




Praise for Learning LangChain

With clear explanations and actionable techniques, this is
the go-to resource for anyone looking to harness
LangChain’s power for production-ready generative AI and
agents. A must-read for developers aiming to push the
boundaries of this platform.

—Tom Taulli, IT consultant and author of AI-
Assisted Programming

This comprehensive guide on LangChain covers everything
from document retrieval and indexing to deploying and
monitoring AI agents in production. With engaging
examples, intuitive illustrations, and hands-on code, this
book made learning LangChain interesting and fun!

—Rajat K. Goel, senior software engineer, IBM



This book is a comprehensive LLM guide covering
fundamentals to production, packed with technical insights,
practical strategies, and robust AI patterns.

—Gourav Singh Bais, senior data scientist and
senior technical content writer, Allianz

Services

Prototyping generative AI apps is easy—shipping them is
hard. The strategies and tools in Learning LangChain make
it possible to turn ideas into modern, production-ready
applications.

—James Spiteri, director of product
management for security, Elastic

Learning LangChain provides a clear path for transforming
how you build AI-powered applications. By breaking down
flexible architectures and robust checkpointing, it offers a
strong foundation for creating reliable, production-ready AI
agents at scale.

—David O’Regan, engineering manager for
AI/ML, GitLab



Learning LangChain helped us skip the boilerplate for
debugging and monitoring. The many helpful patterns and
tooling insights allowed us to move fast and deploy AI apps
with confidence.

—Chris Focke, chief AI scientist, AppFolio

Teaching LangChain through clear, actionable examples,
this book is a gateway to agentic applications that are as
inspiring as Asimov’s sci-fi novels.

— Ilya Meyzin, SVP head of data science, Dun
& Bradstreet



Learning LangChain

Building AI and LLM Applications with LangChain and
LangGraph

Mayo Oshin and Nuno Campos



Learning LangChain

by Mayo Oshin and Nuno Campos

Copyright © 2025 Olumayowa “Mayo” Olufemi Oshin. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for
most titles (http://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield

Development Editor: Corbin Collins

Production Editor: Clare Laylock

Copyeditor: nSight, Inc.

Proofreader: Helena Stirling

Indexer: Judith McConville

http://oreilly.com/


Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

February 2025: First Edition

Revision History for the First Edition

2024-02-13: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098167288 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. Learning LangChain, the cover image, and related trade
dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and
do not represent the publisher’s views. While the publisher and
the authors have used good faith efforts to ensure that the
information and instructions contained in this work are
accurate, the publisher and the authors disclaim all
responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of

http://oreilly.com/catalog/errata.csp?isbn=9781098167288


or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.
978-1-098-16728-8

[LSI]



Preface

On November 30, 2022, San Francisco–based firm OpenAI
publicly released ChatGPT—the viral AI chatbot that can
generate content, answer questions, and solve problems like a
human. Within two months of its launch, ChatGPT attracted
over 100 million monthly active users, the fastest adoption rate
of a new consumer technology application (so far). ChatGPT is a
chatbot experience powered by an instruction and dialogue-
tuned version of OpenAI’s GPT-3.5 family of large language
models (LLMs). We’ll get to definitions of these concepts very
shortly.

NOTE

Building LLM applications with or without LangChain requires the use of an LLM. In
this book we will be making use of the OpenAI API as the LLM provider we use in the

code examples (pricing is listed on its platform). One of the benefits of working with
LangChain is that you can follow along with all of these examples using either
OpenAI or alternative commercial or open source LLM providers.

Three months later, OpenAI released the ChatGPT API, giving
developers access to the chat and speech-to-text capabilities.
This kickstarted an uncountable number of new applications

https://oreil.ly/uAnsr
https://oreil.ly/ATsLe
https://oreil.ly/-YYoR
https://oreil.ly/DwU7R


and technical developments under the loose umbrella term of
generative AI.

Before we define generative AI and LLMs, let’s touch on the
concept of machine learning (ML). Some computer algorithms
(imagine a repeatable recipe for achievement of some
predefined task, such as sorting a deck of cards) are directly
written by a software engineer. Other computer algorithms are
instead learned from vast amounts of training examples—the
job of the software engineer shifts from writing the algorithm
itself to writing the training logic that creates the algorithm. A
lot of attention in the ML field went into developing algorithms
for predicting any number of things, from tomorrow’s weather
to the most efficient delivery route for an Amazon driver.

With the advent of LLMs and other generative models (such as
diffusion models for generating images, which we don’t cover
in this book), those same ML techniques are now applied to the
problem of generating new content, such as a new paragraph of
text or drawing, that is at the same time unique and informed
by examples in the training data. LLMs in particular are
generative models dedicated to generating text.

LLMs have two other differences from previous ML algorithms:



They are trained on much larger amounts of data; training
one of these models from scratch would be very costly.
They are more versatile.

The same text generation model can be used for
summarization, translation, classification, and so forth,
whereas previous ML models were usually trained and used for
a specific task.

These two differences conspire to make the job of the software
engineer shift once more, with increasing amounts of time
dedicated to working out how to get an LLM to work for their
use case. And that’s what LangChain is all about.

By the end of 2023, competing LLMs emerged, including
Anthropic’s Claude and Google’s Bard (later renamed Gemini),
providing even wider access to these new capabilities. And
subsequently, thousands of successful startups and major
enterprises have incorporated generative AI APIs to build
applications for various use cases, ranging from customer
support chatbots to writing and debugging code.

On October 22, 2022, Harrison Chase published the first commit
on GitHub for the LangChain open source library. LangChain
started from the realization that the most interesting LLM

https://oreil.ly/mCdYZ


applications needed to use LLMs together with “other sources
of computation or knowledge”. For instance, you can try to get
an LLM to generate the answer to this question:

How many balls are left after splitting 1,234 bal

You’ll likely be disappointed by its math prowess. However, if
you pair it up with a calculator function, you can instead
instruct the LLM to reword the question into an input that a
calculator could handle:

1,234 % 123

Then you can pass that to a calculator function and get an
accurate answer to your original question. LangChain was the
first (and, at the time of writing, the largest) library to provide
such building blocks and the tooling to reliably combine them
into larger applications. Before discussing what it takes to build
compelling applications with these new tools, let’s get more
familiar with LLMs and LangChain.

https://oreil.ly/uXiPi
https://oreil.ly/uXiPi


Brief Primer on LLMs

In layman’s terms, LLMs are trained algorithms that receive
text input and predict and generate humanlike text output.
Essentially, they behave like the familiar autocomplete feature
found on many smartphones, but taken to an extreme.

Let’s break down the term large language model:

Large refers to the size of these models in terms of training
data and parameters used during the learning process. For
example, OpenAI’s GPT-3 model contains 175 billion
parameters, which were learned from training on 45
terabytes of text data.  Parameters in a neural network
model are made up of the numbers that control the output of
each neuron and the relative weight of its connections with
its neighboring neurons. (Exactly which neurons are
connected to which other neurons varies for each neural
network architecture and is beyond the scope of this book.)
Language model refers to a computer algorithm trained to
receive written text (in English or other languages) and
produce output also as written text (in the same language or
a different one). These are neural networks, a type of ML
model which resembles a stylized conception of the human

1



brain, with the final output resulting from the combination
of the individual outputs of many simple mathematical
functions, called neurons, and their interconnections. If many
of these neurons are organized in specific ways, with the
right training process and the right training data, this
produces a model that is capable of interpreting the meaning
of individual words and sentences, which makes it possible
to use them for generating plausible, readable, written text.

Because of the prevalence of English in the training data, most
models are better at English than they are at other languages
with a smaller number of speakers. By “better” we mean it is
easier to get them to produce desired outputs in English. There
are LLMs designed for multilingual output, such as BLOOM,
that use a larger proportion of training data in other languages.
Curiously, the difference in performance between languages
isn’t as large as might be expected, even in LLMs trained on a
predominantly English training corpus. Researchers have found
that LLMs are able to transfer some of their semantic
understanding to other languages.

Put together, large language models are instances of big,
general-purpose language models that are trained on vast
amounts of text. In other words, these models have learned
from patterns in large datasets of text—books, articles, forums,

2

https://oreil.ly/Nq7w0


and other publicly available sources—to perform general text-
related tasks. These tasks include text generation,
summarization, translation, classification, and more.

Let’s say we instruct an LLM to complete the following
sentence:

The capital of England is _______.

The LLM will take that input text and predict the correct output
answer as London . This looks like magic, but it’s not. Under the
hood, the LLM estimates the probability of a sequence of
word(s) given a previous sequence of words.



TIP

Technically speaking, the model makes predictions based on tokens, not words. A
token represents an atomic unit of text. Tokens can represent individual characters,

words, subwords, or even larger linguistic units, depending on the specific
tokenization approach used. For example, using GPT-3.5’s tokenizer (called cl100k ),

the phrase good morning dearest friend would consist of five tokens (using _  to show

the space character):

Good

With token ID 19045

_morning

With token ID 6693

_de

With token ID 409

arest

With token ID 15795

_friend

With token ID 4333

Usually tokenizers are trained with the objective of having the most common words
encoded into a single token, for example, the word morning is encoded as the token
6693 . Less common words, or words in other languages (usually tokenizers are

trained on English text), require several tokens to encode them. For example, the
word dearest is encoded as tokens 409, 15795 . One token spans on average four

characters of text for common English text, or roughly three quarters of a word.

https://oreil.ly/dU83b


The driving engine behind LLMs’ predictive power is known as
the transformer neural network architecture.  The transformer
architecture enables models to handle sequences of data, such
as sentences or lines of code, and make predictions about the
likeliest next word(s) in the sequence. Transformers are
designed to understand the context of each word in a sentence
by considering it in relation to every other word. This allows
the model to build a comprehensive understanding of the
meaning of a sentence, paragraph, and so on (in other words, a
sequence of words) as the joint meaning of its parts in relation
to each other.

So, when the model sees the sequence of words the capital of
England is, it makes a prediction based on similar examples it
saw during its training. In the model’s training corpus the word
England (or the token(s) that represent it) would have often
shown up in sentences in similar places to words like France,
United States, China. The word capital would figure in the
training data in many sentences also containing words like
England, France, and US, and words like London, Paris,
Washington. This repetition during the model’s training
resulted in the capacity to correctly predict that the next word
in the sequence should be London.

3



The instructions and input text you provide to the model is
called a prompt. Prompting can have a significant impact on the
quality of output from the LLM. There are several best practices
for prompt design or prompt engineering, including providing
clear and concise instructions with contextual examples, which
we discuss later in this book. Before we go further into
prompting, let’s look at some different types of LLMs available
for you to use.

The base type, from which all the others derive, is commonly
known as a pretrained LLM: it has been trained on very large
amounts of text (found on the internet and in books,
newspapers, code, video transcripts, and so forth) in a self-
supervised fashion. This means that—unlike in supervised ML,
where prior to training the researcher needs to assemble a
dataset of pairs of input to expected output—for LLMs those
pairs are inferred from the training data. In fact, the only
feasible way to use datasets that are so large is to assemble
those pairs from the training data automatically. Two
techniques to do this involve having the model do the following:

Predict the next word

Remove the last word from each sentence in the training
data, and that yields a pair of input and expected output,
such as The capital of England is ___ and London.



Predict a missing word

Similarly, if you take each sentence and omit a word from
the middle, you now have other pairs of input and
expected output, such as The ___ of England is London and
capital.

These models are quite difficult to use as is, they require you to
prime the response with a suitable prefix. For instance, if you
want to know the capital of England, you might get a response
by prompting the model with The capital of England is, but not
with the more natural What is the capital of England?

Instruction-Tuned LLMs

Researchers have made pretrained LLMs easier to use by
further training (additional training applied on top of the long
and costly training described in the previous section), also
known as fine-tuning them on the following:

Task-specific datasets

These are datasets of pairs of questions/answers manually
assembled by researchers, providing examples of
desirable responses to common questions that end users
might prompt the model with. For example, the dataset
might contain the following pair: Q: What is the capital of

https://oreil.ly/lP6hr


England? A: The capital of England is London. Unlike the
pretraining datasets, these are manually assembled, so
they are by necessity much smaller:

Reinforcement learning from human feedback (RLHF)

Through the use of RLHF methods, those manually
assembled datasets are augmented with user feedback
received on output produced by the model. For example,
user A preferred The capital of England is London to
London is the capital of England as an answer to the
earlier question.

Instruction-tuning has been key to broadening the number of
people who can build applications with LLMs, as they can now
be prompted with instructions, often in the form of questions
such as, What is the capital of England?, as opposed to The
capital of England is.

Dialogue-Tuned LLMs

Models tailored for dialogue or chat purposes are a further
enhancement of instruction-tuned LLMs. Different providers of
LLMs use different techniques, so this is not necessarily true of
all chat models, but usually this is done via the following:

Dialogue datasets

https://oreil.ly/lrlAK
https://oreil.ly/1DxW6
https://oreil.ly/1DxW6


The manually assembled fine-tuning datasets are extended
to include more examples of multiturn dialogue
interactions, that is, sequences of prompt-reply pairs.

Chat format

The input and output formats of the model are given a
layer of structure over freeform text, which divides text
into parts associated with a role (and optionally other
metadata like a name). Usually, the roles available are
system (for instructions and framing of the task), user (the
actual task or question), and assistant (for the outputs of
the model). This method evolved from early prompt
engineering techniques and makes it easier to tailor the
model’s output while making it harder for models to
confuse user input with instructions. Confusing user input
with prior instructions is also known as jailbreaking,
which can, for instance, lead to carefully crafted prompts,
possibly including trade secrets, being exposed to end
users.

Fine-Tuned LLMs

Fine-tuned LLMs are created by taking base LLMs and further
training them on a proprietary dataset for a specific task.

https://oreil.ly/dINx0
https://oreil.ly/dINx0


Technically, instruction-tuned and dialogue-tuned LLMs are
fine-tuned LLMs, but the term “fine-tuned LLM” is usually used
to describe LLMs that are tuned by the developer for their
specific task. For example, a model can be fine-tuned to
accurately extract the sentiment, risk factors, and key financial
figures from a public company’s annual report. Usually, fine-
tuned models have improved performance on the chosen task
at the expense of a loss of generality. That is, they become less
capable of answering queries on unrelated tasks.

Throughout the rest of this book, when we use the term LLM,
we mean instruction-tuned LLMs, and for chat model we mean
dialogue-instructed LLMs, as defined earlier in this section.
These should be your workhorses when using LLMs—the first
tools you reach for when starting a new LLM application.

Now let’s quickly discuss some common LLM prompting
techniques before diving into LangChain.

Brief Primer on Prompting

As we touched on earlier, the main task of the software
engineer working with LLMs is not to train an LLM, or even to
fine-tune one (usually), but rather to take an existing LLM and



work out how to get it to accomplish the task you need for your
application. There are commercial providers of LLMs, like
OpenAI, Anthropic, and Google, as well as open source LLMs
(Llama, Gemma, and others), released free-of-charge for others
to build upon. Adapting an existing LLM for your task is called
prompt engineering.

Many prompting techniques have been developed in the past
two years, and in a broad sense, this is a book about how to do
prompt engineering with LangChain—how to use LangChain to
get LLMs to do what you have in mind. But before we get into
LangChain proper, it helps to go over some of these techniques
first (and we apologize in advance if your favorite prompting
technique isn’t listed here; there are too many to cover).

To follow along with this section we recommend copying these
prompts to the OpenAI Playground to try them yourself:

1. Create an account for the OpenAI API at
http://platform.openai.com, which will let you use OpenAI
LLMs programmatically, that is, using the API from your
Python or JavaScript code. It will also give you access to the
OpenAI Playground, where you can experiment with
prompts from your web browser.

https://oreil.ly/ld3Fu
https://oreil.ly/RGKfi
https://oreil.ly/8uGK_
https://oreil.ly/8uGK_
http://platform.openai.com/


2. If necessary, add payment details for your new OpenAI
account. OpenAI is a commercial provider of LLMs and
charges a fee for each time you use their models through
OpenAI’s API or through Playground. You can find the latest
pricing on their website. Over the past two years, the price
for using OpenAI’s models has come down significantly as
new capabilities and optimizations are introduced.

3. Head on over to the OpenAI Playground and you’re ready to
try out the following prompts for yourself. We’ll make use of
the OpenAI API throughout this book.

4. Once you’ve navigated to the Playground, you will see a
panel of presets on the right side of the screen, including
your model of choice. If you look further down the panel, you
will see Temperature under the “Model configuration” title.
Move the Temperature toggle from middle to left until the
number shows 0.00. Essentially, temperature controls the
randomness of LLM output. The lower the temperature, the
more deterministic the model output.

Now on to the prompts!

Zero-Shot Prompting

The first and most straightforward prompting technique
consists of simply instructing the LLM to perform the desired

https://oreil.ly/MiKRD
https://oreil.ly/rxiAG


task:

How old was the 30th president of the United Stat

This is typically what you should try first, and it will usually
work for simple questions, especially when the answer to it was
likely present in some of the training data. If we prompt
OpenAI’s gpt-3.5-turbo  with the preceding prompt, the
following is returned:

The 30th president of the United States, Calvin C

his wife's mother passed away in 1926.

NOTE

You may get a different result from what we get. There is an element of randomness
to how LLMs generate responses, and OpenAI may have updated the model by the

time you try it.

While the model did correctly identify the 30th president, the
answer isn’t quite right. Often you’ll have to iterate on prompts



and responses to get a reliable system. The next sections
expand on how.

Chain-of-Thought

A very useful iteration is to further instruct the model to take
the time to think. This technique has been found to increase
performance on a variety of tasks. Curiously, a more recent
paper  suggests that this technique can also reduce LLM
performance on tasks where thinking reduces human
performance. Called chain-of-thought (CoT) prompting, this is
usually done by prepending the prompt with instructions for
the LLM to describe how it could arrive at the answer:

Think step by step.

How old was the 30th president of the United Stat

And now let’s see what the same model produces for this new
prompt:

1. First, find out who the 30th president of the 

done by researching a list of US presidents or by

4

https://oreil.ly/8xWcs
https://oreil.ly/8xWcs
https://oreil.ly/8xWcs


of the United States" online. You will find that 

Coolidge.

2. Next, find out the year when Calvin Coolidge w

be found by researching online or in a history bo

the president from 1923-1929.

3. Now, you need to determine the year when Calvi

This can be done by researching the life and deat

Coolidge. You will find that she lived from 1879-

4. Calculate the age of Calvin Coolidge's wife's 

78 years old.

5. Determine the age of Calvin Coolidge when his 

the year of his birth, 1872, from the year his mo

means that Calvin Coolidge was 85 years old when 

Notice how the only change in the prompt was the addition of
Think step by step , and how much of a difference that
made in the model’s output. Now the model outputs a sequence
of steps you could go through when trying to answer this
question. Unfortunately, while the steps are very reasonable,
the final output is still incorrect, given it got some facts wrong,
namely it listed the wrong birth and death years for President
Coolidge’s wife’s mother. Let’s see how to improve on this.



Retrieval-Augmented Generation

Retrieval-augmented generation (RAG) consists of finding
relevant pieces of text, also known as context, such as facts
you’d find in an encyclopedia and including that context in the
prompt. The RAG technique can (and in real applications
should) be combined with CoT, but for simplicity we’ll use these
techniques one at a time here. Here’s the prompt including
RAG:

Context:

- Calvin Coolidge (born John Calvin Coolidge Jr.;

January 5, 1933) was an American attorney and pol

30th president of the United States from 1923 to 

- Grace Anna Coolidge (née Goodhue; January 3, 18

wife of the 30th president of the United States, 

- Grace Anna Goodhue was born on January 3, 1879,

only child of Andrew Issachar Goodhue and Lemira 

- Lemira A. Goodhue (Barrett) ; Birthdate: April 

Burlington, Chittenden County, VT, United States 



How old was the 30th president of the United Stat

And the output from the model:

The 30th president of the United States, Calvin C

his wife's mother, Lemira A. Goodhue, died on Oct

Now we’re a lot closer to the correct answer, but as we touched
on earlier, LLMs aren’t great at out-of-the-box math. In this case,
the final result of 54 years old is off by 3. Let’s see how we can
improve on this.

Tool Calling

The tool calling technique consists of prepending the prompt
with a list of external functions the LLM can make use of, along
with descriptions of what each is good for and instructions on
how to signal in the output that it wants to use one (or more) of
these functions. Finally, you—the developer of the application—
should parse the output and call the appropriate functions.
Here’s one way to do this:



Tools:

- calculator: This tool accepts math expressions 

- search: This tool accepts search engine queries

result.

If you want to use tools to arrive at the answer,

inputs in CSV format, with this header row `tool,

How old was the 30th president of the United Stat

And this is the output you might get:

tool,input

calculator,2023-1892

search,"What age was Calvin Coolidge when his mot

While the LLM correctly followed the output format
instructions, the tools and inputs selected aren’t the most
appropriate for this question. This gets at one of the most



important things to keep in mind when prompting LLMs: each
prompting technique is most useful when used in combination
with (some of) the others. For instance, here we could improve
on this by combining tool calling, chain-of-thought, and RAG
into a prompt that uses all three. Let’s see what that looks like:

Context:

- Calvin Coolidge (born John Calvin Coolidge Jr.;

January 5, 1933) was an American attorney and pol

president of the United States from 1923 to 1929

- Grace Anna Coolidge (née Goodhue; January 3, 18

of the 30th president of the United States, Calvi

- Grace Anna Goodhue was born on January 3, 1879,

only child of Andrew Issachar Goodhue and Lemira 

- Lemira A. Goodhue (Barrett) ; Birthdate: April 

Burlington, Chittenden County, VT, United States 

Tools:

- calculator: This tool accepts math expressions 

If you want to use tools to arrive at the answer,



inputs in CSV format, with this header row `tool,

Think step by step.

How old was the 30th president of the United Stat

And with this prompt, maybe after a few tries, we might get this
output:

tool,input

calculator,1929 - 1872

If we parse that CSV output, and have a calculator function
execute the operation 1929 - 1827 , we finally get the right
answer: 57 years.

As per the previous example, by combining RAG with chain-of-
thought and tool calling, you can retrieve the most relevant
data to ground your model’s output, then guide it step by step to
ensure it uses that context effectively.



Few-Shot Prompting

Finally, we come to another very useful prompting technique:
few-shot prompting. This consists of providing the LLM with
examples of other questions and the correct answers, which
enables the LLM to learn how to perform a new task without
going through additional training or fine-tuning. When
compared to fine-tuning, few-shot prompting is more flexible—
you can do it on the fly at query time—but less powerful, and
you might achieve better performance with fine-tuning. That
said, you should usually always try few-shot prompting before
fine-tuning:

Static few-shot prompting

The most basic version of few-shot prompting is to
assemble a predetermined list of a small number of
examples that you include in the prompt.

Dynamic few-shot prompting

If you assemble a dataset of many examples, you can
instead pick the most relevant examples for each new
query.

The next section covers using LangChain to build applications
using LLMs and these prompting techniques.



LangChain and Why It’s Important

LangChain was one of the earliest open source libraries to
provide LLM and prompting building blocks and the tooling to
reliably combine them into larger applications. As of writing,
LangChain has amassed over 28 million monthly downloads,
99,000 GitHub stars, and the largest developer community in
generative AI (72,000+ strong). It has enabled software
engineers who don’t have an ML background to utilize the
power of LLMs to build a variety of apps, ranging from AI
chatbots to AI agents that can reason and take action
responsibly.

LangChain builds on the idea stressed in the preceding section:
that prompting techniques are most useful when used together.
To make that easier, LangChain provides simple abstractions for
each major prompting technique. By abstraction we mean
Python and JavaScript functions and classes that encapsulate
the ideas of those techniques into easy-to-use wrappers. These
abstractions are designed to play well together and to be
combined into a larger LLM application.

First of all, LangChain provides integrations with the major
LLM providers, both commercial (OpenAI, Anthropic, Google,

https://oreil.ly/8OKbf
https://oreil.ly/bF5pc
https://oreil.ly/PNWL3
https://oreil.ly/TTLXA
https://oreil.ly/O4UXw
https://oreil.ly/12g3Z


and more) and open source (Llama, Gemma, and others). These
integrations share a common interface, making it very easy to
try out new LLMs as they’re announced and letting you avoid
being locked-in to a single provider. We’ll use these in
Chapter 1.

LangChain also provides prompt template abstractions, which
enable you to reuse prompts more than once, separating static
text in the prompt from placeholders that will be different for
each time you send it to the LLM to get a completion generated.
We’ll talk more about these also in Chapter 1. LangChain
prompts can also be stored in the LangChain Hub for sharing
with teammates.

LangChain contains many integrations with third-party services
(such as Google Sheets, Wolfram Alpha, Zapier, just to name a
few) exposed as tools, which is a standard interface for
functions to be used in the tool-calling technique.

For RAG, LangChain provides integrations with the major
embedding models (language models designed to output a
numeric representation, the embedding, of the meaning of a
sentence, paragraph, and so on), vector stores (databases
dedicated to storing embeddings), and vector indexes (regular

https://oreil.ly/5WAVi
https://oreil.ly/-40Ne


databases with vector-storing capabilities). You’ll learn a lot
more about these in Chapters 2 and 3.

For CoT, LangChain (through the LangGraph library)
provides agent abstractions that combine chain-of-thought
reasoning and tool calling, first popularized by the ReAct paper.
This enables building LLM applications that do the following:

1. Reason about the steps to take.
2. Translate those steps into external tool calls.
3. Receive the output of those tool calls.
4. Repeat until the task is accomplished.

We cover these in Chapters 5 through 8.

For chatbot use cases, it becomes useful to keep track of
previous interactions and use them when generating the
response to a future interaction. This is called memory, and
Chapter 4 discusses using it in LangChain.

Finally, LangChain provides the tools to compose these building
blocks into cohesive applications. Chapters 1 through 6 talk
more about this.

In addition to this library, LangChain provides LangSmith—a
platform to help debug, test, deploy, and monitor AI workflows

https://oreil.ly/27BIC
https://oreil.ly/geRgx


—and LangGraph Platform—a platform for deploying and
scaling LangGraph agents. We cover these in Chapters 9 and 10.

What to Expect from This Book

With this book, we hope to convey the excitement and
possibility of adding LLMs to your software engineering
toolbelt.

We got into programming because we like building things,
getting to the end of a project, looking at the final product and
realizing there’s something new out there, and we built it.
Programming with LLMs is so exciting to us because it expands
the set of things we can build, it makes previously hard things
easy (for example, extracting relevant numbers from a long
text) and previously impossible things possible—try building an
automated assistant a year ago and you end up with the phone
tree hell we all know and love from calling up customer support
numbers.

Now with LLMs and LangChain, you can actually build pleasant
assistants (or myriad other applications) that chat with you and
understand your intent to a very reasonable degree. The



difference is night and day! If that sounds exciting to you (as it
does to us) then you’ve come to the right place.

In this Preface, we’ve given you a refresher on what makes
LLMs tick and why exactly that gives you “thing-building”
superpowers. Having these very large ML models that
understand language and can output answers written in
conversational English (or some other language) gives you a
programmable (through prompt engineering), versatile
language-generation tool. By the end of the book, we hope you’ll
see just how powerful that can be.

We’ll begin with an AI chatbot customized by, for the most part,
plain English instructions. That alone should be an eye-opener:
you can now “program” part of the behavior of your
application without code.

Then comes the next capability: giving your chatbot access to
your own documents, which takes it from a generic assistant to
one that’s knowledgeable about any area of human knowledge
for which you can find a library of written text. This will allow
you to have the chatbot answer questions or summarize
documents you wrote, for instance.



After that, we’ll make the chatbot remember your previous
conversations. This will improve it in two ways: It will feel a lot
more natural to have a conversation with a chatbot that
remembers what you have previously chatted about, and over
time the chatbot can be personalized to the preferences of each
of its users individually.

Next, we’ll use chain-of-thought and tool-calling techniques to
give the chatbot the ability to plan and act on those plans,
iteratively. This will enable it to work toward more complicated
requests, such as writing a research report about a subject of
your choice.

As you use your chatbot for more complicated tasks, you’ll feel
the need to give it the tools to collaborate with you. This
encompasses both giving you the ability to interrupt or
authorize actions before they are taken, as well as providing the
chatbot with the ability to ask for more information or
clarification before acting.

Finally, we’ll show you how to deploy your chatbot to
production and discuss what you need to consider before and
after taking that step, including latency, reliability, and security.
Then we’ll show you how to monitor your chatbot in
production and continue to improve it as it is used.



Along the way, we’ll teach you the ins and outs of each of these
techniques, so that when you finish the book, you will have
truly added a new tool (or two) to your software engineering
toolbelt.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames,
and file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

TIP

This element signifies a tip or suggestion.



NOTE

This element signifies a general note.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is
available for download at https://oreil.ly/supp-
LearningLangChain.

If you have a technical question or a problem using the code
examples, please send email to support@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this
book into your product’s documentation does require
permission.

https://oreil.ly/supp-LearningLangChain
https://oreil.ly/supp-LearningLangChain
mailto:support@oreilly.com


We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Learning LangChain by Mayo Oshin and
Nuno Campos (O’Reilly). Copyright 2025 Olumayowa “Mayo”
Olufemi Oshin, 978-1-098-16728-8.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/


How to Contact Us

Please address comments and questions concerning this book to
the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access this
page at https://oreil.ly/learning-langchain.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/learning-langchain
https://oreilly.com/
https://linkedin.com/company/oreilly-media


Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

We would like to express our gratitude and appreciation to the
reviewers—Rajat Kant Goel, Douglas Bailley, Tom Taulli, Gourav
Bais, and Jacob Lee—for providing valuable technical feedback
on improving this book.

 Tom B. Brown et al., “Language Models Are Few-Shot Learners”, arXiv, July 22, 2020.

 Xiang Zhang et al., “Don’t Trust ChatGPT When Your Question Is Not in English: A

Study of Multilingual Abilities and Types of LLMs”, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, December 6–10,
2023.

 For more information, see Ashish Vaswani et al., “Attention Is All You Need ", arXiv,

June 12, 2017.

 Ryan Liu et al. “Mind Your Step (by Step): Chain-of-Thought Can Reduce
Performance on Tasks Where Thinking Makes Humans Worse”, arXiv, November 8,
2024.

1

2

3

4

https://youtube.com/oreillymedia
https://oreil.ly/1qoM6
https://oreil.ly/u5Cy1
https://oreil.ly/u5Cy1
https://oreil.ly/Frtul
https://oreil.ly/UHFp9
https://oreil.ly/UHFp9


Chapter 1. LLM Fundamentals with
LangChain

The Preface gave you a taste of the power of LLM prompting,
where we saw firsthand the impact that different prompting
techniques can have on what you get out of LLMs, especially
when judiciously combined. The challenge in building good
LLM applications is, in fact, in how to effectively construct the
prompt sent to the model and process the model’s prediction to
return an accurate output (see Figure 1-1).

Figure 1-1. The challenge in making LLMs a useful part of your application

If you can solve this problem, you are well on your way to
building LLM applications, simple and complex alike. In this
chapter, you’ll learn more about how LangChain’s building
blocks map to LLM concepts and how, when combined
effectively, they enable you to build LLM applications. But first,
the sidebar “Why LangChain?” is a brief primer on why we
think it useful to use LangChain to build LLM applications.



WHY LANGCHAIN?

You can of course build LLM applications without LangChain.
The most obvious alternative is to use the software
development kit (SDK)—the package exposing the methods of
their HTTP API as functions in the programming language of
your choice—of the LLM provider you tried first (for example,
OpenAI). We think learning LangChain will pay off in the short
term and over the long run because of the following factors:

Prebuilt common patterns

LangChain comes with reference implementations of the
most common LLM application patterns (we mentioned
some of these in the Preface: chain-of-thought, tool calling,
and others). This is the quickest way to get started with
LLMs and might often be all you need. We’d suggest
starting any new application from these and checking
whether the results out of the box are good enough for
your use case. If not, then see the next item for the other
half of the LangChain libraries.

Interchangeable building blocks

These are components that can be easily swapped out for
alternatives. Every component (an LLM, chat model,
output parser, and so on—more on these shortly) follows a



shared specification, which makes your application
future-proof. As new capabilities are released by model
providers and as your needs change, you can evolve your
application without rewriting it each time.

Throughout this book we make use of the following major
components in the code examples:

LLM/chat model: OpenAI
Embeddings: OpenAI
Vector store: PGVector

You can swap out each of these for any of the alternatives listed
on the following pages:

Chat models

See the LangChain documentation. If you don’t want to
use OpenAI (a commercial API) we suggest Anthropic as a
commercial alternative or Ollama as an open source one.

Embeddings

See the LangChain documentation. If you don’t want to
use OpenAI (a commercial API) we suggest Cohere as a
commercial alternative or Ollama as an open source one.

Vector stores

https://oreil.ly/8Qlnb
https://oreil.ly/XdGfD
https://oreil.ly/eKy6-
https://oreil.ly/sKpfM
https://oreil.ly/o1D0C
https://oreil.ly/FarfL


See the LangChain documentation. If you don’t want to
use PGVector (an open source extension to the popular
SQL database Postgres) we suggest using either Weaviate
(a dedicated vector store) or OpenSearch (vector search
features that are part of a popular search database).

This effort goes beyond, for instance, all LLMs having the same
methods, with similar arguments and return values. Let’s look
at the example of chat models and two popular LLM providers,
OpenAI and Anthropic. Both have a chat API which receives
chat messages (loosely defined as objects with a type string and
a content string) and returns a new message generated by the
model. But if you try to use both models in the same
conversation, you’ll immediately run into issues, as their chat
message formats are subtly incompatible. LangChain abstracts
away these differences to enable building applications that are
truly independent of a particular provider. For instance, with
LangChain, a chatbot conversation where you use both OpenAI
and Anthropic models works.

Finally, as you build out your LLM applications with several of
these components, we’ve found it useful to have the
orchestration capabilities of LangChain:

https://oreil.ly/q3RF1
https://oreil.ly/XqlYa
https://oreil.ly/1s357


All major components are instrumented by the callbacks
system for observability (more on this in Chapter 8).
All major components implement the same interface (more
on this toward the end of this chapter).
Long-running LLM applications can be interrupted, resumed,
or retried (more on this in Chapter 6).

Getting Set Up with LangChain

To follow along with the rest of the chapter, and the chapters to
come, we recommend setting up LangChain on your computer
first.

See the instructions in the Preface regarding setting up an
OpenAI account and complete these if you haven’t yet. If you
prefer using a different LLM provider, see “Why LangChain?”
for alternatives.

Then head over to the API Keys page on the OpenAI website
(after logging in to your OpenAI account), create an API key,
and save it—you’ll need it soon.

https://oreil.ly/BKrtV


NOTE

In this book, we’ll show code examples in both Python and JavaScript (JS). LangChain
offers the same functionality in both languages, so just pick the one you’re most

comfortable with and follow the respective code snippets throughout the book (the
code examples for each language are equivalent).

First, some setup instructions for readers using Python:

1. Ensure that you have Python installed. See the instructions
for your operating system.

2. Install Jupyter if you want to run the examples in a notebook
environment. You can do this by running pip install
notebook  in your terminal.

3. Install the LangChain library by running the following
commands in your terminal:

pip install langchain langchain-openai langchai

pip install langchain-text-splitters langchain-

4. Take the OpenAI API key you generated at the beginning of
this section and make it available in your terminal
environment. You can do this by running the following:

https://oreil.ly/20K9l
https://oreil.ly/20K9l


export OPENAI_API_KEY=your-key

5. Don’t forget to replace your-key  with the API key you
generated previously.

6. Open a Jupyter notebook by running this command:

jupyter notebook

You’re now ready to follow along with the Python code
examples.

Here are the instructions for readers using JavaScript:

1. Take the OpenAI API key you generated at the beginning of
this section and make it available in your terminal
environment. You can do this by running the following:

export OPENAI_API_KEY=your-key

2. Don’t forget to replace your-key  with the API key you
generated previously.



3. If you want to run the examples as Node.js scripts, install
Node by following the instructions.

4. Install the LangChain libraries by running the following
commands in your terminal:

npm install langchain @langchain/openai @langch

npm install @langchain/core pg

5. Take each example, save it as a .js file and run it with node
./file.js .

Using LLMs in LangChain

To recap, LLMs are the driving engine behind most generative
AI applications. LangChain provides two simple interfaces to
interact with any LLM API provider:

Chat models
LLMs

The LLM interface simply takes a string prompt as input, sends
the input to the model provider, and then returns the model
prediction as output.

https://oreil.ly/5gjiO


Let’s import LangChain’s OpenAI LLM wrapper to invoke  a
model prediction using a simple prompt:

Python

from langchain_openai.llms import OpenAI

model = OpenAI(model="gpt-3.5-turbo")

model.invoke("The sky is")

JavaScript

import { OpenAI } from "@langchain/openai";

const model = new OpenAI({ model: "gpt-3.5-turbo"

await model.invoke("The sky is");

The output:

Blue!



TIP

Notice the parameter model  passed to OpenAI . This is the most common parameter

to configure when using an LLM or chat model, the underlying model to use, as most
providers offer several models with different trade-offs in capability and cost
(usually larger models are more capable, but also more expensive and slower). See
OpenAI’s overview of the models they offer.

Other useful parameters to configure include the following, offered by most
providers.

temperature

This controls the sampling algorithm used to generate output. Lower values
produce more predictable outputs (for example, 0.1), while higher values
generate more creative, or unexpected, results (such as 0.9). Different tasks
will need different values for this parameter. For instance, producing

structured output usually benefits from a lower temperature, whereas creative
writing tasks do better with a higher value:

max_tokens

This limits the size (and cost) of the output. A lower value may cause the LLM
to stop generating the output before getting to a natural end, so it may appear
to have been truncated.

Beyond these, each provider exposes a different set of parameters. We recommend

looking at the documentation for the one you choose. For an example, refer to
OpenAI’s platform.

Alternatively, the chat model interface enables back and forth
conversations between the user and model. The reason why it’s

https://oreil.ly/dM886
https://oreil.ly/5O1RW


a separate interface is because popular LLM providers like
OpenAI differentiate messages sent to and from the model into
user, assistant, and system roles (here role denotes the type of
content the message contains):

System role

Used for instructions the model should use to answer a
user question

User role

Used for the user’s query and any other content produced
by the user

Assistant role

Used for content generated by the model

The chat model’s interface makes it easier to configure and
manage conversions in your AI chatbot application. Here’s an
example utilizing LangChain’s ChatOpenAI model:

Python

from langchain_openai.chat_models import ChatOpen

from langchain_core.messages import HumanMessage



model = ChatOpenAI()

prompt = [HumanMessage("What is the capital of Fr

model.invoke(prompt)

JavaScript

import { ChatOpenAI } from '@langchain/openai'

import { HumanMessage } from '@langchain/core/mes

const model = new ChatOpenAI()

const prompt = [new HumanMessage('What is the cap

await model.invoke(prompt)

The output:

AIMessage(content='The capital of France is Paris

Instead of a single prompt string, chat models make use of
different types of chat message interfaces associated with each



role mentioned previously. These include the following:

HumanMessage

A message sent from the perspective of the human, with
the user role

AIMessage

A message sent from the perspective of the AI that the
human is interacting with, with the assistant role

SystemMessage

A message setting the instructions the AI should follow,
with the system role

ChatMessage

A message allowing for arbitrary setting of role

Let’s incorporate a SystemMessage  instruction in our
example:

Python

from langchain_core.messages import HumanMessage,

from langchain_openai.chat_models import ChatOpen



model = ChatOpenAI()

system_msg = SystemMessage(

    '''You are a helpful assistant that responds 

        exclamation marks.'''

)

human_msg = HumanMessage('What is the capital of 

model.invoke([system_msg, human_msg])

JavaScript

import { ChatOpenAI } from "@langchain/openai";

import { HumanMessage, SystemMessage } from "@lan

const model = new ChatOpenAI();

const prompt = [

  new SystemMessage(

    `You are a helpful assistant that responds to

      exclamation marks.`,

  ),

  new HumanMessage("What is the capital of France

];

await model.invoke(prompt);



The output:

AIMessage('Paris!!!')

As you can see, the model obeyed the instruction provided in
the SystemMessage  even though it wasn’t present in the user’s
question. This enables you to preconfigure your AI application
to respond in a relatively predictable manner based on the
user’s input.

Making LLM Prompts Reusable

The previous section showed how the prompt  instruction
significantly influences the model’s output. Prompts help the
model understand context and generate relevant answers to
queries.

Here is an example of a detailed prompt:

Answer the question based on the context below. I

answered using the information provided, answer w

Context: The most recent advancements in NLP are 



Models (LLMs). These models outperform their smal

become invaluable for developers who are creating

capabilities. Developers can tap into these model

`transformers` library, or by utilizing OpenAI an

the `openai` and `cohere` libraries, respectively

Question: Which model providers offer LLMs?

Answer:

Although the prompt looks like a simple string, the challenge is
figuring out what the text should contain and how it should
vary based on the user’s input. In this example, the Context and
Question values are hardcoded, but what if we wanted to pass
these in dynamically?

Fortunately, LangChain provides prompt template interfaces
that make it easy to construct prompts with dynamic inputs:

Python

from langchain_core.prompts import PromptTemplate

template = PromptTemplate.from_template("""Answer

    context below. If the question cannot be answ



    provided, answer with "I don't know".

Context: {context}

Question: {question}

Answer: """)

template.invoke({

    "context": """The most recent advancements in

        Language Models (LLMs). These models outp

        counterparts and have become invaluable f

        applications with NLP capabilities. Devel

        models through Hugging Face's `transforme

        OpenAI and Cohere's offerings through the

        libraries, respectively.""",

    "question": "Which model providers offer LLMs

})

JavaScript

import { PromptTemplate } from '@langchain/core/p

const template = PromptTemplate.fromTemplate(`Ans

  context below. If the question cannot be answer

  provided, answer with "I don't know".



Context: {context}

Question: {question}

Answer: `)

await template.invoke({

  context: `The most recent advancements in NLP a

    Language Models (LLMs). These models outperfo

    counterparts and have become invaluable for d

    applications with NLP capabilities. Developer

    through Hugging Face's \`transformers\` libra

    and Cohere's offerings through the \`openai\

    respectively.`,

  question: "Which model providers offer LLMs?"

})

The output:

StringPromptValue(text='Answer the question based

    question cannot be answered using the informa

    don\'t know".\n\nContext: The most recent adv

    driven by Large Language Models (LLMs). These

    smaller counterparts and have become invaluab

    creating applications with NLP capabilities. 



    models through Hugging Face\'s `transformers

    OpenAI and Cohere\'s offerings through the `o

    respectively.\n\nQuestion: Which model provid

This example takes the static prompt from the previous block
and makes it dynamic. The template  contains the structure of
the final prompt alongside the definition of where the dynamic
inputs will be inserted.

As such, the template can be used as a recipe to build multiple
static, specific prompts. When you format the prompt with
some specific values—in this case, context  and question —
you get a static prompt ready to be passed in to an LLM.

As you can see, the question  argument is passed dynamically
via the invoke  function. By default, LangChain prompts follow
Python’s f-string  syntax for defining dynamic parameters—
any word surrounded by curly braces, such as {question} ,
are placeholders for values passed in at runtime. In the
previous example, {question}  was replaced by “Which
model providers offer LLMs?”

Let’s see how we’d feed this into an LLM OpenAI model using
LangChain:



Python

from langchain_openai.llms import OpenAI

from langchain_core.prompts import PromptTemplate

# both `template` and `model` can be reused many 

template = PromptTemplate.from_template("""Answer

    context below. If the question cannot be answ

    provided, answer with "I don't know".

Context: {context}

Question: {question}

Answer: """)

model = OpenAI()

# `prompt` and `completion` are the results of us

prompt = template.invoke({

    "context": """The most recent advancements in

        Language Models (LLMs). These models outp

        counterparts and have become invaluable f

        applications with NLP capabilities. Devel

        models through Hugging Face's `transforme



        OpenAI and Cohere's offerings through the

        libraries, respectively.""",

    "question": "Which model providers offer LLMs

})

completion = model.invoke(prompt)

JavaScript

import { PromptTemplate } from '@langchain/core/p

import { OpenAI } from '@langchain/openai'

const model = new OpenAI()

const template = PromptTemplate.fromTemplate(`Ans

  context below. If the question cannot be answer

  provided, answer with "I don't know".

Context: {context}

Question: {question}

Answer: `)

const prompt = await template.invoke({

  context: `The most recent advancements in NLP a

    Language Models (LLMs). These models outperfo



    counterparts and have become invaluable for d

    applications with NLP capabilities. Developer

    through Hugging Face's \`transformers\` libra

    and Cohere's offerings through the \`openai\

    respectively.`,

  question: "Which model providers offer LLMs?"

})

await model.invoke(prompt)

The output:

Hugging Face's `transformers` library, OpenAI usi

Cohere using the `cohere` library offer LLMs.

If you’re looking to build an AI chat application, the
ChatPromptTemplate  can be used instead to provide dynamic
inputs based on the role of the chat message:

Python

from langchain_core.prompts import ChatPromptTemp

template = ChatPromptTemplate.from_messages([



    ('system', '''Answer the question based on th

        question cannot be answered using the inf

        "I don\'t know".'''),

    ('human', 'Context: {context}'),

    ('human', 'Question: {question}'),

])

template.invoke({

    "context": """The most recent advancements in

        Language Models (LLMs). These models outp

        counterparts and have become invaluable f

        applications with NLP capabilities. Devel

        models through Hugging Face's `transforme

        OpenAI and Cohere's offerings through the

        libraries, respectively.""",

    "question": "Which model providers offer LLMs

})

JavaScript

import { ChatPromptTemplate } from '@langchain/co

const template = ChatPromptTemplate.fromMessages

  ['system', `Answer the question based on the co

    cannot be answered using the information prov

    don\'t know".`],



  ['human', 'Context: {context}'],

  ['human', 'Question: {question}'],

])

await template.invoke({

  context: `The most recent advancements in NLP a

    Language Models (LLMs). These models outperfo

    counterparts and have become invaluable for d

    applications with NLP capabilities. Developer

    through Hugging Face's \`transformers\` libra

    and Cohere's offerings through the \`openai\

    respectively.`,

  question: "Which model providers offer LLMs?"

})

The output:

ChatPromptValue(messages=[SystemMessage(content=

    the context below. If the question cannot be 

    provided, answer with "I don\'t know".'), Hum

    The most recent advancements in NLP are being

    Models (LLMs). These models outperform their 

    become invaluable for developers who are crea

    capabilities. Developers can tap into these m

    `transformers` library, or by utilizing OpenA



    through the `openai` and `cohere` libraries, 

    (content='Question: Which model providers off

Notice how the prompt contains instructions in a
SystemMessage  and two instances of HumanMessage  that
contain dynamic context  and question  variables. You can
still format the template in the same way and get back a static
prompt that you can pass to a large language model for a
prediction output:

Python

from langchain_openai.chat_models import ChatOpen

from langchain_core.prompts import ChatPromptTemp

# both `template` and `model` can be reused many 

template = ChatPromptTemplate.from_messages([

    ('system', '''Answer the question based on th

        question cannot be answered using the inf

        with "I don\'t know".'''),

    ('human', 'Context: {context}'),

    ('human', 'Question: {question}'),

])



model = ChatOpenAI()

# `prompt` and `completion` are the results of us

prompt = template.invoke({

    "context": """The most recent advancements in

        Large Language Models (LLMs). These model

        counterparts and have become invaluable f

        applications with NLP capabilities. Devel

        models through Hugging Face's `transforme

        OpenAI and Cohere's offerings through the

        libraries, respectively.""",

    "question": "Which model providers offer LLMs

})

model.invoke(prompt)

JavaScript

import { ChatPromptTemplate } from '@langchain/co

import { ChatOpenAI } from '@langchain/openai'

const model = new ChatOpenAI()

const template = ChatPromptTemplate.fromMessages

  ['system', `Answer the question based on the co

    cannot be answered using the information prov



    don\'t know".`],

  ['human', 'Context: {context}'],

  ['human', 'Question: {question}'],

])

const prompt = await template.invoke({

  context: `The most recent advancements in NLP a

    Language Models (LLMs). These models outperfo

    counterparts and have become invaluable for d

    applications with NLP capabilities. Developer

    through Hugging Face's \`transformers\` libra

    and Cohere's offerings through the \`openai\

    respectively.`,

  question: "Which model providers offer LLMs?"

