

Float 16-bit

E|1GDUD'DDD 11010)1]0(0f1|0]|0]0

((1)° x 2! x 1571 = gEALIN Low precision

Figure 12-15. Attempting to represent pi with float 32-bit and float 16-bit representations. Notice
the lowered accuracy when we halve the number of bits.

With quantization, we aim to lower the number of bits while still accurately
representing the original weight values. However, as shown in Figure 12-16,
when directly mapping higher precision values to lower precision values,
multiple higher precision values might end up being represented by the same
lower precision values.

Compress to smaller blocks of weights

”gg'{‘f - 0\ /9 t v i
Teae H_Jo] Jof J] Jof Je]

Problem:
Similar weights

are now the
Reconstructed sarneaﬁhen

weights reconstructed
| oO—O0—
Low High
Figure 12-16. Quantizing weights that are close to one another results in the same reconstructed
weights thereby removing any differentiating factor.

Instead, the authors of QLoRA, a quantized version of LoRA, found a way to
go from a higher number of bits to a lower value and vice versa without

differentiating too much from the original weights.®

They used blockwise quantization to map certain blocks of higher precision
values to lower precision values. Instead of directly mapping higher
precision to lower precision values, additional blocks are created that allow
for quantizing similar weights. As shown in Figure 12-17, this results in
values that can be accurately represented with lower precision.

Compress to several smaller blocks of weights

Original
weights an / / L High
Quantized

weights --.--[]-

Similar weights

are better
represented when
v reconstructed
Reconstructed 00
weights m,, ® High

Figure 12-17. Blockwise quantization can accurately represent weights in lower precision
through quantization blocks.

A nice property of neural networks is that their values are generally normally
distributed between —1 and 1. This property allows us to bin the original

weights to lower bits based on their relative density, as illustrated in
Figure 12-18. The mapping between weights is more efficient as it takes into
account the relative frequency of weights. This also reduces issues with

outliers.

Original

‘{ weights

L LLL]] e
L Jo | JeJeleldele] [e] [o [o]

—
Distribution- Similar weights Block can be bigger since
aware block end up in different bins there are fewer outliers

Figure 12-18. Using distribution-aware blocks we can prevent values close to one another from
being represented with the same quantized value.

Combined with the blockwise quantization, this normalization procedure
allows for accurate representation of high precision values by low precision
values with only a small decrease in the performance of the LLM. As a
result, we can go from a 16-bit float representation to a measly 4-bit
normalized float representation. A 4-bit representation significantly reduces
the memory requirements of the LLM during training. Note that the
quantization of LLMs in general is also helpful for inference as quantized
LLMs are smaller in size and therefore require less VRAM.

There are more elegant methods to further optimize this like double
quantization and paged optimizers, which you can read about more in the
QLoRA paper discussed earlier. For a complete and highly visual guide to
quantization, see this blog post.

https://oreil.ly/U1DSq
https://oreil.ly/GituX

Instruction Tuning with QLoRA

Now that we have explored how QLoRA works, let us put that knowledge
into practice! In this section, we will fine-tune a completely open source and
smaller version of Llama, TinyLlama, to follow instructions using the
QLoRA procedure. Consider this model a base or pretrained model, one that
was trained with language modeling but cannot yet follow instructions.

Templating Instruction Data

To have the LLM follow instructions, we will need to prepare instruction
data that follows a chat template. This chat template, as illustrated in
Figure 12-19, differentiates between what the LLM has generated and what
the user has generated.

<|user|> l User context

r Whatis1+1][<[s>] End-of-sequence (eos) token

;
<Iassi5tantl>} ® \Model's answer
N

’

Theanswerto1+1is 2!][<[s>]

\ J
Figure 12-19. The chat template that we use throughout this chapter.

We chose this chat template to use throughout the examples since the chat
version of TinyLlama uses the same format. The data that we are using is a
small subset of the UltraChat dataset.” This dataset is a filtered version of the
original UltraChat dataset that contains almost 200k conversations between a
user and an LLM.

We create a function, format prompt, to make sure that the conversations
follow this template:

https://oreil.ly/mGO7A
https://oreil.ly/rROj4
https://oreil.ly/6S290

from transformers import AutoTokenizer
from datasets import load dataset

Load a tokenizer to use its chat template

template tokenizer = AutoTokenizer.from pretrained/(
"TinyLlama/TinyLlama-1.1BChat-v1.0"

)

def format prompt (example) :
"""Format the prompt to using the <|user|> template TinyLLama
iS using”""

Format answers
chat = example["messages"]
prompt = template tokenizer.apply chat template (chat,

tokenize=False)

return {"text": prompt}

Load and format the data using the template TinyLLama is using
dataset = (
load dataset ("HuggingFaceH4/ultrachat 200k",

split="test sft")

.shuffle (seed=42)

.select (range (3 000))
)
dataset = dataset.map (format prompt)

We select a subset of 3,000 documents to reduce the training time, but you
can increase this value to get more accurate results.

Using the "text" column, we can explore these formatted prompts:

Example of formatted prompt
print (dataset["text"][2576])
<|user|>
Given the text: Knock, knock. Who's there? Hike.
Can you continue the joke based on the given text material
"Knock, knock. Who's there? Hike"?</s>
<|assistant|>
Sure! Knock, knock. Who's there? Hike. Hike who? Hike up your
pants, it's cold outside!</s>
<|user|>
Can you tell me another knock-knock joke based on the same text
material "Knock, knock. Who's there? Hike"?</s>

<lassistant|>
Of course! Knock, knock. Who's there? Hike. Hike who? Hike your
way over here and let's go for a walk!</s>

Model Quantization

Now that we have our data, we can start loading in our model. This is where
we apply the Q in QLoRA, namely quantization. We use the
bitsandbytes package to compress the pretrained model to a 4-bit
representation.

InBitsAndBytesConfig, youcan define the quantization scheme. We
follow the steps used in the original QLoRA paper and load the model in 4-
bit (load in 4bit) with a normalized float representation

(bnb 4bit quant type) and double quantization
(bnb_4bit use double quant):

import

from import AutoModelForCausallLM, AutoTokenizer,
BitsAndBytesConfig

model name = "TinyLlama/TinyLlama-1l.lB-intermediate-step-1431k-
3T"

4-bit quantization configuration - Q in QLORA

bnb config = BitsAndBytesConfig(
load in 4bit=True, # Use 4-bit precision model loading
bnb 4bit quant type="nfd4", # Quantization type
bnb 4bit compute dtype="floatlé6", # Compute dtype
bnb 4bit use double quant=True, # Apply nested quantization

Load the model to train on the GPU

model = AutoModelForCausallM.from pretrained(
model name,
device map="auto",

Leave this out for regular SFT
gquantization config=bnb config,
)
model.config.use cache = False
model.config.pretraining tp = 1

https://oreil.ly/B_etl

Load LLaMA tokenizer
tokenizer = AutoTokenizer.from pretrained(model name,

trust remote code=True)
tokenizer.pad token = "<PAD>"
tokenizer.padding side = "left"

This quantization procedure allows us to decrease the size of the original
model while retaining most of the original weights’ precision. Loading the
model now only uses ~1 GB VRAM compared to the ~4 GB of VRAM it
would need without quantization. Note that during fine-tuning, more VRAM
will be necessary so it does not cap out on the ~1 GB VRAM needed to load
the model.

LoRA Configuration

Next, we will need to define our LoRA configuration using the pe £t library,
which represents hyperparameters of the fine-tuning process:

from import LoraConfig, prepare model for kbit training,
get peft model

Prepare LoRA Configuration
peft config = LoraConfig(

lora alpha=32, # LoRA Scaling

lora dropout=0.1, # Dropout for LoRA Layers

r=64, # Rank

bias="none",

task type="CAUSAL LM",

target modules= # Layers to target

["k proj", "gate proj", "v proj", "up proj", "g proj",

"o proj", "down proj"]

)

Prepare model for training
model = prepare model for kbit training(model)
model = get peft model (model, peft config)

There are several parameters worth mentioning:

r

https://oreil.ly/ci5pl

This is the rank of the compressed matrices (recall this from
Figure 12-13) Increasing this value will also increase the
sizes of compressed matrices leading to less compression
and thereby improved representative power. Values typically
range between 4 and 64.

lora alpha
Controls the amount of change that is added to the original
weights. In essence, it balances the knowledge of the original
model with that of the new task. A rule of thumb is to choose
a value twice the size of r.

target modules

Controls which layers to target. The LoRA procedure can
choose to ignore specific layers, like specific projection
layers. This can speed up training but reduce performance
and vice versa.

Playing around with the parameters is a worthwhile experiment to get an
intuitive understanding of values that work and those that do not. You can find
an amazing resource of additional tips on LoRA fine-tuning in the Ahead of
Al newsletter by Sebastian Raschka.

NOTE

This example demonstrates an efficient form of fine-tuning your model. If you want to
perform full fine-tuning instead, you can remove the quantization config
parameter when loading the model and skip the creation of peft config. By removing
those, we would go from “Instruction tuning with QLoRA” to “full instruction tuning.”

https://oreil.ly/xKkYD

Training Configuration

Lastly, we need to configure our training parameters as we did in Chapter 11:

from import TrainingArguments
output dir = "./results"

Training arguments

training arguments = TrainingArguments (
output dir=output dir,
per device train batch size=2,
gradient accumulation steps=4,
optim="paged adamw 32bit",
learning rate=2e-4,
lr scheduler type="cosine'",
num_ train epochs=1,
logging steps=10,
fpl6=True,
gradient checkpointing=True

There are several parameters worth mentioning;

num_train epochs
The total number of training rounds. Higher values tend to
degrade performance so we generally like to keep this low.

learning rate
Determines the step size at each iteration of weight updates.
The authors of QLoRA found that higher learning rates work
better for larger models (>33B parameters).

lr scheduler type
A cosine-based scheduler to adjust the learning rate
dynamically. It will linearly increase the learning rate,
starting from zero, until it reaches the set value. After that,

the learning rate is decayed following the values of a cosine
function.

optim

The paged optimizers used in the original QLoRA paper.

Optimizing these parameters is a difficult task and there are no set guidelines
for doing so. It requires experimentation to figure out what works best for
specific datasets, model sizes, and target tasks.

NOTE

Although this section describes instruction tuning, we could also use QLoRA to fine-tune
an instruction model. For instance, we could fine-tune a chat model to generate specific
SQL code or to create JSON output that adheres to a specific format. As long as you
have the data available (with appropriate query-response items), QLoRA is a great
technique for nudging an existing chat model to be more appropriate for your use case.

Training

Now that we have prepared all our models and parameters, we can start fine-
tuning our model. We load in SEFTTrainer and simply run
trainer.train():

from import SFTTrainer

Set supervised fine-tuning parameters
trainer = SFTTrainer (
model=model,
train dataset=dataset,
dataset text field="text",
tokenizer=tokenizer,
args=training arguments,
max seq length=512,

Leave this out for regular SFT
peft config=peft config,

Train model
trainer.train ()

Save QLORA welghts
trainer.model.save pretrained("TinyLlama-1.1B-glora")

During training the loss will be printed every 10 steps according to the
logging steps parameter. If you are using the free GPU provided by
Google Colab, which is the Tesla T4 at the time of writing, then training
might take up to an hour. A good time to take a break!

Merge Weights

After we have trained our QLoRA weights, we still need to combine them
with the original weights to use them. We reload the model in 16 bits, instead
of the quantized 4 bits, to merge the weights. Although the tokenizer was not
updated during training, we save it to the same folder as the model for easier
access:

from import AutoPeftModelForCausallLM

model = AutoPeftModelForCausallLM.from pretrained(
"TinyLlama-1.1B-glora",
low cpu mem usage=True,
device map="auto",

)

Merge LoRA and base model
merged model = model.merge and unload()

After merging the adapter with the base model, we can use it with the prompt
template that we defined earlier:

from import pipeline

Use our predefined prompt template

prompt = """<|user|>

Tell me something about Large Language Models.</s>
<|assistant|>

mwrmmn

Run our instruction-tuned model

pipe = pipeline(task="text-generation", model=merged model,

tokenizer=tokenizer)

print (pipe (prompt) [0] ["generated text"])
Large Language Models (LLMs) are artificial intelligence (AI)
models that learn language and understand what it means to say
things in a particular language. They are trained on huge
amounts of text..

The aggregate output shows that the model now closely follows our
instructions, which is not possible with the base model.

Evaluating Generative Models

Evaluating generative models poses a significant challenge. Generative
models are used across many diverse use cases, making it a challenge to rely
on a singular metric for judgment. Unlike more specialized models, a
generative model’s ability to solve mathematical questions does not
guarantee success in solving coding questions.

At the same time, evaluating these models is vital, particularly in production
settings where consistency is important. Given their probabilistic nature,
generative models do not necessarily generate consistent outputs; there is a
need for robust evaluation.

In this section, we will explore a few common evaluation methods, but we
want to emphasize the current lack of golden standards. No one metric is
perfect for all use cases.

Word-Level Metrics

One common metrics category for comparing generative models is word-
level evaluation. These classic techniques compare a reference dataset with
the generated tokens on a token(set) level. Common word-level metrics

include perplexity,® ROUGE,® BLEU, % and BERTScore. "

Of note is perplexity, which measures how well a language model predicts a
text. Given input text, the model predicts how likely the next token is. With
perplexity, we assume a model performs better if it gives the next token a
high probability. In other words, the models should not be “perplexed” when
presented with a well-written document.

As illustrated in Figure 12-20, when presented with the input “When a
measure becomes a,” the model is asked how probable the word “target” is
as the next word.

When a measure becomesa target, it ceases to be a good measure.

i |
Giventhe , what is the probability of the next word?
Figure 12-20. Next-word prediction is a central feature of many LLMs.

Although perplexity, and other word-level metrics, are useful metrics to
understand the confidence of the model, they are not a perfect measure. They
do not account for consistency, fluency, creativity, or even correctness of the
generated text.

Benchmarks

A common method for evaluating generative models on language generation
and understanding tasks is on well-known and public benchmarks, such as
MMLU,'2 GLUE, '3 TruthfulQA,14 GSMB8k, " and HellaSwag.16 These
benchmarks give us information about basic language understanding but also
complex analytical answering, like math problems.

Aside from natural language tasks, some models specialize in other domains,
like programming. These models tend to be evaluated on different
benchmarks, such as HumanEval,'” which consists of challenging
programming tasks for the model to solve. Table 12-1 gives an overview of
common public benchmarks for generative models.

