
Paul Zikopoulos &
 Christopher Bienko

with Chris Backer, Chris Konarski
& Sai Vennam

Cloud Without
Compromise
Hybrid Cloud
for the Enterprise

Paul Zikopoulos and Christopher Bienko
with Chris Backer, Chris Konarski, and Sai Vennam

Cloud Without Compromise
Hybrid Cloud for the Enterprise

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10373-6

[LSI]

Cloud Without Compromise
by Paul Zikopoulos and Christopher Bienko, with Chris Backer, Chris Konarski, and Sai Vennam

Copyright © 2021 O’Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Rachel Roumeliotis
Development Editor: Michele Cronin
Production Editor: Kristen Brown
Copyeditor: Charles Roumeliotis
Proofreader: Kim Cofer

Indexer: Sue Klefstad
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

August 2021: First Edition

Revision History for the First Edition
2021-07-29: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098103736 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Cloud Without Compromise, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly Media, Inc. and IBM. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098103736
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface: Who This Book Is For. vii

Introduction. xv

1. Cloudy Skies Are the Best Forecast Ever. 1
Thrivers, Divers, and New Arrivers 3
Business Vaccination: The Arriver’s Guide 5

Cost Takeout 6
Resiliency 7
Performance 7
Security 8
Modernization 8
AI 11

So Why Are Cloudy Skies the Best Forecast Ever? 11

2. Evolution of Cloud. 13
Are You on the Intranet, Internet, or Extranet? Nah—Just Internet 13
Are You on a Private Cloud, Public Cloud, or Community Cloud?

Nah—Just Cloud 14
History Repeats Itself: From Granularity of Terms to General Terms 15
Hybrid Cloud’s “Chapter 2”: Distributed Cloud 16

Distributed Cloud On-Premises 17
Living on the Edge: Distributed Cloud 19

Distributed Cloud for Multicloud 20
A Caveat to Distributed Cloud 21
Distributed Cloud: The Ultimate Unification Layer 21

Industry Expertise in Mission-Critical Business Processes 22

iii

Proven Security, Compliance, and Governance 23
Confidential Computing and Zero Trust Architectures 24
Build Once and Run Anywhere with Consistency 26
Capture the World’s Innovation 27
Cloud Solely for Savings Could Leave You with Cravings:

A Trend of Repatriation 27
Be Ye a Renovator, Innovator, or Both? How You Spend Budget 31
Adopting a “Learning Never Ends” Culture:

A Cloud Success Secret Ingredient 36
Ready, Set, Cloud! 37

3. “Cloud Chapter 2”: The Path to Cloud Native. 39
Eras of Application Development 40

In the Beginning: Monoliths and Waterfalls 41
SOA Is the SOS to Your Monolith 42
Microservices: What SOA Would Be If It Was Version 2.0 43
First “Pass” on PaaS 45
Lessons Learned: The Rise of Containers 47
But Wait, Don’t VMs Do the Same Thing!? 48
Docker Brings Containers to the Masses 49

A Practical Understanding of Kubernetes 50
Starting the Kubernetes Journey 51

Time to Start Building 55

4. Cloud Computing: Patterns for The What, The How, and The Why. 57
Patterns of Cloud Computing: A Working Framework for Discussion 58
Order Up: Pizza as a Service 61
Do (Almost All of) It Yourself: Infrastructure as a Service 64

IaaS has a Twin Sibling: Bare Metal 67
Noisy Neighbors Can Be Bad Neighbors: The Multitenant Cloud 68

Cloud Regions and Cloud Availability Zones for Any As-a-Service Offering 69
Building the Developer’s Sandbox with Platform as a Service 70

Digging Deeper into PaaS 71
Composing in the Fabric of Cloud Services 73

Consuming Functionality Without the Stress: Software as a Service 74
The Cloud Bazaar: SaaS and the API Economy 76
All You Need Is a Little Bit of REST and Some Microservices 78

It’s Not Magic, But It’s Cool: The Server in Serverless? 80
Serverless has a Kid! Function as a Service 82
The Takeaway 82

Wrapping It Up 83

iv | Table of Contents

5. Shift Left. 85
Monolithic and Microservices 86

Separating the Old from the New 87
Microservices Dance to a Different Fiddle 88
Scaling: One of These Things Is Not Like the Other 89
Orchestration: Amplifying the Challenges of Scale 93

Write Once, Run Anywhere 95
Three Stages of Approaching Modernization Incrementally 95

Comparing Legacy Applications, Containerized Applications, and Virtual
Machines 97
Namespaces: What’s in a Name? 99
Building an Operating System for Containers 101

It’s OK to Have an Opinion: Opinionated Open Source 104
Putting It All Together 104

6. Hackers, Attackers, and Would-Be Bad Actors:
Thoughts on Security for Hybrid Cloud. 107
Just to Level Set: What’s This Open Source Stuff? 109
Data Breaches, Exploits, and Vulnerabilities 110

Hackers Don’t Care Where You Work: Public Cloud and Security 111
A Case Study in Exploitable OSS 114
Did You Leave the Container Door Open? 117
Zero Trust in a Hybrid Cloud World 117
Importance of Sec(urity) in DevSecOps 125
Container Security Visibility 101 127

7. Data Gravity. 131
Data Gravity: More Formally Defined 133
Container-Ready and Container-Native Storage 134

Solving Challenges of Business Continuity in a Containerized World 135
Why Storage? Why Now? The Curious Evolution of Persistence

for Containers 136
Container: May Ye Live Long and Prosper 140
Container-Ready and Container-Native: Reinventing Storage for

Containerized Applications 141
Adding Storage for Containers…The Right Way 142

Seven Best Practices for Securing Containerized Data and Applications 144
1. Multitenancy and the Unusual World of Container Host

Operating Systems 145
2. Trusting Your Sources 146
3. Protecting the Software Build Process 147

Table of Contents | v

4. Wrangling Deployments on Clusters 148
5. Orchestrating Securely 149
6. Lockdown: Network Isolation and API Endpoint Security 150
7. United Federation of Containerized Applications 150

Readying Data for the New Normal 151

8. Ecosystem for Automation. 153
Rethinking Automation for the As-a-Service Era 156
More Agency with Agentless Design 159
What’s the Play? Architecting for Automation 162
Streamlined Automation for the Hybrid Multicloud Era 163

Automation for Multivendor Stacks 163
Automation for Cloud-Scale Deployments 167
Automation for Stress-Free DevOps 169

Automation Everywhere and for All 172

Appendix. Speaking Kubernetes and Other Strange-Sounding Names. 173

Index. 191

vi | Table of Contents

Preface: Who This Book Is For

The five of us got together and wrote a book that might (at times) be too technical for
business leaders, but “too business-y” for technical people. If this is a complaint
you’ve got after reading this book…perfect! While we definitely put some technical
stuff in here, if you’re looking for a book on how to use kubectl—the CLI interface
for Kubernetes—or use generator to create a ConfigMap, this is not the book for you.

Our experience has shown us—more than any one of us wants to admit—that too
many business people don’t truly understand the technology they’re signing the bills
for (or for that matter, that technology’s potential). Nothing good comes of this: late
projects, missed expectations, excessive costs, and worse yet—lost opportunities. If
business teams lack the “chops” to challenge IT or understand technology discussions
within their organizations, it’s akin to using a decades-old word translation algo‐
rithm. For example, one famous algorithm took a US phrase, “The spirit is willing but
the flesh is weak,” and translated it into Russian as, “The vodka is good but the meat is
rotten.” We think you get our point. Business people—if your spirit is willing, we can’t
promise you good vodka; but we can promise you a good (in fact, a great) foundation
to a cloud strategy that lets you lead from the front and helps you be the leader you
want to be.

At the same time, this book is for all those propeller heads (we know you well, we are
you) who get enthralled with the underpinnings but fail to realize that technology for
technology’s sake doesn’t help a business succeed. If you fit that profile, this book is
going to really help drive your career because there are not a lot of people that have
your technical backgrounds. Beyond helping the organizations you work for succeed,
this book will give you options to “pond jump” into myriad leadership roles across
your company and accelerate your career. For whatever pothole or mountain of
accomplishments our authoring team has, we can tell you that it all came from a deep
technology start with layers of business experience and acumen added over the years.
We’re not saying be like us (that may or may not be a good thing), but we are telling

vii

you this: technology people who understand business outperform technology people
who don’t understand business.

So just whom is this book for? We think anyone. You might be informed on all
aspects of cloud, or you might just be getting started and have little understanding of
how it works, why it works, or how to implement and scale a successful cloud strat‐
egy. While we targeted this book for all business leaders, no matter who you are, we
think this book is going to help you. Naturally it’ll help those leaders who are not sure
where to start, but we also think our personal experiences will greatly benefit those
who have started and are unsure of where to go next. With all that said, we’re confi‐
dent there is a cohort of business and technical individuals that this book is really
going to resonate with. These folks typically work in large organizations that have
been around for a while. These organizations have a mix of generational technology.
They have monolithic apps they don’t want to touch because those rock-solid apps
literally keep “the lights on,” but they’ve also built some cool mobile stuff using
service-oriented architecture (SOA) or microservices (don’t worry if you don’t know
what those are, we get into them in Chapter 4). If you work big-box retail, oil and gas,
banking, airlines, government, insurance, consumer packaged goods (the list goes on
and on), we can pretty much guarantee you that you fit into this group. This book is
for you because you’ve definitely got some cloud going on, but you may not be mak‐
ing the progress you’d hoped for or (quite commonly) you’re not getting the returns
you thought you’d be getting and wondering if you’re doing it right.

This book requires no previous knowledge of cloud. The topics we introduce will be
helpful for a vast audience, ranging from business leaders to technical folks across all
industries. If you’re a business leader, you’ll know just the questions to ask, the cor‐
ners to look around, and the ideas to challenge as you tactfully plan your forward-
thinking cloud strategy. If you’re a technical person, you’ll understand how your
expertise can drive forward the organizations you work for with a solid understand‐
ing of how cloud challenges (especially for large-sized companies) are much different
than a startup’s “Swipe your credit card and let’s get going” approach.

Whomever you are, we think the concepts you need to know to successfully scale a
cloud strategy and get all the value out of cloud can be found in the pages that follow.

viii | Preface: Who This Book Is For

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning

Preface: Who This Book Is For | ix

http://oreilly.com

platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/cloudWithoutCompromise.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Our Collective Thank Yous and Acknowledgments
This book would not have been possible without the insights and efforts from some
really fine people we know. Terry Bird and Meg Murphy jumped in on the idea and
never let go of it from the get go, across divisional line changes and reorganizations;
they are always so forward thinking and we thank them for that. Thank yous are also
in order for Shelia Bereszniewicz (who handled all the contracts and lawyers), Paul
Amrbaz and Pamela Chace (our web presence peeps), Bill “Mr. Quantum” Minor
(helped review some sections), and Filipe Miranda (for his insights on SELinux and
access controls—a true technologist with a deep understanding of everything cloud).
Of course, a collective thank you to Linda “Eagle Eye” Snow (and not because she’s
from Philly) for always being willing to read a chapter and use her sharp eyes to catch
almost anything wrong.

Finally, we want to heartfully thank (although at times we cursed their deadlines) the
O’Reilly crew’s personal efforts that went into getting this book from an idea we had
while Slacking each other wondering how long on average it takes for people to

x | Preface: Who This Book Is For

http://oreilly.com
https://oreil.ly/cloudWithoutCompromise
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

realize they are double-muted on a WebEx call to what’s in your hands today. Some
people show up at their job every day to earn a paycheck, but we’re glad these folks go
to work to build something: Michele Cronin, Mike Loukides, Sharon Cordesse, Kris‐
ten Brown, and Rachel Roumeliotis...thanks!

Our Personal Dedications and Reflections
Paul Zikopoulos
If you’ve read any dedication for any book I’ve written in the last five years, you’ve
concluded I’m a liar. Seriously, you can’t keep telling people you’re writing your last
book and keep writing, so I won’t make any promises not to put pen to paper again.
That said, I know one thing I will never do again: write a book with three people
named Chris, especially when two of them share the same first letter of their sur‐
name! No offense, these are some of the most talented guys I know—but it sure is
confusing and makes calls difficult because you can’t even say, “Chris B…” (add to this
Chris Backer is pronounced like Baker). On a serious note—to a fantastic group of
professionals and friends, some new to me, some not, and one like a brother.

Let me tell you, it’s a lot of work to write a book. Lots of cursing (at times, my kid
thought I was watching an HBO show in my office) aimed at the people that were
there from the get go (Terry Bird, one of the finest people I know, was an f-bomb vic‐
tim) across weekends and long weeknights wondering if you’re making a difference.
After all, it’s not like I’m writing 50 Shades of Hybrid Cloud, so these works don’t bring
me early retirement. Every book I write, I learn. And with that I write to tell stories
(truthful ones), to wrap technology in a manner that you can understand and with
hopes that you might find a smile here and there as you read through it. So why do I
write? Honestly, my parents instilled me with a never-ending thirst for learning; I’m
all too well aware that one of the biggest blessings in my life right now is a Caller ID
that says, “Mom or Dad.”

To Brad Arnott. The most talented guy that refuses to see it. I mean who else decides
to golf and breaks 80 in 3 years, decides to be a fisherman and goes pro, decides to be
a marksman and wins awards, decides to do anything and becomes great. Take a
moment Brad, look in the mirror, and know the awe you inspire.

To my wife (Kelly) and kid (Chloë)—forever by my side—nothing more needs to be
said.

Professionally, to the group of people that inspire me on the daily to try to be a better
person and use my brains for something bigger. Stephanie Trunzo, Deb Jenson, Deb
Bubb, and Kelly Lyndgaard—you’re the kind of ladies any father wants their daughter
to follow—you’ve become sisters, and I stand in awe of you on the daily. To Chris
Hugill and Bob Picciano, who continue to inspire me and leave me in awe of their

Preface: Who This Book Is For | xi

knowledge—I wonder if these guys even use Google. Within IBM, there are so many
people to mention, so I’ll just random sample the list. I took over a new division in
2021—lots of new team members that I asked to buy into a new team ethos, a mission
(with a steep climb) and to all of them that followed, thank you. To Drew Valentine
and John Teltsch who have always been a text message away. And to a new boss,
Sebastian Krause, who has just the right amount of everything to be tremendous—
there’s a quality of leadership that drives you where you need to be driven (even if I
don’t like it at times) and gives you the autonomy to create…that’s his recipe. A
shout-out to Steve Astorino (an incredible leader) and to the transformation he has
done with culture—your ideas are even bigger than the engine in that supercar you
drive, and the Toronto lab adores you for it. Finally, it seems I can’t write a book
without thanking, consulting, or coauthoring with Rob Thomas. For 10 years, you’ve
been 20% pushing me (in a way I don’t like) into personal growth zones with your
challenges and 80% inspiring me to never take my foot off the knowledge gas pedal.
What you’re doing at IBM is something beyond special.

Remember everyone, health is wealth—so stay positive and forever test negative!

Christopher Bienko
To those friends and family that inspire me to live authentically, thank you. It would
be an understatement to call 2020 merely a challenging year—I think, for all of us to
an extent, it has been a rare opportunity to evaluate what’s important to our lives and
make an honest measure of how we are spending the precious time we have. And
most remarkably of all, it was (and continues to be) a strangely universal experience
shared by every person across each corner of the globe. Those events are few and far
between.

It’s my fervent hope that collectively we hold on to the silver linings of a taxing year:
the remarkable quiet and calm of those first weeks of lockdown, the added time at
home with family or friends in lieu of globe-trotting or commuting, the recognition
of the selfless work carried out day after day by others to make our lives safe and
secure. I’ve been an avid outdoorsman for the whole of my life, and it’s been wonder‐
ful to see how COVID-19 has rekindled in the public mind a renewed draw towards
natural spaces, public lands, and healthy ecosystems. With greater public interest
comes additional pressure on these delicate environments, but likewise a mutual
interest in their stewardship and conservation. My belief is that the more stakeholders
we have in protecting public lands and natural systems, the more likely we are to suc‐
ceed in preserving these treasures for the future. Let’s keep that momentum going.

xii | Preface: Who This Book Is For

In hindsight, it seems halfway absurd to have started writing a book amidst all the
uncertainty and personal reckonings of the last year. None of this, frankly, would
have been possible without the unwavering commitment and talent of my coauthor
and contributors. Paul, Chris B., Chris K., Sai, and our incredible publisher—you
have my sincere thanks and gratitude.

Chris Backer
As an early professional, I spent countless hours reading O’Reilly technology books,
learning and growing my skills. With every new project that I embarked on, I often
sought out an O’Reilly book on the topic. I am truly grateful to have had this oppor‐
tunity as a coauthor for a topic that has become one of the most transformational
technology shifts of my time. To my coauthors, it has been an absolute pleasure work‐
ing with and learning from each of you. A special thank you to Paul Z for the invita‐
tion to contribute to this book. You are an inspiration to many!

To Anna Shugol, Elton de Souza, Filipe Miranda, Patrick Fruth, Roberto Calderon,
and Vic Cross (aka The Z Acceleration Team). You’ve led our brand into a new era of
Hybrid Cloud—and in the midst of the most challenging event our society has faced
in modern times. You all are the “best of the best.” I am truly grateful for your dedica‐
tion and entrepreneurial mindset. #TogetherWeWin

To my wife (Anna), thank you for your support and encouragement over the years.
You push me to be a better person every day. And to my incredible boys (Ty, Colton,
and Caden): each of you make me so proud! Set your goals high and never stop
learning.

Chris Konarski
When I look back at all my professional and personal accomplishments, it all started
with an inner hunger and work ethic that was instilled in me by my parents John and
Grace. The lessons I learned about hard work, competition, setting high goals, and
how to treat people have served as my recipe for success. I dedicate this book to you
and thank you for always pushing me outside my comfort zone to be “even better.”

To my boys, Ryan and Noah, set high goals and go after your dreams. If it is hard then
you are growing; learn to be comfortable with being uncomfortable because that is

Preface: Who This Book Is For | xiii

where the magic happens. Feed your inner curiosity and fire with goals you never
thought possible. I will always be there to love, support, and push you to greatness
wherever your passions take you.

Sai Vennam
A voice, written or spoken, is the single most important thing a person has—it ena‐
bles one to communicate their thoughts, expand others’ beliefs, and influence the
world. I’d like to thank my colleagues and mentors that helped me create my own
voice—Adam Gunther, Jason Gartner, Andrew Hoyt, Jason Goode, and Nathan
Smith.

Personally, I’d like to thank my older brother, Ram Vennam, who always served as a
role model to me from a young age all the way through blazing the trail for me as a
developer and leader at IBM. Finally, I’d like to thank my wife Reena, my sister-in-law
Belinda, and my parents for always being there to support me—the only reason I’ve
made it this far in my career is the love and care from those dear to me.

xiv | Preface: Who This Book Is For

Introduction

There are three things that dominate 90% of technology conversations today: AI,
cybersecurity, and cloud—we’re guessing you figured out what this book is about by
the cover. (And we know you’re wondering: the animal is a black swan—quite fitting
when you think about the state of the world when we started writing the book.)

Collectively our authoring team has well over a century of IT expertise and that
means we’ve seen a lot of stuff (we had a different word in here, but it looks like the
editor changed that). If you’ve ever stumbled across the Gartner Hype Cycle, you’ll
know that just because a technology is the “talk of the town,” it doesn’t guarantee suc‐
cess in the grand scheme of things. We’ve found that even for those technologies that
find their way out of Gartner’s “Peak of Inflated Expectations” and into the “Plateau
of Productivity” part of their Hype Cycle curve, the calculus can still become a damp
squib (a wet firework that fails to go off). Time and time again, we see an upstart
technology that becomes all the rage, but just doesn’t quite manage to stick the land‐
ing the first time: Knowledge Graphs (we still think something will happen here),
Learning Gamification (at least the way most people implement it), governance (most
organizations have a least effort to comply approach), and Hadoop…just to name a
few.

Let’s be clear on something: Cloud is not in a hype cycle! In fact, it’s one of the most
significant platform inflection points of our time (especially when you start thinking
about cloud in the way we describe it in this book). It’s true, sometimes we look at
each other and say, “I can’t even keep a cell phone connection, how is the world going
to totally run on cloud?” Make no mistake about it, cloud is here and it’s here to stay
—you need to pivot the way you think about cloud if you want to get all you can out
of it.

However, we’ve found that most businesses aren’t getting the value out of the cloud
that they were expecting (the mental model around cloud was too narrowed by the
hype). Some might feel that there’s more value yet to be uncovered, other organiza‐
tions are guilty of not even knowing what to expect (just like AI, many jumped on the

xv

https://oreil.ly/YKqPS

notion that the gains will be instant—like magic), and some are even repatriating
public cloud workloads back to their traditional runtimes. Why? Too many compro‐
mises.

How do you get to cloud without compromise? It’s not a vendor thing. We’re not here
to tell you the only way to get cloud without compromise is to migrate everything to a
particular vendor’s public cloud. For example, while we think there are nuances for
specific types of applications that make the IBM Public Cloud a standout (highly
regulated industries like finance), other public cloud providers have their own char‐
acteristics that are differentiated too (take a look at the catalog and configuration
options on AWS).

There are two things to really grasp before you can get to a cloud without compro‐
mise. First, internalize what will become a mantra of this book: cloud is a capability,
not a destination. Cloud without compromise means you’re shifting your mindset
from a place to an operational model. Second, cloud without compromise means
you’re embracing a unified distributed hybrid cloud strategy. A hybrid cloud unifies
public cloud, private cloud, and on-premises infrastructure with consistent manage‐
ment and orchestration to create a single, flexible, cost-optimal IT infrastructure (the
distributed part means it doesn’t matter what vendor you select for your public cloud
resources. Let the gravitational pull to a cloud vendor be the strengths—its cloud
capabilities—that uniquely serve your business. This is why we’ll advocate again and
again for looking at cloud as a capability (instead of a destination), so that your busi‐
ness and the things it needs to be successful can run (and interoperate) anywhere to
everywhere. The outcome? Companies with a no compromise cloud strategy are
empowered businesses that can:

• Combine best-of-breed cloud services and functionality from multiple cloud
computing vendors

• Choose the optimal cloud computing environment for each workload
• Move workloads freely between public and private cloud as circumstances

change

When no compromises are made, companies are free to pursue their technical and
business objectives more effectively and cost-efficiently than they would otherwise be
able to through any single public or private cloud vendor alone. In fact, according to
one recent study, companies derive up to 2.5x more value from a hybrid cloud strat‐
egy than from following a single-cloud, single-vendor approach.

Initially, hybrid cloud architectures focused on the mechanics of transforming por‐
tions of a company’s on-premises datacenter into private cloud infrastructure, and
then connecting that infrastructure to public cloud environments hosted off-premises
by a public cloud provider. Today’s hybrid cloud architecture needs to be focused less
on physical connectivity, and more toward supporting workload portability across all

xvi | Introduction

https://oreil.ly/WydS3

cloud environments (the location or vendor doesn’t matter) and on automating the
deployment of those workloads to cloud environments (again, agnostic to vendor or
location) with the most gravitational pull for your application’s needs.

Several trends are driving this shift. As part of the next critical step in their digital
transformations, organizations are building new applications (and modernizing leg‐
acy applications) to leverage cloud native technologies—technologies that enable con‐
sistent and reliable development, deployment, management, and performance across
cloud environments and across cloud vendors, including on-premises infrastructure.
Specifically, they’re building and transforming applications to use microservices
architectures, which deconstruct unwieldy monolithic applications into smaller,
loosely coupled, reusable components focused on specific business functions. And
they’re deploying these applications in containers—lightweight executable units that
contain only the application code and just enough of the virtualized operating system
dependencies required to run it. These technologies serve as a foundation for ena‐
bling businesses to drive a new-age culture of productivity, such as development
cycles that last days or weeks (instead of quarters or years) and the inclusion of highly
effective methodologies like test-driven development, continuous integration and
continuous delivery (CI/CD), A/B testing, and more.

At a higher level, public and private clouds are no longer physical “locations” to con‐
nect together. For example, many cloud vendors now offer public cloud services that
run in their customers’ on-premises datacenters. Private clouds, once run exclusively
on-premises, are now often hosted in off-premises datacenters, on virtual private net‐
works (VPNs) or virtual private clouds (VPCs), or on dedicated infrastructure rented
from third-party providers (who may happen to be public cloud providers).

What’s more, infrastructure virtualization with the aid of automation (infrastructure
as code) allows these environments to be created, on demand, using any resources
located behind (or beyond) a firewall. This takes on added importance with the
advent of edge computing, which offers opportunities to improve global application
performance by moving workloads closer to where data is created and consumed.

Cloud native development makes it possible for developers to transform monolithic
applications into units of business-focused functionality that can be run anywhere
and reused within a variety of applications. A standard operating system (like Linux)
lets developers build any hardware dependency into a container. And Kubernetes
orchestration and automation delivers granular, set-it-and-forget-it control over con‐
tainer configuration and deployment—including security, load balancing, scalability,
and more—across multiple cloud environments. (Don’t worry if you don’t know any‐
thing about what we just wrote; this book is going to teach you about all of this.)

Introduction | xvii

We talk a lot in this book about the untapped cloud value that remains for those
downtrodden on their cloud journeys. To the uninitiated, they might think, “Yes, that
means if I move everything to a public cloud vendor, I will get all this value.” That’s
not what it means—remember, cloud is a capability, not a destination. But the right
cloud strategy (which you’ll learn how to craft in this book) will certainly deliver:

Improved developer productivity
This helps expand the adoption of Agile and DevOps methodologies, and enables
dev(elopment) teams to build once and deploy anywhere.

Greater infrastructure efficiency
With on-demand granular control over rapidly provisioned compute and storage
resources, development, and IT operations, teams can optimize their spend
across public cloud services, private clouds, and cloud vendors. Hybrid
cloud also helps companies modernize applications faster and connect cloud
services to data on cloud or on-premises infrastructure in ways that deliver new
value.

Larger breadth and depth
Access to a larger number of services spanning AI (which includes machine
learning and deep learning) capabilities, storage, data processing, analytics, auto‐
mation, and more. These are services that cloud vendors have tailored for your
business’s needs with the expertise and depth to run them at enterprise scale.

Improved regulatory compliance and security
A unified platform lets organizations draw on best-of-breed cloud security and
regulatory compliance technologies, implementing Zero Trust security and com‐
pliance across all environments in a consistent way.

Overall business acceleration
This includes shorter product development cycles; accelerated innovation and
time-to-market; faster response to customer feedback; faster delivery of applica‐
tions closer to the client (like edge ecommerce); and faster integration with part‐
ners or third parties to deliver new products and services.

If you want cloud without compromise, without a doubt in our minds, almost every
medium to large organization requires a hybrid cloud strategy that starts with capa‐
bilities and not destinations (let that fall into place afterward) and folks…that’s what
this book is all about.

xviii | Introduction

https://oreil.ly/M0YRU

CHAPTER 1

Cloudy Skies Are the Best Forecast Ever

A cherished bottle of Rémy Martin Louis XIII Cognac is blended from 1,200 different
cognacs aged up to 100 years, with each bottle representing the career achievements
of generational cellar masters. Parmigiano-Reggiano Stravecchione’s (the Italians
refer to it as the “King of Cheese”) complex flavor and texture are a result of no less
than four years of aging. Bruce Springsteen spent an unbelievable six months editing
the lyrics of his famous song “Born to Run.”

Oh, the sung praises of slow mastery—great things take time. But while cognac,
cheese, and songs can be slowly aged into masterpieces, technology years are like dog
years: things change, and change happens quickly. While the romanticism of slow
change is valuable for some things, today’s businesses and institutions need more
speed to market, more flexibility, and nimbleness to respond to changes in the econ‐
omy, buyer behavior, supply chains, geopolitical realities, climate change, and more.
If you had to prioritize a list of all the things you could do to deliver a better product
or service in the most optimized fashion, infusing technology into all parts of your
business should be at the top of the list.

The changes we’ve seen in the past few years are rewriting the basic behaviors and
assumptions we’ve had about IT. Technology has the very real effect of redefinition.
Businesses must rethink how they create and deliver value, how they compete, how
they transact, and ultimately how the business itself works. Technology provides a
strong basis for business and institutional innovation by creating a lingua franca for
data, applications, and workflows where an ecosystem of ideas from customers, sup‐
pliers, and partners can be brought together.

1

1 The nickname for the Friday following US Thanksgiving Day where stores offer deep discounts for the
Christmas shopping rush; many refer to this event and the days from it up until Christmas as “make or break”
in terms of sales for the current year.

In the US, the Black Friday shopping bonanza1 is a great example of how technology
changes IT practices. Many retailers still impose a blackout period against pushing
any technology changes during those dates because they don’t want to risk anything
that could impact profitability in the final days of the year. Then microservices came
along, which allowed a few retailers on the leading edge to change those behaviors.
For example, Amazon’s website isn’t a monolithic page of logic; it’s an eloquently
orchestrated set of microservices that come together and work harmoniously to form
a real application. Jeff Bezos, former Amazon CEO, once famously said, “Build serv‐
ices or look for a job somewhere else.” This is exactly why we tell clients their goal
isn’t to build applications, but rather to compose them! Amazon’s web pages are hun‐
dreds (if not thousands) of small services that have single jobs. Building software this
way completely redefined how that organization creates and delivers value, how it
works, how it competes, and how it transacts.

With technology, almost everything about a business—its logic, purpose, and differ‐
entiation—can be rendered in code, making digital innovation the most powerful way
to drive transformation and change (or to pivot during a crisis). The emergence of
public clouds has, until recently, led the debate on one of the fastest ways to prepare a
business for the future; however, a closer examination suggests that most workloads
(about 80%) have yet to move. Most companies have only taken on lifting and shift‐
ing what they could “as is” to the cloud, or building “greenfield” (net new or born on
the cloud) apps on public clouds.

As it turns out, the mission-critical workloads that run large businesses and institu‐
tions often span extensive IT estates that include traditional on-premises investments
and multiple clouds—private, public, and even on edge devices. Another inhibitor to
the realization of cloud value is that almost every client we’ve ever talked to has inves‐
ted with multiple cloud vendors and technologies. Add to this business operations
that span geographic locations, each with unique government and regulatory require‐
ments, and you’ve got a jumble of experiential and implemented cloud solutions
without interoperability. The end result? The inadvertent creation of a hybrid cloud
without a strategic approach, leading to messy, high-friction barriers to innovation
and realization of your cloud aspirations. Our recommendation? Embrace the diver‐
sity by building a purposeful hybrid cloud strategy (we’ll tell you how throughout this
book). If you’re familiar with Hadoop, its fate was sealed because too many business
leaders thought they could build a single analytics strategy around it. The cloud is the
same: a single cloud strategy just isn’t realistic thinking.

2 | Chapter 1: Cloudy Skies Are the Best Forecast Ever

Thrivers, Divers, and New Arrivers
Without question, the events of 2020 were an awakening for many. In 2021, the
effects of the COVID-19 fallout continue to impact nations the world over, changing
commerce and lifestyles in ways that would have seemed unthinkable just a short
while ago. The only certain fact in these uncertain times is that “things” will never be
the same, even with a vaccine. Whatever the future will be dubbed—“back to nor‐
mal,” “the new normal,” or our preference “the new abnormal”—leaders must reckon
with a new set of challenges that span the gamut from societal reform, to global
health, to new ways of conducting business and education. One area of upheaval that
has often been treated as an afterthought but has been profoundly changed by the
events of these last few years: the way business is (and will be) done.

The COVID-19 pandemic has been an eye opener on many fronts. From a business
point of view, most companies have come to realize (COVID aside) they are simply
not modernized (prepared) for a digital economy. Each of us has had experiences that
could fuel stories to be told. We’ve heard early anecdotes of people attempting to
order toilet paper online from a big-box store, then walking by a toilet paper endcap
in a brick-and-mortar store because they didn’t want to panic buy, only to find out
that their online order could not be fulfilled and was cancelled!

Another big-box store had an outage and could not process transactions; yet another
familiar household name left customers in a web chat queue for hours, waiting for
answers to basic questions such as order status or finding open locations. Some peo‐
ple waited for hours on both the phone and in chat queues to see which would
resolve the problem (or get a response) faster, and discovered that these two channels
made the business seem like different companies—so much for your omnichannel
support (insert your experience here...). There’s no coincidence that all of these big-
name stores weren’t born online. They (and us as customers) figured out quickly that
their transformation journeys weren’t nearly on the well-trodden path that they
thought they were. The truth is that they realized that their hard-won “digital trans‐
formation” wasn’t anywhere near as effective as they thought.

One thing is certain: large or small, those companies that didn’t have a true pulse on
their digital transformation before most certainly do now. They’ve seen customer sat‐
isfaction drop to nonexistent levels because of a lack of digitized self-service resolu‐
tion and overall order fulfillment frustrations (can you say, “negative Net Promoter
Score”—don’t snicker, it’s a real possible score). For many, it took months to set up
curbside pickup; many vendors’ online SKU catalogs still don’t match what’s in-store;
search engines “found” merchandise that was out-of-stock, but didn’t tell the cus‐
tomer until checkout (just when you thought you finally found what you needed);
and many recommendation engines surfaced highly sought-after items in stock-out
positions to go along with your in-stock purchases...frustrating.

Thrivers, Divers, and New Arrivers | 3

These are all examples of a value chain that ignored user centricity and collapsed
upon itself—supply chain disruption that was carelessly surfaced to clients in need at
the most inopportune time. These companies were all guilty of not knowing what
they already could have known—an enterprise amnesia if you will. It’s perfectly fine
to be sold out of a hot item; it’s quite another to take a user right through to checkout,
and then surface an out-of-stock position or direct customers to a brick-and-mortar
store based on inventory data that’s more stale than the “Last Day for Sale” rack at the
seediest donut shop you’ve even been in. But was this avoidable? Yes!

These actions (or perhaps better said, inactions) cost sales, eroded customer loyalty,
diluted trust, and opened the front doors with a “Welcome to our Home—Take What
you Want” mat for modernized businesses to steal market share—and so some of
them did. COVID-19 has caused many businesses large and small to fail; you just
need to read the headlines to see what happened. While it’s nearly impossible to
understate the devastating impact of COVID-19 on global commerce and people’s
well-being, there is something few are speaking about: the harsh toll inflicted on busi‐
nesses who’ve been talking (for a long time) about things like resilience and agility
but didn’t make them true priorities (some might call it “walk the talk”). Contrast this
with those who prioritized these values and were well prepared to seize unexpected
opportunities for growth. These companies became digitally touchless and fully (and
consistent) omni-channel; it didn’t matter if you were on a mobile app or website,
phone or chatbot: your interactions had the same capabilities in either medium. That
isn’t to say there wasn’t a downside or pain for even the most prepared companies;
however, it’s fair to note that if most companies had a six-month warning of what was
coming, they would have done a lot of things differently and prepared in different
ways. That’s the point.

During the unprecedented challenges of COVID-19, many companies were divers,
while some were thrivers. Consider two famous branded US-based craft and bulk
food stores. Both enabled their omni-channel presence with backend business opera‐
tions to support a seamless curbside pickup experience within days of closing their
retail stores (the thrivers). In contrast, because of outdated monolithic ordering sys‐
tems and static infrastructure, a number of large grocery stores and retailers took
weeks or months to get their order fulfillment processes in line with the current real‐
ity—despite having far more IT resources and budget. Others found their way as new
providers as they rose to the occasion: the new arrivers. For example, think about the
growth of internet-connected fitness class apps like DownDog (provides a studio-like
yoga experience in the comfort of your home) or fitness equipment companies like
Ergatta (rowing) or Tonal (pulley weight training with a large screen assistant), and so
on. These new arrivers differentiate from those that thrived (like Peloton). As you can
see, across all industry, some thrived, some arrived, but many dived.

4 | Chapter 1: Cloudy Skies Are the Best Forecast Ever

In another instance, a sporting goods store couldn’t process orders (or they took
minutes to process) leading to a record number of abandoned online shopping bas‐
kets. Desperate customers ran to what were once virtually unknown vendors who
could swiftly answer questions or tell them their order was processed in a timely
manner (and where an order confirmed meant you were actually getting the item,
which wasn’t a guarantee with the divers)—a warm welcome to the new arrivers!

There are far more bad stories than good—many more divers than thrivers or arriv‐
ers—and the consequences of shaken consumer confidence continues to outlive the
pandemic. The one undeniable advantage shared by arrivers and thrivers alike was a
well-thought-out renovation and innovation framework. As we move into emerging-
from-pandemic discussions with clients, it’s clear that their digital modernization
plans just got accelerated by five years as digital-first becomes even more critical to
their future.

Business Vaccination: The Arriver’s Guide
As the world deploys COVID-19 relief in the form of vaccination, a business “vacci‐
nation” has long already existed—it’s the activation of a well-proven innovation and
renovation strategy (we’ll give you a framework for understanding renovation and
innovation at the end of Chapter 2). That’s a bold statement, and the point isn’t to
make light of the seriousness of COVID-19 from a personal health perspective, but to
seriously consider the components of an agenda that has the net effect of moving the
mindset (and the business for that matter) away from “survive” and into “thrive and
arrive.”

Figure 1-1 shows a well-trodden and proven path to renovate and innovate your IT
estates. We’ll discuss each of the steps in the sections that follow.

Business Vaccination: The Arriver’s Guide | 5

Figure 1-1. The Arriver’s Guide

Cost Takeout
Undoubtedly, COVID-19 has hit many bottom lines and that will surely mean (to
many) reduced budgets and sensitivities to investments that don’t have direct impact
on profit. One cost-savings strategy is cloud computing. As it turns out, many who
think they’ll just flip their apps to a public cloud often come up short on cost savings
(some spend more—read “The Cost of Cloud, a Trillion Dollar Paradox”) or never
fully realize the cloud’s benefits; this is why experts agree that about 80% of applica‐
tions haven’t become “cloud-ified” (we’ll talk about this later in the book). Folks that
come up short are often tying the word cloud to a destination and not a capability.

An additional cost-takeout winner will be consolidation, which can impact hardware
and software costs (never underestimate the ability for good hardware to reduce
software core licenses). The use of cloud native technologies like containers and
Kubernetes are huge, as consolidation and virtualization play into the hands of
any cost-savings strategy. This all enables business in an economically savvy and

6 | Chapter 1: Cloudy Skies Are the Best Forecast Ever

https://oreil.ly/kHnRf

concentrated fashion. This also frees resources (computational and financial) that can
be funneled toward other critical areas that make up an infrastructure agenda—such
as resiliency, security, and performance. Bottom line: cost-savings opportunities will
come with other considerations that need to be well understood and planned, and
those that think the cost savings opportunity is strategically but a simple click away
will be as successful as those business leaders who think AI is magic.

Resiliency
This matters more than ever before: in the new “abnormal,” consumer behaviors of
buying, selling, and socializing have been drastically altered. Even after populations
have been vaccinated en masse, long-term buying habits, underwriting car insurance
in a hybrid workplace environment (this hybrid is a destination), banking (and more)
will be permanently changed. Consider the effects of a potential future COVID-19
flare up: the storefront you offer clients for transactions has to keep on running; your
contactless payment method must work (in some places you weren’t even allowed to
take cash for purchases). These solutions need to be in place before the next potential
challenge arises. In other words, getting caught on your heels again will not be an
option. You should ensure you’re familiar with key performance indicators (KPIs),
such as mean time to repair (MTTR) and mean time between failure (MTBF), recov‐
ery point objectives (RPOs), and recovery time objectives (RTOs), among others. In
plain speak, these KPIs provide answers to questions like: “How long can you typi‐
cally go without an outage?”, “How often will an outage be expected as a function of
time?”, “How much data can you stand losing?”, and “How fast do you need to get
back up and running?” You’ll need to know the answers to these questions like the
back of your hand.

Performance
The shift to more online procurement and contracting means more performance
demands on the infrastructure. Think about panic buying. While much fun can be
made of toilet paper hoarders amidst lockdowns and supply chain breakdowns, think
about critical drug therapies and interventions. For many, medical prescriptions
became a legitimate panic and so began a race to pharmacies to fill them. Pharma‐
ceutical systems had to keep running, even under the unprecedented transaction lev‐
els they experienced in the first weeks of the COVID-19 pandemic (not just from
individuals buying their medicine, but from pharmacists needing to pull medical
records, allergy information, cross-drug interactions, warnings, and more). There
were pharmacies during this challenge that didn’t miss a beat, and those that sadly got
beat up. It’s also worth a moment of thought to consider how the accelerated move‐
ment to contactless payment methods helped to mitigate the spread of disease. Those
payment systems not only needed to work (resiliency) but they needed to respond
quickly (performance)—before the COVID-19 crisis began, if point-of-sale systems

Business Vaccination: The Arriver’s Guide | 7

went down, accepting cash only was merely a frustration. As COVID-19 infections
became more and more prevalent, these systems going down literally meant “no sale.”

Security
As more and more businesses harden their online presence in response to growing
customer demands, security is paramount. Evidence suggests that hackers used the
COVID pandemic as an opportunity to up their attack frequencies—Forbes noted a
238% rise in attacks on banks and a 600% increase on cloud servers between January
2020 and April 2020! We expect to see concepts such as Zero Trust, Security Informa‐
tion and Event Management (SIEM), and Trusted Execution Environments (TEEs)
move from “great to talk about” to real plans to do it. The more and more people
transact online, the more risk we face with fraud and identity theft. The more data
that’s in-flight or at-rest, the more it needs to be protected (hint: today, the world isn’t
doing the job well enough). In fact, contactless pay providers like Apple Pay, PayPal,
or Android Pay (among others) should see a surge because credit card information
doesn’t have to land or flow through the vendor, thereby lowering the risk of credit
card details falling into the wrong hands. What about the protection of data at rest?
We’re betting (because we were shocked at how much we didn’t know until we knew)
most don’t fully appreciate how much of a role even storage considerations play in a
truly hardened cyber-resilient strategy.

Now consider the fact that the amount of data breaches and data heists for crypto
ransoms has never been more plentiful (2021 is proving this in monthly intervals)
and dangerous (a disproportionate number of data ransom schemes are mounting up
against healthcare facilities—and now think about COVID).

Fact: corporate boards everywhere are asking all kinds of security questions and the
job market is thriving (last we checked, we saw well over 200,000 Information Secu‐
rity jobs). This means that if your answer to the question “Where did the hacker go
with our data?” begins cheekily with “He ransomware,” that won’t be cute or funny to
anyone. This suggests that companies (now more than ever) need to align, protect,
and manage threats to their ecosystem (both on-premises and off-premises)—and
COVID-19 has made it readily apparent just who is (and who isn’t) ready to offer
those assurances to their customers.

Modernization
Modernization is a must-have mindset for both thrivers and arrivers. Flexibility will
be a difference maker—and flexibility leads you to the cloud. The term hybrid multi‐
cloud (a mix of multiple cloud vendors and cloud technologies on-premises and in
public cloud providers) is a hot topic these days because its very name embodies flex‐
ibility, and this is a space you’ve got to know and focus on. The emerging space of
distributed cloud (the same cloud technology across multiple cloud destinations,

8 | Chapter 1: Cloudy Skies Are the Best Forecast Ever

https://oreil.ly/dkBiT

delivered by technologies like IBM Cloud Satellite, Amazon Output, and Google
Anthos) is becoming a hot topic as companies examine the management and skills
costs associated with multiple cloud vendors. Whatever the hybrid cloud genre
(multicloud, distributed, mix of on-prem and public, or all of them), dynamic
(metered) pricing models for consumption of resources is today’s marketplace trend.
That’s a cloud capability. Infrastructure that’s flexible in capacity to scale up (or down)
in a utility-like fashion at the most granular levels—down to the minute. That’s a
cloud capability. A service catalog to self-provision modern development environ‐
ments or applications to accelerate workflow. That’s a cloud capability. We could go
on (and we will).

But there are right and wrong ways to go about building a cloud strategy. To do it
right, we’ve developed a mantra for this book: “Cloud is a capability, not a destina‐
tion.” What does that mean? If you think of the cloud as a destination, you’ll be think‐
ing about AWS, or Azure, or Google, or IBM. And you’ll be tempted to unify behind
one of them. That’s not how the cloud era is playing out for individuals or companies.
Think about your personal computing infrastructure. If you have an Apple phone,
tablet, or laptop, you’re probably using iCloud for something (like backing up your
contacts). If you watch movies on Netflix, you’re using Netflix’s cloud providers (yes,
they run on two different clouds that must work together seamlessly to deliver you
new episodes of Grey’s Anatomy). Same for Spotify. And if you use Gmail, you’re in
Google’s cloud.

Businesses are no different. A company’s cloud journey usually starts with a few pilot
projects in different departments, often because no one wants to wait for IT to
approve new hardware: perhaps it’s easier to train your “playing around” AI model
using Google Collab’s free GPU resources versus going to the “Department of No!”
(Finance) to get some GPUs. By the time the C-suite starts thinking about a “cloud
strategy,” the company is already on multiple clouds. It’s already multicloud. (This is
classic “Shadow IT”: you see it in choice of databases, cloud platforms, and the lot.)

But multicloud itself is a dead end if there’s no effort to provide a uniform program‐
ming and operational interface to those clouds. You shouldn’t have to care about
where your data is located or where your software runs. That’s why the “cloud” isn’t a
destination. If it is, you’ll end up with a fight between marketing doing BI on AWS,
finance doing business planning on IBM, and R&D doing AI on GCP. These efforts
all need to collaborate. Hybrid clouds are all about integrating multiple cloud provid‐
ers and in some cases, creating a single unified interface to them (distributed cloud)
—and, for that matter, to your own on-premises data and applications. That’s where
the value of the cloud lies: in the flexibility of not having to worry about where your
data is, or where your code is running. That’s what it means to say, “Cloud is a
capability.”

Business Vaccination: The Arriver’s Guide | 9

According to McKinsey (and many others) 80% of enterprises are choosing to work
in a hybrid multicloud environment, now and in the future. Tying these value state‐
ments to a destination does nothing but cheat the enterprise.

Most cloud strategies have been focused on building new applica‐
tions on the cloud (they are called greenfield apps) or a lift-and-
shift of existing applications to the public cloud. We refer to this
cloud strategy as “Cloud Chapter 1” (an epoch in the journey to
cloud, not an actual chapter in this book). We think the hybrid
cloud—and its ability to capture the true value of its capabilities—
will be the next chapter in the cloud storyline and thus we often
refer to it as “Cloud Chapter 2” (the next epoch of the cloud jour‐
ney). Think of it as getting deeper into the cloud story, where the
characters, the plot, and immersion thickens and provides more
value.

If you’re having a conversation about modernization, bringing the right apps and
services up to par with containers, orchestration, and microservices-based architec‐
tures should be among your highest priorities. You should definitely be investigating
Kubernetes (K8s). K8s platforms such as Red Hat OpenShift Container Platform
(OCP) are becoming the new “operating system.” Open Container Initiative (OCI)–
compliant storage containers, enterprise-ready Kubernetes orchestration of those
containers, and automation via Ansible and Terraform are the essential pillars for cre‐
ating an agile IT foundation. (Don’t worry if those words don’t mean anything to you
yet; we’ll dig into them throughout this book, but understand them as the technolo‐
gies that make “Chapter 2” of the cloud possible.) If you build containerized applica‐
tions to the open standard OCI governance structure, those containerized
applications can be provisioned anywhere (on-premises or in the public cloud),
regardless of the cloud vendor. Modernizing applications and services on containers
deployed with K8s orchestration is one of the best strategies that you can invest in. It
doesn’t matter whether your applications are solely apps born on the cloud (people
refer to these as cloud native; they were built with modern approaches like microser‐
vices and containerized from the start), legacy apps that run your business, or a mish‐
mash of them all (which is more likely the case). This is a winning strategy.

It’s been said that basketball is a game where a single player can take a team to a title;
however, in soccer, it’s your weakest link that can keep you from winning anything.
With that in mind, remember that the orchestration platform (K8s) always emulates
the ethos of the infrastructure. Was the infrastructure built for resiliency and fast
recovery? Was it built to scale? Was it built securely right down to the virtualization
level and for Confidential Computing? This all matters; these are all good questions
to ask. The modernization journey is a soccer game, not a basketball game.

10 | Chapter 1: Cloudy Skies Are the Best Forecast Ever

AI
Can there be a tech-minded book written without the word AI these days? We think
not. Yes, it’s hyped, and the world tends to overhype what’s possible in the next two
years. But we can promise you that it often underestimates the profound changes
brought about by the technologies that stick around for the next five to ten years. We
think that in the future “AI” won’t stand for Artificial Intelligence, but rather Ambient
Intelligence. Why the word “ambient”? Think of ambient lighting; when done cor‐
rectly, you don’t really notice that it’s there, but it’s doing its job. AI will serve a similar
role in our day-to-day lives and jobs: it will be everywhere, and become just a natural
part of our environment. We will stop thinking of it as strange and different.

To us, the opportunities of AI can be summed up as: automation, optimization, and
prediction. AI will drive costs down and client engagement up. Without question,
successful businesses will unlock the power of data with AI—according to Forbes, up
to 73% of data goes unused in most organizations—that’s why your AI needs an IA
(information architecture). What’s more, automation will be unavoidable; some
reports suggest that enterprises can use automation to reclaim 120+ billion hours per
year spent on low-value work. As companies move from defining their AI progress
via algorithm counts in the dozens (at best) to the thousands, discussions will move
well beyond how fast and accurate you can train your AI. We will be talking about
inferencing speeds (scoring), lifecycle management (the moment you publish your AI
algorithm is the moment it’s out of date), sourcing data, explainability, bias, and
more. Despite being a cloud book, we’re going to give you a skills hotlist that any suc‐
cessful enterprise adopting AI needs to master: language, automation, and trust.
Cloud is going to be the conduit for great AI...so these themes go hand in hand.

So Why Are Cloudy Skies the Best Forecast Ever?
From golf birdies to bankers, free drops to rain drops, highways to back roads, cloud
technology affects them all (and all parts in between). Hybrid cloud is the next major
shift in the evolution of IT…think about it, when any new IT architecture emerges
and spreads, it has the potential to change the world and the concept of hybrid cloud
(which will eventually just be called “cloud”) will completely change the way renova‐
tors renovate and innovators innovate.

We believe we’re at a key inflection point on the continuum of human history and
innovation. Our world is set to pivot from a world of automation where humans are
supported by technology to a data-rich ambient intelligent world where the technol‐
ogy is supported by humans. To us, this pending shift means that the largest wave of
business transformation architecture is just ahead, and it’ll be driven by three major
shifts:

So Why Are Cloudy Skies the Best Forecast Ever? | 11

https://oreil.ly/AaEKg

1. The modernization of critical workloads to build scalable applications at speed.
2. The adoption of Kubernetes to orchestrate those applications across any environ‐

ment, no matter the vendor or location of the compute runtime.
3. This will all compound to serve as a springboard for the growing use of opera‐

tional AI and edge applications to create data-driven insights that shape business
outcomes.

As you go through this book, we think it’ll be obvious that only a hybrid cloud archi‐
tecture can provide a consistent, standards-based approach to development, security,
and the operational hygiene that’ll be required. It is a smarter open architecture that
allows for workload portability, orchestration, and management across multiple envi‐
ronments. We won’t be able to stress it enough in this book: get into the cloud as
capability mindset (as opposed to destination) and you’ll be a leader of an organiza‐
tion that simply does better.

12 | Chapter 1: Cloudy Skies Are the Best Forecast Ever

CHAPTER 2

Evolution of Cloud

In the first chapter, we introduced you to the thrivers, divers, and new arrivers; we
boldly declared the mantra of this book (“Cloud is a capability, not a destination.”),
and gave you a guide to digital transformation. In this chapter, we’ll discuss the evolu‐
tion of cloud, where it’s going, and some things to keep in mind as you begin (or con‐
tinue) your capability journey.

Are You on the Intranet, Internet, or Extranet?
Nah—Just Internet
To get a feeling for what we’re talking about, consider the ubiquitous phrase: the
internet. At one time, many would subdivide internet technologies into an access
control list of sorts. There was talk of the EXTRAnet: a controlled private network
limited to vendors, partners, suppliers, or other authorized groups. Today, most
would say an extranet provides access from outside the firewall to resources inside
the firewall for a value chain based on membership. For example, when you return
equipment to a store that sends your broken item back to the manufacturer who deals
with the warranty claim, the store is likely to log in to the manufacturer’s site and
open a ticket, but that’s about it. Even so, bringing your items to the store is a neces‐
sary step because the store has access that the customer doesn’t.

At work we used the intRAnet: an internet that was behind a firewall and dedicated to
providing information and services within an organization, usually to the exclusion
of access to outsiders. In other words, if you didn’t work at the company, you had no
access to it. This intranet would have department operational manuals, performance
reviews, sensitive documents, code repos: all the stuff used to run your business that
is nobody else’s business.

13

Then it started. A rallying cry around a set number of standards by groups like the
Internet Engineering Task Force (IETF) or the World Wide Web Consortium (W3C).
Communities ratified all kinds of standards, from documents (HTML), to fetching
those documents (HTTP), to the concept of time, and all parts in between; soon
enough, things just became referred to as the INTERnet. Think about it, when was
the last time you used a word other than internet to describe these kinds of networks?
When was the last time you heard someone at work say, “I found it on our intranet?”
Answer: you were probably dancing the Macarena and weren’t embarrassed doing it.
(Sure, there will be some roles where this differentiation matters, but this isn’t how
business talks and it isn’t how most people think.) The bottom line: intranet, extranet,
and internet just became internet.

Are You on a Private Cloud, Public Cloud, or Community
Cloud? Nah—Just Cloud
History has a way of repeating itself. Think “cloud.” Cloud-talk today centers around
terms like public clouds, community clouds, and private clouds; but work has started
on a bunch of standards that have started to evolve and unify the patterns.

We think cloud will follow the same naming path as the internet and will settle on
hybrid cloud (again, cloud as a capability not a destination), or just cloud for short.
We’re already seeing technologies that support cloud computing in general (just like
those that supported internet technologies). Think of the standardized open source
technologies (many of which we cover in this book) such as Jenkins, Terraform, Ansi‐
ble, Docker, and Kubernetes (K8s), all supported by major vendors for the orchestra‐
tion and management of cloud native applications. These are the technologies that
are creating integrated hybrid clouds.

With this in mind, we want to officially anoint our book’s mantra (you’ll hear it time
and time again through the book); say it with us: “Cloud is a capability, not a destina‐
tion!” If we can agree that cloud is a capability, then it’s perfectly aligned to where IT
wants (and needs) to go: decentralized, flexible, performant, open, and secure.

Just like the “prevent defense” (an American football defense that’s happy to let the
offense move downfield but holds defenders further back to try to prevent a major
score) we think prevents a win, a “one location and vendor cloud fits all” approach
won’t work either. Believe us, we’ve seen it fail, we’ve even seen some overzealous
competitor sales (and IBM) reps try to push it. It often doesn’t work and it’s not the
right tone for your business. Companies need the flexibility to run their workloads
across any platform without having to rewrite everything as they go.

14 | Chapter 2: Evolution of Cloud

History Repeats Itself: From Granularity of Terms to
General Terms
This is why our book’s mantra, “Cloud is a capability, not a destination,” encompasses
a mindset shift you (and the organizations you work for) have to make to fully exploit
the opportunities that those servers in the cloud offer. We’ve seen success in the cloud
—mostly companies producing greenfield apps; that’s great if you’re a startup or
building net new in a roll your own (RYO) fashion. But what about established
investments? Many of these companies looked at the cloud as a pure cost-saving
opportunity, and while some had success (most in limited fashions that didn’t nearly
match the promises), others were left unpleasantly surprised. While the cloud can
offer you some cost savings (cloud toe dippers typically start with archive or test), it
all depends on the running workloads, data gravity, and your business. But cloud
can’t just be about cost savings—in fact, over time it’ll prove to be more about agility
than cost savings. Sure, that capability has potential to reduce the obvious costs, but
it’s about putting your business in the best position possible to deliver.