})

await model.invoke(prompt)

The output:

AIMessage(content="Hugging Face's `transformers` 

    `openai` library, and Cohere using the `coher



Getting Specific Formats out of LLMs

Plain text outputs are useful, but there may be use cases where
you need the LLM to generate a structured output—that is,
output in a machine-readable format, such as JSON, XML, CSV,
or even in a programming language such as Python or
JavaScript. This is very useful when you intend to hand that
output off to some other piece of code, making an LLM play a
part in your larger application.

JSON Output

The most common format to generate with LLMs is JSON. JSON
outputs can (for example) be sent over the wire to your
frontend code or be saved to a database.

When generating JSON, the first task is to define the schema you
want the LLM to respect when producing the output. Then, you
should include that schema in the prompt, along with the text
you want to use as the source. Let’s see an example:

Python

from langchain_openai import ChatOpenAI



from langchain_core.pydantic_v1 import BaseModel

class AnswerWithJustification(BaseModel):

    '''An answer to the user's question along wit

        answer.'''

    answer: str

    '''The answer to the user's question'''

    justification: str

    '''Justification for the answer'''

llm = ChatOpenAI(model="gpt-3.5-turbo", temperatu

structured_llm = llm.with_structured_output(Answe

structured_llm.invoke("""What weighs more, a poun

    of feathers""")

JavaScript

import { ChatOpenAI } from '@langchain/openai'

import { z } from "zod";

const answerSchema = z

  .object({

    answer: z.string().describe("The answer to th

    justification: z.string().describe(`Justifica

      answer`),



  })

  .describe(`An answer to the user's question alo

    the answer.`);

const model = new ChatOpenAI({

  model: "gpt-3.5-turbo",

  temperature: 0,

}).withStructuredOutput(answerSchema)

await model.invoke("What weighs more, a pound of 

The output:

{

  answer: "They weigh the same",

  justification: "Both a pound of bricks and a po

    The weight is the same, but the volu"... 42 m

}

So, first define a schema. In Python, this is easiest to do with
Pydantic (a library used for validating data against schemas). In
JS, this is easiest to do with Zod (an equivalent library). The
method with_structured_output  will use that schema for
two things:



The schema will be converted to a JSONSchema  object (a
JSON format used to describe the shape [types, names,
descriptions] of JSON data), which will be sent to the LLM.
For each LLM, LangChain picks the best method to do this,
usually function calling or prompting.
The schema will also be used to validate the output returned
by the LLM before returning it; this ensures the output
produced respects the schema you passed in exactly.

Other Machine-Readable Formats with
Output Parsers

You can also use an LLM or chat model to produce output in
other formats, such as CSV or XML. This is where output parsers
come in handy. Output parsers are classes that help you
structure large language model responses. They serve two
functions:

Providing format instructions

Output parsers can be used to inject some additional
instructions in the prompt that will help guide the LLM to
output text in the format it knows how to parse.

Validating and parsing output



The main function is to take the textual output of the LLM
or chat model and render it to a more structured format,
such as a list, XML, or other format. This can include
removing extraneous information, correcting incomplete
output, and validating the parsed values.

Here’s an example of how an output parser works:

Python

from langchain_core.output_parsers import CommaSe

parser = CommaSeparatedListOutputParser()

items = parser.invoke("apple, banana, cherry")

JavaScript

import { CommaSeparatedListOutputParser } from '@

const parser = new CommaSeparatedListOutputParser

await parser.invoke("apple, banana, cherry")

The output:



['apple', 'banana', 'cherry']

LangChain provides a variety of output parsers for various use
cases, including CSV, XML, and more. We’ll see how to combine
output parsers with models and prompts in the next section.

Assembling the Many Pieces of an
LLM Application

The key components you’ve learned about so far are essential
building blocks of the LangChain framework. Which brings us
to the critical question: How do you combine them effectively to
build your LLM application?

Using the Runnable Interface

As you may have noticed, all the code examples used so far
utilize a similar interface and the invoke()  method to
generate outputs from the model (or prompt template, or
output parser). All components have the following:

There is a common interface with these methods:
invoke : transforms a single input into an output



batch : efficiently transforms multiple inputs into
multiple outputs
stream : streams output from a single input as it’s
produced

There are built-in utilities for retries, fallbacks, schemas, and
runtime configurability.
In Python, each of the three methods have asyncio
equivalents.

As such, all components behave the same way, and the interface
learned for one of them applies to all:

Python

from langchain_openai.llms import ChatOpenAI

model = ChatOpenAI()

completion = model.invoke('Hi there!') 

# Hi!

completions = model.batch(['Hi there!', 'Bye!'])

# ['Hi!', 'See you!']

for token in model.stream('Bye!'):

    print(token)



    # Good

    # bye

    # !

JavaScript

import { ChatOpenAI } from '@langchain/openai'

const model = new ChatOpenAI()

const completion = await model.invoke('Hi there!

// Hi!

const completions = await model.batch(['Hi there

// ['Hi!', 'See you!']

for await (const token of await model.stream('Bye

  console.log(token)

  // Good

  // bye

  // !

}

In this example, you see how the three main methods work:



invoke()  takes a single input and returns a single output.
batch()  takes a list of outputs and returns a list of outputs.
stream()  takes a single input and returns an iterator of
parts of the output as they become available.

In some cases, where the underlying component doesn’t
support iterative output, there will be a single part containing
all output.

You can combine these components in two ways:

Imperative

Call your components directly, for example, with
model.invoke(...)

Declarative

Use LangChain Expression Language (LCEL), as covered in
an upcoming section

Table 1-1 summarizes their differences, and we’ll see each in
action next.



Table 1-1. The main differences between imperative and declarative composition.

  Imperative Declarative

Syntax All of Python or JavaScript LCEL

Parallel
execution

Python: with threads or
coroutines
JavaScript: with Promise.a
ll

Automatic

Streaming With yield keyword Automatic

Async execution With async functions Automatic

Imperative Composition

Imperative composition is just a fancy name for writing the code
you’re used to writing, composing these components into
functions and classes. Here’s an example combining prompts,
models, and output parsers:

Python

from langchain_openai.chat_models import ChatOpen

from langchain_core.prompts import ChatPromptTemp



from langchain_core.runnables import chain

# the building blocks

template = ChatPromptTemplate.from_messages([

    ('system', 'You are a helpful assistant.'),

    ('human', '{question}'),

])

model = ChatOpenAI()

# combine them in a function

# @chain decorator adds the same Runnable interfa

@chain

def chatbot(values):

    prompt = template.invoke(values)

    return model.invoke(prompt)

# use it

chatbot.invoke({"question": "Which model provider

JavaScript

import {ChatOpenAI} from '@langchain/openai'



import {ChatPromptTemplate} from '@langchain/core

import {RunnableLambda} from '@langchain/core/run

// the building blocks

const template = ChatPromptTemplate.fromMessages

  ['system', 'You are a helpful assistant.'],

  ['human', '{question}'],

])

const model = new ChatOpenAI()

// combine them in a function

// RunnableLambda adds the same Runnable interfac

const chatbot = RunnableLambda.from(async values 

  const prompt = await template.invoke(values)

  return await model.invoke(prompt)

})

// use it

await chatbot.invoke({

  "question": "Which model providers offer LLMs?"

})

The output:



AIMessage(content="Hugging Face's `transformers` 

    `openai` library, and Cohere using the `coher

The preceding is a complete example of a chatbot, using a
prompt and chat model. As you can see, it uses familiar Python
syntax and supports any custom logic you might want to add in
that function.

On the other hand, if you want to enable streaming or async
support, you’d have to modify your function to support it. For
example, streaming support can be added as follows:

Python

@chain

def chatbot(values):

    prompt = template.invoke(values)

    for token in model.stream(prompt):

        yield token

for part in chatbot.stream({

    "question": "Which model providers offer LLMs



}):

    print(part)

JavaScript

const chatbot = RunnableLambda.from(async functio

  const prompt = await template.invoke(values)

  for await (const token of await model.stream(pr

    yield token

  }

})

for await (const token of await chatbot.stream({

  "question": "Which model providers offer LLMs?"

})) {

  console.log(token)

}

The output:

AIMessageChunk(content="Hugging")

AIMessageChunk(content=" Face's")



AIMessageChunk(content=" `transformers`")

...

So, either in JS or Python, you can enable streaming for your
custom function by yielding the values you want to stream and
then calling it with stream .

For asynchronous execution, you’d rewrite your function like
this:

Python

@chain

async def chatbot(values):

    prompt = await template.ainvoke(values)

    return await model.ainvoke(prompt)

await chatbot.ainvoke({"question": "Which model p

# > AIMessage(content="""Hugging Face's `transfor

    the `openai` library, and Cohere using the `c

This one applies to Python only, as asynchronous execution is
the only option in JavaScript.



Declarative Composition

LCEL is a declarative language for composing LangChain
components. LangChain compiles LCEL compositions to an
optimized execution plan, with automatic parallelization,
streaming, tracing, and async support.

Let’s see the same example using LCEL:

Python

from langchain_openai.chat_models import ChatOpen

from langchain_core.prompts import ChatPromptTemp

# the building blocks

template = ChatPromptTemplate.from_messages([

    ('system', 'You are a helpful assistant.'),

    ('human', '{question}'),

])

model = ChatOpenAI()

# combine them with the | operator

chatbot = template | model



# use it

chatbot.invoke({"question": "Which model provider

JavaScript

import { ChatOpenAI } from '@langchain/openai'

import { ChatPromptTemplate } from '@langchain/co

import { RunnableLambda } from '@langchain/core/r

// the building blocks

const template = ChatPromptTemplate.fromMessages

  ['system', 'You are a helpful assistant.'],

  ['human', '{question}'],

])

const model = new ChatOpenAI()

// combine them in a function

const chatbot = template.pipe(model)

// use it



await chatbot.invoke({

  "question": "Which model providers offer LLMs?"

})

The output:

AIMessage(content="Hugging Face's `transformers` 

    `openai` library, and Cohere using the `coher

Crucially, the last line is the same between the two examples—
that is, you use the function and the LCEL sequence in the same
way, with invoke/stream/batch . And in this version, you
don’t need to do anything else to use streaming:

Python

chatbot = template | model

for part in chatbot.stream({

    "question": "Which model providers offer LLMs

}):

    print(part)

    # > AIMessageChunk(content="Hugging")



    # > AIMessageChunk(content=" Face's")

    # > AIMessageChunk(content=" `transformers`")

    # ...

JavaScript

const chatbot = template.pipe(model)

for await (const token of await chatbot.stream({

  "question": "Which model providers offer LLMs?"

})) {

  console.log(token)

}

And, for Python only, it’s the same for using asynchronous
methods:

Python

chatbot = template | model

await chatbot.ainvoke({



    "question": "Which model providers offer LLMs

})

Summary

In this chapter, you’ve learned about the building blocks and
key components necessary to build LLM applications using
LangChain. LLM applications are essentially a chain consisting
of the large language model to make predictions, the prompt
instruction(s) to guide the model toward a desired output, and
an optional output parser to transform the format of the
model’s output.

All LangChain components share the same interface with
invoke , stream , and batch  methods to handle various
inputs and outputs. They can either be combined and executed
imperatively by calling them directly or declaratively using
LCEL.

The imperative approach is useful if you intend to write a lot of
custom logic, whereas the declarative approach is useful for
simply assembling existing components with limited
customization.



In Chapter 2, you’ll learn how to provide external data to your
AI chatbot as context so that you can build an LLM application
that enables you to “chat” with your data.



Chapter 2. RAG Part I: Indexing Your
Data

In the previous chapter, you learned about the important
building blocks used to create an LLM application using
LangChain. You also built a simple AI chatbot consisting of a
prompt sent to the model and the output generated by the
model. But there are major limitations to this simple chatbot.

What if your use case requires knowledge that the model
wasn’t trained on? For example, let’s say you want to use AI to
ask questions about a company, but the information is
contained in a private PDF or other type of document. While
we’ve seen model providers enriching their training datasets to
include more and more of the world’s public information (no
matter what format it is stored in), two major limitations
continue to exist in LLM’s knowledge corpus:

Private data

Information that isn’t publicly available is, by definition,
not included in the training data of LLMs.

Current events



Training an LLM is a costly and time-consuming process
that can span multiple years, with data-gathering being
one of the first steps. This results in what is called the
knowledge cutoff, or a date beyond which the LLM has no
knowledge of real-world events; usually this would be the
date the training set was finalized. This can be anywhere
from a few months to a few years into the past, depending
on the model in question.

In either case, the model will most likely hallucinate (find
misleading or false information) and respond with inaccurate
information. Adapting the prompt won’t resolve the issue either
because it relies on the model’s current knowledge.

The Goal: Picking Relevant Context for
LLMs

If the only private/current data you needed for your LLM use
case was one to two pages of text, this chapter would be a lot
shorter: all you’d need to make that information available to the
LLM is to include that entire text in every single prompt you
sent to the model.



The challenge in making data available to LLMs is first and
foremost a quantity problem. You have more information than
can fit in each prompt you send to the LLM. Which small subset
of your large collection of text do you include each time you call
the model? Or in other words, how do you pick (with the aid of
the model) which text is most relevant to answer each
question?

In this chapter and the next, you’ll learn how to overcome this
challenge in two steps:

1. Indexing your documents, that is, preprocessing them in a
way where your application can easily find the most relevant
ones for each question

2. Retrieving this external data from the index and using it as
context for the LLM to generate an accurate output based on
your data

This chapter focuses on indexing, the first step, which involves
preprocessing your documents into a format that can be
understood and searched with LLMs. This technique is called
retrieval-augmented generation (RAG). But before we begin, let’s
discuss why your documents require preprocessing.



Let’s assume you would like to use LLMs to analyze the
financial performance and risks in Tesla’s 2022 annual report,
which is stored as text in PDF format. Your goal is to be able to
ask a question like “What key risks did Tesla face in 2022?” and
get a humanlike response based on context from the risk
factors section of the document.

Breaking it down, there are four key steps (shown in Figure 2-1)
that you’d need to take in order to achieve this goal:

1. Extract the text from the document.
2. Split the text into manageable chunks.
3. Convert the text into numbers that computers can

understand.
4. Store these number representations of your text somewhere

that makes it easy and fast to retrieve the relevant sections of
your document to answer a given question.

Figure 2-1. Four key steps to preprocess your documents for LLM usage

https://oreil.ly/Bp51E


Figure 2-1 illustrates the flow of this preprocessing and
transformation of your documents, a process known as
ingestion. Ingestion is simply the process of converting your
documents into numbers that computers can understand and
analyze, and storing them in a special type of database for
efficient retrieval. These numbers are formally known as
embeddings, and this special type of database is known as a
vector store. Let’s look a little more closely at what embeddings
are and why they’re important, starting with something simpler
than LLM-powered embeddings.

Embeddings: Converting Text to
Numbers

Embedding refers to representing text as a (long) sequence of
numbers. This is a lossy representation—that is, you can’t
recover the original text from these number sequences, so you
usually store both the original text and this numeric
representation.

So, why bother? Because you gain the flexibility and power that
comes with working with numbers: you can do math on words!
Let’s see why that’s exciting.



Embeddings Before LLMs

Long before LLMs, computer scientists were using embeddings
—for instance, to enable full-text search capabilities in websites
or to classify emails as spam. Let’s see an example:

1. Take these three sentences:
What a sunny day.
Such bright skies today.
I haven’t seen a sunny day in weeks.

2. List all unique words in them: what, a, sunny, day, such,
bright, and so on.

3. For each sentence, go word by word and assign the number 0
if not present, 1 if used once in the sentence, 2 if present
twice, and so on.

Table 2-1 shows the result.



Table 2-1. Word embeddings for three sentences

Word
What a
sunny day.

Such bright
skies today.

I haven’t seen
a sunny day in
weeks.

what 1 0 0

a 1 0 1

sunny 1 0 1

day 1 0 1

such 0 1 0

bright 0 1 0

skies 0 1 0

today 0 1 0

I 0 0 1

haven’t 0 0 1

seen 0 0 1

in 0 0 1



Word
What a
sunny day.

Such bright
skies today.

I haven’t seen
a sunny day in
weeks.

weeks 0 0 1

In this model, the embedding for I haven’t seen a sunny day in
weeks is the sequence of numbers 0 1 1 1 0 0 0 0 1 1 1 1 1. This is
called the bag-of-words model, and these embeddings are also
called sparse embeddings (or sparse vectors—vector is another
word for a sequence of numbers), because a lot of the numbers
will be 0. Most English sentences use only a very small subset of
all existing English words.

You can successfully use this model for:

Keyword search

You can find which documents contain a given word or
words.

Classification of documents

You can calculate embeddings for a collection of examples
previously labeled as email spam or not spam, average
them out, and obtain average word frequencies for each



of the classes (spam or not spam). Then, each new
document is compared to those averages and classified
accordingly.

The limitation here is that the model has no awareness of
meaning, only of the actual words used. For instance, the
embeddings for sunny day and bright skies look very different.
In fact they have no words in common, even though we know
they have similar meaning. Or, in the email classification
problem, a would-be spammer can trick the filter by replacing
common “spam words” with their synonyms.

In the next section, we’ll see how semantic embeddings address
this limitation by using numbers to represent the meaning of
the text, instead of the exact words found in the text.

LLM-Based Embeddings

We’re going to skip over all the ML developments that came in
between and jump straight to LLM-based embeddings. Just
know that there was a gradual evolution from the simple
method outlined in the previous section to the sophisticated
method described in this one.



You can think of embedding models as an offshoot from the
training process of LLMs. If you remember from the Preface,
the LLM training process (learning from vast amounts of
written text) enables LLMs to complete a prompt (or input) with
the most appropriate continuation (output). This capability
stems from an understanding of the meaning of words and
sentences in the context of the surrounding text, learned from
how words are used together in the training texts. This
understanding of the meaning (or semantics) of the prompt can
be extracted as a numeric representation (or embedding) of the
input text, and can be used directly for some very interesting
use cases too.

In practice, most embedding models are trained for that
purpose alone, following somewhat similar architectures and
training processes as LLMs, as that is more efficient and results
in higher-quality embeddings.

An embedding model then is an algorithm that takes a piece of
text and outputs a numerical representation of its meaning—
technically, a long list of floating-point (decimal) numbers,
usually somewhere between 100 and 2,000 numbers, or
dimensions. These are also called dense embeddings, as opposed
to the sparse embeddings of the previous section, as here
usually all dimensions are different from 0.

1



TIP

Different models produce different numbers and different sizes of lists. All of these
are specific to each model; that is, even if the size of the lists matches, you cannot

compare embeddings from different models. Combining embeddings from different
models should always be avoided.

Semantic Embeddings Explained

Consider these three words: lion, pet, and dog. Intuitively, which
pair of these words share similar characteristics to each other
at first glance? The obvious answer is pet and dog. But
computers do not have the ability to tap into this intuition or
nuanced understanding of the English language. In order for a
computer to differentiate between a lion, pet, or dog, you need
to be able to translate them into the language of computers,
which is numbers.

Figure 2-2 illustrates converting each word into hypothetical
number representations that retain their meaning.



Figure 2-2. Semantic representations of words

Figure 2-2 shows each word alongside its corresponding
semantic embedding. Note that the numbers themselves have
no particular meaning, but instead the sequences of numbers
for two words (or sentences) that are close in meaning should
be closer than those of unrelated words. As you can see, each
number is a floating-point value, and each of them represents a
semantic dimension. Let’s see what we mean by closer:



If we plot these vectors in a three-dimensional space, it could
look like Figure 2-3.

Figure 2-3. Plot of word vectors in a multidimensional space

Figure 2-3 shows the pet and dog vectors are closer to each
other in distance than the lion plot. We can also observe that
the angles between each plot varies depending on how similar
they are. For example, the words pet and lion have a wider
angle between one another than the pet and dog do, indicating
more similarities shared by the latter word pairs. The narrower



the angle or shorter the distance between two vectors, the
closer their similarities.

One effective way to calculate the degree of similarity between
two vectors in a multidimensional space is called cosine
similarity. Cosine similarity computes the dot product of vectors
and divides it by the product of their magnitudes to output a
number between –1 and 1, where 0 means the vectors share no
correlation, –1 means they are absolutely dissimilar, and 1
means they are absolutely similar. So, in the case of our three
words here, the cosine similarity between pet and dog could be
0.75, but between pet and lion it might be 0.1.

The ability to convert sentences into embeddings that capture
semantic meaning and then perform calculations to find
semantic similarities between different sentences enables us to
get an LLM to find the most relevant documents to answer
questions about a large body of text like our Tesla PDF
document. Now that you understand the big picture, let’s revisit
the first step (indexing) of preprocessing your document.



OTHER USES FOR EMBEDDINGS

These sequences of numbers and vectors have a number of
interesting properties:

As you learned earlier, if you think of a vector as describing a
point in high-dimensional space, points that are closer
together have more similar meanings, so a distance function
can be used to measure similarity.
Groups of points close together can be said to be related;
therefore, a clustering algorithm can be used to identify
topics (or clusters of points) and classify new inputs into one
of those topics.
If you average out multiple embeddings, the average
embedding can be said to represent the overall meaning of
that group; that is, you can embed a long document (for
instance, this book) by:
1. Embedding each page separately
2. Taking the average of the embeddings of all pages as the

book embedding
You can “travel” the “meaning” space by using the
elementary math operations of addition and subtraction: for
instance, the operation king – man + woman = queen. If you
take the meaning (or semantic embedding) of king, subtract
the meaning of man, presumably you arrive at the more



abstract meaning of monarch, at which point, if you add the
meaning of woman, you’ve arrived close to the meaning (or
embedding) of the word queen.
There are models that can produce embeddings for nontext
content, for instance, images, videos, and sounds, in addition
to text. This enables, for instance, finding images that are
most similar or relevant for a given sentence.

We won’t explore all of these attributes in this book, but it’s
useful to know they can be used for a number of applications
such as:

Search

Finding the most relevant documents for a new query

Clustering

Given a body of documents, dividing them into groups
(for instance, topics)

Classification

Assigning a new document to a previously identified
group or label (for instance, a topic)

Recommendation

Given a document, surfacing similar documents

https://oreil.ly/PU2C8


Detecting anomalies

Identifying documents that are very dissimilar from
previously seen ones

We hope this leaves you with some intuition that embeddings
are quite versatile and can be put to good use in your future
projects.

Converting Your Documents into Text

As mentioned at the beginning of the chapter, the first step in
preprocessing your document is to convert it to text. In order to
achieve this, you would need to build logic to parse and extract
the document with minimal loss of quality. Fortunately,
LangChain provides document loaders that handle the parsing
logic and enable you to “load” data from various sources into a
Document  class that consists of text and associated metadata.

For example, consider a simple .txt file. You can simply import a
LangChain TextLoader  class to extract the text, like this:

Python

from langchain_community.document_loaders import 



loader = TextLoader("./test.txt")

loader.load()

JavaScript

import { TextLoader } from "langchain/document_lo

const loader = new TextLoader("./test.txt");

const docs = await loader.load();

The output:

[Document(page_content='text content \n', metadat

    './test.txt'})]

The previous code block assumes that you have a file named
test.txt  in your current directory. Usage of all LangChain
document loaders follows a similar pattern:



1. Start by picking the loader for your type of document from
the long list of integrations.

2. Create an instance of the loader in question, along with any
parameters to configure it, including the location of your
documents (usually a filesystem path or web address).

3. Load the documents by calling load() , which returns a list
of documents ready to pass to the next stage (more on that
soon).

Aside from .txt files, LangChain provides document loaders for
other popular file types including .csv, .json, and Markdown,
alongside integrations with popular platforms such as Slack and
Notion.

For example, you can use WebBaseLoader  to load HTML from
web URLs and parse it to text.

Install the beautifulsoup4 package:

pip install beautifulsoup4

Python

https://oreil.ly/iLJ33


from langchain_community.document_loaders import 

loader = WebBaseLoader("https://www.langchain.com

loader.load()

JavaScript

// install cheerio: npm install cheerio

import { 

  CheerioWebBaseLoader 

} from "@langchain/community/document_loaders/web

const loader = new CheerioWebBaseLoader("https://

const docs = await loader.load();

In the case of our Tesla PDF use case, we can utilize LangChain’s
PDFLoader  to extract text from the PDF document:

Python

# install the pdf parsing library



# pip install pypdf

from langchain_community.document_loaders import 

loader = PyPDFLoader("./test.pdf")

pages = loader.load()

JavaScript

// install the pdf parsing library: npm install p

import { PDFLoader } from "langchain/document_loa

const loader = new PDFLoader("./test.pdf");

const docs = await loader.load();

The text has been extracted from the PDF document and stored
in the Document  class. But there’s a problem. The loaded
document is over 100,000 characters long, so it won’t fit into the
context window of the vast majority of LLMs or embedding
models. In order to overcome this limitation, we need to split
the Document  into manageable chunks of text that we can



later convert into embeddings and semantically search,
bringing us to the second step (retrieving).

TIP

LLMs and embedding models are designed with a hard limit on the size of input and
output tokens they can handle. This limit is usually called context window, and

usually applies to the combination of input and output; that is, if the context window
is 100 (we’ll talk about units in a second), and your input measures 90, the output can
be at most of length 10. Context windows are usually measured in number of tokens,
for instance 8,192 tokens. Tokens, as mentioned in the Preface, are a representation

of text as numbers, with each token usually covering between three and four
characters of English text.

Splitting Your Text into Chunks

At first glance it may seem straightforward to split a large body
of text into chunks, but keeping semantically related (related by
meaning) chunks of text together is a complex process. To make
it easier to split large documents into small, but still
meaningful, pieces of text, LangChain provides
RecursiveCharacterTextSplitter , which does the
following:

1. Take a list of separators, in order of importance. By default
these are:



a. The paragraph separator: \n\n
b. The line separator: \n
c. The word separator: space character

2. To respect the given chunk size, for instance, 1,000
characters, start by splitting up paragraphs.

3. For any paragraph longer than the desired chunk size, split
by the next separator: lines. Continue until all chunks are
smaller than the desired length, or there are no additional
separators to try.

4. Emit each chunk as a Document , with the metadata of the
original document passed in and additional information
about the position in the original document.

Let’s see an example:

Python

from langchain_text_splitters import RecursiveCha

loader = TextLoader("./test.txt") # or any other 

docs = loader.load()

splitter = RecursiveCharacterTextSplitter(

    chunk_size=1000,

    chunk_overlap=200,



)

splitted_docs = splitter.split_documents(docs)

JavaScript

import { TextLoader } from "langchain/document_lo

import { RecursiveCharacterTextSplitter } from "@

const loader = new TextLoader("./test.txt"); // o

const docs = await loader.load();

const splitter = new RecursiveCharacterTextSplitt

  chunkSize: 1000,

  chunkOverlap: 200,

});

const splittedDocs = await splitter.splitDocument

In the preceding code, the documents created by the document
loader are split into chunks of 1,000 characters each, with some
overlap between chunks of 200 characters to maintain some
context. The result is also a list of documents, where each
document is up to 1,000 characters in length, split along the
natural divisions of written text—paragraphs, new lines and



finally, words. This uses the structure of the text to keep each
chunk a consistent, readable snippet of text.

RecursiveCharacterTextSplitter  can also be used to split
code languages and Markdown into semantic chunks. This is
done by using keywords specific to each language as the
separators, which ensures, for instance, the body of each
function is kept in the same chunk, instead of split between
several. Usually, as programming languages have more
structure than written text, there’s less need to use overlap
between the chunks. LangChain contains separators for a
number of popular languages, such as Python, JS, Markdown,
HTML, and many more. Here’s an example:

Python

from langchain_text_splitters import (

    Language,

    RecursiveCharacterTextSplitter,

)

PYTHON_CODE = """

def hello_world():

    print("Hello, World!")



# Call the function

hello_world()

"""

python_splitter = RecursiveCharacterTextSplitter

    language=Language.PYTHON, chunk_size=50, chun

)

python_docs = python_splitter.create_documents([P

JavaScript

import { RecursiveCharacterTextSplitter } from "@

const PYTHON_CODE = `

def hello_world():

  print("Hello, World!")

# Call the function

hello_world()

`;

const pythonSplitter = RecursiveCharacterTextSpli

  chunkSize: 50,

  chunkOverlap: 0,

});

const pythonDocs = await pythonSplitter.createDoc



The output:

[Document(page_content='def hello_world():\n    p

    Document(page_content='# Call the function\nh

Notice how we’re still using
RecursiveCharacterTextSplitter  as before, but now we’re
creating an instance of it for a specific language, using the
from_language  method. This one accepts the name of the
language, and the usual parameters for chunk size, and so on.
Also notice we are now using the method create_documents ,
which accepts a list of strings, rather than the list of documents
we had before. This method is useful when the text you want to
split doesn’t come from a document loader, so you have only the
raw text strings.

You can also use the optional second argument to
create_documents  in order to pass a list of metadata to
associate with each text string. This metadata list should have
the same length as the list of strings and will be used to
populate the metadata field of each Document  returned.

Let’s see an example for Markdown text, using the metadata
argument as well:



Python

markdown_text = """

# LangChain

⚡ Building applications with LLMs through compos

## Quick Install

```bash

pip install langchain

```

As an open source project in a rapidly developing

    to contributions.

"""

md_splitter = RecursiveCharacterTextSplitter.from

    language=Language.MARKDOWN, chunk_size=60, ch

)

md_docs = md_splitter.create_documents([markdown_

    [{"source": "https://www.langchain.com"}])

JavaScript



const markdownText = `

# LangChain

⚡ Building applications with LLMs through compos

## Quick Install

\`\`\`bash

pip install langchain

\`\`\`

As an open source project in a rapidly developing

  open to contributions.

`;

const mdSplitter = RecursiveCharacterTextSplitter

  chunkSize: 60,

  chunkOverlap: 0,

});

const mdDocs = await mdSplitter.createDocuments(

  [{"source": "https://www.langchain.com"}]);

The output:

[Document(page_content='# LangChain', 



    metadata={"source": "https://www.langchain.co

 Document(page_content='⚡ Building applications 

    ⚡', metadata={"source": "https://www.langcha

 Document(page_content='## Quick Install\n\n```ba

    metadata={"source": "https://www.langchain.co

 Document(page_content='pip install langchain', 

    metadata={"source": "https://www.langchain.co

 Document(page_content='```', metadata={"source"

 Document(page_content='As an open source project

    we', metadata={"source": "https://www.langcha

 Document(page_content='are extremely open to con

    metadata={"source": "https://www.langchain.co

Notice two things:

The text is split along the natural stopping points in the
Markdown document; for instance, the heading goes into one
chunk, the line of text under it in a separate chunk, and so
on.
The metadata we passed in the second argument is attached
to each resulting document, which allows you to track, for
instance, where the document came from and where you can
go to see the original.



Generating Text Embeddings

LangChain also has an Embeddings  class designed to interface
with text embedding models—including OpenAI, Cohere, and
Hugging Face—and generate vector representations of text. This
class provides two methods: one for embedding documents and
one for embedding a query. The former takes a list of text
strings as input, while the latter takes a single text string.

Here’s an example of embedding a document using OpenAI’s
embedding model:

Python

from langchain_openai import OpenAIEmbeddings

model = OpenAIEmbeddings()

embeddings = model.embed_documents([

    "Hi there!",

    "Oh, hello!",

    "What's your name?",

    "My friends call me World",

https://oreil.ly/9tnzQ
https://oreil.ly/9tnzQ


    "Hello World!"

])

JavaScript

import { OpenAIEmbeddings } from "@langchain/open

const model = new OpenAIEmbeddings();

const embeddings = await embeddings.embedDocument

  "Hi there!",

  "Oh, hello!",

  "What' s your name?",

  "My friends call me World",

  "Hello World!"

]);

The output:

[

  [

    -0.004845875, 0.004899438, -0.016358767, -0.0

      0.012571548, -0.019156644, 0.009036391, -0

      0.022861943, 0.010321903, -0.023479493, -0



    0.0026371893, 0.025206111, -0.012048521, 0.01

    -0.010580265, -0.003509951, 0.004070787, 0.00

    ... 1511 more items

  ]

  [

      -0.009446913, -0.013253193, 0.013174579, 0

      0.0077763423, -0.0260478, -0.0114384955, -0

      0.041797023, 0.01787183, 0.00552271, -0.004

      -0.01542166, 0.033752076, 0.006112323, 0.02

      -0.006623321, 0.016116094, -0.0061090477, -

    ... 1511 more items

  ]

  ... 3 more items

]

Notice that you can embed multiple documents at the same
time; you should prefer this to embedding them one at a time,
as it will be more efficient (due to how these models are
constructed). You get back a list containing multiple lists of
numbers—each inner list is a vector or embedding, as
explained in an earlier section.

Now let’s see an end-to-end example using the three capabilities
we’ve seen so far:

Document loaders, to convert any document to plain text



Text splitters, to split each large document into many smaller
ones
Embeddings models, to create a numeric representation of
the meaning of each split

Here’s the code:

Python

from langchain_community.document_loaders import 

from langchain_text_splitters import RecursiveCha

from langchain_openai import OpenAIEmbeddings

## Load the document 

loader = TextLoader("./test.txt")

doc = loader.load()

"""

[

    Document(page_content='Document loaders\n\nUs

        from a source as `Document`\'s. A `Docume

        associated metadata. For example, there a

        loading a simple `.txt` file, for loading

        page, or even for loading a transcript of

        document loader exposes two methods:\n1. 



        the configured source\n2. "Load and split

        configured source and split them using th

        splitter\n\nThey optionally implement:\n\

        documents into memory lazily\n', metadata

]

"""

## Split the document

text_splitter = RecursiveCharacterTextSplitter(

    chunk_size=1000,

    chunk_overlap=20,

)

chunks = text_splitter.split_documents(doc)

## Generate embeddings

embeddings_model = OpenAIEmbeddings()

embeddings = embeddings_model.embed_documents(

    [chunk.page_content for chunk in chunks]

)

"""

[[0.0053587136790156364,

 -0.0004999046213924885,

  0.038883671164512634,

 -0.003001077566295862,



 -0.00900818221271038, ...], ...]

"""

JavaScript

import { TextLoader } from "langchain/document_lo

import { RecursiveCharacterTextSplitter } from "@

import { OpenAIEmbeddings } from "@langchain/open

// Load the document 

const loader = new TextLoader("./test.txt");

const docs = await loader.load();

// Split the document

const splitter = new RecursiveCharacterTextSplitt

  chunkSize: 1000,

  chunkOverlap: 200,

});

const chunks = await splitter.splitDocuments(docs

// Generate embeddings



const model = new OpenAIEmbeddings();

await embeddings.embedDocuments(chunks.map(c => c

Once you’ve generated embeddings from your documents, the
next step is to store them in a special database known as a
vector store.

Storing Embeddings in a Vector Store

Earlier in this chapter, we discussed the cosine similarity
calculation to measure the similarity between vectors in a
vector space. A vector store is a database designed to store
vectors and perform complex calculations, like cosine
similarity, efficiently and quickly.

Unlike traditional databases that specialize in storing
structured data (such as JSON documents or data conforming to
the schema of a relational database), vector stores handle
unstructured data, including text and images. Like traditional
databases, vector stores are capable of performing create, read,
update, delete (CRUD), and search operations.

Vector stores unlock a wide variety of use cases, including
scalable applications that utilize AI to answer questions about



large documents, as illustrated in Figure 2-4.

Figure 2-4. Loading, embedding, storing, and retrieving relevant docs from a vector
store

Figure 2-4 illustrates how document embeddings are inserted
into the vector store and how later, when a query is sent,
similar embeddings are retrieved from the vector store.

Currently, there is an abundance of vector store providers to
choose from, each specializing in different capabilities. Your
selection should depend on the critical requirements of your
application, including multitenancy, metadata filtering
capabilities, performance, cost, and scalability.

Although vector stores are niche databases built to manage
vector data, there are a few disadvantages working with them:

Most vector stores are relatively new and may not stand the
test of time.
Managing and optimizing vector stores can present a
relatively steep learning curve.
Managing a separate database adds complexity to your
application and may drain valuable resources.



Fortunately, vector store capabilities have recently been
extended to PostgreSQL (a popular open source relational
database) via the pgvector  extension. This enables you to use
the same database you’re already familiar with and to power
both your transactional tables (for instance your users table) as
well as your vector search tables.

Getting Set Up with PGVector

To use Postgres and PGVector you’ll need to follow a few setup
steps:

1. Ensure you have Docker installed on your computer,
following the instructions for your operating system.

2. Run the following command in your terminal; it will launch a
Postgres instance in your computer running on port 6024:

docker run \

    --name pgvector-container \

    -e POSTGRES_USER=langchain \

    -e POSTGRES_PASSWORD=langchain \

    -e POSTGRES_DB=langchain \

    -p 6024:5432 \

    -d pgvector/pgvector:pg16

https://oreil.ly/Gn28O


Open your docker dashboard containers and you should see
a green running status next to pgvector-container .

3. Save the connection string to use in your code; we’ll need it
later:

postgresql+psycopg://langchain:langchain@localh

Working with Vector Stores

Picking up where we left off in the previous section on
embeddings, now let’s see an example of loading, splitting,
embedding, and storing a document in PGVector:

Python

# first, pip install langchain-postgres

from langchain_community.document_loaders import 

from langchain_openai import OpenAIEmbeddings

from langchain_text_splitters import RecursiveCha

from langchain_postgres.vectorstores import PGVec

from langchain_core.documents import Document

import uuid



# Load the document, split it into chunks

raw_documents = TextLoader('./test.txt').load()

text_splitter = RecursiveCharacterTextSplitter(ch

    chunk_overlap=200)

documents = text_splitter.split_documents(raw_doc

# embed each chunk and insert it into the vector 

embeddings_model = OpenAIEmbeddings()

connection = 'postgresql+psycopg://langchain:lang

db = PGVector.from_documents(documents, embedding

JavaScript

import { TextLoader } from "langchain/document_lo

import { RecursiveCharacterTextSplitter } from "@

import { OpenAIEmbeddings } from "@langchain/open

import { PGVectorStore } from "@langchain/communi

import { v4 as uuidv4 } from 'uuid';

// Load the document, split it into chunks

const loader = new TextLoader("./test.txt");

const raw_docs = await loader.load();

const splitter = new RecursiveCharacterTextSplitt

  chunkSize: 1000,

  chunkOverlap: 200,

});



const docs = await splitter.splitDocuments(docs)

// embed each chunk and insert it into the vector

const embeddings_model = new OpenAIEmbeddings();

const db = await PGVectorStore.fromDocuments(docs

  postgresConnectionOptions: {

    connectionString: 'postgresql://langchain:lan

  }

})

Notice how we reuse the code from the previous sections to first
load the documents with the loader and then split them into
smaller chunks. Then, we instantiate the embeddings model we
want to use—in this case, OpenAI’s. Note that you could use any
other embeddings model supported by LangChain here.

Next, we have a new line of code, which creates a vector store
given documents, the embeddings model, and a connection
string. This will do a few things:

Establish a connection to the Postgres instance running in
your computer (see “Getting Set Up with PGVector”.)
Run any setup necessary, such as creating tables to hold your
documents and vectors, if this is the first time you’re running
it.



Create embeddings for each document you passed in, using
the model you chose.
Store the embeddings, the document’s metadata, and the
document’s text content in Postgres, ready to be searched.

Let’s see what it looks like to search documents:

Python

db.similarity_search("query", k=4)

JavaScript

await pgvectorStore.similaritySearch("query", 4);

This method will find the most relevant documents (which you
previously indexed), by following this process:

The search query—in this case, the word query —will be
sent to the embeddings model to retrieve its embedding.
Then, it will run a query on Postgres to find the N (in this
case 4) previously stored embeddings that are most similar to
your query.



Finally, it will fetch the text content and metadata that relates
to each of those embeddings.
The model can now return a list of Document  sorted by how
similar they are to the query—the most similar first, the
second most similar after, and so on.

You can also add more documents to an existing database. Let’s
see an example:

Python

ids = [str(uuid.uuid4()), str(uuid.uuid4())]

db.add_documents(

    [

        Document(

            page_content="there are cats in the p

            metadata={"location": "pond", "topic"

        ),

        Document(

            page_content="ducks are also found in

            metadata={"location": "pond", "topic"

        ),

    ],

    ids=ids,

)



JavaScript

const ids = [uuidv4(), uuidv4()];

await db.addDocuments(

  [

    {

      pageContent: "there are cats in the pond",

      metadata: {location: "pond", topic: "animal

    }, 

    {

      pageContent: "ducks are also found in the p

      metadata: {location: "pond", topic: "animal

    },

  ], 

  {ids}

);

The add_documents  method we’re using here will follow a
similar process to fromDocuments :

Create embeddings for each document you passed in, using
the model you chose.
Store the embeddings, the document’s metadata, and the
document’s text content in Postgres, ready to be searched.



In this example, we are using the optional ids  argument to
assign identifiers to each document, which allows us to update
or delete them later.

Here’s an example of the delete operation:

Python

db.delete(ids=[1])

JavaScript

await db.delete({ ids: [ids[1]] })

This removes the second document inserted by using its
Universally Unique Identifier (UUID). Now let’s see how to do
this in a more systematic way.

Tracking Changes to Your Documents

One of the key challenges with working with vector stores is
working with data that regularly changes, because changes
mean re-indexing. And re-indexing can lead to costly



recomputations of embeddings and duplications of preexisting
content.

Fortunately, LangChain provides an indexing API to make it
easy to keep your documents in sync with your vector store.
The API utilizes a class ( RecordManager ) to keep track of
document writes into the vector store. When indexing content,
hashes are computed for each document and the following
information is stored in RecordManager :

The document hash (hash of both page content and
metadata)
Write time
The source ID (each document should include information in
its metadata to determine the ultimate source of this
document).

In addition, the indexing API provides cleanup modes to help
you decide how to delete existing documents in the vector store.
For example, If you’ve made changes to how documents are
processed before insertion or if source documents have
changed, you may want to remove any existing documents that
come from the same source as the new documents being
indexed. If some source documents have been deleted, you’ll



want to delete all existing documents in the vector store and
replace them with the re-indexed documents.

The modes are as follows:

None  mode does not do any automatic cleanup, allowing the
user to manually do cleanup of old content.
Incremental  and full  modes delete previous versions of
the content if the content of the source document or derived
documents has changed.
Full  mode will additionally delete any documents not
included in documents currently being indexed.

Here’s an example of the use of the indexing API with Postgres
database set up as a record manager:

Python

from langchain.indexes import SQLRecordManager, i

from langchain_postgres.vectorstores import PGVec

from langchain_openai import OpenAIEmbeddings

from langchain.docstore.document import Document

connection = "postgresql+psycopg://langchain:lang

collection_name = "my_docs"

embeddings_model = OpenAIEmbeddings(model="text-e



namespace = "my_docs_namespace"

vectorstore = PGVector(

    embeddings=embeddings_model,

    collection_name=collection_name,

    connection=connection,

    use_jsonb=True,

)

record_manager = SQLRecordManager(

    namespace,

    db_url="postgresql+psycopg://langchain:langch

)

# Create the schema if it doesn't exist

record_manager.create_schema()

# Create documents

docs = [

    Document(page_content='there are cats in the 

        "id": 1, "source": "cats.txt"}),

    Document(page_content='ducks are also found i

        "id": 2, "source": "ducks.txt"}),

]

# Index the documents

index_1 = index(

    docs,



    record_manager,

    vectorstore,

    cleanup="incremental",  # prevent duplicate d

    source_id_key="source",  # use the source fie

)

print("Index attempt 1:", index_1)

# second time you attempt to index, it will not a

index_2 = index(

    docs,

    record_manager,

    vectorstore,

    cleanup="incremental",

    source_id_key="source",

)

print("Index attempt 2:", index_2)

# If we mutate a document, the new version will b

# versions sharing the same source will be delete

docs[0].page_content = "I just modified this docu

index_3 = index(

    docs,

    record_manager,

    vectorstore,



    cleanup="incremental",

    source_id_key="source",

)

print("Index attempt 3:", index_3)

JavaScript

/** 

1. Ensure docker is installed and running (https

2. Run the following command to start the postgre

   

docker run \

  --name pgvector-container \

  -e POSTGRES_USER=langchain \

  -e POSTGRES_PASSWORD=langchain \

  -e POSTGRES_DB=langchain \

  -p 6024:5432 \

  -d pgvector/pgvector:pg16

3. Use the connection string below for the postgr

*/

import { PostgresRecordManager } from '@langchain

import { index } from 'langchain/indexes';

import { OpenAIEmbeddings } from '@langchain/open

import { PGVectorStore } from '@langchain/communi



import { v4 as uuidv4 } from 'uuid';

const tableName = 'test_langchain';

const connectionString =

  'postgresql://langchain:langchain@localhost:602

// Load the document, split it into chunks

const config = {

  postgresConnectionOptions: {

    connectionString,

  },

  tableName: tableName,

  columns: {

    idColumnName: 'id',

    vectorColumnName: 'vector',

    contentColumnName: 'content',

    metadataColumnName: 'metadata',

  },

};

const vectorStore = await PGVectorStore.initializ

  new OpenAIEmbeddings(),

  config

);

// Create a new record manager

const recordManagerConfig = {

  postgresConnectionOptions: {



    connectionString,

  },

  tableName: 'upsertion_records',

};

const recordManager = new PostgresRecordManager(

  'test_namespace',

  recordManagerConfig

);

// Create the schema if it doesn't exist

await recordManager.createSchema();

const docs = [

  {

    pageContent: 'there are cats in the pond',

    metadata: { id: uuidv4(), source: 'cats.txt' 

  },

  {

    pageContent: 'ducks are also found in the pon

    metadata: { id: uuidv4(), source: 'ducks.txt

  },

];

// the first attempt will index both documents

const index_attempt_1 = await index({

  docsSource: docs,

  recordManager,

  vectorStore,



  options: {

    // prevent duplicate documents by id from bei

    cleanup: 'incremental',

    // the key in the metadata that will be used 

    sourceIdKey: 'source', 

  },

});

console.log(index_attempt_1);

// the second attempt will skip indexing because 

// already exist

const index_attempt_2 = await index({

  docsSource: docs,

  recordManager,

  vectorStore,

  options: {

    cleanup: 'incremental',

    sourceIdKey: 'source',

  },

});

console.log(index_attempt_2);

// If we mutate a document, the new version will 

// versions sharing the same source will be delet

docs[0].pageContent = 'I modified the first docum

const index_attempt_3 = await index({



  docsSource: docs,

  recordManager,

  vectorStore,

  options: {

    cleanup: 'incremental',

    sourceIdKey: 'source',

  },

});

console.log(index_attempt_3);

First, you create a record manager, which keeps track of which
documents have been indexed before. Then you use the index
function to synchronize your vector store with the new list of
documents. In this example, we’re using the incremental mode,
so any documents that have the same ID as previous ones will
be replaced with the new version.

Indexing Optimization

A basic RAG indexing stage involves naive text splitting and
embedding of chunks of a given document. However, this basic
approach leads to inconsistent retrieval results and a relatively
high occurrence of hallucinations, especially when the data
source contains images and tables.



