

Databricks Certified Data
Engineer Associate Study Guide

In-Depth Guidance and Practice

Derar Alhussein

Databricks Certified Data
Engineer Associate Study Guide

by Derar Alhussein

Copyright © 2025 Derar Alhussein. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for
most titles (http://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Aaron Black

Development Editor: Shira Evans

Production Editor: Aleeya Rahman

Copyeditor: Liz Wheeler

Proofreader: Kim Wimpsett

http://oreilly.com/

Indexer: Ellen Troutman-Zaig

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

February 2025: First Edition

Revision History for the First
Edition

2025-02-14: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098166830 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,
Inc. Databricks Certified Data Engineer Associate Study Guide,
the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

The views expressed in this work are those of the author and do
not represent the publisher’s views. While the publisher and
the author have used good faith efforts to ensure that the
information and instructions contained in this work are

http://oreilly.com/catalog/errata.csp?isbn=9781098166830

accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-098-16683-0

[LSI]

Preface

Innovative technologies in data engineering empower
companies to leverage their growing data effectively, leading to
improved business outcomes. In this context, platforms like
Databricks have emerged as essential tools for managing,
processing, and analyzing vast amounts of data. However, this
evolution also brings the need for skilled professionals who can
navigate the Databricks platform efficiently and implement
robust data solutions that meet business needs.

Why I Wrote This Book

With over ten years of experience in the data sector, I’ve seen
firsthand how Databricks unlocks the power of big data to drive
business growth across various industries. Throughout my
journey, I have also witnessed how certification programs like
the Databricks Data Engineer Associate can serve as a
meaningful benchmark, validating the skills needed to succeed
in the real world of data engineering.

This book is the result of my passion for teaching and my deep
belief in the importance of hands-on learning. The goal is
simple: to guide you through the concepts, tools, and

techniques that you will need to not only pass the certification
exam but also excel as a data engineer in practical scenarios. By
combining fundamental knowledge with practical exercises, I
hope to provide you with a study guide that is as useful for
building your day-to-day data engineering skills as it is for
earning your certification.

Who This Book Is For

This book is designed for anyone seeking to advance their data
engineering skills, whether you’re just beginning your journey
or already have some experience in the field. It’s tailored
specifically for those preparing for the Databricks Data Engineer
Associate certification, but it also serves as a practical guide for
anyone who wants to gain a deeper understanding of the
Databricks platform and its many capabilities.

The book is ideal for individuals who already have a strong
foundation in SQL and a basic understanding of Python. If you
are familiar with manipulating data using SQL and are looking
to apply those skills within the Databricks platform, this guide
will help you bridge that gap. The choice to focus primarily on
SQL in this book reflects the structure of the certification exam,
where most code-based questions are demonstrated using SQL.
However, for more complex operations where SQL alone is
insufficient, Python is introduced to complement your learning.

What You Will Learn

This book is designed to provide a comprehensive, hands-on
learning experience, covering every topic you’ll encounter on

the Databricks Certified Data Engineer Associate exam. The
curriculum aligns with the latest version of the certification
(V3), ensuring that you are well-prepared for the current exam
requirements.

Throughout the book, you’ll gain a deep understanding of
essential topics, categorized into five broad areas related to the
exam topics:

Databricks Lakehouse Platform
Explore the foundational aspects of the lakehouse
architecture, which brings together the benefits of data lakes
and data warehouses, enabling you to manage data
efficiently.
ELT with Spark SQL and Python
Learn how to extract, transform, and load data using Spark
SQL and Python, focusing on practical techniques that will
enhance your data processing skills.
Incremental data processing
Understand the methodologies for processing data
incrementally, allowing for real-time data updates.
Production pipelines
Discover best practices for building robust production
pipelines using Delta Live Tables and Databricks Jobs,
ensuring your workflows are reliable and scalable.
Data governance

Familiarize yourself with the governance aspects of data
management, including the introduction of Unity Catalog and
its integration with the Hive metastore.

A main emphasis in this book is on the Hive metastore, which
remains an essential part of the current exam version. Although
Databricks has introduced a new governance model, Unity
Catalog, the Hive metastore continues to be a valuable learning
resource, particularly for those starting out in data engineering.
The book leverages the simplicity and accessibility of the Hive
metastore to explain fundamental concepts, such as managing
Delta Lake, which are integral to mastering Databricks.

As Databricks evolves, so do its tools, and Unity Catalog is one of
the newest additions to its data governance model. Although
the Hive metastore remains essential for certification purposes,
this book also introduces Unity Catalog and explains how it
extends beyond the existing metastore, ensuring you are up to
speed with the latest features. By the time you reach Chapter 8,
you’ll understand how both systems work together and be
ready to handle the new governance features.

To help solidify your learning, each chapter ends with a “Sample
Exam Questions” section. These questions mirror the
complexity of the actual certification exam, giving you a clear
sense of what to expect. This practical approach ensures that, by

the end of the book, you’ll have not only covered the necessary
technical content but also developed the exam techniques and
confidence to tackle the real test. Solutions to these questions
are included in Appendix C for your reference.

What Not to Expect

While this book is comprehensive in preparing you for the
Databricks Certified Data Engineer Associate exam, certain
advanced topics and cloud-specific details fall beyond its scope.
Given that Databricks operates as a multi-cloud platform, you
may work on Microsoft Azure, AWS, or Google Cloud. However,
the exam content is cloud-agnostic, focusing solely on
Databricks fundamentals rather than cloud-specific
configurations or integrations.

For beginners setting up a Databricks workspace, Appendix A
provides guidance on creating workspaces across different
cloud providers. However, the core chapters focus strictly on
Databricks itself, omitting platform-specific instructions such as
configuring access to cloud-specific storage systems (e.g., AWS
S3 or Azure Blob Storage). For these specialized cloud
configurations, please consult Databricks documentation
pertinent to your provider.

This book focuses on preparing you for the Associate-level
certification, concentrating on foundational skills and concepts.
For those looking to delve into more advanced aspects of
Databricks or data engineering beyond the certification exam,
consider exploring further resources, documentation, or
advanced-level training. This way, you’ll be equipped with the
foundational knowledge needed to progress smoothly into
more complex areas.

GitHub Repository and
Community

To complement your learning experience, this book includes
hands-on examples and exercises designed to reinforce the
concepts presented in each chapter. The source code for all
these examples is hosted on GitHub (https://github.com/derar-
alhussein/oreilly-databricks-dea). This allows you to experiment
with the material as you progress and see the concepts in
action.

For the best experience with these code examples, I
recommend using Databricks Runtime 13.3 LTS. This specific
runtime version ensures compatibility with the certification
exam content and minimizes the risk of encountering

https://github.com/derar-alhussein/oreilly-databricks-dea

discrepancies from newer, untested features. By following along
with this runtime, you’ll maintain alignment with the exam
requirements and be better equipped to handle exam-related
tasks without unexpected behavior.

The exercises in this book are designed to run on classical
compute resources within Databricks. Serverless clusters are
intentionally avoided, as they do not permit runtime version
selection and might default to newer versions outside the scope
of the certification exam. With classical clusters, you’ll have
more control over your learning environment, ensuring each
example runs consistently and matches the exam experience.

As you progress through the exercises and explore the
Databricks platform, you may encounter questions or technical
challenges that require assistance. For these situations, the
Databricks Community Forum is an excellent support resource.
The forum, accessible at https://community.databricks.com,
allows you to search for previously answered questions or post
your own if you can’t find the information you’re seeking. The
community is active, and responses are often quick and
insightful, coming from both experts and peers within the field.

Conventions Used in This Book

https://community.databricks.com/

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and
file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally
by the user.

Constant width italic

Shows text that should be replaced with user-supplied values
or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

If you have a technical question or a problem using the code
examples, please send email to support@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this
book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Databricks Certified Data Engineer

mailto:support@oreilly.com

Associate Study Guide by Derar Alhussein (O’Reilly). Copyright
2025 Derar Alhussein, 978-1-098-16683-0.”

If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit https://oreilly.com.

How to Contact Us

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)

707-827-7019 (international or local)

707-829-0104 (fax)

support@oreilly.com

https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access this
page at https://oreil.ly/databricks-associate-study-guide.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Watch us on YouTube: https://youtube.com/oreillymedia

mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/databricks-associate-study-guide
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

How to Contact the Author

Follow the author on LinkedIn:
https://www.linkedin.com/in/deraralhussein

Follow the author on Facebook:
https://www.facebook.com/DerarAlhussein

Follow the author on GitHub: https://github.com/derar-alhussein

Visit the author’s website: https://derar.cloud

Acknowledgments

I would like to express my deep gratitude to Lamia Jaafar, my
former manager, who opened the door to my first role as a data
engineer. Her trust and guidance laid the foundation for my
journey in this field. A special thanks to Thomas Lamy, the lead
data architect on my team, for his continued support and
encouragement throughout this journey. His expertise and
leadership have been invaluable, motivating me to elevate my
work to new heights.

I would also like to extend my appreciation to the technical
reviewers, Tristen Wentling, a lead solutions architect at

https://www.linkedin.com/in/deraralhussein
https://www.facebook.com/DerarAlhussein
https://github.com/derar-alhussein
https://derar.cloud/

Databricks and co-author of the O’Reilly book Delta Lake: The
Definitive Guide; Holly Smith, a staff developer advocate at
Databricks; and Yasir Khan, a Databricks instructor at O’Reilly
Media, for their valuable feedback that helped enhance the
quality of this work.

Additionally, it has been a true pleasure to work with the
O’Reilly team! I would like to especially acknowledge Aaron
Black for his early confidence in the project, and my
development editor, Shira Evans, for her excellent organization
and assistance.

Chapter 1. Getting Started with
Databricks

Databricks is transforming the way data and artificial
intelligence (AI) are managed with its innovative Data
Intelligence Platform. This platform offers a unified solution
that addresses the limitations of traditional data systems,
providing a more comprehensive approach to work with data.
In this chapter, we will explore the Databricks Data Intelligence
Platform and its capabilities. We will begin with an overview of
the platform’s architecture and then delve into its key features,
including compute resource creation, notebook execution, and
Git integration.

Introducing the Databricks
Platform

Traditional data management has long relied on two primary
paradigms: data lakes and data warehouses. Each approach
comes with its own strengths and limitations, particularly in the
context of big data processing. Data lakes, while flexible, often
struggle with data quality and governance due to their
unstructured nature. Data warehouses, though structured, can

be rigid and costly, limiting their adaptability to the evolving
demands of diverse, high-volume, and high-velocity data. To
overcome these challenges, enterprises often deploy multiple
systems—data lakes for storing raw data for AI applications, and
data warehouses for business intelligence (BI) purposes.
However, this strategy leads to increased complexity, requires
frequent data transfers, and complicates data governance.
Databricks addresses these issues by offering a unified platform
that supports both data lake and data warehouse functionalities
in a single environment, known as the data lakehouse.