Table 12-1. Common public benchmarks for generative models

Benchmark

MMLU

Description

The Massive Multitask
Language Understanding
(MMLU) benchmark tests the
model on 57 different tasks,
including classification,
question answering, and
sentiment analysis.

Resources

https://oreil ly/nrG g

GLUE

The General Language
Understanding Evaluation
(GLUE) benchmark consists of
language understanding tasks
covering a wide degree of
difficulty.

https://oreil ly/LV _fb

Truthful QA

Truthful QA measures the
truthfulness of a model’s
generated text.

https://oreil.ly/i2Brj

GSM8k

The GSM8k dataset contains
grade-school math word
problems. It is linguistically
diverse and created by human
problem writers.

https://oreil.ly/oOBXY

https://oreil.ly/nrG_g
https://oreil.ly/LV_fb
https://oreil.ly/i2Brj
https://oreil.ly/oOBXY

Benchmark Description Resources

HellaSwag HellaSwag is a challenge https://oreil.ly/aDvBP
dataset for evaluating common-
sense inference. It consists of
multiple-choice questions that
the model needs to answer. It
can select one of four answer
choices for each question.

HumanEval The HumanEval benchmark is https://oreil ly/dIJIX
used for evaluating generated
code based on 164
programming problems.

Benchmarks are a great way to get a basic understanding on how well a
model performs on a wide variety of tasks. A downside to public
benchmarks is that models can be overfitted to these benchmarks to generate
the best responses. Moreover, these are still broad benchmarks and might not
cover very specific use cases. Lastly, another downside is that some
benchmarks require strong GPUs with a long running time (over hours) to
compute, which makes iteration difficult.

Leaderboards

With so many different benchmarks, it is hard to choose which benchmark
best suits your model. Whenever a model is released, you will often see it
evaluated on several benchmarks to showcase how it performs across the

board.

As such, leaderboards were developed containing multiple benchmarks. A
common leaderboard is the Open LLM Leaderboard, which, at the time of
writing, includes six benchmarks, including HellaSwag, MMLU, Truthful QA,
and GSMS8k. Models that top the leaderboard, assuming they were not
overfitted on the data, are generally regarded as the “best” model. However,

https://oreil.ly/aDvBP
https://oreil.ly/dlJIX
https://oreil.ly/azQmW

since these leaderboards often contain publicly available benchmarks, there
is a risk of overfitting on the leaderboard.

Automated Evaluation

Part of evaluating a generative output is the quality of its text. For instance,
even if two models were to give the same correct answer to a question, the
way they derived that answer might be different. It is often not just about the
final answer but also the construction of it. Similarly, although two
summaries might be similar, one could be significantly shorter than another,
which is often important for a good summary.

To evaluate the quality of the generated text above the correctness of the final

answer, LLM-as-a-judge was introduced.’® In essence, a separate LLM is
asked to judge the quality of the LLM to be evaluated. An interesting variant
of this method is pairwise comparison. Two different LLMs will generate an
answer to a question and a third LLM will be the judge to declare which is
better.

As a result, this methodology allows for automated evaluation of open-ended
questions. A major advantage is that as LLMs improve, so do their
capabilities to judge the quality of output. In other words, this evaluation
methodology grows with the field.

Human Evaluation

Although benchmarks are important, the gold standard of evaluation is
generally considered to be human evaluation. Even if an LLM scores well on
broad benchmarks, it still might not score well on domain-specific tasks.
Moreover, benchmarks do not fully capture human preference and all
methods discussed before are merely proxies for that.

A great example of a human-based evaluation technique is the Chatbot

Arena.’® When you go to this leaderboard you are shown two (anonymous)
LLMs you can interact with. Any question or prompt you ask will be sent to
both models and you will receive their output. Then, you can decide which

https://oreil.ly/GoCH-

output you prefer. This process allows for the community to vote on which
models they prefer without knowing which ones are presented. Only after you
vote do you see which model generated which text.

At the time of writing, this method has generated over 800,000+ human votes
that were used to compute a leaderboard. These votes are used to calculate
the relative skill level of LLMs based on their win rates. For instance, if a
low-ranked LLM beats a high-ranked LM, its ranking changes significantly.
In chess, this 1s referred to as the Elo rating system.

This methodology therefore uses crowdsourced votes, which helps us
understand the quality of the LLM. However, it is still the aggregated opinion
of a wide variety of users, which might not relate to your use case.

As a result, there 1s no one perfect method of evaluating LLMs. All
mentioned methodologies and benchmarks provide an important, although
limited evaluation perspective. Our advice is to evaluate your LLM based on

the intended use case. For coding, HumanEval would be more logical than
GSMBSk.

But most importantly, we believe that you are the best evaluator. Human
evaluation remains the gold standard because it is up to you to decide
whether the LLM works for your intended use case. As with the examples in
this chapter, we highly advise that you also try these models and perhaps
develop some questions yourself. For example, the authors of this book are
Arabic (Jay Alammar) and Dutch (Maarten Grootendorst), and we often ask
questions in our native language when approached with new models.

One final note on this topic is a quote we hold dear:

When a measure becomes a target, it ceases to be a good measure.
—Goodhart’s Law??

In the context of LLMs, when using a specific benchmark, we tend to
optimize for that benchmark regardless of the consequences. For instance, if
we focus purely on optimizing for generating grammatically correct
sentences, the model could learn to only output one sentence: “This is a
sentence.” It is grammatically correct but tells you nothing about its language

understanding capabilities. Thus, the model may excel at a specific
benchmark but potentially at the expense of other useful capabilities.

Preference-Tuning / Alignment / RLHF

Although our model can now follow instructions, we can further improve its
behavior by a final training phase that aligns it to how we expect it to behave
1n different scenarios. For instance, when asked “What 1s an LLM?” we
might prefer an elaborate answer that describes the internals of an LLM
compared to the answer “It is a large language model” without further
explanations. How exactly do we align our (human) preference for one
answer over the other with the output of an LLM?

To start with, recall that an LLM takes a prompt and outputs a generation as
illustrated in Figure 12-21.

Input

prompt 1 Generation A

Figure 12-21. An LLM takes an input prompt and outputs a generation.

We can ask a person (preference evaluator) to evaluate the quality of that
model generation. Say they assign it a certain score, like 4 (see Figure 12-
22).

Input : Preference score
Generation A | :
l : A ‘

; 3
How good is this generation 0
inresponse to this prompt? :
Input : 3
prompt 1 -6 Bad

_ 3 Preference
Generation A | : evaluator

Figure 12-22. Use a preference evaluator (human or otherwise) to evaluate the quality of the
generation.

Figure 12-23 shows a preference tuning step updating the model based on
that score:

o Ifthe score is high, the model is updated to encourage it to generate
more like this type of generation.

o Ifthe score is low, the model is updated to discourage such
generations.

Update the LLM based on this score
If high score: do more of this
If low score: do less of this

Input
prompt 1

Generation A

Preference
evaluator

Figure 12-23. Preference tuning methods update the LLM based on the evaluation score.

As always, we need many training examples. So can we automate the
preference evaluation? Yes, we can by training a different model called a

reward model.

Automating Preference Evaluation Using
Reward Models

To automate preference evaluation, we need a step before the preference-
tuning step, namely to train a reward model, as shown in Figure 12-24.

Instruction- Preference-
tuned tuned
QT . Fine-tuning 2 g .

LM K Trainreward + (Preference) ’ Fine-tune LLM

model LLM

Figure 12-24. We train a reward model before fine-tuning the LLM.

Figure 12-25 shows that to create a reward model, we take a copy of the
instruction-tuned model and slightly change it so that instead of generating
text, it now outputs a single score.

Remove Add
Tweak the LLM to
become a reward model - .
| | Quality classification head

Reward model

Figure 12-25. The LLM becomes a reward model by replacing its language modeling head with a
quality classification head.

The Inputs and Outputs of a Reward Model

The way we expect this reward model to work is that we give it a prompt
and a generation, and it outputs a single number indicating the
preference/quality of that generation in response to that prompt. Figure 12-26
shows the reward model generating this single number.

Input
prompt 1

Generation A

Quality classification head

Reward model

=3

Completion quality score
4 -6 Bad

Figure 12-26. Use a reward model trained on human preference to generate the completion
quality score.

Training a Reward Model

We cannot directly use the reward model. It needs to first be trained to

properly score generations. So let’s get a preference dataset that the model
can learn from.

Reward model training dataset

One common shape for preference datasets is for a training example to have
a prompt, with one accepted generation and one rejected generation.
(Nuance: it’s not always a good versus bad generation; it can be that the two
generations are both good, but that one is better than the other). Figure 12-27
shows an example preference training set with two training examples.

Example # Accepted Rejected
Input prompt 1 Input prompt 1
1
Generation 1.A Generation1.B
Input prompt 2 Input prompt 2
2
Generation 2.A Generation 2.B

Figure 12-27. Preference tuning datasets are often made up of prompts with accepted and
rejected generations.

One way to generate preference data is to present a prompt to the LLM and
have it generate two different generations. As shown in Figure 12-28, we can
ask human labelers which of the two they prefer.

Input
prompt 1

Which do you prefer?

[Generation A] [Generation BJ S E]

Figure 12-28. Output two generations and ask a human labeler which one they prefer.

Reward model training step

Now that we have the preference training dataset, we can proceed to train the
reward model.

A simple step 1s that we use the reward model to:
1. Score the accepted generation
2. Score the rejected generation

Figure 12-29 shows the training objective: to ensure the accepted generation
has a higher score than the rejected generation.

Accepted Rejected

Input Input
prompt 1 prompt 1

Generation1.A || Generation 1.B

Quality classification head

Reward model

Completion
quality score 3 -1

Accepted score should be larger than rejected score
Training objective

Figure 12-29. The reward model aims to evaluate the quality scores of generations in response to
a prompt.

When we combine everything together as shown in Figure 12-30, we get the
three stages to preference tuning;

1. Collect preference data

2. Train a reward model

3. Use the reward model to fine-tune the LLM (operating as the
preference evaluator)

Instruction- Preference-
tuned _ _ tuned
T Colleet W T . Fine-tuning2 ~ ----------0- .

L ool Trainreward i (Preference) ¢ Fine-tune

Figure 12-30. The three stages of preference tuning: collecting preference data, training a
reward model, and finally fine-tuning the LLM.

Reward models are an excellent idea that can be further extended and
developed. Llama 2, for example, trains two reward models: one that scores
helpfulness and another that scores safety (Figure 12-31).

Instruction-tuned Preference-tuned
proTmosss s nese. . Fine-tuning2 """t .
. Trainreward :_(Preference) _ : Fine-tune !
. 5 model 5 o : LM : LM
4
Reward model #1 HEIPEI'DI'L“ESS E
Used tofine-tune theLLM

Safety
RM

Reward model #2

Figure 12-31. We can use multiple reward models to perform the scoring.

A common method to fine-tune the LLM with the trained reward model is
Proximal Policy Optimization (PPO). PPO is a popular reinforcement
technique that optimizes the instruction-tuned LLM by making sure that the

LLM does not deviate too much from the expected rewards.?" It was even
used to train the original ChatGPT released in November 2022.

Training No Reward Model

A disadvantage of PPO is that it is a complex method that needs to train at
least two models, the reward model and the LLM, which can be more costly
than perhaps necessary.

Direct Preference Optimization (DPO) is an alternative to PPO and does
away with the reinforcement-based learning procedure.?? Instead of using the
reward model to judge the quality of a generation, we let the LLM itself do
that. As illustrated in Figure 12-32, we use a copy of the LLM as the
reference model to judge the shift between the reference and trainable model
in the quality of the accepted generation and rejected generation.

Reference model
(Frozen)

Generation Rejected score

Accepted score

Input
prompt

Generation

Calculate shiftin:

Trainable model + Rejected generation
(To be preference « Accepted generation
tuned)

Generation

Rejected score

Input
prompt

Generation Accepted score

T

Increase likelihood of accepted generation

Increase likelihood of rejected generation

Figure 12-32. Use the LLM itself as the reward model by comparing the output of a frozen model
with the trainable model.

By calculating this shift during training, we can optimize the likelihood of
accepted generations over rejected generations by tracking the difference in
the reference model and the trainable model.

https://oreil.ly/T5f2h

To calculate this shift and its related scores, the log probabilities of the
rejected generations and accepted generations are extracted from both
models. As illustrated in Figure 12-33, this process is performed at a token
level where the probabilities are combined to calculate the shift between the
reference and trainable models.

Prompt Rejected generation

[What are LLMs [_] [—] got] nn clue

Trainable model
REfeE?:jﬁrTude' (To be preference
tuned)
Calculate token probability
(Per model)

[have] nn |dea

II I I I I Rejected score is the
“_ :
| I . . l aggFEgatlDrj_D_f token

probabilities.
Calculate shiftin rejected scores

Figure 12-33. Scores are calculated by taking the probabilities of generation on a token level.
The shift in probabilities between the reference model and the trainable model is optimized. The
accepted generation follows the same procedure.

Using these scores, we can optimize the parameters of the trainable model to
be more confident of generating the accepted generations and less confident
of generating the rejected generations. Compared to PPO, the authors found
DPO to be more stable during training and more accurate. Due to its stability,
we will be using it as our primary model for preference tuning our
previously instruction-tuned model.

Preference Tuning with DPO

When we use the Hugging Face stack, preference tuning is eerily similar to
the instruction tuning we covered before with some slight differences. We
will still be using TinyLlama but this time an instruction-tuned version that
was first trained using full fine-tuning and then further aligned with DPO.
Compared to our initial instruction-tuned model, this LLM was trained on
much larger datasets.

In this section, we will demonstrate how you can further align this model
using DPO with reward-based datasets.