There are various strategies to enhance the accuracy and
performance of the indexing stage. We will cover three of them
in the next sections: MultiVectorRetriever, RAPTOR, and
ColBERT.

MultiVectorRetriever

A document that contains a mixture of text and tables cannot
be simply split by text into chunks and embedded as context:
the entire table can be easily lost. To solve this problem, we can
decouple documents that we want to use for answer synthesis,
from a reference that we want to use for the retriever. Figure 2-
5 illustrates how.

Figure 2-5. Indexing multiple representations of a single document



For example, in the case of a document that contains tables, we
can first generate and embed summaries of table elements,
ensuring each summary contains an id  reference to the full
raw table. Next, we store the raw referenced tables in a
separate docstore. Finally, when a user’s query retrieves a table
summary, we pass the entire referenced raw table as context to
the final prompt sent to the LLM for answer synthesis. This
approach enables us to provide the model with the full context
of information required to answer the question.

Here’s an example. First, let’s use the LLM to generate
summaries of the documents:

Python

from langchain_community.document_loaders import 

from langchain_text_splitters import RecursiveCha

from langchain_openai import OpenAIEmbeddings

from langchain_postgres.vectorstores import PGVec

from langchain_core.output_parsers import StrOutp

from langchain_core.prompts import ChatPromptTemp

from pydantic import BaseModel

from langchain_core.runnables import RunnablePass

from langchain_openai import ChatOpenAI

from langchain_core.documents import Document



from langchain.retrievers.multi_vector import Mul

from langchain.storage import InMemoryStore

import uuid

connection = "postgresql+psycopg://langchain:lang

collection_name = "summaries"

embeddings_model = OpenAIEmbeddings()

# Load the document

loader = TextLoader("./test.txt", encoding="utf-8

docs = loader.load()

print("length of loaded docs: ", len(docs[0].page

# Split the document

splitter = RecursiveCharacterTextSplitter(chunk_s

chunks = splitter.split_documents(docs)

# The rest of your code remains the same, startin

prompt_text = "Summarize the following document:\

prompt = ChatPromptTemplate.from_template(prompt_

llm = ChatOpenAI(temperature=0, model="gpt-3.5-tu

summarize_chain = {

    "doc": lambda x: x.page_content} | prompt | l

# batch the chain across the chunks

summaries = summarize_chain.batch(chunks, {"max_c



Next, let’s define the vector store and docstore to store the raw
summaries and their embeddings:

Python

# The vectorstore to use to index the child chunk

vectorstore = PGVector(

    embeddings=embeddings_model,

    collection_name=collection_name,

    connection=connection,

    use_jsonb=True,

)

# The storage layer for the parent documents

store = InMemoryStore()

id_key = "doc_id"

# indexing the summaries in our vector store, whi

# documents in our document store:

retriever = MultiVectorRetriever(

    vectorstore=vectorstore,

    docstore=store,

    id_key=id_key,

)

# Changed from summaries to chunks since we need 

doc_ids = [str(uuid.uuid4()) for _ in chunks]



# Each summary is linked to the original document

summary_docs = [

    Document(page_content=s, metadata={id_key: do

    for i, s in enumerate(summaries)

]

# Add the document summaries to the vector store 

retriever.vectorstore.add_documents(summary_docs)

# Store the original documents in the document st

# via doc_ids

# This allows us to first search summaries effici

# docs when needed

retriever.docstore.mset(list(zip(doc_ids, chunks)

# vector store retrieves the summaries

sub_docs = retriever.vectorstore.similarity_searc

    "chapter on philosophy", k=2)

Finally, let’s retrieve the relevant full context document based
on a query:

Python

# Whereas the retriever will return the larger so



retrieved_docs = retriever.invoke("chapter on phi

Here’s the full implementation in JavaScript:

JavaScript

import * as uuid from 'uuid';

import { MultiVectorRetriever } from 'langchain/r

import { OpenAIEmbeddings } from '@langchain/open

import { RecursiveCharacterTextSplitter } from '@

import { InMemoryStore } from '@langchain/core/st

import { TextLoader } from 'langchain/document_lo

import { Document } from '@langchain/core/documen

import { PGVectorStore } from '@langchain/communi

import { ChatOpenAI } from '@langchain/openai';

import { PromptTemplate } from '@langchain/core/p

import { RunnableSequence } from '@langchain/core

import { StringOutputParser } from '@langchain/co

const connectionString =

  'postgresql://langchain:langchain@localhost:602

const collectionName = 'summaries';

const textLoader = new TextLoader('./test.txt');

const parentDocuments = await textLoader.load();



const splitter = new RecursiveCharacterTextSplitt

  chunkSize: 10000,

  chunkOverlap: 20,

});

const docs = await splitter.splitDocuments(parent

const prompt = PromptTemplate.fromTemplate(

  `Summarize the following document:\n\n{doc}`

);

const llm = new ChatOpenAI({ modelName: 'gpt-3.5-

const chain = RunnableSequence.from([

  { doc: (doc) => doc.pageContent },

  prompt,

  llm,

  new StringOutputParser(),

]);

// batch summarization chain across the chunks

const summaries = await chain.batch(docs, {

  maxConcurrency: 5,

});

const idKey = 'doc_id';

const docIds = docs.map((_) => uuid.v4());

// create summary docs with metadata linking to t

const summaryDocs = summaries.map((summary, i) =>



  const summaryDoc = new Document({

    pageContent: summary,

    metadata: {

      [idKey]: docIds[i],

    },

  });

  return summaryDoc;

});

// The byteStore to use to store the original chu

const byteStore = new InMemoryStore();

// vector store for the summaries

const vectorStore = await PGVectorStore.fromDocum

  docs,

  new OpenAIEmbeddings(),

  {

    postgresConnectionOptions: {

      connectionString,

    },

  }

);

const retriever = new MultiVectorRetriever({

  vectorstore: vectorStore,

  byteStore,

  idKey,

});



const keyValuePairs = docs.map((originalDoc, i) =

// Use the retriever to add the original chunks t

await retriever.docstore.mset(keyValuePairs);

// Vectorstore alone retrieves the small chunks

const vectorstoreResult = await retriever.vectors

  'chapter on philosophy',

  2

);

console.log(`summary: ${vectorstoreResult[0].page

console.log(

  `summary retrieved length: ${vectorstoreResult

);

// Retriever returns larger chunk result

const retrieverResult = await retriever.invoke('c

console.log(

  `multi-vector retrieved chunk length: ${retriev

);



RAPTOR: Recursive Abstractive
Processing for Tree-Organized Retrieval

RAG systems need to handle lower-level questions that
reference specific facts found in a single document or higher-
level questions that distill ideas that span many documents.
Handling both types of questions can be a challenge with
typical k-nearest neighbors (k-NN) retrieval over document
chunks.

Recursive abstractive processing for tree-organized retrieval
(RAPTOR) is an effective strategy that involves creating
document summaries that capture higher-level concepts,
embedding and clustering those documents, and then
summarizing each cluster.  This is done recursively, producing
a tree of summaries with increasingly high-level concepts. The
summaries and initial documents are then indexed together,
giving coverage across lower-to-higher-level user questions.
Figure 2-6 illustrates.

2

https://oreil.ly/VdIpJ


Figure 2-6. Recursively summarizing documents

ColBERT: Optimizing Embeddings

One of the challenges of using embeddings models during the
indexing stage is that they compress text into fixed-length
(vector) representations that capture the semantic content of
the document. Although this compression is useful for retrieval,
embedding irrelevant or redundant content may lead to
hallucinations in the final LLM output.

One solution to this problem is to do the following:



1. Generate contextual embeddings for each token in the
document and query.

2. Calculate and score similarity between each query token and
all document tokens.

3. Sum the maximum similarity score of each query embedding
to any of the document embeddings to get a score for each
document.

This results in a granular and effective embedding approach for
better retrieval. Fortunately, the embedding model called
ColBERT embodies the solution to this problem.

Here’s how we can utilize ColBERT for optimal embedding of
our data:

Python

# RAGatouille is a library that makes it simple t

#! pip install -U ragatouille

from ragatouille import RAGPretrainedModel

RAG = RAGPretrainedModel.from_pretrained("colbert

import requests

3



def get_wikipedia_page(title: str):

    """

    Retrieve the full text content of a Wikipedia

    :param title: str - Title of the Wikipedia pa

    :return: str - Full text content of the page 

    """

    # Wikipedia API endpoint

    URL = "https://en.wikipedia.org/w/api.php"

    # Parameters for the API request

    params = {

        "action": "query",

        "format": "json",

        "titles": title,

        "prop": "extracts",

        "explaintext": True,

    }

    # Custom User-Agent header to comply with Wik

    headers = {"User-Agent": "RAGatouille_tutoria

    response = requests.get(URL, params=params, h

    data = response.json()

    # Extracting page content

    page = next(iter(data["query"]["pages"].value

    return page["extract"] if "extract" in page e



full_document = get_wikipedia_page("Hayao_Miyazak

## Create an index

RAG.index(

    collection=[full_document],

    index_name="Miyazaki-123",

    max_document_length=180,

    split_documents=True,

)

#query

results = RAG.search(query="What animation studio

results

#utilize langchain retriever

retriever = RAG.as_langchain_retriever(k=3)

retriever.invoke("What animation studio did Miyaz

By using ColBERT, you can improve the relevancy of retrieved
documents used as context by the LLM.

Summary

In this chapter, you’ve learned how to prepare and preprocess
your documents for your LLM application using various



LangChain’s modules. The document loaders enable you to
extract text from your data source, the text splitters help you
split your document into semantically similar chunks, and the
embeddings models convert your text into vector
representations of their meaning.

Separately, vector stores allow you to perform CRUD operations
on these embeddings alongside complex calculations to
compute semantically similar chunks of text. Finally, indexing
optimization strategies enable your AI app to improve the
quality of embeddings and perform accurate retrieval of
documents that contain semistructured data including tables.

In Chapter 3, you’ll learn how to efficiently retrieve the most
similar chunks of documents from your vector store based on
your query, provide it as context the model can see, and then
generate an accurate output.

 Arvind Neelakantan et al., “Text and Code Embeddings by Contrastive Pre-Training”,
arXiv, January 21, 2022.

 Parth Sarthi et al., “RAPTOR: Recursive Abstractive Processing for Tree-Organized
Retrieval”, arXiv, January 31, 2024. Paper published at ICLR 2024.

 Keshav Santhanam et al., “ColBERTv2: Effective and Efficient Retrieval via
Lightweight Late Interaction”, arXiv, December 2, 2021.

1

2

3

https://oreil.ly/YOVmh
https://oreil.ly/hS4NB
https://oreil.ly/hS4NB
https://oreil.ly/9spW2
https://oreil.ly/9spW2


Chapter 3. RAG Part II: Chatting with
Your Data

In the previous chapter, you learned how to process your data
and create and store embeddings in a vector store. In this
chapter, you’ll learn how to efficiently retrieve the most
relevant embeddings and chunks of documents based on a
user’s query. This enables you to construct a prompt that
contains relevant documents as context, improving the
accuracy of the LLM’s final output.

This process—which involves embedding a user’s query,
retrieving similar documents from a data source, and then
passing them as context to the prompt sent to the LLM—is
formally known as retrieval-augmented generation (RAG).

RAG is an essential component of building chat-enabled LLM
apps that are accurate, efficient, and up-to-date. In this chapter,
you’ll progress from basics to advanced strategies to build an
effective RAG system for various data sources (such as vector
stores and databases) and data structures (structured and
unstructured).

But first, let’s define RAG and discuss its benefits.



Introducing Retrieval-Augmented
Generation

RAG is a technique used to enhance the accuracy of outputs
generated by LLMs by providing context from external sources.
The term was originally coined in a paper by Meta AI
researchers who discovered that RAG-enabled models are more
factual and specific than non-RAG models.

Without RAG, the LLM relies solely on its pretrained data,
which may be outdated. For example, let’s ask ChatGPT a
question about a current event and see its response:

Input

Which country is the latest winner of the men’s F

Output

The most recent FIFA World Cup winner was France,

1



The response by the LLM is factually incorrect and outdated.
The latest winner at the time of this book’s publication is
Argentina, who won the World Cup in 2022. While this example
question may be trivial, LLM hallucination can have disastrous
consequences if its answers are relied upon for fact-checking or
important decision making.

To combat this problem, we need to provide the LLM with
factual, up-to-date information from which it can formulate an
accurate response. Continuing on from the previous example,
let’s go over to Wikipedia’s page for the FIFA World Cup, copy
the introduction paragraph, and then append it as context to
our prompt to ChatGPT:

Which country is the latest winner of the men's F

See context below.

The FIFA World Cup, often called the World Cup, i

football competition among the senior men's natio

the Fédération Internationale de Football Associa

global governing body. The tournament has been he

inaugural tournament in 1930, with the exception 

https://oreil.ly/LpLOV


Second World War. The reigning champions are Arge

title at the 2022 tournament.

Note that the last sentence contains the necessary context the
LLM can use to provide an accurate answer. Here’s the response
from the LLM:

The latest winner of the men's FIFA World Cup is 

title at the 2022 tournament.

Because of the up-to-date additional context provided, the LLM
was able to generate an accurate response to the prompt. But
copying and pasting relevant information as context isn’t
practical nor scalable for a production AI application. We need
an automated system to fetch relevant information based on a
user’s query, append it as context to the prompt, and then
execute the generation request to the LLM.

Retrieving Relevant Documents

A RAG system for an AI app typically follows three core stages:

Indexing



This stage involves preprocessing the external data source
and storing embeddings that represent the data in a
vector store where they can be easily retrieved.

Retrieval

This stage involves retrieving the relevant embeddings
and data stored in the vector store based on a user’s
query.

Generation

This stage involves synthesizing the original prompt with
the retrieved relevant documents as one final prompt sent
to the model for a prediction.

The three basic stages look like Figure 3-1.

Figure 3-1. The key stages of RAG



The indexing stage of this process was covered extensively in
Chapter 2, where you learned how to use document loaders,
text splitters, embeddings, and vector stores.

Let’s run through an example from scratch again, starting with
the indexing stage:

Python

from langchain_community.document_loaders import 

from langchain_openai import OpenAIEmbeddings

from langchain_text_splitters import RecursiveCha

from langchain_postgres.vectorstores import PGVec

# Load the document, split it into chunks

raw_documents = TextLoader('./test.txt').load()

text_splitter = RecursiveCharacterTextSplitter(ch

    chunk_overlap=200)

documents = text_splitter.split_documents(raw_doc

# embed each chunk and insert it into the vector 

model = OpenAIEmbeddings()

connection = 'postgresql+psycopg://langchain:lang

db = PGVector.from_documents(documents, model, co



JavaScript

import { TextLoader } from "langchain/document_lo

import { RecursiveCharacterTextSplitter } from "@

import { OpenAIEmbeddings } from "@langchain/open

import { PGVectorStore } from "@langchain/communi

// Load the document, split it into chunks

const loader = new TextLoader("./test.txt");

const raw_docs = await loader.load();

const splitter = new RecursiveCharacterTextSplitt

  chunkSize: 1000,

  chunkOverlap: 200,

});

const docs = await splitter.splitDocuments(docs)

// embed each chunk and insert it into the vector

const model = new OpenAIEmbeddings();

const db = await PGVectorStore.fromDocuments(docs

  postgresConnectionOptions: {

    connectionString: 'postgresql://langchain:lan

  }

})

Chapter 2 has more details on the indexing stage.



The indexing stage is now complete. In order to execute the
retrieval stage, we need to perform similarity search
calculations—such as cosine similarity—between the user’s
query and our stored embeddings, so relevant chunks of our
indexed document are retrieved (see Figure 3-2).



Figure 3-2. An example flow of indexing documents alongside retrieval of relevant
documents from a vector store; the Hierarchical Navigable Small World (HNSW) box

depicts calculating similarity of documents against the user’s query



Figure 3-2 illustrates the steps in the retrieval process:

1. Convert the user’s query into embeddings.
2. Calculate the embeddings in the vector store that are most

similar to the user’s query.
3. Retrieve the relevant document embeddings and their

corresponding text chunk.

We can represent these steps programmatically using
LangChain as follows:

Python

# create retriever

retriever = db.as_retriever()

# fetch relevant documents

docs = retriever.invoke("""Who are the key figure

    history of philosophy?""")

JavaScript

// create retriever

const retriever = db.asRetriever()



// fetch relevant documents

const docs = await retriever.invoke(`Who are the 

  greek history of philosophy?`)

Note that we are using a vector store method you haven’t seen
before: as_retriever . This function abstracts the logic of
embedding the user’s query and the underlying similarity
search calculations performed by the vector store to retrieve
the relevant documents.

There is also an argument k , which determines the number of
relevant documents to fetch from the vector store. For example:

Python

# create retriever with k=2

retriever = db.as_retriever(search_kwargs={"k": 2

# fetch the 2 most relevant documents

docs = retriever.invoke("""Who are the key figure

    of philosophy?""")

JavaScript



// create retriever with k=2

const retriever = db.asRetriever({k: 2})

// fetch the 2 most relevant documents

const docs = await retriever.invoke(`Who are the 

  greek history of philosophy?`)

In this example, the argument k  is specified as 2. This tells the
vector store to return the two most relevant documents based
on the user’s query.

It may seem counterintuitive to use a low k  value, but
retrieving more documents is not always better. The more
documents are retrieved, the slower your application will
perform, the larger the prompt (and associated cost of
generation) will be, and the greater the likelihood of retrieving
chunks of text that contain irrelevant information, which will
cause the LLM to hallucinate.

Now that we’ve completed the retrieval stage of the RAG
system, let’s move on to the final generation stage.

Generating LLM Predictions Using



Relevant Documents

Once we’ve retrieved the relevant documents based on the
user’s query, the final step is to add them to the original prompt
as context and then invoke the model to generate a final output
(Figure 3-3).



Figure 3-3. An example flow demonstrating indexing documents, retrieval of relevant
documents from a vector store, and inclusion of retrieved documents as context in

the LLM prompt

Here’s a code example continuing on from our previous
example:

Python



from langchain_openai import ChatOpenAI

from langchain_core.prompts import ChatPromptTemp

retriever = db.as_retriever()

prompt = ChatPromptTemplate.from_template("""Answ

    the following context:

{context}

Question: {question}

""")

llm = ChatOpenAI(model_name="gpt-3.5-turbo", temp

chain = prompt | llm

# fetch relevant documents 

docs = retriever.get_relevant_documents("""Who ar

    ancient greek history of philosophy?""")

# run

chain.invoke({"context": docs,"question": """Who 

    ancient greek history of philosophy?"""})

JavaScript



import {ChatOpenAI} from '@langchain/openai'

import {ChatPromptTemplate} from '@langchain/core

const retriever = db.asRetriever()

const prompt = ChatPromptTemplate.fromTemplate(`A

  on the following context:

{context}

Question: {question}

`)

const llm = new ChatOpenAI({temperature: 0, model

const chain = prompt.pipe(llm)

// fetch relevant documents

const docs = await retriever.invoke(`Who are the 

  greek history of philosophy?`)

await chain.invoke({context: docs, question: `Who

  ancient greek history of philosophy?`})

Note the following changes:



We implement dynamic context  and question  variables
into our prompt, which allows us to define a
ChatPromptTemplate  the model can use to generate a
response.
We define a ChatOpenAI  interface to act as our LLM.
Temperature is set to 0 to eliminate the creativity in outputs
from the model.
We create a chain to compose the prompt and LLM. A
reminder: the |  operator (or pipe  method in JS) takes the
output of prompt  and uses it as the input to llm .
We invoke  the chain passing in the context  variable (our
retrieved relevant docs) and the user’s question to generate a
final output.

We can encapsulate this retrieval logic in a single function:

Python

from langchain_openai import ChatOpenAI

from langchain_core.prompts import ChatPromptTemp

from langchain_core.runnables import chain

retriever = db.as_retriever()

prompt = ChatPromptTemplate.from_template("""Answ



    the following context:

{context}

Question: {question}

""")

llm = ChatOpenAI(model="gpt-3.5-turbo", temperatu

@chain

def qa(input):

    # fetch relevant documents 

    docs = retriever.get_relevant_documents(input

    # format prompt

    formatted = prompt.invoke({"context": docs, "

    # generate answer

    answer = llm.invoke(formatted)

    return answer

# run

qa.invoke("Who are the key figures in the ancient

JavaScript

import {ChatOpenAI} from '@langchain/openai'

import {ChatPromptTemplate} from '@langchain/core

import {RunnableLambda} from '@langchain/core/run



const retriever = db.asRetriever()

const prompt = ChatPromptTemplate.fromTemplate(`A

  on the following context:

{context}

Question: {question}

`)

const llm = new ChatOpenAI({temperature: 0, model

const qa = RunnableLambda.from(async input => {

  // fetch relevant documents

  const docs = await retriever.invoke(input)

  // format prompt

  const formatted = await prompt.invoke({context

  // generate answer

  const answer = await llm.invoke(formatted)

  return answer

})

await qa.invoke(`Who are the key figures in the a

  philosophy?`)

Notice how we now have a new runnable qa  function that can
be called with just a question and takes care to first fetch the



relevant docs for context, format them into the prompt, and
finally generate the answer. In the Python code, the @chain
decorator turns the function into a runnable chain. This notion
of encapsulating multiple steps into a single function will be
key to building interesting apps with LLMs.

You can also return the retrieved documents for further
inspection:

Python

@chain

def qa(input):

    # fetch relevant documents 

    docs = retriever.get_relevant_documents(input

    # format prompt

    formatted = prompt.invoke({"context": docs, "

    # generate answer

    answer = llm.invoke(formatted)

    return {"answer": answer, "docs": docs}

JavaScript

const qa = RunnableLambda.from(async input => {



  // fetch relevant documents

  const docs = await retriever.invoke(input)

  // format prompt

  const formatted = await prompt.invoke({context

  // generate answer

  const answer = await llm.invoke(formatted)

  return {answer, docs}

})

Congratulations! You’ve now built a basic RAG system to power
an AI app for personal use.

However, a production-ready AI app used by multiple users
requires a more advanced RAG system. In order to build a
robust RAG system, we need to answer the following questions
effectively:

How do we handle the variability in the quality of a user’s
input?
How do we route queries to retrieve relevant data from a
variety of data sources?
How do we transform natural language to the query
language of the target data source?
How do we optimize our indexing process, i.e., embedding,
text splitting?



Next we’ll discuss the latest research-backed strategies to
answer these questions and build a production-ready RAG
system. These strategies can be summarized in Figure 3-4.

Figure 3-4. Effective strategies to optimize the accuracy of your RAG system

NOTE

All code blocks in the rest of this chapter use the vector store we set up at the
beginning of the chapter.



Query Transformation

One of the major problems with a basic RAG system is that it
relies too heavily on the quality of a user’s query to generate an
accurate output. In a production setting, a user is likely to
construct their query in an incomplete, ambiguous, or poorly
worded manner that leads to model hallucination.

Query transformation is a subset of strategies designed to
modify the user’s input to answer the first RAG problem
question: How do we handle the variability in the quality of a
user’s input? Figure 3-5 illustrates the range of query
transformation strategies, ranging from those that make a
user’s input more or less abstract in order to generate an
accurate LLM output. The next section begins with a middle
ground strategy.



Figure 3-5. Various methods to transform a user’s query based on the abstraction
level

Rewrite-Retrieve-Read

The Rewrite-Retrieve-Read strategy proposed by a Microsoft
Research team simply prompts the LLM to rewrite the user’s
query before performing retrieval.  To illustrate, let’s return to
the chain we built in the previous section, this time invoked
with a poorly worded user query:

Python

2



@chain

def qa(input):

    # fetch relevant documents 

    docs = retriever.get_relevant_documents(input

    # format prompt

    formatted = prompt.invoke({"context": docs, "

    # generate answer

    answer = llm.invoke(formatted)

    return answer

qa.invoke("""Today I woke up and brushed my teeth

    news. But then I forgot the food on the cooke

    the ancient greek history of philosophy?""")

JavaScript

const qa = RunnableLambda.from(async input => {

  // fetch relevant documents

  const docs = await retriever.invoke(input)

  // format prompt

  const formatted = await prompt.invoke({context

  // generate answer

  const answer = await llm.invoke(formatted)

  return answer

})



await qa.invoke(`Today I woke up and brushed my t

  the news. But then I forgot the food on the coo

  in the ancient greek history of philosophy?`)

The output (remember: if you rerun it, your output might be
different from this):

Based on the given context, there is no informati

The model failed to answer the question because it was
distracted by the irrelevant information provided in the user’s
query.

Now let’s implement the Rewrite-Retrieve-Read prompt:

Python

rewrite_prompt = ChatPromptTemplate.from_template

    query for web search engine to answer the giv

    with ’**’. Question: {x} Answer:""")

def parse_rewriter_output(message):



    return message.content.strip('"').strip("**")

rewriter = rewrite_prompt | llm | parse_rewriter_

@chain

def qa_rrr(input):

    # rewrite the query

    new_query = rewriter.invoke(input)

    # fetch relevant documents 

    docs = retriever.get_relevant_documents(new_q

    # format prompt

    formatted = prompt.invoke({"context": docs, "

    # generate answer

    answer = llm.invoke(formatted)

    return answer

# run

qa_rrr.invoke("""Today I woke up and brushed my t

    the news. But then I forgot the food on the c

    figures in the ancient greek history of philo

JavaScript

const rewritePrompt = ChatPromptTemplate.fromTemp

  query for web search engine to answer the given

  with ’**’. Question: {question} Answer:`)



const rewriter = rewritePrompt.pipe(llm).pipe(mes

  return message.content.replaceAll('"', '').repl

})

const qa = RunnableLambda.from(async input => {

  const newQuery = await rewriter.invoke({questio

  // fetch relevant documents

  const docs = await retriever.invoke(newQuery)

  // format prompt

  const formatted = await prompt.invoke({context

  // generate answer

  const answer = await llm.invoke(formatted)

  return answer

})

await qa.invoke(`Today I woke up and brushed my t

  the news. But then I forgot the food on the coo

  figures in the ancient greek history of philoso

The output:

Based on the given context, some key figures in t

philosophy include: Themistocles (an Athenian sta



Notice that we have had an LLM rewrite the user’s initial
distracted query into a much clearer one, and it is that more
focused query that is passed to the retriever to fetch the most
relevant documents. Note: this technique can be used with any
retrieval method, be that a vector store such as we have here or,
for instance, a web search tool. The downside of this approach
is that it introduces additional latency into your chain, because
now we need to perform two LLM calls in sequence.

Multi-Query Retrieval

A user’s single query can be insufficient to capture the full
scope of information required to answer the query
comprehensively. The multi-query retrieval strategy resolves
this problem by instructing an LLM to generate multiple
queries based on a user’s initial query, executing a parallel
retrieval of each query from the data source and then inserting
the retrieved results as prompt context to generate a final
model output. Figure 3-6 illustrates.



Figure 3-6. Demonstration of the multi-query retrieval strategy

This strategy is particularly useful for use cases where a single
question may rely on multiple perspectives to provide a
comprehensive answer.

Here’s a code example of multi-query retrieval in action:

Python

from langchain.prompts import ChatPromptTemplate

perspectives_prompt = ChatPromptTemplate.from_tem

    model assistant. Your task is to generate fiv

    given user question to retrieve relevant docu

    By generating multiple perspectives on the us

    help the user overcome some of the limitation



    similarity search. Provide these alternative 

    newlines. Original question: {question}""")

def parse_queries_output(message):

    return message.content.split('\n')

query_gen = perspectives_prompt | llm | parse_que

JavaScript

const perspectivesPrompt = ChatPromptTemplate.fro

  language model assistant. Your task is to gener

  of the given user question to retrieve relevant

  database. By generating multiple perspectives o

  goal is to help the user overcome some of the l

  distance-based similarity search. Provide these

  separated by newlines. Original question: {ques

const queryGen = perspectivesPrompt.pipe(llm).pip

  return message.content.split('\n')

})

Note that the prompt template is designed to generate
variations of questions based on the user’s initial query.



Next we take the list of generated queries, retrieve the most
relevant docs for each of them in parallel, and then combine to
get the unique union of all the retrieved relevant documents:

Python

def get_unique_union(document_lists):

    # Flatten list of lists, and dedupe them

    deduped_docs = {

        doc.page_content: doc

        for sublist in document_lists for doc in 

    }

    # return a flat list of unique docs

    return list(deduped_docs.values())

retrieval_chain = query_gen | retriever.batch | g

JavaScript

const retrievalChain = queryGen

  .pipe(retriever.batch.bind(retriever))

  .pipe(documentLists => {

    const dedupedDocs = {}

    documentLists.flat().forEach(doc => {



      dedupedDocs[doc.pageContent] = doc

    })

    return Object.values(dedupedDocs)

  })

Because we’re retrieving documents from the same retriever
with multiple (related) queries, it’s likely at least some of them
are repeated. Before using them as context to answer the
question, we need to deduplicate them, to end up with a single
instance of each. Here we dedupe docs by using their content (a
string) as the key in a dictionary (or object in JS), because a
dictionary can only contain one entry for each key. After we’ve
iterated through all docs, we simply get all the dictionary
values, which is now free of duplicates.

Notice our use as well of .batch , which runs all generated
queries in parallel and returns a list of the results—in this case,
a list of lists of documents, which we then flatten and dedupe as
described earlier.

This final step is to construct a prompt, including the user’s
question and combined retrieved relevant documents, and a
model interface to generate the prediction:

Python



prompt = ChatPromptTemplate.from_template("""Answ

    on this context:

{context}

Question: {question}

""")

@chain

def multi_query_qa(input):

    # fetch relevant documents 

    docs = retrieval_chain.invoke(input)

    # format prompt

    formatted = prompt.invoke({"context": docs, "

    # generate answer

    answer = llm.invoke(formatted)

    return answer

# run

multi_query_qa.invoke("""Who are some key figures

    of philosophy?""")

JavaScript

const prompt = ChatPromptTemplate.fromTemplate(`A



  question based on this context:

{context}

Question: {question}

`)

const multiQueryQa = RunnableLambda.from(async in

  // fetch relevant documents

  const docs = await retrievalChain.invoke(input)

  // format prompt

  const formatted = await prompt.invoke({context

  // generate answer

  const answer = await llm.invoke(formatted)

  return answer

})

await multiQueryQa.invoke(`Who are some key figur

  history of philosophy?`)

Notice how this isn’t that different from our previous QA
chains, as all the new logic for multi-query retrieval is
contained in retrieval_chain . This is key to making good
use of these techniques—implementing each technique as a
standalone chain (in this case, retrieval_chain ), which
makes it easy to adopt them and even to combine them.



RAG-Fusion

The RAG-Fusion strategy shares similarities with the multi-
query retrieval strategy, except we will apply a final reranking
step to all the retrieved documents.  This reranking step makes
use of the reciprocal rank fusion (RRF) algorithm, which
involves combining the ranks of different search results to
produce a single, unified ranking. By combining ranks from
different queries, we pull the most relevant documents to the
top of the final list. RRF is well-suited for combining results
from queries that might have different scales or distributions of
scores.

Let’s demonstrate RAG-Fusion in code. First, we craft a prompt
similar to the multi-query retrieval strategy to generate a list of
queries based on the user query:

Python

from langchain.prompts import ChatPromptTemplate

from langchain_openai import ChatOpenAI

prompt_rag_fusion = ChatPromptTemplate.from_templ

    assistant that generates multiple search quer

    query. \n

3



    Generate multiple search queries related to: 

    Output (4 queries):""")

def parse_queries_output(message):

    return message.content.split('\n')

llm = ChatOpenAI(temperature=0)

query_gen = prompt_rag_fusion | llm | parse_queri

JavaScript

import {ChatPromptTemplate} from '@langchain/core

import {ChatOpenAI} from '@langchain/openai';

import {RunnableLambda} from '@langchain/core/run

const perspectivesPrompt = ChatPromptTemplate.fro

  assistant that generates multiple search querie

  query. \n

  Generate multiple search queries related to: {q

  Output (4 queries):`)

const queryGen = perspectivesPrompt.pipe(llm).pip

  return message.content.split('\n')

})



Once we’ve generated our queries, we fetch relevant documents
for each query and pass them into a function to rerank (that is,
reorder according to relevancy) the final list of relevant
documents.

The function reciprocal_rank_fusion  takes a list of the
search results of each query, so a list of lists of documents,
where each inner list of documents is sorted by their relevance
to that query. The RRF algorithm then calculates a new score for
each document based on its ranks (or positions) in the different
lists and sorts them to create a final reranked list.

After calculating the fused scores, the function sorts the
documents in descending order of these scores to get the final
reranked list, which is then returned:

Python

def reciprocal_rank_fusion(results: list[list], k

    """reciprocal rank fusion on multiple lists o

       and an optional parameter k used in the RR

    """

    

    # Initialize a dictionary to hold fused score

    # Documents will be keyed by their contents t



    fused_scores = {}

    documents = {}

    # Iterate through each list of ranked documen

    for docs in results:

        # Iterate through each document in the li

        # with its rank (position in the list)

        for rank, doc in enumerate(docs):

            # Use the document contents as the ke

            doc_str = doc.page_content

            # If the document hasn't been seen ye

            # - initialize score to 0

            # - save it for later

            if doc_str not in fused_scores:

                fused_scores[doc_str] = 0

                documents[doc_str] = doc

            # Update the score of the document us

            # 1 / (rank + k)

            fused_scores[doc_str] += 1 / (rank + 

    # Sort the documents based on their fused sco

    # to get the final reranked results

    reranked_doc_strs = sorted(

        fused_scores, key=lambda d: fused_scores

    )

    # retrieve the corresponding doc for each doc

    return [

        documents[doc_str]



        for doc_str in reranked_doc_strs

    ]

retrieval_chain = generate_queries | retriever.ba

JavaScript

function reciprocalRankFusion(results, k = 60) {

  // Initialize a dictionary to hold fused scores

  // Documents will be keyed by their contents to

  const fusedScores = {}

  const documents = {}

  results.forEach(docs => {

    docs.forEach((doc, rank) => {

      // Use the document contents as the key for

      const key = doc.pageContent

      // If the document hasn't been seen yet,

      // - initialize score to 0

      // - save it for later

      if (!(key in fusedScores)) {

        fusedScores[key] = 0

        documents[key] = 0

      }

      // Update the score of the document using t

      // 1 / (rank + k)



      fusedScores[key] += 1 / (rank + k)

    })

  })

  // Sort the documents based on their fused scor

  // to get the final reranked results

  const sorted = Object.entries(fusedScores).sort

  // retrieve the corresponding doc for each key

  return sorted.map(([key]) => documents[key])

}

const retrievalChain = queryGen

  .pipe(retriever.batch.bind(retriever))

  .pipe(reciprocalRankFusion)

Notice that the function also takes a k  parameter, which
determines how much influence documents in each query’s
result sets have over the final list of documents. A higher value
indicates that lower-ranked documents have more influence.

Finally, we combine our new retrieval chain (now using RRF)
with the full chain we’ve seen before:

Python



prompt = ChatPromptTemplate.from_template("""Answ

    on this context:

{context}

Question: {question}

""")

llm = ChatOpenAI(temperature=0)

@chain

def multi_query_qa(input):

    # fetch relevant documents 

    docs = retrieval_chain.invoke(input)

    # format prompt

    formatted = prompt.invoke({"context": docs, "

    # generate answer

    answer = llm.invoke(formatted)

    return answer

multi_query_qa.invoke("""Who are some key figures

    of philosophy?""")

JavaScript



const rewritePrompt = ChatPromptTemplate.fromTemp

  question based on this context:

{context}

Question: {question}

`)

const llm = new ChatOpenAI({temperature: 0})

const multiQueryQa = RunnableLambda.from(async in

  // fetch relevant documents

  const docs = await retrievalChain.invoke(input)

  // format prompt

  const formatted = await prompt.invoke({context

  // generate answer

  const answer = await llm.invoke(formatted)

  return answer

})

await multiQueryQa.invoke(`Who are some key figur

  history of philosophy?`)

RAG-Fusion’s strength lies in its ability to capture the user’s
intended expression, navigate complex queries, and broaden



the scope of retrieved documents, enabling serendipitous
discovery.

Hypothetical Document Embeddings

Hypothetical Document Embeddings (HyDE) is a strategy that
involves creating a hypothetical document based on the user’s
query, embedding the document, and retrieving relevant
documents based on vector similarity.  The intuition behind
HyDE is that an LLM-generated hypothetical document will be
more similar to the most relevant documents than the original
query, as shown in Figure 3-7.

4



Figure 3-7. An illustration of HyDE closer in the vector space to the document
embeddings than the plain query embeddings

First, define a prompt to generate a hypothetical document:

Python

from langchain.prompts import ChatPromptTemplate

from langchain_core.output_parsers import StrOutp

from langchain_openai import ChatOpenAI

prompt_hyde = ChatPromptTemplate.from_template(""

   answer the question.\n Question: {question} \n

generate_doc = (



    prompt_hyde | ChatOpenAI(temperature=0) | Str

)

JavaScript

import {ChatOpenAI} from '@langchain/openai'

import {ChatPromptTemplate} from '@langchain/core

import {RunnableLambda} from '@langchain/core/run

const prompt = ChatPromptTemplate.fromTemplate(`P

  answer the question

Question: {question}

Passage:`)

const llm = new ChatOpenAI({temperature: 0})

const generateDoc = prompt.pipe(llm).pipe(msg => 

Next, we take the hypothetical document and use it as input to
the retriever , which will generate its embedding and search
for similar documents in the vector store:

Python



retrieval_chain = generate_doc | retriever 

JavaScript

const retrievalChain = generateDoc.pipe(retriever

Finally, we take the retrieved documents, pass them as context
to the final prompt, and instruct the model to generate an
output:

Python

prompt = ChatPromptTemplate.from_template("""Answ

    on this context:

{context}

Question: {question}

""")

llm = ChatOpenAI(temperature=0)



@chain

def qa(input):

  # fetch relevant documents from the hyde retrie

  docs = retrieval_chain.invoke(input)

  # format prompt

  formatted = prompt.invoke({"context": docs, "qu

  # generate answer

  answer = llm.invoke(formatted)

  return answer

qa.invoke("""Who are some key figures in the anci

    philosophy?""")

JavaScript

const prompt = ChatPromptTemplate.fromTemplate(`A

  question based on this context:

{context}

Question: {question}

`)

const llm = new ChatOpenAI({temperature: 0})

const qa = RunnableLambda.from(async input => {



  // fetch relevant documents from the hyde retri

  const docs = await retrievalChain.invoke(input)

  // format prompt

  const formatted = await prompt.invoke({context

  // generate answer

  const answer = await llm.invoke(formatted)

  return answer

})

await qa.invoke(`Who are some key figures in the 

  philosophy?`)

To recap what we covered in this section, query transformation
consists of taking the user’s original query and doing the
following:

Rewriting into one or more queries
Combining the results of those queries into a single set of the
most relevant results

Rewriting the query can take many forms, but it’s usually done
in a similar fashion: take the user’s original query—a prompt
you wrote—and ask an LLM to write a new query or queries.
Some examples of typical changes made are:

Removing irrelevant/unrelated text from the query.



Grounding the query with past conversation history. For
instance, to make sense of a query such as and what about in
LA, we need to combine it with a hypothetical past question
about the weather in SF, to arrive at a useful query such as
weather in LA.
Casting a wider net for relevant documents by also fetching
documents for related queries.
Decomposing a complex question into multiple, simpler
questions and then including results for all of them in the
final prompt to generate an answer.

The right rewriting strategy to use will depend on your use
case.

Now that we’ve covered the main query transformation
strategies, let’s discuss the second major question to answer in
order to build a robust RAG system: How do we route queries to
retrieve relevant data from multiple data sources?

Query Routing

Although using a single vector store is useful, the required data
may live in a variety of data sources, including relational
databases or other vector stores.



For example, you may have two vector stores: one for
LangChain Python documentation and another for LangChain
JS documentation. Given a user’s question, we would like to
route the query to the appropriate inferred data source to
retrieve relevant docs. Query routing is a strategy used to
forward a user’s query to the relevant data source.

Logical Routing

In logical routing, we give the LLM knowledge of the various
data sources at our disposal and then let the LLM reason which
data source to apply based on the user’s query, as shown in
Figure 3-8.

Figure 3-8. Query routing to relevant data sources



In order to achieve this, we make use of function-calling models
like GPT-3.5 Turbo to help classify each query into one of the
available routes. A function call involves defining a schema that
the model can use to generate arguments of a function based on
the query. This enables us to generate structured outputs that
can be used to run other functions. The following Python code
defines the schema for our router based on three docs for
different languages:

Python

from typing import Literal

from langchain_core.prompts import ChatPromptTemp

from langchain_core.pydantic_v1 import BaseModel,

from langchain_openai import ChatOpenAI

# Data model

class RouteQuery(BaseModel):

    """Route a user query to the most relevant da

    datasource: Literal["python_docs", "js_docs"]

        ...,

        description="""Given a user question, cho

            most relevant for answering their que

    )



# LLM with function call 

llm = ChatOpenAI(model="gpt-3.5-turbo", temperatu

structured_llm = llm.with_structured_output(Route

# Prompt 

system = """You are an expert at routing a user q

    source.

Based on the programming language the question is

    relevant data source."""

prompt = ChatPromptTemplate.from_messages(

    [

        ("system", system),

        ("human", "{question}"),

    ]

)

# Define router 

router = prompt | structured_llm

JavaScript

import { ChatOpenAI } from "@langchain/openai";

import { z } from "zod";



const routeQuery = z.object({

  datasource: z.enum(["python_docs", "js_docs"])

    question, choose which datasource would be mo

    their question`),

}).describe("Route a user query to the most relev

const llm = new ChatOpenAI({model: "gpt-3.5-turbo

const structuredLlm = llm.withStructuredOutput(ro

const prompt = ChatPromptTemplate.fromMessages([

  ['system', `You are an expert at routing a user

      data source.

Based on the programming language the question is

  the relevant data source.`],

  ['human', '{question}']

])

const router = prompt.pipe(structuredLlm)

Now we invoke the LLM to extract the data source based on the
predefined schema:

Python



question = """Why doesn't the following code work

from langchain_core.prompts import ChatPromptTemp

prompt = ChatPromptTemplate.from_messages(["human

prompt.invoke("french")

"""

result = router.invoke({"question": question})

result.datasource

# "python_docs"

JavaScript

const question = `Why doesn't the following code 

from langchain_core.prompts import ChatPromptTemp

prompt = ChatPromptTemplate.from_messages(["human

prompt.invoke("french")

`

await router.invoke({ question })



The output:

{

    datasource: "python_docs"

}

Notice how the LLM produced JSON output, conforming to the
schema we defined earlier. This will be useful in many other
tasks.

Once we’ve extracted the relevant data source, we can pass the
value into another function to execute additional logic as
required:

Python

def choose_route(result):

    if "python_docs" in result.datasource.lower()

        ### Logic here 

        return "chain for python_docs"

    else:

        ### Logic here 

        return "chain for js_docs"



full_chain = router | RunnableLambda(choose_route

JavaScript

function chooseRoute(result) {

  if (result.datasource.toLowerCase().includes('p

    return 'chain for python_docs';

  } else {

    return 'chain for js_docs';

  }

} 

const fullChain = router.pipe(chooseRoute) 

Notice how we don’t do an exact string comparison but instead
first turn the generated output to lowercase, and then do a
substring match. This makes our chain more resilient to the
LLM going off script and producing output that doesn’t quite
conform to the schema we asked for.



TIP

Resilience to the random nature of LLM outputs is an important theme to keep in
mind when building your LLM applications.

Logical routing is most suitable when you have a defined list of
data sources from which relevant data can be retrieved and
utilized by the LLM to generate an accurate output. These can
range from vector stores to databases and even APIs.

Semantic Routing

Unlike logical routing, semantic routing involves embedding
various prompts that represent various data sources alongside
the user’s query and then performing vector similarity search
to retrieve the most similar prompt. Figure 3-9 illustrates.

Figure 3-9. Semantic routing to improve the accuracy of retrieved documents



The following is an example of semantic routing:

Python

from langchain.utils.math import cosine_similarit

from langchain_core.output_parsers import StrOutp

from langchain_core.prompts import PromptTemplate

from langchain_core.runnables import chain

from langchain_openai import ChatOpenAI, OpenAIEm

# Two prompts

physics_template = """You are a very smart physic

    answering questions about physics in a concis

    When you don't know the answer to a question,

Here is a question:

{query}"""

math_template = """You are a very good mathematic

    math questions. You are so good because you a

    problems into their component parts, answer t

    put them together to answer the broader quest

Here is a question:

{query}"""

# Embed prompts



embeddings = OpenAIEmbeddings()

prompt_templates = [physics_template, math_templa

prompt_embeddings = embeddings.embed_documents(pr

# Route question to prompt

@chain

def prompt_router(query):

    # Embed question

    query_embedding = embeddings.embed_query(quer

    # Compute similarity

    similarity = cosine_similarity([query_embeddi

    # Pick the prompt most similar to the input q

    most_similar = prompt_templates[similarity.ar

    return PromptTemplate.from_template(most_simi

semantic_router = (

    prompt_router

    | ChatOpenAI()

    | StrOutputParser()

)

print(semantic_router.invoke("What's a black hole

JavaScript

import {cosineSimilarity} from '@langchain/core/u



import {ChatOpenAI, OpenAIEmbeddings} from '@lang

import {PromptTemplate} from '@langchain/core/pro

import {RunnableLambda} from '@langchain/core/run

const physicsTemplate = `You are a very smart phy

  at answering questions about physics in a conci

  manner. When you don't know the answer to a que

  don't know.

Here is a question:

{query}`

const mathTemplate = `You are a very good mathema

  answering math questions. You are so good becau

  hard problems into their component parts, answe

  then put them together to answer the broader qu

Here is a question:

{query}`

const embeddings = new OpenAIEmbeddings()

const promptTemplates = [physicsTemplate, mathTem

const promptEmbeddings = await embeddings.embedDo

const promptRouter = RunnableLambda.from(query =>

  // Embed question

  const queryEmbedding = await embeddings.embedQu



  // Compute similarity

  const similarities = cosineSimilarity([queryEmb

  // Pick the prompt most similar to the input qu

  const mostSimilar = similarities[0] > similarit

    ? promptTemplates[0] 

    : promptTemplates[1]

  return PromptTemplate.fromTemplate(mostSimilar)

})

const semanticRouter = promptRouter.pipe(new Chat

await semanticRouter.invoke("What's a black hole"

Now that you’ve seen how to route a user’s query to the
relevant data source, let’s discuss the third major question
when building a robust RAG system: “How do we transform
natural language to the query language of the target data
source?”

Query Construction

As discussed earlier, RAG is an effective strategy to embed and
retrieve relevant unstructured data from a vector store based
on a query. But most data available for use in production apps



is structured and typically stored in relational databases. In
addition, unstructured data embedded in a vector store also
contains structured metadata that possesses important
information.

Query construction is the process of transforming a natural
language query into the query language of the database or data
source you are interacting with. See Figure 3-10.

Figure 3-10. Illustration of query languages for various data sources

For example, consider the query: What are movies about aliens
in the year 1980? This question contains an unstructured topic
that can be retrieved via embeddings (aliens), but it also
contains potential structured components (year == 1980).

The following sections dive deeper into the various forms of
query construction.



Text-to-Metadata Filter

Most vector stores provide the ability to limit your vector
search based on metadata. During the embedding process, we
can attach metadata key-value pairs to vectors in an index and
then later specify filter expressions when you query the index.

