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preface
I’ve been fortunate to have worked with data and machine learning for about a
decade now. My background is in machine learning, and my PhD was focused on
applying machine learning in wireless networks. I have published papers (http://
mng.bz/zQR6) at leading conferences and journals on the topic of reinforcement
learning, convex optimization, and classical machine learning techniques applied to
5G cellular networks. 

 After completing my PhD, I began working in the industry as a data scientist and
machine learning engineer and gained experience deploying complex AI solutions
for customers across multiple industries, such as manufacturing, retail, and finance. It
was during this time that I realized the importance of interpretable AI and started
researching it heavily. I also started to implement and deploy interpretability tech-
niques in real-world scenarios for data scientists, business stakeholders, and experts to
get a deeper understanding of machine-learned models.

 I wrote a blog post (http://mng.bz/0wnE) on interpretable AI and coming up
with a principled approach to building robust, explainable AI systems. The post got a
surprisingly large response from data scientists, researchers, and practitioners from a
wide range of industries. I also presented on this subject at various AI and machine
learning conferences. By putting my content in the public domain and speaking at
leading conferences, I learned the following:

■ I wasn’t the only one interested in this subject.
■ I was able to get a better understanding of what specific topics are of interest to

the community.

https://shortener.manning.com/zQR6
https://shortener.manning.com/zQR6
https://shortener.manning.com/0wnE
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These learnings led to the book that you are reading now. You can find a few
resources available to help you stay abreast of interpretable AI, like survey papers,
blog posts, and one book, but no single resource or book covers all the important
interpretability techniques that would be valuable for AI practitioners. There is also
no practical guide on how to implement these cutting-edge techniques. This book
aims to fill that gap by first providing a structure to this active area of research and
covering a broad range of interpretability techniques. Throughout this book, we will
look at concrete real-world examples and see how to build sophisticated models and
interpret them using state-of-the-art techniques. 

 I strongly believe that as complex machine learning models are being deployed in
the real world, understanding them is extremely important. The lack of a deep under-
standing can result in models propagating bias, and we’ve seen examples of this in
criminal justice, politics, retail, facial recognition, and language understanding. All of
this has a detrimental effect on trust, and, from my experience, this is one of the main
reasons why companies are resisting the deployment of AI. I’m excited that you also
realize the importance of this deep understanding, and I hope you learn a lot from
this book.
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about this book
Interpretable AI is written to help you implement state-of-the-art interpretability tech-
niques for complex machine learning models and to build fair and explainable AI sys-
tems. Interpretability is a hot topic in research, and only a few resources and practical
guides cover all the important techniques that would be valuable for practitioners in
the real world. This book aims to address that gap. 

Who should read this book
Interpretable AI is for data scientists and engineers who are interested in gaining a
deeper understanding of how their models work and how to build fair and unbiased
models. The book should also be useful for architects and business stakeholders who
want to understand models powering AI systems to ensure fairness and protect the
business’s users and brand. 

How this book is organized: a roadmap
The book has four parts that cover nine chapters. 

 Part 1 introduces you to the world of interpretable AI:

■ Chapter 1 covers different types of AI systems, defines interpretability and its
importance, discusses white-box and black-box models, and explains how to
build interpretable AI systems.

■ Chapter 2 covers white-box models and how to interpret them, specifically
focusing on linear regression, decision trees, and generalized additive models
(GAMs). 
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Part 2 focuses on black-box models and understanding how the model processes the
inputs and arrives at the final prediction:

■ Chapter 3 covers a class of black-box models called tree ensembles and how to
interpret them using post hoc model-agnostic methods that are global in scope,
such as partial dependence plots (PDPs) and feature interaction plots.

■ Chapter 4 covers deep neural networks and how to interpret them using post
hoc model-agnostic methods that are local in scope, such as local interpretable
model-agnostic explanations (LIME), SHapley Additive exPlanations (SHAP),
and anchors.

■ Chapter 5 covers convolutional neural networks and how to visualize what the
model is focusing on using saliency maps, specifically focusing on techniques such
as gradients, guided backpropagation, gradient-weighted class activation mapping
(Grad-CAM), guided Grad-CAM, and smooth gradients (SmoothGrad).

Part 3 continues to focus on black-box models but moves to understanding what fea-
tures or representations have been learned by them:

■ Chapter 6 covers convolutional neural networks and how to dissect them to
understand representations of the data that are learned by the intermediate or
hidden layers in the neural network.

■ Chapter 7 covers language models and how to visualize high-dimensional repre-
sentations learned by them using techniques like principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-SNE).

Part 4 focuses on fairness and bias and paves the way for explainable AI:

■ Chapter 8 covers various definitions of fairness and ways to check whether mod-
els are biased. It also discusses techniques for mitigating bias and a standardizing
approach of documenting datasets using datasheets that will help improve trans-
parency and accountability with the stakeholders and users of the AI system.

■ Chapter 9 paves the way for explainable AI by understanding how to build such
systems and also covers contrastive explanations using counterfactual examples.

About the code 
This book contains many examples of source code. In most cases, source code is for-
matted in a fixed-width font like this to separate it from ordinary text. 

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 You can get executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/interpretable-ai. The complete code

https://livebook.manning.com/book/interpretable-ai
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for the examples in the book is available for download from the Manning website at
https://www.manning.com/books/interpretable-ai and from GitHub at http://
mng.bz/KBdZ.

liveBook discussion forum
Purchase of Interpretable AI includes free access to liveBook, Manning’s online reading
platform. Using liveBook’s exclusive discussion features, you can attach comments to
the book globally or to specific sections or paragraphs. It’s a snap to make notes for your-
self, ask and answer technical questions, and receive help from the author and other users.
To access the forum, go to https://livebook.manning.com/book/interpretable-ai/
discussion. You can also learn more about Manning’s forums and the rules of conduct
at https://livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://shortener.manning.com/KBdZ
https://livebook.manning.com/book/interpretable-ai/discussion
https://livebook.manning.com/book/Interpretable-AI/discussion
https://livebook.manning.com/book/interpretable-ai/discussion
https://livebook.manning.com/discussion
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Part 1

Interpretability basics

This part will introduce you to the world of interpretable AI. In chapter 1, you
will learn about different types of AI systems, interpretability and its importance,
white-box and black-box models, and how to build interpretable AI systems. 

 In chapter 2, you will learn about characteristics that make white-box models
inherently transparent and black-box models inherently opaque. You’ll learn
how to interpret simple white-box models, such as linear regression and decision
trees and then switch gears to focus on generalized additive models (GAMs).
You’ll also learn about the properties that give GAMs high predictive power and
how to interpret them. GAMs have very high predictive power and are highly
interpretable too, so you get more bang for your buck by using GAMs.
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Introduction

Welcome to this book! I’m really happy that you are embarking on this journey
through the world of Interpretable AI, and I look forward to being your guide. In
the last five years alone, we have seen major breakthroughs in the field of artificial
intelligence (AI), especially in areas such as image recognition, natural language
understanding, and board games like Go. As AI augments critical human decisions
in industries like healthcare and finance, it is becoming increasingly important that
we build robust and unbiased machine learning models that drive these AI systems.
In this book, I wish to give you a practical guide to interpretable AI systems and
how to build them. Through a concrete example, this chapter will explain why
interpretability is important and will lay the foundations for the rest of the book. 

This chapter covers
 Different types of machine learning systems

 How machine learning systems are built

 What interpretability is and its importance

 How interpretable machine learning systems 
are built

 A summary of interpretability techniques covered 
in this book



4 CHAPTER 1 Introduction

1.1 Diagnostics+ AI—an example AI system
Let’s now look at a concrete example of a healthcare center called Diagnostics+ that
provides a service to help diagnose different types of diseases. Doctors who work for
Diagnostics+ analyze blood smear samples and provide their diagnoses, which can be
either positive or negative. This current state of Diagnostics+ is shown in figure 1.1.

The problem with the current state is that the doctors are manually analyzing the
blood smear samples. With a finite set of resources, diagnosis, therefore, takes a con-
siderable amount of time. Diagnostics+ would like to automate this process using AI
and diagnose more blood samples so that patients get the right treatment sooner. This
future state is shown in figure 1.2.

The goal for Diagnostics+ AI is to use images of blood smear samples with other
patient metadata to provide diagnoses—positive, negative, or neutral—with a confi-
dence measure. Diagnostics+ would also like to have doctors in the loop to review the
diagnoses, especially the harder cases, thereby allowing the AI system to learn from
mistakes. 

1.2 Types of machine learning systems
We can use three broad classes of machine learning systems to drive Diagnostics+ AI:
supervised learning, unsupervised learning, and reinforcement learning. 

Doctor

DiagnosisBlood smear sample
Figure 1.1 Current 
state of Diagnostics+

Blood smear sample

Diagnostics+ 
AI

Diagnosis

Doctor

88%

70%

50%

99%

Diagnosis is negative
with 88% certainty.

Diagnosis is negative
with 99% certainty.

Diagnosis is neutral
with 50% certainty.

Diagnosis is positive
with 70% certainty.

Figure 1.2 Future state of Diagnostics+
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1.2.1 Representation of data

Let’s first see how to represent the data that a machine learning system can under-
stand. For Diagnostics+, we know that there’s historical data of blood smear samples in
the form of images and patient metadata. 

 How do we best represent the image data? This is shown in figure 1.3. Suppose the
image of a blood smear sample is a colored image of size 256 × 256 pixels consisting of
three primary channels: red (R), green (G), and blue (B). We can represent this RGB
image in mathematical form as three matrices of pixel values, one for each channel
and each of size 256 × 256. The three two-dimensional matrices can be combined into
a multidimensional matrix of size 256 × 256 × 3 to represent the RGB image. In gen-
eral, the dimension of the matrix representing an image is of the following form:
{number of pixels vertically} × {number of pixels horizontally} × {number of channels}.

Now, how do we best represent the patient metadata? Suppose that the metadata con-
sists of information such as the patient identifier (ID), age, sex, and the final diagno-
sis. The metadata can be represented as a structured table, as shown in figure 1.4, with
N columns and M rows. We can easily convert this tabular representation of the meta-
data into a matrix of dimension M × N. In figure 1.4, you can see that the Patient Id,
Sex, and Diagnosis columns are categorical and have to be encoded as integers. For
instance, the patient ID “AAABBCC” is encoded as integer 0, sex “M” (for male) is
encoded as integer 0, and diagnosis “Positive” is encoded as integer 1. 

 
 
 
 

256 pixels

256 pixels

RGB image

Red channel

0 232 … 124

255 0 … 59

… … … …

212 8 … 64

Green channel

0 136 … 212

145 9 … 78

… … … …

255 0 … 89

256 x 256 256 x 256

Blue channel

4 224

198 0

… 243 

… 65

… … … …

178 3 … 66

256 x 256

Image 
representation

Figure 1.3 Representation of a blood smear sample image
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1.2.2 Supervised learning

The objective of supervised learning is to learn a mapping from an input to an output
based on example input-output pairs. It requires labeled training data where inputs
(also known as features) have a corresponding label (also known as a target). How is
this data represented? The input features are typically represented using a multidi-
mensional array data structure or mathematically as a matrix X. The output or target
is represented as a single-dimensional array data structure or mathematically as a vec-
tor y. The dimension of matrix X is typically m × n, where m represents the number of
examples or labeled data and n represents the number of features. The dimension of
vector y is typically m × 1 where m again represents the number of examples or labels.
The objective is to learn a function f that maps from input features X to the target y.
This is shown in figure 1.5.

 In figure 1.5, you can see that with supervised learning, you are learning a function
f that takes in multiple input features represented as X and provides an output that
matches known labels or values, represented as the target variable y. The bottom half
of the figure shows an example where a labeled dataset is given, and through super-
vised learning, you are learning how to map the input features to the output. 

 
 
 
 

Patient ID Age Sex … Diagnosis

AAABBCC 53 M … Positive

AABBCDD 34 F … Negative

… … … … …

ZZFFXYYY 65 F … Negative

N columns

M rows

Metadata 
representation

Matrix of dimension: M × N

0 

1

99

…
53 

34

65

…

0 

1

1
…

…

…

…
…

1 

0

0

…

Patient ID encoded as integers Age Sex encoded as integers

Diagnosis encoded as integers

Figure 1.4 Representation of tabular patient metadata
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The function f is a multivariate function—it maps from multiple input variables or fea-
tures to a target. Two broad classes of supervised learning problems follow:

 Regression—The target vector y is continuous. For example, predicting the price
of a house at a location in U.S. dollars is a regression type of learning problem.

 Classification—The target variable y is discrete and bounded. For example,
predicting whether or not an email is spam is a classification type of learning
problem.

1.2.3 Unsupervised learning

In unsupervised learning, the objective is to learn a representation of the data that
best describes it. There is no labeled data, and the goal is to learn some unknown pat-
tern from the raw data. The input features are represented as a matrix X, and the sys-
tem learns a function f that maps from X to a pattern or representation of the input
data. This is depicted in figure 1.6. An example of unsupervised learning is clustering,
where the goal is to form groups or clusters of data points with similar properties or
characteristics. This is shown in the bottom half of the figure. The unlabeled data con-
sists of two features and the datapoints are shown in 2-D space. There are no known
labels, and the objective of an unsupervised learning system is to learn latent patterns
present in the data. In this illustration, the system learns how to map the raw data
points into clusters based on their proximity or similarity to each other. These clusters
are not known beforehand because the dataset is unlabeled and, hence the learning is
entirely unsupervised.

Features 
X

Target 
y

f(X)

Age … Sex

0  53 … 0  
…  … … …
99 65 … 1

 1
... 
0

1 
... 
0

X  y  f(X)

The model learns a mapping from the input
features to the target variable.

Labeled data Target prediction

The model learns a mapping from the input patient 
features to the diagnosis based on the ground truth labels.

Patient
ID

Diagnosis
label

Diagnosis
prediction

Figure 1.5 Illustration 
of supervised learning
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1.2.4 Reinforcement learning

Reinforcement learning consists of an agent that learns by interacting with an envi-
ronment, as shown in figure 1.7. The learning agent takes an action within the
environment and receives a reward or penalty, depending on the quality of the action.
Based on the action taken, the agent moves from one state to another. The overall
objective of the agent is to maximize the cumulative reward by learning a policy function
f that maps from an input state to an action. Some examples of reinforcement learning
are a robot vacuum cleaner learning the best path to take to clean a home and an
artificial agent learning how to play board games like chess and Go.

 The bottom half of figure 1.7 illustrates a reinforcement learning system. The sys-
tem consists of a robot (agent) in a maze (environment). The objective of the learning

Data 
X

Representation 
or 

pattern

f(X)

Unlabeled data Clustered data

f(X)
Cluster 1

Cluster 2

Cluster 3

Cluster 4

The model learns a representation
of the input data.

Mapping of raw
data to clusters

Figure 1.6 Illustration of 
unsupervised learning

Environment

Agent

St
at

e

A
ction

R
ew

ar
d

Optimum policy or set of actions

Finishing line/
end state

The maze is the
environment.

The model learns an optimum
action to take given a state.

Robot agent in
the maze

The agent can take 
four actions–move
•Left
•Right
•Up
•Down

Figure 1.7 An illustration 
of reinforcement learning
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agent is to determine the optimum set of actions to take so that it can move from its cur-
rent location to the finishing line (end state), indicated by the green star. The agent can
take one of four actions: move left, right, up, or down. 

1.2.5 Machine learning system for Diagnostics+ AI

Now that you know the three broad types of machine learning systems, which system is
most applicable for Diagnostics+ AI? Given that the dataset is labeled, and you know
from historical data what diagnosis was made for a patient and blood sample, the
machine learning system that can be used to drive Diagnostics+ AI is supervised learning.

 What class of supervised learning problem is it? The target for the supervised
learning problem is the diagnosis, which can be either positive or negative. Because
the target is discrete and bounded, it is a classification type of learning problem. 

1.3 Building Diagnostics+ AI
Now that we’ve identified that Diagnostics+ AI is going to be a supervised learning system,
how do we go about building it? The typical process goes through three main phases:

 Learning
 Testing
 Deploying

In the learning phase, illustrated in figure 1.8, we are in the development environ-
ment, where we use two subsets of the data called the training set and the dev set. As
the name suggests, the training set is used to train a machine learning model to learn
the mapping function f from the input features X (in this case, the image of the blood
sample and metadata) to the target y (in this case, the diagnosis). Once we’ve trained
the model, we use the dev set for validation purposes and tune the model based on
the performance on that dev set. Tuning the model entails determining the optimum

Primary focus of the book
This book primarily focuses on supervised learning systems where labeled data is
present. I will teach you how to implement interpretability techniques for both regres-
sion and classification types of problems. Although this book does not explicitly cover
unsupervised learning or reinforcement learning systems, the techniques learned in
this book can be extended to them.

Model Validation

Historical data Training and cross-validation

1 LEARNING

Development

Training and 
dev sets

Figure 1.8 Process of building an AI system—learning phase
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parameters for the model, called hyperparameters, that give the best performance. This
is quite an iterative process, and we continue doing this until the model reaches an
acceptable level of performance.

 In the testing phase, illustrated in figure 1.9, we now switch over to the test envi-
ronment where we use a subset of the data called the test set, which is different from
the training set. The objective is to obtain an unbiased assessment of the accuracy of
the model. Stakeholders and experts (in this case, doctors) would at this point evalu-
ate the functionality of the system and performance of the model on the test set. This
additional testing, called user acceptance testing (UAT), is the final stage in the devel-
opment of any software system. If the performance is not acceptable, then we go back
to phase 1 to train a better model. If the performance is acceptable, then we move on
to phase 3, which is deploying.

Finally, in the deploying phase, we now deploy the learned model into the production
system where the model is now exposed to new data that it hasn’t seen before. The com-
plete process is illustrated in figure 1.10. In the case of Diagnostics+ AI, this data would
be new blood samples and patient information that the model will use to predict
whether the diagnosis is positive or negative with a confidence measure. This informa-
tion is then consumed by the expert (the doctor) and in turn the end user (the patient). 
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Figure 1.9 Process of building an AI system—testing phase

Figure 1.10 Process of building an AI system—complete
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1.4 Gaps in Diagnostics+ AI
Figure 1.10 shows some major gaps in the Diagnostics+ AI system. This AI system does
not safeguard against some common issues for which the deployed model does not
behave as expected in the production environment. These issues could have a detri-
mental effect on the business of the diagnostics center. The common issues follow: 

 Data leakage
 Bias
 Regulatory noncompliance
 Concept drift

1.4.1 Data leakage

Data leakage happens when features in the training, dev, and test sets unintentionally
leak information that would otherwise not appear in the production environment
when the model is scored on new data. For Diagnostics+, suppose we use notes made
by the doctor about the diagnosis as a feature or input for our model. While evaluat-
ing the model using the test set, we could get inflated performance results, thereby
tricking ourselves into thinking we’ve built a great model. The notes made by the doc-
tor could contain information about the final diagnosis, which would leak informa-
tion about the target variable. This problem, if not detected earlier, could be
catastrophic once the model is deployed into production—the model is scored before
the doctor has had a chance to review the diagnosis and add their notes. Therefore,
the model would either crash in production because the feature is missing or would
start to make poor diagnoses.

 A classic case study of data leakage is the KDD Cup Challenge (https://www.kdd
.org/kdd-cup/view/kdd-cup-2008) of 2008. The objective of this machine learning
competition based on real data was to detect whether a breast cancer cell was benign
or malignant based on X-ray images. A study (http://kdd.org/exploration_files/
KDDCup08-P1.pdf) showed that teams that scored the most on the test set for this
competition used a feature called Patient ID, which was an identifier generated by the
hospital for the patient. It turned out that some hospitals used the patient ID to indi-
cate the severity of the condition of the patient when they were admitted to the hospi-
tal, which, therefore, leaked information about the target variable.

1.4.2 Bias

Bias is when the machine learning model makes an unfair prediction that favors one
person or group over another. This unfair prediction could be caused by the data or the
model itself. There may be sampling biases in which systematic differences exist
between the data sample used for training and the population. Systemic social biases,
which the model picks up on, may also be inherent in the data. The trained model
could also be flawed—it may have some strong preconceptions despite evidence to the
contrary. For the case of Diagnostics+ AI, if there is sampling bias, for instance, the

https://www.kdd.org/kdd-cup/view/kdd-cup-2008
https://www.kdd.org/kdd-cup/view/kdd-cup-2008
https://www.kdd.org/kdd-cup/view/kdd-cup-2008
http://kdd.org/exploration_files/KDDCup08-P1.pdf
http://kdd.org/exploration_files/KDDCup08-P1.pdf
http://kdd.org/exploration_files/KDDCup08-P1.pdf
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model could make more accurate predictions for one group and not generalize well to
the whole population. This is far from ideal because the diagnostics center wants the
new AI system to be used for every patient, regardless of which group they belong to.

 A classic case study of machine bias is the COMPAS AI system used by U.S. courts
to predict future criminals. The study was conducted by ProPublica (http://mng
.bz/7Ww4). (The webpage contains links to the analysis and dataset.) ProPublica
obtained the COMPAS scores for 7,000 people who had been arrested in a county in
Florida in 2013 and 2014. Using the scores, they found out that they could not accu-
rately predict the recidivism rate (i.e., the rate at which a convicted person reof-
fends)—only 20% of the people who were predicted to commit violent crimes actually
did so. More importantly, they uncovered serious racial biases in the model.

1.4.3 Regulatory noncompliance

The General Data Protection Regulation (GDPR; https://gdpr.eu/) is a comprehen-
sive set of regulations adopted by the European Parliament in 2016 that deals with how
data is collected, stored, and processed by foreign companies. The regulation contains
article 17 (https://gdpr-info.eu/art-17-gdpr/)—the “right to be forgotten”—where
individuals can request a company collecting their data to erase all their personal data.
The regulation also contains article 22 (https://gdpr-info.eu/art-22-gdpr/), under
which individuals can challenge decisions made by an algorithm or AI system using
their personal data. This regulation presses the need for providing an interpretation or
explanation for why the algorithm made a particular decision. The current Diagnos-
tics+ AI system does not comply with both sets of regulations. In this book, we are more
concerned with article 22 because there are a lot of online resources on how to be com-
pliant with article 17. 

1.4.4 Concept drift

Concept drift happens when the properties or the distribution of the data in a pro-
duction environment has changed when compared to the historical data used to train
and evaluate the model. For Diagnostics+ AI, this could happen if new profiles of
patients or diseases emerge that aren’t captured in the historical data. When concept
drift happens, we observe a dip in the performance of the machine learning model in
production over time. The current Diagnostics+ AI system does not properly deal with
concept drift.

1.5 Building a robust Diagnostics+ AI system
How do we address all the gaps highlighted in section 1.4 and build a robust Diagnos-
tics+ AI system? We need to tweak the process. First, as shown in figure 1.11, we add a
model understanding phase after the testing phase and before deploying. 

 The purpose of this new understanding phase is to answer the important how ques-
tion—how did the model come up with a positive diagnosis for a given blood sample?
This involves interpreting the important features for the model and how they interact

http://mng.bz/7Ww4
http://mng.bz/7Ww4
http://mng.bz/7Ww4
https://gdpr-info.eu/art-17-gdpr/
https://gdpr-info.eu/art-22-gdpr/
https://gdpr.eu/
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with each other, interpreting what patterns the model learned, understanding the
blind spots, checking for bias in the data, and ensuring those biases are not propa-
gated by the model. This understanding phase should ensure that the AI system is
safeguarded against the data leakage and bias issues highlighted in sections 1.4.1 and
1.4.2, respectively. 

 The second change is to add an explaining phase after deploying, as shown in fig-
ure 1.12. The purpose of the explaining phase is to interpret how the model came up
with the prediction on new data in the production environment. Interpreting the pre-
diction on new data allows us to expose that information, if needed, to expert users of
the system who challenge the decision made by the deployed model. Another purpose
is to come up with a human-readable explanation so that it can be exposed to wider
end users of the AI system. By including the interpretation step, we will be able to
address the regulatory noncompliance issue highlighted in section 1.4.3.
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Figure 1.11 Process of building a robust AI system—understanding phase
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Finally, to address the concept drift issue highlighted in section 1.4.4, we need to add
a monitoring phase in the production environment. This complete process is shown in
figure 1.13. The purpose of the monitoring phase is to track the distribution of the
data in the production environment as well as the performance of the deployed
model. If any change occurs in data distribution or model performance dips, we will
need to go back to the learning phase and incorporate the new data from the produc-
tion environment to retrain the models. 

1.6 Interpretability vs. explainability
Interpretability and explainability are sometimes used interchangeably, but it is import-
ant to make a distinction between the two terms. 

 Interpretability is all about understanding the cause and effect within an AI system. It
is the degree to which we can consistently estimate what a model will predict given an
input, understand how the model came up with the prediction, understand how the

Primary focus of the book
This book primarily focuses on the interpretation step in the understanding and
explaining phases. I intend to teach you various interpretability techniques that you
can apply to answer the important how question and address the data leakage, bias,
and regulatory noncompliance issues. Although explainability and monitoring are
important steps in the process, they are not the primary focus of this book. It is also
important to distinguish between interpretability and explainability. This is addressed
in the following section.
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prediction changes with changes in the input or algorithmic parameters, and finally,
understand when the model has made a mistake. Interpretability is mostly discernible
by experts who are building, deploying, or using the AI system, and these techniques
are building blocks that will help us get to explainability. 

 Explainability, on the other hand, goes beyond interpretability in that it helps us
understand in a human-readable form how and why a model came up with a predic-
tion. It explains the internal mechanics of the system in human terms, with the intent
to reach a much wider audience. Explainability requires interpretability as a building
block and also looks to other fields and areas, such as human-computer interaction
(HCI), law, and ethics. In this book, I will focus more on interpretability and less on
explainability. We have a lot to cover within interpretability itself, but it should give
you a solid foundation to be able to later build an explainable AI system. 

 You should be aware of four different personas when you consider interpretability.
They are the data scientist or engineer who is building the AI system, the business stake-
holder who wants to deploy the AI system for their business, the end user of the AI sys-
tem, and finally the expert or regulator who monitors or audits the health of the AI
system. Note that interpretability means different things to these four personas, as
described next: 

 For a data scientist or engineer, it means gaining a deeper understanding of how
the model made a particular prediction, which features are important, and how
to debug issues by analyzing cases where the model did badly. This understand-
ing helps the data scientist build more robust models. 

 For a business stakeholder, it means understanding how the model made a deci-
sion so as to ensure fairness and protect the business’s users and brand. 

 For an end user, it means understanding how the model made a decision and
allowing for meaningful challenge if the model made a mistake. 

 For an expert or regulator, it means auditing the model and the AI system and fol-
lowing the decision trail, especially when things went wrong.

1.6.1 Types of interpretability techniques

Figure 1.14 summarizes various types of interpretability techniques. Intrinsic interpret-
ability techniques are related to machine learning models with a simple structure, also
called white-box models. White-box models are inherently transparent, and interpreting
the internals of the model is straightforward. Interpretability comes right out of the
box for such models. Post hoc interpretability techniques are usually applied after
model training and are used to interpret and understand the importance of certain
inputs for the model prediction. Post hoc interpretability techniques are suited for
white-box and black-box models, that is, models that are not inherently transparent.

 Interpretability techniques can also be model-specific or model-agnostic. Model-
specific interpretability techniques, as the name suggests, can be applied only to certain
types of models. Intrinsic interpretability techniques are model-specific by nature
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because the technique is tied to the specific structure of the model being used. Model-
agnostic interpretability techniques, however, are not dependent on the specific type
of model being used. They can be applied to any model because they are independent
of the internal structure of the model. Post-hoc interpretability techniques are mostly
model-agnostic by nature.

 Interpretability techniques can also be local or global in scope. Local interpretabil-
ity techniques aim to give a better understanding of the model prediction for a spe-
cific instance or example. Global interpretability techniques, on the other hand, aim to
give a better understanding of the model as a whole—the global effects of the input
features on the model prediction. We cover all of these types of techniques in this
book. Now let’s take a look at what specifically you will learn.

1.7 What will I learn in this book?
Figure 1.15 depicts a map of all the interpretability techniques you will learn in this
book. When interpreting supervised learning models, it is important to distinguish
between white-box and black-box models. Examples of white-box models are linear
regression, logistic regression, decision trees, and generalized additive models
(GAMs). Examples of black-box models include tree ensembles, like random forest
and boosted trees, and neural networks. White-box models are much easier to inter-
pret than black-box models. On the other hand, black-box models have much higher
predictive power than white-box models. So, we need to make a trade-off between pre-
dictive power and interpretability. It is important to understand the scenarios in which
we can apply white-box and black-box models. 

 In chapter 2, you’ll learn about characteristics that make white-box models inher-
ently transparent and black-box models inherently opaque. You’ll learn how to inter-
pret simple white-box models, such as linear regression and decision trees, and then
we’ll switch gears to focus on GAMs. GAMs have high predictive power and are highly
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interpretable, too, so they offer more bang for the buck than GAMs. You’ll learn
about the properties that give GAMs power and how to interpret them. At the time of
writing, there are not a lot of practical resources on GAMs to give a good understand-
ing of the internals of the model and how to interpret them. To address this gap, we
pay a lot of attention to GAMs in chapter 2. The rest of the chapters focus on black-
box models.

 We can interpret black-box models in two ways. One way is to interpret model pro-
cessing, that is, to understand how the model processes the inputs and arrives at the
final prediction. Chapters 3 to 5 focus on interpreting model processing. The other
way is to interpret model representations, which is applicable only to deep neural net-
works. Chapters 6 and 7 focus on interpreting model representations with the goal of
understanding what features or patterns have been learned by the neural network. 

Figure 1.15 Map of interpretability techniques covered in this book
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In chapter 3, we focus on a class of black-box models called tree ensembles. You’ll
learn about their characteristics and what makes them “black box.” You will also learn
how to interpret them using post hoc model-agnostic methods that are global in
scope. We will focus specifically on partial dependence plots (PDPs), individual condi-
tional expectation (ICE) plots, and feature interaction plots.

 In chapter 4, we focus on deep neural networks, specifically the vanilla fully connected
neural networks. You’ll learn about characteristics that make these models black box and
also how to interpret them using post hoc model-agnostic methods that are local in
scope. You’ll specifically learn about techniques such as local interpretable model-
agnostic explanations (LIME), SHapley Additive exPlanations (SHAP), and anchors.

 In chapter 5, we focus on convolutional neural networks, which is a more
advanced form of architecture used mainly for visual tasks such as image classification
and object detection. You’ll learn how to visualize what the model is focusing on using
saliency maps. You’ll also learn techniques such as gradients, guided backpropagation
(backprop for short), gradient-weighted class activation mapping (grad-CAM), guided
grad-CAM, and smooth gradients (SmoothGrad).

 In chapters 6 and 7, we focus on convolutional neural networks and neural net-
works used for language understanding. You’ll learn how to dissect the neural networks
and understand what representations of the data are learned by the intermediate or
hidden layers in the neural network. You’ll also learn how to visualize high-dimensional
representations learned by the model using techniques like principal component anal-
ysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE).

 The book ends on the topic of building fair and unbiased models and learning
what it takes to build explainable AI systems. In chapter 8, you’ll learn about various
definitions of fairness and how to check whether your model is biased. You’ll also
learn techniques to mitigate bias using a neutralizing technique. We discuss a stan-
dardizing approach to documenting datasets using datasheets that help improve
transparency and accountability with the stakeholders and users of the system. In
chapter 9, we pave the way for explainable AI by teaching how to build such systems,
and you’ll also learn about contrastive explanations using counterfactual examples.
By the end of this book, you will have various interpretability techniques in your tool-
kit. When it comes to model understanding, there is, unfortunately, no silver bullet.
No one interpretability technique is applicable for all scenarios. You, therefore, need
to look at the model using a few different lenses by applying multiple interpretability
techniques. In this book, I help you identify the right tools for the right scenarios.

1.7.1 What tools will I be using in this book?

In this book, we will implement the models and the interpretability techniques in the
Python programming language. The main reason I chose Python is because most of the
state-of-the-art interpretability techniques are created and actively developed in this
language. Figure 1.16 gives an overview of the tools used in this book. For representing
data, we will be using Python data structures and common data science libraries such as
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Pandas and NumPy. To implement white-box models, we will use the Scikit-Learn library
for simpler linear regression and decision trees, and pyGAM for GAMs. For black-box
models, we will use Scikit-Learn for tree ensembles and PyTorch or TensorFlow for neural
networks. For interpretability techniques used to understand model processing, we will
use the Matplotlib library for visualization and open source libraries that implement
techniques such as PDP, LIME, SHAP, anchors, gradients, guided backprop, grad-CAM and
SmoothGrad. To interpret model representations, we will employ tools that implement
NetDissect and tSNE and visualize them using the Matplotlib library. Finally, for mitigating
bias, we will use PyTorch and TensorFlow to implement the bias-neutralizing technique and
GANs for adversarial debiasing. 

1.7.2 What do I need to know before reading this book?

This book is primarily focused on data scientists and engineers with experience pro-
gramming in Python. A basic knowledge of common Python data science libraries
such as NumPy, Pandas, Matplotlib, and Scikit-Learn will help, although this is not
required. The book will show you how to use these libraries to load and represent data
but will not give you an in-depth understanding of them, because it is beyond the
scope of this book. 

 The reader must be familiar with linear algebra, specifically vectors and matrices,
and operations on them, such as dot product, matrix multiplication, transpose, and
inversion. The reader must also have a good foundation in probability theory and sta-
tistics, specifically on the topics of random variables, basic discrete and continuous
probability distributions, conditional probability, and Bayes’ theorem. Basic knowledge
of calculus is also expected, specifically single-variable and multivariate functions and
specific operations on them such as derivatives (gradients) and partial derivatives.
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Figure 1.16 An overview of the tools used in this book
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Although this book does not focus too much on the mathematics behind model inter-
pretability, having this basic mathematical foundation is expected of data scientists and
engineers interested in building machine learning models.

 Basic knowledge of machine learning or practical experience training machine
learning models is a plus, although this is not a hard requirement. This book does not
cover machine learning in great depth because a lot of resources and books do justice
to this topic. The book will, however, give you a basic understanding of the specific
machine learning models being used and also show you how to train and evaluate
them. The main focus is on the theory related to interpretability and how you can
implement techniques to interpret the model after you have trained it.

Summary
 Three broad types of machine learning systems exist: supervised learning, unsu-

pervised learning, and reinforcement learning. This book focuses on interpret-
ability techniques for supervised learning systems that include both regression
and classification types of problems.

 When building AI systems, it is important to add interpretability, model under-
standing, and monitoring to the process. If you don’t, you could experience
disastrous consequences such as data leakage, bias, concept drift, and a general
lack of trust. Moreover, with the GDPR, we have legal reasons for including
interpretability in our AI processes.

 It is important to understand the difference between interpretability and
explainability. 

 Interpretability is the degree to which we can consistently estimate what a
model will predict, understand how the model came up with the prediction,
and understand when the model has made a mistake. Interpretability tech-
niques are building blocks that will help you get to explainability. 

 Explainability goes beyond interpretability in that it helps us understand how
and why a model came up with a prediction in a human-readable form. It
makes use of interpretability techniques and also looks to other fields and
areas, such as human-computer interaction (HCI), law, and ethics. 

 You need to be mindful of different personas using or building the AI system,
because interpretability means different things to different people.

 Interpretability techniques can be intrinsic or post hoc, model-specific or
model-agnostic, local or global.

 Models that are inherently transparent are called white-box models, and mod-
els that are inherently opaque are called black-box models. White-box models
are much easier to interpret but generally have lower predictive power than
black-box models.

 Black-box models offer two broad classes of interpretability techniques: one
that’s focused on interpreting the model processing and another that’s focused
on interpreting the representation learned by the model. 
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White-box models

To build an interpretable AI system, we must understand the different types of
models that we can use to drive the AI system and techniques that we can apply to
interpret them. In this chapter, I cover three key white-box models—linear regres-
sion, decision trees, and generalized additive models (GAMs)—that are inherently
transparent. You will learn how they can be implemented, when they can be
applied, and how they can be interpreted. I also briefly introduce black-box mod-
els. You will learn when they can be applied and their characteristics that make

This chapter covers
 Characteristics that make white-box models 

inherently transparent and interpretable

 How to interpret simple white-box models such as 
linear regression and decision trees

 What generalized additive models (GAMs) are and 
their properties that give them high predictive power 
and high interpretability

 How to implement and interpret GAMs

 What black-box models are and their characteristics 
that make them inherently opaque
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them hard to interpret. This chapter focuses on interpreting white-box models, and
the rest of the book will be dedicated to interpreting complex black-box models. 

 In chapter 1, you learned how to build a robust, interpretable AI system. The pro-
cess is shown again in figure 2.1. The main focus of chapter 2 and the rest of the book
will be on implementing interpretability techniques to gain a much better under-
standing of machine learning models that cover both white-box and black-box mod-
els. The relevant blocks are highlighted in figure 2.1. We will apply these
interpretability techniques during model development and testing. We will also learn
about model training and testing, especially the implementation aspects. Because the
model learning, testing, and understanding stages are quite iterative, it is important to
cover all three stages together. Readers who are already familiar with model training
and testing are free to skip those sections and jump straight into interpretability. 

 When applying interpretability techniques in production, we also need to consider
building an explanation-producing system to generate a human-readable explanation
for the end users of your system. Explainability is, however, beyond the scope of this
book, and the focus will be exclusively on interpretability during model development
and testing.

2.1 White-box models
White-box models are inherently transparent, and the characteristics that make them
transparent are

 The algorithm used for machine learning is straightforward to understand, and
we can clearly interpret how the input features are transformed into the output
or target variable.
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 We can identify the most important features to predict the target variable, and
those features are understandable. 

Examples of white-box models include linear regression, logistic regression, decision
trees, and generalized additive models (GAMs). Table 2.1 shows the machine learning
tasks to which these models can be applied.

In this chapter, we focus on linear regression, decision trees, and GAMs. In figure 2.2,
I have plotted these techniques on a 2-D plane with interpretability on the x-axis and
predictive power on the y-axis. As you go from left to right on this plane, the models
go from the low interpretability regime to the high interpretability regime. As you go
from bottom to top on this plane, the models go from the low predictive power
regime to the high predictive power regime. Linear regression and decision trees are
highly interpretable but have low to medium predictive power. GAMs, on the other
hand, have high predictive power and are highly interpretable as well. The figure also
shows black-box models in gray and italic. We cover those in section 2.6.

We start off with interpreting the simpler linear regression and decision tree models
and then go deep into the world of GAMs. For each of these white-box models, we
learn how the algorithm works and the characteristics that make them inherently
interpretable. For white-box models, it is important to understand the details of the
algorithm because it will help us interpret how the input features are transformed

Table 2.1 Mapping of a white-box model to a machine learning task

White-box model Machine learning task(s)

Linear regression Regression

Logistic regression Classification

Decision trees Regression and classification

GAMs Regression and classification
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into the final model output or prediction. It will also help us quantify the importance
of each input feature. You’ll learn how to train and evaluate all of the models in this
book in Python first, before we dive into interpretability. As mentioned earlier,
because the model learning, testing, and understanding stages are iterative, it is
important to cover all three stages together.

2.2 Diagnostics+—diabetes progression
Let’s look at white-box models in the context of a concrete example. Recall the Diag-
nostics+ AI example from chapter 1. The Diagnostics+ center would now like to deter-
mine the progression of diabetes in their patients one year after a baseline
measurement is taken, as shown in figure 2.3. The center has tasked you, as a newly
minted data scientist, to build a model for Diagnostics+ AI to predict diabetes progres-
sion one year out. This prediction will be used by doctors to determine a proper treat-
ment plan for their patients. To gain the doctors’ confidence in the model, it is
important not just to provide an accurate prediction but also to be able to show how
the model arrived at that prediction. How would you begin this task? 

First, let’s look at what data is available. The Diagnostics+ center has collected from
around 440 patients data that consists of patient metadata such as age, sex, body mass
index (BMI), and blood pressure (BP). Blood tests were also performed on these
patients, and the following six measurements were collected:

 LDL (bad cholesterol)
 HDL (good cholesterol)
 Total cholesterol
 Thyroid-stimulating hormone
 Low-tension glaucoma 
 Fasting blood glucose 

The data also contains the fasting glucose levels for all patients one year after the base-
line measurement was taken. This is the target for the model. How would you formu-
late this as a machine learning problem? Because labeled data is available, where you
are given 10 input features and one target variable that you have to predict, you can

Patient metadata Diagnostics+
AI 156

Fasting glucose level 
one year later

Doctor

Age Sex BMI BP
… …  …  …

Input features

Six blood test
measurements

Target variable

Figure 2.3 Diagnostics+ AI for diabetes
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formulate this problem as a supervised learning problem. The target variable is real
valued or continuous, so it is a regression task. The objective is to learn a function f
that will help predict the target variable y given the input features x.

 Let’s now load the data in Python and explore how correlated the input features
are with each other and the target variable. If the input features are highly correlated
with the target variable, then we can use them to train a model to make the predic-
tion. If, however, they are not correlated with the target variable, then we will need to
explore further to determine whether there is some noise in the data. The data can be
loaded in Python as follows:

from sklearn.datasets import load_diabetes 
diabetes = load_diabetes() 
X, y = diabetes[‘data’], diabetes[‘target’] 

We will now create a Pandas DataFrame, which is a two-dimensional data structure
that contains all the features and the target variable. The diabetes dataset provided by
Scikit-Learn comes with feature names that are not easy to understand. The six blood
sample measurements are named s1, s2, s3, s4, s5, and s6, which makes it hard for us
to understand what each feature is measuring. The documentation provides this map-
ping, however, and we use that to rename the columns to something that is more
understandable, as shown here:

feature_rename = {'age': 'Age',  
                  'sex': 'Sex',  
                  'bmi': 'BMI',  
                  'bp': 'BP',  
                  's1': 'Total Cholesterol',  
                  's2': 'LDL',  
                  's3': 'HDL',  
                  's4': 'Thyroid',  
                  's5': 'Glaucoma',  
                  's6': 'Glucose'}  

df_data = pd.DataFrame(X, 
                       columns=diabetes['feature_names'])
df_data.rename(columns=feature_rename, inplace=True)
df_data['target'] = y 

Now let’s compute the pairwise correlation of columns so that we can determine how
correlated each of the input features is with each other and the target variable. This
can be done easily in Pandas as follows:

corr = df_data.corr()

Imports the scikit-learn function 
to load the open diabetes dataset Loads the diabetes dataset

Extracts the features 
and the target variable

Mapping the feature names 
provided by Scikit-Learn to 
a more readable form

Loads all the 
features (x) into 
a DataFrame Uses the Scikit-Learn 

feature names as 
column names

Renames the Scikit-Learn 
feature names to a more 
readable formIncludes the target variable (y) 

as a separate column
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By default, the corr() function in pandas computes the Pearson or standard correla-
tion coefficient. This coefficient measures the linear correlation between two variables
and has a value between +1 and –1. If the magnitude of the coefficient is above 0.7,
that means it’s a really high correlation. If the magnitude of the coefficient is between
0.5 and 0.7, that indicates a moderately high correlation. If the magnitude of the coef-
ficient is between 0.3 and 0.5, that means a low correlation, and a magnitude less than
0.3 means there is little to no correlation. We can now plot the correlation matrix in
Python as follows:

import matplotlib.pyplot as plt  
import seaborn as sns 
sns.set(style=’whitegrid’)  
sns.set_palette(‘bright’)  

f, ax = plt.subplots(figsize=(10, 10)) 
sns.heatmap(  
    corr,  
    vmin=-1, vmax=1, center=0,  
    cmap="PiYG",  
    square=True,  
    ax=ax  
)  
ax.set_xticklabels(  
    ax.get_xticklabels(),  
    rotation=90,  
    horizontalalignment='right'  
);  

The resulting plot is shown in figure 2.4. Let’s first focus on either the last row or the
last column in the figure. This shows us the correlation of each of the inputs with the
target variable. We can see that seven features—BMI, BP, Total Cholesterol, HDL, Thy-
roid, Glaucoma, and Glucose—have moderately high to high correlation with the tar-
get variable. We can also observe that the good cholesterol (HDL) also has a negative
correlation with the progression of diabetes. This means that the higher the HDL
value, the lower the fasting glucose level for the patient one year out. The features
seem to have pretty good signal in being able to predict the disease progression, and
we can go ahead and train a model using them. As an exercise, observe how each of
the features is correlated with each other. Total cholesterol, for instance, seems very
highly correlated with the bad cholesterol, LDL. We will come back to this when we
start to interpret the linear regression model in section 2.3.1. 

 
 
 
 
 
 

Imports Matplotlib 
and Seaborn to plot 
the correlation matrix

Initializes a Matplotlib plot 
with a predefined size

Uses Seaborn to plot a heatmap 
of the correlation coefficients

Rotates the labels on the 
x-axis by 90 degrees
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2.3 Linear regression
Linear regression is one of the simplest models you can train for regression tasks. In
linear regression, the function f is represented as a linear combination of all the input
features, as depicted in figure 2.5. The known variables are shown in gray, and the
idea is to represent the target variable as a linear combination of the inputs. The
unknown variables are the weights that must be learned by the learning algorithm.
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In general, the function f for linear regression is shown mathematically as follows,
where n is the total number of features:

The objective of the linear regression learning algorithm is to determine the weights
that accurately predict the target variable for all patients in the training set. We can
apply the following techniques here:

 Gradient descent
 Closed-form solution (e.g., the Newton equation)

Gradient descent is commonly applied because it scales well to a large number of fea-
tures and training examples. The general idea is to update the weights such that the
squared error of the predicted target variable with respect to the actual target variable
is minimized. 

 The objective of the gradient descent algorithm is to minimize the squared error
or squared difference between the predicted target variable and the actual target vari-
able across all the examples in the training set. This algorithm is guaranteed to find
the optimum set of weights, and because the algorithm minimizes the squared error, it
is said to be based on least squares. A linear regression model can be easily trained
using the Scikit-Learn package in Python. The code to train the model is shown next.
Note that the open diabetes dataset provided by Scikit-Learn is used here, and this
dataset has been standardized, having zero mean and unit variance for all the input
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features. Feature standardization is a widely used form of preprocessing done on data-
sets used in many machine learning models like linear regression, logistic regression,
and more complex models based on neural networks. It allows the learning algo-
rithms that drive these models to converge faster to an optimum solution:

from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LinearRegression 
import numpy as np

X_train, X_test, y_train, y_test = train_test_split(X, y,  
  test_size=0.2,  
  random_state=42)  

lr_model = LinearRegression() 

lr_model.fit(X_train, y_train) 

y_pred = lr_model.predict(X_test) 

mae = np.mean(np.abs(y_test - y_pred)) 

The performance of the trained linear regression model can be quantified by compar-
ing the predictions with the actual values on the test set. We can use multiple metrics,
such as root mean squared error (RMSE), mean absolute error (MAE), and mean
absolute percentage error (MAPE). Each of these metrics offers pros and cons, and it
helps to quantify the performance using multiple metrics to measure the goodness of
a model. Both MAE and RMSE are in the same units as the target variable and are easy
to understand in that regard. The magnitude of the error, however, cannot be easily
understood using these two metrics. For example, an error of 10 may seem small at
first, but if the actual value you are comparing with is, say, 100, then that error is not
small in relation to that. This is where MAPE is useful for understanding these relative
differences because the error is expressed in terms of percentage (%) error. The topic
of measuring model goodness is important but is beyond the scope of this book. You
can find a lot of resources online. I have written a comprehensive two-part blog post
(http://mng.bz/ZzNP) to cover this topic. 

 The previous trained linear regression model was evaluated using the MAE metric,
and the performance was determined to be 42.8. But is this performance good? To
check whether the performance of a model is good, we need to compare it with a
baseline. For Diagnostics+, the doctors have been using a baseline model that predicts
the median diabetes progression across all patients. The MAE of this baseline model

Imports the scikit-learn function to split 
the data into training and test sets

Imports the scikit-learn class for linear regression

Imports numpy to evaluate the performance of model

Splits the data into training 
and test sets, where 80% of 
the data is used for training 
and 20% of the data for 
testing, and ensures that 
the seed for the random-
number generator is set 
using the random_state 
parameter to ensure 
consistent train-test splits

Initializes the linear regression model, 
which is based on least squares

Learns the weights for the model 
by fitting on the training set

Uses the learned weights to predict the disease 
progression for patients in the test set

Evaluates the model performance using 
the mean absolute error (MAE) metric

http://mng.bz/ZzNP
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was determined to be 62.2. If we now compare this baseline with the linear regression
model, we notice a drop in MAE by 19.4, which is a pretty good improvement. We
have now trained a decent model, but it doesn’t tell us how the model arrived at the
prediction and which input features are most important. I cover this in the following
section.

2.3.1 Interpreting linear regression

In the earlier section, we trained a linear regression model during model develop-
ment and then evaluated the model performance during testing using the MAE met-
ric. As a data scientist building Diagnostics+ AI, you now share these results with the
doctors, and they are reasonably happy with the performance. But there is something
missing. The doctors don’t have a clear understanding of how the model arrived at
the final prediction. Explaining the gradient descent algorithm does not help with
this understanding because you are dealing with a pretty large feature space in this
example—10 input features in total. It is impossible to visualize how the algorithm
converges to the final prediction in a 10-dimensional space. In general, the ability to
describe and explain a machine learning algorithm does not guarantee interpretabil-
ity. So, what is the best way of interpreting a model? 

 For linear regression, because the final prediction is just a weighted sum of the
input features, all we have to look at are the learned weights. This is what makes linear
regression a white-box model. What do the weights tell us? If the weight of a feature is
positive, a positive change in that input will result in a proportional positive change in
the output, and a negative change in the input will result in a proportional negative
change in the output. Similarly, if the weight is negative, a positive change in the input
will result in a proportional negative change in the output, and a negative change in
the input will result in a proportional positive change in the output. Such a learned
function, shown in figure 2.6, is called a linear, monotonic function.

 We can also look at the impact or importance of a feature in predicting the target
variable by looking at the absolute value of the corresponding weight. The larger the
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31Linear regression

absolute value of the weight, the greater the importance. The weights for each of the
10 features are shown in descending order of importance in figure 2.7. 

The most important feature is the Total Cholesterol measurement. It has a large nega-
tive value for the weight. This means that a positive change in the cholesterol level has
a large negative influence on predicting diabetes progression. This could be because
Total Cholesterol also accounts for the good kind of cholesterol. 

 If we now look at the bad cholesterol, or LDL, feature, it has a large positive
weight, and it is also the fourth most important feature in predicting the progression
of diabetes. This means that a positive change in LDL cholesterol level results in a
large positive influence in predicting diabetes one year out. The good cholesterol, or
HDL, feature has a small positive weight and is the third least important feature. Why
is that? Recall the exploratory analysis that we did in section 2.2 where we plotted the
correlation matrix in figure 2.4. If we observe the correlation among total cholesterol,
LDL, and HDL, we see a very high correlation between total cholesterol and LDL and
moderately high correlation between total cholesterol and HDL. Because of this cor-
relation, the HDL feature is deemed redundant by the model. 

 It also looks like the baseline Glucose measurement for the patient has a very small
impact on predicting the progression of diabetes a year out. If we again go back to the
correlation plot shown in figure 2.4, we can see that Glucose measurement is very
highly correlated with the baseline Glaucoma measurement (the second most
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Figure 2.7 Feature importance for the diabetes linear regression model
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important feature for the model) and highly correlated with Total Cholesterol (the
most important feature for the model). The model, therefore, treats Glucose as a
redundant feature because a lot of the signal is obtained from the Total Cholesterol and
Glaucoma features. 

 If an input feature is highly correlated with one or more other features, they are
said to be multicollinear. Multicollinearity could be detrimental to the performance of
a linear regression model based on least squares. Let’s suppose we use two features, x1

and x2, to predict the target variable y. In a linear regression model, we are essentially
estimating weights for each of the features that will help predict the target variable
such that the squared error is minimized. Using least squares, the weight for feature
x1, or the effect of x1 on the target variable y, is estimated by holding x2 constant. Simi-
larly, the weight for x2 is estimated by holding x1 constant. If x1 and x2 are collinear,
then they vary together, and it becomes very difficult to accurately estimate their
effects on the target variable. One of the features becomes completely redundant for
the model. We saw the effects of collinearity on our diabetes model earlier where fea-
tures such as HDL and Glucose that were pretty highly correlated with the target vari-
able had very low importance in the final model. The problem of multicollinearity can
be overcome by removing the redundant features for the model. As an exercise, I
highly recommend doing that to see if you can improve the performance of the linear
regression model. 

 In the process of training a machine learning model, it is important to explore the
data first and determine how correlated features are with each other and with the tar-
get variable. The problem of multicollinearity must be uncovered early in the process,
before training the model, but if it has been overlooked, interpreting the model will
help expose such issues. The plot in figure 2.7 can be generated in Python using the
following code snippet:

import numpy as np 
import matplotlib.pyplot as plt  
import seaborn as sns 
sns.set(style=’whitegrid’)  
sns.set_palette(‘bright’)   

weights = lr_model.coef_ 

feature_importance_idx = np.argsort(np.abs(weights))[::-1] 
feature_importance = [feature_names[idx].upper() for idx in
  feature_importance_idx] 
feature_importance_values = [weights[idx] for idx in
  feature_importance_idx]                           

f, ax = plt.subplots(figsize=(10, 8))  
sns.barplot(x=feature_importance_values, y=feature_importance, ax=ax) 
ax.grid(True)  
ax.set_xlabel('Feature Weights')  
ax.set_ylabel('Features')         

Imports numpy to perform operation 
on vectors in an optimized way

Imports matplotlib and seaborn 
to plot the feature importance

Obtains the weights from the linear 
regression model trained earlier 
using the coef_ parameter

Sorts the weights in 
descending order of 
importance and gets 
their indices

Uses the ordered indices 
to get the feature names 
and the corresponding 
weight values

Generates 
the plot 
shown in 
figure 2.7
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2.3.2 Limitations of linear regression
In the previous section, we saw how easy it is to interpret a linear regression model. It
is highly transparent and easy to understand. However, it has poor predictive power,
especially in cases where the relationship between the input features and target is
nonlinear. Consider the example shown in figure 2.8.

If we were to fit a linear regression model to this dataset, we would get a straight-line
linear fit, as shown in figure 2.9. As you can see, the model does not properly fit the
data and does not capture the nonlinear relationship. This limitation of linear regres-
sion is called underfitting, and the model is said to have high bias. In the following sec-
tions, we will see how this problem can be overcome by using more complex models
with higher predictive power.

2.4 Decision trees
A decision tree is a great machine learning algorithm that can be used to model com-
plex nonlinear relationships. It can be applied to both regression and classification
tasks. It has relatively higher predictive power than linear regression and is highly
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interpretable, too. The basic idea behind a decision tree is to find optimum splits in
the data that best predict the output or target variable. In figure 2.10, I have illus-
trated this by considering only two features, BMI and Age. The decision tree splits the
dataset into five groups in total, three age groups and two BMI groups. 

The algorithm that is commonly applied in determining the optimum splits is the clas-
sification and regression tree (CART) algorithm. This algorithm first chooses a fea-
ture and a threshold for that feature. Based on that feature and threshold, the
algorithm splits the dataset into the following two subsets: 

 Subset 1, where the value of the feature is less than or equal to the threshold
 Subset 2, where the value of the feature is greater than the threshold 

The algorithm picks the feature and threshold that minimizes a cost function or crite-
rion. For regression tasks, this criterion is typically the mean squared error (MSE),
and for classification tasks, it is typically either Gini impurity or entropy. The algo-
rithm then continues to recursively split the data until the criterion is reduced further
or until a maximum depth is reached. The splitting strategy in figure 2.10 is shown as
a binary tree in figure 2.11.

 A decision tree model can be trained in Python using the Scikit-Learn package as
follows. The code to learn the open diabetes dataset and to split it into the training
and test sets is the same as the one used for linear regression in section 2.3, so, this
code is not repeated here:

from sklearn.tree import DecisionTreeRegressor 

dt_model = DecisionTreeRegressor(max_depth=None, random_state=42) 

dt_model.fit(X_train, y_train) 

y_pred = dt_model.predict(X_test) 

mae = np.mean(np.abs(y_test - y_pred)) 
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The decision tree model trained here was evaluated using the MAE metric, and the
performance was determined to be 54.7. If we tune the max_depth hyperparameter
and set it to 3, we can improve the MAE performance further to 48.6. This perfor-
mance, however, is poorer than the regression model trained in section 2.2. I will dis-
cuss the reasons for this in section 2.4.2, but first, let’s look at how to interpret a
decision tree in the following section. 

2.4.1 Interpreting decision trees

Decision trees are great at modeling nonlinear relationships between the input and
the output. By finding splits in the data across features, the model tends to learn a
function that is nonlinear in nature. The function could be monotonic, where a
change in the input results in a change in the output in the same direction, or non-
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Figure 2.11 Decision tree data splitting visualized as a binary tree

Decision tree for classification tasks
As mentioned in this section, decision trees can also be used for classification tasks.
In the CART algorithm, Gini impurity or entropy is used as the cost function. In Scikit-
Learn, you can easily train a decision tree classifier as follows:

    from sklearn.tree import DecisionTreeClassifier
    dt_model = DecisionTreeClassifier(criterion=’gini’, max_depth=None)
    dt_model.fit(X_train, y_train)

The criterion parameter in the DecisionTreeClassifier can be used to specify
the cost function for the CART algorithm. By default, it is set to gini, but it can be
changed to entropy.
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monotonic, where a change in the input could result in a change in the output in any
direction and at a varying rate. This is illustrated in figure 2.12. 

How do we interpret such a learned nonlinear function? As seen in the previous sec-
tion, a decision tree can be visualized as a bunch of if-else conditions strung together,
where each condition splits the data in two. Such a model can be easily visualized as a
binary tree, as illustrated in figure 2.11. For the decision tree model trained for diabe-
tes, the visualization of the binary tree is shown in figure 2.13. The tree can be inter-
preted as follows.

 Starting at the root of the tree, check if the normalized BMI is <= 0. If true, go to
the left part of the tree. If false, go to the right part of the tree. Because we are starting
at the root of the tree, this node accounts for 100% of the data. This is why samples is
equal to 100%. Also, if we were to set the max_depth to 0 and predict the disease
progression, then we would use the average value of all the samples in the data, which
is 153.7, represented as value in the tree. By predicting 153.7, we would get an MSE
of 6076.4.

 If the normalized BMI is <= 0, then we go to the left part of the tree and check if
the normalized Glaucoma is <= 0. If BMI is <= 0, we would account for approximately
59% of the data, and the MSE would reduce from 6076.4 for the parent node to
3612.7. We can repeat this process until we have reached the leaf nodes in the tree. If
we look at, say, the right-most leaf node, this corresponds to the following condition: if
BMI > 0 and BMI > 0.1 and LDL > 0, then predict 225.8 for 2.3% of the data, resulting
in an MSE of 2757.9.   