But here is the cold hard truth: we estimate that a mere 20% of the potential value
from cloud computing is being realized today by mature enterprises via the public
cloud. As you will learn about in this book, cloud is more than cost savings; it’s a ren‐
ovation opportunity that delivers flexibility. When you think about it the right way,
you’ll start to think beyond “lifting and shifting” as-is applications to the cloud. For
example, releasing software frequently to users is usually a time-consuming and pain‐
ful process. Continuous integration and continuous delivery (CI/CD) can help organ‐
izations become more agile by automating and streamlining the steps involved in
going from an idea, a change in the market, a challenge (like COVID-19), or a busi‐
ness requirement to ever-increasing value delivered to the customer.

Adoption of cloud being a capability and not a destination opens up your world to
rethinking how applications are built, delivering continuous streams of improvement
to engage your user base (think about how often apps get updated on your iPhone),
and so much more. We believe this mantra will have you look at the technologies that
support the cloud (Kubernetes, Docker, Jenkins, Terraform, and oh so many more)
and appreciate how they make for agile organizations and encompass the entire end-
to-end lifecycle of an idea, pivot, or change of course you need for your business.

So how do you access the 80% of value that’s yet to be unlocked? You embrace a
hybrid strategy and all its components (on-premises, public cloud, multicloud, dis‐
tributed cloud). In fact, don’t just embrace it—demand it. When vendors come
knocking, talk about capability. Discuss the ability to dynamically access and move
capacity that your business needs regardless of location. Not just on-premises or in a
public cloud—but taking an app from one cloud provider and seamlessly running it
on another; remember, we want the ultimate flexibility here. Start to think about

History Repeats Itself: From Granularity of Terms to General Terms | 15

https://oreil.ly/4YNUK

breaking down the monoliths and containerizing those apps with a fundamental
change to the operating model.

Building a hybrid cloud strategy and playbook is essential if you want to unleash the
full potential of your cloud; in fact, studies suggest such a strategy can deliver 2.5x
more value than a public-only strategy (the 20% of current captured cloud value we
alluded to earlier).

Cloud is cloud—it’s an operational model and this shift from a place to an operational
model will deliver superpowers to the organizations you serve; it’s about opening
doors to more sources of value, including:

• Infrastructure cost efficiencies
• Business continuity and acceleration
• Increased developer (and IT) productivity
• Security and regulatory compliance
• Flexibility to seize opportunities and drive value

Our definition of cloud (hybrid meaning multiple places and vendors) means there is
lots of choice in the marketplace.

As practitioners in the field and running businesses, we’ve made some mistakes along
the way, have the scar tissue to prove it, and offer you this list of characteristics that
any vendor should demonstrate:

• Industry expertise
• Proven security
• Confidential Computing and Zero Trust architectures
• Build once and run anywhere with consistency
• Capture the world’s innovation

Hybrid Cloud’s “Chapter 2”: Distributed Cloud
Cloud service providers (CSPs) are forever innovating, learning from their own (or
other people’s) past mistakes, identifying new challenges, and pushing the boundaries
of what is possible. With the rampant growth of hybrid cloud, several pesky chal‐
lenges have surfaced like weeds, threatening to choke out the potential held by this
new computing paradigm. How can customers tap into the capabilities of public
cloud, without needing to actually be deployed on public cloud? How can one public
cloud vendor’s capabilities be introduced on-premises, brought to the edge (especially
with the onset of 5G), or even made available on other public clouds—running in a

16 | Chapter 2: Evolution of Cloud

https://www.ibm.com/cloud/hybrid

manner that is not only consistent, but also not overwhelming from a management
perspective?

Enter another term for your repertoire: distributed cloud. A distributed cloud is a
public cloud computing approach that replicates the power of your favorite CSP on
infrastructure outside of that CSP’s datacenters. Essentially, you’re extending the pub‐
lic cloud to on-premises, private cloud, and edge environments. Distributed cloud is
offered as a service by major cloud providers, and includes IBM Cloud Satellite, AWS
Outposts, Google Anthos, and Azure Stack; each of these is unique in their own way,
but all are focused on the idea of extending public cloud capabilities to customer
environments. Throughout this book, we stress our mantra multiple times: cloud is a
capability, not a destination! With a distributed cloud (a subset of hybrid cloud),
companies can bring the capabilities of cloud that they need to an environment of
their choosing. When done correctly, distributed cloud removes the challenges of
running in different locations and occludes the needless details from you. Essentially,
it makes running cloud services within your on-premises datacenter just as easy and
seamless as running those same services in a public cloud datacenter.

Figure 2-1 gives you a rough idea of how a distributed cloud works. You start with an
underlying foundation of providers—be they rooted on public clouds, on-premises
environments, or edge locations. Building on that, you have a standard layer of dis‐
tributed cloud hosts (simply referred to as hosts); this layer is essentially compute
power. Upon a standardized layer of hosts, organizations can leverage services from
the public cloud, or even build their own custom applications; quite simply, dis‐
tributed cloud brings the power of a CSP right to your doorstep and gives you all the
placement control you could ask for.

Figure 2-1. Distributed cloud

Distributed Cloud On-Premises
Unification of your technology stack is table stakes for any successful hybrid cloud
strategy. For example, imagine using VMware workloads on-premises, but container-
based Kubernetes in the cloud. In preparation for a potential spike in traffic, your

Hybrid Cloud’s “Chapter 2”: Distributed Cloud | 17

team would be unable to rapidly utilize the elasticity of Kubernetes in the cloud.
Translating from VMs to containers is simply inefficient and difficult! Instead, one
ideal solution is to begin implementing Kubernetes on-premises and modernize the
VMware workloads to run as containers on K8s instead. Here’s where things start to
get tricky. In the public cloud, customers are able to readily utilize managed services
to easily create and run Kubernetes clusters. They can use tools like Terraform with
provider plug-ins that integrate with a CSP to automate the creation of one or many
clusters with minimal effort.

Let’s clarify what we mean by the term managed service, as it has
become overloaded with a lot of assumptions (and potential bag‐
gage). In this context, we’re referring to services that CSPs manage
for you, while still providing you administrative access and control.
For example, managed Kubernetes services automate the process of
upgrading clusters (done by the CSPs) but allow you to choose
when and which version for the actual operation.

You can probably guess where we’re going with this: the on-premises and private
cloud experience is nowhere near as streamlined as a managed Kubernetes service.
Organizations will need to train an operations team to handle the deployment and
management of Kubernetes clusters. In addition, they’ll need to hire and train a site
reliability engineering (SRE) team to ensure high availability and—in the worst-case
scenario—respond to late-night critical situations (crit-sits).

Here’s where a distributed cloud offering shines. These organizations can continue to
leverage the power of their CSP while running on-premises. We think IBM has done
something quite special with its cloud strategy that truly puts the hybrid into hybrid
cloud. First, the Red Hat OpenShift Container Platform is truly write once, run any‐
where. (Remember how Java was “write once, test everywhere”? It’s not like that.) Sec‐
ond, a product called IBM Cloud Satellite runs inside a customer’s datacenter or out at
the edge; each Cloud Satellite location is connected using IBM Cloud Satellite Link to
provide connectivity to a consistent and centralized control plane (this is important)
hosted on the IBM Cloud. For example, let’s say your business enabled the use of IBM
Cloud Satellite for all of your environments, including on-premises. As an operations
engineer, when it comes time to create a new OpenShift cluster on-premises, you’d
first start by logging in to the control plane. When it comes time to choose which
datacenter to deploy the cluster into, you select an on-premises “Satellite location.”
(This Satellite location could be on any CSP too!)

By extending the power of cloud to on-premises environments, your hybrid cloud
operations are optimized. Your operations teams no longer need to worry about
learning how to deploy a cluster on-premises, as they can just use the managed public
cloud approach. This demonstrates the true power of distributed cloud—the cloud is
used as a capability, not a destination; what’s more, the capabilities all have a

18 | Chapter 2: Evolution of Cloud

consistent management interface which is essential to flatten time to adoption curves
and keep things simple.

Living on the Edge: Distributed Cloud
Data is everywhere around us. Many times, we get so caught up with focusing on data
being processed in our datacenters that we forget where a heck of a lot of data is
actually created—by humans like us. Every time we open our phone, walk into a
supermarket, buy a movie ticket, or pour a drink at a fountain station, we’re generat‐
ing data. Generally, this data is captured, sent off to some datacenter for processing,
stored in some database, and more data is sent back. However, it’s not always reason‐
able to wait for the data to go all the way back to a datacenter. Imagine you’re in a
self-driving car and that car is processing thousands of photos per second (video is
nothing more than a bunch of still-frame pictures stitched together). Meanwhile the
car is applying computer vision algorithms, along with data analysis from the
advanced driver assistance system (ADAS) sensors, radar, and lidar. How safe would
you feel if that car was sending data to a datacenter for processing (think back to your
last dropped call)? For the driver, the latency (and risk) would simply be too high.

Edge computing provides a number of advantages—and it’s not just speed. It also
allows businesses to scale more effectively by placing data collection and processing
closer to the edge, rather than having to scale out expensive centralized datacenters.
In addition, security is a major advantage as data never has to leave the edge—this
can be critical for compliance with regulations like GDPR. Furthermore, some indus‐
tries have regulations that state if you “land” that data (store it in the datacenter) it
becomes subject to all kinds of data-retention rules.

One of the key challenges with edge computing is rapid growth, as each edge location
will have its own set of workloads, microservices, and databases. Customers need a
unified strategy to manage the multiple locations consistently. Distributed cloud
shines again for edge use cases, where you can register your edge locations and man‐
age them as if they were any other cloud datacenter. This means utilizing the power of
the cloud, including DevOps toolchains, security policies, and advanced machine
learning services all within your edge locations.

Imagine a furniture company with distribution centers across the world. Chances are
that similar workloads are required to run in every distribution center, such as inven‐
tory management, employee clock-ins, IoT sensors for temperature and humidity,
and outgoing shipment tracking. Instead of having an operations team handle each
distribution center as a unique (but connected) environment—which can quickly get
very expensive—why not use a distributed cloud approach to manage all these edge
locations centrally? With a distributed cloud offering, you can create abstractions that
enable you to simplify the management of grouped locations. This allows you to roll

Living on the Edge: Distributed Cloud | 19

out application services, compliance policies, and security rules across multiple envi‐
ronments at once.

Distributed Cloud for Multicloud
The primary advantage of distributed cloud is that you can extend the benefits of a
public cloud anywhere. Naturally, if you want to run all of your workloads on a spe‐
cific vendor’s cloud, so be it. But the reality (in our experience of having worked
thousands of customer engagements over the years) is that no medium-to-large
enterprise is running on a single cloud.

Flexera’s “Cloud Computing Trends: 2021 State of the Cloud
Report” noted that organizations are using (on average) 2.6 public
and 2.7 private clouds and they’re experimenting with an addi‐
tional 1.1 public clouds and 2.2 private clouds.

Organizations everywhere want to retain the ability to choose the right cloud pro‐
vider for their workloads (some public clouds are purpose built for finance and insur‐
ance), but this can be a real conundrum for many: at a minimum, maintaining
multiple cloud environments will be taxing on administration resources. Ops teams
will need to firmly understand the differences between each CSP, including methods
for automation, deployments, pricing, auto-scaling, and more. Deploying a simple
Kubernetes cluster on AWS forces you to learn their specific approach with Amazon
Elastic Kubernetes Service (EKS)—unique datacenters, user interface (UI) flows,
automation paths, and more. The same approach on IBM Cloud requires you to use
IBM Cloud Kubernetes Service (IKS), with a different set of steps that essentially
results in the same challenges we just surfaced for AWS; and on it goes. In the end,
you have Kubernetes in both clouds that operates the same, but the process to get
there is very different, which in turn is a recipe for higher costs, more status meet‐
ings, and an overall tax on an organization’s agility.

Distributed cloud enables you to simplify these differences with one consistent experi‐
ence. You start by choosing one CSP as your home base, and then leverage the infra‐
structure as a service (IaaS) offerings of other CSPs to run your workloads. This
means regardless of which cloud provider you’re using, you can deploy consistently across
all of them.

Let’s give an example of how this works. Start by picking one distributed cloud offer‐
ing as your central management environment (like IBM Cloud Satellite). Next you set
out to run some workloads on AWS but they are consistently managed from the con‐
trol plane that sits on the IBM Cloud. You spin up AWS IaaS resources like some EC2
instances (these are essentially VMs). Finally, you register these instances as a “Satel‐
lite location,” which enables you to extend IBM Cloud to datacenters in AWS! You

20 | Chapter 2: Evolution of Cloud

https://oreil.ly/yXgbr
https://oreil.ly/yXgbr

can now provision Red Hat OpenShift on IBM Cloud, a managed OpenShift offering,
directly on AWS datacenters. You might be wondering, “What’s the point?” Let’s
assume you happened to have databases or other services running directly on AWS;
you can now network them with your OpenShift cluster with ease. In addition, you
gain consistency with a standard way of deploying OpenShift, whether it’s on IBM
Cloud or AWS.

A Caveat to Distributed Cloud
Moving forward with any one particular cloud requires buy-in. Distributed cloud
offerings come with the assumption that you will use one cloud to drive all of your
workloads. To be fair, all CSPs require some extent of buy-in—each cloud has its own
quirks and features, whether it’s datacenters, capabilities, or cost. With distributed
cloud you gain freedom in the choice of infrastructure provider but are limited to
choosing one primary cloud provider to manage your services. For some, this distinc‐
tion is acceptable, because they would prefer to build skills with one cloud provider
rather than many; but think back to the Flexera report. In addition, extending public
cloud to on-premises is a no-brainer. Of course, you don’t have to manage every
workload with a distributed cloud, but now the more capabilities that are left outside,
the more liability there is for managing one-off environments.

Distributed Cloud: The Ultimate Unification Layer
Hybrid cloud emerged as a necessity, not because it’s the ideal approach. Customers
may have data residency requirements forcing them to run on-premises, subscribed-
to software as a service (SaaS) properties requiring them to run in a vendor-specific
environment, legacy applications that are too difficult to move to the cloud, or data
gravity considerations. Amidst these challenges, the benefits of utilizing the cloud are
impossible to deny (cloud the capability), and are exactly why customers will thrive in
hybrid cloud environments for years to come. When the challenges of hybrid cloud
result from division, distributed cloud aims to solve them with unity.

Although we are strong proponents of technologies like Kubernetes and containers
that support a hybrid cloud strategy, even a well-architected hybrid cloud can feel
broken at times. For developers, a hybrid cloud environment means multiple envi‐
ronments with differing technology stacks to code and test against. For operations
teams, a hybrid cloud leads to more environments that are prone to failure, more late-
night pager duties, and more challenging approaches to integration. For security
teams, hybrid cloud means a larger surface area for attack and complex security poli‐
cies that are unique to the environment. Distributed cloud starts to fix these
DevSecOps problems by offering the ultimate unification layer—one public cloud
control point to rule them all.

Living on the Edge: Distributed Cloud | 21

Hybrid Cloud
In this section we introduced you to the concept of a distributed cloud—a child of
hybrid cloud, if you will. Throughout this book we’re just going to use the term hybrid
cloud to reference any combination of cloud capabilities and deployment of them,
too. Like we talked about with the internet, we expect that the final resting place will
be a single word—but for now, we’ll use hybrid cloud to get us all on the same “page”
in our cloud discussions. Is the cloud capability on-premises or public? That means
hybrid cloud. Are you using multiple public cloud vendors? That’s a hybrid cloud. Are
you stitching together all kinds of SaaS services hosted on various clouds—yup,
hybrid cloud.

Industry Expertise in Mission-Critical Business Processes
Downtime means no time…for you to serve your clients. We’re certain this isn’t new
to you, so we’re not going to hit you with the cost per hour of downtime. That said,
the number of times a call dropped or a VOIP call was garbled during the planning of
this book on a web conference really hits home our point: your business is solely
going to depend on a well-ingrained culture of mission-critical thinking and
planning.

But there are other considerations we want you to think about in this area:

You are unique
Every client we’ve ever talked to, on any project (cloud, AI, you name it), is start‐
ing from a different place. You need to be able to start from your place, wherever
you are; there are no one-size-fits-all recommendations here. We suggest you tier
your projects into value drivers and requirements, such as Platinum, Gold, Silver,
and so on, but also differentiate between projects that are “low-hanging fruit,”
projects that require thoughtful execution to modernize, and projects that don’t
need to be modernized at all but could greatly benefit from the capability offered
by cloud.

Demand experience
Never underestimate the difference that industry and business domain expertise
can make. Look for proven reference architectures and scalable assets—your
partners should show their experience redesigning processes and workflow
transformations for your industry—and yes, ask for names. This will help speed
the work of business transformation and provide a scorecard that compares your
organization to others that partner has worked with.

22 | Chapter 2: Evolution of Cloud

Look to the experts
When one person is teaching, two people are learning—engage with a vendor
that has a rich education ecosystem (that extends beyond certification) and
experts that can make your team smarter. As they do this, the vendor can learn
not just about your architecture, but about your team’s skill—your partner
should be able to help here.

Leverage the ecosystem
An extended strong technology partner ecosystem will help deliver added value
to industry-specific business process transformation. We’ve always been fans of
true partnerships. But that partnership should extend into the open source com‐
munity, and reward those that come to open source communities to feed the soil
versus those that just come to grab the fruit (today’s marketplace has examples of
both).

Proven Security, Compliance, and Governance
Collectively, the world is doing a poor job at protecting information and preventing
malware attacks. Add to this the ever-expanding set of regulations around data gover‐
nance (for example, the European Union’s GDPR was the starting point, California’s
Consumer Protection Act soon followed, and things are set to become even more diz‐
zying with EU proposals on the usage of AI in its region). We tell our kids all the
time, “You lose trust in buckets and gain it in droplets.” Technology partners should
be no different. Your partner and their platform have to showcase and build trust into
every interaction, with a robust portfolio of data protection and security services—all
embedded into a cloud run-anywhere architecture, positioned to protect your pro‐
cesses, applications, and cloud services, while managing compliance requirements.

But it’s also very important to understand industry-specific cloud requirements to
make it truly hybrid. As the cloud compute market matures, we’re seeing companies
asking for services that match the specific needs of an industry or workload. Consider
a bank trying to leverage the public cloud with sensitive data. Such a cloud journey
will require the appeasement of risk analysts who will seek (more and more) Confi‐
dential Computing environments. If you want financial information on the cloud,
you need to find a vendor who will guarantee that at no time does anybody at the
cloud provider have access to the hardware security module (HSM) encryption keys
—that bank needs full lifecycle management over their data—including keeping its
own keys.

Things to look for here include automated and auditable processes, a consistent secu‐
rity and controls posture across all applications or services, and capabilities for the
highest levels of cloud security and monitoring (which we’ll discuss next).

Proven Security, Compliance, and Governance | 23

Confidential Computing and Zero Trust Architectures
Let’s start with this sound piece of advice we freely offer to anyone that will listen:
where there is data, there is potential for breaches and unauthorized access. And
here’s a dirty little secret no one wants to admit…very (and we mean very) few organ‐
izations know where all their security holes are, but almost all of them know there are
walls they won’t look around the corners of because they don’t want to go to the
board and tell them what needs changing.

Confidential Computing is a computing technology that isolates sensitive data in a
protected CPU enclave during processing. The contents of the enclave—the data
being processed, and the techniques used to process it—are accessible only to author‐
ized programming code, and invisible and unknowable to anything or anyone else,
including a cloud provider! As companies rely more and more on public and hybrid
cloud services, data privacy in the cloud is imperative. The primary goal of Confiden‐
tial Computing is to provide greater assurance to companies that their data in the
cloud is protected and confidential. For years cloud providers have offered encryp‐
tion services for protecting data at rest (in storage and databases) and data in transit
(moving over a network connection). Confidential Computing eliminates the
remaining data security vulnerability by protecting data in use—that is, during pro‐
cessing or runtimes using trusted execution environments (TEEs) that are hardware
assisted for the most protection you can get.

Many people think that Zero Trust is about making a system and its users more trus‐
ted, but that’s not it at all. Zero Trust is about eliminating trust. Its genesis comes from
the notion that for all the years we’ve been talking about security, we assume that
everyone inside an organization are actors that should be trusted; but what if those
actors are imposters or there’s an internal identity theft? Zero Trust involves remov‐
ing trust from your data, assets, applications, and services for the most critical areas
to your organization and creating a microperimeter around it. Bottom line: Zero
Trust operates on the notion that trust is a vulnerability and no one should be trusted.

We think Confidential Computing and Zero Trust are set to become a brand-new bar
of requirements for CSPs and will become ubiquitous to core computing concepts.
These concepts are applied to the protection of all data (be it in motion or at rest, on-
premises or not) within TEEs (the stuff in the cloud where your apps are running)
and the surface areas where those applications run. Why the infrastructure assist?
Quite simply, doing it in the software is pretty much putting your hand up and say‐
ing, “I’ll put a best effort into security, but with budgets the way they are, we’ll cut a
corner here or there.” (It hurts us more to write that than hear it.)

But even traditional protection approaches need to be challenged. Why don’t we just
encrypt all data and not worry about it? Seems simple enough, right? Nope. It’s not
that people don’t care about data security, it’s just really hard. It requires an appetite

24 | Chapter 2: Evolution of Cloud

and resource commitments to get it right and do it right—and that’s more than likely
going to require application changes, unless you’re using a true secure enclave tech‐
nology. Application changes, performance impact, technical challenges…all reasons
why many aren’t adopting an “encrypt everything” strategy. It’s no wonder why Pone‐
mon noted that of all the data breaches in 2018, a mere 4% (on average) of them were
deemed “secure” (all of the data was encrypted, which makes all of the stolen data
useless.) The bottom line: consumability is the biggest issue in the security market.

We’d be remiss to not suggest you look into true secure enclave
technologies like Secure Service Containers that run hardware
assisted on LinuxONE and IBM Z, which solve a lot of the friction
around an encrypt everything strategy, all with the simplicity of a
“light switch” to turn it on with next to zero performance impact
and no changes to your applications.

There are cultural issues at play too. We say this (partially) tongue-in-cheek, but
application developers really don’t like security folks. Why? Because performance
means different things to different people:

• Performance to a database administrator (DBA) means, “How fast does it take to
run the transaction and is it within my service level agreement (SLA)?”

• Performance to an AI practitioner means, “How accurate is my AI and how are
its predictions (AI nerds call this generalization) on real world data the model
has never seen before?”

• Performance to an application developer means, “How fast can I build this appli‐
cation so I can move on to the next project in my queue?”

What does performance mean to security personnel? Nothing—unless it’s how fast
can I detect an intrusion or something like that. It’s not on their measurement scope
or in their ethos. Think about it: every single concern in the preceding list means
nothing to a security professional. That’s why the Chief Security Officer’s division is
also sometimes affectionately nicknamed “The Department of No!”

One thing is a certainty to us—in no way, shape, or form do we see any signs of the
world doing a better job at protecting data. In a cloud virtualized and containerized
world, you’ll have lots (and we mean lots) of virtual machines running beside each
other, and if in the public cloud, perhaps beside someone you don’t even know. The
question you have to ask is, “Are the virtual machines protected from each other?” or
“What about container contents, are they protected?”

But it’s more than that. If you’re storing data in a public cloud provider, you must dif‐
ferentiate between the concepts of operational assurances and technical assurances

Confidential Computing and Zero Trust Architectures | 25

https://oreil.ly/NRunJ

when it comes to the protection of your data. This is a big deal and quite frankly not
enough decision makers are even using this lexicon.

Let’s assume you have some sort of sensitive data (be it medical, financial, intellectual
property, and so on). Operational assurance is basically your cloud provider saying to
you, “I promise to not access your data.” They’ll back that up with comments about
operational protocols and procedures that ultimately add up to a giant promise that
administrators will not access your data. While that’s much appreciated, it may not be
enough for you to pass a regulatory hurdle or have the confidence to replatform your
apps. It may be OK for certain apps, but think about the ones that run the core of
your business or hold the most sensitive data about your business and its clients.

What’s more, the number of insider breaches is growing like crazy, and you just don’t
hear nearly as much about these breaches as you do external hackers. Internal
breaches could be of malicious intent, but they can also be the work of inadvertent
actors (folks exposing data they didn’t mean to). Heck, think about bringing in an
external vendor to apply maintenance to fix some disk…there is an extensive list of
“trusted” actors who could access your data.

In other words, we don’t think an operational model of trust is going to be enough if
you’re looking to capture the 80% of the remaining cloud value that’s sitting there.
The question you need to be asking (at least for certain apps) is “Can you access my
data?” not “Will you access my data?” You don’t want operational assurances—you
need technical assurances. True answers will sound like, “Umm…we want to help
you, but because of the technology we’re using we can’t.” In these scenarios, even if
law enforcement served a signed bench warrant, the CSP still couldn’t share usable
data because they can’t see it and because of the way the security profile is managed.
See the difference? The answer posture changes from “won’t” to “can’t.” (It’s fair to
note that laws, expectations, and legal authorities have yet to catch up here and the
future of data privacy will be an interesting space for years to come.)

Build Once and Run Anywhere with Consistency
This means you’re not rewiring or refactoring code solely because you want to run a
portion of your business on Azure and moved it from another vendor (or vice versa).
You also want to vet ease of integration and a consistent application development life‐
cycle. Think about your experiences with Java—it was marketed as a write once and
run anywhere proposition that when put into practice became write once and test
everywhere. That’s not what you’re looking for here and you’ll have to dig well
beneath the veneer of websites and marketing brochures to flush this out. Open
source technologies (like Linux, containers, and Kubernetes) will be key to this, but
the goal is a consistent set of cloud services across any cloud or any location. If your
application containerizes a certain vendor’s database and wants to run it elsewhere,
that’s your prerogative to do so, one that must be free of friction or a “tax.”

26 | Chapter 2: Evolution of Cloud

Capture the World’s Innovation
Your cloud strategy should enable access to a wide range of innovations and technol‐
ogies; your vendors are Sherpas to the unprecedented pace and quality of innovations
in our world. Those innovations come from emerging technologies built by the ven‐
dor, but they are equally integrated or friendly to the unmatched pace and quality of
innovations from the open source community.

From quantum computing (which will most certainly be a hybrid cloud platform—
after all, some quantum computers operate within one of the coldest places in the
universe, which is why you don’t want one in your office), to leading-edge AI net‐
works, to edge computing, and blockchain, technologies fronted with APIs and
exposed for usage is what will propel your business to transform.

Perhaps one vendor captures a certain area of innovation better than another (one is
exceptional at natural language processing, another at visual recognition, and so on);
that’s the very essence of what we’re getting at and spending the time to ensure these
items remain top of mind. In the end, you’ll want to deploy the right systems (x86,
OpenPOWER, IBM Z, LinuxONE—you choose) and cloud (AWS, Azure, Google
Cloud, IBM—you choose) to specifically meet your business needs, not what the ven‐
dor is profiting from.

Cloud Solely for Savings Could Leave You with Cravings:
A Trend of Repatriation
We alluded to this earlier, but we think it warrants some more musings. Today, there’s
a huge swath of companies who raced to the cloud while seeking cost savings–only to
find themselves still hunting for savings. Just like when organizations went all-in on
Hadoop, using cloud as a destination isn’t always the right answer either. This is
exactly why cloud should be thought of as a capability (and not as a destination): be it
on-premises, public, or on the edge. We’ll say it in a more direct way: not all applica‐
tions are suited for public cloud, but almost all applications benefit by being cloud
enabled.

Think back to that autonomous car we talked about in the book’s Introduction. The
term “path planning” is used by autonomous auto practitioners to describe how the
self-driving car navigates (the actions it takes) on the road. Are you comfortable with
high data latency to inference ratios? This refers to the time it takes to process cam‐
era, radar, and lidar data, send it up to the cloud, and receive a path planning instruc‐
tion that says “Stop! There’s a person in front of you.” The bottom line: the cloud
destination can hurt latency.

Capture the World’s Innovation | 27

Let’s illustrate this with a simple example around Manufacturing 4.0 assembly lines.
Manufacturing 4.0 is named to represent what many call the fourth industrial revolu‐
tion—it’s the infusion of modern smart technology into traditional manufacturing
and industrial practices for a better assembly line from a resiliency, quality, efficiency,
and cost perspective. In automobile assembly lines, if a door assembly defect gets to
the end of the line, the entire car has to be pulled off the line and reworked manually.
In some cases, that means shipping the car to another facility. Fun fact: a car is manu‐
factured every 30 to 60 seconds; this means that quality issue magnifies into huge
money losses very quickly! But what about a smaller business? Material waste comes
with a significant cost too (one small fabrication company we worked with loses
~$30,000 per month in ruined metals because of unrecoverable errors in production,
such as a bad weld that results in a “blow through”).

Let’s assume you work in such a company, but your company is pretty forward think‐
ing. You’ve got some snazzy on-the-line convolutional neural networks (CNNs—this
is the class of AI algorithms well known for their computer vision properties), look‐
ing for defects in real time. You’ve been asked to cut costs and cloud (the destination
kind) is how you’re told to do it. Your team performs their due diligence and meets
with five CSPs recommended by your favorite analyst and issues a request for pro‐
posal (RFP) to each of them to help your organization save some money and get
some workloads to “the cloud.”

Time passes—you look back at your accomplishments in the last year. You’re on the
cloud and you discover the ROI isn’t quite what you expected. But heck, you’re on the
cloud, right? Don’t worry: if this story sounds familiar to you or your business, you’re
not alone (you’re going to hear why in a moment).

Just like Hadoop was not a one-size-fits-all answer to analytics in its heyday (which
ultimately faded precisely because it was marketed as such, and that approach is why
many associated projects failed to meet expectations), public cloud is not a one-size-
fits-all answer either. Certain application and data gravity characteristics will help you
decide where the destination goes; you focus on the application. That’s why cloud the
capability matters so much, and it’s why a hybrid cloud strategy is so important. If
you want to quickly spin up a monster GPU server to train those algorithms and con‐
verge an experimental model quickly, public cloud will very likely be a great answer
(among other examples). But if you ran a small four-GPU server on the cloud for a
year, nonstop, it’d cost you almost $100K, whereas you could likely buy one for $20K
(or less, by the time you read this book).

28 | Chapter 2: Evolution of Cloud

One manufacturer we know implemented a computer vision solution that took tens
of thousands of pictures a day, nonstop, and inferenced (this is AI fancy talk for scor‐
ing the algorithm—in this case analyzing the pictures) them to quickly identify qual‐
ity escapes (defects). Public cloud? Likely not. In this scenario, it didn’t matter what
public cloud option we looked at (Azure, AWS, or IBM) to support this scenario,
those computer vision charges were based on usage (number of pictures looked at)
and this led to drastically (that’s polite for crazy) more expensive public cloud
solutions.

Our pro tip: always remember that public cloud pricing is utility pricing—the meter
is running, just like how you’re billed for electricity in your home (and that can be a
good or a bad thing as illustrated earlier). Running a nonstop application, or even a
developer forgetting to shut down their test instances (one of us, whose name isn’t
Chris, did that and cost his department $5,000), is like walking around your empty
house with all the lights on and wondering aloud about all the money you could be
saving. (If you have kids, this is a well-known feeling to you.)

Enhanced data security is another example that has some rethink‐
ing a cloud destination definition versus capability. We won’t delve
into those details here (loss of data control, who can access your
encryption keys, governance and regulations are all at play here),
but suffice to say that whether you’ve experienced a loss of control
over your data, unexpected costs, or even high latency in applica‐
tion response times (data gravity is at play here), you’re not alone.
The takeaway? Again, not all workloads are appropriate for a pub‐
lic cloud destination, but almost all apps are better served to be
built as cloud (the capability) applications. This is why our personal
experiences with clients have many asking us about hybrid clouds
and the reevaluation of their decisions to blindly move all work‐
loads with a one-strategy-fits-all approach to a CSP.

The IBM Institute for Business Value conducted an independent study with 1,100
executive interviews (across 10 countries and 18 industries) and found that nearly
51% of the respondents had plans to move at least some migrated workloads back
from a public cloud service to on-premises, citing higher than expected costs and lack
of data security as the primary drivers, as shown in Figure 2-2.

Cloud Solely for Savings Could Leave You with Cravings: A Trend of Repatriation | 29

Figure 2-2. Lower costs and enhanced security are the top motivations for repatriating
off-premises workloads to on-premises environments

Make sure you understand what we’re saying here. We are not advocating that any
client should scrap their “public cloud first” strategies. In fact, it’s the opposite. Many
that joined the pilgrimage to cloud are now drawing from their experiences and
incorporating this knowledge into a newly defined “capability cloud first” strategy
(what we call “Cloud Chapter 2”—an epoch of cloud computing, as opposed to a
book chapter)—one with a broader aperture and appreciation for the capability
aspects of the technology not solely focused on destination.

“Cloud Chapter 2” offers organizations a much more refined, well-rounded, and
effective cloud strategy that can be used to please renovators and innovators alike! It’s
a blend of multicloud (vendors), hybrid cloud (location), and even has some work‐
loads running on the edge! This may sound like a painful and costly retreat from
what seemed at first to be a well-thought-out plan and in many instances, it very well
could have been; at the same time, things are changing so fast. Remember what we
said earlier: the world often overhypes the impact of new technologies in the first
couple of years, but the danger follows from downplaying its impact over the years to
come. Cloud will change the way businesses operate in the same way that AI will—
and it’s why you’re reading this book.

But take a moment and think about the opportunity that “Cloud Chapter 2” has to
offer. Unprecedented flexibility in choice of infrastructure, agility, continuous integra‐
tion and continuous delivery (some call the second “d” deployment—technically they
are different things, but we’ll assume them to be the same to keep things simple and
just refer to it as CI/CD), cost savings, and more.

Are you one of those more forward-thinking organizations that invested precious
resources (time, money, and effort) into building cloud native applications as

30 | Chapter 2: Evolution of Cloud

opposed to the lift-and-shift approach that often shortchanges the full realization of
cloud’s value? Your applications were refactored, containerized, and virtualized. Now
you have to repatriate them for one reason or another (data gravity and performance,
costs, governance, data control, and so on). Fear not, all is not lost. Not at all. There
are opportunities here with a hybrid cloud strategy, starting with consolidation and
extending all the way to more data security and control.

Before you talk to any vendor, evaluate your business and IT objectives, current and
future plans, and data governance requirements. Ask: “What does the future look like
for us?” Perhaps your business is just starting its AI journey? Are you trodding on an
analytics path and pushing it to the edge in order to optimize your cold-chain cus‐
tody transportation costs? Will you be using blockchain to evolve your food supply
chain, from traceability (where the livestock came from) to transparency (where it
came from, how it was transported, the record of the slaughterhouse that processed
the meat, what the livestock was fed, who provided the feed, and so on). You know
where you are now, but where are you trying to get to? As hard as it may be, try to
anticipate how these ambitions may change over time and how cloud (the capability)
can help.

By way of example: there’s no denying that data privacy is increasingly front of mind
for every business and consumer, and more so with each passing year. If your organi‐
zation handles data that’s considered to be personally identifiable information (or its
subset, sensitive personally identifiable information), place your bets now that things
are going to get more stringent, penalties are going to go up, and there will be less
and less tolerance in the marketplace for accidental disclosures. Even if you’re an
organization that doesn’t have any kind of sensitive information, you’ve got intellec‐
tual property that you want to preserve. This is just one of many considerations that
need to be made when creating a winning cloud strategy—failure to do so will inevi‐
tably result in sunk costs, fines, penalties, or worse.

Be Ye a Renovator, Innovator, or Both?
How You Spend Budget
There are certain ways to think about the initiatives your company is journeying on,
projects you own, and even the ones you’re trying to sell or gain sponsorship for. In
this section we want to share with you a ubiquitous framework we’ve developed that
simplifies even the most complex of enterprises’ strategic transformation plans.

When it comes to budget planning, we recommend giving your projects one giant
KISS! (Keep It Simple Silly—there’s another version of this acronym floating around).
Every client we talk to is doing one of two things: spending money to save money or
spending money to make money. When you spend it (money) to save it, you’re reno‐
vating and when you spend it to make it, you’re innovating. The best strategies will do

Be Ye a Renovator, Innovator, or Both? How You Spend Budget | 31

both and leverage cost savings from renovating the IT landscape (spending money to
save it) to partially fund the innovation (spending money to make it).

To illustrate this model, we’ll use something we call an Acumen Curve. You’ll find this
simple framework handy for any strategic investment decisions your company is fac‐
ing across almost any domain. For example, we developed a Data Acumen Curve
(Figure 2-3) and use it to help clients put their data to work (after all, data is like a
gym membership; if you don’t use it, you’ll get nothing but a recurring bill out of it).
For one client, we created different categories for their project (for both renovation
and innovation) and a plotted value curve on the expected outcomes if successful
projects are aligned to business needs (that’s a key thing).

Figure 2-3. Data Acumen Curve: a terrific asset to include in any strategic planning
project

You can see in Figure 2-3 the emergence of a natural border (it should be a friendly
one) between renovating and innovating. This is important to understand because
you should be able to derive downstream benefits of a renovation project. This will be
even more profound in a Cloud Acumen Curve (which we’ll introduce next). There
are some key takeaways here—and the similarities across any Acumen Curve will be
uncanny:

Strategies focused solely on cost reduction deliver shortchanged value
Today’s technology is about efficiency, automation, optimization, and more. If
you’re focused only on cutting costs, the value returned won’t be enormous.
Don’t get us wrong, smart cost cutting is a terrific strategy and you can forward
the money saved toward more renovation and compound that value into innova‐
tion, but that is not the end game (despite so many being forced to play it as if it
was). Governance is a great example. Most organizations scurry to implement
regulatory compliance with the least possible work to comply approach—mainly,

32 | Chapter 2: Evolution of Cloud

avoidance of fines (cost savings). However, this approach shortchanges the value
of such a project because it misses the opportunity to create regulatory dividends
from those compliance investments (data lineage, for example) to accelerate your
analytics strategy. Some of us have been around analytics and AI for a long time
and we can assure you, almost every governance project shortchanges its real
value to the business.

Most haven’t bent the curve for maximum value
When you stop and take stock of where your organization truly is on an Acumen
Curve, most will wake up and think “Wow, we have a long way to go!” We doubt
few of the businesses that turned into divers, or had to contend with new arriv‐
ers, had any idea how truly broken their digital strategy was until COVID and
disruption hit. That’s the point of these curves; you need to know ahead of time,
not after the fact.

Real value comes in the innovation phase
You can’t be a new arriver or thriver if all you’re doing is spending money to save
or make it and not also reimagining the way you work. Take, for example, an AI
project on our Data Acumen Curve (which we would place on the far-right quad‐
rant in Figure 2-3). Do you layer AI on top of existing processes or rethink them
from the ground up and redesign the workflow? Whether you are on a Data Acu‐
men Curve or a Cloud Acumen Curve, most organizations today are unwilling to
do the deep rethinking of their business models and workflows that will allow
them to fully embrace the opportunities presented to them by an innovation
investment. Be forewarned, you’ll miss out on the full gamut of potential benefits
if your definition of the finish line is putting all your transformative innovations
on top of existing business models and workflows. You should be thinking and
planning how these models and workflows could (or should) change because of
your AI and cloud innovations. We can’t stress enough how important this is. As
you build your Acumen Curves, reimagine your business processes from the
ground up with your new capabilities—we guarantee you that the impact will be
greater for having done so.

We created a Cloud Acumen Curve (Figure 2-4) to help you get started. As you read
this book, build your own and populate it with projects, expected outcomes, new‐
found superpowers your cloud journey will bring to the organization, and more.

Be Ye a Renovator, Innovator, or Both? How You Spend Budget | 33

Figure 2-4. Cloud Acumen Curve: a framework for plotting value from the monoliths to
microservices

You can see on this curve that the quadrants are different (don’t worry if you don’t
fully understand the legacy, replatform, repackage, and refactor terms yet—we cover
those in Chapter 5). Monolithic (legacy) apps refer to those applications where the
entire application (from the interface to the inner workings) are combined into a sin‐
gle program that runs in one place. Uber’s app, on the other hand, is the opposite of a
monolithic application: it is made up of perhaps dozens if not hundreds of microser‐
vices that have very discrete jobs—one for currency conversion, another for wait time
estimates, another to calculate time to distance, others to suggest local Uber Eats
partners and discounts at the final destination, and more. If Uber’s app wasn’t on the
far right of Figure 2-4, they couldn’t roll out the near weekly updates we get on our
mobile phones telling us about all the things they are doing to make our experience
better.

OK, we admit it. We share a guilty pleasure reading release notes
from vendors whose personalities shine through in their update
release notes (like Slack or Medium, among others). One of our
favorites yet was Slack’s “We no longer show you in your own
Quick Switcher results; if you want to talk to yourself, that’s fine,
but you don’t need us for that.”

It’s important to remember that some apps should stay the way they are because you
have “bigger fish to fry”; your business may be looking for quick wins rather than
long-haul (albeit worthwhile) projects, while some apps are too critical to the busi‐
ness to entertain the expense or risk of changing just yet.

34 | Chapter 2: Evolution of Cloud

This naturally brings us to the middle phases on your journey to derive the most
value you can from the cloud. This is where functions (like archive, Q/A, test), or
greenfield applications have been replatformed to the cloud, and that’s the beginning
of value drivers such as CI/CD. Of course, going back to the far-right of Figure 2-4,
it’s enough to say that embracing a cloud native microservices approach will allow
you to capitalize on the scalability and flexibility inherent to the cloud.

Mission-critical apps can replatform to the cloud, too. For example, we’ve seen busi‐
nesses with critical functions (running on-premises on AIX and IBM i servers)
become modernized and reap public cloud benefits such as pay-as-you-go billing,
self-service provisioning, and flexible management, without having to change the code!
This approach helps you grow at your own pace and start a cloud journey without
heavy up-front costs, allows your workloads to run when and where you want, and
more.

The takeaway? As you move farther and farther to the right of your Acumen Curve
(allowing digital properties to sit where they make sense) you gain more and more
cloud acumen, which delivers more and more value to your business. In Chapter 5
we’ll give you a scorecard you can apply to your Cloud Acumen Curve and see what
phases unlock capabilities like agile delivery, tech debt relief, cloud operational mod‐
els, and more.

There’s a final consideration we want to explicitly note here: how partnerships matter.
Earlier in this chapter we talked about the kinds of things you want to look for from
your cloud partners (you will have more than one, we can almost guarantee that). But
what we didn’t articulate was the importance of a strategy. As you build out your
cloud strategy, it is critical that it be open and portable: being able to build on one
cloud property and move it to another either because of specific compute needs
(resiliency, GPUs, quantum, and so on), vendor disagreement, or just having that
option to negotiate better terms and pricing—flexibility is key! Quite simply, the
assets you create should be able to be deployed anywhere across your landscape to
fully realize the benefits of your hard work. We think by the time you’re done reading
this book you’ll have great cloud acumen as a business leader and a framework to
plan your journey, and also know what to look for, how to build teams, and the bene‐
fits you will come to realize from your efforts. If we’ve been successful in persuading
you, we think you’ll end up with a Cloud Acumen Curve similar to what you see in
Figure 2-5.

Compare the curve in Figure 2-5 to all the other curves you’ve seen in this chapter. It
bends drastically in the renovation phase because you have a plan. Your organization
creates downstream dividends from that plan and the work done in renovation drives
innovation. We can’t stress enough how useful this model has been with the clients to
whom we’ve been successful in delivering value. These acumen curves are how we get
projects and conversations going, and how we hold each other accountable.

Be Ye a Renovator, Innovator, or Both? How You Spend Budget | 35

Figure 2-5. The kind of Cloud Acumen Curve you can build with the right strategy,
requirements list, and partnerships

Adopting a “Learning Never Ends” Culture:
A Cloud Success Secret Ingredient
What would you say if we told you that by exercising religiously for the next year,
every day, you’d be fit for the rest of your life? You’d answer, “Ridiculous!” ([ri-dik-
yuh-luhs]—causing or worthy or ridicule, preposterous, laughable). While the focus
of this book is about redefining and expanding the aperture of the term “cloud,” arm‐
ing you with questions to ask as you deploy your cloud strategies, and presenting you
with architectures, gotchas, ideas, and points of views you perhaps never considered
before, we’d be remiss if we didn’t share this secret success ingredient for organiza‐
tions, their teams, and you as individuals. Learning never ends.

We could be writing a book about AI, cloud, or anything—those tech years like dog
years we mentioned back in Chapter 1 feeds off a “learning never ends” culture. This
is especially true in the cloud space because there’s so much open source technology
at play whose names and versions are nothing short of dizzying. As world renowned
golf instructor Steve Rodriguez of GOLFTEC says, “This is a skill you will forever be
learning; don’t strive for perfect, just better.” Practice and focus breeds success in
both.

The teams you lead (and you as leaders) have to instill a culture of learning to exploit
all you can from cloud computing. That isn’t to say you rush in and jump on any new
version or new technology, but capabilities and directional shifts are forever chang‐
ing, and your goal can’t be to find out about them later. Perhaps these emerging tech‐
nologies aren’t for your group…no problem. Or perhaps you want them pretested
and “signed-off ” (such as an enterprise-tested, hardened, and expanded Kubernetes

36 | Chapter 2: Evolution of Cloud

platform like Red Hat OpenShift Container Platform). Keeping abreast of those com‐
pacted tech years is essential for organizations and personal careers.

As your leadership teams and employees build their cloud acumen skills, ensure they
teach others along the way. Be it AI acumen, cloud acumen, blockchain acumen, or
whatever—transformational shifts happen with culture changes at the top and knowl‐
edge becomes a thirst. It’s a great way to get everyone in the same mindset and
expand the understanding of any undertaking. Cloud will create a mindset of “We
can.” It will have developers thinking that continuous delivery is possible, that value
can be added at almost any time to a subscription service; marketing will go into
micro-campaigns focused on sprints; product designers are free to wildly create and
deliver tiny features that can vastly change the client experience or reduce friction
(and back out of those changes if the result misses the mark—A/B testing); and so
much more.

How critical is learning for even the best employees, let alone your organization? Ever
see the movie A Star Is Born (2018)? Music sensation Lady Gaga (the star that is born
in the movie) and one of Hollywood’s top box-office draws, Bradley Cooper (a rugged
worn-down boozing successful singer in the movie), are headliners in a story of love,
success, and sadness. We won’t Siskel and Ebert the movie for you because the title
kind of suggests the outcome, but we did learn something about this movie that so
perfectly hits home the point we’re trying to make in this section. Consider this fun
fact: Bradley Cooper played and sang everything live (no auto-tuning, no lip synch‐
ing)—a demand made by Lady Gaga herself. Cooper worked with a voice coach to
lower his speaking voice, spent over eighteen months on vocal lessons, six months on
guitar lessons, and another six months on piano lessons, all to prepare for his role in
the movie. All in all, it took Bradley Cooper years to fully prepare for his part (in a
remake, at that) and just 42 days to film it all.

We think this Cooper story speaks volumes. If one of Hollywood’s most sought-after
actors spends years building skills for 42 days of work, how important do you think
preparation and learning is in the IT domain for your cloud organization?

Ready, Set, Cloud!
In this chapter we wanted to cast a different way of thinking and encourage you to
challenge assumptions about your own notions of cloud, the vendors trying to sell
you something, and the organizations you work for.

We talked about how 80% of cloud value is locked away (for those treating cloud as a
destination) and the potential for 2.5x return on your cloud investments when you
treat it as a capability (hybrid cloud). So how do you unlock the 80%? We recommend
you tie business initiatives to the areas we discussed (some implicitly and some
explicitly) so that you have supreme clarity over cloud capabilities and can articulate

Ready, Set, Cloud! | 37

how your renovation or innovation strategies will deliver value for your business,
namely:

• Business acceleration
• Developer productivity
• Infrastructure cost efficiency
• Regulatory compliance, security, and risk
• Strategic optionality (the freedom to keep options open as much as possible while

achieving your goals)

Thomas Edison once remarked, “Vision without execution is hallucination.” We
think that sets the tone for our business practitioners’ book perfectly as we journey
into more of the details. We want to give you tools, knowledge, ideas, and considera‐
tions that are going to help you execute on the cloud vision we outlined in this
chapter.

38 | Chapter 2: Evolution of Cloud

CHAPTER 3

“Cloud Chapter 2”:
The Path to Cloud Native

Throughout this book we talk about all the value that awaits organizations that put
their cloud capabilities to work inside a hybrid cloud architecture, and the “cheated”
value return (or disappointment) for most enterprise cloud projects today. We insinu‐
ated a new chapter of cloud computing was here (the 2.0 moniker is tiring): “Cloud
Chapter 2” (notice the quotes...we’re not talking about a chapter in the book). “Cloud
Chapter 2” is all about cloud as a capability, and underpinning those capabilities are a
bunch of Star Trek–sounding open source projects and a very large ecosystem.
Kubernetes (and the enterprise hardened and tailored Red Hat OpenShift Container
Platform version of it), Ansible, and Docker are the main ones. But like any great
Emmy award winning movie, there is a large (and we mean very large) supporting
cast of technology that can be leveraged (with just as interesting names—Fluentd,
Grafana, Jenkins, Istio, Tekton, and oh so many more).

At times we struggled writing this book because we really wanted to keep its focus on
the business user. Make no mistake about it, the Kubernetes ecosystem (and the soft‐
ware itself) can be very confusing because it’s so capable—but it is both a strength
and a potential weakness. Business users are sure to get lost in the never-ending lay‐
ers and components that allow you to expose this service to your broader technology
stack, or the multiple ways in which to manage a deployment. Not to mention that
Kubernetes is very CLI (command-line interface) oriented—another hurdle for the
less programmer-minded of us to overcome. What’s more, there are loads of resour‐
ces that detail how Kubernetes works (free and paid for) by people that can do just as
good (or better) of a job than we can in describing it to you. We’re big fans of what
Leon Katsnelson and his team are doing at CognitiveClass.ai with their Kubernetes
education.

39

https://oreil.ly/lBKX5

In this chapter we’ll talk about some concepts and technologies that we build on
throughout this book. We purposely wrote this chapter so you could get a feel for the
path to cloud-native where applications leverage all the capability of the cloud. We
don’t talk about all the technologies in this chapter—in fact, we left out quite a few.
That was on purpose. However, we wrote Appendix: Speaking Kubernetes and Other
Strange-Sounding Names to teach you how to speak Kubernetes (and some other tech‐
nologies in its ecosystem) for that purpose, so feel free to jump to it at any time to get
some details on many of the technologies that are part of the Cloud “Chapter 2”
renaissance.

Eras of Application Development
Throughout this book we talk about application modernization hand-in-hand with
cloud capabilities. As you’re now aware, the reason why so many organizations can’t
capture the full value of the cloud is because they have significant investments in
existing applications that have been the backbone of their companies for years. Typi‐
cally, these applications are siloed, difficult to connect to other systems, and expen‐
sive to update and maintain, and thus they often get tagged with the word legacy.

A quick note here for our readers—perception and reality are not always the same. In
the context of what many refer to as legacy applications or systems, we’ve seen many
vendors (including IBM) who have done a lot over the last two decades to modernize
both the software and the hardware systems, making them fully cloud native (or at
least give the ability to front their legacy applications as cloud native). This means
you don’t have to “rip and replace” all legacy systems or processes when your point of
view is cloud as a capability. You end up with opportunities to modernize that you
may not have considered before. Got a COBOL copybook running on IBM Z? Grab
an integration services platform (we’d like to recommend one of the containerized fla‐
vors) and wrap it up with REST API—that makes it callable like any other modern
cloud native service. Developers that want to invoke that COBOL copybook (perhaps
to pull from its output) simply call the API with the input parameters it expects and
that returns the data to the app—they don’t even know it’s a COBOL copybook (what
some would call legacy) piece of code. That’s the whole point!

That said, the word legacy describes a style in which these apps were built (and used)
and thus application modernization seeks to take applications through a series of
transformations that make them truly cloud native; this allows them to accrue all the
benefits of cloud (the capability), and of course you can decide where to run them
(the destination). When you think about cloud as a destination, these systems can
operate just like “clouds” with front-ended APIs. In fact, this is the preferred architec‐
ture for many mission-critical and data-sensitive workloads (hence the title of the
book, Cloud without Compromise), a true hybrid cloud approach.

40 | Chapter 3: “Cloud Chapter 2”: The Path to Cloud Native

To keep it simple, we consider a modernized app one that is easily updated, connects
seamlessly with other apps, is easy to scale, and is built for the cloud (the capability).
Think back to those thrivers, divers, and new arrivers we talked about in Chapter 1—
the very experiences we detailed there showcase who’s running in a legacy mindset
and who’s running modernized (even if they have some legacy applications they
depend on).

When we work with clients, we like to get a quick feel for just where they are on their
cloud journey. It would be easy for us to ask to look at their cloud contracts or see
what SaaS properties they are subscribed to. But that’s not what we do—we go right to
the app dev teams and classify their application-building approach (the Acumen
Curves we talked about in Chapter 2 would serve as a tremendous harness for this
conversation) as monoliths, service-oriented architectures (SOAs), or microservices.
These classifications don’t just represent how apps are built, but how they interact
and leverage the infrastructure where they run (which has everything to do with
being cloud native—the industry term you will often hear when describing apps that
are built for the cloud). Here’s the promise: if you want to automate, if you want to be
agile, if you want to modernize, if you want true DevSecOps, if you want to write
once and deploy anywhere, if you want all the capabilities that cloud brings and the
freedom to choose the destination, you need to understand how architecture, infra‐
structure, and the way apps are built and delivered have evolved over time—not to
mention what they are (a collection of services)—and that’s the primer we cover in
this chapter.

In the Beginning: Monoliths and Waterfalls
Past civilizations used to mark their territories using a single enormously large block
of stone (or metal) called a monolith. To IT people, a monolithic app (an application
architecture approach) is used to describe a software app where all aspects of the app
(user interface, data access code, and so on) are combined and compiled as one giant
program and run in one place. If you recall, we’ve talked about how cloud native
applications are composed of discrete blocks of logic (microservices)—this is the
opposite.

If we think back to early in our careers in the dev labs, this is how apps were built
(and many enterprise legacy apps are still built this way today). These apps ran on
physical servers and used a waterfall development approach (each phase of a project
must complete before the next phase—you’ll often hear the traditional synonym used
for this approach to development).

Eras of Application Development | 41

Agile
The basics of the “waterfall” software development pattern is to break down a project
(developing an app) into linear sequential activities, where each phase depends on the
deliverables of the previous one. Even by its very definition, it sounds like the antithesis
of agile.

We do want to point out that not everything about the waterfall development pattern
is bad. We find it hard to keep up on what’s going on in the agile world because the
application stack is always changing. For example, when we worked on waterfall
development teams, we’d have a very detailed function specification document (the
new features) that showed us everything from how the code works, to how it was
exposed in the CLI, and more. In agile, things often aren’t as well documented and
new features take us by surprise all the time. If you’ve ever Googled how to do some‐
thing on your iOS device, you’ll know what we mean: the recommended steps or
screenshots are always out of date and rarely line up with the tasks you have to per‐
form. That said, we find the agile approach to be (most of the time, but not all the
time) the approach that generally yields the best results for business.