LangChain provides a SelfQueryRetriever  that abstracts
this logic and makes it easier to translate natural language
queries into structured queries for various data sources. The
self-querying utilizes an LLM to extract and execute the
relevant metadata filters based on a user’s query and
predefined metadata schema:

Python

from langchain.chains.query_constructor.base impo

from langchain.retrievers.self_query.base import 

from langchain_openai import ChatOpenAI

fields = [

    AttributeInfo(

        name="genre",

        description="The genre of the movie",

        type="string or list[string]",



    ),

    AttributeInfo(

        name="year",

        description="The year the movie was relea

        type="integer",

    ),

    AttributeInfo(

        name="director",

        description="The name of the movie direct

        type="string",

    ),

    AttributeInfo(

        name="rating", description="A 1-10 rating

    ),

]

description = "Brief summary of a movie"

llm = ChatOpenAI(temperature=0)

retriever = SelfQueryRetriever.from_llm(

    llm, db, description, fields,

)

print(retriever.invoke(

    "What's a highly rated (above 8.5) science fi

JavaScript



import { ChatOpenAI } from "@langchain/openai";

import { SelfQueryRetriever } from "langchain/ret

import { FunctionalTranslator } from "@langchain/

/**

 * First, we define the attributes we want to be 

 * in this case, we want to be able to query on t

 * rating, and length of the movie.

 * We also provide a description of each attribut

 * This is used to generate the query prompts.

 */

const fields = [

  {

    name: "genre",

    description: "The genre of the movie",

    type: "string or array of strings",

  },

  {

    name: "year",

    description: "The year the movie was released

    type: "number",

  },

  {

    name: "director",

    description: "The director of the movie",

    type: "string",

  },



  {

    name: "rating",

    description: "The rating of the movie (1-10)"

    type: "number",

  },

  {

    name: "length",

    description: "The length of the movie in minu

    type: "number",

  },

];

const description = "Brief summary of a movie";

const llm = new ChatOpenAI();

const attributeInfos = fields.map((field) => new 

  field.description, field.type));

  

const selfQueryRetriever = SelfQueryRetriever.fro

  llm,

  db,

  description,

  attributeInfo: attributeInfos,

  /**

   * We need to use a translator that translates 

   * filter format that the vector store can unde

   * here.

   */

  structuredQueryTranslator: new FunctionalTransl



});

await selfQueryRetriever.invoke(

  "What's a highly rated (above 8.5) science fict

);

This results in a retriever that will take a user query, and split it
into:

A filter to apply on the metadata of each document first
A query to use for semantic search on the documents

To do this, we have to describe which fields the metadata of our
documents contain; that description will be included in the
prompt. The retriever will then do the following:

1. Send the query generation prompt to the LLM.
2. Parse metadata filter and rewritten search query from the

LLM output.
3. Convert the metadata filter generated by the LLM to the

format appropriate for our vector store.
4. Issue a similarity search against the vector store, filtered to

only match documents whose metadata passes the generated
filter.



Text-to-SQL

SQL and relational databases are important sources of
structured data, but they don’t interact directly with natural
language. Although we can simply use the LLM to translate a
user’s query to SQL queries, there is little margin for error.

Here are some useful strategies for effective text to SQL
translations:

Database description

To ground SQL queries, an LLM must be provided with an
accurate description of the database. One common text-to-
SQL prompt employs an idea reported in this paper and
others: provide the LLM with a CREATE TABLE
description for each table, including column names and
types.  We can also provide a few (for instance, three)
example rows from the table.

Few-shot examples

Feeding the prompt with few-shot examples of question-
query matches can improve the query generation
accuracy. This can be achieved by simply appending
standard static examples in the prompt to guide the agent
on how it should build queries based on questions.

5



See Figure 3-11 for a visual of the process.

Figure 3-11. A user’s query transformed to a SQL query

Here’s a full code example:

Python

from langchain_community.tools import QuerySQLDat

from langchain_community.utilities import SQLData

from langchain.chains import create_sql_query_cha

from langchain_openai import ChatOpenAI

# replace this with the connection details of you

db = SQLDatabase.from_uri("sqlite:///Chinook.db")

llm = ChatOpenAI(model="gpt-4", temperature=0)

# convert question to sql query

write_query = create_sql_query_chain(llm, db)



# Execute SQL query

execute_query = QuerySQLDatabaseTool(db=db)

# combined

chain = write_query | execute_query

# invoke the chain

chain.invoke('How many employees are there?');

JavaScript

import { ChatOpenAI } from "@langchain/openai";

import { createSqlQueryChain } from "langchain/ch

import { SqlDatabase } from "langchain/sql_db";

import { DataSource } from "typeorm";

import { QuerySqlTool } from "langchain/tools/sql

const datasource = new DataSource({

  type: "sqlite",

  database: "./Chinook.db", // here should be the

});

const db = await SqlDatabase.fromDataSourceParams

  appDataSource: datasource,

});

const llm = new ChatOpenAI({ model: "gpt-4", temp



// convert question to sql query

const writeQuery = await createSqlQueryChain({ ll

// execute query

const executeQuery = new QuerySqlTool(db);

// combined

const chain = writeQuery.pipe(executeQuery);

// invoke the chain

await chain.invoke('How many employees are there?

We first convert the user’s query to a SQL query appropriate to
the dialect of our database. Then we execute that query on our
database. Note that executing arbitrary SQL queries on your
database generated by an LLM from user input is dangerous in
a production application. To use these ideas in production, you
need to consider a number of security measures to reduce the
risk of unintended queries being run in your database. Here are
some examples:

Run the queries on your database with a user with read-only
permissions.
The database user running the queries should have access
only to the tables you wish to make available for querying.



Add a time-out to the queries run by this application; this
would ensure that even if an expensive query is generated, it
is canceled before taking up too many of your database
resources.

This is not an exhaustive list of security considerations. Security
of LLM applications is an area currently in development, with
more security measures being added to the recommendations
as new vulnerabilities are discovered.

Summary

This chapter discussed various state-of-the-art strategies to
efficiently retrieve the most relevant documents based on a
user’s query and synthesize them with your prompt to aid the
LLM to generate an accurate, up-to-date output.

As discussed, a robust, production-ready RAG system requires a
wide range of effective strategies that can execute query
transformation, query construction, routing, and indexing
optimization.

Query transformation enables your AI app to transform an
ambiguous or malformed user query into a representative
query that’s optimal for retrieval. Query construction enables



your AI app to convert the user’s query into the syntax of the
query language of the database or data source where
structured data lives. Routing enables your AI app to
dynamically route the user’s query to retrieve relevant
information from the relevant data source.

In Chapter 4, we’ll build on this knowledge to add memory to
your AI chatbot so that it can remember and learn from each
interaction. This will enable users to “chat” with the application
in multiturn conversations like ChatGPT.

 Patrick Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP
Tasks”, arXiv, April 12, 2021.

 Xinbei Ma et al., “Query Rewriting for Retrieval-Augmented Large Language
Models”, arXiv, October 23, 2023. Research commissioned by Microsoft Research Asia.

 Zackary Rackauckas, “RAG-Fusion: A New Take on Retrieval-Augmented
Generation”, arXiv, February 21, 2024. From the International Journal on Natural

Language Computing, vol. 13, no. 1 (February 2024).

 Luyu Gao et al., “Precise Zero-Shot Dense Retrieval Without Relevance Labels”,
arXiv, December 20, 2022.

 Nitarshan Rajkumar et al., “Evaluating the Text-to-SQL Capabilities of Large

Language Models”, arXiv, March 15, 2022.

1

2

3

4

5

https://oreil.ly/Qzd2K
https://oreil.ly/Qzd2K
https://oreil.ly/zyw5E
https://oreil.ly/zyw5E
https://oreil.ly/k7TTY
https://oreil.ly/k7TTY
https://oreil.ly/7aTnS
https://oreil.ly/WOrzt
https://oreil.ly/WOrzt


Chapter 4. Using LangGraph to Add
Memory to Your Chatbot

In Chapter 3, you learned how to provide your AI chatbot
application with up-to-date and relevant context. This enables
your chatbot to generate accurate responses based on the user’s
input. But that’s not enough to build a production-ready
application. How can you enable your application to actually
“chat” back and forth with the user, while remembering prior
conversations and relevant context?

Large language models are stateless, which means that each
time the model is prompted to generate a new response it has
no memory of the prior prompt or model response. In order to
provide this historical information to the model, we need a
robust memory system that will keep track of previous
conversations and context. This historical information can then
be included in the final prompt sent to the LLM, thus giving it
“memory.” Figure 4-1 illustrates this.



Figure 4-1. Memory and retrieval used to generate context-aware answers from an
LLM

In this chapter, you’ll learn how to build this essential memory
system using LangChain’s built-in modules to make this
development process easier.

Building a Chatbot Memory System

There are two core design decisions behind any robust memory
system:

How state is stored
How state is queried

A simple way to build a chatbot memory system that
incorporates effective solutions to these design decisions is to
store and reuse the history of all chat interactions between the
user and the model. The state of this memory system can be:



Stored as a list of messages (refer to Chapter 1 to learn more
about messages)
Updated by appending recent messages after each turn
Appended into the prompt by inserting the messages into the
prompt

Figure 4-2 illustrates this simple memory system.

Figure 4-2. A simple memory system utilizing chat history in prompts to generate
model answers

Here’s a code example that illustrates a simple version of this
memory system using LangChain:

Python

from langchain_core.prompts import ChatPromptTemp

from langchain_openai import ChatOpenAI



prompt = ChatPromptTemplate.from_messages([

    ("system", """You are a helpful assistant. An

        of your ability."""),

    ("placeholder", "{messages}"),

])

model = ChatOpenAI()

chain = prompt | model

chain.invoke({

    "messages": [

        ("human","""Translate this sentence from 

            programming."""),

        ("ai", "J'adore programmer."),

        ("human", "What did you just say?"),

    ],

})

JavaScript

import {ChatPromptTemplate} from '@langchain/core

import {ChatOpenAI} from '@langchain/openai'

const prompt = ChatPromptTemplate.fromMessages([

  ["system", `You are a helpful assistant. Answer



    of your ability.`],

  ["placeholder", "{messages}"],

])

const model = new ChatOpenAI()

const chain = prompt.pipe(model)

await chain.invoke({

  "messages": [

    ["human",`Translate this sentence from Englis

      programming.`],

    ["ai", "J'adore programmer."],

    ["human", "What did you just say?"],

  ],

})

The output:

I said, "J'adore programmer," which means "I love

Note how the incorporation of the previous conversation in the
chain enabled the model to answer the follow-up question in a
context-aware manner.



While this is simple and it works, when taking your application
to production, you’ll face some more challenges related to
managing memory at scale, such as:

You’ll need to update the memory after every interaction,
atomically (i.e., don’t record only the question or only the
answer in the case of failure).
You’ll want to store these memories in durable storage, such
as a relational database.
You’ll want to control how many and which messages are
stored for later, and how many of these are used for new
interactions.
You’ll want to inspect and modify this state (for now, just a
list of messages) outside a call to an LLM.

We’ll now introduce some better tooling, which will help with
this and all later chapters.

Introducing LangGraph

For the remainder of this chapter and the following chapters,
we’ll start to make use of LangGraph, an open source library
authored by LangChain. LangGraph was designed to enable
developers to implement multiactor, multistep, stateful

https://oreil.ly/TKCb6


cognitive architectures, called graphs. That’s a lot of words
packed into a short sentence; let’s take them one at a time.
Figure 4-3 illustrates the multiactor aspect.

Figure 4-3. From single-actor applications to multiactor applications

A team of specialists can build something together that none of
them could build alone. The same is true of LLM applications:
an LLM prompt (great for answer generation and task planning
and many more things) is much more powerful when paired up
with a search engine (best at finding current facts), or even
when paired with different LLM prompts. We have seen
developers build some amazing applications, like Perplexity or

https://oreil.ly/bVlu7


Arc Search, when they combine those two building blocks (and
others) in novel ways.

And just as a human team needs more coordination than one
person working by themselves, an application with multiple
actors needs a coordination layer to do these things:

Define the actors involved (the nodes in a graph) and how
they hand off work to each other (the edges in that graph).
Schedule execution of each actor at the appropriate time—in
parallel if needed—with deterministic results.

Figure 4-4 illustrates the multistep dimension.

https://oreil.ly/NPOlF


Figure 4-4. From multiactor to multistep applications

As each actor hands off work to another (for example, an LLM
prompt asking a search tool for the results of a given search
query), we need to make sense of the back-and-forth between
multiple actors. We need to know what order it happens in,



how many times each actor is called, and so on. To do this, we
can model the interaction between the actors as happening
across multiple discrete steps in time. When one actor hands off
work to another actor, it results in the scheduling of the next
step of the computation, and so on, until no more actors hand
off work to others, and the final result is reached.

Figure 4-5 illustrates the stateful aspect.

Figure 4-5. From multistep to stateful applications



Communication across steps requires tracking some state—
otherwise, when you call the LLM actor the second time, you’d
get the same result as the first time. It is very helpful to pull this
state out of each of the actors and have all actors collaborate on
updating a single central state. With a single central state, we
can:

Snapshot and store the central state during or after each
computation.
Pause and resume execution, which makes it easy to recover
from errors.
Implement human-in-the-loop controls (more on this in
Chapter 8).

Each graph is then made up of the following:

State

The data received from outside the application, modified
and produced by the application while it’s running.

Nodes

Each step to be taken. Nodes are simply Python/JS
functions, which receive the current state as input and
can return an update to that state (that is, they can add to
it and modify or remove existing data).



Edges

The connections between nodes. Edges determine the
path taken from the first node to the last, and they can be
fixed (that is, after Node B, always visit node D) or
conditional (evaluate a function to decide the next node to
visit after node C).

LangGraph offers utilities to visualize these graphs and
numerous features to debug their workings while in
development. These graphs can then easily be deployed to serve
production workloads at high scale.

If you followed the instructions in Chapter 1, you’ll already
have LangGraph installed. If not, you can install it by running
one of the following commands in your terminal:

Python

pip install langgraph

JavaScript



npm i @langchain/langgraph

To help get you familiar with using LangGraph, we’ll create a
simple chatbot using LangGraph, which is a great example of
the LLM call architecture with a single use of an LLM. This
chatbot will respond directly to user messages. Though simple,
it does illustrate the core concepts of building with LangGraph.

Creating a StateGraph

Start by creating a StateGraph . We’ll add a node to represent
the LLM call:

Python

from typing import Annotated, TypedDict

from langgraph.graph import StateGraph, START, EN

from langgraph.graph.message import add_messages

class State(TypedDict):

    # Messages have the type "list". The `add_mes

    # function in the annotation defines how this



    # be updated (in this case, it appends new me

    # list, rather than replacing the previous me

messages: Annotated[list, add_messages]

builder = StateGraph(State)

JavaScript

import {

  StateGraph,

  StateType,

  Annotation,

  messagesStateReducer,

  START, END

} from '@langchain/langgraph'

const State = {

  /**

  * The State defines three things:

  * 1. The structure of the graph's state (which 

  * read/write)

  * 2. The default values for the state's channel

  * 3. The reducers for the state's channels. Red

  * determine how to apply updates to the state. 

  * appended to the messages array.

  */



  messages: Annotation({

    reducer: messagesStateReducer,

    default: () => []

  }),

}

const builder = new StateGraph(State)

NOTE

The first thing you do when you define a graph is define the state of the graph. The
state consists of the shape, or schema, of the graph state, as well as reducer functions

that specify how to apply updates to the state. In this example, the state is a
dictionary with a single key: messages . The messages  key is annotated with the

add_messages  reducer function, which tells LangGraph to append new messages to

the existing list, rather than overwrite it. State keys without an annotation will be
overwritten by each update, storing the most recent value. You can write your own
reducer functions, which are simply functions that receive as arguments—argument

1 is the current state, and argument 2 is the next value being written to the state—
and should return the next state, that is, the result of merging the current state with
the new value. The simplest example is a function that appends the next value to a
list and returns that list.

So now our graph knows two things:

Every node  we define will receive the current State  as
input and return a value that updates that state.



messages  will be appended to the current list, rather than
directly overwritten. This is communicated via the prebuilt
add_messages  function in the Annotated  syntax in the
Python example or the reducer function for the JavaScript
example.

Next, add the chatbot  node. Nodes represent units of work.
They are typically just functions:

Python

from langchain_openai import ChatOpenAI

model = ChatOpenAI()

def chatbot(state: State):

    answer = model.invoke(state["messages"])

    return {"messages": [answer]}

# The first argument is the unique node name

# The second argument is the function or Runnable

builder.add_node("chatbot", chatbot)

JavaScript

https://oreil.ly/sK-Ry


import {ChatOpenAI} from '@langchain/openai'

import {

  AIMessage,

  SystemMessage,

  HumanMessage

} from "@langchain/core/messages";

const model = new ChatOpenAI()

async function chatbot(state) {

  const answer = await model.invoke(state.message

  return {"messages": answer}

}

builder = builder.addNode('chatbot', chatbot)

This node receives the current state, does one LLM call, and
then returns an update to the state containing the new message
produced by the LLM. The add_messages  reducer appends
this message to the messages already in the state.

And finally let’s add the edges:

Python



builder.add_edge(START, 'chatbot')

builder.add_edge('chatbot', END)

graph = builder.compile()

JavaScript

builder = builder

  .addEdge(START, 'chatbot')

  .addEdge('chatbot', END)

let graph = builder.compile()

This does a few things:

It tells the graph where to start its work each time you run it.
This instructs the graph where it should exit (this is optional,
as LangGraph will stop execution once there’s no more nodes
to run).
It compiles the graph into a runnable object, with the
familiar invoke  and stream  methods.

We can also draw a visual representation of the graph:



Python

graph.get_graph().draw_mermaid_png()

JavaScript

await graph.getGraph().drawMermaidPng()

The graph we just made looks like Figure 4-6.



Figure 4-6. A simple chatbot

You can run it with the familiar stream()  method you’ve seen
in earlier chapters:

Python

input = {"messages": [HumanMessage('hi!)]}

for chunk in graph.stream(input):

    print(chunk)



JavaScript

const input = {messages: [new HumanMessage('hi!)]

for await (const chunk of await graph.stream(inpu

  console.log(chunk)

}

The output:

{ "chatbot": { "messages": [AIMessage("How can I 

Notice how the input to the graph was in the same shape as the
State  object we defined earlier; that is, we sent in a list of
messages in the messages  key of a dictionary. In addition, the
stream  function streams the full value of the state after each
step of the graph.

Adding Memory to StateGraph

LangGraph has built-in persistence, which is used in the same
way for the simplest graph to the most complex. Let’s see what



it looks like to apply it to this first architecture. We’ll recompile
our graph, now attaching a checkpointer, which is a storage
adapter for LangGraph. LangGraph ships with a base class that
any user can subclass to create an adapter for their favorite
database; at the time of writing, LangGraph ships with several
adapters maintained by LangChain:

An in-memory adapter, which we’ll use for our examples
here
A SQLite adapter, using the popular in-process database,
appropriate for local apps and testing
A Postgres adapter, optimized for the popular relational
database and appropriate for large-scale applications.

Many developers have written adapters for other database
systems, such as Redis or MySQL:

Python

from langgraph.checkpoint.memory import MemorySav

graph = builder.compile(checkpointer=MemorySaver

JavaScript



import {MemorySaver} from '@langchain/langgraph'

const graph = builder.compile({ checkpointer: new

This returns a runnable object with the same methods as the
one used in the previous code block. But now, it stores the state
at the end of each step, so every invocation after the first
doesn’t start from a blank slate. Any time the graph is called, it
starts by using the checkpointer to fetch the most recent saved
state, if any, and combines the new input with the previous
state. And only then does it execute the first nodes.

Let’s see the difference in action:

Python

thread1 = {"configurable": {"thread_id": "1"}}

result_1 = graph.invoke(

    { "messages": [HumanMessage("hi, my name is J

    thread1

)

// { "chatbot": { "messages": [AIMessage("How can

result_2 = graph.invoke(



    { "messages": [HumanMessage("what is my name?

    thread1

)

// { "chatbot": { "messages": [AIMessage("Your na

JavaScript

const thread1 = {configurable: {thread_id: '1'}}

const result_1 = await graph.invoke(

  { "messages": [new HumanMessage("hi, my name is

  thread1

)

// { "chatbot": { "messages": [AIMessage("How can

const result_2 = await graph.invoke(

  { "messages": [new HumanMessage("what is my nam

  thread1

)

// { "chatbot": { "messages": [AIMessage("Your na

Notice the object thread1 , which identifies the current
interaction as belonging to a particular history of interactions—
which are called threads in LangGraph. Threads are created
automatically when first used. Any string is a valid identifier for



a thread (usually, Universally Unique Identifiers [UUIDs] are
used). The existence of threads helps you achieve an important
milestone in your LLM application; it can now be used by
multiple users with independent conversations that are never
mixed up.

As before, the chatbot  node is first called with a single
message (the one we just passed in) and returns another
message, both of which are then saved in the state.

The second time we execute the graph on the same thread, the
chatbot  node is called with three messages, the two saved
from the first execution, and the next question from the user.
This is the essence of memory: the previous state is still there,
which makes it possible, for instance, to answer questions
about something said before (and do many more interesting
things, of which we will see more later).

You can also inspect and update the state directly; let’s see how:

Python

graph.get_state(thread1)

JavaScript



await graph.getState(thread1)

This returns the current state of this thread.

And you can update the state like this:

Python

graph.update_state(thread1, [HumanMessage('I like

JavaScript

await graph.updateState(thread1, [new HumanMessag

This would add one more message to the list of messages in the
state, to be used the next time you invoke the graph on this
thread.



Modifying Chat History

In many cases, the chat history messages aren’t in the best state
or format to generate an accurate response from the model. To
overcome this problem, we can modify the chat history in three
main ways: trimming, filtering, and merging messages.

Trimming Messages

LLMs have limited context windows; in other words, there is a
maximum number of tokens that LLMs can receive as a
prompt. As such, the final prompt sent to the model shouldn’t
exceed that limit (particular to each mode), as models will
either refuse an overly long prompt or truncate it. In addition,
excessive prompt information can distract the model and lead
to hallucination.

An effective solution to this problem is to limit the number of
messages that are retrieved from chat history and appended to
the prompt. In practice, we need only to load and store the most
recent messages. Let’s use an example chat history with some
preloaded messages.

Fortunately, LangChain provides the built-in trim_messages
helper that incorporates various strategies to meet these



requirements. For example, the trimmer helper enables
specifying how many tokens we want to keep or remove from
chat history.

Here’s an example that retrieves the last max_tokens  in the
list of messages by setting a strategy parameter to "last" :

Python

from langchain_core.messages import SystemMessage

from langchain_openai import ChatOpenAI

trimmer = trim_messages(

    max_tokens=65,

    strategy="last",

    token_counter=ChatOpenAI(model="gpt-4o"),

    include_system=True,

    allow_partial=False,

    start_on="human",

)

messages = [

    SystemMessage(content="you're a good assistan

    HumanMessage(content="hi! I'm bob"),

    AIMessage(content="hi!"),

    HumanMessage(content="I like vanilla ice crea



    AIMessage(content="nice"),

    HumanMessage(content="what's 2 + 2"),

    AIMessage(content="4"),

    HumanMessage(content="thanks"),

    AIMessage(content="no problem!"),

    HumanMessage(content="having fun?"),

    AIMessage(content="yes!"),

]

trimmer.invoke(messages)

JavaScript

import {

  AIMessage,

  HumanMessage,

  SystemMessage,

  trimMessages,

} from "@langchain/core/messages";

import { ChatOpenAI } from "@langchain/openai";

const trimmer = trimMessages({

  maxTokens: 65,

  strategy: "last",

  tokenCounter: new ChatOpenAI({ modelName: "gpt-

  includeSystem: true,



  allowPartial: false,

  startOn: "human",

});

const messages = [

  new SystemMessage("you're a good assistant"),

  new HumanMessage("hi! I'm bob"),

  new AIMessage("hi!"),

  new HumanMessage("I like vanilla ice cream"),

  new AIMessage("nice"),

  new HumanMessage("what's 2 + 2"),

  new AIMessage("4"),

  new HumanMessage("thanks"),

  new AIMessage("no problem!"),

  new HumanMessage("having fun?"),

  new AIMessage("yes!"),

]

const trimmed = await trimmer.invoke(messages);

The output:

[SystemMessage(content="you're a good assistant")

 HumanMessage(content='what's 2 + 2'),

 AIMessage(content='4'),

 HumanMessage(content='thanks'),



 AIMessage(content='no problem!'),

 HumanMessage(content='having fun?'),

 AIMessage(content='yes!')]

Note the following:

The parameter strategy  controls whether to start from the
beginning or the end of the list. Usually, you’ll want to
prioritize the most recent messages and cut older messages if
they don’t fit. That is, start from the end of the list. For this
behavior, choose the value last . The other available option
is first , which would prioritize the oldest messages and
cut more recent messages if they don’t fit.
The token_counter  is an LLM or chat model, which will be
used to count tokens using the tokenizer appropriate to that
model.
We can add the parameter include_system=True  to
ensure that the trimmer keeps the system message.
The parameter allow_partial  determines whether to cut
the last message’s content to fit within the limit. In our
example, we set this to false , which completely removes
the message that would send the total over the limit.
The parameter start_on="human"  ensures that we never
remove an AIMessage  (that is, a response from the model)



without also removing a corresponding HumanMessage  (the
question for that response).

Filtering Messages

As the list of chat history messages grows, a wider variety of
types, subchains, and models may be utilized. LangChain’s
filter_messages  helper makes it easier to filter the chat
history messages by type, ID, or name.

Here’s an example where we filter for human messages:

Python

from langchain_core.messages import (

    AIMessage,

    HumanMessage,

    SystemMessage,

    filter_messages,

)

messages = [

    SystemMessage("you are a good assistant", id=

    HumanMessage("example input", id="2", name="e

    AIMessage("example output", id="3", name="exa

    HumanMessage("real input", id="4", name="bob"



    AIMessage("real output", id="5", name="alice"

]

filter_messages(messages, include_types="human")

JavaScript

import {

  HumanMessage,

  SystemMessage,

  AIMessage,

  filterMessages,

} from "@langchain/core/messages";

const messages = [

  new SystemMessage({content: "you are a good ass

  new HumanMessage({content: "example input", id

  new AIMessage({content: "example output", id: "

  new HumanMessage({content: "real input", id: "4

  new AIMessage({content: "real output", id: "5",

];

filterMessages(messages, { includeTypes: ["human"

The output:



[HumanMessage(content='example input', name='exam

 HumanMessage(content='real input', name='bob', i

Let’s try another example where we filter to exclude users and
IDs, and include message types:

Python

filter_messages(messages, exclude_names=["example

"""

[SystemMessage(content='you are a good assistant

HumanMessage(content='real input', name='bob', id

AIMessage(content='real output', name='alice', id

"""

filter_messages(

    messages, 

    include_types=[HumanMessage, AIMessage], 

    exclude_ids=["3"]

)

"""

[HumanMessage(content='example input', name='exam



 HumanMessage(content='real input', name='bob', i

 AIMessage(content='real output', name='alice', i

"""

JavaScript

filterMessages(

  messages, 

  { excludeNames: ["example_user", 

  "example_assistant"] }

);

/*

[SystemMessage(content='you are a good assistant

HumanMessage(content='real input', name='bob', id

AIMessage(content='real output', name='alice', id

*/

filterMessages(messages, { includeTypes: ["human"

/*

[HumanMessage(content='example input', name='exam

 HumanMessage(content='real input', name='bob', i

 AIMessage(content='real output', name='alice', i

*/



The filter_messages  helper can also be used imperatively
or declaratively, making it easy to compose with other
components in a chain:

Python

model = ChatOpenAI()

filter_ = filter_messages(exclude_names=["example

chain = filter_ | model

JavaScript

const model = new ChatOpenAI()

const filter = filterMessages({

  excludeNames: ["example_user", "example_assista

})

const chain = filter.pipe(model)



Merging Consecutive Messages

Certain models don’t support inputs, including consecutive
messages of the same type (for instance, Anthropic chat
models). LangChain’s merge_message_runs  utility makes it
easy to merge consecutive messages of the same type:

Python

from langchain_core.messages import (

    AIMessage,

    HumanMessage,

    SystemMessage,

    merge_message_runs,

)

messages = [

    SystemMessage("you're a good assistant."),

    SystemMessage("you always respond with a joke

    HumanMessage(

        [{"type": "text", "text": "i wonder why i

    ),

    HumanMessage("and who is harrison chasing any

    AIMessage(

        '''Well, I guess they thought "WordRope" 

        didn\'t have the same ring to it!'''



    ),

    AIMessage("""Why, he's probably chasing after

        office!"""),

]

merge_message_runs(messages)

JavaScript

import {

  HumanMessage,

  SystemMessage,

  AIMessage,

  mergeMessageRuns,

} from "@langchain/core/messages";

const messages = [

  new SystemMessage("you're a good assistant."),

  new SystemMessage("you always respond with a jo

  new HumanMessage({

    content: [{ type: "text", text: "i wonder why

  }),

  new HumanMessage("and who is harrison chasing a

  new AIMessage(

    `Well, I guess they thought "WordRope" and "S

      have the same ring to it!`



  ),

  new AIMessage(

    "Why, he's probably chasing after the last cu

  ),

];

mergeMessageRuns(messages);

The output:

[SystemMessage(content="you're a good assistant.\

    joke."),

 HumanMessage(content=[{'type': 'text', 'text': "

    langchain"}, 'and who is harrison chasing any

 AIMessage(content='Well, I guess they thought "W

    just didn\'t have the same ring to it!\nWhy, 

    the last cup of coffee in the office!')]

Notice that if the contents of one of the messages to merge is a
list of content blocks, then the merged message will have a list
of content blocks. And if both messages to merge have string
contents, then those are concatenated with a newline character.



The merge_message_runs  helper can be used imperatively or
declaratively, making it easy to compose with other components
in a chain:

Python

model = ChatOpenAI()

merger = merge_message_runs()

chain = merger | model

JavaScript

const model = new ChatOpenAI()

const merger = mergeMessageRuns()

const chain = merger.pipe(model)

Summary

This chapter covered the fundamentals of building a simple
memory system that enables your AI chatbot to remember its
conversations with a user. We discussed how to automate the
storage and updating of chat history using LangGraph to make



this easier. We also discussed the importance of modifying chat
history and explored various strategies to trim, filter, and
summarize chat messages.

In Chapter 5, you’ll learn how to enable your AI chatbot to do
more than just chat back: for instance, your new model will be
able to make decisions, pick actions, and reflect on its past
outputs.



Chapter 5. Cognitive Architectures
with LangGraph

So far, we’ve looked at the most common features of LLM
applications:

Prompting techniques in the Preface and Chapter 1
RAG in Chapters 2 and 3
Memory in Chapter 4

The next question should be: How do we assemble these pieces
into a coherent application that achieves the goal we set out to
solve? To draw a parallel with the world of bricks and mortar, a
swimming pool and a one-story house are built of the same
materials, but obviously serve very different purposes. What
makes them uniquely suited to their different purposes is the
plan for how those materials are combined—that is, their
architecture. The same is true when building LLM applications.
The most important decisions you have to make are how to
assemble the different components you have at your disposal
(such as RAG, prompting techniques, memory) into something
that achieves your purpose.



Before we look at specific architectures, let’s walk through an
example. Any LLM application you might build will start from a
purpose: what the app is designed to do. Let’s say you want to
build an email assistant—an LLM application that reads your
emails before you do and aims to reduce the amount of emails
you need to look at. The application might do this by archiving
a few uninteresting ones, directly replying to some, and
marking others as deserving of your attention later.

You probably also would want the app to be bound by some
constraints in its action. Listing those constraints helps
tremendously, as they will help inform the search for the right
architecture. Chapter 8 covers these constraints in more detail
and how to work with them. For this hypothetical email
assistant, let’s say we’d like it to do the following:

Minimize the number of times it interrupts you (after all, the
whole point is to save time).
Avoid having your email correspondents receive a reply that
you’d never have sent yourself.

This hints at the key trade-off often faced when building LLM
apps: the trade-off between agency (or the capacity to act
autonomously) and reliability (or the degree to which you can
trust its outputs). Intuitively, the email assistant will be more



useful if it takes more actions without your involvement, but if
you take it too far, it will inevitably send emails you wish it
hadn’t.

One way to describe the degree of autonomy of an LLM
application is to evaluate how much of the behavior of the
application is determined by an LLM (versus code):

Have an LLM decide the output of a step (for instance, write
a draft reply to an email).
Have an LLM decide the next step to take (for instance, for a
new email, decide between the three actions it can take on an
email: archive, reply, or mark for review).
Have an LLM decide what steps are available to take (for
instance, have the LLM write code that executes a dynamic
action you didn’t preprogram into the application).

We can classify a number of popular recipes for building LLM
applications based on where they fall in this spectrum of
autonomy, that is, which of the three tasks just mentioned are
handled by an LLM and which remain in the hands of the
developer or user. These recipes can be called cognitive
architectures. In the artificial intelligence field, the term
cognitive architecture has long been used to denote models of
human reasoning (and their implementations in computers).



An LLM cognitive architecture (the term was first applied to
LLMs, to our knowledge, in a paper ) can be defined as a recipe
for the steps to be taken by an LLM application (see Figure 5-1).
A step is, for instance, retrieval of relevant documents (RAG), or
calling an LLM with a chain-of-thought prompt.

Figure 5-1. Cognitive architectures for LLM applications

Now let’s look at each of the major architectures, or recipes,
that you can use when building your application (as shown in
Figure 5-1):

0: Code

This is not an LLM cognitive architecture (hence we
numbered it 0), as it doesn’t use LLMs at all. You can think

1



of this as regular software you’re used to writing. The first
interesting architecture (for this book, at any rate) is
actually the next one.

1: LLM call

This is the majority of the examples we’ve seen in the
book so far, with one LLM call only. This is useful mostly
when it’s part of a larger application that makes use of an
LLM for achieving a specific task, such as translating or
summarizing a piece of text.

2: Chain

The next level up, so to speak, comes with the use of
multiple LLM calls in a predefined sequence. For instance,
a text-to-SQL application (which receives as input from
the user a natural language description of some
calculation to make over a database) could make use of
two LLM calls in sequence:

One LLM call to generate a SQL query, from the natural
language query, provided by the user, and a description of
the database contents, provided by the developer.

And another LLM call to write an explanation of the
query appropriate for a nontechnical user, given the



query generated in the previous call. This one could then
be used to enable the user to check if the generated query
matches his request.

3: Router

This next step comes from using the LLM to define the
sequence of steps to take. That is, whereas the chain
architecture always executes a static sequence of steps
(however many) determined by the developer, the router
architecture is characterized by using an LLM to choose
between certain predefined steps. An example would be a
RAG application with multiple indexes of documents from
different domains, with the following steps:

1. An LLM call to pick which of the available indexes to
use, given the user-supplied query and the developer-
supplied description of the indexes.

2. A retrieval step that queries the chosen index for the
most relevant documents for the user query.

3. Another LLM call to generate an answer, given the
user-supplied query and the list of relevant documents
fetched from the index.

That’s as far as we’ll go in this chapter. We will talk about each
of these architectures in turn. The next chapters discuss the



agentic architectures, which make even more use of LLMs. But
first let’s talk about some better tooling to help us on this
journey.

Architecture #1: LLM Call

As an example of the LLM call architecture, we’ll return to the
chatbot we created in Chapter 4. This chatbot will respond
directly to user messages.

Start by creating a StateGraph , to which we’ll add a node to
represent the LLM call:

Python

from typing import Annotated, TypedDict

from langgraph.graph import StateGraph, START, EN

from langgraph.graph.message import add_messages

from langchain_openai import ChatOpenAI

model = ChatOpenAI()

class State(TypedDict):



    # Messages have the type "list". The `add_mes

    # function in the annotation defines how this

    # be updated (in this case, it appends new me

    # list, rather than replacing the previous me

    messages: Annotated[list, add_messages]

def chatbot(state: State):

    answer = model.invoke(state["messages"])

    return {"messages": [answer]}

builder = StateGraph(State)

builder.add_node("chatbot", chatbot)

builder.add_edge(START, 'chatbot')

builder.add_edge('chatbot', END)

graph = builder.compile()

JavaScript

import {

  StateGraph,

  Annotation,

  messagesStateReducer,

  START, END

} from '@langchain/langgraph'

import {ChatOpenAI} from '@langchain/openai'



const model = new ChatOpenAI()

const State = {

  /**

  * The State defines three things:

  * 1. The structure of the graph's state (which 

  * read/write)

  * 2. The default values for the state's channel

  * 3. The reducers for the state's channels. Red

  * determine how to apply updates to the state. 

  * appended to the messages array.

  */

  messages: Annotation({

    reducer: messagesStateReducer,

    default: () => []

  }),

}

async function chatbot(state) {

  const answer = await model.invoke(state.message

  return {"messages": answer}

}

const builder = new StateGraph(State)

  .addNode('chatbot', chatbot)

  .addEdge(START, 'chatbot')

  .addEdge('chatbot', END)



const graph = builder.compile()

We can also draw a visual representation of the graph:

Python

graph.get_graph().draw_mermaid_png()

JavaScript

await graph.getGraph().drawMermaidPng()

The graph we just made looks like Figure 5-2.



Figure 5-2. The LLM call architecture

You can run it with the familiar stream()  method you’ve seen
in earlier chapters:

Python

input = {"messages": [HumanMessage('hi!)]}

for chunk in graph.stream(input):

    print(chunk)



JavaScript

const input = {messages: [new HumanMessage('hi!)]

for await (const chunk of await graph.stream(inpu

  console.log(chunk)

}

The output:

{ "chatbot": { "messages": [AIMessage("How can I 

Notice how the input to the graph was in the same shape as the
State  object we defined earlier; that is, we sent in a list of
messages in the messages  key of a dictionary.

This is the simplest possible architecture for using an LLM,
which is not to say that it should never be used. Here are some
examples of where you might see it in action in popular
products, among many others:

AI-powered features such as summarize and translate (such
as you can find in Notion, a popular writing software) can be
powered by a single LLM call.



Simple SQL query generation can be powered by a single
LLM call, depending on the UX and target user the developer
has in mind.

Architecture #2: Chain

This next architecture extends on all that by using multiple
LLM calls, in a predefined sequence (that is, different
invocations of the application do the same sequence of LLM
calls, albeit with different inputs and results).

Let’s take as an example a text-to-SQL application, which
receives as input from the user a natural language description
of some calculation to make over a database. We mentioned
earlier that this could be achieved with a single LLM call, to
generate a SQL query, but we can create a more sophisticated
application by making use of multiple LLM calls in sequence.
Some authors call this architecture flow engineering.

First let’s describe the flow in words:

1. One LLM call to generate a SQL query from the natural
language query, provided by the user, and a description of
the database contents, provided by the developer.

2



2. Another LLM call to write an explanation of the query
appropriate for a nontechnical user, given the query
generated in the previous call. This one could then be used to
enable the user to check if the generated query matches his
request.

You could also extend this even further (but we won’t do that
here) with additional steps to be taken after the preceding two:

3. Executes the query against the database, which returns a
two-dimensional table.

4. Uses a third LLM call to summarize the query results into a
textual answer to the original user question.

And now let’s implement this with LangGraph:

Python

from typing import Annotated, TypedDict

from langchain_core.messages import HumanMessage,

from langchain_openai import ChatOpenAI

from langgraph.graph import END, START, StateGrap

from langgraph.graph.message import add_messages



# useful to generate SQL query

model_low_temp = ChatOpenAI(temperature=0.1)

# useful to generate natural language outputs

model_high_temp = ChatOpenAI(temperature=0.7)

class State(TypedDict):

    # to track conversation history

    messages: Annotated[list, add_messages]

    # input

    user_query: str

    # output

    sql_query: str

    sql_explanation: str

class Input(TypedDict):

    user_query: str

class Output(TypedDict):

    sql_query: str

    sql_explanation: str

generate_prompt = SystemMessage(

    """You are a helpful data analyst who generat

    on their questions."""

)

def generate_sql(state: State) -> State:

    user_message = HumanMessage(state["user_query



    messages = [generate_prompt, *state["messages

    res = model_low_temp.invoke(messages)

    return {

        "sql_query": res.content,

        # update conversation history

        "messages": [user_message, res],

    }

explain_prompt = SystemMessage(

    "You are a helpful data analyst who explains 

)

def explain_sql(state: State) -> State:

    messages = [

        explain_prompt,

        # contains user's query and SQL query fro

        *state["messages"],

    ]

    res = model_high_temp.invoke(messages)

    return {

        "sql_explanation": res.content,

        # update conversation history

        "messages": res,

    }

builder = StateGraph(State, input=Input, output=O

builder.add_node("generate_sql", generate_sql)

builder.add_node("explain_sql", explain_sql)



builder.add_edge(START, "generate_sql")

builder.add_edge("generate_sql", "explain_sql")

builder.add_edge("explain_sql", END)

graph = builder.compile()

JavaScript

import {

  HumanMessage,

  SystemMessage

} from "@langchain/core/messages";

import { ChatOpenAI } from "@langchain/openai";

import {

  StateGraph,

  Annotation,

  messagesStateReducer,

  START,

  END,

} from "@langchain/langgraph";

// useful to generate SQL query

const modelLowTemp = new ChatOpenAI({ temperature

// useful to generate natural language outputs

const modelHighTemp = new ChatOpenAI({ temperatur



const annotation = Annotation.Root({

  messages: Annotation({ reducer: messagesStateRe

  user_query: Annotation(),

  sql_query: Annotation(),

  sql_explanation: Annotation(),

});

const generatePrompt = new SystemMessage(

  `You are a helpful data analyst who generates S

    their questions.`

);

async function generateSql(state) {

  const userMessage = new HumanMessage(state.user

  const messages = [generatePrompt, ...state.mess

  const res = await modelLowTemp.invoke(messages)

  return {

    sql_query: res.content as string,

    // update conversation history

    messages: [userMessage, res],

  };

}

const explainPrompt = new SystemMessage(

  "You are a helpful data analyst who explains SQ

);

async function explainSql(state) {



  const messages = [explainPrompt, ...state.messa

  const res = await modelHighTemp.invoke(messages

  return {

    sql_explanation: res.content as string,

    // update conversation history

    messages: res,

  };

}

const builder = new StateGraph(annotation)

  .addNode("generate_sql", generateSql)

  .addNode("explain_sql", explainSql)

  .addEdge(START, "generate_sql")

  .addEdge("generate_sql", "explain_sql")

  .addEdge("explain_sql", END);

const graph = builder.compile();

The visual representation of the graph is shown in Figure 5-3.



Figure 5-3. The chain architecture

Here’s an example of inputs and outputs:

Python



graph.invoke({

  "user_query": "What is the total sales for each

})

JavaScript

await graph.invoke({

  user_query: "What is the total sales for each p

})

The output:

{

  "sql_query": "SELECT product_name, SUM(sales_am

      sales\nGROUP BY product_name;",

  "sql_explanation": "This query will retrieve th

      by summing up the sales_amount column for e

      results by product_name.",

}



First, the generate_sql  node is executed, which populates the
sql_query  key in the state (which will be part of the final
output) and updates the messages  key with the new messages.
Then the explain_sql  node runs, taking the SQL query
generated in the previous step and populating the
sql_explanation  key in the state. At this point, the graph
finishes running, and the output is returned to the caller.

Note also the use of separate input and output schemas when
creating the StateGraph . This lets you customize which parts
of the state are accepted as input from the user and which are
returned as the final output. The remaining state keys are used
by the graph nodes internally to keep intermediate state and
are made available to the user as part of the streaming output
produced by stream() .

Architecture #3: Router

This next architecture moves up the autonomy ladder by
assigning to LLMs the next of the responsibilities we outlined
before: deciding the next step to take. That is, whereas the chain
architecture always executes a static sequence of steps
(however many), the router architecture is characterized by
using an LLM to choose between certain predefined steps.



Let’s use the example of a RAG application with access to
multiple indexes of documents from different domains (refer to
Chapter 2 for more on indexing). Usually you can extract better
performance from LLMs by avoiding the inclusion of irrelevant
information in the prompt. Therefore, in building this
application, we should try to pick the right index to use for each
query and use only that one. The key development in this
architecture is to use an LLM to make this decision, effectively
using an LLM to evaluate each incoming query and decide
which index it should use for that particular query.

NOTE

Before the advent of LLMs, the usual way of solving this problem would be to build a
classifier model using ML techniques and a dataset mapping example user queries to

the right index. This could prove quite challenging, as it requires the following:

Assembling that dataset by hand
Generating enough features (quantitative attributes) from each user query to
enable training a classifier for the task

LLMs, given their encoding of human language, can effectively serve as this classifier
with zero, or very few, examples or additional training.

First, let’s describe the flow in words:



1. An LLM call to pick which of the available indexes to use,
given the user-supplied query, and the developer-supplied
description of the indexes

2. A retrieval step that queries the chosen index for the most
relevant documents for the user query

3. Another LLM call to generate an answer, given the user-
supplied query and the list of relevant documents fetched
from the index

And now let’s implement it with LangGraph:

Python

from typing import Annotated, Literal, TypedDict

from langchain_core.documents import Document

from langchain_core.messages import HumanMessage,

from langchain_core.vectorstores.in_memory import

from langchain_openai import ChatOpenAI, OpenAIEm

from langgraph.graph import END, START, StateGrap

from langgraph.graph.message import add_messages

embeddings = OpenAIEmbeddings()

# useful to generate SQL query

model_low_temp = ChatOpenAI(temperature=0.1)



# useful to generate natural language outputs

model_high_temp = ChatOpenAI(temperature=0.7)

class State(TypedDict):

    # to track conversation history

    messages: Annotated[list, add_messages]

    # input

    user_query: str

    # output

    domain: Literal["records", "insurance"]

    documents: list[Document]

    answer: str

class Input(TypedDict):

    user_query: str

class Output(TypedDict):

    documents: list[Document]

    answer: str

# refer to Chapter 2 on how to fill a vector stor

medical_records_store = InMemoryVectorStore.from_

medical_records_retriever = medical_records_store

insurance_faqs_store = InMemoryVectorStore.from_d

insurance_faqs_retriever = insurance_faqs_store.a

router_prompt = SystemMessage(



    """You need to decide which domain to route t

        domains to choose from:

          - records: contains medical records of 

          diagnosis, treatment, and prescriptions

          - insurance: contains frequently asked 

          policies, claims, and coverage.

Output only the domain name."""

)

def router_node(state: State) -> State:

    user_message = HumanMessage(state["user_query

    messages = [router_prompt, *state["messages"]

    res = model_low_temp.invoke(messages)

    return {

        "domain": res.content,

        # update conversation history

        "messages": [user_message, res],

    }

def pick_retriever(

    state: State,

) -> Literal["retrieve_medical_records", "retriev

    if state["domain"] == "records":

        return "retrieve_medical_records"

    else:

        return "retrieve_insurance_faqs"



def retrieve_medical_records(state: State) -> Sta

    documents = medical_records_retriever.invoke

    return {

        "documents": documents,

    }

def retrieve_insurance_faqs(state: State) -> Stat

    documents = insurance_faqs_retriever.invoke(s

    return {

        "documents": documents,

    }

medical_records_prompt = SystemMessage(

    """You are a helpful medical chatbot who answ

        patient's medical records, such as diagno

        prescriptions."""