Templating Alignment Data

We will use a dataset that for each prompt contains an accepted generation
and a rejected generation. This dataset was in part generated by ChatGPT
with scores on which output should be accepted and which rejected:

from import load dataset

def format prompt (example) :
"""Format the prompt to using the <|user|> template TinyLLama
is using"""

Format answers

system = "<|system|>\n" + example["system"] + "</s>\n"

prompt = "<|user|>\n" + example["input"] + "
</s>\n<|assistant|>\n"

chosen = example["chosen"] + "</s>\n"

rejected = example["rejected"] + "</s>\n"

return {
"prompt": system + prompt,
"chosen": chosen,

"rejected": rejected,

}

Apply formatting to the dataset and select relatively short

answers

dpo dataset = load dataset(
"argilla/distilabel-intel-orca-dpo-pairs", split="train"

https://oreil.ly/bkVF1
https://oreil.ly/sttRF

)
dpo dataset = dpo dataset.filter(

lambda r:
r["status"] != "tie" and
r["chosen score"] >= 8 and

not r(["in gsm8k train"]
)
dpo dataset = dpo dataset.map (
format prompt, remove columns=dpo dataset.column names

)
dpo_dataset

Note that we apply additional filtering to further reduce the size of the data to
roughly 6,000 examples from the original 13,000 examples.

Model Quantization

We load our base model and load it with the LoRA we created previously.
As before, we quantize the model to reduce the necessary VRAM for
training:

from peft import AutoPeftModelForCausallM
from transformers import BitsAndBytesConfig, AutoTokenizer

4-bit quantization configuration - Q in QLoORA
bnb config = BitsAndBytesConfig(

load in 4bit=True, # Use 4-bit precision model loading
bnb 4bit quant type="nfd4", # Quantization type

bnb 4bit compute dtype="floatlé", # Compute dtype

bnb 4bit use double quant=True, # Apply nested quantization

Merge LoRA and base model
model = AutoPeftModelForCausallM.from pretrained(
"TinyLlama-1.1B-glora",
low cpu mem usage=True,
device map="auto",
quantization config=bnb config,

)

merged model = model.merge and unload()

Load LLaMA tokenizer

model name = "TinyLlama/TinyLlama-1.1lB-intermediate-step-1431k-
3Tll

tokenizer = AutoTokenizer.from pretrained(model name,

trust remote code=True)
tokenizer.pad token = "<PAD>"
tokenizer.padding side = "left"

Next, we use the same LoRA configuration as before to perform the DPO
training:

from import LoraConfig, prepare model for kbit training,
get peft model

Prepare LoRA configuration
peft config = LoraConfig(

lora alpha=32, # LoRA Scaling

lora dropout=0.1, # Dropout for LoRA Layers
r=64, # Rank

bias="none",

task type="CAUSAL LM",

target modules= # Layers to target
["k_proj", "gate_proj", "V_pfoj", "Up_proj", "q_pIOj",
"o proj", "down proj"]

)

prepare model for training
model = prepare model for kbit training(model)
model = get peft model (model, peft config)

Training Configuration

For the sake of simplicity, we will use the same training arguments as we did
before with one difference. Instead of running for a single epoch (which can
take up to two hours), we run for 200 steps instead for illustration purposes.
Moreover, we added the warmup ratio parameter, which increases the
learning rate from 0 to the 1learning rate value we set for the first 10%
of steps. By maintaining a small learning rate at the start (i.e., warmup
period), we allow the model to adjust to the data before applying larger
learning rates, therefore avoiding harmful divergence:

from trl import DPOConfig
output dir = "./results"

Training arguments

training arguments = DPOConfig (
output dir=output dir,
per device train batch size=2,
gradient accumulation steps=4,
optim="paged adamw 32bit",
learning rate=le-5,
lr scheduler type="cosine",
max steps=200,
logging steps=10,
fpl6=True,
gradient checkpointing=True,
warmup ratio=0.1

Training
Now that we have prepared all our models and parameters, we can start fine-
tuning our model:

from trl import DPOTrainer

Create DPO trainer

dpo trainer = DPOTrainer (
model,
args=training arguments,
train dataset=dpo dataset,
tokenizer=tokenizer,
peft config=peft config,
beta=0.1,
max prompt length=512,
max length=512,

Fine-tune model with DPO
dpo trainer.train()

Save adapter
dpo trainer.model.save pretrained("TinyLlama-1.1B-dpo-glora")

We have created a second adapter. To merge both adapters, we iteratively
merge the adapters with the base model:

from import PeftModel

Merge LoRA and base model

model = AutoPeftModelForCausallLM.from pretrained(
"TinyLlama-1.1B-glora",
low cpu mem usage=True,
device map="auto",

)

sft model = model.merge and unload()

Merge DPO LoRA and SFT model

dpo model = PeftModel.from pretrained(
sft model,
"TinyLlama-1.1B-dpo-glora",
device map="auto",

)

dpo model = dpo model.merge and unload()

This combination of SFT+DPO is a great way to first fine-tune your model to
perform basic chatting and then align its answers with human preference.
However, it does come at a cost since we need to perform two training loops
and potentially tweak the parameters in two processes.

Since the release of DPO, new methods of aligning preferences have been

developed. Of note is Odds Ratio Preference Optimization (ORPO), a

process that combines SFT and DPO into a single training process.?> It

removes the need to perform two separate training loops, further simplifying
the training process while allowing for the use of QLoRA.

Summary

In this chapter, we explored different steps of fine-tuning pretrained LLMs.
We performed fine-tuning by making use of parameter-efficient fine-tuning
(PEFT) through the low-rank adaptation (LoRA) technique. We explained
how LoRA can be extended through quantization, a technique for reducing

memory constraints when representing the parameters of the model and
adapters.

The fine-tuning process we explored has two steps. In the first step, we
performed supervised fine-tuning using instruction data on a pretrained LLM,
often called instruction tuning. This resulted in a model that has chat-like
behavior and could closely follow instructions.

In the second step, we further improved the model by fine-tuning it on
alignment data, data that represents what type of answers are preferred over
others. This process, referred to as preference tuning, distills human
preference to the previously instruction-tuned model.

Overall, this chapter has shown the two major steps of fine-tuning a
pretrained LLM and how that could lead to more accurate and informative
outputs.

1 Neil Houlsby et al. “Parameter-efficient transfer learning for NLP.” International Conference
on Machine Learning. PMLR, 2019.

2 Jonas Pfeiffer et al. “AdapterHub: A framework for adapting transformers.” arXiv preprint
arXiv:2007.07779 (2020).

3 Renrui Zhang et al. “Llama-adapter: Efficient fine-tuning of language models with zero-init
attention.” arXiv preprint arXiv:2303.16199 (2023).

4 Edward J. Hu et al. “LoR: Low-Rank Adaptation of large language models.” arXiv preprint
arXiv:2106.09685 (2021).

5 Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. “Intrinsic dimensionality explains the
effectiveness of language model fine-tuning.” arXiv preprint arXiv:2012.13255 (2020).

6 Tim Dettmers et al. “QLoRA: Efficient finetuning of quantized LLMs.” arXiv preprint
arXiv:2305.14314 (2023).

7 Ning Ding et al. “Enhancing chat language models by scaling high-quality instructional
conversations.” arXiv preprint arXiv:2305.14233 (2023).

8 Fred Jelinek et al. “Perplexity—a measure of the difficulty of speech recognition tasks.” The
Journal of the Acoustical Society of America 62.S1 (1977): S63.

9 Chin-Yew Lin. “ROUGE: A package for automatic evaluation of summaries.” 7ext
Summarization Branches Out, 74-81. 2004.

10 Kishore Papineni, et al. “Bleu: a method for automatic evaluation of machine translation.”
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics.
2002.

1 Tianyi Zhang et al. “BERTscore: Evaluating text generation with BERT.” arXiv preprint
arXiv:1904.09675 (2019).

12 Dan Hendrycks et al. “Measuring massive multitask language understanding.” arXiv preprint
arXiv:2009.03300 (2020).

13 Alex Wang et al. “GLUE: A multi-task benchmark and analysis platform for natural language
understanding.” arXiv preprint arXiv:1804.07461 (2018).

14 Stephanie Lin, Jacob Hilton, and Owain Evans. “TruthfulQA: Measuring how models mimic
human falsehoods.” arXiv preprint arXiv:2109.07958 (2021).

15 Karl Cobbe et al “Training verifiers to solve math word problems.” arXiv preprint
arXiv:2110.14168 (2021).

16 Roman Zellers et al. “HellaSwag: Can a machine really finish your sentence?” arXiv preprint
arXiv:1905.07830 (2019).

17" Mark Chen et al. “Evaluating large language models trained on code.” arXiv preprint
arXiv:2107.03374 (2021).

18 ianmin Zheng et al. “Judging LLM-as-a-judge with MT-Bench and Chatbot Arena.” Advances
in Neural Information Processing Systems 36 (2024).

19 Wei-Lin Chiang et al. “Chatbot Arena: An open platform for evaluating LLMs by human
preference.” arXiv preprint arXiv:2403.04132 (2024).

20 Mafilyn Strathern. ““Improving ratings’: audit in the British University system.” European
Review 5.3 (1997): 305-321.

21 John Schulman et al. “Proximal Policy Optimization algorithms.” arXiv preprint
arXiv:1707.06347 (2017).

22 Rafael Rafailov, et al. “Direct Preference Optimization: Your language model is secretly a
reward model.” arXiv preprint arXiv:2305.18290 (2023).

23 Jiwoo Hong, Noah Lee, and James Thorne, “ORPO: Monolithic preference optimization without
reference model”. arXiv preprint arXiv:2403.07691 (2024).

https://oreil.ly/iFv1l

Afterword

Thank you to all who joined us on this fascinating journey through the world
of large language models. We are grateful for your dedication to learning
about these powerful models that have revolutionized language processing.

Throughout this book, we have seen how LLMs work and how they can be
used to create a wide range of applications, from simple chatbots to more
complex systems like search engines. We have also explored various
methods for fine-tuning pretrained LLMs on specific tasks, including
classification, generation, and language representation. By mastering these
techniques, readers will be able to unlock the potential of LLMs and create
innovative solutions that can benefit from their capabilities. This knowledge
will enable readers to stay ahead of the curve and adapt to new
developments in the field.

As we come to the end of this book, we want to emphasize that our
exploration of LLMs is only just the beginning. There are many more exciting
developments on the horizon, and we encourage you to continue following
the advancements in the field. To help with this process, keep an eye out on
the repository of this book as we continue to add resources.

We hope that by reading this book, you gained a deeper understanding of how
LLMs can be used in various applications and how they have the potential to
transform industries.

With this book as your guide, we believe that you will be well-equipped to
navigate the exciting landscape of LLMs and make meaningful contributions
to this rapidly advancing field.

IndeXx

A

accuracy

confusion matrices, Using a Task-Specific Model
output verification, Output Verification
adaptive pretraining, Using TSDAE for Domain Adaptation
agents, Agents: Creating a System of LLMs-ReAct in LangChain
agentic RAG, Agentic RAG
ReAct in LangChain, ReAct in LangChain-ReAct in LangChain

step-by-step reasoning, The Driving Power Behind Agents: Step-by-
step Reasoning-The Driving Power Behind Agents: Step-by-step
Reasoning

Al (artificial intelligence)
accelerated development of, An Introduction to Large Language Models
defined, What Is Language AI?

ALBERT, Model Selection

align labels function, Preparing Data for Named-Entity Recognition

all-MiniLM-L6-v2 model, Supervised

all-mpnet-base-v2 model, Fine-Tuning for Few-Shot Classification

Annoy, Nearest neighbor search versus vector databases

Anthropic Claude, Proprietary, Private Models

APIs (application programming interfaces), Proprietary, Private Models

Cohere, API Keys, Dense retrieval example
external, ChatGPT for Classification
generating embeddings, Supervised Classification

OpenAl, API Keys, ChatGPT for Classification

artificial intelligence (see Al)
ArXiv, ArXiv’s Articles: Computation and Language

attention, Encoding and Decoding Context with Attention-Attention Is All
You Need

overview of, Encoding and Decoding Context with Attention-Encoding
and Decoding Context with Attention

Transformer architecture, Attention Is All You Need-Attention Is All
You Need

attention calculation, How attention 1s calculated-How attention 1s
calculated

attention layer, The Components of the Forward Pass, Inside the
Transformer Block, The attention layer at a glance, Summary

Flash Attention, Flash Attention

grouped-query attention, Multi-query and grouped-query attention-
Optimizing attention: From multi-head to multi-query to grouped
query

local attention, Local/sparse attention

multi-query attention, Multi-query and grouped-query attention-
Optimizing attention: From multi-head to multi-query to grouped

query

optimizing attention, Optimizing attention: From multi-head to
multi-query to grouped query

self-attention and relevance scoring, Self-attention: Relevance
scoring-Self-attention: Combining information

sparse attention, Local/sparse attention

attention heads, How attention is calculated-How attention is calculated,
Summary

audience, in text-generation prompts, The Potential Complexity of a Prompt
Augmented SBERT, Augmented SBERT-Augmented SBERT

autoregressive architecture, Encoding and Decoding Context with Attention,
Attention Is All You Need, Generative Models: Decoder-Only Models, The
Inputs and Outputs of a Trained Transformer LLM, Local/sparse attention

B

bag-of-words model, Representing Language as a Bag-of-Words-
Representing Language as a Bag-of-Words

embeddings, Types of Embeddings

topic modeling, From Text Clustering to Topic Modeling-BERTopic: A
Modular Topic Modeling Framework, Adding a Special Lego Block

benchmarks, in generative model evaluation, Benchmarks

BERT (Bidirectional Encoder Representations from Transformers),
Representation Models: Encoder-Only Models-Generative Models:
Decoder-Only Models

adoption by search engines, Semantic Search and Retrieval-Augmented
Generation

BERT-1l1ike models, Model Selection

comparing to other trained tokenizers, BERT base model (uncased)
(2018)

fine-tuning pretrained BERT models, Fine-Tuning a Pretrained BERT
Model-Fine-Tuning a Pretrained BERT Model

masked language modeling, Supervised

Transformer blocks versus, Local/sparse attention

BERTopic, BERTopic: A Modular Topic Modeling Framework-BERTopic:
A Modular Topic Modeling Framework

algorithmic variants, BERTopic: A Modular Topic Modeling
Framework

modularity of, BERTopic: A Modular Topic Modeling Framework

representation blocks, Adding a Special Lego Block-The Text
Generation Lego Block

KeyBERTInspired, KeyBERTInspired
maximal marginal relevance, Maximal marginal relevance

text generation, The Text Generation Lego Block-The Text
Generation Lego Block

BERTScore, Word-Level Metrics

bias and fairness, Responsible LLM Development and Usage
Bidirectional Encoder Representations from Transformers (see BERT)
bitsandbytes package, Model Quantization