 Please note that the max_depth for the decision tree in figure 2.13 was set to 3. The
complexity of this tree will increase as max_depth increases or as the number of input
features increases. 
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The visualization in figure 2.13 can be generated in Python using the following code
snippet:

from sklearn.externals.six import StringIO  
from IPython.display import Image
from sklearn.tree import export_graphviz    
import pydotplus                            

diabetes_dt_dot_data = StringIO()
export_graphviz(dt_model, 
                out_file=diabetes_dt_dot_data,
                filled=False, rounded=True,
                feature_names=feature_names,
                proportion=True,
                precision=1,
                special_characters=True) 
dt_graph = pydotplus.graph_from_dot_data(diabetes_dt_dot_data.getvalue())
Image(dt_graph.create_png()) 

Because decision trees learn a nonlinear relationship between the input features and
the target, it is hard to understand what effects changes to each of the inputs have on
the output. It is not as straightforward as linear regression. We can, however, compute
the relative importance of each of the features in predicting the target at a global
level. To compute the feature importance, we first need to compute the importance of
a node in the binary tree. The importance of a node is computed as the decrease in
the cost function or impurity measure for that node weighted by the probability of
reaching that node in the tree. This is shown mathematically next:
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Figure 2.13 Visualization of the diabetes decision tree model
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We can then compute the feature importance by summing up the importance of the
nodes that split on that feature normalized by the importance of all the nodes in the
tree. This is shown mathematically next. The feature importance for the decision tree
is between 0 and 1, where a higher value implies greater importance:

In Python, the feature importance can be obtained from the Scikit-Learn decision
tree model and plotted as follows:

weights = dt_model.feature_importances_ 

feature_importance_idx = np.argsort(np.abs(weights))[::-1] 
feature_importance = [feature_names[idx].upper() for idx in
  feature_importance_idx] 
feature_importance_values = [weights[idx] for idx in
  feature_importance_idx]  

f, ax = plt.subplots(figsize=(10, 8))  
sns.barplot(x=feature_importance_values, y=feature_importance, ax=ax) 
ax.grid(True)  
ax.set_xlabel('Feature Weights')  
ax.set_ylabel('Features')  

The features ordered in descending order of importance and their corresponding
weights are shown in figure 2.14. As can be seen from the figure, the order of import-
ant features is different from linear regression. The most important feature is BMI,

Gets feature importance from the 
trained decision tree model Sorts indices of feature 

weights in descending 
order of importance

Gets the feature names 
and feature weights in 
descending order of 
importance

Generates 
the plot 
shown in 
figure 2.14
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accounting for roughly 42% of the overall model importance. The Glaucoma mea-
surement is the next most important feature, accounting for roughly 15% of the
model importance. These importance values are useful in determining what features
have the most signal in predicting the target variable. Decision trees are immune to
the problem of multicollinearity because the algorithm picks the feature that is highly
correlated with the target and that most reduces the cost function or impurity. As a
data scientist, it is important to visualize the learned decision tree, as shown in figure
2.13, because this will help you understand how the model arrived at the final predic-
tion. You could reduce the complexity of the tree by setting the max_depth hyperpa-
rameter or by pruning the number of features you feed into the model. You can
determine what features to prune by visualizing the global feature importance, as
shown in figure 2.14.

2.4.2 Limitations of decision trees

Decision trees are quite versatile because they can be applied to both regression and
classification tasks, and they also have the ability to model nonlinear relationships.
The algorithm, however, is prone to the problem of overfitting and the model is said to
have high variance. 

 The problem of overfitting occurs when the model fits the training data almost
perfectly and, therefore, does not generalize well to data that it hasn’t seen before,
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such as the test set. This is illustrated in figure 2.15. When a model overfits, you will
notice really good performance on the training set but poor performance on the test
set. This could explain why the decision tree model trained on the diabetes dataset
performed poorer than the linear regression model. 

 The problem of overfitting can be overcome by tuning certain hyperparameters in
the decision tree, like max_depth, and the minimum number of samples required for
the leaf nodes. As shown in the visualization of the decision tree model in figure 2.13,
one leaf node accounts for only 0.8% of the samples. This means that the prediction
for this node is based on the data from roughly only three patients. By increasing the
minimum number of samples required to 5 or 10, we could improve the performance
of the model on the test set. 

2.5 Generalized additive models (GAMs)
Diagnostics+ and the doctors are reasonably happy with the two models built so far,
but the performance is not that good. By interpreting the models, we have also uncov-
ered some shortcomings. The linear regression model does not seem to handle fea-
tures that are highly correlated with each other, such as Total Cholesterol, LDL, and
HDL. The decision tree model performs worse than linear regression, and it seems to
have overfit on the training data. 

 Let’s look at one specific feature from the diabetes data. Figure 2.16 shows a con-
trived example of a nonlinear relationship between age and the target variable, where
both variables are normalized. How would you best model this relationship without
overfitting? One possible approach is to extend the linear regression model where the
target variable is modeled as an nth degree polynomial of the feature set. This form of
regression is called polynomial regression.

 Polynomial regression for various-degree polynomials is shown in the following
equations. In these equations, we are considering only one feature, x1, to model the
target variable y. The degree 1 polynomial is the same as linear regression. For the
degree 2 polynomial, we would add an additional feature, which is the square of x1.
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Figure 2.15 The problem of 
overfitting (high variance)
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For the degree 3 polynomial, we would add two additional features—one that is the
square of x1 and the other that is the cube of x1:

The weights for the polynomial regression model can be obtained using the same
algorithm as linear regression, that is, the method of least squares using gradient
descent. The best fit learned by each of the three polynomials is shown in figure 2.17.
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Figure 2.17 Polynomial regression for modeling a nonlinear relationship
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We can see that the degree 3 polynomial fits the raw data better than degrees 2 and 1.
We can interpret a polynomial regression model the same way as we would a linear
regression because the model is essentially a linear combination of the features
including the higher degree features. 

 Polynomial regression has some limitations, however. The complexity of the model
increases as the number of features or the dimension of the feature space increases.
It, therefore, has a tendency to overfit on the data. It is also hard to determine the
degree for each feature in the polynomial, especially in a higher-dimensional feature
space.

 So, what model can be applied to overcome all these limitations and is also inter-
pretable? Enter generalized additive models (GAMs)! GAMs are models with medium
to high predictive power and are highly interpretable. Nonlinear relationships are
modeled by using smoothing functions for each feature and adding all of them, as
shown in the following equation:

In this equation, each feature has its own associated smoothing function that best
models the relationship between that feature and the target. You can choose from
many types of smoothing functions, but a widely used smoothing function is called
regression splines because it is practical and computationally efficient. I will focus on
regression splines in this book. Let’s now go deep into the world of GAMs using
regression splines!

2.5.1 Regression splines

Regression splines are represented as a weighted sum of basis functions. This is shown
mathematically in the next equation. In this equation, fj is the function that models
the relationship between the feature xj and the target variable. This function is repre-
sented as a weighted sum of basis functions where the weight is represented as wk and
the basis function is represented as bk. In the context of GAMs, the function fj is called
a smoothing function.

Now, what is a basis function? A basis function is a family of transformations that can
be used to capture a general shape or nonlinear relationship. For regression splines,
as the name suggests, splines are used as the basis function. A spline is a polynomial of
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degree n with n –1 derivatives. It will be much easier to understand splines using an
illustration. Figure 2.18 shows splines of various degrees. The top-left graph shows the
simplest spline of degree 0, from which higher degree splines can be generated. As
you can see from the top-left graph, six splines have been placed on a grid. The idea is
to split the distribution of the data into portions and fit a spline on each of those por-
tions. So, in this illustration, the data has been split into six portions, and we are mod-
eling each portion as a degree 0 spline. 

 A degree 1 spline, shown in the top-right graph, can be generated by convolving a
degree 0 spline with itself. Convolution is a mathematical operation that takes in two
functions and creates a third function that represents the correlation of the first func-
tion and a delayed copy of the second function. When we convolve a function with
itself, we are essentially looking at the correlation of the function with a delayed copy
of itself. There is a nice blog post by Christopher Olah on convolutions (http://
mng.bz/5Kdq). By convolving a degree 0 spline with itself, we get a degree 1 spline,
which is triangular, and this has a continuous 0th-order derivative. 

 If we now convolve a degree 1 spline with itself, we will get a degree 2 spline, shown
in the bottom-left graph. This degree 2 spline has a first-order derivative. Similarly, we
can get a degree 3 spline by convolving a degree 2 spline, and this has a second-order
derivative. In general, a degree n spline has an n – 1 derivative. In the limit, as n

Figure 2.18 An illustration of degree 0, degree 1, degree 2, and degree 3 splines

http://mng.bz/5Kdq
http://mng.bz/5Kdq
http://mng.bz/5Kdq
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approaches infinity, we will obtain a spline that has the shape of a Gaussian distribu-
tion. In practice, a degree 3 spline, or cubic spline, is used because it can capture most
general shapes. 

 As mentioned earlier, in figure 2.18, we have divided the distribution of data into
six portions and have placed six splines on the grid. In the earlier mathematical equa-
tion, the number of portions or splines was represented as variable K. The idea
behind regression splines is to learn the weights for each of the splines so that you can
model the distribution of the data in each of the portions. The number of portions or
splines in the grid, K, is also called degrees of freedom. In general, if we place these K
splines on a grid, we will have K + 3 points of division, also known as knots. 

 Let’s now zoom in on cubic splines, as shown in figure 2.19. We can see that there
are six splines, or six degrees of freedom, resulting in nine points of division or knots.

To capture a general shape, we need to take a weighted sum of the splines. We will use
cubic splines here. In figure 2.20, we are using the same six splines overlaid to create
nine knots. For the graph on the left, I have set the same weights for all six splines. As
you can imagine, if we take an equally weighted sum of all six splines, we will get a hor-
izontal straight line. This is an illustration of a poor fit to the raw data. For the graph
on the right, however, I have taken an unequal weighted sum of the six splines gener-
ating a shape that perfectly fits the raw data. This shows the power of regression
splines and GAMs. By increasing the number of splines or by dividing the data into
more portions, we can model more complex nonlinear relationships. In GAMs based
on regression splines, we individually model nonlinear relationships of each feature
with the target variable and then add them all up to come up with the final prediction.

 In figure 2.20, the weights were determined using trial and error to best describe
the raw data. But, how do you algorithmically determine the weights for a regression
spline that best captures the relationship between the features and the target? Recall
from the start of this section that a regression spline is a weighted sum of basis func-
tions or splines. This is essentially a linear regression problem, and you can learn the

Six cubic splines forming nine knots
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weights using the method of least squares and gradient descent. We would, however,
need to specify the number of knots, or degrees of freedom. We can treat this as a
hyperparameter and determine it using a technique called cross-validation. Using
cross-validation, we would remove a portion of the data and fit a regression spline with
a certain number of predetermined knots on the remaining data. This regression
spline is then evaluated on the held-out set. The optimum number of knots is the one
that results in the best performance on the held-out set. 

 In GAMs, you can easily overfit by increasing the number of splines or degrees of
freedom. If the number of splines is high, the resulting smoothing function, which is a
weighted sum of the splines, would be quite “wiggly”—it would start to fit some of the
noise in the data. How can we control this wiggliness or prevent overfitting? We can use
a technique called regularization. In regularization, we would add a term to the least
square cost function that quantifies the wiggliness. We could then quantify the wiggli-
ness of a smoothing function by taking the integral of the square of the second-order
derivative of the function. Then, using a hyperparameter (also called regularization
parameter) represented by λ, we could adjust the intensity of wiggliness. A high value
for λ penalizes wiggliness heavily. We can determine λ the same way we determine other
hyperparameters using cross-validation. 
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Figure 2.20 Splines for modeling a nonlinear relationship

Summary of GAMs
A GAM is a powerful model where the target variable is represented as a sum of
smoothing functions representing the relationship of each of the features and the tar-
get. We can use the smoothing function to capture any nonlinear relationship. This
is shown mathematically here:

y = w0 + f1(x1) + f2(x2) +…+ fn(xn)
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GAMs can also be used to model interactions between variables. GA2M, shown mathe-
matically next, is a type of GAM that models pairwise interactions:

With the help of subject matter experts (SMEs)—the doctors in the Diagnostics+
example—you can determine what feature interactions need to be modeled. You
could also look at the correlation between features to understand what features need
to be modeled together.

 In Python, you can use a package called pyGAM to build and train GAMs. It is
inspired by the GAM implementation in the popular mgcv package in R. You can
install pyGAM in your Python environment using the pip package as follows:

pip install pygam

2.5.2 GAM for Diagnostics+ diabetes

Let’s now go back to the Diagnostics+ example to train a GAM to predict diabetes pro-
gression using all 10 features. Note that the Sex of the patient is a categorical or dis-
crete feature. It does not make sense to model this feature using a smoothing
function. We can treat such categorical features in GAMs as factor terms. We can train
the GAM using the pyGAM package as follows. As with decision trees, I’m not going to
repeat the code that loads the diabetes dataset and splits it into the train and test sets.
Please refer to section 2.2 for that snippet of code: 

 
 
 

(continued)
This is a white-box model—we can easily see how each feature is transformed to the
output using the smoothing function. A common way of representing the smoothing
function is by using regression splines. A regression spline is represented as a simple
weighted sum of basis functions. A basis function that is widely used for GAMs is the
cubic spline. By increasing the number of splines or degrees of freedom, we can divide
the distribution of data into small portions and model each portion piecewise. This
way, we can capture very complex nonlinear relationships. The learning algorithm
essentially has to determine the weights for the regression spline. We can do this
the same way as for linear regression, using the method of least squares and gradient
descent. We can determine the number of splines using the cross-validation tech-
nique. As the number of splines increases, GAMs have a tendency to overfit on the
data. We can safeguard against this by using the regularization technique. Using a
regularization parameter λ, we can control the amount of wiggliness. A higher λ ensures
a smoother function. The parameter λ can also be determined using cross-validation.
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from pygam import LinearGAM 
from pygam import s 
from pygam import f

# Load data using the code snippet in Section 2.2

gam = LinearGAM(s(0) + 
 f(1) + 
 s(2) + 
 s(3) + 
 s(4) + 
 s(5) + 
 s(6) + 
 s(7) + 
 s(8) + 
 s(9), 
 n_splines=35) 

gam.gridsearch(X_train, y_train) 

y_pred = gam.predict(X_test)

mae = np.mean(np.abs(y_test - y_pred)) 

Now for the moment of truth! How did the GAM perform? The MAE performance of
the GAM is 41.4—a pretty good improvement when compared to the linear regression
and decision tree models. A comparison of the performance of all three models is
summarized in table 2.2. I have also included the performance of a baseline model
that Diagnostics+ and the doctors have been using where they look at the median dia-
betes progression across all patients. All models are compared against the baseline to
show how much of an improvement the models give to the doctors. It looks like GAM
is the best model across all performance metrics.

Table 2.2 Performance comparison of linear regression, decision tree, and GAM against a baseline for
Diagnostics+ A

MAE RMSE MAPE

Baseline 62.2 74.7 51.6

Linear regression 42.8 (–19.4) 53.8 (–20.9) 37.5 (–14.1)

Decision tree 48.6 (–13.6) 60.5 (–14.2) 44.4 (–7.2)

GAM 41.4 (–20.8) 52.2 (–22.5) 35.7 (–15.9)

Imports the LinearGAM class from 
pygam that can be used to train a 
GAM for regression tasks Imports the smoothing term function 

to be used for numerical features

Imports the factor term function to 
be used for categorical featuresCubic

spline
term for
the Age
feature Factor term for the Sex 

feature, which is categorical

Cubic
spline

term for
the BMI
feature

Cubic spline term for the BP feature

Cubic spline term for the Total Cholesterol feature
Cubic spline term for the LDL feature
Cubic spline term for the HDL feature

Cubic spline term for the Thyroid feature
Cubic
spline

term for
the

Glaucoma
feature

Cubic spline term for the Glucose feature

Maximum number of splines to be used for each feature

Uses grid search to perform training and cross-
validation to determine the number of splines, the 
regularization parameter lambda, and the optimum 
weights for the regression splines for each feature

Uses the trained GAM model to predict on the test Evaluates the performance of the model 
on the test set using the MAE metric
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We have now seen the predictive power of GAMs. We could potentially get further
improvement in the performance by modeling feature interactions, especially the
cholesterol features with each other and with other features that are potentially highly
correlated, like BMI. As an exercise, I encourage you to try modeling feature interac-
tions using GAMs. 

 GAMs are white box and can be easily interpreted. In the following section, we will
see how GAMs can be interpreted.

2.5.3 Interpreting GAMs

Although each smoothing function is obtained as a linear combination of basis func-
tions, the final smoothing function for each feature is nonlinear, and, therefore, we
cannot interpret the weights the same way as we do for linear regression. We can, how-
ever, easily visualize the effects of each feature on the target using partial dependence
or partial effects plots. Partial dependence looks at the effect of each feature by mar-
ginalizing on the rest. It is highly interpretable because we can see the average effect
of each feature value on the target variable. We can see whether the target response to
the feature is linear, nonlinear, monotonic, or nonmonotonic.  Figure 2.21 shows the
effect of each of the patient features on the target variable. The 95% confidence inter-
val around them have also been plotted. This will help us determine the sensitivity of
the model to data points with a low sample size. 

 Let’s now look at a couple of features in figure 2.21, namely, BMI and BP. The
effect of BMI on the target variable is shown in the bottom-left graph. On the x-axis,
we see the normalized values of BMI, and on the y-axis, we see the effect that BMI has
on the progression of diabetes for the patient. We see that as BMI increases, the effect
on the progression of diabetes also increases. We see a similar trend for BP shown by
the bottom-right graph. We see that the higher the BP, the higher the impact on the
progression of diabetes. If we look at the 95% confidence interval lines (the dashed
lines in figure 2.21), we see a wider confidence interval around the lower and higher
ends of BMI and BP. This is because fewer samples of patients exist at this range of val-
ues, resulting in higher uncertainty in understanding the effects of these features at
those ranges.

 
 

GAMs for classification tasks
GAMs can also be used to train a binary classifier by using the logistic link function
where the response y can be either 0 or 1. In the pyGAM package, you can make use
of the logistic GAM for binary classification problems as follows:

    from pygam import LogisticGAM
    gam = LogisticGAM()
    gam.gridsearch(X_train, y_train)
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The code to generate figure 2.21 follows:

grid_locs1 = [(0, 0), (0, 1), 
              (1, 0), (1, 1)] 
fig, ax = plt.subplots(2, 2, figsize=(10, 8)) 
for i, feature in enumerate(feature_names[:4]): 
    gl = grid_locs1[i] 
    XX = gam.generate_X_grid(term=i)
    ax[gl[0], gl[1]].plot(XX[:, i], gam.partial_dependence(term=i, X=XX)) 
    ax[gl[0], gl[1]].plot(XX[:, i], gam.partial_dependence(term=i, X=XX, 
    ➥ width=.95)[1], c='r', ls='--') 
    ax[gl[0], gl[1]].set_xlabel('%s' % feature) 
    ax[gl[0], gl[1]].set_ylabel('f ( %s )' % feature) 

Figure 2.22 shows the effect of each of the six blood test measurements on the target.
As an exercise, observe the effects that features like Total Cholesterol, LDL, HDL, and
Glaucoma have on the progression of diabetes. What can you say about the impact of
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Figure 2.21 The effect of each of the patient features on the target variable
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higher LDL values (or bad cholesterol) on the target variable? Why does higher Total
Cholesterol have a lower impact on the target variable? To answer these questions,
let’s look at a few patient cases with very high cholesterol values. The following code
snippet will help you zoom in on those patients:

print(df_data[(df_data['Total Cholesterol'] > 0.15) &
              (df_data['LDL'] > 0.19)])

If you execute this code, you will see only one patient out of 442 that has a Total Cho-
lesterol reading greater than 0.15 and an LDL reading greater than 0.19. The fasting
glucose level for this patient one year out (the target variable) seems to be 84, which is
in the normal range. This could explain why in figure 2.22 we are seeing a very large
negative effect for Total Cholesterol on the target variable for a range that is greater

Figure 2.22 The effect of each of the blood test measurements on the target variable
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than 0.15. The negative effect of Total Cholesterol seems to be greater than the posi-
tive effect the bad LDL cholesterol seems to have on the target. The confidence inter-
val seems much wider in these range of values. The model may have overfit on this
one outlier patient record, and so, we should not read too much into these effects. By
observing these effects, we can identify cases or a range of values where the model is
sure of the prediction and cases where there is high uncertainty. For high uncertainty
cases, we can go back to the diagnostics center to collect more patient data so that we
have a representative sample.

 The code to generate figure 2.22 follows:

grid_locs2 = [(0, 0), (0, 1), 
             (1, 0), (1, 1),  
             (2, 0), (2, 1)]  
fig2, ax2 = plt.subplots(3, 2, figsize=(12, 12)) 
for i, feature in enumerate(feature_names[4:]): 
    idx = i + 4           
    gl = grid_locs2[i]    
    XX = gam.generate_X_grid(term=idx) 
    ax2[gl[0], gl[1]].plot(XX[:, idx], gam.partial_dependence(term=idx, 
    ➥ X=XX)) 
    ax2[gl[0], gl[1]].plot(XX[:, idx], gam.partial_dependence(term=idx, X=XX, 
    ➥ width=.95)[1], c='r', ls='--') 
    ax2[gl[0], gl[1]].set_xlabel('%s' % feature) 
    ax2[gl[0], gl[1]].set_ylabel('f ( %s )' % feature) 

Through figures 2.21 and 2.22, we can gain a much deeper understanding of the mar-
ginal effect of each of the feature values on the target. The partial dependence plots
are useful for debugging any issues with the model. By plotting the 95% confidence
interval around the partial dependence values, we can also see data points with low
sample sizes. If a feature value with a low sample size has a dramatic effect on the tar-
get, then there could be an overfitting problem. We can also visualize the wiggliness of
the smoothing function to determine whether the model has fit on the noise in the
data. We can fix these overfitting problems by increasing the value of the regulariza-
tion parameter. These partial dependence plots can also be shared with the SME—
doctors, in this case—for validation which will help gain their trust. 

2.5.4 Limitations of GAMs
We have so far seen the advantages of GAMs in terms of predictive power and inter-
pretability. GAMs have a tendency to overfit, although this can be overcome with reg-
ularization. You do need to be aware of the following other limitations, however:

 GAMs are sensitive to feature values outside of the range in the training set and
tend to lose predictive power when exposed to outlier values.

 For mission-critical tasks, GAMs may sometimes have limited predictive power,
in which case you may need to consider more powerful black-box models.
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2.6 Looking ahead to black-box models
Black-box models are models with really high predictive power and are typically
applied in tasks for which model performance (such as accuracy) is extremely import-
ant. They are, however, inherently opaque, and the characteristics that make them
opaque include the following:

 The machine learning process is complicated, and you can’t easily understand
how the input features are transformed into the output or target variable.

 You can’t easily identify the most important features to predict the target variable. 

Examples of black-box models are tree ensembles such as random forest and gradient-
boosted trees, deep neural networks (DNNs), convolutional neural networks (CNNs),
and recurrent neural networks (RNNs). Table 2.3 shows the machine learning tasks
for which these models are typically applied.

I have now plotted in the black-box models in the same predictive power versus inter-
pretability plane as introduced in section 2.1, shown in figure 2.23. 

 The black-box models are clustered in the top left of the plane because they have
high predictive power but low interpretability. For mission-critical tasks, it is important
not to trade off model performance (such as accuracy) for interpretability by applying
white-box models. We will need to apply black-box models for such tasks and will need
to find ways to interpret them. We can interpret black-box models in multiple ways,
and doing so is the main focus of the remaining chapters in this book. In the next

Table 2.3 Mapping of black-box model to machine learning tasks

Black-box model Machine learning tasks

Tree ensembles (random forest, gradient-
boosted trees)

Regression and classification

Deep neural networks (DNNs) Regression and classification

Convolutional neural networks (CNNs) Image classification, object detection

Recurrent neural networks (RNNs) Sequence modeling, language understanding
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chapter, we will specifically focus on tree ensembles and how to interpret them using
global, model-agnostic techniques.

Summary
 White-box models are inherently transparent. The machine learning process is

straightforward to understand, and you can clearly interpret how the input fea-
tures are transformed into the output. Using white-box models, you can identify
the most important features, and those features are understandable.

 Linear regression is one of the simplest white-box models, where the target vari-
able is modeled as a linear combination of the input features. You can deter-
mine the weights using the method of least squares and gradient descent. 

 We can implement linear regression in Python using the LinearRegression
class in the Scikit-Learn package. You can interpret the model by inspecting the
coefficients or learned weights. The weights can also be used to determine the
importance of each of the features. Linear regression, however, suffers from the
problems of multicollinearity and underfitting.

 A decision tree is a slightly more advanced white-box model that can be used
for both regression and classification tasks. You can predict the target variable
by splitting the data across all features to minimize a cost function. You have
learned the CART algorithm to learn the splits.

 A decision tree for regression tasks can be implemented in Python using the
DecisionTreeRegressor class in Scikit-Learn. You can implement a decision
tree for classification tasks using the DecisionTreeClassifier class in Scikit-
Learn. You can interpret a decision tree learned using CART by visualizing it as
a binary tree. The Scikit-Learn implementation also computes the feature
importance for you. A decision tree can be used to model nonlinear relation-
ships but tends to suffer from overfitting.

 GAMs are a powerful white-box model where the target variable is represented
as a sum of smoothing functions representing the relationship of each of the
features and the target. You know that regression splines and cubic splines are
widely used to represent the smoothing function. 

 Regression splines and GAMs can be implemented using the pyGAM package
in Python. We can use the LinearGAM class for regression tasks and the Logis-
ticGAM class for classification tasks. You can interpret a GAM by plotting the
partial dependence of each of the features on the target. GAMs have a tendency
to overfit, but this problem can be mitigated through regularization. 

 Black-box models are models with really high predictive power and are typically
applied to tasks for which model performance (such as accuracy) is extremely
important. They are, however, inherently opaque. The machine learning pro-
cess is complicated, and you can’t easily understand how the input features are
transformed into the output or target variable. As a result, you can’t easily iden-
tify the most important features to predict the target variable. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part 2

Interpreting model processing

This part of the book focuses on black-box models and understanding how
the model processes the inputs and arrives at the final prediction.

 In chapter 3, you’ll learn about a class of black-box models called tree ensem-
bles. You will learn about their characteristics and what makes them black-box.
You’ll also learn how to interpret them using post hoc model-agnostic methods
that are global in scope, such as partial dependence plots (PDPs) and feature
interaction plots.

 In chapter 4, you’ll learn about deep neural networks, specifically the vanilla
fully connected neural networks. You will learn about characteristics that make
these models black-box and how to interpret them using post hoc model-agnos-
tic methods that are local in scope, such as local interpretable model-agnostic
explanations (LIME), SHapley Additive exPlanations (SHAP), and anchors. 

 In chapter 5, you’ll learn about convolutional neural networks, which are a
more advanced form of architecture used mainly for visual tasks, such as image
classification and object detection. You’ll learn how to visualize what the model is
focusing on using saliency maps. You will also learn about techniques such as gra-
dients, guided backpropagation (backprop for short), gradient-weighted class acti-
vation mapping (Grad-CAM), guided Grad-CAM, and smooth gradients
(SmoothGrad).
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Model-agnostic methods:
 Global interpretability

In the previous chapter, we saw two different types of machine learning models—
white box and black box—and focused most of our attention on how to interpret
white-box models. Black-box models have a high predictive power and, as the name
suggests, are hard to interpret. In this chapter, we will focus on interpreting black-
box models, and you’ll learn specifically about techniques that are model agnostic and
(global) in scope. Recall from chapter 1 that model-agnostic interpretability tech-
niques are not dependent on the specific type of model being used. They can be
applied to any model because they are independent of the internal structure of the

This chapter covers
 Characteristics of model-agnostic methods and global 

interpretability

 How to implement tree ensembles, specifically random 
forest—a black-box model

 How to interpret random forest models

 How to interpret black-box models using a model-
agnostic method called partial dependence plots (PDPs)

 How to uncover bias by looking at feature interactions
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model. Also, interpretability techniques that are global in scope can help us under-
stand the entire model as a whole. We will also focus on tree ensembles, specifically
random forest. Although we focus on random forest, you can apply the model-agnostic
techniques that you will learn in this chapter to any model. We will switch our attention
to more complex black-box models, like neural networks, in the following chapter. In
chapter 4, you will also learn about model-agnostic techniques that are local in scope,
such as LIME, SHAP, and anchors.

 The structure of chapter 3 is similar to that of chapter 2. We will start off by looking
at a concrete example. In this chapter, we will take a break from Diagnostics+ and
focus on another problem related to education. I’ve chosen this problem because the
dataset has some interesting characteristics and we can expose some issues in this
dataset through the interpretability techniques that you will learn in this chapter. As
in chapter 2, the main focus of this chapter is on implementing interpretability tech-
niques to gain a better understanding of black-box models (specifically tree ensem-
bles). We will apply these interpretability techniques during model development and
testing. You will also learn about model training and testing, especially the implemen-
tation aspects. Because the model learning, testing, and understanding stages are iter-
ative, it is important to cover all three stages together. Readers who are already
familiar with training and testing tree ensembles are free to skip those sections and
jump straight into interpretability.

3.1 High school student performance predictor
Let’s begin by looking at a concrete example. We will switch from Diagnostic+ and the
healthcare sector to education. A superintendent of a school district in the United
States has approached you to help her with a data science problem. The superinten-
dent would like to understand how students are performing in three key subject
areas—math, reading, and writing—to determine the level of funding required for
various schools and also to ensure that every student succeeds as part of the Every Stu-
dent Succeeds Act (ESSA). 

 The superintendent is specifically looking for help in predicting the grades of a
high school student in her district in math, reading, and writing subjects. The grade
can be A, B, C, or F. Given this information, how would you formulate this as a
machine learning problem? Because the target of the model is to predict the grade,
which can be one of four discrete values, the problem can be formulated as a classifica-
tion problem. In terms of data, the superintendent has collected the data of 1,000 stu-
dents in her district representing various schools and backgrounds. The following five
data points are collected for each student:

 Gender
 Ethnicity
 Parent Level of Education
 Type of Lunch purchased by the student
 Test Preparation level 
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Given this data, you will, therefore, need to train three separate classifiers, one for
each subject area. This is illustrated in figure 3.1. 

3.1.1 Exploratory data analysis

We are dealing with a new dataset here, so before we train the model, let’s first under-
stand the different features and possible values for them. The dataset contains five fea-
tures: the student’s Gender, their Ethnicity, Parent Level of Education, the Type of
Lunch that they purchase, and their Test Preparation level. All of these features are
categorical features where the possible values are discrete and finite. There are three
target variables for each student: math grade, reading grade, and writing grade. The
grades can be A, B, C, or F.

 There are two gender categories—male and female—and the female population
(52%) of students is slightly higher than the male population (48%). Let’s now focus

Math model B

Superintendent

Gender Ethnicity Parent
Level of 

education

Lunch Test 
preparation

… …  …  …

Reading model

Writing model

C

F
Details of student from school district

Grade 
prediction

Figure 3.1 An illustration of student performance models required by the superintendent of the 
school district

Protected attributes and fairness
Protected attributes are attributes associated with an individual related to social
bias, including gender, age, race, ethnicity, sexual orientation, and so on. Laws in cer-
tain regions like the United States and Europe prohibit discriminating against individ-
uals on the basis of these protected attributes, especially in domains like housing,
employment, and credit lending. It is important to be aware of these legal frameworks
and nondiscrimination laws when building machine learning models that may use
these protected attributes as features. We want to ensure that machine learning
models do not embed bias and discriminate against certain individuals on the basis
of protected attributes. In this chapter, our dataset contains a couple of protected
attributes that we use as features for the model primarily to learn how to expose,
through interpretability techniques, possible issues with the model pertaining to bias.
We will cover the legal frameworks around protected attributes and various fairness
criteria in more depth in chapter 8. Moreover, the dataset used in this chapter is con-
trived and does not reflect actual student performance in a school district. The
race/ethnicity feature is also anonymized.
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tain regions like the United States and Europe prohibit discriminating against individ-
uals on the basis of these protected attributes, especially in domains like housing,
employment, and credit lending. It is important to be aware of these legal frameworks
and nondiscrimination laws when building machine learning models that may use
these protected attributes as features. We want to ensure that machine learning
models do not embed bias and discriminate against certain individuals on the basis
of protected attributes. In this chapter, our dataset contains a couple of protected
attributes that we use as features for the model primarily to learn how to expose,
through interpretability techniques, possible issues with the model pertaining to bias.
We will cover the legal frameworks around protected attributes and various fairness
criteria in more depth in chapter 8. Moreover, the dataset used in this chapter is con-
trived and does not reflect actual student performance in a school district. The
race/ethnicity feature is also anonymized.
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on two other features—the student’s Ethnicity and Parent Level of Education. Figure
3.2 shows the different categories for each of those features and the proportion of stu-
dents who fall under those categories. Five groups or ethnicities are in the population,
and groups C and D are the most represented, accounting for about 58% of the stu-
dent population. Six different levels of parent education occur. In ascending order,
they are some high school, (recognized) high school, some college, associate degree,
bachelor’s degree, and master’s degree. It looks like there are a lot more students in
the population whose parents have lower levels of education. Roughly 82% of the stu-
dents have parents with a high school or college level of education or an associate
degree. Only 18% of the students have parents with a bachelor’s or master’s degree.

Now for the remaining two features—Type of Lunch purchased and the Test Prepara-
tion level. The majority (roughly 65%) purchase a standard lunch and the rest pur-
chase free/reduced lunches. In terms of test preparation, only 36% of the students
completed their preparation for the tests, whereas for the remaining, it is either not
completed or unknown.

 Let’s now look at the proportion of students who earn grades A, B, C, or F for the
three subject areas. This is shown in figure 3.3. We can see that the majority of the stu-
dents (48–50%) get grade B and a very small proportion of the students (3–4%) get
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grade F. About 18–25% of the students get grade A, and 22–28% of the students get
grade C across all the three subject areas. It is important to note that the data is quite
imbalanced before we train our models. Why is that important, and how do we deal
with imbalanced data? In a classification type of problem, we say that the data is imbal-
anced when a disproportionate number of examples or data points exist for a given
class. It is important to note this because most machine learning algorithms work best
when the proportion of samples for each class is roughly the same. Most algorithms
are designed to minimize error or maximize accuracy, and these algorithms tend to
naturally bias toward the majority class. We can deal with imbalanced classes in a few
ways, including these common approaches:

 Use the right performance metrics when we test and evaluate the models. 
 Resample the training data such that the majority class is either undersampled

or the minority class is oversampled.

You will learn more about these methods in section 3.2.

Let’s dissect the data a bit more. The insights that follow will be useful in section 3.4
when we have to interpret and validate what the model has learned. How do students
generally perform when their parents have the lowest and highest levels of education?
Let’s compare the grade distributions for students whose parents have the lowest level
of education (i.e., high school) with students whose parents have the highest level of
education (i.e., master’s degree). Figure 3.4 shows this comparison across all three
subject areas. 

 
 

Figure 3.3 Values and proportions of the grade target variable for the three subject areas
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Figure 3.4 Grade distributions comparing the percentage of students whose parents have high school 
education vs. a master’s degree
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Let’s focus on the students whose parents have high school education. Across all three
subject areas, it looks like, in general, fewer students get grade A and more students
get grade F than the overall population. For the math subject area, for instance, only
10% of the students whose parents have a high school education get grade A, whereas
in the overall population (as we saw in figure 3.3), roughly 20% of the students get
grade A. Let’s now focus on students whose parents have a master’s degree. It looks
like, in general, more students get grade A and zero students get grade F when com-
pared to the overall population. For the math subject area, for instance, roughly 30%
of the students whose parents have a master’s degree get grade A. If we now compare
the two bars in figure 3.4, we can see a lot more students get a higher grade (A or B)
when their parents have a higher level of education across all three subject areas.

 How about ethnicity? How does the performance of a student belonging to the
most represented group compare with one from the least represented group? From
figure 3.2, we know that the most represented group is C and the least represented
group is A. Figure 3.5 compares the grade distributions of students belonging to
group C with students belonging to group A.

 It looks like, in general, students from group C perform better than those from
group A—a larger proportion of students seem to get a higher grade (A or B) and a
smaller proportion of students get a lower grade (C or F). As mentioned earlier, the
insights in this section will come in handy in section 3.4 when we interpret and vali-
date what the model has learned. 
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Figure 3.5 Grade distributions comparing the percentage of students belonging to Ethnicity group A vs. 
group C
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3.2 Tree ensembles
In chapter 2, you learned about decision trees, a powerful way of modeling nonlinear
relationships. Decision trees are white-box models and are easy to interpret. We saw,
however, that more complex decision trees suffer from the problem of overfitting
where the model heavily fits the noise or variance in the data. To overcome the prob-
lem of overfitting, we can reduce the complexity of decision trees by pruning them in
terms of depth and the minimum number of samples required for the leaf nodes. This
results in low predictive power, however.

 By combining several decision trees, we can circumvent the overfitting problem
without compromising on predictive power. This is the principle behind tree ensem-
bles. We can combine, or ensemble, decision trees in the following two broad ways:

 Bagging—Multiple decision trees are trained in parallel on separate random sub-
sets of the training data. We can use these individual decision trees to make pre-
dictions and combine them by taking an average to come up with the final
prediction. Random forest is a tree ensemble using the bagging technique. In addi-
tion to training individual decision trees on random subsets of the data, the random
forest algorithm also takes a random subset of the features to split the data on.

 Boosting—Like in bagging, the boosting technique also trains multiple decision
trees but in sequence. The first decision tree is typically a shallow tree and is
trained on the training set. The objective of the second decision tree is to learn
from the errors made by the first tree and to further improve the performance.
Using this technique, we string together multiple decision trees, and they itera-
tively try to optimize and reduce the errors made by the previous one. Adaptive
boosting and gradient boosting are two common boosting algorithms.

In this chapter, we will be focusing on the bagging technique, specifically the random
forest algorithm, which is illustrated in figure 3.6. First, we take random subsets of the
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Random feature 
subset 1

Random feature 
subset 2

Random feature 
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Majority voting

Final prediction

Decision
tree n

Decision
tree 2
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Figure 3.6 An illustration of the random forest algorithm
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training data and train separate decision trees on them. Each decision tree is then
split on random subsets of the features. We obtain the final prediction by taking the
majority vote across all decision trees. As you can see, a random forest model is much
more complex than a decision tree. As the number of trees in the ensemble increases,
the complexity increases. Moreover, it is much harder to visualize and interpret how
features are split across all decision trees because random subsets of the data and fea-
tures are taken for each of them. This makes random forest a black-box model and
much harder to interpret. Being able to explain the algorithm does not guarantee
interpretability in this case.

 For completeness, let’s also discuss how the adaptive-boosting and gradient-boost-
ing algorithms work. Adaptive boosting, usually shortened as AdaBoost, is illustrated in
figure 3.7. The algorithm works as follows. First, we train a decision tree using all the
training data. Each data point is given equal weight for the first decision tree. Once
the first decision tree is trained, calculate the error rate of the tree by taking a
weighted sum of the error for each data point. We then use this weighted error rate to
determine the weight of the decision tree. If the error rate of the tree is high, then a
lower weight is given for the tree because its predictive power is low. If the error rate is
low, then a higher weight is given for the tree because it has a higher predictive power.
We then use the weight of the first decision tree to determine the weights for each
data point for the second decision tree. The wrongly classified data points will be
given a higher weight so that the second decision tree can try to reduce the error rate.
We repeat this process in sequence until the number of trees we set during training is
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Figure 3.7 An illustration of the AdaBoost algorithm
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reached. After all the trees have been trained, we come up with the final prediction by
taking a weighted majority vote. Because a decision tree with a higher weight has
higher predictive power, it is given more influence in the final prediction.

 The gradient-boosting algorithm works slightly differently and is illustrated in figure
3.8. As with AdaBoost, the first decision tree is trained on all of the training data, but
unlike AdaBoost, no weights are associated with the data points. After training the
first decision tree, we calculate a residual error metric, which is the difference
between the actual target and the predicted target. We then train the second decision
tree to predict the residual error made by the first decision tree. So, rather than
updating the weights for each data point like in AdaBoost, gradient boosting predicts
the residual error directly. The objective for each tree is to fix the errors of the previ-
ous tree. This process is repeated in sequence until the number of trees we set during
training is reached. After all the trees have been trained, we come up with the final
prediction by summing the predictions of all the trees. 

 As mentioned earlier, we will focus on the random forest algorithm, but the meth-
ods used to train, evaluate, and interpret the algorithm can be extended to the boost-
ing techniques as well.

3.2.1 Training a random forest

Let’s now train our random forest model to predict high school student performance.
The following code snippet shows how to prepare the data before training the model.
Note that when splitting the data into the training and test sets, 20% of the data is
used for testing. The rest of the data is used for training and validation. Also, we take a
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Figure 3.8 An illustration of the gradient-boosting algorithm
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stratified sample on the math target variable so that the distribution of the grades is
the same for both the training and test sets. You can easily create similar splits using
the reading and writing grades as well:

import pandas as pd
from sklearn.preprocessing import LabelEncoder

# Load the data
df = pd.read_csv('data/StudentsPerformance.csv') 

# First, encode the input features
gender_le = LabelEncoder()  
race_le = LabelEncoder()   
parent_le = LabelEncoder()  
lunch_le = LabelEncoder()   
test_prep_le = LabelEncoder()  
df['gender_le'] = gender_le.fit_transform(df['gender'])                      
df['race_le'] = race_le.fit_transform(df['race/ethnicity'])                  
df['parent_le'] = parent_le.fit_transform(df['parental level of education']) 
df['lunch_le'] = lunch_le.fit_transform(df['lunch'])                         
df['test_prep_le'] = test_prep_le.fit_transform(df['test preparation 

➥ course']);                                                                

# Next, encode the target variables
math_grade_le = LabelEncoder()       
reading_grade_le = LabelEncoder()    
writing_grade_le = LabelEncoder()   
df['math_grade_le'] = math_grade_le.fit_transform(df['math grade'])          
df['reading_grade_le'] = reading_grade_le.fit_transform(df['reading grade']) 
df['writing_grade_le'] = writing_grade_le.fit_transform(df['writing grade']) 

# Creating training/val/test sets
df_train_val, df_test = train_test_split(df, test_size=0.2,     
stratify=df['math_grade_le'], #F shuffle=True, random_state=42) 
feature_cols = ['gender_le', 'race_le', 
 'parent_le', 'lunch_le',[CA] 'test_prep_le']
X_train_val = df_train_val[feature_cols]  
X_test = df_test[feature_cols] 
y_math_train_val = df_train_val['math_grade_le']  
y_reading_train_val = df_train_val['reading_grade_le'] 
y_writing_train_val = df_train_val['writing_grade_le']  
y_math_test = df_test['math_grade_le']  
y_reading_test = df_test['reading_grade_le']  
y_writing_test = df_test['writing_grade_le']               

Once you have prepared the data, you are now ready to train the three random forest
models for math, reading, and writing, as shown in the next code sample. Note that
we can determine the optimum parameters for the random forest classifier using
cross-validation. Also note that the random forest algorithm first takes random subsets
of the training data to train each decision tree, and for each decision tree, the model
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takes random subsets of the feature on which to split the data. For both of these ran-
dom elements in the algorithm, it is important to set the seed for the random-number
generator, using the random_state parameter. If this seed is not set, you will not be
able to achieve reproducible and consistent results. First, let’s use a helper function to
create a random forest model with predefined parameters:

from sklearn.ensemble import RandomForestClassifier

def create_random_forest_model(n_estimators,
                               max_depth=10, 
                               criterion='gini', 
                               random_state=42, 
                               n_jobs=4): 
    return RandomForestClassifier(n_estimators=n_estimators,
                                  max_depth=max_depth,
                                  criterion=criterion,
                                  random_state=random_state,
                                  n_jobs=n_jobs)

Now let’s use this helper function to initialize and train the three random forest mod-
els for the math, reading, and writing subject areas, as shown here:

math_model = create_random_forest_model(50) 
math_model.fit(X_train_val, y_math_train_val)
y_math_model_test = math_model.predict(X_test) 

reading_model = create_random_forest_model(25)             
reading_model.fit(X_train_val, y_reading_train_val) 

y_reading_model_test = reading_model.predict(X_test)     

writing_model = create_random_forest_model(40)       
writing_model.fit(X_train_val, y_writing_train_val)  
y_writing_model_test = writing_model.predict(X_test) 

Now that we’ve trained the three random forest models for math, reading, and writ-
ing, let’s evaluate them and compare them with a baseline model that always predicts
the majority grade (in this case, B) for all the subjects. A metric that is typically used
for classification problems is accuracy. This metric, however, is not suitable for situa-
tions where the classes are imbalanced. In our case, we’ve seen the student grades are
pretty imbalanced, as depicted earlier in figure 3.3. If, for instance, 98% of the stu-
dents obtain grade B in math, you can trick yourself into building a highly accurate
model with 98% accuracy by always predicting grade B for all students. To gauge the
performance of the model across all classes, we can use better metrics like precision,

Sets the number of decision 
trees in the random forest

The maximum depth parameter 
for the decision tree

Gini impurity is used as the
cost function on which to

optimize each decision tree.

For reproducibility, sets the 
seed for the random-number 
generator

Sets n_jobs to train 
the individual decision 
trees in parallel, using 
all available cores in 
your computer

Initializes the math model random 
forest classifier with 50 decision trees

Fits the math student performance 
classifier on the training data using 
the math grade as the target

Predicts the math grade for all the 
students in the test set using the 
pretrained model

Initializes and trains the 
random forest classifier 
with 25 decision trees to 
predict the reading grade

Initializes and trains the random forest classifier 
with 40 decision trees to predict the writing grade
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recall, and F1. Precision is a metric that measures the proportion of predicted classes
that are accurate. Recall is a metric that measures the proportion of actual classes that
the model predicted accurately. The formulas for precision and recall are shown next:

The perfect classifier has a precision score of 1 and a recall score of 1 because the num-
ber of false positives and false negatives will be 0. But in practice, these two metrics are
at odds with each other—there is always a trade-off that you need to make between
false positives and false negatives. As you reduce the false positives and increase preci-
sion, the cost will be  increased false negatives and lower recall. To find the right bal-
ance between precision and recall, we can combine the two metrics into a score called
F1. The F1 score is the harmonic mean of precision and recall, as shown here:

Table 3.1 shows the performance of all three models . They are compared against
baselines for each subject to see how much of an improvement in performance the
new models provide. A reasonable baseline used by the superintendent is to predict
the majority grade (in this case, B) for each subject.

In terms of performance, we can see that the math and reading random forest models
perform better than the baseline in terms of precision and F1. The baseline math and
reading models, however, perform better than the random forest models in terms of
recall. Because the baseline models always predict the majority class, it gets all the
majority class predictions right. But the precision metric and F1 give us a better

Table 3.1 Performance of math, reading, and writing models

Precision (%) Recall (%) F1 Score (%)

Math baseline 23 49 32

Math model 39 41 39

Reading baseline 24 49 32

Reading model 39 43 41

Writing baseline 18 43 25

Writing model 44 45 41
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measure of the accuracy of all the predictions. The random forest model for the writing
subject area does better than the baseline for all three metrics. The superintendent is
happy with this improvement in performance but would like to now understand how
the model came up with the prediction. In sections 3.3 and 3.4, we will see how to
interpret a random forest model.

3.3 Interpreting a random forest
Random forest is an ensemble of multiple decision trees, so we could look at the
global relative importance of each feature by averaging the normalized feature impor-
tance across all decision trees. In chapter 2, we saw how to compute the importance of
features for a decision tree. This is shown next for a given decision tree t:

To compute the relative importance, we need to normalize the feature importance
shown previously by dividing it by the sum of all feature importance values, as shown
next:

Training AdaBoost and gradient-boosting trees
We can train the AdaBoost classifier by using the AdaBoostClassifier class provided
by Scikit-Learn. We initialize an AdaBoost classifier in Python as follows:

    from sklearn.ensemble import AdaBoostClassifier
    math_adaboost_model = AdaBoostClassifier(n_estimators=50)

We train a gradient-boosting tree classifier by using the GradientBoostingClassi-
fier class provided by Scikit-Learn as shown next:

    from sklearn.ensemble import GradientBoostingClassifier
    math_gbt_model = GradientBoostingClassifier(n_estimators=50)

We train the models the same way as we do the random forest classifier. Variants of
gradient-boosting trees are available that are faster and scalable, such as CatBoost
and XGBoost. As an exercise, try training AdaBoost and gradient-boosting classifiers
for all three subject areas and compare your results with the random forest models.
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You can now easily compute the global relative importance of each feature for the ran-
dom forest by averaging the normalized feature importance for that feature across all
decision trees, as shown next. Note that feature importance is computed the same way
for AdaBoost and gradient-boosting trees:

In Python, we can obtain feature importance from the Scikit-Learn random forest
model and plot it as follows:

math_fi = math_model.feature_importances_ * 100
reading_fi = reading_model.feature_importances_ * 100 
writing_fi = writing_model.feature_importances_ * 100 

feature_names = ['Gender', 'Ethnicity', 'Parent Level of Education',
                 ➥ 'Lunch', 'Test Preparation']

# Code below plots the relative feature importance
# of the math, reading and writing random forest models
fig, ax = plt.subplots()
index = np.arange(len(feature_names))
bar_width = 0.2
opacity = 0.9
error_config = {'ecolor': '0.3'}
ax.bar(index, math_fi, bar_width,
       alpha=opacity, color='r',
       label='Math Grade Model')
ax.bar(index + bar_width, reading_fi, bar_width,
       alpha=opacity, color='g',
       label='Reading Grade Model')

Gets the feature importance of 
the math random forest model

Gets the feature importance 
of the reading random forest 
model

Gets the feature 
importance of the writing 
random forest model

Initializes the list 
of feature names
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ax.bar(index + bar_width * 2, writing_fi, bar_width,
       alpha=opacity, color='b',
       label='Writing Grade Model')   
ax.set_xlabel('')
ax.set_ylabel('Feature Importance (%)')
ax.set_xticks(index + bar_width)
ax.set_xticklabels(feature_names)
for tick in ax.get_xticklabels():
    tick.set_rotation(90)
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
ax.grid(True);

The features and their importance values are shown in figure 3.9. As can be seen in
the figure, the two most important features for the three subjects are Parent Level of
Education and the Ethnicity of the student. This is useful information, but it does not
tell us anything about how the grade is influenced by different levels of education and
how race and education interact with each other. 

Moreover, we can easily compute and visualize feature importance for tree ensembles,
but this becomes a lot harder when we look at neural networks and more complex
black-box models, as will be more apparent in chapter 4. We, therefore, need to look
at interpretability techniques that are agnostic to the type of black-box model. These
model-agnostic methods are introduced in the following section.
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3.4 Model-agnostic methods: Global interpretability
So far, we have been looking at interpretability techniques that are model-specific or
dependent. For white-box models, we saw how to interpret linear regression models
using the weights learned by the method of least squares. We interpreted decision
trees by visualizing them as binary trees where each node splits the data using a fea-
ture determined using the CART algorithm. We were also able to visualize the global
importance of features, the computation of which was specific to the model. We inter-
preted GAMs by visualizing the average effect of the basis splines for an individual fea-
ture on the target and then marginalizing the rest of the features. These visualizations
were called partial dependence, or partial effect plots. 

 For black-box models like tree ensembles, we can compute the global relative
importance of features, but we cannot extend this computation to other black-box
models like neural networks. To better interpret black-box models, we will now
explore model-agnostic methods that can be applied to any type of model. We will also
focus our attention in this chapter on interpretability techniques that are global in
scope. Global interpretability techniques aim to give a better understanding of the
model as a whole, that is, the global effects of the features on the target variable. One
globally interpretable model-agnostic method is partial dependence plots (PDPs). You
will see in the following section how to extend the PDPs that you learned for GAMs in
chapter 2 to black-box models like random forest. We will formalize the definition of
PDPs and also see how to extend PDPs to visualize interactions between any two fea-
tures to validate whether the model has picked up on any dependence between them. 

 Model-agnostic interpretability techniques can also be local in scope. We can use
these techniques to interpret a model for a given local instance or prediction. Tech-
niques such as LIME, SHAP, and anchors are model-agnostic and local in scope, and
you will learn more about them in chapter 4. 

3.4.1 Partial dependence plots

As we saw with GAMs in chapter 2, the idea behind partial dependence plots (PDPs) is
to show the marginal or average effects of different feature values on the model pre-
diction. Let f be the function learned by the model. For the high school student pre-
diction problem, let fmath, freading, and fwriting be the functions learned by the random
forest models trained for the math, reading, and writing subject areas, respectively.
For each subject, the function returns the probability of receiving a certain grade
given the input features. Let’s now focus on the math random forest model for ease of
understanding. You can easily extend the theory that you will learn now to the other
subject areas. 
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 Suppose that for the math random forest model, we want to understand what
effect different parent levels of education have on predicting a given grade. To
achieve this, we will need to do the following:

 Use the same values for the rest of the features as were used in the dataset.
 Create an artificial dataset by setting Parent Level of Education to be the value

of interest for all data points—if you are interested in looking at the average
effects of high school education on the student’s grade, then set Parent Level of
Education to be high school for all data points.

 Run through the model, and obtain the predictions for all data points in this
artificial set.

 Take the average of the predictions to determine the overall average effect for
that Parent Level of Education.

More formally, if we want to plot the partial dependence of feature S, we marginalize
on the rest of the features represented as set C, set feature S to be the value of interest,
and then look at the average effect of the math model for feature S, assuming values
of all the features in set C are known. Let’s look at a concrete example. Suppose we
are interested in understanding the marginal effects of Parent Level of Education on
students’ math grades. In this case, feature S is Parent Level of Education, and the rest
of the features are represented as C. To understand the effect of, say, a high school
level of education, we set feature S to the value corresponding to high school educa-
tion (the value of interest) and take the average of the math model’s output, assuming
we know the values of the rest of the features. Mathematically, this is shown by the fol-
lowing equation:

In this equation, the partial function for feature S is obtained by computing the aver-
age of the learned function fmath, assuming the values for features in set C are known
for all the examples in the training set, represented as n. 

 It is important to note that the PDP cannot be trusted if feature S is correlated with
features in set C. Why is that? To determine the average effects of a given value for fea-
ture S, we are creating an artificial dataset where we use the actual feature values for all
the other features in set C but change the value of feature S to be the one of interest.
If feature S is highly correlated with any feature in set C, we could be creating an artifi-
cial dataset that is highly unlikely. Let’s look at a concrete example. Suppose we are
interested in understanding the average effects of a high school level of education for
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a student’s parent on their grade. We will be setting Parent Level of Education as high
school for all the instances in our training set. Now, if Parent Level of Education is
highly correlated with Ethnicity, where we know Parent Level of Education given the
Ethnicity, we could have an instance where it is highly unlikely for parents belonging to
a certain ethnicity to have just a high school education. We are, therefore, creating an
artificial dataset whose distribution does not match the original training data. Because
the model has not been exposed to that distribution of the data, the predictions from
that model may be way off, resulting in untrustworthy PDPs. We will come back to this
limitation in section 3.4.2.

 Let’s now see how to implement PDPs. In Python, you can use the implementation
provided by Scikit-Learn, but this limits you to gradient-boosted regressors or classifi-
ers. A better implementation in Python that is truly model-agnostic is PDPBox, devel-
oped by Jiangchun Lee. You can install this library as follows:

pip install pdpbox

Now let’s see PDPs in action. We will first focus on the most important feature, which
you learned in section 3.3 is Parent Level of Education (see figure 3.9). We can look at
the influence of different levels of education on predicting grades A, B, C, and F for
math as follows:

from pdpbox import pdp 

feature_cols = ['gender_le', 'race_le', 'parent_le', 'lunch_le', 

➥ 'test_prep_le']

pdp_education = pdp.pdp_isolate(model=math_model, 
                          dataset=df, 
                          model_features=feature_cols, 
                          feature='parent_le') 
ple_xticklabels = ['High School',               
                   'Some High School',          
                   'Some College',                
                   "Associate\'s Degree",         
                   "Bachelor\'s Degree",        
                   "Master\'s Degree"]          
# Parameters for the PDP Plot
plot_params = {
    # plot title and subtitle
    'title': 'PDP for Parent Level Educations - Math Grade',
    'subtitle': 'Parent Level Education (Legend): \n%s' % (parent_title),
    'title_fontsize': 15,
    'subtitle_fontsize': 12,

Imports the PDP 
function from PDPBox

Extracts only the label-encoded 
feature columns

Obtains the partial 
dependence 
function for each 
level of education 
by passing in the 
learned math 
random forest 
model

Uses the preloaded dataset Marginalizes on all the other 
features except Parent Level 
of Education

Initializes the labels for the xticks 
starting from the lowest level of 
education until the highest
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    # color for contour line
    'contour_color':  'white',
    'font_family': 'Arial',
    # matplotlib color map for interact plot
    'cmap': 'viridis',
    # fill alpha for interact plot
    'inter_fill_alpha': 0.8,
    # fontsize for interact plot text
    'inter_fontsize': 9,
}
# Plot PDP of parent level of education in matplotlib
fig, axes = pdp.pdp_plot(pdp_isolate_out=pdp_education,
  feature_name='Parent Level Education', 
                         center=True, x_quantile=False, ncols=2,
   plot_lines=False, frac_to_plot=100,
                         plot_params=plot_params, figsize=(18, 25))
axes['pdp_ax'][0].set_xlabel('Parent Level Education')
axes['pdp_ax'][1].set_xlabel('Parent Level Education')
axes['pdp_ax'][2].set_xlabel('Parent Level Education')
axes['pdp_ax'][3].set_xlabel('Parent Level Education')
axes['pdp_ax'][0].set_title('Grade A')
axes['pdp_ax'][1].set_title('Grade B')
axes['pdp_ax'][2].set_title('Grade C')
axes['pdp_ax'][3].set_title('Grade F')
axes['pdp_ax'][0].set_xticks(parent_codes)
axes['pdp_ax'][1].set_xticks(parent_codes)
axes['pdp_ax'][2].set_xticks(parent_codes)
axes['pdp_ax'][3].set_xticks(parent_codes)
axes['pdp_ax'][0].set_xticklabels(ple_xticklabels)
axes['pdp_ax'][1].set_xticklabels(ple_xticklabels)
axes['pdp_ax'][2].set_xticklabels(ple_xticklabels)
axes['pdp_ax'][3].set_xticklabels(ple_xticklabels)
for tick in axes['pdp_ax'][0].get_xticklabels():
    tick.set_rotation(45)
for tick in axes['pdp_ax'][1].get_xticklabels():
    tick.set_rotation(45)
for tick in axes['pdp_ax'][2].get_xticklabels():
    tick.set_rotation(45)
for tick in axes['pdp_ax'][3].get_xticklabels():
    tick.set_rotation(45)

The plot generated by this code snippet is shown in figure 3.10. The partial depen-
dence of Parent Level of Education is shown separately for each grade—A, B, C, and
F. The range of values for the partial dependence function is between 0 and 1 because
the learned math model function for this classifier is a probability measure that
ranges from 0 to 1. Let’s now zoom in on a couple of grades to analyze the impact of
Parent Level of Education on the student’s grade.
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Figure 3.10 PDP of various Parent Level of Education features for math grades A, B, C, and F
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In figure 3.11, we have zoomed in on the PDP for math grade A. We saw in section 3.1.1
that the proportion of students getting grade A in math is higher when the parent has
a master’s degree than when the parent has a high school degree (see figure 3.4). Has
the random forest model learned this pattern? We can see from figure 3.11 that the
impact on getting grade A increases as the Parent Level of Education increases. For a
parent with a high school education, the effect on predicting grade A in math is negli-
gible—close to 0. This means that having a high school education does not change
anything for the model, and other features besides Parent Level of Education come
into play when predicting grade A. We can, however, see a high positive impact of
roughly +0.2 when the parent has a master’s degree. This means that on average, a mas-
ter’s degree pushes the probability of a student getting grade A by roughly 0.2. 