)

insurance_faqs_prompt = SystemMessage(

    """You are a helpful medical insurance chatbo

        questions about insurance policies, claim

)

def generate_answer(state: State) -> State:

    if state["domain"] == "records":

        prompt = medical_records_prompt

    else:

        prompt = insurance_faqs_prompt



    messages = [

        prompt,

        *state["messages"],

        HumanMessage(f"Documents: {state["documen

    ]

    res = model_high_temp.invoke(messages)

    return {

        "answer": res.content,

        # update conversation history

        "messages": res,

    }

builder = StateGraph(State, input=Input, output=O

builder.add_node("router", router_node)

builder.add_node("retrieve_medical_records", retr

builder.add_node("retrieve_insurance_faqs", retri

builder.add_node("generate_answer", generate_answ

builder.add_edge(START, "router")

builder.add_conditional_edges("router", pick_retr

builder.add_edge("retrieve_medical_records", "gen

builder.add_edge("retrieve_insurance_faqs", "gene

builder.add_edge("generate_answer", END)

graph = builder.compile()

JavaScript



import {

  HumanMessage,

  SystemMessage

} from "@langchain/core/messages";

import {

  ChatOpenAI,

  OpenAIEmbeddings

} from "@langchain/openai";

import {

  MemoryVectorStore

} from "langchain/vectorstores/memory";

import {

  DocumentInterface

} from "@langchain/core/documents";

import {

  StateGraph,

  Annotation,

  messagesStateReducer,

  START,

  END,

} from "@langchain/langgraph";

const embeddings = new OpenAIEmbeddings();

// useful to generate SQL query

const modelLowTemp = new ChatOpenAI({ temperature

// useful to generate natural language outputs

const modelHighTemp = new ChatOpenAI({ temperatur



const annotation = Annotation.Root({

  messages: Annotation({ reducer: messagesStateRe

  user_query: Annotation(),

  domain: Annotation(),

  documents: Annotation(),

  answer: Annotation(),

});

// refer to Chapter 2 on how to fill a vector sto

const medicalRecordsStore = await MemoryVectorSto

  [],

  embeddings

);

const medicalRecordsRetriever = medicalRecordsSto

const insuranceFaqsStore = await MemoryVectorStor

  [],

  embeddings

);

const insuranceFaqsRetriever = insuranceFaqsStore

const routerPrompt = new SystemMessage(

  `You need to decide which domain to route the u

      domains to choose from:

        - records: contains medical records of th

        treatment, and prescriptions.

        - insurance: contains frequently asked qu



        policies, claims, and coverage.

Output only the domain name.`

);

async function routerNode(state) {

  const userMessage = new HumanMessage(state.user

  const messages = [routerPrompt, ...state.messag

  const res = await modelLowTemp.invoke(messages)

  return {

    domain: res.content as "records" | "insurance

    // update conversation history

    messages: [userMessage, res],

  };

}

function pickRetriever(state) {

  if (state.domain === "records") {

    return "retrieve_medical_records";

  } else {

    return "retrieve_insurance_faqs";

  }

}

async function retrieveMedicalRecords(state) {

  const documents = await medicalRecordsRetriever

  return {

    documents,



  };

}

async function retrieveInsuranceFaqs(state) {

  const documents = await insuranceFaqsRetriever

  return {

    documents,

  };

}

const medicalRecordsPrompt = new SystemMessage(

  `You are a helpful medical chatbot who answers 

    patient's medical records, such as diagnosis,

    prescriptions.`

);

const insuranceFaqsPrompt = new SystemMessage(

  `You are a helpful medical insurance chatbot wh

    questions about insurance policies, claims, a

);

async function generateAnswer(state) {

  const prompt =

    state.domain === "records" ? medicalRecordsPr

  const messages = [

    prompt,

    ...state.messages,

    new HumanMessage(`Documents: ${state.document



  ];

  const res = await modelHighTemp.invoke(messages

  return {

    answer: res.content as string,

    // update conversation history

    messages: res,

  };

}

const builder = new StateGraph(annotation)

  .addNode("router", routerNode)

  .addNode("retrieve_medical_records", retrieveMe

  .addNode("retrieve_insurance_faqs", retrieveIns

  .addNode("generate_answer", generateAnswer)

  .addEdge(START, "router")

  .addConditionalEdges("router", pickRetriever)

  .addEdge("retrieve_medical_records", "generate_

  .addEdge("retrieve_insurance_faqs", "generate_a

  .addEdge("generate_answer", END);

const graph = builder.compile();

The visual representation is shown in Figure 5-4.



Figure 5-4. The router architecture

Notice how this is now starting to become more useful, as it
shows the two possible paths through the graph, through
retrieve_medical_records  or through
retrieve_insurance_faqs , and that for both of those, we
first visit the router  node and finish by visiting the
generate_answer  node. These two possible paths were
implemented through the use of a conditional edge,
implemented in the function pick_retriever , which maps
the domain  picked by the LLM to one of the two nodes
mentioned earlier. The conditional edge is shown in Figure 5-4
as dotted lines from the source node to the destination nodes.



And now for example inputs and outputs, this time with
streaming output:

Python

input = {

    "user_query": "Am I covered for COVID-19 trea

}

for c in graph.stream(input):

    print(c)

JavaScript

const input = {

  user_query: "Am I covered for COVID-19 treatmen

}

for await (const chunk of await graph.stream(inpu

console.log(chunk)

}

The output (the actual answer is not shown, since it would
depend on your documents):



{

    "router": {

        "messages": [

            HumanMessage(content="Am I covered fo

            AIMessage(content="insurance"),

        ],

        "domain": "insurance",

    }

}

{

    "retrieve_insurance_faqs": {

        "documents": [...]

    }

}

{

    "generate_answer": {

        "messages": AIMessage(

            content="...",

        ),

        "answer": "...",

    }

}

This output stream contains the values returned by each node
that ran during this execution of the graph. Let’s take it one at a



time. The top-level key in each dictionary is the name of the
node, and the value for that key is what that node returned:

1. The router  node returned an update to messages  (this
would allow us to easily continue this conversation using the
memory technique described earlier), and the domain  the
LLM picked for this user’s query, in this case insurance .

2. Then the pick_retriever  function ran and returned the
name of the next node to run, based on the domain
identified by the LLM call in the previous step.

3. Then the retrieve_insurance_faqs  node ran, returning a
set of relevant documents from that index. This means that
on the drawing of the graph seen earlier, we took the left
path, as decided by the LLM.

4. Finally, the generate_answer  node ran, which took those
documents and the original user query and produced an
answer to the question, which was written to the state (along
with a final update to the messages  key).

Summary

This chapter talked about the key trade-off when building LLM
applications: agency versus oversight. The more autonomous
an LLM application is, the more it can do—but that raises the



need for more mechanisms of control over its actions. We
moved on to different cognitive architectures that strike
different balances between agency and oversight.

Chapter 6 talks about the most powerful of the cognitive
architectures we’ve seen so far: the agent architecture.

 Theodore R. Sumers et al., “Cognitive Architectures for Language Agents”, arXiv,
September 5, 2023, updated March 15, 2024.

 Tal Ridnik et al., “Code Generation with AlphaCodium: From Prompt Engineering to
Flow Engineering”, arXiv, January 16, 2024.

1

2

https://oreil.ly/cuQnT
https://oreil.ly/0wHX4
https://oreil.ly/0wHX4


Chapter 6. Agent Architecture

Building on the architectures described in Chapter 5, this
chapter will cover what is perhaps the most important of all
current LLM architectures, the agent architecture. First, we
introduce what makes LLM agents unique, then we show how
to build them and how to extend them for common use cases.

In the artificial intelligence field, there is a long history of
creating (intelligent) agents, which can be most simply defined
as “something that acts,” in the words of Stuart Russell and
Peter Norvig in their Artificial Intelligence (Pearson, 2020)
textbook. The word acts actually carries a little more meaning
than meets the eye:

Acting requires some capacity for deciding what to do.
Deciding what to do implies having access to more than one
possible course of action. After all, a decision without options
is no decision at all.
In order to decide, the agent also needs access to information
about the external environment (anything outside of the
agent itself).

So an agentic LLM application must be one that uses an LLM to
pick from one or more possible courses of action, given some



context about the current state of the world or some desired
next state. These attributes are usually implemented by mixing
two prompting techniques we first met in the Preface:

Tool calling

Include a list of external functions that the LLM can make
use of in your prompt (that is, the actions it can decide to
take) and provide instructions on how to format its choice
in the output it generates. You’ll see in a moment what
this looks like in the prompt.

Chain-of-thought

Researchers have found that LLMs “make better
decisions” when given instructions to reason about
complex problems by breaking them down into granular
steps to be taken in sequence. This is usually done either
by adding instructions along the lines of “think step by
step” or including examples of questions and their
decomposition into several steps/actions.

Here’s an example prompt using both tool calling and chain-of-
thought:

Tools:



search: this tool accepts a web search query and 

calculator: this tool accepts math expressions an

If you want to use tools to arrive at the answer,

inputs in CSV format, with the header row: tool,i

Think step by step; if you need to make multiple 

answer, return only the first one.

How old was the 30th president of the United Stat

tool,input

And the output, when run against gpt-3.5-turbo  at
temperature 0 (to ensure the LLM follows the desired output
format, CSV) and newline as the stop sequence (which instructs
the LLM to stop producing output when it reaches this
character). This makes the LLM produce a single action (as
expected, given the prompt asked for this):

search,30th president of the United States

The most recent LLMs and chat models have been fine-tuned to
improve their performance for tool-calling and chain-of-



thought applications, removing the need for adding specific
instructions to the prompt:

add example prompt and output for tool-calling mo

The Plan-Do Loop

What makes the agent architecture different from the
architectures discussed in Chapter 5 is a concept we haven’t
covered yet: the LLM-driven loop.

Every programmer has encountered loops in their code before.
By loop, we mean running the same code multiple times until a
stop condition is hit. The key to the agent architecture is to have
an LLM control the stop condition—that is, decide when to stop
looping.

What we’ll run in this loop will be some variation of the
following:

Planning an action or actions
Executing said action(s)



Picking up on the example in the previous section, we’ll next
run the search  tool with the input 30th president of the
United States , which produces this output:

Calvin Coolidge (born John Calvin Coolidge Jr.; /

5, 1933) was an American attorney and politician 

of the United States from 1923 to 1929. John Calv

And then we’ll rerun the prompt, with a small addition:

Tools:

search: this tool accepts a web search query and 

calculator: this tool accepts math expressions an

output: this tool ends the interaction. Use it wh

If you want to use tools to arrive at the answer,

inputs in CSV format, with this header row: tool,

Think step by step; if you need to make multiple 

the answer, return only the first one.

How old was the 30th president of the United Stat

tool,input



search,30th president of the United States

search: Calvin Coolidge (born John Calvin Coolidg

January 5, 1933) was an American attorney and pol

president of the United States from 1923 to 1929

tool,input

And the output:

calculator,1933 - 1872

Notice we added two things:

An “output” tool—which the LLM should use when it has
found the final answer, and which we’d use as the signal to
stop the loop.
The result of the tool call from the preceding iteration, simply
with the name of the tool and its (text) output. This is
included in order to allow the LLM to move on to the next
step in the interaction. In other words, we’re telling the LLM,
“Hey, we got the results you asked for, what do you want to
do next?”



Let’s continue with a third iteration:

Tools:

search: this tool accepts a web search query and 

calculator: this tool accepts math expressions an

If you want to use tools to arrive at the answer,

inputs in CSV format, with this header row: tool,

output: this tool ends the interaction. Use it wh

Think step by step; if you need to make multiple 

the answer, return only the first one.

How old was the 30th president of the United Stat

tool,input

search,30th president of the United States

search: Calvin Coolidge (born John Calvin Coolidg

January 5, 1933) was an American attorney and pol

president of the United States from 1923 to 1929

tool,input

calculator,1933-1872

calculator: 61



tool, input

And the output:

output, 61

With the result from the calculator  tool, the LLM now has
enough information to provide the final answer, so it picked the
output  tool and chose “61” as the final answer.

This is what makes the agent architecture so useful—the LLM is
given the agency to decide. The next step is to arrive at an
answer and decide how many steps to take—that is, when to
stop.

This architecture, called ReAct, was first proposed by Shunyu
Yao et al. The rest of this chapter explores how to improve the
performance of the agent architecture, motivated by the email
assistant example from Chapter 5.

But first, let’s see what it looks like to implement the basic agent
architecture using a chat model and LangGraph.

https://oreil.ly/M7hF-


Building a LangGraph Agent

For this example, we need to install additional dependencies for
the search tool we chose to use, DuckDuckGo. To install it for
Python:

Python

pip install duckduckgo-search

And for JS, we also need to install a dependency for the
calculator tool:

JavaScript

npm i duck-duck-scrape expr-eval

With that complete, let’s get into the actual code to implement
the agent architecture:

Python



import ast

from typing import Annotated, TypedDict

from langchain_community.tools import DuckDuckGoS

from langchain_core.tools import tool

from langchain_openai import ChatOpenAI

from langgraph.graph import START, StateGraph

from langgraph.graph.message import add_messages

from langgraph.prebuilt import ToolNode, tools_co

@tool

def calculator(query: str) -> str:

    """A simple calculator tool. Input should be 

    return ast.literal_eval(query)

search = DuckDuckGoSearchRun()

tools = [search, calculator]

model = ChatOpenAI(temperature=0.1).bind_tools(to

class State(TypedDict):

    messages: Annotated[list, add_messages]

def model_node(state: State) -> State:

    res = model.invoke(state["messages"])

    return {"messages": res}



builder = StateGraph(State)

builder.add_node("model", model_node)

builder.add_node("tools", ToolNode(tools))

builder.add_edge(START, "model")

builder.add_conditional_edges("model", tools_cond

builder.add_edge("tools", "model")

graph = builder.compile()

JavaScript

import {

  DuckDuckGoSearch

} from "@langchain/community/tools/duckduckgo_sea

import {

  Calculator

} from "@langchain/community/tools/calculator";

import {

  StateGraph,

  Annotation,

  messagesStateReducer,

  START,

} from "@langchain/langgraph";

import {

  ToolNode,

  toolsCondition



} from "@langchain/langgraph/prebuilt";

const search = new DuckDuckGoSearch();

const calculator = new Calculator();

const tools = [search, calculator];

const model = new ChatOpenAI({

  temperature: 0.1

}).bindTools(tools);

const annotation = Annotation.Root({

  messages: Annotation({

    reducer: messagesStateReducer,

    default: () => []

  }),

});

async function modelNode(state) {

  const res = await model.invoke(state.messages);

  return { messages: res };

}

const builder = new StateGraph(annotation)

  .addNode("model", modelNode)

  .addNode("tools", new ToolNode(tools))

  .addEdge(START, "model")

  .addConditionalEdges("model", toolsCondition)

  .addEdge("tools", "model");



const graph = builder.compile();

The visual representation is shown in Figure 6-1.

Figure 6-1. The agent architecture

A few things to notice here:

We’re using two tools in this example: a search tool and a
calculator tool, but you could easily add more or replace the
ones we used. In the Python example, you also see an
example of creating a custom tool.



We’ve used two convenience functions that ship with
LangGraph. ToolNode  serves as a node in our graph; it
executes the tool calls requested in the latest AI message
found in the state and returns a ToolMessage  with the
results of each. ToolNode  also handles exceptions raised by
tools—using the error message to build a ToolMessage  that
is then passed to the LLM—which may decide what to do
with the error.
tools_condition  serves as a conditional edge function
that looks at the latest AI message in the state and routes to
the tools  node if there are any tools to execute. Otherwise,
it ends the graph.
Finally, notice that this graph loops between the model and
tools nodes. That is, the model itself is in charge of deciding
when to end the computation, which is a key attribute of the
agent architecture. Whenever we code a loop in LangGraph,
we’ll likely want to use a conditional edge, as that allows you
to define the stop condition when the graph should exit the
loop and stop executing.

Now let’s see how it does in the previous example:

Python



input = {

    "messages": [

        HumanMessage("""How old was the 30th pres

            when he died?""")

    ]

}

for c in graph.stream(input):

    print(c)

JavaScript

const input = {

  messages: [

    HumanMessage(`How old was the 30th president 

      died?`)

  ]

}

for await (const c of await graph.stream(input)) 

  console.log(c)

}

The output:



{

    "model": {

        "messages": AIMessage(

            content="",

            tool_calls=[

                {

                    "name": "duckduckgo_search",

                    "args": {

                        "query": "30th president 

                            death"

                    },

                    "id": "call_ZWRbPmjvo0fYkwyo4

                    "type": "tool_call",

                }

            ],

        )

    }

}

{

    "tools": {

        "messages": [

            ToolMessage(

                content="Calvin Coolidge (born Ju

                    U.S.—died January 5, 1933, No

                    the 30th president of the Uni

                    acceded to the presidency aft

                    Warren G. Harding, just as th



                    to light....",

                name="duckduckgo_search",

                tool_call_id="call_ZWRbPmjvo0fYkw

            )

        ]

    }

}

{

    "model": {

        "messages": AIMessage(

            content="Calvin Coolidge, the 30th pr

                died on January 5, 1933, at the a

        )

    }

}

Walking through this output:

1. First the model  node executed and decided to call the
duckduckgo_search  tool, which led the conditional edge to
route us to the tools  node after.

2. The ToolNode  executed the search tool and got the search
results printed above, which actually contain the answer
“Age and Year of Death . January 5, 1933 (aged 60)”.

3. The model  tool was called again, this time with the search
results as the latest message, and produced the final answer



(with no more tool calls); therefore, the conditional edge
ended the graph.

Next, let’s look at a few useful extensions to this basic agent
architecture, customizing both planning and tool calling.

Always Calling a Tool First

In the standard agent architecture, the LLM is always called
upon to decide what tool to call next. This arrangement has a
clear advantage: it gives the LLM ultimate flexibility to adapt
the behavior of the application to each user query that comes
in. But this flexibility comes at a cost: unpredictability. If, for
instance, you, the developer of the application, know that the
search tool should always be called first, that can actually be
beneficial to your application:

1. It will reduce overall latency, as it will skip the first LLM call
that would generate that request to call the search tool.

2. It will prevent the LLM from erroneously deciding it doesn’t
need to call the search tool for some user queries.

On the other hand, if your application doesn’t have a clear rule
of the kind “you should always call this tool first,” introducing
such a constraint would actually make your application worse.



Let’s see what it looks like to do this:

Python

import ast

from typing import Annotated, TypedDict

from uuid import uuid4

from langchain_community.tools import DuckDuckGoS

from langchain_core.messages import AIMessage, Hu

from langchain_core.tools import tool

from langchain_openai import ChatOpenAI

from langgraph.graph import START, StateGraph

from langgraph.graph.message import add_messages

from langgraph.prebuilt import ToolNode, tools_co

@tool

def calculator(query: str) -> str:

    """A simple calculator tool. Input should be 

    return ast.literal_eval(query)

search = DuckDuckGoSearchRun()

tools = [search, calculator]

model = ChatOpenAI(temperature=0.1).bind_tools(to

class State(TypedDict):



    messages: Annotated[list, add_messages]

def model_node(state: State) -> State:

    res = model.invoke(state["messages"])

    return {"messages": res}

def first_model(state: State) -> State:

    query = state["messages"][-1].content

    search_tool_call = ToolCall(

        name="duckduckgo_search", args={"query": 

    )

    return {"messages": AIMessage(content="", too

builder = StateGraph(State)

builder.add_node("first_model", first_model)

builder.add_node("model", model_node)

builder.add_node("tools", ToolNode(tools))

builder.add_edge(START, "first_model")

builder.add_edge("first_model", "tools")

builder.add_conditional_edges("model", tools_cond

builder.add_edge("tools", "model")

graph = builder.compile()

JavaScript



import {

  DuckDuckGoSearch

} from "@langchain/community/tools/duckduckgo_sea

import {

  Calculator

} from "@langchain/community/tools/calculator";

import {

  AIMessage,

} from "@langchain/core/messages";

import {

  StateGraph,

  Annotation,

  messagesStateReducer,

  START,

} from "@langchain/langgraph";

import {

  ToolNode,

  toolsCondition

} from "@langchain/langgraph/prebuilt";

const search = new DuckDuckGoSearch();

const calculator = new Calculator();

const tools = [search, calculator];

const model = new ChatOpenAI({ temperature: 0.1 }

const annotation = Annotation.Root({

  messages: Annotation({ reducer: messagesStateRe



});

async function firstModelNode(state) {

  const query = state.messages[state.messages.len

  const searchToolCall = {

    name: "duckduckgo_search",

    args: { query },

    id: Math.random().toString(),

  };

  return {

    messages: [new AIMessage({ content: "", tool_

  };

}

async function modelNode(state) {

  const res = await model.invoke(state.messages);

  return { messages: res };

}

const builder = new StateGraph(annotation)

  .addNode("first_model", firstModelNode)

  .addNode("model", modelNode)

  .addNode("tools", new ToolNode(tools))

  .addEdge(START, "first_model")

  .addEdge("first_model", "tools")

  .addEdge("tools", "model")

  .addConditionalEdges("model", toolsCondition);



const graph = builder.compile();

The visual representation is shown in Figure 6-2.



Figure 6-2. Modifying the agent architecture to always call a specific tool first



Notice the differences compared to the previous section:

Now, we start all invocations by calling first_model ,
which doesn’t call an LLM at all. It just creates a tool call for
the search tool, using the user’s message verbatim as the
search query. The previous architecture would have the LLM
generate this tool call (or some other response it deemed
better).
After that, we proceed to tools , which is identical to the
previous example, and from there we proceed to the agent
node as before.

Now let’s see some example output, for the same query as
before:

Python

input = {

    "messages": [

        HumanMessage("""How old was the 30th pres

            when he died?""")

    ]

}



for c in graph.stream(input):

print(c)

JavaScript

const input = {

  messages: [

    HumanMessage(`How old was the 30th president 

        died?`)

  ]

}

for await (const c of await graph.stream(input)) 

  console.log(c)

}

The output:

{

    "first_model": {

        "messages": AIMessage(

            content="",

            tool_calls=[

                {

                    "name": "duckduckgo_search",



                    "args": {

                        "query": "How old was the

                            States when he died?"

                    },

                    "id": "9ed4328dcdea4904b1b544

                    "type": "tool_call",

                }

            ],

        )

    }

}

{

    "tools": {

        "messages": [

            ToolMessage(

                content="Calvin Coolidge (born Ju

                    U.S.—died January 5, 1933, No

                    the 30th president of the Uni

                    acceded to the presidency aft

                    Warren G. Harding, just as th

                    to light....",

                name="duckduckgo_search",

                tool_call_id="9ed4328dcdea4904b1b

            )

        ]

    }

}

{



    "model": {

        "messages": AIMessage(

            content="Calvin Coolidge, the 30th pr

                was born on July 4, 1872, and die

                calculate his age at the time of 

                birth year from his death year. \

                Birth year\nAge at death = 1933 -

                years\n\nCalvin Coolidge was 61 y

        )

    }

}

This time, we skipped the initial LLM call. We first went to
first_model  node, which directly returned a tool call for the
search tool. From there we went to the previous flow—that is,
we executed the search tool and finally went back to the model
node to generate the final answer.

Next let’s go over what you can do when you have many tools
you want to make available to the LLM.

Dealing with Many Tools

LLMs are far from perfect, and they currently struggle more
when given multiple choices or excessive information in a



prompt. These limitations also extend to the planning of the
next action to take. When given many tools (say, more than 10)
the planning performance (that is, the LLM’s ability to choose
the right tool) starts to suffer. The solution to this problem is to
reduce the number of tools the LLM can choose from. But what
if you do have many tools you want to see used for different
user queries?

One elegant solution is to use a RAG step to preselect the most
relevant tools for the current query and then feed the LLM only
that subset of tools instead of the entire arsenal. This can also
help to reduce the cost of calling the LLM (commercial LLMs
usually charge based on the length of the prompt and outputs).
On the other hand, this RAG step introduces additional latency
to your application, so should only be taken when you see
performance decreasing after adding more tools.

Let’s see how to do this:

Python

import ast

from typing import Annotated, TypedDict

from langchain_community.tools import DuckDuckGoS



from langchain_core.documents import Document

from langchain_core.messages import HumanMessage

from langchain_core.tools import tool

from langchain_core.vectorstores.in_memory import

from langchain_openai import ChatOpenAI, OpenAIEm

from langgraph.graph import START, StateGraph

from langgraph.graph.message import add_messages

from langgraph.prebuilt import ToolNode, tools_co

@tool

def calculator(query: str) -> str:

    """A simple calculator tool. Input should be 

    return ast.literal_eval(query)

search = DuckDuckGoSearchRun()

tools = [search, calculator]

embeddings = OpenAIEmbeddings()

model = ChatOpenAI(temperature=0.1)

tools_retriever = InMemoryVectorStore.from_docume

    [Document(tool.description, metadata={"name"

    embeddings,

).as_retriever()

class State(TypedDict):

    messages: Annotated[list, add_messages]



    selected_tools: list[str]

def model_node(state: State) -> State:

    selected_tools = [

        tool for tool in tools if tool.name in st

    ]

    res = model.bind_tools(selected_tools).invoke

    return {"messages": res}

def select_tools(state: State) -> State:

    query = state["messages"][-1].content

    tool_docs = tools_retriever.invoke(query)

    return {"selected_tools": [doc.metadata["name

builder = StateGraph(State)

builder.add_node("select_tools", select_tools)

builder.add_node("model", model_node)

builder.add_node("tools", ToolNode(tools))

builder.add_edge(START, "select_tools")

builder.add_edge("select_tools", "model")

builder.add_conditional_edges("model", tools_cond

builder.add_edge("tools", "model")

graph = builder.compile()

JavaScript



import { DuckDuckGoSearch } from "@langchain/comm

import { Calculator } from "@langchain/community/

import { ChatOpenAI } from "@langchain/openai";

import { OpenAIEmbeddings } from "@langchain/open

import { Document } from "@langchain/core/documen

import { MemoryVectorStore } from "langchain/vect

import {

  StateGraph,

  Annotation,

  messagesStateReducer,

  START,

} from "@langchain/langgraph";

import { ToolNode, toolsCondition } from "@langch

import { HumanMessage } from "@langchain/core/mes

  

const search = new DuckDuckGoSearch();

const calculator = new Calculator();

const tools = [search, calculator];

const embeddings = new OpenAIEmbeddings();

const model = new ChatOpenAI({ temperature: 0.1 }

const toolsStore = await MemoryVectorStore.fromDo

  tools.map(

    (tool) =>

      new Document({

        pageContent: tool.description,



        metadata: { name: tool.constructor.name }

      })

  ),

  embeddings

);

const toolsRetriever = toolsStore.asRetriever();

const annotation = Annotation.Root({

  messages: Annotation({ reducer: messagesStateRe

  selected_tools: Annotation(),

});

async function modelNode(state) {

  const selectedTools = tools.filter((tool) =>

    state.selected_tools.includes(tool.constructo

  );

  const res = await model.bindTools(selectedTools

  return { messages: res };

}

async function selectTools(state) {

  const query = state.messages[state.messages.len

  const toolDocs = await toolsRetriever.invoke(qu

  return {

    selected_tools: toolDocs.map((doc) => doc.met

  };

}



const builder = new StateGraph(annotation)

  .addNode("select_tools", selectTools)

  .addNode("model", modelNode)

  .addNode("tools", new ToolNode(tools))

  .addEdge(START, "select_tools")

  .addEdge("select_tools", "model")

  .addConditionalEdges("model", toolsCondition)

  .addEdge("tools", "model");

You can see the visual representation in Figure 6-3.



Figure 6-3. Modifying the agent architecture to deal with many tools

NOTE

This is very similar to the regular agent architecture. The only difference is that we
stop by the select_tools  node before entering the actual agent loop. After that, it

works just as the regular agent architecture we’ve seen before.



Now let’s see some example output for the same query as
before:

Python

input = {

  "messages": [

    HumanMessage("""How old was the 30th presiden

        he died?""")

  ]

}

for c in graph.stream(input):

print(c)

JavaScript

const input = {

  messages: [

    HumanMessage(`How old was the 30th president 

      died?`)

  ]

}

for await (const c of await graph.stream(input)) 



  console.log(c)

}

The output:

{

    "select_tools": {

        "selected_tools': ['duckduckgo_search', 

    }

}

{

    "model": {

        "messages": AIMessage(

            content="",

            tool_calls=[

                {

                    "name": "duckduckgo_search",

                    "args": {

                        "query": "30th president 

                    },

                    "id": "9ed4328dcdea4904b1b544

                    "type": "tool_call",

                }

            ],

        )

    }



}

{

    "tools": {

        "messages": [

            ToolMessage(

                content="Calvin Coolidge (born Ju

                    U.S.—died January 5, 1933, No

                    the 30th president of the Uni

                    acceded to the presidency aft

                    Warren G. Harding, just as th

                    to light....",

                name="duckduckgo_search",

                tool_call_id="9ed4328dcdea4904b1b

            )

        ]

    }

}

{

    "model": {

        "messages": AIMessage(

            content="Calvin Coolidge, the 30th pr

                was born on July 4, 1872, and die

                calculate his age at the time of 

                birth year from his death year. \

                Birth year\nAge at death = 1933 -

                years\n\nCalvin Coolidge was 61 y

        )



    }

}

Notice how the first thing we did was query the retriever to get
the most relevant tools for the current user query. Then, we
proceeded to the regular agent architecture.

Summary

This chapter introduced the concept of agency and discussed
what it takes to make an LLM application agentic: giving the
LLM the ability to decide between multiple options by using
external information.

We walked through the standard agent architecture built with
LangGraph and looked at two useful extensions: how to always
call a specific tool first and how to deal with many tools.

Chapter 7 looks at additional extensions to the agent
architecture.



Chapter 7. Agents II

Chapter 6 introduced the agent architecture, the most powerful
of the LLM architectures we have seen up until now. It is hard
to overstate the potential of this combination of chain-of-
thought prompting, tool use, and looping.

This chapter discusses two extensions to the agent architecture
that improve performance for some use cases:

Reflection

Taking another page out of the repertoire of human
thought patterns, this is about giving your LLM app the
opportunity to analyze its past output and choices,
together with the ability to remember reflections from
past iterations.

Multi-agent

Much the same way as a team can accomplish more than
a single person, there are problems that can be best
tackled by teams of LLM agents.

Let’s start with reflection.



Reflection

One prompting technique we haven’t covered yet is reflection
(also known as self-critique). Reflection is the creation of a loop
between a creator prompt and a reviser prompt. This mirrors
the creation process for many human-created artifacts, such as
this chapter you’re reading now, which is the result of a back
and forth between the authors, reviewers, and editor until all
are happy with the final product.

As with many of the prompting techniques we have seen so far,
reflection can be combined with other techniques, such as
chain-of-thought and tool calling. In this section, we’ll look at
reflection in isolation.

A parallel can be drawn to the modes of human thinking known
as System 1 (reactive or instinctive) and System 2 (methodical
and reflective), first introduced by Daniel Kahneman in the
book Thinking, Fast and Slow (Farrar, Straus and Giroux, 2011).
When applied correctly, self-critique can help LLM applications
get closer to something that resembles System 2 behavior
(Figure 7-1).



Figure 7-1. System 1 and System 2 thinking

We’ll implement reflection as a graph with two nodes:
generate  and reflect . This graph will be tasked with
writing three-paragraph essays, with the generate  node
writing or revising drafts of the essay, and reflect  writing a
critique to inform the next revision. We’ll run the loop a fixed
number of times, but a variation on this technique would be to



have the reflect  node decide when to finish. Let’s see what it
looks like:

Python

from typing import Annotated, TypedDict

from langchain_core.messages import (

    AIMessage,

    BaseMessage,

    HumanMessage,

    SystemMessage,

)

from langchain_openai import ChatOpenAI

from langgraph.graph import END, START, StateGrap

from langgraph.graph.message import add_messages

model = ChatOpenAI()

class State(TypedDict):

    messages: Annotated[list[BaseMessage], add_me

generate_prompt = SystemMessage(

    """You are an essay assistant tasked with wri

        essays."""

    "Generate the best essay possible for the use



    """If the user provides critique, respond wit

        previous attempts."""

)

def generate(state: State) -> State:

    answer = model.invoke([generate_prompt] + sta

    return {"messages": [answer]}

reflection_prompt = SystemMessage(

    """You are a teacher grading an essay submiss

        recommendations for the user's submission

    """Provide detailed recommendations, includin

        style, etc."""

)

def reflect(state: State) -> State:

    # Invert the messages to get the LLM to refle

    cls_map = {AIMessage: HumanMessage, HumanMess

    # First message is the original user request

    # We hold it the same for all nodes

    translated = [reflection_prompt, state["messa

        cls_map[msg.__class__](content=msg.conten

            for msg in state["messages"][1:]

    ]

    answer = model.invoke(translated)

    # We treat the output of this as human feedba

    return {"messages": [HumanMessage(content=ans



def should_continue(state: State):

    if len(state["messages"]) > 6:

        # End after 3 iterations, each with 2 mes

        return END

    else:

        return "reflect"

builder = StateGraph(State)

builder.add_node("generate", generate)

builder.add_node("reflect", reflect)

builder.add_edge(START, "generate")

builder.add_conditional_edges("generate", should_

builder.add_edge("reflect", "generate")

graph = builder.compile()

JavaScript

import {

  AIMessage,

  BaseMessage,

  SystemMessage,

  HumanMessage,

} from "@langchain/core/messages";

import { ChatOpenAI } from "@langchain/openai";

import {



  StateGraph,

  Annotation,

  messagesStateReducer,

  START,

  END,

} from "@langchain/langgraph";

const model = new ChatOpenAI();

const annotation = Annotation.Root({

  messages: Annotation({ reducer: messagesStateRe

});

// fix multiline string

const generatePrompt = new SystemMessage(

  `You are an essay assistant tasked with writing

  Generate the best essay possible for the user's

  If the user provides critique, respond with a r

    previous attempts.`

);

async function generate(state) {

  const answer = await model.invoke([generateProm

  return { messages: [answer] };

}

const reflectionPrompt = new SystemMessage(

  `You are a teacher grading an essay submission



    recommendations for the user's submission.

  Provide detailed recommendations, including req

    style, etc.`

);

async function reflect(state) {

  // Invert the messages to get the LLM to reflec

  const clsMap: { [key: string]: new (content: st

    ai: HumanMessage,

    human: AIMessage,

  };

  // First message is the original user request. 

  // We hold it the same for all nodes

  const translated = [

    reflectionPrompt,

    state.messages[0],

    ...state.messages

      .slice(1)

      .map((msg) => new clsMap[msg._getType()](ms

  ];

  const answer = await model.invoke(translated);

  // We treat the output of this as human feedbac

  return { messages: [new HumanMessage({ content

}

function shouldContinue(state) {

  if (state.messages.length > 6) {

    // End after 3 iterations, each with 2 messag



    return END;

  } else {

    return "reflect";

  }

}

const builder = new StateGraph(annotation)

  .addNode("generate", generate)

  .addNode("reflect", reflect)

  .addEdge(START, "generate")

  .addConditionalEdges("generate", shouldContinue

  .addEdge("reflect", "generate");

const graph = builder.compile();

The visual representation of the graph is shown in Figure 7-2.



Figure 7-2. The reflection architecture

Notice how the reflect  node tricks the LLM into thinking it is
critiquing essays written by the user. And in tandem, the
generate  node is made to think that the critique comes from
the user. This subterfuge is required because dialogue-tuned
LLMs are trained on pairs of human-AI messages, so a sequence
of many messages from the same participant would result in
poor performance.

One more thing to note: you might, at first glance, expect the
end to come after a revise step, but in this architecture we have



a fixed number of iterations of the generate-reflect  loop;
therefore we terminate after generate  (so that the last set of
revisions requested are dealt with). A variation on this
architecture would instead have the reflect  step make the
decision to end the process (once it had no more comments).

Let’s see what one of the critiques looks like:

{

    'messages': [

        HumanMessage(content='Your essay on the t

            and its message in modern life is wel

            have effectively highlighted the endu

            themes and its importance in today\'s

            few areas where you could enhance you

            While you touch upon the themes of ch

            nurturing connections, and understand

            consider delving deeper into each of 

            examples from the book to support you

            themes manifest in contemporary life

            analyzing how the book\'s messages ca

            societal issues or personal experienc

            discuss how the Little Prince\'s pers

            to consumer culture or explore how hi

            can inform interpersonal dynamics in 

            **Length**: Expand on your ideas by a



            discussing counterarguments, or explo

            "The Little Prince" in different part

            enrich the depth of your analysis and

            understanding of the book\'s relevanc

            is clear and well-structured. To enha

            readers, consider incorporating quote

            key points or including anecdotes to 

            \n\n5. **Conclusion**: Conclude your 

            enduring significance of "The Little 

            can inspire positive change in modern

            broader implications of the book\'s t

            with a lasting impression.\n\nBy expa

            incorporating more examples, and deep

            book\'s messages, you can create a mo

            compelling essay on the topicality of

            life. Well done on your thoughtful an

            work!', id='70c22b1d-ec96-4dc3-9fd0-d

    ],

}

And the final output:

{

    'messages': [

        AIMessage(content='"The Little Prince" by

            stands as a timeless masterpiece that



            insights into human relationships and

            readers across generations. The narra

            travels and encounters with a myriad 

            tapestry of allegorical representatio

            {'token_usage': {'completion_tokens'

            'total_tokens': 2921}, 'model_name': 

            'system_fingerprint': None, 'finish_r

            None}, id='run-2e8f9f13-f625-4820-9c8

            usage_metadata={'input_tokens': 2501,

            'total_tokens': 2921}),

    ],

}

This simple type of reflection can sometimes improve
performance by giving the LLM multiple attempts at refining its
output and by letting the reflection node adopt a different
persona while critiquing the output.

There are several possible variations of this architecture. For
one, we could combine the reflection step with the agent
architecture of Chapter 6, adding it as the last node right before
sending output to the user. This would make the critique appear
to come from the user, and give the application a chance to
improve its final output without direct user intervention.
Obviously this approach would come at the expense of higher
latency.



In certain use cases, it could be helpful to ground the critique
with external information. For instance, if you were writing a
code-generation agent, you could have a step before reflect
that would run the code through a linter or compiler and report
any errors as input to reflect .

TIP

Whenever this approach is possible, we strongly recommend giving it a try, as it’s
likely to increase the quality of the final output.

Subgraphs in LangGraph

Before we dive into multi-agent architectures, let’s look at an
important technical concept in LangGraph that enables it.
Subgraphs are graphs that are used as part of another graph.
Here are some use cases for subgraphs:

Building multi-agent systems (discussed in the next section).
When you want to reuse a set of nodes in multiple graphs,
you can define them once in a subgraph and then use them
in multiple parent graphs.
When you want different teams to work on different parts of
the graph independently, you can define each part as a
subgraph, and as long as the subgraph interface (the input



and output schemas) is respected, the parent graph can be
built without knowing any details of the subgraph.

There are two ways to add subgraph nodes to a parent graph:

Add a node that calls the subgraph directly

This is useful when the parent graph and the subgraph
share state keys, and you don’t need to transform state on
the way in or out.

Add a node with a function that invokes the subgraph

This is useful when the parent graph and the subgraph
have different state schemas, and you need to transform
state before or after calling the subgraph.

Let’s look at each in turn.

Calling a Subgraph Directly

The simplest way to create subgraph nodes is to attach a
subgraph directly as a node. When doing so, it is important that
the parent graph and the subgraph share state keys, because
those shared keys will be used to communicate. (If your graph
and subgraph do not share any keys, see the next section.)



NOTE

If you pass extra keys to the subgraph node (that is, in addition to the shared keys),
they will be ignored by the subgraph node. Similarly, if you return extra keys from

the subgraph, they will be ignored by the parent graph.

Let’s see what it looks like in action:

Python

from langgraph.graph import START, StateGraph

from typing import TypedDict

class State(TypedDict):

    foo: str # this key is shared with the subgra

class SubgraphState(TypedDict):

    foo: str # this key is shared with the parent

    bar: str

# Define subgraph

def subgraph_node(state: SubgraphState):

    # note that this subgraph node can communicat

    # via the shared "foo" key

    return {"foo": state["foo"] + "bar"}

subgraph_builder = StateGraph(SubgraphState)



subgraph_builder.add_node(subgraph_node)

...

subgraph = subgraph_builder.compile()

# Define parent graph

builder = StateGraph(State)

builder.add_node("subgraph", subgraph)

...

graph = builder.compile()

JavaScript

import { StateGraph, Annotation, START } from "@l

const StateAnnotation = Annotation.Root({

  foo: Annotation(),

});

const SubgraphStateAnnotation = Annotation.Root({

  // note that this key is shared with the parent

  foo: Annotation(), 

  bar: Annotation(),

});

// Define subgraph

const subgraphNode = async (state) => {



  // note that this subgraph node can communicate

  // the parent graph via the shared "foo" key

  return { foo: state.foo + "bar" };

};

const subgraph = new StateGraph(SubgraphStateAnno

  .addNode("subgraph", subgraphNode);

  ...

  .compile();

// Define parent graph

const parentGraph = new StateGraph(StateAnnotatio

  .addNode("subgraph", subgraph)

  .addEdge(START, "subgraph")

  // Additional parent graph setup would go here

  .compile();

Calling a Subgraph with a Function

You might want to define a subgraph with a completely
different schema. In that case, you can create a node with a
function that invokes the subgraph. This function will need to
transform the input (parent) state to the subgraph state before
invoking the subgraph and transform the results back to the
parent state before returning the state update from the node.



Let’s see what it looks like:

Python

class State(TypedDict):

    foo: str

class SubgraphState(TypedDict):

    # none of these keys are shared with the pare

    bar: str

    baz: str

# Define subgraph

def subgraph_node(state: SubgraphState):

    return {"bar": state["bar"] + "baz"}

subgraph_builder = StateGraph(SubgraphState)

subgraph_builder.add_node(subgraph_node)

...

subgraph = subgraph_builder.compile()

# Define parent graph

def node(state: State):

    # transform the state to the subgraph state

    response = subgraph.invoke({"bar": state["foo

    # transform response back to the parent state

    return {"foo": response["bar"]}



builder = StateGraph(State)

# note that we are using `node` function instead 

builder.add_node(node)

...

graph = builder.compile()

JavaScript

import { StateGraph, START, Annotation } from "@l

const StateAnnotation = Annotation.Root({

  foo: Annotation(),

});

const SubgraphStateAnnotation = Annotation.Root({

  // note that none of these keys are shared with

  bar: Annotation(),

  baz: Annotation(),

});

// Define subgraph

const subgraphNode = async (state) => {

  return { bar: state.bar + "baz" };

};



const subgraph = new StateGraph(SubgraphStateAnno

  .addNode("subgraph", subgraphNode);

  ...

  .compile();

// Define parent graph

const subgraphWrapperNode = async (state) => {

  // transform the state to the subgraph state

  const response = await subgraph.invoke({

    bar: state.foo,

  });

  // transform response back to the parent state

  return {

    foo: response.bar,

  };

}

const parentGraph = new StateGraph(StateAnnotatio

  .addNode("subgraph", subgraphWrapperNode)

  .addEdge(START, "subgraph")

  // Additional parent graph setup would go here

  .compile();

Now that we know how to use subgraphs, let’s take a look at one
of the big use cases for them: multi-agent architectures.



Multi-Agent Architectures

As LLM agents grow in size, scope, or complexity, several issues
can show up and impact their performance, such as the
following:

The agent is given too many tools to choose from and makes
poor decisions about which tool to call next (Chapter 6
discussed some approaches to this problem).
The context grows too complex for a single agent to keep
track of; that is, the size of the prompts and the number of
things they mention grows beyond the capability of the
model you’re using.
You want to use a specialized subsystem for a particular area,
for instance, planning, research, solving math problems, and
so on.

To tackle these problems, you might consider breaking your
application into multiple smaller, independent agents and
composing them into a multi-agent system. These independent
agents can be as simple as a prompt and an LLM call or as
complex as a ReAct agent (introduced in Chapter 6). Figure 7-3
illustrates several ways to connect agents in a multi-agent
system.



Figure 7-3. Multiple strategies for coordinating multiple agents

Let’s look at Figure 7-3 in more detail:

Network

Each agent can communicate with every other agent. Any
agent can decide which other agent is to be executed next.

Supervisor



Each agent communicates with a single agent, called the
supervisor. The supervisor agent makes decisions on
which agent (or agents) should be called next. A special
case of this architecture implements the supervisor agent
as an LLM call with tools, as covered in Chapter 6.

Hierarchical

You can define a multi-agent system with a supervisor of
supervisors. This is a generalization of the supervisor
architecture and allows for more complex control flows.

Custom multi-agent workflow

Each agent communicates with only a subset of agents.
Parts of the flow are deterministic, and only select agents
can decide which other agents to call next.

The next section dives deeper into the supervisor architecture,
which we think has a good balance of capability and ease of
use.

Supervisor Architecture

In this architecture, we add each agent to the graph as a node
and also add a supervisor node, which decides which agents
should be called next. We use conditional edges to route



execution to the appropriate agent node based on the
supervisor’s decision. Refer back to Chapter 5 for an
introduction to LangGraph, which goes over the concepts of
nodes, edges, and more.

Let’s first see what the supervisor node looks like:

Python

from typing import Literal

from langchain_openai import ChatOpenAI

from pydantic import BaseModel

class SupervisorDecision(BaseModel):

    next: Literal["researcher", "coder", "FINISH"

model = ChatOpenAI(model="gpt-4o", temperature=0)

model = model.with_structured_output(SupervisorDe

agents = ["researcher", "coder"]

system_prompt_part_1 = f"""You are a supervisor t

conversation between the following workers: {agen

request, respond with the worker to act next. Eac

task and respond with their results and status. W

respond with FINISH."""



system_prompt_part_2 = f"""Given the conversation

    should we FINISH? Select one of: {', '.join(a

def supervisor(state):

    messages = [

        ("system", system_prompt_part_1),

        *state["messages"],

        ("system", system_prompt_part_2)

    ]

    return model.invoke(messages)

JavaScript

import { ChatOpenAI } from 'langchain-openai';

import { z } from 'zod';

const SupervisorDecision = z.object({

  next: z.enum(['researcher', 'coder', 'FINISH'])

});

const model = new ChatOpenAI({ model: 'gpt-4o', t

const modelWithStructuredOutput = model.withStruc

const agents = ['researcher', 'coder'];



const systemPromptPart1 = `You are a supervisor t

  conversation between the following workers: ${a

  following user request, respond with the worker

  will perform a task and respond with their resu

  finished, respond with FINISH.`;

const systemPromptPart2 = `Given the conversation

  should we FINISH? Select one of: ${agents.join

const supervisor = async (state) => {

  const messages = [

    { role: 'system', content: systemPromptPart1 

    ...state.messages,

    { role: 'system', content: systemPromptPart2 

  ];

  return await modelWithStructuredOutput.invoke({

};

NOTE

The code in the prompt requires the names of your subagents to be self-explanatory
and distinct. For instance, if they were simply called agent_1  and agent_2 , the

LLM would have no information to decide which one is appropriate for each task. If
needed, you could modify the prompt to add a description of each agent, which could
help the LLM in picking an agent for each query.