Understanding the Databricks Platform

The Databricks Data Intelligence Platform is an AI-powered data
lakehouse platform built on Apache Spark. A data lakehouse
represents a hybrid solution that combines the best aspects of
data lakes and data warehouses. Specifically, it integrates the
openness, scalability, and cost efficiency of data lakes with the
reliability, strong governance, and performance features of data
warehouses.

To illustrate the concept of a data lakehouse, imagine you have
a vast collection of books (data) that contains various genres,
formats, and authors. Traditionally, two separate systems would
be employed to manage these books:

Data warehouse
An organized library where books (data) are carefully
curated, processed, and stored in a specific format, facilitating
efficient analysis and querying. However, maintaining this
system is costly, and its rigid structure makes it challenging to
accommodate new or unconventional book formats.
Data lake
A vast, inexpensive, and unstructured repository where all
the books are stored without extensive organization or
processing. It resembles an endless, disordered storage shelf
where various items can be easily stored; however, locating a
specific item can be problematic.

A lakehouse represents a smart, adaptable library that
combines the best of both worlds: the vast, flexible, and
economic storage of a data lake with the structured, organized,
and analyzable system of a data warehouse.

In the real world, such integration ensures that enterprises can
store vast amounts of diverse data in low-cost cloud storage
while maintaining the ability to analyze it efficiently and
securely. This facilitates performing a wide variety of tasks in
one place, including data engineering, machine learning, and
analytics. Thus, the data lakehouse serves as a unified platform
where data engineers, data scientists, and analysts can all work

together. Figure 1-1 illustrates this convergence of capabilities
into a single, comprehensive platform.

Figure 1-1. Convergence of data lakes and data warehouses into a unified data
lakehouse platform

To understand how Databricks achieves this, let’s examine the
underlying architecture of its data lakehouse.

High-Level Architecture of the Databricks
Lakehouse

The Databricks lakehouse is designed with a layered
architecture that consists of four fundamental layers: the cloud
infrastructure, Databricks Runtime, data governance, and the

workspace. Figure 1-2 illustrates the high-level architecture of
the Databricks lakehouse, showcasing the relationships among
these layers.

Figure 1-2. High-level architecture of the Databricks lakehouse

Each of these layers plays a vital role in ensuring the platform’s
scalability, reliability, and security. To gain a deeper
understanding of their individual contributions, let’s examine
each layer in detail, starting from the bottom:

Cloud infrastructure
At the foundation of the Databricks lakehouse architecture
lies the cloud infrastructure layer. Databricks is a multi-cloud
platform, meaning it is available on major cloud service
providers, including Microsoft Azure, Amazon Web Services
(AWS), and Google Cloud Platform (GCP). This layer is
responsible for providing the underlying hardware resources
that Databricks accesses on behalf of users. It enables the
provisioning of essential components, such as storage,
networking, and the virtual machines (VMs) or nodes that
form the backbone of a computing cluster running
Databricks Runtime.
Databricks Runtime
Databricks Runtime is a pre-configured virtual machine
image optimized for use within Databricks clusters. It
includes a set of core components, such as Apache Spark,
Delta Lake, and other essential system libraries. Delta Lake
enhances traditional data lakes by providing transactional
guarantees similar to those found in operational databases,
thereby ensuring improved data reliability and consistency.

In Chapter 2, we explore Delta Lake in detail to understand its
transformative impact on data lake reliability.
Data governance with Unity Catalog
At the core of the Databricks lakehouse architecture is Unity
Catalog, which provides a centralized data governance
solution across all data and AI assets. Unity Catalog is
designed to secure and manage data access across the
Databricks environment, ensuring that sensitive information
is accessible only to authorized users. This layer is crucial for
maintaining data security, integrity, and compliance across
the lakehouse platform. Chapter 8 provides an in-depth look
at Unity Catalog and its comprehensive features and
capabilities.
Databricks workspace
At the top of the architecture is the Databricks workspace,
which serves as the user interface for interacting with the
platform. It provides an interactive environment where users
can perform data engineering, analytics, and AI workloads
using a variety of languages, such as Python, SQL, R, and
Scala. The workspace offers a range of services, including
notebooks for development, dashboards for visualizing data,
and workflow management tools for orchestrating data
pipelines.

Deployment of Databricks Resources

When deploying Databricks resources within your cloud
provider’s environment, the architecture is divided into two
high-level components: the control plane and the data plane.
Figure 1-3 illustrates these two components and the interaction
between them.

Figure 1-3. Databricks resource deployment architecture

Understanding the distinction between these components is
essential for effectively managing and securing your Databricks
environment. Let’s take a closer look at each component to
ensure a clear understanding of their individual roles:

Control plane
The control plane is managed by Databricks and hosts
various platform services within the Databricks account.
When you create a Databricks workspace, it is deployed
within the control plane, along with essential services such as
the Databricks user interface (UI), cluster manager, workflow
service, and notebooks. Thus, the control plane handles tasks
such as workspace management, cluster provisioning, and
job scheduling. It also provides the interface through which
users interact with the platform, including the web-based
notebooks, the Databricks REST API, and the command-line
interface (CLI).
Data plane
The data plane, on the other hand, resides within the user’s
own cloud subscription. This is where actual storage and
classic compute resources (non-serverless) are provisioned
and managed. When a user sets up a Spark cluster, the virtual
machines that comprise the cluster are deployed in the data
plane, within the user’s cloud account. Similarly, storage

resources, such as those used by the Databricks File System
(DBFS) or Unity Catalog, are also deployed in the data plane.

This separation of control and data planes offers several
advantages. First, it ensures that the compute and storage
resources remain within the user’s cloud environment,
providing greater control over data security and compliance.
Second, it allows Databricks to manage the operational aspects
of the platform, such as updates and maintenance, without
impacting the user’s data or compute resources.

Apache Spark™ on Databricks

Apache Spark, an open source data processing engine, is a
cornerstone of the Databricks platform, enabling fast and
scalable analytics. Databricks, founded by the original creators
of Apache Spark, has deeply integrated Spark into its platform,
making it one of the most optimized environments for running
Spark applications.

The key features of Apache Spark on Databricks include the
following:

Distributed data processing
Spark’s architecture is designed to process data in parallel
across multiple nodes in a cluster. On Databricks, this

capability is enhanced by the seamless integration with
cloud-based clusters, which can be scaled up or down
depending on the workload.
In-memory processing
One of Spark’s most significant advantages is its in-memory
processing capability. By keeping data in memory across the
cluster, Spark significantly reduces the time required for
iterative algorithms and complex computations.
Multi-language support
Databricks supports all the programming languages that
Spark does, including Scala, Python, SQL, R, and Java.
Batch and stream processing
Apache Spark on Databricks supports both batch and stream
processing, making it suitable for a variety of use cases.
Batch processing is ideal for historical data analysis and data
transformations, while stream processing enables real-time
analytics and processing of continuous data streams.
Flexible data handling
Databricks, powered by Spark, can handle structured, semi-
structured, and unstructured data. This flexibility is crucial in
modern data ecosystems where data comes in various forms,
such as CSV files, JSON objects, images, videos, and even
complex nested data structures.

Databricks File System (DBFS)

A key feature that enhances Spark’s distributed processing
capabilities on Databricks is the Databricks File System (DBFS).
The DBFS acts as an abstraction layer that simplifies file
management across the distributed environment. It allows
users to interact with cloud files as if they were stored on a local
file system.

When a file is created in a Databricks cluster and stored in the
DBFS, it is actually persisted in the underlying cloud storage
associated with your cloud provider. This is illustrated in
Figure 1-4.

Figure 1-4. Data persistence in the DBFS and the underlying cloud storage

For instance, a file stored in the DBFS on Azure Databricks
would really be stored in Azure Data Lake Storage (ADLS). This
design ensures that data remains durable and accessible, even
after the Spark cluster is terminated.

Setting Up a Databricks
Workspace

Creating a Databricks workspace is the first step toward
leveraging the platform’s capabilities for data engineering,
analytics, and machine learning. To set up a workspace, an
active Databricks account is required. Databricks offers a 14-day
free trial, allowing you to explore its features using your cloud
account on Azure, AWS, or Google Cloud. The setup instructions
vary slightly depending on the cloud provider you choose;
however, it’s important to note that the certification exam does
not include cloud-specific questions. This means that you won’t
be tested on the details of creating a workspace on a specific
cloud platform.

For detailed instructions on setting up a Databricks workspace
on each of these cloud platforms, refer to Appendix A. This
section provides step-by-step guidance on how to sign up for a
free trial with Databricks and create your first workspace. If you
do not have a cloud account or prefer a simpler environment
for personal use or training, Databricks also offers the
Community Edition. This is a lightweight version of Databricks,
which provides access to the key platform’s features at no cost.
To learn how to sign up for Databricks Community Edition, refer
to Appendix B.

Exploring the Databricks
Workspace

The Databricks workspace provides an easy-to-use and intuitive
interface, enabling users to interact with their data objects and
perform a wide variety of essential tasks. This represents a
unified working environment for data engineers, data analysts,
and machine learning engineers.

Overview of the Workspace Interface

Figure 1-5 illustrates the home page of the workspace interface,
highlighting several key platform navigation areas.

NOTE

The Databricks platform is frequently updated with enhancements and new
features. As a result, the workspace interface in newer versions may differ from the
examples provided here. While the core functionality remains the same, the
appearance and specific layout elements might vary.

Figure 1-5. The home page of Databricks workspace

The interface displays a dynamic landing screen that shows
recently accessed items and suggested content, providing a
personalized experience. The layout is intuitively organized into
two primary sections: the sidebar and the top bar. To break it
down further, let’s explore the key components of each section.

Sidebar

The sidebar, located on the left side of the interface, offers quick
access to the platform’s key services. It is organized into several
categories, each serving a specific function:

Common categories

Workspace
This is an integrated browser where you can organize and
manage all your resources, such as folders, notebooks, and
other files.

Catalog
This tab allows you to manage your data and AI assets,
such as databases, tables, and machine learning models.

Workflows

Here, you can deploy and orchestrate jobs, allowing for
automated processing and execution of your data tasks.

Compute
This tab is where you create and manage your compute
resources, such as classic clusters and pools. We’ll cover
cluster management in detail in the following section.