In figure 3.12, we have zoomed in on the PDP of math grade F. We can notice a down-
ward trend for grade F—the more educated the parent is, the more of a negative
impact on predicting grade F. We can see that a student whose parent has a master’s
degree has a negative impact of roughly –0.05 on average in predicting grade F. This
means that the parent having a master’s degree decreases the likelihood of the stu-
dent getting grade F and, therefore, increases the likelihood of the student getting
grade A. This insight is great and would not have been possible by just looking at the
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feature importance. The end user of this system (i.e., the superintendent) will have
more trust in the model that she is using.

As an exercise, I encourage you to extend the PDP code for math grade and Parent
Level of Education to the other subject areas—reading and writing. You can check
whether the patterns observed in section 3.1.1 (see figure 3.4) are learned by the ran-
dom forest models. You can also extend the code to other features. As an exercise,
pick the second most important feature, which is Race or Ethnicity of the student, and
generate the PDP for that feature.

3.4.2 Feature interactions

We can extend PDPs to understand feature interactions. Returning to the equation in
section 3.4.1, we will now look at two features in set S and marginalize on the rest.
Let’s examine the interactions between the two most important features—Parent
Level of Education and student Ethnicity—in predicting grades A, B, C, and F in
math. Using PDPBox, we can easily visualize pairwise feature interactions as shown in
the following code snippet:
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pdp_race_parent = pdp.pdp_interact(model=math_model, 
                                   dataset=df, 
                                   model_features=feature_cols, 
                                   features=['race_le', 'parent_le']) 

# Parameters for the Feature Interaction plot
plot_params = {
    # plot title and subtitle
    'title': 'PDP Interaction - Math Grade',
    'subtitle': 'Race/Ethnicity (Legend): \n%s\nParent Level of Education
     ➥ (Legend): \n%s' % (race_title, parent_title),
    'title_fontsize': 15,
    'subtitle_fontsize': 12,
    # color for contour line
    'contour_color':  'white',
    'font_family': 'Arial',
    # matplotlib color map for interact plot
    'cmap': 'viridis',
    # fill alpha for interact plot
    'inter_fill_alpha': 0.8,
    # fontsize for interact plot text
    'inter_fontsize': 9,
}

# Plot feature interaction in matplotlib
fig, axes = pdp.pdp_interact_plot(pdp_race_parent, [CA]['Race/Ethnicity', 

➥ 'Parent Level of Education'],
                                  plot_type='grid', plot_pdp=True, 
                                  ➥ plot_params=plot_params)
axes['pdp_inter_ax'][0]['_pdp_x_ax'].set_xlabel('Race/Ethnicity (Grade A)')
axes['pdp_inter_ax'][1]['_pdp_x_ax'].set_xlabel('Race/Ethnicity (Grade B)')
axes['pdp_inter_ax'][2]['_pdp_x_ax'].set_xlabel('Race/Ethnicity (Grade C)')
axes['pdp_inter_ax'][3]['_pdp_x_ax'].set_xlabel('Race/Ethnicity (Grade F)')
axes['pdp_inter_ax'][0]['_pdp_x_ax'].grid(False)

The plot generated by this code is shown in figure 3.13. There are four plots gener-
ated, one for each grade. Feature interactions are visualized in a 2-D grid where the
six Parent Level of Education features are on the y-axis and the five Ethnicity features
are on the x-axis. I’ll zoom in on grade A to decompose and explain this plot further.

 
 
 
 
 
 
 
 

Obtains the feature interactions between two features 
for the learned math random forest model

Uses the preloaded dataset

Sets the feature
column names

List of the features for
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Figure 3.14 shows the feature interaction plot for math grade A. Parent Level of Edu-
cation is on the y-axis, and the anonymized Ethnicity of the student is on the x-axis. As
you go from the bottom to the top of the y-axis, Parent Level of Education increases
from high school all the way to a master’s degree. High school education is repre-
sented by a value of 0, and a master’s degree is represented by a value of 5. The x-axis
shows the five distinct ethnicity groups—A, B, C, D, and E. Ethnicity group A is repre-
sented by a value of 0, group B is represented by a value of 1, group C by a value of 2,
and so on. The number in each cell represents the impact of a given Parent Level of
Education and student Ethnicity on getting grade A. 
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 For instance, the cell in the bottom-most row and the left-most column represents
the average impact of a student belonging to ethnicity group A and having a parent
who has a high school education on getting grade A. Please also note the numerical
values in each cell of the grid—a lower number represents lower impact, and a higher
number represents a higher impact in predicting grade A. 

Now let’s focus on ethnicity group A, which is the left-most column in the grid, high-
lighted in figure 3.15. You can see that as Parent Level of Education increases, the
impact on predicting grade A also increases. This makes sense because it shows that
Parent Level of Education has more influence on the grade than Ethnicity. This is val-
idated by the feature importance plot shown in figure 3.9 as well. The model has,
therefore, learned this pattern well.
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But what is going on with ethnicity group C, the third column, highlighted in figure
3.16? It looks like a student whose parent has a high school degree has a higher posi-
tive impact in predicting grade A than a student whose parent has a master’s degree
(compare the bottom-most cell with the top-most cell of the highlighted column). It
also looks like a student whose parent has an associate degree has the highest positive
impact in predicting grade A than any other level of education (see the third cell from
the top in the highlighted column). 

 This is a bit concerning because it may expose one or more of the following problems:

 Parent Level of Education might be correlated with the Ethnicity feature and,
therefore, results in untrustworthy feature interaction plots.

 The dataset does not properly represent the population, especially Ethnicity
group C. This is called sampling bias.

 The model is biased and has not learned the interaction between Parent Level
of Education and Ethnicity well.

 The dataset exposes a bias that is systemic in society.
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The first problem exposes the limitation of PDPs, and we will discuss this limitation in
the following paragraph. The second problem can be solved by collecting more data
that is representative of the population. You will learn about other forms of bias and
how to mitigate them in chapter 8. The third problem can be solved by adding or
engineering more features or by training a better, more complex model. The last
problem is much harder to solve, requiring better policies and laws, and this is beyond
the scope of this book. 

 To check whether the first problem exists, let’s look at the correlation between Parent
Level of Education and Ethnicity. We saw in chapter 2 how to compute and visualize the
correlation matrix. We used the Pearson correlation coefficient to quantify the correla-
tion between the features for that problem. This coefficient can be used only for numer-
ical features and not for categorical features. Because we are dealing with categorical
features in this example, we have to use a different metric. We can use the Cramer’s V sta-
tistic here because it measures the association between two categorical variables. This sta-
tistic can be between 0 and 1, where 0 signifies no correlation/association and 1 signifies
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maximum correlation/association. The following helper function can be used to com-
pute this statistic:

import scipy.stats as ss

def cramers_corrected_stat(confusion_matrix):
    """ Calculate Cramers V statistic for categorial-categorial association.
        uses correction from Bergsma and Wicher, 
        Journal of the Korean Statistical Society 42 (2013): 323-328
    """
    chi2 = ss.chi2_contingency(confusion_matrix)[0]
    n = confusion_matrix.sum().sum()
    phi2 = chi2/n
    r,k = confusion_matrix.shape
    phi2corr = max(0, phi2 - ((k-1)*(r-1))/(n-1))    
    rcorr = r - ((r-1)**2)/(n-1)
    kcorr = k - ((k-1)**2)/(n-1)
    return np.sqrt(phi2corr / min( (kcorr-1), (rcorr-1)))

We can compute the correlation between Parent Level of Education and Ethnicity as
follows:

confusion_matrix = pd.crosstab(df['parental level of education'], 
                               df['race/ethnicity'])
print(cramers_corrected_stat(confusion_matrix))

By executing these lines of code, we can see that the correlation or association between
Parent Level of Education and Ethnicity is 0.0486. This is quite low, and we can, there-
fore, rule out the issue of the feature interaction plot or PDP being untrustworthy.

 We saw in figure 3.5 that students belonging to group C perform better in general
than students belonging to group A. It could be the case that the model has learned
this pattern. We can validate it by looking at the top-most legend in figures 3.14, 3.15,
and 3.16. If the student belongs to group C, it has a positive impact of +0.153 on pre-
dicting grade A, which is greater than the impact that student has when belonging to
group A, which is +0.125.  Let us now look at the difference in the distributions of Par-
ent Level of Education between Ethnicity groups A and C, shown in figure 3.17.

 In figure 3.17, we can see that parents of students belonging to Ethnicity group A
are much more likely to have high school or some high school education than the
overall population and students belonging to group C. It also looks like group C has a
higher proportion of students whose parents have an associate degree than the overall
population and group A. The differences in distributions are quite striking. We are
not sure if the dataset represents the overall population and each Ethnicity group
accurately. As a data scientist, it is important to highlight this problem to the stake-
holder (the superintendent, in this example) and ensure that the dataset is legitimate
and that there is no sampling bias. 

 The important point to take away from this section is that interpretability tech-
niques, especially PDPs and feature interactions, are great tools for exposing potential
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problems with the model or the data before the model is deployed into production.
None of the insights in this section would have been possible by just looking at the fea-
ture importance. As an exercise, I encourage you to use the PDPBox package on other
black-box models, such as gradient-boosting trees.

In the next chapter, we will enter the world of black-box neural networks. This may
seem like a pretty big jump because neural networks are inherently complex and,
therefore, require more sophisticated interpretability techniques to understand them.
We will specifically focus on model-agnostic techniques that are local in scope, such as
LIME, SHAP, and anchors.
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Accumulated local effects (ALE)
We have seen in this chapter that PDPs and feature interaction plots based on them
are not trustworthy if the features are correlated with each other. An interpretability
technique that is unbiased and overcomes the limitation of PDPs is accumulated
local effects (ALE). This technique was proposed in 2016 by Daniel W. Apley and
Jingyu Zhu. At the time of writing, ALE is implemented only in the R programming lan-
guage. A Python implementation is still a work in progress and does not support cat-
egorical features yet. Because the implementation of ALE is not mature yet, we will
cover this technique in greater depth in a later release of this book.
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Summary
 Model-agnostic interpretability techniques are not dependent on the specific

type of model being used. They can be applied to any model because they are
independent of the internal structure of the model.

 Interpretability techniques that are global in scope will help us understand the
entire model as a whole.

 To overcome the problem of overfitting, we can combine or ensemble decision
trees in two broad ways: bagging and boosting.

 Using the bagging technique, we train multiple decision trees in parallel on
separate random subsets of the training data. We use these individual decision
trees to make predictions and combine them by taking an average to come up
with the final prediction. Random forest is a tree ensemble that uses the bag-
ging technique.

 Like in bagging, the boosting technique also trains multiple decision trees, but
in sequence. The first decision tree is typically a shallow tree and is trained on
the training set. The objective of the second decision tree is to learn from the
errors made by the first tree and to further improve the performance. Using
this technique, we string multiple decision trees together, and they iteratively
try to optimize and reduce the errors made by the previous one. Adaptive boost-
ing and gradient boosting are two common boosting algorithms.

 We can train a random forest model for classification tasks in Python using the
RandomForestClassifier class provided by the Scikit-Learn package. This
implementation will also help you easily compute the global relative impor-
tance of features.

 We can train the Scikit-Learn adaptive-boosting and gradient-boosting classifi-
ers by using the Scikit-Learn AdaBoostClassifier and GradientBoosting-
Classifier classes, respectively. Variants of gradient-boosting trees are
available that are faster and scalable, such as CatBoost and XGBoost.

 For tree ensembles, we can compute the global relative importance of features,
but we cannot extend this computation to other black-box models like neural
networks.

 Partial dependence plot (PDP) is a global, model-agnostic interpretability tech-
nique that we can use to understand the marginal or average effects of different
feature values on the model prediction. PDPs cannot be trusted if features are
correlated with each other. We can implement PDPs using the PDPBox Python
package.

 PDPs can be extended to understand feature interactions as well. PDPs and fea-
ture interaction plots can be used to expose possible issues such as sampling
bias and model bias.
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Model-agnostic methods:
 Local interpretability

In the previous chapter, we looked at tree ensembles, especially random forest
models, and learned how to interpret them using model-agnostic methods that are
global in scope, such as partial dependence plots (PDPs) and feature interaction
plots. We saw that PDPs are a great way of understanding how individual feature val-
ues impact the final model prediction at a global scale. We were also able to see

This chapter covers
 Characteristics of deep neural networks

 How to implement deep neural networks that are 
inherently black-box models

 Perturbation-based model-agnostic methods that 
are local in scope, such as LIME, SHAP and 
anchors

 How to interpret deep neural networks using 
LIME, SHAP, and anchors

 Strengths and weaknesses of LIME, SHAP, and 
anchors
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how features interact with each other using the feature interaction plots and how they
can be used to expose potential issues such as bias. PDPs are easy and intuitive to
understand, but their major drawback is that they assume features are independent of
each other. In addition, higher-order feature interactions cannot be visualized using
feature interaction plots.

 In this chapter, we will look at black-box neural networks, specifically focusing on
deep neural networks (DNNs). These models are inherently complex and require
more sophisticated interpretability techniques to understand them. We will specifi-
cally focus on techniques such as local interpretable model-agnostic explanations
(LIME), SHapley Additive exPlanations (SHAP), and anchors. Unlike PDPs and fea-
ture interaction plots, these techniques are local in scope. This means that we can use
them to interpret only a single instance or prediction. 

 We will follow a similar structure as the previous chapters. We start off with a con-
crete example where the objective is to build a model for breast cancer diagnosis. We
will explore this new dataset and learn how to train and evaluate DNNs in PyTorch.
We then learn how to interpret them. It is worth reiterating that although the main
focus of this chapter is on interpreting DNNs, we will also cover basic concepts of
DNNs and how to train and test them. Because the learning, testing, and understand-
ing stages are iterative, it is important to cover all three together. We also cover some
key insights and concepts in the earlier sections that will be useful during model inter-
pretation. Readers who are already familiar with DNNs and how to train and test them
are free to skip the earlier sections and jump straight to section 4.4, in which we cover
model interpretability.

4.1 Diagnostics+ AI: Breast cancer diagnosis
Let’s look at a concrete example. We’ll go back to Diagnostics+, introduced in chap-
ters 1 and 2. The center would like to extend its AI capabilities to diagnose breast can-
cer and has digitized the images of a fine needle aspiration of breast masses from
around 570 patients. Features were computed from these digitized images that
described the characteristics of cell nuclei present in the images. For each cell
nucleus, the following 10 features are used to describe its characteristics:

 Radius
 Texture
 Perimeter
 Area
 Smoothness
 Compactness
 Concavity
 Concave points
 Symmetry
 Fractal dimension
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For all the nuclei present in an image for a patient, the mean, standard error, and the
largest or worst values are computed for each of these 10 features. Each patient, there-
fore, has 30 features in total. Given these input features, the goal of the AI system is to
predict whether the cell is benign or malignant and to provide a confidence score for
the doctor to help with their diagnosis. This is summarized in figure 4.1.

Given this information, how would you formulate this as a machine learning problem?
Because the target of the model is to predict whether a given breast mass is benign or
malignant, we can formulate this problem as a binary classification problem.

4.2 Exploratory data analysis
Let’s now try to understand this dataset a bit better. Exploratory data analysis is an
important step in the process of model development. We will specifically be looking at
the volume of the data, the target class distribution, and whether features like the
cell’s Area, Radius, and Perimeter can be used to differentiate between benign and
malignant cases. We will use a lot of the insights gleaned in this section to determine
what features should be used for model training, what metrics should be used for
model evaluation, and how to validate the model interpretations obtained using the
techniques that we will cover later in this chapter. 

 The dataset contains 569 patient cases and 30 features in total. The features are all
continuous. Figure 4.2 shows the proportion of cases that are benign and malignant.
Out of the 569 cases, 357 of them (roughly 62.7%) are benign and 212 (roughly
37.3%) are malignant. This shows that the dataset is skewed, or imbalanced. As we saw
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in chapter 3, we say that the data is imbalanced when a disproportionate number of
examples or data points exist for a given class. Most machine learning algorithms
work best when the proportion of samples for each class is roughly the same. This is
because most algorithms are designed to minimize error or maximize accuracy, and
these algorithms tend to be naturally biased toward the majority class. To recapitulate,
you should note the following two things when dealing with imbalanced datasets:

 Use the right performance metrics (like precision, recall, and F1) when testing
and evaluating the models. 

 Resample the training data such that the majority class is either undersampled
or the minority class is oversampled.

We will discuss this further in section 4.3.2. Let’s now look at the distributions of the
cell’s Area, Radius, and Perimeter and see if there are any major differences between
the benign and malignant cases. Figure 4.3 shows the distributions of the mean cell
area and worst or largest cell area. 

In figure 4.3, we can see that if the mean cell area is greater than 750, then the case is
much more likely to be malignant than benign. Also, if the worst or largest cell area is
greater than 1,000, then the case is much more likely to be malignant. There seems to
be a good but weak separation between the malignant and benign cases by looking at
just two features related to the cell area.

 How about the cell’s Radius and Perimeter? Figures 4.4 and 4.5 show the distribu-
tions of the Radius and Perimeter, respectively. We see a similar separation between
the benign and malignant cases. For instance, a case with a mean radius that is greater
than 15 is much more likely to be malignant than benign. Also, a case with worst or
largest cell perimeter of 100 is much more likely to be malignant. 

 The purpose of this analysis is to get a sense of how good the features are in pre-
dicting the target variable, that is, whether a given case is benign or malignant. By
looking at the distributions in figures 4.3, 4.4, and 4.5, we can see pretty good signal in
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the six features that we’ve considered where there’s good separation between the
benign and malignant cases. We will also use these insights to validate the interpreta-
tions obtained through LIME, SHAP, and anchors later in this chapter. 

 Let’s finally look at how correlated each of the input features are with each other and
the target variable. We know that the input features are continuous, but the target
variable is discrete and binary. In the dataset, a malignant case is encoded as 0 and a
benign case is encoded as 1. Because the input features and the target are all numerical
values, we can use the Pearson, or standard, correlation coefficient to measure
correlation. As we saw in chapter 2, the Pearson correlation coefficient measures the
linear correlation between two variables and has a value between +1 and –1. If the
magnitude of the coefficient is above 0.7, that means really high correlation. If the
magnitude of the coefficient is between 0.5 and 0.7, that means moderately high
correlation. If the magnitude of the coefficient is between 0.3 and 0.5, that means low
correlation, and a magnitude less than 0.3 means little to no correlation. You can easily
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compute the pairwise correlations using the corr() function provided by Pandas. As an
exercise, please reuse the code learned in section 2.2 to compute and plot the
correlation matrix. The code to load the dataset can be found in section 4.3.1. The
resulting plot for the breast cancer dataset is shown in figure 4.6. 

In figure 4.6, let’s first focus on the last column, which shows the correlation of all the
input features with the target variable. We can see that features like mean cell Area,
Radius, and Perimeter are highly correlated with the target class. The correlation
coefficient is negative, however, which means that the larger the value for the features,
the smaller the value for the target variable. This makes sense because the target class
has a smaller value (i.e., 0) for the malignant class and a higher value (i.e., 1) for the
benign class. As we saw in figures 4.3, 4.4, and 4.5, the larger the value for these fea-
tures, the more likely that the case is malignant. We can also see that quite a few fea-
tures are highly correlated with each other. For instance, features like mean cell
Radius, Area, and Perimeter are highly correlated with worst cell Radius, Area, and
Perimeter. As we discussed in chapter 2, features that are correlated with each other
are said to be multicollinear, or redundant. One way of dealing with multicollinearity
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is to remove redundant features for the model. We will discuss this further in the fol-
lowing section.

4.3 Deep neural networks
An artificial neural network (ANN) is a system designed to loosely model a biological
brain. It belongs to a broad class of machine learning methods called deep learning.
The central idea of deep learning based on ANNs is to build complex concepts or rep-
resentations from simpler concepts or features. An ANN learns a complex function by
mapping the input to the output and is composed of many simpler functions. In this
chapter, we will focus on ANNs consisting of multiple layers of units, or neurons, that
are fully interconnected with each other. These are also called deep neural networks
(DNNs), fully connected neural networks (FCNNs), or multilayer perceptrons (MLPs). In sub-
sequent chapters, we will cover convolutional neural networks (CNNs) and recurrent neural
networks (RNNs), which are more advanced structures of neural networks used for
complex computer vision and language understanding tasks.

 Figure 4.7 illustrates a simple ANN consisting of three types of layers: the input layer,
the hidden layer, and the output layer. The input layer acts as the input for your data.
The number of units in the input layer is equal to the number of features in your data-
set. In figure 4.7, we consider only two features from the breast cancer dataset, namely,
mean cell Radius and mean cell Area. This is why two units exist in the input layer.

 The input layer is then connected to all the units in the first hidden layer. The hid-
den layer transforms the inputs based on the activation function used for its units. In
figure 4.7, the function f is used to represent the activation function for all the units
in the hidden layer. The units in one layer are connected with units in another layer
using edges. Each edge is associated with a weight, which defines the strength of the
connection between the units that it connects. Note that a bias term also connects to
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each of the units in the hidden layer, with an edge weight of 1. A weighted sum of the
inputs and the bias term is taken before it is transformed by the activation function. If
more than one hidden layer is present, then the ANN is said to be “deep.” Hence, an
ANN with two or more hidden layers is called a DNN. 

 The units in the final hidden layer are then connected to units in the output layer.
In figure 4.7, one unit exists in the output layer because for the breast cancer detec-
tion task, we have binary output where the given cell is either malignant or benign.
The unit in the output layer also has an activation function g, which transforms the
inputs to that unit to an output prediction. One of the challenges in creating neural
networks is determining the structure of the neural network—how deep (number of
hidden layers) and how wide (number of units in each layer) the network should be.
We will briefly talk about how to determine and interpret the structure of the neural
network in section 4.4 and cover it in more detail in subsequent chapters when we
look at CNNs and RNNs.

 Let’s now see how the input data is transformed into the output as it passes
through the ANN. This is called forward propagation and is illustrated in figure 4.8.
The input data is fed through the units in the input layer. The values of the input
units for the two features are represented as x1 and x2. These values are then propa-
gated through the network in the forward direction through the hidden layers. At
each unit in the hidden layer, a weighted sum of the inputs is computed and passed
through an activation function. In figure 4.8, the first unit in the hidden layer com-
putes the weighted sum of the inputs x1 and x2 and the bias term b1 to obtain the pre-
activation value a1. This is then passed through the activation function f to obtain
f(a1). A similar set of operations happens at the second unit in the hidden layer. Note
that the same activation function is used for both units in the hidden layer. We will dis-
cuss activation functions in more depth later in this section.
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Once we have computed the outputs for the units on the hidden layer, these outputs
are then fed as inputs to the units in the subsequent layer. In the next illustration, the
outputs from the two units at the hidden layer are fed as inputs to the one unit in the
output layer. Just as before, first a weighted sum of the inputs together with the bias
term is determined to obtain the preactivation value a3. This is then passed through
the activation function g to obtain the output of the unit as g(a3). The output of this
final unit is meant to be an estimate of the target variable y, represented as ŷ. The
weights for all the edges in the network will be randomly initialized at the start.

 Now the objective of the learning algorithm is to determine the weights of the
edges, or the strength of the connections between the units, such that the output pre-
diction is as close to the actual value for the target variable. How do you learn these
weights? We will apply the same technique that we learned in chapter 2 to determine
the weights for a linear regression model—gradient descent. An optimum set of
weights are those that minimize a cost or loss function. For regression problems, a
common cost function is the squared error or squared difference between the pre-
dicted output and the actual output. For binary classification problems, a common
cost function is the log loss or the binary cross-entropy (BCE) loss function. 

 The squared error cost function and its corresponding derivative with respect to
the predicted output are shown in the following equations:

The log loss or BCE loss function and its corresponding derivative with respect to the
predicted output are shown next:

The cost function is said to be at a minimum (global or local) when the gradient of
the cost function is 0 or close to 0. We can easily determine the weights for a linear
regression or logistic regression type of problem because the number of weights is
equal to the number of input features (plus an additional bias term). For a DNN, on
the other hand, the number of weights depends on the structure of the network. The
number of weights can easily explode as we add more units and layers to the network.
Applying the gradient descent algorithm directly is not computationally feasible. An
efficient algorithm to determine these weights in a DNN is backpropagation. 
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 The backpropagation algorithm for the simple ANN structure seen earlier is illus-
trated in figure 4.9. Once we have evaluated the output of the network after forward
propagation, the next step is to compute the cost or loss function and the gradient of
the cost function with respect to the predicted output. Then visit the nodes in reverse
order and propagate an error signal that we can use to compute the gradient with
respect to the weights for all the edges in the network. Let’s go through it step by step
by parsing figure 4.9 from right to left.

We first compute the gradient of the cost function with respect to the predicted output
variable. This is represented as J’ in figure 4.9. This gradient is then passed in the reverse
direction through the unit in the output layer. Within the output layer, the local gradient
of the activation function g is stored. This is represented as g’. The preactivation value
a3 evaluated during forward propagation is also stored. These values are used to com-
pute the output error signal of the unit, represented as e1. The computed value, shown
in figure 4.9, is the gradient of the loss function multiplied by the local gradient of the
activation function. Using terminology from calculus, we are applying the chain rule
here to compute the gradient of the loss function with respect to the input to the unit
in the output layer. This error signal e1 is then propagated to the two units in the hidden
layer. The process is then repeated to compute the output error signals of the hidden
units. Once the error signals have been propagated through the network and we have
reached the input layer, we can compute the gradient, with respect to each edge weight,
by multiplying the error signal flowing through it during backward propagation by the
value that flowed through it during forward propagation. Multiple online resources and
books explain backpropagation and the mathematical concepts in great depth. We will,
therefore, not cover these concepts in more depth in this chapter.

 The activation function is an important feature within a neural network. It decides
whether a neuron should be activated and by how much. The properties of an activa-
tion function are that it is differentiable (i.e., the first derivative exists) and mono-
tonic (i.e., it is either entirely nondecreasing or nonincreasing). Common activation
functions used in neural networks include the sigmoid function, hyperbolic tangent
(tanh), and the rectified linear unit (ReLU), which are defined in table 4.1.
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Table 4.1 Common activation functions used in neural networks

Sigmoid
Derivative of sigmoid

Activation Function Description

Sigmoid

Hyperbolic Tangent 
(tanh)

Rectified Linear 
Unit (ReLU)

The sigmoid function is defined as follows:

The output of the function ranges from 0 to 1. It is differentiable and is monotonic as shown 
in the figure above.

sigmoid(x) = 1 / (1 + exp(-x))

The hyperbolic tangent function is defined as follows:

The output of the function ranges from -1 to 1. It is also differentiable and monotonic as 
shown in the figure above.

tahn(x) = 2 * sigmoid(2x) – 1

Hyperbolic tangent (tanh)
Derivative of tanh

The ReLU function is defined as follows:

The output of the function ranges from 0 to the infinity (depending on the value of the 
input x). It is differentiable and is monotonic as shown in the following figure.

ReLu(x) = max(0,x)
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The sigmoid activation function is typically used for classifiers because the output of
the function ranges from 0 to 1. For the breast cancer detection problem in this chap-
ter, we will use the sigmoid function as the activation function g in the output layer.
The hyperbolic tangent function has similar properties as the sigmoid, but the output
ranges from –1 to 1. Both the sigmoid and hyperbolic tangent activation functions suf-
fer from the problem of vanishing gradients. This is because the gradients for both
functions are 0 (also said to be saturated) for very large or small values of the input, as
seen in table 4.1. 

 ReLUs are the most widely used activation functions in neural networks because
they handle the vanishing gradient problem well. We can see that the value of the
ReLU is 0 if the input is negative. This means that if the input to a neuron with a
ReLU activation function is negative, then the output of that neuron is 0 and is, there-
fore, not activated. Only neurons with non-negative inputs are activated. Because not
all neurons are activated at the same time, the ReLU activation function is more com-
putationally efficient. In practice, for simplicity, the same activation function is used
for all the units in the hidden layers of the neural network.

4.3.1 Data preparation

Let’s now train a DNN for the breast cancer detection problem. We will use PyTorch
to build and train the network. PyTorch is a library that facilitates building neural net-
works in Python. PyTorch is gaining popularity among researchers and machine learn-
ing practitioners in the industry due to its ease of use. We can use other libraries, such
as TensorFlow and Keras, to build neural networks as well, but we will focus on
PyTorch in this book. Because the library is pythonic, it will be easier for data scientists
and engineers who are already familiar with Python to use it. To learn more about
PyTorch, please see appendix B.  

 The first step before training the DNN is to prepare the data. The following code
shows how to load the data—split it into training, validation, and test sets, and then
transform them into inputs for the PyTorch implementation of the network:

import numpy as np 

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split 

import torch 
from torch.autograd import Variable 

data = load_breast_cancer()  
X = data['data'] 
y = data['target']   

X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.3,

➥ random_state=24) 

Imports NumPy, which is used for loading 
the dataset as vectors and matrices

Imports the breast cancer dataset 
available in Scikit-Learn

Imports the 
train_test_split function 
available in Scikit-Learn

Imports PyTorch and the Variable data structure 
to store the input dataset as tensors

Loads the breast cancer 
dataset and extracts the 
features and target

Splits the data
 into train and
validation/test

sets
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X_val, X_test, y_val, y_test = train_test_split(X_val, y_val, test_size=0.5, 

➥ random_state=24) 

X_train = Variable(torch.from_numpy(X_train))  
X_val = Variable(torch.from_numpy(X_val)) 
y_train = Variable(torch.from_numpy(y_train))  
y_val = Variable(torch.from_numpy(y_val))  
X_test = Variable(torch.from_numpy(X_test))  
y_test = Variable(torch.from_numpy(y_test))    

Note that 70% of the data is used for training, 15% for validation, and the remaining 15%
as the held-out test set. Let’s now check to see if the distribution of the target variable,
shown in figure 4.10, is similar across the three sets. We can see that roughly 60–62% of
the cases are benign (where the target variable = 1) and 38–40% of the cases are malig-
nant (where the target variable = 0) in all three sets.

4.3.2 Training and evaluating DNNs

Now that we’ve prepared the data, the next step is to define the DNN. We will create a
class where the number of layers and units can be passed in as attributes, as shown
here:

class Model(torch.nn.Sequential): 
    def __init__(self, layer_dims): 
        super(Model, self).__init__() 
        for idx, dim in enumerate(layer_dims): 
            if (idx < len(layer_dims) - 1): #E
                module = torch.nn.Linear(dim, layer_dims[idx + 1])  
                self.add_module("linear" + str(idx), module)      
            else: 
                self.add_module("sig" + str(idx), torch.nn.Sigmoid())
            if (idx < len(layer_dims) - 2): 
                self.add_module("relu" + str(idx), torch.nn.ReLU())

Splits the validation/test set into 
two equal sets: validation and test

Initializes the train, validation, and 
test sets into PyTorch tensors
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Figure 4.10 Target variable distribution across the training, validation, and test sets

Creates a Model class that inherits 
from the PyTorch Sequential class

Passes the number of layers and units for 
each layer as an array to the constructor

Initializes
the PyTorch

Sequential
super class

For each element in the array, 
extracts the index and the 
number of units for that layer

Creates a layer
module containing

all linear units
until the final
output layer Uses the sigmoid activation function

for the unit in the output layer
Uses the ReLU activation function for 
all the units in the hidden layers
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Note that the DNN Model class inherits from the PyTorch Sequential class, which lay-
ers modules in the sequential order that they are initialized. For the input layer and
hidden layers, Linear units are used to compute a weighted sum of all the inputs to
that unit. For the hidden layers, we use the ReLU activation function. The final output
layer consists of a single unit where we use the sigmoid activation function. The out-
put of a sigmoid activation function is a score between 0 and 1. This output acts as a
proxy for a probability measure for the positive class in the classification task. In this
case, the positive class is benign. Now that we have the Model class, let’s initialize it as
follows:

dim_in = X_train.shape[1] 
dim_out = 1 
layer_dims = [dim_in, 20, 10, 5, dim_out] 
model = Model(layer_dims) 

If you print the model, using the command print(model), you will get the following
output, which summarizes the structure of the DNN:

Model(
  (linear0): Linear(in_features=30, out_features=20, bias=True)
  (relu0): ReLU()
  (linear1): Linear(in_features=20, out_features=10, bias=True)
  (relu1): ReLU()
  (linear2): Linear(in_features=10, out_features=5, bias=True)
  (relu2): ReLU()
  (linear3): Linear(in_features=5, out_features=1, bias=True)
  (sig4): Sigmoid()
)

In this output, you can see that the DNN consists of one input layer, three hidden lay-
ers, and one output layer. The input layer consists of 30 units because the dataset con-
tains 30 input features. The first hidden layer consists of 20 units, the second hidden
layer consists of 10 units, and the third hidden layer consists of 5 units. The ReLU acti-
vation function is used for all the units in the hidden layers. Finally, the output layer
consists of a single unit with a sigmoid activation function. The number of units in the
input and output layers must be 30 and 1, respectively, for this dataset, because the
number of features is 30 and only a single output is required for the binary classifica-
tion task. You are, however, free to tune the number of hidden layers and the number
of units in each hidden layer, depending on which structure gives the best perfor-
mance. You can use the validation set to determine these hyperparameters. 

 With the model in place, let’s now define the loss function and the optimizer that
will be used to determine the weights during backpropagation as follows:

 

The number of units for the input layer is equal 
to the number of features in the training set.

The number of units in the output layer 
is 1 because we are dealing with a binary 
classification problem.

Initializes the layer dimensions array 
to define the structure for the DNN

Initializes the DNN model with the predefined structure
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criterion = torch.nn.BCELoss(reduction='sum') 
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) 

As mentioned in the previous section, the BCE loss is used as the criterion of optimiza-
tion for binary classification problems. We are also using the Adam optimizer here
with a predefined initial learning rate to determine the edge weights during back-
propagation. The Adam optimizer is a technique that adaptively determines the learn-
ing rate for the gradient descent algorithm. You can find more details on the Adam
optimization technique in this blog post: http://mng.bz/zQzX. Finally, train the
model as follows:

num_epochs = 300 
for epoch in range(num_epochs): 
    y_pred = model(X_train.float()) 
    loss = criterion(y_pred, y_train.view(-1, 1).float()) 

    optimizer.zero_grad() 
    loss.backward() 
    optimizer.step() 

Note that we are training the model over 300 epochs. An epoch is a hyperparameter
that defines the number of times we propagate the entire training set in the forward
and backward directions through the neural network. During each epoch, we first
obtain the output of the DNN by propagating the training set through the network in
the forward direction. We then compute the gradient with respect to every parameter
or edge weight and update the weights during backpropagation. Note that the gradi-
ents are set to 0 in each epoch before starting backpropagation because PyTorch accu-
mulates gradients during backward passes by default. If we do not set the gradients to
0, the weights will not be updated correctly. 

 The next step is to evaluate the model performance using the test set. Because this
is a classification problem, we will use the same metrics that we used in chapter 3 for
the student grade-prediction problem. The metrics we will use are precision, recall,
and the F1 score. We will compare the performance of the trained DNN model with a
reasonable baseline model. As seen in section 4.2, the majority of the cases in the data-
set are benign. We will, therefore, consider a baseline model that always predicts
benign. This is not ideal because we will get all the malignant cases wrong. In a real-
life situation, the baseline model will typically be predictions made by a human or
expert or an existing model that the business is using. For this example, unfortu-
nately, we do not have access to that information, and so we will compare the model
with a baseline that always predicts benign. 

 Table 4.2 shows the three key performance metrics used to benchmark the
models—precision, recall, and F1. If we look at the recall metric, the baseline model
does better than the DNN. This is expected because the baseline model is predicting

Initializes the binary cross-entropy (BCE) 
loss as the criterion for optimization

Uses the Adam optimizer with a
learning rate of 0.001 to determine

the weights during backpropagation

Initializes the number 
of epochs to 300 In each epoch, obtains 

the output of the DNN 
for the training set

Computes the 
BCE loss for the 
training set

Zeroes out the gradients before backpropagating

Computes the gradient with respect 
to every parameter/edge weight

Updates
the weights

based on
the current

gradients
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the positive class all the time and will, therefore, get all the positive cases right. The
recall with respect to the negative class, however, will be 0 for the baseline model.
Overall, though, the DNN model does much better than the baseline, achieving a pre-
cision of 98.1% (+35.4% better than the baseline) and an F1 score of 96.2% (+19.1%
better than the baseline). 

 As an exercise, I highly encourage you to tune the hyperparameters of the model
and see if you can improve the performance of this model. You can tune the structure
of the network by changing the number of hidden layers and units in each layer, and
also the number of epochs used for training. In section 4.2 (figure 4.6), we also saw
that some of the input features are highly correlated with each other. The perfor-
mance of the model could be further improved by removing some of the redundant
features. As another exercise, perform feature selection, and determine the best sub-
set of features that maximizes the performance of the model. 

With the DNN model performing better than the baseline, let’s now interpret it and
understand how the black-box model arrived at the final prediction.

4.4 Interpreting DNNs
As we saw in the previous section, to make a prediction with a DNN, we pass data
through multiple layers, with each layer consisting of multiple units. The inputs to
each layer go through a nonlinear transformation based on the weights and the activa-
tion function used for the units. A single prediction can involve a lot of mathematical
operations, depending on the structure of the neural network. For the relatively sim-
ple architecture used in the previous section for breast cancer detection, a single pre-
diction involved roughly 890 mathematical operations based on the number of
training parameters or weights, as shown next:

+----------------+------------+
|    Modules     | Parameters |
+----------------+------------+
| linear0.weight |    600     |
|  linear0.bias  |     20     |
| linear1.weight |    200     |
|  linear1.bias  |     10     |
| linear2.weight |     50     |
|  linear2.bias  |     5      |
| linear3.weight |     5      |
|  linear3.bias  |     1      |
+----------------+------------+
Total Trainable Parameters: 891

Table 4.2 Performance comparison of the baseline model with the DNN model

Precision (%) Recall (%) F1 score (%)

Baseline model 1 62.7 100 77.1

DNN model 98.1 (+35.4) 94.4 (–5.6) 96.2 (+19.1)
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This example can very easily explode into millions of operations as we add more hid-
den layers and units per hidden layer. This is what makes DNNs black boxes—it
becomes really difficult to understand what transformations each layer is doing and
how the model arrives at the final prediction. We will see in later chapters that it
becomes even more difficult with more complex structures like CNNs and RNNs. 

 One way we can interpret DNNs is by looking at the weights or the strengths of the
edges connected to the units in the input layer. This could be seen as a proxy to deter-
mine the overall influence of the input features on the output prediction. It will not,
however, give us an accurate measure of the feature importance as we saw for white-
box models and tree ensembles in the previous chapters. The main reason is the neu-
ral network learns a representation of the input at the hidden layers. The initial input
features are transformed into intermediate features and concepts. Therefore, the
importance of those input features is not just dictated by the edges connected to the
units in the input layer. So how do we interpret DNNs?

 We have multiple ways of interpreting DNNs. We can use the model-agnostic methods
we learned in the previous chapter that are global in scope. We learned about PDPs and
feature interaction plots—model-agnostic techniques, meaning they are interpretability
techniques that could work with any machine learning model. They are also global in
scope, in that they look at the overall influence of the model on the final prediction.
PDPs and feature interaction plots are easy and intuitive to use, and they are great tools
for shedding light into how specific feature values influence the model output. We also
learned how they can be used to uncover potential issues like data and model bias. We
could very easily apply these techniques to the DNN model trained for breast cancer
detection. For PDPs and feature interaction plots to work, however, the input features
for the model have to be independent, and we saw in section 4.2 that they are not.

 In the subsequent sections, we will learn about more advanced model-agnostic
techniques, specifically focusing on LIME, SHAP, and anchors. These interpretability
techniques are local in scope, that is, they focus on a specific instance or example to
interpret. In later chapters, we will learn about feature attribution methods that aim
to quantify the contribution of each input feature on the final prediction and also
learn how to dissect the neural network and visualize the features learned by the inter-
mediate hidden layers and units.

4.5 LIME
LIME, an acronym for local interpretable model-agnostic explanations, was proposed
in 2016 by Marco Tulio Ribeiro and team. Let’s break down this technique. In the pre-
vious section, we trained a DNN that learned how to separate the benign cases from
the malignant cases using 30 features. Let’s simplify this by collapsing the feature
space into 2-D space, as shown in figure 4.11. The figure illustrates the complex deci-
sion function learned by the DNN where the model separates the benign cases from
the malignant cases. The decision boundary is intentionally exaggerated in figure 4.11
to illustrate a complex function that is harder to explain globally and possibly easier to
explain locally using a technique such as LIME.
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LIME first picks an example to interpret. This is shown in figure 4.12 where we have
picked one malignant case to interpret. The aim is to probe the model as often as
needed to interpret how the model comes up with the prediction for that picked
example. You can probe the model by perturbing the dataset to get the model predic-
tions for that new dataset.

How do we create this new perturbed dataset? Given the training data, we calculate the key
summary statistics for each feature. For numerical or continuous features, we calculate
the mean and standard deviation. For categorical features, we compute the frequency
of each value. Then we create a new dataset by sampling based on these summary sta-
tistics. For numerical features, we sample data from a Gaussian distribution, given the
mean and standard deviation for that feature. For categorical features, we sample based
on the frequency distribution or probability mass function. Once we’ve created this
dataset, we probe the model by getting predictions for them, as shown in figure 4.13.

Malignant

Benign

Complex decision boundary separating 
the benign cases from the malignant cases

Figure 4.11 A 2-D 
illustration of a complex 
decision boundary learned by 
the DNN (or any black-box 
model) to separate the 
benign cases from the 
malignant cases

+

Malignant case picked to interpret

Figure 4.12 An illustration 
of an instance picked to 
interpret using LIME
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The picked instance is shown as the big plus sign. The malignant and benign predictions
on the perturbed dataset are shown as small plus signs and circles, respectively. 

Once we have created the perturbed dataset and obtained the model predictions for
them, we weight these new samples by their proximity to the picked instance to inter-
pret the picked instance by looking at cases similar to it in terms of features. The local-
ity of the interpretation is captured by this weighting—hence, the “local” in the
acronym LIME. Figure 4.14 shows the perturbed samples that are close to the picked
instance given a higher weight. 

Now, how do we weight the samples based on their proximity to the picked instance?
In the original paper, the authors use the exponential kernel function. The exponential
kernel function takes two parameters as inputs:
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 Distance of perturbed sample from picked instance—For the breast cancer dataset (or
tabular data in general), we use Euclidean distance to measure the distance of
the perturbed sample from the picked instance in the feature space. Euclidean
distance is also used for images. For text, the cosine distance measure is used.

 Kernel width—This is a hyperparameter that can be tuned. If the width is small,
only samples that are close to the picked instance will influence the interpreta-
tion. If the width is large, however, samples that are further away can influence the
interpretation. This is an important hyperparameter, and we will study its impact
on the interpretation in greater depth later. By default, the kernel width is set to
0.75 × √Number of features. So, for the model with 30 input features, the default ker-
nel width is 4.1. The value of the kernel width can range from zero to infinity.

Using the exponential kernel function, samples closer to the picked instance in terms
of distance will have a larger weight than samples further away.

 The final step is to fit a white-box model that is easily interpretable on the
weighted samples. In LIME, linear regression is used, and as we’ve seen in chapter 2,
we can use the weights of the linear regression model to interpret the importance of
features for that picked instance—hence the “interpretable” in the acronym LIME.
We get an interpretation that is locally faithful, and because we’re fitting a linear sur-
rogate model, LIME is totally agnostic of the DNN or black-box model—hence, the
“model-agnostic” in the acronym LIME. Figure 4.15 illustrates the linear surrogate
model (shown by the dashed gray line) that is faithful to the region near and around
the instance picked to interpret.

 Let’s now get our hands dirty and see LIME in action for the breast cancer diagnostics
DNN model that we trained earlier. First, install the LIME library using pip as follows:

pip install lime
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After installing, the first step is to initialize a LIME explainer object. Because the dataset
is tabular, we use the LimeTabularExplainer class. Other explainer classes are Lime-
ImageExplainer to explain models that use images as inputs and LimeTextExplainer
for text. We will make use of the LimeImageExplainer class in the next chapter when we
deal with images:

import lime 
import lime.lime_tabular 

explainer = lime.lime_tabular.LimeTabularExplainer(X_train.numpy(), 
                          feature_names=data.feature_names, 
                          class_names=data.target_names, 
                          discretize_continuous=True) 

Let’s now pick two cases to interpret—one benign and one malignant. We will use the
test set here where we pick the first benign and malignant cases, as shown in the fol-
lowing code:

benign_idx = np.where(y_test.numpy() == 1)[0][0]
malignant_idx = np.where(y_test.numpy() == 0)[0][0]

We need to create a helper function to provide the predictions of the DNN model for
the perturbed dataset, as shown here:

def prob(data):
    return model.forward(Variable(torch.from_numpy(data)).float()).\
     detach().\
     numpy().\
     reshape(-1, 1)

We also need to create another function to plot the LIME interpretation in Matplot-
lib. We can create this plot using the library, but it doesn’t allow customizations. This
is why we’ve created this helper function so that we can add titles and labels, change
the colors, and even create our own plots using the LIME interpretation:

def lime_exp_as_pyplot(exp, label=0, figsize=(8,5)):
    exp_list = exp.as_list(label=label)
    fig, ax = plt.subplots(figsize=figsize)
    vals = [x[1] for x in exp_list]
    names = [x[0] for x in exp_list]
    vals.reverse()
    names.reverse()
    colors = ['green' if x > 0 else 'red' for x in vals]
    pos = np.arange(len(exp_list)) + .5
    ax.barh(pos, vals, align='center', color=colors)
    plt.yticks(pos, names)
    return fig, ax

Imports the library and 
the relevant modules Initializes the explainer

using the training dataset

Provides the feature names

Provides the target class
names (benign/malignant)

Discretizes the continuous 
variables to reduce 
computational complexity



110 CHAPTER 4 Model-agnostic methods: Local interpretability

Let’s now interpret the first benign case. This is shown next, where we pass the picked
benign case to the LIME explainer:

bc1_lime = explainer.explain_instance(X_test.numpy()[benign_idx],
                                      prob, 
                                      num_features=5, 
                                      top_labels=1) 
f, ax = lime_exp_as_pyplot(bc1_lime) 

Note that we are limiting the number of features for the linear surrogate model to 5.
LIME uses a ridge regression model as the surrogate model by default. Ridge regres-
sion is a variant of the linear regression model that allows for variable selection or
parameter elimination through regularization. By using a high regularization parame-
ter, we can create sparse models that pick only a few top features for prediction. We
can use a low regularization parameter for less sparsity. Figure 4.16 shows the resulting
LIME interpretation for the benign case. 

 For the benign case used to interpret with LIME, the DNN model predicted that it
was benign with a probability of 0.99, or a confidence of 99%. To understand how it
arrived at that prediction, figure 4.16 shows the top five most important features for the
linear surrogate model and their corresponding weights or importance. It looks like
the most important feature was the worst area with a large positive weight. According to
LIME, the reason the model predicted benign was because the worst area value was
between 511 and 683.95. How did LIME get this range of values? It is based on the stan-
dard deviation of the weighted perturbed dataset used by the linear surrogate model.

Passes the features of the picked 
benign case to the function

Passes the helper function that
provides the predictions for the

perturbed dataset

Limits the number of 
features for the linear 
surrogate model to 5

The top label or positive class is 1.

Uses the helper function to plot the LIME interpretation

Figure 4.16 LIME interpretation of benign case 1 where the DNN model predicted benign with a confidence 
of 99%
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Benign case 1 (DNN confidence: 99%) | Kernel width = none (score: 0.10)
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Now, does this interpretation make sense? To validate this, we must go back to the
exploratory data analysis that we did in section 4.2. We saw in figure 4.3 that when the
worst or largest cell area is less than 700, a lot more cases are benign than malignant. 
If we now look at the second most important feature identified by LIME, we can see
that if the mean area is between 415.63 and 544.05, it is much more likely for the case
to be benign. This is further validated by our observation made in figure 4.3. We can
also make a similar observation for the third most important feature—mean perime-
ter. You might have observed the kernel width and a score in the title in figure 4.16.
We will come to this in a bit.

 Let’s now look at the first malignant case in the test set to interpret using LIME.
We can use the same code as before, but we need to remember to pick the right fea-
ture values from the test set using malignant_idx. As an exercise, I encourage you to
do that yourself. The resulting LIME interpretation is shown in figure 4.17. The two
most important features are the same as the benign case, but the range of values is dif-
ferent. Moreover, the weight for the most important features (worst cell area) is also
negative. This makes sense because we expect the feature to have a negative effect on
the model’s output. The DNN is trained to predict the probability of the positive class,
which is, in this case, benign. Therefore, if the case is malignant, we expect the output
of the model to be as low as possible; that is, the probability that the case is benign
must be as low as possible. 

For this malignant case, the DNN predicts that the case is benign with a probability of
0. This means that the model is 100% confident that the case is malignant. Now let’s
inspect the feature value ranges. We can see that the model predicted malignant

–0.20 –0.15 –0.10 –0.05 0.00 0.05 0.10 0.15 0.20

0.02 < symmetry error <= 0.02

97.38 < worst perimeter <= 123.15

11.64 < mean radius <= 13.27

415.63 < mean area <= 544.05

683.95 < worst area <= 1030.75

Malignant case 1 (DNN confidence: 100%) | Kernel width = none (score: 0.09)

Figure 4.17 LIME interpretation of malignant case 1 where the DNN model predicted malignant with  
confidence of 100%
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because the worst, or largest, cell area is greater than 683.95 but less than 1030.75.
This makes sense because from the exploratory analysis, we observed more malignant
cases than benign cases in that range (see figure 4.3). We can make similar observa-
tions for the other features.

IMPACT OF THE KERNEL WIDTH It is important to point out that the kernel
width is an important hyperparameter for LIME. Picking the right kernel
width is important and has an impact on the quality of the interpretation. We
can’t pick the same kernel width for all instances that we wish to interpret.
The choice of width has an impact on the weighted perturbed samples that
LIME considers for the linear surrogate model. If we choose a large kernel
width, samples further away from the picked instance will influence the linear
surrogate model. This may not be desirable because we want the surrogate
model to be as locally faithful to the original black-box model as possible. By
default, the LIME library uses a kernel width that is the square root of the
number of features multiplied by a factor of 0.75. So, if kernel_width = None,
the default value is used. It may be the case that the same kernel width may
not be applicable for all instances that need to be interpreted using LIME. To
evaluate the quality of the interpretation, LIME provides an explanation, or
fidelity score. The parameter is called score for the resulting LIME explana-
tion. A higher score means that the linear model used by LIME is a good
approximation of the black-box model. The kernel width and the LIME fidel-
ity score are shown in the title for figures 4.16 and 4.17.

Let’s now look at the impact of the kernel width by looking at another benign case.
We have picked the second case here from the test set, as shown next:

benign_idx2 = np.where(y_test.numpy() == 1)[0][1]

The LIME explainer we created earlier used the default value, which is 0.75 ×
sqrt(number of features). This evaluates to a kernel width of 4 because the number of fea-
tures in the dataset is 30. We will also create another LIME explainer that is initialized
with a smaller kernel width of 1 to see the impact on the interpretation. The following
code shows how to create a LIME explainer with kernel width = 1:

explainer_kw1 = lime.lime_tabular.LimeTabularExplainer(X_train.numpy(),
feature_names=data.feature_names,
                    class_names=data.target_names,
            kernel_width=1, 
                    discretize_continuous=True)

The resulting LIME interpretations using the default kernel width and kernel width of 1
for the second benign case are shown in figure 4.18 (a) and figure 4.18 (b), respectively.

 Let’s first compare the default LIME interpretation of the second benign case with
the first case shown earlier. The first most important feature is the same. We can see,
however, that the range of values for the features is different. For the second benign

The kernel_width 
parameter is set to 1.
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case, we see that the model predicted benign because the worst cell area was less than
511, as opposed to being between 511 and 683.95, as seen for the first case. This is still
a valid prediction because a lot more cases are benign when the worst area is less than
511. The fidelity score is also higher for default LIME interpretation of the second
benign case. This means that the linear model in LIME reflects the DNN model more
closely for this case than the first one. 
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0.06 < mean fractal dimension <= 0.07

0.28 < worst symmetry <= 0.32

Worst perimeter <= 83.70

Mean perimeter <= 74.69

Worst area <= 511.00

Benign case 2 (DNN confidence: 99%) | Kernel width = none (score: 0.22)

Figure 4.18a LIME interpretation of benign case 2 with a default kernel width
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Benign case 2 (DNN confidence: 100%) | Kernel width = 1 (score: 0.27)

Figure 4.18b LIME interpretation of benign case 2 with a kernel width of 1
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 If we now switch to figure 4.18 (b), we can see how different the interpretation is if
we use a smaller kernel width. The top-most feature is still the same, but we see differ-
ent features and a much smaller range of values for them because a small kernel width
focuses the linear surrogate model on perturbed cases that are very close to the
picked instance. Which kernel width is better for the second benign case? We can see
that a kernel width of 1 achieves a fidelity score of only 0.27, as opposed to 0.22 for the
default. Therefore, a kernel width of 1 is better in this case. As an exercise, I highly
encourage you to increase the kernel width for the second case to see if you can
achieve a higher fidelity score and to analyze the resulting LIME plot. I also suggest
you tune the kernel width hyperparameter for the first case to see if you can get a bet-
ter interpretation that is much more faithful to the DNN.

 Figure 4.19 (a) and figure 4.19 (b) show the LIME interpretations for the second
malignant case for two kernel widths—one default and the other with width 1. As an
exercise, compare these interpretations with the first malignant case and see which
kernel width gives you a higher quality interpretation.  

LIME is a great tool for interpreting black-box models. It is model-agnostic and can
work with different types of models. LIME can also work with different types of data—
tabular data, images, and text. We have seen it in action using tabular data in this sec-
tion. We will explore images and text data in later chapters, and you can find exam-
ples in the library documentation (https://github.com/marcotcr/lime). It is a widely
used library with lots of active contributors. 

 The quality of the LIME interpretation, however, depends greatly on the choice of
the kernel width, which is an input to the kernel function that is used to weight the

–0.4 –0.3 –0.2 –0.1 0.0 0.1

Worst texture > 29.92

Mean perimeter > 103.50

Worst perimeter > 123.15

Mean area > 765.38

Worst area > 1030.75

Malignant case 2 (DNN confidence: 100%) | Kernel width = none (score: 0.34)

Figure 4.19a LIME interpretation of malignant case 2 with a default kernel width

https://github.com/marcotcr/lime
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perturbed samples. It is an important hyperparameter, and we have seen that the
width could be different for different examples that we pick to interpret. We can use
the fidelity score provided by the library to determine the right width, but the selec-
tion of the right kernel width is still ambiguous. Another limitation of LIME is that the
perturbed dataset is created by sampling from a Gaussian distribution, and it ignores
correlations between features. The perturbed dataset may, therefore, not have the
same characteristics as the original training data.

4.6 SHAP
SHAP, an acronym for SHapley Additive exPlanations, was proposed in 2017 by Scott
M. Lundberg and Su-In Lee. It unifies the idea behind LIME (and linear surrogate
models) and game theory and provides more mathematical guarantees on the accu-
racy of the explanations than LIME. A Shapley value is a concept from game theory
that quantifies the impact of a coalition of players in a cooperative game. Let’s now
see what we mean by a cooperative game, the players of the game, and coalitions of
players. In the context of model interpretability, the cooperative game is the model
and the predictions it comes up with. The input features to the model are equivalent
to players, and coalitions of players are sets of features that interact with each other to
come up with the final prediction. Shapley values could, therefore, be used to quan-
tify the impact of features (i.e., players) and their interactions (i.e., player coalitions)
on a model prediction (i.e., cooperative game). Let’s break down the SHAP interpret-
ability technique by looking at the concrete example shown in figure 4.20. 

 The idea behind SHAP is quite similar to that behind LIME. The first step is to
pick an instance to explain. In figure 4.20, the picked instance is shown as the first row
in index 0. Because SHAP uses game-theoretic concepts, the picked instance consists

–0.016 –0.014 –0.012 –0.010 –0.008 –0.006 –0.004 –0.002 0.000

Mean perimeter > 103.50

0.07 < worst fractal dimension <= 0.08

Area error > 43.48

Mean area > 765.38

Worst area > 1030.75

Malignant case 2 (DNN confidence: 60%) | Kernel width = 1 (score: 0.15)

Figure 4.19b LIME interpretation of malignant case 2 with a kernel width of 1



116 CHAPTER 4 Model-agnostic methods: Local interpretability

of a coalition of all the features. When all the features are selected, or “switched on,” it
is represented by a vector containing all 1s for all the features in the dataset. The first
column in figure 4.20 shows the coalition vector as a table. For the picked instance, the
coalition vector consists of all 1s, so we pick all the actual feature values for that
instance when we convert that vector into the feature space. This feature vector is shown
as a table in the second column in figure 4.20. 