Now let’s see how to integrate this supervisor node into a larger
graph that includes two other subagents, which we will call
researcher and coder. Our overall goal with this graph is to
handle queries that can be answered either by the researcher
by itself or the coder by itself, or even both of them in
succession. This example doesn’t include implementations for
either the researcher or coder—the key idea is they could be
any other LangGraph graph or node:

Python

from typing import Literal

from langchain_openai import ChatOpenAI

from langgraph.graph import StateGraph, MessagesS

model = ChatOpenAI()

class AgentState(BaseModel):

    next: Literal["researcher", "coder", "FINISH"

def researcher(state: AgentState):

    response = model.invoke(...)

    return {"messages": [response]}

def coder(state: AgentState):

    response = model.invoke(...)



    return {"messages": [response]}

builder = StateGraph(AgentState)

builder.add_node(supervisor)

builder.add_node(researcher)

builder.add_node(coder)

builder.add_edge(START, "supervisor")

# route to one of the agents or exit based on the

builder.add_conditional_edges("supervisor", lambd

builder.add_edge("researcher", "supervisor")

builder.add_edge("coder", "supervisor")

supervisor = builder.compile()

JavaScript

import {

  StateGraph,

  Annotation,

  MessagesAnnotation,

  START,

  END,

} from "@langchain/langgraph";

import { ChatOpenAI } from "@langchain/openai";



const model = new ChatOpenAI({

  model: "gpt-4o",

});

const StateAnnotation = Annotation.Root({

  ...MessagesAnnotation.spec,

  next: Annotation(),

});

const researcher = async (state) => {

  const response = await model.invoke(...);

  return { messages: [response] };

};

const coder = async (state) => {

  const response = await model.invoke(...);

  return { messages: [response] };

};

const graph = new StateGraph(StateAnnotation)

  .addNode("supervisor", supervisor)

  .addNode("researcher", researcher)

  .addNode("coder", coder)

  .addEdge(START, "supervisor")

  // route to one of the agents or exit based on 

  .addConditionalEdges("supervisor", async (state

    state.next === 'FINISH' ? END : state.next)

  .addEdge("researcher", "supervisor")



  .addEdge("coder", "supervisor")

  .compile();

A few things to notice: In this example, both subagents
(researcher and coder) can see each other’s work, as all
progress is recorded in the messages list. This isn’t the only way
to organize this. Each of the subagents could be more complex.
For instance, a subagent could be its own graph that maintains
internal state and only outputs a summary of the work it did.

After each agent executes, we route back to the supervisor
node, which decides if there is more work to be done and which
agent to delegate that to if so. This routing isn’t a hard
requirement for this architecture; we could have each subagent
make a decision as to whether its output should be returned
directly to the user. To do that, we’d replace the hard edge
between, say, researcher and supervisor, with a conditional
edge (which would read some state key updated by researcher).

Summary

This chapter covered two important extensions to the agent
architecture: reflection and multi-agent architectures. The
chapter also looked at how to work with subgraphs in



LangGraph, which are a key building block for multi-agent
systems.

These extensions add more power to the LLM agent
architecture, but they shouldn’t be the first thing you reach for
when creating a new agent. The best place to start is usually the
straightforward architecture we discussed in Chapter 6.

Chapter 8 returns to the trade-off between reliability and
agency, which is the key design decision when building LLM
apps today. This is especially important when using the agent or
multi-agent architectures, as their power comes at the expense
of reliability if left unchecked. After diving deeper into why this
trade-off exists, Chapter 8 will cover the most important
techniques at your disposal to navigate that decision, and
ultimately improve your LLM applications and agents.



Chapter 8. Patterns to Make the Most
of LLMs

LLMs today have some major limitations, but that doesn’t mean
your dream LLM app is impossible to build. The experience that
you design for users of your application needs to work around,
and ideally with, the limitations.

Chapter 5 touched on the key trade-off we face when building
LLM apps: the trade-off between agency (the LLM’s capacity to
act autonomously) and reliability (the degree to which we can
trust its outputs). Intuitively, any LLM application will be more
useful to us if it takes more actions without our involvement,
but if we let agency go too far, the application will inevitably do
things we wish it hadn’t.

Figure 8-1 illustrates this trade-off.



Figure 8-1. The agency-reliability trade-off

To borrow a concept from other fields,  we can visualize the
trade-off as a frontier—all points on the frontier’s curved line
are optimal LLM architectures for some application, marking
different choices between agency and reliability. (Refer to
Chapter 5 for an overview of different LLM application
architectures.) As an example, notice how the chain
architecture has relatively low agency but higher reliability,

1



whereas the Agent architecture has higher agency at the
expense of lower reliability.

Let’s briefly touch on a number of additional (but still
important) objectives that you might want your LLM
application to have. Each LLM app will be designed for a
different mix of one or more of these objectives:

Latency

Minimize time to get final answer

Autonomy

Minimize interruptions for human input

Variance

Minimize variation between invocations

This is not meant as an exhaustive list of all possible objectives,
but rather as illustrative of the trade-offs you face when
building your application. Each objective is somewhat at odds
with all the others (for instance, the easiest path to higher
reliability requires either higher latency or lower autonomy).
Each objective would nullify the others if given full weight (for
instance, the minimal latency app is the one that does nothing
at all). Figure 8-2 illustrates this concept.



Figure 8-2. Shifting the frontier, or more agency, for the same reliability

What we really want as application developers is to shift the
frontier outward. For the same level of reliability, we’d like to
achieve higher agency; and for the same level of agency, we’d
like to achieve higher reliability. This chapter covers a number
of techniques you can use to achieve this:

Streaming/intermediate output



Higher latency is easier to accept if there is some
communication of progress/intermediate output
throughout.

Structured output

Requiring an LLM to produce output in a predefined
format makes it more likely that it will conform to
expectations.

Human in the loop

Higher-agency architectures benefit from human
intervention while they’re running: interrupting,
approving, forking, or undoing.

Double texting modes

The longer an LLM app takes to answer, the more likely it
is that the user might send it new input before the
previous one has finished being processed.

Structured Output

It is often crucial to have LLMs return structured output, either
because a downstream use of that output expects a things in a
specific schema (a definition of the names and types of the



various fields in a piece of structured output) or purely to
reduce variance to what would otherwise be completely free-
form text output.

There are a few different strategies you can use for this with
different LLMs:

Prompting

This is when you ask the LLM (very nicely) to return
output in the desired format (for instance, JSON, XML, or
CSV). Prompting’s big advantage is that it works to some
extent with any LLM; the downside is that it acts more as
a suggestion to the LLM and not as a guarantee that the
output will come out in this format.

Tool calling

This is available for LLMs that have been fine-tuned to
pick from a list of possible output schemas, and to
produce something that conforms to the chosen one. This
usually involves writing, for each of the possible output
schemas: a name to identify it, a description to help the
LLM decide when it is the appropriate choice, and a
schema for the desired output format (usually in
JSONSchema notation).



JSON mode

This is a mode available in some LLMs (such as recent
OpenAI models) that enforces the LLM to output a valid
JSON document.

Different models may support different variants of these, with
slightly different parameters. To make it easy to get LLMs to
return structured output, LangChain models implement a
common interface, a method called
.with_structured_output . By invoking this method—and
passing in a JSON schema or a Pydantic (in Python) or Zod (in
JS) model—the model will add whatever model parameters and
output parsers are necessary to produce and return the
structured output. When a particular model implements more
than one of the preceding strategies, you can configure which
method to use.

Let’s create a schema to use:

Python

from pydantic import BaseModel, Field



class Joke(BaseModel):

    setup: str = Field(description="The setup of 

    punchline: str = Field(description="The punch

JavaScript

import { z } from "zod";

const joke = z.object({

  setup: z.string().describe("The setup of the jo

  punchline: z.string().describe("The punchline t

});

Notice how we take care to add a description to each field. This
is key because—together with the name of the field—this is the
information the LLM will use to decide what part of the output
should go in each field. We could also have defined a schema in
raw JSONSchema notation, which would look like this:

{'properties': {'setup': {'description': 'The set

    'title': 'Setup',

    'type': 'string'},

 'punchline': {'description': 'The punchline to t



    'title': 'Punchline',

    'type': 'string'}},

 'required': ['setup', 'punchline'],

 'title': 'Joke',

 'type': 'object'}

And now let’s get an LLM to generate output that conforms to
this schema:

Python

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-3.5-turbo", tempera

model = model.with_structured_output(Joke)

model.invoke("Tell me a joke about cats")

JavaScript

import { ChatOpenAI } from "@langchain/openai";

let model = new ChatOpenAI({

  model: "gpt-3.5-turbo",



  temperature: 0

});

model = model.withStructuredOutput(joke);

await structuredLlm.invoke("Tell me a joke about 

An example of output

{

    setup: "Why don't cats play poker in the wild

    punchline: "Too many cheetahs."

}

A couple of things to notice:

We create the instance of the model as usual, specifying the
model name to use and other parameters.
Low temperature is usually a good fit for structured output,
as it reduces the chance the LLM will produce invalid output
that doesn’t conform to the schema.
Afterward, we attach the schema to the model, which returns
a new object, which will produce output that matches the
schema provided. When you pass in a Pydantic or Zod object
for schema, this will be used for validation as well; that is, if



the LLM produces output that doesn’t conform, a validation
error will be returned to you instead of the failed output.
Finally, we invoke the model with our (free-form) input, and
receive back output that matches the structure we desired.

This pattern of using structured output can be very useful both
as a standalone tool and as a part of a larger application; for
instance, refer back to Chapter 5, where we make use of this
capability to implement the routing step of the router
architecture.

Intermediate Output

The more complex your LLM architecture becomes, the more
likely it will take longer to execute. If you think back to the
architecture diagrams in Chapters 5 and 6, every time you see
multiple steps (or nodes) connected in sequence or in a loop,
that is an indication that the time it takes for a full invocation is
increasing.

This increase in latency—if not addressed—can be a blocker to
user adoption of LLM applications, with most users expecting
computer applications to produce some output within seconds.
There are several strategies to make the higher latency more
palatable, but they all fall under the umbrella of streaming



output, that is, receiving output from the application while it is
still running.

For this section, we’ll use the last architecture described in
“Dealing with Many Tools”. Refer back to Chapter 6 for the full
code snippet.

To generate intermediate output with LangGraph, all you have
to do is to invoke the graph with the stream  method, which
will yield the output of each node as soon as each finishes. Let’s
see what that looks like:

Python

input = {

    "messages": [

        HumanMessage("""How old was the 30th pres

            when he died?""")

    ]

}

for c in graph.stream(input, stream_mode='updates

    print(c)

JavaScript



const input = {

  messages: [

    new HumanMessage(`How old was the 30th presid

      he died?`)

  ]

}

const output = await graph.stream(input, streamMo

for await (const c of output) {

  console.log(c)

}

The output:

{

    "select_tools": {

        "selected_tools": ['duckduckgo_search', 

    }

}

{

    "model": {

        "messages": AIMessage(

            content="",

            tool_calls=[

                {

                    "name": "duckduckgo_search",



                    "args": {

                        "query": "30th president 

                    },

                    "id": "9ed4328dcdea4904b1b544

                    "type": "tool_call",

                }

            ],

        )

    }

}

{

    "tools": {

        "messages": [

            ToolMessage(

                content="Calvin Coolidge (born Ju

                    U.S.—died January 5, 1933, No

                    the 30th president of the Uni

                    acceded to the presidency aft

                    Warren G. Harding, just as th

                    to light....",

                name="duckduckgo_search",

                tool_call_id="9ed4328dcdea4904b1b

            )

        ]

    }

}

{

    "model": {



        "messages": AIMessage(

            content="Calvin Coolidge, the 30th pr

                was born on July 4, 1872, and die

                calculate his age at the time of 

                birth year from his death year. \

                Birth year\nAge at death = 1933 -

                years\n\nCalvin Coolidge was 61 y

        )

    }

}

Notice how each output entry is a dictionary with the name of
the node that emitted as the key and the output of that node as
the value. This gives you two key pieces of information:

Where the application currently is; that is, if you think back
to the architecture diagrams shown in previous chapters,
where in that diagram are we currently?
Each update to the shared state of the application, which
together build up to the final output of the graph.

In addition, LangGraph supports more stream modes:

updates . This is the default mode, described above.
values . This mode yields the current state of the graph
every time it changes, that is after each set of nodes finishes



executing. This can be useful when the way you display
output to your users closely tracks the shape of the graph
state.
debug . This mode yields detailed events every time
something happens in your graph, including:

checkpoint  events, whenever a new checkpoint of the
current state is saved to the database
task  events, emitted whenever a node is about to start
running
task_result  events, emitted whenever a node finishes
running

Finally, you can combine these modes; for instance,
requesting both updates  and values  by passing a list.

You control the stream mode with the stream_mode  argument
to stream() .

Streaming LLM Output Token-by-Token

Sometimes you may also want to get streaming output from
each LLM call inside your larger LLM application. This can be
useful for various projects, such as when building an
interactive chatbot, where you want each word to be displayed
as soon as it is produced by the LLM.



You can achieve this with LangGraph as well:

Python

input = {

    "messages": [

        HumanMessage("""How old was the 30th pres

            when he died?""")

    ]

}

output = app.astream_events(input, version="v2")

async for event in output:

    if event["event"] == "on_chat_model_stream":

        content = event["data"]["chunk"].content

        if content:

            print(content)

JavaScript

const input = {

  messages: [

    new HumanMessage(`How old was the 30th presid

      he died?`)

  ]



}

const output = await agent.streamEvents(input, {v

for await (const { event, data } of output) {

  if (event === "on_chat_model_stream") {

    const msg = data.chunk as AIMessageChunk;

    if (msg.content) {

      console.log(msg.content);

    }

  }

}

This will emit each word (technically each token) as soon as it is
received from the LLM. You can find more details on this
pattern from LangChain.

Human-in-the-Loop Modalities

As we walk the autonomy (or agency) ladder, we find ourselves
increasingly giving up control (or oversight) in exchange for
capability (or autonomy). The shared state pattern used in
LangGraph (see Chapter 5 for an introduction) makes it easier
to observe, interrupt, and modify the application. This makes it
possible to use many different human-in-the-loop modes, or

https://oreil.ly/ExYll


ways for the developer/end user of an application to influence
what the LLM is up to.

For this section, we’ll again use the last architecture described
in “Dealing with Many Tools”. Refer back to Chapter 6 for the
full code snippet. For all human-in-the-loop modes, we first
need to attach a checkpointer to the graph; refer to “Adding
Memory to StateGraph” for more details on this:

Python

from langgraph.checkpoint.memory import MemorySav

graph = builder.compile(checkpointer=MemorySaver

JavaScript

import {MemorySaver} from '@langchain/langgraph'

graph = builder.compile({ checkpointer: new Memor

This returns an instance of the graph that stores the state at the
end of each step, so every invocation after the first doesn’t start



from a blank slate. Any time the graph is called, it starts by
using the checkpointer to fetch the most recent saved state—if
any—and combines the new input with the previous state. And
only then does it execute the first nodes. This is key to enabling
human-in-the-loop modalities, which all rely on the graph
remembering the previous state.

The first mode, interrupt , is the simplest form of control—
the user is looking at streaming output of the application as it is
produced, and manually interrupts it when he sees fit (see
Figure 8-3). The state is saved as of the last complete step prior
to the user hitting the interrupt button. From there the user can
choose to:

Resume from that point onward, and the computation will
proceed as if it hadn’t been interrupted (see “Resume”).
Send new input into the application (e.g., a new message in a
chatbot), which will cancel any future steps that were
pending and start dealing with the new input (see “Restart”).
Do nothing and nothing else will run.



Figure 8-3. The interrupt  pattern

Let’s see how to do this in LangGraph:

Python

import asyncio

event = asyncio.Event()



input = {

    "messages": [

        HumanMessage("""How old was the 30th pres

            when he died?""")

    ]

}

config = {"configurable": {"thread_id": "1"}}

async with aclosing(graph.astream(input, config))

    async for chunk in stream:

        if event.is_set():

            break

        else:

            ... # do something with the output

# Somewhere else in your application

event.set()

JavaScript

const controller = new AbortController()

const input = {

  "messages": [



    new HumanMessage(`How old was the 30th presid

      he died?`)

  ]

}

const config = {"configurable": {"thread_id": "1"

try {

  const output = await graph.stream(input, {

    ...config,

    signal: controller.signal

  });

  for await (const chunk of output) {

    console.log(chunk); // do something with the 

  }

} catch (e) {

  console.log(e);

}

// Somewhere else in your application

controller.abort()

This makes use of an event or signal, so that you can control
interruption from outside of the running application. Notice in
the Python code block the use of aclosing ; this ensures the
stream is properly closed when interrupted. Notice in JS the use
of the try-catch  statement, as interrupting the run will result



in an abort  exception being raised. Finally notice that usage
of the checkpointer requires passing in an identifier for this
thread, to distinguish this interaction with the graph from all
others.

Figure 8-4. The authorize  pattern

A second control mode is authorize , where the user defines
ahead of time that they want the application to hand off control
to them every time a particular node is about to be called (see
Figure 8-4). This is usually implemented for tool confirmation—
before any tool (or particular tools) is called, the application



will pause and ask for confirmation, at which point the user
can, again:

Resume computation, accepting the tool call.
Send a new message to guide the bot in a different direction,
in which case the tool will not be called.
Do nothing.

Here’s the code:

Python

input = {

    "messages": [

        HumanMessage("""How old was the 30th pres

            when he died?""")

    ]

}

config = {"configurable": {"thread_id": "1"}}

output = graph.astream(input, config, interrupt_b

async for c in output:

    ... # do something with the output



JavaScript

const input = {

  "messages": [

    new HumanMessage(`How old was the 30th presid

      he died?`)

  ]

}

const config = {"configurable": {"thread_id": "1"

const output = await graph.stream(input, {

  ...config,

  interruptBefore: ['tools']

});

for await (const chunk of output) {

  console.log(chunk); // do something with the ou

}

This will run the graph up until it is about to enter the node
called tools , thus giving you the chance to inspect the current
state, and decide whether to proceed or not. Notice that
interrupt_before  is a list where order is not important; if
you pass multiple node names, it will interrupt before entering
each of them.



Resume

To proceed from an interrupted graph—such as when using one
of the previous two patterns—you just need to re-invoke the
graph with null input (or None  in Python). This is taken as a
signal to continue processing the previous non-null input:

Python

config = {"configurable": {"thread_id": "1"}}

output = graph.astream(None, config, interrupt_be

async for c in output:

    ... # do something with the output

JavaScript

const config = {"configurable": {"thread_id": "1"

const output = await graph.stream(null, {

  ...config,

  interruptBefore: ['tools']

});



for await (const chunk of output) {

  console.log(chunk); // do something with the ou

}

Restart

If instead you want an interrupted graph to start over from the
first node, with additional new input, you just need to invoke it
with new input:

Python

input = {

    "messages": [

        HumanMessage("""How old was the 30th pres

            when he died?""")

    ]

}

config = {"configurable": {"thread_id": "1"}}

output = graph.astream(input, config)

async for c in output:

    ... # do something with the output



JavaScript

const input = {

  "messages": [

    new HumanMessage(`How old was the 30th presid

      he died?`)

  ]

}

const config = {"configurable": {"thread_id": "1"

const output = await graph.stream(input, config);

for await (const chunk of output) {

  console.log(chunk); // do something with the ou

}

This will keep the current state of the graph, merge it with the
new input, and start again from the first node.

If you want to lose the current state, just change the
thread_id , which will start a new interaction from a blank
slate. Any string value is a valid thread_id ; we’d recommend
using UUIDs (or other unique identifiers) as thread IDs.



Edit state

Sometimes you might want to update the state of the graph
before resuming; this is possible with the update_state
method. You’ll usually want to first inspect the current state
with get_state .

Here’s what it looks like:

Python

config = {"configurable": {"thread_id": "1"}}

state = graph.get_state(config)

# something you want to add or replace

update = { }

graph.update_state(config, update)

JavaScript

const config = "configurable": {"thread_id": "1"}

const state = await graph.getState(config)



// something you want to add or replace

const update = { }

await graph.updateState(config, update)

This will create a new checkpoint containing your update. After
this, you’re ready to resume the graph from this new point. See
“Resume” to find out how.

Fork

You can also browse the history of all past states the graph has
passed through, and any of them can be visited again, for
instance, to get an alternative answer. This can be very useful in
more creative applications, where each run through the graph
is expected to produce different output.

Let’s see what it looks like:

Python

config = {"configurable": {"thread_id": "1"}}

history = [



    state for state in

    graph.get_state_history(config)

]

# replay a past state

graph.invoke(None, history[2].config)

JavaScript

const config = "configurable": {"thread_id": "1"}

const history = await Array.fromAsync(graph.getSt

// replay a past state

await graph.invoke(null, history[2].config)

Notice how we collect the history into a list/array in both
languages; get_state_history  returns an iterator of states
(to allow consuming lazily). The states returned from the
history method are sorted with the most recent first and the
oldest last.

The true power of the human-in-the-loop controls comes from
mixing them in whatever way suits your application.



Multitasking LLMs

This section covers the problem of handling concurrent input
for LLM applications. This is a particularly relevant problem
given that LLMs are quite slow, much more so when producing
long outputs or when chained in multistep architectures (like
you can do with LangGraph). Even as LLMs become faster,
dealing with concurrent inputs will continue to be a challenge,
as latency improvements will also unlock the door for more and
more complex use cases, in much the same way as even the
most productive person still faces the need to prioritize
competing demands on their time.

Let’s walk through the options.

Refuse concurrent inputs

Any input received while processing a previous one is rejected.
This is the simplest strategy, but unlikely to cover all needs, as it
effectively means handing off concurrency management to the
caller.

Handle independently

Another simple option is to treat any new input as an
independent invocation, creating a new thread (a container for



remembering state) and producing output in that context. This
has the obvious downside of needing to be shown to the user as
two separate and unreconcilable invocations, which isn’t
always possible or desirable. On the other hand, it has the
upside of scaling to arbitrarily large sizes, and is something
you’ll use to some extent in your application almost certainly.
For instance, this is how you would think about the problem of
getting a chatbot to “chat” with two different users
concurrently.

Queue concurrent inputs

Any input received while processing a previous one is queued
up and handled when the current one is finished. This strategy
has some pros:

It supports receiving an arbitrary number of concurrent
requests.
Because we wait for current input to finish processing, it
doesn’t matter if the new input arrives almost immediately
after we start handling the current input or immediately
before we finish; the end result will be the same, as we will
finish processing the current input before moving on to the
next.



The strategy suffers from a few drawbacks as well:

It may take a while to process all queued inputs; in fact, the
queue may grow unbounded if inputs are produced at a rate
faster than processed.
The inputs may be stale by the time they get processed, given
that they are queued before seeing the response to the
previous one, and not altered afterwards. This strategy is not
appropriate when new inputs depend on previous answers.

Interrupt

When a new input is received while another is being processed,
abandon processing of the current one and restart the chain
with the new input. This strategy can vary by what is kept of the
interrupted run. Here are a few options:

Keep nothing. The previous input is completely forgotten, as
if it had never been sent or processed.
Keep the last completed step. In a checkpointing app (which
stores progress as it moves through the computation), keep
the state produced by the last completed step, discard any
pending state updates from the currently executing step, and
start handling the new input in that context.



Keep the last completed step, as well as the current in-
progress step. Attempt to interrupt the current step while
taking care to save any incomplete updates to state that were
being produced at the time. This is likely to not generalize
beyond the simplest architectures.
Wait for the current node (but not any subsequent nodes) to
finish, then save and interrupt.

This option has some pros compared to queuing concurrent
inputs:

New input is handled as soon as possible, reducing latency
and the chance of producing stale outputs.
For the “keep nothing” variant, the final output doesn’t
depend on when the new input was received.

But it also has drawbacks:

Effectively, this strategy is still limited to processing one
input at a time; any old input is abandoned when new input
is received.
Keeping partial state updates for the next run requires the
state to be designed with that in mind; if not, then your
application is likely to end up in an invalid state. For
instance, OpenAI chat models require an AI message



requesting tool calls to be immediately followed by tool
messages with the tool outputs. If your run is interrupted in
between, you either defensively clean up the intermediate
state or risk being unable to progress further.
The final outputs produced are very sensitive to when the
new input is received; new input will be handled in the
context of the (incomplete) progress previously made toward
handling the previous input. This can result in brittle or
unpredictable outcomes if you don’t design accordingly.

Fork and merge

Another option is to handle new input in parallel, forking the
state of the thread as it is when the new input is received and
merging the final states as inputs finish being handled. This
option requires designing your state to either be mergeable
without conflicts (e.g., using conflict-free replicated data types
[CRDTs] or other conflict resolution algorithms) or having the
user manually resolve conflicts before you’re able to make
sense of the output or send new input in this thread. If either of
those two requirements is met, this is likely to be the best
option overall. This way, new input is handled in a timely
manner, output is independent of time received, and it supports
an arbitrary number of concurrent runs.



Some of these strategies are implemented in LangGraph
Platform, which will be covered in Chapter 9.

Summary

In this chapter, we returned to the main trade-off you face when
building LLM applications: agency versus reliability. We
learned that there are strategies to partially beat the odds and
get more reliability without sacrificing agency, and vice versa.

We started by covering structured outputs, which can improve
the predictability of LLM-generated text. Next, we discussed
emitting streaming/intermediate output from your application,
which can make high latency (an inevitable side effect of
agency currently) applications pleasant to use.

We also walked through a variety of human-in-the-loop controls
—that is, techniques to give back some oversight to the end user
of your LLM application—which can often make the difference
in making high-agency architectures reliable. Finally, we talked
about the problem of handling concurrent input to your
application, a particularly salient problem for LLM apps given
their high latency.



In the next chapter, you’ll learn how to deploy your AI
application into production.

 In finance, the efficient frontier in portfolio optimization; in economics, a production-
possibility frontier; in engineering, the Pareto front.

1



Chapter 9. Deployment: Launching
Your AI Application into Production

So far, we’ve explored the key concepts, ideas, and tools to help
you build the core functionality of your AI application. You’ve
learned how to utilize LangChain and LangGraph to generate
LLM outputs, index and retrieve data, and enable memory and
agency.

But your application is limited to your local environment, so
external users can’t access its features yet.

In this chapter, you’ll learn the best practices for deploying your
AI application into production. We’ll also explore various tools
to debug, collaborate, test, and monitor your LLM applications.

Let’s get started.

Prerequisites

In order to effectively deploy your AI application, you need to
utilize various services to host your application, store and
retrieve data, and monitor your application. In the deployment



example in this chapter, we will incorporate the following
services:

Vector store

Supabase

Monitoring and debugging

LangSmith

Backend API

LangGraph Platform

We will dive deeper into each of these components and services
and see how to adapt them for your use case. But first, let’s
install necessary dependencies and set up the environment
variables.

If you’d like to follow the example, fork this LangChain
template to your GitHub account. This repository contains the
full logic of a retrieval agent-based AI application.

Install Dependencies

First, follow the instructions in the README.md file to install
the project dependencies.

https://oreil.ly/brqVm
https://oreil.ly/brqVm
https://oreil.ly/N5eqe
https://oreil.ly/N5eqe


If you’re not using the template, you can install the
dependencies individually from the respective pyproject.toml or
package.json files.

Second, create a .env file and store the following variables:

OPENAI_API_KEY=

SUPABASE_URL=

SUPABASE_SERVICE_ROLE_KEY=

# for tracing

LANGCHAIN_TRACING_V2=true

LANGCHAIN_ENDPOINT="https://api.smith.langchain.c

LANGCHAIN_API_KEY=

Next, we’ll walk through the process of retrieving the values for
each of these variables.

Large Language Model

The LLM is responsible for generating the output based on a
given query. LangChain provides access to popular LLM
providers, including OpenAI, Anthropic, Google, and Cohere.



In this deployment example, we’ll utilize OpenAI by retrieving
the API keys, as shown in Figure 9-1. Once you’ve retrieved
your API keys, input the value as OPENAI_API_KEY  in your
.env file.

Figure 9-1. OpenAI API keys dashboard

Vector Store

As discussed in previous chapters, a vector store is a special
database responsible for storing and managing vector
representations of your data—in other words, embeddings. A

https://oreil.ly/MIpY5


vector store enables similarity search and context retrieval to
help the LLM generate accurate answers based on the user’s
query.

For our deployment, we’ll use Supabase—a PostgreSQL
database—as the vector store. Supabase utilizes the pgvector
extension to store embeddings and query vectors for similarity
search.

If you haven’t yet done it, create a Supabase account. Once
you’ve created an account, click “New project” on the
dashboard page. Follow the steps and save the database
password after creating it, as shown in Figure 9-2.

https://oreil.ly/CXDsx


Figure 9-2. Supabase project creation dashboard

Once your Supabase project is created, navigate to the Project
Settings tab and select API under Configuration. Under this new
tab, you will see Project URL and Project API keys.

In your .env file, copy and paste the Project URL as the value to
SUPABASE_URL  and the service_role  secret API key as the
value to SUPABASE_SERVICE_ROLE_KEY .



Navigate to the SQL editor in the Supabase menu and run the
following SQL scripts. First, let’s enable pgvector :

## Enable the pgvector extension to work with emb

create extension vector;

Now create a table called documents  to store vectors of your
data:

## Create a table to store your documents

create table documents (

  id bigserial primary key,

  content text, -- corresponds to Document.pageCo

  metadata jsonb, -- corresponds to Document.meta

  embedding vector(1536) -- 1536 works for OpenAI

);

You should now see the documents  table in the Supabase
database.

Now you can create a script to generate the embeddings of your
data, store them, and query from the database. Open the



Supabase SQL editor again and run the following script:

## Create a function to search for documents

create function match_documents (

  query_embedding vector(1536),

  match_count int DEFAULT null,

  filter jsonb DEFAULT '{}'

) returns table (

  id bigint,

  content text,

  metadata jsonb,

  embedding jsonb,

  similarity float

)

language plpgsql

as $$

#variable_conflict use_column

begin

  return query

  select

    id,

    content,

    metadata,

    (embedding::text)::jsonb as embedding,

    1 - (documents.embedding <=> query_embedding)

  from documents

  where metadata @> filter



  order by documents.embedding <=> query_embeddin

  limit match_count;

end;

$$;

The match_documents  database function takes a
query_embedding  vector and compares it to embeddings in
the documents  table using cosine similarity. It calculates a
similarity score for each document (1 -
( documents.embedding  <=> query_embedding )), then
returns the most similar matches. The results are:

1. Filtered first by the metadata criteria specified in the filter
argument (using JSON containment @>).

2. Ordered by similarity score (highest first).
3. Limited to the number of matches specified in

match_count .

Once the vector similarity function is generated, you can use
Supabase as a vector store by importing the class and providing
the necessary parameters. Here’s an example of how it works:

Python



import os

from langchain_community.vectorstores import Supa

from langchain_openai import OpenAIEmbeddings

from supabase.client import Client, create_client

supabase_url = os.environ.get("SUPABASE_URL")

supabase_key = os.environ.get("SUPABASE_SERVICE_R

supabase: Client = create_client(supabase_url, su

embeddings = OpenAIEmbeddings()

## Assuming you've already generated embeddings o

vector_store = SupabaseVectorStore(

    embedding=embeddings,

    client=supabase,

    table_name="documents",

    query_name="match_documents",

)

## Test that similarity search is working

query = "What is this document about?"

matched_docs = vector_store.similarity_search(que



print(matched_docs[0].page_content)

JavaScript

import {

  SupabaseVectorStore

} from "@langchain/community/vectorstores/supabas

import { OpenAIEmbeddings } from "@langchain/open

import { createClient } from "@supabase/supabase-

const embeddings = new OpenAIEmbeddings();

const supabaseClient = createClient(

  process.env.SUPABASE_URL,

  process.env.SUPABASE_SERVICE_ROLE_KEY

);

const vectorStore = new SupabaseVectorStore(embed

  client: supabaseClient,

  tableName: "documents",

  queryName: "match_documents",

});

// Example documents structure of your data



const document1: Document = {

  pageContent: "The powerhouse of the cell is the

  metadata: { source: "https://example.com" },

};

const document2: Document = {

  pageContent: "Buildings are made out of brick",

  metadata: { source: "https://example.com" },

};

const documents = [document1, document2]

//Embed and store the data in the database

await vectorStore.addDocuments(documents, { ids: 

// Query the Vector Store

const filter = { source: "https://example.com" };

const similaritySearchResults = await vectorStore

  "biology",

  2,

  filter

);

for (const doc of similaritySearchResults) {



  console.log(`* ${doc.pageContent} [${JSON.strin

}

The output:

The powerhouse of the cell is the mitochondria [{

You can review the full logic of the Supabase vector store
implementation in the Github LangChain template mentioned
previously.

Backend API

As discussed in previous chapters, LangGraph is a low-level
open source framework used to build complex agentic systems
powered by LLMs. LangGraph enables fine-grained control over
the flow and state of your application, built-in persistence, and
advanced human-in-the-loop and memory features. Figure 9-3
illustrates LangGraph’s control flow.



Figure 9-3. Example of LangGraph API control flow

To deploy an AI application that utilizes LangGraph, we will use
LangGraph Platform. LangGraph Platform is a managed service
for deploying and hosting LangGraph agents at scale.

As your agentic use case gains traction, uneven task
distribution among agents can overload the system, leading to
downtime. LangGraph Platform manages horizontally scaling
task queues, servers, and a robust Postgres checkpointer to
handle many concurrent users and efficiently store large states
and threads. This ensures fault-tolerant scalability.



LangGraph Platform is designed to support real-world
interaction patterns. In addition to streaming and human-in-
the-loop features, LangGraph Platform enables the following:

Double texting to handle new user inputs on ongoing graph
threads
Asynchronous background jobs for long-running tasks
Cron jobs for running common tasks on a schedule

LangGraph Platform also provides an integrated solution for
collaborating on, deploying, and monitoring agentic AI
applications. It includes LangGraph Studio—a visual
playground for debugging, editing, and testing agents.
LangGraph Studio also enables you to share your LangGraph
agent with team members for collaborative feedback and rapid
iteration, as Figure 9-4 shows.

https://oreil.ly/2Now-


Figure 9-4. Snapshot of LangGraph Studio UI

Additionally, LangGraph Platform simplifies agentic
deployment by enabling one-click submissions.

Create a LangSmith Account

LangSmith is an all-in-one developer platform that enables you
to debug, collaborate, test, and monitor your LLM applications.



LangGraph Platform is seamlessly integrated with LangSmith
and is accessible from within the LangSmith UI.

To deploy your application on LangGraph Platform, you need to
create a LangSmith account. Once you’re logged in to the
dashboard, navigate to the Settings page, then scroll to the API
Keys section and click Create API Key. You should see a UI
similar to Figure 9-5.

Figure 9-5. Create LangSmith API Key UI

https://oreil.ly/2WVCn


Copy the API Key value as your LANGCHAIN_API_KEY  in your
.env file.

Navigate to “Usage and billing” and set up your billing details.
Then click the “Plans and Billings” tab and the “Upgrade to
Plus” button to get instructions on transitioning to a LangSmith
Plus plan, which will enable LangGraph Platform usage. If you’d
prefer to use a free self-hosted deployment, you can follow the
instructions here. Please note that this option requires
management of the infrastructure, including setting up and
maintaining required databases and Redis instances.

Understanding the LangGraph
Platform API

Before deploying your AI application on LangGraph Platform,
it’s important to understand how each component of the
LangGraph API works. These components can generally be split
into data models and features.

Data Models

The LangGraph Platform API consists of a few core data models:

https://oreil.ly/TBgSQ


Assistants
Threads
Runs
Cron jobs

Assistants

An assistant is a configured instance of a CompiledGraph . It
abstracts the cognitive architecture of the graph and contains
instance-specific configuration and metadata. Multiple
assistants can reference the same graph but can contain
different configuration and metadata—which may differentiate
the behavior of the assistants. An assistant (that is, the graph) is
invoked as part of a run.

The LangGraph Platform API provides several endpoints for
creating and managing assistants.

Threads

A thread contains the accumulated state of a group of runs. If a
run is executed on a thread, then the state of the underlying
graph of the assistant will be persisted to the thread. A thread’s
current and historical state can be retrieved. To persist state, a
thread must be created prior to executing a run. The state of a
thread at a particular point in time is called a checkpoint.



The LangGraph Platform API provides several endpoints for
creating and managing threads and thread state.

Runs

A run is an invocation of an assistant. Each run may have its
own input, configuration, and metadata—which may affect the
execution and output of the underlying graph. A run can
optionally be executed on a thread.

The LangGraph Platform API provides several endpoints for
creating and managing runs.

Cron jobs

LangGraph Platform supports cron jobs, which enable graphs to
be run on a user-defined schedule. The user specifies a
schedule, an assistant, and an input. Then LangGraph Platform
creates a new thread with the specified assistant and sends the
specified input to that thread.

Features

The LangGraph Platform API also offers several features to
support complex agent architectures, including the following:



Streaming
Human-in-the-loop
Double texting
Stateless runs
Webhooks

Streaming

Streaming is critical for ensuring that LLM applications feel
responsive to end users. When creating a streaming run, the
streaming mode determines what data is streamed back to the
API client. The LangGraph Platform API supports five streaming
modes:

Values

Stream the full state of the graph after each super-step is
executed.

Messages

Stream complete messages (at the end of node execution)
as well as tokens for any messages generated inside a
node. This mode is primarily meant for powering chat
applications. This is only an option if your graph contains
a messages  key.



Updates

Stream updates to the state of the graph after each node is
executed.

Events

Stream all events (including the state of the graph) that
occur during graph execution. This can be used to do
token-by-token streaming for LLMs.

Debug

Stream debug events throughout graph execution.

Human-in-the-loop

If left to run autonomously, a complex agent can take
unintended actions, leading to catastrophic application
outcomes. To prevent this, human intervention is
recommended, especially at checkpoints where application
logic involves invoking certain tools or accessing specific
documents. LangGraph Platform enables you to insert this
human-in-the-loop behavior to ensure your graph doesn’t have
undesired outcomes.



Double texting

Graph execution may take longer than expected, and often
users may send one message and then, before the graph has
finished running, send a second message. This is known as
double texting. For example, a user might notice a typo in their
original request and edit the prompt and resend it. In such
scenarios, it’s important to prevent your graphs from behaving
in unexpected ways and ensure a smooth user experience.
LangGraph Platform provides four different solutions to handle
double texting:

Reject

This rejects any follow-up runs and does not allow double
texting.

Enqueue

This option continues the first run until it completes the
whole run, then sends the new input as a separate run.

Interrupt

This option interrupts the current execution but saves all
the work done up until that point. It then inserts the user
input and continues from there. If you enable this option,



your graph should be able to handle weird edge cases that
may arise.

Rollback

This option rolls back all work done up until that point. It
then sends the user input in—as if it just followed the
original run input.

Stateless runs

All runs use the built-in checkpointer to store checkpoints for
runs. However, it can often be useful to just kick off a run
without worrying about explicitly creating a thread and
keeping those checkpointers around. Stateless runs allow you to
do this by exposing an endpoint that does these things:

Takes in user input
Creates a thread
Runs the agent, but skips all checkpointing steps
Cleans up the thread afterwards

Stateless runs are retried while keeping memory intact.
However, in the case of stateless background runs, if the task
worker dies halfway, the entire run will be retried from scratch.



Webhooks

LangGraph Platform also supports completion webhooks. A
webhook URL is provided, which notifies your application
whenever a run completes.

Deploying Your AI Application on
LangGraph Platform

At this point, you have created accounts for the recommended
services, filled in your .env file with values of all necessary
environment variables, and completed the core logic for your
AI application. Next, we will take the necessary steps to
effectively deploy your application.

Create a LangGraph API Config

Prior to deployment, you need to configure your application
with a LangGraph API configuration file called langgraph.json.
Here’s an example of what the file looks like in a Python
repository:

Python

https://oreil.ly/aVDhd
https://oreil.ly/aVDhd


{

    "dependencies": ["./my_agent"],

    "graphs": {

        "agent": "./my_agent/agent.py:graph"

    },

    "env": ".env"

}

And here’s an example repository structure:

my-app/

├── my_agent # all project code lies within here

│   ├── utils # utilities for your graph

│   │   ├── __init__.py

│   │   ├── tools.py # tools for your graph

│   │   ├── nodes.py # node functions for you gra

│   │   └── state.py # state definition of your g

│   ├── requirements.txt # package dependencies

│   ├── __init__.py

│   └── agent.py # code for constructing your gra

├── .env # environment variables

└── langgraph.json # configuration file for LangG



Note that the langgraph.json file is placed on the same level or
higher than the files that contain compiled graphs and
associated dependencies.

In addition, the dependencies are specified in a requirements.txt
file. But they can also be specified in pyproject.toml, setup.py, or
package.json files.

Here’s what each of the properties mean:

Dependencies

Array of dependencies for LangGraph Platform API server

Graphs

Mapping from graph ID to path where the compiled graph
or a function that makes a graph is defined

Env

Path to your .env file or a mapping from environment
variable to its value (you can learn more about
configurations for the langgraph.json  file here)

https://oreil.ly/bPA0W


Test Your LangGraph App Locally

Testing your application locally ensures that there are no errors
or dependency conflicts prior to deployment. To do this, we will
utilize the LangGraph CLI, which includes commands to run a
local development server with hot reloading and debugging
capabilities.

For Python, install the Python langgraph-cli  package (note:
this requires Python 3.11 or higher):

pip install -U "langgraph-cli[inmem]"

Or for JavaScript, install the package as follows:

npm i @langchain/langgraph-cli

Once the CLI is installed, run the following command to start
the API:

langgraph dev



This will start up the LangGraph API server locally. If this runs
successfully, you should see something like this:

Ready!

API: http://localhost:2024

Docs: http://localhost:2024/docs

The LangGraph Platform API reference is available with each
deployment at the /docs URL path (http://localhost:2024/docs).

The easiest way to interact with your local API server is to use
the auto-launched LangGraph Studio UI. Alternatively, you can
interact with the local API server using cURL, as seen in this
example:

curl --request POST \

    --url http://localhost:8123/runs/stream \

    --header 'Content-Type: application/json' \

    --data '{

    "assistant_id": "agent",

    "input": {

        "messages": [

            {

                "role": "user",



                "content": "How are you?"

            }

        ]

    },

    "metadata": {},

    "config": {

        "configurable": {}

    },

    "multitask_strategy": "reject",

    "stream_mode": [

        "values"

    ]

}'

If you receive a valid response, your application is functioning
well. Next, we can interact with the server using the LangGraph
SDK.

Here’s an example both initializing the SDK client and invoking
the graph:

Python

from langgraph_sdk import get_client

# only pass the url argument to get_client() if y



# when calling langgraph up

client = get_client()

# Using the graph deployed with the name "agent"

assistant_id = "agent"

thread = await client.threads.create()

input = {"messages": [{"role": "user", "content"

async for chunk in client.runs.stream(

    thread["thread_id"],

    assistant_id,

    input=input,

    stream_mode="updates",

):

    print(f"Receiving new event of type: {chunk.e

    print(chunk.data)

    print("\n\n")

JavaScript

import { Client } from "@langchain/langgraph-sdk"

// only set the apiUrl if you changed the default

const client = new Client();

// Using the graph deployed with the name "agent"

const assistantId = "agent";



const thread = await client.threads.create();

const input = {

  messages: [{ "role": "user", "content": "what's

}

const streamResponse = client.runs.stream(

  thread["thread_id"],

  assistantId,

  {

    input: input,

    streamMode: "updates",

  }

);

for await (const chunk of streamResponse) {

  console.log(`Receiving new event of type: ${chu

  console.log(chunk.data);

  console.log("\n\n");

}

If your LangGraph application is working correctly, you should
see your graph output displayed in the console.

Deploy from the LangSmith UI

At this point, you should have completed all prerequisite steps
and your LangGraph API should be working locally. Your next



step is to navigate to your LangSmith dashboard panel and click
the Deployments tab. You should see a UI similar to Figure 9-6.

Figure 9-6. LangGraph Platform deployment UI page

Next, click the New Deployment button in the top right corner
of the page.

NOTE

If you don’t see a page with the New Deployment button, it’s likely that you haven’t
yet upgraded to a LangSmith Plus plan according to the instructions in the “Usage

and billing” setting.

You should now see a page of three form fields to complete.



Deployment details

1. Select “Import with GitHub” and follow the GitHub OAuth
workflow to install and authorize LangChain’s hosted-
langserve GitHub app to access the selected repositories.
After installation is complete, return to the Create New
Deployment panel and select the GitHub repository to deploy
from the drop-down menu.

2. Specify a name for the deployment and the full path to the
LangGraph API config file, including the filename. For
example, if the file langgraph.json is in the root of the
repository, simply specify langgraph.json.

3. Specify the desired git  reference (branch name) of your
repository to deploy.

Development type

Select Production from the dropdown. This will enable a
production deployment that can serve up to 500
requests/second and is provisioned with highly available
storage and automatic backups.



Environment variables

Provide the properties and values in your .env here. For
sensitive values, like your OPENAI_API_KEY , make sure to tick
the Secret box before inputting the value.

Once you’ve completed the fields, click the button to submit the
deployment and wait for a few seconds for the build to
complete. You should see a new revision associated with the
deployment.

Since LangGraph Platform is integrated within LangSmith, you
can gain deeper visibility into your app and track and monitor
usage, errors, performance, and costs in production too.
Figure 9-7 shows a visual Trace Count summary chart showing
successful, pending, and error traces over a given time period.
You can also view all monitoring info for your server by
clicking the “All charts” button.



Figure 9-7. Deployment revisions and trace count on dashboard

To view the build and deployment logs, select the desired
revision from the Revisions tab, then choose the Deploy tab to
view the full deployment logs history. You can also adjust the
date and time range.

To create a new deployment, click the New Revision button in
the navigation bar. Fill out the necessary fields, including the
LangGraph API config file path, git reference, and environment
variables, as done previously.

Finally, you can access the API documentation by clicking the
API docs link, which should display a similar page to the UI
shown in Figure 9-8.



Figure 9-8. LangGraph API documentation

Launch LangGraph Studio

LangGraph Studio provides a specialized agent IDE for
visualizing, interacting with, and debugging complex agentic
applications. It enables developers to modify an agent result (or
the logic underlying a specific node) halfway through the
agent’s trajectory. This creates an iterative process by letting
you interact with and manipulate the state at that point in time.



Once you’ve deployed your AI application, click the LangGraph
Studio button at the top righthand corner of the deployment
dashboard, as you can see in Figure 9-9.

Figure 9-9. LangGraph deployment UI

After clicking the button, you should see the LangGraph Studio
UI (for example, see Figure 9-10).



Figure 9-10. LangGraph Studio UI

To invoke a graph and start a new run, follow these steps:

1. Select a graph from the drop-down menu in the top left
corner of the lefthand pane. The graph in Figure 9-10 is
called agent.

2. In the Input section, click the “+ Message” icon and input a
human message, but the input will vary depending on your
application state definitions.



3. Click Submit to invoke the selected graph.
4. View the output of the invocation in the right-hand pane.

The output of your invoked graph should look like Figure 9-11.

Figure 9-11. LangGraph Studio invocation output

In addition to invocation, LangGraph Studio enables you to
change run configurations, create and edit threads, interrupt
your graphs, edit graph code, and enable human-in-the-loop
intervention. You can read the full guide to learn more.

https://oreil.ly/xUU37


NOTE

LangGraph Studio is also available as a desktop application (for Apple silicon), which
enables you to test your AI application locally.

If you’ve followed the installation guide in the GitHub template
and successfully deployed your AI application, it’s now live for
production use. But before you share to external users or use
the backend API in existing applications, it’s important to be
aware of key security considerations.

Security

Although AI applications are powerful, they are vulnerable to
several security risks that may lead to data corruption or loss,
unauthorized access to confidential information, and
compromised performance. These risks may carry adverse
legal, reputational, and financial consequences.

To mitigate these risks, it’s recommended to follow general
application security best practices, including the following:

Limit permissions

Scope permissions specific to the application’s need.
Granting broad or excessive permissions can introduce



significant security vulnerabilities. To avoid such
vulnerabilities, consider using read-only credentials,
disallowing access to sensitive resources, and using
sandboxing techniques (such as running inside a
container).

Anticipate potential misuse

Always assume that any system access or credentials may
be used in any way allowed by the permissions they are
assigned. For example, if a pair of database credentials
allows deleting data, it’s safest to assume that any LLM
able to use those credentials may in fact delete data.

Defense in depth

It’s often best to combine multiple layered security
approaches rather than rely on any single layer of defense
to ensure security. For example, use both read-only
permissions and sandboxing to ensure that LLMs are only
able to access data that is explicitly meant for them to use.