SQL
The SQL section provides access to Databricks SQL, a service
designed for running SQL workloads on your data. It is
particularly useful for analytics and reporting tasks.
Chapter 7 provides an in-depth look at Databricks SQL and its
capabilities. However, it’s important to note that Databricks
SQL is not available in the Community Edition. This is one of
the reasons why it is recommended to use the full trial in
your cloud environment instead of the Community Edition.
Data Engineering
This section focuses on collaboration among data engineers
for performing advanced data engineering tasks. It includes
tools and features that are essential for ingesting data and
creating data pipelines and jobs. In Chapter 6, we delve into
these topics to learn how to build production-grade pipelines
and orchestrate jobs effectively.
Machine Learning
This section offers a range of options tailored for machine
learning (ML) engineers. It includes features such as ML

experiments, feature stores, and capabilities for registering
and serving ML models. It’s worth noting that these topics are
not included in the Data Engineer Associate certification
exam.

Top bar

The top bar spans across the top of the workspace interface and
provides several important functions:

Search bar
This AI-powered search tool allows you to efficiently search
for various items within your workspace, including tables,
notebooks, dashboards, and more. It is an essential feature
for quickly locating resources in your workspace using
natural language.
Switch Workspaces
If you manage multiple workspaces or need to navigate
between different projects, the Switch Workspaces option
allows you to easily toggle between them.
Databricks Assistant
This is an AI-based workspace assistant designed to enhance
your experience with developing notebooks, queries, and
dashboards. It provides a conversational interface that
facilitates code generation, explanation, and troubleshooting,
thereby boosting your productivity inside the platform. It also
integrates with Unity Catalog to offer features such as table
searching with context awareness.

Profile settings
The profile settings give you access to user-related options,
such as managing your preferences, linking external
services, and setting up notifications. They also provide
access to admin-specific settings that help configure your
workspace environment.

Navigating the Workspace Browser

The workspace browser is a central feature of the Databricks
platform, providing an organized and structured environment
where you can manage all your project items, such as folders,
notebooks, scripts, or other files.

When you navigate to the Workspace tab from the left sidebar,
you enter your Home directory, where all your resources are
stored, as illustrated in Figure 1-6.

Figure 1-6. The workspace browser in the Databricks platform

The workspace is structured hierarchically, making it easy to
organize your work. The left-hand menu includes several key
directories to help you manage your workspace effectively, such
as the following:

Home directory
The Home directory is your default location within the
workspace. It is personalized to each user’s personal
directory, providing a semi-private space where you can store
your files and folders.

Workspace directory
This is the root folder that contains all users’ personal
directories. From here, you can also access your Home
directory by going to Users > yourname@example.com.
Repos
This is the legacy service used for integrating your workspace
with Git repositories. It has now been replaced by Git folders,
which we cover in detail at the end of this chapter in
“Creating Git Folders”.
Trash
This folder contains deleted items, which are retained for 30
days before being permanently removed.

To add a new item in your Home directory, click the Create
button on the right side of the workspace browser. This allows
you to create various types of resources like folders and
notebooks, as shown in Figure 1-7.

Figure 1-7. Create button in the workspace browser

As an example, use the Create button to add a new folder
named Demo; then open the folder to begin organizing your
files. Within any folder, you can further organize your resources

by creating subfolders, which helps to keep your workspace
clean and well-organized.

Next to the Create button, you will notice a menu icon
represented by three vertical dots, as displayed in Figure 1-8.

Figure 1-8. Menu icon in the workspace browser

This menu provides additional options for managing your
resources, such as importing code files from your local system
into your Databricks workspace and exporting the contents of
the current folder as an archived file.

Importing Book Materials

The exercises and examples provided in this book are hosted on
a GitHub repository. Importing these materials into your
Databricks workspace is an essential step to being able to follow
along with the content of the book. This section will guide you
through the process of importing these resources using two
primary methods: Git folders and DBC (Databricks Cloud) files.

Option 1: Git folders

For those using the full version of Databricks on a cloud
platform, such as AWS, Azure, or Google Cloud, the Git folders
feature offers a seamless integration with Git providers. This
allows you to clone remote repositories directly into your
Databricks workspace. To clone our book repository from
GitHub, follow these steps:

1. Navigate to your workspace browser: In your Databricks
workspace, navigate to the Workspace tab to access your
Home directory.

2. Create a Git folder: At the top of your directory, click the
Create button and select “Git folder” from the drop-down
menu, as illustrated in Figure 1-9.

https://github.com/derar-alhussein/oreilly-databricks-dea

Figure 1-9. Adding a Git folder using the Create button in the workspace browser

This action will open a dialog box where you can specify the
GitHub repository you want to clone, as shown in Figure 1-10.

Figure 1-10. Git folder creation dialog

3. Paste the GitHub repository URL: In the Git folder creation
dialog, paste the URL of the book’s GitHub repository
(https://github.com/derar-alhussein/oreilly-databricks-dea).
The interface will automatically detect the Git provider (e.g.,

https://github.com/derar-alhussein/oreilly-databricks-dea

GitHub) and fill in the repository name based on the URL
provided.

4. Create the Git folder: After confirming the details, click the
Create Git folder button to clone the repository. The cloned
repository will then appear as a folder in your workspace,
and you can navigate through its contents just as you would
with any other directory.

It’s important to note that this feature is available only in the
full version of Databricks. Users of the Databricks Community
Edition should refer to the alternative method outlined next.

Option 2: DBC files

On the Databricks Community Edition, Git integration through
Git folders is not supported. However, you can still import the
book’s materials by utilizing DBC files, which are archive files
designed for directly importing source code into Databricks
workspaces. To import the DBC file of our book’s resources,
follow these steps:

1. Download the DBC file from GitHub: Navigate to the book’s
GitHub repository and locate the Exports folder. From this
folder, download the file named book_materials.dbc to your
local machine.

https://github.com/derar-alhussein/oreilly-databricks-dea

2. Navigate to your workspace browser: In your Community
Edition workspace, navigate to the Workspace tab to access
your Home directory.

3. Use the Import option: At the top of your directory, click the
menu icon (represented by three vertical dots) and select the
Import option, as illustrated in Figure 1-11.

Figure 1-11. Importing files using the menu icon in the workspace browser

This action will open a dialog box where you can specify the
file you want to import, as shown in Figure 1-12.

Figure 1-12. File import dialog

4. Upload the DBC file: In the Import dialog, browse to select the
DBC file you downloaded earlier and import it into your
workspace.

By following these steps, you will have all the book’s resources
in your workspace, allowing you to replicate the solutions
within your own environment.

Creating Clusters

Clusters in Databricks form the backbone of data processing
and analytics on the platform. A cluster is essentially a
collection of computers, often referred to as nodes, instances, or
virtual machines, working together as a single entity. In the
context of Apache Spark, which powers Databricks, a cluster
comprises a master node known as the driver and several
worker nodes, as illustrated in Figure 1-13. The driver node is
primarily responsible for orchestrating the activities of the
worker nodes, which execute tasks in parallel, thereby enabling
efficient processing of large-scale data.

Figure 1-13. Apache Spark cluster architecture: driver node and worker nodes

Databricks offers two primary types of clusters: all-purpose
clusters and job clusters. Each serves distinct purposes and use
cases, tailored to different stages of the data engineering and
analytics lifecycle. Table 1-1 summarizes the differences
between these two types of clusters.

Table 1-1. Comparison of all-purpose clusters and job clusters

All-purpose
cluster

Job cluster

Usage Interactive
development
and data analysis

Automated job
execution

Management Manually
created and
managed by the
user

Automatically
created by the job
scheduler

Termination Manual or auto-
termination after
inactivity

Automatic
termination upon
task completion

Cost
efficiency

Comes at a
higher expense

Less expensive

Let’s dive deeper to gain a comprehensive understanding of
these two types of clusters.

All-Purpose Clusters

All-purpose clusters are designed for interactive, exploratory
tasks, making them ideal for development, and ad hoc analysis.
They offer flexibility and control to users who need a dynamic
environment to work with their data:

Usage
All-purpose clusters are mainly used for interactive tasks
where a user is actively involved. This includes writing and
testing code in notebooks and performing exploratory data
analysis (EDA). The interactive nature of these clusters makes
them essential for development and testing environments.
Management
Users can manually create and manage their all-purpose
clusters depending on their needs. This can be achieved
using the Databricks workspace interface, command-line
interface, or REST API.
Termination
All-purpose clusters can be terminated manually by the user
when they are no longer needed. Additionally, Databricks
provides an auto-termination feature, where you can specify
a period of inactivity after which the cluster will
automatically shut down. This feature is particularly useful in
reducing costs, as it prevents unnecessary resource
consumption when the cluster is idle.
Cost efficiency

All-purpose clusters cost more to run when compared to
other types of clusters. Additionally, they can become even
more expensive due to the need for manual control and
termination. Although auto-termination helps with cost
savings, it still enforces a minimum runtime of 10 minutes,
which can add to the overall expense.

In the next section, we will learn how to create and manage all-
purpose clusters within the Databricks workspace. These
clusters will be our primary tool for executing hands-on
exercises throughout this book.

Job Clusters

Job clusters, on the other hand, are optimized for automated
workloads. These clusters are designed to be ephemeral,
spinning up only when a job is triggered and terminating
immediately after the job is completed:

Usage
Job clusters are used primarily for running automated tasks,
such as scheduled jobs and data pipelines. They are
particularly useful in production environments where tasks
need to be executed without manual intervention. Examples
include extract, transform, and load (ETL) jobs, database
maintenance, and training machine learning models on a
scheduled basis.

Management
Unlike all-purpose clusters, job clusters are not created
manually by the user. Instead, they are automatically
provisioned by the Databricks job scheduler when a job is
triggered. This automation simplifies cluster management in
production, as there is no need for manual intervention to
start or stop clusters.
Termination
Job clusters are designed to be used for a single purpose and
terminate automatically once the assigned task is completed.
This ephemeral nature ensures that resources are utilized
only when necessary, which helps in optimizing costs and
enhancing the efficiency of resource allocation.
Cost efficiency
From a cost-efficiency standpoint, job clusters are generally
more economical than all-purpose clusters. Therefore, it is
recommended to use job clusters for production
environments to optimize costs.

In Chapter 6, we explore job clusters in the context of
Databricks Jobs and Delta Live Tables (DLT) pipelines.

Databricks Pools

In addition to offering various types of clusters, Databricks
provides cluster pools to further optimize resource usage and
reduce operational latency. Cluster pools are a powerful tool for

users who need to minimize the time it takes to spin up clusters,
especially in environments where job execution speed is
critical.

Understanding cluster pools

A cluster pool in Databricks is essentially a group of pre-
configured, idle virtual machines that are ready to be assigned
to clusters as needed. The primary advantage of using a cluster
pool is the reduction in both cluster start time and autoscaling
time whenever there are available nodes in the pool. This can
be particularly beneficial in scenarios where time is a critical
factor, such as in automated report generation and real-time
data processing tasks.