BLEU, Word-Level Metrics

BLIP-2 (Bootstrapping Language-Image Pre-training for Unified Vision-
Language Understanding and Generation 2)

chat-based prompting, Use Case 2: Multimodal Chat-Based Prompting-
Use Case 2: Multimodal Chat-Based Prompting

image captioning, Use Case 1: Image Captioning
preprocessing text, Preprocessing text

Q-Former, BLIP-2: Bridging the Modality Gap-BLIP-2: Bridging the
Modality Gap

BM25 algorithm, Search the index

BPE (byte pair encoding), How Does the Tokenizer Break Down Text?,
Tokenization methods

byte tokens, Word Versus Subword Versus Character Versus Byte Tokens

C

c-TF-IDF, BERTopic: A Modular Topic Modeling Framework,
KeyBERTInspired, The Text Generation Lego Block

capitalization, Tokenizer parameters
captioning, Use Case 1: Image Captioning-Use Case 1: Image Captioning
centroid-based algorithms, Cluster the Reduced Embeddings

chains, Chain Prompting: Breaking up the Problem-Chain Prompting:
Breaking up the Problem, Chains: Extending the Capabilities of LLMs-A
Chain with Multiple Prompts

chain-of-thought, Chain-of-Thought: Think Before Answering-Chain-of-
Thought: Think Before Answering

chaining single prompt, A Single Link in the Chain: Prompt Template-A
Single Link in the Chain: Prompt Template

sequential chaining of multiple prompts, A Chain with Multiple
Prompts-A Chain with Multiple Prompts

character tokens, Word Versus Subword Versus Character Versus Byte
Tokens

chat tokens, Phi-3 (and Llama 2)

chat-based prompting, Use Case 2: Multimodal Chat-Based Prompting-Use
Case 2: Multimodal Chat-Based Prompting

Chatbot Arena, Human Evaluation

ChatGPT, Model I/O: Loading Quantized Models with LangChain, Making
Text Generation Models Multimodal, Reward model training step,
Templating Alignment Data

release of, An Introduction to Large Language Models

text classification, ChatGPT for Classification-ChatGPT for
Classification

chatgpt generation function, ChatGPT for Classification
chat history input variable, Conversation Buffer

classification reports, Using a Task-Specific Model-Using a Task-Specific
Model

classification step, embedding model, Supervised Classification

CLIP, CLIP: Connecting Text and Images-How Can CLIP Generate
Multimodal Embeddings?

connecting text and images, CLIP: Connecting Text and Images

generating multimodal embeddings, How Can CLIP Generate
Multimodal Embeddings?-How Can CLIP Generate Multimodal
Embeddings?

OpenCLIP, OpenCLIP-OpenCLIP

closed-source LLMs, Proprietary, Private Models

[CLS] token, Representation Models: Encoder-Only Models, BERT base
model (uncased) (2018), Creating Contextualized Word Embeddings with
Language Models, OpenCLIP, SBERT, Transformer-Based Sequential
Denoising Auto-Encoder, Preparing Data for Named-Entity Recognition

cluster model, Cluster the Reduced Embeddings-Cluster the Reduced
Embeddings

clustering (see text clustering)
CNNs (convolutional neural networks), Transformers for Vision

Cohere, Example: Grounded Generation with an LLM API
Command R+, Open Models, Agentic RAG

creating accounts, API Keys, Dense retrieval example
generating embeddings, Supervised Classification
query rewriting, Query rewriting
Rerank endpoint, Reranking example
completion models, Generative Models: Decoder-Only Models
compute metrics function, Preparing Data for Named-Entity Recognition
confusion matrices, Using a Task-Specific Model
CoNLL-2003 dataset, Preparing Data for Named-Entity Recognition

constrained sampling, Grammar: Constrained Sampling-Grammar:
Constrained Sampling

context

attention and, The attention layer at a glance
prompt engineering, The Potential Complexity of a Prompt

training datasets, The Word2vec Algorithm and Contrastive Training

context length

completion models, Generative Models: Decoder-Only Models

token processing limits, Parallel Token Processing and Context Size

context window, in completion models, Generative Models: Decoder-Only

Models

contrastive learning

text embedding models, What Is Contrastive Learning?-What Is
Contrastive Learning?, Generating Contrastive Examples

word2vec algorithm and, The Word2vec Algorithm and Contrastive

Training-The Word2vec Algorithm and Contrastive Training
Contrastive Tension (CT), Unsupervised Learning

conversation buffer memory, Conversation Summary

overview of, Conversation Buffer-Conversation Buffer

windowed, Windowed Conversation Buffer-Windowed Conversation

Buffer

conversation summary memory, Conversation Summary-Conversation
Summary

convert ids to tokens function, OpenCLIP
convolutional neural networks (CNNs), Transformers for Vision

cosine similarity, What If We Do Not Have Labeled Data?, Cosine
similarity-Cosine similarity

CountVectorizer, BERTopic: A Modular Topic Modeling Framework
cross-encoders, How reranking models work

cross-entropy loss, Multiple negatives ranking loss

CT (Contrastive Tension), Unsupervised Learning

D

data outliers, Cluster the Reduced Embeddings

DataCollator class, Fine-Tuning a Pretrained BERT Model, Continued
Pretraining with Masked Language Modeling

datamapplot package, The Text Generation Lego Block

DBSCAN (Density-Based Spatial Clustering), Cluster the Reduced
Embeddings

DeBERTa, Creating Contextualized Word Embeddings with Language
Models, Model Selection

decoder-only models (see generative models)

decoding strategy, Choosing a Single Token from the Probability Distribution

(Sampling/Decoding)-Choosing a Single Token from the Probability
Distribution (Sampling/Decoding), Summary

dense retrieval, Overview of Semantic Search and RAG, Dense Retrieval-

Fine-tuning embedding models for dense retrieval

caveats of, Caveats of dense retrieval

example of, Dense retrieval example-Search the index

fine-tuning embedding models for, Fine-tuning embedding models for

dense retrieval

nearest neighbor search versus vector databases, Nearest neighbor
search versus vector databases

text chunking, Chunking long texts-Multiple vectors per document

density-based algorithms, Cluster the Reduced Embeddings

Density-Based Spatial Clustering (DBSCAN), Cluster the Reduced
Embeddings

dimensionality reduction model, Reducing the Dimensionality of
Embeddings-Reducing the Dimensionality of Embeddings

DistilBERT, Model Selection, Using a Task-Specific Model
domain adaptation, Using TSDAE for Domain Adaptation
do_sample parameter, Generating Your First Text
DPO (Direct Preference Optimization), Training No Reward Model-Training
fine-tuning, Training
model quantization, Model Quantization
templating alignment data, Templating Alignment Data
training configuration, Training Configuration

DSPy, Advanced Text Generation Techniques and Tools

E

easy negatives, Multiple negatives ranking loss
Elo rating system, Human Evaluation

embeddings, Better Representations with Dense Vector Embeddings-Types of
Embeddings, Tokens and Embeddings, Token Embeddings-Training a Song
Embedding Model

dense retrieval, Overview of Semantic Search and RAG, Dense
Retrieval-Fine-tuning embedding models for dense retrieval

embedding models, defined, Text Classification with Representation
Models, Embedding Models

multimodality, Multimodal Embedding Models-OpenCLIP

CLIP, CLIP: Connecting Text and Images-How Can CLIP Generate
Multimodal Embeddings?

OpenCLIP, OpenCLIP-OpenCLIP

overview of, Better Representations with Dense Vector Embeddings-
Better Representations with Dense Vector Embeddings, Embedding
Models-Embedding Models

positional embeddings, Positional Embeddings (RoPE)-Positional
Embeddings (RoPE)

recommendation systems, Embeddings for Recommendation Systems-
Training a Song Embedding Model

text classification tasks that leverage, Classification Tasks That
Leverage Embeddings-What If We Do Not Have Labeled Data?

supervised classification, Supervised Classification-Supervised
Classification

zero-shot classification, What If We Do Not Have Labeled Data?-
What If We Do Not Have Labeled Data?

text clustering pipeline, A Common Pipeline for Text Clustering-
Inspecting the Clusters

cluster model, Cluster the Reduced Embeddings-Cluster the
Reduced Embeddings

dimensionality reduction model, Reducing the Dimensionality of
Embeddings-Reducing the Dimensionality of Embeddings

embedding model, Embedding Documents
inspecting clusters, Inspecting the Clusters-Inspecting the Clusters

text embedding models, Text Embeddings (for Sentences and Whole
Documents)-Text Embeddings (for Sentences and Whole Documents),

Creating Text Embedding Models-Summary

contrastive learning, What Is Contrastive Learning?-What Is
Contrastive Learning?

creating, Creating an Embedding Model-Multiple negatives
ranking loss

fine-tuning, Fine-Tuning an Embedding Model-Augmented SBERT
SBERT, SBERT-SBERT
unsupervised learning, Unsupervised Learning

token embeddings, Token Embeddings-Creating Contextualized Word
Embeddings with Language Models

creating contextualized word embeddings, Creating Contextualized
Word Embeddings with Language Models-Creating Contextualized
Word Embeddings with Language Models

tokenizer’s vocabulary and, A Language Model Holds Embeddings
for the Vocabulary of Its Tokenizer

types of, Types of Embeddings

word embeddings, Word Embeddings Beyond LLMs-The Word2vec
Algorithm and Contrastive Training

pretrained, Using pretrained Word Embeddings

word2vec algorithm and contrastive training, The Word2vec
Algorithm and Contrastive Training-The Word2vec Algorithm and
Contrastive Training

encoder-decoder models, Using the Text-to-Text Transfer Transformer
encoder-only models (see representation models)

ethics, validating output, Output Verification

exponential backoff, ChatGPT for Classification

F

F1 score, confusion matrices, Using a Task-Specific Model

FAISS, Nearest neighbor search versus vector databases

Falcon, Choosing a Text Generation Model

feature extraction step, embedding model, Supervised Classification
feedforward layer, Inside the Transformer Block

feedforward neural networks, Attention Is All You Need, The feedforward
neural network at a glance, Summary, Fine-Tuning a Pretrained BERT Model

few-shot classification, Few-Shot Classification-Fine-Tuning for Few-Shot
Classification

fine-tuning for classification, Fine-Tuning for Few-Shot Classification-
Fine-Tuning for Few-Shot Classification

SetFit, SetFit: Efficient Fine-Tuning with Few Training Examples-
SetFit: Efficient Fine-Tuning with Few Training Examples

few-shot prompting, In-Context Learning: Providing Examples-In-Context
Learning: Providing Examples, Providing Examples-Providing Examples

find_topics() function, BERTopic, BERTopic: A Modular Topic Modeling
Framework

fine-tuning

embedding models for dense retrieval, Fine-tuning embedding models
for dense retrieval

generative models, Output Verification, Fine-Tuning Generation
Models-Summary

evaluating, Evaluating Generative Models-Human Evaluation

preference tuning, The Three LLM Training Steps: Pretraining,
Supervised Fine-Tuning, and Preference Tuning, Preference-Tuning
/ Alignment / RLHF-Training

supervised fine-tuning, The Three LLM Training Steps:
Pretraining, Supervised Fine-Tuning, and Preference Tuning-Merge
Weights

training steps, The Three LLM Training Steps: Pretraining,
Supervised Fine-Tuning, and Preference Tuning-The Three LLM
Training Steps: Pretraining, Supervised Fine-Tuning, and
Preference Tuning

overview of, The Training Paradigm of Large Language Models

representation models, Fine-Tuning Representation Models for
Classification-Summary

few-shot classification, Few-Shot Classification-Fine-Tuning for
Few-Shot Classification

masked language modeling, Continued Pretraining with Masked
Language Modeling-Continued Pretraining with Masked Language
Modeling

named-entity recognition, Named-Entity Recognition-Fine-Tuning
for Named-Entity Recognition

supervised classification, Supervised Classification-Freezing
Layers

T5 model, Using the Text-to-Text Transfer Transformer

text embedding models, Fine-Tuning an Embedding Model-Augmented
SBERT

Augmented SBERT, Augmented SBERT-Augmented SBERT

supervised, Supervised-Supervised

Flan-T5 model, Flan-T5 (2022), Using the Text-to-Text Transfer
Transformer-Using the Text-to-Text Transfer Transformer

Flash Attention, Flash Attention, Summary

forward pass, Summary

components of, The Components of the Forward Pass-The Components
of the Forward Pass

defined, The Inputs and Outputs of a Trained Transformer LLM
foundation models, The Year of Generative Al
fp16 parameter, Train Model
freezing layers, Train Model, Freezing Layers-Freezing Layers

frozen (nontrainable) models, Text Classification with Representation
Models, Supervised Classification, Supervised Classification

G

G symbol, Preprocessing text
Galactica, Galactica

General Language Understanding Evaluation (GLUE) benchmark, Generating
Contrastive Examples, In-Depth Evaluation, Adapters, Benchmarks

generated text variable, Use Case 1: Image Captioning, Use Case 1: Image
Captioning

generation_output variable, Downloading and Running an LLM

generative models, Generative Models: Decoder-Only Models-Generative
Models: Decoder-Only Models

evaluating, Evaluating Generative Models-Human Evaluation

automated evaluation, Automated Evaluation
benchmarks, Benchmarks

human evaluation, Human Evaluation
leaderboards, Leaderboards

word-level metrics, Word-Level Metrics

fine-tuning, Fine-Tuning Generation Models-Summary

evaluation, Evaluating Generative Models-Human Evaluation

preference tuning, The Three LLM Training Steps: Pretraining,
Supervised Fine-Tuning, and Preference Tuning, Preference-Tuning
/ Alignment / RLHF-Training

supervised fine-tuning, The Three LLM Training Steps:
Pretraining, Supervised Fine-Tuning, and Preference Tuning-Merge
Weights

training steps, The Three LLM Training Steps: Pretraining,
Supervised Fine-Tuning, and Preference Tuning-The Three LLM
Training Steps: Pretraining, Supervised Fine-Tuning, and
Preference Tuning

reasoning, Reasoning with Generative Models-Tree-of-Thought:
Exploring Intermediate Steps

self-consistency, Self-Consistency: Sampling Outputs

tree-of-thought, Tree-of-Thought: Exploring Intermediate Steps-
Tree-of-Thought: Exploring Intermediate Steps

representation models versus, Representation Models: Encoder-Only
Models

text classification, Text Classification with Generative Models-
ChatGPT for Classification