Here are three example scenarios implementing these
mitigation strategies:

File access



A user may ask an agent with access to the file system to
delete files that should not be deleted or read the content
of files that contain sensitive information. To mitigate this
risk, limit the agent to only use a specific directory and
only allow it to read or write files that are safe to read or
write. Consider further sandboxing the agent by running
it in a container.

API access

A user may ask an agent with write access to an external
API to write malicious data to the API or delete data from
that API. To mitigate, give the agent read-only API keys, or
limit it to only use endpoints that are already resistant to
such misuse.

Database access

A user may ask an agent with access to a database to drop
a table or mutate the schema. To mitigate, scope the
credentials to only the tables that the agent needs to
access and consider issuing read-only credentials.

In addition to the preceding security measures, you can take
further steps to mitigate abuse of your AI application. Due to
the dependency of external LLM API providers (such as
OpenAI), there is a direct cost associated with running your



application. To prevent abuse of your API and exponential
costs, you can implement the following:

Account creation verification

This typically includes a form of authentication login,
such as email or phone number verification.

Rate limiting

Implement a rate-limiting mechanism in the middleware
of the application to prevent users from making too many
requests in a short period of time. This should check the
number of requests a user has made in the last X minutes
and “timeout” or “ban” the user if the abuse is severe.

Implement prompt injection guardrails

Prompt injection occurs when a malicious user injects a
prompt in an attempt to trick the LLM to act in
unintended ways. This usually includes extracting
confidential data or generating unrelated outputs. To
mitigate this, you should ensure the LLM has proper
permission scoping and that the application’s prompts are
specific and strict to the desired outcomes.



Summary

Throughout this chapter, you’ve learned the best practices for
deploying your AI application and enabling users to interact
with it. We explored recommended services to handle various
key components of the application in production, including the
LLM, vector store, and backend API.

We also discussed using LangGraph Platform as a managed
service for deploying and hosting LangGraph agents at scale—
in conjunction with LangGraph Studio—to visualize, interact
with, and debug your application.

Finally, we briefly explored various security best practices to
mitigate data breach risks often associated with AI applications.

In Chapter 10, you’ll learn how to effectively evaluate, monitor,
benchmark, and improve the performance of your AI
application.



Chapter 10. Testing: Evaluation,
Monitoring, and Continuous
Improvement

In Chapter 9, you learned how to deploy your AI application
into production and utilize LangGraph Platform to host and
debug your app.

Although your app can respond to user inputs and execute
complex tasks, its underlying LLM is nondeterministic and
prone to hallucination. As discussed in previous chapters, LLMs
can generate inaccurate and outdated outputs due to a variety
of reasons including the prompt, format of user’s input, and
retrieved context. In addition, harmful or misleading LLM
outputs can significantly damage a company’s brand and
customer loyalty.

To combat this tendency toward hallucination, you need to
build an efficient system to test, evaluate, monitor, and
continuously improve your LLM applications’ performance.
This robust testing process will enable you to quickly debug and
fix AI-related issues before and after your app is in production.



In this chapter, you’ll learn how to build an iterative testing
system across the key stages of the LLM app development life-
cycle and maintain high performance of your application.

Testing Techniques Across the LLM
App Development Cycle

Before we construct the testing system, let’s briefly review how
testing can be applied across the three key stages of LLM app
development:

Design

In this stage, LLM tests are applied directly to your
application. These tests can be assertions executed at
runtime that feed failures back to the LLM for self-
correction. The purpose of testing at this stage is error
handling within your app before it affects users.

Preproduction

In this stage, tests are run right before deployment into
production. The purpose of testing at this stage is to catch
and fix any regressions before the app is released to real
users.



Production

In this stage, tests are run while your application is in
production to help monitor and catch errors affecting real
users. The purpose is to identify issues and feed them
back into the design or preproduction phases.

The combination of testing across these stages creates a
continuous improvement cycle where these steps are repeated:
design, test, deploy, monitor, fix, and redesign. See Figure 10-1.

Figure 10-1. The three key stages of the LLM app development cycle

In essence, this cycle helps you to identify and fix production
issues in an efficient and quick manner.

Let’s dive deeper into testing techniques across each of these
stages.



The Design Stage: Self-Corrective RAG

As discussed previously, your application can incorporate error
handling at runtime that feeds errors to the LLM for self-
correction. Let’s explore a RAG use case using LangGraph as the
framework to orchestrate error handling.

Basic RAG-driven AI applications are prone to hallucination due
to inaccurate or incomplete retrieval of relevant context to
generate outputs. But you can utilize an LLM to grade retrieval
relevance and fix hallucination issues.

LangGraph enables you to effectively implement the control
flow of this process, as shown in Figure 10-2.



Figure 10-2. Self-corrective RAG control flow

The control flow steps are as follows:

1. In the routing step, each question is routed to the relevant
retrieval method, that is, vector store and web search.

2. If, for example, the question is routed to a vector store for
retrieval, the LLM in the control flow will retrieve and grade
the documents for relevancy.

3. If the document is relevant, the LLM proceeds to generate an
answer.

4. The LLM will check the answer for hallucinations and only
proceed to display the answer to the user if the output is
accurate and relevant.



5. As a fallback, if the retrieved document is irrelevant or the
generated answer doesn’t answer the user’s question, the
flow utilizes web search to retrieve relevant information as
context.

This process enables your app to iteratively generate answers,
self-correct errors and hallucinations, and improve the quality
of outputs.

Let’s run through an example code implementation of this
control flow. First, download the required packages and
initialize relevant API keys. For these examples, you’ll need to
set your OpenAI and LangSmith API keys as environment
variables.

First, we’ll create an index of three blog posts:

Python

from langchain.text_splitter import RecursiveChar

from langchain_community.document_loaders import 

from langchain_community.vectorstores import InMe

from langchain_openai import OpenAIEmbeddings

from langchain_core.prompts import ChatPromptTemp

from pydantic import BaseModel, Field



from langchain_openai import ChatOpenAI

    

    

# --- Create an index of documents ---

    

urls = [

    "https://blog.langchain.dev/top-5-langgraph-a

    "https://blog.langchain.dev/langchain-state-o

    "https://blog.langchain.dev/introducing-ambie

]

    

docs = [WebBaseLoader(url).load() for url in urls

docs_list = [item for sublist in docs for item in

    

text_splitter = RecursiveCharacterTextSplitter.fr

    chunk_size=250, chunk_overlap=0

)

doc_splits = text_splitter.split_documents(docs_l

    

# Add to vectorDB

vectorstore = InMemoryVectorStore.from_documents

    documents=doc_splits,

    embedding=OpenAIEmbeddings(),

)

retriever = vectorstore.as_retriever()

    

# Retrieve the relevant documents

results = retriever.invoke(



    "What are 2 LangGraph agents used in producti

    

print("Results: \n", results)

JavaScript

import { RecursiveCharacterTextSplitter } from '@

import {

  CheerioWebBaseLoader

} from "@langchain/community/document_loaders/web

import { 

  InMemoryVectorStore 

} from '@langchain/community/vectorstores/in_memo

import { OpenAIEmbeddings } from '@langchain/open

import { ChatPromptTemplate } from '@langchain/co

import { z } from 'zod';

import { ChatOpenAI } from '@langchain/openai';

    

const urls = [

  'https://blog.langchain.dev/top-5-langgraph-age

  'https://blog.langchain.dev/langchain-state-of-

  'https://blog.langchain.dev/introducing-ambient

];

    

// Load documents from URLs

const loadDocs = async (urls) => {



  const docs = [];

  for (const url of urls) {

    const loader = new CheerioWebBaseLoader(url);

    const loadedDocs = await loader.load();

    docs.push(...loadedDocs);

  }

  return docs;

};

    

const docsList = await loadDocs(urls);

    

// Initialize the text splitter

const textSplitter = new RecursiveCharacterTextSp

  chunkSize: 250,

  chunkOverlap: 0,

});

    

// Split the documents into smaller chunks

const docSplits = textSplitter.splitDocuments(doc

    

// Add to vector database

const vectorstore = await InMemoryVectorStore.fro

  docSplits,

  new OpenAIEmbeddings()

);

    

// The `retriever` object can now be used for que

const retriever = vectorstore.asRetriever(); 



    

const question = 'What are 2 LangGraph agents use

    

const docs = retriever.invoke(question);

    

console.log('Retrieved documents: \n', docs[0].pa

As discussed previously, the LLM will grade the relevancy of the
retrieved documents from the index. We can construct this
instruction in a system prompt:

Python

### Retrieval Grader

from langchain_core.prompts import ChatPromptTemp

from langchain_core.pydantic_v1 import BaseModel,

from langchain_openai import ChatOpenAI

# Data model

class GradeDocuments(BaseModel):

    """Binary score for relevance check on retrie

    binary_score: str = Field(

        description="Documents are relevant to th



    )

# LLM with function call

llm = ChatOpenAI(model="gpt-3.5-turbo", temperatu

structured_llm_grader = llm.with_structured_outpu

# Prompt

system = """You are a grader assessing relevance 

    user question.  

    If the document contains keyword(s) or semant

    question, grade it as relevant. 

    Give a binary score 'yes' or 'no' to indicate

    relevant to the question."""

grade_prompt = ChatPromptTemplate.from_messages(

    [

        ("system", system),

        ("human", """Retrieved document: \n\n {do

            {question}"""),

    ]

)

retrieval_grader = grade_prompt | structured_llm_

question = "agent memory"

docs = retriever.get_relevant_documents(question)

doc_txt = docs[0].page_content # as an example

retrieval_grader.invoke({"question": question, "d



JavaScript

import { ChatPromptTemplate } from "@langchain/co

import { z } from "zod";

import { ChatOpenAI } from "@langchain/openai";

// Define the schema using Zod

const GradeDocumentsSchema = z.object({

  binary_score: z.string().describe(`Documents ar

      'yes' or 'no'`),

});

// Initialize LLM with structured output using Zo

const llm = new ChatOpenAI({ model: "gpt-3.5-turb

const structuredLLMGrader = llm.withStructuredOut

// System and prompt template

const systemMessage = `You are a grader assessing

  document to a user question. 

If the document contains keyword(s) or semantic m

  question, grade it as relevant.

Give a binary score 'yes' or 'no' to indicate whe

  to the question.`;

const gradePrompt = ChatPromptTemplate.fromMessag

  { role: "system", content: systemMessage },

  {



    role: "human",

    content: "Retrieved document: \n\n {document}

      User question: {question}",

  },

]);

// Combine prompt with the structured output

const retrievalGrader = gradePrompt.pipe(structur

const question = "agent memory";

const docs = await retriever.getRelevantDocuments

await retrievalGrader.invoke({

  question,

  document: docs[1].pageContent,

});

The output:

binary_score='yes'

Notice the use of Pydantic/Zod to help model the binary
decision output in a format that can be used to
programmatically decide which node in the control flow to
move toward.



In LangSmith, you can see a trace of the logic flow across the
nodes discussed previously (see Figure 10-3).



Figure 10-3. LangSmith trace results



Let’s test to see what happens when the input question cannot
be answered by the retrieved documents in the index.

First, utilize LangGraph to make it easier to construct, execute,
and debug the full control flow. See the full graph definition in
the book’s GitHub repository. Notice that we’ve added a
transform_query  node to help rewrite the input query in a
format that web search can use to retrieve higher-quality
results.

As a final step, we set up our web search tool and execute the
graph using the out-of-context question. The LangSmith trace
shows that the web search tool was used as a fallback to
retrieve relevant information prior to the final LLM generated
answer (see Figure 10-4).

https://oreil.ly/v63Vr


Figure 10-4. LangSmith trace of self-corrective RAG utilizing web search as a fallback



Let’s move on to the next stage in LLM app testing:
preproduction.

The Preproduction Stage

The purpose of the preproduction stage of testing is to measure
and evaluate the performance of your application prior to
production. This will enable you to efficiently assess the
accuracy, latency, and cost of utilizing the LLM.

Creating Datasets

Prior to testing, you need to define a set of scenarios you’d like
to test and evaluate. A dataset is a collection of examples that
provide inputs and expected outputs used to evaluate your LLM
app.

These are three common methods to build datasets for
valuation:

Manually curated examples

These are handwritten examples based on expected user
inputs and ideal generated outputs. A small dataset
consists of between 10 and 50 quality examples. Over



time, more examples can be added to the dataset based on
edge cases that emerge in production.

Application logs

Once the application is in production, you can store real-
time user inputs and later add them to the dataset. This
will help ensure the dataset is realistic and covers the
most common user questions.

Synthetic data

These are artificially generated examples that simulate
various scenarios and edge cases. This enables you to
generate new inputs by sampling existing inputs, which is
useful when you don’t have enough real data to test on.

In LangSmith, you can create a new dataset by selecting
Datasets and Testing in the sidebar and clicking the “+ New
Dataset” button on the top right of the app, as shown in
Figure 10-5.

In the opened window, enter the relevant dataset details,
including a name, description, and dataset type. If you’d like to
use your own dataset, click the “Upload a CSV dataset” button.



Figure 10-5. Creating a new dataset in the LangSmith UI

LangSmith offers three different dataset types:

kv  (key-value) dataset

Inputs and outputs are represented as arbitrary key-
value pairs.

The kv  dataset is the most versatile, and it is the
default type. The kv  dataset is suitable for a wide
range of evaluation scenarios.

This dataset type is ideal for evaluating chains and
agents that require multiple inputs or generate
multiple outputs.



llm  (large language model) dataset

The llm  dataset is designed for evaluating completion
style language models.

The inputs dictionary contains a single input key
mapped to the prompt string.

The outputs dictionary contains a single output key
mapped to the corresponding response string.

This dataset type simplifies evaluation for LLMs by
providing a standardized format for inputs and
outputs.

chat  dataset

The chat  dataset is designed for evaluating LLM
structured chat messages as inputs and outputs.

The inputs dictionary contains a single input key
mapped to a list of serialized chat messages.

The outputs dictionary contains a single output key
mapped to a list of serialized chat messages.

This dataset type is useful for evaluating
conversational AI systems or chatbots.



The most flexible option is the key-value data type (see
Figure 10-6).

Figure 10-6. Selecting a dataset type in the LangSmith UI

Next, add examples to the dataset by clicking Add Example.
Provide the input and output examples as JSON objects, as
shown in Figure 10-7.



Figure 10-7. Add key-value dataset examples in the LangSmith UI

You can also define a schema for your dataset in the “Dataset
schema” section, as shown in Figure 10-8.



Figure 10-8. Adding a dataset schema in the LangSmith UI

Defining Your Evaluation Criteria

After creating your dataset, you need to define evaluation
metrics to assess your application’s outputs before deploying
into production. This batch evaluation on a predetermined test
suite is often referred to as offline evaluation.

For offline evaluation, you can optionally label expected
outputs (that is, ground truth references) for the data points



you are testing on. This enables you to compare your
application’s response with the ground truth references, as
shown in Figure 10-9.

Figure 10-9. AI evaluation diagram

There are three main evaluators to score your LLM app
performance:

Human evaluators

If you can’t express your testing requirements as code,
you can use human feedback to express qualitative
characteristics and label app responses with scores.
LangSmith speeds up the process of collecting and
incorporating human feedback with annotation queues.

Heuristic evaluators

These are hardcoded functions and assertions that
perform computations to determine a score. You can use



reference-free heuristics (for example, checking whether
output is valid JSON) or reference-based heuristics such as
accuracy. Reference-based evaluation compares an output
to a predefined ground truth, whereas reference-free
evaluation assesses qualitative characteristics without a
ground truth. Custom heuristic evaluators are useful for
code-generation tasks such as schema checking and unit
testing with hardcoded evaluation logic.

LLM-as-a-judge evaluators

This evaluator integrates human grading rules into an
LLM prompt to evaluate whether the output is correct
relative to the reference answer supplied from the dataset
output. As you iterate in preproduction, you’ll need to
audit the scores and tune the LLM-as-a-judge to produce
reliable scores.

To get started with evaluation, start simple with heuristic
evaluators. Then implement human evaluators before moving
on to LLM-as-a-judge to automate your human review. This
enables you to add depth and scale once your criteria are well-
defined.



TIP

When using LLM-as-a-judge evaluators, use straightforward prompts that can easily
be replicated and understood by a human. For example, avoid asking an LLM to

produce scores on a range of 0 to 10 with vague distinctions between scores.

Figure 10-10 illustrates LLM-as-a-judge evaluator in the context
of a RAG use case. Note that the reference answer is the ground
truth.

Figure 10-10. LLM-as-a-judge evaluator used in a RAG use case

Improving LLM-as-a-judge evaluators performance

Using an LLM-as-a-judge is an effective method to grade natural
language outputs from LLM applications. This involves passing



the generated output to a separate LLM for judgment and
evaluation. But how can you trust the results of LLM-as-a-judge
evaluation?

Often, rounds of prompt engineering are required to improve
accuracy, which is cumbersome and time-consuming.
Fortunately, LangSmith provides a few-shot prompt solution
whereby human corrections to LLM-as-a-judge outputs are
stored as few-shot examples, which are then fed back into the
prompt in future iterations.

By utilizing few-shot learning, the LLM can improve accuracy
and align outputs with human preferences by providing
examples of correct behavior. This is especially useful when it’s
difficult to construct instructions on how the LLM should
behave or be formatted.

The few-shot evaluator follows these steps:

1. The LLM evaluator provides feedback on generated outputs,
assessing factors such as correctness, relevance, or other
criteria.

2. It adds human corrections to modify or correct the LLM
evaluator’s feedback in LangSmith. This is where human
preferences and judgment are captured.



3. These corrections are stored as few-shot examples in
LangSmith, with an option to leave explanations for
corrections.

4. The few-shot examples are incorporated into future prompts
as subsequent evaluation runs.

Over time, the few-shot evaluator will become increasingly
aligned with human preferences. This self-improving
mechanism reduces the need for time-consuming prompt
engineering, while improving the accuracy and relevance of
LLM-as-a-judge evaluations.

Here’s how to easily set up the LLM-as-a-judge evaluator in
LangSmith for offline evaluation. First, navigate to the “Datasets
and Testing” section in the sidebar and select the dataset you
want to configure the evaluator for. Click the Add Auto-
Evaluator button at the top right of the dashboard to add an
evaluator to the dataset. This will open a modal you can use to
configure the evaluator.

Select the LLM-as-a-judge option and give your evaluator a
name. You will now have the option to set an inline prompt or
load a prompt from the prompt hub that will be used to
evaluate the results of the runs in the experiment. For the sake



of this example, choose the Create Few-Shot Evaluator option,
as shown in Figure 10-11.



Figure 10-11. LangSmith UI options for the LLM-as-a-judge evaluator



This option will create a dataset that holds few-shot examples
that will autopopulate when you make corrections on the
evaluator feedback. The examples in this dataset will be
inserted in the system prompt message.

You can also specify the scoring criteria in the Schema field and
toggle between primitive types—for example, integer and
Boolean (see Figure 10-12).



Figure 10-12. LLM-as-a-judge evaluator scoring criteria

Save the evaluator and navigate back to the dataset details
page. Moving forward, each subsequent experiment run from
the dataset will be evaluated by the evaluator you configured.



Pairwise evaluation

Ranking LLM outputs by preference can be less cognitively
demanding for human or LLM-as-a-judge evaluators. For
example, assessing which output is more informative, specific,
or safe. Pairwise evaluation compares two outputs
simultaneously from different versions of an application to
determine which version better meets evaluation criteria.

LangSmith natively supports running and visualizing pairwise
LLM app generations, highlighting preference for one
generation over another based on guidelines set by the pairwise
evaluator. LangSmith’s pairwise evaluation enables you to do
the following:

Define a custom pairwise LLM-as-a-judge evaluator using any
desired criteria
Compare two LLM generations using this evaluator

As per the LangSmith docs, you can use custom pairwise
evaluators in the LangSmith SDK and visualize the results of
pairwise evaluations in the LangSmith UI.

After creating an evaluation experiment, you can navigate to
the Pairwise Experiments tab in the Datasets & Experiments
section. The UI enables you to dive into each pairwise

https://oreil.ly/ruFvy


experiment, showing which LLM generation is preferred based
upon our criteria. If you click the RANKED_PREFERENCE score
under each answer, you can dive deeper into each evaluation
trace (see Figure 10-13).

Figure 10-13. Pairwise experiment UI evaluation trace

Regression Testing

In traditional software development, tests are expected to pass
100% based on functional requirements. This ensures stable
behavior once the test is validated. In contrast, however, AI
models’ output performances can vary significantly due to
model drift (degradation due to changes in data distribution or



updates to the model). As a result, testing AI applications may
not always lead to a perfect score on the evaluation dataset.

This has several implications. First, it’s important to track
results and performance of your tests over time to prevent
regression of your app’s performance. Regression testing
ensures that the latest updates or changes of the LLM model of
your app do not regress (perform worse) relative to the
baseline.

Second, it’s crucial to compare the individual data points
between two or more experimental runs to see where the
model got it right or wrong.

LangSmith’s comparison view has native support for regression
testing, allowing you to quickly see examples that have changed
relative to the baseline. Runs that regressed or improved are
highlighted differently in the LangSmith dashboard (see
Figure 10-14).



Figure 10-14. LangSmith’s experiments comparison view

In LangSmith’s Comparing Experiments dashboard, you can do
the following:

Compare multiple experiments and runs associated with a
dataset. Aggregate stats of runs is useful for migrating models
or prompts, which may result in performance improvements
or regression on specific examples.
Set a baseline run and compare it against prior app versions
to detect unexpected regressions. If a regression occurs, you
can isolate both the app version and the specific examples
that contain performance changes.



Drill into data points that behaved differently between
compared experiments and runs.

This regression testing is crucial to ensure that your application
maintains high performance over time regardless of updates
and LLM changes.

Now that we’ve covered various preproduction testing
strategies, let’s explore a specific use case.

Evaluating an Agent’s End-to-End
Performance

Although agents show a lot of promise in executing
autonomous tasks and workflows, testing an agent’s
performance can be challenging. In previous chapters, you
learned how agents use tool calling with planning and memory
to generate responses. In particular, tool calling enables the
model to respond to a given prompt by generating a tool to
invoke and the input arguments required to execute the tool.

Since agents use an LLM to decide the control flow of the
application, each agent run can have significantly different
outcomes. For example, different tools might be called, agents



might get stuck in a loop, or the number of steps from start to
finish can vary significantly.

Ideally, agents should be tested at three different levels of
granularity:

Response

The agent’s final response to focus on the end-to-end
performance. The inputs are a prompt and an optional list
of tools, whereas the output is the final agent response.

Single step

Any single, important step of the agent to drill into
specific tool calls or decisions. In this case, the output is a
tool call.

Trajectory

The full trajectory of the agent. In this case, the output is
the list of tool calls.

Figure 10-15 illustrates these levels:



Figure 10-15. An example of an agentic app’s flow

Let’s dive deeper into each of these three agent-testing
granularities.

Testing an agent’s final response

In order to assess the overall performance of an agent on a task,
you can treat the agent as a black box and define success based
on whether or not it completes the task.

Testing for the agent’s final response typically involves the
following:

Inputs



User input and (optionally) predefined tools

Output

Agent’s final response

Evaluator

LLM-as-a-judge

To implement this in a programmatic manner, first create a
dataset that includes questions and expected answers from the
agent:

Python

from langsmith import Client

client = Client()

# Create a dataset

examples = [

    ("Which country's customers spent the most? A

        """The country whose customers spent the 

        expenditure of $523.06"""),

    ("What was the most purchased track of 2013?"

        "The most purchased track of 2013 was Hot

    ("How many albums does the artist Led Zeppeli



        "Led Zeppelin has 14 albums"),

    ("What is the total price for the album “Big 

        "The total price for the album 'Big Ones

    ("Which sales agent made the most in sales in

        "Steve Johnson made the most sales in 200

]

dataset_name = "SQL Agent Response"

if not client.has_dataset(dataset_name=dataset_na

    dataset = client.create_dataset(dataset_name=

    inputs, outputs = zip(

        *[({"input": text}, {"output": label}) fo

    )

    client.create_examples(inputs=inputs, outputs

## chain

def predict_sql_agent_answer(example: dict):

    """Use this for answer evaluation"""

    msg = {"messages": ("user", example["input"])

    messages = graph.invoke(msg, config)

    return {"response": messages['messages'][-1]

JavaScript

import { Client } from 'langsmith';



const client = new Client();

// Create a dataset

const examples = [

  ["Which country's customers spent the most? And

    `The country whose customers spent the most i

    expenditure of $523.06`],

  ["What was the most purchased track of 2013?", 

    "The most purchased track of 2013 was Hot Gir

  ["How many albums does the artist Led Zeppelin 

    "Led Zeppelin has 14 albums"],

  ["What is the total price for the album 'Big On

    "The total price for the album 'Big Ones' is 

  ["Which sales agent made the most in sales in 2

    "Steve Johnson made the most sales in 2009"],

];

const datasetName = "SQL Agent Response";

async function createDataset() {

  const hasDataset = await client.hasDataset({ da

  if (!hasDataset) {

    const dataset = await client.createDataset(da

    const inputs = examples.map(([text]) => ({ in

    const outputs = examples.map(([, label]) => 

    await client.createExamples({ inputs, outputs



  }

}

createDataset();

// Chain function

async function predictSqlAgentAnswer(example) {

  // Use this for answer evaluation

  const msg = { messages: [{ role: "user", conten

  const output = await graph.invoke(msg, config);

  return { response: output.messages[output.messa

}

Next, as discussed earlier, we can utilize the LLM to compare
the generated answer with the reference answer:

Python

from langchain import hub

from langchain_openai import ChatOpenAI

from langsmith.evaluation import evaluate

# Grade prompt

grade_prompt_answer_accuracy = hub.pull("langchai

def answer_evaluator(run, example) -> dict:



    """

    A simple evaluator for RAG answer accuracy

    """

    # Get question, ground truth answer, RAG chai

    input_question = example.inputs["input"]

    reference = example.outputs["output"]

    prediction = run.outputs["response"]

    # LLM grader

    llm = ChatOpenAI(model="gpt-4o", temperature=

    # Structured prompt

    answer_grader = grade_prompt_answer_accuracy 

    # Run evaluator

    score = answer_grader.invoke({"question": inp

                                  "correct_answer

                                  "student_answer

    score = score["Score"]

    return {"key": "answer_v_reference_score", "s

## Run evaluation

experiment_results = evaluate(

    predict_sql_agent_answer,

    data=dataset_name,



    evaluators=[answer_evaluator],

    num_repetitions=3,

)

JavaScript

import { pull } from "langchain/hub";

import { ChatOpenAI } from "langchain_openai";

import { evaluate } from "langsmith/evaluation";

async function answerEvaluator(run, example) {

  /**

   * A simple evaluator for RAG answer accuracy

   */

  // Get question, ground truth answer, RAG chain

  const inputQuestion = example.inputs["input"];

  const reference = example.outputs["output"];

  const prediction = run.outputs["response"];

  // LLM grader

  const llm = new ChatOpenAI({ model: "gpt-4o", t

  // Grade prompt 

  const gradePromptAnswerAccuracy = pull(

    "langchain-ai/rag-answer-vs-reference"



  );

  // Structured prompt

  const answerGrader = gradePromptAnswerAccuracy

  // Run evaluator

  const scoreResult = await answerGrader.invoke({

    question: inputQuestion,

    correct_answer: reference,

    student_answer: prediction

  });

  const score = scoreResult["Score"];

  return { key: "answer_v_reference_score", score

}

// Run evaluation

const experimentResults = evaluate(predictSqlAgen

  data: datasetName,

  evaluators: [answerEvaluator],

  numRepetitions: 3,

});



Testing a single step of an agent

Testing an agent’s individual action or decision enables you to
identify and analyze specifically where your application is
underperforming. Testing for a single step of an agent involves
the following:

Inputs

User input to a single step (for example, user prompt, set
of tools). This can also include previously completed steps.

Output

LLM response from the inputs step, which often contains
tool calls indicating what action the agent should take
next.

Evaluator

Binary score for correct tool selection and heuristic
assessment of the tool input’s accuracy.

The following example checks a specific tool call using a custom
evaluator:

Python



from langsmith.schemas import Example, Run

def predict_assistant(example: dict):

    """Invoke assistant for single tool call eval

    msg = [ ("user", example["input"]) ]

    result = assistant_runnable.invoke({"messages

    return {"response": result}

def check_specific_tool_call(root_run: Run, examp

    """

    Check if the first tool call in the response 

    """

    # Expected tool call

    expected_tool_call = 'sql_db_list_tables'

    # Run

    response = root_run.outputs["response"]

    # Get tool call

    try:

        tool_call = getattr(response, 'tool_calls

    except (IndexError, KeyError):

        tool_call = None

    score = 1 if tool_call == expected_tool_call 

    return {"score": score, "key": "single_tool_c



experiment_results = evaluate(

    predict_assistant,

    data=dataset_name,

    evaluators=[check_specific_tool_call],

    num_repetitions=3,

    metadata={"version": metadata},

)

JavaScript

import {evaluate} from 'langsmith/evaluation';

// Predict Assistant

function predictAssistant(example) {

    /**

     * Invoke assistant for single tool call eval

     */

    const msg = [{ role: "user", content: example

    const result = assistantRunnable.invoke({ mes

    return { response: result };

}

// Check Specific Tool Call

function checkSpecificToolCall(rootRun, example) 

    /**



     * Check if the first tool call in the respon

     * tool call.

     */

    // Expected tool call

    const expectedToolCall = "sql_db_list_tables"

    // Run

    const response = rootRun.outputs.response;

    // Get tool call

    let toolCall;

    try {

        toolCall = response.tool_calls?.[0]?.name

    } catch (error) {

        toolCall = null;

    }

    const score = toolCall === expectedToolCall ?

    return { score, key: "single_tool_call" };

}

// Experiment Results

const experimentResults = evaluate(predictAssista

    data: datasetName,

    evaluators: [checkSpecificToolCall],



    numRepetitions: 3,

});

The preceding code block implements these distinct
components:

Invoke the assistant, assistant_runnable , with a prompt
and check if the resulting tool call is as expected.
Utilize a specialized agent where the tools are hardcoded
rather than passed with the dataset input.
Specify the reference tool call for the step that we are
evaluating for expected_tool_call .

Testing an agent’s trajectory

It’s important to look back on the steps an agent took in order to
assess whether or not the trajectory lined up with expectations
of the agent—that is, the number of steps or sequence of steps
taken.

Testing an agent’s trajectory involves the following:

Inputs

User input and (optionally) predefined tools.



Output

Expected sequence of tool calls or a list of tool calls in any
order.

Evaluator

Function over the steps taken. To test the outputs, you can
look at an exact match binary score or metrics that focus
on the number of incorrect steps. You’d need to evaluate
the full agent’s trajectory against a reference trajectory
and then compile as a set of messages to pass into the
LLM-as-a-judge.

The following example assesses the trajectory of tool calls using
custom evaluators:

Python

def predict_sql_agent_messages(example: dict):

    """Use this for answer evaluation"""

    msg = {"messages": ("user", example["input"])

    messages = graph.invoke(msg, config)

    return {"response": messages}

def find_tool_calls(messages):

    """



    Find all tool calls in the messages returned

    """

    tool_calls = [

        tc['name']

        for m in messages['messages'] for tc in g

    ]

    return tool_calls

def contains_all_tool_calls_any_order(

    root_run: Run, example: Example

) -> dict:

    """

    Check if all expected tools are called in any

    """

    expected = [

        'sql_db_list_tables',

        'sql_db_schema',

        'sql_db_query_checker',

        'sql_db_query',

        'check_result'

    ]

    messages = root_run.outputs["response"]

    tool_calls = find_tool_calls(messages)

    # Optionally, log the tool calls -

    #print("Here are my tool calls:")

    #print(tool_calls)

    if set(expected) <= set(tool_calls):

        score = 1



    else:

        score = 0

    return {"score": int(score), "key": "multi_to

def contains_all_tool_calls_in_order(root_run: Ru

    """

    Check if all expected tools are called in exa

    """

    messages = root_run.outputs["response"]

    tool_calls = find_tool_calls(messages)

    # Optionally, log the tool calls -

    #print("Here are my tool calls:")

    #print(tool_calls)

    it = iter(tool_calls)

    expected = [

        'sql_db_list_tables', 

        'sql_db_schema', 

        'sql_db_query_checker',

        'sql_db_query', 

        'check_result'

    ]

    if all(elem in it for elem in expected):

        score = 1

    else:

        score = 0

    return {"score": int(score), "key": "multi_to

def contains_all_tool_calls_in_order_exact_match



    root_run: Run, example: Example

) -> dict:

    """

    Check if all expected tools are called in exa

        additional tool calls.

    """

    expected = [

        'sql_db_list_tables',

        'sql_db_schema',

        'sql_db_query_checker',

        'sql_db_query',

        'check_result'

    ]

    messages = root_run.outputs["response"]

    tool_calls = find_tool_calls(messages)

    # Optionally, log the tool calls -

    #print("Here are my tool calls:")

    #print(tool_calls)

    if tool_calls == expected:

        score = 1

    else:

        score = 0

    return {"score": int(score), "key": "multi_to

experiment_results = evaluate(

    predict_sql_agent_messages,

    data=dataset_name,



    evaluators=[

        contains_all_tool_calls_any_order,

        contains_all_tool_calls_in_order,

        contains_all_tool_calls_in_order_exact_ma

    ],

    num_repetitions=3,

)

JavaScript

import {evaluate} from 'langsmith/evaluation';

// Predict SQL Agent Messages

function predictSqlAgentMessages(example) {

  /**

   * Use this for answer evaluation

   */

  const msg = { messages: [{ role: "user", conten

  // Replace with your graph and config

  const messages = graph.invoke(msg, config); 

  return { response: messages };

}

// Find Tool Calls

function findToolCalls({messages}) {

  /**



   * Find all tool calls in the messages returned

   */

  return messages.flatMap(m => m.tool_calls?.map

}

// Contains All Tool Calls (Any Order)

function containsAllToolCallsAnyOrder(rootRun, ex

  /**

   * Check if all expected tools are called in an

   */

  const expected = [

    "sql_db_list_tables",

    "sql_db_schema",

    "sql_db_query_checker",

    "sql_db_query",

    "check_result"

  ];

  const messages = rootRun.outputs.response;

  const toolCalls = findToolCalls(messages);

  const score = expected.every(tool => toolCalls

  return { score, key: "multi_tool_call_any_order

}

// Contains All Tool Calls (In Order)

function containsAllToolCallsInOrder(rootRun, exa

  /**

   * Check if all expected tools are called in ex



   */

  const messages = rootRun.outputs.response;

  const toolCalls = findToolCalls(messages);

  const expected = [

    "sql_db_list_tables",

    "sql_db_schema",

    "sql_db_query_checker",

    "sql_db_query",

    "check_result"

  ];

  const score = expected.every(tool => {

    let found = false;

    for (let call of toolCalls) {

      if (call === tool) {

          found = true;

          break;

      }

    }

    return found;

  }) ? 1 : 0;

  return { score, key: "multi_tool_call_in_order"

}

// Contains All Tool Calls (Exact Order, Exact Ma

function containsAllToolCallsInOrderExactMatch(ro



  /**

   * Check if all expected tools are called in ex

   * additional tool calls.

   */

  const expected = [

    "sql_db_list_tables",

    "sql_db_schema",

    "sql_db_query_checker",

    "sql_db_query",

    "check_result"

  ];

  const messages = rootRun.outputs.response;

  const toolCalls = findToolCalls(messages);

  const score = JSON.stringify(toolCalls) === JSO

    ? 1 

    : 0;

  return { score, key: "multi_tool_call_in_exact_

}

// Experiment Results

const experimentResults = evaluate(predictSqlAgen

  data: datasetName,

  evaluators: [

    containsAllToolCallsAnyOrder,

    containsAllToolCallsInOrder,

    containsAllToolCallsInOrderExactMatch

  ],



  numRepetitions: 3,

});

This implementation example includes the following:

Invoking a precompiled LangGraph agent graph.invoke
with a prompt
Utilizing a specialized agent where the tools are hardcoded
rather than passed with the dataset input
Extracting of the list of tools called using the function
find_tool_calls

Checking if all expected tools are called in any order using
the function contains_all_tool_calls_any_order  or
called in order using
contains_all_tool_calls_in_order

Checking whether all expected tools are called in the exact
order using
contains_all_tool_calls_in_order_exact_match

All three of these agent evaluation methods can be observed
and debugged in LangSmith’s experimentation UI (see
Figure 10-16).



Figure 10-16. Example of an agent evaluation test in the LangSmith UI

In general, these tests are a solid starting point to help mitigate
an agent’s cost and unreliability due to LLM invocations and
variability in tool calling.

Production

Although testing in the preproduction phase is useful, certain
bugs and edge cases may not emerge until your LLM
application interacts with live users. These issues can affect
latency, as well as the relevancy and accuracy of outputs. In
addition, observability and the process of online evaluation can
help ensure that there are guardrails for LLM inputs or outputs.
These guardrails can provide much-needed protection from
prompt injection and toxicity.



The first step in this process is to set up LangSmith’s tracing
feature.

Tracing

A trace is a series of steps that your application takes to go from
input to output. LangSmith makes it easy to visualize, debug,
and test each trace generated from your app.

Once you’ve installed the relevant LangChain and LLM
dependencies, all you need to do is configure the tracing
environment variables based on your LangSmith account
credentials:

export LANGCHAIN_TRACING_V2=true

export LANGCHAIN_API_KEY=<your-api-key>

# The below examples use the OpenAI API, though y

export OPENAI_API_KEY=<your-openai-api-key>

After the environment variables are set, no other code is
required to enable tracing. Traces will be automatically logged
to their specific project in the “Tracing projects” section of the



LangSmith dashboard. The metrics provided include trace
volume, success and failure rates, latency, token count and cost,
and more—as shown in Figure 10-17.

Figure 10-17. An example of LangSmith’s trace performance metrics

You can review a variety of strategies to implement tracing
based on your needs.



Collect Feedback in Production

Unlike the preproduction phase, evaluators for production
testing don’t have grounded reference responses for the LLM to
compare against. Instead, evaluators need to score performance
in real time as your application processes user inputs. This
reference-free, real-time evaluation is often referred to as
online evaluation.

There are at least two types of feedback you can collect in
production to improve app performance:

Feedback from users

You can directly collect user feedback explicitly or
implicitly. For example, giving users the ability to click a
like and dislike button or provide detailed feedback based
on the application’s output is an effective way to track
user satisfaction. In LangSmith, you can attach user
feedback to any trace or intermediate run (that is, span) of
a trace, including annotating traces inline or reviewing
runs together in an annotation queue.

Feedback from LLM-as-a judge evaluators

As discussed previously, these evaluators can be
implemented directly on traces to identify hallucination



and toxic responses.

The earlier preproduction section already discussed how to set
up LangSmith’s auto evaluation in the Datasets & Experiments
section of the dashboard.

Classification and Tagging

In order to implement effective guardrails against toxicity or
gather insights on user sentiment analysis, we need to build an
effective system for labeling user inputs and generated outputs.

This system is largely dependent on whether or not you have a
dataset that contains reference labels. If you don’t have preset
labels, you can use the LLM-as-a-judge evaluator to assist in
performing classification and tagging based upon specified
criteria.

If, however, ground truth classification labels are provided,
then a custom heuristic evaluator can be used to score the
chain’s output relative to the ground truth class labels.

Monitoring and Fixing Errors

Once your application is in production, LangSmith’s tracing will
catch errors and edge cases. You can add these errors into your



test dataset for offline evaluation in order to prevent
recurrences of the same issues.

Another useful strategy is to release your app in phases to a
small group of beta users before a larger audience can access its
features. This will enable you to uncover crucial bugs, develop a
solid evaluation dataset with ground truth references, and
assess the general performance of the app including cost,
latency, and quality of outputs.

Summary

As discussed in this chapter, robust testing is crucial to ensure
that your LLM application is accurate, reliable, fast, toxic-free,
and cost-efficient. The three key stages of LLM app development
create a data cycle that helps to ensure high performance
throughout the lifetime of the application.

During the design phase, in-app error handling enables self-
correction before the error reaches the user. Preproduction
testing ensures each of your app’s updates avoids regression in
performance metrics. Finally, production monitoring gathers
real-time insights and application errors that inform the
subsequent design process and the cycle repeats.



Ultimately, this process of testing, evaluation, monitoring, and
continuous improvement, will help you fix issues and iterate
faster, and most importantly, deliver a product that users can
trust to consistently deliver their desired results.



Chapter 11. Building with LLMs

One of the biggest open questions in the world of LLMs today is
how to best put them in the hands of end users. In some ways,
LLMs are actually a more intuitive interface for computing than
what came before them. They are much more forgiving of
typos, slips of the tongue, and the general imprecision of
humans, when compared to traditional computer applications.
On the other hand, the very ability to handle inputs that are
“slightly off” comes with a tendency to sometimes produce
results that are also “slightly off”—which is also very much
unlike any previous computing tendencies.

In fact, computers were designed to reliably repeat the same set
of instructions with the same results every time. Over the past
few decades, that principle of reliability has permeated the
design of human-computer interfaces (variously called HCI, UX,
and UI) to the extent that a lot of the usual constructs end up
being subpar for use in applications that rely heavily on LLMs.

Let’s take an example: Figma is a software application used by
designers to create faithful renderings of designs for websites,
mobile applications, book or magazine covers—the list goes on.
As is the case with pretty much all productivity software



(software for the creation of some kind of long-form content),
its interface is a combination of the following:

A palette of tools and prebuilt primitives (fundamental
building blocks), in this case lines, shapes, selection and paint
tools, and many more
A canvas, where the user inserts these building blocks and
organizes them into their creation: a website page, a mobile
app screen, and so on

This interface is built upon the premise that the capabilities of
the software are known ahead of time, which is in fact true in
the case of Figma. All building blocks and tools were coded by a
software engineer ahead of time. Therefore, they were known
to exist at the time the interface was designed. It sounds almost
silly to point that out, but the same is not strictly true of
software that makes heavy use of LLMs.

Look at a word processor (e.g., Microsoft Word or Google Docs).
This is a software application for the creation of long-form text
content of some kind, such as a blog post, article, book chapter,
and the like. The interface at our disposal here is also made up
of a familiar combination:



A palette of tools and prebuilt primitives: in the case of a
word processor, the primitives available are tables, lists,
headings, image placeholders, and so forth, and the tools are
spellcheck, commenting, and so on.
A canvas: in this case, it’s literally a blank page, where the
user types words and may include some of the elements just
mentioned.

How would this situation change if we were to build an LLM-
native word processor? This chapter explores three possible
answers to this question, which are broadly applicable to any
LLM application. For each of the patterns we explore, we’ll go
over what key concepts you’d need to implement it successfully.
We don’t mean to imply that these are the only ones, it will be a
while until the dust settles on this particular question.

Let’s look at each of these patterns, starting with the easiest to
add to an existing app.

Interactive Chatbots

This is arguably the easiest lift to add to an existing software
application. At its most basic conception, this idea just bolts on
an AI sidekick—to bounce ideas off of—while all work still
happens in the existing user interface of the application. An



example here is GitHub Copilot Chat, which can be used in a
sidebar inside the VSCode code editor.

An upgrade to this pattern is to add some communication
points between the AI sidekick extension and the main
application. For example, in VSCode, the assistant can “see” the
content of the file currently being edited or whatever portion of
that code the user has selected. And in the other direction, the
assistant can insert or edit text in that open editor, arriving at
some basic form of collaboration between the user and the
LLM.

NOTE

Streaming chat as we’re describing here is currently the prototypical application of
LLMs. It’s almost always the first thing app developers learn to build on their LLM

journey, and it’s almost always the first thing companies reach for when adding
LLMs to their existing applications. Maybe this will remain the case for years to
come, but another possible outcome could be for streaming chat to become the
command line of the LLM era—that is, the closest to direct programming access,

becoming a niche interface, just as it did for computers.

To build the most basic chatbot you should use these
components:

A chat model



Their dialogue tuning lends itself well to multiturn
interactions with a user. Refer to the Preface for more on
dialogue tuning.

Conversation history

A useful chatbot needs to be able to “get past hello.” That
is, if the chatbot can’t remember the previous user inputs,
it will be much harder to have meaningful conversations
with it, which implicitly refer to previous messages.

To go beyond the basics, you’d probably add the following:

Streaming output

The best chatbot experiences currently stream LLM
output token by token (or in larger chunks, like sentences
or paragraphs) directly to the user, which alleviates the
latency inherent to LLMs today.

Tool calling

To give the chatbot the ability to interact with the main
canvas and tools of the application, you can expose them
as tools the model can decide to call on—for instance, a
“get selected text” tool and an “insert text at end of doc”
tool.



Human-in-the-loop

As soon as you give the chatbot tools that can change
what’s in the application canvas, you create the need to
give back some control to the user—for example, letting
the user confirm, or even edit, before new text is inserted.

Collaborative Editing with LLMs

Most productivity software has some form of collaborative
editing built in, which we can classify into one of these buckets
(or somewhere in between):

Save and send

This is the most basic version, which only supports one
user editing the document at a time, before “passing the
buck” to another user (for example, sending the file over
email) and repeating the process until done. The most
obvious example is the Microsoft Office suite of apps:
Excel, Word, PowerPoint.

Version control

This is an evolution of save and send that supports
multiple editors working simultaneously on their own
(and unaware of each other’s changes) by providing tools



to combine their work afterward: merge strategies (how
to combine unrelated changes) and conflict resolution
(how to combine incompatible changes). The most
popular example today is Git/GitHub, used by software
engineers to collaborate on software projects.

Real-time collaboration

This enables multiple editors to work on the same
document at the same time, while seeing each other’s
changes. This is arguably the most natural form of
software-enabled collaboration, evidenced by the
popularity of Google Docs and Google Sheets among
technical and nontechnical computer users.

This pattern of LLM user experience consists of employing an
LLM agent as one of those “users” contributing to this shared
document. This can take many forms, including the following:

An always-on “copilot” giving you suggestions on how to
complete the next sentence
An asynchronous “drafter,” which you task with, for
example, going off and researching the topic in question and
returning later with a section you can incorporate in your
final document

To build this, you’d likely need the following:



Shared state

The LLM agent and the human users should be on the
same footing in terms of access and understanding of the
state of the document—that is, they would be able to
parse the state of the document and produce edits to that
state in a compatible format.

Task manager

Producing a useful edit to the document will invariably be
a multistep process, which can take time and fail halfway.
This creates the need for reliable scheduling and
orchestration of long-running jobs, with queueing, error
recovery, and control over running tasks.

Merging forks

Users will continue to edit the document after tasking the
LLM agent, so LLM outputs will need to be merged with
the users’ work, either manually by the user (an
experience like Git) or automatically (through conflict
resolution algorithms such as CRDT and operational
transformation (OT), employed by applications such as
Google Docs).

Concurrency



The fact that the human user and the LLM agent are
working on the same thing at the same time requires the
ability to handle interruptions, cancellations, reroutings
(do this instead), and queueing (do this as well).

Undo/redo stack

This is a ubiquitous pattern in productivity software,
which inevitably is needed here too. Users change their
minds and want to go back to an earlier state of the
document, and the LLM application needs to be capable of
following them there.

Intermediate output

Merging user and LLM outputs is made a lot easier when
those outputs are gradual and arrive piecemeal as soon as
they’re produced, in much the same way that a person
writes a 10-paragraph page one sentence at a time.

Ambient Computing

A very useful UX pattern has been the always-on background
software that pipes up when something “interesting” has
happened that deserves your attention. You can find this in
many places today. A few examples are:



You can set an alert in your brokerage app to notify you
when some stock goes below a certain price.
You can ask Google to notify you when new search results
are found matching some search query.
You can define alerts for your computer infrastructure to
notify you when something is outside the regular pattern of
behavior.