 Once we’ve picked the instance to interpret, the next step is to create the per-
turbed dataset. This process is the same as in LIME, but unlike with LIME, the idea in
SHAP is to generate a bunch of coalition vectors where features are randomly
“switched on” or “switched off.” If a feature is switched on, its value in the coalition
vector is 1. If the feature is switched off, its value in the coalition vector is 0. We know
how to represent the feature in the feature space when it is switched on—we just pick
the actual value from the instance that we’ve picked to interpret. If, however, the fea-
ture is switched off, we pick a value randomly from the training set for that feature. 

 After creating the perturbed dataset, the next step is to weight the dataset based on
its proximity to the picked instance. This is again similar to LIME, but unlike with
LIME, SHAP uses the SHAP kernel to determine the weights for the samples in the per-
turbed dataset as opposed to the exponential kernel function. The SHAP kernel func-
tion gives higher weight to coalitions that consist of very low or very high numbers of
features. The next steps are then the same as with LIME, which is to fit a linear model
on the weighted dataset and return the coefficients or weights of the linear model as
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Figure 4.20 An illustration of creating the perturbed dataset for SHAP



117SHAP

the interpretation for that picked instance. These coefficients or weights are called
Shapley values.

 Let’s now see SHAP in action on the breast cancer diagnostics model trained ear-
lier. The authors of SHAP have created a Python library in GitHub. We can install this
library using pip as follows:

pip install shap

We will use the same helper function called prob (introduced in the previous section
on LIME) to provide the DNN model predictions for the perturbed dataset. You can
now create the perturbed dataset and initialize the SHAP explainer as follows:

import shap
shap.initjs() 

shap_explainer = shap.KernelExplainer(prob, 
                                      X_train.numpy(), 
                                      link="logit")

Note that the logit link function is used for the linear surrogate model because
we are dealing with a binary classifier that outputs a probability estimate for the posi-
tive class. For regression problems, you can switch the link parameter to identity.
Next, obtain the SHAP values for all the data in the test set as follows:

shap_values = shap_explainer.shap_values(X_test.numpy())

You can now obtain the SHAP interpretation for the first benign case as a Matplotlib
plot as shown here: 

plot = shap.force_plot(shap_explainer.expected_value[0], 
                       shap_values[0][benign_idx,:], 
                       X_test.numpy()[benign_idx,:],
                       feature_names=data['feature_names'],
                       link="logit")

The resulting plot is shown in figure 4.21. Recall that for the first benign case, the
DNN model predicted it was benign with a probability of 0.99 or confidence of 99%.

 The SHAP library provides much nicer visualizations where you can see how each
feature value pushes the base prediction up or down. In figure 4.21, you can see the
base value at around 0.63. This is the positive class rate representing the proportion of

Initializes JavaScript for 
interactive visualizations

Uses the prob helper function 
to obtain the DNN predictions

Uses the logit link 
function because the 
DNN is a classifier

Figure 4.21 SHAP interpretation of benign case 1 where the DNN model predicts benign with a probability of 
0.99 (or a confidence of 99%)
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benign cases. When we explored the data in section 4.2, we observed that in the data-
set, roughly 63% of the cases were benign. The idea behind the SHAP visualization is
to see how the feature value pushes the baseline prediction probability from 0.63 up
to 0.99. The impact of the feature is shown by the length of the bar. We can see from
the figure that the worst cell area and mean cell area features have the largest Shapley
values, which pushes the base prediction the most. The next most important feature is
worst cell perimeter. 

 Figure 4.22 shows the SHAP interpretation for the second benign case where the
DNN model predicted benign with a probability of 0.99.

We can see that the two most important features here are the worst cell area and the
mean cell area. Because the worst area and mean area are quite low, with values of
424.8 and 346.4, respectively, it was enough to push the baseline prediction all the way
to 0.99. As an exercise, modify the code shown earlier to interpret the two malignant
cases. The resulting plots are shown in figures 4.23 and 4.24. 

For the first malignant case, the model predicted that it was benign with a probability
of 0. In figure 4.23, we can see how the feature values push the baseline prediction
probability down to 0. It looks like the features that have the most influence on the
final prediction are the worst cell area, mean cell area, and perimeter.

 For the second malignant case, the model also predicted that it was benign with a
probability of 0. We can see that the most influential feature is again the worst cell
area. Because the value was quite large—greater than 1417—it was enough to push
the baseline prediction probability down to 0, as shown in figure 4.24.

 SHAP is another great tool for interpreting black-box models. Like LIME, it is
model-agnostic, and it uses concepts from game theory to quantify the impact of fea-
tures on the model prediction of a single instance. It provides more mathematical

Figure 4.22 SHAP interpretation of benign case 2 where the DNN model predicts benign with a 
probability of 0.99 (or a confidence of 99%)

Figure 4.23 SHAP interpretation of malignant case 1 where the DNN model predicts benign with a probability 
of 0 (or malignant with a confidence of 100%)
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guarantees on the accuracy of the explanations than LIME. The library also provides
great visualizations of the impact of features, showing how the feature values push the
baseline prediction up or down to the final prediction. Computing the Shapley values
based on the SHAP kernel, however, is computationally intensive. The computational
complexity increases exponentially with the number of input features.

4.7 Anchors
Anchors is another model-agnostic interpretability technique that is local in scope. It
was proposed in 2018 by the same creators of LIME. It improves on LIME by provid-
ing high-precision rules, or predicates, for how the model arrives at the prediction
and also by quantifying the coverage of these rules in terms of global scope. Let’s
break this down.

 In this technique, model interpretations are generated in the form of anchors. An
anchor is essentially a set of if conditions, or predicates, that contains the picked instance
that we would like to interpret. This is shown by the box in figure 4.25. The anchor
illustrated in the figure can be interpreted as two if conditions where the two features
in the 2-D feature space are bounded by a lower bound and upper bound, thereby
forming a bounding box around the picked instance. The first objective of the algo-
rithm is to form high-precision anchors that contain the picked instance in terms of
the target prediction. The precision is a measure of the quality of the anchor and is
defined as the ratio of the number of perturbed samples with the same target predic-
tion as that of the picked instance to the total number of samples within the anchor.
An important hyperparameter for the algorithm is the precision threshold. 

 Once the algorithm has come up with a set of high-precision anchors, the next step
is to quantify the scope of each anchor. The scope of an anchor is quantified by a metric
called coverage. The coverage metric measures the probability that the anchor (or the set
of predicates) will be present in other samples or other parts of the feature space. With
this metric, we can tell how applicable the anchor’s interpretation is at a global scale.
The objective of the algorithm is to pick the anchor with the highest coverage. 

 Determining all possible predicates that meet the precision threshold and the cov-
erage requirement is a computationally intensive task. The authors of the algorithm
used a bottom-up approach in constructing the predicates or rules. The algorithm
starts off with an empty set of rules, and in each iteration, the algorithm incrementally
constructs an anchor that meets the precision threshold and the coverage require-
ment and adds it to the set. To estimate the precision of an anchor, the authors have

Figure 4.24 SHAP interpretation of malignant case 2 where the DNN model predicts benign with a probability 
of 0 (or malignant with a confidence of 100%)
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formulated this problem as a multiarmed bandit problem and specifically used the
KL-LUCB algorithm to identify the rules with the highest precision. 

 Let’s now interpret the breast cancer DNN model using anchors. The authors of
the paper have created a library in Python that can be found in GitHub. You can
install the library using pip as follows:

pip install anchors_exp

As we did with LIME and SHAP, let’s now create the anchors tabular explainer for the
breast cancer dataset as follows:

from anchor import anchor_tabular 

anchor_explainer = anchor_tabular.AnchorTabularExplainer(
    data.target_names, 
    data.feature_names, 
    X_train.numpy(),
    categorical_names={})
anchor_explainer.fit(X_train.numpy(),  
                     y_train.numpy(), 
                     X_val.numpy(),  
                     y_val.numpy())  

We need to create a different helper function for anchors that provides the DNN pre-
dictions as discrete labels rather than probabilities. This helper function is shown next:
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def pred(data):
    pred = model.forward(  
        Variable(torch.from_numpy(data)).float()).\ 
    detach().numpy().reshape(-1) > 0.5  
    return np.array([1 if p == True else 0 for p in pred])  

Let’s now interpret the first benign case using anchors. The following code shows how
to interpret the instance, extract the predicates or rules, and obtain the precision and
coverage of the interpretation:

exp = anchor_explainer.explain_instance(X_test.numpy()[benign_idx], 
                                        pred, 
                                        threshold=0.95) 
print('Prediction: ', 

➥ anchor_explainer.class_names[pred(X_test.numpy()[benign_idx])][0]) 
print('Anchor: %s' % (' AND '.join(exp.names()))) 
print('Precision: %.3f' % exp.precision()) 
print('Coverage: %.3f' % exp.coverage()) 

Note that the precision threshold is set to 0.95. The rules or predicates are obtained as
a list of strings and are strung together using the AND clause. The resulting output
from the code is shown here:

Prediction:  benign
Anchor: worst area <= 683.95 AND mean radius <= 13.27
Precision: 1.000
Coverage: 0.443

You can see that the model predicted benign correctly, and the interpretation, or
anchor, with the highest precision consists of two rules, or predicates. If the worst area
is less than or equal to 683.95 and the mean radius is less than or equal to 13.27, the
model predicts benign 100% of the time in the region around the picked instance. In
terms of coverage, this anchor does pretty well with a coverage of 44.3%. This means
that the rule is applicable to quite a lot of benign cases globally. You can also obtain an
HTML visualization of this interpretation, shown in figure 4.26, using the following
line of code: 

exp.save_to_file('anchors_benign_case1_interpretation.html')

The anchors library as it stands now does not provide Matplotlib visualizations. 
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As an exercise, extend this code to the other benign and malignant cases. The result-
ing visualization for the second benign case is shown in figure 4.27. You can see that
the model predicted benign correctly and the anchors algorithm came up with two
rules with precision 1: if the worst cell area is less than or equal to 683.95 and the
worst cell radius is less than or equal to 12.98, the model predicts benign 100% of the
time. The coverage of this anchor is, however, 20.9% lower than the first benign case.
This means that the interpretation for the second benign case is a lot more local than
the first one.

The anchor’s interpretation for the first malignant case is shown in figure 4.28. The
model correctly predicted it was malignant, and the interpretation consists of two
rules, or predicates, with a precision of 1. The rules follow: if the worst cell area is
greater than 683.95 and the mean cell radius is less than or equal to 544.05, the model
predicts malignant 100% of the time. The anchor has a very low coverage of just 1.2%,
however. The interpretation is, therefore, extremely local and is not really applicable
to a lot of the other malignant cases.

 
 

Figure 4.26 Anchor interpretation of benign case 1 where precision is 100% and coverage is 44.3%

Figure 4.27 Anchor interpretation of benign case 2 where precision is 100% and coverage is 20.9%
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Finally, the anchor’s interpretation of the second malignant case is shown in figure
4.29. The model again predicted malignant correctly, and the interpretation consists
of one rule with a precision of 1. The rule follows: if the worst cell area is greater than
1030.75, the model predicts malignant 100% of the time. The coverage of this anchor
is a lot better than the first case at 27.1%. This makes sense because if we go back to
the exploratory analysis we did in section 4.2 and look closely at figure 4.3, we see
many more malignant cases with worst cell areas greater than 1030.

Anchors are a powerful model-agnostic interpretability technique because they pro-
vide interpretations as a set of high-precision rules, predicates, or human-readable if
conditions. The technique also gives us a sense of the coverage or scope of the rules,
that is, how applicable the rules are at a global scale. The Python library, however, is
still a work in progress and is not as actively developed as LIME or SHAP.

 In the next and subsequent chapters, we will go deeper into the world of neural
networks and learn about more complex structures like CNNs and RNNs. We will also
learn how to perform feature attributions on neural networks and how to dissect them
to get a much better understanding of what the network has learned.

Figure 4.28 Anchor interpretation of malignant case 1 where precision is 100% and coverage is 1.1%

Figure 4.29 Anchor interpretation of malignant case 2 where precision is 100% and coverage is 27.1%
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Summary
 An artificial neural network (ANN) is a system that is designed to loosely model

a biological brain. It belongs to a broad class of machine learning methods
called deep learning. The central idea of deep learning based on ANNs is to
build complex concepts or representations from simpler concepts or features.

 An ANN with two or more hidden layers is called a deep neural network
(DNN).

 An efficient algorithm to determine the weights in a DNN is backpropagation. 
 The activation function is an important feature within a neural network. It

decides whether a neuron should be activated and by how much. The proper-
ties of an activation function are that it is differentiable and monotonic. 

 ReLUs are the most widely used activation functions in neural networks because
they handle the vanishing gradient problem well. They are also more computa-
tionally efficient.

 We can interpret neural networks in multiple ways. We can use model-agnostic
methods that are global in scope, such as PDPs. In this chapter, we learned
about more advanced perturbation-based model-agnostic techniques such as
LIME, SHAP, and anchors. These interpretability techniques are local in scope,
meaning they focus on a specific instance or example to interpret.

 LIME stands for local interpretable model-agnostic explanations. It is based on
picking an example, randomly perturbing it, weighting the perturbed samples
based on its proximity to the picked instance, and fitting a simpler white-box
model on the weighted samples.

 The quality of the LIME interpretation depends greatly on the choice of the
kernel width, which is an input to the kernel function used to weight the per-
turbed samples. It is an important hyperparameter, and we have seen that the
width could be different for different examples that we pick to interpret. We
can use the fidelity score provided by the library to determine the right width,
but the selection of the right kernel width is still ambiguous. 

 Another drawback of LIME is that the perturbed dataset is created by sampling
from a Gaussian distribution, and it ignores correlations between features. The
perturbed dataset may, therefore, not have the same characteristics as the origi-
nal training data.

 SHAP stands for SHapley Additive exPlanations. Like LIME, it is model-agnostic,
and it uses concepts from game theory to quantify the impact of features on the
model prediction of a single instance. In theory, SHAP provides more mathemat-
ical guarantees on the accuracy of the explanations than LIME. 

 The SHAP library provides great visualizations of the impact of features, show-
ing how the feature values push the baseline prediction up or down to the final
prediction. 
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 Computing the Shapley values based on the SHAP kernel is, however, computa-
tionally intensive. The computational complexity increases exponentially with
the number of input features.

 Anchors is another technique that improves on LIME by providing interpreta-
tions as a set of high-precision rules, predicates, or human-readable if condi-
tions. The technique also gives us a sense of the coverage or scope of the rules,
that is, how applicable the rules are at a global scale. The Python library, how-
ever, is still a work in progress and is not as actively developed as LIME or SHAP.



126

Saliency mapping

In the previous chapter, we looked at deep neural networks and learned how to
interpret them using model-agnostic methods that are local in scope. We specifi-
cally learned three techniques: LIME, SHAP, and anchors. In this chapter, we will
focus on convolutional neural networks (CNNs), a more complex neural network
architecture used mostly for visual tasks such as image classification, image segmen-
tation, object detection, and facial recognition. We will learn how to apply tech-
niques learned in the previous chapter to CNNs. In addition, we will also focus on

This chapter covers
 Characteristics that make convolutional neural 

networks inherently black-box

 How to implement convolutional neural networks 
for image classification tasks

 How to interpret convolutional neural networks 
using saliency mapping techniques, such as 
vanilla backpropagation, guided backpropagation, 
guided Grad-CAM, and SmoothGrad

 Strengths and weaknesses of these saliency 
mapping techniques and how to perform sanity 
checks on them



127Diagnostics+ AI: Invasive ductal carcinoma detection

saliency mapping, which is a local, model-dependent, and post hoc interpretability
technique. Saliency mapping is a great tool for interpreting CNNs because it helps us
visualize the salient or important features for the model. We will specifically cover
techniques such as vanilla backpropagation, guided backpropagation, integrated gra-
dients, SmoothGrad, Grad-CAM, and guided Grad-CAM.

 This chapter follows a similar structure to the previous chapters’. We will start off
with a concrete example where we will extend the breast cancer diagnosis example
from chapter 4. We will explore this new dataset containing images and learn how to
train and evaluate CNNs in PyTorch and how to interpret them. It is worth reiterating
that although the main focus of this chapter is interpreting CNNs using saliency map-
ping, we will also cover model training and testing. We will also glean some key insights
in the earlier sections that will be useful during model interpretation. Readers who are
already familiar with training and testing CNNs are free to skip the earlier sections and
jump straight to section 5.4, which covers model interpretability.

5.1 Diagnostics+ AI: Invasive ductal carcinoma detection
Invasive ductal carcinoma (IDC) is the most common form of breast cancer. In this
chapter, we will extend the breast cancer diagnosis example from the previous chap-
ter to detecting IDC. Pathologists at Diagnostics+ currently perform biopsies on
patients where they remove small tissue samples and analyze them under the micro-
scope to determine whether the patient has IDC. The pathologist splits the whole
mount sample of the tissue into patches and determines whether each patch is IDC
positive or negative. By delineating the exact regions of IDC in the tissue, the patholo-
gist determines how aggressive or advanced the cancer is and which grade to assign to
the patient.

Diagnostics+ would like to expand the capabilities of the their AI system that we built
in chapter 4 to automatically assess images of tissue samples. The goal is for the AI sys-
tem to determine whether each patch in the tissue mount sample is IDC positive or
negative and to assign a confidence measure to it. This is shown in figure 5.1. By using
this AI system, Diagnostics+ can automate the preprocessing step of delineating the

Patient tissue mount sample

Diagnostics+ 
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Pathologist

Automatic aggressiveness grading

Patch 1 Patch 2 Patch 3
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Figure 5.1 Diagnostics+ AI for invasive ductal carcinoma (IDC) detection
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regions of IDC in the tissue so that the pathologist can easily assign a grade to it to
determine how aggressive the cancer is. Given this information, how would you for-
mulate this as a machine learning problem? Because the target of the model is to pre-
dict whether a given image or patch is IDC positive or negative, we can formulate this
problem as a binary classification problem. The formulation is similar to chapter 4, but
the inputs to the classifier are images, not structured tabular data.

5.2 Exploratory data analysis
Let’s now try to understand this new image dataset better. A lot of the insights gleaned
in this section will help us with model training, evaluation, and interpretation. In this
dataset, we have tissue samples from 279 patients and 277,524 images of tissue
patches. The raw dataset is obtained from Kaggle (http://mng.bz/0wBl) and is pre-
processed to extract the metadata associated with these images. The preprocessing
notebook and the preprocessed dataset can be found in the GitHub repository
(http://mng.bz/KBdZ) associated with this book. 

 In figure 5.2, we can see the distribution of IDC-positive and -negative patches. Out
of the 277,524 patches, roughly 70% are IDC negative and 30% are IDC positive. The
dataset is, therefore, highly imbalanced. To recapitulate, we need to note the follow-
ing two things when dealing with imbalanced datasets:

 Use the right performance metrics (like precision, recall, and F1) when testing
and evaluating the models. 

 Resample the training data such that the majority class is either undersampled
or the minority class is oversampled.

Let’s look at a few random samples of patches. By visualizing these images, we can see
if there are some distinct characteristics for IDC-positive and -negative patches. This
will help us later when we have to interpret the model. Figure 5.3 shows a random
sample of four IDC-positive patches, and figure 5.4 shows a random sample of four
IDC-negative patches. The dimension of each patch image is 50 × 50 pixels. We can
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observe that the IDC-positive patches have more dark-stained cells. The density of the
dark stains is also higher. The darker color is typically used to stain nuclei. For IDC-
negative samples, on the other hand, the density of lighter stains is higher. The lighter
color is typically used to highlight the cytoplasm and extracellular connective tissue.
We can, therefore, visually say that a given patch is more likely to be IDC positive if it
has a high density of dark stains or cell nuclei. On other hand, a given patch is more
likely to be IDC negative if it has a high density of lighter stains and a very low density
of cell nuclei.  

Now let’s visualize all the patches for one patient or tissue sample and the regions that
are IDC positive. Figure 5.5 visualizes this for one patient. The plot on the left shows
all the patches stitched together for the tissue sample. The plot on the right shows the
same image but highlights the IDC-positive patches in a darker shade. This confirms
our observation earlier that patches are much more likely to be IDC positive if they

Dense darker-shade stains 
typically represent nuclei.

Figure 5.3 A visualization of 
random IDC-positive patches

Dense lighter-shade stains 
typically represent cytoplasm 
and extra connective tissue.

Figure 5.4 A visualization of 
random IDC-negative patches
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have a very high density of darker stains. We will come back to this visualization when
we have to interpret the CNN that we will be training for IDC detection. 

 In the next section, we will prepare the data and train a CNN. The CNN will be
used to classify each image or patch as either IDC positive or negative. Because the
dataset is quite imbalanced, we need to evaluate the CNN using metrics such as preci-
sion, recall, and F1.

5.3 Convolutional neural networks
A convolutional neural network (CNN) is a neural network architecture commonly
used for visual tasks such as image classification, object detection, and image segmen-
tation. Why are CNNs used for visual tasks and not fully connected deep neural net-
works (DNNs)? Fully connected DNNs do not capture pixel dependencies in an
image well because images need to be flattened into a 1-D structure before being fed
into the neural network. CNNs, on the other hand, take advantage of the multidimen-
sional structure of images and capture pixel dependencies or spatial dependencies in
an image well. CNNs are also translation invariant, meaning they are great at detect-
ing shapes in an image, irrespective of where the shapes occur in the image. In addi-
tion, the CNN architecture can also be trained more efficiently to fit the input dataset
because weights in the network are reused. Figure 5.6 shows an illustration of a CNN
architecture used for binary image classification. 

 The architecture in figure 5.6 consists of a sequence of layers called convolution and
pooling layers. The combination of these two types of layers is called the feature learning
layers. The objective of the feature learning layers is to extract hierarchical features
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Figure 5.5 A visualization of tissue sample and IDC-positive patches
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from the input image. The first few layers will be extracting low-level features such as
edges, colors, and gradients. By adding more convolution and pooling layers, the
architecture learns high-level features, giving us a much better understanding of the
characteristics of images in the dataset. We will cover convolutional and pooling layers
in more depth later in this section. 

 Following the feature learning layers are layers of neurons or units that are fully
connected, just like the DNN architecture we saw in chapter 4. The purpose of these
fully connected layers is to perform classification. The inputs to the fully connected
layer are the high-level features learned by the convolution and pooling layers, and
the output is a probability measure for the classification task. Because we covered how
DNNs work in chapter 4, we will focus most of our attention now on the convolution
and pooling layers.

 In chapter 1, we saw how to represent an image so that a CNN can easily process it,
as summarized in figure 5.7. In this example, the image of a tissue patch is a colored
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layer

Probability 
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logistic 
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Figure 5.6 An illustration of CNN for image classification

Figure 5.7 An illustration of how to represent a 50 × 50 image of a tissue patch
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image of size 50 × 50 pixels consisting of three primary channels: red (R), green (G)
and blue (B). This RGB image can be represented in mathematical form as three
matrices of pixel values, one for each channel and each of size 50 × 50. 

 Let’s now see how the convolution layer processes an image represented as a
matrix of pixel values. This layer consists of a kernel or filter and is convolved with the
input image to obtain a representation of the image called the feature image. Let’s
break this down and look at it step by step. Figure 5.8 shows a simplified illustration of
the operation performed in the convolution layer. In the figure, the image is repre-
sented as a matrix of dimension 3 × 3, and the kernel or filter is represented as a
matrix of dimension 2 × 2. The kernel starts off at the top-left corner of the image and
moves from left to right until it processes the complete width of the image. The kernel
then moves down and starts again from the left of the image, repeating this movement
until the whole image is processed. Each movement of the kernel is called a stride. An
important hyperparameter for the kernel is the stride length. If the stride length is 1,
the kernel moves one step during each stride. Figure 5.8 illustrates a kernel with a
stride length of 1. As you can see, the kernel starts at the top-left corner of the image
and needs to perform three strides to process the whole image.

During each stride, the part of the image that is processed is convolved with the kernel.
As we saw in chapter 2 in the context of GAMs, the convolution operation is essentially
a dot product. An element-wise product is taken of the part of the image that is
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processed with the kernel, followed by a sum. In figure 5.8, we can see this illustrated
for all the strides. For stride 0, for instance, the part of the image that is processed by
the kernel is highlighted by the dashed box. The value obtained by taking the dot
product of this image with the kernel is 3, and this value is placed on the top-left corner
of the feature map matrix. In stride 1, we move one step to the right and perform the
convolution operation again. The value that is obtained after convolution is 7, and this
is placed on the top-right corner of the feature map matrix. This process is repeated
until the whole image is processed. At the end of the convolution operation, we obtain
a feature map matrix of size 2 × 2 that is meant to capture a high-level feature
representation of the input image. The numbers within the kernel or filter are called
weights. Note that in figure 5.8, the same weights are used for the convolution layer. This
weight sharing allows the CNN to be trained a lot more efficiently than DNNs.

 The objective of the learning algorithm is to determine the weights within the ker-
nel or filter in the convolution layer. This is done during backpropagation. The size of
the feature map matrix is determined by a few hyperparameters—the size of the input
image, the size of the kernel, the stride length, and another hyperparameter called
the padding. Padding refers to the number of pixels added to the image before per-
forming the convolution operation. In figure 5.8, a padding of 0 is used where no
additional pixels are added to the image. If the padding is set to 1, a border of pixels is
added around the image where all the pixel values in the border are set to 0, as illus-
trated in figure 5.9. Adding padding increases the size of the feature map and allows
for a more accurate representation of the image. In practice, the convolution layer
consists of multiple filters or kernels. The number of filters is another hyperparame-
ter that we must specify before training.

The convolution layer in a CNN is usually followed by a pooling layer. The purpose of
the pooling layer is to reduce the dimensionality of the feature map further to reduce
the computational power required during model training. A common pooling layer is
max pooling. Like in the convolution layer, the pooling layer also consists of a filter. A
max pooling filter returns the maximum of all the values covered by that filter, as illus-
trated in figure 5.10.
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Rapid advances in CNNs have occurred in the last decade in various tasks, such as image
recognition, object detection, and image segmentation. This is thanks to massive
amounts of annotated data (ImageNet [http://www.image-net.org/] and CIFAR-10
and CIFAR-100 [https://www.cs.toronto.edu/~kriz/cifar.html] being some of them)
and advances in computation where deep learning models are leveraging the strengths
of graphics processing units (GPUs). Figure 5.11 shows advances in CNN research over
the last decade, especially in the image classification task using the ImageNet dataset.
The ImageNet dataset is a large database of annotated images typically used for image
classification and object detection tasks. It consists of more than a million images orga-
nized in a hierarchical structure consisting of more than 20,000 labeled categories. Fig-
ure 5.11 was obtained from Papers with Code (http://mng.bz/9K8o), a useful
repository of state-of-the-art (SoTA) machine learning techniques. One of the major
breakthroughs in terms of performance occurred in 2013 using the AlexNet architec-
ture. The current best CNNs are based on an architecture called residual network (Res-
Net). Some of these SoTA architectures have been implemented in deep learning
frameworks like PyTorch and Keras. We will see how to use them in the next section
where we will train a CNN for the IDC detection task. We will specifically focus on the
ResNet architecture because it is one of the most widely used architectures.
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5.3.1 Data preparation

In this section, we will prepare the data for model training. Data preparation is slightly
different than in the previous chapters because we are dealing with images and not
structured tabular data. Please note that the preprocessed dataset is used here. The
code used for preprocessing and the preprocessed dataset can be found in the
GitHub repository (http://mng.bz/KBdZ) associated with this book. First, let’s pre-
pare the training, validation, and test sets. It is important that we do not split the data
by patches but rather using the patient ID. This prevents data leakage across the train-
ing, validation, and test sets. If we randomly split the dataset by patches, patches for
one patient may be in all three sets and, therefore, leak some information about the
patient. The following code snippet shows how to split the dataset by patient ID:

df_data = pd.read_csv('data/chapter_05_idc.csv') 
patient_ids = df_data.patient_id.unique() 
train_ids, val_test_ids = train_test_split(patient_ids,  
                                           test_size=0.4, 
                                           random_state=24)  
val_ids, test_ids = train_test_split(val_test_ids, 
                                     test_size=0.5, 
                                     random_state=24)
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Figure 5.11 State-of-the-art CNN architectures for image classification on the ImageNet dataset (Source: 
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df_train = 

➥ df_data[df_data['patient_id'].isin(train_ids)].reset_index(drop=True) 
df_val = df_data[df_data['patient_id'].isin(val_ids)].reset_index(drop=True) 
df_test = 

➥ df_data[df_data['patient_id'].isin(test_ids)].reset_index(drop=True) 

Note that 60% of the patients are in the training set, 20% in the validation set, and the
remaining 20% in the test set. Let’s now check to see whether the distribution of the
target variable is similar across the three sets, as shown in figure 5.12. We can see that
roughly 25–30% of the patches are IDC positive and 70–75% are IDC negative in all
three sets. 

Let’s now create a custom class to easily load the images of patches and their corre-
sponding labels. PyTorch provides a class called Dataset for this purpose. We will
extend this class for the IDC dataset in this chapter. For more details on the Dataset
class and also on PyTorch, please see appendix A. See the following code sample:

from torch.utils.data import Dataset 

class PatchDataset(Dataset): 
    def __init__(self, df_data, images_dir, transform=None):  
        super().__init__() 
        self.data = list(df_data.itertuples(name='Patch', index=False))  
        self.images_dir = images_dir  
        self.transform = transform                                    

    def __len__(self):  
        return len(self.data) 
    
    def __getitem__(self, index): 
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        image_id, label = self.data[index].image_id, self.data[index].target 
        image = Image.open(os.path.join(self.images_dir, image_id))  
        image = image.convert('RGB') 
        if self.transform is not None:  
            image = self.transform(image)
        return image, label 

Let’s now define a function to transform the image of the patch. Common image
transformations such as crops, flips, rotations, and resizing are implemented in the
torchvision package. The full list of transformations can be found at
http://mng.bz/jy6p. The following code snippet shows five transformations being
performed on an image in the training set. As a data augmentation step, the second
and third transforms flip the image randomly about the horizontal and vertical axes.
As an exercise, create transforms for both the validation and test sets. Note that on the
validation and test sets, you do not need to augment the data by flipping the image
horizontally or vertically. You can name the transforms trans_val and trans_test:

import torchvision.transforms as transforms 

trans_train = transforms.Compose([ 
    transforms.Resize((50, 50)), 
    transforms.RandomHorizontalFlip(),
    transforms.RandomVerticalFlip(), 
    transforms.ToTensor(), 
    transforms.Normalize(mean=[0.5, 0.5, 0.5],  
                         std=[0.5, 0.5, 0.5])])

With the dataset class and transforms in place, we can now initialize the datasets and
loaders. The following code snippet shows you how to initialize it for the training set.
The DataLoader class provided by PyTorch allows you to batch data, shuffle it, and
load it in parallel using multiprocessing workers:

from torch.utils.data import DataLoader 

dataset_train = PatchDataset(df_data=df_train,  
                             images_dir=all_images_dir, 
                             transform=trans_train)  

batch_size = 64
loader_train = DataLoader(dataset=dataset_train,  
                          batch_size=batch_size, 
                          shuffle=True,  
                          num_workers=0)  

As an exercise, I encourage you to create similar datasets and loaders for the valida-
tion and test sets and name the objects dataset_val and dataset_test, respectively.
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The solutions to these exercises can be found in the GitHub repository associated with
this book (http://mng.bz/KBdZ).

5.3.2 Training and evaluating CNNs

With the datasets and loaders in place, we are now ready to create the CNN model. We
will use the ResNet architecture that is implemented in the torchvision package in
PyTorch. Using torchvision (http://mng.bz/jy6p), you can initialize other state-of-
the-art architectures as well, such as AlexNet, VGG, Inception, and ResNeXt. You can
also load these model architectures with pretrained weights by setting the pretrained
flag to true. If set to true, the package returns a model pretrained on the ImageNet
dataset. For the IDC detection example in this chapter, we will not use the pretrained
model because it initializes the model weights randomly, and the model would be
trained from scratch using the new dataset containing images of tissue patches. As an
exercise, I encourage you to set the pretrained parameter to True to initialize the
weights obtained by training on the ImageNet dataset. 

 We also need to concatenate fully connected layers to the CNN to perform the
binary classification task. We can use the next code snippet to initialize the CNN:

# Hyper parameters
num_classes = 2 

# Device configuration
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') 

# Use the ResNet architecture for the CNN
model = torchvision.models.resnet18(pretrained=False)  
num_features = model.fc.in_features  

# Create the fully connected layers for classification
model.fc = nn.Sequential( 
    nn.Linear(num_features, 512),
    nn.ReLU(),
    nn.BatchNorm1d(512),
    nn.Dropout(0.5),
    nn.Linear(512, 256),
    nn.ReLU(),
    nn.BatchNorm1d(256),
    nn.Dropout(0.5),
    nn.Linear(256, num_classes))

model = model.to(device) 

Note that the model is loaded on the CPU by default. For faster processing, you can
load the model on a GPU. All the popular deep learning frameworks, including
PyTorch, use CUDA, which stands for compute unified device architecture, to per-
form general-purpose computing on GPUs. CUDA is a platform built by NVIDIA that
provides APIs to directly access the GPU.

Sets the number of classes in the 
dataset, which is binary in this case

Uses the GPU device
if CUDA is available;
otherwise, sets the
device as the CPU

Initializes the ResNet 
model and extracts the 
number of features 
from the model
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layers to the ResNet model for 
classification

Transfers the model to the device
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 We can train the model using the following code snippet. Note that in this exam-
ple, the model is trained for five epochs. The training time of this complex model
using the IDC dataset is about 17 hours on a CPU. The training time would be a lot
shorter if it were done on a GPU instance. You could also achieve better performance
by increasing the number of epochs and training the model for longer:

# Hyper parameters
num_epochs = 5
learning_rate = 0.002

# Criterion or loss function 
criterion = nn.CrossEntropyLoss()

# Optimizer for CNN
optimizer = torch.optim.Adamax(model.parameters(), lr=learning_rate)

for epoch in range(num_epochs):
    model.train()

    for idx, (inputs, labels) in enumerate(loader_train):
            inputs = inputs.to(device, dtype=torch.float)
            labels = labels.to(device, dtype=torch.long)
            
            # zero the parameter gradients
            optimizer.zero_grad()
            
            with torch.set_grad_enabled(True):
                outputs = model(inputs)
                _, preds = torch.max(outputs, 1)
                loss = criterion(outputs, labels)
                
                # backpropagation 
                loss.backward()
                optimizer.step()

Let’s now see how well this model performs on the test set. As we did in the previous chap-
ters, we compare the model performance with a reasonable baseline. We saw in section
5.2 that the target class is highly imbalanced (see figure 5.2), where IDC-negative is the
majority class.  One option for the baseline model is to predict the majority class always,
that is, always predict that a tissue patch is IDC negative. This baseline is not reasonable,
however, because the cost of a false negative is a lot larger than a false positive when it
comes to healthcare, especially a cancer diagnosis. A much more reasonable strategy
would be to err on the side of false positives—always predict that a given tissue patch is
IDC positive. Although this strategy is not ideal, it at least gets all the positive cases right.
In a real-life situation, the baseline model is typically predictions made by a human or
expert (in this case, the assessments made by an expert pathologist) or an existing model
that the business is using. For this example, unfortunately, we do not have access to that
information and so use a baseline model that always predicts IDC positive. 
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 Table 5.1 shows the three key performance metrics used to benchmark the models:
precision, recall, and F1. Precision measures the proportion of predicted classes that
are accurate. Recall measures the proportion of actual classes that the model pre-
dicted accurately. The F1 score is the harmonic mean of precision and recall. Please
see chapter 3 for a more detailed explanation of these metrics. 

 If we look at the recall metric in table 5.1, the baseline model does better than the
CNN. This is expected because the baseline model is predicting IDC positive all the
time. Overall, though, the CNN model does much better than the baseline, achieving
a precision of 74.4% (+45.8% better than the baseline) and an F1 score of 74.2%
(+29.7% better than the baseline). As an exercise, I encourage you to tune the model
and achieve higher performance either by training for longer by increasing the num-
ber of epochs or by changing the CNN architecture.

With the CNN model performing better than the baseline, let’s now interpret it and
understand how the black-box model arrived at the final prediction. 

5.4 Interpreting CNNs
As we saw in the previous section, to make a prediction using a CNN, an image goes
through multiple convolutional and pooling layers for feature learning, followed by
multiple layers of a fully connected deep neural network for classification. For the
ResNet model used for IDC detection, the total number of parameters learned during
training was 11,572,546. Millions of complex operations are being performed in the
network, and it becomes incredibly difficult to understand how the model arrived at
the final prediction. This is what makes CNNs black boxes.

5.4.1 Probability landscape

In the previous chapter, we saw that one way of interpreting DNNs is by visualizing the
strengths of the edge weights. Through this technique, we could see at a high level
what influence input features had on the final model prediction. This technique can-
not be applied to CNNs because it is not trivial to visualize the kernels (or filters) in
the convolution layers and the influence they have on the intermediate features that
are learned and the final model output. We could, however, visualize the probability
landscape of the CNN. What is the probability landscape? Using the CNN in the con-
text of a binary classifier, we are essentially getting a probability measure for the target
class. In the case of IDC detection, we are getting from the CNN the probability that a
given input patch is IDC positive. For all the patches in the tissue, we can then plot the

Table 5.1 Performance comparison of baseline model with the CNN model

Precision (%) Recall (%) F1 score (%)

Baseline model 28.6 100 44.5

CNN model (ResNet) 74.4 (+45.8) 74.1 (–25.9) 74.2 (+29.7)
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output probability of the classifier and visualize it as a heat map. Overlaying this heat
map over the image can give us an indication of hot spots where the CNN detects
highly likely IDC-positive regions. This is the probability landscape.

 Figure 5.13 shows three plots. The left-most plot is a visualization of all the patches
for patient 12930. The middle plot highlights the patches that are IDC positive based
on the ground truth labels collected from the expert pathologists. These first two
plots are similar to the one we saw in section 5.2 (see figure 5.5). The right-most plot
shows the probability landscape of the ResNet model trained to detect IDC. The
brighter the color, the greater the probability that a given patch is IDC positive. By
comparing with the ground truth, we can see a good overlap between the model pre-
dictions and the ground truth. There are, however, some false positives where the
model highlights regions that are not necessarily IDC positive. The implementation of
figure 5.13 can be found in the GitHub repository (http://mng.bz/KBdZ) associated
with this book. You can load the model trained in section 5.3.2 to jump straight into
model interpretability. 

Visualizing the probability landscape is a great way of validating the output of the
model. By comparing with the ground truth labels, we can see which cases the model
gets wrong and tune the model accordingly. It is also a great way to visualize and mon-
itor the output of the model after deploying it in production. The probability land-
scape, however, does not give us any information on how the model arrived at the
prediction.

5.4.2 LIME

One way of interpreting a CNN is by using any one of the model-agnostic interpretabil-
ity techniques that we learned in the previous chapter. Let’s specifically look at how to
apply the LIME interpretability technique to images and CNNs. To recapitulate, the
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Figure 5.13 Probabilistic landscape of a ResNet model for a whole-tissue sample

http://mng.bz/KBdZ


142 CHAPTER 5 Saliency mapping

LIME technique is a model-agnostic technique that is local in scope. On a tabular data-
set, the technique works as follows:

1 Pick one example to interpret.
2 Create a perturbed dataset by sampling from a Gaussian distribution given the

mean and standard deviation of the features in the tabular dataset.
3 Run the perturbed dataset through the black-box model, and obtain the

predictions.
4 Weight the samples based on their proximity with the picked example, where

samples that are closer to the picked example are given a higher weight. As we
saw in chapter 4, a hyperparameter called the kernel width is used for weighting
the samples. If the kernel width is small, only samples that are close to the
picked instance will influence the interpretation.

5 Finally, fit a white-box model that is easily interpretable on the weighted sam-
ples. For LIME, linear regression is used.

The weights of the linear regression model can be used to determine the importance
of features for that picked example. The interpretation is obtained using a surrogate
model that is locally faithful to the example that we wish to interpret. Now, how do we
apply LIME to images? As with tabular data, we first need to pick an image that we
wish to interpret. Next, we have to create a perturbed dataset. We cannot perturb the
dataset the same way as we do for tabular data, by sampling from a Gaussian distribu-
tion. Instead, we randomly turn pixels off and on in the image. This is computation-
ally intensive because to come up with an interpretation that is locally faithful, we have
to generate a lot of samples to run through the model. Moreover, pixels could be spa-
tially correlated, and multiple pixels could contribute to one target class. We, there-
fore, segment the image into multiple segments, also called superpixels, and turn
random superpixels on and off, as illustrated in figure 5.14.

Original image

Segmented image

Perturbed image

Pixels

Superpixels

Superpixels 
turned off

Superpixels 
turned on

Figure 5.14 An illustration of how to create a perturbed image for LIME
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We can read figure 5.14 from bottom to top. The idea is to segment the original image
by grouping multiple pixels into a superpixel. In this illustration, we are using a sim-
ple segmentation algorithm where the original image is segmented into four nonover-
lapping rectangular segments. Once you have formed the segmented image with
superpixels, you can create the perturbed image by turning random superpixels on
and off. By default, the LIME implementation uses the quickshift (http://mng.bz/
W7mw) segmentation algorithm. Once you have created the perturbed dataset, the
rest of the technique is the same as with tabular data. The weights of the linear surro-
gate model will give us an idea of the influence of features or superpixels in the final
model prediction for the picked input image. We segment the image into superpixels
because we are attempting to group correlated pixels together and to look at the
effects on the final prediction. 

 Let’s now see how to implement LIME for the ResNet model trained earlier. We
will first need to split the one PyTorch transform that we used earlier into two. The
first one will transform the input Python Imaging Library (PIL) image into a 50 × 50
tensor, and the second one will normalize it. The first transformation, shown next, is
required for the image segmentation algorithm in LIME:

trans_pil = transforms.Compose([transforms.Resize((50, 50)),]) 
trans_pre = transforms.Compose([transforms.ToTensor(),  
                       transforms.Normalize(mean=[0.5, 0.5, 0.5], 
                                            std=[0.5, 0.5, 0.5])]) 

Next, we will need two helper functions—one to load the image file as a PIL image
and the other to perform predictions on the perturbed dataset using the model. The
next code snippet shows these functions, where get_image is the function to load the
PIL image and batch_predict is the function that runs the perturbed images
through the model. We also create a partial function that presets the model parameter
with the ResNet model that we trained in the previous section:

def get_image(images_dir, image_id): 
    image = Image.open(os.path.join(images_dir, image_id)) 
    image = image.convert('RGB') 
    return image 

def batch_predict(images, model): 
    def sigmoid(x):  
        return 1. / (1 + np.exp(-x)) 
    batch = torch.stack(tuple(trans_pre(i) for i in images), dim=0) 
    outputs = model(batch) 
    proba = outputs.detach().cpu().numpy().astype(np.float)    
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the transformed 50 × 50 input image

A helper function to read the 
input RGB image into memory

Opens the image and 
converts it to RGBReturns

the image A helper function to 
perform predictions 
on images in the 
perturbed dataset

A function to 
compute the 
sigmoid of 
the input 
parameter

Stacks all the
transformed tensors
for the input images

Runs through the 
model to obtain the 
output for all images

Detaches the output tensor and 
converts it to a NumPy array

http://mng.bz/W7mw
http://mng.bz/W7mw
http://mng.bz/W7mw


144 CHAPTER 5 Saliency mapping

    return sigmoid(proba) 

from functools import partial  
batch_predict_with_model = partial(batch_predict, model=model)

Note that in this code, we define a partial function called batch_predict_with_model.
Partial functions in Python allow us to set a certain number of arguments in a function
and generate a new function. We are using the batch_predict function and setting the
model parameter with the ResNet model trained earlier. You can replace this with any
other model that you wish to interpret using LIME. 

 Because LIME is a local interpretability technique, we need to pick an example to
interpret. For the ResNet model, we will pick two patches to interpret—one that is
IDC negative and the other that is IDC positive—from the test set, as shown here:

non_idc_idx = 142 
idc_idx = 41291 
non_idc_image = get_image(all_images_dir, 
                          df_test.iloc[non_idc_idx, :]['image_id']) 
idc_image = get_image(all_images_dir,  
                      df_test.iloc[idc_idx, :]['image_id']) 

Now we will initialize the LIME explainer and use that to interpret the two examples
that we picked. The following code snippet shows how to obtain the LIME explana-
tion for the IDC-negative example. As an exercise, obtain the LIME explanation for
the IDC-positive example and set it to a variable named idc_exp:

from lime import lime_image 
explainer = lime_image.LimeImageExplainer() 

non_idc_exp = explainer.explain_instance(np.array(trans_pil(non_idc_image)), 
                           batch_predict_with_model, 
                           num_samples=1000) 

Using the LIME explanation variable shown in the previous code, obtain the RGB
image and the 2-D mask that contains the explanation. As an exercise, obtain the
masked LIME image for the IDC-positive example, and name the masked image
i_img_boundary. To do this, you need to complete the previous exercise and obtain
the LIME explanation for the IDC-positive example first. The solutions to these exer-
cises can be found in the GitHub repository (http://mng.bz/KBdZ) associated with
this book:
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from skimage.segmentation import mark_boundaries 
ni_tmp, ni_mask = non_idc_exp.get_image_and_mask(non_idc_exp.top_labels[0], 
                                                 positive_only=False, 
                                                 num_features=20, 
                                                 hide_rest=True) 
ni_img_boundary = mark_boundaries(ni_tmp/255.0, ni_mask) 

We can now visualize the LIME explanations for both the IDC-positive and -negative
patches using the following code:

non_idc_conf = 100 - df_test_with_preds.iloc[non_idc_idx]['proba'] * 100
idc_conf = df_test_with_preds.iloc[idc_idx]['proba'] * 100 
non_idc_image = df_test.iloc[non_idc_idx]['image_id'] 
idc_image = df_test.iloc[idc_idx]['image_id']
non_idc_patient = df_test.iloc[non_idc_idx]['patient_id'] 
idc_patient = df_test.iloc[idc_idx]['patient_id']

f, ax = plt.subplots(2, 2, figsize=(10, 10)) 

# Plot the original image of the IDC negative patch
ax[0][0].imshow(Image.fromarray(imread(os.path.join(all_images_dir, 

➥ non_idc_image))))  
ax[0][0].axis('off') 
ax[0][0].set_title('Patch Image (IDC Negative)\nPatient Id: %d' % 

➥ non_idc_patient)                                                     

# Plot the LIME explanation for the IDC negative patch
ax[0][1].imshow(ni_img_boundary)  
ax[0][1].axis('off') 
ax[0][1].set_title('LIME Explanation (IDC Negative)\nModel Confidence: 

➥ %.1f%%' % non_idc_conf)  

# Plot the original image of the IDC positive patch
ax[1][0].imshow(Image.fromarray(imread(os.path.join(all_images_dir, 

➥ idc_image))))  
ax[1][0].axis('off') 
ax[1][0].set_title('Patch Image (IDC Positive)\nPatient Id: %d' % 

➥ idc_patient)  

# Plot the LIME explanation for the IDC positive patch 
ax[1][1].imshow(i_img_boundary) 
ax[1][1].axis('off') 
ax[1][1].set_title('LIME Explanation (IDC Positive)\nModel Confidence: 

➥ %.1f%%' % idc_conf); 
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Figure 5.15 shows the resulting visualization. The figure has been annotated where
the top-left image is the original image of the IDC-negative patch. The top-right image
is the LIME explanation of the IDC-negative patch. We can see that the model pre-
dicts that the patch is IDC negative with 82% confidence. From the original image, we
can see that the density of the lighter stain is higher, which matches the pattern that
we saw in section 5.2 (figure 5.4). The lighter stain is typically used to highlight the
cytoplasm and extracellular connective tissue. If we look at the LIME explanation, we
can see that the segmentation algorithm has highlighted two superpixels where the
segmentation boundary separates the highly dense lighter stains from the rest of the
image. The segment or superpixel that positively influences the prediction is shown in
red (darker shade). This is annotated as the left half of the segmented image. The seg-
ment or superpixel that negatively influences the prediction is shown in green
(lighter shade). This is annotated as the right half of the segmented image. The LIME
explanation, therefore, seems to have correctly highlighted the dense lighter stains as
contributing positively to predicting IDC negative with high confidence.

The bottom-left image in figure 5.15 is the original image of the IDC-positive patch.
The LIME explanation for this patch is shown on the bottom right of the figure. We can
see from the original image that the density of darker stains is a lot higher, which
matches the pattern that we saw in section 5.2 (figure 5.3). If we look at the LIME expla-
nation now, we can see that the segmentation algorithm treats the entire image as the

Model confidence: ~82%
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LIME explanation (IDC-positive)
Model confidence: 80.5%

Figure 5.15 The LIME explanation for IDC-negative and IDC-positive patches
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superpixel, and the whole superpixel contributes positively to predict IDC positive with
high confidence. Although this explanation makes sense at a high level because the
whole image consists of a high density of darker stains, it does not give us any additional
information about what specific pixels are influencing the model prediction. 

 This brings us to some of the drawbacks of LIME. As we saw in chapter 4 and in
this section, LIME is a great interpretability technique as it is model-agnostic and can
be applied to any complex model. It has a few disadvantages, however. The quality of
the LIME explanation depends heavily on the choice of the kernel width. As we saw in
chapter 4, this is an important hyperparameter, and the same kernel width may not be
applicable for all examples that we wish to interpret. LIME explanations can also be
unstable because they depend on how the perturbed dataset is sampled. The interpre-
tation is also dependent on the specific segmentation algorithm we use. As we saw in
figure 5.15, the segmentation algorithm treats the entire image as a superpixel. The
computation complexity of LIME is also high, depending on the number of pixels or
superpixels that need to be turned on or off.

5.4.3 Visual attribution methods

Now let’s take a step back and look at LIME from the context of a broader class of
interpretability methods called visual attribution methods. Visual attribution methods
are used to attribute importance to parts of an image that influence the prediction
made by the CNN. Three broad categories of visual attribution methods follow and
are shown in figure 5.16:

 Perturbations
 Gradients
 Activations

Interpretability techniques like LIME and SHAP are perturbation-based methods. As we
saw in chapter 4 and in the previous section, the idea is to perturb the input and
probe its effects on the predictions made by the CNN. These techniques are model-
agnostic, post hoc, and local interpretability techniques. Perturbation-based methods
are, however, computationally inefficient because each perturbation requires us to
perform a forward pass on the complex CNN model. These techniques can also

Visual 
attribution 
methods

Perturbations Gradients Activations Figure 5.16 Types 
of visual attribution 
methods
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underestimate the importance of features, where the features are parts of the image
that are based on the segmentation done on the original image.

 Gradient-based methods are used to visualize the gradient of the target class with
respect to the input image. The  idea is to pick an example or image to interpret. We
then run this image through the CNN in the forward direction to obtain the output
prediction. We apply the backpropagation algorithm to compute the gradient of the
output class with respect to the input image. The gradient is a good importance mea-
sure because it tells us which pixels need to be changed to affect the model output. If
the magnitude of the gradient is large, then a small change to the pixel value will
result in a large change in the input. Therefore, pixels with large gradient measures
are considered most important, or salient, for the model. Gradient-based methods are
sometimes also called backpropagation methods because the backpropagation algorithm
is used to determine feature importance. They are also called saliency maps because a
map of salient, or important, features is obtained. Popular gradient-based methods
are vanilla backpropagation, guided backpropagation, integrated gradients, and SmoothGrad,
which will be covered in the sections 5.5–5.7. These techniques are local in scope and
also post hoc. They are not entirely model-agnostic, however, and are weakly model-
dependent. They are much more computationally efficient when compared to pertur-
bation-based methods because only one forward and backward pass is required for
one image.

 Activation-based methods look at the feature maps or activations in the final convolu-
tional layer and weight them based on the gradient of the target class with respect to
those feature maps. The weights of the feature maps act as a proxy for the importance
of the input features. This technique is called gradient-weighted class activation mapping
(Grad-CAM). Because we are looking at the importance of the feature map in the final
convolutional layer, Grad-CAM provides a coarse-grained activation map. To obtain
more fine-grained activation maps, we can combine Grad-CAM and guided backprop-
agation—this technique is called guided Grad-CAM. We will see how Grad-CAM and
guided Grad-CAM work in more detail in section 5.8. Activation-based methods are
also weakly model-dependent, post hoc, and local interpretability techniques. 

5.5 Vanilla backpropagation
In this section, we will learn about a gradient-based attribution method called vanilla
backpropagation. Vanilla backpropagation was proposed in 2014 by Karen Simonyan et
al, and this technique is illustrated in figure 5.17.

 The first step is to pick an image or example to interpret. Because we are looking at
interpreting a single instance, the scope of this interpretability technique is local. The
second step is to perform a forward pass on the CNN to obtain the output class predic-
tion. Once you have obtained the output class, the next step is to obtain the gradient
of the output with respect to the penultimate layer and perform a backward pass—
which we learned about in chapter 4—to ultimately obtain the gradient of the output
class with respect to the pixels in the input image. The gradients for the input pixels or
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features are used as important measures. The larger the gradient for the pixel, the
more important that pixel is for the model to predict the output class. The intuition
behind it is that if the magnitude of the gradient is large for a given pixel, then a small
change in the pixel value will have a larger impact on the model prediction.

 Vanilla backpropagation and other gradient-based methods have been imple-
mented in PyTorch by Utku Ozbulak and open sourced in this GitHub repository:
http://mng.bz/8l8B. These implementations cannot be directly applied to the Res-
Net architecture or ResNet-based architectures, however, and I have adapted them in
this book so that they can be applied to these more advanced architectures. The next
code snippet implements the vanilla backpropagation technique as a Python class:

# Code below adapted from: http://mng.bz/8l8B 

class VanillaBackprop():
    """
        Produces gradients generated with vanilla back propagation from the 
        ➥ image
    """
    def __init__(self, model, features):
        self.model = model 
        self.gradients = None 
        # Put model in evaluation mode
        self.model.eval() 
        # Set feature layers
        self.features = features 
        # Hook the first layer to get the gradient
        self.hook_layers() 

    def hook_layers(self):

Input 
image Forward propagation

Backward propagationSaliency 
map

Output class

CNN

1. Pick an image
    to interpret.

2. Perform a forward pass on the
    CNN to obtain the output class.

3. Perform a backward pass 
    on the CNN to obtain the 
    gradient of the output class 
    with respect to the input.

4. Use the gradients as
   importance measures
   for the input pixels
   or features.

Figure 5.17 An illustration of vanilla backpropagation

A constructor for vanilla backpropagation that takes 
in the model and the start of the feature layers

Initializes the model object

Initializes the gradients object as None

Sets the model in evaluation mode

Sets the features object that points to 
the start of the feature layers in the 
model

Hooks the layers so that you can compute the gradient 
of the output with respect to the input pixels

A function
to hook the

first layer
to get the

gradient

http://mng.bz/8l8B
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        def hook_function(module, grad_in, grad_out): 
            self.grad_in = grad_in 
            self.grad_out = grad_out
            self.gradients = grad_in[0] 

        # Register hook to the first layer
        first_layer = list(self.features._modules.items())[0][1] 
        first_layer.register_backward_hook(hook_function) 

    def generate_gradients(self, input_image, target_class): 
        # Forward
        model_output = self.model(input_image) 
        # Zero grads
        self.model.zero_grad() 
        # Target for backprop
        one_hot_output = torch.FloatTensor(1, model_output.size()[-1]).zero_()
        one_hot_output[0][target_class] = 1 
        # Backward pass
        model_output.backward(gradient=one_hot_output)
        gradients_as_arr = self.gradients.data.numpy()[0] 
        return gradients_as_arr 

Note that the features layers for the ResNet model and other architectures like Incep-
tion v3 and ResNeXt can be found in the parent model and are not stored in a hierar-
chical structure as in VGG16 and AlexNet architectures, where the features layers are
stored within the features key in the model. You can test this by initializing the
VGG16 model, as follows, and printing it to see its structure:

vgg16 = torchvision.models.vgg16()
print(vgg16)

The output of this print statement is shown next. The output is clipped and is meant
to show how the feature layers are stored within the features key. You will get similar
output if you replace vgg16 with alexnet in the previous code:

VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, 

ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
...
(output clipped)
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The implementation by Utku Ozbulak expects the architecture to have the same hier-
archical structure as VGG16 and AlexNet. In the vanilla backpropagation implemen-
tation earlier, on the other hand, the feature layers are explicitly passed to the
constructor so that it can be used for more complex architectures. You can now
instantiate this class for the ResNet model as follows:

vbp = VanillaBackprop(model=model, features=model)

We will now create a helper function to obtain the gradients of the output with respect
to the input, as shown next:

def get_grads(gradient_method, dataset, idx): 
    image, label = dataset[idx] 
    
    X = image.reshape(1,   
                      image.shape[0], 
                      image.shape[1],  
                      image.shape[2])  
    X_var = Variable(X, requires_grad=True) 
    grads = gradient_method.generate_gradients(X_var, label) 
    return grads 

We will use the same two examples that we used for the LIME technique in section
5.4.2—one IDC-negative patch and one IDC-positive patch. We can now obtain the
gradients using the vanilla backpropagation technique as follows:

non_idc_vanilla_grads = get_grads(vbp, dataset_test, non_idc_idx)
idc_vanilla_grads = get_ grads(vbp, dataset_test, idc_idx)

Note that the test dataset is the PatchDataset for the test set that we initialized in sec-
tion 5.3.1. The resulting gradients array shown here will have the same dimension as
the input image. The input image has dimension 3 × 50 × 50 where there are three
channels (red, green, blue) and the height and width of the image are 50 pixels each.
The resulting gradients will also have the same dimension and can be visualized as a
color image. For ease of visualization, though, we will convert the gradients image to
grayscale. We can use the following helper function to convert from color to grayscale:

# Code below from: http://mng.bz/8l8B 

def convert_to_grayscale(im_as_arr):
    """
        Converts 3d image to grayscale
    Args:
        im_as_arr (numpy arr): RGB image with shape (D,W,H)
    returns:
        grayscale_im (numpy_arr): Grayscale image with shape (1,W,D)

The get_grads function takes in the gradient-based method, 
the dataset, and the index of the example to be interpreted.

Obtains the image and 
label at index idx

Reshapes the image 
to be able to run 
through the model

Creates the PyTorch variable 
where requires_grad is True 
to obtain the gradients 
through backpropagation

Obtains the gradients using the
generate_gradients function

Returns the gradients with 
respect to the input pixels
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    """
    grayscale_im = np.sum(np.abs(im_as_arr), axis=0)
    im_max = np.percentile(grayscale_im, 99)
    im_min = np.min(grayscale_im)
    grayscale_im = (np.clip((grayscale_im - im_min) / (im_max - im_min), 0, 1))
    grayscale_im = np.expand_dims(grayscale_im, axis=0)
    return grayscale_im

Now that we have the gradients obtained through vanilla backpropagation, we can
visualize them the same way as we visualized the LIME explanation. As an exercise, I
encourage you to extend the visualization code in section 5.4.2 to replace the LIME
explanation with the grayscale representation of the gradients. The resulting figure is
shown in figure 5.18.