Cost considerations

While cluster pools offer significant operational benefits, they
come with important cost considerations. It’s essential to
understand that even though Databricks itself does not charge
for the idle instances in a pool, your cloud provider does. This is
because these instances, although idle, are actively running on
your cloud infrastructure, and as such, they incur standard
compute costs. Therefore, when using cluster pools, it is

important to balance the need for rapid cluster availability with
the associated cloud costs.

Creating All-Purpose Clusters

This guide walks you through the process of creating an all-
purpose cluster, from initial navigation to final configuration.

1. Navigating to the Compute tab

To begin, access the Compute tab from the left sidebar in your
Databricks workspace. This page is the central hub for
managing all your Databricks clusters, as illustrated in Figure 1-
14.

Figure 1-14. Compute page in the Databricks workspace

This page presents various tabs at the top, including “All-
purpose compute,” “Job compute,” and Pools, each
corresponding to the different types of compute resources
discussed earlier. Additionally, there’s a tab for SQL warehouses,
which are dedicated compute resources for executing SQL
workloads within Databricks SQL. In Chapter 7, we delve deeply
into Databricks SQL and explore the nuances of SQL

warehouses. For the moment, let’s focus on setting up an all-
purpose cluster to get started with running interactive
workloads.

2. Initiating the cluster creation

Under the “All-purpose compute tab,” click the blue “Create
compute” button. This action opens the configuration page for
your new cluster, as illustrated in Figure 1-15.

Figure 1-15. Compute cluster configuration page

3. Naming your cluster

The first step in the configuration process is naming your
cluster. The system provides a default name, but you can change

it by clicking the name field at the top. For example, you might
name your cluster “Demo Cluster” to reflect its purpose.

4. Setting the cluster policy

Next, you’ll encounter the Policy setting. By default, this is set to
Unrestricted, allowing you full control over the cluster’s
configuration. In environments with stricter governance or
where specific configurations are mandated, other policies may
be in place to limit certain settings.

5. Configuring the cluster: Single-node versus multi-
node

Databricks allows you to choose between creating a single-node
cluster or a multi-node cluster:

Single-node cluster
This cluster operates with just a driver node, eliminating the
need for additional worker nodes. In this configuration, the
driver handles both driver and worker responsibilities,
executing all Spark jobs on a single machine. This setup is
more cost effective as it consumes fewer resources.
Multi-node cluster
If you need to handle larger datasets or more complex
processing tasks, you can opt for a multi-node cluster, which
includes one driver node and multiple worker nodes. This

setup allows parallel processing, making it suitable for
heavier workloads.

For demonstration, this guide will focus on configuring a multi-
node cluster to showcase the advanced configuration options
available.

6. Configuring the access mode

Databricks clusters offer different access modes depending on
how the cluster is intended to be used:

Shared access mode
This allows multiple users to share the cluster simultaneously
but restricts workloads to SQL and Python only. Shared
clusters are useful in collaborative environments where
several users need to access the same cluster.
Single user mode
This mode is appropriate if you are the only one using the
cluster. It ensures that the cluster resources are dedicated
solely to your tasks, potentially improving performance and
efficiency.

For this demonstration, select “Single user” mode as you are the
only user of this cluster.

7. Performance: Selecting the Databricks Runtime
version

The Databricks Runtime version is a critical choice, as it
determines the software environment in which your clusters
will operate. Databricks Runtime is a pre-configured virtual
machine image that includes specific versions of Apache Spark,
Scala, and various other libraries essential for data processing.

For this guide, choose Databricks Runtime 13.3 LTS (long-term
support), as illustrated in Figure 1-16. This runtime version
aligns with the version covered in the latest certification exam.
Newer versions might offer additional features and
optimizations that are not yet included in the exam. Sticking to
the recommended version ensures you’re studying the relevant
content for the test.

Figure 1-16. Compute cluster configuration page (continued)

8. Enabling Photon

Photon is an optional feature you can enable to further enhance
your cluster’s performance. Photon is a high-speed query
engine developed in C++, designed to accelerate the execution
of SQL queries in Spark. Enabling Photon is particularly
beneficial for workloads that involve heavy SQL processing or
operations with many files, as it can significantly reduce query
execution times and enhance overall performance. However,
it’s essential to consider the additional costs associated with this
feature.

9. Configuring worker nodes

Worker nodes are the backbone of a multi-node cluster,
responsible for processing the distributed tasks assigned by the
driver node. Here, you’ll configure the type and number of
worker nodes, as illustrated in Figure 1-17.

Figure 1-17. Compute cluster configuration page (continued)

VM size selection

Databricks allows you to choose from various virtual
machine types and sizes provided by your cloud provider
(e.g., Azure). These differ in terms of CPU cores, memory, and
storage options, which should be selected based on the
specific demands of your workloads. For simplicity, you may
choose to keep the default VM size.
Number of workers
Databricks offers an autoscaling feature, which dynamically
adjusts the number of workers based on the cluster’s
workload. Enabled by default, the “Enable autoscaling”
option allows you to specify a minimum and maximum range
for the number of workers. Databricks will automatically
increase or decrease the number of worker nodes within this
range based on demand. Alternatively, you can disable
autoscaling and set a fixed number of workers, such as 3,
ensuring that the cluster always operates with the specified
resources regardless of changes in workload.

10. Configuring the driver node

After configuring the worker nodes, you can set the
configuration for the driver node, which coordinates all tasks
across the cluster. You can either choose a different
configuration for the driver or simply match it with the worker
nodes, depending on your workload requirements.

11. Enabling auto-termination

To manage costs and optimize resource usage, Databricks
provides an auto-termination feature, which is also enabled by
default. By setting a specific duration of inactivity (e.g., 30
minutes), you can ensure that the cluster automatically shuts
down if it remains idle for that period. This feature is
particularly useful in preventing unnecessary charges for
clusters that are no longer in use.

12. Reviewing the cluster configuration

As you configure the cluster, Databricks provides a summary on
the right side of the screen, giving you a clear overview of your
selections, as shown in Figure 1-18.

Figure 1-18. Cluster configuration summary

This summary includes important details such as the total
number of worker cores and RAM, the runtime version, and the
number of Databricks units (DBUs) the cluster will consume. A
DBU is a measure of processing capacity per hour, which helps
estimate the costs associated with running the cluster. For
example, a single-node cluster will generally consume fewer
DBUs compared to a multi-node cluster, making it a more cost-

effective choice for less demanding workloads. For precise DBU
pricing specific to your cloud and region, consult the Databricks
pricing page.

13. Creating the cluster

Once you have reviewed the configuration and ensured that it
meets your needs, click the Create button. Databricks will then
proceed to provision the required virtual machines, apply the
configurations, and install Databricks Runtime and any
additional specified libraries.

NOTE

If you are using the free tier on Microsoft Azure cloud, there is a compute limit of
four cores. To avoid a quota exceeded error, ensure that you use a single-node
cluster with a maximum of four cores.

Managing Your Cluster

Once your cluster in Databricks is provisioned and running,
 indicated by a fully green circle next to its name, you have
several options for managing and monitoring it.

Controlling your cluster

https://oreil.ly/kCCy_

To access your cluster at any time, simply navigate to the
Compute tab in the left sidebar of your Databricks workspace.
This page lists all your clusters, displaying their current status,
whether running or terminated, as illustrated in Figure 1-19.

Figure 1-19. Compute page in the Databricks workspace

From this page, you can quickly start or terminate your cluster
by clicking the play/stop button located on the right side of each

cluster’s entry. Next to this button is a menu icon represented
by three vertical dots. Clicking this icon opens a drop-down
menu with additional management features, including cloning
the cluster, editing its permissions, and deleting it.

By clicking the cluster’s name, you can access the configuration
settings and make adjustments as needed. For example, you
might want to change the instance type, adjust the number of
workers, or enable additional features like Photon. However, be
aware that changing the cluster configuration may require a
restart of the cluster, which interrupts any running jobs.

Managing your cluster

Effective cluster management goes beyond just starting and
stopping the cluster. Databricks provides tools to monitor the
cluster’s activity and troubleshoot any issues. These tools are
accessible from the cluster configuration page, as illustrated in
Figure 1-20.

Figure 1-20. Compute cluster configuration page

Event log
The “Event log” records all significant actions related to the
cluster, such as when the cluster was created, terminated,
edited, or encountered any errors. This detailed tracking
enables effective monitoring and troubleshooting of cluster
activities.
Spark UI
The Spark UI provides a comprehensive interface for
monitoring and debugging Apache Spark applications. It
provides detailed insights into job execution, stages, and
tasks that enable you to easily track performance and identify
bottlenecks.
Driver logs

“Driver logs” contains logs generated by the driver node
within the cluster. This log captures output from the
notebooks and libraries running on the cluster, making it an
essential tool for diagnosing and resolving issues during
development.

With our cluster up and running, we’re now ready to execute
code within Databricks notebooks. This will be the focus of the
following section.

Working with Notebooks

Databricks notebooks are interactive development
environments that enable you to write, debug, and execute
code in a collaborative setting. These notebooks offer advanced
capabilities that extend beyond those of traditional
environments like Jupyter Notebooks. Databricks notebooks
support multiple programming languages, including Python,
SQL, Scala, and R. In addition, they integrate seamlessly with
Spark clusters, allowing users to leverage distributed computing
resources directly from the notebook interface.

Creating a New Notebook

To begin working with notebooks in Databricks, navigate to the
Workspace tab in the left sidebar of your Databricks workspace.
To create a new notebook, click the blue Create button and
choose Notebook from the drop-down menu, as illustrated in
Figure 1-21.

Figure 1-21. Adding new notebooks using the Create button in the workspace
browser

This action will create and open a new notebook, initially
named “Untitled Notebook.” The notebook is immediately ready

for use, but it’s good practice to rename it to something more
descriptive. To rename your notebook, simply click the title at
the top of the notebook interface and enter a new name, such
as Demo Notebook .

Setting the Notebook Language

Databricks notebooks default to Python, but they support
multiple languages, including SQL, Scala, and R. If you need to
work in a language other than Python, you can easily change
the notebook’s default language. To do this, click the language
indicator at the top of the notebook, where it says “Python,” and
select the desired language from the drop-down menu, as
shown in Figure 1-22.

Figure 1-22. Changing the default language in Databricks notebooks

Executing Code

Before executing any code, it’s necessary to connect your
notebook to an active cluster. Click the Connect button in the
top-right corner of the notebook interface, as illustrated in
Figure 1-23, and select the desired cluster, such as Demo Cluster
created earlier.