If monolithic is the application architecture, the delivery is typically waterfall and the
infrastructure are typically physical servers sitting on-premises and managed by you
—likely overprovisioned, underutilized, inefficient, and buried in red tape. Unless, of
course, you start applying the premise of this book and turning those servers into a
cloud capability! You know you’re managing a monolithic project if your app project
plan has distinct phases (like “Test”), and you deliver updates at well-defined and year
(or multiple years) gap intervals. If you got a design wrong, you can’t go back to the
current release. On and on it goes.

SOA Is the SOS to Your Monolith
Despite popular belief that it stands for “Save Our Souls,” SOS is actually a Morse
code distress signal that isn’t an abbreviation for anything. The popularized definition
was simply retrofitted to suit the existing code—ironically, this is the opposite of what
those that build monolithic apps have to deal with, these souls need the ability to
change the base without great cost. Service-oriented architecture (SOA) was a big
buzzword a number of years ago and looking back, it’s evident SOA was an architec‐
tural epoch on the way to microservices (which are more cloud native).

SOA is a development style and the start of the era of application composition (versus
building). It’s a discrete unit of functionality that is updated independently of other
services. For example, a service might pull a client record and use more pronoun-
sensitive phraseology on an AI-generated summary. SOA objects are self-contained
and you don’t need to know how they work inside, only how to invoke them and how

42 | Chapter 3: “Cloud Chapter 2”: The Path to Cloud Native

to handle the message that comes back (likely data in the JSON format). SOA objects
might just do one thing (like in our example), or they could pipeline a number of
tasks to do many things. SOA is typically deployed in distributed architectures. You
might imagine an application using a number of web services, all talking to each
other or resources like a database.

We feel SOAs were unsung heroes in the push to virtual machines (VMs) because
they really showcased how inefficient it would be to order a new server to host a new
service. Put simply, more flexibility means more utilization. SOA is also where agile
takes hold, because this is where applications with coupled services are stitched
together to make a full-fledged service where it’s easy to iterate for feature enhance‐
ments and so on. SOA was a path to cloud native, but things had to get smaller—
micro-small.

Microservices: What SOA Would Be If It Was Version 2.0
The microservices architecture is an iteration over SOA that more loosely couples (it’s
distributed in nature) services for application development. Microservices is a great
name because the function unit (the service) gets more granular and more focused (it
does one thing—it’s micro) when compared to SOA. The protocols that support the
communications and invocation of services gets more lightweight in the microservi‐
ces architecture compared to SOA as well. While it’s outside the scope of this book to
detail SOA plumbing, it relied on heavyweight XML communications; microservices
use a more lightweight API-focused architecture.

Just remember: microservices get more fine-grained in terms of function (they shrink
the size of the service when compared to SOA) and their protocols (the way they
operate and communicate) get more lightweight too. With microservices, you also
run in a cloud native environment that delivers even more granular and dynamic
infrastructure runtimes than traditional VMs.

You can see a good way to scorecard the “modernness” of your applications (Archi‐
tecture, Infrastructure, and Delivery) in Figure 3-1. As you look at each epoch (each
row for each modernization characteristic), you can’t help but notice that as you
move down each pillar, the result is ever-more agility, independence of function
(which means easy to update on the fly), more elasticity and capacity control (cloud),
a better DevSecOps delivery mechanism (we talk about the Sec(urity) in DevSecOps
in Chapter 6), and faster time to value.

Eras of Application Development | 43

Figure 3-1. The epochs of application modernization: further down in each pillar is more
modernized and cloud native

If we think about the conversations we’re having with clients today, there is always
someone saying they are doing a DevOps transformation; someone else is doing a
cloud transformation; and yet another group is talking about microservices. If you’re
new to all of this and listening in, you might very well conclude that there are three
separate transformations going on here—and that’s “true”—for those clients that are
spinning their wheels. If success is your navigational heading, you need transformation
across three key areas (architecture, infrastructure, and delivery) under a single cul‐
ture and mantra that permeates throughout the entire organization. If you build a
new microservice, you’re going to need some place to host and run that service
(unless you’re doing function as a service, which we talk about in Chapter 4). Your
microservice’s runtime must be resilient and dynamically scalable (you may need a lot
of these small things, or hardly any at all)—this is all screaming for cloud the capabil‐
ity (which is a big change from SOA). Map these characteristics back to the mono‐
lithic architecture. How did you scale distributed or nondistributed monolithic apps
on your server? You’d get a new server (scaled up) or rebuild your app to scale out.

The theme in modern application development is speed. Speed of scale, speed of
delivery, and so on. The very nature of speed is the DevSecOps delivery nuance—
bringing together the speed developers love (they think project to project), and the
resiliency and assuredness that operations seek (they think about things like service
level agreements, upgrades, patching, and security). By and large, the transitions out‐
lined in Figure 3-1 are getting away from a yearly delivery project plan and moving
you toward continuous delivery instead.

44 | Chapter 3: “Cloud Chapter 2”: The Path to Cloud Native

First “Pass” on PaaS
To truly appreciate the rise of containers (which we talk about in the next section), we
wanted to ensure you had at least a brief understanding of first-generation platform
as a service (PaaS) capabilities. So let’s get started with the world’s first foray into
PaaS.

In the pursuit of speed—faster development, more agile delivery, and unimpeded
elasticity—is it possible to go too far? Absolutely. That’s exactly what happened dur‐
ing the tumultuous state of the cloud near the start of the last decade. Cloud service
providers (CSPs) were shaping the cloud landscape, going beyond IaaS and iterating
on the first generation of PaaS capabilities.

As businesses finally began to take advantage of the elasticity of cloud and IaaS to run
their SOA-based applications on VMs, the industry began to reinvent itself yet again.
This is par for the course in the world of IT—after all, change is the only thing that
remains constant in this world. You either evolve or fall behind.

As your attention moves down each modernized app characteristic in Figure 3-1,
you’re likely to notice a pattern—the movement from physical services, to VMs, to
the cloud also results in a change of responsibilities more and more away from your
control. Clients eager to move from traditional IT and on-premises datacenters began
to embrace IaaS. They rejoiced in the seemingly unlimited elasticity of the cloud,
while adopting a flexible mode of consumption allowing them to pay for only what
they use. Clients with existing applications were willing to relinquish complete con‐
trol and autonomy of their infrastructure for these advantages. In addition, this paved
the way for those new arrivers to run production-grade applications with a signifi‐
cantly reduced barrier of entry.

Naturally, CSPs continued to apply this same philosophy as consumers continued to
embrace the cloud (the destination). CSPs began to offer the first generation of PaaS
capabilities like Heroku, IBM Bluemix (now IBM Cloud Foundry Public), Google
App Engine, and AWS Elastic Beanstalk. We (the customers) were all told to focus on
what really matters—writing code—and let their cloud handle the rest. This meant
moving further up the traditional IT stack and handing off control of our runtimes,
middleware, and operating systems.

At first, these capabilities appeared to work like magic. You could simply write your
application code in any of the many supported languages (like Node.js, Java, Swift,
Python, Golang, or basically any language you could think of), then simply upload
your code to the PaaS and have a running application on the web in a matter of
minutes.

However, this technology came at a cost—the first generation of these PaaS solutions
presented an opinionated (specific decisions and requirements made on the platform
that will host your app) approach to IT. At least with IaaS, businesses were able to

Eras of Application Development | 45

utilize VMs and ensure that their applications continued to run with little change
required to the actual code. This was not the case with first generation PaaS. As much
as companies may have wanted to, they couldn’t simply “lift-and-shift” their apps to
these new PaaS capabilities like they had done with IaaS. In retrospect, there were
three major factors preventing widespread adoption of these initial PaaS capabilities:

1. It required significant refactoring (developer talk for having to rewrite portions
of an app to accommodate service and configuration parameters) of existing
applications to adopt. Moving from monoliths to SOA was arguably a cakewalk
when compared to the eventual transition to microservices. In 2011, Adam Wig‐
gins (cofounder of Heroku) published the Twelve-Factor App (12factor.net). This
document outlined a methodology to build modern, scalable, maintainable appli‐
cations on a PaaS platform—essentially, microservices. To this day, these twelve
factors continue to embody the best practices for building modern applications.
However, for most companies in 2011, the Twelve-Factor App may as well have
been written in an alien language—it was well ahead of its time.

2. PaaS platforms were so opinionated that an application running on one PaaS
couldn’t be easily migrated to another. For example, consider what it was like to
add a database service to Heroku versus Cloud Foundry (CF)—Heroku utilizes
individual environment variables (config vars), whereas Cloud Foundry uses a
single environment variable (VCAP_SERVICES) in JSON format with all variables
together. This meant that in order to migrate an application from Heroku to CF,
you’d have to refactor the application itself, even when using the exact same data‐
base service in both environments! This leads to a terrible thing in the world of
cloud—vendor lock-in. Clients who were burned in the early ages of cloud com‐
puting were not thrilled about the prospect of yet another technology that forced
them to stay with a single CSP.

3. First-generation PaaS platforms were asking for too much control and gave too
many “not up for discussion” demands that made clients uncomfortable with
relinquishing this much control over to the cloud. Companies were unwilling to
adopt the public cloud model that PaaS required—this meant being forced to run
on multitenant infrastructure on public cloud datacenters. Essentially, you had to
drink the CSP-flavored Kool-Aid. In addition, clients began to find that the CSP-
recommended approach (but it wasn’t really recommended at all…it was
required) on things like service discovery, dependency management, security,
and more didn’t always align with their requirements. In an opinionated PaaS,
there was no room for change—you had to adopt the CSP’s approach.

Across all industries, the first generation of PaaS capabilities unfortunately led organ‐
izations to view the cloud as a lofty public cloud destination instead of as a powerful
capability.

46 | Chapter 3: “Cloud Chapter 2”: The Path to Cloud Native

Lessons Learned: The Rise of Containers
In the early half of the last decade, it became increasingly clear that businesses were
not adopting PaaS in the same way that they had with IaaS. CSPs learned some key
lessons from this first generation of PaaS capabilities: avoid vendor lock-in at all
costs, allow businesses to maintain a reasonable level of control over their stack, and
do all this while giving developers the tools to maintain world-class agile DevOps
practices.

It might surprise many to know (because of all the buzz around it) that containeriza‐
tion is not a new technology; it’s been around since the early 2000s but rose to greater
prominence in 2013 with the release of Docker—and hasn’t stopped growing since.
To understand why containers are so prominent today, we’ll start with the most appa‐
rent advantage—containers introduced an era of standardization that developers tend
to take for granted today.

In 1937 the shipping container was invented by Malcom McLean—it had the effect of
dropping shipping costs by 90% with this new standardized container. Just as the
shipping industry was revolutionized by the use of containers, so too are the contain‐
ers we’re talking about changing the software industry. Containers provide a standard
way of packaging software, so it runs under a standard Linux-based operating system.
The container package includes just the essential libraries, data, and configuration
needed to run your app (containers are the minimalists of the IT society—more on
that in a bit). A container just needs to be started with a standard command; it doesn’t
require a complex set of commands, to say nothing of tracing back and installing a
complex tree of dependencies. Containers enable automation and eliminate countless
possibilities for making mistakes.

Looking back at the shipping industry, it’s easy to see the analogies. Loading a ship
with 1,000 bushels of wheat, 750 casks of nails, 1,200 barrels of molasses, 150 sewing
machines, and so on was a recipe for trouble. In the 1800s and early 1900s, each item
had to be loaded by hand, packed carefully, and if something came loose during a
storm, there was big trouble. Containers solved that problem: they come in standard
sizes, they can be manipulated in standard ways, and they can be moved from ships
to trucks, trains, or other vehicles without problems using a consistent set of tools (as
opposed to all kinds of packages stuffed in a cargo net). That’s exactly what we want
for software: we want standard commands to start or stop it with no complex incan‐
tations (a series of words said as a magic spell or charm—think Harry Potter); we
want it to run on any kind of server without customization, and we want them all to
look alike. Nobody should care whether a container contains a web server, a web
application, middleware, or a database. Nobody should have to remember a
paragraph-long command syntax that reads like geek haiku to get a service running—
that command, with all its glorious options and parameters, should be embedded in
the container. All that’s important is that the container can run.

Eras of Application Development | 47

But Wait, Don’t VMs Do the Same Thing!?
A discerning reader might have created parallels between the advantages of contain‐
ers and using VMs. VMs can also package up all the dependencies of an application
and these incantations to get them started, and standardize workloads no matter the
size. But there’s a catch! VMs require that you also package a “Guest Operating Sys‐
tem (OS),” which is redundant for containers as they can utilize the underlying “Host
OS.” Therein lies the genius of containers, allowing developers to create standardized
packages of applications that are incredibly lightweight in comparison to their hefty VM
counterparts. Let’s use Figure 3-2 to review this point.

Figure 3-2. A comparison between packaging up an application using Docker (on the
left) or a VM (on the right)

Imagine a team collaborating on developing a microservice where each team member
develops, tests, and runs on a different operating system—Windows, macOS and
Linux. Before containers, one potential approach to prevent unexpected differences
from affecting the execution of the application would be to utilize VMs (the right side
of Figure 3-2). This architecture has an unfortunate byproduct—it instantly kills
developer productivity. Collaborating on code changes in a service when they need to
be built into a VM each and every time is incredibly slow. Due to this, VMs were typi‐
cally used by operations teams to run applications in production, rather than as a tool
that developers used to collaborate on projects.

Containers solve this problem with lightweight, standardized packaging that allows
applications to run anywhere. Developers can include the container builds as part of
their local iterative development flow, eliminating the age-old problem of, “Well, it
worked on my computer so it must be a you problem!” (This is the Java “write once,
test everywhere” joke we joked about in Chapter 2.) In addition, sharing containers

48 | Chapter 3: “Cloud Chapter 2”: The Path to Cloud Native

with your dev team is incredibly easy with container registries, which we’ll cover
shortly. Lastly, container-based environments simply run more efficiently than VMs
on the exact same hardware. Whereas a bulky VM essentially “quarantines” a set
amount of memory and CPU usage to run, lightweight containers free up resources
when they’re not being utilized. This greater efficiency translates to lower costs.

Beyond containers letting you architect your applications such that they are used in
the most efficient manner possible, they change the landscape on startup times. If it
took us days to get a traditional server going (once we got it in our office), then it
took minutes with virtual machines and now we’re talking seconds—even subseconds
—with containers.

Docker Brings Containers to the Masses
Container technology has been around for ages, with FreeBSD Jails available in 2000,
cgroups being introduced in 2006, and LXC implementing the Linux container man‐
ager in 2008. So why weren’t people using them sooner?

In the early days, containers were a complex, commonly misunderstood, and difficult
technology to utilize. No one knew how to practically use them! The rise of contain‐
ers was popularized by Docker for two big reasons. First, Docker avoided vendor
lock-in by supporting an open source model that runs on any environment (cloud or
on premises); second, and more importantly, Docker brought containers to the
masses with the Docker CLI, which instantly empowers developers to build contain‐
ers with ease.

As you’re well aware of by now, Docker quickly became the standard for building and
running containers. Docker’s Dockerfile describes how to build a container; its build
command creates a container image; its run command creates (instantiate is the syn‐
onym for “create” in tech-speak) the container and runs the application packaged
inside it (it actually combines two separate commands, create and run); and the
stop command terminates the container. There are many more commands and sub‐
commands (many of which have to do with managing resources and networking),
but that’s the essence. It really is that simple.

Another reason behind Docker’s success was Docker Hub, which is a repository (cool
people say repo) for container images. Docker Hub provides prebuilt containers for
many commonly used applications. Docker Hub is particularly useful because con‐
tainers are hierarchical: a container can reference a “parent,” and only add software
and configuration that’s not included in the parent. For example, an application that
needs a local MySQL database would be built on top of a standard MySQL container,
and would only contain the application software, tools, or programs it needs, and any
associated configuration files, but not another copy of MySQL. The MySQL container
might, in turn, be built on top of other containers. So containers don’t just help devel‐
opers package software; they help developers to build software in standard ways, by

Eras of Application Development | 49

https://hub.docker.com

taking advantage of existing container hierarchies wherever possible. The ease of
publishing Docker containers made it immensely easy for developers to collaborate
and paved the way for streamlined CI/CD (continuous integration and continuous
delivery).

For enterprise software, one drawback of Docker Hub is that it is public. It’s great that
Docker Hub allows developers to share containers, but what if you provide an appli‐
cation or library that you only want to distribute within your company, or to a select
group of business partners? Quay, a container repository designed for private use,
solves this problem: it can be used to manage and distribute containers that can’t be
shipped outside of your organization. Quay also includes a vulnerability scanner
called Clair, which helps to ensure that your software is safe. The Quay project is now
sponsored by Red Hat.

A Practical Understanding of Kubernetes
Think of how you regulate climate conditions in your house. You have a control
interface (like a Nest thermostat) and perhaps you set the temperature of your house
to 19oC (66oF) with 30% humidity. Your house’s climate systems constantly checks
your declarative settings against the actual conditions using different sensors and
mechanisms throughout the house. Behind that Nest thermostat is a control plane
that can kick in air conditioning, the humidifier, heat, and so on—an ecosystem to
bring your house to where you asked it to always remain; if anything gets out of sync
from your definition of perfection, you have a system that remediates the situation.

With this analogy in mind, think of Kubernetes (say koo-br-neh-teez) as climate con‐
trol for your operations. Why do we need a thermostat for our operational environ‐
ments? Like we said earlier in this book, modern-day applications aren’t built but
rather composed, and that composition is done through piecing together discrete
functional parts composed of services and containers (which have shorter life spans
than traditional virtual machine approaches). Today’s applications come with more
capability and flexibility than ever, but with more moving parts that need to be man‐
aged (and that’s where things can go wrong). More moving parts means more com‐
plexity. Quite simply, Kubernetes provides a way to run and manage an entire
ecosystem of distributed functions (like microservices), including how they interact
and how they scale, in a framework that is completely standard and portable.

Today, human error is responsible for a whopping 50% of downtime. Now ask your‐
self this question, “What adds more to human error than anything?” Answer: Com‐
plexity! Specifically, the complexity of managing applications with more objects and
greater churn introduces new challenges: configuration, service discovery, load bal‐
ancing, resource scaling, and the discovery and fixing of failures. Managing all of this
complexity by hand is next to impossible—imagine some poor operations (ops)
person tasked with looking at the logs for an application composed of two hundred

50 | Chapter 3: “Cloud Chapter 2”: The Path to Cloud Native

https://oreil.ly/6iroD
https://oreil.ly/YKk16
https://oreil.ly/eEPIa

services! What’s more, clusters commonly run more than 1,000 containers, which
makes updating these large clusters infeasible without automation.

Learning to pronounce the term Kubernetes (or K8s for short—the 8 is the number of
letters after the K and before the s) is characteristic of learning how to actually use it
—there’s a learning curve. Kubernetes is Greek for “helmsman” or “pilot”: the person
who steers the ship. That helps: Kubernetes is the “pilot” that steers, or controls, large
distributed systems. In the same way a Nest thermostat is climate orchestration for
your house, Kubernetes container orchestration is a system to steer (or govern) your
distributed systems so that they run correctly and safely.

Starting the Kubernetes Journey
Kelsey Hightower, the well-known Kubernetes developer advocate, has said, “The way
it’s going Kubernetes will be the Linux of distributed systems. The technology is solid
with an even stronger community.” While Kelsey is referring specifically to the open
source community that has grown up around Kubernetes, we believe this statement
could go much further. We’d be so bold as to say that Kubernetes is the operating sys‐
tem for distributed systems of containers regardless of the hardware architecture. What
does an operating system like Linux, Windows, or iOS really do? It manages resour‐
ces (CPU, memory, storage, communications, and so on) and that’s exactly what K8s
does: it manages the resources of a cluster of nodes—each of which is running its
own operating system.

Our bold statement about Kubernetes says both more, and less, than it seems. An
operating system isn’t magic; it doesn’t create value out of nothing. It requires an eco‐
system of tools; it requires developers who build applications to run on the operating
system; and it requires administrators who know how to keep it running. It can han‐
dle a lot of the day-to-day work of running your distributed systems (the Day 2 stuff
we touch on later in this chapter). We won’t pretend that getting Kubernetes config‐
ured correctly to manage your applications as you move to cloud native capabilities is
an easy task. But it’s completely worthwhile—as worthwhile as using Microsoft Office
or Apple Numbers to work with spreadsheets.

We’ve seen already how containers have become the standard way to package applica‐
tions. We’ve known for a long time that we want to automate as much as possible—
and to automate, we need to standardize. We don’t want to start each service we need
with a different command; we want to be able to say, “Make this thing run, make sure
it has all the resources it needs, I don’t care how.” That’s what containers let you do.

A Practical Understanding of Kubernetes | 51

https://oreil.ly/1jYCi

Kubernetes takes over the job of running containers, so you no longer have to start
them manually. That eliminates a lot of mumbling over the keyboard when you need
to run hundreds or thousands of containers. But it’s more than that. In a modern
system, you might need several databases, an authentication service, a service that
manages stock in the warehouse, a service that does billing, a service that queues
orders to be shipped, a service that computes taxes, a service that manages currency
exchange, and so on. Make your own list for your own business: it will be very exten‐
sive. And if your application is used heavily, you may need many copies of these serv‐
ices to handle the load. If you’re a retail business, you might see a 100x peak on Black
Friday. If you’re a bank’s investment arm, you’ll see a peak on triple witching Friday
(the simultaneous expiration of stock options, stock index futures, and stock index
option contracts, all on the same day). If you’re an accounting firm, you’ll see a peak
when tax forms are due. Handling those peaks is part (certainly not all, but part) of
what the cloud is about. You don’t want permanently allocate resources to handle
those 100x peaks; you cloud-enable your application and then allocate computing
power as you need it whether it is in your datacenter or someone else’s datacenter.
Need more compute? It’s just a few clicks away.

But you also don’t want some staff person trying to guess how many servers you need
or writing some custom error-prone script to start new servers automatically. And
that’s precisely what Kubernetes allows you to avoid. Instead, your operations team
may say, “We need at least 3 copies of the backend database, at least 10 copies (and as
many as 1,000—depending on the load) of the frontend and authentication services,”
and so on. Kubernetes brings containers online to run the services you need, it
watches the load and starts more copies of containers as needed, it scraps containers
that are no longer needed (because the load is dropping), and it watches container
health so it can scrap containers that aren’t working and start new replacements.
There are a lot of pieces that go into this—and we’ll discuss them—but this is at the
heart of what Kubernetes provides.

Kubernetes isn’t magic, of course; it needs to be configured, and there are plenty of
people telling us that Kubernetes is too complex. And in some ways, they’re right—
the complexity of K8s is a problem that the community will need to deal with in the
coming years. But it’s important to realize one big advantage that Kubernetes gives
you. It’s declarative, not procedural. A Kubernetes configuration isn’t a list of com‐
mands that need to be executed to bring the system into its desired state. It’s a
description of that desired state (just like your Nest thermostat set at the temperature
you want for your house): what services need to run, how many instances there need
to be, how they’re connected, and so forth. Kubernetes determines what commands
need to be executed to bring the system into that desired state, and what has to con‐
tinue being done to keep the ecosystem in the desired state. Kubernetes is automation
that allows you to deploy complex, distributed systems with hundreds of services and
thousands of servers and have them run reliably and consistently with minimum

52 | Chapter 3: “Cloud Chapter 2”: The Path to Cloud Native

human involvement. We will never claim that administrators or IT staff are no longer
needed; but K8s imbues superpowers on those teams, allowing them to manage much
more infrastructure than would have been possible in the past. Is Kubernetes a “heavy
lift”? Possibly. But how does that compare to managing thousands of VMs, each run‐
ning its own servers, manually?

Many important ideas fall out of this discussion. Applications are composed of con‐
tainers and containers implement services. The application itself provides a uniform,
consistent API to the rest of the world, even though Kubernetes may be starting and
stopping containers on the fly. Think about the implications: a billing service may be
accessing the accounts receivable service at the address http://ar2134.inter‐
nal.aws.mycorp.com/. What happens when this server dies? Does the system crash or
hang until the accounts receivable service reboots? This might have been what hap‐
pened in the past. But with Kubernetes, the billing service only needs to look up the
accounts receivable service—Kubernetes takes care of finding a running instance and
routing the request through to that instance. The result is bedrock solidity somehow
built on top of shifting sand, in spite of the odds!

This sort of routing can work because the containers themselves are immutable and
interchangeable. As we said earlier, rather than bringing up a server—with a system
administrator carefully coaxing it to life by installing and starting all the software
components it needs (web servers, databases, and middleware)—you build standard‐
ized containers instead. If something goes wrong, kill one, start the other, and fix up
the network so that clients never need to know that anything has happened.

In the DevOps community, people often have a “pets versus cattle” debate (some of
you aren’t going to like the analogy they use) around the notion that how we treat
pets versus cattle isn’t much different than how we should think about servers versus
containers. Think of your house pet—it has a name and its own unique personality.
Now think of a traditional server in your company that handles warranty claims. It’s
not uncommon to “get to know” a server that has troubles. Just like if the family dog
had issues, you’d take it to the vet for special care. What’s more, you’re likely to spend
special time with your “IT pet”—we’re not talking about the Tamagotchi you spent
hours on before you had social media to make time disappear with little to show for
it. You patch it, turn up the log diagnostics to try and figure out what’s going on, and
so on.

To DevOps, containers are cattle (remember how we said containers are “short lived”)
—identically produced en masse. Because containers are easily produced and immut‐
able (you can’t make configuration changes to them), you’re not going to care for and
nurture a sick container with the same attentiveness you might give a server. If a con‐
tainer instance is malfunctioning, get rid of it and replace it with another. This is only
possible because containers are immutable; and because they’re immutable, every
instance is exactly the same. We don’t even have to think about the possibility that a

A Practical Understanding of Kubernetes | 53

new instance will fail because someone installed libSomeStrangeThing 3.9.2, which is
incompatible with libSomeStrangeThing 3.9.1. Administrators do need to keep
containers updated and scanned for vulnerabilities—we’ve all seen what happens
when deployed software doesn’t receive security updates. But that’s another set of
issues (which we talked about in Chapter 6), and much of this process can be automa‐
ted, too.

Because Kubernetes can start and stop containers without worrying about what’s
inside the containers, it can take whatever actions are needed to keep the system run‐
ning. Think about just how radical an idea this truly is: Kubernetes is self-healing.
Most of us can remember the era when distributed IT servers would crash and return
to life an hour or so later. In many respects, that’s still true: distributed IT servers may
be more reliable than they were even a decade ago, but they still crash, networks still
fail, and the power still goes out. Building an enterprise system without taking out‐
ages into account is wishful thinking that could easily be fatal. When commerce went
online, businesses immediately realized that the cost of being offline could easily be
thousands or even millions of dollars per minute—and undoubtedly the COVID-19
pandemic has made offline costs even more significant—if not fatal—to your
business.

It’s also important to realize that Kubernetes isn’t specific to any vendor’s cloud and
will run on almost any hardware architecture—ranging from Raspberry Pi micro‐
computers, to the largest servers built on mainframes. For a few tens of dollars, you
can build a Raspberry Pi cluster and keep it in the office broom closet; and once
you’ve developed your application there, Kubernetes will (with very few changes)
allow you to move that application to a cloud—to any cloud destination for that mat‐
ter. Kubernetes will let you describe what zones you need, what processor capabilities
you need (memory, GPU, TPU, and the like), and so on, so you don’t have to hard‐
wire your software to specific configurations. It’s like we’re always saying: “Cloud is a
capability, not a destination!” Kubernetes is the keystone that provides organizations
the ability to run software anywhere, at any scale.

Finally, Kubernetes has been designed so that it can be extended and evolved with
new features. Historically, Kubernetes has been tied to Docker (as the dominant con‐
tainer system of the time). Recently, the Kubernetes project announced that it is “dep‐
recating” (IT talk for no longer enhancing, still supported, but perhaps not for long)
Docker. Kubernetes has standardized on the OCI (Open Container Interface) con‐
tainer format and runtime engine. The OCI standard allows Kubernetes to evolve
beyond Docker in several important ways, including the ability to use container regis‐
tries other than Docker Hub and the ability to support other kinds of containers (and
possibly even applications without containers). Read this carefully: deprecating Docker
won’t be a barrier to current users. Docker’s container format complies with the OCI
standard, too; therefore, you can still use Docker to build images that Kubernetes can
run. And you can still use Docker to run those containers for development or testing.

54 | Chapter 3: “Cloud Chapter 2”: The Path to Cloud Native

If you’re familiar with Docker, there’s no reason to stop using it—but there will now
be other alternatives to explore—“let a thousand flowers bloom” goes the Apache
open source slogan.

Time to Start Building
We’ve outlined critical cloud concepts to get you moving to cloud native—by now, we
think you have a solid understanding of why we keep saying cloud is a capability not
a destination. Think about it—shouldn’t reducing the bloat of VMs be desirable for
any destination? See the problem with thinking that this tech is only for those on a
public cloud? So what’s next? It’s time to start thinking about your application and
how you’ll implement it in the cloud. Lift and shift—simply porting your application
as is to a cloud provider—is probably the easiest solution, but it’s also the least pro‐
ductive, hardest to scale in the long run, and is going to come up short on all the
value you could be getting from a cloud strategy. Rethinking and reimplementing
mission-critical applications as a set of services gives your company the kind of flexi‐
bility that couldn’t be imagined a few years ago. Does your app need a new interface?
Need to support a new kind of product? Are there other ways in which your software
needs to evolve? Now is the time to think about reorganizing your applications so
that new features and new product directions don’t require an entire rewrite. That’s
where many IT groups fail. We want to get beyond failure.

Time to Start Building | 55

CHAPTER 4

Cloud Computing: Patterns for
The What, The How, and The Why

A couple of years ago, one of the authors was walking with a group of kids during a
volunteer elementary school event. Like all kids of that age, they asked him nonstop
questions about anything and everything. But one question was so intriguing
(“What’s in the clouds?”) that he felt compelled to respond (“A bunch of Linux
servers.”). While the response surely left the few kids that were actually listening
bewildered, it did bring a smile to the author’s face. Of course, today, the answer
would be well expanded to include almost any kind of server and operating system
you could imagine! We’re sure it doesn’t need to be said (and we will explain all of this
in this chapter) but being “in the cloud” doesn’t mean there aren’t hundreds of miles
of networking cable laying around in some brick-and-mortar facility, and “serverless
computing” doesn’t mean there aren’t servers running code—it just means they are
not necessarily yours to run or worry (less) about.

Cloud has incredible momentum, and while there is so much value left to be gained
as a capability from its proper use, conversations about it are well beyond the hype.
The cloud—once used for one-off projects or testing workloads, has become a devel‐
opment hub, a place for transactions and analytics, a services procurement platform
where things get done. In fact, it’s whatever you decide to make it. That’s the beauty of
the cloud: all you need is an idea and the right mindset (cloud the capability, not the
destination) and you’ll be magical.

In this chapter we want to introduce you to different cloud computing usage patterns
and the different kinds of ways to use those “servers in the sky” for your business—
from an infrastructure perspective, to ready-to-build software for rolling your own
apps, and even as granular as down-to-the-millisecond perspectives on a function’s
execution time. And of course, since we already know that cloud is a capability and

57

not a destination, then we can apply these patterns on-premises or off in any vendor’s
cloud computing environments. By the end of this chapter, you’ll understand acro‐
nyms like IaaS and PaaS, but you’ll also know that the answer to “What is serverless
computing?” won’t be, “A computer that is serverless”; rather, you’ll recognize it as a
pattern.

Some of the concepts covered in this chapter have been around for
a while. Since the first part of this book is mostly geared toward
business users, we felt it important to include these topics before
we delve deeper into cloud discussions. If you know IaaS, PaaS, and
Saas, you might want to consider jumping to “The Cloud Bazaar:
SaaS and the API Economy” on page 76, where we get into the
details of APIs, REST services, and some of the newer cloud pat‐
terns: serverless and function as a service. And if you already
understand that serverless doesn’t mean the absence of a physical
server or that PaaS isn’t a play option in American football, you
could consider skipping this entire chapter.

Patterns of Cloud Computing: A Working Framework
for Discussion
A journey toward the adoption of the “cloud” in many ways mimics the transition
from traditional data “systems of record,” to “systems of engagement,” to “systems of
people.” Consider the emergence of social media—which has its very beginnings in
the cloud. In the history of the world, society has never shared so much about so lit‐
tle. You simply can’t deny how selfies, tweets, and TikTok dances have (for better or
worse) become part of our vocabulary.

Just like how the web evolved from being a rigid set of pages to a space that’s much
more organic, interactive, and integrated, the last decade has borne witness to a con‐
tinuing transformation in computing, from hardened silos to flexible as-a-service
models that operate in a public cloud to those that operate in a hybrid cloud. Why?
Three words: social-mobile-cloud.

Social-mobile-cloud has dramatically accelerated social change in unanticipated ways;
in fact, it has completely changed and altered the flow of information for the entire
planet. Information used to flow from a few centralized sources out to the masses.
Major media outlets like the BBC, CNN, NY Times, and Der Spiegel were dominant
voices in society, able to control conversations about current events. Social-mobile-
cloud has obliterated the dominance of mass media voices (for better or worse, as
“Fake News” is a hot topic) and changed the flow of information to a many-to-many
model. In short, the spread of mobile technology and social networks, as well as
unprecedented access to data, has changed humanity—disconnected individuals have

58 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

become connected groups, technology has changed how we organize and how we
engage, and more. We call this mode of engagement The Why.

Of course, all this new data has become the new basis for competitive advantage. We
call this data The What. All that’s left is The How. And this is where the cloud comes
in. This is where you deploy infrastructure, software, services, and even monetized
APIs that deliver analytics and insights in an agile way.

If you’re a startup today, only in rare cases would you go to a venture capital firm with
a business plan that includes the purchase of a bunch of hardware and an army of
DBAs to get started. Who really does that anymore? You’d get shown the door, if you
even made it that far. Instead, what you do is go to a cloud company. But what if
you’re not a startup? What if you’re an enterprise with established assets and apps?
Then you want the cloud (the capability) at your destination of choice.

The transformational effects of The How (cloud), The Why (engagement), and The
What (data) can be seen across all industries and their associated IT landscapes. Con‐
sider your run-of-the-mill application developer and what life was like before the
cloud era and as-a-service models became a reality. Developers spent as much time
navigating roadblocks as they did writing code! The list of IT barriers is endless: con‐
tending with delays for weeks or months caused by ever-changing backend persis‐
tence (database) requirements, siloed processes, database schema change
synchronization cycles, cost models heavily influenced by the number of staff that
had to be kept in-house to manage the solution, and other processes longer than this
sentence. And we didn’t even mention the approval and wait times just to get a server
in the door so that you can experience all the friction we just detailed. Make no mis‐
take about it, this goes on in every large company—horror stories are ubiquitous. To
be honest, looking back, we think it’s a wonder that any code got written at all.

Development is a great example. Its shift toward agile is encapsulated by the catch
phrase continuous integration and continuous delivery—or CI/CD for short. In the
development operations (DevOps) model, development cycles get measured in days;
environment stand-up times are on the order of minutes (at most hours); the data
persistence layer (where the data is stored, like in a database) is likely to be a hosted
(at least partially) or even a fully managed service (which means that someone else
administers it for you); the platform architecture is loosely coupled and based on an
API economy combined with open standards; and the cost model is variable and
expensed operationally, as opposed to fixed and capital cost depreciated over time.

As is true with so many aspects of IT, the premise of this book is our assertion that
this wave of change has yet to reach its apex. Indeed, there was much hype around
cloud as we discussed in Chapter 1, but many practitioners are now “hitting the wall”
of the hype barrier. There is no question that cloud delivers real value and agility
today—but it’s been limited for larger enterprise.

Patterns of Cloud Computing: A Working Framework for Discussion | 59

“As-a-service” generally means a cloud computing service that is provided for you
(for a fee) so that you can focus on what’s important to your business: your code, iter‐
ative improvements to custom apps, the relationships you have with your customers,
and so on. Each type of cloud pattern leaves you less and less “stuff ” to worry about.
We broadly (and coarsely) categorize these cloud patterns (provisioning models and
concepts) into what you see in Figure 4-1: infrastructure as a service (IaaS), platform
as a service (PaaS), and software as a service (SaaS)—we left the serverless computing
pattern out for now.

Figure 4-1. A high-level comparison of responsibilities at each cloud pattern level

These cloud patterns all stand in contrast to traditional IT, where individual groups
and people had to manage the entire technology stack themselves. This is the way
many of us “grew up” in our career. Cloud (the capability) has blurred the lines of
where these services are hosted, which is perfect because now we can talk about these
as patterns without a footnote for where they reside—as opposed to destination being
the lead-with discussion. Your cloud resides where you want (or better yet need) it to

60 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

reside. You no longer have to differentiate between on-premises and off-premises to get
access to cloud capabilities.

The shading that changes in Figure 4-1 for the second, third, and fourth columns is
intended to convey where the responsibility falls for some of the specifics around any
compute solution.

This terminology gets a little blurry in a cloud (the capability) dis‐
cussion because your own company could be managing and host‐
ing the app dev frameworks (with instrumented chargeback
accounting) for a good portion of your app, but you’re also stitch‐
ing in serverless APIs (like Twilio) for some of the workflow. When
you’re talking about cloud as a capability, if the environment is hos‐
ted, administrative responsibilities fall on you, and if managed,
someone else has to worry about all the things you typically worry
about. It’s the difference between sleeping over at mom’s house
(where you are expected to still do a lot of work—you are hosted)
or sleeping at a resort (managed—it’s all done for you in a luxuri‐
ous manner that you’ve paid for).

Order Up: Pizza as a Service
Before we delve into the descriptions associated with the cloud patterns shown in
Figure 4-1, we thought it’d be a fun exercise to imagine these cloud patterns in the
context of pizza—because we’re confident the world over loves a good “wheel.”

Note that this is a simplistic scenario: there are permutations and
combinations to the story that could break it down or make it bet‐
ter—we’re intentionally trying to keep things simple…and fun.

Let’s assume you’ve got a child going into their sophomore year at university who’s
living at home for the summer. Your kid mentioned how they found a gourmet
“Roast Pumpkin & Chorizo” pizza recipe (pizza traditionalists know this...we’re just
as aghast) from the internet and wants to use it to impress a date. You laugh and
remind your offspring that you just taught them how to boil an egg last week. After
some thought, your kid concludes that making a gourmet pizza is too much work
(getting the ingredients, cooking, cleaning, preparation, and so on) and their core
competencies are nowhere to be found in the kitchen. They announce this conclusion
and share plans to take their date to a downtown gourmet pizza restaurant. You begin
to ask, “How can you afford that?” but you stop because you know the answer and the
question coming to you next (it has the word “borrow” in it, which really means
“give”). Think of this date as software as a service (SaaS). The restaurant manages

Order Up: Pizza as a Service | 61

everything to do with the meal: the building and kitchen appliances, the electricity,
the cooking skills, the ingredients, right up to the presentation of the food itself. Your
financially indebted child just had to get to the restaurant (think of that as a
connection to the internet) and once the romantic duo arrive at the restaurant, all
they had to do is consume the pizza and pay.

Junior year is rolling around and as you look forward to your empty nest house again,
the COVID-19 pandemic assures you that the company of your loved one will remain
constant for months to come. Still single (apparently chorizo pizza doesn’t guarantee
love), another budding romance is announced, and this time dinner location is at a
little more intimate setting: your house. Convinced the perfect mate will love a pump‐
kin and cured sausage pizza recipe, your kid scurries off to the grocery store to get all
the same ingredients but begs you for help preparing and baking the meal before you
and your spouse are requested to go for a three-hour walk once the date arrives. As a
dedicated parent, you want your offspring to find love (it might speed up the move
out process) so you go along with the whole plan. While out of the house, your child
serves up the meal, you stop and turn to your significant other with warmth in your
heart and say, “Darling, we are platform as a service (PaaS) to our child.” Your partner
looks at you and says, “You’re the most unromantic person I know.” So how is this a
PaaS cloud pattern? Think about it—you provided the cooking “platform.” The
house, the kitchen appliances, the cutlery and plates, the electricity, it was all there for
any chef (developer) to come on in and cook (create). Your child brought in the
ingredients (coding an app) and cooked the recipe. (There’s a variation to this junior
year PaaS story called serverless computing, and it sits between PaaS and SaaS. We’ll
get into the details later in this chapter.)

It’s senior year and your part of the world has found a way past the pandemic, your
beloved kid now lives on their own somewhere else (insert heavenly sounding rejoice
music) and this time they’re convinced they’ve found their pumpkin and chorizo
soulmate. Your love-stricken offspring has found their own place to rent (the server),
and rent includes appliances and utilities (storage and networking). Your child has
invited their potential soulmate for a date, and wants the place to be as classy as possi‐
ble. They take a trip to IKEA for some tasteful place settings, a kitchen table, and
chairs (your 20-year-old couch wouldn’t be suitable for such an important guest to sit
and eat)—call it the operating system. Next stop, the grocery store for the ingredients
(the runtime and middleware), and finally a cooked meal on date night. It’s hard to
believe your kid is finally this independent, but they essentially owned the entire pro‐
cess from start to finish outside of the core infrastructure rented (the server, storage,
and so on). Your child has become an infrastructure as a service (IaaS) pizza maestro.

62 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

Your Kid Sharing an Apartment with Roommates
In the preceding scenario your child lived alone in that apartment and had sole access
to all of its resources. But let’s assume for a moment your child has a roommate and
the apartment (infrastructure) is shared. Everything from the fridge, to the stove, to
place settings, to the tables and chairs are all potentially shared; we call this a multi‐
tenant pattern in cloud-speak. Those roommates? They can literally be what we call
“noisy neighbors’’ in the cloud space. In so many ways, they can get in the way of an
expected planned experience. For example, perhaps they are cooking their own food
when access is needed to the kitchen. In a multitenant cloud environment, you share
resources; what’s different from our analogy is the fact that you don’t know who
you’re sharing the resources with. But the key concept here is that when you share
resources, things may not always operate the way you expected or planned (obviously
CSPs put a lot of measures in place to protect you from this). Of course, privacy is
cornered off and such (but there are things that go wrong)—but there are nuances
well beyond the scope of this book that may need some consideration. As you can
imagine, sharing a space (multitenant) versus having your own space (dedicated)—be
it in an apartment or in the cloud—has cost differentials.

Notice what’s common in every one of these scenarios: at the end of the evening, your
child eats a pumpkin and chorizo pizza (albeit with different people, but that’s beside
the point). In the IaaS variation of the story, your kid did all of the work. In the PaaS
and SaaS scenarios, other people took varying amounts of responsibility for the meal.
Today, even though your child is independent and has the luxury of their own infra‐
structure (the apartment), they still enjoy occasionally eating at restaurants; it’s defi‐
nitely easier to go out for sushi than make it. This is the beauty of the as-a-service
cloud patterns—you can consume services whenever the need arises to offload the
management of infrastructure, the platform, or the software itself.

It goes without saying that since cloud is a capability then the very
scenarios we just articulated can be wholly contained within an
enterprise on-premises. For example, Human Resources can own
an app for an employee learning platform, but the CIO office is
providing the IaaS platform where it runs. The CIO’s office can
offer up development or data science stacks that can be provisioned
in minutes and charged back in a utility-like manner to different
teams (perhaps one team are R aficionados, while another is
Python).

Order Up: Pizza as a Service | 63

As your understanding of these service models deepens, you will come to realize that
the distinctions between them begin to blur. From small businesses to enterprises,
organizations that want to modernize will quickly need to embrace the transition
from low-agility development strategies to integrated, end-to-end DevOps. The shift
toward cloud ushers in a new paradigm of “consumable IT”; the question is, what is
your organization going to do? Are you going to have a conversation about how to
take part in this revolutionary reinvention of IT? Are you content with only capturing
20% of its value? Are you going to risk the chance that competitors taking the leap
first will find greater market share as they embrace cloud capability sooner to more
quickly deliver innovation to their customers? This is an inflection point because the
cloudification of IT is just about to really happen—because cloud will be approached
as a capability, and not solely a destination.

Do (Almost All of) It Yourself: Infrastructure as a Service
In our “Roast Pumpkin and Chorizo” pizza example, when you finally got your off‐
spring out of the house and they pretty much did all the work (found a place to live,
shopped for ingredients, bought their own dishes), that was infrastructure as a service
(IaaS)—what many refer to as “the original cloud.” In a nutshell, IaaS is a level
removed from the traditional way that computing is provisioned. It’s a pay-as-you-go
service where you are provided infrastructure services (storage, compute, virtualiza‐
tion, networking, and so on) as you need them via the cloud.

IaaS delivers the foundational computing resources shown in Figure 4-1 that you use
over an internet connection on a pay-as-you-use basis. The basic building blocks
needed to run apps and workloads in the cloud typically include:

Physical datacenters
IaaS utilizes large datacenters. For public IaaS providers, those datacenters are
typically distributed globally around the world. The various layers of abstraction
needed by a public IaaS sit on top of that physical infrastructure and are made
available to end users over the internet. In most IaaS models, end users do not
interact directly with the physical infrastructure (but there are some special pat‐
terns, called bare metal, that do), but rather “talk” to the abstraction (virtualiza‐
tion) layer.

Compute
IaaS is typically understood as virtualized compute resources. Providers manage
the hypervisors and end users can then programmatically provision virtual
“instances” with desired amounts of compute, memory, and storage. Most pro‐
viders offer both CPUs and GPUs for different types of workloads. Cloud com‐
pute also typically comes paired with supporting services like auto-scaling and
load balancing that provide the scale and performance characteristics that make
cloud desirable in the first place.

64 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

Network
Networking in the cloud is software-defined where the traditional networking
hardware (routers and switches) is made available programmatically through
graphical interfaces and APIs. Although we don’t cover it deeply in this book,
companies with sensitive data or strict compliance requirements often require
additional network security and privacy within a public cloud. A virtual private
cloud (VPC) can be a way of creating additional isolation of cloud infrastructure
resources without sacrificing speed, scale, or functionality. VPCs enable end
users to create a private network for a single tenant in a public cloud. They give
users control of subnet creation, IP address range selection, virtual firewalls,
security groups, network access control lists, site-to-site virtual private networks
(VPNs), application firewalls, and load balancing. (It’s critical for us to note that
there are a lot more things you need to be concerned about when it comes to
security; this is a statement for networking.)

Storage
You need a place to store your data, right? Storage experts classify storage into
three main types: block, file, and object storage. We’ll delve more into storage later
in this book.

If you contrast IaaS with the other cloud patterns shown back in Figure 4-1, it’s safe to
conclude that IaaS hands off the lowest level of resource control to the cloud. This
means that you don’t have to maintain or update your own on-site datacenter because
the provider does it for you. Again, you access and control the infrastructure via an
API or dashboard.

IaaS enables end users to scale and shrink resources on an as-needed basis, reducing
the need for high, up-front expenditures or unnecessary overprovisioned infrastruc‐
ture; this is especially well suited for spiky workloads.

Spiky workloads are those that peak at certain times (or unexpect‐
edly) based on certain events. A great analogy would be your heart
rate and exercise. When you’re at work (yes, we know the jokes
you’re thinking to yourself right now) your heart isn’t racing to
deliver oxygen to your body. Now go for a run. That run is a spiky
workload and jumps demands on your heart to start pumping at
130 beats per minute (bpm) when the usual demand is around 60
bpm. When you’ve finished your run, you don’t need your heart
beating at 130 bpm because your workload only demands 60 bpm.
Apply this to compute. If you’re livestreaming a famous movie star
enjoying your product launch or you were an online toilet paper
seller at the brink of COVID-19 during the panic-buy phase, you
needed way more capacity at those phases (130 bpm) than you do
on average or once those moments pass (60 bpm).

Do (Almost All of) It Yourself: Infrastructure as a Service | 65

Quite simply, IaaS lets you simplify IT infrastructure for building your own remote
datacenter on the cloud, instead of building or acquiring datacenter components
yourself. While this cloud computing pattern is a staple offering from all public cloud
providers, we’re beginning to see many large organizations with their hybrid cloud
approach offer this pattern internally (for obvious reasons)—to extract maximum
value from cross-company hardware investments and flatten the time-to-value curve
associated with delivering business constituents what they need.

Think about all the idle compute capacity sitting across your company or even in a
single siloed department—Forbes once noted that “30 percent of servers are sitting
comatose,” and we think it’s higher than that in practice. For example, our authoring
team has our own server that we set up for this book, but the five of us aren’t using it
all the time. In fact, this server is so powerful we could easily share half of it with
someone else. As we wrote this chapter, we did just that—we partitioned up the
server and offered it to another department via a cloud pattern with a chargeback on
usage. As it turned out, the first group wasn’t using it much either, so we did it again,
and again. By the time we finished our book, we were making money! (We’re kid‐
ding…or we were told to say so.)

When organizations can quickly provision an infrastructure layer, the required time-
to-anything that depends on the hardware is dramatically reduced. Talk to any team
in your organization about the efforts required to order a server—we alluded to it
before and it’s brutal. From approvals to facilities requests, the hours and costs spent
on just being able to plug the computer in is horrendous (this is why we jokingly said
we made money with our server—because our “customers” are happy to avoid all the
things we just mentioned). Bottom line: be it from a public cloud or an on-premises
strategy within your organization, IaaS gets raw compute resources to those that need
it quickly. Think of it this way: if you could snap your fingers and have immediate
access to a four-GPU server that you could use for five hours, at less than the price of
a meal at your favorite restaurant, how cool would that be? Even cooler, imagine you
could then snap your fingers and have those server costs go away—like eating a fast
food combo meal and not having to deal with the indigestion or calories after you
savor the flavor. Think about how agile and productive you would be. Again, we want
to note that if you’re running a workload on a public cloud service 24x7, 365 days a
year, it may not yield the cost savings you think; depending on the workload it could
be more expensive, but agility will always reign supreme with cloud (the capability)
compared to the alternatives.

Moving to the cloud gives you increased agility and an opportunity for capacity plan‐
ning that’s similar to the concept of using electricity: it’s “metered” based on the usage
that you pay for (yes, you’ll yell at developers who leave their services running when
not in use the same way you do your kids for leaving the lights on in an empty room).
In other words, IaaS enables you to consider compute resources as if they are a utility
like electricity. Similar to utilities, it’s likely the case that your cloud service has tiered

66 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

https://oreil.ly/BSPPY

pricing. For example, is the provisioned compute capacity multitenant or bare metal?
Are you paying for fast CPUs or extra memory? Never lose sight of what we think is
the number-one reason for the cloud and IaaS: it’s all about how fast you can provi‐
sion the computing capacity—and this is why we keep urging you to think of cloud as
a capability, rather than a destination.

We titled this section with a do-it-yourself theme because with IaaS you still have a
heck of a lot of work to do in order to get going. Just like when your kid had an apart‐
ment with a stove and a fridge, your team is as far away from writing code or training
their neural networks with GPU acceleration using IaaS as your kid was from sitting
down with their date and eating homemade pizza.

IaaS emerged as a popular computing model in the early 2010s, and since that time, it
has become the standard abstraction model for many types of workloads. Despite the
relentless evolution of cloud technologies (containers and serverless are great exam‐
ples) and the related rise of the microservices application pattern (a cornerstone to
the modernization work we talk about throughout this book), IaaS remains a founda‐
tional cornerstone of the industry—but it’s a more crowded field than ever.

IaaS has a Twin Sibling: Bare Metal
Bare metal is not a 1980s big hair band that streaked at their concerts for a memora‐
ble finale, but rather a term that describes infrastructure in its rawest form provi‐
sioned over the cloud: bare metal as a service (BMaaS). Think of BMaaS as IaaS’s twin
—very similar in so many ways, but there are some things that make them each
unique. In a BMaaS environment, resources are still provisioned on-demand, made
available over the internet, and billed on a pay-as-you-go basis. Typically, this used to
be monthly or hourly increments, but more and more pricing models for anything
as-a-service is more granular, with by-the-minute (and in some cases by-the-second
or service unit) pricing schemes.

Unlike traditional IaaS, BMaaS does not provide end users with already virtualized
compute, network, and storage (and sometimes not even an operating system, for
that matter). Instead, it gives direct access to the underlying hardware. This level of
access offers end users almost total control over their hardware specs. The hardware
is neither virtualized nor supporting multiple virtual machines and so it offers end
users the greatest amount of potential performance, something of significant value
for use cases like high-performance computing (HPC).

Do (Almost All of) It Yourself: Infrastructure as a Service | 67

It’s a well-known fact that whenever you virtualize anything, you
lose some performance. Performance on a bare-metal server will
always outperform equivalent amounts of virtualized infrastruc‐
ture. The very essence of the as-a-service model relies on virtualiz‐
ing away the underlying compute resources so they can be shared
and easily scaled. We chose not to delve into these nuances, but if
you want the absolute most performance possible right down to
single-digit percentage points, you’ll want to delve more into the
potential benefits BMaaS can offer.

If you’re nuanced in the operation of traditional noncloudified datacenters, BMaaS
environments are likely to feel the most familiar and may best map to the architecture
patterns of your existing workloads. However, it’s important to note that these advan‐
tages can also come at the expense of traditional IaaS benefits, namely the ability to
rapidly provision and horizontally scale resources by simply making copies of instan‐
ces and load balancing across them. When it comes to BMaaS versus IaaS, one model
is not superior to the other—it’s all about what model best supports the specific use
case or workload.

Noisy Neighbors Can Be Bad Neighbors:
The Multitenant Cloud
Before we cover the other as-a-service models, it’s worth taking a moment to further
examine a fundamental aspect of a cloud provider deployment options: single- or
multitenant cloud environments.

One of the main drawbacks to IaaS is the possibility of security vulnerabilities with
the vendor you partner with, particularly on multitenant systems where the provider
shares infrastructure resources with multiple clients.

Provisioning multitenant resources also means having to contend with the reality of
shared resources. Performance is never consistent and might not necessarily live up
to the full potential that was promised on paper. We attribute this unpredictability to
the “noisy neighbors’’ effect.

In a shared cloud service, the noisy neighbor is exactly what you might imagine:
other users and applications, for a shared provisioned infrastructure in a multitenant
environment, and that can bog down performance and potentially ruin the experi‐
ence for everyone else (think back to our example of a young man hosting a date at a
shared residence). Perhaps those neighbors are generating a disproportionate amount
of network traffic or are heavily taxing the infrastructure to run their apps. The end
result of this effect is that all other users of the shared environment suffer degraded
performance. In this kind of setting, you can’t be assured of consistent performance,
which means you can’t guarantee predictable behavior down to your customers. In

68 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

the same manner that inconsistent query response times foreshadow the death of a
data warehouse, the same applies for services in the cloud.

In a provisioned multitenant public cloud environment, you don’t know who your
neighbors are. Imagine for a moment that you are unknowingly sharing your cloud
space with some slick new gaming company that happened to hit the jackpot, and
their app has “gone viral.” Who knew that an app for uploading pictures of your boss
to use in a friendly game of “whack-a-mole” would catch on? Within days, millions
join this virtual spin on a carnival classic. All this traffic creates a network-choking
phenomenon. Why do you care? If this gaming studio and its customers happen to be
sharing the same multitenant environment as you, then the neighborhood just got a
lot noisier, and your inventory control system could run a lot like the aforementioned
game—up and down.

These drawbacks are avoidable in the public cloud and easier to manage or avoid in a
hybrid cloud, but you should certainly press any IaaS provider (be they internal or
external to your company) on what we’ve covered in this section.