Let’s focus on the IDC-negative patch first. The original image of the patch is shown
on the top left. The grayscale representation of the gradients obtained through vanilla
backpropagation is shown on the top right. We can see pixels with various shades of
gray in the image. Larger gradients have a higher intensity of gray or appear white.
This is a great way to visualize what pixels the CNN is focusing on to predict that the
image is IDC negative with a confidence of 82%. The salient, or important, pixels cor-
respond to the dense lighter stains in the original image. Because gradients are shown
at the pixel level, this is a much more fine-grained interpretation than LIME, where

Model confidence: ~82%

Model confidence: ~81%

Vanilla backpropagation 
saliency map of 
IDC-negative patch

Vanilla backpropagation 
saliency map of 
IDC-positive patch

Salient pixels 
for the model

Original image of 
IDC-negative patch

Original image of 
IDC-positive patch

Patch image (IDC-negative)
Patient ID: 10292

Vanilla backpropagation (IDC-negative)
Model confidence: 81.8%

Patch image (IDC-positive)
Patient ID: 12868

Vanilla backpropagation (IDC-positive)
Model confidence: 80.5%

Salient pixels 
for the model

Figure 5.18 A saliency map using vanilla backpropagation
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LIME focuses only on superpixels. Saliency maps are a great way to debug the CNN as
a data scientist or engineer and also help the expert pathologist understand what
parts of the image the CNN is paying attention to. 

 Let’s now look at the IDC-positive patch. The original image is shown on the bot-
tom left, and the interpretation obtained through vanilla backpropagation is shown on
the bottom right. We can see that a lot more pixels are lit up, which corresponds to the
darker stains or the nuclei in the input image. This interpretation is a lot better than
the LIME interpretation, where in LIME, the whole image was treated as a superpixel. 

5.6 Guided backpropagation
Guided backpropagation is another gradient-based attribution method proposed in 2015
by J. T. Springenberg et al. It is similar to vanilla backpropagation, with the only differ-
ence being in the way it handles the gradient when it passes through a rectified linear
unit (ReLU). As we saw in chapter 4, ReLU is a nonlinear activation function that clips
negative input values to zero. The guided backpropagation technique zeroes out the
gradient into a ReLU if the gradient is negative or if input to the ReLU during the for-
ward pass is negative. The idea behind guided backpropagation is to focus only on
input features that positively influence the model prediction. 

 The guided backpropagation technique has also been implemented in PyTorch in
the repository at http://mng.bz/8l8B, but it has been adapted in this book so that it
can be applied to more complex architectures like ResNet, where there are nested lay-
ers with ReLUs. The following code snippet shows the improved implementation:

# Code below adapted from: http://mng.bz/8l8B 
from torch.nn import ReLU, Sequential 

class GuidedBackprop():
    """
       Produces gradients generated with guided back propagation from the 
       ➥ given image
    """
    def __init__(self, model, features):  
        self.model = model 
        self.gradients = None  
        self.features = features  
        self.forward_relu_outputs = []  
        # Put model in evaluation mode 
        self.model.eval()  
        self.update_relus()  
        self.hook_layers()                      

    def hook_layers(self):  
        def hook_function(module, grad_in, grad_out): 
            self.gradients = grad_in[0]  
        # Register hook to the first layer  
        first_layer = list(self.features._modules.items())[0][1]  
        first_layer.register_backward_hook(hook_function)  

    def update_relus(self): 

Imports the ReLU activation function 
and the Sequential container

The contructor for guided backpropagation 
is similar to vanilla backpropagation with 
one additional function call to update the 
ReLUs during backpropagation.

A function to hook 
the first layer to 
get the gradient, 
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backpropagation

A function to 
update the 
ReLUs
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        """
            Updates relu activation functions so that
                1- stores output in forward pass
                2- imputes zero for gradient values that are less than zero
        """
        def relu_backward_hook_function(module, grad_in, grad_out): 
            """
            If there is a negative gradient, change it to zero
            """
            # Get last forward output
            corresponding_forward_output = self.forward_relu_outputs[-1] 
            corresponding_forward_output[corresponding_forward_output > 0] = 1
            modified_grad_out = corresponding_forward_output * 
            ➥ torch.clamp(grad_in[0], min=0.0) 
            del self.forward_relu_outputs[-1]  # 
            return (modified_grad_out,) 

        def relu_forward_hook_function(module, ten_in, ten_out): 
            """
            Store results of forward pass
            """
            self.forward_relu_outputs.append(ten_out)

        # Loop through layers, hook up ReLUs
        for pos, module in self.features._modules.items(): 
            if isinstance(module, ReLU): 
                module.register_backward_hook(relu_backward_hook_function)
                module.register_forward_hook(relu_forward_hook_function)
            elif isinstance(module, Sequential): 
                for sub_pos, sub_module in module._modules.items(): 
                    if isinstance(sub_module, ReLU): 
                        

sub_module.register_backward_hook(relu_backward_hook_function)
                        

sub_module.register_forward_hook(relu_forward_hook_function)
                    elif isinstance(sub_module, torchvision.models.resnet.BasicBlock):
                        for subsub_pos, subsub_module in 
                        ➥ sub_module._modules.items(): 
                            if isinstance(subsub_module, ReLU): 
                                

subsub_module.register_backward_hook(relu_backward_hook_function)
                                

subsub_module.register_forward_hook(relu_forward_hook_function)

    def generate_gradients(self, input_image, target_class):  
        # Forward pass 
        model_output = self.model(input_image)  
        # Zero gradients  
        self.model.zero_grad()  
        # Target for backprop  
        one_hot_output = torch.FloatTensor(1, model_output.size()[--1]).zero_()
        one_hot_output[0][target_class] = 1 
        # Backward pass 
        model_output.backward(gradient=one_hot_output) 
        gradients_as_arr = self.gradients.data.numpy()[0] 
        return gradients_as_arr 
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We can use this adapted implementation for model architectures with up to three
nested layers with ReLUs. Let’s now instantiate the guided backpropagation class for
the ResNet model as follows:

gbp = GuidedBackprop(model= model, 
                     features=model)

We can now obtain the gradients using the same get_gradients helper function
defined in section 5.5. As an exercise, obtain the gradients for the two examples,
convert them to grayscale, and then visualize them. The resulting figure is shown in
figure 5.19. 

The interpretation using guided backpropagation seems to show the model focusing
on a lot more pixels for both the IDC-negative and IDC-positive patches. The pixels
seem to correspond to regions of high-density lighter stains for the IDC-negative
patch and high-density darker stains for the IDC-positive patch. The interpretations
using vanilla backpropagation and guided backpropagation both seem to be legiti-
mate, but which one should we use? We will discuss this in section 5.9.
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Figure 5.19 A saliency map using guided backpropagation
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5.7 Other gradient-based methods
The vanilla and guided backpropagation methods both underestimate the impor-
tance of features in a model that exhibits saturation. What does this mean? Let’s take a
look at a simple example as highlighted in a 2017 paper by Avanti Shrikumar et al.,
available at https://arxiv.org/pdf/1704.02685;Learning. Figure 5.20 illustrates a sim-
ple network that exhibits saturation in the output signal. The network takes in two
inputs, x1 and x2. The numbers on the arrows or edges are the weights that are used
to multiply with the input unit that it connects. The final output of the network (or
output signal) y can be evaluated as follows:

y=1+max(0,1- (x1+x2))

If x1 + x2 is greater than 1, then the output signal y is saturated at 1. We can see that
the gradient of the output with respect to the inputs is zero when the sum of the
inputs is greater than 1. At this point, both vanilla backpropagation and guided back-
propagating underestimate the importance of the two input features because the gra-
dients are 0.

To overcome the saturation problem, two gradient-based methods were proposed
recently called integrated gradients (https://arxiv.org/pdf/1703.01365.pdf) and
SmoothGrad (https://arxiv.org/pdf/1706.03825.pdf). Integrated gradients were pro-
posed in 2017 by Mukund Sundararajan et al. For a given input image, integrated gra-
dients integrate the gradients as the input pixels are scaled from a starting value (e.g.,
all zeros) to their actual values. SmoothGrad was also proposed in 2017 by Daniel
Smilkov et al. SmoothGrad adds pixelwise Gaussian noise to copies of the input image
and then averages the resulting gradients obtained through vanilla backpropagation.
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Figure 5.20 An illustration of a simple network that exhibits output signal saturation
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Both of these techniques require integrating/averaging over multiple samples, similar
to perturbation-based methods, thereby increasing the computational complexity. The
resulting interpretations are also not guaranteed to be reliable, which is why we don’t
explicitly cover them in this book. We will discuss them further in section 5.9. For those
interested, you can play around with these techniques using the implementation in
PyTorch in the repository at http://mng.bz/8l8B.

5.8 Grad-CAM and guided Grad-CAM
We will now focus our attention on activation-based methods. Grad-CAM was proposed
in 2017 by R. R. Selvaraju et al. and is an activation-based attribution method that
exploits the features learned through the convolutional layers. Grad-CAM looks at the
feature map learned by the final convolutional layer in the CNN, and we obtain the
importance of that feature map by calculating the gradient of the output with respect
to the pixels in the feature map. Because we are looking at the feature map from the final
convolutional layer, the activation map produced by Grad-CAM is coarse. The Grad-
CAM technique is also implemented in the repository at http://mng.bz/8l8B and is
adapted as follows so that it can be applied to any CNN architecture. First, we will define
a class called CamExtractor to obtain the output or feature map of the final convolu-
tional layer and also the output of the classifier or fully connected layers:

# Code below adapted from: http://mng.bz/8l8B 

class CamExtractor():
    """
        Extracts cam features from the model
    """
    def __init__(self, model, features, fc, fc_layer, target_layer): 
        self.model = model 
        self.features = features 
        self.fc = fc 
        self.fc_layer = fc_layer 
        self.target_layer = target_layer 
        self.gradients = None 

    def save_gradient(self, grad):  
        self.gradients = grad 

    def forward_pass_on_convolutions(self, x): 
        """
            Does a forward pass on convolutions, 
            ➥ hooks the function at given layer
        """
        conv_output = None
        for module_pos, module in self.features._modules.items():
            if module_pos == self.fc_layer: 
                break 

A constructor for
CamExtractor that takes
in five input arguments

The first argument sets the CNN model object.

The second argument sets the start of the features layers in the CNN.

The third argument sets the start of 
the fully connected layers in the CNN.

The fourth
argument is
the name of

the fully
connected

layer.

The fifth argument is the name of the 
target or the final convolutional layer.

Initializes the gradients object as None

A method to save the gradients
A method to do a forward pass and obtain 
the output of the final convolutional layer 
and to register a hook function to obtain 
the gradient of the output with respect to 
that layer

Initializes the 
output of the final 
convolutional 
layer as None

Iterates through all the 
modules in the features 
layers of the CNN

Breaks once the name of the module matches 
the name of the fully connected layer

http://mng.bz/8l8B
http://mng.bz/8l8B


158 CHAPTER 5 Saliency mapping

            x = module(x)
            if module_pos == self.target_layer:  
                x.register_hook(self.save_gradient) 
                conv_output = x   
        return conv_output, x 

    def forward_pass(self, x): 
        """
            Does a full forward pass on the model
        """
        # Forward pass on the convolutions
        conv_output, x = self.forward_pass_on_convolutions(x) 
        x = x.view(x.size(0), -1)  
        # Forward pass on the classifier
        x = self.fc(x) 
        return conv_output, x 

The CamExtractor class shown in this code snipper takes in the following five input
arguments:

 model—The CNN model used for image classification
 features—The layer that indicates the start of the feature layers in the CNN
 fc—The layer that indicates the start of the fully connected layer in the CNN

use for classification
 fc_layer—The name of the fully connected layer in the model object 
 target_layer—The name of the final convolutional layer in the model object

As we saw for vanilla backpropagation and guided backpropagation, the model object
is called model and the layer that indicates the start of the feature layers is the same
object. The layer that indicates the start of the fully connected layer in the model
object is model.fc. The name of the fully connected layer in the model object is fc,
and the name of the final convolutional layer in the model is layer4. We now define
the GradCam class to produce the class activation map, as shown here:

# Code below adapted from: http://mng.bz/8l8B 

class GradCam():
    """
        Produces class activation map
    """
    def __init__(self, model, features, fc, fc_layer, target_layer): 
        self.model = model  
        self.features = features 
        self.fc = fc  
        self.fc_layer = fc_layer   
        self.model.eval() 
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        self.extractor = CamExtractor(self.model,  
                                      self.features, 
                                      self.fc,  
                                      self.fc_layer,  
                                      target_layer)  

    def generate_cam(self, input_image, target_class=None): 
        conv_output, model_output = self.extractor.forward_pass(input_image) 
        if target_class is None:  
            target_class = np.argmax(model_output.data.numpy()) 
        one_hot_output = torch.FloatTensor(1, model_output.size()[-1]).zero_()
        one_hot_output[0][target_class] = 1 
        
        self.features.zero_grad() 
        self.fc.zero_grad() 
        
        model_output.backward(gradient=one_hot_output, retain_graph=True) 
        
        guided_gradients = self.extractor.gradients.data.numpy()[0] 
        
        target = conv_output.data.numpy()[0]  
        weights = np.mean(guided_gradients, axis=(1, 2))  
        cam = np.ones(target.shape[1:], dtype=np.float32)  
        for i, w in enumerate(weights):  
            cam += w * target[i, :, :]                 
        cam = np.maximum(cam, 0) 
        cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam))  
        cam = np.uint8(cam * 255) 
        cam = np.uint8(Image.fromarray(cam).resize((input_image.shape[2],
                       input_image.shape[3]), Image.ANTIALIAS))/255 
        return cam 

You can initialize the Grad-CAM object as follows. As an exercise, I encourage you to cre-
ate activation maps for the two examples we used earlier. The solution to this exercise
can be found in the GitHub repository associated with this book (http://mng.bz/
KBdZ):

grad_cam = GradCam(resnet18_model, 
                   features=resnet18_model, 
                   fc=resnet18_model.fc,
                   fc_layer='fc', 
                   target_layer='layer4')

Figure 5.21 contains the resulting Grad-CAM activation maps. We can see from the fig-
ure that the activation map shows the importance of the feature map from the final
convolutional layer and is quite coarse-grained. The regions in gray or white show
highly important regions for the model prediction. 

 To get a more fine-grained activation map, we can use the guided Grad-CAM
technique. The guided Grad-CAM technique, proposed in 2017 by the same authors as
Grad-CAM, essentially combines the Grad-CAM and guided backpropagation
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techniques. The final activation map produced by guided Grad-CAM is an element-wise
dot product of the activation map produced by Grad-CAM and the saliency map
produced by guided backpropagation. This is implemented in the following function:

# Code below from: http://mng.bz/8l8B 
def guided_grad_cam(grad_cam_mask, guided_backprop_mask):
    """
        Guided grad cam is just pointwise multiplication of cam mask and
        guided backprop mask
    Args:
        grad_cam_mask (np_arr): Class activation map mask
        guided_backprop_mask (np_arr):Guided backprop mask
    """
    cam_gb = np.multiply(grad_cam_mask, guided_backprop_mask)
    return cam_gb

This function takes the mask in grayscale obtained from Grad-CAM and guided back-
propagation and returns an element-wise product of them. Figure 5.22 shows the acti-
vation maps produced by guided Grad-CAM for the two examples of interest. We can
see that visualization is a lot cleaner than guided backpropagation and highlights
areas that are consistent with IDC-negative and -positive patches.
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Figure 5.21 An activation map using Grad-CAM
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5.9 Which attribution method should I use?
Now that we have all these techniques in our arsenal, which techniques should we
apply? In other words, which techniques produce reliable interpretations? From visu-
ally inspecting the interpretations using a couple of examples, we found all the
saliency techniques to provide a measure of importance for pixels. By visually assess-
ing them, we found those importance measures to be reasonable. Relying solely on
visual or qualitative assessment, however, can be misleading. 

 A paper that was published in 2018 by Julius Adebayo, et al., available at http://
mng.bz/Exjj, did a thorough quantitative assessment of the saliency methods dis-
cussed in this chapter. The following two broad classes of tests were done:

1 Model parameter randomization test—Checks whether any effect on the saliency
map occurs by randomizing the weights of the model, from which we would
expect the model to make random or garbage predictions. If the output of the
saliency method is the same for the trained model and the random model, then
we can say that the saliency map is insensitive to the model parameters. The
saliency map would, therefore, not be reliable for debugging the model.

2 Data randomization test—Checks whether any effect on the saliency map occurs
by randomizing the labels in the training data. When we train the same model
architecture on a copy of the training dataset where the target labels are ran-
domized, we would expect the output of the saliency method to also be sensitive
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Figure 5.22 An activation map using guided Grad-CAM
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to it. If by randomizing the labels, there is no effect on the saliency map, then
the method is not dependent on the input images and labels that exist in the
original training set. The saliency map is, therefore, not reliable for under-
standing input-output relationships.

The paper provides a couple of sanity checks that can be used in practice to deter-
mine how reliable the output of the saliency method is. The results of the sanity
checks are summarized in table 5.2.

We can see that the methods that pass both tests are vanilla backpropagation and Grad-
CAM. The saliency and activation maps produced by them are sensitive to the model
and the data-generating process. They, therefore, can be used to reliably debug the
model and to understand the relationship between the input images and the target
label. The other techniques provide compelling images that explain the model predic-
tion and seem acceptable from qualitative assessment. They are, however, invariant to
model and label randomization and are, therefore, not adequate for model debugging
and for understanding input-output relationships. The important message from these
sanity checks is to be aware of confirmation bias. It is not enough for the interpretation
to make sense qualitatively; it must also pass the sanity checks to be able to understand
the model and input-output relationships better. The two tests proposed by the paper
can be applied in practice to other interpretability techniques as well. 

 In the next chapter, we will learn how to dissect the network further and understand
what high-level concepts are learned by the neural network. Rather than look at pixel-
level importance, we will learn about techniques that give us concept-level importance.
These techniques have been shown to be sensitive to the model and the data-generating
process and, therefore, pass the sanity checks discussed in this section.

 
 
 

Table 5.2 Results of the sanity checks done on visual attribution methods

Attribution method
Model parameter 

randomization test
Data randomization test

Vanilla backpropagation PASS PASS

Guided backpropagation FAIL FAIL

Integrated gradients FAIL FAIL

SmoothGrad FAIL PASS

Grad-CAM PASS PASS

Guided Grad-CAM FAIL FAIL
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Summary
 A convolutional neural network (CNN) is a neural network architecture com-

monly used for visual tasks such as image classification, object detection, and
image segmentation. 

 Fully connected DNNs do not capture pixel dependencies in an image very well
and, therefore, cannot be trained to understand features in an image such as
edges, colors, and gradients. CNNs, on the other hand, capture pixel depen-
dencies or spatial dependencies in an image very well. We can also train the
CNN architecture more efficiently to fit the input dataset as we reuse weights in
the network.

 A CNN architecture typically consists of a sequence of convolution and pooling
layers, called the feature learning layers. The objective of these layers is to
extract hierarchical features from the input image. Following the feature learn-
ing convolutional layers are layers of neurons or units that are fully connected,
and the purpose of these fully connected layers is to perform classification. The
inputs to the fully connected layer are the high-level features learned by the
convolution and pooling layers, and the output is a probability measure for the
classification task.

 Various state-of-the-art CNN architectures, such as AlexNet, VGG, ResNet,
Inception, and ResNeXT are implemented in popular deep learning libraries
such as PyTorch and Keras. In PyTorch, you can initialize these architectures
using the torchvision package.

 Within a CNN, as an image goes through millions of complex operations, it
becomes incredibly difficult to understand how the model arrived at the final
prediction. This is what makes CNNs black boxes.

 We can use visual attribution methods to interpret CNNs. These methods are
used to attribute importance to parts of an image that influence the prediction
made by the CNN.

 Three broad categories of visual attribution methods are available: perturba-
tions, gradients, and activations.

 The idea behind perturbation-based methods is to perturb the input and probe
its effects on the predictions made by the CNN. Techniques such as LIME and
SHAP are perturbation-based methods. These techniques, however, are compu-
tationally inefficient because each perturbation requires us to perform a forward
pass on the complex CNN model. These techniques can also underestimate the
importance of features.
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 We can use gradient-based methods to visualize the gradient of the input image
with respect to the target class. Pixels with large gradient measures are consid-
ered most important, or salient, for the model. Gradient-based methods are
sometimes also called backpropagation methods—the backpropagation algo-
rithm is used to determine feature importance and saliency maps because a
map of salient or important features is obtained. Popular gradient-based meth-
ods are vanilla backpropagation, guided backpropagation, integrated gradients,
and SmoothGrad.

 Activation-based methods look at the feature maps or activations in the final con-
volutional layer and weight them based on the gradient of the target class with
respect to those feature maps. The weights of the feature maps act as a proxy for
the importance of the input features. This technique is called gradient-weighted
Class Activation Mapping (Grad-CAM).

 Grad-CAM provides a coarse-grained activation map. To obtain more fine-
grained activation maps, we can combine Grad-CAM and guided backpropaga-
tion—this technique is called guided Grad-CAM.

 The visual attribution methods that pass the model parameter randomization
and data randomization tests are vanilla backpropagation and Grad-CAM. The
saliency and activation maps produced by them are, therefore, more reliable for
debugging the model and understanding the input-output relationships better.



Part 3

Interpreting model
 representations

This part of the book continues to focus on black-box models, but focuses
specifically on understanding what features or representations have been
learned by them.

 In chapters 6 and 7, you’ll learn about convolutional neural networks and
neural networks used for language understanding. You will learn how to dissect
the neural networks and understand what representations of the data are learned
by the intermediate or hidden layers in the neural network. You’ll also learn how
to visualize high-dimensional representations learned by the model using
techniques like principal component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE).
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Understanding
 layers and units

In chapters 3, 4, and 5, we focused our attention on black-box models and how to
interpret them using various techniques such as partial dependence plots (PDPs),
LIME, SHAP, anchors, and saliency maps. In chapter 5, we specifically focused on
convolutional neural networks (CNNs) and visual attribution methods such as gra-
dients and activation maps that highlight the salient features that the model is
focusing on. All these techniques focused on interpreting the complex processing

This chapter covers
 Dissecting a black-box convolutional neural 

network to understand the features or concepts 
that are learned by the layers and units

 Running the network dissection framework

 Quantifying the interpretability of layers and units 
in the convolutional neural network and how to 
visualize them

 Strengths and weaknesses of the network 
dissection framework
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and operations that happen within a black-box model by reducing its complexity.
PDPs, for instance, are model-agnostic and show the marginal or average global
effects of feature values on model prediction. Techniques like LIME, SHAP, and
anchors are also model-agnostic—they create a proxy model that behaves similarly to
the original black-box model but is simpler and easier to interpret. Visual attribution
methods and saliency maps are weakly model-dependent and help highlight a small
portion of the input that is salient, or important, for the model.

 In this chapter and the next, we focus on interpreting representations or features
learned by deep neural networks. This chapter specifically focuses on CNNs that are
used for visual tasks such as image classification, object detection, and image segmen-
tation. The large number of operations that happen within a CNN are organized into
layers and units. By interpreting model representations, we aim to understand the
role and structure of the data flowing through these layers and units. You’ll specifi-
cally learn about the network dissection framework in this chapter. This framework
will shed more light into the features and high-level concepts learned by the CNN. It
will also help us go from visualizations like saliency maps that are typically evaluated
qualitatively to more quantitative interpretations.

 We will first introduce the ImageNet and Places datasets and the associated image
classification task. We will then give a quick recap of CNNs and visual attribution
methods, focusing on the limitations of these methods. This is to demonstrate the
benefits of the network dissection framework. The remainder of the chapter will focus
on this framework and how we can use it to understand the representations learned
by CNNs.

6.1 Visual understanding
In this chapter, we will focus on the task of training an agent or an intelligent system to
recognize real-world objects, places, and scenes. The task of this system is to perform
multiclass classification. To train such an agent, we need access to large volumes of
labeled data. The ImageNet dataset (http://www.image-net.org/) was created for the
purpose of recognizing objects. It is a large-scale ontology of images built on the back-
bone of WordNet. WordNet is a lexical database of English nouns, verbs, adjectives, and
adverbs that are organized into sets of synonyms, also called synsets. ImageNet also fol-
lows a similar structure where images are grouped by hierarchical synsets, or catego-
ries. Figure 6.1 shows an example of this structure. In this example, images of animals
are organized into three categories. The highest-level category consists of images of
mammals. The next level consists of images of carnivores followed by the final level,
which consists of images of dogs. The full ImageNet database contains more than 14
million images grouped into 27 high-level categories. The number of synsets, or sub-
categories, ranges from 51 to 3,822. When it comes to building image classifiers, Image-
Net is one of the most common datasets used. 

 For the task of recognizing places and scenes, we will use the Places dataset
(http://places2.csail.mit.edu/). Knowing the place, scene, or context in which

http://www.image-net.org/
http://places2.csail.mit.edu/
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objects appear in the real world is an important aspect of
building an intelligent system like a self-driving car trying
to navigate a city. The Places dataset organizes images into
different levels of scene categories. Figure 6.2 shows an
example that illustrates the semantic structure of the data-
set. The example shows a high-level scene category called
Outdoor. Under this category are three subcategories
called Cathedral, Building, and Stadium. In total, the
Places dataset holds more than 10 million images orga-
nized into 400 unique scene categories. Using this dataset,
we can train a model to learn features for various place-
and scene-recognition tasks.

 With the ImageNet and Places datasets, we are now ready to train the intelligent
system. Fortunately, we can use models for various state-of-the-art CNN architectures
pretrained on the ImageNet and Places datasets. This will save us the effort, time, and
money of training the models from scratch. In the next section, we will see how to
leverage these pretrained models. We will also provide a recap of CNNs and the tech-
niques that we have learned so far to interpret the output of these models. 

6.2 Convolutional neural networks: A recap
In this section, we provide a quick recap of CNNs that we learned in chapter 5. Figure
6.3 illustrates a CNN architecture that can be used to classify an image in the Image-
Net dataset as either being a dog or not.

Mammal Carnivore Dog

Figure 6.1 An illustration of synsets, or 
categories, in the ImageNet dataset
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Figure 6.3 An illustration of a convolutional neural network (CNN)
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The architecture consists of a sequence of layers called convolution and pooling layers,
followed by a set of fully connected layers. The convolution and pooling layers
combined are called the feature-learning layers. These layers extract hierarchical features
from the input image. The first few layers extract low-level features, such as edges,
colors, and gradients. Subsequent layers learn high-level features. The fully connected
layers are used for classification. The features learned in the feature-learning layers are
fed as inputs into the fully connected layers. The final output is a probability measure
of how likely it is that the input image is of a dog. 

 In the previous chapter, we also learned how to initialize state-of-the-art CNN
architectures using the torchvision package in PyTorch. We specifically focused on
the ResNet architecture that was 18 layers deep, called ResNet-18. We will continue to
use this architecture in this chapter as well. The ResNet-18 model can be initialized in
PyTorch as follows:

import torchvision 
model = torchvision.models.resnet18(pretrained=False) 

By setting the pretrained parameter to False, we initialize the ResNet model with
random weights. To initialize the model pretrained on the ImageNet dataset, we have
to set the pretrained parameter to True. This is shown next:

imagenet_model = torchvision.models.resnet18(pretrained=True)

Other CNN architectures, like AlexNet, VGG, Inception, and ResNeXT, can also be 
initialized using torchvision. All the supported architectures can be found at 
https:// pytorch.org/vision/stable/models.html.

 For the Places dataset, you can find pretrained PyTorch models for various archi-
tectures at https://github.com/CSAILVision/places365. You can download the pre-
trained PyTorch model for use with the ResNet-18 architecture from http://
mng.bz/GGmA. Because the file size is more than 40 MB, I encourage you to down-
load it locally. Once it is downloaded, you can load the model pretrained on the 
Places dataset as follows:

import torch 
places_model_file = “resnet18_places365.pth.tar”
if torch.cuda.is_available():  
    places_model = torch.load(places_model_file) 
else: 
  places_model = torch.load(places_model_file, map_location=torch.device(‘cpu’))

We also learned various visual attribution methods that can be used to interpret CNNs,
as summarized in figure 6.4. Three broad categories of visual attribution methods exist:
perturbations, gradients, and activations. Techniques like LIME and SHAP are
perturbation-based methods. These model-agnostic, post hoc, and local interpretability

Imports the 
torchvision package Initializes the ResNet 

model with random 
weights

Initializes the ResNet model pretrained on the ImageNet dataset

Imports the 
PyTorch library Sets this variable to the full path 

where the pretrained ResNet 
model has been downloaded

Loads the ResNet model
pretrained on the Places dataset

https://pytorch.org/vision/stable/models.html
https://github.com/CSAILVision/places365
http://mng.bz/GGmA
http://mng.bz/GGmA
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techniques use proxy models that behave similarly to the complex CNN but are easier
to interpret. These techniques highlight segments, or superpixels, in the image that are
important for the model prediction. These techniques are great and can be applied to
any complex model. Gradient-based and activation-based methods are post hoc and
local interpretability techniques. They are, however, weakly dependent on the model
and highlight only a small portion of the input image that is salient or important for the
model. For gradient-based methods like vanilla backpropagation, guided
backpropagation, integrated gradients, and SmoothGrad, we obtain the salient pixels
in the image by computing the gradient of the target class with respect to the input
image. For activation-based methods like Grad-CAM and guided Grad-CAM, activations
in the final convolutional layer are weighted based on the gradient of the target class
with respect to the activation or feature map.

All the visual attribution methods shown in figure 6.4 highlight the important pixels
or superpixels for the final model prediction. We typically assess the visualizations
generated by these methods qualitatively, so the interpretations are subjective. More-
over, these techniques do not give us any information on the low-level and high-level
concepts or features that are learned by the feature-learning layers and units in the
CNN. In the following section, we will learn about the network dissection framework.
This framework will help us dissect the CNN and come up with more quantitative
interpretations. We will also be able to understand what human-understandable con-
cepts are learned by the feature-learning layers in the CNN. 

6.3 Network dissection framework
The network dissection framework was proposed by Zhou, Bolei, et al., researchers
from MIT, in 2018 (see https://arxiv.org/pdf/1711.05611.pdf). The fundamental
questions that the framework aims to answer follow:
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Figure 6.4 A recap of visual 
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 How does the CNN decompose the task of understanding an image?
 Does the CNN identify any features or concepts that are understandable by

humans?

The framework answers these questions by finding units in the convolutional layers in
the CNN that match meaningful, predefined semantic concepts. The interpretability
of those units is quantified by measuring the alignment of the unit responses to those
predefined concepts. Dissecting the network in this way is interesting because it makes
the deep neural network less opaque. The network dissection framework consists of
the following three key steps, as summarized in figure 6.5:

1 First, define a broad set of meaningful concepts that can be used to dissect the
network.

2 Then, probe the network by finding units that respond to those predefined
concepts.

3 Last, measure the quality or interpretability of those units to those concepts.

Figure 6.5 The network dissection framework
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We will break down each of these steps in greater detail in the following subsections.

6.3.1 Concept definition

The first and most crucial step in the network dissection framework is data collection.
The data must consist of images that are labeled pixelwise with concepts of different
abstraction levels. The ImageNet and Places datasets, introduced in section 6.1, can
be used to train models to detect real-world objects and scenes. For the purposes of
network dissection, we need another independent dataset consisting of labeled con-
cepts. We will not use this dataset for model training but rather to probe the network
to understand what high-level concepts are learned by the feature-learning layers. 

 To dissect models trained to detect real-world objects and scenes using datasets like
ImageNet and Places, Zhou, Bolei, et al. combined five different datasets to create an
independent labeled dataset consisting of high-level concepts called Broden. Broden
stands for broadly and densely labeled dataset. The five datasets that Broden unifies
are ADE (http://mng.bz/zQD6/), Open-Surfaces (http://mng.bz/0wJE), PASCAL-
Context (http://mng.bz/9KEq), PASCAL-Part (http://mng.bz/jyD8), and the
Describable Textures Dataset (http://mng.bz/W7Xl). These datasets consist of anno-
tated images of a broad range of concept categories, from low-level concept categories
like colors, textures, and materials to more high-level concept categories like parts,
objects, and scenes. Figure 6.6 provides an illustration of an image labeled with various
concepts. In the Broden dataset, a segmented image is created for each of the concepts
in an image. If we take the tree object in figure 6.6 as an example, pixels within the
bounding box containing the tree have a label of 1, and pixels outside the bounding box,
not containing the tree, have a label of 0. Concepts need to be labeled at the pixel level.
Labels from all the five datasets are unified in the Broden dataset. Concepts with similar
synonyms are also merged. Broden contains more than 1,000 visual concepts.

Because creating a dataset with labeled concepts is a crucial step in the network dissec-
tion framework, let’s take a step back and look at how to create a new dataset. We will
focus specifically on the tools that we can use for this purpose and the methodology to
follow to obtain consistent, high-quality labeled concepts. 

 We can use various tools for labeling images. LabelMe (http://mng.bz/8lE5) and
Make Sense (https://www.makesense.ai/) are free web-based image-annotation tools.
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Figure 6.6 An illustration of an 
image with labeled concepts
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In LabelMe, we can easily create an account, upload images, and label them. Through
the sharing functionality, we can create annotations collaboratively as well. Images
uploaded on LabelMe, however, are considered public. Make Sense is a very similar
tool, but it does not allow you to collaborate and share annotations with others. The
tool also does not save the state of an annotation project. Therefore, if you start a proj-
ect in Make Sense, the annotations for the images in that project must be finished in
one go. The tool does not allow you to save the state and start annotating from where
you left off. Both LabelMe and Make Sense support multiple label types, like rectan-
gles, lines, points, and polygons. Both tools are used mostly by researchers using data-
sets that are meant to be public.

 For enterprise, business, or more private needs, you could host your own labeling ser-
vice. The Computer Vision Annotation Tool (CVAT; https://github.com/openvinotool
kit/cvat) and Visual Object Tagging Tool (VoTT; https://github.com/microsoft/VoTT)
are free, open source web services that you can deploy on your own web servers. If you
do not want to deal with the hassle of hosting your own labeling service, you could also
use managed services such as LabelBox (https://labelbox.com/), Amazon SageMaker
Ground Truth (https://aws.amazon.com/sagemaker/groundtruth/), or the labeling
services provided by Azure Machine Learning (http://mng.bz/ExgX) or Google Cloud
(http://mng.bz/Nx9v). If you do not have a team of labelers who can annotate images
for you, you could crowdsource the labeling effort and obtain labels using Amazon
Mechanical Turk (https://www.mturk.com/).

 It is also important to have a good labeling methodology to ensure high-quality
and consistent labels. The protocol for the labeling task has to be clearly specified so
that the labelers know the full list of concepts with clear definitions for them. The
labels obtained through this process, however, can be quite noisy, especially if they are
crowdsourced. To ensure consistency in the labels, take a random subset of the images
and get them annotated by the same set of labelers. By doing so, you can now quantify
how consistent the labels are by looking at the following three types of errors, as
detailed in http://mng.bz/DxaA, which introduces the ADE20K dataset: 

 Segmentation quality—This error quantifies the precision of the segmentation of
concepts. A given concept could be segmented differently by different labelers
and even by the same labeler.

 Concept naming—Differences in concept naming can occur where a given pixel
is given a different concept name by the same labeler or a different labeler. 

 Segmentation quantity—Some images could contain more labeled concepts than
others. You can quantify this error by looking at the variance in the number of
concepts in a certain image across multiple labelers. 

We can circumvent the segmentation quality and quantity errors by increasing the num-
ber of labelers so that we can take a consensus or by getting the images annotated by
more experienced labelers. We can avoid the concept naming error by having a clearly
defined labeling protocol with precise terminology. As mentioned earlier, creating a

https://shortener.manning.com/ExgX
https://shortener.manning.com/Nx9v
https://shortener.manning.com/DxaA
https://github.com/openvinotoolkit/cvat
https://github.com/openvinotoolkit/cvat
https://github.com/openvinotoolkit/cvat
https://github.com/microsoft/VoTT
https://labelbox.com/
https://aws.amazon.com/sagemaker/groundtruth/
https://www.mturk.com/
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dataset with labeled concepts is the most important step in the network dissection
framework. It is also the most time-consuming and costly step. We will see the value of
this dataset through the lens of interpretability in the following sections. 

6.3.2 Network probing

Once you have a labeled dataset of visual concepts, the next step is to probe the pre-
trained neural network to understand how the network responds to those concepts.
Let’s first look at how this works for a simple deep neural network. A simplified repre-
sentation of a deep neural network is shown in figure 6.7, where the number of units
decreases as you go from the input layer to the output layer. A representation of the
input data is learned in the intermediate layers of the network, and this is represented
as R. To understand the network better, we would like to probe the network by quanti-
fying how the representation R maps to a given query concept Q that we care about.
The mapping from the representation R to query concept Q is called the computation
model and is represented as f in the figure. Let’s now define R, Q and f in the context of
CNNs.

Figure 6.8 illustrates a CNN where layer 4 of the network is probed. In the figure, we are
probing the network with an image of a dog and determining what concepts (like color
and object) are learned by the units in layer 4 in the pretrained CNN. The first step,
therefore, is to forward-propagate the image of the dog through the CNN. The weights
of the CNN are frozen, and there is no need for training or backpropagation. Next, we
pick a convolutional layer to probe (in this case, layer 4). We then obtain the output
feature map or activation map after forward propagation from that layer. In general, as
you go deeper into a CNN, the size of the activation map reduces. Therefore, to com-
pare the activation map with labeled concepts in the input image, we have to up-sam-
ple, or scale, the lower-resolution activation map to the same resolution as that of the
input image. This forms the representation R of convolutional layer 4 in the CNN.
Repeat this process for all the images in the labeled-concepts dataset, and store the acti-
vation maps for all images. We can also repeat this process for other layers in the CNN.

 Now, how do we interpret what high-level concepts are contained in these represen-
tations R? In other words, how do we map these representations R with query concepts Q?
This requires us to determine a computational model f that maps R to Q. Also, how do you

R

Q

Representation
from model

f Query
concept

Deep 
neutral 
network

Figure 6.7 Probing a deep 
neural network for concepts
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up-sample, or scale, the low-resolution activation map to the same resolution as the input
image? This is broken down in figure 6.9. 

 In figure 6.9, we can see that input image i is forward-propagated through the CNN.
For illustration purposes, suppose that we are specifically interested in unit k in
convolutional layer l. The output of this convolutional layer is represented as the low-
resolution activation map Ai. The network dissection framework then up-samples, or
resizes, the activation map to the same resolution as the input image i. This is shown as
the input image-resolution activation map Si in figure 6.9. The bilinear interpolation
algorithm is used in the framework. Bilinear interpolation extends linear interpolation
to a two-dimensional plane. It estimates the values of new unknown pixels in the resized
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image based on known values in surrounding pixels. The estimates or interpolants are
centered around each unit’s response in the original activation map. 

 Once you have the image-resolution activation map Si, the framework then maps
this representation onto a given query concept Qc by performing a simple threshold-
ing. The thresholding is performed at the unit level so that the response of each unit
in the convolutional layer can be compared with the query concept. In figure 6.9, the
query concept Qc is the segmented image for the color brown in the original labeled-
concepts dataset. The binary unit segmentation map for unit k after thresholding is
shown as Mk. The threshold used by the computation model f is Tk, where

The binary unit segmentation map Mk highlights all the regions for which the activa-
tion exceeds the threshold Tk. The threshold Tk is dependent on the unit that we are
probing in the CNN. How do we compute this threshold? The framework looks at the
distribution of the unit’s activation across all the images in the labeled-concepts data-
set. Let ak be the value of a unit’s activation in the low-resolution activation map Ai for
a given input image i. Once you have the distribution of ak across all the images, the
threshold Tk is then computed as the top quantile level such that

Tk measures the 0.005 quantile level. In other words, 0.5% of all unit activations (ak)
across all the images in the labeled-concepts dataset are greater than Tk. Once we have
mapped the representation learned by the CNN to the binary unit segmentation map,
the next step is to quantify the alignment of this segmentation map with all query con-
cepts Qc. This is detailed in the following subsection.

6.3.3 Quantifying alignment
After you have probed the network and obtained the binary unit segmentation map
for all the units in the representation layers, the final step in the framework is to quan-
tify the alignment of the segmentation maps with all the query concepts in the dataset.
Figure 6.10 shows how to quantify the alignment for a given binary unit segmentation
map Mk and query concept Qc. The alignment is measured using the Intersection over
Union (IoU) score. IoU is a useful metric for measuring the accuracy of how well a
unit detects a given concept. It measures the overlap of the binary unit segmentation
map with the pixelwise segmented image of the query concept. The higher the IoU
score, the better the accuracy. If the binary segmentation map perfectly overlaps with
the concept, we obtain a perfect IoU score of 1.

 The value of IoU for a given binary segmentation map Mk and query concept Qc is
the accuracy of unit k in detecting concept c. It quantifies the interpretability of unit k
by measuring how good it is at detecting concept c. In the network dissection framework,
an IoU threshold of 0.04 is used, where a unit k is considered a detector of concept c
if the IoU score is greater than 0.04. The value of 0.04 was picked arbitrarily by the
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authors of the framework, and in their paper, available at https://arxiv.org/pdf/
1711.05611.pdf, the authors show through human evaluation that the quality of the
interpretation is insensitive to the IoU threshold. To quantify the interpretability of a
convolutional layer, the framework counts the number of unique concepts aligned with
units, that is, the number of unique concept detectors. With this understanding of how
the network dissection framework works, let’s see it in action in the following section. 

6.4 Interpreting layers and units
In this section, we put the network dissection framework to the test by interpreting lay-
ers and units in CNN models that are pretrained on the ImageNet and Places datasets.
As mentioned in section 6.2, we will focus on the ResNet-18 architecture, but the net-
work dissection framework can be applied to any CNN model. We saw in section 6.2
how to load ResNet-18 models pretrained on the ImageNet and Places datasets. The
authors of the paper have created a library called NetDissect (https://github
.com/CSAILVision/NetDissect) that implements this framework. This library sup-
ports both the PyTorch and Caffe deep learning frameworks. We will, however, use an
improved implementation called NetDissect-Lite (https://github.com/CSAILVision/
NetDissect-Lite) that is lighter and faster than the original implementation. This
library is written in PyTorch and Python 3.6. We will need to make some minor changes
to the library to support later versions of Python (3.7 and above), and we will discuss
this in the next subsection. 

 We can clone the NetDissect-Lite library to our local repository from GitHub using
the following command:

git clone https://github.com/CSAILVision/NetDissect-Lite

This library is also added to the repository associated with this book as a Git submod-
ule. If you have cloned this book’s repository from GitHub, then you can pull the
submodule by running the following command from the local directory where you
have cloned the repository:

git submodule update --init –recursive
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Once you have cloned the NetDissect-Lite repository, change into that directory
locally. Then, run the following command to download the Broden dataset. The Bro-
den dataset requires more than 1 GB of storage. Please take note of the path where
this dataset is downloaded because we will need it later:

$>./script/dlbroden.sh

You can also download the ResNet-18 model pretrained on the Places dataset by run-
ning the following command from the NetDissect-Lite directory. Again, please note
the path where the model is downloaded because we will need it later:

$>./script/dlzoo_example.sh

6.4.1 Running network dissection
In this section, we will learn how to use the NetDissect-Lite library to probe the
ResNet-18 models pretrained on the ImageNet and Places datasets by using labeled
concepts from the Broden dataset. We can configure the library using the settings.py
file at the root of the NetDissect-Lite library. We will not be covering all the settings
because for most of them, we will be using the default values provided by the library.
We will, therefore, focus on the key settings, which are summarized in table 6.1.

Table 6.1 Settings for the NetDissect-Lite library

Setting Descriptio Possible Values

GPU This is a Boolean setting that 
can be used to load the model 
and run network dissection on a 
GPU.

Possible values are True and False. If set to 
True, the GPU is used.

MODEL This is a String setting that sets 
the model architecture for the 
pre-trained model.

Possible values are resnetlB, alexnet, 
resnetS0, densenet161, etc. In this sec-
tion, we will be setting the value to resnetlB.

DATASET This is a string setting that lets 
the library know which dataset 
was used to train the CNN model.

Possible values are imagenet and places 
365. In this section, we will be using both values 
to compare the interpretability of the layers and 
units.

CATEGORIES This setting is a list of strings that 
defines the high-level categories 
in the labeled concepts dataset.

For the Broden dataset, the list can contain the 
following values: object, part, scene, 
material, texture, and color. In this sec-
tion, we will drop the material concept and 
look at the other five categories.

OUTPUT_FOLDER This is a string setting that pro-
vides the path to the labeled 
concepts dataset to the library.

The default value for this setting is the path 
where the ./script/dlbroden.sh script 
downloads the Broden dataset.

FEATURE_NAMES This setting is a list of strings 
that lets the library know which 
feature-learning layers in the 
CNN to probe.

For the Resnet18 model, the list can contain the 
following values: layerl, layer2, layer3, 
and/or layer4. In this chapter, we will be using 
all four values to compare the interpretability of 
the units across all four feature-learning layers.
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Before running the network dissection framework, ensure that the settings.py file is
updated with the right settings. To probe all the feature-learning layers in the ResNet-18
model pretrained on the ImageNet dataset, we set the key settings in the settings.py file
to the following values:

GPU = False
MODEL = 'resnet18'
DATASET = 'imagenet'
QUANTILE = 0.005
SCORE_THRESHOLD = 0.04
TOPN = 10
CATAGORIES = ["object", "part","scene","texture","color"]
OUTPUT_FOLDER = "result/pytorch_" + MODEL + "_" + DATASET
DATA_DIRECTORY = '/data/dataset/broden1_227'
IMG_SIZE = 227
NUM_CLASSES = 1000
FEATURE_NAMES = ['layer2', 'layer3', 'layer4']
MODEL_FILE = None
MODEL_PARALLEL = False

Ensure that the DATA_DIRECTORY setting is set to the path where the Broden dataset is
downloaded. Also, if you would like to use the GPU for faster processing, set the GPU
setting to True. As mentioned earlier, the library provides a few subsettings. These are
not explicitly set in the previous code, and you can use the default values for them.

 To probe all the feature-learning layers in the ResNet-18 model pretrained on the
Places dataset, we update just the following settings. The rest of the settings are the
same as those for the ImageNet dataset. Ensure that the MODEL_FILE setting is set to
the path where the ResNet-18 model pretrained on Places is downloaded:

DATASET = 'places365'
NUM_CLASSES = 365
MODEL_FILE = '/models/zoo/resnet18_places365.pth.tar'
MODEL_PARALLEL = True

MODEL_FILE This string setting is used to pro-
vide the library with the path to 
the pre-trained model.

For the Resnet18 model pre-trained on the Places 
dataset, set the value of this setting to the path 
where the script/dlzoo_example.sh script 
downloaded the model. For models pre-trained on 
the lmageNet dataset, set the value to None. 
This will let the library know to load the model 
from the torchvision package.

MODEL_PARALLEL This is a Boolean setting that is 
used to let the library know if the 
model was trained in multi-GPU.

Possible values are True and False.

Table 6.1 Settings for the NetDissect-Lite library (continued)

Setting Descriptio Possible Values
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Once we have set the values for the settings, we are now ready to initialize and run the
framework. Run the following lines of code to probe the network and to extract the
activation maps from the feature-learning layers:

import settings 
from loader.model_loader import loadmodel 
from feature_operation import hook_feature, FeatureOperator 

fo = FeatureOperator() 
model = loadmodel(hook_feature) 

features, maxfeatures = fo.feature_extraction(model=model) 

The loadmodel function loads the model based on the MODEL setting. The models are
loaded the same way as we saw in section 6.2. The function also adds hooks to each of
the feature-learning layers based on the FEATURE_NAMES setting. These hooks are used
by the FeatureOperator object to extract the activation maps from those layers. The
FeatureOperator class is the main class that implements steps 2 and 3 in the network
dissection framework. In the previous code snippet, we are running a part of step 2
that extracts the low-resolution activation maps from the feature-learning layers using
the feature_extraction function. This function loads the images from the Broden
dataset, forward-propagates them through the model, extracts the activation maps
using the hooks, and then saves them in a file called feature_size.npy. The file is saved
in the OUTPUT_FOLDER path as set in settings.py. The function feature_extraction
also returns two variables: features and maxfeatures. The features variable con-
tains the activation maps for all the feature-learning layers and input images. The
maxfeatures variable stores the maximum value activation for each image, which we
will use later when generating the summary results.

 Once we have extracted the low-resolution activation maps, we can run the follow-
ing lines of code to calculate the threshold Tk (the 0.005 quantile level) for all the
units in the feature-learning layers, up-sample the low-resolution activation maps and
generate the binary unit segmentation maps, calculate the IoU scores, and finally gen-
erate a summary of the results:

from visualize.report import generate_html_summary 

for layer_id, layer in enumerate(settings.FEATURE_NAMES): 
    # Calculate the thresholds T_k
    thresholds = fo.quantile_threshold(features[layer_id], 
    ➥ savepath=f"quantile_{layer}.npy") 

    # Up-sample and calculate the IoU scores

Imports all the settings 
from the settings.py file

Imports the loadmodel function
from the loader/model_loader

module

Imports the 
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FeatureOperator 
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to the feature-learning layers Runs feature extraction 
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Imports the 
generate_html_summary function 
from the visualize/report module

Iterates 
through 
each of the 
feature-
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    tally_result = fo.tally(features[layer_id],thresholds, 
    ➥ savepath=f"tally_{layer}.csv") 

    # Generate a summary of the results
    generate_html_summary(fo.data, layer,  
                          tally_result=tally_result,
                          maxfeature=maxfeatures[layer_id],  
                          features=features[layer_id],  
                          thresholds=thresholds)              

In this code snippet, we are iterating through each of the feature-learning layers in
FEATURE_NAMES and executing the following:

 Using the quantile_threshold function in the FeatureOperator class, calculate
the 0.005 quantile level (Tk) for all the units in each feature-learning layer. These
quantile levels, or thresholds, are saved in a file (called quantile_{layer}.csv) for
each layer in the OUTPUT_FOLDER path. The function also returns the thresholds
as a NumPy array. 

 Using the tally function in the FeatureOperator class, up-sample the low-
resolution activation map for each feature-learning layer into the same resolu-
tion as the input image. The tally function also generates binary unit segmen-
tation maps based on the up-sampled activation maps and thresholds calculated
for each of the units. The function finally calculates the IoU scores and mea-
sures the alignment of the binary unit segmentation maps with the segmented
concepts in the Broden dataset. The aggregated IoU scores for each of the high-
level concepts are saved in a file (called tally_{layer}.csv) for each layer in the
OUTPUT_FOLDER path. These results are also returned as a dictionary object. 

 Finally, use the generate_html_summary function to create a summary of the
results in HTML form.

In the following section, we will explore the results summary generated by the library
and visualize the concepts learned by the units in the feature-learning layers.   

Calculates the IoU scores after    
up-sampling and generating the 
binary unit segmentation maps

Generates a 
summary of the 
results in HTML 
form

Running network dissection on a custom dataset
It is important to understand the structure of the Broden dataset folder so that we
can mimic that for our custom dataset and concepts. The folder at a high level con-
sists of the following files and folder:

 images (folder)—Contains all the images in either JPEG or PNG format. The
folder should contain the original images in {filename}.jpg format and the seg-
mented images for each of the concepts in {filename}_{concept}.jpg format. 

 index.csv—Contains a list of all the images in the dataset with details on the
labeled concepts. The first column is image filename with the relative path to
the image. This is then followed by columns that contain information on the
image height and width and the segmentation height and width dimensions.
This is then followed by a column for each concept containing the relative
path to the segmented image for that concept.
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6.4.2 Concept detectors

We will now analyze the results after running the network dissection framework. We
will first focus on the final convolutional layer (i.e., layer 4) in the ResNet-18 model
and look at the number of unique concept detectors in that layer. The number of
unique detectors is a measure of the interpretability of the network and measures the
number of unique concepts learned by the units in that feature-learning layer. The
higher the number of unique detectors, the more diverse the trained network is in
detecting human-understandable concepts. 

 category.csv—Lists all the concept categories followed by some summary sta-
tistics on the concepts. The first column is the concept name, followed by a
count of the number of labels that belong to that concept category and also
the frequency of the number of images with that labeled concept.

 label.csv—Lists all the labels and the corresponding concept that each
belongs to, followed by some summary statistics on the labels. The first col-
umn is a label number (or identifier), followed by the label name and the cate-
gory that it belongs to. Summary statistics include the frequency of the
number of images with that label, pixel portions or the coverage of images
with that label, and the total number of images with that label.

 c_{concept}.csv—One file per concept category that contains all the labels,
frequency of images, and coverage details.

The new dataset that you create with your own labeled concepts should follow the
same structure as the Broden dataset to ensure compatibility with the network dis-
section framework. Once you have structured your dataset as detailed earlier, you can
then update the following settings in settings.py:

 DATA_DIRECTORY—Points to the directory where your custom dataset is
stored.

 CATEGORIES—Lists all the concept categories in your custom dataset, that
is, in the category.csv file.

 IMG_SIZE—The dimension of the image in the images folder. The dimension
should match the dimension in the index.csv file.

These settings will ensure that the new custom concepts dataset is loaded by the
library. If you have your own pretrained model on a dataset that is different from Image-
Net or Places, you will also need to update the following settings:

 DATASET—Set to the name of the dataset that the models have been trained on.
 NUM_CLASSES—Set to the number of classes or labels that the model could

output.
 FEATURE_NAMES—Lists the feature layer names in your custom pretrained

model.
 MODEL_FILE—Contains the full path to your pretrained model in PyTorch.
 MODEL_PARALLEL—If your custom model was trained in multi-GPU, this set-

ting must be True.
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 Let’s first look at the structure of the output of the results folder for the network
dissection framework. The OUTPUT_FOLDER setting gives you the path to the results
folder. We saw in the previous section the relevant files that are saved in that folder.
Let’s now process tally_layer4.csv to compute the number of unique detectors in layer
4 of the ResNet-18 model and the proportion of the units covered by those unique
detectors. The following function can be used to compute the relevant statistics. The
function takes in the following keyword arguments:

 network_names—A list of the models for which we need to compute the number
of unique detectors. We are focusing only on the ResNet-18 model in this chapter,
so this keyword argument is a list containing only one element—resnet18.

 datasets—This argument is a list of the datasets that the models are pre-
trained on. In this chapter, we are focusing on imagenet and places365.

 results_dir—The parent directory where the results for each of the pre-
trained models are stored. 

 categories—A list of all the concept categories for which we need to count the
number of unique detectors.

 iou_thres—The threshold for the IoU score for which we consider a unit as a
detector for a concept. As we saw in section 6.3.3, the default value for this
threshold is 0.04.

 layer—The feature-learning layer that we are interested in. In this case, we are
focusing on the final layer, which is layer 4.

import os  
import pandas as pd 
from collections import OrderedDict  

def compute_unique_detectors(**kwargs): 
    network_names = kwargs.get("network_names", 
                               ["resnet18"]) 
    datasets = kwargs.get("datasets", 
                          ["imagenet", "places365"]) 
    results_dir = kwargs.get("results_dir", "result") 
    categories = kwargs.get("categories", 
                            ["object",
                             "scene", 
                             "part",
                             "texture", 
                             "color"]) 
    iou_thres = kwargs.get("iou_thres",
                           0.04) 
    layer = kwargs.get("layer", "layer4") 
    
    ud_data = [] 
    for network_name in network_names: 
        for dataset in datasets: 
            result_file = os.path.join(results_dir, 
                       f"pytorch_{network_name}_{dataset}/tally_{layer}.csv") 
            df_result = pd.read_csv(result_file) 

Imports the 
relevant modules 
for the function
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            ud = OrderedDict()  
            ud["network_name"] = network_name 
            ud["dataset"] = dataset  
            ud["num_units"] = len(df_result)   

            num_ud = 0 
            for category in categories: 
                df_cat = df_result[df_result["category"] == 
                ➥ category].reset_index(drop=True) 
                df_unique_detectors = df_cat[df_cat[f"{category}-iou"] > 
                ➥ iou_thres].reset_index(drop=True) 
                ud[f"num_ud_{category}"] = len(df_unique_detectors) 
                ud[f"num_ud_{category}_pc"] = len(df_unique_detectors) / 
                ➥ ud["num_units"] * 100 
                num_ud += len(df_unique_detectors) 
            ud["num_ud"] = num_ud                                   
            ud["num_ud_pc"] = ud["num_ud"] / ud["num_units"] * 100 
            ud_data.append(ud) 
    df_ud = pd.DataFrame(ud_data) 
    return df_ud 

We can obtain the number of unique detectors for the final layer of the ResNet-18
model pretrained on ImageNet and Places by running the following line of code.
Note that no keyword arguments are provided to the function because the default val-
ues for the arguments will compute the stats for the ResNet-18 model pretrained on
ImageNet and Places for the final feature-learning layer:

df_ud = compute_unique_detectors()

If we wanted to compute the statistics for, say, the third feature-learning layer, we
could call the function as follows: 

df_ud = compute_unique_detectors(layer="layer3")

Once we have obtained the number of unique detectors as a Pandas DataFrame, we
use the following function to plot the results:

def plot_unique_detectors(df_ud, **kwargs): 
    categories = kwargs.get("categories", 
                            ["object",
                             "scene", 
                             "part",
                             "texture", 
                             "color"]) 
    num_ud_cols = [f"num_ud_{c}" for c in categories] 
    num_ud_pc_cols = [f"num_ud_{c}_pc" for c in categories] 
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    num_ud_col_rename = {} 
    num_ud_pc_col_rename = {} 
    for c in categories:  
        num_ud_col_rename[f"num_ud_{c}"] = c.capitalize()  
        num_ud_pc_col_rename[f"num_ud_{c}_pc"] = c.capitalize()  
        
    df_ud["network_dataset"] = df_ud.apply(lambda x: x["network_name"] + "_" 
    ➥ + x["dataset"], axis=1)  
    df_ud_num = df_ud.set_index("network_dataset")[num_ud_cols] 
    df_ud_num_pc = df_ud.set_index("network_dataset")[num_ud_pc_cols] 

    df_ud_num = df_ud_num.rename(columns=num_ud_col_rename) 
    df_ud_num_pc = df_ud_num_pc.rename(columns=num_ud_pc_col_rename) 
    
    f, ax = plt.subplots(2, 1, figsize=(8, 10)) 
    df_ud_num.plot(kind='bar', stacked=True, ax=ax[0])  
    ax[0].legend(loc='center left', bbox_to_anchor=(1, 0.5)) 
    ax[0].set_ylabel("Number of Unique Detectors")  
    ax[0].set_xlabel("")  
    ax[0].set_xticklabels(ax[0].get_xticklabels(), rotation=0)  
    df_ud_num_pc.plot(kind='bar', stacked=True, ax=ax[1])         
    ax[1].get_legend().remove() 
    ax[1].set_ylabel("Proportion of Unique Detectors (%)")        
    ax[1].set_xlabel("")  
    ax[1].set_xticklabels(ax[1].get_xticklabels(), rotation=0)    
    
    return f, ax 

Plot the number of unique detectors and proportions as follows. The resulting figure
is shown in figure 6.11:

f, ax = plot_unique_detectors(df_ud)

The top row in figure 6.11 shows the absolute number of unique detectors in the final
feature-learning layer for the two ResNet-18 models pretrained on the ImageNet and
the Places datasets. The bottom row shows the count as a proportion of the total num-
ber of units in the final layer. The total number of units in the final feature-learning
layer in ResNet-18 is 512. We can see that the ImageNet model has 302 unique detec-
tors, and this accounts for roughly 59% of the total units. The Places model, on the
other hand, has 435 unique detectors, and this accounts for roughly 85% of the total
units. Overall, it looks like the model trained on the Places dataset has a much more
diverse set of concept detectors than ImageNet. Places are typically composed of mul-
tiple scenes. This is why we see a lot more scene detectors emerging in the model
trained on the Places dataset than on the ImageNet dataset. The ImageNet dataset
consists of a lot more objects. This is why we see a lot more object detectors emerging
on the ImageNet model. We can also observe a lot more high-level concepts like
objects and scenes emerging in the final feature-learning layer than low-level concepts
like colors, textures, and parts.
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Let’s now extend the compute_unique_detectors function to compute unique detec-
tors for all the feature-learning layers in the ResNet-18 model. This is so that we can
observe what concepts are learned by all the layers in the network. As an exercise, I
encourage you to update the function and use a layers keyword argument that rep-
resents a list of feature-learning layers. Also add a nested for loop to iterate through
all the layers to compute the number of unique detectors for each layer. The solution
to this exercise can be found in the GitHub repository associated with this book at
http://mng.bz/KBdZ. 