Figure 1-23. Attaching a cluster to a Databricks notebook

If the cluster is currently terminated, selecting it will
automatically start it. Starting a terminated cluster can take a

few minutes, depending on factors like the cluster’s size and
configuration.

NOTE

Databricks offers serverless compute for notebooks, which allows you to run code
without the need to configure and deploy infrastructure. To use this feature, your
workspace must be enabled for Unity Catalog, and serverless compute must be
activated in your Databricks account.

Once the cluster is running, indicated by a fully green circle
next to its name, your notebook is ready to execute code.

Running code cells

Databricks notebooks use a cell-based structure, where each
cell can contain a block of code. This structure allows for
interactive development, where you can run each cell
independently, see immediate results, and make adjustments as
needed.

Let’s start by printing a simple “Hello World” message in our
notebook. To do this, enter the following Python command into
the first cell:

print("Hello World!")

https://oreil.ly/KNUXM

To run the cell, click the play button on the left side of the cell,
as displayed in Figure 1-24. Alternatively, you can use the
Shift+Enter keyboard shortcut to run the current cell and move
to the next one. This tends to be more efficient, especially when
running lots of cells in succession.

Figure 1-24. Running code cells in Databricks notebooks

The output of the cell—in this case, “Hello World!”—will appear
directly below the cell. This immediate feedback is one of the
key advantages of working with notebooks, allowing you to
experiment and iterate quickly. Other types of outputs can have

richer displays, and you’ll also see error messages, tool tips, or
other warnings here as you work.

Managing cells

Notebooks provide a flexible environment for organizing your
code. You can add, move, and remove cells to structure your
code logically. To add a new cell, hover your mouse just below
an existing cell, and you’ll see a + Code button appear, as
illustrated in Figure 1-25. Click this button to insert a new cell.

Figure 1-25. Adding a new cell in Databricks notebooks

This approach allows you to break your code into manageable
sections, making it easier to develop, debug, and maintain.

Magic Commands

Magic commands in Databricks notebooks are special cell
instructions that provide additional functionality in the
notebook environment. These commands, which are prefixed
with a % , allow you to execute tasks that go beyond standard

code execution. Let’s explore these commands in detail,
highlighting their benefits and how to use them effectively.

Language magic command

By default, a notebook is set to one primary language, but you
may often need to use a different language within the same
notebook for specific tasks. Language magic commands allow
you to execute code cells in a language other than the
notebook’s default without changing the entire notebook’s
settings.

To switch the language for a specific cell, you just need to add
the language magic command at the beginning of the cell. For
example, if your notebook’s default language is Python, but you
need to run a SQL query, you would use the %sql magic
command. This command instructs the notebook to interpret
and execute the cell as SQL code:

%sql
SELECT "Hello world from SQL!"

When you enter a SQL query in a cell, Databricks automatically
prepends the %sql magic command if the cell’s content is
detected as SQL. The cell’s language indicator, located on the

right side of the cell, will also change to reflect the active
language, as shown in Figure 1-26.

Figure 1-26. Language magic command in Databricks notebooks

If you want to manually change the language of a cell or
convert it to a text Markdown cell, you can also do so by
clicking this language indicator. This action will bring up a drop-
down menu that allows you to select the desired option.

Markdown magic command

Beyond code execution, Databricks notebooks support rich-text
formatting through the use of Markdown, which is enabled by
the %md magic command. Markdown is an annotation language
that allows you to format text and insert elements such as
images or links directly within the notebook. This feature is
particularly useful for documenting your analysis, adding notes,
or structuring your notebook into sections.

To add formatted text, simply start a cell with the %md magic
command, followed by your Markdown syntax. For instance, to
create headers of different levels, you might use the following
commands:

%md
Title 1
Title 2
Title 3

When you press Esc, the text will be rendered as headers with
varying levels of emphasis, as illustrated in Figure 1-27.

Figure 1-27. Markdown magic command in Databricks notebooks

Double-clicking a Markdown cell reopens its editor, where you’ll
find a toolbar with a range of formatting options such as bold,
italic, and list creation. It also offers the ability to add images
and hyperlinks, which enriches your notes or documentation.

Enhancing notebook navigation with Markdown

One of the significant advantages of using Markdown headers
in Databricks notebooks is that they automatically generate
entries in the notebook’s table of contents. The table of contents
is a navigational aid that allows you to quickly jump between
sections in your notebook.

To access the table of contents, click its icon in the left-hand
panel of the notebook editor, as shown in Figure 1-28.

Figure 1-28. Table of contents in Databricks notebooks

As you add more Markdown headers, these will populate the
table of contents, providing an organized overview of your
notebook’s structure.

Run magic command

The %run magic command in Databricks notebooks is a
powerful tool that allows you to execute another notebook
within the current notebook. This feature is particularly useful
for supporting code modularity and reusability.

The %run command is designed to import and execute all the
content of a specified notebook into the current notebook. This
means that any variables, functions, or classes defined in the
referenced notebook become accessible in the notebook that
invoked the %run command. This is highly beneficial for
scenarios where you need to share common configurations and
functions across multiple notebooks.

To illustrate the use of the %run magic command, let’s walk
through a practical example where you have two notebooks—
our primary notebook named “Demo Notebook” and a
secondary notebook named “Setup”:

1. Creating the Setup notebook: First, create a new notebook
called “Setup” in your Home directory. In this notebook, you
define a simple variable, book_publisher , and assign it the
value OReilly :

book_publisher = "OReilly"

2. Using the %run command: Now, switch to your demo
notebook, where you want to access the variables of the
Setup notebook. In a new cell, use the %run magic command
followed by the path to the Setup notebook. Since both
notebooks are in the same directory, you can use the dot
symbol (.) to refer to the current directory, or alternatively,
you could use the full workspace path to specify the exact
location of the Setup notebook:

%run ./Setup

3. Accessing the imported variable: After running the previous
command, the entire contents of the Setup notebook are
executed, bringing any defined variables and functions into
the scope of the demo notebook. To verify this, you can print
the book_publisher variable in a new cell in the demo
notebook.

Figure 1-29 displays the output of the print command,
confirming that the book_ pub lisher variable was successfully
imported from the Setup notebook into our demo notebook.

Figure 1-29. Run magic command in Databricks notebooks

The %run magic command is an essential feature for anyone
working with Databricks notebooks, offering a seamless way to
create modular, maintainable, and reusable code.

FS magic command

When working within the Databricks environment, managing
files and interacting with the file system is a common task. The
%fs magic command provides a simple way to execute file
system operations directly within your notebook cells. This
command allows you to perform various tasks, such as copying,
moving, and deleting files and directories within your cloud
storage.

One of the most common uses of the %fs magic command is
listing the contents of a directory. For instance, if you want to
explore the sample datasets directory provided by Databricks,
you can use the following command:

%fs ls '/databricks-datasets'

Running this command will list all files and folders within the
/databricks-datasets directory, displaying 55 items by default, as
illustrated in Figure 1-30.

Figure 1-30. Output of the %fs ls magic command on the /databricks-datasets
directory

While the %fs magic command is convenient, Databricks
provides a more flexible and powerful tool called dbutils . This
tool is particularly useful for integrating file system operations
directly into your Python code.

Databricks Utilities

Databricks Utilities (dbutils) provides a range of utility
commands for interacting with different services and tools
within Databricks, including the file system (dbutils.fs).

To explore all available commands and their usage within
dbutils , you can use the help function:

dbutils.help()

If you’re interested in a specific utility within dbutils , you can
request detailed help for that particular module. For example, if
you want to learn more about the file system commands
provided by dbutils.fs , you can use this:

dbutils.fs.help()

This command will provide information about the file system
operations available, including how to perform common tasks
such as listing directories. To achieve similar functionality as
the %fs command using dbutils , you can list the contents of
the same directory with the following code:

files = dbutils.fs.ls("/databricks-datasets/")

This command not only lists the files but also stores the output
in a variable (files), which can be further manipulated within
your code.

Displaying the output

Directly printing the “files” variable might result in an output
that’s difficult to read:

print(files)

To present this information in a more user-friendly way,
Databricks provides the display function, which formats the
output in a tabular layout:

display(files)

Using this function, the results are neatly organized into
columns, such as filename, size, and type, making it easier to
understand and work with the data. Additionally, the display
function offers advanced features, like downloading the data as
a CSV file or visualizing the results in a graph, as shown in
Figure 1-31.

Figure 1-31. Advanced features of the preview display, including data download and
visualization options

It’s important to be aware that while the display function is
useful, it has limitations when previewing large datasets, as it
shows only a subset of records.

Comparison: %fs magic command versus dbutils

Choosing between the %fs magic command and dbutils
depends on the complexity and requirements of your task. If
you need to perform a quick, one-off file system operation, the
%fs magic command is straightforward and easy to use. For
more complex tasks, especially when you need to manipulate
the output programmatically, dbutils is the better choice. It
allows you to store the results in variables, apply conditional
logic, loop through files, and more—all within your Python
code.

Download Notebooks

You may want to download a notebook to your local system for
various reasons, such as sharing with others or simply keeping
a local copy. Databricks offers a straightforward way to export
your notebooks by following these steps:

1. Navigate to the File menu: In the upper menu of your
notebook editor, click the File menu, as illustrated in Figure 1-
32.

Figure 1-32. File menu in the Databricks notebook editor

2. Select Export: From the drop-down menu, choose the Export
option. This will present you with several formats for
downloading your notebook.

3. Choose file format: Click “Source file” to download the
notebook as a plain Python script (.py file). For an HTML
output, select IPython Notebook, which is useful for sharing
results without needing to render them within a workspace.

The downloaded file can be edited locally or easily imported
into a different Databricks workspace for further use. To import
a file into a specific folder on Databricks, simply click the menu
icon in the target folder and select the Import option, as shown
in Figure 1-33.

Figure 1-33. Importing files using the menu icon in the workspace browser

By following these steps, you can ensure that you have the
flexibility to work with your notebooks across different
environments.

Notebook Versioning

As you develop your code in Databricks, you will likely make
numerous changes and refinements, which can be challenging
to track. To address this issue, Databricks provides a built-in
versioning system within its notebooks, allowing you to easily
manage and revert to previous versions of your code.

Accessing version history

To access the version history of a notebook, look for the
“Version history” icon located in the right sidebar of your
notebook editor. Clicking this icon opens a panel displaying the
version history, as illustrated in Figure 1-34.

Figure 1-34. Accessing notebook version history

This “Version history” panel shows a chronological list of all
changes made to the notebook. Each entry in the list
corresponds to an auto-saved version of the notebook,
capturing the state of the notebook at that point in time.

Restoring a previous version

If you need to revert to a previous state of the notebook, simply
select the desired version from the list and click “Restore this
version.” This action reverts the current state of the notebook
to the selected version, undoing any changes made since that
version.