Cloud Regions and Cloud Availability Zones for Any
As-a-Service Offering
You might come across this terminology in cloud-speak: availability zones and
regions. A cloud availability zone is a logically and physically isolated location within
a cloud region that has independent power, cooling, and network infrastructures iso‐
lated from other zones—this strengthens fault tolerance by avoiding single points of
failure between zones while also guaranteeing high bandwidth and low inter-zone
latency within a region. A cloud region is a geographically and physically separate
group of one or more availability zones with independent electrical and network
infrastructures isolated from other regions. Regions are designed to remove shared
single points of failure (SPOF) with other regions and guarantee low inter-zone
latency within the region.

Different companies use different terminology for this stuff, so
we’re giving you the basics. For example, some talk about Metros,
or have a hierarchy that goes Geography (think North America),
Country (like USA), Metro (Dallas, San Jose, Washington DC),
Zones (datacenters within the Metros).

We spent a lot of time on IaaS in this chapter despite the fact that the other as-a-
service models are getting more attention as of late. This was by design. Each cloud
pattern builds upon the other and delivers more value on the stack. Our cloud pattern
stack starts with the foundation of IaaS (as shown in Figure 4-2) and will grow as we
add more patterns.

Noisy Neighbors Can Be Bad Neighbors: The Multitenant Cloud | 69

Figure 4-2. IaaS provides a foundational level for any service or application that you
want to deploy on the cloud—other as-a-service models build (and inherit) these bene‐
fits from here

It might be best to think of IaaS as you would a set of Russian dolls—each level of
beauty gets transferred to the next and the attention to detail (the capabilities and
services provided from a cloud perspective) increases. In other words, the value of
IaaS gives way to even more value, flexibility, and automation in PaaS, which gives
way to even more of these attributes in SaaS (depending on what it is you are trying
to do). Now that you have a solid foundation on IaaS, it’s going to better illustrate the
benefits of PaaS and make its adoption within your business strategies easier.

Building the Developer’s Sandbox with
Platform as a Service
Platform as a service (PaaS) is primarily used for developers to play around (hence
the name sandbox), compose (modernization-speak for build), and deploy applica‐
tions. This pattern is even further removed from the traditional manner in which IT
architectures are provisioned because required hardware and software are delivered
over a cloud for use as an integrated solution stack.

Quite simply, PaaS is really useful for developers. It allows users to develop, run, and
manage their own apps without having to build and maintain the infrastructure or
platform usually associated with the process.

This means countless hours saved compared to traditional app dev preparation steps
such as installation, configuration, troubleshooting, and the seemingly endless
amounts of time spent reacting to never-ending changes in open source cross depen‐
dencies. PaaS, on the other hand, allows you to relentlessly innovate, letting develop‐
ers go from zero to productive in less time than it typically takes to reboot a laptop.

PaaS is all about writing, composing, and managing apps without the headaches of
software updates or hardware maintenance. PaaS takes the work out of standing up a
dev environment and all configuration intricacies or forcing developers to deal with
virtual machine images or hardware to get stuff done (you don’t have to prepare the
pizza, thinking back to our university student analogy). With a few swipes and key‐
strokes, you can provision instances of your app dev environment (or apps) with the

70 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

necessary development services to support them. This streamlining ties together
development backbones such as node.js, Java, mobile backend services, application
monitoring, analytics services, database services, and more.

The PaaS provider hosts everything—servers, networks, storage, the operating sys‐
tem, software, databases, and more. Development teams can use all of it for a
monthly billed fee (which could be billed to a credit card if it’s a hobby, a third-party
contract for your company, or a chargeback if your company is providing its employ‐
ees the PaaS platform) based on usage, and users can quickly and without friction
purchase more resources on demand, as needed.

PaaS is one of the fastest-growing cloud patterns today. Gartner forecasts the total
market for PaaS to exceed $34 billion by 2022, doubling its 2018 size.

Digging Deeper into PaaS
What are the key business drivers behind the market demand for PaaS? Consider an
app developer named Jane. PaaS provides and tailors the environment that Jane needs
to compose and run her apps, thanks to the libraries and middleware services that are
put in her development arsenal through a services catalog. Jane and other developers
don’t need to concern themselves with how those services are managed or organized
under the hood. That complexity is the responsibility of the PaaS provider to manage
and coordinate. More than anything, this development paradigm decreases the time
to market by accelerating productivity and easing deployment of new apps over the
cloud. Are you a mobile game developer? If so, you can provision a robust and rich
backend JSON in-memory key value store (like Redis) for your app in seconds, attach
to it a visualization engine, and perform some analytics.

The PaaS pattern enables new business services to be built frictionless, thanks to a
platform that runs on top of a managed infrastructure and integrates cleanly between
services. This is where a lot of work is done for development, even after you’ve got an
environment set up—getting the components you’re using to talk to each other. The
traditional components of a development stack—the operating system, the integrated
development environment (IDE), the change management catalog, the bookkeeping
and tooling that every developer needs—can be provisioned with ease through a PaaS
architecture. If you are a developer of native cloud apps, PaaS is your playground.
CI/CD becomes a reality when your apps and services can be implemented on a plat‐
form that supports the full DevOps process from beginning to end.

PaaS offers such tremendous potential and value to developers like Jane because there
are more efficiencies to be gained than just provisioning some hardware. Take a
moment to consider Figure 4-3. Having on-demand access to databases, messaging,
workflow, connectivity, web portals, and so on—this is the depth of customization
that developers crave from their environment. It is also the kind of tailored
experience that’s missing from the IaaS pattern. The layered approach shown in

Building the Developer’s Sandbox with Platform as a Service | 71

https://oreil.ly/ttvxc
https://oreil.ly/ttvxc

Figure 4-3 demonstrates how PaaS is, in many respects, a radical departure from the
way in which enterprises and businesses traditionally provision and link services over
distributed systems. Read that sentence again and ask yourself, “Why is the only way I
can take advantage of this stuff to have my application on a public cloud?” (It isn’t—
cloud the capability!) And now you get just how limiting it can be to box your cloud-
mindset into thinking of it as a destination, rather than as a capability.

Figure 4-3. PaaS provides an integrated development environment for building apps that
are powered by managed services

In the traditional development approach, classes of subsystems are deployed inde‐
pendently of the app that they are supporting. Similarly, their lifecycles are managed
independently of the primary app as well. If Jane’s app is developed out of step with
her supporting network of services, she will need to spend time (time that would be
better spent building innovative new features for her app) ensuring that each of these
subsystems have the correct versioning, functionality mapping for dependencies, and
so on. All of this translates into greater risk, steeper costs, higher complexity, and a
longer development cycle for Jane.

With a PaaS delivery model, these obstacles are removed: the platform assumes
responsibility for managing subservices (and their lifecycles) for you. When the
minutiae of micromanaging subservices are no longer part of the equation, the
potential for unobstructed end-to-end DevOps becomes possible. With a complete
DevOps framework, a developer can move from concept to full production in a mat‐
ter of minutes. Jane can be more agile in her development, which leads to faster code
iteration and a more polished product or service for her customers. We would
describe this as the PaaS approach to process-oriented design and development.

72 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

Composing in the Fabric of Cloud Services
The culture around modern apps and tools for delivering content is constantly
changing and evolving. Just a short time ago, there was no such thing as Kickstarter,
the global crowd-funding platform. Today you’ll find things as niche as a Kickstarter
campaign for a kid’s school trip! (When we grew up, our definition for this kind of
fundraising campaign was mowing our neighbor’s lawn.) The penetration of social
sharing platforms (Instagram, TikTok, and so on) that only run on (or are purely
designed for) mobile platforms is astonishing. Why? There are more mobile devices
today than there are people on the planet—Statista estimated that there would be two
for each person to start this year (2021), and that’s not including edge devices. We’re
in the “app now,” “want it now” era of technology. This shift isn’t a generational phe‐
nomenon, as older generations like to think (many young’uns don’t care about Face‐
book, but senior citizens are dominating its signups). Ironically, our impatience with
technology today is due to the general perception that the burdens of technology IT
infrastructure are gone. (Two of the authors shared a flight to Spain before the pan‐
demic and during the writing of this book recanted how they were complaining about
the speed of the internet—over the ocean!)

To be successful in this new culture, modern app developers and enterprises must
adopt four key fundamental concepts:

• First is deep and broad integration. What people use apps for today encompasses
more than one task. For example, today’s shopper expects a seamless experience
to a storefront across multiple devices with different modalities (some will
require gesture interactions, whereas others will use taps and clicks).

• The second concept is mobile. Applications need a consistent layer of functional‐
ity to guarantee that no matter how you interact with the storefront (on your
phone, a tablet, or a laptop), the experience feels the same but is still tailored to
the device. Here we are talking about functionality that has to be omni-channel
and consistent (we’ve all been frustrated by apps where the mobile version can’t
do what the web version does), and for frictionless to happen, the customer-
facing endpoints need to be deeply integrated across all devices.

• Third, developers of these apps need to be agile and iterative in their approach to
design. Delivery cycles are no longer set according to large gapped points in time
(a yearly release of your software, for example). Users expect continuous
improvement and refinement of their services and apps, and code drops need to
be frequent enough to keep up with this pace of change—thus the allure of
CI/CD. Continuous delivery has moved from initiative to imperative. Why? Sub‐
scription pricing means you must keep earning your client’s business, because it’s
easier than ever for them to go elsewhere.

Building the Developer’s Sandbox with Platform as a Service | 73

https://oreil.ly/b6q5O

• Finally, the ecosystem that supports these apps must appeal to customer and
developer communities. Business services and users want to be able to use an app
without needing to build it and own it. Likewise, developers demand an environ‐
ment that provides them with the necessary tools and infrastructure to get their
apps off the ground and often have next-to-zero tolerance for roadblocks (like
budget approvals, getting database permissions, and so on).

Consuming Functionality Without the Stress:
Software as a Service
If PaaS is oriented toward the developer who wants to code and build modern apps in
a frictionless environment, then software as a service (SaaS) is geared much more
toward lines of business that want to consume the services that are already built and
ready to deploy.

In a nutshell, SaaS (some people might refer to it as cloud application services, but in
our experience those people are likely billing you for hourly advice) delivers software
that typically runs fully managed and hosted on the cloud. This allows you to con‐
sume functionality without having to manage software installation, general software
maintenance, the sourcing and sizing of compute, backups, and more. All you have to
do to use it is open a web browser and go to the service’s dashboard or access the ser‐
vice via an API.

Nearly everyone is trying to become a SaaS business these days
because it’s usually tied to a subscription license—which means
recurring revenues. There is a lot of confusion these days on how
subscription licensing represents cloud revenue. For example, we
wrote this book using Office 365 (some of us love it, but we won’t
get into our drama here). We pay a subscription fee for it, but we’re
not running it in a browser on the cloud (we could, but the func‐
tionality isn’t the same); we run it locally, which in some ways
makes it a hybrid product.
What’s more, vendors love the SaaS business model because it’s a
model that can scale incredibly well from a sales perspective, and
once you have paying customers, it’s easier to keep them—just keep
delivering value.

74 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

Even if you’re brand new to the cloud, we think SaaS is the most widely recognized
type of cloud service because you’re likely using it today in your personal lives. Apple
Music is a SaaS service—it provides music (obviously) and the management of that
music vis-à-vis a rich interface for searching, a recommendation engine, AI-
personalized radio stations, and of course your own playlists. Updates to Apple Music
are automatic, and your playlists are always backed up; in fact, it was Apple that hel‐
ped to mainstream music as a service. Never lose your contacts again—thank you
SaaS! Google’s Gmail is another—you can log in to your email account from any
device, anywhere in the world, so long as you have an internet connection. But enter‐
prises are using all sorts of SaaS products too: Monday.com, Salesforce.com, Zen‐
Desk, Mentimeter, Prezi, and IBM all have offerings, as do so many others. Don’t get
boxed into the ubiquitous SaaS vendors we’ve mentioned here—there are thousands
that encompass all kinds of services, from simple backups to email to project man‐
agement, to editing a giphy, to tracking a golf shot live on course, and everything in
between.

Many well-known SaaS vendors actually buy IaaS from cloud pro‐
viders like IBM, Amazon, or Microsoft. Why? For the same reason
enterprises do! They don’t want to concern themselves with things
like load balancing, firewalls, and storage—they want to focus on
new features to offer their clients (so that they continue paying
those subscription fees). Packaging up a SaaS offering on Red Hat
OpenShift really opens the aperture of a vendor’s offering because
they’re thinking with cloud capabilities, which allows them to offer
up their product on any public cloud or on-premises (which some
clients might need because of data sovereignty or performance
issues).

SaaS consumers span the breadth of multiple domains and interest groups: human
resources, procurement officers, legal departments, city operations, marketing cam‐
paign support, demand-generation leads, political or business campaign analysis,
agency collaboration, sales, customer care, technical support, and more. The variety
of ways that business users can exploit SaaS is extraordinarily complex: it can be spe‐
cific (to the extent that it requires tailored software to address the problem at hand),
or it can require a broad and adaptable solution to address the needs of an entire
industry (like software that runs the end-to-end operations for a dental office).

Figure 4-4 highlights the fact that SaaS can apply to anything, as long as it is provi‐
sioned and maintained as a service over cloud technology (and now that you see
cloud as a capability, you can see how powerful it might be to mix public cloud SaaS
offerings with internal ones too).

Consuming Functionality Without the Stress: Software as a Service | 75

http://Monday.com
http://Salesforce.com

Figure 4-4. SaaS can be pretty much anything—as long as it is provisioned and main‐
tained as a completely frictionless service over the cloud

The Cloud Bazaar: SaaS and the API Economy
We’ve mostly talked about SaaS as software, but it’s important to note that SaaS can be
(and is increasingly so with each passing day) delivered vis-à-vis an API. Forget about
Planet of the Apes—we’re watching Planet of the Apps and it’s all because of today’s
marketplace trend: the API economy. The API economy is the ability to programmati‐
cally access anything through well-defined communication protocols (like those
RESTful services we talked about earlier in this book). Indeed, today’s software deliv‐
ery platforms have three facets: rentable (like in the public cloud), installable (tradi‐
tional software), and API composable.

API economies enable developers to easily and seamlessly integrate services within
apps they compose (or in the case of an end user: services they consume). This is
quite a departure from the traditional ways of app delivery, or what you may be used
to if you’re from a line of business trying to understand how your company fully
embraces the digital renaissance thrust upon them amidst a “mobile everywhere,”
“tech years are like dog years,” pandemic-hit economy.

For most people, SaaS experiences are driven by the user experience (UX). Take for
example The Weather Company. Many of you might know it as the handy app on
your phone that tells you if your family picnic is going to be pleasant (at least from a
weather perspective; we have no idea who is going to be there and if you want them
there or not). This app is installed on more mobile devices than we’re allowed to tell

76 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

you about, but basically every mobile device in the world has a weather app pre-
installed on it; however, that isn’t the surprising part. This app gets almost 30 billion
API requests a day—the bulk of which isn’t from users looking at it hourly, but rather
applications pulling weather requests. In one of our keynote demos, we built a cool
app that scrapes Twitter for monetizable intents and compares what people are say‐
ing, grabbing a Watson API to classify the image if the tweet has a picture; it also uses
the location of the tweet to pull a weather forecast closely associated with the person
who is tweeting. Why? Real-time promotions. This is a great example of an applica‐
tion that is using an API to get the Twitter stream, another to tell us what’s in the
image, and yet another to get localized weather—this is why we keep saying today’s
apps are composed and this is a perfect example of the API economy. Quite simply,
more and more SaaS providers are going to rely on API integration of their works
into third-party services to drive revenue and traffic far more than they rely on a UX-
driven strategy for attracting users.

At their most basic level, SaaS apps are software that is hosted and managed in the
cloud whose backend stacks mostly look the same: software components are prein‐
stalled (SaaS); the database and application server that support the app are already in
place (PaaS); and this all lives on top of the infrastructure layer (IaaS). As a consumer
of the service, you just interact with the app or API; there’s no need to install or con‐
figure the software yourself. When SaaS is exposed as a typical offering, you see it as a
discrete business app. However (this is important to remember), under the covers the
SaaS offering is most likely a collection of dozens (even hundreds or thousands) of
APIs working in concert to provide the logic that powers the app.

Having a well-thought-out and architected API is critical for developing an ecosys‐
tem around the functionality that you want to deliver through an as-a-service prop‐
erty. We think this point highlights something amazing: not only is the as-a-service
model a better way to monetize your intellectual property, but having the pieces of
business logic that form your app be consumable in very granular ways (this API call
gets us a zip code, that one does a currency conversion) makes you more agile for
feature delivery and code resolution.

Remember, the key is designing an API for services and software that plays well with
others—whether you’re selling them or creating them for internal use. Don’t get
boxed into thinking your API audience has to be just for people in your company;
potentially, it could be useful to anyone on the value chain. Consumers of the SaaS
API economy require instant access to that SaaS property (these services need to be
always available and accessible), instant access to the API’s documentation, and
instant access to the API itself (so that developers can program and code against it).

Furthermore, it is critical that the API architecture be extensible, with hooks and
integration endpoints across multiple domains to promote cooperation and connec‐
tivity with new services as they emerge. A robust API economy is made possible by a

The Cloud Bazaar: SaaS and the API Economy | 77

hybrid cloud architecture of well-defined open integration points between external
systems and cloud marketplaces from any vendor, without consideration to location
—that enables service consumers to focus purely on cloud capabilities, instead of des‐
tinations (Figure 4-5).

Figure 4-5. A composed enterprise app that on the backend leverages APIs to “round
out” its functionality and in turn exposes its line-of-business stakeholders’ APIs to sup‐
port their applications

All You Need Is a Little Bit of REST and Some Microservices
We’ve talked a lot about RESTful APIs throughout this book, giving you the gist of
them to help you understand the discussion in whatever section or chapter you were
reading. With that said, since they are so fundamental to the rest (get it?) of this book,
we thought we’d spend a little time giving you some analogies and a little more infor‐
mation, because microservices are a key tenet toward modernizing your digital
estates.

Let’s pretend you’re at a superstore like Costco. A REST API consists of various end‐
points that you access based on things you need. If you’re at Costco, most of the
things you’ll check out and pay for will be processed in the main cashier’s line; how‐
ever, Pharmacy, Optical, and Auto are separate endpoints and those items can’t be
purchased through the main cashiers. Pharmacy, Optical, Auto, and Cashier are all
Costco endpoints where someone is waiting to take your money (a REST API) and
service your request. (Unlike Costco, when you consume a RESTful API, you get
exactly what you came for and leave with just that; you don’t walk out spending hun‐
dreds of unbudgeted dollars when you just came for one or two items.)

You know how to talk to each of these endpoints, because there’s a well-defined stan‐
dard for doing so—it’s akin to human language (well, perhaps today’s language isn’t so
standard, but you get the point). RESTful services talk to applications via their end‐
points using their own language called methods. Just like we use verbs to describe

78 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

actions (“Do you have any more ski helmets?”), there are distinct REST API verbs
that perform actions too—things like CREATE, READ, UPDATE, and DELETE (tech heads
call these CRUD operations). Sometimes those “verbs” are in a different dialect of a
method language (like HTTP verbs) and you’ll hear them called GET, POST, PUT, and
DELETE. It doesn’t matter what dialect your dev team speaks with one another, so long
as they also know the language (methods) of the service they’re programming for.

Each REST API has one job (when implemented as a microservice—a best practice)
often referred to as the “single responsibility principle.” The REST part of that one job
is the communication between these separate processes. While REST is how you talk
to the API, the execution scope is on running the component code that brings back to
the end user what they were looking for. Hopefully you can see how this framework is
deeply rooted in CI/CD because the architecture allows you to evolve at different
rates (when COVID first started, Costco’s Pharmacy service had to evolve much dif‐
ferently than its other endpoints). Building microservices as discrete pieces of logic
allows you to granularly evolve different parts of the app over time on their own
schedules (for example, look at how many times Uber updates its apps and the rea‐
sons for those updates).

With microservices, it’s not a single layer that hands an application’s data and business
logic. You are literally grabbing lots of narrow-minded “bots” that do simple small
tasks and wrangling them together for some larger purpose. Microservices are the
killers of monolithic apps because you don’t develop applications with them; rather,
you compose them by pulling together discrete pieces of logic to make an application.

We think that’s enough to understand what REST APIs are and the microservices
approach, so we’ll finish this section with a list of their advantages, summarized in
one place for easy reference. The microservices architecture is tremendously valuable
because each component:

• Is developed independently of each other—if the service has dependencies on
other services (chaining) they are limited and explicit.

• Is developed by a single, small team (another best practice) in which all team
members can understand the entire code base—this specialization creates econo‐
mies of scale, reduces bugs, and creates eminence on the service.

• Is developed on its own timetable so new versions are delivered independently of
other services—the team that updates the location logic of the app doesn’t have to
rely on the team who does discounting calculations in order to effect the change.

• Scales and fails independently—this not only makes it easier to isolate any prob‐
lems, but also simplifies how the app scales. For example, if you’re getting more
refund requests because of cancelled flights, you can scale refund logic independ‐
ently of the services that compose the loyalty redemption component.

All You Need Is a Little Bit of REST and Some Microservices | 79

• Can be developed in a different language—the protocol apps use to talk to each
other and invoke (via REST) abstracts away the backend logic and programming
language.

GraphQL API
The GraphQL API is a newer type of API that’s capturing a lot of attention these days
because it was created out of developer frustrations with REST, namely flexibility and
inefficiencies. GraphQL is a query language and server-side runtime for APIs that pri‐
oritizes giving application pull requests exactly the data they requested and no more
(or less). As an interesting alternative to REST, GraphQL lets developers construct
requests that pull data from multiple sources in a single API call. The neat thing about
this API is that you can make all your requests at once. It’s outside the scope of this
book to delve deeper into GraphQL APIs, but in our Costco example, you could liter‐
ally walk into the store, ask for your glasses, medicine, a set of winter tires, and fifty
pounds of red beets and check out in an instant—it’s like a personal assistant. You use
GraphQL APIs just like REST APIs (those HTTP verbs we talked about).

It’s Not Magic, But It’s Cool: The Server in Serverless?
Finally, we get to this mystery called serverless. Let’s ensure we’re clear right off the
bat: serverless does not mean there isn’t a server involved, just like how cloud comput‐
ing doesn’t mean your server is suspended by ice crystals in the sky. If there is one
thing we want you to remember about serverless computing, it’s that serverless is yet
another gear that lets developers focus on writing code.

To understand serverless computing, let’s start with the notion that no matter how
you’re building and hosting apps (traditionally or via REST or GraphQL APIs) there’s
always been the concept of a dedicated server that’s constantly available to service
requests. In contrast, the more and more popular serverless architecture doesn’t use a
live running server dedicated to all of the API calls you’re making for your app. And
where do you think these serverless servers (even sounds odd to write that) run?
They need a distributed, open environment that can easily bring together discrete
pieces of logic from anywhere—so naturally, in a cloud of course!

Serverless computing is a new and powerful paradigm, one that naturally has been
pounced on by nearly every major cloud vendor in the marketplace today—so you
certainly have your pick of providers. The core concern that serverless computing is
trying to get away from is the timeless struggle of procuring (ahead of time) correctly
sized infrastructure for the workloads you intend to run. With the serverless comput‐
ing approach, you no longer rent server capacity ahead of time or have to procure a

80 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

server outright; instead, you pay per computation—without having to worry about
the underlying infrastructure at all.

The serverless part means that the serverless framework focuses on scaling automati‐
cally to handle each individual request. In short, developers don’t have to worry about
managing infrastructure capacity to support their service’s logic and their associated
underlying resources. While IaaS requires that you think about how to provision
resources (to support the application and the operating system for that matter), a
serverless architecture just needs to know, “How many resources are required to exe‐
cute your intent?”

To fully appreciate this, let’s take a moment to think about today’s discussions around
cloud (the capability)—workloads are becoming increasingly dominated by contain‐
ers, orchestration of those containers, and serverless. Looking back, the IaaS pattern
we discussed earlier in this chapter was a step in the journey to cloud utopia. While
IaaS offers companies more granularity in how they pay for what they use and the
time it takes to start using it, as it turns out they rarely paid only for what they use—
which is why we often cite that cost savings shouldn’t be the primary driver for adopt‐
ing cloud: it’s not a certainty that it will provide them. Even virtual servers often
involve long-running processes and less than perfect capacity utilization.

Don’t get us wrong. IaaS can be more compute and cost efficient than traditional
compute, but spinning up a virtual machine (VM) can still be somewhat time-
consuming and each VM brings with it overhead in the form of an operating system.
The IaaS model of IT is capable of supporting almost anything from a workload per‐
spective but has room for evolution when it comes to certain underlying philosophies
and values that make cloud, well, cloud. In many cases, the container has begun
replacing VMs as the standard unit of process or service deployment, with orchestra‐
tion tools like Kubernetes governing the entire ecosystem of clusters.

The crux behind serverless is that you write code that will execute under certain con‐
ditions (or code that will run a desired job). When that code is executed, you are only
billed for the computational cost of doing the job. You, as a developer, focus on the
code and only the code. Savvy developers have always endeavored to make their code
as efficient as possible. Serverless computing provides an additional incentive for
those developers to tighten up their code performance even further—since more effi‐
cient code means fewer CPU cycles and therefore (in the case of serverless) even
cheaper billing rates to execute their code.

Think about this from another angle: imagine that you have a rarely used service that,
when run, is potentially very demanding on local resources. Your system administra‐
tor warns you that, should the need to execute this service ever arise (in an emer‐
gency), it might adversely affect or even cripple other day-to-day operations running
in your environment, simply because of the vast quantities of resources it would
require to meet the moment. With serverless computing, your business could host

All You Need Is a Little Bit of REST and Some Microservices | 81

that dust-laden code on a cloud provider to accomplish the job (when necessary),
without wasting or risking your own IT infrastructure resources. The burst in
resource consumption could be met by the serverless computing environment, allow‐
ing your business to address the crisis (should it arrive) without crippling other local
services in the fallout.

Serverless is a newer cloud model that is challenging traditional models around cer‐
tain classes of cloud native applications and workloads. It isn’t for everyone, and it has
its limitations (which are outside the scope of this book), but if the fit is right—it can
be nothing short of a home run. Serverless goes the furthest of any cloud pattern in
terms of abstracting away nearly everything but very granular encapsulated business
logic, scaling perfectly with demand, and really delivering on the promise of paying
only for what you use.

Serverless has a Kid! Function as a Service
We’ve grossly (perhaps unfairly) simplified it here, but we’ve been alluding to yet
another as-a-service model throughout this chapter—function as a service (FaaS).
FaaS is a type of cloud-computing service that allows you to execute code in response
to events without the complex infrastructure (dedicated servers, whether they are tra‐
ditionally dedicated or vis-à-vis IaaS) typically associated with building and launch‐
ing microservices applications.

Serverless and FaaS are often conflated with one another, but the truth is that FaaS is
actually a subset of serverless. Serverless is really focused on any service category—be
it compute, storage, database, messaging, or API gateways—where configuration,
management, and billing of servers are invisible to the end user. FaaS, on the other
hand, is focused on the event-driven computing paradigm where application code
only runs in response to events or requests.

Hosting a software application on the internet typically requires provisioning a vir‐
tual or physical server and managing an operating system or web server hosting pro‐
cesses. With FaaS, the physical hardware, virtual machine operating system, and web
server software management are all handled automatically by the hybrid cloud—
which is how we’ve been describing it.

The Takeaway
Today, traditional IaaS is, by far, the most mature cloud pattern and controls the vast
majority of market share in this space. But containers and serverless will be technolo‐
gies to watch and begin employing opportunistically where it makes sense. As the
world moves more toward microservices architectures—where applications are
decomposed into small piece parts, deployed independently, manage their own data,
and communicate via APIs—containers and serverless approaches will only become
more common.

82 | Chapter 4: Cloud Computing: Patterns for The What, The How, and The Why

We noted earlier that serverless is great for the right types of applications. From a
business perspective, you can start paying for stuff in milliseconds with the FaaS
model. Business loves the agility of it all and it reduces the costs of hiring backend
infrastructure people (you still need people for IaaS), so it overall reduces operational
costs. With that said, businesses have to consider a reduction in overall control of
their app at the most granular of levels; furthermore, these apps can potentially be
more susceptible to vendor lock-in and disaster recovery can be more complex.

What about developers? Well, they benefit too, starting with the obvious: zero system
administration. This means someone (or something) else is handling scalability,
which means more time to focus on code, which fosters innovation. That said, devel‐
opers need to balance this “Zen” dev zone with additional architectural complexity:
local testing becomes more challenging; the length of time a built service can run is
capped (we didn’t cover that here because the book isn’t about the details of technol‐
ogy); there is a lack of operational tools; and some other things not worth getting into
here.

Wrapping It Up
Now that you’re done reading this chapter, we’re confident you have a solid founda‐
tion around the different cloud patterns that will empower you to decide where to use
them and what they are all about. You have a solid understanding on how APIs are
shape-shifting app dev in a massive way and how newer patterns (such as serverless
and its sibling FaaS) are areas you’re likely going to need to explore in the coming
months when you’re done reading this book.

At this point we know you appreciate cloud as a capability, and how getting yourself
(or the people you influence) out of the “cloud as a destination” mindset opens the
aperture on all that cloud can deliver to your business. We hope you agree with us
that hybrid cloud is the path forward and understand how it can capture the 2.5x
value that’s been left on the table by the current approach most are using with cloud
technology (treating it like a destination).

Before we jump further into details around security, containers, and more, we wanted
to give you a solid foundation on those application development epochs we talked
about in Chapter 3...so get ready to “shift left” and we’ll see you in Chapter 5.

Wrapping It Up | 83

CHAPTER 5

Shift Left

Application modernization is a pivotal moment for information technology, clearly
demarcating this generation from those that will follow. In fact, we think it’s the only
way that organizations can truly capture all the value the hybrid cloud has to offer.

Using containers and orchestration, applications can at last be engineered to realize
the “write once, run anywhere” paradigm. For developers, enterprise, and business of
all sizes—this means truly unconstrained portability of apps and services. Being able
to abstract the process of designing and building applications from the environ‐
ment(s) they need to run on achieves three goals at once: it unshackles the creativity
of developers (who can focus on writing better code with the best tools at their finger‐
tips); it drastically shrinks the time to market for new cloud native (and modernized)
apps; and it slashes administrative upkeep that would otherwise be needed to main‐
tain and refactor these apps for new environments over time.

A hybrid multicloud architecture is what makes this level of application portability
feasible. The question of where to run applications has shifted from “Here or there?”
to one of “Here, and where else?” The plurality of vendors that a business can pur‐
chase cloud services from shows that cloud, as it exists today, has transformed from a
destination into a set of capabilities. This holds especially true for vendors that offer
cloud footprints that can operate across public cloud, private cloud, and on-premises.
Modern containerized apps that follow the axiom of “write once, run anywhere” are
able to migrate fluidly across a wide range of hybrid multicloud architectures—and
do so in a consistent, repeatable fashion that lends itself well to enterprise.

85

To “shift left,” as developers put it, is to loop back on old processes, identify short‐
comings within the old ways of doing things, and steadily iterate on those designs to
improve them through experience over time. Plenty of lessons are learned each year
within the IT marketplace, and the pandemic years are certainly no exception. The
disruption underway from this monumental shift in computing, as we enter the new
decade, cannot be understated. How can a business have confidence that its choice of
technology partner in this new paradigm is the correct one?

Shift Left
The Japanese word ポカヨケ(Poka yoke) literally means “mistake-proofing”—its goal
is to prevent inadvertent errors and eliminate product defects through early preven‐
tion and correction.

For developers, the term shift left is a practice intended to find and prevent defects in
the software development lifecycle. Left reflects the iterative loop that defines such
software development cycles, putting forth changes that are tested and evaluated,
again and again. It also wonderfully mirrors the same rigorous methodology of revis‐
iting and questioning a null hypothesis using the scientific method. Shifting back to
the left—pulling through again with a finer-toothed comb—and continuing to refine
on the design (rather than pushing straight through to release with the first working
prototype) puts the values of Poka yoke into practice.

Monolithic and Microservices
Today, rapid application deployment is a must-have for companies to meet consumer
demands or challenges. As you’re likely well aware, the quick delivery of capabilities
via software to support ever-changing requirements is no easy task.

A real-life example: one of us built a model based on Python’s scikit-image library
and our script suddenly broke after updating the library to the latest-and-greatest
release. Why? The latest version would not accept the visualize=true option in our
code. Suddenly we had to spell it as visualise=true (note the s). We’re not sure what
Commonwealth English teacher turned open source committer was behind this, but
it illustrates the point perfectly: change within the open source community is con‐
stant, and in turn these changes can impact (or even break) an enterprise’s services
just as quickly.

One thing we can unanimously agree on: the faster that a development team can
improve their existing applications or find errors in their code, the more time they
can otherwise invest in new skills, or use to make better apps.

86 | Chapter 5: Shift Left

Separating the Old from the New
A handy way to conceptualize and separate “modernized” applications from those
applications that came before is “monolithic” (the old) versus “microservice” (the
new) approaches to application design. If both of these terms are new to you, excel‐
lent, you’re in the right place. If on the other hand you have familiarity with service-
oriented architectures, you may be asking yourself how the new approaches to
application design are any different than the old—after all, don’t they both use serv‐
ices in the end? Indulge us for a moment as we set out to demonstrate exactly why
microservices are anything but yet-another flavor of service-oriented design.

For simplicity, let’s generalize (generously so) that legacy applications existing within
many enterprise organizations today can be described as “monolithic”: large, often
enormously complex applications, written in a single programming language and fre‐
quently running on a single machine. You can see an abstract example of such a mon‐
olithic application housed inside a virtual machine (running atop an enterprise
hypervisor) in Figure 5-1.

Figure 5-1. Traditional linear approach to scaling up monolithic applications, which is
effective, but costly: replicate the virtual machine (and its contents) from the top to what
is shown on the bottom with VMs #1a and #1b—both of which are essentially clones of
the original VM #1

Monolithic and Microservices | 87

There are caveats to this, of course—there may be segments of code written in differ‐
ent languages and monolithic applications are not impossible to adapt to distributed
systems (although some exceptional feats of engineering may be required). But the
reason these are exceptions to the rule (and not the norm) is exactly the reason why
we consider monolithic applications to be “legacy” (or at least not modernized). It is
precisely because monolithic code is difficult to maintain and challenging to scale
that many enterprise organizations are reluctant to modify these apps—not to men‐
tion that many of these apps are the backbone of the business and these days a busi‐
ness’s risk tolerance is zero. And therein lies the rub: those businesses that are stuck
maintaining legacy code are unable to embrace open source innovations, and those
organizations unable to scale their mission-critical services are left behind in a mar‐
ketplace moving increasingly toward hybrid multicloud environments.

Monolithic applications can be modular in design, which is why the often-cited
description of microservices being “modular” is not always the most helpful way of
distinguishing the two design paradigms. A monolithic application usually has a pre‐
sentation component (HTTP requests responded to with HTML or JSON/XML in
turn), a database component (data access objects), business logic, application integra‐
tion, and plenty of other services. The application might be written entirely in the
same language, or it could be split up into pieces—especially with service-oriented
architectures, which tend to deploy these monolithic applications across a number of
different machines. However, it is still monolithic in design. This will become appa‐
rent when we compare how a microservice is constructed and managed later in this
chapter.

Microservices Dance to a Different Fiddle
Microservices are often described as the “deconstruction of the monolith,” which is a
fair assessment of their mission, but may leave you with misconceptions about the
methods used to achieve this end state. For example, “deconstruction” implies break‐
ing down into smaller, “simpler” pieces (from a business logic perspective); however,
microservices architecture sometimes adds complexity, by the mere fact that the com‐
posed application is now a distributed service across smaller networked pieces. But
what deconstruction provides the developer and business is the decomposition of one
unwieldy and large application into more manageable chunks of services.

Each of these services, by nature of the way that they are designed, can be developed
and worked on (scaled and kept available too...more on that in a bit) independently of
one another (now you’re starting to see the benefits). This is a tremendous change
from the way developers are forced to work on monolithic applications: mainly, hav‐
ing to tackle the entire stack of code at once. The result is that future improvements
and refinements to microservices-based applications can be much more strategic
(“modular” in the true sense of the word) and collaborative across different teams. As
long as you publish the external API of the microservice in a way that other teams or

88 | Chapter 5: Shift Left

services can dialog with it, teams can work on different components of an application
independently of one another.

The extensibility of microservices also means that, for each microservice component
within a composed application, developers can use the languages and technologies
that they want to use—the tools best suited for the focused task at hand—rather than
be constrained by the legacy programming languages that at minimum large parts of
the monolith would otherwise have needed to maintain. This approach broadens the
aperture of open source innovations that can be introduced into a microservices-
based application and in turn opens the doors to exciting new workloads your appli‐
cation can tackle.

Scaling: One of These Things Is Not Like the Other
If you manage a set of enterprise apps, scaling up those applications generally means
(we’re purposely keeping it really simply here) making the application’s resource
requirements bigger: give it more memory, additional CPU cycles, greater network
bandwidth, and so on all the way down the infrastructure stack.

We can already imagine those of you with programming backgrounds shouting at
this page, “It doesn’t quite work that way!” You’re correct, it’s not that simple. But for
the sake of delineating the differences between monolithic and microservice
approaches to scale, let’s maintain the notion that in order to scale legacy applications
you need only throw more resources at it.

The bottom line: for enterprise organizations maintaining such monolithic applica‐
tions, the calculus for scaling is a simple one. If you need additional scale, you give
the application access to a larger machine. Yes, you can scale out your applications
across multiple distributed machines, but that’s particularly challenging—and
requires more technical chops, so it’s not for everyone.

To contrast with the monolithic app, we sketched out Figure 5-2 to illustrate a simpli‐
fied abstraction of three microservices, each in turn deployed on independent Com‐
pute Nodes (servers) from one another. Collectively, they form an application
powered by microservices. The color-coded blocks represent modular elements
within the microservice that can be modified or developed, scaled, and kept available
independently of other elements (stacked blocks of the same color-coded service in
turn represent replicas—or copies—of the same microservice). Note the variety of
tasks performed by this array of microservices. And yet despite the complexity of the
overall application, each microservice is performing only a single (and uniquely
essential) task.

Monolithic and Microservices | 89

Figure 5-2. A generalized view of how microservices might be arranged across separate
Compute (worker) Nodes

In a microservices-based architecture, you scale up by adding more components (or
more copies of the same component) to the overall stack. This concept is known as
“horizontal scaling,” in contrast to the more “vertical” scaling approach used by many
monolithic applications. And yet, you could easily make the argument that the two
approaches to scaling aren’t that substantially different to one another. After all, isn’t
the solution—throwing more resources and hardware at the bottleneck—essentially
the same for both monolithic and microservice applications?

Not quite. We can understand why monolithic applications do not scale well when we
look at how it is that developers and programmers go about deconstructing mono‐
lithic apps. As we made the argument for previously, an enterprise application “in the
old days” was probably written all in the same language. It would have used libraries
that were tightly integrated inside of the application. At the same time, there would
have been components that existed outside the monolith application—the presenta‐
tion layer, the database layer, and so on—that are connected by some client or port-
adapter mechanism to the monolith.

90 | Chapter 5: Shift Left

If you want to scale up a monolithic application, you have to replicate it outright in its
entirety—this includes needing to scale everything else that the monolith was depen‐
dent on to run (including components like external ports, adapters, and so on). Every
copy of the monolithic application would require a replica of its own for each of these
external dependencies.

So, what do we want you to take away from all this if you’re a business leader looking
to bolster your technical chops? When you’re scaling a monolithic application, you
need to scale all of the enterprise components together alongside it. This approach is
often rife with wasted resource allocation and complex interdependencies. Certain
subcomponents perhaps did not need to be scaled—individually they may have been
“keeping up” with demand just fine—but the overall complexity of the monolithic
application required that these underutilized components be replicated all the same.

How do microservices approach resource scaling differently? Recall back to the
depiction in Figure 5-2 and the matched groupings. Each of these groups are the
microservice equivalent to the components (libraries, frameworks, and so on) we
described for the monolithic application. There are, however, two key differences.
First, external dependencies exist for microservices just as they do for monoliths, but
they often communicate over RESTful APIs rather than adapters and are therefore
easily modified. Second, the stacked groups of microservice components can be
scaled independently of one another, as opposed to the wholesale all-or-nothing
approach for scaling monolithic application stacks.

An expanded view of our generalized microservice application is shown in
Figure 5-3. This depiction revisits the same application we saw in Figure 5-2, only this
time scaled up to meet the increasing demand on some of its microservice compo‐
nents. You can see that stacked tiles represent redundant (replica) copies of a particu‐
lar microservice application or function. Notice that some tiles have more replicas
than others—this reflects the way that microservice applications can scale only the
components that need to be scaled, independently of the other components.

When you want to scale up a microservices-based application, you simply replicate
the individual components (the shaded tiles in Figure 5-3) that need to be scaled—
and only those components. Think back to the Uber app example we talked about in
Chapter 2. It’s likely the case that the microservices that provide arrival estimation
need more scale (as they are under much heavier demand) than those microservices
that provide loyalty point inquiries.

Monolithic and Microservices | 91

Figure 5-3. Microservices-based applications can scale individual components, inde‐
pendently of one another if need be

Don’t overlook this point: the very nature of microservices means that an administra‐
tor can be selective in the components they scale (rather than the total approach of
monolithic applications), which in turn cuts down on overprovisioning and unneces‐
sary wasted system resources. Microservice components can be treated as separate
units and scaled (up or down) independently of each other depending on the compo‐
nent of the app it supports. You can imagine how this modular approach to design,
deployment, and scaling lends itself well to a “containerized” worldview that we
talked about in Chapter 3.

Teams managing these individual microservice components can therefore work inde‐
pendently of each other, as well. Microservice components can be written in distinct
languages from each other, or any mix of languages within the same microservice. As
long as that microservice sits behind a well-recognized and documented API inter‐
face (such as REST), other components of the microservice application (and external
applications) can easily communicate with the component.

Imagine a scenario where a developer has recently been introduced to a team—or
perhaps volunteers their programming expertise to an open source community

92 | Chapter 5: Shift Left

project—and offers to reimplement some component of the microservice application
in a much better way than it is currently. The original component was written in PHP,
but our astute programmer would much prefer to use Python in order to take advan‐
tage of its more efficient programming structures. If this were a monolithic applica‐
tion, this approach to rewriting a component in a different language from the core
application language would likely be a nonstarter (or at least significantly more com‐
plex to implement). With microservice design, it’s no impediment whatsoever! Our
programmer is free to select a new language that is much more conducive to their
expertise and to the workload that the microservice needs to carry.

Orchestration: Amplifying the Challenges of Scale
One of the design considerations for scaling up microservice applications is that the
components themselves should be “stateless” in design. Stateless essentially means
that, in the event one of the microservices were to fail (due to hardware loss or other
reason), then work can be assigned to any of that microservice’s replicas without
additional instructions or fiddling around with other instances. If a microservice
were to be “lost,” then the application will realize it did not get a response to its
request and in turn hand off that same request to another copy of the microservice.
All of this is managed by handing work to load balancers, which then pick from a
pool of the same microservices and hands work off to one of them based on the type
of workload. In other words, if microservices go down, any of their replicas should be
capable of picking up the slack immediately and the application should carry on
without interruption.

The resiliency of microservices to failure is as much a byproduct of their design
(which has built-in redundancies and tolerance for failure) as it is a result of the way
that microservices manage “state.” We won’t go into the full details of how they ach‐
ieve that in this book, but in essence the way that administrators and applications
update a microservice is by modifying its state. Contrast this with having to explicitly
tell a microservice what to do: with stateful applications, these instructions are passed
implicitly. Directions such as “I want you to be at this state and look like that” are
relayed without explicit instructions on how to achieve that end state, yet the RESTful
API endpoints of the microservice are able to act upon them accordingly. This is dif‐
ferent from assuming (or having to figure out for yourself) what state a microservice
is in and directly instructing it on what actions to take.

If microservices could speak, their conversations (and their underlying design philos‐
ophy) would sound something like this: “Tell me what state you want me in, and I’ll
make the changes necessary to get there; regardless of the state I’m in at the time, I
will make whatever changes are necessary to eventually get to the state that you want.”
This notion of microservices understanding the state they are in, and systems that are
able to course-correct to regain this state if necessary, is incredibly useful when you
start to consider microservices in the context of containers and orchestration engines.

Monolithic and Microservices | 93

These concepts are new to many of us—how many of you picking up this book
expected to get into discussions about the behavior of applications? It’s perfectly
alright to feel awash in the possibilities. But know this: these behaviors are fundamen‐
tal to understanding the essence of all that untapped value we keep telling you that’ll
remain locked away without a modernized hybrid cloud strategy.

Figure 5-4 depicts orchestration: coordination and communication amongst the
nodes and an application’s component (microservice) replicas. It is the same applica‐
tion we were just examining previously in Figures 5-2 and 5-3, but now distributed
properly across separate hosts. Naturally, the more infrastructure hosts that your app
is deployed across, the more fault-tolerant your app becomes and the less disastrous
any potential hardware failure will be.

Figure 5-4. Redistributing the same microservices-based application from Figure 5-3
across multiple container hosts: this lends greater resiliency to failure and provides fur‐
ther opportunities for scaling resources as required

Think about it: imagine putting all the same microservices on a single host; while it
might scale with the right hardware, if that host were to go down, you would lose all
access to those microservices. That’s why we advise you to use a pattern that distrib‐
utes those microservices across hosts in the best manner possible so that they are
load-balanced and redundant across multiple servers. The loss of a single physical
host would potentially take out multiple microservices, but wouldn’t break the appli‐
cation. As the microservices are distributed across other functional hosts, the applica‐
tion continues to run.

94 | Chapter 5: Shift Left

In a properly orchestrated Kubernetes (K8s) environment, such as Red Hat Open‐
Shift, there are actively running components that recognize when a microservice has
been lost and will immediately deploy additional replicas in response. The platform
understands how many replica copies should exist at any one time, and should that
number be less than expected, the orchestration platform will act to bring more
online automatically. Here’s the point: you have to distribute microservices across
hosts first so that your application remains resilient to failure, and afterwards (on a
properly orchestrated platform) can leave the busywork of maintaining that applica‐
tion state to the orchestration layer.

Write Once, Run Anywhere
Up to this point, we’ve examined what distinguishes a modernized microservices-
based application from a monolithic legacy application. But what does it take to ach‐
ieve this? And more importantly: is the process of modernizing applications worth
the time and cost of doing so? In Chapter 2, we gave you a framework to help figure
that out (the Cloud Acumen Curve); here, we’ll give you the rubric for deciding how
to place your project along that curve. There are three main stages to approaching
container modernization: replatform, repackage, and refactor.

Three Stages of Approaching Modernization Incrementally
We’ll start with the “How?”—because the value associated with this process becomes
readily apparent once you understand the multitude of ways that applications can be
modernized. For each incremental step along the journey of application moderniza‐
tion—from legacy to replatform, repackage, and refactor—there are increasing bene‐
fits to users and consumers alike, as marked on the scorecards in Figure 5-5.

A common misconception we often hear from clients is the impression that applica‐
tion modernization is a zero-sum game: the notion that a business must choose to
either modernize or stick with the monolith, with no middle ground. Like we said
earlier in this chapter, the reality is far different! In truth, applications can be mod‐
ernized incrementally over time. The pace at which your organization shifts toward
microservices-based applications can depend on many factors: the technical staffing
and proficiency of skills within your IT department; the complexity and volume of
legacy applications that need to be modernized; or even the comfort and level of risk
your organization is willing to sustain as you migrate mission-critical workloads
toward a new (but ultimately beneficial) paradigm.

Write Once, Run Anywhere | 95

Figure 5-5. The stepwise, incremental journey from legacy applications to fully modern‐
ized microservices

Turn back and look at the incremental approach shown in Figure 5-5; it transitions
from legacy monolithic applications on the left toward fully modernized applications
on the right. Quite simply, the journey toward modernized applications exists on a
gradient. For every step that a business makes along that journey, they in turn receive
increasing benefits to their applications and to the business as a whole—as indicated
by the scorecards along the bottom of Figure 5-5.

The first step toward modernizing applications simply is to replatform from legacy
infrastructure toward platforms designed specifically for containers and Kubernetes
orchestration, such as Red Hat OpenShift. Your choice of infrastructure matters here
(as it does in all decisions made regarding your IT estate); therefore, selecting infra‐
structure that simplifies the process of modernizing code can pave the way for a
smoother replatform experience. It’s important to note here that you’re not aiming to
change the legacy app’s code in the replatform stage, but to merely migrate the mono‐
lith into a platform that supports containers and orchestration, as well as continuous
integration and continuous delivery (CI/CD) pipelines.

96 | Chapter 5: Shift Left

The next phase is to repackage the application code. In this phase you have the oppor‐
tunity to modernize the legacy code of which the monolith is composed. Several ven‐
dors in the marketplace today offer services for steering this transformational process
in the right direction: first, by automatically assessing the level of effort required to
modernize the legacy code with more modern and developer-friendly frameworks
like Liberty and Spring Boot; and second, where possible, automatically performing
the migration (or providing guidance on how to do so yourself).

The final phase in the journey is to refactor the application—the most modernized
form as we’ve defined it, but by no means a requirement for organizations that want
to simplify the maintenance and boost the value of their legacy applications (as we’ve
seen demonstrated by the replatform and repackage phases). At this stage, the mono‐
lithic application has been refactored into more modular microservices; its code base
likely reflects a myriad of open source languages that are tailored to the specific work‐
loads of the app; and the experience of those maintaining the application has been
simplified in terms of operations, integrated development environments, and tooling.

Comparing Legacy Applications, Containerized
Applications, and Virtual Machines
It is a fitting time to now give containers their due and look at exactly what it is this
technology enables and how it relates to the journey toward modernized applications
that we’ve described so far.

Linux containers are the basic instrument—the atomic unit, if you will—of container‐
ization technologies. As you learned about in Chapter 3, Docker is a specific flavor of
this technology, which has become nearly synonymous with “containers” in general,
but that’s merely owing to its popularity. Isolation technologies were developed and
popularized first on Linux.

To an operating system, containers are like a process. You can conceptualize a con‐
tainer like you would a sandbox. It uses namespaces, control groups, Security-
Enhanced Linux (SELinux), and other Linux security components to keep
containerized code secured and isolated. Containerized applications can be remarka‐
bly portable: they can run—essentially unchanged—across a number of different
cloud providers and types of infrastructure that support this technology.

To a developer, a container is a packaging method: it provides a way to package an
application for delivery and ensures that all its dependencies and configuration infor‐
mation are passed along with it.

Comparing Legacy Applications, Containerized Applications, and Virtual Machines | 97

On the left of Figure 5-6, traditional legacy processes run on a single operating system
(OS), atop hardware and hosts. They are dependent upon OS libraries, runtime
libraries, and possibly special libraries that are required by particular applications.
Regardless, it all runs as a stack on that specific host. Applications that are to be por‐
ted elsewhere have to be migrated alongside (inclusive) of the operating system and
dependencies that application requires to run. This is what is sometimes described as
the “heavyweight” nature of legacy applications (in contrast to the “lightweight”
approach of containerized applications).

Figure 5-6. A full-stack perspective across legacy applications (left), containerized appli‐
cations (center), and virtualized applications (right)

The far right of Figure 5-6 shows an example of the approach taken by enterprise
organizations for years: virtualization. Using this strategy, a hypervisor is built into
either the hardware directly or is running as a layer on top. This allows administra‐
tors to abstract different operating systems on virtual machines (VMs). In VMs, you
are essentially running a full version of the operating system with every instance. This

98 | Chapter 5: Shift Left

has the positive benefit of allowing every VM to potentially run a different version of
unique operating systems from one another—but it also means that potentially every
VM will need a bespoke approach to patching and maintenance. (By this way, this
doesn’t even include the additional storage and resource constraints that running
multiple VMs with separate OSes can put on a system!) On top of that are the OS
libraries and runtime libraries that accompany every flavor of OS.

Herein lies the double-edged nature of virtual machines. You can have as many of
them as your infrastructure is able to support and each VM can be tailored to a spe‐
cific operating system environment. However, these resource requirements can be
difficult to scope, costly to support, and particularly challenging to maintain. These
flaws are further exacerbated when it comes to scaling VMs across multiple
machines.

In the center of Figure 5-6, we showcase the modern approach toward improving on
legacy applications while avoiding the pitfalls of virtual machines: containerization. In
essence, containers have an OS and services that support the lifecycle of the container.
The only contents that a container must supply are the runtime libraries, the applica‐
tion, and the application-specific dependencies that are needed to run that applica‐
tion. This means that all of the containers are running atop the same operating
system: Linux.

A container engine runs containers. In the simplest terms, the container engine uses
the kernel features of Linux in order to manage and start containers using things like
Linux namespaces, control groups, and so on. To help you understand how all of
these components come together to enable containers to work, we’ll dig into each of
these concepts in turn.

Namespaces: What’s in a Name?
Namespaces are a Linux kernel feature that provides resource abstraction. They allow
users to segregate different applications and set directives on whether those applica‐
tions can see each other or share data. In effect, namespaces provide an isolation level
for different types of resources. For example, if a user has two different namespaces
for containers—each of which might have different process ID namespaces—then
when that user inspects those containers, they will see completely distinct and iso‐
lated lists of process IDs. If they are sharing a namespace, that user will see the same
list. For users looking to find ways to avoid containers interfering with one another
(such as with network interfaces) or those looking to create filesystem constructs that
are not seen by other containers, namespaces are the tool of choice.

Shared operating systems in general function because files and other objects (pro‐
cesses) have permissions to say who can run them, open a write to file, use a file, and
so on. What permissions don’t tell you (or the operating system for that matter) is the
context for how that object is supposed to be used.

Comparing Legacy Applications, Containerized Applications, and Virtual Machines | 99

Security-Enhanced Linux (SELinux) was mentioned earlier—it is fundamentally
important to the way that Red Hat containers secure and isolate themselves from each
other. SELinux provides a much more complete and comprehensive set of policies
and tags that get applied to objects and processes, which essentially start to label them
as, “What is this and what is it supposed to be used for?” Developers get to write the
rules that say: “Processes with this tag can do X, Y, or Z to files or other objects that
have tag A.” SELinux allows the administrator to set the minimum privilege required
to work with objects, and to disallow (especially in situations of hacking or intrusion
when a process is overtaken) processes from being used with something it was not
designed to be used for.

For example, an Apache process with a tag httpd_t is illustrated in Figure 5-7. An
SELinux configuration file exists on this container that states that “assets with tags
can perform functions with assets of the same policy tags.” There is a policy that says
that httpd_t services are allowed to work with files that have a tag of httpd_sys_con
tent_t or httpd_log_t, but no others. The absence of a policy automatically disal‐
lows that interaction from taking place. There is no stated policy, for example, to
allow httpd_t-tagged services to work with postgresql_db_t-tagged directories or
files from /home/user; therefore, the Apache service is disallowed from interacting
with the PostgreSQL database. Anything not explicitly set as a policy is fundamentally
denied which enables the Zero Trust security model (we will discuss further in
Chapter 6).