 Once you have obtained the DataFrame with the number of unique detectors for
all the layers, you can use the following helper function to plot the statistics as a line
graph:

def plot_ud_layers(df_ud_layer): 
    def plot_ud_layers_dataset(df_ud_layer_dataset, ax):
        object_uds = df_ud_layer_dataset["num_ud_object_pc"].values 
        scene_uds = df_ud_layer_dataset["num_ud_scene_pc"].values 
        part_uds = df_ud_layer_dataset["num_ud_part_pc"].values 
        texture_uds = df_ud_layer_dataset["num_ud_texture_pc"].values
        color_uds = df_ud_layer_dataset["num_ud_color_pc"].values 
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        ax.plot(object_uds, '^-', label="object") 
        ax.plot(scene_uds, 's-', label="scene") 
        ax.plot(part_uds, 'o-', label="part") 
        ax.plot(texture_uds, '*-', label="texture")
        ax.plot(color_uds, 'v-', label="color") 
        ax.legend() 
        ax.set_xticks([0, 1, 2, 3])  
        ax.set_xticklabels(["Layer 1", "Layer 2", "Layer 3", "Layer 4"]) 
        ax.set_ylabel("Proportion of Unique Detectors (%)") 
    df_ud_layer_r18_p365 = df_ud_layer[(df_ud_layer["network_name"] == 
    ➥ "resnet18") & 
                                   (df_ud_layer["dataset"] == 
    ➥ "places365")].reset_index(drop=True) 
    df_ud_layer_r18_imgnet = df_ud_layer[(df_ud_layer["network_name"] == 
    ➥ "resnet18") & 
                                   (df_ud_layer["dataset"] == 
    ➥ "imagenet")].reset_index(drop=True) 
    
    f, ax = plt.subplots(2, 1, figsize=(8, 10)) 
    plot_ud_layers_dataset(df_ud_layer_r18_imgnet, ax[0]) 
    ax[0].set_title("resnet18_imagenet") 
    plot_ud_layers_dataset(df_ud_layer_r18_p365, ax[1]) 
    ax[1].set_title("resnet18_places365") 
    
    return f, ax 

We can obtain the plot in figure 6.12 by running the following line of code: 

f, ax = plot_ud_layers(df_ud_layer)

The top row in figure 6.12 shows the proportion of unique detectors across all the lay-
ers in the ResNet-18 model pretrained on the ImageNet dataset. The bottom row
shows the same statistics for the model trained on the Places dataset. We can see that
for both models, low-level concept categories like colors and textures emerge in the
lower feature-learning layers, and high-level concept categories like parts, objects, and
scenes emerge in the higher or deeper layers. This means that more high-level con-
cepts are learned at the deeper layers. We can see that the representational ability of
the network increases with the layer depth. Deeper layers have more capacity to learn
complex visual concepts like objects and scenes. In the following section, we will dis-
sect the network further by looking at specific labels and concepts that are learned by
each of the units in the network. 
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6.4.3 Concept detectors by training task
In the previous section, we visualized the number of unique detectors for all the high-
level concept categories. Let’s now dig deeper and visualize the number of unique
detectors for each concept or label in the Broden dataset. We will focus on the final
feature-learning layers and three top-ranked concept categories in terms of the num-
ber of unique detectors: textures, objects, and scenes. 
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 We will need to extend the compute_unique_detectors function developed in sec-
tion 6.4.2 to compute the statistics per concept or label. As an exercise, I highly
encourage you to do this because it will give you a better understanding of the format
of the tally_{layer}.csv file generated by the NetDissect-Lite library. You can pass in a
new keyword argument that lets the function know whether to aggregate by concept
category or by concept or label. For aggregating by concept or label, you will need to
group by both category and label and count the number of units for which the cate-
gory IoU score is greater than the threshold. The solution to this exercise can be
found in the GitHub repository associated with this book. Invoke the new function
and store the result in a DataFrame called df_cat_label_ud. 

 We will first look at the texture concept category. Extract the DataFrames for the
texture concept category using the following code snippet:

df_r18_imgnet_texture = df_cat_label_ud[(df_cat_label_ud["network_name"] == 

➥ "resnet18") & 
                            (df_cat_label_ud["dataset"] == "imagenet") & 
                            (df_cat_label_ud["category"] == "texture")].\
            sort_values(by="unit", ascending=False).reset_index(drop=True) 

df_r18_p365_texture = df_cat_label_ud[(df_cat_label_ud["network_name"] == 

➥ "resnet18") & 
                            (df_cat_label_ud["dataset"] == "places365") & 
                            (df_cat_label_ud["category"] == "texture")].\
            sort_values(by="unit", ascending=False).reset_index(drop=True) 

You can now visualize the number of unique detectors for the various texture con-
cepts using the following code. The resulting figure is shown in figure 6.13:

import seaborn as sns 

f, ax = plt.subplots(1, 2, figsize=(16, 10)) 
sns.barplot(x="unit", y="label", data=df_r18_imgnet_object,

➥ ax=ax[0])  
ax[0].set_title(f"resnet18_imagenet : {len(df_r18_

➥ imgnet_object)} objects")  
ax[0].set_xlabel("Number of Unique Detectors") 
ax[0].set_ylabel("")                                  
sns.barplot(x="unit", y="label", data=df_r18_

➥ p365_object, ax=ax[1])                     
ax[1].set_title(f"resnet18_places365 : {len

➥ (df_r18_p365_object)} objects")  
ax[1].set_xlabel("Number of Unique Detectors")  
ax[1].set_ylabel("");                          

Extracts the statistics for the ResNet-18 model pretrained on 
ImageNet and sorts the IoU scores in descending order

Extracts the statistics for the ResNet-18 model pretrained 
on Places and sorts the IoU scores in descending order

Imports the 
Seaborn library Creates a Matplotlib figure 

with two subplot columns

Plots the number of unique 
detectors for all the texture 
concepts learned by the 
ImageNet model

Plots the number of unique 
detectors for all the texture 
concepts learned by the 
Places model
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In the previous section (see figure 6.11), we observed that the ImageNet model has
more unique detectors in the final layer for the texture concept category than the
model trained on the Places dataset. But how diverse are the concepts learned by the
units in this layer? Figure 6.13 aims to answer this. We can see that the ImageNet
model covers 27 texture concepts, whereas the Places model covers 21. The top three
textures for the ImageNet model account for 19 unique detectors. They are striped,
waffled, and spiraled. The top three textures for the Places model, on the other hand,
account for 10 unique detectors. They are interlaced, checkered, and stratified.
Although the number of textures learned by the units in the final layer are less for the
Places model, we see a higher proportion of unique detectors for this model in the
lower feature-learning layers (as seen in figure 6.12). 

Let’s now visualize the number of unique detectors for various object and scene con-
cepts. As an exercise, extend the code written for the textures concept category to
objects and scenes. The resulting figure for the object concept category is shown in fig-
ure 6.14. Because the model trained on the Places dataset detects a lot more scenes in
the final layer, the visualization for the scene concept category has been split into two
separate figures. Figure 6.15 shows the number of scene detectors for the ImageNet
model, and figure 6.16 shows the number of scene detectors for the Places model. 
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Let’s first look at figure 6.14. In the previous section, we observed that the ImageNet
model has a higher proportion of unique detectors for the high-level objects category
because the ImageNet dataset has a lot more objects in it. If we look at how diverse the
concepts learned are, however, we can see that many more objects emerge in the
model trained on the Places dataset. The Places model detects 45 objects as opposed
to the 36 objects detected by the ImageNet model in the final feature-learning layer.
The top object detected by the ImageNet model is dog, which accounts for 25 unique
detectors—a high proportion of labeled images of dogs are present in the ImageNet
dataset. The top object detected by the Places model is airplane, which accounts for
11 unique detectors.
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If we now compare figures 6.15 and 6.16, we can see that the model trained on the
Places dataset is able to identify a much more diverse set of scenes than the ImageNet
model (119 versus 30). This is expected because the Places dataset contains a lot of
labeled places, which are typically made up of a lot of scenes. Note that in figure 6.16,
although the model trained on the Places dataset is able to identify 119 scenes in total,
the figure is only showing the top 40 scenes to make it easier to read the figure.

 By going deeper and visualizing the number of unique detectors for each concept,
we can ensure that the dataset used to train the model is diverse enough and has good
coverage of the concepts of interest. We can also use these visualizations to under-
stand what concepts the units are focusing on in each layer of the neural network. 
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Figure 6.16 Number of unique scene detectors—Places dataset
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6.4.4 Visualizing concept detectors

In the previous sections, we quantified the interpretability of the units in each feature-
learning layer in the CNN by looking at the number of unique detectors for each con-
cept category and individual concepts. In this section, we will visualize the binary unit
segmentation maps generated for each of the units in the feature-learning layers by the
NetDissect library. The library will overlay the binary unit segmentation maps on the
original images and generate JPG files for us. This is useful if we want to visualize the
specific pixels in the original image that the unit is focusing on for a given concept. 

 Due to lack of space, we cannot visualize all the images generated for all the units
and models. We will, therefore, focus on the model pretrained on the Places dataset,
as well as specific units with the maximally activated images for certain concepts. The
following function can be used to obtain the binary segmented images generated by
the library: 

import matplotlib.image as mpimg 

def get_image_and_stats(**kwargs): 
    network_name = kwargs.get("network_name", 
                              "resnet18") 
    dataset = kwargs.get("dataset", 
                          "places365")  

Transfer learning
Transfer learning is a technique whereby a model trained for a particular task is used
as a starting point for another task. For example, let’s say we have a model trained
on the ImageNet dataset that is great at detecting objects. We would like to use this
model as a starting point to detect places and scenes. To do this, we can load the
weights of the ImageNet model and use those weights as a starting point before train-
ing and fine-tuning them to the Places dataset. The general idea behind transfer learn-
ing is that features learned in one domain can be reused in another domain, provided
there is some overlap between the two domains. When a pretrained network in one
domain is trained for a task in another domain, the training time is typically faster
and yields more accurate results. 

The authors of the network dissection framework analyzed how the interpretability of
units evolves during transfer learning in their paper, available at https://arxiv.org/
pdf/1711.05611.pdf. They used the AlexNet model pretrained on the ImageNet data-
set and fine-tuned it to the Places dataset. The authors observed that the number of
unique detectors increased for the model pretrained on ImageNet but fine-tuned to
Places. Units that detected dogs initially evolved to other objects and scenes like
horse, cow, and waterfall. A lot of the places in the Places dataset contain those ani-
mals and scenes. If the model pretrained on Places is fine-tuned to the ImageNet
dataset, the authors observed a drop in the number of unique detectors. For the
Places-to-ImageNet network, a lot of the units evolve to dog detectors because the
proportion of labeled data for dogs is much higher in ImageNet.

Imports the mpimg module provided by 
Matplotlib to load and display images Gets the binary unit segmentation 

map overlayed on the image and the 
associated stats for a given unit

Obtains the network name, dataset, 
results directory, feature-learning 
layer, and unit of interest
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    results_dir = kwargs.get("results_dir", "result") 
    layer = kwargs.get("layer", "layer4")  
    unit = kwargs.get("unit", "0000")  
    
    result_file = os.path.join(results_dir, 
                              

f"pytorch_{network_name}_{dataset}/tally_{layer}.csv")  
    df_result = pd.read_csv(result_file) 

    image_dir = os.path.join(results_dir,
                             f"pytorch_{network_name}_{dataset}/html/image") 
    image_file = os.path.join(image_dir,
                              f"{layer}-{unit}.jpg") 
    img = mpimg.imread(image_file)                          
     
    df_unit_stats = df_result[df_result["unit"] == int(unit)+1] 
    stats = None 
    if len(df_unit_stats) > 0:                                    
        stats = { 
            "category": df_unit_stats["category"].tolist()[0],  
            "label": df_unit_stats["label"].tolist()[0],  
            "iou": df_unit_stats["score"].tolist()[0]                       
        } #H
    return img, stats 

We will now focus on units 247 and 39, which detect the airplane object. We saw in the
previous section (see figure 6.14) that the airplane object has the most unique detec-
tors among all the objects in the Places model. The units are zero-indexed and are
saved as four-digit strings by the NetDissect library. We, therefore, need to pass the
strings “0246” and “0038” for units 247 and 39, respectively, as the unit keyword argu-
ment in the get_image_and_stats function. The following code snippet will obtain
the image and associated statistics and visualize them in Matplotlib. The resulting plot
is shown in figure 6.17:

img_247, stats_247 = get_image_and_stats(unit="0246")
img_39, stats_39 = get_image_and_stats(unit="0038") 
f, ax = plt.subplots(2, 1, figsize=(15, 4))
ax[0].imshow(img_247, interpolation='nearest')  
ax[0].grid(False) 
ax[0].axis(False)                               
ax[0].set_title(f"Unit: 247, Label: {stats_247['label']}, Category: 

➥ {stats_247['category']}, IoU: {stats_247['iou']:.2f}", 
                fontsize=16)                                            
ax[1].imshow(img_39, interpolation='nearest')  
ax[1].grid(False) 
ax[1].axis(False)  
ax[1].set_title(f"Unit: 39, Label: {stats_39['label']}, Category: 

➥ {stats_39['category']}, IoU: {stats_39['iou']:.2f}", 
                fontsize=16);  
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The top row in figure 6.17 shows the segmentation generated for the 10 maximally
activated Broden images for unit 247. The average IoU is 0.19. Because the binary
unit segmentation map is overlaid on the original image, the pixels that are activated
are those where Si >= Tk. The pixels that are not activated are shown as black. From
the images, we can see that the unit is focusing on airplanes and not on any other ran-
dom object. The bottom row in figure 6.17 shows the segmentation generated for the
10 maximally activated Broden images for unit 39. The average IoU is 0.06 and is
lower in this case. From the images, we can see that the unit activated on airplanes as
well as on general concepts like birds, flight, sky, and the color blue.

 Figure 6.18 shows the binary segmented images generated for three objects,
namely, train (top row), bus (middle row), and track (bottom row). The specific units
are 168, 386, and 218, respectively. For the train concept detector, we can see the acti-
vated pixels highlighting engines and railway tracks. The average IoU is high in this
case, at 0.27. For the bus concept detector, the activated pixels seem to highlight buses
and general concepts like any vehicle with large windows and a relatively flat front.
The average IoU in this case is 0.24. The track concept detector is interesting. The
activated pixels seem to highlight images with two parallel tracks, which include rail-
way tracks, bowling alley lanes, and a sushi conveyor belt. The average IoU is 0.06.

Unit: 247, Label: airplane, Category: object, IoU: 0.19

Unit: 39, Label: airplane, Category: object, IoU: 0.06

Figure 6.17 Visualization of object concept detector—airplane

Unit: 168, Label: train, Category: object, IoU: 0.27

Unit: 386, Label: bus, Category: object, IoU: 0.24

Unit: 218, Label: track, Category: object, IoU: 0.06

Figure 6.18 Visualization of object concept detector—train, bus, and track
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Finally, figure 6.19 shows the segmented images for scenes that are not directly repre-
sented in the training set. We are specifically focusing on units 379 and 370, which
highlight the highway and nursery scenes, respectively. The top row shows the high-
way scene, and the bottom row shows the nursery scene. We can see that the model
trained on the Places dataset is learning these high-level scene concepts really well.

6.4.5 Limitations of network dissection

The network dissection framework is a great tool that helps us open up black-box neu-
ral networks. It overcomes the limitations of visual attribution methods by coming up
with quantifiable interpretations. We can see how a CNN decomposes the task of iden-
tifying an image by visualizing the features or concepts learned by each of the units in
the feature-learning layers. The network dissection framework, however, has the follow-
ing limitations, as highlighted in the original paper by the authors of the framework:

 The framework requires a labeled dataset of concepts at the pixel level. This is
the most crucial step in the framework and can be quite time-consuming and
costly. Moreover, concepts that are not expressed in the dataset will not show up
when interpreting the units, even if the network has learned them.

 The framework cannot identify groups of units that jointly represent one
concept.

 The interpretability of units is quantified by the “number of unique detectors”
metric. This metric favors larger and deeper networks that have the capacity to
learn more high-level concepts.

Dissecting neural network is an active area of research, and the research community is
exploring many promising avenues, such as automatic identification of concepts and
using concept scores to identify adversarial attacks on neural networks.

Unit: 379, Label: highway-s, Category: scene, IoU: 0.07

Unit: 370, Label: nursery-s, Category: scene, IoU: 0.16

Figure 6.19 Visualization of scene concept detector—highway and nursery
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Summary
 The visual attribution methods we learned in the previous chapter have some

limitations. They are typically assessed qualitatively and are quite subjective.
These techniques do not give us any information on the low-level and high-level
concepts or features that are learned by the feature-learning layers and units in
a convolutional neural network (CNN).

 The network dissection framework discussed in this chapter overcomes the lim-
itations of visual attribution methods by coming up with more quantitative
interpretations. By using the framework, we will also be able to understand what
human-understandable concepts are learned by the feature-learning layers in
the CNN.

 The framework consists of three key steps: concept definition, network prob-
ing, and alignment measurement. The concept definition step is the most cru-
cial step because it requires us to collect a labeled dataset of concepts at the
pixel level. The network probing step is about finding units in the network that
respond to those predefined concepts. Finally, the alignment measurement
step quantifies how well the unit activation aligns with those concepts.

 We learned how to run the network dissection framework using the NetDissect
library on PyTorch models trained on the ImageNet and Places datasets. We
used the Broden dataset for the concepts.

 We learned how to quantify the interpretability of the units by using the “num-
ber of unique detectors” metric and visualized the interpretability of units for
various concept categories and individual concepts.

 We also learned how to visualize the binary unit segmented images generated
by the library to see what pixels a unit is focusing on for a particular concept.

 The network dissection framework is a great tool that helps us open up black-
box neural networks. It suffers from a few limitations, however. Creating a
labeled dataset of concepts can be quite time-consuming and costly. The frame-
work cannot identify groups of units that jointly represent one concept. The
“number of unique detectors” metric favors larger and deeper networks, which
have the capacity to learn more high-level concepts.
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Understanding
 semantic similarity

In the previous chapter, we switched our focus from interpreting the complex
processing and operations that happen within a black-box model to interpreting the
representations or features learned by the model. We specifically looked at the
network dissection framework to understand what concepts are learned by the
feature-learning layers in a convolutional neural network (CNN). The framework
consisted of three key steps: concept definition, network probing, and alignment

This chapter covers
 Learning dense word representations that 

capture semantic meaning

 Visualizing semantic similarity of high-
dimensional word embeddings using 
dimensionality-reduction techniques like PCA 
and t-SNE

 Strengths and weaknesses of PCA and t-SNE 

 Validating visualizations generated by PCA and 
t-SNE qualitatively and quantitatively
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measurement. The concept definition step is all about data collection, specifically
collecting a labeled dataset of concepts at the pixel level. This is the most time-
consuming and crucial step. The next step is to probe the network and determine what
units in the CNN respond to those predefined concepts. The final step involves
quantifying how well the units’ responses align with the concepts. The framework
overcame the limitations of visual attribution methods by coming up with quantitative
interpretations in the form of human-understandable concepts.

 In this chapter, we will continue with the topic of interpreting representations
learned by deep neural networks but will switch our focus to natural language process-
ing (NLP). NLP is a subfield in machine learning that deals with natural language. So
far, we have been dealing with inputs in the form of images or in tabular form with
numeric features. In NLP, we will deal with inputs in the form of text. We will specifi-
cally focus on how to represent text in a dense and semantically meaningful form and
how to interpret words that are similar in meaning—that is, those that have semantic
similarity—learned by those representations. 

 We will first introduce a concrete example of analyzing sentiment in movie reviews.
We will then learn about neural word embedding, an interesting branch of deep
learning that is widely used to represent text in a semantically meaningful form. These
word representations can then be used as inputs to a model for predicting the senti-
ment.  The remainder of the chapter will focus on interpreting and visualizing seman-
tic similarity from the word representations. We will specifically learn about linear and
nonlinear dimensionality-reduction techniques such as principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-SNE). 

7.1 Sentiment analysis
In this chapter, we are tasked by a movie website called Internet Movie Repository to
determine the sentiments of reviews of movies. The objective is to determine whether
a review is associated with a positive or negative emotion. This is illustrated in figure
7.1, where we have two movies and a couple of reviews for each of them. The ratings
for both movies are shown purely for illustrative purposes. Based on the words or
sequence of words in each review, we want to determine whether a review expresses a
positive emotion or opinion or a negative one.

 The goal is to build an AI system that, given a review as input, determines whether
the review conveys a positive or negative emotion. Given this information, we can for-
mulate the problem as a binary classification problem. It will be similar to the binary
classifiers that we saw in chapters 4 and 5, but rather than dealing with tabular data
with numeric features or images, we are dealing with a sequence of words, as shown in
figure 7.2. The input to the model is a sequence of words representing the review, and
the output is a score that represents the probability that the sentiment of the review
is positive.
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The sentiment analysis model in figure 7.2 is shown as a black box. We’ll cover the
specifics of the model in section 7.3.4. Before we jump into how to build the model,
we want to answer the following two key questions:

1 How do we represent a word in a form that the model can process?
2 How do we model a sequence of words and build a classifier based on that?

The main focus of this book is on answering the first question. We will learn about
deep learning models that can be used to represent words in a dense and semantically
meaningful form and how to interpret them. Once we have a good way of represent-
ing words, answering the second question—how to build a model that processes a
sequence of words—becomes more straightforward. Although this is not the main
focus of this book, we will briefly look at sequence modeling and how to interpret
such models using techniques that we have learned in the previous chapters. Before
we jump into word representations, let’s explore the dataset of movie reviews first and

Movie is a 
masterpiece!

The plot was too 
convoluted…

A great movie for 
action movie lovers!

What a waste of 
time!

Rating: 8.6 / 10

Rating: 6.4 / 10

Sentiment
Internet movie repository

One Flew over the Crow’s Nest

Speedy and Enraged

Figure 7.1 Sentiment analysis of movie reviews

masterpieceaismovie

Probability 
of positive 
sentiment

Sentiment analysis 
model

Word 1 Word 2 Word 3 Word 4

Figure 7.2 Sentiment binary classifier
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figure out why we need a good representation of the words to be able to build the sen-
timent classifier.

7.2 Exploratory data analysis
In this section, we’ll explore the movie review dataset and determine whether we can
engineer any numeric features to train a simpler logistic regression or tree-based model.
The main objective is to determine the need for coming up with semantically meaning-
ful word representations and to model sequences of words. We will be using the torch-
text package provided by PyTorch to load and process the dataset. The torchtext
package is similar to torchvision in that it provides various data-processing utilities,
popular datasets, and models for NLP. We can install the package using pip as follows:

$> pip install torchtext

In addition to torchtext, we will also install spaCy, a popular NLP library that we will
use for string tokenization. Tokenization is the process of splitting a string of text into
discrete components or tokens, such as words and punctuations. A naive tokenization
method is to split a string of text on spaces, but this method does not take into
account punctuation. The spaCy library provides more sophisticated ways of tokeniz-
ing strings in various languages. We will focus on the English language in this chapter
and, therefore, use a model called en_core_web_sm for string tokenization. The spaCy
library and the model can be installed as follows:

$> pip install spacy
$> python -m spacy download en_core_web_sm

With all the libraries in place, we can now load the movie review dataset as follows:

import torch 
from torchtext.legacy import data, datasets 
TEXT = data.Field(tokenize='spacy',  
                  tokenizer_language='en_core_web_sm')
LABEL = data.LabelField(dtype=torch.float) 
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL) 

Let’s now look at some key summary statistics from this dataset, such as the number of
reviews in the train and test sets, the proportion of positive and negative reviews, and
the number of words in each review, as summarized in table 7.1. In the interest of
space, we will not show the source code for this, but you can obtain it from the GitHub
repository associated with this book.

 From table 7.1, we can observe that the train and test sets have an equal number of
movie reviews—25,000 each. The reviews are equally split between positive and
negative reviews for both sets. We can also observe that the summary statistics of the

Imports PyTorch and the relevant 
utilities from torchtext

Initializes the Field class 
with the tokenizer for the 
movie review text

Initializes the LabelField 
class to load the 
sentiment labels as floatLoads the movie review dataset and 

splits it into train and test sets
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number of words in a review are similar across both train and test sets. We can see
some differences between positive and negative reviews, especially the minimum and
maximum number of words per review. Besides understanding the dataset, the reason
for looking at some of these key summary statistics is to determine whether we can
engineer certain numeric features and build a simple logistic regression or tree-based
classifier for sentiment analysis. 

 In that vein, let’s look at the distribution of the number of words per review, com-
paring positive and negative sentiments. Are there any differences in the number of
words for positive and negative reviews? And if so, are negative reviews usually longer
or shorter than positive reviews? We can answer these questions by looking at figure
7.3. You can find the source code to generate this plot in the GitHub repository associ-
ated with this book. 

Table 7.1 Key statistics from the movie review dataset

Statistics Train set Test set

Number of reviews 25,000 25,000

Proportion of positive reviews 50% 50%

Proportion of negative reviews 50% 50%

Number of words 
in positive 
reviews

Minimum 14 11

Median 202 198

Maximum 2789 2640

Number of words 
in negative 
reviews

Minimum 11 5

Median 203 203

Maximum 1827 1290

0 200 400 600 800 1000 14001200
Number of words per review

0.000

0.001

0.002

0.003

0.004

0.005
Positive sentiment

0 200 400 600 800 1000 1200 1400
Number of words per review

0.000

0.001

0.002

0.003

0.004

0.005
Negative sentiment

Figure 7.3 Distribution of the number of words per review—positive versus negative
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In figure 7.3, we can see no glaring differences between positive and negative reviews
in terms of the number of words. Looking at the number of words, therefore, does not
accurately predict whether a review is positive or negative.

How about the frequency or occurrences of words? Are any words more common in
positive or negative reviews? Figure 7.4 shows a word cloud of all the common words
in positive reviews. The word cloud was generated after some data cleaning where very
common words such as a, the, is, at, which, and on (also called stop words) and punctu-
ation have been removed. You can access the code to remove all the stop words and
clean the data in the GitHub repository associated with this book. In a word cloud,
the larger the word, the more frequently it occurs in the reviews. We can see that for
positive reviews, the most frequently occurring words are words like film, movie, one,
and character. We also see words that convey positive sentiment like love, great, good,
and wonderful.

 Figure 7.5 shows the word cloud for negative reviews. At first glance, we do see
some of the same words as those in positive reviews—such as film, movie, one, and char-
acter—also commonly occurring in negative reviews. We also see some words that

Figure 7.4 Word cloud for positive reviews



206 CHAPTER 7 Understanding semantic similarity

convey negative sentiment, such as bad, unfortunately, poor, and stupid. If we compare
figures 7.4 and 7.5, there aren’t any glaring differences in word counts between posi-
tive and negative reviews. We could, however, find more signal from this word count
feature by cleaning the dataset further using human knowledge and heuristics. We
could, for instance, remove some of the neutral words such as film, movie, one, and char-
acter, just to name a few. As you can imagine, this supervised way of engineering fea-
tures using some background knowledge of the language (identifying neutral words,
for instance) and heuristics is quite time-consuming and not guaranteed to extend
easily to other languages. We need a better way of representing words in a language,
which will be the focus of the next section.

7.3 Neural word embeddings
In the previous section, we saw how difficult it is to come up with numeric features to
train a sentiment analysis model. We will now learn how to represent words in a
numeric form that encodes as much of the meaning as possible. We can then use
these word representations to train a sentiment analysis model. Before we jump in,
let’s get the terminology out of the way. Dense representations of words that encode

Figure 7.5 Word cloud for negative reviews
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semantic meaning are called word embeddings, word vectors, or distributed representations.
Representations or word embeddings learned by neural networks are called neural
word embeddings. We will focus on neural word embeddings in this chapter. 

 We need to be aware of a few more NLP terms. We will use the term corpus to refer
to the body of text that we will be processing. For the movie review example, the cor-
pus would be all of the movie reviews in the dataset. We will use the term vocabulary to
refer to the words within the text corpus. 

7.3.1 One-hot encoding

Now let’s look at a naive way of representing words that shows the need for word
embeddings. This exercise highlights the need to come up with more sophisticated
ways of representing words in a dense, semantically meaningful form. Assume we have
a corpus of text consisting of V words in its vocabulary. The vocabulary size V is typi-
cally quite large. Let’s look at the example shown in figure 7.6. In the figure, we can
see the words in the corpus listed in the table on the left. From the table, we can see
that the corpus consists of more than 10,000 words. Each word in the corpus is
assigned an index in the table. 

A naive way of representing words in the corpus is to use a vector with a size equal to
the vocabulary size V, where each entry in the vector corresponds to a word in the cor-
pus. In figure 7.6, we can see representations for words in the phrase “movie is a mas-
terpiece.” A naive presentation for the word this consists of a vector where the entries
for each of the other words is 0 and the value at the position or index for the word this
is 1. Similarly, for the other words in the sentence, we can see a vector of all zeros,
except at the index for the word where the value is 1. This sort of representation is
called one-hot encoding.

 As we can see in the figure, one-hot encoding uses an extremely sparse representa-
tion for the words where the vectors are mostly zeros, with only a single 1. It does not
encode any semantic information about a word. Words that occur frequently together

Index Words in 
corpus

0 a
1 an
… …

101 is
… …

1023 master
1024 masterpiece

… …
5043 movie

… …
10067 zebra
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Figure 7.6 An illustration 
of one-hot encoded vectors
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or that are similar in meaning are hard to identify using this representation. The size
of the vector is also large. We will need a vector as large as the vocabulary to represent
words. Processing such vectors would be extremely inefficient in terms of computing
and storage. 

 Note that the representation in figure 7.6 is indeed a very naive representation. We
have ways of improving the representation by removing the stop words. This should
reduce the size of the one-hot-encoded word vector used to represent each word.
Another alternative is to use the bag of words (BoW) model. The BoW model essentially
maps each word to a number that represents how frequently it occurs in the corpus.
In a BoW representation, stop words would typically have larger numeric values
because they frequently occur in the language. We could either remove these stop
words, or we could use another representation called term frequency inverse document fre-
quency (TF-IDF for short). The TF-IDF model essentially weights inversely the fre-
quency of occurrence of each word in the corpus of reviews with the number of
reviews that contain that word. This model is a good way of filtering out stop words
because they will be associated with a lower numeric value. The numeric value is lower
because such words occur frequently across reviews. Both BoW and TF-IDF are effi-
cient ways of representing words, but they still do not encode the semantic informa-
tion about a word. 

7.3.2 Word2Vec

We can overcome the limitations of one-hot encoding and other more efficient repre-
sentations like BoW and TF-IDF by using Word2Vec (short for Word to Vector) embed-
dings. The key idea behind Word2Vec is to look at words in context. We can encode
meaning by looking at words that typically occur together. Let’s look at an example
and come up with some notation. In figure 7.7, we can see the same phrase as before,
“movie is a masterpiece.” The figure also shows a context with a window size equal to
3, that is, a context consisting of three tokens or words: movie, is, and a. The window
size is equivalent to the number of tokens or words in the context. We denote the cen-
ter word in the context as wt, the word immediately to the left as wt–1, and the word
immediately to the right as wt+1. Words to the left and right of the center word are also
called surrounding words or context words.

We can use two key neural network architectures to come up with Word2Vec embed-
dings: continuous bag of words (CBOW) and skip-gram, as shown in figure 7.8.

movie   is   a   masterpieceContext
Window size = 3

Wt-1 Wt Wt+1

Figure 7.7 An illustration of context, 
window size, surrounding words, and 
center word
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As seen in the figure, the idea behind the CBOW architecture is to predict the center
word given the surrounding, or context, words. The underlying neural network archi-
tecture is the fully connected neural network consisting of an input layer, a hidden
layer, and an output layer. The skip-gram architecture, on the other hand, predicts the
surrounding or context words given the center word. The underlying neural network
architecture is similar to that of CBOW. Both CBOW and skip-gram models are also
similar in the sense that they try to predict neighboring words or words that typically
occur together. But they differ in some respects. The skip-gram model has been shown
to work well with small amounts of data and also represents less frequently occurring
words well. The CBOW model, on the other hand, is faster to train and has been
shown to come up with better representations for more frequently occurring words.
The training processes for both models are equivalent. So, to keep things simple, let’s
focus on one of them and take a closer look at the skip-gram training process.

 The first step in training the skip-gram word embedding is to come up with a train-
ing dataset. Given the corpus of text, the idea is to come up with a dataset consisting
of center words as input and the corresponding surrounding, or context, words as
output. We need to know the window size for the context prior to generating the data-
set because the window size is an important hyperparameter for the training process.
Let’s stick with the same window size of 3, as in the earlier model, and look at a con-
crete example, shown in figure 7.9. In the figure, we are using the same example sen-
tence as before. We set the context window at the start of the text (shown as context 1
in the figure) and identify the center word and surrounding words. We then come up
with a training data table consisting of the center word as input and the surrounding
words as output. In the table for context 1, the word is is associated with the two neigh-
boring words, movie and a. 

 We then continue this process by sliding the window to the right by one word, as
shown as context 2 in figure 7.9. We will then add another entry to the training data
table for the new center word and surrounding words. We repeat this process for all the
text in the corpus. Once we have the training dataset consisting of input and output
words, we are ready to train the skip-gram neural network. We can further simplify the
training process by reformulating the problem as a binary classification problem as

Wt-1

Wt

Wt+1

Surrounding 
words

Center 
word
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Input
layer

Hidden
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Figure 7.8 An illustration of CBOW and skip-gram neural word embedding models for window size = 3
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follows: instead of predicting the surrounding words given a center word, we predict
whether a given pair of words are neighbors. A pair of words are neighbors if they occur
within the context. We can use the training data table that we generated in figure 7.9
to come up with positive labels for this new binary classification formulation. This is
shown in the top half of figure 7.10 where the table of input and output (surrounding
or context) words is transformed into a table of word pairs with a positive label (i.e.,
label = 1). The positive label denotes that the pair of words are neighbors.

How do we determine the negative labels, that is, the pairs of words that are not
neighbors? We can do this using a process called negative sampling. For each word in
the training data table from figure 7.9, we randomly sample a new word from the

movie   is   a   masterpieceContext 1

Input word Output words
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movie   is   a   masterpiece
Input word Output words
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Figure 7.9 Training data preparation for the skip-gram model
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Figure 7.10 Training data preparation with negative sampling
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vocabulary. The choice of window size is important. If the window size is relatively
small when compared to the number of words in the vocabulary, random sampling
will ensure that the likelihood of the selected word being outside the context for the
input word is small. This is shown in the bottom half of figure 7.10. For each pair of
input word and random word, we assign a negative label (i.e., label = 0). These corre-
spond to pairs of words that are not neighbors.

 Once we have the training dataset for the new binary classification formulation, we
are ready to train the skip-gram model. We will call the neural network model with
this new formulation as skip-gram with negative sampling. The input words will be
represented as one-hot-encoded vectors. Although the model is trained to determine
whether two words are neighbors, the end objective of the training process is to learn
neural word embeddings or dense representations for the words. This is the purpose
of the hidden layer in the architecture. For the hidden layer, we will need to initialize
the two matrices shown in figure 7.11: one embedding matrix and one context matrix.
The embedding matrix consists of one row for each word in the vocabulary. The num-
ber of columns corresponds to the size of the word embedding or word vector used to
represent the word. This is shown as N in figure 7.11. 

 We also need to determine another hyperparameter, the embedding size, before
training. The choice of embedding size determines how dense we want the represen-
tation to be. It also determines how much semantic information is captured in the
representation. The context matrix is also of the same size as the embedding matrix.
Both matrices are initialized with random values. The values in these matrices are
parameters in the neural network that we aim to learn using the training dataset that
we have generated in figure 7.10.
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Let’s now take a closer look at the learning process. Figure 7.11 shows the two matrices
and a row-wise dot-product operation being performed on them. The row-wise dot
product essentially measures the similarity between two pairs of words. If we then pass
the resulting vector through a sigmoid function, we will get a similarity, or probability,
measure between 0 and 1. We can then compare these scores with the true label for
pairs of words in the training data and update the parameters accordingly. The param-
eters can be updated through backpropagation, as we learned in chapters 4 and 5. 

 Once the learning process is complete, we can discard the context matrix and use
the embedding matrix as a mapping of words to their corresponding neural word
embeddings. We can obtain the mapping as follows: each row in the embedding
matrix is a representation for a given word in the vocabulary. For instance, the first
row in the matrix corresponds to the representation for word w1. The second row is a
representation for word w2, and so on.

7.3.3 GloVe embeddings

The skip-gram with negative sampling model is a great way of coming up with a dense
representation of words that captures the similarity between pairs of words that occur
within a local context. The model does not do a great job of identifying stop words,
however. Stop words, like is, a, the, and this, will be flagged as words similar to words
like, say, masterpiece because they occur together in a local context. We can identify
such stop words by looking at global statistics of words, that is, how frequently pairs of
words occur within the whole corpus of text. The global vectors (also called GloVe) model
is an improvement to skip-gram that captures both global and local statistics. Going
forward, we will use pretrained GloVe word embeddings.

 We will not be training GloVe word embeddings from scratch using the movie
review dataset but instead will use pretrained GloVe embeddings trained on a much
larger corpus of text. A common corpus of text used to train word embeddings is
Wikipedia. We have the following two ways of loading GloVe embeddings pretrained
on the Wikipedia corpus:

1 Using the torchtext package provided by PyTorch
2 Using gensim, a common open source Python library used for NLP

The first approach of loading GloVe embeddings using torchtext is useful if we have
to train another downstream model, like sentiment classification, that makes use of
these embeddings as features in PyTorch. The second approach of loading GloVe
embeddings using gensim is useful for analyzing the word embeddings because a lot
of utility functions come right out of the box. We will use the former approach for
training the sentiment classifier and the latter approach for interpreting the word
embeddings. We can load the word embeddings using torchtext as follows:
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import torchtext.vocab 

glove = torchtext.vocab.GloVe(name='6B',
                              dim=100)

Note that the GloVe embeddings pretrained on six billion words from the Wikipedia
corpus is loaded. The embedding size of the pretrained model is 100. 

 If you have not installed gensim on your machine, you can do so by running the
following command:

$> pip install -–upgrade gensim

We can then load the GloVe embeddings as follows:

from gensim.models import KeyedVectors  
from gensim.scripts.glove2word2vec import glove2word2vec 
from gensim.test.utils import datapath, get_tmpfile  

path_to_glove = 'data/glove.6B/glove.6B.100d.txt' 

glove_file = datapath(path_to_glove)  
word2vec_glove_file = get_tmpfile(glove_file)
model = KeyedVectors.load_word2vec_format(word2vec_glove_file)  

Note that with gensim, we need to download the pretrained GloVe embedding file.
You can download the embedding pretrained on six billion words from Wikipedia
with an embedding size of 100 from the GloVe project website (https://nlp.stanford
.edu/projects/glove/).

7.3.4 Model for sentiment analysis

In section 7.1, we posited the following two key questions for building the sentiment
analysis model:

1 How do we represent a word in a form that the model can process?
2 How do we model a sequence of words and build a classifier based on that?

We have already answered the first question in the previous section by learning about
neural word embeddings. The key focus of this chapter is on word embeddings and
how to interpret them. For the sake of completeness, we answer the second question
by providing a high-level overview of how to model a sequence of words to build a sen-
timent classifier.

 The high-level architecture for the sentiment classifier is shown in the top half of
figure 7.12. It consists of two neural network architectures that are chained together.
The first neural network is called a recurrent neural network (RNN), and the second
neural network is a fully connected neural network, which we learned about in chap-
ter 4. Let’s take a closer look at RNNs, shown in the bottom half of figure 7.12.

Imports the vocab module in torchtext

Initializes the GloVe class with the model pretrained 
on six billion words from the Wikipedia corpus

Loads the GloVe embedding with size 100

Imports the relevant 
modules and classes 
from gensim

Initializes the path to the 
pretrained GloVe embedding file

Initializes the 
GloVe embedding

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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RNNs are typically used in analyzing sequences, like a sequence of words, as in the
sentiment analysis problem, or time-series analysis, like weather forecasting. For the
sentiment analysis problem, the RNN takes the sequence of words one at a time and
produces a hidden state for each word, which is the representation of the previous
inputs. The words are fed into the RNN using the neural word embedding representa-
tion learned in the previous section. Once all of the words have been fed into the
RNN, the final hidden state is then used to train the feed-forward neural network for
sentiment classification. We are glossing over a lot of detail here because this is not
meant to be the primary focus of this chapter and the book. A great resource for
learning more about RNNs and language models is the online course on NLP with
deep learning from Stanford University (http://web.stanford.edu/class/cs224n/). 

Movie is a masterpiece

Sigmoid

Illustration of a recurrent neural network

Probability
of positive
sentiment

Neural word
embeddings

masterpieceaismovie
w4w3w2w1

Hidden
state 2

Hidden
state 3

Hidden
state 1

Hidden
state 0

Final hidden
state 

Fully connected
neural network

Recurrent neural
network
(RNN)

Figure 7.12 Sequence modeling and sentiment analysis using recurrent neural networks (RNNs)

Transformer networks
A recent breakthrough in NLP has been transformer networks, proposed by a team at
Google Research in 2017 in their seminal paper “Attention Is All You Need”
(https://arxiv.org/abs/1706.03762). Like RNNs, transformer networks or trans-
formers are used to model sequential data. As we saw in section 7.3.4, RNNs process
the input one word at a time in order. The output of the current word, or timestep—
that is, the hidden state—is required before we can process the next word. It is hard
to parallelize the training process, and, therefore, training RNNs is quite time-
consuming. Transformers overcome this limitation by adopting the attention
mechanism and do not require us to feed the input of words in order. Intuitively, the
attention mechanism is similar to the convolution-based approach in convolutional
neural networks (CNNs) where the interactions of words that occur closer together in
sequences are modeled at lower layers and interactions of words that occur farther
apart in sequences are modeled at higher layers. All the words are fed into the network
at once, together with information on their relative and absolute positions.

http://web.stanford.edu/class/cs224n/
https://arxiv.org/abs/1706.03762
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7.4 Interpreting semantic similarity
In the previous section, you learned how to obtain dense representation of words that
encode semantic meaning using neural word embeddings. Now we will focus on
understanding and interpreting semantic similarity from those learned word embed-
dings. You will learn how to measure semantic similarity and also how to visualize sim-
ilarity between high-dimensional word embeddings in two dimensions.

 Before we start measuring and interpreting semantic similarity, the first step is to
identify a few words where the meanings are varied and nuanced and we have a good
understanding of the semantic similarity between them and other words that would
be similar to them. This is similar to the concept definition step in the network dissec-
tion framework in chapter 6 in that we need a good human understanding of what
specifically we want to measure and interpret. In the context of semantic similarity in
neural word embeddings, we need an understanding or taxonomy of words to verify
whether the neural word embeddings have learned the semantic meanings properly. 

 We will look at two different sets of words to interpret semantic similarity. The first
set of words is not necessarily related to the movie review or sentiment classification
problem. The words are, however, meant to verify whether certain nuances of words
are captured by the word embeddings. The first set (referred to as set 1) of words
follows:

 Basketball
 Lebron
 Ronaldo
 Facebook
 Media

The meaning or link between these words can be obtained from the taxonomy, shown
in figure 7.13. In the figure, the words in the set are highlighted. We can see that within
the category Sport, we have Basketball and Football/Soccer. A Sport also has personalities—
Lebron and Ronaldo fall under the categories Sport and Personality. There is also a link

We are glossing over a lot of detail here—an entire chapter is required to do justice
to this topic, but, unfortunately, that’s beyond the scope of this book. A great
resource for learning more about transformers, with video lectures and lecture notes,
is the online course on NLP with deep learning from Stanford University (http://web
.stanford.edu/class/cs224n/). Developments in the transformer network architec-
ture include systems such as bidirectional encoder representations from transform-
ers (BERT) and generative pretrained transformer (GPT). Pretrained word embeddings
learned by transformers can be loaded in PyTorch using the popular open-source
library provided by Hugging Face (https://huggingface.co/transformers/). The inter-
pretability techniques that you will learn in the subsequent sections to understand
semantic similarity learned by GloVE word embeddings can be extended to embed-
dings learned by transformer networks as well. The techniques are model-agnostic.

http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
http://web.stanford.edu/class/cs224n/
https://huggingface.co/transformers/
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between the sport personalities and their respective sports. Lebron, for instance, is linked
with the sport Basketball and Ronaldo is linked with the sport Football/Soccer. Also, within
the category Media, we have different types of media, such as Television, Radio, and Inter-
net. Within the Internet category, there are companies like Facebook and Google. Figure
7.13 serves as a map of how words are linked, and we can use this to interpret semantic
meaning in word embeddings.

 The second set (referred to as set 2) of words is related to movie reviews. We will
look at the following set of movies to see how they are related:

 Godfather
 Goodfellas
 Batman
 Avengers

The taxonomy for the second set of words is shown in figure 7.14.

The movies in the set are highlighted. We have categorized the movies based on their
genre and the location of shoot. Movies like Godfather and Goodfellas belong to the
Gangster genre, and they are both shot in the location New York. Movies like Batman

Sport Personality

Basketball

Football/ 
soccer

Lebron

Ronaldo

Internet

Facebook Google

Media

Television Radio Figure 7.13 Taxonomy 
for the words in set 1

Movie

GenreLocation

Gangster SuperheroNew York Gotham

Godfather Goodfellas Batman Avengers

Figure 7.14
Taxonomy for the 
words in set 2



217Interpreting semantic similarity

and Avengers are Superhero movies. Batman is based in the location Gotham, which is a
fictitious place loosely based on New York. It is worth highlighting that such nuances and
meanings for words are language- and context-dependent, and, therefore, we need a
good understanding of this before we set out to interpret semantic meaning.

7.4.1 Measuring similarity

Now that we have the words of interest, how do
we quantify similarity between them? We are
specifically interested in measuring similarity
between representations of words or word
embeddings. For ease of visualization, let’s first
consider a simple example of word embed-
dings of size 2. Suppose that we have two words,
Basketball and Football, in this word embedding
space, as shown in figure 7.15. These two words
are represented in the figure as vectors W1 and
W2, respectively. 

 One way of measuring similarity between
the word vectors W1 and W2 is to look at how
close they are in the 2-D embedding space. The similarity measure should have the
property that if the word vectors are close together, then they are more similar. If they
are further apart, then they are less similar. A good metric that has this property is the
cosine of the angle between the two vectors—cos(θ). This measurement is called
cosine similarity. The mathematical formula for cosine similarity given word vectors
W1 and W2 is shown next:

It is essentially the dot product of the word vectors divided by the product of the
Euclidean norm, or magnitude, of the two vectors. 

 Using gensim, we can easily obtain the words that are most similar to a given word
as follows. In section 7.3.3, we saw how to load the GloVe word embedding using gensim.
Once the embeddings have been initialized, we can obtain the top five most similar
words for the first set of words using the following code:

words = ['basketball', 'lebron', 'ronaldo', 'facebook', 'media'] 
topn = 5 

sim_words_scores = [] 
for word in words: 
    sim_words = model.most_similar(word, topn=topn) 

Initializes an array with
the first set of wordsWe are interested in the top five most similar words.

Initializes an array to store the most similar words

Iterates through each word Gets the top five most 
similar words from the 
gensim model

Basketball

Football

W1

W2

Figure 7.15 An illustration of measuring 
similarity between word embeddings in 2-D 
space
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    print(f"Words similar to: {word}")  
    for sim_word in sim_words: 
        sim_words_scores.append((word, sim_word[0], sim_word[1])) 
        print(f"\t{sim_word[0]} ({sim_word[1]:.2f})")               

The output of this code is summarized in table 7.2. The top row consists of the words
in the set. Each column in the table shows the top five words that are similar to the
words in the topmost row of that column. The cosine similarity measure is also shown
in parenthesis for the similar words. We can see from the table that the GloVe word
embedding has indeed learned words that are semantically similar in meaning. The
first column, for instance, shows all the words that are similar to basketball, and they
are all sports. The second column shows all the words that are similar to Lebron, and
they are all sports personalities that play basketball. The third column shows all sports
personalities that play football or soccer. The fourth column shows companies that are
similar to Facebook, that is, internet or web-based social media companies. The last col-
umn shows all the words that are similar to Media. As an exercise, do a similar analysis
for the second set of words. The solution can be found in the GitHub repository asso-
ciated with this book.

Let’s now also visualize the cosine similarity between the words in the first set. The fol-
lowing code shows how to compute the cosine similarity between pairs of words and
how to visualize them:

from sklearn.metrics.pairwise import cosine_similarity 

import pandas as pd 

import matplotlib.pyplot as plt  
import seaborn as sns 

words = ['basketball', 'lebron', 'ronaldo', 'facebook', 'media'] 
word_pairs = [(a, b) for idx, a in enumerate(words) for b 

➥ in words[idx + 1:]] 

Table 7.2 Top five similar words for the words in set 1

Basketball Lebron Ronaldo Facebook Media

Football (0.86) Dwyane (0.79) Ronaldinho (0.86) Twitter (0.92) News (0.77)

Hockey (0.8) Shaquille (0.75) Rivaldo (0.85) MySpace (0.9) Press (0.75)

Soccer (0.8) Bosh (0.72) Beckham (0.84) YouTube (0.81) Television (0.75)

NBA (0.78) O’Neal (0.68) Cristiano (0.84) Google (0.75) TV (0.73)

Baseball (0.76) Carmelo (0.68) Robinho (0.82) Web (0.74) Internet (0.72)

Stores the similar words in
array and print the results

Imports Pandas to store 
the cosine similarity of 
word pairs in a DataFrame

Imports the cosine_similarity helper function from Scikit-Learn

Imports the visualization-
related libraries

Initializes the first
set of words

Creates an 
array with 
word pairs 
based on the 
initialized set 
of words
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cosine_sim_word_pairs = []  
for word_pair in tqdm(word_pairs): 
    cos_sim = cosine_similarity([model[word_pair[0]]],  
                                [model[word_pair[1]]])[0][0] 
    cosine_sim_word_pairs.append([str(word_pair), "glove",
    ➥ cos_sim])                                                   

df_sim = pd.DataFrame(cosine_sim_word_pairs,  
                      columns=['Word Pairs', 
                               'Embedding',  
                               'Cosine Similarity']) 

f, ax = plt.subplots() 
sns.barplot(x="Word Pairs", y="Cosine Similarity", 
            data=df_sim[df_sim['Embedding'] == 'glove'],  
            ax=ax)  
plt.xticks(rotation=90);                                  

The resulting plot is shown in figure 7.16. We can observe from the figure that Basket-
ball and Lebron are much more similar to each other than to any other word. Also, the
word Basketball is more similar to Ronaldo than to Facebook and Media, because we know
from our taxonomy in figure 7.13 that Basketball and Ronaldo are linked to the cate-
gory Sport. Using the taxonomy, we can make similar observations for the other pairs
of words as well. The word Facebook, for instance, is much more similar to the word
Media than any other word, because Facebook is a social media company.

 As an exercise, write the code to visualize the cosine similarity for the pairs of mov-
ies in the second set. You can access the source code from the GitHub repository asso-
ciated with this book, and the resulting plot is shown in figure 7.17. We can observe

Computes the cosine 
similarity for word 
pairs and stores it in 
an array

Creates a DataFrame 
with the results

Uses the DataFrame 
to plot a bar chart
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from the figure that the two gangster movies, Godfather and Goodfellas, are more similar
to each other than they are to the superhero movies Batman and Avengers. Similarly,
the Superhero movies are closer together than they are to the Gangster movies. We
can also see that Godfather and Goodfellas are more similar to Batman than Avengers.
This could be because the movies are based in locations that are connected, as we
established in our taxonomy in figure 7.14.

We now have a way of measuring similarity between word embeddings, using the
cosine similarity measure. Using a specific set of words for evaluation and their corre-
sponding taxonomy, we have also validated that the GloVe word embeddings with 100
dimensions capture the semantic meaning of words really well. Let’s now see how we
can come up with a visualization of the word embeddings in 2-D space, similar to the
one illustrated in figure 7.15, without losing any of the semantic meaning. This is
going to be the focus of the next two sections. You will specifically learn about two
techniques: principal component analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE).

7.4.2 Principal component analysis (PCA)

Principal component analysis (PCA) is a powerful technique for reducing the
dimensionality of a dataset. Because we are dealing with word embeddings with 100
dimensions, we want to reduce the dimensionality to 2 so that we can easily visualize the
dataset. We want to reduce the dimensionality and, at the same time, capture as much
of the variation or the semantic information as possible. Let’s see PCA in action by
looking at a simple example. For the sake of illustration, we will look at word
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embeddings of size 2 and see how we can use PCA to reduce the dimensionality from
2 down to 1. Figure 7.18 shows four words placed on a 2-D plane. For ease of
visualization, we are assuming that the embedding size is 2. The goal is to visualize the
word embeddings in one dimension—on a 1-D line. We can see that words 1 and 2
(Doctor and Nurse) are semantically similar because they are closer together in the 2-D
space. Words 3 and 4 (Athletics and Athlete) are also semantically similar. Word pairs 1
and 2, however, are further away from word pairs 3 and 4 because they are not
semantically similar.

The first step of PCA is to take the mean of the words across all dimensions and sub-
tract the mean from the word embeddings. This is shown in figure 7.19, where the
mean is represented by a large cross. The purpose of this transformation is to center
the words around the mean, that is, place the mean of the data at the origin. By cen-
tering the word embeddings on the mean, we still preserve the distances between the
words in 2-D space and, therefore, their semantic meaning.

 Because we are interested in visualizing the word embeddings on a line, the next
step of PCA is to fit a line through the word embeddings. The line of best fit is the one
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Figure 7.18 An illustration of four 
words in an embedding space of size 2
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Figure 7.19 An illustration of computing the mean and centering the words around the mean
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that minimizes the perpendicular distance between each word and the line. In other
words, the goal is to minimize the projected distance between the words and the line
or maximize the distance between the origin and the projection of each word on the
line. Maximizing the distance between the projections on the origin will ensure that as
much of the variation in the data is preserved as possible. This is shown in figure 7.20.
The line of best fit is also called the principal component. We are interested only in
visualizing the words in 1-D, so there will be one only principal component.

The final step is to project each word onto the principal component. This will serve as
our visualization of the word embeddings in 1-D, as shown in figure 7.21.