While this versioning feature is helpful for tracking changes, it
has limitations, especially in complex or collaborative projects.
It lacks advanced capabilities such as merging changes or
creating branches. Additionally, users can easily delete this
history, which may compromise its reliability. For a more robust
solution, Databricks provides integration with Git providers,
offering enhanced version control capabilities.

Versioning with Git

Databricks offers Git integration, allowing users to manage their
data projects using familiar Git workflows, including branching,
merging, committing, and pushing changes to remote
repositories. This feature is particularly beneficial for users who
need to manage complex projects, collaborate with team
members, or maintain a history of changes in a more controlled
and secure manner than what the basic notebook versioning
can offer.

This seamless integration is facilitated through Git folders,
formerly known as Databricks Repos, which enable source
control directly into your Databricks workspace. With Git
folders, you can synchronize your code with remote Git
repositories and perform common Git operations.

Setting Up Git Integration

When importing source code from a public repository like our
book’s GitHub repo, Git folders work seamlessly without
additional setup. However, for private repositories or when
performing Git operations like committing and pushing
changes, you must link your Databricks workspace with your
Git service provider. This setup ensures that you can perform all
necessary Git operations from within Databricks.

Prerequisites

Before setting up Git integration, ensure the following:

Access to a full version of Databricks
The Git integration feature is not available in the Databricks
Community Edition, so you’ll need access to a full version of
Databricks on a cloud platform like AWS, Azure, or Google
Cloud.
Git service account

You should have an account with a supported Git service
provider, such as GitHub or Azure DevOps.

Configuring Git integration

To configure Git integration in your Databricks workspace,
follow these steps:

1. Access your profile settings: In the Databricks workspace,
click your username profile icon located in the upper-right
corner. From the drop-down menu, select Settings.

2. Link your Git provider: In the Settings page, navigate to the
“Linked accounts” tab from the left side panel, as displayed in
Figure 1-35. Here, you will find options to link your
Databricks account with various Git service providers,
including GitHub, Azure DevOps, and Bitbucket. Select your
desired provider from the drop-down menu.

3. Authenticate your Git provider: If you are linking with
GitHub, you can use a more secure method through the
Databricks GitHub App, instead of using a personal access
token (PAT). Select the “Link Git account” option, and click
the Link button to start the process. You will be redirected to
GitHub to authorize the Databricks app to access your GitHub
account. Follow the on-screen instructions to complete the
process.

Figure 1-35. Git integration settings in Databricks

4. Install the Databricks app on GitHub: After authorizing the
Databricks GitHub App, click Configure in GitHub, as shown
in Figure 1-36, to configure the app installation on your
GitHub account.

Figure 1-36. Configuring GitHub integration in Databricks

In the configuration page, you can choose to grant access to
all your repositories or select specific repositories that
Databricks can interact with, as displayed in Figure 1-37.

Once you confirm your selections, click Install to complete the
setup. With this, your Databricks workspace is now fully
integrated with your chosen Git provider, enabling seamless
version control and collaboration.

Figure 1-37. Databricks app installation in GitHub account

Creating Git Folders

For effective collaboration and version control, integrating a
private GitHub repository with Databricks is essential. This
process involves creating a Git folder within your Databricks
workspace and linking it to your private repository. The
following is a step-by-step guide to help you achieve this
integration:

1. Creating a private GitHub repository: To begin, ensure you
have a private GitHub repository set up. If you haven’t done
so yet, create a new one from your GitHub account and copy
its URL.

2. Cloning the repository in Databricks: Now that you have your
private repository ready, follow these steps to clone it into
your Databricks workspace:
1. Navigate to your workspace browser: In your Databricks

workspace, navigate to the Workspace tab to access your
Home directory.

2. Create a Git folder: At the top of your directory, click the
Create button and select “Git folder” from the drop-down
menu, as illustrated in Figure 1-38.

Figure 1-38. Adding a Git folder using the Create button in the workspace
browser

This action will open a dialog box where you can specify
the GitHub repository you want to clone, as shown in
Figure 1-39.

Figure 1-39. Git folder creation dialog

3. Paste the GitHub repository URL: In the Git folder creation
dialog, paste the URL of your private repository. The
interface will automatically detect the Git provider (e.g.,
GitHub) and fill in the repository name based on the URL
provided.

4. Create the Git folder: After confirming the details, click the
“Create Git folder” button to clone the repository.

Once the repository is cloned, you can navigate through its
contents like any other folder. Git folders are easily recognized
within the workspace browser by the current branch name
displayed next to the folder name, as illustrated in Figure 1-40.

Figure 1-40. Branch name indicator in Git folders

Managing Git Branches

Branches are a fundamental aspect of Git, allowing multiple
developers to work on different features or fixes
simultaneously without interfering with the main codebase.

By default, your Git repository will open on the main branch. To
create a new local branch (e.g., a development branch), follow
these steps:

1. Open the Git dialog: Click the branch name indicator next to
the folder name. This will open the Git dialog, as shown in
Figure 1-41.

Figure 1-41. Git dialog in Databricks

2. Create the branch: Click the Create Branch button, specify the
branch name (e.g., “dev” branch), and click Create.

This creates a local branch in the workspace and activates it
immediately, allowing you to start working on your changes,
just like you would on your machine. You can easily switch
between branches at any time using the drop-down menu next
to the Create Branch button.

With your development branch selected, you can begin
working on your project by creating new notebooks or
importing existing ones. Any edits you make to the source code
are contained within this branch, which keeps the main branch
stable and unaffected. Once your updates are ready and
thoroughly tested, you can commit and push them to the
remote repository.

Committing and Pushing Changes

Once you’ve made changes in your Git folder, you can commit
and push these changes to the remote repository to ensure your
work is saved and shared with others.

To commit your changes, follow these steps:

1. Open the Git dialog: Click the branch name indicator to open
the Git dialog.

2. Review changes: The Git dialog will display all the
modifications made in the current branch, as illustrated in
Figure 1-42.

Figure 1-42. Committing and pushing changes using the Git dialog

3. Add a commit message: At the bottom of the dialog, write a
descriptive commit message summarizing the changes and
any other information your organization might require.

4. Commit & Push: Click the blue Commit & Push button. This
will save your changes locally and then push them to the
remote repository on GitHub.

After pushing your changes, you can verify the update on the
GitHub website. Navigate to your private repository and check
the development branch to ensure the changes have been
successfully applied.

Pulling Changes from GitHub

To keep your local repository in sync with the remote
repository, especially after merging branches or when working
in collaboration with others, pulling new changes is a common
operation.

Synchronizing with merged pull requests

As a fundamental principle of Git, changes made in one branch
are isolated from other branches until explicitly merged. To
verify this, switch to the main branch in your Git folder by

selecting it from the branch drop-down in the Git dialog. You
will notice that the changes made in the dev branch are not
visible in the main branch until a pull request (PR) is created
and merged.

Databricks Git folders do not support creating pull requests
directly; this must be done through your Git provider. For
GitHub, follow these steps:

1. Create a pull request: On GitHub, navigate to your sample-
project repository and create a pull request to merge changes
from the dev branch into the main branch.

2. Merge the pull request: Once the pull request is reviewed and
approved, merge it into the main branch on GitHub.

Pulling changes

To pull changes from the remote main branch to your local
repository in Git folder, follow these steps:

1. Open the Git dialog: Click the branch name indicator in your
Git folder to open the Git dialog.

2. Initiate a pull: With the main branch selected, click the Pull
button, as displayed in Figure 1-43.

This action will fetch and merge changes from the remote main
branch into your local copy. After merging, you can review the
updates in your folder to ensure the integration was successful.
As a best practice, perform regular pulls to minimize conflicts,
especially in collaborative development environments where
multiple contributors are working on the same codebase.

Figure 1-43. Pulling changes using the Git dialog

Conclusion

In conclusion, this chapter has provided an essential overview
of the Databricks Data Intelligence Platform, covering its
foundational architecture and offering practical guidance on
working with clusters and notebooks. By mastering these
essential components, you are now well-equipped to leverage
the full potential of Databricks, which will be further explored
in subsequent chapters.

Sample Exam Questions

Databricks certification exams primarily consist of multiple-
choice questions with a single correct answer. The questions are
categorized into two types: conceptual and code-based.
Preparing for both types is critical for passing the certification
exam.

Conceptual Questions

Conceptual questions focus on assessing your understanding of
the core principles and features of Databricks. These questions

typically ask you to recall definitions, describe functionality, or
identify the role of different components within the Databricks
environment.

Here is a sample conceptual question to give you a sense of
what you might encounter:

Question 1. According to the Databricks lakehouse
architecture, which of the following locations hosts the
customer data?

1. Control plane
2. Databricks account
3. Customer’s cloud account
4. Databricks Runtime
5. Workspace

This question tests your understanding of where Databricks
stores customer data. The correct answer to this question is
available in Appendix C.

Code-Based Questions

Code-based questions assess your ability to read, write, and
debug code in the Databricks environment. These questions
often present a block of code and ask you to either fill in

missing portions of code, identify errors, or suggest
modifications to ensure the code runs correctly.

Let’s look at a sample code-based question:

Question 2. A data engineer has written the following code
block within a cell in a SQL notebook, intending to list the files
in the Databricks datasets directory:

files = dbutils.fs.ls("/databricks-datasets/")
print(files)

However, the code returns a syntax error.

What modification should be made to the code block to resolve
this issue?

1. Replace print(files) with display(files) .
2. Use the following command instead:

files = %fs ls 'databricks-datasets'
print(files)

3. Use the following command instead:
files = %fs ls 'databricks-datasets'
display(files)

4. Add %python at the beginning of the cell.
5. Add % run at the beginning of the cell.

This question tests your ability to properly use the Databricks
utility methods and understand how to display results in a
notebook environment. The correct answer to this question can
also be found in Appendix C.

Chapter 2. Managing Data with
Delta Lake

Data lakehouses leverage specialized storage frameworks to
enhance the functionality of traditional data lakes. Among these
frameworks, Delta Lake stands out as a leading technology that
powers the Databricks Lakehouse Platform. In this chapter, we’ll
explore the fundamental concepts of Delta Lake by first
introducing its core principles and then diving into its practical
usage. Following this, we’ll focus on advanced topics in Delta
Lake such as time travel, table optimization, and vacuum
operations.

Introducing Delta Lake

Traditional data lakes often suffer from inefficiencies and
encounter various challenges in processing big data. Delta Lake
technology is an innovative solution designed to operate on top
of data lakes to overcome these issues. To establish a clear
understanding of Delta Lake, let’s first study its definition as
provided by its original creators at Databricks.

What Is Delta Lake?