Figure 5-7. A depiction of SELinux “context” at work in securing an Apache HTTP
server application with regard to permitted access routes (the /var/ directories on the
left) and disallowed routes (Apache cannot access the PostgreSQL database on the right):
context is set on every object across the system

One powerful feature within SELinux is mandatory access control, which may be a
term familiar to those of you who have worked with security clearances before. Peo‐
ple and objects are defined with security parameters, and these parameters dictate
who is allowed to read top-secret documents and so forth. Mandatory access control,
therefore, can be thought of as a labeling system. If your label (or pair of labels—the
way in which you label is arbitrary, so long as you are consistent with how you do so)

100 | Chapter 5: Shift Left

does not correspond to the level of access required by an object, you are disallowed
from interacting (or perhaps even seeing) that object.

Another security feature is known as Control Groups or “cgroups,” another construct
of the Linux operating system. Control Groups provide a way of setting up different
collections of processes and determining rules for how resources are assigned to
those groups. It is critical to explicitly set out these policies precisely because pro‐
cesses are capable of “spawning” child processes from parent processes. Control
Groups ensure that these child processes are forced to share (and are limited to) the
resource limits set on their parent processes. Limitations and caps can be set on
aspects such as the bandwidth available to a process, the CPU cycle time that process
can occupy, memory constraints, and much more. Control Groups in effect prevent
rogue or hijacked processes from running rampant across your container platform
resources.

At this stage, we’re ready to elevate the conversation another level: from containers to
orchestration. Specifically, let’s talk more about Kubernetes and Red Hat OpenShift
Container Platform (OCP).

Within OCP itself, Red Hat has put in tremendous amounts of work to rearchitect the
platform in order to place Kubernetes at the very core of the offering itself. What you
will see as we delve deeper into the platform is that OpenShift adds significant value
(and prevents significant headache) compared to cooking up a Kubernetes orchestra‐
tion platform in-house using open source components. We certainly won’t claim that
it’s impossible to build your own Kubernetes orchestration platform—it began as an
open source community project, after all! But after you look into the technical burden
you’ll need to assume, the vulnerabilities that the open source tooling is exposed to,
and the complexity of wrangling all of these components together, we are confident
you’ll view the choice this way: “Sure, we could build our own—but why would we
want to?”

Building an Operating System for Containers
Kubernetes retains the honors of the container orchestration layer for the Red Hat
OpenShift platform. The features of K8s are vast. But for our purposes, we need only
understand that these features include service discovery and load balancing—both of
which are built into OCP natively. K8s also handles horizontal scaling (a replication
controller concept), which can be used manually or be given parameters to work
automatically—either from a command line or from a web console interface. Along
the same line, K8s can actually check to see if containers exist; if they are down, it will
restart them (similar to horizontal scaling: it knows there are supposed to be certain
quantities of them, and it will clean up and replace those that fail).

Why does load balancing suit the distributed nature of containers so nicely? A
requesting service only needs to know the target’s DNS name. This means that behind

Comparing Legacy Applications, Containerized Applications, and Virtual Machines | 101

the scenes, an administrator can change the IP addresses and locations of that service
(for example: a container could go down, be replicated, or be brought back online)—
yet still map back to the original DNS name. As such, external applications or services
can continue to reach out to the same DNS name consistently and not concern them‐
selves with the potentially fluid and dynamically changing underpinnings of the con‐
tainerized environment.

Kubernetes can recognize when underlying base images have changed, and update
containers based on those changes. Afterwards, it can roll those out to production so
that users tapping into your services are not detrimentally impacted by the rollout. If
you take down services to replace them, users will complain that they cannot access
the tooling they’ve come to depend on. Kubernetes does rollouts intelligently to
ensure that it is only replacing a certain number of services at a time (instead of an
all-or-nothing approach); furthermore, if rollouts of specific replacements fail, K8s
knows how to recall those changes and bring back the previous iteration (without los‐
ing it for good). It’s a smart upgrade capability for your applications.

Kubernetes is designed for high availability and resiliency against failure—which hap‐
pens more often than you might think in cloud and distributed systems. But a func‐
tional Kubernetes cluster also needs to be able to maintain state for the cluster and
the applications running atop it, so OpenShift Container Platform also includes an
etcd database (an open source distributed clustered key-value store used to hold and
manage the critical information that distributed systems like K8s need to keep run‐
ning). If certain nodes go up or down, you still have consistency in the configuration.

The purpose of this kind of store is that, for each of the resources making up the
objects and entities belonging to the cluster, that definition for the “proper” state of
these resources is maintained and stored in etcd. These include deployment configu‐
rations, build configurations, and more. The cluster uses that information to know
how to restart application containers again, whatever the circumstance. This also
applies to containers that are cluster services infrastructure. OpenShift Container
Platform itself is built upon containerized services—it’s not just the applications that
OpenShift users deploy that are containerized! OpenShift and Kubernetes run as con‐
tainers themselves.

The operating system underlying all of this is CoreOS. With version 4 (and above) of
OpenShift, Red Hat now uses the CoreOS container operating system in place of Red
Hat Enterprise Linux (RHEL). It is a tightly integrated refinement of the RHEL oper‐
ating system designed specifically for containers. Within that operating system, Red
Hat has included the CRI-O engine, which is an Open Container Initiative (OCI)–
compliant runtime that handles all of the container startup and management on top
of CoreOS.

The most important concept introduced with CoreOS is the idea that the operating
system is immutable (can’t be changed). When you boot up a CoreOS node, you

102 | Chapter 5: Shift Left

cannot make changes on it. More specifically, any changes made on it are thrown
away—so if you reboot the operating system again, you’ll receive the same level of
consistency when it redeploys. The operating system itself underneath cannot be
hacked or manipulated while it’s running. It also means that when you’re managing it,
you’ll have to learn new techniques for how you are managing it. The entire operating
system is updated as a single image, instead of using RPM packages. It is designed
and tuned specifically for running containers. And everything, including system com‐
ponents, runs as containers on top. Red Hat OpenShift Container Platform knows
how to perform updates to RHEL CoreOS, so there are proper procedures for main‐
taining the cluster itself.

Within Red Hat OpenShift, there are three types of load balancing working together:
external, HAProxy, and internal. External load balancing depends on what types of
load balancers and environments are available within your datacenter, and it per‐
forms the duties of managing access to the OpenShift API itself. HAProxy gives users
and services an external-facing route to applications. Internal load balancing is han‐
dled using Netfilter rules (another Linux concept), which can be used for security and
other path management between applications inside of the cluster; however, it has no
control over outside users getting into the cluster. OCP understands how to perform
automated scaling and does so by examining the amount of traffic coming in across
the load balancers (“being handled” by the cluster); correspondingly, it adds or termi‐
nates containers as needed in order to handle the load.

OCP ships with logging and monitoring capabilities built in, which includes Prome‐
theus (which we tell you all about in the Appendix). The combination of Prometheus
and OpenShift’s alerting system gives administrators the ability to proactively
respond to anything that happens within the cluster. They can keep track of the
health and activity of the cluster and then take actions based on that information in a
timely manner. OCP integrates the Elasticsearch/Kibana logging solution, which han‐
dles the aggregation of logs across all of the nodes and applications in the cluster. It
also handles storage and retention of those logs.

Application management in OCP involves OpenShift Source-to-Image (S2I) for auto‐
matic build and deploy capabilities. Simply, Red Hat stores images that can be reused
and can create configurations that automatically take source information, figure out
what needs to be done with it, create a build set of instructions, and execute on those
build instructions to deploy the application—all in one long flow. S2I can take any
application that is source code (even when it comes from a Git repository or code
from your local machine directory) and convert that code into a deployed container‐
ized application. Once you’ve designed that workflow and performed it, the build
config and the deployment config from that workflow are available to repeat the same
containerized application again in the future.

Comparing Legacy Applications, Containerized Applications, and Virtual Machines | 103

Extensibility in K8s takes advantage of the orchestration layer’s fixed set of services,
which includes an extension mechanism where providers like Red Hat can add fea‐
tures on top of the upstream K8s code. Red Hat provides package extensions that
include Operators for ease of installation, updates, and management. Red Hat also
has an Operator lifecycle manager that facilitates the discovery and installation of
application and infrastructure components. Many other companies (not named Red
Hat) have seen the advantages of using Operators and there has been momentum for
standardization of publicly available Operators, resulting in OperatorHub.io, which
was launched as a collaboration between IBM, Red Hat, Amazon, Google, and
Microsoft.

It’s OK to Have an Opinion: Opinionated Open Source
So far we have discussed what it means to modernize applications, the technologies
that make containerization possible, and the componentry underlying an orchestra‐
tion platform such as Red Hat OpenShift. To pull these pieces together and take us
home, let’s examine how each component—microservices, containers, and orchestra‐
tion platform—enable modernized application services that are ready for the hybrid
multicloud world.

Putting It All Together
As a way of thinking, Kubernetes defines a cluster’s state. Administrators and devel‐
opers are keeping track of all the information in the etcd database. Kubernetes is run‐
ning the controllers that monitor these resources, checking what their state is, and if
the state is different from that which has been declared, it will take action to bring
those resources to the state that they are supposed to be in.

OpenShift Container Platform (OCP) runs on essentially two types of nodes: masters
and workers. Master nodes run the API; provide the interface for the web console,
command line, and many other API endpoints utilized for internal and external clus‐
ter communication; host the etcd database that maintains the state of the cluster; and
execute all of the internal cluster services needed to maintain cluster operations. This
list is not exhaustive, but for our purposes it gives a comprehensive idea of the impor‐
tance of the Master nodes to a K8s cluster. Master nodes are configured so that they
cannot be scheduled for end-user application pods. In other words, when you deploy
applications and they are looking for nodes to be scheduled on, the Master nodes are
specifically marked as being unavailable for use as general-purpose (Worker) nodes.
Worker nodes, or Infrastructure nodes, can be scheduled as application pods for
deployment of containers. Administrators can determine how many Worker nodes
they expect will be needed to handle the resiliency and redundancy requirements for
their applications (with consideration given to how many Worker nodes the cluster
infrastructure can support, of course).

104 | Chapter 5: Shift Left

Administrators supply the compute nodes, networking infrastructure, and a sufficient
amount of storage to supply the storage volumes and space for additional disks
within containers—not just the space to run the containers themselves. Figure 5-8
illustrates the orientation of these services and technologies across the compute,
network, and storage componentry of the OCP cluster. These variables need to be set
up (or made available) before the cluster is provisioned, much like you would do for
any datacenter.

Sitting atop the architecture stack depicted in Figure 5-8 are Worker nodes, on which
teams schedule all of the user applications and containers that are to be built. You can
easily scale Workers by adding more of them; furthermore, OpenShift can scale these
Workers automatically for you should demand for services outpace what they are
outputting at the time.

Figure 5-8. A simplified view of the OpenShift Container Platform stack and an abstrac‐
tion of Kubernetes at the core of the platform

It’s OK to Have an Opinion: Opinionated Open Source | 105

The Master node(s) are usually set up in groups of three for high availability and to
achieve a cluster quorum. User workloads never run on the Master. An etcd service is
running on the Master node, which keeps track of the state of everything in the clus‐
ter, including which users are logged in, where workloads live on the cluster, and so
on. Master nodes also play host to the core Kubernetes components: Kubernetes API
server (overseeing APIs to get at the cluster management services), Scheduler (for
scheduling across nodes), and Cluster Management (handles the cluster’s state via the
etcd database). On top of that we also have OpenShift services: OpenShift API server,
Operator Lifecycle Management (integrated to give administrators access to auto‐
matic cluster upgrades), and Web Console. A number of internal and support Infra‐
structure Services also run on the Master, which make containers easier to run at
scale, including monitoring, logging, SDN, DNS, and Kubelet. All of these come inte‐
grated and operational out of the box with the Red Hat OpenShift cluster.

OpenShift has a cluster management solution that includes Prometheus, Grafana,
and Alertmanager. Each of these components has been enhanced based on work done
by Red Hat’s own engineering team, which applied lessons learned and best practices
from Red Hat’s experience managing OpenShift to improve the monitoring capabili‐
ties for its customers. These cluster management tools make it possible for adminis‐
trators to understand the health and capacity of the overall OpenShift cluster and
empowers them to take actions based on that information.

Logging capabilities are based on Fluentd, Elasticsearch, and Kibana—making it easy
to visualize and corroborate log events. This is immensely valuable when you have
applications that can scale to many, perhaps hundreds or thousands, of instances. In
such a scenario, an administrator would do anything to avoid having to read through
100 disparate logs; they would much prefer having access to a single aggregated log
per application. Many of the features described here also tie into OpenShift’s role-
based access control (RBAC) features, allowing administrators to control who gets
access to what services within the cluster. In the case of operational logs, administra‐
tors have the ability to control and make sure that the right individuals see the logs
(and only the logs) that they are meant to have access to.

Regardless of whether people consuming this platform are administrators or develop‐
ers, the web, command-line, and IDE integration tools support people working in
whatever way they want or need to. As you can infer, all of the components we’ve dis‐
cussed so far come together to simultaneously improve the quality of life of the
administrator, while bolstering the security and stability of the platform as a whole.
And, naturally, they accelerate the journey of businesses deployed on the platform
toward fully modernized applications that are hardened for the challenges of hybrid
multicloud computing.

106 | Chapter 5: Shift Left

CHAPTER 6

Hackers, Attackers, and
Would-Be Bad Actors:

Thoughts on Security for Hybrid Cloud

All software, proprietary or open source, has long been a target for cyber hackers,
attackers, and would-be bad actors. We want to ensure we set the right tone for this
chapter: we aren’t suggesting that open source is inherently less secure than products
built in a proprietary manner—not at all. But there is something to the old adage
“You get what you pay for.” (And as we’ll explore later, there’s a world of difference
between building systems for pet projects versus designing for the needs of enter‐
prise.) Kate Compton makes the delightful comparison of “free” (open source) soft‐
ware to the curbside donations you might find after a move or when the college
dormitories empty out come spring: “mattress-ware.” Sure, it’s free, but like with so
many things in life you’re generally getting what you pay for. “Mattress-sourced” soft‐
ware might be the byproduct of an academic project or a developer’s Friday night
whimsy. Making project code “open source” is a potential way to give new life to the
project, but it comes with the expectation that there’s a fair bit of cleaning to do (of
software bugs or literal bedbugs) before you would consider putting it “into produc‐
tion.” The point we want you to remember is that open source software for the enter‐
prise requires much consideration and effort. You’re almost always better off
partnering with an enterprise open source vendor.

107

https://oreil.ly/xnt1v

One of the best parts about open source is the number of developers that can put eye‐
balls to software problems and the speed at which innovation can get to market with
so many hands to keyboard. With that said, open source is not without its shortcom‐
ings. We’ve had firsthand experiences with getting open source projects up and run‐
ning that date back to when Linux first came out decades ago, to standing up our first
Hadoop instance in the early days (where it took months to properly get the full
ecosystem working). The constant innovation is astonishing, but nevertheless it can
wreak havoc on the stability of any company’s solutions—large or small. Often, you’ll
find documentation is lacking. Finally, you need some pretty deep skills to support
any open source project.

It’s also important to keep in mind that open source isn’t about a single solution; in
fact, open source organizations don’t care if there are competing projects created for
the same goals. What they do care about is ensuring that there is a sustainable devel‐
opment community behind the project. Quite simply, open source is about fostering
open innovation through the commitment of a community; it’s not necessarily a
standards-based organization.

It’s quite evident that the open source model has taken off. In fact, we’ll boldly tell you
that most innovative companies are using enterprise open source software. Because of
this, you’ll see a number of vendors integrate open source software into their product
(like using Spark for data wrangling and cleansing), companies formed with commit‐
ters of an open source project to offer paid support for it, and others that are a com‐
bination of both as they contribute to, make easier, and harden these open source
solutions for the enterprise (like IBM).

What is enterprise hardening? It’s all the things a vendor can do that makes open
source software more appropriate for enterprise deployment. It can take the form of
“fit-and-finish” work like closing unused ports and firming up access controls, to ena‐
bling secure default configurations that make the project more secure, easier to
install, more manageable, simpler to upgrade, and more.

Success can bring windfalls for your company, but it can just as easily lure in bad
actors. Now more than ever, cybercriminals are wreaking havoc in the open source
community and preying upon the very attributes that make open source technologies
so attractive to developers: ease of access, modification, and redistribution. In this
chapter we will explore some of the more common security concerns, dive a little
deeper into container security, and give you some of our top recommendations to
enhance your cybersecurity posture in a hybrid cloud model. This is not meant to be
a comprehensive guide to hardening your hybrid multicloud environment, but it will
put you on the right path and prime you to see the vulnerabilities (and opportunities)
that may exist as you enable your business with cloud capabilities.

108 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

Just to Level Set: What’s This Open Source Stuff?
If you’re a business leader, chances are you’ve picked up on open source software
(OSS), what it is, and why you should (must, really) care about it. To level set and get
us all on the same page, here’s what open source means to us (and why it should mat‐
ter to you).

OSS can be thought of as code that has been made publicly available by its original
creator or authors. The concept behind OSS is a decentralized software development
model that encourages open collaboration among a vast developer community. Often,
developers will share their projects for peer review and further refinement by the
community at large. This level of collaboration introduces a way of working that rea‐
ches far beyond typical proprietary software development methods. It provides for
more flexible and less expensive up-front cost solutions that—for successful open
source projects—outlast those solutions from proprietary software, precisely because
they are built and maintained by software communities rather than a single company.
Most OSS solutions began as a project in one of the many online code repositories,
such as GitHub or GitLab. These repositories have large communities of developers
that contribute code to existing projects, fork (open source lingo for taking a copy of
something and then making it your own and taking it in a different direction—for
example, MariaDB was forked from MySQL), and create new projects. The more
developers engaged on a given project, the better the innovation pool becomes.

Some open source projects go on to be wildly successful and
become foundational to the enterprise. Linux and EnterpriseDB are
great examples. Others never really take hold—there are literally
thousands of open source database projects, and we’ve seen many
customers start on one only to realize the open source project was
abandoned by its original committers within a year. Finally, some
projects take off like rocket ships (Hadoop), look like they’re set to
change the world, and then peter out. The Kubernetes open source
project is a fundamental anchor to cloud as a capability and we’re
certain it will become an enterprise foundation building block.

As enterprises adopt agile development methodologies, OSS becomes increasingly
valuable. In fact, the Linux kernel itself has seen a significant rise in adoption over the
last decade and we expect even broader adoption with the growing popularity of
Kubernetes (which we briefly talk about throughout this book, but go into detail in
the Appendix). Each year we see an increasing number of commercial applications
(distributed and sold under proprietary licensing) with embedded OSS as well. These
trends show no sign of slowing—the trajectory toward broader adoption of OSS and
community-led projects is a clear one.

Just to Level Set: What’s This Open Source Stuff? | 109

With that out of the way, you might be asking yourself, “If everyone has access to the
code, is OSS secure?” The answer isn’t always straightforward. We’ll suggest that OSS
projects have the benefit of having an enormous base of developers committing code
(particularly the more popular projects), which imparts a great deal of innovation,
scrutiny, and expertise. However, not all OSS projects receive equal attention, which
means they don’t all have thousands of developers reviewing the code for bugs and
vulnerabilities in equal measure or have vast experience in enterprise enviroments.
Generally speaking: your experience and quality-assurance levels may (and will) vary.
You need to do your research before pulling any code down from your favorite repos‐
itory. Let’s dive into what we mean by this.

Data Breaches, Exploits, and Vulnerabilities
You’d have to be asleep at the proverbial wheel if you haven’t seen the commonplace
news about cyberattacks that have been launched over the last few years; as we’ve said
throughout this book, they continue to increase at a steady (and alarming) pace.
These attacks range in scope and severity: from data breaches and ransomware
attacks at major financial institutions; to attacks on states, local governments, and
federal agencies; and disturbingly, on health institutions (disproportionately targeted
during the current COVID-19 pandemic). Because of their proliferation and integra‐
tion into proprietary offerings, OSS technologies have become popular attack vectors
for cybercriminals.

The Ponemon Institute’s “Cost of a Data Breach Report 2020” summarized a vast
number of in-depth interviews conducted with 525+ organizations across 17 coun‐
tries who all share a common thread—they all experienced data breaches between
August 2019 and April 2020. As the pandemic boosted work-from-home patterns
during on-and-off again lockdown protocols, Ponemon followed up with supplemen‐
tal interviews with these same sample groups.

Ponemon’s report revealed that the average cost of data breaches has gone down
(slightly)—likely representing established protocols and playbooks around handling
such events. The report also shined a spotlight on the threat vectors where most
attacks originate from and which types of breaches were shown to be increasingly on
the rise. The study goes on to point out that the trend in malicious attacks has risen
steadily over the last five years, making it the leading cause of security breaches today.
As you can see in Figure 6-1, the third most common threat vector that often led to a
data breach was “Vulnerabilities in third-party software,” including OSS code.

110 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

https://oreil.ly/WLyw4

One discovery that caught our attention (but seemed obvious after
it did) was the use of OSS tools to carry out these attacks. OSS, it
seems, is a sword that can cut both ways: like so many technologi‐
cal inventions, it can be used for tremendous good—but it can also
be wielded as an instrument of ill intent and harm. A perfect exam‐
ple of this conundrum is the dark web. You get on the dark web
using an open source browser that enables anonymous communi‐
cations (called Tor) and law enforcement may use OSINT tools to
find bits of information about the kind of interactions going on
there.

We recommend following Ponemon’s security work to continue to learn information
about data breaches after reading this book. They’ve been doing it a long time and
have become one of our most trusted sources for data breach information. We’ll also
note that data breach reports are out of date the moment they are published; the
numbers keep going up, so it’s worth keeping up with the newest reports.

Figure 6-1. Ponemon’s “Cost of a Data Breach Report 2020” and popular threat vectors
used for data breaches

Hackers Don’t Care Where You Work: Public Cloud and Security
Digital transformation goes hand and hand with the rise of cloud computing; in fact,
it acts as an accelerator for cloud as organizations seek to modernize their IT infra‐
structures and apps. Looking to take advantage of the flexibility and potential cost
savings of moving workloads to a cloud service provider (CSP), some organizations
often view the public cloud as being more secure. They may feel that CSPs are better
equipped to provide more elaborate security controls and policies, which might

Data Breaches, Exploits, and Vulnerabilities | 111

prevent attacks from the outside world, either because of a concentration of knowl‐
edge or economies of scale applied to such operations.

To quote Thomas Gray, author of “Ode on a Distant Prospect of Eton College”: “igno‐
rance is bliss, ’tis folly to be wise.” The reality is that malicious attacks against miscon‐
figured cloud environments (look back to Figure 6-1) have been and remain one of
the leading causes of data breaches, tied for first with stolen or compromised creden‐
tials. One could surmise that these two leading causes go hand in hand: a malicious
attack on a misconfigured cloud environment leading to compromised credentials.
CSPs may be better equipped to withstand an attack provided they’ve invested in the
proper tools, processes, and skills, but there are other risks and variables you need to
consider before hosting your business applications and data in a public cloud.

For starters, placing all of your trust into another entity doesn’t relieve you from the
responsibility of safeguarding any personally identifiable information (PII), sensitive
personal information (SPI), or IP assets that you may have been entrusted with. Pass‐
ing the buck on to someone else is not a strategy. Being a good data steward should
still be a top priority for every organization. This means becoming familiar with and
taking an active role in reviewing security controls, policies, threat awareness, and
audit report reviews of any CSP you choose to partner with. Think about even the
most basic example: access control lists (ACLs) for database authorizations. Miscon‐
figured ACLs follow you to any cloud destination. Now think back to the concepts we
discussed in Chapter 2 where we referenced how some public cloud administrators
can access your encryption keys—that makes a security posture more complex (and
potentially more exposed), doesn’t it?

In the context of public cloud, an additional concern is that your organization could
potentially become collateral damage in a targeted attack against another company
(or the public cloud vendor itself) that could leave your data assets inadvertently
exposed. This is becoming especially concerning with the rise of attacks on public
cloud infrastructures, where cybercriminals are finding new ways to exploit vulnera‐
bilities on the surface in order to gain access to the underlying cloud platform. Once
breached, attackers can gain access to move laterally across public cloud environ‐
ments from tenant to tenant.

Security professionals often talk about an attack surface—all the potential points of
entry where unauthorized access can be obtained. If you were to think of this in the
physical context of a home or office building, think about doors, windows, ventilation
systems—any conceivable point of entry would come to mind. Attack vectors describe
methods used to breach the surfaces of IT estates: compromised credentials, software
vulnerabilities, rogue insiders, misconfiguration, phishing, ransomware, and so on.
Attack surfaces and attack vectors have steadily increased over the last few years, and
public clouds (as well as hybrid cloud deployment models) have contributed to much
of that increase. While we’ve not seen a 2021 year in review report yet, we think it’s a

112 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

pretty safe bet to suggest there will be spikes in these methods of attack given the
massive shift toward working from home and moving to CSP infrastructures.

Many of the common attack vectors that existed with traditional IT infrastructure
deployments still apply (in a modern cloud and hybrid cloud deployment model), but
the attack surface itself has increased. Take APIs as one example. There are hundreds
—potentially thousands—of publicly exposed APIs that a single CSP may host. These
APIs, by design, regularly serve up application logic and data. If not properly secured,
they can lend themselves to malicious remote code execution (RCE), yielding a point
of entry to a now-compromised system. If this goes undetected, this can lead not only
to a single attack, but potentially multiple attacks. In the cyber underground and
black markets, such access can be sold repeatedly before a data breach event actually
takes place. Now think back to Chapter 2 where we talked about how applications are
composed by stitching together various microservices—you might aggregate those
from multiple vendors and (in many cases) those built by and hosted by your own
organization…this gets more complex in the cloud, not less.

The Ponemon report also details the average cost and frequency of malicious data
breaches associated with their root cause vector (Figure 6-2). Digging into these, we
found some pretty telling facts within those findings.

Figure 6-2. Average cost and frequency of malicious data breaches by root cause vector

Let’s say you’re breached because of a misconfiguration or system error...that will cost
(on average) $3.86 million to manage. What we highlighted earlier warrants repeating
here: Ponemon’s report noted how cloud misconfiguration tied for the most common
threat vector along with compromised credentials.

Data Breaches, Exploits, and Vulnerabilities | 113

But there’s something else that really caught our attention (and should catch yours
too): the average cost of a data breach associated with a cloud misconfiguration is
$4.41 million—that’s a 14% premium to deal with a configuration breach based on
the destination!

Our book is about using cloud as a capability in multiple destinations. We’re not
detailing these findings with you to push you one way or another, but rather to dispel
some of the common myths and pitfalls we’ve seen clients fall into around cloud des‐
tinations and their instincts (like an instant cost-savings button). Whether looking at
public clouds, private clouds, or the hybrid model we’re sure you’ll put to use, security
is security and there are nuances you need to be familiar with for any destination.
From access to your encryption keys to costs and more, flush them out and choose
the appropriate cloud destination for supporting the workloads (and capabilities)
your business needs.

Finally, something to keep in mind while studying Figure 6-2 is that misconfigura‐
tions often lead to compromised credentials. Any attacker who is seeking to exploit
misconfigured cloud systems, in order to gain access and further compromise the
system, will almost certainly begin by looking for ways to illicitly obtain credentialed
access to the system. The holy grail for an attacker is to move laterally through a vic‐
tim’s network by utilizing compromised credentials, elevating privileges, and going
undetected to either steal as much data or inflict as much damage as possible.

A Case Study in Exploitable OSS
Arguably, one of the most prolific data breaches of the last decade began with bad
actors exploiting a remote code execution vulnerability in a common OSS develop‐
ment tool for web applications known as the Apache Struts Web Framework (a tool
used by thousands of websites globally).

Details of this vulnerability can be found under the
CVE-2017-5638 record listed on the National Vulnerability Data‐
base (NVD) and by referencing US Government Accountability
Office (GAO) report GAO-18-559.

The Common Vulnerabilities and Exposures (CVE) report for this breach goes into
all kinds of techy details about the code and the exploitation itself. All you need to
know is that this vulnerability allowed an attacker to send malicious code wrapped in
a content-type header and tricked a web service into executing its malicious code.
Once exposed, this vulnerability permitted an open door into an otherwise protected
network perimeter (we cover perimeter security later in this chapter).

114 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

https://oreil.ly/EVnlG
https://oreil.ly/YKQ61

Over time, news of this data breach caught the attention of media outlets, federal gov‐
ernment agencies, and business leaders around the globe—but most shocking of all
was the way that an OSS vulnerability exposed one of the world’s largest consumer
credit reporting agencies to attack. At the time of the attack, this agency (which we
won’t name here) collected and aggregated information on over 800 million individ‐
ual consumers and more than 88 million businesses worldwide. Until this breach, a
majority of consumers entrusted these agencies with their most sensitive and confi‐
dential information.

According to the NVD, the vulnerability in Apache Struts was first discovered in
March 2017 and given the highest possible severity rating (10/10) because of the
ubiquity of Struts and the fact that this vulnerability could be exploited without cre‐
dentials, essentially making this a very easy attack vector. The good news is the com‐
munity rallied around the vulnerability and created a remediation. The bad news?
Hackers started exploiting the vulnerability on unpatched servers just days later.

Here’s what you need to know: there are lots of security fixes available but not yet
implemented—this is one of the issues with the “roll your own” (RYO) approach to
open source and befalls many open source practitioners. It’s hard as a developer to
keep up when fixes don’t come pre-packaged and maintained by someone else for
you. Regardless of whether you are using open source or proprietary software, it’s
essential to maintain great security hygiene. Our experiences tell us that all in all, it’s
harder to do this without a partner and solely relying on your team and stock open
source software.

But there’s another lesson here: criminals are rewarded when you don’t have good
security hygiene (think of the “1234” password on an ATM card). The CVE and NVD
are publicly accessible resources that can be used for good or bad. Hackers will use it
to look at easy attack vectors on vulnerable code (the bad) and you can use it to keep
abreast of issues and create linkages to vulnerability scanning tools that can immedi‐
ately warn you of these kinds of vulnerabilities (the good).

The agency in this example lacked both good security hygiene and these linkages and
it resulted in over 40% of the US population discovering that their SPI (names, SSNs,
addresses, driver license numbers, etc.) had been compromised in the breach—some
even had credit card numbers compromised.

Over four months elapsed from the initial intrusion to when the breach was finally
discovered, after the organization updated a digital certificate during a network
inspection (which had expired 10 months earlier). Once updated and upon restart of
the network scanning tool, administrators began seeing abnormal activity and initi‐
ated further investigations.

A Case Study in Exploitable OSS | 115

One strange anecdote about this data breach is that none of the
compromised data seems to have made its way to the dark web. In
many recorded cases where a data breach has occurred, the attacker
did so for financial gain and immediately sought to sell the com‐
promised data on the dark web—often to the highest bidder. How‐
ever, in this breach there has been no evidence of the 143 million
plus records resurfacing. This raises the question—what was the
motive behind this high-profile attack? Fast forward to February
2020 and reports began to surface that the US Department of Jus‐
tice was able to link a nation state to this data breach, charging
them with computer fraud, economic espionage, and wire fraud.
Their motive? Presumably it was an effort to build a massive data
lake of information on American citizens that contained PII and
SPI classified data, including financial information on high-
ranking government officials. (Source: https://oreil.ly/ekojL.)

This data breach, though large in scale, contains a number of mishaps that could have
been prevented: usernames and passwords had been stored in the clear (without
encryption), vulnerabilities in OSS applications were not immediately patched once
identified, and there were what appears to have been relaxed security policies that
allowed unabated lateral movement between systems and databases. We’ll talk more
about the importance of proactively mitigating these risks and a concept called Zero
Trust security later in this chapter (since we only briefed touched on it in Chapter 2).
Each of these blind spots are commonplace in many organizations that are embarking
on their digital transformation. Today, Chief Information Security Officers are deal‐
ing with IT environments far more complex than from even five years ago, so much
so that standard perimeter security methods alone will prove to be grossly inadequate
in the years ahead.

Digging further into cloud native and containerization, the risks persist. In 2020 there
were 240 CVE records associated with the Linux kernel and 29 for Kubernetes that
had been identified. Of the 29 associated with Kubernetes, almost one third were
given a base severity score of high, but only one was given a base severity score of
critical. Keep in mind this represents only two key OSS components out of what are
likely hundreds that could be running in your “cloud the capability” environment. It’s
not something that organizations should gamble on—for exactly the reasons demon‐
strated by the case study we just examined. A full list of those CVEs can be found at
https://cve.mitre.org/about/index.html or in the National Vulnerability Database at
https://nvd.nist.gov/vuln/search.

116 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

https://oreil.ly/ekojL
https://cve.mitre.org/about/index.html
https://nvd.nist.gov/vuln/search

Did You Leave the Container Door Open?
Using privileged escalation to escape running pods. Moving laterally through a cluster
and across tenants. Man-in-the-middle attacks against public services leading to
leaked credentials. Remote execution commands executed against exposed APIs with
malicious intent. What do these exploits have in common? Each vulnerability has
surfaced within Kubernetes (K8s) and the underlying Linux kernel. The good news is
that almost all of these vulnerabilities were discovered by the developer community
and received fixes almost immediately. The challenge for security teams is to spot
these holes and apply patches to them using vulnerability scanners and remediation
procedures as part of a well-defined and automated playbook for tackling security
threats.

You may be asking yourself: “Why spend the time discussing these examples if only
some of them have led to real-life data breaches?” We can’t emphasize enough that
securing workloads from unauthorized access, whether it is from internal or external
threats, is critical. You can invest time and resources into nailing down the user expe‐
rience design (UX), only to lose your customer’s data to a breach. If that happens, the
UX for these customers won’t be great no matter how wonderful your designs are—
not to mention your company’s reputation in the aftermath. Security is critical and no
organization is fully immune to cyberattacks.

So where should you focus your company’s efforts to secure modern enterprise IT
estates (cloud, distributed, or hybrid), which often have physical boundaries? Focus
on what you can control: data. This also happens to be your most prized asset, and
you should control access to the data relentlessly. It’s the one asset that your business
likely cannot survive without (and would fetch a shocking ransom to get back if lost
or compromised). Let’s explore a few areas where you can prioritize on protecting
your data assets in the next section. We are going to cover a lot of ground here and
since this is a book on hybrid cloud, we will begin with what should be the founda‐
tion of all hybrid cloud deployments—the Zero Trust security model (a concept we
first introduced you to in Chapter 2, but will delve deeper into here).

Zero Trust in a Hybrid Cloud World
There is no doubt about it: digital transformation and the move to hybrid cloud is
changing the way that companies do business. Now more than ever, data and resour‐
ces are increasingly accessible to anyone—and with that ease of access comes the per‐
ilous responsibility of ensuring that only the right person (at the right time) is granted
the right level of access to both data and resources. How that level of access is defined
will vary business to business, team to team; however, we might suggest that the
appropriate level is only what a user (or application) needs to complete their task for
that moment in time, and not one rung higher up the ladder than is necessary. There

Did You Leave the Container Door Open? | 117

is a common security design principle that best describes what we mean here—the
principle of least privilege (POLP). This is the idea that any user, program, or process
should have only the bare minimum privileges necessary to perform the intended
function.

What was once considered “outside” of the network is now “inside” the network, a
traditional IT network perimeter line that is further blurred by multicloud architec‐
tures. Many companies subscribe to multiple services: software as a service, platform
as a service, infrastructure as a service, and so on. More often than not, a business
places its trust for its most-prized assets (its data) in someone else’s hands. In short,
the traditional ways of managing IT security—which has largely focused on building
a perimeter wall and keeping bad actors out—is no longer sufficient. Are firewalls
and other network barriers still important? Absolutely. However, the best security
practices will always assume that those barriers can and will be breached. The concept
of “don’t trust anything or anyone, and always verify” could mean the difference
between a minor event and a major breach—it can also mean the difference between
the destination choices you have for your cloud applications.

By definition, Zero Trust is an IT security model that emphasizes strict identity and
integrity verification on every person and device attempting to access data or services
—regardless of if they are inside an established network perimeter or or on the out‐
side. Quite simply, it means trust no one.

Every attempt to access a service or data must be verified before being authorized.
This applies to all networked devices irrespective of their connectivity to a managed
corporate network. The Zero Trust security model serves to protect sensitive data,
critical services, and devices while enabling end-user productivity. This is a major
paradigm shift in IT security where although trust was once implicit within the inter‐
nal network, the Zero Trust model is now seeing a marked uptick in adoption. This is
particularly critical in an era where cloud services have blurred the perimeter lines
and employees work from home on an increasing (or in some cases permanent) basis.

Context is key to applying a Zero Trust security model and it relies upon an estab‐
lished governance model for sharing context between security tools. Having shared
contextual awareness is key to protecting the connections between users, data, and
resources. Figure 6-3 gives a highly simplified side-by-side comparison of the tradi‐
tional IT and Zero Trust security models.

118 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

Figure 6-3. Traditional perimeter security versus Zero Trust security model

In Figure 6-3 you can see the importance of having perimeter security as the main
line of defense to malicious network attacks no matter the approach you take—that’s
a given. The Zero Trust approach is based on establishing firewalls within a network
to establish a “safe zone.” Communications between users, applications, databases,
servers, and other devices within this safe zone are considered secure. Identity and
access management (IAM) methods and tools often exist within this model, prioritiz‐
ing protection of network perimeters (and everything encapsulated within it). With
the Zero Trust security model, you will see that the network perimeter still exists;
however, new lines of defense have been established for each application, database,
and server (the dashed lines surrounding the architecture pieces in Figure 6-3). The
Zero Trust approach employs the notion that all requests for access must be verified
before being authorized.

Implementing a Zero Trust security model in a modern cloud architecture is shown
in Figure 6-4. Such an implementation often includes a mixture of hybrid cloud, dis‐
tributed and multicloud, and traditional on-premises services. With multiple technol‐
ogy services spread across multiple datacenters, networks, and providers, the number
of perimeters increases—and so too does the number of potential holes in those
defenses. The traditional perimeter security approach is simply not enough. Like we
said earlier, a vulnerability allowing access to one network can quickly bleed over into
other cloud infrastructures.

Zero Trust in a Hybrid Cloud World | 119

Figure 6-4. Verification and enforcement of permissions and access control is critical:
in a hybrid multicloud architecture, the integrity of these checks must be maintained
between applications and databases, between Software as a Service (SaaS) providers,
and between cloud providers, as well as between the aforementioned endpoints and
trusted networks

120 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

Implementing a Zero Trust security model will limit risk exposure by restricting
access, which in turn limits the ability for a threat to move laterally throughout a net‐
work.

A key element to implementing Zero Trust security in a Linux-based hybrid cloud
enterprise architecture is Security-Enhanced Linux (SELinux). Linux systems have a
very tight approach to access control; however, escalating privileges to root (the
superuser of Linux operating systems—a “go to” move for many to get things done
like a data scientist using pip to add a Python package to a server) access could easily
compromise the entire system if not properly implemented. In order to provide an
extra layer of security to IT environments within the US government, the United
States National Security Agency (NSA) created a series of improvements to the Linux
kernel using Linux Security Modules. That work was released under the GNU Gen‐
eral Public License (GPL) in the year 2000 and was adopted upstream in 2003. SELi‐
nux was born out of this set of security modifications provided by the NSA and was
adopted by various Linux variants, including Red Hat Enterprise Linux (RHEL).

Figure 6-5. A security exploit that grants privileged access on a system using discretion‐
ary access control (DAC) will expose the entire system, while with mandatory access
control (MAC), kernel policies (SELinux) block access even when running with privi‐
leged access, preserving the system integrity and firewalling the compromised service
from the rest of the system

To understand the benefits of SELinux you need to understand how the traditional
Linux access control system works. Linux’s traditional access control systems use a
discretionary access control (DAC) system, which was defined by the Trusted Com‐
puter System Evaluation Criteria to provide access control that restricts access to
objects based on the identity of the subjects (or groups which they are part of). If you
are the owner of that object (or part of a group that owns that object), then you have

Zero Trust in a Hybrid Cloud World | 121

control of that resource or object. Simple, right? Most of us are familiar with this
model even with our own home laptops. But enterprise computing isn’t our home
laptop.

Let’s explore a common IT scenario to illustrate: a service httpd running under an
apache user where a user account becomes compromised. This then empowers the
attacker to successfully escalate instructions and commands to root level (super pow‐
ers on a Linux system) access by exploiting vulnerabilities in the httpd web server
code. Not only are the contents of that service now compromised, but so too is the
entire system—DAC provides access based on ownership. Since root is omnipotent
(meaning unlimited powers) on a DAC model, it immediately has the highest level of
ownership (and therefore access) possible. You can imagine the havoc that could be
unleashed on such a compromised system. This is where SELinux shines and helps
mitigate the risk of (or completely prevent) such scenarios from arising.

SELinux is an implementation of mandatory access control (MAC), which comple‐
ments the traditional access control (DAC) but also enforces a specific set of control
policies. There are different ways to deploy SELinux: a strict mode and a targeted
mode. Strict mode denies all access by default such that every single object is required
to have a policy set up beforehand in order to perform work. This makes enterprise
use very restrictive and is the impetus for having an alternative targeted mode avail‐
able as well. Think of the targeted mode as a “guards at the gate” approach, where you
only protect the objects that could be exploited during a successful security breach;
this follows a more prescriptive approach to security, rather than a blanket approach.

Let’s return to our previous example, where the object (service) that runs as the
apache user is compromised and the attacker is able to escalate privileges to root
access. With SELinux in place, administrators would have a set of policies in place to
prevent even the root user (in the case it was hijacked) from inflicting any additional
damage to the system. The apache hijack would only compromise the objects that the
particular apache service would traditionally have access to, thereby restricting the
pool of targets and limiting damage to the system. This is all possible because a set of
rules were previously created that defined the objects that the web server has access
to. Everything else that is not explicitly defined by the policy becomes untouchable, as
the SELinux mechanism will enforce access control rigorously (even if root access is
granted from that particular service). In other words, even if you’re a superhero with
all the powers in the world at your disposal, SELinux has some Kryptonite in case a
hero turns bad. In practice, the kernel must query and authorize against SELinux pol‐
icies before each system call to know if the process has the correct permissions to per‐
form a given operation. SELinux policies are, in a nutshell, a set of rules that
authorize or forbid operations no matter who you are.

It’s also important to mention that DAC controls ownership plus permissions (like
read, write, and execute). The users can change these permissions and, historically,

122 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

the root user is omnipotent. With MAC, policies are predefined and locked in. Even if
you try to change DAC permissions, if the policy was not written to enable access to
an object, it will be blocked by SELinux.

For orchestrated multicloud environments, containers will continue to play a much
bigger role. Having a secure, trusted platform foundation for containers is paramount
to building a successful cloud implementation. As containers are nothing more than a
process running on a Linux system, it shares the host kernel with other containerized
processes. Each of these containerized processes are isolated from one another using
kernel spaces. We won’t go too deep here, but the point we need to make is that con‐
tainer security is Linux security—which means that SELinux plays an important role
when we are talking about containers as well.

Red Hat CoreOS, for example, is based on a trusted and mature Linux distribution
known as Red Hat Enterprise Linux (RHEL) and inherits all of its robust security
attributes as the basis for a secure operating system for container orchestration plat‐
forms. Each process on Red Hat CoreOS has an associated context and set of rules
defining the scope of interactions permitted by the process. You might have won‐
dered: “What does context mean in the scope of SELinux (and operating systems in
general)? Essentially, when you have a file or directory that you want to create policies
for, you typically require some sort of mechanism to label it (a way to map it to a set
of SELinux policies). For example, for a file to be acted upon, it must belong to a spe‐
cific label that identifies the SELinux policies governing permitted actions upon that
file.

Let’s explore another scenario: a service running inside a container has a code bug
that allows the attacker to gain shell access to that container. Thanks to cgroups, that
kernel’s namespaces will restrict the attacker from observing or interacting with any
other containers on the same CoreOS systems. However, if the attacker is able to take
advantage of a kernel bug, they might be able to escape from that container environ‐
ment—as multiple containers will be running as the same user. Having SELinux
enabled (which Red Hat CoreOS activates by default) ensures that the Linux kernel
restricts the attacker in this scenario from compromising any other containers run‐
ning on that system. Each container carries a uniquely contextual security policy to
deny cross-content access and prevent any further damage from occurring. In plain
words, SELinux would prevent any further escalation. This is a big deal: think back to
the Arriver’s Guide we introduced you to in Chapter 1 and the things containeriza‐
tion requires you to think about in a new way: security, resiliency, performance, and
more.

Many attacks have been stopped or mitigated by simply having SELinux enabled,
which is why having Red Hat CoreOS as a foundation for any hybrid multicloud
platform is so beneficial—CVE-2016-9962 is one such example. On Red Hat systems
with SELinux enabled, the dangers posed by hijacked containers with privileged

Zero Trust in a Hybrid Cloud World | 123

https://oreil.ly/YJpCL

1 Samba is a standard Windows interoperability suite of programs for Linux for file sharing and printer
services.

access are greatly mitigated. SELinux prevents container processes from accessing
host content, even in cases where those container processes manage to gain access to
the actual file descriptors.

Another example: CVE-2017-7494 addressed a vulnerable Samba client.1 A malicious
authenticated Samba client, having write access to the Samba share, could use this
flaw to execute arbitrary code as root. When SELinux is enabled by default, the
default security posture prevents the loading of modules from outside of Samba’s
module directories and therefore mitigates the flaw. This is just one example of many.
We could go on and on about the ways that SELinux technology plays a vital role in
today’s IT environments. If nothing else, we hope our examples illustrate the benefits
of kernel-level security and explain the rationale behind Red Hat’s strategy of embed‐
ding CoreOS at the center (where it has resided since the release of version 4 and
onwards) of the Red Hat OpenShift Container Platform.

Beyond enabling Linux Security Modules for the Linux kernel itself, there are a num‐
ber of additional solutions that provide value and can increase an organization’s secu‐
rity posture, such as the products behind the shield of IBM Security. It caters to the
Zero Trust security model and thus offers contextually aware access control for iden‐
tities and services, regardless of where those happen to reside (on-premises, off-
premises, or a hybrid blend of the two). These tools offer a centralized approach and
focus on understanding users, data, and resources in order to create coordinated
security policies that are aligned with the initiatives of a business. By centralizing
identity management and providing contextual awareness organizations can begin to
automate the verification and enforcement procedures, enabling conditional access to
data and services without friction.

Let’s face it: the current cybersecurity market is a crowded space with thousands of
software vendors and OSS projects offering a plethora of tools. Many of these tech‐
nologies still cater to traditional monolithic apps running on-premises, with a few
new entrants that focus solely on the hybrid multicloud container market. They run
the gamut from endpoint management to IAM, vulnerability scanning, threat detec‐
tion, threat intelligence, and so much more. Many of these tools are often siloed or
niche, making it incredibly difficult for security administrators and analysts to effec‐
tively perform their jobs. Many gaps exist in this often-segregated approach, which
can alarmingly produce a false sense of security. Consider again the data breach
example from earlier in this chapter: that organization felt they had all their bases
covered. As soon as they were alerted to the vulnerability with Apache Struts, the
security team scanned and patched all of their systems—or so they thought. The
breach didn’t happen from a lack of skills alone. In fact, there was no evidence

124 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

https://oreil.ly/BdSvr

pointing to any one person’s inadequacies or incompetence. Rather, it was the tools
and processes that supported the security apparatus that fell short. Placing heavy reli‐
ance on tooling is commendable, but having a well-established process for how they
are managed is key.

Importance of Sec(urity) in DevSecOps
Let’s talk about DevOps and its role in ensuring a solid security strategy for deploying
containers in a hybrid cloud environment. DevOps is a methodology that pulls
together development processes, technology, and people with IT Operations. This is
not to say that these historically disparate organizations now share only one unified
toolset, process, or collection of resources. Not at all. DevOps is more about
increasing the collaboration and transparency between the two groups. The end game
is to build a cohesive system that is made of the people, processes, and technologies
regardless of team or discipline. In the past, development teams have worked inde‐
pendently of IT Operations teams (and vice versa). In fact, each of these groups often
created “silos within silos,” working independently of one another (and often pointing
the blame to each other for anything that went wrong)—from the design phase, all
the way to product release.

The DevOps methodology has in many ways simplified the entire development pro‐
cess. What would once have taken months or years to design, develop, package, and
release now might only need days or weeks to implement. This has increased business
agility dramatically, allowing companies to bring new services to market very quickly.
These advances are particularly important in today’s economy, as it’s not always the
biggest companies that succeed but rather (it seems more often than not) that success
goes to the fastest and most innovative. Speed of innovation is a competitive differen‐
tiator that turns new market entrants into market incumbents.

There are downsides, however, to rapidly churning out new code in the form of rapid
releases, updates, and patches. On occasion, a lengthy and sometimes egregious
development process can lend itself well to catching bugs, defects, or other issues that
could potentially lead to code vulnerabilities (and therefore risk to new adopters).
Additionally, with longer production cycles IT security teams will generally have
more time to prepare for and audit production rollouts. With DevOps practices,
security teams are typically left out of the equation during the initial design and
development phase. In the context of cloud native, leaving security out of DevOps
can result in costly mistakes that are discovered much further downstream (poten‐
tially only after the damage has already been done).

In Chapter 5, we discussed the phrase “shift left” in the context of application devel‐
opment, but can it also be applied to security? The notion of incorporating both
operations and security earlier into the development cycle is what we refer to as Dev‐
SecOps. The challenge for implementing the DevSecOps methodology can be a big

Importance of Sec(urity) in DevSecOps | 125

culture shift, primarily due to IT security being viewed by many developers, opera‐
tions staff, and business leaders as an inhibitor to speed and agility. Remember: speed
of innovation drives business in today’s economy (and anything that applies friction
to that velocity is often scorned). To make matters worse, a significant number of
software developers have not been adequately trained in the concepts and best practi‐
ces of security, creating a massive knowledge gap. Developers are often under tight
deadlines to deliver and security often becomes someone else’s problem (or at least an
afterthought). This mentality, whether it be a conscious effort to avoid delays in
release cycles, or just a simple lack of understanding, can be a challenging cultural
obstacle to overcome for many organizations.

We’ve found that by training development teams on the importance of adopting secu‐
rity principles and best practices, they are often able to move beyond the mindset or
preconceived notions of security being an inhibitor to speed and innovation. Devel‐
opers realize that their efforts to apply security best practices and collaboration with
IT security teams early on in the project lifecycle can dramatically mitigate the risks
and impacts of security vulnerabilities. These security holes, if exploited, have the
potential to consume a developer’s time and resources in the future if ignored. Adopt‐
ing a DevSecOps methodology early on in a project’s lifecycle will pay enormous divi‐
dends down the road.

When we speak with clients, one of the most common inhibitors preventing them
from running production workloads in a container environment is the lack of
acquired security skills. Many organizations that find themselves in this category
believe that they can overcome the skills and process gaps through the use of tooling
and automation (which can certainly help); yet simultaneously, they remain appre‐
hensive because of unfounded concerns that the container security market is “too
new.” Many such organizations are finding themselves leap-frogged by smaller, more
agile companies who are willing to assume the risks and recognize the tremendous
potential of containerization.

How do organizations overcome this stigma and risk apprehension? Our response is
to look at what you already have in place from a technology perspective. What are the
capabilities of the products you use today? Do those vendors have a strategy for how
they will address container security at any stage in the lifecycle? Do they collaborate
with other vendors to enrich their capabilities and add value for their clients? Do they
have a well-established ecosystem of partners whom they work with to advance their
products? You may find that many of the tools that you’ve already invested in either
have plans to address these gaps or may in fact already address them. The key here is
understanding that there are only a few security software vendors that can adequately
address every phase of the lifecycle for container platforms. Others will come close;
some will remain niche and you will be left to reconcile the pieces. This is why it is
incredibly important to prioritize selection of vendors that are known collaborators

126 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

with other companies in the market; focus on ones that build their solutions to open
standards and seek to expand their offerings across the entire marketplace.

Container Security Visibility 101
Containers represent a new paradigm to IT security where traditional methods for
securing the enterprise are no longer adequate (new worlds come with new rules,
right?) What makes container security a challenge for IT organizations is linked to
the very attributes that make containers so valuable. This paradox exists because:

• Container images themselves are immutable (they can’t be changed—if you
change a container image, you are essentially creating a new one), meaning any
vulnerability within the container image will persist for the life of the image.

• Containers are rapidly swapped and scaled, creating a lack of visibility into their
attack surface.

• Container configurations are vast—lots of knobs and dials raises the potential for
misconfiguration (not to mention complexity is the top reason for outages).

• Containers tend to be short-lived, making forensic investigations as well as com‐
pliance reporting a challenge.

At a high level, there are five key areas (shown in Figure 6-6) to focus on as you look
to build out your container security strategy. It’s important to note that code scanning
prior to the container build process is equally important.

Figure 6-6. Gain security visibility across five key areas of your container deployments

Container Security Visibility 101 | 127

Providing visibility into the health and security of your container environment is key
to preventing, mitigating, and remediating cyber threats, so we’ve put together a basic
checklist that will serve you well for years to come:

1. Registry and Container Image Vulnerability Scanning
• Secure the repository itself
• Securely store push/pull secrets
• Scan image contents for known vulnerabilities and malicious code
• Integrate with CVE/NVD for real-time vulnerability updates and establish

known CVE baseline
• Predictive analysis

2. Container Image Runtime Vulnerability Scanning
• Container runtime scanning
• Threat and intrusion detection
• Container firewall (sidecar—some code on the side) monitoring
• Anomalous execution
• Predictive behavioral analysis
• Integrate with CVE/NVD for real-time vulnerability updates and establish

known CVE baseline
3. Container Orchestration and Cluster Monitoring

• Misconfiguration and configuration drift monitoring
• Threat and intrusion detection
• Identity access
• Privileged account monitoring
• Container network monitoring
• Pod monitoring
• Predictive behavioral analysis

4. Compliance Monitoring and Reporting
• Continuous access monitoring
• Anomalous detection
• Privileged account elevation detection
• Configuration drift
• Audit reporting across all

128 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

• Predefined industry templates for internal and external regulatory compliance,
including PCI-DSS, GLBA, SOX, NERC CIP, HIPAA, etc.

5. Forensics Analysis and Investigation
• Post-event analysis
• Integration to incident response

Placing emphasis on both registry and container image vulnerability scanning fol‐
lowed by container runtime vulnerability scanning and threat detection can help
close a big gap. This is still an evolving market with many point products to choose
from; choosing a point product for any one area may lead to gaps in the attack surface
of your container environment—press whomever is selling you a solution to give you
an end-to-end discussion on this topic.

Together, Red Hat and IBM have built an open ecosystem of technology partners to
help close these gaps. Many of these ecosystem partners continue to focus on the
areas where they are strong, while Red Hat and IBM seek to bring their solutions
together into an integrated offering. For example, Red Hat Quay is a private container
registry that allows organizations to store, build, and deploy container images. Red
Hat’s Security Container Module is supported by Clair—an open source project that
provides a tool to scan each layer of container images stored in Quay and delivers
proactive alerts based on vulnerabilities such as configuration defects, embedded
malware, and clear text secrets (passwords and API key licenses in configuration or
code files) detected. Clair is configured to import known vulnerabilities from a num‐
ber of sources, one being the CVE database mentioned earlier in this chapter (as well
as the National Vulnerability Database). Our pro tip: provide vulnerability scanning
early in the development lifecycle, as it raises awareness about potential vulnerabilities
before code leaves the registry for deployment.

Runtime vulnerability assessments, container orchestration, and cluster monitoring
provide exactly that level of proactive awareness. Having visibility into your Kuber‐
netes orchestration engine and its configuration (including network, storage, and
workload isolation settings) is imperative. Most containers are transient in nature,
which quite simply means they tend to have a short life span. This makes it very diffi‐
cult for traditional IT vulnerability scanning, threat detection, and intrusion detec‐
tion tools to effectively work with a containerized environment.