ChatGPT, ChatGPT for Classification-ChatGPT for Classification

T5, Using the Text-to-Text Transfer Transformer-Using the Text-to-
Text Transfer Transformer

generative pre-trained transformers (see GPTs)

Generative Pseudo-Labeling (GPL), Unsupervised Learning

Gensim library, Using pretrained Word Embeddings

get topic function, BERTopic: A Modular Topic Modeling Framework

get topic_info() method, BERTopic: A Modular Topic Modeling Framework

GGUF model, Grammar: Constrained Sampling, Model I/O: Loading
Quantized Models with LangChain

GitHub, Using Code Examples
GloVe, SBERT

GLUE (General Language Understanding Evaluation) benchmark, Generating
Contrastive Examples, In-Depth Evaluation, Adapters, Benchmarks

gold datasets, Augmented SBERT
Goodhart’s Law, Human Evaluation

Google Colab, Prerequisites, Hardware and Software Requirements, Limited
Resources Are All You Need, Generating Your First Text, Speeding Up
Generation by Caching Keys and Values, Training

Google Gemini, Retrieval-Augmented Generation (RAG)
Google Search, Semantic Search and Retrieval-Augmented Generation
GPL (Generative Pseudo-Labeling), Unsupervised Learning

GPT2Tokenizer, Preprocessing text

GPTs (generative pre-trained transformers), Generative Models: Decoder-
Only Models, Prompt Engineering

(see also text generation)
GPT-1, Generative Models: Decoder-Only Models

GPT-2, An Introduction to Large Language Models, Generative Models:
Decoder-Only Models, Word Versus Subword Versus Character Versus
Byte Tokens, GPT-2 (2019)

GPT-3, Generative Models: Decoder-Only Models, The feedforward
neural network at a glance, Local/sparse attention, Low-Rank
Adaptation (LoRA)

GPT-3.5, The Year of Generative Al, ChatGPT for Classification, A
Single Link in the Chain: Prompt Template, ReAct in LangChain

GPT-4, The Year of Generative Al, Proprietary, Private Models, How
Tokenizers Prepare the Inputs to the Language Model, GPT-4 (2023),
The feedforward neural network at a glance

GPUs
Flash Attention, Flash Attention

requirements, Hardware and Software Requirements, Limited
Resources Are All You Need

SRAM and HBM, Flash Attention

grammar, Output Verification, Grammar: Constrained Sampling-Grammar:
Constrained Sampling

greedy decoding, Choosing a Single Token from the Probability Distribution
(Sampling/Decoding)

grounded generation, From Search to RAG-Example: Grounded Generation
with an LLM API

grouped-query attention, Multi-query and grouped-query attention-Optimizing
attention: From multi-head to multi-query to grouped query, Summary

GSMB8k, Benchmarks
Guardrails, Grammar: Constrained Sampling

Guidance, Grammar: Constrained Sampling

H

hallucination

avoiding in in instruction-based prompting, Instruction-Based Prompting

text generation models, Semantic Search and Retrieval-Augmented
Generation

hard negatives, Multiple negatives ranking loss

harmful content, generating, Responsible LLM Development and Usage
Haystack, Advanced Text Generation Techniques and Tools

HBM (high bandwidth memory), Flash Attention

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications
with Noise), Cluster the Reduced Embeddings, BERTopic: A Modular Topic
Modeling Framework

HellaSwag, Benchmarks
high bandwidth memory (HBM), Flash Attention

Hugging Face, Generating Your First Text, The Sentiment of Movie Reviews

creating accounts, API Keys
evaluate package, Preparing Data for Named-Entity Recognition

tokenizers, The domain of the data

human evaluation, Inspecting the Clusters, Human Evaluation
HumanEval, Benchmarks

hybrid search, Caveats of dense retrieval, Reranking example

Idefics 2, BLIP-2: Bridging the Modality Gap
images (see multimodality)

in-context learning, In-Context Learning: Providing Examples-In-Context
Learning: Providing Examples

indexes, Building the search index
InfoNCE, Multiple negatives ranking loss
input_ids variable, Downloading and Running an LLM

instruction-based prompting, Instruction-Based Prompting-Instruction-Based
Prompting

intellectual property, Responsible LLM Development and Usage
intuition-first philosophy, An Intuition-First Philosophy

invoke function, A Single Link in the Chain: Prompt Template

J

Jupyter, Speeding Up Generation by Caching Keys and Values

K

k-means algorithm, Cluster the Reduced Embeddings, BERTopic: A Modular
Topic Modeling Framework, BERTopic: A Modular Topic Modeling
Framework

KeyBERTInspired, KeyBERTInspired, Maximal marginal relevance
keyword search
reranking, Reranking example-Reranking example

verifying semantic search with, Search the index

kv (keys and values) cache, Speeding Up Generation by Caching Keys and
Values-Speeding Up Generation by Caching Keys and Values

L

LangChain, Advanced Text Generation Techniques and Tools

(see also chains)

loading quantized models with, Model I/O: Loading Quantized Models
with LangChain-Model I/O: Loading Quantized Models with LangChain

ReAct in, ReAct in LangChain-ReAct in LangChain

Language Al (Language Artificial Intelligence), An Introduction to Large
Language Models-The Year of Generative Al

defining, What Is Language Al?

recent history of, A Recent History of Language AI-The Year of
Generative Al

attention, Encoding and Decoding Context with Attention-Attention
Is All You Need

bag-of-words model, Representing Language as a Bag-of-Words-
Representing Language as a Bag-of-Words

embeddings, Better Representations with Dense Vector
Embeddings-Types of Embeddings

generative models, Generative Models: Decoder-Only Models-
Generative Models: Decoder-Only Models

representation models, Representation Models: Encoder-Only
Models-Representation Models: Encoder-Only Models

Year of Generative Al, The Year of Generative AI-The Year of
Generative Al

language modeling, The Three LLM Training Steps: Pretraining, Supervised
Fine-Tuning, and Preference Tuning

language modeling head (LM head), The Components of the Forward Pass-
The Components of the Forward Pass

large language models (see LLMs)

latent Dirichlet allocation, From Text Clustering to Topic Modeling
LayerNorm, The Transformer Block

leaderboards, in generative model evaluation, Leaderboards
learning rate parameter, Training Configuration

Llama, Choosing a Text Generation Model

Llama 2, API Keys, Limited Resources Are All You Need, Phi-3 (and Llama
2), Multi-query and grouped-query attention, Choosing a Text Generation
Model, Making Text Generation Models Multimodal

llama-cpp-python library, Grammar: Constrained Sampling
LLaVA, BLIP-2: Bridging the Modality Gap
LLM-as-a-judge, RAG Evaluation

LLMs (large language models), An Introduction to Large Language Models-
Summary

code examples and exercises, Using Code Examples

embeddings, Tokens and Embeddings, Token Embeddings-Training a
Song Embedding Model

recommendation systems, Embeddings for Recommendation
Systems-Training a Song Embedding Model

text embeddings, Text Embeddings (for Sentences and Whole
Documents)-Text Embeddings (for Sentences and Whole
Documents)

token embeddings, Token Embeddings-Creating Contextualized
Word Embeddings with Language Models

word embeddings, Word Embeddings Beyond LLMs-The
Word2vec Algorithm and Contrastive Training

fine-tuning generative models, Fine-Tuning Generation Models-
Summary

evaluation, Evaluating Generative Models-Human Evaluation

preference tuning, The Three LLM Training Steps: Pretraining,
Supervised Fine-Tuning, and Preference Tuning, Preference-Tuning
/ Alignment / RLHF-Training

supervised fine-tuning, The Three LLM Training Steps:

Pretraining, Supervised Fine-Tuning, and Preference Tuning-Merge
Weights

training steps, The Three LLM Training Steps: Pretraining,
Supervised Fine-Tuning, and Preference Tuning-The Three LLM
Training Steps: Pretraining, Supervised Fine-Tuning, and
Preference Tuning

fine-tuning representation models, Fine-Tuning Representation Models
for Classification-Summary

few-shot classification, Few-Shot Classification-Fine-Tuning for
Few-Shot Classification

masked language modeling, Continued Pretraining with Masked
Language Modeling-Continued Pretraining with Masked Language
Modeling

named-entity recognition, Named-Entity Recognition-Fine-Tuning
for Named-Entity Recognition

supervised classification, Supervised Classification-Freezing
Layers

generating text, Generating Your First Text-Generating Your First Text

generative models, Generative Models: Decoder-Only Models-
Generative Models: Decoder-Only Models

hardware and software requirements, Hardware and Software
Requirements, Limited Resources Are All You Need

high-level view, How Tokenizers Prepare the Inputs to the Language
Model

history of Language Al, A Recent History of Language Al-The Year of
Generative Al

interfacing with, Interfacing with Large Language Models-Open Source
Frameworks

closed-source models, Proprietary, Private Models
open models, Open Models-Open Source Frameworks
intuition-first philosophy, An Intuition-First Philosophy

moving definition of, The Moving Definition of a “Large Language
Model”

multimodality, Multimodal Large Language Models-Summary

embedding models, Multimodal Embedding Models-OpenCLIP

text generation models, Making Text Generation Models
Multimodal-Use Case 2: Multimodal Chat-Based Prompting

Vision Transformer, Transformers for Vision-Transformers for
Vision

prompt engineering, Prompt Engineering-Summary

chain prompting, Chain Prompting: Breaking up the Problem-Chain
Prompting: Breaking up the Problem

in-context learning, In-Context Learning: Providing Examples-In-
Context Learning: Providing Examples

instruction-based prompting, Instruction-Based Prompting-
Instruction-Based Prompting

output verification, Output Verification-Grammar: Constrained
Sampling

potential complexity of prompts, The Potential Complexity of a
Prompt-The Potential Complexity of a Prompt

prompt components, The Basic Ingredients of a Prompt-The Basic
Ingredients of a Prompt

reasoning with generative models, Reasoning with Generative
Models-Tree-of-Thought: Exploring Intermediate Steps

text generation models, Using Text Generation Models-top p

representation models, Representation Models: Encoder-Only Models-
Representation Models: Encoder-Only Models

responsible development and usage of, Responsible LLM Development
and Usage

retrieval-augmented generation, Overview of Semantic Search and
RAG, Retrieval-Augmented Generation (RAG)-RAG Evaluation

agentic RAG, Agentic RAG
converting search system to, From Search to RAG
evaluating results, RAG Evaluation

grounded generation, Example: Grounded Generation with an LLM
API

multi-hop RAG, Multi-hop RAG
multi-query RAG, Multi-query RAG
query rewriting, Query rewriting
query routing, Query routing

with local models, Example: RAG with Local Models, The RAG
prompt

semantic search, Semantic Search and Retrieval-Augmented
Generation-Scoring across multiple queries with mean average
precision

dense retrieval, Overview of Semantic Search and RAG, Dense
Retrieval-Fine-tuning embedding models for dense retrieval

reranking, Overview of Semantic Search and RAG, Reranking-
How reranking models work

retrieval evaluation metrics, Retrieval Evaluation Metrics-Scoring
across multiple queries with mean average precision

text classification, Text Classification-Summary

with generative models, Text Classification with Generative
Models-ChatGPT for Classification

movie reviews, The Sentiment of Movie Reviews, The Sentiment
of Movie Reviews

with representation models, Text Classification with
Representation Models-What If We Do Not Have Labeled Data?

text clustering, Text Clustering and Topic Modeling-Inspecting the
Clusters

text embedding models, Creating Text Embedding Models-Summary

contrastive learning, What Is Contrastive Learning?-What Is
Contrastive Learning?

creating, Creating an Embedding Model-Multiple negatives
ranking loss

fine-tuning, Fine-Tuning an Embedding Model-Augmented SBERT
SBERT, SBERT-SBERT

unsupervised learning, Unsupervised Learning

text generation, Advanced Text Generation Techniques and Tools-
Summary

agents, Agents: Creating a System of LLMs-ReAct in LangChain

chains, Chains: Extending the Capabilities of LLMs-A Chain with
Multiple Prompts

memory of conversations, Memory: Helping LLMs to Remember
Conversations-Conversation Summary

model I/O, Model I/O: Loading Quantized Models with
LangChain-Model I/O: Loading Quantized Models with LangChain

tokens and tokenizers, Tokens and Embeddings-Creating Contextualized
Word Embeddings with Language Models

comparing trained tokenizers, Comparing Trained LLM
Tokenizers-Phi-3 (and Llama 2)

downloading and running LLMs, Downloading and Running an
LLM-Downloading and Running an LLM

input preparation, How Tokenizers Prepare the Inputs to the
Language Model

text breakdown, How Does the Tokenizer Break Down Text?

token embeddings, Token Embeddings-Creating Contextualized
Word Embeddings with Language Models

tokenization schemes, Word Versus Subword Versus Character
Versus Byte Tokens-Word Versus Subword Versus Character
Versus Byte Tokens

tokenizer properties, Tokenizer Properties-The domain of the data

topic modeling, Text Clustering and Topic Modeling, From Text
Clustering to Topic Modeling-The Text Generation Lego Block

training paradigm of, The Training Paradigm of Large Language
Models-The Training Paradigm of Large Language Models

Transformer architecture, Looking Inside Large Language Models-
Summary

decoding strategy, Choosing a Single Token from the Probability
Distribution (Sampling/Decoding)-Choosing a Single Token from
the Probability Distribution (Sampling/Decoding)

forward pass components, The Components of the Forward Pass-
The Components of the Forward Pass

inputs and outputs of, The Inputs and Outputs of a Trained
Transformer LLM-The Inputs and Outputs of a Trained
Transformer LLM

keys and values cache, Speeding Up Generation by Caching Keys
and Values-Speeding Up Generation by Caching Keys and Values

parallel token processing and context size, Parallel Token
Processing and Context Size-Parallel Token Processing and
Context Size

recent improvements to, Recent Improvements to the Transformer
Architecture-Other Architectural Experiments and Improvements

Transformer blocks, Inside the Transformer Block-Self-attention:
Combining information

utility of, Large Language Model Applications: What Makes Them So
Useful?