Delta Lake is an open-source storage layer that brings
reliability to data lakes by adding a transactional storage
layer on top of data stored in cloud storage.

—Databricks

In the context of data lakehouses, a storage layer refers to the
framework responsible for managing and organizing data
stored within the data lake. It serves as an intermediary
platform through which data is ingested, queried, and
processed.

In other words, Delta Lake is not a storage medium or storage
format. Common storage formats like Parquet or JSON define
how data is physically stored in the lake. However, Delta Lake
runs on top of such data formats to provide a robust solution
that overcomes the challenges of data lakes.

While data lakes are excellent solutions for storing massive
volumes of diverse data, they often encounter several
challenges related to data inconsistency and performance
issues. The primary factor behind these limitations is the
absence of ACID transaction support in a data lake. ACID stands
for atomicity, consistency, isolation, and durability, and
represents fundamental rules that ensure operations on data

are reliably executed, as in traditional databases. This absence
led to issues such as partially committed data and corrupted
files, ultimately affecting the overall reliability of the data stored
in the lake.

What makes Delta Lake an innovative solution is its ability to
overcome such challenges posed by traditional data lakes. Delta
Lake provides ACID transaction guarantees for data
manipulation operations in the lake. It offers transactional
capabilities that enable performing data operations in an atomic
and consistent manner. This ensures that there is no partially
committed data; either all operations within a transaction are
completed successfully or none of them is. These capabilities
allow you to build reliable data lakes that ensure data integrity,
consistency, and durability.

Delta Lake is optimized for cloud object storage. It seamlessly
integrates with leading cloud storage platforms such as Amazon
S3, Azure Data Lake Storage, and Google Cloud Storage.

On top of all this, Delta Lake is an open source library. Unlike
proprietary solutions, Delta Lake’s source code is freely
available to you on GitHub.

https://oreil.ly/delta

To put it all together, we can visualize these concepts through
an illustrative graph. In Figure 2-1, we highlight the key
elements that constitute the Delta Lake technology.

Figure 2-1. Delta Lake technology

Delta Lake Transaction Log

The Delta Lake library is deployed on the cluster as part of the
Databricks Runtime. When you create a Delta Lake table within
this ecosystem, the data is stored on the cloud storage in one or
more data files in Parquet format. However, alongside these
data files, Delta Lake creates a transaction log in JSON format, as
illustrated in Figure 2-2.

Figure 2-2. Delta Lake tables creation

The Delta Lake transaction log, often referred to as the Delta
Log, is an ordered record of every transaction performed on the

table since its creation. As a result, it functions as the source of
truth for the table’s state and history. So every time you query
the table, Spark checks this transaction log to determine the
most recent version of the data.

Each committed transaction is recorded in a JSON file. This file
contains essential details about the operations performed, such
as its type (insert, update, …, etc.) and any predicate used during
these operations, including conditions and filters. Beyond
simply tracking the operations executed, the log captures the
names of all data files affected by these operations.

In the next section, we will see how these transactional
capabilities are leveraged by Delta Lake to ensure ACID
compliance during data retrieval and manipulation.

Understanding Delta Lake Functionality

Let’s learn how Delta Lake functions by looking at a series of
illustrative examples, each designed to provide a deeper
understanding of its behavior in different scenarios. For
instance, consider a situation where two users, Alice and Bob,
interact with a Delta Lake table. Alice represents a data
producer, while Bob is a data consumer. Their interaction on the
table can be described in four key scenarios: data writing and

reading, data updating, concurrent writes and reads, and, lastly,
failed write attempts. Let’s discuss them in detail one by one.

Writing and reading scenario

In this first scenario, we will examine how data is written to and read from a
Delta Lake table by Alice and Bob.
Write operation by Alice

Alice initiates this scenario by creating the Delta table and
populating it with data, as illustrated in Figure 2-3. The Delta
module stores the table, for example, in two data files (part 1
and part 2), and saves them in a Parquet format within the table
directory on the storage. Upon the completion of writing the
data files, the Delta module adds a transaction log, labeled as
000.json , into the _delta_log subdirectory. This transaction log
captures metadata information about the changes made to the
Delta table. This includes the operation type, the name of the
newly created data files, the transaction timestamp, and any
other relevant information.

Figure 2-3. Writing and reading scenario

Read operation by Bob

Subsequently, Bob queries the Delta table through a SQL
SELECT statement. However, before directly accessing the data
files, the Delta module always begins by consulting the
transaction log associated with the table. In this particular case,
it starts by reading the 000.json transaction log located in the
_delta_log subfolder. This log contains metadata information
regarding the data files part 1.parquet and part 2.parquet that
capture the changes made by Alice during the write operation.
The Delta module proceeds by reading these two data files and
returning the results to Bob.

So, Delta Lake follows a structured approach for managing and
processing the data in the lake. It always uses the transaction
log as a point of reference to interact with the data files of Delta
Lake tables.

Updating scenario

In our second scenario, Alice makes an update to a record
residing in file part 1.parquet of the Delta table, as illustrated in
Figure 2-4. However, since Parquet files are immutable—
meaning their contents cannot be changed after they are

written—Delta Lake takes a unique approach to updates.
Instead of directly modifying the record within the existing file,
the Delta module makes a copy of the data from the original file
and applies the necessary updates in a new data file, part
3.parquet. It then updates the log by writing a new transaction
record (001.json). The new log file is now aware that the data
file part 1.parquet is no longer relevant to the current state of
the table.

Figure 2-4. Updates scenario

When Bob attempts to read data from the table, the Delta
module first consults the transaction log to determine the valid
files for the current table version. In this instance, the log
indicates that only the parquet files part 2 and part 3 are
included in the latest version of the table. As a result, the Delta
module confidently reads data from these two files and ignores
the outdated file part 1.parquet.

So, Delta Lake follows the principle of immutability; once a file
is written to the storage layer, it remains unchanged. The
approach of handling updates through file copying and
transaction log management ensures that the historical
versions of data are preserved. This offers a comprehensive
record of all modifications performed on the table. We will
explore in the following section how to leverage these historical
versions for tasks such as auditing, rollbacks, and time travel
queries.

Concurrent writes and reads scenario

In this scenario, Alice and Bob are both interacting with the
table simultaneously, as illustrated in Figure 2-5. Alice is
inserting new data, initiating the creation of a new data file, part

4.parquet. Meanwhile, Bob is querying the table, where the
Delta module starts by reading the transaction log to determine
which Parquet files contain the relevant data.

At the time Bob executes the query, the transaction log includes
information about the Parquet files part 2 and part 3 only, as the
file part 4.parquet is not fully written yet. So, Bob’s query reads
the two latest files available that represent the current table
state at that moment. Using this methodology, Delta Lake
guarantees that you will always get the most recent version of
the data. Your read operations will never have a deadlock state
or conflicts with any ongoing operation on the table.

Figure 2-5. Concurrent writes and reads scenario

Finally, once Alice’s query finishes writing the new data, the
Delta module adds a new JSON file to the transaction log, named
002.json.

In summary, Delta Lake’s transaction log helps avoid conflicts
between write and read operations on the table. So, even when
write and read operations are occurring simultaneously, read
operations can proceed without waiting for the writes to
complete. This capability helps maintain the reliability and
performance of data operations on Delta Lake tables.

Failed writes scenario

Here is our last scenario: imagine that Alice attempts again to
insert new data into the Delta table, as illustrated in Figure 2-6.
The Delta module begins writing the new data to the lake in a
new file, part 5.parquet. However, an unexpected error occurs
during this operation, resulting in the creation of an incomplete
file. This failure prevents the Delta module from recording any
information related to this incomplete file in the transaction log.

Figure 2-6. Failed writes scenario

Now, when Bob queries the table, the Delta module starts, as
usual, by reading the transaction log. Since there is no
information about the incomplete file part 5.parquet in the log,
only the parquet files part 2, part 3, and part 4 will be
considered for the query output. Consequently, Bob’s query is
protected from accessing the incomplete or dirty data created
by Alice’s unsuccessful write operation.

In essence, Delta Lake guarantees the prevention of reading
incomplete or inconsistent data. The transaction log serves as a
reliable record of committed operations on the table. And in the
event of a failed write, the absence of corresponding
information in the log ensures that subsequent queries won’t be
affected by incomplete data. Later in this chapter, we will
explore how uncommitted and unused data files in the table
directory can be cleaned up using vacuum operations.

Delta Lake Advantages

Delta Lake’s strength arises from its robust transaction log,
which serves as the backbone of this innovative solution. This
log empowers Delta Lake to deliver a range of features and
advantages that can be summarized by the following key points:

Enabling ACID transactions
The main advantage of the transaction log is that it enables
Delta Lake to execute ACID transactions on traditional data
lakes. This feature helps maintain data integrity and
consistency when performing data operations, ensuring that
they are processed reliably and efficiently.
Scalable metadata handling
Another primary benefit of Delta Lake is the ability to handle
table metadata efficiently. The table metadata, which
represents information about the structure, organization,
and properties of the table, is stored in the transaction log
instead of a centralized metastore. This strategy enhances
query performance when it comes to listing large directories
and reading vast amounts of data. It also includes table
statistics to accelerate operations.
Full audit logging
Additionally, the transaction log serves as a comprehensive
audit trail that captures every change occurring on the table.
It tracks all modifications, additions, and deletions made to
the data, along with the timestamps and user information
associated with each operation. This allows you to trace the
evolution of the data over time, which facilitates
troubleshooting issues and ensures data governance.

Working with Delta Lake Tables

In this section, we dive into the practical aspects of Delta Lake.
We’ll walk through essential tasks such as creating Delta Lake
tables, inserting data, updating tables with new information,
and exploring the underlying directory structure. Through
hands-on examples, you’ll gain a comprehensive understanding
of how Delta Lake works in your Databricks environment.

We will conduct these exercises within a new SQL notebook,
named “2.1 - Delta Lake,” which you can find on the book’s
GitHub repository.

In Databricks, tables are organized in a database within a
catalog. For the sake of simplicity and ease of storage access, we
will use the hive_metastore catalog, which is available by
default in every Databricks workspace. A detailed discussion on
data catalogs will be provided in the next chapter. For the
present, let us proceed by executing the following command to
set the active catalog in our notebook to hive_metastore :

USE CATALOG hive_metastore

This command configures the current notebook to use the
hive_metastore catalog, ensuring that all subsequent
operations on Delta Lake tables are executed under this catalog.

https://github.com/derar-alhussein/oreilly-databricks-dea

Creating Tables

Creating Delta Lake tables closely resembles the conventional
method of creating tables in standard SQL. It starts with the
CREATE TABLE keyword followed by the table name. Then, you
provide the schema of the table by specifying the columns along
with their corresponding data types. Consider the following
example where we create an empty Delta Lake table named
product_info :

CREATE TABLE product_info (
 product_id INT,
 product_name STRING,
 category STRING,
 price DOUBLE,
 quantity INT
)
USING DELTA;

In this example, product_info represents a table designed to
store product-related details. It includes five columns:
product_id of type integer , product_name and category of
type string , price of type double , and quantity (integer
representing available stock of each product).