Technologies such as StackRox (a Red Hat company) cater specifically to evaluation
of containerized runtime environments by measuring baselines for process activity
and providing runtime anomaly detection (and response) for anything that falls out‐
side of those expected norms. StackRox can also monitor system-level events within
containers and invoke prebuilt policies to detect privilege escalation, cryptomining
activity, or other common exploits that might be running afoul within your Linux
distributions and Kubernetes orchestration. There are a number of other capabilities

Container Security Visibility 101 | 129

provided by the StackRox platform, including compliance monitoring, network seg‐
mentation, risk profiling, and configuration management. Each of these capabilities is
key to securing your enterprise container environment, giving you the tools to per‐
form investigative analysis in the event of a breach (or to prove compliance if asked).

Finally, compliance monitoring, reporting, and forensics analysis are a critical capa‐
bilities for anyone—and also required by law for many industries under tight regula‐
tion. Whether implemented by regulation or due diligence, all organizations benefit
from the ability to apply industry-specific compliance policies for their container-
native environment and the ability to monitor any changes to the environment
against that policy baseline. This also applies to scenarios where it’s necessary to
provide evidence of compliance for auditing purposes using reporting capabilities
provided by the tooling. Trust us on this: without this level of monitoring and report‐
ing, fines will likely follow (not to mention brand erosion, loss of trust, and more).

With regards to forensics analysis and investigation, in the event of a breach it’s criti‐
cal to quickly identify which systems have been impacted. This requires the ability to
go back in time and retrace any potential anomalies that occurred, such as a privilege
escalation, rogue containers, lateral movement between clusters, and so on. The Secu‐
rity Information and Event Management (SIEM) system must integrate several core
areas when an incident occurs. There must be quick event correlation and historical
analysis, and your incident response system must link known vulnerability attributes
to identified suspicious behaviors. SIEM security teams provide tracking, insights,
and visibility into security-related activities within IT environments.

Without this level of visibility, you can only assume that your entire container envi‐
ronment has been compromised (although in reality it may not have been—you just
can’t be certain enough to discredit the possibility without full visibility). This can
lead to unnecessary public disclosures, remediation, and discovery work—which is a
waste of precious resources. Of course, the opposite can also be true: without the visi‐
bility provided by a combination of these capabilities, a breach may be missed
entirely, leading to data loss. These become painful experiences for victim organiza‐
tions and their end users—disasters that often could have been minimized or mitiga‐
ted with the correct security strategy and tooling.

We began this chapter by discussing what OSS is and how cybercriminals (and on
occasion nation state attackers) use exploits in software to expose vulnerabilities for
financial gain (or for use against federal governments). The foundation for hybrid
cloud is based on an open platform and new architectural model that many tradi‐
tional IT security methods simply do not adequately address. To combat rising
threats in containerized hybrid cloud environments, organizations need to take a new
approach based on Zero Trust to protect systems and data, as well as a more collabo‐
rative approach to managing the software development lifecycle through a cohesive
DevSecOps operating model.

130 | Chapter 6: Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud

CHAPTER 7

Data Gravity

The COVID-19 pandemic has affected each of us in many different ways. But in the
scope of business and IT, what specifically made 2020 (and most of 2021) so particu‐
larly challenging? A question that we routinely ask our clients is, “Who is leading
your digital transformation?” Oftentimes, the answer has been “our CIO,” “our CFO,”
and so on. But in 2020, more often than not the answer was “it’s COVID-19.” There
have been massive impacts across employees, partners embedded within companies,
and end-user digital experiences as a whole. Increasingly, everything needed to be
available and accessible online. Companies accelerated their drive toward cloud, and
their customers were pushing urgently for all-digital availability of services.

Our experience during this time as IBMers was an interesting one, to say the least.
The nature of our work and the diversity of our client interactions meant that we had
the broadest aperture possible to the range of ways businesses have been impacted by
and have responded to the pandemic. We have observed businesses that have strug‐
gled, but likewise there have been clients that have flourished in the “new normal”
(recall the thrivers, divers, and new arrivers we talked about in Chapter 1).

From the perspective of containerized storage (and IBM Storage in general), we’ve
recognized three major trends:

Management and control
In the past, administrators would have procured more storage (in support of
applications and users), as needed, from the datacenter—we’re talking about a
time well before the advent of cloud. Often the datacenter would in effect be
spread across two or more sites: one serving as the primary hub and the other
being a smaller satellite for disaster recovery and business continuity services. In
these early configurations, storage allocation would be managed by system
administrators entirely through the primary site (from which they would also
remotely control the satellite locations). With COVID-19, we’ve seen a flip

131

toward working from home—and as such, all of these system administrators are
now scrambling to find ways to manage all of their datacenters (the central hub
and the satellites) entirely from their remote (at-home) workstations.

Availability and reliability
Many businesses wish to become a 365x24x7 company, but COVID-19 pushed
them into making that level of availability more than a sound byte in an earnings
call—it became a necessity, not merely a luxury. Digital transformations were
already well underway across the industry at the start of 2020, which naturally
applied stress to the digitized services running off-premises. In turn, this put
additional stress on the high availability (HA) and disaster recovery (DR) com‐
ponents of those containerized and cloud-centric services. COVID-19 further
accentuated that stress because of the push toward contactless, socially distanced,
always-online experiences.

Cyber-resiliency
Cyberattacks continue to rise and escalate in severity with each passing year—
and once again, the push toward digital experiences owing to COVID-19 has cre‐
ated an ample supply of untested vendors and businesses (in other words: ripe
pickings for an attack) for these malicious entities to target. 2021 is proving this
to be true each day: it’s not simply about keeping the “bad guys” out or tracking
the attackers down. Sometimes—speaking anecdotally based on what we’ve heard
or seen firsthand with clients—your business may not even be aware an attack
has occurred until weeks or months after the intrusion has taken place (you’ll
recall we touched in this in Chapter 6—almost every report we’ve seen suggests
that it takes almost six months before you’re likely to discover malware inside
your company). If your enterprise doesn’t have cyber-resilient and well-secured
storage in place before your containerization and digital transformation strategy
begins, the damage may already be done before you’re even in a position to rec‐
ognize and react to it. This is one big reason why air-gapping and Safe Guard
copying your backups—think of it like an offline-only copy of your data that can
only be accessed in case of emergency—is a prudent part of any modern data
protection strategy.

Another trend around securing containerized and cloud native applications is the
increased sensitivity, among businesses and consumers alike, toward data residency:
where does your data reside today, and where (if anywhere) can it move to once
generated?

How do concerns and legislation regarding data residency impact those businesses
that are looking to adopt the hybrid multicloud approach that we’ve been evangeliz‐
ing thus far? For example, if a Canadian business is contemplating using three or four
different cloud vendors, and one of those vendors does not have a datacenter within a
province (or state) covered by that country’s data sovereignty laws, then that vendor

132 | Chapter 7: Data Gravity

cannot be selected (for data storage purposes) by that business. There are multiple
countries around the world with similar legislation in place as well. As you evaluate
different cloud-first vendors, you need to be cognizant of the fact that no single cloud
vendor has a datacenter within the borders of every country on the planet. Therefore,
when plotting out your digital transformation and application modernization strat‐
egy, you absolutely must take into consideration an on-premises component for data
retention, as well as cloud.

This really hits on the theme of our book: you need cloud capabilities at all destina‐
tions. It’s precisely why we believe that an on-premises/off-premises (hybrid) blend of
several vendors (multicloud) is essential for every business—all of whom will need to
be increasingly sensitive to application and customer data residency moving forward.
Even though the new (ab)normal is fraught with challenges, there are tremendous
opportunities for those that give weight to the data gravity conundrum, which is the
residency of data and the challenges of moving it to the cloud, and opportunities for
those that strategize toward a blend of on-premises and off-premises, multivendor
solutions to those challenges.

Thinking of cloud as a set of capabilities, where any business can harness the powers
of multiple vendors and technologies, broadens your organization’s ability to innovate
with speed and reach new audiences. That level of agility, resiliency, and adaptability
is precisely what the “new normal” of a post-COVID-19 marketplace demands. But it
is equally incumbent on organizations to not fall into the trap of thinking of the pub‐
lic cloud as the destination for all of their data. As noted earlier, we can’t change the
laws of physics—moving petabytes of data to the cloud will always be a challenge that
few can stomach. Likewise, while we aren’t fortune tellers, we’re certain there will be
even more demanding and unique challenges relating to data residency and privacy
that 2021 and beyond will usher in. One thing we can promise you: establishing a
hybrid multicloud strategy premised around secure containerized data, multivendor
support, and vendor-agnostic technologies will put your business in the best position
for success in the new (ab)normal’s marketplace.

Data Gravity: More Formally Defined
A key consideration for workloads in hybrid multicloud environments is latency. For
applications with data dependencies that businesses are looking to modernize, plan‐
ning and consideration must be given to the ways that distance and distribution over
containers (and cloud platforms) may impact these services.

The inconvenient truth is that much of an enterprise’s crown jewels (data) today
resides in storage which is not easily adaptable to—or might even be seen as antitheti‐
cal to—the unique storage requirements of modernized and containerized
applications. These challenges are further exacerbated by the fact that containers were
not originally developed with persistence and long-term storage in mind. These

Data Gravity: More Formally Defined | 133

technologies were conceived with a “build it and bin it” mentality in mind (for rapid
development and testing), an “ephemeral” approach to application design. As such,
the technology (and vendors that support it) have had to gradually evolve adaptations
to these requirements over time.

You can’t change the laws of physics. Data that needs to move between distributed
systems is inevitably going to suffer from latency or performance drags. The alterna‐
tive is to constantly move data back and forth across premises to replicate that data
into distributed cloud systems. But how then do you maintain, secure, and preserve
the integrity of data during such a migration? What happens to the mission-critical
business processes on-premises that generated that data in the first place? If synchro‐
nization between the endpoints were to break down, how would that impact the
applications running across the disconnected sites?

We refer to complex workloads such as these, with deep data dependencies and high
volume, as being subject to data gravity. Data’s “weight” on-premises can make it dif‐
ficult to burst to the cloud, and the further you move that data away from the on-
premises IT core of your business, the more tenuous that connection (the gravity)
between your data and mission-critical systems becomes. This relates to the connec‐
tivity, resiliency, and security challenges of ground-to-cloud operations. Before your
business can break free of data’s gravity and boldly set out in search of new ventures,
you need the correct storage strategy to accelerate your modernization journey and
overcome the “stickiness” of the legacy data dependencies that are dragging you
down.

Container-Ready and Container-Native Storage
Chapter 3 introduced you to IT container technology and the curious ways in which
the containerized application revolution echoes the shipping container revolution of
centuries past. Very often when talking about containers in the IT world, there is an
adjacent picture of a container in the physical world (like a shipping container you
might see stacked alongside a port). For example, containers in both worlds (logistics
and IT) exhibit characteristics of efficiency, organization, standardization, and secu‐
rity. But is there any real value in this metaphor of containerized goods and
container-based shipping? Or is it merely a play on words?

134 | Chapter 7: Data Gravity

Solving Challenges of Business Continuity in a Containerized World
Global container shipping and local road delivery to the doorstep is now well-known
across the world thanks to the ubiquity of companies like Amazon and UPS. Their
widespread success couldn’t have happened without three essential shipping con‐
tainer innovations or rules:

• Containers are orchestrated (translated into normal English: organized) and mar‐
shaled according to their intended destination and priority.

• Handling facilities are standardized—they simply would not work without
standardization.

• Freight handlers don’t need access to the contents of containers in order to ship
them (they are secured from the point of origin to the place in which a customer
unloads them).

Orchestration describes the process by which containers get to where they need to be.
Just as a physical shipping container can be moved by different forms of transport
(rail, ship, and so on), IT containers can be deployed on different types of cloud desti‐
nations (on-premises, public cloud) using the same cloud capabilities. In the same
way that a manufacturer or distributor loads a physical container with the goods they
are sending, DevOps teams can describe and build container images prior to their
deployment because there are standardized ways for distributing, receiving, and run‐
ning containerized workloads in the environment where they are finally deployed.

Traditionally, IT servers were sized for their peak workloads. This required enormous
amounts of upfront work to understand the app being supported; it’s akin to predict‐
ing the future, and don’t forget the countless hours finding consensus across the
mutual business and IT stakeholders that the architecture was meant to serve. We all
know how things go when planning turns to practice: peak capacity demand might
only be reached a few times a year; maxing out your capacity in those days was gener‐
ally thought of as “the exception,” rather than “the rule” of today. Keeping level of ser‐
vice up and running meant that storage was typically directly attached (or locally
networked) to those servers, along with specialized data protection, high availability
(HA), and disaster recovery (DR) solutions. Satisfying business continuity could be
challenging because you needed different solutions for HA and DR to satisfy those
needs—particularly if the secondary operating site was a significant distance away
from the primary site.

Procurement and management of these bespoke systems required operations staff
with specific sets of skills. Within these businesses were glaring inefficiencies such as
spare computing capacity and unused networking and storage resources, which very
often were underutilized or sitting idle (but nevertheless paid for) much of the time.
You’re probably starting to get the picture of how this worked, and to be honest,

Container-Ready and Container-Native Storage | 135

many of you are quite familiar with it. Traditional architectures require lots of work,
plenty of skill, resources you’re willing to sacrifice (at times for potentially no gain),
and reams of preventative measures to mitigate risk.

Returning to the example of shipping and logistics: end users are typically happy if
their goods are delivered to them in a single, secure package, where the contents of
those shipments are just as they were when they left their point of origin. However, in
the domain of goods transport, infrastructure operators recognized that further effi‐
ciencies were possible if multiple containers could be loaded onto a single transporta‐
tion platform. Rapidly, long trains and large ships requiring fewer labor resources
entered the mainstream and became the de facto method for global container ship‐
ping with economies of scale. Today many parts of this process are automated with
analytics and AI, making it even more efficient.

In a very similar way, IT containers are engineered to integrate with the deployment
infrastructure (what we’ll call “hosts”) in such a way that requires fewer resources
than a traditional virtual machine (VM). Multiple guest operating systems and the
hypervisor that controls them (the approach used by VMs) are replaced with a single
container engine, which also relies on specialized isolation capabilities to ensure that
the containers it supports are lightweight and secure. Even the simplest operating sys‐
tem of a VM might require 2 GB of operational space per instance. Every one of those
instances needs operational management for security patches, upgrades, and so on.
By contrast, a containerized application could strip away the bloat of unnecessary OS
libraries and dependencies, only packaging the absolute minimum needed to run the
service.

VMs are frequently allocated to individual application users and may also require
asset management business processes; containers, on the other hand, are typically not
allocated to individual users. Containers are created dynamically in order to provi‐
sion a service that users need, and then subsequently disappear after the container’s
lifecycle has ended. Containers don’t need asset management, only a descriptor so
that they can be assigned to a workload when required. Finally, developers love con‐
tainers because they can be confident that their applications will be deployed with the
right libraries, in the correct configuration, every time, on any architecture. Just like a
physical container, in the IT world a container image can be made secure so it cannot
be deployed or used until it is accessed by a permitted system that has the right key to
unlock its capabilities (and contents).

Why Storage? Why Now? The Curious Evolution of Persistence
for Containers
Recall that one of the early application development and architecture challenges was
dealing with business continuity. The portability of containers addresses two signifi‐
cant operational challenges:

136 | Chapter 7: Data Gravity

• The standardized specification of containers means they can be easily moved,
running in a business continuity site as soon as they are needed.

• When the server hardware on which a container is running needs maintenance
or replacement, another copy of that container can be quickly deployed on differ‐
ent hardware while the upgrade is done—without any service interruption.

Figure 7-1 breaks down the foremost pain points that organizations experience when
needing to find storage solutions for containerized applications. As you can see, many
(if not all) of these pain points have their roots in the “weightiness” of data—be that
the latency and time-to-delivery impacts from moving data across the wire, strict reg‐
ulatory and data sovereignty laws, or the friction generated when agile innovation
rubs against disaster recovery and availability requirements.

Figure 7-1. Typical pain points enterprises run into when needing to find storage solu‐
tions for their containerized applications

Performance is a key requirement for any business application, even those running
via (relatively lightweight) containerized microservices. As memory and CPU resour‐
ces become cheaper and more ubiquitous, legacy hard drives that read one block at a
time are becoming a performance bottleneck for data-intensive applications (see
Figure 7-1). Built with multiple channels and flash devices, solid state drives (SSDs),

Container-Ready and Container-Native Storage | 137

and storage class memory (SCM), today’s storage is inherently parallel and able to
provide orders of magnitude higher internal bandwidth compared to traditional hard
drives. In addition, for clients looking to use file storage, leveraging parallel filesys‐
tems (like Spectrum Scale based on the General Parallel File System, or Lustre) can
provide a huge boost to performance as well. One thing to never forget when you
design your cloud architectures: all servers wait at the same speed for the data!

From an availability perspective, when your team moves containers, you need to be
on the lookout for industry-leading storage capabilities that include automated,
policy-driven data movement, synchronous and asynchronous copy services, high
availability configurations, and intelligent storage tiering. You want six 9s (99.9999%)
uptime for data assurance and resiliency, as well as 100% data availability guarantee
with multisite options.

Manageability is another big challenge for your running containers. Ensure your
team looks for easy-to-use tools to manage your containerized applications. These
tools should provide capabilities to easily deploy, manage, monitor, and scale applica‐
tions. They need to be integrated with environments that provide a private image
repository, a management console, and monitoring frameworks to seamlessly hook
containerized apps and services into your broader application ecosystem.

To round out this list of concerns we want you to be aware of, think about data pro‐
tection for containerized applications. There are many aspects of a containerized
environment that need robust backup and disaster recovery routines, as well as con‐
tingency planning in place for protecting the state of the cluster, container image reg‐
istries, and runtime (state) information.

Containers for one reason or another will inevitably need to be reconstituted (brought
back into their operational state) after a hardware failure, crash, or software mainte‐
nance to their image layer. Although containers are resilient against such failure con‐
ditions, it does require architects and designers to consider how a containerized
application will retain any data between reconstituted container environments.

Figure 7-2 illustrates the challenges associated with application data storage (stateless
or stateful) for containers (ephemeral or persistent, respectively).

138 | Chapter 7: Data Gravity

Figure 7-2. It’s not a question of if an outage will occur, but when: these are the chal‐
lenges associated with application data storage for different kinds of containers

Container-Ready and Container-Native Storage | 139

Container: May Ye Live Long and Prosper
By default, containers are inherently ephemeral environments. Any information
about their state that is created over the course of a container’s lifecycle will be deleted
(lost) when that container’s lifecycle is complete—think of it as amnesia. This
includes each time a container is restarted, such as for an update, migration into a
new environment, or because of a stoppage. We refer to this default container behav‐
ior as stateless.

Persistent storage is the means by which data that is created by application usage is
retained throughout the lifecycle of a business process, allowing the entities it man‐
ages to change state. A stateful containerized environment is one that persists and
retains data across sessions in a permanent fashion—in other words, by using persis‐
tent storage. Using external storage devices, a containerized application can persist its
data throughout and beyond the lifecycle of the container, meeting the needs of long-
term business processes (not merely short-lived or technical processes).

Persistent storage for “stateful” containerized applications has proven particularly dif‐
ficult for the industry. Unlike monolithic applications—which reserve storage resour‐
ces once—containers and microservices bounce in and out of existence, migrating
between machines at breakneck speeds. The repeating cycle of coding and testing,
followed by agile production deployment, further exacerbates the data storage chal‐
lenges for containerized applications. Data services fashioned for traditional applica‐
tion architectures must now serve a new, very transient data paradigm.

The unit of storage capacity that a container can make use of is called a volume. There
are mechanisms built into container orchestration environments that allow these vol‐
umes to be named and attached as required. Kubernetes allows containerized applica‐
tions to request storage, locating the best match from available resources, and delivers
a volume (a place to store your data).

Red Hat OpenShift elevates the management claim to provide a catalog of storage
providers from which the most suitable can be easily chosen by a cluster administra‐
tor. Microservices are no longer tied to a single implementation of business logic and
storage access libraries. They can be deployed in a loosely coupled fashion with the
most appropriate technology for their needs, while DevOps tools allow storage to be
presented using a consistent approach through the whole of the release lifecycle. As a
result, only those storage solutions capable of providing shared storage to both exist‐
ing (virtualized and bare-metal application infrastructures) and container-native
applications with a consistent set of data services are likely to survive.

140 | Chapter 7: Data Gravity

Container-Ready and Container-Native: Reinventing Storage for
Containerized Applications
Persistent storage for containers is generally defined in two categories: container-
ready storage and container-native storage.

What benefits does container-native storage confer over container-ready storage
types? First, it simplifies management: a single control plane within your K8s con‐
tainerized environment is able to manage the integrated (native) storage. Second,
both internal drives and external storage can be leveraged, giving further flexibility in
terms of where application data and state are persisted. Third, this architecture para‐
digm is consistent with the “hyper-converged” approach for containerized applica‐
tions, in which storage and compute are able to scale independently of one another.

The early days of public cloud-backed data lakes and data ware‐
houses taught vendors some tough lessons about certain Hadoop as
a Service (HaaS) offerings that soon became HaaS-been (get it?)
offerings. Imagine needing to buy more storage capacity and being
forced to bundle that with purchasing additional CPU and mem‐
ory, every time (on a system where you’ve already got plenty of
excess processing power)! Today, many data warehousing SaaS
offerings have adapted in response to these lessons learned to allow
for independent scaling of compute and storage.

What do we mean by container-ready? As customers are moving to container-based
environments, they are able to use storage as a persistent storage layer for both block
and file architectures. For example, storage is container-ready today, while many ven‐
dors are still in the early stages of delivery for container readiness (alpha or beta ver‐
sions of their storage plug-ins as of the time this book was written). It unifies
traditional and container storage, and provides cloud native agility with the reliabil‐
ity, availability, and security to manage enterprise containers in production.

Container-ready storage includes devices such as Storage Area Network (SAN), Soft‐
ware Defined Storage (SDS), and Network Attached Storage (NAS). These devices
support capabilities such as backup/snapshots, clones, and data replication. Another
benefit to choosing amongst these options is that they often allow clients to leverage
existing investments that they’ve already made in infrastructure (either in networking
or storage), processes, management, and monitoring solutions. IBM Spectrum Virtu‐
alize, IBM Spectrum Scale, Heketi with GlusterFS, and IBM Cloud Object Storage are
products that clients may have invested in previously, which can be immediately made
available as “container-ready” storage options.

Container-Ready and Container-Native Storage | 141

Container-native storage is deployed directly with containers. It is immediately avail‐
able in the cluster catalog and appears to the administrator in a very similar way to
how storage would be in an appliance. Red Hat OpenShift Data Foundation (ODF) is
an example of container-native storage. It is capable of provisioning block, file, and
object storage—which a variety of applications might require. It operates using the
same management control plane as the Red Hat OpenShift platform on which it runs.
With ODF, both internal and external drives can be configured. Data persistence is
available right in the heart of the container environment itself, where applications
need it most readily. Yet both the compute and storage solutions can still scale inde‐
pendently in order to meet changing demand or workload requirements. Container-
native storage won’t let you down when it comes to data protection or resiliency. It is
usually deployed in a mirrored or replicated architecture, and it supports the same
snapshot capabilities as container-ready storage.

Adding Storage for Containers…The Right Way
OpenShift has many prebuilt containers that can be used to assemble applications,
but it’s important that you fully understand the differences between ephemeral and
persistent storage. What does it look like to provision a containerized service with
available storage?

If you’re working from the command line, you’re working with Podman commands.
Red Hat originally used Docker infrastructure, and due to some design limitations in
the way that Docker works—in particular, the single process background daemon
that is a bottleneck, and more—Red Hat switched over and designed a new daemon‐
less container engine for handling the starting and management of containers: Pod‐
man. (Don’t get confused. As we said earlier, K8s runs Docker containers—all
containers that adhere to the standard OCI, really—we’re specifically talking about
the past reliance on the Docker command interface.) This is Red Hat OpenShift’s
container engine and also the command line for communicating with containers. If
you are familiar with Docker syntax, Podman is essentially the same. Podman works
with all Open Container Initiative (OCI)–compliant containers on Linux systems.
Containers with Podman can be run either as root or in rootless modes—running
containers created by Podman seems indistinguishable, to us, from those created by
any other common container engine that we’ve played around with.

To start, stop, and work with containers, you’ll likewise use Podman. It contains all of
the subcommands needed to create and manage containers. There are different com‐
mands related to different types of objects or states. Essentially, you are searching
against external registries: first you must pull containerized images from the external
registries into the local storage (disk space—not the internal registry), and afterwards
those images are then made available on the local machines for deployment. Con‐
versely, when you go to do a run, it pulls it from the local storage; it doesn’t have to go
out to an external registry to first retrieve it (as it already exists in local storage.)

142 | Chapter 7: Data Gravity

Commands such as images, inspect, and history are all executed against the node
local storage in this manner.

When you have a running container and you stop it, it goes to a “stop” state (of
course) but it still remains in memory. If you are accustomed to working with pro‐
cesses, you expect that when you stop/kill a process that it will disappear from the
system memory. Containers are different. When you run containers, they take up
memory and they perform tasks; when you stop a container, it stops but it continues
to reside in memory.

There’s an important reason for this logic: containers are designed to be stood up,
perform a task, and then be thrown away. This is unlike enterprise services or VMs,
which store their information on some persistent storage device. Without creating
persistent storage, the container will be completely ephemeral and stateless. So when
it goes away, you’ve lost everything it’s done and any knowledge it ever had about
anything, including itself.

One of the reasons why containers stay resident in memory after they have been
“stopped” is so that you retain the ability to query them afterwards. For example, if a
container were to fail or disappear, you’d lose the container logs (which are also in-
memory); so how would you be able to dissect what went wrong afterwards? By keep‐
ing stopped containers in-memory, administrators and developers can still query
those stopped containers (using Podman logs, as an example), debug containers, and
troubleshoot them.

Stopped containers are not like VMs. They don’t pick up where they left off. In fact,
stopped containers are like imposters when you think about it. For example, if you
restart a container it actually cheats or misleads you, so to speak, by throwing away
the old container and instantiating (creating) a new one with the old process ID that
it had been using beforehand—while it does make a new container, it’s disguised as
the old container using the same process ID (this is typically done for a restart Pod‐
man task).

Red Hat conforms to the Container Networking Interface (CNI) open source project
to define standards for consistency for software-defined networking for containers
across many platforms and clouds. Based on this, Podman attaches each container to
a virtual bridge that Red Hat can manipulate and add richer capabilities to (including
security), and then uses that to assign to each container a private IP address and
makes it accessible (not necessarily externally, but this is internally how networking
and connectivity work). You have to make a container available to the outside world
by mapping a port. What we want to do is declare a container port that maps to a host
port, so that we can connect to the host and get to the container.

Container-Ready and Container-Native Storage | 143

Seven Best Practices for Securing Containerized Data and
Applications
We cover security throughout this book because we think it is important. Many of the
concepts suggested in this section provide the foundation for what we discussed in
Chapter 6. This isn’t an either/or suggestion—you need both. Containerized applica‐
tions make it easy to ensure consistency of development, consistency of testing, and
consistency of deployment—across physical servers, virtual machines (VMs), and
public and private clouds. But does this level of consistency also extend equally to
concerns like security? Organizations are keen to know the answer to such questions
(and rightly so). However, the answer is not always immediately obvious; likewise,
your results may vary depending on your choice of containerization platform and the
vendor supplying it.

How you go about securing a container, and the approach you take to achieve this,
depends on the background of the person you ask. For example, if your background
is in managing infrastructure, you may perceive a “container” as a lightweight alter‐
native to VMs, such as a sandboxed application process, that shares a Linux operating
system (OS) kernel with other containers. Alternatively, if your background is as a
developer, you might conceptualize a “container” as a packaged bundle of an applica‐
tion (like you would a JAR file in Java) and all of its dependencies, provisionable in
seconds within any environment of your choosing, and readily enabled for continu‐
ous integration and continuous delivery (CI/CD).

Regardless of whether you subscribe to the application-builder or infrastructure-
manager perspective on containers, there are seven key elements essential to securing
any containerized environment, which are summarized in Figure 7-3 and explored in
more detail in the following sections.

Containers (and container-ready storage) make the portability of data easier than it’s
arguably ever been before—and that’s something to be wary of, particularly for those
of us operating in environments with strict data sovereignty and regulatory compli‐
ance laws that must be met. Under these conditions and within these countries, the
pull of data gravity is ironclad. Likewise, the controls and safeguards built into your
hybrid multicloud environment must be equally solid in order to ensure your busi‐
ness doesn’t run afoul of these laws.

From our time spent working with clients operating under these strict data guide‐
lines, we’ve compiled a list of seven elements that encompass each layer of the con‐
tainer’s solution stack (like you would do for any running process)—from before you
deploy and run your container, to the lifecycle of the containerized application once it
has been placed into production. We’ll dig into each element and provide you some
lessons learned on how to prepare your hybrid multicloud for the realities of contain‐
erized data and applications.

144 | Chapter 7: Data Gravity

Figure 7-3. The seven best practices any organization can apply toward securing their
containerized applications and services

1. Multitenancy and the Unusual World of Container Host
Operating Systems
We mentioned before how containers simplify work for developers by allowing con‐
tainerized applications to be conceptualized as a single bundle of your code and all of
its dependencies (a single “unit,” if you will). This has a knock-on effect—multiple
containerized applications are able to run on a shared host, as all containers can be

Seven Best Practices for Securing Containerized Data and Applications | 145

deployed in a multitenant fashion on the same machine without cluttering or pollut‐
ing the underlying operating system with conflicting binaries or other dependencies.
With containers you also eliminate the need for traditional VM hypervisors or guest
OSs, further decreasing the complexity and size footprint that would otherwise be
placed on hardware with virtualized machines.

The linchpin therefore becomes the OS that these containerized applications share
and run upon. The host OS kernel must be able to secure the host kernel from con‐
tainer escapes and it must be able to secure containers from one another.

Decreasing risk to the shared OS begins with how you design your containerized
application. For example, you should drop privileges from the application where you
can (or assign only what you need at minimum) to create containers with the least
number of OS-level permissions possible. (Security aficionados tend to group this
concept into something they call the principle of least privilege—a cornerstone of any
security playbook.) Run and execute applications as “user” rather than as “root,”
wherever possible. The second task is ensuring that your Linux operating system is
surrounded by multiple levels of security.

Red Hat CoreOS and Red Hat OpenShift are positioned to secure the Linux operating
system through a combination of SELinux, available as a part of CoreOS and RHEL,
for isolation of namespaces, control groups (cgroups), secure computing mode (sec‐
comp), and more. Namespaces provide a level of abstraction inside a container to
make an application appear as though it is running its own OS inside of the container
—with its own dedicated allocation of resources from the global pool. SELinux iso‐
lates containers from the host kernel, as well as containers from each other. Adminis‐
trators can enforce mandatory access controls (MAC) for every user, application,
process, or file. This serves as a net of protections if the namespace abstraction of a
container is ever breached or exploited by an attacker.

Compromised containers running on the same host OS is a common vector of attack
for those looking to exploit unsecured networking between containers not running
on SELinux. Utilizing cgroups can place limitations on the resources that a container
(or collection of containers) is able to consume from the host system, mitigating their
ability to “stomp over” other (healthy) containers. Seccomp profiles can be defined
and associated with a container, restricting the system calls available to it.

2. Trusting Your Sources
You must be mindful of any packages or external code that you bring into your envi‐
ronment. Can you guarantee that the container you’re downloading from a third-
party repository won’t compromise your infrastructure or contaminate other
containers running in the same environment? Does the application layer of the con‐
tainer have vulnerabilities that could be exploited? What is the frequency with which
the container is updated? And who authors those updates? (Think of all the reasons

146 | Chapter 7: Data Gravity

why you shouldn’t go hunting for movies from a BitTorrent site—aside from the fact
it’s illegal—you just don’t know what’s in the file you’re downloading.) Our pro tip?
Hardware can help here with the cross-container memory contamination protocols
we are starting to see (for example, on IBM Power 10).

Containerized software from public repositories, even highly reputable ones such as
Docker Hub or GitHub, carries the same potential risks. The unavoidable fact is that
if your organization is working with containers published in these repositories, you
are ultimately inheriting code and work performed by others, almost certainly from
people you’ve never met. This is not to suggest that code from public repositories is
riddled with malicious code—far from it! But there is always the risk that the contain‐
erized code may inadvertently come with vulnerabilities that the original developer(s)
failed to recognize.

Modern software projects are enormous undertakings and might contain upwards of
thousands of different dependencies and libraries. If you’re working with someone
else’s code (or another person’s container), some of those dependencies won’t be fully
under your control. Data gravity once again rears its ugly head with the “pull” these
containerized apps and repositories have on us: the reliance we (as developers) have
on extending the open source projects of others; and the need to include dependencies
within our projects over which we have limited (or no) control.

One way to mitigate the risks is to work with trusted and established vendors when
sourcing containerized application code. For example, Red Hat has been packaging
and delivering trusted Linux content for years in RHEL, and likewise they now do the
same via Red Hat–certified containers that run anywhere RHEL runs, including
OpenShift. Red Hat’s Quay container and application registry can also provide addi‐
tional levels of secure storage, distribution, and deployment of containers on any
infrastructure, for those who might need that.

If you want to use your own container scanning tools to check for vulnerabilities, you
can also leverage RHEL’s and OpenShift’s pluggable API. This makes it simple to inte‐
grate scanners such as OpenSCAP, Black Duck Hub, JFrog Xray, and Twistlock with
your CI/CD pipeline.

3. Protecting the Software Build Process
For containers, the Build phase of an application’s lifecycle occurs when application
code is integrated with runtime libraries and other dependencies. One of the key hall‐
marks of containers is the repeatable, consistent manner in which they deploy across
any infrastructure. Consider the frictionless portability of these containers and the
multitude of environments that one container might be deployed over the lifecycle of
its code (and the utility it provides). The gravity of the legal and privacy situation in
the European Union (and increasingly across the globe) demands that businesses and
individuals maintain tight control over data ingress (data in) and egress (data out)

Seven Best Practices for Securing Containerized Data and Applications | 147

over national boundaries. Defining what and how a container is deployed (the Build
process) is critical to securing a container that may be deployed dozens or hundreds
of times over its history.

The Source-2-Image (S2I) open source framework provides build management and
image security for containerized applications and code. As developer code is built and
committed to a repository (such as Git—a version-control system for tracking
changes) via S2I, a platform such as OpenShift can trigger CI/CD processes to auto‐
matically assemble a new container image using the freshly committed code, deploy
that image for testing, and promote the tested image to full production status.

We strongly recommend that your organization adopts integrating automated secu‐
rity testing and scanning into your CI/CD pipelines as a best practice. Making use of
RESTful APIs allows your business to readily integrate Static Application Security
Testing (SAST) or Dynamic Application Security Testing (DAST) tools like IBM
AppScan or HCL AppScan, among others. Ultimately, this approach of securing the
software build process allows operations teams to manage base images, architects to
manage middleware and software needed by your application layer, and developers to
focus on writing better code.

4. Wrangling Deployments on Clusters
Tools for automated, policy-based deployments can further secure your containers,
beyond the software Build process and into the production Deployment phase. Con‐
sider this in the context of the regulatory compliance and data sovereignty issues we
discussed earlier. If the country or market in which your business operates demands
that data-generating applications or PII records stay within a particular boundary
(some countries and regions have stronger gravitational pull than others, it turns
out), then it is absolutely critical that you have reliable control over how apps and
services are deployed. It becomes doubly important if those deployments depend on
semi or fully automated orchestration engines, or if those applications are easily
portable (such as with containers).

An important concept to Kubernetes orchestration is Security Context Constraints
(SCCs), which define a set of conditions that must be met before a collection of con‐
tainers (sometimes referred to as a “pod” or, in essence, an application) can be
deployed. SCCs were contributed back to the K8s open source project by Red Hat, to
form the basis of K8s “Pod Security Policy,” and are now packaged as part of the
OpenShift Container Platform. By employing SCCs, an administrator can control a
variety of sensitive functions, including running of privileged containers; capabilities
that a running container may request; allowing or denying access to volumes (like
host directories); container user ID; and the SELinux context of the container.

In terms of where containerized applications deploy and how those images are
deployed, OpenShift and IBM Cloud Paks use open source Terraform (recall from

148 | Chapter 7: Data Gravity

Chapter 3 that Terraform is an infrastructure as code software toolchain) for deploy‐
ment to any public or private cloud infrastructure, as well as open source Helm
Charts (a collection of files that describe a related set of K8s resources) for consis‐
tency of operations.

5. Orchestrating Securely
Modern microservices-based applications are made possible in large part because of
orchestration services like K8s, which handles the complexities of deploying multiple
containerized applications across distributed hosts or nodes. However, as is the case
with any large open source project that we’ve ever been involved in across our aggre‐
gated century of IT experience, rolling your own version of Kubernetes is hard to
implement from scratch and rife with challenges. Why do it yourself when you can
adopt a platform with enterprise-hardened Kubernetes orchestration already engi‐
neered at the core of the solution?

One of the key tenets of any successful orchestration platform should be access to col‐
laborative multitenancy between all members of a client’s workforce, while still ensur‐
ing that the self-service access to the environment remains secure. To once again use
OpenShift as an example, the platform was fully architected around K8s in order to
deliver container orchestration, scheduling automation, and containerized applica‐
tion management at the scale and with the rigidity needed by enterprise. That last
point about enterprise is important. Naturally, enterprise organizations are subject to
stringent regulatory and compliance requirements that go above and beyond what
smaller shops may need to adhere to. However, we believe that it is in the interest of
every business (from enterprise, to “ma and pa” brick and mortar) that OpenShift
secures K8s in a multitude of ways over the RYO stock (100% free) edition. For exam‐
ple, OpenShift enterprise hardens K8s in many ways including: all access to master
nodes is handled over Transport Layer Security (TLS); API server access is based on
tokens or X.509; etcd (an open source key-value store database) is no longer exposed
directly to the cluster; and the platform runs on Red Hat–exclusive SELinux to pro‐
vide the kernel-level security that we discussed earlier.

When you think about it, selecting a container orchestration platform (on top of
which will run your data, services, applications, and users) is akin to determining the
center of critical mass for your modern IT estate. It is a center of gravity for your
hybrid multicloud architecture, if you will. This platform will serve as the nexus of
the future investments of your business, the hub for both your workforce and cus‐
tomer base, and naturally will be where data from both of those sources accumulates
and resides. Selection of an orchestration platform with enterprise-certified container
security already built into the Kubernetes layer puts your organization in the best
position moving forward.

Seven Best Practices for Securing Containerized Data and Applications | 149

6. Lockdown: Network Isolation and API Endpoint Security
When working with containerized applications that are deployed across multiple dis‐
tributed hosts or nodes, it becomes critical to secure your network topology. Network
namespaces usually assign a port range and IP address to a collection of containers,
which helps to distinguish and isolate containerized applications (pods) from one
another. By default, pods of different namespaces cannot send or receive data packets
—unless exceptions are otherwise made by the system administrator. This is helpful
for isolating things like dev, test, and pod environments within the same
infrastructure.

A container orchestration platform that uses software-defined networking (SDN) to
provide a unified cluster networking approach to assigning namespaces (for pods)
can simplify this architecture immensely. A platform that is able to control egress
traffic (outbound data moving outside of the cluster) using a router or firewall
method will also allow you to conduct IP whitelisting (explicitly stating which IP
addresses are allowed and denying access to all others), for further network access
control.

Red Hat OpenShift supplies all of these tools that are well known in any best security
practices playbook, as well as numerous other network security measures, in abun‐
dance. Chief amongst the API authentication and authorization services it provides
are Red Hat Single Sign-On (RH-SSO), which provides SAML 2.0 (Security Assertion
Markup Language) and OpenID Connect–based authentication. Furthermore, Web
Single Sign-On and federation services are also available via open source Keycloak.
RH-SSO 7.1 also features client adapters for Red Hat JBoss, a Node.js client adapter,
and integration with LDAP-based directory services. API management tools such as
Red Hat 3scale API Management can also be readily added to OpenShift to provide
API authentication and organization.

7. United Federation of Containerized Applications
Federation is invaluable when deploying and accessing applications that are running
across multiple distributed datacenters or clouds. Kubernetes orchestration supports
and facilitates this in two different ways: federated secrets and federated namespaces:

• Federated secrets automatically create and manage all authentication and author‐
ization “secrets” (sensitive information like API keys that serve as license files,
passwords that get buried in configuration files, and so on) across all clusters
belonging to the federation. The result is a globally consistent and up-to-date
record of authentication secrets across the whole of the cluster.

• Federated namespaces create namespaces in the federation control plane, ensur‐
ing that K8s pods have consistent IP addresses and port ranges assigned to them,
across all federated environments in the cluster.

150 | Chapter 7: Data Gravity

Readying Data for the New Normal
Back in 2010, Dave McCrory (an engineer at GE Digital) coined the term data gravity
in an attempt to describe the natural attraction between data and applications. (In
“millennial speak,” apps swipe right on data every time.) We think that McCrory’s
turn of phrase couldn’t be more apt, coming at the start of a decade where more data
was generated and collected than all previous years of recorded human history
combined.

This trend shows absolutely no signs of wavering in 2021 and beyond. In fact, we
believe that the COVID-19 pandemic only further accelerated the explosion of data
capture—as more and more work moves to remote, digitally-delivered experiences
and processes. Whatever the future holds—from edge computing, to AI, to cloud-
born startups offering you fantastic new ways to post something about anything—it
all means huge growth in enterprise and personal data.

Following the techniques and strategies outlined in this chapter will enable your
organization to overcome many of the challenges associated with data gravity, as we
all grapple with how to adapt to the hybrid multicloud paradigm shift. We’ll say it
again: there’s no changing the laws of physics (not outside of Hollywood, at any rate).
There will inevitably be friction against such changes: the substantial gravity of legacy
and on-premises data will drag performance and time-to-delivery for systems span‐
ning public and hybrid clouds; regulatory and security concerns for newly container‐
ized data and applications will require proactive care to mitigate risks; and even the
culture within your enterprise or business may be slow to adapt to the new ways of
operating in a hybrid multicloud marketplace.

Yet it is our firm conviction that the momentum toward cloud is far greater than the
drag from legacy application services that have yet to be modernized for blended off-
and on-premises ways of doing business. The techniques covered here (and through‐
out the book) can give your organization the boost needed to overcome such friction.
Data gravity will keep us grounded, but it won’t hold us back.

Readying Data for the New Normal | 151

CHAPTER 8

Ecosystem for Automation

Automation, in the scope of technology and its applications for the world of IT, aims
to unburden humans from mundane tasks so that more energy and time can be
focused on higher-value endeavors— much in the way that automation has applied to
other fields and industries. For technology, this can include tasks like business pro‐
cess automation, IT automation, personal applications like home automation, and
more. The goal isn’t to get rid of humans, but to pull them from away from time-
consuming tasks that could otherwise be handled more efficiently and consistently by
a machine. We like to describe the world of automation as having two branches: busi‐
ness automation and IT operational automation.

Whichever branch you’re interested in, there are types of automation you could apply
to either:

Basic automation
Simple, rudimentary tasks are automated by centralizing and removing the fric‐
tion associated with those tasks. Robotic Process Automation (RPA) and Busi‐
ness Process Management (BPM) are good examples, but so too is learning to
manage the deployment of infrastructure, or route service tickets, and more.

Process automation
This type of automation manages business processes for uniformity and trans‐
parency. It is typically handled by dedicated software and business apps. Using
process automation can increase productivity and efficiency within your busi‐
ness. It can also deliver new insights into business challenges and suggest solu‐
tions. Process mining and workflow automation are types of process automation.
From an IT Operations perspective, this automation can build on basic automa‐
tion tasks to pull together multiple tasks: deploying a service, applying software
patches, crafting access control lists, and managing networks.

153

Integration automation
Machines mimic human tasks and repeat the actions defined in rule sets. One
example is the digital worker. In recent years, people have described digital work‐
ers as software robots (the kind you’re likely thinking about) that are trained to
work with humans to perform specific tasks with a specific set of skills. This type
of automation is growing fast across all industries: from agriculture, to warehous‐
ing, to maintenance, to delivery—the way many field workers do their jobs is
going to change drastically in the coming years.

AI automation
This is the most complex level of automation. The addition of AI means that
machines can “learn” and make decisions based on past situations they have
encountered and analyzed. For example, in customer service, cognitive assistants
can reduce costs while empowering both customers and human agents, creating
an optimal customer service experience. On the IT Operations of the house, hav‐
ing access to AI-assisted observability for cloud-native apps is going to become
the standard for modern application performance management.

This chapter is about one of the best process automation-based IT technologies in the
world: Ansible. Organizations are using it to flatten the time to value of repetitive and
complex configuration management tasks, cloud provisioning, software deployment,
intra-service orchestration, and more. But it’s more than that—Ansible bolsters devel‐
opers and operations teams with a standardized approach to IT automation (using a
single skill set) that works across almost any endpoint you can imagine. With Ansible,
teams no longer need to go to every endpoint and install software on every device to
reap the benefits of automation.

Imagine a single skill to configure or patch myriad server architectures across an
enterprise. Is your business loaded up with IBM Z, x86, IBM Power, and 5G end‐
points? Shout it out loud: “Ansible!” Take a single skill and empower organizations to
create consistent deployment processes across the board, which is ultimately going to
save resources for more important tasks like training for niche skill’s, reduce overall
management costs (the endpoint example above), and free up IT to pursue higher
value projects.

Red Hat’s strategic acquisition of Ansible in 2015 would become a cornerstone in the
company’s OpenShift Container Platform (OCP). It speaks to Red Hat’s commitment
to open source technologies at the core of everything that they do. But it also demon‐
strates the company’s foresight in recognizing industry trends toward hybrid multi‐
cloud environments. In hindsight we can say that Red Hat’s gamble on automation
paid off handsomely, but what brought the company to see the value in the Ansible
technology?

One intractable problem for taking any project and delivering it at scale is how to
manage, maintain, and continue growing once the efforts of your labor start to take

154 | Chapter 8: Ecosystem for Automation

off. Silicon Valley may have started in suburban garages in the South Bay, but clearly
it doesn’t operate that way today. Technologists have been solving the problems of
scale for decades—and in many ways, cloud (the capability) is the most successful
expression of overcoming the challenges of scale to date. We call the solution to chal‐
lenges of scale automation.

If automation is old hat at this point, then why dedicate an entire chapter to it? And
more importantly, why did Red Hat make such a gamble on it in 2015 by making it a
key cornerstone of their flagship platform as a service? After all, doesn’t Kubernetes
and orchestration solve many of these challenges already?

Advancements in technology are always incremental (sometimes by leaps, but consis‐
tently on an upward climb), and through stubbornness or necessity we find better
ways of accomplishing old tasks. For cloud—and hybrid multicloud in particular,
where you’re working across different vendors at mind-boggling scale and across
entirely different premises from the four walls of your own business—automation
represents one of those leaps (you might even call it one giant leap) forward.

In acquiring Ansible, Red Hat gained a formidable tool for performing orchestration
across vendors and across premises. Orchestration—now there’s another word we’ve
seen a lot of before. “Hold on,” you might ask, “so is Ansible just another alternative
to K8s?” And the honest answer is that both technologies are in fact looking to solve
challenges of scale through automation; however, the key distinction between the two
is in how they do so and in the particular domains that they apply automation toward.

We’ve already seen throughout this book the ways in which Kubernetes performs
orchestration (the how) of containerized applications and microservices (the
domains in which it commonly operates) for hybrid multicloud environments.
Sounds a lot like automation—and it is! But while Kubernetes is geared toward auto‐
mation (orchestration) of containers and microservices across distributed systems,
Ansible is principally concerned with the automation of the environments (physical
infrastructure or cloud-based servers) that those microservices and containers run
upon.

Kubernetes and Ansible, therefore, are complementary means to an end: an end to
the challenges of scale, made ready for the era of hybrid multicloud architectures.
This was a key motivation behind Red Hat’s investment into Ansible (placing it near
to the core of their Kubernetes-based orchestration platform) and is likewise why
Ansible has such tremendous adoption within the marketplace today.

Automation of nearly any infrastructure endpoint with minimal amounts of code has
immense practical value to a world increasingly dependent on clouds operated by dif‐
ferent vendors, in varying countries, across multiple premises. Furthermore, these
automation capabilities translate to a number of benefits for you and your business:
reduced storage and resource burden placed on the machines to be automated; a

Ecosystem for Automation | 155

much smaller footprint on these endpoints that could be hacked or exploited by mali‐
cious users; and most importantly, a greatly simplified approach to automation. Like‐
wise, as environments change and operating systems advance over time, the
automation jobs Ansible is running can be easily modified in lockstep as well. Adapt‐
ability and extensibility are key ingredients in the longevity of any technology—and
fortunately the automation tooling for the hybrid multicloud era has those in abun‐
dance.

Ansible aims to commodify the automation of everything else that applications, serv‐
ices, and containers need to run upon: infrastructure provisioning, server deploy‐
ments, IoT edge devices, script execution, and lots of other things that operations
teams spend their time doing to “keep the lights on.” It makes automation available to
everyone with the lightest touch of human-readable, undaunting snippets of code.
More importantly to us, it makes automation of nearly everything needed to deliver
the capabilities of the cloud possible, regardless of the destination.

Rethinking Automation for the As-a-Service Era
Ansible doesn’t exist in a vacuum, of course. As we mentioned earlier, the challenges
of automation have been a known problem for decades. That said, it’s far from being a
“solved” problem. Fifteen years ago, open source technologies like Puppet and Chef
appeared in the marketplace to tackle these challenges—although with a far different
philosophy and approach toward automation than more modern tools like Ansible,
which will become more apparent as we dissect the technology. All three stacks (and
others not mentioned here) are in heavy rotation throughout the industry today. If
you’ve ever dabbled in some level of automation at any large IT shop, it’s very likely
you’ve worked with (or taken advantage of the work done by) one of these solutions.

As we dig into each more deeply, it’ll become apparent that none of these options are
inherently flawed or the wrong place to start; rather, we expect you’ll see that each has
its niche part to play. But ultimately each solution is a byproduct of the era for which
they were built (from the days of cloud as a destination, to the age of cloud as a
capability).

One particular quality to call out regarding precursor technologies like Puppet and
Chef, compared to alternatives like Ansible, is their congruency (or lack thereof) to
modern-day approaches to cloud. Fifteen years ago, nascent cloud was very much
designed for and architected around as a destination. The notion of cloud as an as-a-
service set of capabilities, understandably, hadn’t entered the lexicon—and this is very
much reflected in the design decisions that technologies like Puppet and Chef made
toward automation of cloud endpoints and infrastructure. This is a repeating prob‐
lem for lots of software as enterprises move to cloud-native. For example, most ven‐
dors in the Application Performance Management (APM) space provide monitoring

156 | Chapter 8: Ecosystem for Automation

tools built with the “cloud as a destination” philosophy in mind and they struggle
enormously trying to observe loosely coupled applications built cloud native.

When we say that Ansible adheres to our vision of cloud (the capability, not the desti‐
nation), we really mean it. Ansible is an “agentless” architecture, so there’s nothing
unique that needs to be running on any endpoints for Ansible to start managing
them. This means that there is much less of a footprint required on the machines that
are to be managed, compared to alternative approaches. That’s how Ansible delivers
automation to nearly any endpoint, regardless of where that target (destination) hap‐
pens to be.

Puppet and Chef, alternatively, use agents to invoke automation on their endpoints. A
key difference between these technologies and cloud-centric ones such as Ansible is
the need for Puppet and Chef to pre-install libraries of code on the endpoints (the
machines) that are to be automated. This is a decidedly more heavyweight and less
agile approach to take, but it makes sense in light of the times in which Puppet and
Chef came to prominence: when cloud was viewed as a destination and configuration
management of these endpoints was the priority.

Fast forward to the present day—while configuration management is still a key facet
of cloud administration, the advent of fully managed cloud services has greatly
reduced the managerial burden placed on IT. Instead, those looking to tap into the
capabilities of cloud are less concerned with managing their resources and more
focused on ensuring that those capabilities are available in the premises where they’re
needed most (as soon as they’re needed). Being able to rapidly provision and deploy
those capabilities via automation to any cloud or premises as needed has been a key
driver in Ansible’s success over Chef or Puppet.

From an in-house IT culture perspective, you can draw similar distinctions between
the three technologies as well. Requiring agents to be installed and managed ahead of
time on automation endpoints has repercussions on how your organization executes
on its automation ambitions. In a nutshell, it increases the operational burden on
your team. As your inventory of automated endpoints grows, so too must your Pup‐
pet or Chef administrator team grow with it—and so too does the complexity and
interdependencies of the code used to manage those automation tasks and agents.
Following an agent-driven approach to automation also dampens your team’s agility:
resources cannot be automated unless they are configured and accessible ahead of
time, which doesn’t always play nicely in a world where cloud infrastructure and serv‐
ices are often deployed on an ad hoc basis. Getting “access” to endpoints (to install
the agents and perform the management) can be problematic as well, particularly
with so many cloud-based vendors moving to fully managed (in other words—fully
out of your hands) services and delivery models.

Terraform is another entrant into the modern automation space, geared specifically
toward providing “infrastructure as code” technology using a declarative style very

Rethinking Automation for the As-a-Service Era | 157

reminiscent of what Ansible uses. Terraform will take instructions from an adminis‐
trator (for some state or result an administrator wants to achieve) and interpret the
most efficient way to realize that state, without burdening the administrator with the
complexities of how exactly to bring it about.

The “infrastructure as code” distinction is an interesting one, particularly in light of
how we have positioned Ansible for you as an “everything as code” solution for pro‐
viding the infrastructure, servers, and management needed to run today’s orchestra‐
ted containers and microservices. Can’t Ansible do the same? And the reality is that
yes, both technologies (Ansible and Terraform) have the potential to automate infra‐
structure with code. As we said early on, adaptability and extensibility are the keys to
the longevity of open source technologies—Terraform represents yet another branch
in the evolutionary tree of tools built toward solving the challenges of scale, with a
particular emphasis placed on automation of infrastructure. We don’t see these as
competitors, per se; rather they are fit-for-purpose tools that can often be used in
conjunction with one another for delivering well-honed cloud capabilities. We’ll
explore examples of how Ansible and Terraform can be used together later in this
chapter.

An expression we’ve run across in the marketplace is that if you need to perform
automation of configuration management, choose Chef or Puppet; if you need
automation of infrastructure provisioning, choose Terraform; and if you need auto‐
mation of both—to make automation of everything as code—then choose Ansible.

IBM and Red Hat (and even some of the authors of this book) have done configura‐
tion management using scripting for a very long time. The problem with this
approach is that scripts only work for a specific situation that’s been defined or fore‐
seen ahead of time. Move beyond those parameters, however, and things rapidly
begin to cascade and fall apart. So how does Ansible’s approach to automation differ
from a do-it-yourself approach that we (and perhaps many of you) have followed
until now? After all, automation isn’t a new technology or concept, so why is this lat‐
est generation an improvement over those that have come before?

In general, Ansible is an open source IT configuration management, deployment, and
orchestration tool. It delivers productivity gains via automation, to enable faster time-
to-market for IT projects with predictable and consistent deployments. Ansible sup‐
ports the orchestration of multitier workloads—including infrastructure, networking,
operating systems, applications, and services—across hundreds (or even thousands)
of nodes. Ansible’s automation makes use of “Yet Another Markup Language”
(YAML), with automation tasks written in easy-to-understand “Playbooks” that allow
your entire organization to benefit from automation. Developers, lines-of-business
professionals, and system administrators can have an equal and powerful part to play
in building and maintaining powerful automation processes within your business
using Ansible.