LM head (language modeling head), The Components of the Forward Pass-
The Components of the Forward Pass

LMQL, Grammar: Constrained Sampling
local attention, Local/sparse attention

LoRA (low-rank adaptation), Low-Rank Adaptation (LoRA)-Low-Rank
Adaptation (LoRA), Model Quantization

(see also QLoRA)
lora alpha parameter, LoRA Configuration

loss functions, Loss Functions-Multiple negatives ranking loss

cosine similarity loss, Cosine similarity-Cosine similarity

multiple negatives ranking loss, Multiple negatives ranking loss-
Multiple negatives ranking loss

Ir_scheduler type parameter, Training Configuration

Mamba, The Year of Generative Al

MAP (mean average precision), Retrieval Evaluation Metrics-Scoring
across multiple queries with mean average precision

MarginMSE loss, Loss Functions

masked language modeling (MLM), Continued Pretraining with Masked
Language Modeling-Continued Pretraining with Masked Language Modeling

mask token [MASK], BERT base model (uncased) (2018)

Massive Text Embedding Benchmark (MTEB), Model Selection, Embedding
Documents, Loading the embedding model, In-Depth Evaluation

matplotlib library, Inspecting the Clusters

maximal marginal relevance (MMR), Maximal marginal relevance
max_new_tokens parameter, Generating Your First Text
McCarthy, John, What Is Language AI?

mean average precision (MAP)

memory of conversations, Memory: Helping LLMs to Remember
Conversations-Conversation Summary

conversation buffer, Conversation Buffer-Conversation Buffer
conversation summary, Conversation Summary-Conversation Summary

windowed conversation buffer, Windowed Conversation Buffer-
Windowed Conversation Buffer

Meta Llama model, Open Models

Microsoft Bing, Semantic Search and Retrieval-Augmented Generation,
Reranking

Microsoft Bing Al, Retrieval-Augmented Generation (RAG)

Microsoft Phi model, Open Models

microsoft/mpnet-base model, Train Model

min_cluster_size parameter, Cluster the Reduced Embeddings
min_dist parameter, Reducing the Dimensionality of Embeddings
MIRACL, Reranking example

Mistral, Open Models, Choosing a Text Generation Model, BLIP-2: Bridging
the Modality Gap

MILM (masked language modeling), Continued Pretraining with Masked
Language Modeling-Continued Pretraining with Masked Language Modeling

MMLU, Benchmarks, Leaderboards
MMR (maximal marginal relevance), Maximal marginal relevance

MNLI (Multi-Genre Natural Language Inference) corpus, Generating
Contrastive Examples, Multiple negatives ranking loss

MNR (multiple negatives ranking) loss, Multiple negatives ranking loss-
Multiple negatives ranking loss

model I/O, Model I/O: Loading Quantized Models with LangChain-Model
I/O: Loading Quantized Models with LangChain

monoBERT, How reranking models work

MTEB (Massive Text Embedding Benchmark), Model Selection, Embedding
Documents, Loading the embedding model, In-Depth Evaluation

Multi-Genre Natural Language Inference (MNLI) corpus, Generating
Contrastive Examples, Multiple negatives ranking loss

multi-hop RAG, Multi-hop RAG

multi-query attention, Multi-query and grouped-query attention-Optimizing
attention: From multi-head to multi-query to grouped query

multi-query RAG, Multi-query RAG

multilevel perceptrons, The Components of the Forward Pass
(see also feedforward neural networks)

multimodality, Multimodal Large Language Models-Summary
defined, Multimodal Large Language Models

embedding models, Multimodal Embedding Models-OpenCLIP

CLIP, CLIP: Connecting Text and Images-How Can CLIP Generate
Multimodal Embeddings?

OpenCLIP, OpenCLIP-OpenCLIP

text generation models, Making Text Generation Models Multimodal-
Use Case 2: Multimodal Chat-Based Prompting

BLIP-2, BLIP-2: Bridging the Modality Gap-BLIP-2: Bridging the
Modality Gap

chat-based prompting, Use Case 2: Multimodal Chat-Based
Prompting-Use Case 2: Multimodal Chat-Based Prompting

image captioning, Use Case 1: Image Captioning-Use Case 1:
Image Captioning

preprocessing images, Preprocessing images
preprocessing text, Preprocessing text
Vision Transformer, Transformers for Vision-Transformers for Vision

multiple negatives ranking (MNR) loss, Multiple negatives ranking loss-
Multiple negatives ranking loss

N

named-entity recognition (see NER)

natural language inference (NLI), Generating Contrastive Examples

natural language processing (NLP), What Is Language Al?, What Is
Contrastive Learning?

nDCG (normalized discounted cumulative gain), Reranking example, Scoring
across multiple queries with mean average precision

nearest neighbor search

pretrained word embeddings, Using pretrained Word Embeddings

recommendation system embeddings, Recommending Songs by
Embeddings

vector databases versus, Nearest neighbor search versus vector
databases

negative sampling, The Word2vec Algorithm and Contrastive Training

NER (named-entity recognition), Named-Entity Recognition-Fine-Tuning for
Named-Entity Recognition, Adapters

fine-tuning for, Fine-Tuning for Named-Entity Recognition

preparing data for, Preparing Data for Named-Entity Recognition-
Preparing Data for Named-Entity Recognition

neural networks, Better Representations with Dense Vector Embeddings
NLI (natural language inference), Generating Contrastive Examples

NLP (natural language processing), What Is Language AI?, What Is
Contrastive Learning?

noise-contrastive estimation, The Word2vec Algorithm and Contrastive
Training

nonplayable characters (NPCs), What Is Language AI?

nontrainable (frozen) models, Text Classification with Representation
Models, Supervised Classification, Supervised Classification

normalization, Transformer block, The Transformer Block

normalized discounted cumulative gain (nDCQG), Reranking example, Scoring

across multiple queries with mean average precision

NPCs (nonplayable characters), What Is Language AI?
NTXentLoss, Multiple negatives ranking loss

nucleus sampling, top p

NumPy, Nearest neighbor search versus vector databases
num_train_epochs parameter, Train Model, Training Configuration

NVIDIA GPUs, Hardware and Software Requirements, Generating Your
First Text

n_components parameter, Reducing the Dimensionality of Embeddings

(0

Odds Ratio Preference Optimization (ORPO), Training
one-shot prompting, In-Context Learning: Providing Examples
chain-of-thought versus, Chain-of-Thought: Think Before Answering

in-context learning, In-Context Learning: Providing Examples

Open LLM Leaderboard, Model 1/O: Loading Quantized Models with
LangChain, Leaderboards

open-source LLMs, Open Models-Open Source Frameworks

OpenAl, ChatGPT for Classification
(see also ChatGPT; GPTs)

creating accounts, API Keys, ChatGPT for Classification
generating embeddings, Supervised Classification
OpenCLIP, OpenCLIP-OpenCLIP
optim parameter, Training Configuration
ORPO (0Odds Ratio Preference Optimization), Training

output verification, Output Verification-Grammar: Constrained Sampling

constrained sampling, Grammar: Constrained Sampling-Grammar:
Constrained Sampling

providing examples, Providing Examples

P

pad_token [PAD], BERT base model (uncased) (2018)
parallel processing, Attention is all you need, Summary
parallel prompts, Chain Prompting: Breaking up the Problem

PCA (Principal Component Analysis), Reducing the Dimensionality of
Embeddings

PEFT (parameter-efficient fine-tuning), Parameter-Efficient Fine-Tuning
(PEFT)-Compressing the model for (more) efficient training

adapters, Adapters-Adapters

compression, Compressing the model for (more) efficient training-
Compressing the model for (more) efficient training

LoRA, Low-Rank Adaptation (LoRA)-Low-Rank Adaptation (LoRA)
peft library, LoRA Configuration

peft config parameter, LoRA Configuration

Perplexity, Retrieval-Augmented Generation (RAG)
persona, in text-generation prompts, The Potential Complexity of a Prompt
per device eval batch size argument, Train Model
per_device train_batch size argument, Train Model
Phi-3
comparing to other trained tokenizers, Phi-3 (and Llama 2)
forward pass, The Components of the Forward Pass

loading quantized models, Model I/O: Loading Quantized Models with
LangChain

prompt template, A Single Link in the Chain: Prompt Template

quantization, Model I/O: Loading Quantized Models with LangChain
Phi-3-mini, Generating Your First Text, Choosing a Text Generation Model
Pinecone, Nearest neighbor search versus vector databases

positional embeddings, Positional Embeddings (RoPE)-Positional
Embeddings (RoPE)

PPO (Proximal Policy Optimization), Reward model training step
precision predictions, confusion matrices, Using a Task-Specific Model
predictions, task-specific model, Using a Task-Specific Model

preference tuning, ChatGPT for Classification, The Three LLM Training
Steps: Pretraining, Supervised Fine-Tuning, and Preference Tuning,
Preference-Tuning / Alignment / RLHF-Training

Direct Preference Optimization, Training No Reward Model-Training
fine-tuning, Training

model quantization, Model Quantization

templating alignment data, Templating Alignment Data
training configuration, Training Configuration

reward models, Automating Preference Evaluation Using Reward
Models-Reward model training step

inputs and outputs of, The Inputs and Outputs of a Reward Model

training, Training a Reward Model-Reward model training step
pretraining, defined, The Training Paradigm of Large Language Models
primacy effect, Instruction-Based Prompting

Principal Component Analysis (PCA), Reducing the Dimensionality of
Embeddings

projection matrices, How attention is calculated

prompt engineering, Text Classification with Generative Models, Prompt
Engineering-Summary

chain prompting, Chain Prompting: Breaking up the Problem-Chain
Prompting: Breaking up the Problem

in-context learning, In-Context Learning: Providing Examples-In-
Context Learning: Providing Examples

instruction-based prompting, Instruction-Based Prompting-Instruction-
Based Prompting

output verification, Output Verification-Grammar: Constrained
Sampling
constrained sampling, Grammar: Constrained Sampling-Grammar:
Constrained Sampling

providing examples, Providing Examples

potential complexity of prompts, The Potential Complexity of a Prompt-
The Potential Complexity of a Prompt

prompt components, The Basic Ingredients of a Prompt-The Basic
Ingredients of a Prompt

reasoning with generative models, Reasoning with Generative Models-
Tree-of-Thought: Exploring Intermediate Steps

text generation models, Using Text Generation Models-top p

choosing, Choosing a Text Generation Model
controlling output, Controlling Model Output-top p

loading, Loading a Text Generation Model-Loading a Text
Generation Model

Proximal Policy Optimization (PPO), Reward model training step

Python, learning about, Prerequisites

Q

Q-Former (Querying Transformer), BLIP-2: Bridging the Modality Gap-
BLIP-2: Bridging the Modality Gap

Q8 model, Model I/O: Loading Quantized Models with LangChain

QLoRA (quantized low-rank adaptation), Instruction Tuning with QLoRA-
Merge Weights

fine-tuning, Training

LoRA configuration, LoRA Configuration
merging weights, Merge Weights

model quantization, Model Quantization

templating instruction data, Templating Instruction Data

training configuration, Training Configuration

quantization, Model I/O: Loading Quantized Models with LangChain,
Compressing the model for (more) efficient training-Compressing the model
for (more) efficient training

quantization config parameter, LoRA Configuration

quantized low-rank adaptation (see QLoRA)

Querying Transformer (Q-Former), BLIP-2: Bridging the Modality Gap-
BLIP-2: Bridging the Modality Gap

R

r parameter, LoORA Configuration

RAG (retrieval-augmented generation), Token Embeddings, Text
Embeddings (for Sentences and Whole Documents), Overview of Semantic
Search and RAG, Retrieval-Augmented Generation (RAG)-RAG Evaluation

agentic RAG, Agentic RAG

basic pipeline, Retrieval-Augmented Generation (RAG)

converting search system to, From Search to RAG

evaluating results, RAG Evaluation

grounded generation, Example: Grounded Generation with an LLM API

with local models, Example: RAG with Local Models-The RAG
prompt

multi-hop RAG, Multi-hop RAG

multi-query RAG, Multi-query RAG

query rewriting, Query rewriting

query routing, Query routing

Ragas, RAG Evaluation
random_state parameter, Reducing the Dimensionality of Embeddings
rate limit errors, ChatGPT for Classification
ReAct
in LangChain, ReAct in LangChain-ReAct in LangChain

step-by-step reasoning, The Driving Power Behind Agents: Step-by-
step Reasoning

reasoning

with generative models, Reasoning with Generative Models-Tree-of-
Thought: Exploring Intermediate Steps

chain-of-thought, Chain-of-Thought: Think Before Answering-
Chain-of-Thought: Think Before Answering

self-consistency, Self-Consistency: Sampling Outputs

tree-of-thought, Tree-of-Thought: Exploring Intermediate Steps-
Tree-of-Thought: Exploring Intermediate Steps

step-by-step, The Driving Power Behind Agents: Step-by-step
Reasoning, The Driving Power Behind Agents: Step-by-step Reasoning

recall predictions, confusion matrices, Using a Task-Specific Model
recency effect, Instruction-Based Prompting

recommendation systems, Embeddings for Recommendation Systems-
Training a Song Embedding Model

recurrent neural networks (RNNs), Encoding and Decoding Context with
Attention

reduce outliers() function, BERTopic: A Modular Topic Modeling
Framework

regulation, Responsible LLM Development and Usage

relevance scoring, Attention is all you need, How attention is calculated-
Self-attention: Relevance scoring, Positional Embeddings (RoPE)

repository, Hardware and Software Requirements

representation models, Representation Models: Encoder-Only Models-
Representation Models: Encoder-Only Models

defined, Representing Language as a Bag-of-Words

fine-tuning for classification, Fine-Tuning Representation Models for
Classification-Summary

few-shot classification, Few-Shot Classification-Fine-Tuning for
Few-Shot Classification

masked language modeling, Continued Pretraining with Masked
Language Modeling-Continued Pretraining with Masked Language
Modeling

named-entity recognition, Named-Entity Recognition-Fine-Tuning
for Named-Entity Recognition

supervised classification, Supervised Classification-Freezing
Layers

generative models versus, Representation Models: Encoder-Only
Models

text classification, Text Classification with Representation Models-
What If We Do Not Have Labeled Data?

classification tasks that leverage embeddings, Classification Tasks
That Leverage Embeddings-What If We Do Not Have Labeled
Data?

model selection, Model Selection-Model Selection

task-specific models, Using a Task-Specific Model
representation_model parameter, The Text Generation Lego Block

reranking, Overview of Semantic Search and RAG, Reranking-How
reranking models work