Now that we have an intuition of how PCA works, let’s extend the technique to multi-
ple dimensions. Let’s represent all the word embeddings by the matrix X where the
number of rows is equal to the number of words in the vocabulary and the number of
columns is equal to the embedding size. Let’s represent the embedding size as n. The
goal is to reduce the dimension of the words to size k, where for the purposes of visual-
ization is typically 2 or 3.
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X X

X X
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Projection of word 4 
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Figure 7.20 An illustration of principal component
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Figure 7.21 An illustration 
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 As we’ve seen through the visual example, the first step is to center the data to the
mean. This is shown by the following equation, where the mean is subtracted from the
embedding matrix X. The mean center data is represented by matrix U:

The next step is to compute the covariance of matrix U. This is shown by the next
equation where the covariance matrix is represented by matrix V. The purpose of
computing the covariance of matrix U is to estimate the variance across each of the
embedding dimensions in the mean-centered data:

Once you have the estimate of the variance, the next step is to compute the eigenvalues
and eigenvectors for matrix V by solving the following characteristic equation. By solving
for λ, we can obtain the roots for the equation, which will give us the eigenvalues. Note
that in the next equation, “det” stands for determinant and the matrix I is the identity
matrix. Once we have the eigenvalues, we can obtain the corresponding eigenvectors:

The eigenvectors essentially give us the principal components. The magnitude of the
eigenvalue gives us an estimate of the amount of variation captured by each of the
principal components. We should then sort the vectors in descending order of eigen-
values and pick the top k principal components to project our data to. The top k prin-
cipal components will capture as much of the variation in the data as possible. Let’s
represent the matrix with the top k principal components (or eigenvectors) as W.
The final step is to project the original word embeddings in n-dimensional space to
the k-dimensional space by applying the following equation:

Let’s now see PCA in action on the GloVe word embeddings. The first step is to pre-
pare the data where we extract the word embeddings for the words that we are inter-
ested in visualizing. This is shown in the next code snippet where we extract the word
embeddings for the words in set 1 and their corresponding top five similar words:

viz_words = [sim_word_score[1] for sim_word_score in 

➥ sim_words_scores] 
main_words = [sim_word_score[0] for sim_word_score in 

➥ sim_words_scores] 

word_vectors = []  
for word in tqdm(viz_words):
    word_vectors.append(model[word])  
word_vectors = np.array(word_vectors)  

Creates lists with main 
words and similar words 
to visualize

Extracts the word 
embeddings for words 
to visualize
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Once we have prepared the data, we can run PCA and obtain the projections of the
word embeddings in the lower-dimensional space. For ease of visualization, we will set
the number of principal components to 2. We can use the PCA implementation pro-
vided by the Scikit-Learn library. The following code shows how to obtain the princi-
pal components and then project the data onto them:

from sklearn.decomposition import PCA 

pca_2d = PCA(n_components=2, 
             random_state=24).fit(word_vectors) 
pca_wv_2d = pca_2d.transform(word_vectors) 

pca_kwv_2d = {}  
for idx, word in enumerate(viz_words): 
    pca_kwv_2d[word] = pca_wv_2d[idx] 

Once we have the projections of the word embeddings in 2-D space, we can easily visu-
alize it using the Matplotlib and Seaborn libraries, as shown next: 

df_pca_2d = pd.DataFrame(pca_wv_2d, columns=['y', 'x']) 
df_pca_2d['text'] = viz_words 
df_pca_2d['word'] = main_words   

f, ax = plt.subplots(figsize=(10, 8)) 
sns.scatterplot(data=df_pca_2d, 
                x="x", y="y",   
                hue="word", style="word", s=50, ax=ax)  

ax.legend()  
for i, row in df_pca_2d.iterrows(): 
     ax.text(row['x']+.05, row['y']-0.02, str(row['text']),  
            size=size)  

The resulting plot is shown in figure 7.22. The main words in set 1 are shown in the leg-
end, and their top five most similar words are illustrated using the symbol correspond-
ing to each word. The word Basketball, for instance, is represented by a circle, and the
word Media is represented by a diamond. Let’s take a moment to admire the output of
the PCA technique. We are now able to visualize the original 100-dimensional word
embeddings in two dimensions! But does the PCA representation still preserve the
semantic meaning captured in 100 dimensions? In figure 7.22, we do see the words sim-
ilar to the main word clustered together, except for the word, lebron. Some basketball
personalities like bosh, dwyane, and carmelo are closer to the football personalities than
to their basketball peers.

 This is expected because we may not be capturing as much of the variation in the
original dataset in just two dimensions. We can easily check this by running the follow-
ing line of code:

print(pca_2d.explained_variance_ratio_)

Imports the PCA class from Scikit-Learn Initializes the PCA class with 
two principal components

Sets the random state and obtains 
the best fit for the word vectors

Projects the word vectors onto 
the principal components

Creates a dictionary mapping from each 
word to its PCA word embeddings

Creates a DataFrame with 2-D 
PCA coordinates for each word

Creates a 
scatterplot

Adds a legend and 
annotations for 
the scatterplot
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This code outputs the percentage of variation captured in each of the principal com-
ponents. If we sum them up, we get roughly 49%. This means that by projecting the
word embeddings to just two principal components, we are able to capture 49% of the
variation in the data. As an exercise, try training a PCA with three principal compo-
nents to see if a major chunk of the variance in the data can be captured. If so, try visu-
alizing the embeddings in 3-D to see if the issues observed in 2-D are resolved.

 Although PCA is a powerful technique, it does suffer from some a major drawback.
It assumes that the dataset or the word embeddings can be modeled linearly. This may
not be the case for most of the datasets that we deal with. In the next section, we will
learn about an even more powerful and popular technique called t-SNE that can gen-
eralize to nonlinear structures.

7.4.3 t-distributed stochastic neighbor embedding (t-SNE)

t-SNE falls under the broad class of machine learning techniques called manifold learn-
ing, where the objective is to learn nonlinear structures from higher-dimensional data
in lower dimensions. This technique is one of the most popular choices for visualizing
higher-dimensional data. Let’s see it in action using a simple two-dimensional dataset
where the goal is to visualize it in one dimension. In figure 7.23, we see the familiar
example of four words in 2-D space on the left. The first step is to construct a similarity
table for all pairs of words. This similarity table will give us a measure of similarity, or
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Figure 7.22 Visualizing semantic similarity of GloVe word embeddings for words in set 1 using PCA
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the probability of pairs of words being neighbors in the high-dimensional embedding
space. Another way to look at it is to calculate the joint probability distribution for
words in the high-dimensional embedding space. We will see how to do this mathe-
matically in a bit.

The next step is to randomly place all the words on a line, because we are interested in
visualizing the word embeddings in 1-D space. This is shown on the left in figure 7.24.
Once we have placed the words randomly on the line, we should construct a similarity
table for the words randomly represented on that 1-D space. This is shown on the right
in figure 7.24. The entries in the table that are different from the higher-dimensional
joint probability distribution are highlighted. We will see how to mathematically com-
pute this joint probability distribution for the lower-dimensional space shortly.

The final step is the t-SNE learning process, as shown in figure 7.25. We must feed the
joint probability distributions of the random lower-dimensional representation and
the higher-dimensional representation into the learning algorithm. The objective of
the learning algorithm is to update the lower-dimensional representation such that
both probability distributions are similar. This will then give us a lower-dimensional
visualization that preserves the probability distributions, or similarities, from the
higher-dimensional space.
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Let’s now look at it mathematically. The first step is to construct a similarity table, or
joint probability distribution, for the words in the higher-dimensional embedding
space. For each word, we can project a Gaussian distribution centered on that word
such that words that are closer to it have a higher probability and words that are fur-
ther away from it have a lower probability. This is shown in the following equation,
which computes the probability of a word xj being close to xi. The numerator is the
Gaussian distribution centered on the word xi with a standard deviation of σ. The stan-
dard deviation σ is a hyperparameter for t-SNE, and we will see how to set this hyper-
parameter shortly. The denominator is a normalization factor to ensure that the
probabilities are of a similar range for clusters of words with different densities:

Using this equation, we have a risk of the probability of word xj being a neighbor of
word xi being different from the probability of word xi being a neighbor of xj, because
the two conditional probabilities come from different distributions. To ensure that
the similarity measure is commutative, we will compute the final probability of two
words xi and xj being neighbors as follows:
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Once you have computed the joint probability distribution for the higher-dimensional
embedding space, the next step is to place the words randomly on the lower-dimensional
space. We should then compute the joint probability distribution for the lower-
dimensional representation using the following equation. The equation essentially com-
putes the probability that two words in the lower dimension represented as yi and yj are
neighbors:

Note that a different distribution is used for the lower-dimensional representation. The
numerator in the equation essentially is a t-distribution, hence the name t-SNE. Figure
7.26 shows the difference between the Gaussian distribution and the t-distribution. We
can see that the t-distribution has a heavier tail (where the probability scores are not neg-
ligible for extreme values) on the right than the Gaussian distribution. We are exploiting
this property of the t-distribution for the lower-dimensional space to ensure that points
that may be moderately spaced in the higher dimension are not clumped together in
the lower dimension.

Once we have the joint distributions for both the higher-dimensional and lower-
dimensional representations, the last step is to train an algorithm to update the lower-
dimensional representation such that both distributions are similar. This optimization
can be done by quantifying the gap between both the distributions. We can use the
Kullback–Leibler (KL) divergence metric for this purpose. 

 
 
 
 

Figure 7.26 A Gaussian 
distribution vs. t-distribution
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 The KL divergence is a measure of the entropy, or difference, between two distri-
butions. The higher the value, the greater the difference. To be more precise, the KL
divergence could range from 0 for identical distributions to infinity for vastly different
distributions. The KL divergence metric can be computed as follows:

The objective of the learning algorithm is to determine the distribution for the lower-
dimensional representation such that the KL divergence metric is minimized. We can
do this optimization by applying gradient descent and iteratively updating the lower-
dimensional representation. The entire t-SNE algorithm has been implemented in
the Scikit-Learn library. 

 Before jumping into the code, there is one detail that we glossed over. Note that
when computing the joint probability distribution for the higher-dimensional repre-
sentation, we fit a Gaussian centered on each word with a standard deviation of σ. This
standard deviation is an important hyperparameter for t-SNE. It is referred to as per-
plexity, which is a rough estimate of the number of close neighbors each word has. As
we will see later, the choice of perplexity will drastically change the visualization of the
word embeddings and is, therefore, an important hyperparameter. We can train t-SNE
on the GloVE word embeddings using the next code. We are using the words from set
1 and their associated top five most similar words: 

from sklearn.manifold import TSNE 

perplexity = 10  
learning_rate = 20 
iteration = 1000  

tsne_2d = TSNE(n_components=2,   
               random_state=24,  
               perplexity=perplexity,  
               learning_rate=learning_rate,  
               n_iter=iteration).fit(word_vectors)  

tnse_wv_2d = tsne_2d.fit_transform(word_vectors) 

tsne_kwv_2d = {}  
for idx, word in enumerate(viz_words):
    tsne_kwv_2d[word] = tnse_wv_2d[idx]  
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 Note that we have set the perplexity to 10. We can reuse the code from the previ-
ous section on PCA to visualize the lower-dimensional t-SNE embeddings. The result-
ing figure is shown in figure 7.27. 

The visualization shown in figure 7.27 does look better qualitatively than PCA. We do
see the basketball personalities clustered together and distinct from the football per-
sonalities cluster. This is still a qualitative assessment, and we will see how to validate
these visualizations quantitatively in the following section.

 Let’s see what happens when we set the perplexity to a large value, say, 100. As an
exercise, retrain the t-SNE model using a perplexity of 100 and visualize the resulting
word embeddings. You can see the code in the GitHub repository associated with this
book. The resulting plot is shown in figure 7.28.

 We can see that the words are clustered in a random order, and all the words seem
to be placed roughly in a circle. The authors of the t-SNE algorithm recommend the
perplexity be set between 5 and 50. The guideline is to use a higher perplexity value
for denser datasets where there are dense clusters of words in the higher-dimensional
space.
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7.4.4 Validating semantic similarity visualizations

We have learned two techniques to visualize higher-dimensional word embeddings,
namely, PCA and t-SNE. We evaluated each visualization qualitatively, but is there a way
of validating them quantitatively? To validate the plots quantitatively, we can measure
the cosine similarity between word pairs in the lower-dimensional representation and
compare that with the higher-dimensional representation. We have already done this
for the higher-dimensional representation in section 7.4.1 (see figure 7.16). As an
exercise, extend the code in section 7.4.1 to also visualize the embeddings generated by
PCA and both the t-SNE models (perplexity = 10 and perplexity = 100). The resulting
plot is shown in figure 7.29. You can check out the solution in the GitHub repository
associated with this book.

 We can see that the PCA representation is not consistent with the original GloVe
representation. For instance, basketball and lebron have lower similarity than basketball
and facebook in the PCA representation. We can, however, see that the representation
learned by t-SNE with a perplexity of 10 preserves as much of the similarity captured
by the original GloVe embedding. The t-SNE with a perplexity of 100 shows all word
pairs with similar meaning and is clearly the worst representation among the three.
This sort of validation will be easier to do at scale than to qualitatively assess a 2-D visu-
alization generated by PCA and t-SNE for all the words of interest. 

Figure 7.28 t-SNE visualization with high perplexity
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Summary
 In this chapter, we focused on the field of natural language processing (NLP),

specifically on the topic of representing words in a form that captures semantic
meaning. We also learned how to interpret and visualize semantic similarity
from these word representations using dimensionality-reduction techniques
like PCA and t-SNE.
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 A naive way of representing words is using one-hot encoding. However, this rep-
resentation is sparse and computationally inefficient and does not encode any
semantic meaning.

 Dense representations of words that encode semantic meaning are called word
embeddings, word vectors, or distributed representations. Representations or
word embeddings learned by neural networks are called neural word embeddings.

 Dense representations of words can be learned using neural network architec-
tures like continuous bag of words (CBOW), skip-gram, and global vectors
(GloVe).

 In the context of interpreting and visualizing semantic similarity in neural word
embeddings, we need an understanding or taxonomy of words to verify whether
the neural word embeddings have learned the semantic meanings properly.

 We can measure semantic similarity using the cosine similarity metric. The met-
ric has a property where word embeddings that are closer together have a
larger score than word embeddings that are further apart. 

 We can visualize higher-dimensional word embeddings in lower dimensions
using dimensionality-reduction techniques such as principal component analy-
sis (PCA) and t-distributed stochastic neighbor embedding (t-SNE).

 Although PCA is a powerful technique, it does suffer from a major drawback: it
assumes that the dataset or the word embeddings can be modeled linearly. This
may not be the case for most of the datasets that we deal with.

 t-SNE falls under the broad class of machine learning techniques called manifold
learning, where the objective is to learn nonlinear structures from higher-
dimensional data in lower dimensions. The technique is one of the most popular
choices for visualizing higher-dimensional data.

 We can quantitatively validate the visualizations generated by PCA and t-SNE
by computing the cosine similarity for different pairs of words and checking to
see if the degree of similarity is consistent with the original higher-dimensional
representation.

 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Part 4

Fairness and bias

Great job making it this far into the book! You now have various interpret-
ability techniques in your toolkit, and you should be well equipped to build
robust AI systems! This final part focuses on fairness and bias and paves the way
for explainable AI.

 In chapter 8, you will learn about various definitions of fairness and how you
can check whether your model is biased. You’ll also learn about techniques to
mitigate bias and a standardizing approach of documenting datasets using data-
sheets that help improve transparency and accountability with the stakeholders
and users of the AI system.

 In chapter 9, we’ll pave the way for explainable AI by discussing how to build
such systems, and you’ll also learn about contrastive explanations using counter-
factual examples.
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Fairness and
 mitigating bias

You have learned a lot so far and have added a lot of interpretability techniques to
your toolkit, ranging from those that you can use to interpret model processing
(chapters 2 to 5) to those for interpreting representations learned by a machine
learning model (chapters 6 and 7). We will now employ some of these techniques to
address an important problem when building systems driven by machine learning

This chapter covers
 Identifying sources of bias in datasets

 Validating whether machine learning models are 
fair using various fairness notions

 Applying interpretability techniques to identify the 
source of discrimination in machine learning 
models

 Mitigating bias using preprocessing techniques

 Documenting datasets using datasheets to 
improve transparency and accountability and to 
ensure compliance with regulation
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models, which is tackling the problem of bias. This problem is important for multiple
reasons. We must build systems that do not discriminate against individuals or users of
the system. If businesses use AI for decision-making, such as providing opportunities to
users or for some quality of service or information, biased decisions can incur a huge
cost to the business by damaging the business’s reputation or by having a negative
impact on their customers’ trust. Certain regions, like the United States and Europe,
have laws that prohibit discriminating against individuals based on protected attri-
butes, such as gender, race, ethnicity, sexual orientation, and so on. Some regulated
industries, such as financial services, education, housing, employment, credit, and
health care, prohibit or restrict the use of protected attributes in decision-making, and
AI systems need to provide certain fairness guarantees. 

 Before we jump into the problem of bias and fairness, let’s recap the process that
we used to build a robust AI system that addresses common issues, such as data leak-
age, bias, regulatory noncompliance, and concept drift, as shown in figure 8.1. The
learning, testing, and understanding phases are done offline and are all about train-
ing the model based on historical labeled data, evaluating it, and understanding it
using various interpretability techniques. Once the model is deployed, it goes online
and starts to make predictions on live data. This model is also monitored to ensure
there is no concept drift, which happens when the distribution of the data in the pro-
duction environment deviates from that in the development and testing environ-
ments. There is also a feedback loop where new data is added back to the historical
training dataset for continuous training, evaluation, and deployment.
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Figure 8.1 Recap of how to build a robust AI system



239

What may be the sources of bias in this system? One source, as shown in figure 8.2, is
the historical training dataset where there may be bias in the labeling process or bias
in the sampling or data-collection process. Another source is the model itself, where
the algorithm may be favoring certain individuals or groups of individuals over others.
If the model is training on a dataset that is itself biased, then the bias is further ampli-
fied. Another source of bias is the feedback loop from the production environment
back to the development and test environments. If the initial dataset or model is
biased, then the deployed model in production will continue to make biased predic-
tions. If the data based on these predictions is fed back as training data, then these
biases are further reinforced and amplified. 

Where does interpretability fit into the problem of bias and fairness? As seen in figure
8.2, we can use interpretability techniques during training and testing to expose issues
with the historical dataset or the model. We have already seen this in action in chapter
3 where biases in ethnicity were exposed in the high school student grade-prediction
problem using partial dependency plots (PDPs). Once the model has been deployed,
we can use interpretability techniques to ensure that the model predictions continue
to be fair. 

 In this chapter, we will delve deeper into the topic of bias and fairness using
another concrete example of predicting the income of adults. We will then come up
with formal definitions for various notions of fairness and use them to determine
whether the model is biased. We will then use interpretability techniques to measure
and expose fairness issues. We will also discuss techniques to mitigate bias. Lastly, we
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will look at a standardizing approach of documenting datasets using datasheets that
will help improve transparency and accountability with the stakeholders and users of
the AI system.

8.1 Adult income prediction
To contextualize the problem of fairness, let’s look at a concrete example. You are
tasked by the Census Bureau to build a model to predict the income of adults in the
United States. The prediction problem is shown in figure 8.3.

As we can see in figure 8.3, we are given various inputs for income prediction, such as
level of education, occupation, age, gender, race, capital gains earned, and so on. We
are tasked with building the income predictor shown as the rectangular box that takes
these inputs and outputs a yes or no answer to the question, “Does the adult earn
more than $50,000 per year?” This problem can, therefore, be formulated as a binary
classification problem because we are interested in a binary answer: yes or no. We will
treat the answer “yes” as the positive label and the answer “no” as the negative label. 

 We are given a historical dataset from the Census Bureau consisting of 30,940
adults. The input features are summarized in table 8.1. From the table, we can see a
mixture of continuous and categorical variables. Most of the datasets that we have
dealt with in this book consisted of continuous features where the feature values are
real numbers. We have seen how to deal with categorical features in chapter 3. To
recap, categorical features are features whose values are discrete and finite. We need
to encode them into numerical values, and we have also seen how to do that in chap-
ter 3 using label encoders. 

Table 8.1 Input features for income prediction

Feature name Description Type Is protected attribute?

age Age of the adult Continuous Yes

workclass Class of worker Categorical No

fnlwgt Final weight assigned 
by the Census Bureau 

Continuous No

Census Bureau income 
predictor

Education

Gender

Age

Race

Capital gains

Occupation

…

Is 
income 
greater 

than 
$50,000?

Yes/No

Figure 8.3 Income predictor for the Census Bureau
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In addition, table 8.1 also shows whether a given feature is a protected attribute. Pro-
tected attributes are attributes that cannot be used to discriminate against an individ-
ual according to legislation largely shared by many countries. In the United States, for
instance, the Civil Rights Act of 1964 protects individuals from discrimination on the
basis of attributes like gender, race, age, color, creed, national origin, sexual orienta-
tion, and religion. In the United Kingdom, individuals with the same attributes are
protected from discrimination according to the Equality Act of 2010. 

 In this dataset, we are dealing with three protected attributes: age, gender, and
race. Age is a continuous feature, and gender and race are categorical. We will primar-
ily focus on gender and race in this chapter, but we will learn how to extend the fair-
ness notions and techniques to a continuous protected attribute like age as well. As for
gender and race, we are dealing with two genders, male and female, and two races,
white and Black, in this dataset. We unfortunately cannot include more gender or
race groups because they are not properly represented in this dataset. 

 Finally, the target variable in this dataset is binary, where 1 is used to indicate that
the adult earns more than $50,000 per year and 0 is used to indicate that the salary is
less than or equal to $50,000 per year. Let’s now explore this dataset, specifically focus-
ing on the distribution of salary overall and for the two protected attributes of inter-
est: gender and race.

8.1.1 Exploratory data analysis

Figure 8.4 shows the overall split of salary, gender, and race in the 30,940 adults in the
dataset provided by the Census Bureau. We can see that the dataset is indeed skewed or
biased. Around 75% of the population earns a salary that is less than or equal to $50K,
and the rest earn a salary greater than $50K. In terms of gender, male adults are more
represented in this dataset than female adults, where around 65% of the population is

education Level of education Categorical No

marital-status Marital status Categorical No

occupation Occupation Categorical No

gender Male or female Categorical Yes

race White or Black Categorical Yes

capital-gain Capital gains Continuous No

capital-loss Capital losses Continuous No

hours-per-week Number of working 
hours per week

Continuous No

native-country Country of origin Categorical No

Table 8.1 Input features for income prediction

Feature name Description Type Is protected attribute?
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male. Similarly for race, we do see a bias toward white adults, in that around 90% of the
adults in the dataset are white. Note that you can find the source code used for explor-
atory data analysis in the GitHub repository associated with this book.

Let’s now look at the distribution of salary for various protected gender and race
groups to determine whether there is any bias there. This is shown in figure 8.5. If we
look at gender, we can see that a higher proportion of male adults than female adults
earn more than $50K. We can also make the same observation for race, where a
higher proportion of white adults than Black adults earns more than $50K. 

Finally, let’s look at the representation of gender for the two races in this dataset,
shown in figure 8.6. We can see that among Black adults, the split between male and
female is pretty even, at around 50%. For white adults, on the other hand, more white
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male adults are represented than white females. This analysis is useful to determine
the main cause of the bias in terms of salary. Because 70% of the white adults are
male, the bias in salary for white adults may be better explained by the gender pro-
tected group where male users may be earning more than female users in the dataset.
For Black adults, on the other hand, because the split between male and female is
pretty even, the main source of bias for Black adults may be the race itself.

It is important to understand the root cause of these biases in the dataset before we
proceed to build the model. We are not sure how the dataset was collected and,
hence, cannot be certain of the root cause. We can, however, hypothesize that the
sources of bias could be the following:

 Sampling bias, where the dataset does not properly represent the true population.
 Labeling bias, where biases may exist in the way that salary information is

recorded for various groups in the population.
 Systemic bias in society. If there is systemic bias, then that bias will be reflected

in the dataset.

As we already discussed in chapter 3, the first problem can be solved by collecting
more data that is representative of the population. In this chapter, we will also learn
about properly documenting the data-collection process using datasheets for
improved transparency and accountability. These datasheets can also be used to deter-
mine the root cause of biases in the dataset. Labeling bias can be fixed by improving
the data-collection process. We will also learn about another technique to correct for
label bias in this chapter. The last problem is much harder to solve, requiring better
policies and laws, and this is beyond the scope of this book.
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8.1.2 Prediction model

From our exploratory analysis, we found some biases in our dataset, the root causes of
which are unfortunately unknown. In the interest of measuring model fairness, we will
now build a model for predicting the income of adults. We will use a random forest
model for this purpose. As you learned in chapter 3, a random forest is a way of com-
bining decision trees, specifically using the bagging technique. An illustration of this
model is shown in figure 8.7. The training data is fed in tabular or matrix form into
the random forest model. Note that the categorical features are encoded into numer-
ical values. Using random forest, we can train multiple decision trees in parallel on
separate random subsets of the training data. Predictions are made using these indi-
vidual decision trees, and all of them are combined to come up with the final predic-
tion. Majority voting is typically used as a way of combining the individual decision
tree predictions into a final one.

As an exercise, write the code to train a random forest model on the adult income
dataset. You can use the code examples from chapter 3 as a reference. Note that you
can use the LabelEncoder class provided by Scikit-Learn to encode the categorical fea-
tures into numerical values. Also, you can try the RandomForestClassifier class pro-
vided by Scikit-Learn to initialize and train the model. You can find the solution to this
exercise in the GitHub repository associated with this book.

 For the remainder of this chapter, we will use a random forest model trained using
10 estimators or decision trees with a maximum depth of 20 for each decision tree.

Random data 
subset 1

Random data 
subset 2

Random data 
subset n

Random feature 
subset 1

Random feature 
subset 2

Random feature 
subset n

Majority voting

Salary > $50K?

Decision 
tree 1

Decision 
tree 2

Decision 
tree n

Age Gender Race … Salary > $50K?

27 0 (Female) 1 (White) … 0

… …  … …  …

56 1 (Male) 0 (Black) … 1

Input features Target

Figure 8.7 An illustration of a random forest model for income prediction
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The performance of this model is summarized in table 8.2. We will consider four met-
rics for model evaluation, namely, accuracy, precision, recall, and F1. These metrics
were introduced in chapter 3, and we have repeatedly used them in previous chapters.
We will also consider a baseline model that always predicts the majority class to be 0,
that is, the income of the adult is always less than or equal to $50K. The performance
of the random forest model is compared with this baseline. We can see that the ran-
dom forest model outperforms the baseline on multiple metrics, achieving an accu-
racy of about 86% (+10% compared to the baseline), a precision of about 85% (+27%
compared to the baseline), a recall of about 86% (+10% compared to the baseline),
and an F1 of about 85% (+19% compared to the baseline). 

Let’s now interpret the random forest model in a couple of ways. First, let’s look at the
importance of the input features as deemed by the random forest model. This will
help us understand the importance of some of the protected group features, as shown
in figure 8.8. You can review the source code used to generate the plot in the GitHub
repository associated with this book. We can see that age (a protected group) is the
most important feature, followed by capital gains. Race and gender, however, seem to
have low importance. It could be that race and gender are encoded in some of the
other features. We can check this by looking at the correlations between the features.
We can also understand how race and gender may interact with some of the other fea-
tures using partial dependence plots (PDPs), as we saw in chapter 3.

Table 8.2 Performance of the income-prediction random forest model

Accuracy (%) Precision (%) Recall (%) F1 (%)

Baseline 76.1 57.9 76.1 65.8

Random forest 85.8 85.3 85.8 85.4
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Next, we can use the SHAP technique to determine how the model makes a single
prediction. As we learned in chapter 4, SHAP is a model-agnostic local interpretability
technique that uses game-theoretic concepts to quantify the impact of features on a
single model prediction. Figure 8.9 shows the SHAP explanation for an adult who
earns more than $50K per year. Note that this data point was not used for training. We
can see how each feature value pushes the model prediction from the base value to a
score of 0.73 (i.e., 73% likelihood that the adult earns more than $50K). The most
important feature values for this instance are capital gains, level of education, and
hours worked per week in descending order.

We will revisit SHAP and dependency plots in the context of fairness again in section
8.3. We will also discuss how to use other interpretability techniques that we have
learned in this book, like network dissection and t-SNE. But before that, let’s learn
about various notions of fairness. 

8.2 Fairness notions
In the previous section, we trained a random forest model to make salary predictions.
The objective of the model was to determine for each adult a binary outcome:
whether or not they earn more than $50K. But were these predictions fair for various
protected groups like gender and race? To formalize the definitions of various notions
of fairness, let’s look at a simple illustration of the predictions made by the model and
the relevant measurements required for fairness. Figure 8.10 depicts an illustration of
the predictions made by the model projected on a two-dimensional plane. The ran-
dom forest model splits the 2-D plane into two halves that separate the positive predic-
tions (on the right half) from the negative predictions (on the left half). The actual
labels of 20 adults have been projected onto this 2-D plane as well. Note that the posi-
tion of the actual labels on the 2-D plane is irrelevant. What matters is whether the
labels fall on the left half (where the model predicts negative, i.e., 0) or on the right
half (where the model predicts positive, i.e., 1). The actual positive labels are shown as
circles and the actual negative labels are shown as triangles. 

 
 
 

Figure 8.9 SHAP explanation for a single prediction where salary is greater than $50K
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Based on the illustration in figure 8.10, we can now define the following basic
measurements: 

 Actual positive labels—Data points for which the ground truth label in the dataset
is positive. In figure 8.10, adults who earn more than $50K per year in the data-
set are shown as circles. If we count the circles, the number of actual positive
labels is equal to 12.

 Actual negative labels—Data points for which the ground truth label in the data-
set is negative. In figure 8.10, adults who earn less than or equal to $50K per
year in the dataset are shown as triangles. The number of actual negative labels
is, therefore, 8.

 Predicted positive—Data points for which the model predicts a positive outcome.
In figure 8.10, data points that fall in the right half of the 2-D plane have a posi-
tive prediction. There are 10 data points that fall in that region. Hence, pre-
dicted positive measurement is 10.

 Predicted negative—Data points for which the model predicts a negative out-
come. In figure 8.10, these are points that fall in the left half of the 2-D plane.
The predicted negative measurement is also 10.

 True positive—In figure 8.10, the true positives are the circles that fall in the
right half of the 2-D plane. They are essentially data points for which the model
predicts positive, and the actual label is also positive. There are eight such cir-
cles, and, therefore, the number of true positives is 8. We can also obtain this
from the confusion matrix as well, where true positives are the cases where the
model predicts 1 and the actual label is 1.

Actual positive label

Actual negative label

Predicted positive

Predicted negative

Predicted positive (1) 
i.e., salary > $50K

Predicted negative (0)
i.e., salary <= $50K

Random forest decision boundary LEGEND

MEASUREMENTS

Actual positive labels = 12 
Actual negative labels = 8 
Predicted positive = 10 
Predicted negative = 10

CONFUSION MATRIX
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0 1

0

1

46

2

Actual

8

Figure 8.10 An illustration of model predictions and measurements relevant for fairness notions
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 True negative—The true negatives, on the other hand, are the triangles that fall
in the left half of the 2-D plane. They are data points for which the model pre-
dicts negative, and the actual label is also negative. In figure 8.10, we can see
that the number of true negatives is 6. From the confusion matrix, these are
cases where the model predicts 0 and the actual label is 0.

 False positive—The false positives are triangles that fall in the right half of the
plane in figure 8.10. They are data points for which the model predicts positive,
but the actual label is negative. From the figure, the number of false positives is
2. From the confusion matrix, these are cases where the model predicts 1, but
the actual label is 0.

 False negative—The false negatives are circles that fall in the left half of the 2-D
plane. They are essentially data points for which the model predicts negative,
but the actual label is positive. Since there are four circles in the left half of fig-
ure 8.10, the number of false negatives is 4. From the confusion matrix, these
are cases where the model predicts 0, but the actual label is 1.

With these basic measurements in place, let’s now define various notions of fairness.

8.2.1 Demographic parity

The first notion of fairness that we will consider is called demographic parity. The demo-
graphic parity notion is sometimes also called independence, statistical parity, and,
legally, disparate impact. It asserts that for the model, parity exists in the positive predic-
tion rates for different protected groups. Let’s look at the example illustrated in fig-
ure 8.11. In the figure, the 20 adults—as we saw in figure 8.10—have been separated
into two groups, A and B, one for each of the protected gender groups. Group A con-
sists of male adults and has 10 data points in its 2-D plane. Group B consists of female
adults with 10 data points in its 2-D plane. 

 Based on the illustration in figure 8.11, we can now calculate the basic measure-
ments described earlier. For male adults, there are six actual positives, four actual neg-
atives, five predicted positives, and five predicted negatives. For female adults, we can

Protected group A 
(gender = male)

Protected group B 
(gender = female)

Positive rate = = 50%5
10Positive rate = = 50%5

10

Figure 8.11 An illustration of demographic parity for two protected gender groups
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see that the actual positives/negatives and predicted positive/negatives are the same as
for male adults. The positive rate for both male and female adults is the proportion of
adults in each group for which the model predicts positive. We can see from figure 8.11
that the positive rates for both male and female users are the same—equal to 50%. We
can, therefore, assert that there is demographic parity between the two groups.

 Let’s look at this from a practical standpoint. Assume that the model predictions
are used to allocate a scarce resource, say, a housing loan. Let’s also assume that adults
who earn more than $50K are more likely to be able to afford a house and pay off the
loan. If a decision like a housing loan application is made based on the model predic-
tion, where loans are granted to adults who earn more than $50K, then demographic
parity will ensure that the loans are granted at an equal rate for both male and female
adults. Demographic parity asserts that the model predicts that the salary of male and
female adults is greater than $50K with equal likelihood. 

 Let’s now define demographic parity more formally and use this definition to
check whether our random forest model is fair using this notion. Let’s represent the
model predictions as ŷ and the protected group variable as z. The gender protected
group can have two possible values for the variable z:: 0 for female adults and 1 for
male adults. For the race protected group as well, the variable z can have two possible
values: 0 for Black adults and 1 for white adults. Demographic parity requires that the
probability that the model predicts positive for one protected group is similar or equal
to the probability that the model predicts positive for the other protected group. The
probability measures are similar if their ratio is between thresholds τ1 and τ2, where
the thresholds are typically 0.8 and 1.2, respectively. The thresholds are 0.8 and 1.2, to
closely follow the 80% rule in legal literature for disparate impact, as shown by the
next equation. The probability measures are equal if the ratio is 1:

Now, how would we use this definition for a protected group feature that is categorical
but with more than two values? In this example, we considered only two races: white
and Black. What if there were more races in the dataset? Note that individuals could be
multiracial, where they identify with multiple races. We will treat them as a separate
race to ensure there is no discrimination toward individuals who identify as multiple
races. In such a scenario with more than two races, we would define the demographic
parity ratio metric for each race and take a one-vs.-all strategy, where z = 0 represents
the race of interest and z = 1 represents all the other races. Note that individuals who
are multiracial could belong to multiple groups. We will then need to ensure that the
demographic parity ratio is similar for every race when compared to all other races.
How about for a protected group feature that is continuous, like age? In this case, we
would need to split the continuous feature into discrete groups and then apply the
one-vs.-all strategy.
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 With the definition now in place, let’s see if the random forest model is fair. The
following code snippet evaluates the model using the demographic parity notion: 

male_indices_test = X_test[X_test['gender'] == 1].index.values  
female_indices_test = X_test[X_test['gender'] == 0].index.values 
white_indices_test = X_test[X_test['race'] == 1].index.values  
black_indices_test = X_test[X_test['race'] == 0].index.values  

y_score = adult_model.predict_proba(X_test)  

y_score_male_test = y_score[male_indices_test, :]   
y_score_female_test = y_score[female_indices_test, :] 
y_score_white_test = y_score[white_indices_test, :]  
y_score_black_test = y_score[black_indices_test, :]  

dem_par_gender_ratio = np.mean(y_score_female_test

➥ [:, 1]) / np.mean(y_score_male_test[:, 1])  
dem_par_race_ratio = np.mean(y_score_black_test

➥ [:, 1]) / np.mean(y_score_white_test[:, 1]) 

Note that in this code snippet, we are using the label-encoded dataset and the model
trained in section 8.1.2. The label-encoded input features are stored in the X_test
data frame, and the random forest model is named adult_model. Note that you can
obtain the code used for data preparation and model training from the GitHub repos-
itory associated with this book. We are computing the demographic parity ratio as the
ratio of average probability scores for predicting the positive class of one of the groups
(female/Black adults) to its counterpart groups (male/white adults). Once we have
computed the demographic parity ratios for the gender and race groups, we can plot
the metric using the following code snippet:

def plot_bar(values, labels, ax, color='b'):  
    bar_width = 0.35 
    opacity = 0.9  
    index = np.arange(len(values))  
    ax.bar(index, values, bar_width,  
           alpha=opacity,  
           color=color)  
    ax.set_xticks(index)  
    ax.set_xticklabels(labels)  
    ax.grid(True);                         

threshold_1 = 0.8  
threshold_2 = 1.2 

Loads the indices for male adults in the 
test set where the encoded gender = 1

Loads the indices for female adults in the 
test set where the encoded gender = 0 Loads the indices for white

adults in the test set where
the encoded race = 1

Loads the 
indices for 
Black adults 
in the test set 
where the 
encoded 
race = 0

Gets the model predictions for 
all the adults in the test set

Obtains the model predictions 
for the two gender groups

Obtains the model predictions 
for the two race groups

Computes the demographic 
parity ratio for the two 
gender groups

Computes the demographic parity 
ratio for the two race groups

Helper function called 
plot_bar used to plot 
the bar chart

Sets the thresholds for the 
demographic parity ratio
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f, ax = plt.subplots() 
plot_bar([dem_par_gender_ratio, dem_par_race_ratio],   
         ['Gender', 'Race'],  
         ax=ax, color='r') 
ax.set_ylabel('Demographic Parity Ratio') 
ax.set_ylim([0, 1.5]) 
ax.plot([-0.5, 1.5],   
        [threshold_1, threshold_1], "k--", 
        linewidth=3.0)
ax.plot([-0.5, 1.5],  
        [threshold_2, threshold_2], "k--",  
        label='Threshold',  
        linewidth=3.0)                      
ax.legend(); 

The resulting plot is shown in figure 8.12. We can see that the demographic parity
ratios are 0.38 and 0.45, respectively, for gender and race. They are not within the
threshold and, therefore, the random forest model is not fair for both protected
groups using the demographic parity notion. We will see how to mitigate bias and
train a fair model in section 8.4.

8.2.2 Equality of opportunity and odds
The demographic parity notion is useful for scenarios where we want to ensure parity
in the treatment of all protected groups, irrespective of their prevalence in the popu-
lation. It ensures that the minority group is treated the same way as the majority
group. In some scenarios, we might want to consider the distribution of the actual
label for all protected groups. For example, if we are interested in employment oppor-
tunities, one group of individuals may be more interested in and qualified for certain
jobs than other groups. We may not want to ensure parity in such a scenario because
we may want to ensure that job opportunities are given to the right group of individu-
als who are more interested in and qualified for it. We can use the equality of opportu-
nity and odds fairness notion in such a scenario.

 Let’s go back to the illustration used for demographic parity to build up our intu-
ition. In figure 8.13, the separation of the 20 adults in groups A (male) and B

Initializes a 
Matplotlib plot

Plots the demographic parity ratios 
for gender and race as bar charts

Sets the label for the y-axis

Limits the y-axis to 
values between –0.5 
and 1.5

Plots threshold_1 as 
a horizontal line

Plots threshold_2 as 
a horizontal line

Displays the legend for the plot
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(female) is the same as what we saw for demographic parity in figure 8.11. For equality
of opportunity and odds, we are interested in measurements that take into account
the distribution of the actual label for each of the protected groups. These measure-
ments are computed in figure 8.13 as the true positive rate and the false positive rate.
The true positive rate measures the probability that an actual positive is predicted pos-
itive and is computed as the ratio of the number of the true positives to the sum of the
number of true positives and false negatives. In other words, the true positive rate
measures the percentage of actual true cases that the model got right, also called
recall. For group A (male), the true positive rate is about 66.7%, and for group B
(female), the true positive rate is 50%. We say there is equality of opportunity when
parity exists in the true positive rates between the groups. Because the true positive
rates do not match in the toy example illustrated in figure 8.13, we can say that we
have not achieved equality of opportunity for the gender protected group. 

Equality of odds extends the definition of equality of opportunity to another symmet-
ric measurement called false positive rate. False positive rate measures the probability
that an actual negative event is predicted as positive. It is computed as the ratio of the
number of false positives to the sum of the number of false positives and true nega-
tives. We can assert that equality of odds exists when there is parity in the true positive
rates and false positive rates between the protected groups. In the toy example illus-
trated in figure 8.13, there is no parity in the true positive rates between groups A and
B, so we cannot say equality of odds exists. Moreover, the false positive rates also do
not match between the two groups. 

Protected group A 
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Figure 8.13 An illustration of equality of opportunity and odds for two protected gender groups
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 We can define equality of opportunity and odds more formally using the equations
that follow. The first equation essentially computes the difference in the true positive
rates between the two groups. The second equation computes the difference in the
false positive rates between the two groups. Parity is present when the difference is
equal to or close to 0. This notion is different from the demographic parity notion in
that it considers the distribution of the actual label—positive for the true positive rate
and negative for the false positive rate. In addition, the demographic parity notion
compares the probabilities as a ratio rather than additively, closely following the “80%
rule” in the legal literature:

Now let’s see if our random forest model is fair using this notion. We can compare the
true positive rate and false positive rate using the receiver operator characteristic
(ROC) curve. The ROC curve essentially plots the true positive rate against the false
positive rate. For equality of opportunity and odds, we can then use the area under
the curve (AUC) as an aggregate measure of performance to easily compare the per-
formance of the model for each of the protected groups. We can look at the differ-
ence in the AUC between the groups to see how fair the model is. The next code
snippet shows how to compute the true/false positive rates and the AUC:

from sklearn.metrics import roc_curve, auc 

def compute_roc_auc(y_test, y_score): 
    fpr = dict()     
    tpr = dict() 
    roc_auc = dict()  
    for i in [1]:  
        fpr[i], tpr[i], _ = roc_curve(y_test, 
        ➥ y_score[:, i])  
        roc_auc[i] = auc(fpr[i], tpr[i])  
    return fpr, tpr, roc_auc 

fpr_male, tpr_male, roc_auc_male = compute_roc_auc(y_male_test,   
                                                   y_pred_proba_male_test) 
fpr_female, tpr_female, roc_auc_female = compute_roc_auc(y_female_test,  
                                                         d_proba_female_test)
fpr_white, tpr_white, roc_auc_white = compute_roc_auc(y_white_test,   
                                                      y_pred_proba_white_tes
fpr_black, tpr_black, roc_auc_black = compute_roc_auc(y_black_test, 
                                                     y_pred_proba_black_test)

Imports the roc_curve and auc helper functions from Scikit-Learn Defines a helper function to 
compute the ROC and AUC for 
each of the protected groups

Defines dictionaries for the true/false positive rates and AUC 
to store the metrics for each of the classes in the dataset

For the actual label, computes the 
true/false positive rates and AUC 
and stores them in dictionaries

Returns the
dictionaries

to the
caller of the

function
Uses the helper function to compute

the metrics for male adults
Uses the

helper
function to

compute the
metrics for

female adults

Uses the helper function to compute
the metrics for white adults

Uses the helper function to compute 
the metrics for Black adults
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Once the metrics have been computed for each of the protected groups, we can use
the following code snippet to plot the ROC curve: 

lw = 1.5 
f, ax = plt.subplots(1, 2, figsize=(15, 5)) 
ax[0].plot(fpr_male[1], tpr_male[1],   
        linestyle='-', color='b', 
        lw=lw,   
        label='Male (Area = %0.2f)' % roc_auc_male[1])    
ax[0].plot(fpr_female[1], tpr_female[1],   
        linestyle='--', color='g', 
        lw=lw,   
        label='Female (Area = %0.2f)' % roc_auc_female[1])  
ax[1].plot(fpr_white[1], tpr_white[1],  
        linestyle='-', color='c', 
        lw=lw,  
        label='White (Area = %0.2f)' % roc_auc_white[1]) 
ax[1].plot(fpr_black[1], tpr_black[1],  
        linestyle='--', color='r', 
        lw=lw, 
        label='Black (Area = %0.2f)' % roc_auc_black[1])  
ax[0].legend()  
ax[1].legend() 
ax[0].set_ylabel('True Positive Rate')  
ax[0].set_xlabel('False Positive Rate')  
ax[1].set_ylabel('True Positive Rate')  
ax[1].set_xlabel('False Positive Rate')  
ax[0].set_title('ROC Curve (Gender)')  
ax[1].set_title('ROC Curve (Race)')  

The resulting plot is shown in figure 8.14. The first column in the plot compares the
ROC curves for the two gender groups: male and female. The second column com-
pares the ROC curves for the two race groups: white and Black. The area under the
curve is shown in the legend for both plots. We can see that the AUC is 0.89 for male
adults and 0.92 for female adults. The difference is roughly 3% skewed toward female
adults. The AUC for white adults, on the other hand, is 0.9 and for Black adults, 0.92.
The difference is roughly 2% skewed toward Black adults. Unlike demographic parity,
unfortunately, no guidelines from the legal or research communities exist on what
thresholds to use for the AUC difference metric to consider a model fair. In this chap-
ter, if the difference is statistically significant, we will treat the model as unfair using
the equality of opportunity and odds notion. We will see if these differences are signif-
icant using confidence intervals in section 8.3.1. 

 
 
 
 
 

Sets the line width for the line chart Initializes the Matplotlib plot consisting 
of one row and two columns

In the first column, 
plots the ROC curve 
for male adults

In the first column, 
plots the ROC curve 
for female adults

In the second column, 
plots the ROC curve 
for white adults

In the second column, 
plots the ROC curve for 
Black adults

Annotates and 
labels the plot
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8.2.3 Other notions of fairness

The most commonly used notions of fairness are demographic parity and equality of
opportunity/odds. But, for awareness, let’s also look at the following other notions of
fairness:

 Predictive quality parity—No difference exists in the prediction quality between
different groups. The prediction quality can be either the accuracy of the
model or any other performance metric, like F1.

 Treatment equality—The model treats the groups equally, whereby parity exists in
the false prediction rate. The false prediction rate is quantified as the ratio of
the false negatives to the false positives.

 Fairness through unawareness—Fairness can be achieved by not explicitly using
the protected attributes as features for prediction. In an ideal world, the other
features used by the model are not correlated with the protected attributes, but
this is almost always not the case. Hence, achieving fairness through unaware-
ness is not guaranteed. We will see this in action in section 8.4.1.

 Counterfactual fairness—A model is fair to an individual if it makes the same pre-
diction if that individual belongs to another protected group in a counterfac-
tual world. 

We can divide all the notions of fairness into two categories—group fairness and individ-
ual fairness. Group fairness ensures that the model is fair for different protected
groups. For the adult income dataset, protected groups are gender, race, and age.
Individual fairness, on the other hand, ensures that the model makes similar predic-
tions for similar individuals. For the adult income dataset, individuals can be similar
based on their level of education, country of origin, or hours worked per week, to
name a few examples. Table 8.3 shows which category the different notions of fairness
belong to.
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False positive rate False positive rate
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Figure 8.14 Received operator characteristic (ROC) curve for gender and race
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8.3 Interpretability and fairness
In this section, we will learn how to use interpretability techniques to detect the
source of discrimination due to the model. The source of discrimination can be
broadly categorized into the following two groups:

 Discrimination via input features—Fairness issues that can be traced back to the
input features.

 Discrimination via representation—Fairness issues that are hard to trace back to
the input features, especially for deep learning models that process inputs like
images and text. For such cases, we could instead trace the source of discrimina-
tion to deep representations learned by the model.

8.3.1 Discrimination via input features

Let’s first look at discrimination via input features. When we looked at the various fair-
ness notions in section 8.2, we saw by processing the model output that the random for-
est model is not fair using the demographic parity and equality of opportunity/odds
fairness measures. How can we explain these measures of fairness by tracing back to the
inputs? We can make use of SHAP for this purpose. As we saw in chapter 4 and in sec-
tion 8.1.2, SHAP decomposes the model output into Shapley values for each of the
inputs. These Shapley values are of the same unit as the model output—if we sum up
the Shapley values for all the features, we will get a value that matches the model output
that measures the probability of predicting a positive outcome. We saw an illustration
of this in section 8.1.2. Because the Shapley values for the input features sum up to the
model output, we can attribute differences in the model output (and, in turn, the fair-
ness measures) between protected groups back to differences in the Shapley values for
each of the inputs. This is how you would trace any discrimination or fairness issues
back to the inputs. 

Table 8.3 Group and individual fairness notion

Fairness notion Description Category

Demographic parity Parity in the positive prediction rates for different protected groups Group

Equality of opportu-
nity and odds

Parity in the true positive rates and false positive rates for differ-
ent protected groups

Group

Predictive quality parity Parity in the prediction quality for different protected groups Group

Treatment equality Parity in the false prediction rates for different protected groups Group

Fairness through 
unawareness

Fairness achieved by not explicitly using protected attributes as 
features for prediction

Individual

Counterfactual 
fairness

Similar prediction for an individual if that individual belonged to 
another protected group in a counterfactual world

Individual
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 Let’s see this in action using code. The following code snippet defines a helper
function to generate SHAP differences between protected groups and can be used to
generate visualizations for differences in the model output traced back to the input:

def generate_shap_group_diff(df_X,  
                             y,  
                             shap_values,
                             notion='demographic_parity', 
                             protected_group='gender', 
                             trace_to_input=False): 
    if notion not in ['demographic_parity', 
    ➥ 'equality_of_opportunity']:  
        return None 
    if protected_group not in ['gender', 'race']:  
        return None  
    if notion == 'demographic_parity':  
        flabel = 'Demographic parity difference' 
    if notion == 'equality_of_opportunity':  
        flabel = 'Equality of opportunity difference'
        positive_label_indices = np.where(y == 1)[0]  
        df_X = df_X.iloc[np.where(y == 1)[0]]  
        shap_values = shap_values[np.where(y == 1)[0],:]  
    if protected_group == 'gender':  
        pg_label = 'men v/s women' 
        mask = df_X['gender'].values == 1  
    if protected_group == 'race':  
        pg_label = 'white v/s black' 
        mask = df_X['race'].values == 1  
    glabel = f"{flabel}\nof model output for {pg_label}" 
    xmin = -0.8  
    xmax = 0.8 
    if trace_to_input: 
        shap.group_difference_plot(shap_values,  
                                   mask,  
                                   df_X.columns, 
                                   xmin=xmin,  
                                   xmax=xmax,  
                                   xlabel=glabel, 
                                   show=False)      
    else: 
        shap.group_difference_plot(shap_values.sum(1),  
                                   mask, 
                                   xmin=xmin,   
                                   xmax=xmax,   
                                   xlabel=glabel,  
                                   show=False)          

We’ll first use the helper function to check the demographic parity difference in the
model output for the gender protected group, as shown in the next code sample.
Note that we are looking at model predictions only in the test set. The shap_values

Helper function to generate the SHAP group 
difference plot that takes six inputs. Input 1: 
DataFrame of feature values

Input 2: Vector of target values

Input 3: SHAP values generated 
for the input features

Input 4: Fairness notion that
can be demographic_parity
of equality_of_opportunity

Input 5: Protected 
group that can be 
either gender or race

Input 6: Flag to indicate 
whether to trace the source of 
discrimination to the inputs

Returns None for fairness notions 
and protected groups that are not 
supportedSets the

label for the
demographic
parity notion

Sets the label and processes 
only the actual positives for 
the equality of opportunity 
notion

Sets the label and mask for 
the gender protected group

Sets the label and mask for 
the race protected group

Sets the label for 
visualization

Restricts the visualization 
to xmin and xmax

Creates visualization 
when trace_to_input 
is set to True

Creates visualization 
when trace_to_input 
is set to False
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variable contains the Shapley values for all the inputs and adults in the dataset. We
generated this in section 8.1.2, and you can find the source code in the GitHub repos-
itory associated with this book:

test_indices = X_test.index.values 
generate_shap_group_diff(X_test,  
                         y_test, 
                         shap_values[1][test_indices,:],  
                         notion='demographic_parity',  
                         protected_group='gender',  
                         trace_to_input=False)  

The resulting visualization is shown in figure 8.15. Note that the difference can be
positive or negative. If the difference is positive, then the model is biased toward male
adults, and if the difference is negative, then the model is biased toward female adults.
We can see in figure 8.15 that the random forest model is skewed toward male adults
where it predicts positive (i.e., salary > $50K) more for male adults.

To determine what is causing the demographic parity difference between male and
female adults, we can trace it back to the input features using the following code snippet:

generate_shap_group_diff(X_test,  
                         y_test, 
                         shap_values[1][test_indices,:],  
                         notion='demographic_parity',  
                         protected_group='gender',  
                         trace_to_input=True)  

The resulting plot is shown in figure 8.16. We can see that the bias is primarily coming
from three features: relationship, gender, and marital status. By identifying the fea-
tures that are causing the model to violate the demographic parity fairness notion, we
can take a closer look at the data to understand what the cause of the bias is for these
features, as we discussed in section 8.1.1.

 As an exercise, use the helper function to determine whether a difference exists in
the equality of opportunity fairness measure and trace it back to the inputs. You can
set the notion input parameter to equality_of_opportunity so that the function will
look only at the difference in model outputs and Shapley values for the actual posi-
tives in the dataset. 

 

Extracts the indices of 
the inputs in the test set

Invokes the helper function 
to generate the SHAP plot 
with the appropriate inputs
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of model output for men vs. women

Figure 8.15 SHAP 
demographic parity difference 
in model output for gender

Invokes the helper function with 
the same inputs as before but 
with trace_to_input set to True
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Figure 8.17 shows the resulting visualization for the model output. We can see that the
difference in true positive rates between male and female adults is statistically significant
where the model is skewed toward male adults when predicting a positive outcome. We
can say, therefore, that the model is unfair using the equality of opportunity notion. You
can trace the bias back to the inputs by setting the trace_to_input parameter to True.

–0.8 –0.6 –0.4 –0.2 0.0 0.2 0.4 0.6 0.8
Demographic parity difference

of model output for men vs. women
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Figure 8.16 SHAP 
demographic parity 
difference for gender 
traced back to the 
inputs
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Equality of opportunity difference of 
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Figure 8.17 SHAP equality 
of opportunity difference for 
gender
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8.3.2 Discrimination via representation

In some cases, it is hard to trace the discrimination issue or differences in fairness mea-
sures back to the inputs. For example, if the input is an image or a text, it will be hard
to trace differences in fairness measures back to pixel values or values in word repre-
sentations. In such cases, a better option would be to detect any bias in the representa-
tions learned by the models. Let’s look at a simple example where the objective is to
train a model to detect whether an image contains a doctor. Let’s suppose that we have
trained a convolutional neural network (CNN) that predicts whether an image con-
tains a doctor. If we want to check whether this model is biased toward any protected
group like gender, we can make use of the network dissection framework that we
learned in chapter 6 to determine whether the model has learned any concepts spe-
cific to the protected attribute. The high-level process is shown in figure 8.18. 

In figure 8.18, we focus on the gender protected attribute. The first step is to define a
dictionary of gender-specific concepts. The figure shows an example where an image
has been labeled at the pixel level for the various gender concepts such as male,
female, and nonbinary. The next step is to probe the pretrained network followed by
quantifying the alignment of each unit and layer in the CNN with the gender-specific
concepts. Once we have quantified the alignment, we can check how many unique
detectors exist for each of the gender concepts. If one of the genders has more
unique detectors, we can say that the model seems to have learned a representation
that is biased to that gender.

Define a dictionary of 
candidate concepts.

Interpret units and 
layers by quantifying 

alignment.

Step 1

Step 2

Step 3

Gender 
concepts: 

male, 
female, 

nonbinary

Deep 
neural 

network

Q

Quantify alignment
Area of union

Area of intersection

Query
concept

Representation
from model

Probe the pretrained
neutral network.

Figure 8.18 A high-level illustration of how to use the network dissection 
framework to check for bias in the learned representations
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 Let’s now look at an example where the input to the model is in the form of text.
We learned in chapter 7 how to come up with dense and distributed representations
of words that convey semantic meaning. How can we check whether the representa-
tions learned by the model are biased toward a protected group? If we look at the doc-
tor example, is the word doctor gender neutral or biased toward any gender? We can
check this by using of the t-distributed stochastic neighbor embedding (t-SNE) tech-
nique that we learned in chapter 7. We will, however, first need to come up with a tax-
onomy for words so that we know which words are gender neutral and which words
are associated with a particular gender, like male or female. Once we have the taxon-
omy, we can use t-SNE to visualize how close the word doctor is to other words in the
corpus. If the word doctor is closer to other gender-neutral words like hospital or health-
care, the representation learned by the model for doctor is not biased. If, on the other
hand, the word doctor is closer to gender-specific words like man or woman, then the
representation is biased.

8.4 Mitigating bias
We have the following three broad ways of mitigating bias in a model:

 Preprocessing—We apply these methods before training the model in an aim to
mitigate bias in the training dataset. 

 In-processing—We apply these methods during model training. The fairness
notion is explicitly or implicitly incorporated into the learning algorithm such
that the model optimizes not just for performance (like accuracy) but also for
fairness. 

 Postprocessing—We apply these methods after model training to the predictions
made by the model. The model predictions are calibrated to ensure that the
fairness constraint is met.

We will focus on two preprocessing methods in this section.

8.4.1 Fairness through unawareness

One common preprocessing method is to remove any protected features from the
model. In certain regulated industries like housing, employment, and credit, it is for-
bidden by law to use any protected features as inputs to a model used for decision-
making. For the random forest model that we’ve trained for adult income prediction,
let’s try to remove the two protected features of interest—gender and race—and see if
the model is fair using the equality of opportunity/odds notion. As an exercise,
remove the label-encoded gender and race features from the random forest model
and retrain the model using the same hyperparameters as earlier. Check out the solu-
tion in the GitHub repository associated with this book. 

 The performance of the retrained model in terms of the ROC curve is shown in fig-
ure 8.19. As we saw in section 8.2.2, the ROC curve was used to plot the true positive rate
against the false positive rate, and we can use the AUC obtained from this ROC curve



262 CHAPTER 8 Fairness and mitigating bias

to check whether the model is fair given the equality of opportunity and odds notion.
For the previous random forest model that used gender and race as input features, the
AUC difference was 3% between gender groups and 2% between race groups. By using
fairness through unawareness, the difference between the race groups has reduced to
1%, but with no change to the difference between the gender groups. Fairness through
unawareness, therefore, does not provide any fairness guarantees. Other features could
be highly correlated with these protected groups and could act as a proxy for gender
and race. Moreover, we also see a degradation in model performance for all the groups
where the AUC has reduced when compared to the previous random forest model. As
we mentioned earlier, certain regulated industries require us to use fairness through
unawareness by law. Even though the model is not guaranteed to be fair, the law
requires that such industries not use any protected features in the model.

8.4.2 Correcting label bias through reweighting

Heinrich Jiang and Ofir Nachum proposed another preprocessing technique in 2019
that provides fairness guarantees. In the research paper published by the authors, avail-
able at https://arxiv.org/abs/1901.04966, they provide a mathematical formulation of
biases that could arise in the training dataset. They assume that biases could occur in
the observed labels in the dataset (also called label bias), and this could be corrected
by iteratively reweighting the data points in the training dataset without changing the
observed labels. They provide theoretical guarantees for this algorithm for a variety of
fairness notions, such as demographic parity and equality of opportunity/odds. You
can refer to the original paper to learn more about the mathematical formulation and
the proofs. In this section, we will provide an overview of the algorithm and use the
implementation provided by the authors at http://mng.bz/Ygjj. 

 The algorithm for correcting bias through reweighting is hinged on a key assump-
tion. The labels observed in the dataset are based on an underlying true and unbiased
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Figure 8.19 ROC curve for gender and race: fairness through unawareness
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set of labels that is unknown. The observed dataset is biased due to a labeler or pro-
cess that is introducing the bias. The key assumption is that the source of this bias is
unintentional and potentially due to unconscious or inherent biases. Based on this
assumption, the authors of the paper mathematically prove that it is possible to build
an unbiased classifier that is potentially trained on the unknown, unbiased dataset
through reweighting of the features in the observed, biased dataset. This is illustrated
in figure 8.20.