158 | Chapter 8: Ecosystem for Automation

Hardcoded automation scripts may do great work, but they’re difficult to maintain
and even more challenging to adapt further. Very often, teams will be forced to aban‐
don legacy automation scripts and write new ones altogether—as adapting older
scripts might simply be unfeasible. Ansible upends that concept. When you write an
Ansible Playbook, you’re not writing a script. You’re instead defining an end state of
how you want the world (your IT landscape) to look after Ansible has put in the work
—through automation—to bring about those changes. Your expectation, as an
administrator and user, is that Ansible understands how to reach this end state
without needing to be explicitly told (in all the gory detail) how to do so.

Ansible, therefore, gives its automation engine a lot of flexibility and room to maneu‐
ver in determining how best to execute the instructions given by the administrator.
What is important to understand, however, is that the ordering of the instructions
(complete task A before moving to B and later C) will be executed in exactly the order
they’re written. This approach contrasts sharply with alternatives like Chef and Pup‐
pet, where the execution order of jobs as written is not necessarily the order in which
the automation will be carried out. Chef and Puppet automation scripts won’t always
begin from the same start state each time and it’s possible that, on repeat runs of the
same job, they may not arrive at the same end state either.

Essentially, this is configuration management applied to the management of IT
estates. Instead of having a hardcoded script that instructs exactly how to move from
task A to task B, you’re creating a Playbook that lays out the expected end state and
asks Ansible to figure out the delta between the current and end state. But critically,
Ansible will not move on to task B until all of the conditions required by task A have
been satisfied. This has two profound implications for Ansible clients. First, it
removes any ambiguity from the automation process (Ansible will execute your
instructions in exactly the order you’ve assigned). Second, it places the burden of
deciding how to achieve the end states of tasks A and B on the automation engine
itself, rather than requiring the user to explicitly define all the gory details themselves.

Automation with Ansible becomes a matter of simply defining the state of the world
you want to achieve and the steps to get there, then leaving the heavy-lifting and
complexities of how that state is achieved up to the automation engine.

More Agency with Agentless Design
Ansible’s “agentless” design is ideal for high security or high performance environ‐
ments alike. Agentless tools operate via a “push” model, meaning that no software or
tooling is required to be installed on the remote machines that Ansible interacts with.
Instead, all communication and management is handled remotely over SSH (Secure
Shell for Linux and UNIX) or WinRM (Windows Remote Management). Further‐
more, this agentless design can also be leveraged in an IBM Z (mainframe) environ‐
ment. By utilizing an interface known as Zowe CLI to remotely execute tasks on

More Agency with Agentless Design | 159

z/OS, mainframe administrators can apply the same automation across heterogene‐
ous environments. This also means that no resources are consumed or abused unnec‐
essarily on managed machines, as Ansible has no software bloating the target
systems; likewise, no background processes are being run when Ansible tasks are not
being executed on those machines. Remote management frameworks like SSH and
WinRM already exist natively on their respective operating system platform, and pro‐
vide a secured means of communication between Ansible and the infrastructure it is
automating. You, as the end user, are simply leveraging the capabilities and resources
that are already a part of your IT estate to further amplify the value of your business
services with automation.

What does “agentless” design mean in practical terms? On the infrastructure that is to
be automated and managed, no administrator access is required, and no dedicated
users need to be created in reserve ahead of time for Ansible. Ansible can leverage
any user credentials already set up to work with the targeted infrastructure. Ansible
uses the credentials that the user (or application) supplies, and with those credentials
set it will “push” the desired instructions to the target infrastructure. Furthermore,
machines that Ansible is automating cannot see or affect how other machines are
configured; they are only interacting directly with Ansible itself. This greatly reduces
the risk of a jeopardized machine being able to hijack or eavesdrop on other
machines in the cluster.

Granted, having a serialized order of tasks defined within a Playbook may sound like
a procedural (or even imperative) style of programming; however, the nuance with
Ansible’s declarative approach is in the way those sequential statements are inter‐
preted and executed by the Automation Engine. “Imperative” paradigms are much
more explicit and literal, but harder to scale and automate. Let’s consider a scenario
where you require a service to be up and running. A declarative approach would be
to tell OpenShift that “Service X” should be in a state of “running.” When you con‐
sider what it means for a service to be running, you realize that this encompasses
quite a lot: if the service has yet to initialize, it must first be launched; if it is already
launched and running, then it must be maintained and kept stable; and so on. With
the declarative approach of OpenShift and Ansible, an administrator does not need to
explain to the system explicitly what all of these duties are or how they should be car‐
ried out. An administrator simply expresses a desired state (“Service X should be run‐
ning”) with a minimal number of commands, and the packaged Module and implicit
understanding within Ansible sees to it that this desired state is achieved.

Alternatively, with an “imperative” approach, an administrator would start up Service
X by hand—but of course, this only satisfies one objective. It does not account for the
ongoing maintenance of the service’s lifecycle, for example. We’re sure you can
appreciate just how quickly this manual process can become unsustainable at scale;
imagine if Service X needs to be launched repeatedly hundreds of times across thou‐
sands of hosts!

160 | Chapter 8: Ecosystem for Automation

Consider Figure 8-1, which illustrates the diversity of roles that participate through
the lifecycle of an automated process for provisioning servers. In this example, a sys‐
tem administrator can simply author an Ansible Playbook with a full set of instruc‐
tions on how to create, patch, secure, and deploy some infrastructure. Using Ansible
Playbooks to configure the broad automation strokes (and leaving the gory details to
Ansible Automation Engine to figure out) can dramatically cut down on the com‐
plexity of setting up these jobs for the administrator.

Ready-to-go configurations of OpenShift (for nearly any customer use case or work‐
load) are readily available from open communities supported by Red Hat, so admin‐
istrators may not even be required to write a Playbook themselves—it may very well
be as simple as choosing the Playbook configuration appropriate for their organiza‐
tion, and then leaving the rest (in a declarative paradigm fashion) up to Ansible
Automation Engine. The heavy lifting is carried out by Ansible, but there is plenty of
opportunity along the way to incorporate other members from the organization into
the lifecycle.

Figure 8-1. The lifecycle for provisioning and deploying infrastructure through automa‐
tion with Ansible Playbooks

From a user’s perspective, the emergence of declarative systems for performing auto‐
mation have reduced operational oversight, complexity, and costs significantly. Pro‐
cesses become more scalable, instructions are carried out in more consistent ways,
and ongoing tasks become more resilient to failure.

More Agency with Agentless Design | 161

What’s the Play? Architecting for Automation
Ansible Playbooks are the means by which users interact with Ansible to create and
manage automation tasks that the service is to carry out. Playbooks (as we men‐
tioned) are defined in YAML files, which have a number of advantages to other auto‐
mation languages available in the marketplace. YAML files are easy to read by both
humans and machines, with automation instructions for all the endpoints that Ansi‐
ble can work with—infrastructure, services, users, and so on—clearly expressed with
an explicit order of operations. This nontechnical, unambiguous way of creating
automation tasks reflects the declarative approach to automation that we described
earlier: a clear set of instructions on the state of the world the administrator wants to
achieve, and the instructions for Ansible on how to reach this goal.

Your developers and administrators first translate your business procedures into
Playbooks, and then apply those Playbooks to specific devices. Playbooks understand
and know how to maintain a number of different devices. Many vendors in the mar‐
ketplace have signed on to the Ansible way of working—helped quite a bit in part by
being a core part of the Red Hat ecosystem, meaning that the technology has
immense support within the community.

Playbooks ensure that dependencies only need to be declared once and managed cen‐
trally within the YAML file. Furthermore, these Playbooks are executed sequentially
from top to bottom (the explicit order of operations we mentioned earlier), ensuring
that no dependency is missed. Before acquiring the next item or executing the next
instruction in the YAML Playbook, the Ansible Automation Engine requires that all
previous instructions have completed successfully. (It’s like taking money out of an
ATM...it either came out or it didn’t. In the tech world, this concept is referred to as
atomicity; you’ll hear it a lot in the database world, but it’s applicable here too). If an
operation fails, Ansible will retry it; fail at this task too many times, and Ansible can
be made to “fail gracefully,” terminating the automation task altogether and prevent‐
ing any botched (or potentially dangerous) work from being applied to the automa‐
tion targets.

We’ve discussed at length so far how Ansible commodifies the automation of every‐
thing—infrastructure, applications, and code—to make automation ubiquitous across
the enterprise. If you ask businesses where they are leveraging Ansible and automa‐
tion today, the answer you’ll often get back is “everywhere and anywhere.” For some
organizations, they’re looking to streamline and modernize their existing on-
premises investments with automation; others may be looking to do the same, only
with born-on-the-cloud ventures.

162 | Chapter 8: Ecosystem for Automation

Streamlined Automation for the Hybrid Multicloud Era
By now, you have a firm grasp on how a declarative approach to automation works,
but what do those capabilities actually translate into for IT teams? After all, it seems
like we’re placing a lot of trust into automation engines to interpret our automation
tasks and pull them off in the best possible way. Is that really the best way to go about
provisioning and configuring an enterprise-grade cloud?

Let’s consider this question from several angles: how a declarative approach to auto‐
mation fits the multicloud paradigm of working with multiple vendors; how declara‐
tive systems work (or don’t) at scale; and how declarative systems might keep your
developer’s heads above water (and not drowning in minutiae).

Automation for Multivendor Stacks
Kelsey Hightower (one of the most prominent and respected faces in cloud comput‐
ing and open source software—famous for his guru knowledge of Kubernetes), has
nevertheless voiced caution about assuming open technologies are immune to vendor
lock-in. In 2020 he posited on Twitter that “even open source can actually put you in
a situation where you get locked out of moving forward, because you’ve decided to go
too far deep into the thing you have, even if it is free and open source.” The takeaway
we should all glean (and what we’ve seen firsthand examples of in practice during our
years spent working with clients) is that expanding the scope of technologies—and
the vendors supporting those technologies—that your organization depends on can
significantly reduce your risk of lock-in. Think of it in the same way that you would
plan your financial market investments: the more diversified your portfolio (software
stack), the less likely your success will be hemmed (locked) in by any one part of the
portfolio turning sour (switching to a proprietary model, losing support of key con‐
tributors, and so on.)

Sounds great, but as we’ve talked about earlier in this book, not all open source
projects adhere to the same open standards—and likewise not all vendors (on the
cloud or elsewhere) are as easy to work with as others. On one hand, that lack of
homogeneity is a good thing for the industry: it prevents the type of lock-in that
Hightower is cautioning against, by supporting a healthy array of alternative provid‐
ers, APIs, and licensing models instead of one all-encompassing hegemony. But on
the other hand, that wealth of vendor options can be incredibly challenging to
develop across and align your business services to work with. The more vendors you
work with, the more interfaces (proprietary or open) there are to design around, and
the more complex the solution ultimately becomes.

Building consistent, repeatable patterns for working with hybrid on-premises and off-
premises, multivendor collections of services is the perfect fit for automation. We’ve
discussed the “philosophy” behind agentless architectures and human-readable

Streamlined Automation for the Hybrid Multicloud Era | 163

https://oreil.ly/AMTw8

automation “scripting,” but how do these things translate into more effective tooling
for working across multiple vendors and premises?

Agentless architectures, such as Ansible, radically simplify the calculus you need to
make in deciding which vendors your automation needs to support. No additional
installation or configuration is required on the managed endpoints—which, if those
endpoints are coming from a public cloud vendor, are likely being deployed and
maintained outside of the four walls of your own business—meaning the up-front
work you need to perform to automate those endpoints is significantly less. The only
question you need to ask yourself (and the vendor in question) is: does your service
support SSH or WinRM? If the answer is yes: superb! Agentless automation services
such as Ansible can readily support it.

Up next is the question of how your business goes about patterning ways for your
automation architecture to perform work on those hybrid multicloud vendors. Once
again, technologies such as Ansible make this process far less daunting than it might
first sound. The automation tasks to be carried out on some collection of public cloud
services or infrastructure (the set of hosts defined in the Inventory manifest) are
organized into a series of Plays within a YAML-based Playbook.

Take a look at Figure 8-2, which illustrates how a Playbook—one which is easily
parsed and understood by nontechnical users and machines alike—establishes con‐
nectivity across multiple endpoints and vendors. Without much explanation at all,
you can understand how the Playbook defines an application (Apache httpd) that is
to be deployed across endpoints (webservers) via automation. The “Plays” within the
Playbook consist of one (or many) “tasks” that target some (or all) of the Inventory
hosts that you wish this automation performed on. “Tasks” supply the intent (the
declarative instructions) for what Ansible is to do: simple “tasks” might include
installing a software package on a host machine; updating a configuration file; or
more complicated work like spinning up an entire set of infrastructure from your
approved hybrid cloud vendor.

164 | Chapter 8: Ecosystem for Automation

Figure 8-2. The configuration of a YAML Playbook is remarkably simple and intention‐
ally designed to be easily readable for both machines and humans

The sample YAML file in Figure 8-2 defines three tasks called yum, template, and
service (denoted on lines 11, 16, and 23, respectively)—with a brief name descrip‐
tion/pointer and a series of variables encapsulated within each respective task. Take
note of the restart apache instruction on line 20: this instruction is part of the
“template” task’s definition, which will invoke the restart apache service handler
(definition beginning on line 28). This demonstrates how you can easily chain multi‐
ple tasks and services together to craft more complex and nuanced automation Play‐
books. Consider the benefits this has to the scenario we described earlier about
designing consistent, repeatable patterns for automating across multiple premises and
vendors.

Streamlined Automation for the Hybrid Multicloud Era | 165

Critically, the explicit instructions defined in a Playbook are easily read (and the logic
contained therein easily followed) by nontechnical and technical professionals alike.
This is an important distinction of Ansible that differs from other attempts at auto‐
mation and orchestration software—which often require a high degree of technical
know-how to understand and work with. Ansible’s straightforward and nontechnical
approach to defining even complex automation tasks is core to its popularity and is
why Ansible’s automation has become a ubiquitous and powerful tool in today’s IT
arsenal.

Another key component in Ansible’s architecture are Modules. Think of a Module
like you would an API or any kind of abstraction—a complex set of instructions,
encapsulated within a function that you can invoke with a single (simple) command.
Modules allow you to easily achieve some desired state that you want Ansible to auto‐
mate; furthermore, the conditions of the desired end state are codified within the
Module, such that it is able to achieve and verify that the desired state is reached,
without needing further instructions or input from the user on how to do this.

Think of Modules as a preconfigured, ready-to-go method for rapidly plugging into
some of the most popular cloud vendors and hybrid (on and off) premises in the
marketplace today. Essentially, having access to these tools mitigates (or even elimi‐
nates altogether) the up-front work your business needs to do when configuring
automation to work with a hybrid multicloud IT estate. Today, Ansible supports an
ever-growing collection of 450+ Modules for complex and simple tasks alike, includ‐
ing configuration management, device networking managers, and deployment of
infrastructure specific to any of the major cloud vendors. If a Module exists for a ven‐
dor or cloud that your business needs to pattern automation for, it’s very likely you’ll
need to do only a little (or even no) configuration before you can immediately start
taking advantage of those endpoints.

There is a plethora of packaged Modules for Ansible users to explore out of the box,
but for those of us who still need to craft bespoke automation tasks, the process of
modifying and extending Modules is relatively trivial. Modules can be adapted and
written in Python, PowerShell, or any other language that can accept JavaScript
Object Notation (JSON) documents as input (and likewise are able to produce JSON
documents as output)—the only caveats that Ansible places on modifying its
Modules.

For example: your business may wish to change default behaviors within Ansible—
such as how it handles callbacks, connections, or lookup operations—by writing new
plug-ins to modify runtime behavior. Alternatively, you may want an available infra‐
structure (host nodes and so on) from a public cloud vendor to be discoverable at
runtime, rather than statically defined ahead of time, thereby enabling a “dynamic
inventory” via scripting. The script is run at the time that you execute a particular
Playbook—essentially, at runtime. Instead of working against a static (and therefore

166 | Chapter 8: Ecosystem for Automation

possibly out of date) inventory list, Ansible’s dynamic inventory script will retrieve
the available servers and endpoint hosts that exist at the time the script is run.

You may notice a pattern beginning to emerge. Agentless automation technologies
like Ansible make the process of defining automation tasks for essentially any cloud
vendor simple (if it supports SSH or WinRM, it works) and packages these jobs into
Playbooks. If a Playbook contains multiple “tasks” that together achieve some singu‐
lar goal or purpose, you may want to group these tasks into a single reusable unit: for
example, a string of “tasks” might provision infrastructure for separate development,
test, and production clusters from a cloud vendor. Patterns for automating endpoints
from these vendors can be codified into Modules, supported by Red Hat and the
Ansible community at large. And finally, collections of Playbooks (invoking pub‐
lished Modules or custom Modules that your business has tailored for itself) can be
shared; these collections or recipes of Playbook “tasks” are known commonly as Ansi‐
ble Roles. In other words, a Role is a blueprint of “tasks” frequently used together to
achieve some goal that you want to make repeatable or shareable with others. Roles
are frequently published on the Ansible Galaxy community site. Via communities
such as Galaxy, thousands of Roles are available for Ansible users to use within their
own Playbooks.

Collectively, these Playbooks, Modules, and Roles form a comprehensive ecosystem
of business and community-driven support for patterning automation to work with
the broadest range of vendors, technologies, and clouds.

Automation for Cloud-Scale Deployments
As so much of this book is dedicated to the hybrid multicloud reality of a modernized
marketplace, let’s take a pause for a moment to examine where else the economies of
scale and simplification of management that automation (and the “everything as
code” philosophy) might also be applied: mainly, virtual private clouds (VPCs).

A VPC is a public cloud capability that provides you the ability to find and control
isolated cloud networks, and then afterwards deploy resources into those networks.
Your experience with how you go about defining and deploying a VPC, however, can
be wildly different depending on the approach you take. Let’s examine how to create a
private cloud (using public cloud infrastructure) using the two most common
approaches—traditional and virtualized cloud networking—to see how your mileage
may vary.

How have organizations traditionally deployed networks into a standard public cloud
infrastructure? A network administrator would often start by first defining a “back‐
bone” to carry all of the network traffic in that cloud. There will be some segmenta‐
tion in that backbone to create separation between clients, separation between
different applications for the same client, and so on.

Streamlined Automation for the Hybrid Multicloud Era | 167

https://galaxy.ansible.com

Once segmentation is defined, a network function is needed—called a router—for
communication between those segments. This creates the ability to decide where traf‐
fic is permitted (and not permitted) to flow between segments via the router. This fil‐
tering on the segment traffic is called a firewall function.

Now that the cloud has been isolated across different segments and is regulated inter‐
nally by firewalls, it needs connectivity to the broader internet at large. To do this,
you’ll require another network function called Network Address Translation (NAT).
NAT is an important feature of gateway (dual home and screened subnet) firewalls.
They ensure that private network IP addresses are not advertised to external net‐
works. The NAT is responsible for translation of internal (private) addresses to exter‐
nal (public) addresses. In addition, you likely have applications in the public cloud
you’re defining (or will in the future) that need to be able to transfer data from your
on-premises enterprise systems to off-premises systems in the public cloud. To do so,
you’ll build a virtual private network (VPN) function to create a secure tunnel
between the enterprise and the public cloud endpoints.

With traditional public cloud networking, almost all of the public network functions
we’ve been describing so far are often accomplished using appliances. These applian‐
ces require infrastructure and network administrators to log in to them (using pro‐
prietary interfaces) to define all of the flows, functions, and controls we’ve mentioned
thus far. It’s granular and often mundane work that is difficult to scale.

The difference with virtualized cloud networking is that all of the same capabilities
you would receive with a traditional public cloud are—with the virtualized approach
—delivered via an as-a-service model. Virtual cloud networking allows users to create
the functions, define segmentations, and utilize all of the other components we
described thus far—but instead via a user interface (UI), command-line interface
(CLI), or API. Operational teams can say “We want 4 of these networks, and we want
to define our own custom segmentation for applications A and B, with connectivity
to the enterprise through a VPN and connectivity to the internet with a ready-to-
provision service (instead of needing to define the NAT ourselves).”

Teams get an equivalent level of control as with the traditional approach, but without
needing to know the proprietary networking interfaces of legacy appliances in order
to make these connections or meticulously define the flows across the network. This
approach sounds very much like the declarative paradigm to automation that we dis‐
cussed at length before, doesn’t it? Administrators retain control over how connectiv‐
ity across the network is architected and defined, but the gory details of
implementation (like the APIs, protocols, and pathways specific to any one vendor’s
cloud) are offloaded by the automation built into the virtualized cloud network.

Having defined the general idea for how a virtual cloud network is defined, you can
begin to see the advantages it has for VPC networks as well. VPCs make so much
more automation available to any team: defining segmentations, deploying routers,

168 | Chapter 8: Ecosystem for Automation

establishing firewalls, creation of VPNs, nearly any task that you can think of is acces‐
sible through some degree of automation. Furthermore, because VPC networks have
built-in isolation—where these components are discretely isolated from one another
until an adminstrator allows them to communicate with one another—your organiza‐
tion also gets tremendous security benefits over public cloud networks.

Since virtual private cloud networks bypass the need for appliances and it’s all deliv‐
ered via the capabilities of the cloud, it can be done at scale. It’s also customizable to
your needs as a developer and flexible enough to change the scope of your capabilities
(or size of your deployment) later on down the road. In other words, a virtual private
cloud allows developers to become more agile in the ways that they work—all because
of the “everything as code” and “as-a-service” delivery model of hybrid multicloud
vendors.

Automation for Stress-Free DevOps
Earlier we asked whether automation was the best way to go about running an
enterprise-grade cloud for today’s multivendor, hybrid premises marketplace. By now,
you have a firm grasp on how a declarative and agentless approach to automation can
streamline development when working across multiple vendors, as well as how it can
simplify provisioning of resources for even the most complex of private cloud net‐
works. But can it also benefit the workforce? After all, it is the teams of DevOps, engi‐
neers, and developers within your organization that will actually be putting hands to
keyboard and working with these automated cloud environments. How does automa‐
tion benefit them?

At this point, you’re armed to the teeth with automation concepts and the technolo‐
gies underlying tools like Ansible. But what are some ways that you can apply Ansible
toward solving (or at least mitigating) some of today’s cloud DevOps responsibilities?
One prime example of how tools like Ansible can solve (or at the very least mitigate)
some of today’s cloud DevOps complexities is illustrated in Figure 8-3.

Imagine a team managing and performing work on 300 different servers across a mix
of different processor architectures (such as deploying a common application across
each of those servers), it’s wiser to stagger the deployments over a few servers at a
time rather than perform all 300 jobs in parallel. That might seem obvious to a devel‐
oper or engineer with years of expertise, but to the layman trying to cobble together
an automation task from scratch, that foresight might be missing. Configure the job
incorrectly and your 300-server environment may come grinding to a halt as it strug‐
gles to cope with executing the request. Approaching the same problem (deploying
the same application across 300 servers) with Ansible is markedly different. A devel‐
oper tells Ansible the following: “Here’s a list of machines that you’re going to work
on, but I’ll leave it to you [Ansible] to decide the most efficient and safe way to per‐
form this work.” That’s it! (That’s not actually it—there are minimal amounts of

Streamlined Automation for the Hybrid Multicloud Era | 169

scripting inside the YAML file to define the endpoints to be managed, instructions on
how to access and deploy the application, and so on—but the net effect is the same.)

Traditionally, network provisioning and configuration have been handled by a com‐
pletely separate team from the group of IT specialists that manage infrastructure pro‐
visioning. Furthermore, very few traditional IT automation tools offer a networking
automation capability at all! Using Ansible, the team responsible for automating
infrastructure provisioning can also provide networking automation using the same
tooling. Ansible customers today are often using Playbooks to automate networking
with major vendors such as Cisco, Juniper, Hewlett Packard Enterprise (HPE), IBM,
and Cumulus, among others.

Figure 8-3. Configurations for network switching and VLAN (virtualized local area net‐
work) setup for new services, as an example, can be codified in just a few simple tasks
within an Ansible Playbook

Another popular use case for Ansible is automation of cloud (public or private) and
infrastructure provisioning. The Playbooks, Modules, and Roles we described earlier
in this chapter can be rapidly configured to perform automation against public and
private cloud endpoints, agnostic to any particular vendor. The extensibility of these
structures allows tools like Ansible to work uniformly with IBM Cloud, Amazon Web
Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), Rackspace,
VMware, and OpenStack—simply select the vendor that best fits the strategic goals of
your business. Provisioning can encompass nearly everything your organization
might have to ordinarily go about instantiating by hand: compute, storage, network‐
ing, and more. As the provisioning process is automated and programmable, you can
ensure that the current provisioning request—as well as all subsequent requests made

170 | Chapter 8: Ecosystem for Automation

via the Playbook you crafted—will be handled by Ansible predictably and consis‐
tently, every time.

Let’s take a moment to think about how clients can automate patching of an IBM AIX
cluster of servers using Ansible Automation Engine (Figure 8-4). There are two fun‐
damental units in any Ansible deployment: the Ansible “Controller” (running Ansible
Automation Engine) and Ansible “Clients” (the host nodes of the Inventory). Con‐
trollers follow Playbook instructions and invoke Modules to configure and effect the
desired end state on the client node Inventory. All clients are “agentless”—with no
special software or libraries installed locally on the nodes—and therefore all configu‐
ration changes made by the Controller are passed via a Secure Shell (SSH) connection
to and from Clients.

Figure 8-4. Ansible automates patching of an IBM AIX environment, ensuring the NIM
Master is at least the same versioning level (or higher) as the cluster of NIM Clients

In this architecture, the NIM (Network Installation Manager) Master must have
access to the public internet in order to download fixes and updates through
HTTPs/FTP protocols from an IBM Fix Server. In terms of operating system (OS)
version and patching level, the NIM Master must be at least the same versioning level
(or higher) as the NIM Clients. The Clients themselves can each be running different
release AIX OS versions. The NIM Master simultaneously monitors all of these Client
nodes for updates (pending or already applied); logic conditions can be crafted to
enforce versioning on all of these nodes, or likewise a Playbook could be authored to
instruct the Controller node to coordinate consistent and uniform patching across all
of the Client nodes via the NIM Master.

Streamlined Automation for the Hybrid Multicloud Era | 171

Automation Everywhere and for All
Innovative technologies, while powerful in their delivery and expansive in the scope
of tasks they can accomplish, can often feel like they’re getting in the way: they may
initially feel too complex, too new, or too cumbersome to be worthy of the initial
investment of time and resources needed to adapt to the new way of doing things. In
time, of course, early adopters are able to move past those growing pains and realize
the true value of these technologies—but along the way, many are too offput by the
up-front discomfort to carry through the adoption to the end, or even to begin in the
first place.

Automation holds immense potential for virtually every industry and business pre‐
cisely because it reduces those complexities and erodes that sharp adoption cost curve
into a gentle climb. Even the IT world’s most complex administrative tasks—orches‐
tration of multitier workloads that include infrastructure, networking, operating sys‐
tems, applications, and services—can be transformed into consistent, repeatable
patterns through automation.

Red Hat Ansible itself simplifies adoption of automation even further by enabling
nearly every facet of the business, not merely those with deep technical skills, to build
and execute automation tasks of their own. Lines of business, analysts, knowledge
workers, and of course developers can each benefit (and amplify their output) by tap‐
ping into the capabilities that these automation engines provide.

All of this is enabled by a framework for automation that takes in the user’s desired
end state (reflecting how they want their IT estate to look), and then leaves the deter‐
mination for how to get there up to Ansible itself—which draws upon the intelli‐
gence, best practices, and secure open source tooling built into the engine to
automate the workflow. When automation is made available to everyone, it becomes
possible to automate everything.

172 | Chapter 8: Ecosystem for Automation

APPENDIX

Speaking Kubernetes and Other
Strange-Sounding Names

Open source software can be a fickle thing, with some projects blowing up like a viral
TikTok trend, only to be forgotten a year later (OpenStack, we’re looking at you).
However, there are certain open source projects born to solve critical problems and
combined with a strong community that go on to become indispensable—they live
on to power the world’s applications for decades to come. One of the first examples of
this was Linux, which was born out of the need for a free operating system. Similarly,
a number of projects revolutionized their respective areas—Jenkins for DevOps,
NGINX for web servers, Eclipse for development environments...and the list goes on.
Kubernetes revolutionized the container orchestration space and claimed its throne
by defeating strong open source competitors, including Docker’s own Swarm and
Apache Mesos. So how did Kubernetes (K8s) stand so far ahead?

So far, we’ve kept our terminology very neutral and generic and consciously avoided
the special language that has grown up around Kubernetes. In this appendix we
wanted you to learn K8s in the same way you would prepare as a tourist if you were
stopping at a Greek island for the day. While you may not learn how to say “I’d like
the lamb rare please, on a bed of orzo in an avgolemono stock,” you are certainly
going to learn how to say “Efaresto” (Thanks), “Endaxi” (OK), “Kalosto” (Hello), or
what to say when you take your first shot of Ouzo—“Stin ygeia sou” (To your health),
which is ironic if you think about what you’re doing.

We’ll reiterate that the intention of this book is not to make you a Kubernetes practi‐
tioner. With that said, if you’re a manager (or strategist) who runs an organization
responsible for cloud deployments, you will need to be familiar with the basic termi‐
nology—not only does it keep your seat at the table, but it will empower your leader‐
ship of those that live for the nitty-gritty details of making this all work. Trust us on

173

this: while being a guru is going to resonate with your technology teams, showing
some level of knowledge (and effort to acquire it) is a different universe than being
that leader we’ve all worked for or seen in action before—the ones that literally know
nothing about the technology but will drop the word “transformation” at every
opportunity.

Figure A-1 shows a Kubernetes cluster followed by some key definitions that will
serve you well to remember. (Check out the Kubernetes Standardized Glossary for a
comprehensive, standardized list of K8s terminology. This glossary includes technical
terms that are specific to Kubernetes, as well as more general terms that provide use‐
ful context.)

Figure A-1. The key components of a Kubernetes cluster

Node
A node is a worker machine. It might be a physical or virtual machine, it might
be running in the cloud—wherever it is, for the purposes of understanding K8s,
you shouldn’t have to care. Each node has a Master Node that is responsible for
scheduling pods in a cluster.

Cluster
A cluster is a collection of nodes running in a “datacenter” that runs container‐
ized applications. The datacenter could be anything from your laptop or some
Raspberry Pi in your house to a cloud provider running “Kubernetes as a Ser‐
vice.” If you’re creating a hybrid cloud, you will also have hybrid clusters, in
which a single Kubernetes control plane manages nodes in different physical
datacenters, including on-premises nodes and nodes running in some public

174 | Appendix: Speaking Kubernetes and Other Strange-Sounding Names

https://oreil.ly/vMEiX

cloud—that’s the whole cloud capability discussion we’ve been having throughout
this book; when you think in this manner, your ability to modernize truly
changes.

Pod
A pod is a group of one or more related containers running on a cluster—it’s the
smallest most basic deployable object in K8s. A pod is often a single container
(like Docker, but it could be others), though it can be a group of containers that
need to be run together. For example, a pod might be used to implement a single
microservice.

Role-based access control (RBAC)
RBAC is a management framework that allows administrators to declare
business-defined access policies and permissions for your application. Access
policies define specific roles with certain permissions (abilities); role bindings
associate those roles with specific users. This is imperative for distribution of
duty; you’re not just ensuring you are properly securing the administrative com‐
ponent of your Kubernetes cluster, but also being able to showcase these business
rules, which goes a long way in pleasing auditors.

Control plane
The control plane manages the cluster—think of it as a Kubernetes cluster’s nerv‐
ous system. There are many components in the control plane; they’re responsible
for scheduling, integrating with cloud servers, accepting commands through the
user interface, storing all the cluster declarations and states, and more.

kubectl
The open source command-line tool for submitting commands to the Kuber‐
netes API Gateway, which routes commands to the control plane—this is a long
way of saying it lets you run commands against the K8s cluster. You can use this
tool to deploy apps, log diagnostic details for your cluster, manage the cluster,
and more. Much like Terminal on macOS, you can do anything in the command
line that you can in any management interface—and more.

The Perfect Open Source Project
In 2017, the Kubernetes project topped the GitHub charts for most-discussed reposi‐
tory, with the second highest project being OpenShift Origin, a distribution of Kuber‐
netes by Red Hat often referred to as OKD. Kubernetes was and continues to be an
exemplar of the perfect open source project, and it accomplished this in a few differ‐
ent ways.

Speaking Kubernetes and Other Strange-Sounding Names | 175

In open source parlance, an upstream is the source repository and
project where contributions happen and releases are made. (It
might be easier to think of it like a river where the water flows
downstream.) Contributions flow from upstream to downstream.
In some cases, a project or product might have more than one
upstream (like Hadoop relied on multiple upstream projects).
OKD is the upstream Kubernetes distribution that is embedded in
OpenShift. This distribution contains all the components within
Red Hat OpenShift, which add developer- and operations-centric
tooling on top of native K8s, and, like any other open source soft‐
ware, it can be used by anyone for free. A good analogy would be
the Linux kernel. Kubernetes is like the Linux kernel in that the
same Kubernetes can then run in a variety of distributions that
support various developers’ needs.

Kubernetes is not a traditional all-inclusive PaaS system. In fact, its own documenta‐
tion makes this declaration. Kubernetes provides the building blocks to build devel‐
oper platforms, while allowing organizations to take advantage of its pluggable
architecture to customize where it makes sense. This is one of the main reasons (the
other being vendor agnosticism) why those same organizations that shied away from
first-generation PaaS technologies like Cloud Foundry, Heroku, or App Engine even‐
tually flocked to Kubernetes. With the building blocks of a PaaS, cloud providers like
Google, IBM, Red Hat, Amazon, and Microsoft started working to provide a PaaS
powered by Kubernetes.

How exactly does Kubernetes tread this line of providing a platform without forcing
an opinionated approach to extensions like observability, storage, CI/CD, all the
other components of a full-blown PaaS? It does so by providing a pluggable architec‐
ture for everything a user might want to configure. In fact, the Kubernetes documen‐
tation has an entire section of what Kubernetes is not. This includes the fact that
Kubernetes doesn’t limit the type of supported applications, doesn’t deploy source
code or build your app, doesn’t provide application services, doesn’t dictate logging
solutions, and a load of other things K8s simply doesn’t do.

This list of what Kubernetes doesn’t do (when compared to traditional PaaS) might
just leave you wondering how K8s became a leading platform in the first place.
Kubernetes is a masterpiece in that it does exactly what it is expected to do really well:
things like service discovery, automatic self-healing, configuration management, and
more—capabilities that the standard user doesn’t want or even need to “shop around”
for. For everything that a user might want to configure themselves, Kubernetes does
not dictate the service to be used, but instead provides a pluggable architecture where
services can insert themselves. For example, if you want to set up centralized logging
for your Kubernetes clusters, you can use over 20 different tools, including Splunk,
LogDNA, Fluentd, and Logstash. What if you don’t want to set up any of these tools?

176 | Appendix: Speaking Kubernetes and Other Strange-Sounding Names

Well, Kubernetes conveniently has some barebones logging capabilities available out
of the box as well! (Note that this is not always the case—Kubernetes doesn’t provide
a built-in way to enable CI/CD, for example.)

The growth of projects in the Kubernetes ecosystem can largely be accredited to the
Cloud Native Computing Foundation (CNCF). The CNCF provides a sustainable
ecosystem for open source projects in the Kubernetes space. In addition, the CNCF
provides certification programs for Kubernetes, such as the well-respected CKA (Cer‐
tified Kubernetes Administrator) and CKAD (Certified Kubernetes Application
Developer) certifications. But here’s a pro tip: if you’re going to be successful with
K8s, you don’t just have to understand the technology, you have to also understand
the ecosystem. We think it’s nearly impossible to go into production using Kubernetes
alone. In the next few sections, we’ll cover some of the other open source projects in
the Kubernetes ecosystem you need to know, most of which are part of the CNCF.

Day 1 on the Job: Helm Package Management
We’ve discussed application software as a series of components, implemented with
containers, that provide services. So far, so good. But how does that all get installed?
There are lots of components you’ll need to stitch together in order to build your
application: different kinds of databases, unique services for monitoring your applica‐
tion and building dashboards (which we’ll discuss shortly), frameworks and plat‐
forms for web development, AI, and lots more. If you’ve ever managed an open
source solution with lots of moving parts, the first thing you often ask is, “How do I
get all the necessary components I need installed and running?” And if you’ve been
through the ringer with some of these solutions like we have, you follow that question
up with, “How do we automate the installation of our own software that relies on
these components?”

The answer? Helm. Helm is Kubernetes’s package manager. Package managers are
responsible for installing software. They figure out what dependencies are needed to
install any new package and activate those dependencies in the appropriate order. In
the Helm world, you package your apps into Helm Charts. Helm Charts are package
descriptions (written in YAML) that describe dependencies, configuration details,
and other information needed to install the package (your app) properly.

Throughout this book we’ve boldly declared that Kubernetes is the operating system
for distributed computing—so let’s use that nuance to talk about Helm. Package man‐
agers are ubiquitous in programming languages and operating systems. If you’re a
Python programmer, you manage the installation of libraries for file management,
computer vision, numerics, and more, using pip. On operating systems you use things
like yum and apt-get (in the Linux world) or homebrew (if you’re a Mac person). But
it’s not just operating systems that seek to simplify the up and running and mainte‐
nance experience of solutions with lots of independent components. What a package

Speaking Kubernetes and Other Strange-Sounding Names | 177

manager is to an operating system or programming language is what Helm is to
Kubernetes.

In April 2020, Helm moved from “incubating” to “graduated status” within the CNCF,
proving that Helm has thriving adoption and a strong open-governance community.
Helm finds popularity among operations teams for Day 1 (initial deployment phase)
DevOps processes, where it is able to significantly simplify the number of resources
an application on Kubernetes might require. For example, to deploy a frontend ser‐
vice and a backend service, expose a route (giving a service an externally reachable
hostname), and set up a custom domain, you’ll need about four different Kubernetes
resource configurations. These four configurations together create one application, so
engineers can use Helm to consolidate them into a single “release.”

However, Helm has not found popularity among services with hefty Day 2 opera‐
tions, which involve management of stateful (or other complex) workloads such as
Quay container registries and MongoDB databases.

Day 2 on the Job: Kubernetes Operators to Save the Day
Stateful or complex workloads like databases have other requirements. They need to
be backed up. Schemas need to be updated. And now you know what Operators do.
Operators are a way of packaging code that performs periodic, stateful maintenance
operations that are often handled by human operators. Operators can be complex.
Upgrading a database schema, for example, typically requires unloading and reload‐
ing the data, or perhaps a shadow copy of the table and a database quiesce. That’s not
necessarily simple work. And remember what we talked about earlier in this chapter
—human error and complexity is a huge cause of downtime. There are many tasks
that shouldn’t be performed by hand because they are complex or dangerous, or per‐
haps so rote in nature that they handcuff knowledge workers from high-order tasks.
Operators are no different. Each of us stand to gain more resiliency and efficiency
through automation.

You might be wondering how Operators are allowed to behave as a literal human
operations engineer configuring Kubernetes. This is in part due to two major con‐
cepts in Kubernetes: control loop and Custom Resource Definitions (CRDs).

First, Kubernetes uses something called a control loop (see Figure A-2), which is the
basis of self-healing Kubernetes resources. As we mentioned earlier, since Kubernetes
is declarative (like a house thermostat), users can declare the state that they want with
standard Kubernetes resources such as pods, deployments, and services (generally
configured with YAML files). Kubernetes then applies the three simple phases of the
control loop in Figure A-2 to make it all happen—observe, diff, and act.

178 | Appendix: Speaking Kubernetes and Other Strange-Sounding Names

Figure A-2. The control loop: how Kubernetes Operators act like human operators

The first phase of the Kubernetes control loop is observe. This is where K8s is not just
watching what’s going on in the cluster, but it’s making note of every single detail for
any needed remediation to the declarative statements that serve as the “laws of intent”
that govern the cluster. Next, K8s identifies what is different from the intended state
of the ecosystem (what temperature and humidity did you want the house at)—this is
referred to as the diff. Finally, if there’s any difference, K8s will act to remediate any
differences between the declared state and the actual state within the cluster. Kuber‐
netes is forever running the loop in Figure A-2—like a hamster forever running in a
hamster wheel.

Let’s assume you created a deployment that demands three pods to be alive, but one
of the pods eventually crashes? K8s to the rescue! You want three pods, and Kuber‐
netes’ control loop is always trying to maintain the environment you set (like that
house thermostat) so it will continually restart that pod to resolve the “difference”
between the current and intended state. This is in essence how “self-healing” works.

Things like pods, deployments, and services are default resources
in the Kubernetes API—all Kubernetes clusters support these
resources. They are the building blocks of deploying applications
on Kubernetes.

Kubernetes also allows you to augment the default Kubernetes API by supplying
CRDs to extend the standard resources found in Kubernetes (pods, services, deploy‐
ments, and so on). In turn, Kubernetes provides a frontend API for the extended
resources you’ve defined—and these resources also follow the control loop. The ability
for Operators to utilize CRDs allows developers to create large-scale resources that
may encompass many standard Kubernetes resources. For example, once you’ve
installed a MongoDB operator, it will create a CRD for a MongoDB database. As a
user, you can create a resource referencing that CRD and deploy it to Kubernetes,
much like any other standard resource. The CRD (and hence the Operator) is respon‐
sible for creating the many underlying Kubernetes resources that make up the Mon‐
goDB instance. This means less work for you!

Speaking Kubernetes and Other Strange-Sounding Names | 179

The key advantage to Operators is that they can effectively offload the responsibility
of maintaining a particular service in your Kubernetes cluster and thereby signifi‐
cantly reduce Day 2 operations costs. Contrast this with Helm. Whereas Helm allows
users to perform Day 1 operations that deal with deploying many resources together,
Operators take it a step further and allow for the continued management and mainte‐
nance of complex services running on Kubernetes. This is why you’ll find so many
service providers beginning to develop Operators that Kubernetes administrators can
implement to manage long-living services. This isn’t to say that Operators are replac‐
ing Helm—Helm is still a critical part of simplifying standard deployments and plays
an important role in CI/CD pipelines. Helm is great for when you don’t need a
sledgehammer to swat flies.

We’ve accomplished one of our major goals: turn infrastructure, along with the pro‐
cesses for managing infrastructure, into code. In a large, distributed system, that’s the
only way these maintenance tasks can be performed repeatably and reliably. Ensure
you understand this last paragraph because this is what the whole Kubernetes ecosys‐
tem is about. It’s the basis for modernization, agility, scalability, and more; it’s what
drives automation into our processes, which results in efficiencies and frees up
resources to drive the business.

The Infrastructure…Of Course!
So far, our discussion has been very virtual: there’s a cluster of machines (possibly vir‐
tualized) somewhere in the cloud (which could be public or on-premises) that do
work for you. Kubernetes takes things like containers and runs them on those
machines, all the while looking at what we declared the environment should look like,
and it tries its hardest to make it that way. Great. But where do those machines come
from? Cloud resources don’t appear magically just because you want them; public
cloud providers all offer similar, but not equal, services; and there is no end to the
different kinds of machines you can use in cloud computing. Are you better off scal‐
ing a NoSQL data model with lots of small, distributed servers? Or do you use one
more powerful server and scale up, which is less complicated? Do you load up your
server with lots of memory? Do GPUs help? TPUs? How do you select all of this?

To help guide you, we’re going to take advantage of the same ideas we’ve been using
all along in this section and we mentioned in : infrastructure as code. That way, it’s
standardized and repeatable. You don’t have to worry about the nightmare case where
a system goes down and some person mistypes the number of virtual machine instan‐
ces you need, where your app gets nicknamed molasses because the admin forgot a
zero, or you get a giant bill because they typed too many of them.

Enter Terraform—an open source tool (developed by HashiCorp) for building, chang‐
ing, and versioning infrastructure safely and efficiently. Think about the name: it’s
about shaping the earth and putting the material you’re working with into a useful

180 | Appendix: Speaking Kubernetes and Other Strange-Sounding Names

form. Or, if you’re inclined to sci-fi, think about “terraforming Mars”: assembling all
of Mars’s resources to create a useable, livable environment. Terraform is essential to
hybrid clouds because it really doesn’t care what kind of “earth” it’s forming. Yes, any
cloud provider has their own way of specifying a configuration; but once you’ve told
Terraform what resources you need, it takes over the process of figuring out how to
acquire those resources. Describing what resources you need for AWS, Azure, GCP,
IBM, and even your on-premises datacenter is a lot simpler than writing scripts (or
tweaking dashboards) that do the work of acquiring those resources.

Terraform takes a page out of the Kubernetes book in its implementation—it’s declar‐
ative. This has a fundamental advantage that you can simply tell it what you want,
and it will handle the painstaking process of making the individual API calls to create
the infrastructure. A simple analogy would be setting your car’s GPS navigation to go
to a destination versus simply calling a ride-sharing company. The prior requires that
you control every turn, exit, and on-ramp, and even has the potential for error if
you’re not familiar with the roads (or if the maps are out of date). This is akin to
developing manual scripts to handle your infrastructure automation, or even worse,
trying to figure out the interface nuances of the CSP you’ve chosen to work with
every time you need to deploy something (and remember, enterprises today are using
multiple CSPs!). However, with ride sharing, you simply input your final destination,
get in the car, and the driver takes care of the rest. That’s why we like to think of Ter‐
raform as the Lyft/Uber of infrastructure automation.

It shouldn’t surprise you that Terraform has a public registry service: that is, a reposi‐
tory for public configuration modules as well as Terraform providers to make it easier
to work with major CSPs. You can find modules that implement many common
forms of infrastructure: for example, implementing a Kubernetes cluster on different
public cloud providers. Your teams will almost certainly need to customize the mod‐
ules (for example, to specify the number of nodes the application needs, or which
zones to use), but almost all of the work has already been done.

Making the Network Tractable: Service Meshes
You probably realize that the picture we’ve been painting might seem a little too rosy.
We’re talking about applications composed from many different services: frontends,
databases, authentication, finance, shipping, manufacturing, and more. All of these
services need to communicate with each other. They need the ability to find each
other. And if you’ve thought about the implications of the cloud, you’ve realized that
this is difficult. How can a service communicate with other services reliably if they’re
starting and stopping all the time? If, the day after Black Friday, you only need hun‐
dreds of nodes, rather than thousands?

The eight Fallacies of Distributed Computing notes that the network is reliable, the
network is secure, the network doesn’t change, and so on. We know, we’d be skeptical

Speaking Kubernetes and Other Strange-Sounding Names | 181

https://oreil.ly/sCfhx
https://registry.terraform.io
https://oreil.ly/0mNID

too. But Kubernetes shows us that the only realistic way to escape these fallacies is to
embrace them. Rather than pretend that networks are reliable or tie your code up in
knots trying to handle outages, introduce another layer (yes, every problem in com‐
puting can be solved by adding another abstraction) designed to solve these prob‐
lems. And that’s why we need to start talking about service meshes.

It’s certainly true that, in the cloud, networking is hard. Programmers just want to be
able to open a connection to a service. They don’t want to deal with services that
appear and disappear almost at random, to find out what addresses those services live
at, or to deal with issues like load balancing. (We’re exhausted just thinking about it!)
And dealing with the network becomes even more complex when you need to think
about security, authorization, monitoring, and A/B testing. Early cloud applications
forced that on them. They couldn’t just call a network library; they suddenly had to
understand how networks worked on a much deeper level.

This is where service meshes enter the picture. A service mesh is another set of serv‐
ices that takes the burden of networking away (abstracted) from your application
code. Services no longer have to know the IP addresses of the services they need,
open direct connections to those services, decide what to do when a service becomes
unavailable, and so on. That is all managed by the service mesh. The services become
“virtual services,” and the mesh takes responsibility for routing requests (for knowing
which services are available and where they are located, knowing which services are
allowed to access other services, and even understanding service versioning; for
example, a service mesh can make a new version of a service available to a group of
users for testing). You might want to think of the mesh as a gigantic proxy layer that
manages all of these issues and forwards requests to the actual services, which only
have to concern themselves with the business logic required to respond to these
requests.

So we’re back where we want to be: the service doesn’t need to know about the net‐
work, and the programmer doesn’t need a deep understanding of network program‐
ming. All any service needs to know is the name of the other services it depends on.
Services are exposed to each other through the service mesh, which understands
resource discovery and routing, and keeps a close watch on where the actual services
are, how many instances are running, the addresses of those instances, and so on.

But we get more in the bargain. Networking isn’t the only thing we don’t want our
services to know about. Ideally, we’d rather not have them know about security (don’t
get confused here, this doesn’t mean there isn’t any): poor implementations of issues
like identity and authorization are the cause of much misery. Better to leave identity
and authorization to specialists. Security can be managed by the service mesh, which
can use other services to determine which users, services, and roles are trusted. We
absolutely don’t want services to “know about” cryptography; no question about it,
cryptography is important to security, but it is much easier to get cryptographic

182 | Appendix: Speaking Kubernetes and Other Strange-Sounding Names

techniques wrong than to get them right, even if you’re using a well-known and cor‐
rectly implemented library. Why not hand this off to the service mesh (and crypto‐
graphic protocols and implementations that can be changed via configuration, rather
than by modifying the services)?

If all a service needs to know about is its business logic, and nothing more, then we
finally have, in the cloud, what software developers have been striving to achieve for
years: component-based distributed software systems. A new kind of service can be
added without touching the rest of the system. Clients using the service may need to
be updated—or perhaps not. In many cases, all that’s needed is a configuration
change. Let’s say you’re an international business that’s expanding into South Africa.
You decide to add a service that converts between US Dollars and Rand. Existing
services that need currency exchange are already accessing other exchange services,
which makes adding this new feature at most a configuration change. Adding the
ability to take payments in cryptocurrency will probably require a new service too,
but the rest of the application can remain the same; it just needs to know that Doge‐
coin is a new payment option.

Step back for a moment because we went through a lot of stuff there. We want to
pause so you fully appreciate that we’ve achieved a high degree of cohesion: the ability
to compose complex applications from components, all with minimal coupling
between those components. And once we can do that, with the components packaged
in standardized containers, we can deploy them anywhere: literally. On those Rasp‐
berry Pis in the broom closet, in a giant datacenter, on a cloud provider—or any com‐
bination. We can tell Kubernetes how many instances of the DogecoinExchangeService
we want, tell the service mesh how to route the requests, and we’re up and running—
without taking the application down for a second!

Again, we’ve been discussing service meshes in the abstract; we’ve talked about what a
service mesh does rather than the specific software. While it’s not the only service
mesh implementation, the dominant implementation in the Kubernetes ecosystem is
Istio. Istio is an open source project started by IBM, Google, and Lyft; it incorporates
Lyft’s Envoy project, which still exists on its own.

Testing, Integration, and Deployment
The ability to run an application in the cloud, in a way that’s independent of any
cloud vendor—where your own datacenter or machine room can be one of those
“vendors”—is a huge step forward. But there’s more to the problem than running the
application. You need the ability to deploy it, you need the ability to integrate
components together, and you need the ability to test in a modern way. What’s more,
these capabilities all need to be automated—in part so they can be repeated reliably,
but also so they can be performed repeatedly.

Speaking Kubernetes and Other Strange-Sounding Names | 183

https://istio.io
https://www.envoyproxy.io

All of these capabilities come under the heading of CI/CD. The deployment scenarios
of 20 or 30 years ago, when a “deployment” was very likely to be a break-the-world
change, with the entire development and operations teams keeping their fingers
crossed (probably with some of that vodka we talked about in the Preface to this
book) and hoping nothing breaks, are a thing of the past for those that have
embraced the very things we’ve been talking about all along in this book. We’ve dis‐
covered that the way to deploy software reliably is to deploy it frequently, where each
deployment represents a minor change to a very small number of features. If each
release represents a minor change, changes are easy to roll back; changes can be
deployed to a small number of users for testing; and, most of all, short, reliable release
cycles force you to commit your release process to software.

As we mentioned before, Kubernetes provides the building blocks of a PaaS—but it’s
not an all-inclusive PaaS. One of the things Kubernetes explicitly doesn’t do is provide
a native CI/CD process. In open source parlance, Kubernetes doesn’t have an opinion
on CI/CD—which is coder talk for they don’t force you into a solution or template for
this component; this can be good or bad. After all, developers definitely have formed
their own opinions in this space, and DevOps processes tend to be custom fit to the
team that implements them. This is one of the reasons that we think Kubernetes has
become such an inflection point—K8s knows what it wants to do and it’s extremely
good at doing it. For everything else, the open source community always finds a way
(and more often than not, multiple ways—but that’s another story).

Tekton is an open source project that provides a strong framework to create cloud
native CI/CD pipelines in a way that doesn’t depend on a cloud provider. It is an
extension that runs on your Kubernetes cluster. It also integrates with the widely used
open source tools for CI/CD, such as Jenkins (a free and open source automation
server that helps with some of the tasks in the CI/CD lifecycle: building, testing,
deploying, and so on). Tekton structures the deployment process as a set of pipelines,
which execute some larger goal (such as deploying a project). Pipelines are composed
of tasks, which are specific actions (such as running a test suite or compiling an appli‐
cation). You can create Deployment pipelines that minimize the time to cut over from
an old version to a new version; or to deploy a new version to some servers but not
others, for A/B testing; or to do small canary deployments to test the system against
the real world. And if you need to, Tekton can also be used to roll back to an earlier
release.

184 | Appendix: Speaking Kubernetes and Other Strange-Sounding Names

In software engineering speak, a canary deployment is a process
whereby you make a staged release to a subset of your user com‐
munity first so they can test it out and tell you what they think. If
they “vote your new feature off the island,” you don’t roll it out and
save yourself from irritating your entire customer base. You see this
all the time with apps on the iPhone where the update description
tells you that you will see the feature over time or you’ve updated a
new app and was told of a new feature in the update notes, but you
don’t see it.
But canary deployments are also used to understand how users will
interact with potential changes like redesigning the interface and
menu options. This affords an easy mechanism to “walk back”
changes (it’s risk-averse) as opposed to other strategies (like Blue/
Green), which make the changes in one step.

Monitoring and Observability
Whenever you deploy software, regardless of where it runs, you need to make sure
that it runs reliably. You need to know that, at any time, the software is actually run‐
ning, that it’s handling requests, and that it’s handling those requests in a reasonable
amount of time. If the application is down, extremely slow, or malfunctioning in
some other way, you need to know it. It doesn’t matter if this is a huge public-facing
ecommerce application or some internal management dashboards; your staff needs to
get it back online and (even more importantly) prevent it from ever going offline.

One thing we’ve learned in the last decade of IT operations is the importance of mon‐
itoring. Monitoring is relatively simple: you develop specific metrics (or health tests)
and watch your applications to ensure that everything is running normally. A health
check could be a simple network ping, a measurement of a physical parameter (like
CPU temperature), or something more complex and application-focused, such as the
number of transactions per second or the time users wait to get a response. Monitor‐
ing includes alerting (for example, generating pager alarms) and providing data for
debugging and trend analysis (for example, forecasting resource requirements or
cloud expenses).