BERTopic, Adding a Special Lego Block
example of, Reranking example-Reranking example
function of reranking models, How reranking models work

sentence transformers, Open source retrieval and reranking with
sentence transformers

response validation, in chain prompting, Chain Prompting: Breaking up the
Problem

retrieval evaluation metrics, Retrieval Evaluation Metrics-Scoring across
multiple queries with mean average precision

scoring multiple queries with mean average precision, Scoring across
multiple queries with mean average precision

scoring single queries with average precision, Scoring a single query
with average precision

retrieval-augmented generation (see RAG)
return_full text parameter, Generating Your First Text

reward models, Automating Preference Evaluation Using Reward Models-
Reward model training step

inputs and outputs of, The Inputs and Outputs of a Reward Model

training, Training a Reward Model-Reward model training step

RMSNorm, The Transformer Block

RNNs (recurrent neural networks), Encoding and Decoding Context with
Attention

RoBERTa, Word Versus Subword Versus Character Versus Byte Tokens,
Model Selection

ROPE (rotary positional embeddings), Positional Embeddings (RoPE)-
Positional Embeddings (RoPE)

Rorschach test, Use Case 1: Image Captioning

Rotten Tomatoes dataset, The Sentiment of Movie Reviews, Fine-Tuning a
Pretrained BERT Model

ROUGE, Word-Level Metrics
RWKY, The Year of Generative Al

S

SBERT, SBERT-SBERT, Augmented SBERT-Augmented SBERT

self-attention, Attention Is All You Need, Self-attention: Relevance scoring-
Self-attention: Combining information

self-consistency, Self-Consistency: Sampling Outputs

semantic search, Semantic Search and Retrieval-Augmented Generation-
Scoring across multiple queries with mean average precision

defined, Semantic Search and Retrieval-Augmented Generation

dense retrieval, Overview of Semantic Search and RAG, Dense
Retrieval-Fine-tuning embedding models for dense retrieval

caveats of, Caveats of dense retrieval

example of, Dense retrieval example-Search the index

fine-tuning embedding models for, Fine-tuning embedding models
for dense retrieval

nearest neighbor search versus vector databases, Nearest neighbor
search versus vector databases

text chunking, Chunking long texts-Multiple vectors per document

reranking, Overview of Semantic Search and RAG, Reranking-How
reranking models work

example of, Reranking example-Reranking example
function of reranking models, How reranking models work

sentence transformers, Open source retrieval and reranking with
sentence transformers

retrieval evaluation metrics, Retrieval Evaluation Metrics-Scoring
across multiple queries with mean average precision

scoring multiple queries with mean average precision, Scoring
across multiple queries with mean average precision

scoring single queries with average precision, Scoring a single
query with average precision

Semantic Textual Similarity Benchmark (STSB), Train Model
semi-hard negatives, Multiple negatives ranking loss

sentence-transformers, Text Embeddings (for Sentences and Whole
Documents), Supervised Classification, BERTopic: A Modular Topic
Modeling Framework, Open source retrieval and reranking with sentence
transformers, OpenCLIP, SBERT-SBERT, Supervised, SetFit: Efficient
Fine-Tuning with Few Training Examples

SentencePiece, Flan-T5 (2022)

[SEP] token, BERT base model (uncased) (2018), Creating Contextualized
Word Embeddings with Language Models, Preparing Data for Named-Entity
Recognition

sequence-to-sequence models, Text Classification with Generative Models,
Using the Text-to-Text Transfer Transformer

SetFit, Fine-Tuning Representation Models for Classification, SetFit:
Efficient Fine-Tuning with Few Training Examples-SetFit: Efficient Fine-
Tuning with Few Training Examples

SFT (supervised fine-tuning), The Three LLM Training Steps: Pretraining,
Supervised Fine-Tuning, and Preference Tuning-Merge Weights

full fine-tuning, Full Fine-Tuning

parameter-efficient fine-tuning, Parameter-Efficient Fine-Tuning
(PEFT)-Compressing the model for (more) efficient training

adapters, Adapters-Adapters

compression, Compressing the model for (more) efficient training-
Compressing the model for (more) efficient training

LoRA, Low-Rank Adaptation (LoRA)-Low-Rank Adaptation
(LoRA)

QLoRA, Instruction Tuning with QLoRA-Merge Weights
fine-tuning, Training
LoRA configuration, LoORA Configuration
merging weights, Merge Weights
model quantization, Model Quantization
templating instruction data, Templating Instruction Data

training configuration, Training Configuration

shared memory (SRAM), Flash Attention
shortlisting, Reranking example
silver datasets, Augmented SBERT

SimCSE (Simple Contrastive Learning of Sentence Embeddings),
Unsupervised Learning

skip-gram, The Word2vec Algorithm and Contrastive Training
softmax loss function, Loss Functions

song recommendation systems, Embeddings for Recommendation Systems-
Training a Song Embedding Model

sparse attention, Local/sparse attention

special tokens, Comparing Trained LLM Tokenizers, Tokenizer parameters
specificity, in instruction-based prompting, Instruction-Based Prompting
SRAM (shared memory), Flash Attention

StableLM, Choosing a Text Generation Model

StarCoder2, StarCoder2 (2024)

step-by-step reasoning, The Driving Power Behind Agents: Step-by-step
Reasoning-The Driving Power Behind Agents: Step-by-step Reasoning

structured output, validating, Output Verification
STSB (Semantic Textual Similarity Benchmark), Train Model
subword tokens, Word Versus Subword Versus Character Versus Byte Tokens

supervised classification, Supervised Classification-Supervised
Classification

fine-tuning representation models for, Supervised Classification-
Freezing Layers

freezing layers, Freezing Layers-Freezing Layers

pretrained BERT models, Fine-Tuning a Pretrained BERT Model-
Fine-Tuning a Pretrained BERT Model

supervised fine-tuning (see SFT)

system 1 and 2 thinking processes, Reasoning with Generative Models

T

T5 (Text-to-Text Transfer Transformer), Using the Text-to-Text Transfer
Transformer-Using the Text-to-Text Transfer Transformer

target modules parameter, LoRA Configuration
task-specific models, Text Classification with Representation Models

temperature parameter, Temperature-top p, Self-Consistency: Sampling
Outputs

Tesla T4, Training
test splits, The Sentiment of Movie Reviews, Using a Task-Specific Model

text chunking, Getting the text archive and chunking it, Chunking long texts-
Multiple vectors per document

approaches for, Multiple vectors per document
multiple vectors per document, Multiple vectors per document
one vector per document, One vector per document

text classification, Text Classification-Summary

with generative models, Text Classification with Generative Models-
ChatGPT for Classification

ChatGPT, ChatGPT for Classification-ChatGPT for Classification

T5, Using the Text-to-Text Transfer Transformer-Using the Text-to-
Text Transfer Transformer

movie reviews, The Sentiment of Movie Reviews-The Sentiment of
Movie Reviews

with representation models, Text Classification with Representation
Models-What If We Do Not Have Labeled Data?

classification tasks that leverage embeddings, Classification Tasks
That Leverage Embeddings-What If We Do Not Have Labeled
Data?

model selection, Model Selection-Model Selection

task-specific models, Using a Task-Specific Model-Using a Task-
Specific Model

text clustering, Text Clustering and Topic Modeling-Inspecting the Clusters
CLIP embedding model and, CLIP: Connecting Text and Images

common pipeline for, A Common Pipeline for Text Clustering-
Inspecting the Clusters

cluster model, Cluster the Reduced Embeddings-Cluster the
Reduced Embeddings

dimensionality reduction model, Reducing the Dimensionality of
Embeddings-Reducing the Dimensionality of Embeddings

embedding model, Embedding Documents

inspecting clusters, Inspecting the Clusters-Inspecting the Clusters

text embedding models, Text Embeddings (for Sentences and Whole
Documents)-Text Embeddings (for Sentences and Whole Documents),
Creating Text Embedding Models-Summary

contrastive learning, What Is Contrastive Learning?-What Is Contrastive
Learning?

creating, Creating an Embedding Model-Multiple negatives ranking loss
evaluating, In-Depth Evaluation
generating contrastive examples, Generating Contrastive Examples
loss functions, Loss Functions-Multiple negatives ranking loss
training, Train Model-Train Model

fine-tuning, Fine-Tuning an Embedding Model
Augmented SBERT, Augmented SBERT-Augmented SBERT
supervised, Supervised-Supervised

SBERT, SBERT-SBERT

unsupervised learning, Unsupervised Learning

text generation, Generating Your First Text-Generating Your First Text,
Advanced Text Generation Techniques and Tools-Summary

agents, Agents: Creating a System of LLMs-ReAct in LangChain
ReAct in LangChain, ReAct in LangChain-ReAct in LangChain

step-by-step reasoning, The Driving Power Behind Agents: Step-
by-step Reasoning-The Driving Power Behind Agents: Step-by-
step Reasoning

chains, Chains: Extending the Capabilities of LLMs-A Chain with
Multiple Prompts

chaining single prompt, A Single Link in the Chain: Prompt
Template-A Single Link in the Chain: Prompt Template

sequential chaining of multiple prompts, A Chain with Multiple
Prompts-A Chain with Multiple Prompts

memory of conversations, Memory: Helping LLMs to Remember
Conversations-Conversation Summary

conversation buffer, Conversation Buffer-Conversation Buffer

conversation summary, Conversation Summary-Conversation
Summary

windowed conversation buffer, Windowed Conversation Buffer-
Windowed Conversation Buffer

model I/O, Model I/O: Loading Quantized Models with LangChain-
Model I/O: Loading Quantized Models with LangChain

multimodality, Making Text Generation Models Multimodal-Use Case
2: Multimodal Chat-Based Prompting

BLIP-2, BLIP-2: Bridging the Modality Gap-BLIP-2: Bridging the
Modality Gap

chat-based prompting, Use Case 2: Multimodal Chat-Based
Prompting-Use Case 2: Multimodal Chat-Based Prompting

image captioning, Use Case 1: Image Captioning-Use Case 1:
Image Captioning

preprocessing images, Preprocessing images
preprocessing text, Preprocessing text

prompt engineering, Using Text Generation Models-top p
choosing models, Choosing a Text Generation Model
controlling output, Controlling Model Output-top p

loading models, Loading a Text Generation Model-Loading a Text
Generation Model

topic modeling, The Text Generation Lego Block-The Text Generation
Lego Block

text-in-text-out model, The Inputs and Outputs of a Trained Transformer LLM

Text-to-Text Transfer Transformer (T5), Using the Text-to-Text Transfer
Transformer-Using the Text-to-Text Transfer Transformer

thenlper/gte-small model, Embedding Documents

%%timeit magic command, Speeding Up Generation by Caching Keys and
Values

TinyLlama, Instruction Tuning with QLoRA, Preference Tuning with DPO

tokenization-free encoding, Word Versus Subword Versus Character Versus
Byte Tokens

tokens and tokenizers, Generating Your First Text, Tokens and Embeddings-
Creating Contextualized Word Embeddings with Language Models

bag-of-words model, Representing Language as a Bag-of-Words

comparing trained tokenizers, Comparing Trained LLM Tokenizers-Phi-
3 (and Llama 2)

BERT base model (cased), BERT base model (cased) (2018)
BERT base model (uncased), BERT base model (uncased) (2018)
Flan-T5, Flan-T5 (2022)

Galactica, Galactica

GPT-2, GPT-2 (2019)

GPT-4, GPT-4 (2023)

Phi-3 and Llama 2, Phi-3 (and Llama 2)

StarCoder2, StarCoder2 (2024)

decoding strategy, Choosing a Single Token from the Probability
Distribution (Sampling/Decoding)-Choosing a Single Token from the
Probability Distribution (Sampling/Decoding)

downloading and running LLMs, Downloading and Running an LLM-
Downloading and Running an LLM

forward pass, The Components of the Forward Pass-The Components of
the Forward Pass

input preparation, How Tokenizers Prepare the Inputs to the Language
Model

masked language modeling, Using the Text-to-Text Transfer Transformer

parallel token processing and context size, Parallel Token Processing
and Context Size-Parallel Token Processing and Context Size

special tokens, Comparing Trained LLM Tokenizers

task-specific representation model, Using a Task-Specific Model, Text
Classification with Generative Models

text breakdown, How Does the Tokenizer Break Down Text?
text-focused versus code-focused models, The domain of the data

token embeddings, Token Embeddings-Creating Contextualized Word
Embeddings with Language Models, The Components of the Forward
Pass, Summary

creating contextualized word embeddings, Creating Contextualized
Word Embeddings with Language Models-Creating Contextualized
Word Embeddings with Language Models

tokenizer’s vocabulary and, A Language Model Holds Embeddings
for the Vocabulary of Its Tokenizer

token spans, Using the Text-to-Text Transfer Transformer

tokenization schemes, Word Versus Subword Versus Character Versus
Byte Tokens-Word Versus Subword Versus Character Versus Byte
Tokens

byte tokens, Word Versus Subword Versus Character Versus Byte
Tokens

character tokens, Word Versus Subword Versus Character Versus
Byte Tokens

subword tokens, Word Versus Subword Versus Character Versus
Byte Tokens

word tokens, Word Versus Subword Versus Character Versus Byte
Tokens

tokenizer properties, Tokenizer Properties-The domain of the data
datasets, The domain of the data
methods, Tokenization methods
parameters, Tokenizer parameters

white space characters, GPT-2 (2019)

tone of voice, in text-generation prompts, The Potential Complexity of a
Prompt

topic modeling, Text Clustering and Topic Modeling, From Text Clustering to
Topic Modeling-The Text Generation Lego Block

BERTopic, BERTopic: A Modular Topic Modeling Framework-
BERTopic: A Modular Topic Modeling Framework

representation blocks, Adding a Special Lego Block-The Text
Generation Lego Block

top_k parameter, top p

top_p parameter, top p, Self-Consistency: Sampling Outputs
train splits, The Sentiment of Movie Reviews
TrainingArguments class, Fine-Tuning a Pretrained BERT Model
transfer learning, Representation Models: Encoder-Only Models