The label bias reweighting algorithm is iterative and is summarized in figure 8.21.
Let’s assume that there are K protected groups in the dataset and N features. For the
adult income dataset, the number of protected groups that are considered are four
(two gender groups and two race groups). The dataset contains 14 features. Before
running the algorithm, we need to initialize coefficients for each of the protected
groups with a value of 0. We also need to initialize weights for each of the features with
a value of 1. 

 With the coefficient and weights initialized, the next step is to train a model using
these weights. Because we are considering the random forest model in this chapter,
the model trained in this step will be identical to the model trained in section 8.1.2.
The next step is to compute the fairness violations for this model for each of the K
protected groups. The fairness violation is dependent on the specific notion that we
are interested in. If the fairness notion is demographic parity, then the fairness viola-
tion for a protected group is the difference in the overall average positive rate for the
model and the average positive rate for that specific protected group. If the fairness
notion is equality of opportunity, then we need to consider the difference in the over-
all average true positive rate and the average true positive rate for the specific pro-
tected group. Once we have computed the fairness violations, the next step is to
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update the coefficients for each of the protected groups. The objective of the algo-
rithm is to minimize the fairness violation, so we update the coefficients by subtracting
the fairness violations from it. The final step is to then update the weights for each of
the features using the coefficients for the protected groups. The formula for updating
the weights is shown in figure 8.21, and you can see the derivation of this formula in
the original paper published by the authors of this algorithm. The steps in this para-
graph are then repeated T times where T is a hyperparameter that represents the
number of iterations for which we want to run the algorithm.

Now let’s apply this algorithm to the adult income dataset the model trained earlier.
But before running the algorithm, we first need to prepare the data using the follow-
ing code snippet. The idea is to convert the label-encoded gender and race features
into one-hot encoded features where there is one column for each of the four pro-
tected groups (male, female, white, and Black adults) and a value of 0 or 1 to indicate
whether the adult belongs to that specific protected group:

from functools import partial 
def prepare_data_for_label_bias(df_X, protected_features,  
                                protected_encoded_map): 
    df_X_copy = df_X.copy(deep=True) 
    def map_feature(row, feature_name, feature_encoded):  
        if row[feature_name] == feature_encoded: 
            return 1  
        return 0 
    

Initialize: 
1. Coefficients 1, 2, … , K to 0
2. Weights w1, w2, … , wN to 1

Repeat for T iterations.

Train the model with weights w1, w2, … , wN.

Compute fairness violations for the K 
protected groups.

For each protected group, update the 
coefficients ( 1, 2, … , K) by 

subtracting the fairness violation from it.

For each feature, update the weights
(w1, w2, ... , wN) as follows:

If label = 1, wi = 1 – wi

•

•

exp(� exp(�+ –) )K �k �kk=1
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Figure 8.21 Label bias reweighting algorithm
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    colname_func_map = {}  
    for feature_name in protected_features: 
        protected_encoded_fv = protected_encoded_map
        ➥ [feature_name]  
        for feature_value in protected_encoded_fv:  
            colname = f"{feature_name}_{feature_value}"  
            colname_func_map[colname] = partial
            ➥ (map_feature,   
                feature_name=feature_name,  
                feature_encoded=protected_encoded_fv[feature_value])  
    
    for colname in colname_func_map:  
        df_X_copy[colname] = df_X_copy.apply
        ➥ (colname_func_map[colname],   
            axis=1)  
    df_X_copy = df_X_copy.drop(columns=protected_features) 
    return df_X_copy 

You can then use this helper function to prepare the dataset as follows. Note that a
mapping of each protected group to its corresponding label-encoded value is created
before invoking the helper function: 

protected_features = ['gender', 'race'] 
protected_encoded_map = {  
    'gender': { 
        'male': 1,  
        'female': 0  
    },  
    'race': {  
        'white': 1,  
        'black': 0 
    }  
}                                       
df_X_lb = prepare_data_for_label_bias(df_X,   
                                      protected_features, 
                                      protected_encoded_map)  
X_train_lb = df_X_lb.iloc[X_train.index]  
X_test_lb = df_X_lb.iloc[X_test.index] 

PROTECTED_GROUPS = ['gender_male', 'gender_female', 'race_white', 'race_black']
protected_train = [np.array(X_train_lb[g]) for g 

➥ in PROTECTED_GROUPS] 
protected_test = [np.array(X_test_lb[g]) for g 

➥ in PROTECTED_GROUPS] 

Once you have prepared the dataset, you can easily plug it into the label bias reweight-
ing algorithm. You can find the source code for this algorithm in the GitHub repository
(http://mng.bz/Ygjj) published by the authors of the paper. In the interest of space, we
will not rehash that code in this section. As an exercise, run through the algorithm and
determine the weights for each of the data points in the training dataset. Once you have
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determined the weights, you can then retrain the unbiased random forest model by
using the following code snippet:

model_lb = create_random_forest_model(10, max_depth=20) 
model_lb.fit(X_train_lb,  
                 y_train, 
                 weights)  

The performance of the retrained model in terms of the ROC curve is shown in figure
8.22. We can see that the differences in AUC between the gender groups and race
groups are both 1%. This model is, therefore, fairer in terms of equality of opportu-
nity and odds than the previously trained random forest model with gender and race
as features and the model trained without those features. 

8.5 Datasheets for datasets
While exploring the adult income dataset in section 8.1.1, we noticed that some pro-
tected groups (such as female and Black adults) were not properly represented, and
biases existed in the labels for these groups. We identified a few sources of bias,
namely, sampling bias and label bias, but we could not identify the root cause of the
bias. The primary reason for this is that the data-collection process for this dataset is
unknown. In a paper published by Timnit Gebru and other researchers at Google and
Microsoft in 2020, a standardized process was proposed to document datasets. The
idea is for data creators to come up with a datasheet that answers key questions
regarding the motivation, composition, data-collection process, and uses of a dataset.
Some of the key questions are highlighted next, but a more thorough study of this can
be found in the original research paper at https://arxiv.org/pdf/1803.09010.pdf: 

Uses the helper function learned in chapter 
3 to create the random forest model

Invokes the fit method and passes in the 
prepared dataset and the weights obtained 
using the label bias reweighting algorithm
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Figure 8.22 ROC curve for gender and race after correcting for label bias
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 Motivation
– For what purpose was the dataset created? The goal of this question is to

understand whether the dataset is meant for a specific task or to address a
specific gap or need.

– Who created the dataset? The goal is to identify an owner for the dataset,
which could be an individual, team, company, organization, or institution.

– Who funded the creation of the dataset? The goal is to understand whether
the dataset is associated with a research grant or any other source of funding.

 Composition
– What does the dataset represent? The goal is to understand whether the data

represents documents, photos, videos, people, countries, or any other
representation.

– How many examples in the dataset? This question is self-explanatory and is
meant to understand the size of the dataset in terms of the number of data
points or examples.

– Does the dataset contain all possible examples, or is it a sample from a larger
dataset? The goal is to understand whether the dataset is a sample from a
larger dataset or population. This will help us check whether any sampling
bias exists.

– Is the dataset labeled? The goal is to check whether the dataset is raw or
labeled.

– Does the dataset rely on external sources? The goal is to identify whether
there is any external source or dependency for the dataset such as websites,
tweets on Twitter, or any other dataset.

 Collection process
– How was the data acquired? This question helps us understand the data-

collection process.
– What was the sampling strategy used, if applicable? This is an extension of

the sampling question in the Composition section and helps us check
whether any sampling bias exists.

– Over what timeframe was the data collected?
– Was the data collected from individuals directly or through a third party?
– If the data is related to people, was their consent obtained for data collec-

tion? If the dataset is related to people, it is important that we work with
experts in other domains like anthropology. The answer to this question is
also essential to determine whether the dataset is compliant with regulations
like the General Data Protection Regulation (GDPR) in the European
Union (EU).

– Does a mechanism for individuals exist to revoke consent in the future? This
is also essential to determining whether the dataset is compliant with
regulations.
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 Uses
– What will the dataset be used for? The goal is to identify all the possible tasks

or uses for the dataset.
– Should the dataset not be used for any tasks? The answer to this question will

help us ensure that the dataset is not used for tasks that it isn’t intended for.

Datasheets for datasets have already been adopted by research and industry. Some
examples are the QuAC dataset used for question answering (https://quac.ai/
datasheet.pdf), the RecipeQA dataset consisting of cooking recipes (http://mng.bz/
GGnA), and the Open Images dataset (https://github.com/amukka/openimages).
Although datasheets for datasets add additional overheard for dataset creators, they
improve transparency and accountability, help us determine sources of bias if there
are any, and ensure that we are compliant with regulations such as GDPR in the EU.

Summary
 Various sources of bias could occur in a dataset, such as sampling bias and label

bias. Sampling bias occurs when the dataset does not properly represent the
true population. Labeling bias occurs when bias exists in the way that labels are
recorded for various groups in the population. 

 Various fairness notions include demographic parity, equality of opportunity
and odds, predictive quality parity, fairness through unawareness, and counter-
factual fairness. Commonly used fairness notions are demographic parity and
equality of opportunity and odds.

 Demographic parity is sometimes also called independence or statistical parity
and is legally known as disparate impact. It asserts that a model contains parity in
the positive prediction rates for different protected groups. The demographic
parity notion is useful for scenarios where we want to ensure parity in the treat-
ment of all protected groups, irrespective of their prevalence in the population.
It ensures that the minority group is treated the same way as the majority group.

 For scenarios where we want to consider the distribution of the actual label for
all protected groups, we can use the equality of opportunity and odds fairness
notions. We say that equality of opportunity exists when parity is present in the
true positive rates between the groups. Equality of odds extends the definition
of equality of opportunity to another symmetric measurement called false posi-
tive rate.

 We can categorize all the notions of fairness into two sets: group fairness and
individual fairness. Group fairness ensures that the model is fair for different
protected groups. Individual fairness, on the other hand, ensures that the
model makes similar predictions for similar individuals.

 We can use the interpretability techniques that we have learned in this book to
detect a source of discrimination due to the model. The source of discrimina-
tion can be broadly categorized into two types: discrimination via input features
and discrimination via representation.

https://quac.ai/datasheet.pdf
https://quac.ai/datasheet.pdf
https://quac.ai/datasheet.pdf
http://mng.bz/GGnA
http://mng.bz/GGnA
http://mng.bz/GGnA
https://github.com/amukka/openimages
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 Discrimination via input traces the discrimination or fairness issues back to the
input features. We can use the SHAP interpretability technique to trace fairness
issues back to the input.

 These types of fairness issues are hard to trace back to the input features, espe-
cially for deep learning models that process inputs like images and text. For
such cases, we could instead trace the source of discrimination to deep repre-
sentations learned by the model. We can trace the source of discrimination to
representations learned by the model using the network dissection framework
and the t-SNE technique learned in chapters 6 and 7, respectively.

 Examples of two techniques that we can use to mitigate bias are fairness
through unawareness and a reweighting technique to correct label bias. Fair-
ness through unawareness does not guarantee fairness, but the reweighting
technique does provide fairness guarantees.

 A standardized process exists to document datasets using datasheets. Datasheets
aim to answer key questions regarding the motivation, composition, data-
collection process, and uses of a dataset. Although datasheets for datasets add
additional overheard for dataset creators, they improve transparency and
accountability, help us determine sources of bias if there are any, and ensure that
we are compliant with regulation such as GDPR in the EU.
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Path to explainable AI

We are now approaching the end of our journey through the world of interpretable
AI. Figure 9.1 provides a map of this journey. Let’s take a moment to reflect on and
to summarize what we have learned. Interpretability is all about understanding the
cause and effect within an AI system. It is the degree to which we can consistently
estimate what the underlying models in the AI system will predict given an input,
understand how the models came up with the prediction, understand how the pre-
diction changes with modifications to the input or algorithmic parameters, and
finally understand when the models have made a mistake. Interpretability is becom-
ing increasingly important because machine learning models are proliferating in

This chapter covers
 A recap of interpretability techniques learned in 

this book

 Understanding the properties of an explainable AI 
system

 Common questions asked of an explainable AI 
system and applying interpretability techniques to 
answer them

 Using counterfactual examples to come up with 
contrastive explanations
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various industries such as finance, healthcare, technology, and legal, to name a few.
Decisions made by such models require transparency and fairness. The techniques
that we have learned in this book are powerful tools to improve transparency and
ensure fairness.

 We looked at two broad classes of machine learning models in this book—white-
box and black-box models—that fall on the spectrum of interpretability and predic-
tive power. White-box models are inherently transparent and are straightforward to
interpret. However, they have low to medium predictive power. We specifically focused
on linear regression, logistic regression, decision trees, and generalized additive mod-
els (GAMs) and learned how to interpret them by understanding the internals of the
model. Black-box models are inherently opaque and are harder to interpret, but they
offer much higher predictive power. We focused most of our attention in this book on
interpreting black-box models such as tree ensembles and neural networks.

Linear/logistic 
regression

Decision 
tree GAM

Interpreting model 
processing

Interpreting model 
representations

Global
interpretability 

CHAPTER 3

Local 
interpretability 

CHAPTER 4

Saliency
mapping

CHAPTER 5

PDP Feature 
interaction

LIME

SHAP

Anchors Gradients

Guided 
backprop Grad-CAM
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ensembles DNN

CNN

RNN

Fairness and bias

Understanding 
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units
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Understanding 
semantic 
similarity 

CHAPTER 7

Transfer 
learning

Network 
dissection PCA t-SNE

Fairness and 
mitigating bias

CHAPTER 8

SmoothGrad

White-box models
CHAPTER 2

Black-box models
CHAPTER 2

Interpretability
Predictive power

HIGH
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Figure 9.1 Map of our journey through the world of interpretable AI
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We have two ways of interpreting black-box models. One is to interpret model process-
ing—that is, understand how the model processes the inputs and arrives at the final
prediction. The other way, interpreting model representations, is applicable only to
deep neural networks. To interpret model processing, we learned about post hoc
model-agnostic methods such as partial dependence plots (PDPs) and feature interac-
tion plots to understand the global effects of the input features on the model’s predic-
tions. We also learned about post hoc model-agnostic methods that are local in scope,
such as local interpretable model-agnostic explanations (LIME), SHapley Additive
exPlanations (SHAP), and anchors. We can use these methods to explain how the
model arrived at individual predictions. We also used visual attribution methods, such
as saliency maps, to understand what input features or image pixels were important
for neural networks used for visual tasks. To interpret model representations, we
learned how to dissect neural networks and understand what representations of the
data are learned by the intermediate or hidden layers in the network. We also learned
how to visualize high-dimensional representations learned by the model using tech-
niques like principal component analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE). 

 We finally focused on the topic of fairness and learned various fairness notions and
how to make use of interpretability techniques to measure fairness. We also learned
how to mitigate fairness using various preprocessing techniques, such as fairness
through unawareness and an iterative label bias correction technique. 

 In this book, we made a strong distinction between interpretability and explain-
ability. Interpretability is mainly about answering the how question—how does the
model work and how did it arrive at a prediction? Explainability goes beyond interpret-
ability in that it helps us answer the why question—why did the model make one pre-
diction as opposed to another? Interpretability is mostly discernible by experts who
are building, deploying, or using the AI system, and these techniques are building
blocks that will help you get to explainability. We will focus on the path to explainable
AI in this chapter.

9.1 Explainable AI
Let’s look at a concrete example of an explainable AI system and what is expected of
it. We will use the same example from chapter 8 of predicting the income of adults in
the United States. Given a set of input features such as education, occupation, age,
gender, and race, let’s assume that we have trained a model that predicts whether an
adult earns more than $50,000 per year. After applying the interpretability techniques
learned in this book, let’s assume that we can now deploy this model as a service. This
service could be used by the public to determine how much they can earn given their
features as input. An explainable AI system should provide functionality for the users
of this system to question the predictions made by the model and to challenge the
decisions made because of those predictions. This is illustrated in figure 9.2, where
the functionality of providing an explanation to the user is built into the explanation
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agent. The users can ask the agent various questions regarding the predictions made
by the model, and the onus is on the agent to provide meaningful answers. One possi-
ble question that the user could ask, as illustrated in figure 9.2, is why the model pre-
dicted that their salary would be less than $50K. 

The question asked by the user in figure 9.2, for illustration purposes, is focused on
understanding how various feature values influence the model prediction. This is just
one type of question that could be asked of the system. Table 9.1 shows a few broad
classes of questions that we can ask of the system and techniques that we have learned
in this book that could be applied for such questions. As can be seen in the table, we
are well equipped to answer questions on how the model works, what features are
important, how the model arrived at a prediction for a specific case, and whether the
model is fair and unbiased. As highlighted earlier, we are not well equipped to answer
the why question and will briefly touch upon that in this chapter.

Table 9.1 Question types and explanation methods

Category of 
methods

Question types Explanation methods

Explain the 
model

– How does the model work?

– What features or inputs are the
most important for the model?

– Model-dependent descriptions. (This book pro-
vides good descriptions on how various broad
classes of models, both white-box and black-box,
work.)

– Global feature importance (chapters 2 and 3).

– Model representations (chapters 6 and 7).

Explain a 
prediction

– How did the model arrive at
this prediction for my case?

– Local feature importance (chapter 4).

– Visual attribution methods (chapter 5).

Fairness – How does the model treat peo-
ple from a certain protected
group? 

– Is the model biased against a
group that I belong to?

– Fairness notions and measurements (chapter 8).

Adult 
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predictor
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Answer:
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level.

Question:
Why do I earn less 

than $50K?

Figure 9.2 An illustration of an agent explaining the prediction made by a model to the 
user of the system
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Although the interpretability techniques that we have learned in this book will help us
come up with answers to most of the questions highlighted in table 9.1, there is more
that goes into providing the answer or explanation to the user. We need to know what
information is relevant to the question being asked, how much information to provide
in the explanation, and how the user receives or understands explanations (i.e., their
background). A whole field, called explainable AI (XAI), is dedicated to solving this
problem. The scope of XAI, as shown in figure 9.3, is not just artificial intelligence, of
which machine learning is a specific subfield, but also looks to other fields such as
human-computer interaction (HCI) and social science.

Tim Miller published an important research paper (available at https://arxiv
.org/pdf/1706.07269.pdf) on insights from social sciences that are relevant to XAI.
The following are key findings in this paper:

 Explanations are contrastive—People usually do not just ask why the model pre-
dicted a specific outcome but rather why not another outcome. This is high-
lighted as the contrastive or counterfactual explanation method in table 9.1,
and we will briefly discuss this in the next section.

Contrastive or 
counterfactual

– Why did the model predict this
outcome for me?

– Why not another outcome?

– Counterfactual explanations (to be discussed in
this chapter).

Table 9.1 Question types and explanation methods (continued)

Category of 
methods

Question types Explanation methods

XAI

Field that focuses on
the interaction between
humans and computers,
creating human-centric
technologies

Science of society
specifically focused on
how humans within a
society give and receive
explanations

Field that focuses
on the science and
engineering of
building smart/
intelligent
computer systems,
with machine
learning being a
specific subfield of
artificial
intelligence

Human-computer
interaction

Artificial
intelligence

Social
science

Figure 9.3 Scope of explainable AI (XAI)

https://arxiv.org/pdf/1706.07269.pdf
https://arxiv.org/pdf/1706.07269.pdf
https://arxiv.org/pdf/1706.07269.pdf
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 Explanations are usually selected in a biased way—If a lot of explanations or causes
for a prediction are provided to the user, then the user typically selects only one
or two and the selection is usually biased. It is, therefore, important to know
how much information to provide and what information is most relevant for
the explanation.

 Explanations are social—The transfer of information from the AI system to the
user must be interactive and in the form of a conversation. It is, therefore,
important to have an explanation agent, as illustrated in figure 9.2, that can
comprehend questions and provide meaningful answers. The user must be at
the center of this interaction, and it is important to look to the field of HCI to
build such a system.

In the following section, we will specifically look at a technique that can be used to
provide contrastive or counterfactual explanations, that is, answer the why and why
not questions.

9.2 Counterfactual explanations
Counterfactual explanations (also known as contrastive explanations) can be used to
explain why a model predicted a given value as opposed to another. Let’s look at a
concrete example. We will use the adult income prediction model, which is a binary
classification problem, and focus on just two input features—age and education—for
ease of visualization. 

These two features are shown in figure 9.4 as a two-dimensional plane. The decision
boundary for the adult income model is also shown as a curve on the plane that sepa-
rates the bottom part from the top part. For adults in the bottom part of the plane,
the model predicts an income that is less than or equal to $50K, and for adults in the
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Master’s
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Counterfactual examples
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Model’s
decision
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Figure 9.4 An illustration 
of counterfactual examples
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top part of the plane, the model predicts an income of greater than $50K. Let’s
assume that we have an adult who provides inputs to the system to predict how much
income they will earn. This is labeled “Original Input” in figure 9.4. This adult has a
high school education, and let’s assume that the age is 30 (this is irrelevant for this
example). Because this input falls below the decision boundary, the model will predict
that the adult will earn an income that is less than $50K. The user then poses the ques-
tion: why is my income less than $50K and not greater than $50K?

 A counterfactual or contrastive explanation will provide examples, where in a
counterfactual world, if that user satisfied certain criteria, then it will result in their
desired outcome—earn an income greater than $50K. The counterfactual examples
are marked in figure 9.4. They show that if the user’s education level was higher—
bachelor’s, master’s, or doctorate—then they would have a higher chance of earning
more than $50K.

 How do we generate these counterfactual examples? The whole process, described
in figure 9.5, consists of an explainer that takes the following as input:

 Original input—The input provided by the user
 Desired outcome—The outcome desired by the user
 Counterfactual example count—The number of counterfactual examples to show

in the explanation
 Model—The model used for prediction to obtain the predictions for the coun-

terfactual examples

Counterfactual generation process

Inputs
•  Original input:
•  Model:
•  Desired outcome: '
•  Number of counterfactual examples: 

Optimization problem
Find counterfactual examples ' such that
•  Distance between model output for counterfactual 

( ')  and desired outcome ' is minimized
•  Distance between the original input and

counterfactual example ' is minimized

Model

Counterfactual
example 3

Counterfactual
example 2

Counterfactual
example 1

• Education: 
   bachelor’s
• Age: (No 
   change)

• Education: 
  doctorate
• Age: (No 
  change)

• Education: 
   master’s
• Age: (No 
  change)

Original Input
• Age: 30
• Education: 
   high school

Desired Outcome 
• Opposite: 
   Income > $50K

• Count: 3

Counterfactual
explainer

Number of
counterfactual

examples

Figure 9.5 Counterfactual generation process
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The explainer then runs an algorithm to generate the counterfactual examples. It is
essentially an optimization problem of finding counterfactual examples such that the
following criteria are met:

 The model output for the counterfactual example is as close to the desired out-
come as possible.

 The counterfactual example is also close to the original input in the feature
space, that is, the values of a minimum set of high-value features are changed to
obtain the desired outcome. 

In this chapter, we will focus on one popular technique called diverse counterfactual
explanations (DiCE) to generate the counterfactual explanations. In DiCE, the opti-
mization problem is formulated as we did earlier. Features are perturbed in such a way
that they are diverse and feasible to change, and the desired outcome of the user is
attained. The mathematical details are beyond the scope of this book, but let’s use the
DiCE library to generate counterfactual explanations for the adult income prediction
problem. The library can be installed as follows:

$> pip install dice-ml

The following code snippet shows how to load the data and prepare it in a way that the
DiCE explainer can process:

import dice_ml  
from dice_ml.utils import helpers  

dataset = helpers.load_adult_income_dataset() 

d = dice_ml.Data(dataframe=dataset,   
                 continuous_features=['age', 
                 ➥ 'hours_per_week'],  
                 outcome_name='income') 

The next step is to train the model to predict the adult income. Because we have
already done this in chapter 8 using the random forest model, we will not show the
code for that here. Once you have trained the model, we are now ready to initialize
the DiCE explainer, which we can do using the following code snippet:

m = dice_ml.Model(model=adult_income_model, 
                  backend="sklearn")  

exp = dice_ml.Dice(d, m,   
                   method="random")  

Imports the DiCE library
Imports the helpers module in the DiCE library

Uses the helpers module provided by 
DiCE to load the adult income dataset

Prepares the data for the DiCE 
explainer; sets the DataFrame 
argument in the Data class to the 
preloaded adult income dataset

Sets the continuous_features argument in 
the Data class to the list of columns in the 
DataFrame that are continuous features

Sets the outcome_name as the name 
of the column in the DataFrame that 
contains the target variable

Initializes the DiCE Model class by setting the model 
argument to the trained adult income model

Also sets the back-end argument in the Model 
class to "sklearn" because the model was a 
RandomForestClassifier provided by the 
Scikit-Learn library

Initializes the DiCE explainer by 
passing the DiCE data and model

Also sets the method to 
"random" in the DiCE explainer
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Once we have initialized the DiCE explainer, we can generate the counterfactual
examples using the next code snippet. The function essentially takes in as input the
original input, the number of counterfactual examples, and the desired outcome. For
the input picked here, the model predicts a low income (i.e., <$50K) and the desired
outcome for the user is a high income (i.e., >$50K):

original_input = dataset[0:1] 

cf_examples = exp.generate_counterfactuals

➥ (original_input,  
    total_CFs=3,   
    desired_class="opposite") 
cf_examples.visualize_as_dataframe(show_only_changes

➥ =True)

The output of this code snippet will print the counterfactual examples as a Pandas
DataFrame. This output has been reformatted as a table and is shown in figure 9.6. We
can see in figure 9.6 that the key contributor for why the model predicted a low
income was the education level. If the education level was higher—doctorate, mas-
ter’s, or professional school—then there is a higher chance for the user to earn the
desired outcome. The features that are not changed are shown as “--” in the figure. 

Picks an input for which to 
generate counterfactuals

Uses the DiCE explainer to generate 
counterfactuals for that input

Also sets the total_CFs argument to the number 
of counterfactual examples to generate

In addition, sets the desired_class 
argument to the desired outcome 
for the counterfactual examples

Visualizes the counterfactual 
examples as a Pandas DataFrame

Age Work class Education Marital 
status

Occupation Race Gender Hours per 
week

38 Private High school Married Blue collar White Male 44

Original data
Outcome:

Age Work class Education Marital 
status

Occupation Race Gender Hours per 
week

-- Government Doctorate -- -- -- -- --
-- -- Master’s -- -- Other -- --
68 -- Professional 

school
-- -- -- -- --

Counterfactual examples
Outcome: Income > $50K

Counterfactual 
explainer

Income <= $50K

Figure 9.6 Output of the DiCE counterfactual explainer
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We can also use the DiCE counterfactual explainer  for regression models. For classi-
fication, we specified the desired outcome by setting the desired_class parameter
in the generate_counterfactuals function when generating the counter-factual
examples. For regression, we must instead set a different parameter in the same
function, called desired_range, to a range of possible values that is desired for the
model prediction. 

 Counterfactual examples are a great way of providing explanations that are con-
trastive. A counterfactual explanation of the form, “The model prediction was P
because features X, Y, and Z had values A, B, and C, but if feature X had values D or E,
then the model would have predicted a different outcome, Q,” is more causally infor-
mative and helps us understand why the model predicted a certain outcome as
opposed to another. As mentioned earlier, more goes into providing a good explana-
tion to the user of an AI system. XAI is an intersection of multiple fields such as AI,
social sciences, and HCI and is a very active area of research. It is beyond the scope of
this book, but the techniques that you have learned should provide you with a solid
foundation, especially in the AI domain, to venture into the world of XAI.

 This brings us to the end of the book. With a wide range of interpretability tech-
niques in your toolkit, you are well equipped to understand how complex machine
learning models work and how they arrive at a prediction. You can use this to debug
and improve the performance of models. You can also use it to increase transparency
and build fair and unbiased models. This book should also pave the way for you to
build explainable AI systems. You should have a solid foundation to learn more about
this very active area of research. Happy building and learning!

Summary
 Interpretability is all about understanding how the underlying models in an AI

system come up with predictions, understanding how the predictions change
with modifications to the input or algorithmic parameters, and understanding
when the models have made a mistake.

 Explainability goes beyond interpretability in that it helps to answer the why
question—why did the model make a specific prediction as opposed to another?
Interpretability is mostly discernible by experts who are building, deploying, or
using the AI system, and these techniques are building blocks that will help you
get to explainability.

 The scope of explainable AI is not just artificial intelligence, of which machine
learning is a specific subfield, but also looks to other fields such as human-
computer interaction (HCI) and the social sciences.

 From the social sciences, the following three key findings are relevant for
explainability:
– Explanations are usually contrastive—people usually do not just ask why the

model predicted a specific outcome but, rather, why not another outcome.
Counterfactual explanations can be used to answer these types of questions. 
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– Explanations are usually selected in a biased way. It is  important to know
how much information to provide and what information is most relevant for
the explanation.

– Explanations are social. The transfer of information from the AI system to
the user must be in the form of a conversation or interactive. It is important
to look to the field of HCI to build such a system.
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appendix A
Getting set up

A.1 Python
In this book, all the code is written in Python. You can download and install the latest
version from the Python language website (https://www.python.org/downloads/)
for your operating system. The version of Python used in this book is Python 3.7, but
any later version should work just as well. Various open source Python packages are
also used in this book for building machine learning models and interpreting and
visualizing them. Let’s now download all the code used in this book and install all the
relevant Python packages. 

A.2 Git code repository
All the code in this book can be downloaded from the book’s website (https://
www.manning.com/books/interpretable-ai) and also from GitHub in the form of a
Git repository. The repository on GitHub (https://github.com/thampiman/inter-
pretable-ai-book) is organized into folders, one for each chapter. If you are new to
version control using Git and GitHub, you can review material (http://mng.bz/
KBXg) provided by GitHub to learn more about it. You can download or clone the
repository from the command line as follows: 

$> git clone https://github.com/thampiman/interpretable-ai-book.git

A.3 Conda environment
Conda is an open source system used for package, dependency, and environment
management for Python and other languages. You can install Conda on your oper-
ating system by following the instructions on the Conda website (http://mng.bz/
9Keq). Once installed, Conda allows you to easily find and install Python packages
and export your environment from one machine and recreate it on another. The
Python packages used in this book are exported as a Conda environment so that

https://shortener.manning.com/KBXg
https://shortener.manning.com/KBXg
https://shortener.manning.com/9Keq
https://shortener.manning.com/9Keq
https://www.python.org/downloads/
https://www.manning.com/books/interpretable-ai
https://www.manning.com/books/interpretable-ai
https://github.com/thampiman/interpretable-ai-book
https://github.com/thampiman/interpretable-ai-book
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you can easily recreate them on your target machine. The environment file is
exported in the YAML file format and can be found in the packages folder in the
repository. You can then create the Conda environment by running the following
command from the repository directory downloaded on your machine:

$> conda env create -f packages/environment.yml

This command will install all the necessary Python packages required for this book and
create a Conda environment called interpretable-ai. If you have already created the
environment and would like to update it, you can run the following command:

$> conda env update -f packages/environment.yml

Once you have created or updated the environment, you should activate the Conda
environment by running the following command:

$> conda activate interpretable-ai

A.4 Jupyter notebooks
The code in this book is structured into Jupyter notebooks. Jupyter is an open source
web application used to easily create and run live Python code, equations, visualiza-
tions, and markup text. Jupyter notebooks are widely used in the data science and
machine learning communities. After downloading the source code and installing all
the relevant Python packages, you are now ready to run the code in the book on Jupy-
ter. From the repository directory downloaded on your machine, you can run the fol-
lowing command to start the Jupyter web application:

$> jupyter notebook

The Jupyter web application can be accessed from your browser at http://<HOST-
NAME>:8888. Replace <HOSTNAME> with the host name or IP address of the
machine that you are running from.

A.5 Docker
The Conda package/environment managed system does have some limitations. It
sometimes does not work as expected across multiple operating systems, different ver-
sions of the same operating system, or different hardware. If you do encounter issues
while creating the Conda environment detailed in the previous section, you can
instead use Docker. Docker is a system used for packaging software dependencies,
ensuring that the environment is identical for everyone. Docker can be installed on
your operating system by following the instructions on the Docker website (https://
www.docker.com/get-started). Once installed, you can then build the Docker image
from the command line by running the following command from the repository
directory downloaded on your machine:

https://www.docker.com/get-started
https://www.docker.com/get-started
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$> docker build . -t interpretable-ai

Note that the interpretable-ai tag is used for the Docker image. If this command
runs successfully, Docker should print the identifier of the image that was built. You
can also view the details of the built image by running the following command:

$> docker images

Run the next command to run the Docker container using the built image and start
the Jupyter web application:

$> docker run -p 8888:8888 interpretable-ai:latest

This command should start the Jupyter notebook application, and you should be
good to run all the code in this book by accessing http://<HOSTNAME>:8888 from
your browser. Replace <HOSTNAME> with the host name or IP address of the
machine that you are running from.
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appendix B
PyTorch

B.1 What is PyTorch?
PyTorch is a free, open source library used for scientific computing and deep learn-
ing applications such as computer vision and natural language processing. It is
Python based and was developed by Facebook’s AI Research (FAIR) lab. PyTorch is
widely used by the research community and industry practitioners. Horace He con-
ducted a recent study (available at http://mng.bz/W7Kl) that shows that the major-
ity of the techniques published in major machine learning conferences in 2019 were
implemented in PyTorch. Other libraries and frameworks like TensorFlow, Keras,
CNTK, and MXNet can be used to build and train neural networks, but we will use
PyTorch in this book. The library is pythonic and utilizes Python idioms well. It is,
therefore, easier for researchers, data scientists, and engineers who are already
familiar with Python to use it. PyTorch also provides great APIs to implement cutting-
edge neural network architectures.

B.2 Installing PyTorch
You can install the latest stable version of PyTorch using Conda or pip as follows:

# Installing PyTorch using Conda
$> conda install pytorch torchvision -c pytorch

# Installing PyTorch using pip
$> pip install pytorch torchvision

Note that along with PyTorch, the torchvision package is also installed. This
package (https://pytorch.org/vision/stable/index.html) consists of popular
datasets, implementations of cutting-edge neural network architectures, and
common transformations done on images for computer vision tasks. You can confirm

https://shortener.manning.com/W7Kl
https://pytorch.org/vision/stable/index.html
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the installation has succeeded by importing the libraries in your Python environment
as follows:

import torch
import torchvision

B.3 Tensors
A tensor is a multidimensional array that is very similar to NumPy arrays. Tensors con-
tain elements of a single data type and can be used on a graphics processing unit
(GPU) for fast computing. You can initialize a PyTorch tensor from a Python list as fol-
lows. Note that the code in this section is formatted in such a way so as to reflect a
Jupyter notebook or iPython environment. The line where you input a command is
prefixed with In:, and the output of a command is prefixed with Out::

In: tensor_from_list = torch.tensor([[1., 0.], [0., 1.]])
In: print(tensor_from_list)
Out: tensor([[1., 0.],
             [0., 1.]])

For machine learning problems, NumPy is widely used. The library supports large,
multidimensional arrays and provides a wide range of mathematical functions that
can be used to operate on them. You can initialize a tensor from a NumPy array as fol-
lows. Note that the output of the print statement shows the tensor along with the
dtype, or data type, of the elements. We will cover this in section B.3.1:

In: import numpy as np
In: tensor_from_numpy = torch.tensor(np.array([[1., 0.], [0., 1.]]))
In: print(tensor_from_numpy)
Out: tensor([[1., 0.],
             [0., 1.]], dtype=torch.float64)

The size of the tensor or the dimension of the multidimensional array can be obtained
as follows. The tensor initialized previously consists of two rows and two columns: 

In: tensor_from_list.size()
Out: torch.Size([2, 2])

We can initialize an empty tensor of any size as follows. The next tensor consists of
three rows and two columns. The values stored in the tensor are random, depending
on the values that are stored in the bits in memory:

In: tensor_empty = torch.empty(3, 2)
In: print(tensor_empty)
Out: tensor([[ 0.0000e+00, -1.5846e+29],
             [-7.5247e+03,  2.0005e+00],
             [ 9.8091e-45,  0.0000e+00]])
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If we want to initialize a tensor consisting of all zeros, we can do that as follows: 

In: tensor_zeros = torch.zeros(3, 2)
In: print(tensor_zeros)
Out: tensor([[0., 0.],
             [0., 0.],
             [0., 0.]])

A tensor consisting of all ones can be initialized as follows:

In: tensor_ones = torch.ones(3, 2)
In: print(tensor_ones)
Out: tensor([[1., 1.],
             [1., 1.],
             [1., 1.]])

We can initialize a tensor with random numbers as follows. The random numbers are
uniformly distributed between 0 and 1:

In: tensor_rand = torch.rand(3, 2)
In: print(tensor_rand)
Out: tensor([[0.3642, 0.8916],
             [0.4826, 0.4896],
             [0.9223, 0.9286]])

If you run the previous command, you may not get the same result because the seed of
the random-number generator may be different. To get consistent and reproducible
results, you can set the seed of the random-number generator using the manual_seed
function provided by PyTorch as follows:

In: torch.manual_seed(24)
In: tensor_rand = torch.rand(3, 2)
In: print(tensor_rand)
Out: tensor([[0.7644, 0.3751],
             [0.0751, 0.5308],
             [0.9660, 0.2770]])

B.3.1 Data types
Data types (dtype), like NumPy dtypes (http://mng.bz/Ex6X), describe the type and
size of the data. Common data types for tensors follow:

 torch.float32 or torch.float: 32-bit floating point
 torch.float64 or torch.double: 64-bit floating point
 torch.int32 or torch.int: 32-bit signed integer
 torch.int64 or torch.long: 64-bit signed integer
 torch.bool: Boolean

https://shortener.manning.com/Ex6X
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The full list of all the data types can be found in the PyTorch documentation at
https://pytorch.org/docs/stable/tensors.html. You can determine the data type of a
tensor as follows. We will be using the tensor_from_list tensor initialized earlier:

In: tensor_from_list.dtype
Out: torch.float32

You can initialize a tensor with a given data type as follows:

In: tensor_from_list_float64 = torch.tensor([[1., 0.], [0., 1.]], 
                                            dtype=torch.float64) 
In: print(tensor_from_list_float64)
Out: tensor([[1., 0.],
             [0., 1.]], dtype=torch.float64)

B.3.2 CPU and GPU tensors
Tensors in PyTorch are by default loaded on the CPU. You can see this by checking
the device that the tensor is on as follows. We will be using the random tensor (tensor
_rand) initialized previously:

In: tensor_rand.device 
Out: device(type='cpu')

For faster processing, you can load the tensor on a GPU. All the popular deep learning
frameworks, including PyTorch, use CUDA, which stands for compute unified device
architecture, to perform general-purpose computing on GPUs. CUDA is a platform
built by NVIDIA that provides APIs to directly access the GPU. A list of GPUs that are
CUDA-enabled can be found at https://developer.nvidia.com/cuda-gpus#compute.
You can check whether CUDA is available on your machine as follows:

In: torch.cuda.is_available()
Out: True

If it is available, you can now initialize a tensor on the GPU as follows:

if torch.cuda.is_available(): 
    device = torch.device(“cuda”) 
    tensor_rand_gpu = torch.rand(3, 2, device=device)

The following code snippet shows how to transfer a CPU tensor to the GPU:

if torch.cuda.is_available():
    device = torch.device(“cuda”)
    tensor_rand = tensor_rand.to(device)

Sets the dtype
parameter to
torch.float64

A tensor initialized as 
a 64-bit floating point

First checks whether CUDA is available
If yes, obtains the 
CUDA-enabled device

Initializes the tensor and 
sets the device to be the 
CUDA-enabled device

https://pytorch.org/docs/stable/tensors.html
https://developer.nvidia.com/cuda-gpus#compute
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B.3.3 Operations
We can perform multiple operations on a tensor. Let’s look at a simple operation of
adding two tensors. We will first initialize two random tensors, x and y, as follows:

In: x = tensor.rand(3, 2)
In: x
Out: tensor([[0.2989, 0.3510],
             [0.0529, 0.1988],
             [0.8022, 0.1249]])

In: y = tensor.rand(3, 2)
In: y
Out: tensor([[0.6708, 0.9704],
             [0.4365, 0.7187],
             [0.7336, 0.1431]])

We can obtain the sum of the two tensors using the add function, as shown next, or by
just running x + y:

In: torch.add(x, y)
Out: tensor([[0.9697, 1.3214],
             [0.4894, 0.9176],
             [1.5357, 0.2680]])

Various other mathematical operations and functions are also provided by PyTorch.
For an up-to-date list of all the operation, please refer to https://pytorch.org/docs/
stable/torch.html. PyTorch also provides a NumPy bridge to convert a tensor into a
NumPy array as follows:

In: x_numpy = x.numpy()
In: x_numpy
Out: array([[0.29888242, 0.35096592],
            [0.05293709, 0.19883835],
            [0.8021769 , 0.12490124]], dtype=float32)

B.4 Dataset and DataLoader
PyTorch provides a Dataset class that allows you to load and create custom datasets to
be used for model training. Let’s look at a contrived example. We will first create a
random dataset using Scikit-Learn as follows:

In: from sklearn.datasets import make_classification 

In: X, y = make_classification(n_samples=100, 
                           n_features=5, 
                           n_classes=2,
                           random_state=42) 

Imports the make_classification function to 
create a random n-class classification dataset Sets the number 

of samples to 100

Sets the number of 
input features to 5

Sets the number of classes
to 2 to generate a binary

classification dataset
Sets the seed for the 
random-number generator

https://pytorch.org/docs/stable/torch.html
https://pytorch.org/docs/stable/torch.html
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The dataset consists of 100 samples or rows. Each sample consists of five input features
and one target variable consisting of two classes. The values for each feature are sampled
from a normal distribution. We can inspect the first row of input features as follows:

In: X[0]
Out: array([-0.43066755,  0.67287309, -0.72427983, -0.53963044, -0.65160035])

We will now create a custom dataset class that inherits from the Dataset class provided
by PyTorch. This is shown in the next code snippet:

from torch.utils.data import Dataset 

class CustomDataset(Dataset): 
    def __init__(self, 
                 X, y, 
                 transform=None): 
        self.X = X 
        self.y = y
        self.transform = transform
        
    def __len__(self):  
        return len(self.X) 
    
    def __getitem__(self, idx):
        x, label = X[idx], y[idx] 

        if self.transform:  
            x = self.transform(x) 
            
        return x, label 

The constructor for the CustomDataset class takes in two positional arguments to ini-
tialize the input feature matrix X and the target variable y. There is also an optional
argument called transform that we can use to apply a transformation function on the
dataset. Note that we need to override the __len__ and __getitem__ methods pro-
vided by the Dataset class to return the length of the dataset and to extract the data at
a specified index. We can initialize the custom dataset and inspect the length of the
dataset as follows:

In: custom_dataset = CustomDataset(X, y)
In: len(custom_dataset)
Out: 100

Let’s now also inspect the first row of input features as follows:

In: custom_dataset[0][0]
Out: array([-0.43066755,  0.67287309, -0.72427983, -0.53963044, -0.65160035])

Imports the PyTorch Dataset class
Creates the CustomDataset 
class that inherits from Dataset

Initializes the
constructor

Positional arguments to the 
constructor are the input features 
matrix X and target variable array y.

Optional
argument
 that is a
transfor-

mation
 that can

 be applied
 to the data

Overrides the __len__ method to 
return the length of the dataset

Overrides the __getitem__ method 
to return the element at index idx

Extracts the input features and 
targets the variable at index idx

Applies the transformation 
on the features, if defined

Returns the
features and

target variable
at index idx
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We will now create a custom dataset and apply a transformation function to it. We will
pass in the torch.tensor function to transform the array of input features as tensors.
This is shown next. We can see that the first row of input features is now a tensor con-
sisting of 64-bit floating point values:

In: transformed_dataset = CustomDataset(X, y,
                                    transform=torch.tensor)
In: transformed_data[0][0]
Out: tensor([-0.4307,  0.6729, -0.7243, -0.5396, -0.6516], 

➥ dtype=torch.float64)

Some common image transformation functions like crops, flips, rotations, and resizing
are also implemented in PyTorch as part of the torchvision package. The full list of
transformations can be found at https://pytorch.org/vision/stable/transforms.html.
We will use them in chapter 5.

 Another useful data utility class to know about is DataLoader. This class takes as
input an object that inherits from the Dataset class and a few optional parameters
that allow you to iterate through your data. The DataLoader class provides features
like data batching and shuffling and data loading in parallel using multiprocessing
workers. The following code snippet shows you how to initialize a DataLoader object
and iterate through the custom dataset created earlier:

from torch.utils.data import DataLoader 

dataloader = DataLoader(transformed_dataset,
                        batch_size=4, 
                        shuffle=True, 
                        num_workers=4) 
for i_batch, sample_batched in enumerate(dataloader):
    print(f"[Batch {i_batch}] Number of rows in batch: 
    ➥ {len(sample_batched[0])}") 

By executing this code, you will notice 25 batches and four rows in each batch because
the input dataset has a length of 100 and the batch_size argument in the DataLoader
class is set to 4. We will use the Dataset and DataLoader classes later in section B.5.3
and in chapter 5.

B.5 Modeling
In this section, we focus on modeling and how to build and train neural networks
using PyTorch. We start off with automatic differentiation, which is a way to efficiently
compute gradients and is used to optimize the weights in a neural network. We then
cover model definition and model training.

Imports the DataLoader 
class provided by PyTorch Initializes the DataLoader and 

passes the transformed_dataset 
initialized earlier

Batches the data into batches of fourShuffles the dataset

Loads the data in parallel utilizing four cores or CPUs

Iterates through the loader 
and loads data in batches

Prints the batch number and the 
number of rows loaded in batch

https://pytorch.org/vision/stable/transforms.html
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B.5.1 Automatic differentiation
In chapter 4, we will learn about neural networks. Neural networks consist of many
layers of units that are interconnected with edges. Each unit in a layer of the network
performs a mathematical operation on all the inputs to that unit and passes the out-
put to the subsequent layer. The edges that interconnect units are associated with
weights, and the objective of the learning algorithm is to determine the weights for all
the edges such that the prediction of the neural network is as close to the target in the
labeled dataset. 

 An efficient way of determining the weights is using the backpropagation algo-
rithm. We will learn more about this in chapter 4. In this section, we learn about auto-
matic differentiation and how it is implemented in PyTorch. Automatic
differentiation is a way to numerically evaluate the derivative of a function. Backprop-
agation is a special case of automatic differentiation. Let’s look at a simple example
and see how we can apply automatic differentiation in PyTorch. Consider an input
tensor represented as x. The first operation that we do on this input tensor is to scale
it by a factor of 2. Let’s represent the output of this operation as w, where w = 2x.
Given w, we now perform a second mathematical operation on it and represent the
output tensor as y. This operation is shown here:

The final operation that we perform is to simply sum all the values in tensor y. We rep-
resent the final output tensor as z. If we now wanted to compute the gradient of this
output z with respect to the input x, we need to apply the chain rule as follows:

The partial derivates in this equation are given here:  

The computation of these gradients can be complicated for more complex mathemat-
ical functions. PyTorch makes this easier using the autograd package. The autograd
package implements automatic differentiation and allows you to numerically evaluate
the derivative of a function. By applying the chain rule as shown earlier, autograd
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allows you to compute the gradient of functions of arbitrary order automatically. Let’s
see this in action by implementing the previous mathematical operations using tensors.
We first initialize the input tensor x of size 2 × 3, consisting of all ones. Note that an
argument called requires_grad is set to True when initializing the tensor. This argu-
ment lets autograd know to record operations on them for automatic differentiation:

In: x = torch.ones(2, 3, 
                   requires_grad=True)
In: x
Out: tensor([[1., 1., 1.],
             [1., 1., 1.]], requires_grad=True)

We now implement the first mathematical operation that scales tensor x by a factor of
2 to obtain tensor w. Note that the output of tensor w shows grad_fn, which is used to
record the operation that was performed on x to obtain w. This function is used to
numerically evaluate the gradient using automatic differentiation:

In: w = 2 * x
In: w
Out: tensor([[2., 2., 2.],
             [2., 2., 2.]], grad_fn=<MulBackward0>)

We now implement the second mathematical operation that is used to transform ten-
sor w into y:

In: y = w * w * w + 3 * w * w + 2 * w + 1
In: y
Out: tensor([[25., 25., 25.],
             [25., 25., 25.]], grad_fn=<AddBackward0>)

The final operation simply takes the sum of all values of tensor y to obtain z, as shown
here:

In: z = torch.sum(y)
In: z
Out: tensor(150., grad_fn=<SumBackward0>)

We can easily compute the gradient of tensor z with respect to the input x by calling
the backward function as follows. This will apply the chain rule and compute the gra-
dient of the output with respect to the input:

In: z.backward()

We can see the numerical evaluation of the gradient as follows:

In: x.grad
Out: tensor([[52., 52., 52.],
             [52., 52., 52.]])
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To verify whether the answer is right, let’s mathematically derive the derivative of z
with respect to x as provided by the earlier equations. This is summarized next: 

As an exercise, I encourage you to evaluate this equation using the tensor. The solu-
tion of this exercise can be found in the GitHub repository associated with this book
at https://github.com/thampiman/interpretable-ai-book.

B.5.2 Model definition
Let’s now see how to define a neural network using PyTorch. We will focus on a fully
connected neural network. The contrived dataset that we generated in section A.4
consisted of five input features and one binary output. Let’s now define a fully con-
nected neural network consisting of one input layer, two hidden layers, and one out-
put layer. The input layer must consist of five units because the dataset contains five
input features. The output layer must consist of one unit because we are dealing with
one binary output. We have flexibility in choosing the number of the units in the two
hidden layers. Let’s use five and three units for the first and second hidden layers,
respectively. We take a linear combination of the inputs at each unit in the neural net-
work and use the rectified linear unit (ReLU) activation function at the hidden layers
and the sigmoid activation function on the output layer. See chapter 4 for more
details on neural networks and activation functions. 

 In PyTorch, we can use the torch.nn.Sequential container to define units and
layers in the neural network in order. Each layer of units in PyTorch must inherit from
the torch.nn.Module base class. PyTorch already provides a lot of the commonly used
layers in neural networks that include linear, convolutional, and recurrent layers.
Common activation functions like ReLU, sigmoid, and hyperbolic tangent (tanh) are
also implemented. The full list of layers and activation functions can be found at
https://pytorch.org/docs/master/nn.html. We are now ready to define the model
using these building blocks as follows:

model = torch.nn.Sequential( 
    torch.nn.Linear(5, 5), 
    torch.nn.ReLU(), 
    torch.nn.Linear(5, 3), 
    torch.nn.ReLU(), 
    torch.nn.Linear(3, 1), 
    torch.nn.Sigmoid() 
)

https://github.com/thampiman/interpretable-ai-book
https://pytorch.org/docs/master/nn.html
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The Sequential container here defines the layers in order. The first Linear module
corresponds to the first hidden layer that takes in the five features in the dataset and
produces five outputs, which are fed into the next layer. The Linear module performs
a linear transformation on the inputs. The next module in the container defines the
ReLU activation function for the first hidden layer. The following Linear module then
takes in five input features from the first hidden layer, performs a linear transforma-
tion, and produces three outputs that are fed into the next layer. Again, the ReLU acti-
vation function is used in the second hidden layer. The final Linear module then
takes in three input features from the second hidden layer and produces one output,
the output layer. Because we are dealing with binary classification, we use the Sigmoid
activation function at the output layer. If we print the model by executing the com-
mand, print(model), we will get the following output:

Sequential(
  (0): Linear(in_features=5, out_features=5, bias=True)
  (1): ReLU()
  (2): Linear(in_features=5, out_features=3, bias=True)
  (3): ReLU()
  (4): Linear(in_features=3, out_features=1, bias=True)
  (5): Sigmoid()
)

We can now see how to define the neural network as a class where the number of lay-
ers and units can be easily customized, as shown in the code snippet that follows: 

class BinaryClassifier(torch.nn.Sequential): 
    def __init__(self, layer_dims): 
        super(BinaryClassifier, self).__init__() 
        
        for idx, dim in enumerate(layer_dims): 
            if (idx < len(layer_dims) - 1):  
                module = torch.nn.Linear(dim, layer_dims[idx + 1])
                self.add_module(f"linear{idx}", module)  
            
            if idx < len(layer_dims) - 2:  
                activation = torch.nn.ReLU() 
                self.add_module(f"relu{idx}", activation)  
            elif idx == len(layer_dims) - 2:  
                activation = torch.nn.Sigmoid() 
                self.add_module(f"sigmoid{idx}", activation) 

The BinaryClassifier class inherits from torch.nn.Sequential. The constructor
takes in one positional argument, which is an array of integers called layer_dims that
defines the number of layers and units in each layer. The length of the array defines

The BinaryClassifier class that 
extends the Sequential container

The constructor takes in an array 
called layer_dims that defines the 
architecture of the network.

Initializes the Sequential containerIterates
through the
layer_dims

array

Adds the
 Linear module

 for all layers and
names it “linear,”

followed by the
index of the layer

For all hidden layers, 
adds the ReLU module 
and names it “relu,” 
followed by the index 
of the hidden layer

For the output layer, adds the Sigmoid 
module and names it “sigmoid,” followed 
by the index of the output layer
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the number of layers, and the element at index i defines the number of units at layer
i+1. Within the constructor, we iterate through the layer_dims array and add a layer
to the container using the add_module function. The implementation uses a linear
module for all the layers and names them linear, followed by the index of the layer.
We use the ReLU activation function for all hidden layers and the sigmoid activation
function for the output layer. With this custom class in place, we can now initialize the
binary classifier and define the structure easily using an array as follows:

num_features = 5 
num_outputs = 1 
layer_dims = [num_features, 5, 3, num_outputs] 

bc_model = BinaryClassifier(layer_dims) 

We can see the structure of the network by executing print(bc_model), which gives
us the following output. We will be using a similar implementation in chapter 4:

BinaryClassifier(
  (linear0): Linear(in_features=5, out_features=5, bias=True)
  (relu0): ReLU()
  (linear1): Linear(in_features=5, out_features=3, bias=True)
  (relu1): ReLU()
  (linear2): Linear(in_features=3, out_features=1, bias=True)
  (sigmoid2): Sigmoid()
)

B.5.3 Training
With the model in place, we are now ready to train it on the dataset we created earlier.
At a high level, the training loop consists of the following steps:

1 Loop over epochs: For each epoch, loop over batches of data.
a For each mini batch of data

– Run the data through the model to obtain the outputs
– Calculate the loss
– Run the backpropagation algorithm to optimize the weights

An epoch is a hyperparameter that defines the number of times we propagate the
entire training data in the forward and backward directions through the neural net-
work. During each epoch, we load a batch of data, and for each batch, we will run it
through the network to get the outputs, calculate the loss, and optimize the weights
based on that loss using the backpropagation algorithm.

 PyTorch provides lots of loss functions or criteria for optimization. Some of the
commonly used ones follow:

 torch.nn.L1Loss—This computes the mean absolute error (MAE) of the out-
put prediction and the actual value. This is typically used for regression tasks.

Sets the number of input features to 5
Sets the number 
of outputs to 1

Initializes the layer_dims array that 
defines the structure of the network 
consisting of five units in the input 
layer, five units in the first hidden layer, 
three units in the second hidden layer, 
and one unit in the output layer

Initializes the model using the BinaryClassifier class
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 torch.nn.MSELoss—This computes the mean squared error (MSE) of the out-
put prediction and the actual value. Like L1 loss, this is also typically used for
regression tasks.

 torch.nn.BCELoss—This computes the binary cross entropy, or log loss, of the
output prediction and the actual label. This function is typically used for binary
classification tasks.

 torch.nn.CrossEntropyLoss—This function combines the softmax and nega-
tive log likelihood loss functions and is typically used for classification tasks. We
will learn more about BCE loss and cross-entropy loss in chapter 5.

You can find the full list of all the loss functions at http://mng.bz/Dx5A. Because we
are dealing with only two target classes in the dataset we have created, we will use the
BCE loss function.

 PyTorch also provides various optimization algorithms that we can use during
backpropagation to update the weights. We will use the Adam optimizer in this sec-
tion. A full list of all the optimizers implemented in PyTorch can be found at https://
pytorch.org/docs/stable/optim.html. The following code snippet initializes the loss
function or criterion for the optimizer and the Adam optimizer on all the parameters
or weights in the model initialized in the previous section:

criterion = torch.nn.BCELoss()
optimizer = torch.optim.Adam(bc_model.parameters())

We can implement the training loop as follows. Note that we are training for 10
epochs. During each epoch, we use the DataLoader object initialized in section A.4 to
load the data and labels in batches. For each mini batch of data, we first need to reset
the gradients to zero before computing the gradients for that mini batch. We then run
through the model in the forward direction to obtain the output. Then we use these
outputs to compute the BCE loss. By calling the backward function, the gradient of
the loss function is computed with respect to the inputs using automatic differentia-
tion. We then call the step function in the optimizer to update the weights or model
parameters based on the gradients computed:

num_epochs = 10 

for epoch in range(num_epochs): 
    for idx, (X_batch, labels) in enumerate(dataloader): 
        optimizer.zero_grad() 
        outputs = bc_model(X_batch) 
        loss = criterion(outputs, labels) 
        loss.backward() 
        optimizer.step() 

Initializes the variable for 
the number of epochs

For loop for
epochs

Loops through each
mini batch of data

and labels
Resets the

gradient to 0 for
each mini batch

Runs the data 
through the model in 
the forward direction 
to get the output 
predictions

Computes the
loss by comparing
with ground truth

labels

Performs backward propagation to 
compute the gradient of loss function 
with respect to the inputsUpdates the parameters in 

the model by calling step

http://mng.bz/Dx5A
https://pytorch.org/docs/stable/optim.html
https://pytorch.org/docs/stable/optim.html
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Once we have trained the model, we can get a prediction for a data point as follows.
Note that we are switching the format of the following code snippet to mimic a Jupyter
notebook or iPython environment:

In: pred_var = bc_model(transformed_dataset[0][0])
In: pred_var
Out: tensor([0.5884], grad_fn=<SigmoidBackward>)

The output of the model is a tensor consisting of a probability measure. This probabil-
ity measure corresponds to the output of the sigmoid activation function in the final
layer in the neural network. You can obtain the prediction as a scalar as follows:

In: pred_var.detach().numpy()[0]
Out: 0.5884

This ends our whirlwind tour of PyTorch, and we hope you are equipped with enough
knowledge to be able to implement and train neural networks, and to understand the
code in this book. There are a lot of books and online resources dedicated to PyTorch
available at https://bookauthority.org/books/new-pytorch-books and http://mng
.bz/laBd. The PyTorch documentation at https://pytorch.org/docs/stable/index
.html is also a great resource to get a much deeper understanding of the library.
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