Monitoring is valuable, but it isn’t the last word. The fundamental problem with
monitoring is that you have to predict, in advance, what you will want to know.
Sometimes, that’s not enough to tell you that your system is (or about to go) down,
and it’s almost never enough to tell you what went wrong so you can bring the system
back online. As modernized apps move to more and more distributed computing
(the epochs we talked about in Chapter 3), and more and more components are part
of an application’s composition, figuring out a root cause to a problem can be like try‐
ing to unravel the Gordian knot of cable wiring to charge that thing you bought off
Amazon five years ago. It’s just not going to happen.

Speaking Kubernetes and Other Strange-Sounding Names | 185

Observability could (perhaps should) be called the “next generation” of monitoring. It
starts with a definition from control theory: “In control theory, observability is a
measure of how well internal states of a system can be inferred by knowledge of its
external outputs.” Observability means the ability to gather data about any aspect of
your application when it’s running, so that you can infer what’s happening internally.
That’s the kind of information you need for debugging. It’s all about the ability to find
out what you need to know, because you can’t guess with full certainty what you will
need to know in advance.

We think observability is going to become even a bigger deal in the years to come as
more and more apps are redesigned for the loosely coupled style of distributed cloud
native applications. We’ll use Figure A-3 to make our point.

Figure A-3. Find the letter P: a depiction of the increasing complexity when moving from
monoliths, to SOA, to microservices

Try to find the letter P (for problem). Easy on the left, harder in the middle, are you
@$#~!$ kidding me on the right? That’s akin to figuring out what’s going on in your
application stack from a monolith to service-oriented architecture (SOA) to micro‐
services (cloud native). Think about it—if an app is composed of hundreds of micro‐
services (some perhaps function as a service which run in under 10 seconds, if not
milliseconds, then disappear because of their transient nature) how can you go from
the mobile-native app sitting on your iPhone and trace that to the code running on
the backend? Like we said, observability is a big deal that’s going to get bigger, and it’s
why we’re really impressed with software pushing this to the forefront today (like
Instana).

186 | Appendix: Speaking Kubernetes and Other Strange-Sounding Names

https://oreil.ly/KMEJm

Next, we’re going to look briefly at some important tools for observability. We’ll also
look at some technologies for creating dashboards, which are an important asset to
any operations team: what does “observability” mean if you can’t actually observe
what’s happening? What’s the point of having an observable system if you can’t react
intelligently and efficiently?

Prometheus
Prometheus is an application for collecting real-time time-series data for generating
alerts and metrics. It can collect data for an arbitrary number of metrics; each metric
is multidimensional, meaning that it can be composed of several data streams of
its own.

It may help to think of Prometheus as a data collector that incorporates a time-series
database, indexed by metric names and key-value pairs (for specific dimensions). It
has short-term memory-based storage, with long-term storage on local disk drives. It
can be sharded to distribute load and it has a sophisticated query language.

Prometheus works by scraping (or pulling) data from the systems that it is monitor‐
ing. Sending data to Prometheus when it comes to scraping is simple: developers
need to add a small amount of code that calls a client library to their applications. To
monitor third-party software packages, an exporter converts any logs the package
generates to the Prometheus format, and sends the converted data to Prometheus on
request. Exporters are available for many commonly used third-party software pack‐
ages; developers rarely need to write custom exporters.

Grafana
Prometheus has an expression browser that lets you query its database. Grafana’s
expression browser is useful for taking a quick look at what’s happening with your
systems...but it’s far from a final solution.

Grafana is often used with Prometheus to build dashboards. Grafana is another open
source project, independent of Prometheus, but Prometheus includes Grafana inte‐
gration. It’s simple to create a Prometheus data source for Grafana, and it’s also simple
to create a graph that plots the data from that source because that’s the whole point of
Grafana: to offer visualization and dashboarding services to a connected data source.
Grafana also maintains a collection of freely reusable dashboards.

Alertmanager
Nobody appreciates waking up in the middle of the night because a system is down.
But we all know it’s necessary. Downtime is expensive. Any enterprise system needs
the ability to alert operators when human intervention is needed.

Speaking Kubernetes and Other Strange-Sounding Names | 187

https://prometheus.io
https://grafana.com

Alertmanager is the part of the Prometheus project that is responsible for determin‐
ing when a human needs to be notified, and sending that notification in an appropri‐
ate way. Alerts can be sent via a system like PagerDuty or, if they don’t require
immediate attention, via email or some other interface.

Alertmanager is responsible for minimizing alert duplication. Think about it…if your
team is responsible for an application built on microservices, it’s possible for a single
failure of a key component to cascade into hundreds if not thousands of alerts. In
addition to de-duping alerts, Alertmanager can be configured to inhibit or suppress
alerts that are caused by failures elsewhere in the system. Alertmanager can also
silence alerts, for example, to avoid distracting the response team once it has been
activated.

The Paradox of Choice: Red Hat OpenShift
For many, less is more. In the past few sections, we’ve touted Kubernetes as a platform
with boundless potential and seemingly endless choices for configuration and cus‐
tomization. This is not exactly an advantage for many consumers who may be para‐
lyzed by choice. Seriously, does the world really need 21 Pop-Tart (a breakfast pastry)
flavors?

In his book The Paradox of Choice, Barry Schwartz argues that the freedom of choice
has made us not freer, but rather more paralyzed—not happier, but more dissatisfied.
Applied to Kubernetes, we have seen first-hand how some clients got intimidated by
choice. We’ve said it before and we’ll say it again—the cloud is a capability, not a des‐
tination. The sooner we can dispel the notion that the cloud is a lofty, unattainable
goal, the better.

But have no fear—there is a solution. Red Hat provides an open source distribution of
Kubernetes called Origin Kubernetes Distribution (just pure K8s with none of the
things that Red Hat does to make it more enterprise fulfilling and ready), but many
people tend to gravitate to their flagship product—OpenShift Container Platform.
Red Hat puts it succinctly: OpenShift is Kubernetes for the enterprise.

Red Hat is no newcomer to open source. It’s quite literally paved the way for open
source in the enterprise, and in 2012 became the first one-billion dollar open source
company. Red Hat is one of the largest code contributors to the Kubernetes project,
second only to Google.

Here’s a simple example to show Red Hat’s commitment to open source and Kuber‐
netes. In the early days of Kubernetes, basic role-based access control (RBAC) was not
a priority for the project, which was a dealbreaker for many enterprises. Red Hat
started implementing RBAC directly within the Kubernetes project, instead of as an
added-value feature of OpenShift. This is the type of thing that makes Red Hat…well,
Red Hat. Quite simply, the Red Had OpenShift Container Platform comes with

188 | Appendix: Speaking Kubernetes and Other Strange-Sounding Names

https://oreil.ly/i5IKW

opinions, tools, and features that make it hardened for the enterprise. It’s one of the
special things that arise from IBM and Red Hat defining hybrid cloud.

Back to the matter at hand—how does Red Hat address this paradox of choice? As
we’ve said before, Kubernetes provides the building blocks of an all-inclusive PaaS,
without actually being one. Red Hat makes full use of these building blocks and has
created a full-blown Kubernetes-powered PaaS. OpenShift is the best of Kubernetes
with opinionated approaches for every capability we’ve talked about in the prior sec‐
tions and more.

OpenShift comes embedded with Prometheus, Grafana, and Alertmanager for
observability. It provides an embedded OperatorHub for installing additional serv‐
ices. It provides an enterprise-supported model for many open source capabilities
such as Istio (OpenShift Service Mesh) and Tekton (OpenShift Pipelines). It embeds
richer RBAC that goes above and beyond what is available in Kubernetes. The list
goes on and on, and the support model that Red Hat provides on open source
projects appeals to a number of enterprises that are faced with the paradox of choice.

Red Hat OpenShift is different from the first generation of opini‐
ated PaaS capabilities such as Heroku and Cloud Foundry for one
major reason—although it provides recommended and supported
extensions, it never dictates that you must use them. After all,
OpenShift is Kubernetes underneath the covers and provides the
same pluggable flexibility that Kubernetes offers.

No architect wants to be the one that decided to implement an open source project
only for it to be eventually deprecated or unsupported. Although this is uncommon
for mature projects (that became “CNCF graduated”), it does happen more than you
might think. For example, Kubefed initially had large support as a multicluster tool
for Kubernetes, but quickly lost traction and has remained in alpha for years.

Last but not least, one of the best perks of using OpenShift is the user interface. As
practitioners will regularly say, learning to use Kubernetes can be extremely reward‐
ing, but damn if it isn’t difficult to learn. This is partly due to the amount of CLI com‐
mands you need to learn—Kubernetes is primarily CLI-driven (we’re not casting
shade on CLI or command-line tools; if you think vi is a productivity tool for word
editing, have at it—but if you’re a graphic interface kind of person, OpenShift will
help you out). The process of going from source code on GitHub to a running appli‐
cation can take a Kubernetes newbie upwards of a full-day of documentation hunting,
trial-and-error, and banging their head. With the OpenShift management tool, a
developer can quite literally click three buttons (we counted) to deploy from source
code to a running application with an accessible route. This particular flow we’re ref‐
erencing is called Source-to-Image (S2I), which OpenShift has open sourced by
the way!

Speaking Kubernetes and Other Strange-Sounding Names | 189

Index

A
access control lists (ACLs), 112

discretionary access control, 121
Acumen Curve, 31

cloud journey progress, 41
agile development, 42, 43

API economy, 77
open source software, 109

AI
convolutional neural networks, 28
Manufacturing 4.0 assembly lines, 28

Alertmanager, 106, 187
Ansible

about, 158
agentless architecture, 157, 159-161, 167
automation via, 10, 155-172
infrastructure as code, 158
Kubernetes versus, 155
Modules, 166
Playbooks, 158, 160, 162, 166
Red Hat acquiring, 154
Roles, 167
YAML files, 158

Apache service SELinux example, 100
APIs

API economy, 76
as-a-service ecosystem, 77
software as a service and, 76

GraphQL API, 80
Master nodes, 104, 106
microservices developed independently, 88,

92
REST APIs, 78, 80

API economy, 76

RESTful service methods, 78, 93, 148
security of, 113

API endpoint, 150
server access, 149

serverless computing, 80
appliances, 168
applications

API economy and software as a service, 76
automation of DevOps, 169
cloud enabling always benefiting, 27
cloud native development, xvii

applications composed, 50, 70, 73, 77, 79
microservices architecture as, 43

containers, xvii
(see also containers)
multiple applications within system, 52

encrypting all data, 24
eras of application development

about, 40, 43
agile, 42, 43
containers, 47
continuous integration and continuous

delivery, 50, 59
DevOps, cloud, microservices, 44
microservices, 43
monoliths and waterfalls, 41
platform as a service (PaaS), 45
service-oriented architecture, 42
twelve factors best practices, 46
virtual machines, 48

federation, 150
function as a service (FaaS), 82
legacy applications (see legacy applications)
management of containerized, 138

191

microservices, xvii
(see also microservices architecture)

modernization process
Cloud Acumen Curve, 95
containerization, 99
refactoring, 97
repackaging, 97
replatforming, 96
stages of, 95
virtualization, 98

monitoring and observability, 185
MySQL application example, 49
namespaces, 99, 123

federated namespaces, 150
platform as a service, 70-74, 73

fundamental concepts, 73
security of, 113, 125-127

best practices, 144-150
vulnerability scanning, 129

security versus, 25, 125
serverless, 80
service meshes, 181
shift left, 86
Source-to-Image (S2I) application manage‐

ment, 103, 148
stateless design of microservices, 93
testing, integration, deployment, 183
write once, run anywhere paradigm, 26, 85,

95
as-a-service definition, 60, 63

API development, 77
pizza as a service example, 61-64

automation
about, 154
AI for, 11
Ansible for, 10, 155-172

about Ansible, 158
agentless architecture, 157, 159-161, 167
infrastructure as code, 158
Kubernetes versus, 155
Modules, 166
Playbooks, 158, 160, 162, 166
Roles, 167

Chef for, 156
configuration management, 158
deployments, 167
DevOps, 169
multivendor stacks, 163
Puppet for, 156

standardization for, 51
Terraform for, 157

availability and COVID-19, 132
availability zones for clouds, 69
AWS Elastic Beanstalk, 45

B
backup and recovery, 138
bare metal as a service (BMaaS), 67

pizza as a service example, 63
best practices

application development, 46
one job per microservice, 79, 89
security of data and applications

about, 144
deployment policy-based automation,

148
external data or code, 146
federation of containerized applications,

150
multitenancy security, 145
network isolation and API endpoint, 150
orchestrating securely, 149
software build processes, 147

build once, run anywhere, 26, 85, 95
business continuity, 131, 136

C
canary deployments, 184
Chef for automation, 156
CI/CD (continuous integration and continuous

delivery)
about, 15, 183
application development history, 50, 59
cloud usage pattern, 59
Docker containers making possible, 50
security testing automated, 148
Tekton CI/CD pipelines, 184

Clair vulnerability scanner, 50, 129
client engagement via AI, 11
cloud

AI, 11
capability, not destination, xvi, 9, 14, 60

tie business initiatives to cloud, 37
challenges of incorporating, 2
“Cloud Chapter 1” strategy, 10
“Cloud Chapter 2” strategy, 10

(see also “Cloud Chapter 2” strategy)
cloud refers to hybrid cloud, 14

192 | Index

cost savings of, 6
capability over savings, 15, 27, 81

hybrid cloud strategy, xvi
(see also hybrid multicloud strategy)
build once, run anywhere, 26, 85, 95
innovation captured, 27
value derived from, xvi, xviii, 11, 16

modernization mindset, 8-10
(see also modernization mindset)

performance demands of, 7
resiliency of, 7
scalability, 9

(see also scaling)
security demands of, 8, 23

(see also security demands of cloud)
unique businesses, unique answers, 22, 28
usage patterns (see usage patterns of the

cloud)
what’s in it, 57

Cloud Acumen Curve, 31
project modernization, 95

cloud application services, 74
(see also software as a service (SaaS))

“Cloud Chapter 1” strategy, 10
“Cloud Chapter 2” strategy, 10, 16

answer for how to cloud, 27-31
capability over savings, 15, 27
capability, not destination, xvi, 9, 14, 60

tie business initiatives to cloud, 37
distributed cloud, 17

build once, run anywhere, 26, 85, 95
challenges of, 21
edge computing, 19
expertise to achieve, 22
multicloud, 20
on-premises, 17
one cloud to drive them all, 21

Cloud Computing Trends (Flexera report), 20
Cloud Native Computing Foundation (CNCF),

177
Kubernetes certifications, 177

cloud native development, xvii
applications composed, 50

microservices, 79
platform as a service, 70, 73
software as a service, 77

microservices architecture as, 43
write once, run anywhere paradigm, 26, 85,

95

cloud regions, 69
availability zones, 69

cloud service providers (CSPs)
distributed cloud unifying offerings, 16-21
Kubernetes vendor-agnostic, 54
managed services, 18
one primary provider to manage services,

21
platform as a service (PaaS), 45

containers, 47
security of public clouds, 111-114

cloud-without-compromise, 158
cluster definition, 174
CognitiveClass.ai Kubernetes training, 39
Common Vulnerabilities and Exposures (CVE)

report, 114, 116
Clair vulnerability scanner, 129

complexity and human error, 50
compliance monitoring, 130, 144, 148
compute resources as IaaS, 64
computer vision, 28
Confidential Computing, 24
configuration management automation, 158
container engine, 99, 136

Podman management of containers, 142
container images

containerized workloads, 135
Quay registry, 129

Container Networking Interface (CNI), 143
container-native data storage, 141
container-ready data storage, 141
containers

about, xvii, 47
multiple applications within system, 52
shipping container analogy, 134
virtual machines contrasted, 48

about containerization, 47
Docker, 49
Docker Hub, 49
Dockerfile, 49
storage demands, 138

application development history, 47
backup and recovery, 138

reconstituted containers, 138
explained, 97-99
Kubernetes container orchestration

about, xvii, 10
on-premises, 17

Index | 193

operating system for distributed systems,
10, 51, 101-104

shipping container analogy, 135
lifecycle, 140
Linux operating system for all, 99

Control Groups (cgroups), 101, 123
mandatory access control, 100
namespaces, 99, 123
security, 123

managed via Podman, 142
stopped containers in memory, 143

on-premises workloads with, 17
Open Container Initiative compliant, 10
processes to operating systems, 97, 123

stopped containers in memory, 143
runtime environment evaluation, 129
scaling in containerized world, 92

Kubernetes horizontal scaling, 101
Kubernetes load balancing, 101

security, 125-127
best practices, 144-150
challenges, 127-130
Linux operating system, 123
Secure Service Containers, 25

standardization via, 47, 49, 51
Dockerfile, 49

stateless, 140
storage and persistence, 133, 136, 140

adding storage, 142
IBM Storage, 141
stopped containers in memory, 143
volumes, 140

vulnerability
Clair vulnerability scanner, 50, 129
pet servers, cattle containers, 53
security, 128

context of process interactions, 123
continuous integration and continuous delivery

(see CI/CD)
control plane definition, 175
convolutional neural networks (CNNs), 28
Cooper, Bradley, 37
CoreOS operating system of OCP, 102

CRI-O engine within, 102
immutable, 102
Red Hat Enterprise Linux base, 123
security benefits, 123

Costco and GraphQL APIs, 80
costs

Acumen Curve, 31
data breach costs, 110, 113
dynamic (metered) pricing models, 9, 29, 66
PaaS providers, 71
SaaS delivery platforms, 76
savings of cloud, 6

capability over savings, 15, 27, 81
serverless pay per computation, 80
subscription license for SaaS, 74

COVID-19 digital lessons, 3-5, 131-133
hacking increasing, 8, 110

CRI-O engine in CoreOS, 102
Custom Resource Definition (CRD), 178
CVE (see Common Vulnerabilities and Expo‐

sures)

D
Data Acumen Curve, 31
data gravity, 134, 151
data persistence layer, 59

(see also storage of data)
data security concerns, 25, 29

(see also security demands of cloud)
data breach case study, 114-116
data breach costs, 110, 113
forensics investigation of breach, 130
personal information, 112

datacenters as infrastructure as a service, 64
COVID-19, 131

deployment
application pods, 104
automation of, 167
canary deployments, 184
CI/CD (see CI/CD)
cloud capability, 15
containers for, xvii

(see also containers)
enterprise hardening of open source, 108
Kubernetes container orchestration, 10
load balancing, 102
more hosts, more fault tolerance, 94, 95
multiple cloud service providers, 20

distributed cloud unifying, 20
platform as a service, 70, 72
private or on-premises cloud, 18
Quay registry, 129
security, 148
Source-to-Image application management,

103, 148

194 | Index

DevOps (development operations)
about hybrid cloud strategy, xviii
API economy, 76
automation, 169
CI/CD

cloud usage pattern, 59
Tekton pipelines, 184

data storage tools, 140
Helm package manager, 178
microservices developed independently, 88,

92
modernization mindset, 44
pet servers, cattle containers, 53
platform as a service, 70-74

fundamental concepts, 73
security mindset, 44, 125-127

vulnerability scanning, 129
serverless computing, 81
shift left, 86
write once, run anywhere paradigm, 26, 85,

95
digital transformation lessons, 3-5, 131-133
disaster recovery (DR), 135

backup and recovery, 138
discretionary access control (DAC), 121
distributed cloud

about “Cloud Chapter 2” strategy, 17
answer for how to cloud, 27-31

build once, run anywhere, 26, 85, 95
challenges of, 21
edge computing, 19
expertise to achieve, 22
hybrid cloud term referring to, 22
latency, 133
load balancing, 101
multicloud, 20
on-premises, 17

managed services, 18
one cloud to drive them all, 21

distributed computing fallacies, 181
DNS name consistency, 101
Docker

containerization and, 47, 97
Docker CLI, 49
open source model, 49
virtual machines contrasted, 48

Docker Hub repository, 49
Quay for private use, 50, 129

Dockerfile, 49

Kubernetes deprecating, 54
storage management via Podman, 142

Dynamic Application Security Testing (DAST),
148

dynamic pricing models, 9

E
edge computing, 19
encrypting all data, 24
endpoints via REST API, 78
enterprise hardening, 108
event-driven computing via function as a ser‐

vice, 82
evolution of cloud

building hybrid cloud, 16
capability over cost savings, 15, 27

tie business initiatives to cloud, 37
“Cloud Chapter 2” strategy, 10

(see also “Cloud Chapter 2” strategy)
cloud is actually hybrid, 14
hybrid cloud value delivered, xvi, xviii, 11,

16
internet prevailing, 13
Learning Never Ends culture, 36
managed services, 18
social-mobile-cloud, 58

(see also usage patterns of the cloud)
extensibility of Kubernetes, 104
external load balancing, 103

F
failure

Alertmanager, 106, 188
availability zones for clouds, 69
backup and recovery, 138
cloud regions, 69
load balancing containers, 93, 101
microservice independence, 79

resiliency of microservices, 93
stateless design, 93

reconstituted containers, 138
resiliency of cloud, 7

Kubernetes, 102
fault tolerance

availability zones strengthening, 69
deploying across hosts, 94, 95

federated namespaces, 150
federated secrets, 150
Flexera Cloud Computing Trends, 20

Index | 195

forensics investigation of data breach, 130
forking in a repository, 109
function as a service (FaaS), 82

event-driven computing, 82

G
Gartner Hype Cycle, xv
Google App Engine, 45
Grafana, 106, 187
GraphQL API, 80
Gray, Thomas, 112
greenfield apps on the cloud, 2

“Cloud Chapter 1” strategy, 10

H
hacking increasing, 8, 110
Hadoop as a Service (HaaS), 141
HAProxy load balancing, 103
hardware virtualized

cloud capability, 9
infrastructure virtualization, xvii, 157

HashiCorp Terraform, 180
heavyweight nature of legacy applications, 98
Helm package manager, 177

Helm Charts, 177
Heroku, 45

Twelve-Factor App document (Wiggins), 46
high availability (HA)

business continuity, 135
Kubernetes designed for, 102
Master nodes, 106
private or on-premises cloud, 18

high performance computing via bare metal as
a service, 67

Hightower, Kelsey, 51, 163
horizontal scaling, 90

Kubernetes handling, 101
hosted versus managed services, 61
human error and complexity, 50
hybrid multicloud strategy

capability, not destination, xvi, 9, 14, 60
tie business initiatives to cloud, 37

“Cloud Chapter 2” strategy, 10, 16
answer for how to cloud, 27-31
build once, run anywhere, 26, 85, 95
distributed cloud, 17-21
distributed cloud challenges, 21
distributed has one primary cloud, 21
innovation captured, 27

cloud refers to hybrid cloud, 14
hybrid cloud definition, xvi
hybrid cloud is distributed cloud, 22
hybrid multicloud definition, 8

unified interface needed, 9, 17, 19
orchestration across vendors, 155

(see also automation)
portability of workload, xvi, 35, 50
unique businesses, unique answers, 22, 28
value derived from, xvi, xviii, 11, 16

build once, run anywhere, 26, 85, 95
innovation captured, 27

hyper-converged containerization, 141

I
IaaS (see infrastructure as a service)
IBM Cloud Satellite, 18

example of use, 20
IBM Institute for Business Value study, 29
IBM security suite, 124
IBM Storage, 141
identity and access management (IAM), 119
infrastructure

Ansible infrastructure as code, 158
infrastructure as code, xvii
Kubernetes and Terraform, 180
orchestration platform emulating ethos of,

10
performance demands of cloud, 7

scalability, 9
public-private cloud blurring, xvii
Terraform infrastructure tool, 180

infrastructure as code, 157
infrastructure as a service (IaaS), 64-67

availability zones, 69
bare metal infrastructure, 67

pizza as a service example, 63
cloud regions, 69
foundation for other services, 69
metered pricing, 66
multitenant infrastructure, 68-70

pizza as a service example, 63
security drawback, 68

pizza as a service example, 62
raw compute resources delivered, 66
SaaS vendors buying, 75
security drawback, 68

innovation captured, 27
internal load balancing, 103

196 | Index

internet prevailing, 13

J
Jenkins automation server, 184

K
Keycloak, 150
kubectl definition, 175
Kubernetes

about, 39, 101
how to pronounce, 50
K8s name, 51
vendor deployments differing, 20

about orchestration of containers, xvii, 10
lost microservice handling, 95
more hosts, more fault tolerance, 94, 95
operating system for containers, 101-104
resiliency against failure, 102

Ansible versus, 155
CI/CD not native, 184
containerized application data storage, 140
explained

about need for control, 50
beginning of journey, 51
complex but declarative, 52
control loop, 178
Docker deprecated, 54
infrastructure, 180
open source, 175
pet servers, cattle containers, 53
scaling multiple applications, 52
self-healing, 54, 178
terminology of, 173

explained day by day
Day 1: Helm package management, 177
Day 2: Kubernetes operators, 178

extensibility, 104
federated namespaces, 150
federated secrets, 150
infrastructure ethos emulated, 10
load balancing, 101

DNS name consistency, 101
external load balancing, 103
HAProxy, 103
internal load balancing, 103
microservice failure, 93, 101
rollout, 102

managed services, 18
OpenShift Origin Kubernetes Distribution

about, 188
open source, 175
role-based access control, 188

role-based access control, 188
definition, 175

secure orchestration, 149
Security Context Constraints, 148
security vulnerabilities, 116
service discovery, 101
service meshes, 181
state of cluster defined by, 104
terminology, 173
Terraform for infrastructure, 180

public registry, 181
training

CNCF certifications, 177
CognitiveClass.ai, 39

L
latency, 133
Learning Never Ends culture, 36
legacy applications

cloud value and, 40
dependencies, 98

data gravity, 133, 140
microservices contrasted, 87-89
modernization process

Cloud Acumen Curve, 95
containerization, 99
refactoring, 97
repackaging, 97
replatforming, 96
stages of, 95
virtualization, 98

scaling, 87, 89, 90
vertical scaling, 90

shifting to cloud as is, 2
“Cloud Chapter 1” strategy, 10
platform as a service, 46

lightweight approach of containerization, 98
Linux containers as basic unit, 97

container engine, 99
Control Groups (cgroups), 101, 123
CoreOS operating system of OCP, 102

CRI-O engine within, 102
immutable, 102

Linux operating system for all, 99
namespaces, 99, 123
Netfilter rules, 103

Index | 197

security vulnerabilities, 116
discretionary access control, 121
Linux Security Modules, 121

SELinux (Security-Enhanced Linux), 97, 100
mandatory access control, 100, 122
Zero Trust security, 121

load balancing
DNS name consistency, 101
external load balancing, 103
HAProxy, 103
internal load balancing, 103
Kubernetes, 101
microservice failure, 93, 101
rollout, 102
scaling by OpenShift Container Platform,

103
logging, 103, 106

M
managed services, 18

hosted versus, 61
Red Hat OpenShift Container Platform, 18

management of containerized applications, 138
mandatory access control (MAC), 100, 122
Manufacturing 4.0 assembly lines, 28
Master nodes, 104, 106

security, 149
metered pricing models, 9, 29, 66
methods of RESTful services, 78
microservices architecture

about, xvii, 79
advantages of, 79
one task per microservice, 79, 89

Amazon web pages, 2
application development history, 43
applications composed, 50, 79

independent development, 79, 88, 92
platform as a service, 70, 73

automation of DevOps, 169
failure resiliency, 93

independence of microservices, 79
more hosts, more fault tolerance, 94, 95
stateless design, 93

function as a service (FaaS), 82
management, 138
modernization mindset, 44, 92
monolithic applications contrasted, 87-89
orchestration of microservices, 94
REST APIs, 78, 80

one job per API, 79
scaling, 89, 91

horizontal scaling, 90, 101
selecting components to scale, 91
stateless design, 93

security of, 113, 125-127
vulnerability scanning, 129

security versus, 25, 125
state modification, 93
twelve factor best practices, 46

mission-critical business processes, 22
modernization mindset, 8-10

applications composed, 50, 79
independent development, 79, 88, 92
platform as a service, 70, 73

data storage challenges, 133
DevOps, cloud, microservices, 44
process of modernizing

Cloud Acumen Curve, 95
containerization, 99
refactoring, 97
repackaging, 97
replatforming, 96
stages of, 95
virtualization, 98

ranking projects to modernize, 22
scaling in containerized world, 92
serverless as newer cloud, 82
twelve factors best practices, 46
write once, run anywhere paradigm, 26, 85,

95
Monday.com as SaaS, 75
monitoring and observability, 185

compliance monitoring, 130, 144, 148
OpenShift Container Platform, 103
StackRox container monitoring, 129

monolithic applications, 41, 79
data storage, 140
dependencies, 98

data gravity, 133, 140
microservices contrasted, 87-89
modernization process

Cloud Acumen Curve, 95
containerization, 99
refactoring, 97
repackaging, 97
replatforming, 96
stages of, 95
virtualization, 98

198 | Index

scaling, 87, 89, 90
vertical scaling, 90

multicloud
definition, 8
distributed cloud for, 20
falling into, 9

unified interface needed, 9, 17, 19
survey on use of, 20

multitenant infrastructure, 68-70
availability zones, 69
cloud regions, 69
PaaS public cloud model, 46
pizza as a service example, 63
security drawback, 68
security via operating system, 145

MySQL application example, 49

N
namespaces, 99, 123

federated namespaces, 150
network security, 150

software-defined networking, 150
National Vulnerability Database (NVD), 114

Common Vulnerabilities and Exposures,
114, 116
Clair vulnerability scanner, 129

Netfilter rules, 103
Network Address Translation (NAT), 168
network isolation for security, 150
networking as IaaS, 65
nodes

definition, 174
Master nodes, 104, 106

security, 149
Worker nodes, 104, 105

O
observability, 185
OCP (see OpenShift Container Platform)
on-premises workloads

“Cloud Chapter 2” strategy, 28
cloud containers with, 17
data gravity, 134
managed services, 18

online resources (see resources online)
Open Container Initiative (OCI)

agile IT foundation, 10
CRI-O engine within CoreOS, 102
Kubernetes, 54

open source software (OSS)
about, 109
Docker, 49
enterprise hardening, 108
innovation speed, 108

change can break services, 86, 108
Kubernetes, 175
security

about, 110
access control lists, 112
attack surfaces, 112
attack vectors, 112
case study, 114-116
Common Vulnerabilities and Exposures,

114, 116
container security challenges, 127-130
data breach costs, 110, 113
discretionary access control, 121
forensics investigation of breach, 130
Kubernetes vulnerabilities, 116
Linux kernel vulnerabilities, 116
mandatory access control, 122
National Vulnerability Database, 114
OSS tools used to hack OSS, 111
public clouds and security, 111-114
remote code execution, 113
vulnerabilities, 110
Zero Trust, 117-125

Tekton CI/CD pipelines, 184
Terraform (HashiCorp), 180
upstream in source repository, 176
vendor lock-in from, 163

open standard
Kubernetes and Open Container Interface,

54
OpenShift Container Platform, 10

vendor agnostic, 10
OpenShift Container Platform (OCP), 129

all together overview, 104-106
built upon containerized services, 102
CoreOS operating system, 102

CRI-O engine within, 102
immutable, 102

data storage, 140
OpenShift Data Foundation, 142

distributed cloud managed services, 18
IBM Cloud Satellite, 18
multicloud example, 20

etcd clustered database for state, 102, 104

Index | 199

Master node hosting, 104, 106
Kubernetes within, 10, 101, 105

extensibility, 104
operating system for containers, 101-104

logging and monitoring, 103, 106
nodes

definition, 174
Master nodes, 104, 106
Worker nodes, 104, 105

open standard, 10
vendor agnostic, 10

scaling via load balancer traffic, 103
Security Context Constraints, 148
Source-to-Image application management,

103, 148
stack illustrated, 105

OpenShift Data Foundation (ODF), 142
OpenShift Origin Kubernetes Distribution

(OKD; Red Hat)
about, 188
open source, 175
role-based access control, 188

operating systems
cloud native development, xvii
container virtualized dependencies, xvii, 91
containers like a process, 97, 123

stopped containers in memory, 143
CoreOS for OpenShift, 102

CRI-O engine within, 102
immutable, 102

Kubernetes platforms as, 10, 51, 101-104
legacy applications, 98

virtual machines, 136
Linux for all containers, 99
multitenancy security, 145

operators
about, 178
lifecycle manager, 104, 106
OperatorHub.io, 104

orchestration of microservices, 94
across vendors via automation, 155

(see also automation)
orchestration platforms

containerized application data storage, 140
infrastructure ethos emulated, 10
Kubernetes for, 10
secure orchestration, 149
Security Context Constraints, 148
software-defined networking, 150

overprovisioning
avoided in microservice scaling, 92

P
PaaS (see platform as a service)
package manager Helm, 177
pandemic (see COVID-19 digital lessons)
The Paradox of Choice (Schwartz), 188
patterns of use of the cloud (see usage patterns

of the cloud)
payment methods (see pricing models)
performance demands of cloud, 7

latency, 133
legacy data storage, 137

personally identifiable information (PII), 112
platform as a service (PaaS), 45, 70-74

modernization methodology document, 46
pizza as a service example, 62

Podman management of containers, 142
pods

application pods
Master nodes, 104
Worker nodes, 104, 105

definition, 150, 175
namespace security, 150
Pod Security Policy, 148

policies
compliance policies, 130
Pod Security Policy, 148
role-based access control, 175
SELinux securing an application, 100
StackRox container monitoring, 129

Ponemon Institute data breach costs report,
110

portability of workload, xvi, 35, 50
business continuity, 136
legacy applications, 98
regulatory compliances and, 144, 148
write once, run anywhere paradigm, 26, 85,

95
pricing models

dynamic (metered), 9, 29, 66
PaaS providers, 71
SaaS delivery platforms, 76
serverless pay per computation, 80
subscription license for SaaS, 74

principle of least privilege (POLP), 117-125
private clouds

200 | Index

hosting off-premises, virtually, or on public
clouds, xvii

managed services, 18
Prometheus, 187

Grafana, 106, 187
OpenShift Container Platform, 103, 106

provisioning automated, 170
public clouds

dynamic (metered) pricing models, 9, 29, 66
hosting on-premises or as private clouds,

xvii
distributed clouds for, 17

managed services, 18
hosted versus, 61

SaaS rentable via, 76
security and, 111-114

access control lists, 112
unique businesses, unique answers, 28
virtual private clouds, xvii

security isolation, 65
Puppet for automation, 156

Q
quantum computing as hybrid cloud, 27
Quay registry (Red Hat)

Clair vulnerability scanner, 50, 129
private use container repository, 50, 129

R
ransoms increasing, 8, 110
Red Hat Enterprise Linux (RHEL)

CoreOS based on, 123
CoreOS in place of, 102

Red Hat OpenShift Container Platform (OCP;
IBM)
about, 16
all together overview, 104-106
built upon containerized services, 102
CoreOS operating system, 102

CRI-O engine within, 102
immutable, 102

data storage, 140
OpenShift Data Foundation, 142

distributed cloud managed services, 18
IBM Cloud Satellite, 18
multicloud example, 20

etcd clustered database for state, 102, 104
Master node hosting, 104, 106

Kubernetes within, 10, 101, 105

extensibility, 104
operating system for containers, 101-104

logging and monitoring, 103, 106
nodes

definition, 174
Master nodes, 104, 106
Worker nodes, 104, 105

open standard, 10
vendor agnostic, 10

scaling via load balancer traffic, 103
Security Container Module, 129
Security Context Constraints, 148
Source-to-Image application management,

103, 148
stack illustrated, 105

Red Hat OpenShift Data Foundation (ODF),
142

Red Hat Security Container Module, 129
Red Hat Single Sign-On (RH-SSO), 150
registries

backup and recovery, 138
managing containers with Podman, 142
Quay, 50, 129
security, 128
Terraform public registry, 181

remote code execution (RCE), 113
repositories

Docker Hub, 49
forking, 109
Galaxy for Ansible Roles, 167
Kubernetes project, 175
open source software, 109
OperatorHub.io, 104
Quay, 50, 129
Source-to-Image application management,

103
resiliency of cloud, 7
resources online

Docker Hub repository, 49
Galaxy for Ansible Roles, 167
Kubernetes terminology, 174
National Vulnerability Database, 114
OperatorHub.io, 104
twelve factors of application development,

46
US Government Accountability Office, 114

REST APIs, 78, 80
GraphQL API instead, 80
one job, 79

Index | 201

RESTful service methods, 78
security testing via, 148
state of microservice, 93

verbs of, 79
Rodriguez, Steve, 36
role-based access control (RBAC), 175

Kubernetes, 188
rollouts by Kubernetes, 102
runtime environment evaluation, 129

S
Samba client security vulnerability, 124
sandbox, 70
scaling

about, 89
automation as solution, 155

(see also automation)
cloud scalability, 9

multiple applications within system, 52
infrastructure as a service, 65
microservices, 89, 91

horizontal scaling, 90, 101
selecting components to scale, 91
stateless design, 93

monolithic applications, 87, 89, 90
vertical scaling, 90

OpenShift Container Platform, 103
platform as a service, 71
SaaS business model, 74
serverless computing, 81
spiky workloads, 65
storage and compute independently, 141
twelve factor best practices, 46

scripting for configuration management, 158
secrets federated, 150
Secure Service Containers, 25
Security Context Constraints (SCCs), 148
security demands of cloud, 8, 23

attack surfaces, 112
attack vectors, 112
best practices

about, 144
deployments policy-based automation,

148
external data or code, 146
federation of containerized applications,

150
multitenancy security, 145
network isolation and API endpoint, 150

orchestrating securely, 149
software build processes, 147

Confidential Computing, 24
container security challenges, 127-130
container security components, 97
data breach costs, 110, 113
DevSecOps mindset, 44, 125-127
encrypting all data, 24
forensics investigation of breach, 130
identity and access management, 119
Linux Control Groups, 101
Linux Security Modules, 121

discretionary access control, 121
multitenant vulnerabilities, 68
National Vulnerability Database, 114

Common Vulnerabilities and Exposures,
114, 116

open source software
about, 110
case study, 114-116
vulnerabilities, 110

principle of least privilege, 117-125
public clouds and security, 111-114

access control lists, 112
Red Hat Security Container Module, 129
remote code execution, 113
role-based access control, 175
Secure Service Containers, 25
security concerns, 25, 29
SELinux (Security-Enhanced Linux), 97, 100

mandatory access control, 100, 122
Zero Trust security, 121

Zero Trust, 24, 117-125
Security Information and Event Management

(SIEM) system, 130
self-healing Kubernetes, 54, 178
SELinux (Security-Enhanced Linux), 97, 100

mandatory access control, 100, 122
Zero Trust security, 121

sensitive personal information (SPI), 112
data breach case study, 114-116

serverless computing, 80
function as a service (FaaS), 82
pay per computation pricing model, 80
scaling, 81

service meshes, 181
service-oriented architecture (SOA), 42
Shadow IT, 9
shift left, 86

202 | Index

security, 125
single points of failure (SPOF), 69
single responsibility principle, 79
site reliability engineering (SRE) team, 18
software as a service (SaaS), 74-82

API economy, 76
delivery platforms

API composable, 76
installable as traditional software, 76
rentable via public cloud, 76

pizza as a service example, 61
serverless, 80
subscription license, 74
user interface driving user experience, 76
vendors buying IaaS, 75

software-defined networking (SDN), 150
Source-to-Image (S2I) application manage‐

ment, 103, 148
spiky workloads, 65

(see also scaling)
StackRox, 129
standardization

containers providing, 47, 49, 51
business continuity, 137
Dockerfile, 49

containers requiring, 135
open standard (see open standard)

state of cluster
backup and recovery, 138
etcd clustered database store, 102, 104

Master node hosting, 104, 106
Kubernetes defining, 104

state of microservice, 93
backup and recovery, 138

stateless design of microservices, 93
containers stateless, 140

Static Application Security Testing (SAST), 148
storage of data

container persistence, 133, 136, 140
adding storage, 142
container-ready storage, 141
stopped container in memory, 143

containerization requirements, 138
IBM Storage, 141
volumes, 140

COVID-19, 131
data gravity, 134, 151
data persistence layer, 59
data protection strategy required, 8

IBM Storage, 141
infrastructure as a service, 65
modernization challenges, 133, 137
OpenShift catalog of storage providers, 140
persistent storage for containers, 140

container-native, 141
container-ready, 141

Podman management of storage, 142

T
Tekton CI/CD pipelines, 184
Terraform (HashiCorp)

infrastructure tool, 180
automation, 157

public registry, 181
training

Kubernetes certifications, 177
Kubernetes via CognitiveClass.ai, 39
multiple cloud service providers, 20
private or on-premises cloud, 18

trends in cloud computing reported, 20
trust removed from system for security, 24,

117-125
Twelve-Factor App document (Wiggins), 46
types of uses for the cloud (see usage patterns

of the cloud)

U
US Government Accountability Office (GAO),

114
US National Security Agency (NSA), 121
usage patterns of the cloud

about, 57
overview, 60
takeaway, 82

about evolution of, 58
social-mobile-cloud, 58

as-a-service definition, 60, 63
API development, 77
pizza as a service example, 61-64

CI/CD in application development, 59
function as a service (FaaS), 82
infrastructure as a service (IaaS), 64-67

bare metal infrastructure, 63, 67
pizza as a service example, 62
SaaS vendors buying, 75
security drawback, 68

multitenant infrastructure, 68-70
pizza as a service example, 63

Index | 203

security drawback, 68
platform as a service (PaaS), 70-74

pizza as a service example, 62
serverless computing, 80

function as a service (FaaS), 82
scaling, 81

software as a service (SaaS), 74-82
API economy, 76
pizza as a service example, 61
serverless, 80
subscription license, 74
user interface driving user experience, 76
vendors buying IaaS, 75

user interface and user experience, 76

V
vendors

build once, run anywhere, 26, 85
distributed cloud service, 17-21
enterprise hardening, 108
innovation captured, 27
multicloud definition, 8
orchestration across via automation, 155

(see also automation)
portability of workload, xvi, 35, 50
SaaS business model, 74

buying IaaS for SaaS, 75
selecting for core competencies, xvi
vendor lock-in

containers avoiding, 49
open source software causing, 163
PaaS platforms, 46

vendor-agnostic
Kubernetes, 54
open standard OCP, 10

vertical scaling, 90

virtual machines (VMs)
cloud capability, 9
containers contrasted, 48, 136
infrastructure virtualization, xvii
monolithic applications, 87
performance loss versus bare metal, 68, 81
security concerns, 25
service-oriented architecture stepping stone,

43
virtualization of legacy applications, 98

virtual private clouds (VPCs)
deployment automation, 167
hosting private clouds, xvii
security isolation, 65

virtual private networks (VPNs)
hosting private clouds, xvii
VPCs enabling, 65

VMware with Kubernetes on-premises, 17
volumes for container storage, 140

W
waterfall development approach, 41

agile development versus, 42
The Weather Company app example, 76
Web Single Sign-On, 150
WebSphere Hybrid Edition, 97
Wiggins, Adam, 46
Worker nodes, 104, 105

Y
YAML files for Ansible, 158

Z
Zero Trust architecture, 24, 117-125

204 | Index

About the Authors
Paul Zikopoulos is an award-winning professional writer and speaker who’s been
consulted on the topic of AI and big data by the popular TV show 60 Minutes. At the
time this book was written, Paul was IBM’s VP of Skills Vitality and Enablement for
its Technology Sales group, which encompasses its entire portfolio of software and
hardware.

Paul’s been named to dozens of global “Experts to Follow” and “Influencers” lists,
including Analytics Insight’s “Top 100 Global AI & Big Data Influencers.” Paul’s writ‐
ten 21 books (including The AI Ladder and three “For Dummies” titles) and over 360
articles during his accidental 26-year career as a data nerd. Paul leads from the front,
owning accountability and strategic direction in a “tech years are like dog years”
world for the entire IBM Technology Unit’s (all IBM software and hardware) sales,
tech sales, and partner ecosystem learning journeys and upskilling programs.

You’ll find Paul taking a very active role around women in technology (he’s a seated
board member for Women 2.0, who he became involved with after his tweet was
mentioned on the TV show, The View), general workplace inclusivity (completing an
intensive D&I certificate at Cornell University), and a sponsor of Coding for Veterans
Canada. In addition, Paul sits on the world recognized Masters of Management Ana‐
lytics & AI program boards at Canada’s prestigious Queen’s University.

Paul’s always keeping with his grass roots—a newbie with no computer courses before
coming to IBM. He knows on his dumbest days he’s never as dumb as he feels, and on
his smartest days, he’s never as smart as he feels either. Ultimately, Paul is trying to
figure out the world according to Chloë—who competitively rides a horse he insisted
be show-named “Better than a Boyfriend.” Follow him on Twitter at @BigData_paulz.

Christopher Bienko is a data enthusiast, photographer, and outdoorsman. Raised in
Halifax, Nova Scotia and now calling both San Francisco, CA and Jackson Hole, WY
home, he’s the author of several publications on modern database and analytics tech‐
nologies, including Big Data Beyond the Hype (McGraw-Hill) and multiple IBM Red‐
Books. His specializations in database-as-a-service and distributed cloud computing
have made him a trusted advisor to hundreds of global marketplace customers, as
they look to transform legacy business services into cloud native and AI-ready appli‐
cations. As a principal within IBM’s Worldwide Technology Sales organization, he
supports enterprises in their adoption of multicloud platforms and modernization
strategies with Red Hat OpenShift, IBM Cloud Paks, and open source tools. When
not in front of clients, you can always find him behind the lens of a camera.

Chris Backer is the Business Unit Executive (BUE) for IBM’s Systems Software and
Hybrid Cloud Platform where he leads global client adoption. He and his team of Sol‐
ution Engineers are helping clients from all industries around the globe design and
implement digital transformation strategies that incorporate secure hybrid multi‐
cloud capabilities. A 21-year veteran in the IT industry, Chris has spent his career
focused on helping clients increase their competitive advantage through innovative
use of automation, analytics, and cloud technology.

Chris was previously the BUE for the IBM Watson Customer Engagement team
where he led Solution Engineering for its Marketing and Behavioral Analytics portfo‐
lio. He led the transition from delivering traditional on-premises capabilities to
entirely SaaS-based offerings for IBM clients.

Chris has also led several Tiger Teams within IBM whose sole purpose was to bring
new and emerging technology capabilities to market. His experience building and
leading innovative first-of-a-kind technology projects spans across datacenter auto‐
mation, mobile application development, IoT, connected vehicle, behavioral analytics,
fraud analytics, and now hybrid cloud.

An avid outdoorsman, Chris enjoys spending his free time exploring all that nature
has to offer and when he isn’t immersed in technology you will find him in a Jeep
traversing trail systems that offer breathtaking views and challenging obstacles along
the route.

Chris Konarski is a thought leader with 20+ years in technology. He is known for his
innovative approaches to technology sales and execution with an emphasis on help‐
ing customers unleash speed and innovation through digital transformation. He has
worked throughout his career in the most challenging, high-profile sales and techni‐
cal leadership roles in recognition of his innovation, culture building, and consis‐
tency of results. He has achieved outstanding success developing new business
models leveraging technology, services, and solutions to help customers use technol‐
ogy as a competitive advantage.

Chris has repeatedly demonstrated the ability to develop and lead talented teams,
accelerate go-to-market capabilities, and develop modern approaches—supporting
rapid growth for world-class technology enterprise business units at IBM. His deep
technical expertise and passionate leadership experience spans many areas: manufac‐
turing, development, infrastructure, software, security, AI, and hybrid cloud.

Chris currently serves as Vice President of Technical Sales for IBM, where he has led
the global technical sales for all business units. Chris has an MBA from Rensselaer
Polytechnic Institute and a BSc in Chemical Engineering from New Jersey Institute of
Technology. To balance his love for tech, he is an avid outdoorsman with a passion
for nature, so if you can’t reach him then he is likely off the grid chasing elk or 100
miles offshore catching tuna. Connect with Chris on LinkedIn to learn more.

Sai Vennam is a Solutions Architect at Amazon Web Services, but started his career
at IBM as a developer, developer advocate, and product manager for nearly eight
years. As an advocate of containers, Kubernetes, and everything under the sun cloud-
native, he aims to grow adoption by creating digital content such as “lightboard” vid‐
eos on YouTube. Chances are if you’ve looked into hybrid cloud or containers on
YouTube, you’ve seen his face! In addition, he’s developed free innovative lab experi‐
ences to teach Kubernetes and OpenShift.

His love for tech continues into his personal life, where he builds custom smart home
automation with IoT devices. His metric of success is achieved when his wife learns
and actually uses the home automation! In addition, he loves to cook Indian food and
attend music shows and festivals.

Colophon
The animal on the cover of Cloud Without Compromise is a black swan (Cygnus atra‐
tus). This large bird is native to Australia and Tasmania and can be found most often
in the southern wetlands of those areas. They have been introduced as pets in New
Zealand and North America, as well as in Europe, where they can now be found in
the wild as well.

Black swans can live in fresh, salt, or brackish water, preferring habits with plenty of
the aquatic foliage that makes up the majority of their diet, though they also eat
insects on occasion. They use a variety of calls and visual signs to communicate, and
have weak high-pitched voices. When threatened, these birds will raise their should‐
ers or loudly flap their wings to ward off or warn predators or other swans.

Black swans often have the same mate for life, engaging in what is known as the “tri‐
umph ceremony” during courtship. This ceremony, which also serves to strengthen
bonds between parents and children or as a territorial display, involves a pattern of
calls, neck choreography, and synchronized swimming patterns. Both parents will
incubate eggs until hatching. The cygnets—baby swans—can feed and swim soon
after hatching, although they will ride on their parents’ backs when approaching
deeper waters.

Despite the fact that their eggs and fledglings are preyed on by a variety of predators,
populations of black swans are very healthy, with upwards of tens of thousands of
birds in New South Wales. As such, their current conservation status is “Least Con‐
cern.” Many of the animals on O’Reilly covers are endangered; all of them are impor‐
tant to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from British Birds. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

	Copyright
	Table of Contents
	Preface: Who This Book Is For
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Our Collective Thank Yous and Acknowledgments
	Our Personal Dedications and Reflections
	Paul Zikopoulos
	Christopher Bienko
	Chris Backer
	Chris Konarski
	Sai Vennam

	Introduction
	Chapter 1. Cloudy Skies Are the Best Forecast Ever
	Thrivers, Divers, and New Arrivers
	Business Vaccination: The Arriver’s Guide
	Cost Takeout
	Resiliency
	Performance
	Security
	Modernization
	AI

	So Why Are Cloudy Skies the Best Forecast Ever?

	Chapter 2. Evolution of Cloud
	Are You on the Intranet, Internet, or Extranet? Nah—Just Internet
	Are You on a Private Cloud, Public Cloud, or Community Cloud? Nah—Just Cloud
	History Repeats Itself: From Granularity of Terms to General Terms
	Hybrid Cloud’s “Chapter 2”: Distributed Cloud
	Distributed Cloud On-Premises

	Living on the Edge: Distributed Cloud
	Distributed Cloud for Multicloud
	A Caveat to Distributed Cloud
	Distributed Cloud: The Ultimate Unification Layer

	Industry Expertise in Mission-Critical Business Processes
	Proven Security, Compliance, and Governance
	Confidential Computing and Zero Trust Architectures
	Build Once and Run Anywhere with Consistency
	Capture the World’s Innovation
	Cloud Solely for Savings Could Leave You with Cravings: A Trend of Repatriation
	Be Ye a Renovator, Innovator, or Both? How You Spend Budget
	Adopting a “Learning Never Ends” Culture: A Cloud Success Secret Ingredient
	Ready, Set, Cloud!

	Chapter 3. “Cloud Chapter 2”: The Path to Cloud Native
	Eras of Application Development
	In the Beginning: Monoliths and Waterfalls
	SOA Is the SOS to Your Monolith
	Microservices: What SOA Would Be If It Was Version 2.0
	First “Pass” on PaaS
	Lessons Learned: The Rise of Containers
	But Wait, Don’t VMs Do the Same Thing!?
	Docker Brings Containers to the Masses

	A Practical Understanding of Kubernetes
	Starting the Kubernetes Journey

	Time to Start Building

	Chapter 4. Cloud Computing: Patterns for The What, The How, and The Why
	Patterns of Cloud Computing: A Working Framework for Discussion
	Order Up: Pizza as a Service
	Do (Almost All of) It Yourself: Infrastructure as a Service
	IaaS has a Twin Sibling: Bare Metal

	Noisy Neighbors Can Be Bad Neighbors: The Multitenant Cloud
	Cloud Regions and Cloud Availability Zones for Any As-a-Service Offering

	Building the Developer’s Sandbox with Platform as a Service
	Digging Deeper into PaaS
	Composing in the Fabric of Cloud Services

	Consuming Functionality Without the Stress: Software as a Service
	The Cloud Bazaar: SaaS and the API Economy
	All You Need Is a Little Bit of REST and Some Microservices
	It’s Not Magic, But It’s Cool: The Server in Serverless?
	Serverless has a Kid! Function as a Service
	The Takeaway

	Wrapping It Up

	Chapter 5. Shift Left
	Monolithic and Microservices
	Separating the Old from the New
	Microservices Dance to a Different Fiddle
	Scaling: One of These Things Is Not Like the Other
	Orchestration: Amplifying the Challenges of Scale

	Write Once, Run Anywhere
	Three Stages of Approaching Modernization Incrementally

	Comparing Legacy Applications, Containerized Applications, and Virtual Machines
	Namespaces: What’s in a Name?
	Building an Operating System for Containers

	It’s OK to Have an Opinion: Opinionated Open Source
	Putting It All Together

	Chapter 6. Hackers, Attackers, and Would-Be Bad Actors: Thoughts on Security for Hybrid Cloud
	Just to Level Set: What’s This Open Source Stuff?
	Data Breaches, Exploits, and Vulnerabilities
	Hackers Don’t Care Where You Work: Public Cloud and Security

	A Case Study in Exploitable OSS
	Did You Leave the Container Door Open?
	Zero Trust in a Hybrid Cloud World
	Importance of Sec(urity) in DevSecOps
	Container Security Visibility 101

	Chapter 7. Data Gravity
	Data Gravity: More Formally Defined
	Container-Ready and Container-Native Storage
	Solving Challenges of Business Continuity in a Containerized World
	Why Storage? Why Now? The Curious Evolution of Persistence for Containers
	Container: May Ye Live Long and Prosper
	Container-Ready and Container-Native: Reinventing Storage for Containerized Applications
	Adding Storage for Containers…The Right Way

	Seven Best Practices for Securing Containerized Data and Applications
	1. Multitenancy and the Unusual World of Container Host Operating Systems
	2. Trusting Your Sources
	3. Protecting the Software Build Process
	4. Wrangling Deployments on Clusters
	5. Orchestrating Securely
	6. Lockdown: Network Isolation and API Endpoint Security
	7. United Federation of Containerized Applications

	Readying Data for the New Normal

	Chapter 8. Ecosystem for Automation
	Rethinking Automation for the As-a-Service Era
	More Agency with Agentless Design
	What’s the Play? Architecting for Automation
	Streamlined Automation for the Hybrid Multicloud Era
	Automation for Multivendor Stacks
	Automation for Cloud-Scale Deployments
	Automation for Stress-Free DevOps

	Automation Everywhere and for All

	Appendix A. Speaking Kubernetes and Other Strange-Sounding Names
	The Perfect Open Source Project
	Day 1 on the Job: Helm Package Management
	Day 2 on the Job: Kubernetes Operators to Save the Day
	The Infrastructure…Of Course!
	Making the Network Tractable: Service Meshes
	Testing, Integration, and Deployment
	Monitoring and Observability
	Prometheus
	Grafana
	Alertmanager

	The Paradox of Choice: Red Hat OpenShift

	Index
	About the Authors
	Colophon