Transformer architecture, Attention Is All You Need-Attention Is All You
Need, Looking Inside Large Language Models-Summary

attention layer, The Components of the Forward Pass, Inside the
Transformer Block

decoding strategy, Choosing a Single Token from the Probability
Distribution (Sampling/Decoding)-Choosing a Single Token from the
Probability Distribution (Sampling/Decoding)

feedforward layer, Inside the Transformer Block

forward pass components, The Components of the Forward Pass-The
Components of the Forward Pass

inputs and outputs of, The Inputs and Outputs of a Trained Transformer
LLM-The Inputs and Outputs of a Trained Transformer LLM

keys and values cache, Speeding Up Generation by Caching Keys and
Values-Speeding Up Generation by Caching Keys and Values

optimizing attention, Optimizing attention: From multi-head to multi-
query to grouped query

parallel token processing and context size, Parallel Token Processing
and Context Size-Parallel Token Processing and Context Size

recent improvements to, Recent Improvements to the Transformer
Architecture-Other Architectural Experiments and Improvements

more efficient attention, More Efficient Attention-Flash Attention

positional embeddings, Positional Embeddings (RoPE)-Positional
Embeddings (RoPE)

Transformer blocks, The Transformer Block

Transformer blocks, Inside the Transformer Block-Self-attention:
Combining information

attention calculation, How attention is calculated-How attention is
calculated

attention layer, The attention layer at a glance

attention mechanism, Attention is all you need-Attention is all you
need

feedforward neural networks, The feedforward neural network at a
glance

self-attention and relevance scoring, Self-attention: Relevance
scoring-Self-attention: Combining information

Vision Transformer, Transformers for Vision-Transformers for Vision

transparency and accountability, Responsible LLM Development and Usage

tree-of-thought, Tree-of-Thought: Exploring Intermediate Steps-Tree-of-
Thought: Exploring Intermediate Steps

Truthful QA, Benchmarks, Leaderboards

TSDAE (Transformer-Based Sequential Denoising Auto-Encoder)
for domain adaptation, Using TSDAE for Domain Adaptation

overview of, Transformer-Based Sequential Denoising Auto-Encoder-
Transformer-Based Sequential Denoising Auto-Encoder

UltraChat dataset, Templating Instruction Data

UMAP (Uniform Manifold Approximation and Projection), Reducing the
Dimensionality of Embeddings

unigram language model, Flan-T5 (2022)
unk token [UNK], BERT base model (uncased) (2018)

use cache parameter, Speeding Up Generation by Caching Keys and Values

Vv

valid output, verifying, Output Verification
validation splits, The Sentiment of Movie Reviews

vector databases

dense retrieval, Dense Retrieval

nearest neighbor search versus, Nearest neighbor search versus vector
databases

retrieval-augmented generation, Loading the embedding model

video random-access memory (VRAM), Hardware and Software
Requirements, Limited Resources Are All You Need

visualization

BERTopic, BERTopic: A Modular Topic Modeling Framework
cluster analysis, Inspecting the Clusters
dimensionality reduction and, Inspecting the Clusters

ViT (Vision Transformer), Transformers for Vision-Transformers for Vision,
BLIP-2: Bridging the Modality Gap

vocabulary, of tokenizers, Tokenizer parameters, A Language Model Holds
Embeddings for the Vocabulary of Its Tokenizer, The Components of the
Forward Pass, Summary

VRAM (video random-access memory), Hardware and Software
Requirements, Limited Resources Are All You Need

W

warmup_ratio parameter, Training Configuration
warmup_steps argument, Train Model

Weaviate, Nearest neighbor search versus vector databases
whitespace characters, GPT-2 (2019)

windowed conversation buffer memory, Windowed Conversation Buffer-
Windowed Conversation Buffer, Conversation Summary

word embeddings, Word Embeddings Beyond LLMs-The Word2vec
Algorithm and Contrastive Training

pretrained, Using pretrained Word Embeddings

word2vec algorithm and contrastive training, The Word2vec Algorithm
and Contrastive Training-The Word2vec Algorithm and Contrastive
Training

word tokens, Word Versus Subword Versus Character Versus Byte Tokens
word-level metrics, in generative model evaluation, Word-Level Metrics

word2vec algorithm, Better Representations with Dense Vector Embeddings,
Types of Embeddings-Encoding and Decoding Context with Attention

contrastive training and, The Word2vec Algorithm and Contrastive
Training-The Word2vec Algorithm and Contrastive Training, What Is
Contrastive Learning?

embedding songs, Recommending Songs by Embeddings

WordPiece, How Does the Tokenizer Break Down Text?

cased BERT base model, BERT base model (cased) (2018)
uncased BERT base model, BERT base model (uncased) (2018)

<work> token, Galactica

Y

Year of Generative Al, The Year of Generative Al-The Year of Generative
Al

y4

zero-shot classification, What If We Do Not Have Labeled Data?-What If We
Do Not Have Labeled Data?

CLIP, CLIP: Connecting Text and Images

SetFit, Fine-Tuning for Few-Shot Classification

zero-shot prompting
chain-of-thought, Chain-of-Thought: Think Before Answering

in-context learning, In-Context Learning: Providing Examples

About the Authors

Jay Alammar is Director and Engineering Fellow at Cohere (pioneering
provider of large language models as an API). In this role, he advises and
educates enterprises and the developer community on using language models
for practical use cases. Through his popular AI/ML blog, Jay has helped
millions of researchers and engineers visually understand machine learning
tools and concepts from the basic (ending up in the documentation of
packages like NumPy and pandas) to the cutting-edge (Transformers, BERT,
GPT-3, Stable Diffusion). Jay is also a co-creator of popular machine
learning and natural language processing courses on Deeplearning.ai and
Udacity.

Maarten Grootendorst is a Senior Clinical Data Scientist at IKNL
(Netherlands Comprehensive Cancer Organization). He holds master’s
degrees in organizational psychology, clinical psychology, and data science,
which he leverages to communicate complex machine learning concepts to a
wide audience. With his popular blogs, he has reached millions of readers by
explaining the fundamentals of artificial intelligence—often from a
psychological point of view. He 1s the author and maintainer of several open
source packages that rely on the strength of large language models, such as
BERTopic, PolyFuzz, and KeyBERT. His packages are downloaded millions
of times and used by data professionals and organizations worldwide.

https://jalammar.github.io/
https://newsletter.maartengrootendorst.com/

Colophon

The animal on the cover of Hands-On Large Language Models 1s a red
kangaroo (Osphranter rufus). They are the largest of all kangaroos, with a
body length that can get up to a little over 5 feet and a tail as long as 3 feet.
They are very fast and can hop to speeds over 35 miles per hour. They can
Jump 6 feet high and leap a distance of 25 feet in a single bound. The position
of their eyes allows them see up to 300 degrees.

Red kangaroos are named after the color of their fur. While the name makes
sense for the males—they have short, red-brown fur—females are typically
more of a blue-grey color with a tinge of brown throughout. The red color in
their fur comes from a red oil excreted from the glands in their skin. Because
of their color, Australians refer to male red kangaroos as “big reds.”
However, because females are faster than males, they are often called “blue
fliers.”

Preferring open, dry areas with some trees for shade, red kangaroos can be
found across Australia’s mainland except in the upper north, lower
southwest, and east coast regions of the country. Surrounding environmental
conditions can affect reproduction. Because of this, females can pause or
postpone pregnancy or birth until conditions are better. They often use this
ability to delay birth of a new baby (joey) until the previous one has left their
pouch.

The cover illustration is by Karen Montgomery, based on an antique line
engraving from Cassell s Popular Natural History. The series design is by
Edie Freedman, Ellie Volckhausen, and Karen Montgomery. The cover fonts
are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro;
the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	An Intuition-First Philosophy
	Prerequisites
	Book Structure
	Part I: Understanding Language Models
	Part II: Using Pretrained Language Models
	Part III: Training and Fine-Tuning Language Models

	Hardware and Software Requirements
	API Keys
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	I. Understanding Language Models
	1. An Introduction to Large Language Models
	What Is Language AI?
	A Recent History of Language AI
	Representing Language as a Bag-of-Words
	Better Representations with Dense Vector Embeddings
	Types of Embeddings
	Encoding and Decoding Context with Attention
	Attention Is All You Need
	Representation Models: Encoder-Only Models
	Generative Models: Decoder-Only Models
	The Year of Generative AI

	The Moving Definition of a “Large Language Model”
	The Training Paradigm of Large Language Models
	Large Language Model Applications: What Makes Them So Useful?
	Responsible LLM Development and Usage
	Limited Resources Are All You Need
	Interfacing with Large Language Models
	Proprietary, Private Models
	Open Models
	Open Source Frameworks

	Generating Your First Text
	Summary

	2. Tokens and Embeddings
	LLM Tokenization
	How Tokenizers Prepare the Inputs to the Language Model
	Downloading and Running an LLM
	How Does the Tokenizer Break Down Text?
	Word Versus Subword Versus Character Versus Byte Tokens
	Comparing Trained LLM Tokenizers
	Tokenizer Properties

	Token Embeddings
	A Language Model Holds Embeddings for the Vocabulary of Its Tokenizer
	Creating Contextualized Word Embeddings with Language Models

	Text Embeddings (for Sentences and Whole Documents)
	Word Embeddings Beyond LLMs
	Using pretrained Word Embeddings
	The Word2vec Algorithm and Contrastive Training

	Embeddings for Recommendation Systems
	Recommending Songs by Embeddings
	Training a Song Embedding Model

	Summary

	3. Looking Inside Large Language Models
	An Overview of Transformer Models
	The Inputs and Outputs of a Trained Transformer LLM
	The Components of the Forward Pass
	Choosing a Single Token from the Probability Distribution (Sampling/Decoding)
	Parallel Token Processing and Context Size
	Speeding Up Generation by Caching Keys and Values
	Inside the Transformer Block

	Recent Improvements to the Transformer Architecture
	More Efficient Attention
	The Transformer Block
	Positional Embeddings (RoPE)
	Other Architectural Experiments and Improvements

	Summary

	II. Using Pretrained Language Models
	4. Text Classification
	The Sentiment of Movie Reviews
	Text Classification with Representation Models
	Model Selection
	Using a Task-Specific Model
	Classification Tasks That Leverage Embeddings
	Supervised Classification
	What If We Do Not Have Labeled Data?

	Text Classification with Generative Models
	Using the Text-to-Text Transfer Transformer
	ChatGPT for Classification

	Summary

	5. Text Clustering and Topic Modeling
	ArXiv’s Articles: Computation and Language
	A Common Pipeline for Text Clustering
	Embedding Documents
	Reducing the Dimensionality of Embeddings
	Cluster the Reduced Embeddings
	Inspecting the Clusters

	From Text Clustering to Topic Modeling
	BERTopic: A Modular Topic Modeling Framework
	Adding a Special Lego Block
	The Text Generation Lego Block

	Summary

	6. Prompt Engineering
	Using Text Generation Models
	Choosing a Text Generation Model
	Loading a Text Generation Model
	Controlling Model Output

	Intro to Prompt Engineering
	The Basic Ingredients of a Prompt
	Instruction-Based Prompting

	Advanced Prompt Engineering
	The Potential Complexity of a Prompt
	In-Context Learning: Providing Examples
	Chain Prompting: Breaking up the Problem

	Reasoning with Generative Models
	Chain-of-Thought: Think Before Answering
	Self-Consistency: Sampling Outputs
	Tree-of-Thought: Exploring Intermediate Steps

	Output Verification
	Providing Examples
	Grammar: Constrained Sampling

	Summary

	7. Advanced Text Generation Techniques and Tools
	Model I/O: Loading Quantized Models with LangChain
	Chains: Extending the Capabilities of LLMs
	A Single Link in the Chain: Prompt Template
	A Chain with Multiple Prompts

	Memory: Helping LLMs to Remember Conversations
	Conversation Buffer
	Windowed Conversation Buffer
	Conversation Summary

	Agents: Creating a System of LLMs
	The Driving Power Behind Agents: Step-by-step Reasoning
	ReAct in LangChain

	Summary

	8. Semantic Search and Retrieval-Augmented Generation
	Overview of Semantic Search and RAG
	Semantic Search with Language Models
	Dense Retrieval
	Reranking
	Retrieval Evaluation Metrics

	Retrieval-Augmented Generation (RAG)
	From Search to RAG
	Example: Grounded Generation with an LLM API
	Example: RAG with Local Models
	Advanced RAG Techniques
	RAG Evaluation

	Summary

	9. Multimodal Large Language Models
	Transformers for Vision
	Multimodal Embedding Models
	CLIP: Connecting Text and Images
	How Can CLIP Generate Multimodal Embeddings?
	OpenCLIP

	Making Text Generation Models Multimodal
	BLIP-2: Bridging the Modality Gap
	Preprocessing Multimodal Inputs
	Use Case 1: Image Captioning
	Use Case 2: Multimodal Chat-Based Prompting

	Summary

	III. Training and Fine-Tuning Language Models
	10. Creating Text Embedding Models
	Embedding Models
	What Is Contrastive Learning?
	SBERT
	Creating an Embedding Model
	Generating Contrastive Examples
	Train Model
	In-Depth Evaluation
	Loss Functions

	Fine-Tuning an Embedding Model
	Supervised
	Augmented SBERT

	Unsupervised Learning
	Transformer-Based Sequential Denoising Auto-Encoder
	Using TSDAE for Domain Adaptation

	Summary

	11. Fine-Tuning Representation Models for Classification
	Supervised Classification
	Fine-Tuning a Pretrained BERT Model
	Freezing Layers

	Few-Shot Classification
	SetFit: Efficient Fine-Tuning with Few Training Examples
	Fine-Tuning for Few-Shot Classification

	Continued Pretraining with Masked Language Modeling
	Named-Entity Recognition
	Preparing Data for Named-Entity Recognition
	Fine-Tuning for Named-Entity Recognition

	Summary

	12. Fine-Tuning Generation Models
	The Three LLM Training Steps: Pretraining, Supervised Fine-Tuning, and Preference Tuning
	Supervised Fine-Tuning (SFT)
	Full Fine-Tuning
	Parameter-Efficient Fine-Tuning (PEFT)

	Instruction Tuning with QLoRA
	Templating Instruction Data
	Model Quantization
	LoRA Configuration
	Training Configuration
	Training
	Merge Weights

	Evaluating Generative Models
	Word-Level Metrics
	Benchmarks
	Leaderboards
	Automated Evaluation
	Human Evaluation

	Preference-Tuning / Alignment / RLHF
	Automating Preference Evaluation Using Reward Models
	The Inputs and Outputs of a Reward Model
	Training a Reward Model
	Training No Reward Model

	Preference Tuning with DPO
	Templating Alignment Data
	Model Quantization
	Training Configuration
	Training

	Summary

	Afterword
	Index
	About the Authors