The main obstacle to deploying this pattern more widely may
be coming up with a reliable definition of interesting ahead of
time that is both of the following:

Useful

It will notify you when you think it should.

Practical

Most users won’t want to spend massive amounts of time
ahead precreating endless rules for alerts.

The reasoning capabilities of LLMs can unlock new applications
of this pattern of ambient computing that are simultaneously
more useful (they identify more of what you’d find interesting)
and less work to set up (their reasoning can replace a lot or all
of the manual setup of rules).



The big difference between collaborative and ambient is
concurrency:

Collaborative

You and the LLM are usually (or sometimes) doing work
at the same time and feeding off each other’s work.

Ambient

The LLM is continuously doing some kind of work in the
background while you, the user, are presumably doing
something else entirely.

To build this, you need:

Triggers

The LLM agent needs to receive (or poll periodically for)
new information from the environment. This is in fact
what motivates ambient computing: a preexisting source
of periodic or continuous new information that needs to
be processed.

Long-term memory

It would not be possible to detect new interesting events
without consulting a database of previously received
information.



Reflection (or learning)

Understanding what is interesting (what deserves human
input) likely requires learning from each previous
interesting event after it happens. This is usually called a
reflection step, in which the LLM produces an update to its
long-term memory, possibly modifying its internal “rules”
for detecting future interesting events.

Summarize output

An agent working in the background is likely to produce
much more output than the human user would like to see.
This requires that the agent architecture be modified to
produce summaries of the work done and surface to the
user only what is new or noteworthy.

Task manager

Having an LLM agent working continuously in the
background requires employing some system for
managing the work, queuing new runs, and handling and
recovering from error.



Summary

LLMs have the potential to change not only how we build
software, but also the very software we build. This new
capability that we developers have at our disposal to generate
new content will not only enhance many existing apps, but it
can make new things possible that we haven’t dreamed of yet.

There’s no shortcut here. You really do need to build something
(s)crappy, speak to users, and rinse and repeat until something
new and unexpected comes out the other side.

With this last chapter, and the book as a whole, we have tried to
give you the knowledge we think can help you build something
uniquely good with LLMs. We want to thank you for coming on
this journey with us and wish you the best of luck in your
career and future.

https://oreil.ly/RqnCm
https://oreil.ly/RqnCm


Index

Symbols

{} (curly braces), Making LLM Prompts Reusable

A

abstractions, LangChain and Why It’s Important
agency, Cognitive Architectures with LangGraph, The Plan-Do
Loop, Patterns to Make the Most of LLMs
agency-reliability trade-off, Cognitive Architectures with
LangGraph, Patterns to Make the Most of LLMs-Patterns to
Make the Most of LLMs
agent architecture

agent abstractions, LangChain and Why It’s Important
always calling tools first, Always Calling a Tool First-
Always Calling a Tool First
dealing with many tools, Dealing with Many Tools-Dealing
with Many Tools
LangGraph agent creation, Building a LangGraph Agent-
Building a LangGraph Agent
multi-agent architectures, Multi-Agent Architectures-
Supervisor Architecture, Multitasking LLMs
plan-do loop, The Plan-Do Loop-The Plan-Do Loop



reflection prompting technique, Reflection-Reflection
unique aspects of, Agent Architecture

agents, evaluating performance of
final response, Testing an agent’s final response-Testing a
single step of an agent
levels of testing, Evaluating an Agent’s End-to-End
Performance
single steps, Testing a single step of an agent-Testing a
single step of an agent
trajectory, Testing an agent’s trajectory-Testing an agent’s
trajectory

AI chatbots (see chatbots)
AIMessage interface, Using LLMs in LangChain
alerts, Ambient Computing
algorithms, Preface
ambient computing, Ambient Computing
Anthropic, Preface, LangChain and Why It’s Important, LLM
Fundamentals with LangChain
API access, protecting, Security
API keys, retrieving, Large Language Model
application logs, Creating Datasets
architecture (see also agent architecture; cognitive
architectures)



ReAct architecture, LangChain and Why It’s Important, The
Plan-Do Loop
router architecture, Architecture #3: Router-Architecture
#3: Router
transformer neural network architecture, Brief Primer on
LLMs

ArcSearch, Introducing LangGraph
argument k, Retrieving Relevant Documents
assistant role, Dialogue-Tuned LLMs, Using LLMs in
LangChain
assistants (see chatbots)
assistants (LangGraph Platform), Assistants
async execution, Using the Runnable Interface
authentication, Security
authorize mode, Human-in-the-Loop Modalities
auto-evaluators, adding, Improving LLM-as-a-judge
evaluators performance
autonomy, Cognitive Architectures with LangGraph, Patterns
to Make the Most of LLMs

B

bag-of-words model, Embeddings Before LLMs
Bard, Preface
batch method, Using the Runnable Interface, Summary
BLOOM, Brief Primer on LLMs



braces, curly ({}), Making LLM Prompts Reusable
C

canvases, Building with LLMs
chain architecture, Architecture #2: Chain-Architecture #2:
Chain
chain-of-thought (CoT) prompting, Chain-of-Thought,
LangChain and Why It’s Important, Agent Architecture
Chase, Harrison, Preface
chat dataset, Creating Datasets
chat models

alternative LLM providers for, LLM Fundamentals with
LangChain
interactive chatbots, Interactive Chatbots
message interfaces in, Using LLMs in LangChain
roles in, Using LLMs in LangChain

chatbots
adding memory to chatbots, Adding Memory to
StateGraph-Adding Memory to StateGraph
advanced components, Interactive Chatbots
asynchronous execution of, Imperative Composition
basic components, Interactive Chatbots
building chatbot memory systems, Building a Chatbot
Memory System-Building a Chatbot Memory System
ChatGPT, Preface



conversation history, Modifying Chat History-Summary,
Interactive Chatbots
interactive, Interactive Chatbots
limitation of simple, RAG Part I: Indexing Your Data
memory and, LangChain and Why It’s Important
modifying chat history, Modifying Chat History-Summary
overview of creating, What to Expect from This Book
prompt and chat model example of, Imperative
Composition
streaming support with Python or JavaScript, Imperative
Composition

ChatGPT, Preface
ChatMessage interface, Using LLMs in LangChain
ChatPromptTemplate, Making LLM Prompts Reusable-Getting
Specific Formats out of LLMs
checkpoint events, Intermediate Output
checkpointers, Adding Memory to StateGraph, Human-in-the-
Loop Modalities
classification problems, Embeddings Before LLMs
Claude, Preface
code examples, obtaining and using, Using Code Examples
cognitive architectures

chain architecture, Architecture #2: Chain-Architecture #2:
Chain



definition of term, Cognitive Architectures with
LangGraph
LLM call architecture, Architecture #1: LLM Call-
Architecture #1: LLM Call
major LLM architectures, Cognitive Architectures with
LangGraph
router architecture, Architecture #3: Router-Architecture
#3: Router

Cohere, LLM Fundamentals with LangChain, Generating Text
Embeddings
ColBERT model, ColBERT: Optimizing Embeddings
collaborative editing, Collaborative Editing with LLMs-
Collaborative Editing with LLMs
comments and questions, How to Contact Us
composition (see declarative composition; imperative
composition)
concurrency, Collaborative Editing with LLMs
concurrent inputs, dealing with, Refuse concurrent inputs-
Fork and merge
context

accurate output with, The Goal: Picking Relevant Context
for LLMs, Introducing Retrieval-Augmented Generation
dealing with complex, Multi-Agent Architectures
definition of term, Retrieval-Augmented Generation



context windows, Converting Your Documents into Text,
Trimming Messages
continuous improvement cycle, Testing Techniques Across
the LLM App Development Cycle (see also testing)
conversation history, Interactive Chatbots
copilots, Collaborative Editing with LLMs
cosine similarity, Semantic Embeddings Explained,
Retrieving Relevant Documents
CoT prompting (see chain-of-thought prompting)
create, read, update, delete (CRUD), Storing Embeddings in a
Vector Store
cron jobs (LangGraph Platform), Cron jobs
CSV format, Other Machine-Readable Formats with Output
Parsers
curly braces ({}), Making LLM Prompts Reusable
current events, RAG Part I: Indexing Your Data, Introducing
Retrieval-Augmented Generation

D

data indexing
converting documents into text, Converting Your
Documents into Text-Converting Your Documents into Text
embeddings, Embeddings: Converting Text to Numbers-
Converting Your Documents into Text



end-to-end example, Generating Text Embeddings-
Generating Text Embeddings
generating text embeddings, Generating Text Embeddings-
Generating Text Embeddings
limitations of LLM's knowledge corpus, RAG Part I:
Indexing Your Data
optimizing, Indexing Optimization-Summary
process of, Retrieving Relevant Documents
relevant content for LLMs, The Goal: Picking Relevant
Context for LLMs, Retrieving Relevant Documents-
Generating LLM Predictions Using Relevant Documents
splitting text into chunks, Splitting Your Text into Chunks-
Splitting Your Text into Chunks
storing embeddings in vector stores, Storing Embeddings
in a Vector Store-Working with Vector Stores
tracking document changes, Tracking Changes to Your
Documents-Tracking Changes to Your Documents

data models (LangGraph Platform), Data Models
data queries

query construction, Query Construction-Text-to-SQL
query routing, Query Routing-Semantic Routing
query transformation, Query Transformation-Hypothetical
Document Embeddings

database access, protecting, Security



database description, Text-to-SQL
datasets

creating, Creating Datasets-Defining Your Evaluation
Criteria
dialogue datasets, Dialogue-Tuned LLMs
task-specific datasets, Instruction-Tuned LLMs

debug mode (LangGraph), Intermediate Output
declarative composition, Using the Runnable Interface,
Declarative Composition-Summary
defense in depth, Security
dense embeddings, LLM-Based Embeddings
dependencies, installing, Install Dependencies
deployment

LangGraph API configuration file, Create a LangGraph API
Config
LangGraph Studio, Launch LangGraph Studio-Launch
LangGraph Studio
from LangSmith UI, Deploy from the LangSmith UI-
Environment variables
prerequisites, Prerequisites-Create a LangSmith Account
security considerations, Security
testing LangGraph app locally, Test Your LangGraph App
Locally-Test Your LangGraph App Locally



design stage, testing during, The Design Stage: Self-Corrective
RAG-The Design Stage: Self-Corrective RAG
dialogue-tuning, Dialogue-Tuned LLMs
dimensions, LLM-Based Embeddings
document loaders, Converting Your Documents into Text
documents

classifying, Embeddings Before LLMs
decoupling, MultiVectorRetriever-RAPTOR: Recursive
Abstractive Processing for Tree-Organized Retrieval
deleting, Tracking Changes to Your Documents
preprocessing, The Goal: Picking Relevant Context for
LLMs
reranking/reordering, RAG-Fusion
retrieving relevant documents, Retrieving Relevant
Documents-Retrieving Relevant Documents
tracking document changes, Tracking Changes to Your
Documents-Tracking Changes to Your Documents

double texting (LangGraph Platform), Double texting
drift, Regression Testing
DuckDuckGo, Building a LangGraph Agent
dynamic few-shot prompting, Few-Shot Prompting
dynamic inputs, Making LLM Prompts Reusable

E

edges, Introducing LangGraph



editing, collaborative, Collaborative Editing with LLMs-
Collaborative Editing with LLMs
embedding models, LangChain and Why It’s Important, LLM
Fundamentals with LangChain, LLM-Based Embeddings
embeddings

bag-of-words model, Embeddings Before LLMs
benefits of, Embeddings: Converting Text to Numbers
definition of term, The Goal: Picking Relevant Context for
LLMs
generating text embeddings, Generating Text Embeddings-
Generating Text Embeddings
LLM-based embeddings, LLM-Based Embeddings
optimizing, ColBERT: Optimizing Embeddings
retrieving relevant embeddings, Retrieving Relevant
Documents
semantic embeddings, Semantic Embeddings Explained-
Semantic Embeddings Explained
storing embeddings in vector stores, Storing Embeddings
in a Vector Store-Working with Vector Stores
uses for, Embeddings Before LLMs, Semantic Embeddings
Explained

environment variables, Environment variables
error handling, The Design Stage: Self-Corrective RAG
errors, monitoring, Monitoring and Fixing Errors



evaluation metrics (see also testing)
defining, Defining Your Evaluation Criteria
getting started, Defining Your Evaluation Criteria
improving LLM-as-a-judge performance, Improving LLM-
as-a-judge evaluators performance-Improving LLM-as-a-
judge evaluators performance
main evaluators, Defining Your Evaluation Criteria
pairwise evaluation, Pairwise evaluation

expected output, Brief Primer on LLMs
external data, retrieving, The Goal: Picking Relevant Context
for LLMs

F

feedback, collecting in production, Collect Feedback in
Production
few-shot prompting, Few-Shot Prompting, Text-to-SQL,
Improving LLM-as-a-judge evaluators performance
file access, protecting, Security
final response, evaluating, Testing an agent’s final response-
Testing a single step of an agent
fine-tuning

dialogue datasets, Dialogue-Tuned LLMs
fine-tuned LLMs, Fine-Tuned LLMs

floating-point values, Semantic Embeddings Explained
flow engineering, Architecture #2: Chain



fork and merge strategy, Fork and merge
formats

machine-readable, Other Machine-Readable Formats with
Output Parsers
providing format instructions, Other Machine-Readable
Formats with Output Parsers
specifying from LLMs, Getting Specific Formats out of
LLMs-Other Machine-Readable Formats with Output
Parsers

frontiers, Patterns to Make the Most of LLMs
function calls, Logical Routing

G

Gemma, Brief Primer on Prompting, LangChain and Why It’s
Important
generate-reflect loop, Reflection
generation stage, Generating LLM Predictions Using Relevant
Documents
generative AI

beginnings of, Preface
LLMs versus ML algorithms, Preface

GitHub Copilot Chat, Interactive Chatbots
Google

Gemini, Preface



LangChain integration with, LangChain and Why It’s
Important

graphs, Introducing LangGraph (see also LangGraph)
ground truth references, Defining Your Evaluation Criteria

H

hallucinations, RAG Part I: Indexing Your Data, ColBERT:
Optimizing Embeddings, Query Transformation, Trimming
Messages, Testing: Evaluation, Monitoring, and Continuous
Improvement
heuristic evaluators, Defining Your Evaluation Criteria
Hierarchical Navigable Small World (HNSW), Retrieving
Relevant Documents
Hugging Face, Generating Text Embeddings
human evaluators, Defining Your Evaluation Criteria
human-computer interfaces (HCI), Building with LLMs
human-in-the-loop modalities

authorize mode, Human-in-the-Loop Modalities
checkpointers, Human-in-the-Loop Modalities
edit state, Edit state
fork step, Fork
interactive chatbots and, Interactive Chatbots
interrupt mode, Human-in-the-Loop Modalities
LangGraph Platform API, Human-in-the-loop
restart step, Restart



resume step, Resume
HumanMessage interface, Using LLMs in LangChain
Hypothetical Document Embeddings (HyDE), Hypothetical
Document Embeddings-Hypothetical Document Embeddings

I

imperative composition, Using the Runnable Interface-
Imperative Composition, Summary
inaccuracies, RAG Part I: Indexing Your Data
independent agents, Multi-Agent Architectures
indexing (see data indexing; vector indexes)
ingestions, The Goal: Picking Relevant Context for LLMs
input

chat format and, Dialogue-Tuned LLMs
dynamic inputs, Making LLM Prompts Reusable
handling concurrent, Multitasking LLMs-Fork and merge
in LLMs versus machine learning, Brief Primer on LLMs
role in LLMs, Brief Primer on LLMs

instruction-tuning, Instruction-Tuned LLMs
interactive chatbots, Streaming LLM Output Token-by-Token,
Interactive Chatbots (see also chatbots)
intermediate output, Intermediate Output-Intermediate
Output, Collaborative Editing with LLMs
interrupt mode, Human-in-the-Loop Modalities
interrupt strategy, Interrupt



invoke method, Using LLMs in LangChain, Making LLM
Prompts Reusable, Using the Runnable Interface, Summary

J

jailbreaking, Dialogue-Tuned LLMs
JavaScript

agent architecture
implementing, Building a LangGraph Agent
subagents, Supervisor Architecture
supervisor, Supervisor Architecture

asynchronous execution with, Imperative Composition
chatbot conversation configuration, Using LLMs in
LangChain
chatbot edges, adding, Creating a StateGraph
chatbot memory systems, Building a Chatbot Memory
System
chatbot nodes, adding, Creating a StateGraph
chatbot streaming support, Imperative Composition,
Declarative Composition
ChatPromptTemplate, Making LLM Prompts Reusable-
Getting Specific Formats out of LLMs
cognitive architectures

chain, Architecture #2: Chain
LLM call, Architecture #1: LLM Call
router, Architecture #3: Router



composition
declarative, Declarative Composition
imperative, Imperative Composition

data indexing
end-to-end example, Generating Text Embeddings
example of, Retrieving Relevant Documents

document loaders and, Converting Your Documents into
Text
documents, retrieving full context, MultiVectorRetriever-
RAPTOR: Recursive Abstractive Processing for Tree-
Organized Retrieval
dynamic inputs

constructing, Making LLM Prompts Reusable
feeding into LLMs, Making LLM Prompts Reusable

embeddings, retrieving relevant, Retrieving Relevant
Documents
Hypothetical Document Embeddings (HyDE), Hypothetical
Document Embeddings-Hypothetical Document
Embeddings
LangChain set up using, Getting Set Up with LangChain
LangGraph

installation, Introducing LangGraph
visual representation, Creating a StateGraph

messages



filtering, Filtering Messages
merging, Merging Consecutive Messages
trimming, Trimming Messages

model predictions, invoking, Using LLMs in LangChain,
Generating LLM Predictions Using Relevant Documents-
Generating LLM Predictions Using Relevant Documents
multi-query retrieval in, Multi-Query Retrieval-Multi-
Query Retrieval
output

intermediate, Intermediate Output
streaming token-by-token, Streaming LLM Output
Token-by-Token
structured, Structured Output

output parsers in, Other Machine-Readable Formats with
Output Parsers
RAG-Fusion strategy, RAG-Fusion-RAG-Fusion
record management in, Tracking Changes to Your
Documents
reflection prompting technique, Reflection
Rewrite-Retrieve-Read strategy, Rewrite-Retrieve-Read
routing

logical, Logical Routing-Logical Routing
semantic, Semantic Routing-Semantic Routing

runnable interface, Using the Runnable Interface



schema creation, Structured Output
state inspection and updating, Adding Memory to
StateGraph
StateGraph

creating, Creating a StateGraph
memory addition, Adding Memory to StateGraph

subgraphs
calling directly, Calling a Subgraph Directly
calling with functions, Calling a Subgraph with a
Function

SystemMessage instruction, Using LLMs in LangChain
text embeddings with, Generating Text Embeddings
text extraction with, Converting Your Documents into Text
text, splitting into chunks, Splitting Your Text into Chunks-
Splitting Your Text into Chunks
text-to-metadata filter, Text-to-Metadata Filter-Text-to-
Metadata Filter
text-to-SQL translations, Text-to-SQL
tools

always calling first, Always Calling a Tool First
dealing with many, Dealing with Many Tools

vector stores and, Working with Vector Stores
JSON output, JSON Output, Structured Output
JSONSchema notation, Structured Output



K

k parameter, RAG-Fusion
k-nearest neighbors (k-NN), RAPTOR: Recursive Abstractive
Processing for Tree-Organized Retrieval
Kahneman, Daniel, Reflection
keyword searches, Embeddings Before LLMs
kv (key-value) dataset, Creating Datasets

L

LangChain (see also LangGraph; large language models; LLM
applications; retrieval-augmented generation)

assembling LLM applications, Assembling the Many Pieces
of an LLM Application-Summary, Cognitive Architectures
with LangGraph-Cognitive Architectures with LangGraph
beginnings of, Preface
benefits of, Preface-Preface, LangChain and Why It’s
Important, LLM Fundamentals with LangChain-LLM
Fundamentals with LangChain
documentation for, LLM Fundamentals with LangChain
getting specific formats out of LLMs, Getting Specific
Formats out of LLMs-Other Machine-Readable Formats
with Output Parsers
interfaces provided, Using LLMs in LangChain



making LLM prompts reusable, Making LLM Prompts
Reusable-Getting Specific Formats out of LLMs
setting up, Getting Set Up with LangChain
using LLMs in, Using LLMs in LangChain-Using LLMs in
LangChain

LangChain Expression Language (LCEL)
imperative versus declarative composition, Using the
Runnable Interface
optimized execution plan using, Declarative Composition

LangGraph (see also cognitive architectures; LangChain;
LangSmith)

adding memory to chatbots, Adding Memory to
StateGraph-Adding Memory to StateGraph
basics of, Introducing LangGraph-Introducing LangGraph
building chatbot memory systems, Building a Chatbot
Memory System-Building a Chatbot Memory System
building LangGraph agents, Building a LangGraph Agent-
Building a LangGraph Agent
configuration file, Create a LangGraph API Config
control flow illustration, Backend API
creating a StateGraph, Creating a StateGraph-Creating a
StateGraph
installing, Introducing LangGraph
intermediate output, Intermediate Output



modifying chat history, Modifying Chat History-Summary
purpose of, Introducing LangGraph
self-corrective RAG, The Design Stage: Self-Corrective RAG-
The Design Stage: Self-Corrective RAG
stream modes supported in, Intermediate Output
streaming LLM output token-by-token, Streaming LLM
Output Token-by-Token
subgraphs, Subgraphs in LangGraph-Calling a Subgraph
with a Function

LangGraph Platform API
data models, Data Models
deployment using, Backend API
features, Features-Webhooks

LangGraph Studio, Launch LangGraph Studio-Launch
LangGraph Studio
LangSmith (see also LangChain; LangGraph)

account creation, Create a LangSmith Account
agent evaluation example, Testing an agent’s trajectory
comparison view/regression testing, Regression Testing
dataset creation, Creating Datasets
deployment from LangSmith UI, Deploy from the
LangSmith UI-Environment variables
few-shot prompting, Improving LLM-as-a-judge evaluators
performance-Improving LLM-as-a-judge evaluators



performance
pairwise evaluation, Pairwise evaluation
trace results in, The Design Stage: Self-Corrective RAG
tracing, Tracing

language models, Brief Primer on LLMs
large language model (llm) dataset, Creating Datasets
large language models (LLMs) (see also structured output)

alternative providers for, LLM Fundamentals with
LangChain
ambient computing with, Ambient Computing
benefits and drawbacks of, Building with LLMs
brief primer on, Brief Primer on LLMs-Brief Primer on
LLMs
building with, Building with LLMs-Ambient Computing
Claude and Bard, Preface
collaborative editing with, Collaborative Editing with
LLMs-Collaborative Editing with LLMs
deployment example, Large Language Model
getting specific formats out of LLMs, Getting Specific
Formats out of LLMs-Other Machine-Readable Formats
with Output Parsers
limitations of knowledge corpus, RAG Part I: Indexing Your
Data
LLM-based embeddings, LLM-Based Embeddings



versus machine learning, Preface
for multilingual output, Brief Primer on LLMs
open source LLMs, Brief Primer on Prompting, LangChain
and Why It’s Important
OpenAI's GPT-3, Brief Primer on LLMs
OpenAI's GPT-3.5, Preface
relevant content for LLMs, The Goal: Picking Relevant
Context for LLMs, Retrieving Relevant Documents-
Generating LLM Predictions Using Relevant Documents
types of, Brief Primer on LLMs-Fine-Tuned LLMs
using in LangChain, Using LLMs in LangChain-Using LLMs
in LangChain

latency, Patterns to Make the Most of LLMs, Intermediate
Output, Interactive Chatbots
LCEL (see LangChain Expression Language)
Llama, Brief Primer on Prompting, LangChain and Why It’s
Important
llm (large language model) dataset, Creating Datasets
LLM applications (see also deployment; evaluation metrics;
testing)

agentic, Agent Architecture
assembling, Assembling the Many Pieces of an LLM
Application-Summary, Cognitive Architectures with
LangGraph-Cognitive Architectures with LangGraph



benefits of LangChain for building, LLM Fundamentals
with LangChain-LLM Fundamentals with LangChain
challenge in building good applications, LLM
Fundamentals with LangChain
common features of, Cognitive Architectures with
LangGraph
key stages of app development, Testing Techniques Across
the LLM App Development Cycle
major LLM architectures, Cognitive Architectures with
LangGraph
multiactor applications, Introducing LangGraph
multitasking LLMs, Multitasking LLMs-Fork and merge
patterns and key concepts for successful, Structured
Output-Fork and merge
security considerations, Security
trade-off between agency and reliability, Cognitive
Architectures with LangGraph, Patterns to Make the Most
of LLMs-Patterns to Make the Most of LLMs

LLM call architecture, Architecture #1: LLM Call-Architecture
#1: LLM Call
LLM-as-a-judge evaluators, Defining Your Evaluation Criteria
LLM-driven loop, The Plan-Do Loop
LLMs (see large language models)
logical routing, Logical Routing-Logical Routing



long-term memory, Ambient Computing
loops, The Plan-Do Loop

M

machine learning (ML)
basics of, Preface
current applications of, Preface
versus LLMs, Preface

max_tokens parameter, Using LLMs in LangChain
memory systems

adding memory to StateGraph, Adding Memory to
StateGraph-Adding Memory to StateGraph
building chatbot memory systems, Building a Chatbot
Memory System-Building a Chatbot Memory System
long-term memory, Ambient Computing
purpose of, Using LangGraph to Add Memory to Your
Chatbot

merging forks, Collaborative Editing with LLMs
messages

appending, Creating a StateGraph
filtering, Filtering Messages-Merging Consecutive
Messages
merging, Merging Consecutive Messages-Summary
trimming, Trimming Messages-Trimming Messages

misuse, anticipating potential, Security



mitigation strategies, Security
ML (see machine learning)
model drift, Regression Testing
model parameter, Using LLMs in LangChain
monitoring errors, Monitoring and Fixing Errors (see also
testing)
multi-agent architectures, Multi-Agent Architectures-
Supervisor Architecture
multi-query retrieval strategy, Multi-Query Retrieval-Multi-
Query Retrieval
multiactor applications, Introducing LangGraph
multilingual output, Brief Primer on LLMs
multitasking, Multitasking LLMs-Fork and merge
MultiVectorRetriever, MultiVectorRetriever-RAPTOR:
Recursive Abstractive Processing for Tree-Organized
Retrieval

N

neural networks, Brief Primer on LLMs
nodes, Introducing LangGraph
Norvig, Peter, Agent Architecture

O

observability, Production



offline evaluation, Defining Your Evaluation Criteria
Ollama, LLM Fundamentals with LangChain
online evaluation, Production
OpenAI API

account creation, Brief Primer on Prompting, Getting Set
Up with LangChain
copying prompts to Playground, Brief Primer on
Prompting
integration with LangChain, LangChain and Why It’s
Important, Generating Text Embeddings
launch of ChatGPT and ChatGPT API, Preface
overview of models offered, Using LLMs in LangChain
pricing, Preface

OpenSearch, LLM Fundamentals with LangChain
optimized execution plan, Declarative Composition
orchestration capabilities, LLM Fundamentals with
LangChain
output (see also structured output)

accurate, The Goal: Picking Relevant Context for LLMs,
Introducing Retrieval-Augmented Generation
expected output, Brief Primer on LLMs
JSON output, JSON Output, Structured Output
multilingual output, Brief Primer on LLMs
role in LLMs, Brief Primer on LLMs



streaming token-by-token, Interactive Chatbots
summarizing, Ambient Computing

output parsers, Other Machine-Readable Formats with
Output Parsers

P

pairwise evaluation, Pairwise evaluation
parallel execution, Using the Runnable Interface
parameters

basics of, Brief Primer on LLMs
k parameter, RAG-Fusion
max_tokens, Using LLMs in LangChain
model parameter, Using LLMs in LangChain
temperature, Using LLMs in LangChain

permissions, limiting, Security
Perplexity, Introducing LangGraph
persistence, Adding Memory to StateGraph
PGVector, Getting Set Up with PGVector
plan-do loop, The Plan-Do Loop-The Plan-Do Loop
Playground (OpenAI API), Brief Primer on Prompting
Postgres, Getting Set Up with PGVector
preprocessing, The Goal: Picking Relevant Context for LLMs
preproduction stage testing

dataset creation, Creating Datasets-Defining Your
Evaluation Criteria



defining evaluation criteria, Defining Your Evaluation
Criteria-Pairwise evaluation
end-to-end performance, Evaluating an Agent’s End-to-End
Performance-Testing an agent’s trajectory
purpose of, The Preproduction Stage
regression testing, Regression Testing

pretrained LLMs, Brief Primer on LLMs
primitives, Building with LLMs
private data, RAG Part I: Indexing Your Data
production stage testing

classification and tagging, Classification and Tagging
collecting feedback, Collect Feedback in Production
monitoring and fixing errors, Monitoring and Fixing
Errors
tracing, Tracing

prompt engineering, Dialogue-Tuned LLMs-Brief Primer on
Prompting
prompt injection guardrails, Security
prompt template abstractions, LangChain and Why It’s
Important
prompts

benefits of LangChain for prompting, LangChain and Why
It’s Important
best practices for, Brief Primer on LLMs



brief primer on prompting, Brief Primer on Prompting-
Few-Shot Prompting
combining prompting techniques, Tool Calling, LangChain
and Why It’s Important
definition of term, Brief Primer on LLMs
example of detailed, Making LLM Prompts Reusable
purpose of, Making LLM Prompts Reusable
reflection prompting technique, Reflection-Reflection
reusing, LangChain and Why It’s Important, Making LLM
Prompts Reusable-Getting Specific Formats out of LLMs
structured output with, Structured Output

Pydantic, JSON Output
Python

agent architecture
implementing, Building a LangGraph Agent
subagents, Supervisor Architecture
supervisor, Supervisor Architecture

asynchronous execution with, Imperative Composition
chatbot conversation configuration, Using LLMs in
LangChain
chatbot edges, adding, Creating a StateGraph
chatbot memory systems, Building a Chatbot Memory
System
chatbot nodes, adding, Creating a StateGraph



chatbot streaming support, Imperative Composition,
Declarative Composition
ChatPromptTemplate, Making LLM Prompts Reusable-
Getting Specific Formats out of LLMs
cognitive architectures

chain, Architecture #2: Chain
LLM call, Architecture #1: LLM Call
router, Architecture #3: Router

ColBERT model, ColBERT: Optimizing Embeddings
composition

declarative, Declarative Composition
imperative, Imperative Composition

data indexing
end-to-end example, Generating Text Embeddings
example of, Retrieving Relevant Documents

document loaders and, Converting Your Documents into
Text
document summaries, generating, MultiVectorRetriever
documents, retrieving full context, MultiVectorRetriever
dynamic inputs

constructing, Making LLM Prompts Reusable
feeding into LLMs, Making LLM Prompts Reusable

embeddings, retrieving relevant, Retrieving Relevant
Documents



f-string syntax, Making LLM Prompts Reusable
Hypothetical Document Embeddings (HyDE), Hypothetical
Document Embeddings-Hypothetical Document
Embeddings
LangChain set up using, Getting Set Up with LangChain
LangGraph

installation, Introducing LangGraph
visual representation, Creating a StateGraph

messages
filtering, Filtering Messages
merging, Merging Consecutive Messages
trimming, Trimming Messages

model predictions, invoking, Using LLMs in LangChain,
Generating LLM Predictions Using Relevant Documents-
Generating LLM Predictions Using Relevant Documents
multi-query retrieval in, Multi-Query Retrieval-Multi-
Query Retrieval
output

intermediate, Intermediate Output
JSON, JSON Output
streaming token-by-token, Streaming LLM Output
Token-by-Token
structured, Structured Output



output parsers in, Other Machine-Readable Formats with
Output Parsers
RAG-Fusion strategy, RAG-Fusion-RAG-Fusion
record management in, Tracking Changes to Your
Documents
reflection prompting technique, Reflection
Rewrite-Retrieve-Read strategy, Rewrite-Retrieve-Read
routing

logical, Logical Routing-Logical Routing
semantic, Semantic Routing-Semantic Routing

runnable interface, Using the Runnable Interface
schema creation, Structured Output
state inspection and updating, Adding Memory to
StateGraph
StateGraph

creating, Creating a StateGraph
memory addition, Adding Memory to StateGraph

subgraphs
calling directly, Calling a Subgraph Directly
calling with functions, Calling a Subgraph with a
Function

SystemMessage instruction, Using LLMs in LangChain
text embeddings with, Generating Text Embeddings
text extraction with, Converting Your Documents into Text



text, splitting into chunks, Splitting Your Text into Chunks-
Splitting Your Text into Chunks
text-to-metadata filter, Text-to-Metadata Filter-Text-to-
Metadata Filter
text-to-SQL translations, Text-to-SQL
tools

always calling first, Always Calling a Tool First
dealing with many, Dealing with Many Tools

vector stores
storing summaries in, MultiVectorRetriever
working with, Working with Vector Stores

Q

queries (see data queries)
query construction

process of, Query Construction
purpose of, Summary
text-to-metadata filter, Text-to-Metadata Filter-Text-to-
Metadata Filter
text-to-SQL translations, Text-to-SQL-Text-to-SQL

query routing strategy
logical routing, Logical Routing-Logical Routing
purpose of, Query Routing
semantic routing, Semantic Routing-Semantic Routing

query transformation



definition of term, Query Transformation
Hypothetical Document Embeddings (HyDE), Hypothetical
Document Embeddings-Hypothetical Document
Embeddings
multi-query retrieval strategy, Multi-Query Retrieval-
Multi-Query Retrieval
purpose of, Summary
RAG-Fusion strategy, RAG-Fusion-RAG-Fusion
Rewrite-Retrieve-Read strategy, Rewrite-Retrieve-Read-
Rewrite-Retrieve-Read

questions and comments, How to Contact Us
queueing, Queue concurrent inputs

R

RAG (see retrieval-augmented generation)
RAG-Fusion strategy, RAG-Fusion-RAG-Fusion
RAPTOR (recursive abstractive processing for tree-organized
retrieval), RAPTOR: Recursive Abstractive Processing for
Tree-Organized Retrieval
rate limiting, Security
ReAct architecture, LangChain and Why It’s Important, The
Plan-Do Loop
real-time collaboration, Collaborative Editing with LLMs
reciprocal rank fusion (RRF) algorithm, RAG-Fusion-RAG-
Fusion



record management, Tracking Changes to Your Documents-
Tracking Changes to Your Documents
recursive abstractive processing for tree-organized retrieval
(RAPTOR), RAPTOR: Recursive Abstractive Processing for
Tree-Organized Retrieval
reflection prompting technique, Reflection-Reflection
reflection step, Ambient Computing
regression testing, Regression Testing
reinforcement learning from human feedback (RLHF),
Instruction-Tuned LLMs
reliability, Cognitive Architectures with LangGraph, Patterns
to Make the Most of LLMs, Building with LLMs
reranking/reordering, RAG-Fusion
response, evaluating, Evaluating an Agent’s End-to-End
Performance
retrieval process, Retrieving Relevant Documents
retrieval-augmented generation (RAG)

building robust RAG systems, Generating LLM Predictions
Using Relevant Documents
core stages of, Retrieving Relevant Documents
definition of term, The Goal: Picking Relevant Context for
LLMs
generating LLM predictions, Generating LLM Predictions
Using Relevant Documents-Generating LLM Predictions



Using Relevant Documents
introduction to, Introducing Retrieval-Augmented
Generation
process of, RAG Part II: Chatting with Your Data
prompting with, Retrieval-Augmented Generation
query handling

construction, Query Construction-Text-to-SQL
routing, Query Routing-Semantic Routing
transformation, Query Transformation-Hypothetical
Document Embeddings

retrieving relevant documents, Retrieving Relevant
Documents-Retrieving Relevant Documents
self-corrective RAG, The Design Stage: Self-Corrective RAG-
The Design Stage: Self-Corrective RAG

Rewrite-Retrieve-Read strategy, Rewrite-Retrieve-Read-
Rewrite-Retrieve-Read
RLHF (reinforcement learning from human feedback),
Instruction-Tuned LLMs
roles, Dialogue-Tuned LLMs, Using LLMs in LangChain
router architecture, Architecture #3: Router-Architecture #3:
Router
routing

logical routing, Logical Routing-Logical Routing
query routing, Query Routing-Semantic Routing



semantic routing, Semantic Routing-Semantic Routing
RRF (reciprocal rank fusion) algorithm, RAG-Fusion
runnable interface, Using the Runnable Interface
runs (LangGraph Platform), Runs
Russell, Stuart, Agent Architecture

S

sandboxing, Security
save and send, Collaborative Editing with LLMs
security best practices, Security
self-correction, The Design Stage: Self-Corrective RAG
self-critique prompting technique, Reflection
semantic embeddings, Semantic Embeddings Explained-
Semantic Embeddings Explained
semantic relationships, Splitting Your Text into Chunks
semantic routing, Semantic Routing-Semantic Routing
sensitive data, protecting, Security
single steps, evaluating, Evaluating an Agent’s End-to-End
Performance
sparse embeddings, Embeddings Before LLMs
specialized subsystems, Multi-Agent Architectures
state, Introducing LangGraph, Creating a StateGraph,
Human-in-the-Loop Modalities, Collaborative Editing with
LLMs
statefulness, Introducing LangGraph



StateGraph
adding memory to, Adding Memory to StateGraph-Adding
Memory to StateGraph
creation, Creating a StateGraph-Creating a StateGraph

stateless runs (LangGraph Platform), Stateless runs
statelessness, Using LangGraph to Add Memory to Your
Chatbot
static few-shot prompting, Few-Shot Prompting
stream method, Using the Runnable Interface, Summary,
Intermediate Output
streaming (LangGraph Platform), Streaming
streaming chat, Interactive Chatbots
structured output

human-in-the-loop modalities, Human-in-the-Loop
Modalities-Fork
intermediate output, Intermediate Output-Intermediate
Output
need for, Structured Output
strategies to achieve, Structured Output
streaming LLM output token-by-token, Streaming LLM
Output Token-by-Token

subagents, Supervisor Architecture
subgraphs

adding to parent graphs, Subgraphs in LangGraph



calling subgraphs directly, Calling a Subgraph Directly-
Calling a Subgraph with a Function
calling subgraphs with functions, Calling a Subgraph with
a Function
use cases for, Subgraphs in LangGraph

subsystems, specialized, Multi-Agent Architectures
Supabase, Vector Store
supervisor architecture, Multi-Agent Architectures-
Supervisor Architecture
synthetic data, Creating Datasets
system role, Dialogue-Tuned LLMs, Using LLMs in LangChain
SystemMessage interface, Using LLMs in LangChain

T

tables, MultiVectorRetriever
task managers, Collaborative Editing with LLMs, Ambient
Computing
task-specific datasets, Instruction-Tuned LLMs
task_result events, Intermediate Output
temperature parameter, Using LLMs in LangChain
testing

design stage, The Design Stage: Self-Corrective RAG-The
Design Stage: Self-Corrective RAG
key stages of app development, Testing Techniques Across
the LLM App Development Cycle



predeployment, Test Your LangGraph App Locally-Test
Your LangGraph App Locally
preproduction stage, The Preproduction Stage-Testing an
agent’s trajectory
production stage, Production-Monitoring and Fixing
Errors

text
converting documents into text, Converting Your
Documents into Text-Converting Your Documents into Text
converting text to numbers, Embeddings: Converting Text
to Numbers-Semantic Embeddings Explained
generating text embeddings, Generating Text Embeddings-
Generating Text Embeddings
mixed with tables, MultiVectorRetriever
splitting text into chunks, Splitting Your Text into Chunks-
Splitting Your Text into Chunks
text-to-metadata filter, Text-to-Metadata Filter-Text-to-
Metadata Filter
text-to-SQL translations, Text-to-SQL-Text-to-SQL

third-party services, LangChain and Why It’s Important
threads, Adding Memory to StateGraph, Handle
independently
threads (LangGraph Platform), Threads



token-by-token streaming output, Streaming LLM Output
Token-by-Token
tokens, Brief Primer on LLMs
tool-calling technique

agentic LLM applications and, Agent Architecture
always calling tools first, Always Calling a Tool First-
Always Calling a Tool First
dealing with many tools, Dealing with Many Tools-Dealing
with Many Tools, Multi-Agent Architectures
definition of term, Tool Calling
integrations provided for, LangChain and Why It’s
Important
interactive chatbots and, Interactive Chatbots
structured output with, Structured Output

tracing, Tracing
trajectory, evaluating, Evaluating an Agent’s End-to-End
Performance, Testing an agent’s trajectory-Testing an agent’s
trajectory
transformer neural network architecture, Brief Primer on
LLMs
triggers, Ambient Computing
trimming messages, Trimming Messages-Trimming Messages
try-catch statement, Human-in-the-Loop Modalities



U

undo/redo stacks, Collaborative Editing with LLMs
Universally Unique Identifiers (UUIDs), Adding Memory to
StateGraph
updates mode (LangGraph), Intermediate Output
user role, Dialogue-Tuned LLMs, Using LLMs in LangChain

V

values mode (LangGraph), Intermediate Output
variance, Patterns to Make the Most of LLMs
vector indexes, LangChain and Why It’s Important
vector stores

alternative providers for, LLM Fundamentals with
LangChain
definition of term, LangChain and Why It’s Important, The
Goal: Picking Relevant Context for LLMs
deployment example, Vector Store
storing embeddings in vector stores, Storing Embeddings
in a Vector Store-Working with Vector Stores

version control, Collaborative Editing with LLMs
VSCode code editor, Interactive Chatbots



W

Weaviate, LLM Fundamentals with LangChain
webhooks (LangGraph Platform), Webhooks

X

XML format, Other Machine-Readable Formats with Output
Parsers

Y

Yao, Shunyu, The Plan-Do Loop

Z

zero-shot prompting, Zero-Shot Prompting
Zod, JSON Output



About the Authors

Mayo Oshin is a tech entrepreneur, AI advisor, and angel
investor. Mayo was an early developer contributor and
advocate for the open source LangChain library and an early
pioneer in the popular AI “chat” with data movement (5+
million people reached through his thought-leadership ideas so
far).

Mayo has consulted with, advised, and trained hundreds of
engineers and product managers at various leading institutions,
including Amazon, LinkedIn, Evercore, Visa, and BCG.

You can learn more about him at his website, mayooshin.com,
and get his latest ideas on AI and technology on X.

Nuno Campos is a founding software engineer at LangChain,
Inc. Nuno has a decade of experience as a Python and
JavaScript software engineer, architect and open source
maintainer. He has worked for various tech startups in software
engineering and data science roles. He holds an MSc in Finance.

https://mayooshin.com/
https://mayooshin.com/
https://x.com/mayowaoshin


Colophon

The animals on the cover of Learning LangChain are European
tree frogs (Hyla arborea).

They are primarily found in mainland Europe, typically close to
vegetation. Their green skin can adjust its color from green to
grey or brown, depending on a variety of factors. This ability
helps to camouflage them from predators. They also use their
sticky tongues (for meals, i.e., insects) and the sticky pads on
their feet (for movement) to navigate life in their habitat.

During mating season, European tree frogs congregate close to
ponds so that they can lay eggs near water for the soon-to-be
tadpoles. The males perform a mating call that is striking for its
volume, particularly when many frogs are gathered in one
place. The females then lay clumps of 800 to 1,000 eggs. About
10 to 14 days later, the tadpoles hatch, and the cycle of life
begins anew.

Many of the animals on O’Reilly covers are endangered; all of
them are important to the world.

The cover illustration is by Karen Montgomery, based on an
antique line engraving from Meyers Kleines Lexicon. The series



design is by Edie Freedman, Ellie Volckhausen, and Karen
Montgomery. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s
Ubuntu Mono.


	Preface
	Brief Primer on LLMs
	Instruction-Tuned LLMs
	Dialogue-Tuned LLMs
	Fine-Tuned LLMs

	Brief Primer on Prompting
	Zero-Shot Prompting
	Chain-of-Thought
	Retrieval-Augmented Generation
	Tool Calling
	Few-Shot Prompting

	LangChain and Why It’s Important
	What to Expect from This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. LLM Fundamentals with LangChain
	Getting Set Up with LangChain
	Using LLMs in LangChain
	Making LLM Prompts Reusable
	Getting Specific Formats out of LLMs
	JSON Output
	Other Machine-Readable Formats with Output Parsers

	Assembling the Many Pieces of an LLM Application
	Using the Runnable Interface
	Imperative Composition
	Declarative Composition

	Summary

	2. RAG Part I: Indexing Your Data
	The Goal: Picking Relevant Context for LLMs
	Embeddings: Converting Text to Numbers
	Embeddings Before LLMs
	LLM-Based Embeddings
	Semantic Embeddings Explained

	Converting Your Documents into Text
	Splitting Your Text into Chunks
	Generating Text Embeddings
	Storing Embeddings in a Vector Store
	Getting Set Up with PGVector
	Working with Vector Stores

	Tracking Changes to Your Documents
	Indexing Optimization
	MultiVectorRetriever
	RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval
	ColBERT: Optimizing Embeddings

	Summary

	3. RAG Part II: Chatting with Your Data
	Introducing Retrieval-Augmented Generation
	Retrieving Relevant Documents
	Generating LLM Predictions Using Relevant Documents

	Query Transformation
	Rewrite-Retrieve-Read
	Multi-Query Retrieval
	RAG-Fusion
	Hypothetical Document Embeddings

	Query Routing
	Logical Routing
	Semantic Routing

	Query Construction
	Text-to-Metadata Filter
	Text-to-SQL

	Summary

	4. Using LangGraph to Add Memory to Your Chatbot
	Building a Chatbot Memory System
	Introducing LangGraph
	Creating a StateGraph
	Adding Memory to StateGraph
	Modifying Chat History
	Trimming Messages
	Filtering Messages
	Merging Consecutive Messages

	Summary

	5. Cognitive Architectures with LangGraph
	Architecture #1: LLM Call
	Architecture #2: Chain
	Architecture #3: Router
	Summary

	6. Agent Architecture
	The Plan-Do Loop
	Building a LangGraph Agent
	Always Calling a Tool First
	Dealing with Many Tools
	Summary

	7. Agents II
	Reflection
	Subgraphs in LangGraph
	Calling a Subgraph Directly
	Calling a Subgraph with a Function

	Multi-Agent Architectures
	Supervisor Architecture

	Summary

	8. Patterns to Make the Most of LLMs
	Structured Output
	Intermediate Output
	Streaming LLM Output Token-by-Token
	Human-in-the-Loop Modalities
	Multitasking LLMs

	Summary

	9. Deployment: Launching Your AI Application into Production
	Prerequisites
	Install Dependencies
	Large Language Model
	Vector Store
	Backend API
	Create a LangSmith Account

	Understanding the LangGraph Platform API
	Data Models
	Features

	Deploying Your AI Application on LangGraph Platform
	Create a LangGraph API Config
	Test Your LangGraph App Locally
	Deploy from the LangSmith UI
	Launch LangGraph Studio

	Security
	Summary

	10. Testing: Evaluation, Monitoring, and Continuous Improvement
	Testing Techniques Across the LLM App Development Cycle
	The Design Stage: Self-Corrective RAG
	The Preproduction Stage
	Creating Datasets
	Defining Your Evaluation Criteria
	Regression Testing
	Evaluating an Agent’s End-to-End Performance

	Production
	Tracing
	Collect Feedback in Production
	Classification and Tagging
	Monitoring and Fixing Errors

	Summary

	11. Building with LLMs
	Interactive Chatbots
	Collaborative Editing with LLMs
	Ambient Computing
	Summary

	Index
	About the Authors