It’s worth mentioning that explicitly specifying USING DELTA
identifies Delta Lake as the storage layer for the table, but this
clause is optional. Even in its absence, the table will still be
recognized as a Delta Lake table since DELTA is the default table
format in Databricks.

Catalog Explorer

After creating the Delta Lake table named product_info using
the provided SQL script, you can explore it via the Catalog
Explorer interface, as shown in Figure 2-7. To open the Catalog
Explorer, click the Catalog tab in the left sidebar of your
Databricks workspace.

Figure 2-7. Catalog Explorer interface

In the interface, navigate to the default database in the left
panel to find the product_info table. If you click it, you can
examine the table’s columns, review sample data entries, and
explore additional information displayed on the right panel.

Inserting Data

In Delta Lake, data insertion can be easily achieved through the
use of the standard SQL INSERT INTO statement, as defined by
ANSI SQL. Like in standard SQL, you can use this statement to
add a single line or multiple lines of data:

Each operation on the table represents an individual
transaction influencing the table’s state. In this context, each

INSERT INTO product_info (product_id, product_name, c
VALUES (1, 'Winter Jacket', 'Clothing', 79.95, 100);

INSERT INTO product_info (product_id, product_name, c
VALUES
 (2, 'Microwave', 'Kitchen', 249.75, 30),
 (3, 'Board Game', 'Toys', 29.99, 75),
 (4, 'Smartcar', 'Electronics', 599.99, 50);

INSERT statement generates a separate data file within the
table directory. So, after executing these two INSERT
commands, two distinct data files will be added to the table
directory. The first file contains the initial single record, while
the second data file contains the three additional records that
were inserted in the subsequent INSERT statement. This
example simulates real-world scenarios where data is written to
a table in several operations, such as data ingestion by multiple
runs of scheduled jobs.

By executing the previous two INSERT commands, four records
will be inserted into the table. But if you execute them in the
same cell, the displayed result will indicate the successful
insertion of just three records. This outcome occurs due to the
default behavior in the notebook editor wherein only the result
of the last command executed within the cell is typically
displayed.

TIP

To view the outcomes of individual SQL statements when having multiple
commands in a single cell, select each specific SQL statement separately and press
Shift+Ctrl+Enter to run the selected text. Alternatively, you can use separate cells for
each SQL statement.

To access and verify the inserted data, simply query the table
through the standard SQL SELECT statement:

SELECT * FROM product_info

Figure 2-8 displays the result of the SELECT query on the
product_info table. It displays the four inserted records,
confirming that the two transactions were successfully
performed on the table.

Figure 2-8. The result of the SELECT statement from the product_info table

Like in SQL, you can also filter data based on conditions using
the WHERE clause and aggregate information if needed with
GROUP BY .

Exploring the Table Directory

As previously discussed, the execution of the two transactional
operations on the table resulted in creating two small data files
in the table directory. To validate this, we can use the DESCRIBE

DETAIL command on our table. This command enables you to
explore the metadata of Delta Lake tables. It provides essential
information about the table, such as the numFiles field,
indicating the number of data files in the current table version:

DESCRIBE DETAIL product_info

Figure 2-9 shows the output of the DESCRIBE DETAIL command
on the product_info table. The numFiles column confirms
that the table indeed has two data files resulting from our two
INSERT operations.

Figure 2-9. The output of the DESCRIBE DETAIL command on the product_info table

Additionally, the previous command shows the location of the
table, indicating the directory where the table files are stored on
the storage. As indicated, the product_info table is stored
under dbfs:/user/hive/warehouse/product_info.

WARNING

If you are working with Unity Catalog, be aware that tables will be stored in a
different location marked by __unitystorage , which is fully managed by Unity
Catalog. This means that certain commands, such as listing table contents, may not
function correctly due to restricted access to this managed storage. Therefore, in the
context of this book, it is advisable to switch to the Hive metastore using the
command USE CATALOG hive_metastore .

To gain a deeper understanding of the table’s file structure, you
can use the %fs ls magic command that allows you to explore
the contents of the table directory:

%fs ls 'dbfs:/user/hive/warehouse/product_info'

Figure 2-10 illustrates the result of executing the %fs
command. It shows that the table directory indeed holds two
data files, both in Parquet format.

Figure 2-10. The output of the %fs command on the product_info table directory

Furthermore, the table directory contains the _delta_log
subdirectory, which contains the transaction log files of the
table.

Updating Delta Lake Tables

Now, considering update operations, let’s explore a scenario
where the task involves adjusting the price of product 3 (Board
Game) by incrementing its price by $10:

UPDATE product_info
SET price = price + 10
WHERE product_id = 3

Examining the table directory after this update operation
reveals an interesting observation: a new file addition (Figure 2-
11).

Figure 2-11. The output of the %fs command after the update operation

As previously mentioned, when updates occur, Delta Lake
doesn’t directly modify existing files but rather creates updated
copies of them. Afterward, Delta Lake leverages the transaction
log to indicate which files are valid in the current version of the
table. To confirm this behavior, you can run the DESCRIBE
DETAIL command again to display the table metadata following
this update, as illustrated in Figure 2-12.

Figure 2-12. The output of the DESCRIBE DETAIL command after the update
operation

The numFiles column shows that the count of the table’s files is
still 2, and not 3! These are the two files that represent the
current table version, including the newly updated file resulting
from the recent update operation. When querying the Delta
table again, the query engine leverages the transaction logs to
identify all the data files that are valid in the current version
and exclude any outdated data files. If you query the table after
this update operation, you can verify that the pricing
information of product 3 has been successfully updated.

NOTE

Starting from Databricks Runtime Version 14, adjustments have been made to the
way update and delete operations are applied, affecting the associated data files in
the table directory. This change is due to the introduction of deletion vectors in Delta
Lake.

Exploring Table History

In Delta Lake, the transaction log maintains the history of
changes made to the tables. To access the history of a table, you
can use the DESCRIBE HISTORY command:

DESCRIBE HISTORY product_info

https://oreil.ly/CfOM5

Figure 2-13 illustrates the table history, revealing four distinct
versions starting from the table creation at version 0. Moving
forward, versions 1 and 2 indicate write operations on the table,
representing our two insert commands, while version 3
indicates the update operation. All this information is captured
within the transaction log of the table.

Figure 2-13. The output of the DESCRIBE HISTORY command on the product_info
table

The transaction log is located under the _delta_log folder in the
table directory. You can navigate to this folder using the %fs ls
command:

%fs ls 'dbfs:/user/hive/warehouse/product_info/_delta

Figure 2-14 illustrates the contents of the _delta_log folder
located within the product_info table directory. You can
observe that it contains nothing but JSON files, along with their
associated checksum files (having the .crc extension). Each
JSON file corresponds to a distinct version of the Delta Lake
table. In the context of the product_info table, we observe
four JSON files, corresponding precisely to the four table
versions examined previously through the DESCRIBE HISTORY
command.

Figure 2-14. The output of the %fs command on the _delta_log folder

1

To gain a deeper understanding of the transaction log, we can
use the %fs head command to explore the content of one of
those JSON files. In particular, we can examine the latest JSON
file that represents version 3 of the table:

The output of the %fs head command shows that the JSON file
contains structured JSON data about our update operation. The
add element specifies the new data file appended to the table,
while the remove element specifies the data file marked for soft
deletion—in other words, it’s no longer part of the latest table
version.

%fs head
'dbfs:/user/hive/warehouse/product_info/_delta_log/00

{ "commitInfo":{"operation": "UPDATE", "timestamp": 1
 "userName": "Derar Alhussein", ...}
}
{ "add":{"path": "part-00000-a21a2e7e-29b5-433a-c000.
 "modificationTime": 1708794052000, ...}
}
{ "remove":{"path": "part-00000-485c4e80-678f-4c03-c0
 "deletionTimestamp": 1708794052717, ...}
}

Exploring Delta Time Travel

Time travel is a feature in Delta Lake that allows you to retrieve
previous versions of data in Delta Lake tables. The key aspect of
Delta Lake time travel is the automatic versioning of the table.
This versioning provides an audit trail of all the changes that
have happened on the table. Whenever a change is made to the
data, Delta Lake captures and stores this change as a new
version. Each version represents the state of the table at a
specific point in time.

To explore the historical versions of a Delta table, you can
leverage the DESCRIBE HIS TORY command in SQL. This
command provides a detailed log of all the operations
performed on the table, including information such as the
timestamp of the operation, the type of operation (insert,
update, delete, etc.), and any additional metadata associated
with the change.

Here’s an example of how you might use the DESCRIBE
HISTORY command:

DESCRIBE HISTORY <table_name>;

This command returns a result set containing the operations
performed on the specified table in reverse chronological order,
along with relevant details for each operation.

Let’s review again the history of the product_info table:

DESCRIBE HISTORY product_info

Figure 2-15 displays the table history, illustrating how Delta
Lake’s versioning system automatically assigns a unique
version number and timestamp to every operation performed
on a table.

Figure 2-15. The output of the DESCRIBE HISTORY command on the product_info
table

Our table has currently four distinct versions:

Version 0
This is the initial version of the table, representing its state at
creation. Since the table was created empty, this version
captures only the initial schema and metadata of the table.
Versions 1 and 2
These versions indicate write operations on the table,
representing our two insert commands.
Version 3
This version indicates the update operation on the table,
which represents the latest state of the table. Additionally,
note that this update operation includes the predicate used to
match records in the operationParameters column.

Querying Older Versions

To query older versions of a table, Delta Lake offers two distinct
approaches, using either the timestamp or the version number.

Querying by timestamp

The first method allows you to retrieve the table’s state as it
existed at a specific point in time. This involves specifying the
desired timestamp in the SELECT statement using the
TIMESTAMP AS OF keyword:

SELECT * FROM <table_name> TIMESTAMP AS OF <timestamp

Querying by version number

The second method involves using the version number
associated with each operation on the table, as illustrated in the
table history in Figure 2-16.

Figure 2-16. The output of the DESCRIBE HISTORY command on the product_info
table

You can use the VERSION AS OF keyword to travel back in time
to a specific version of the table:

SELECT * FROM <table_name> VERSION AS OF <version>

Consider a scenario where we need to retrieve the product data
exactly as it existed before the update operation, identified as
version 2 in our product_info table. We can simply use the
following query:

SELECT * FROM product_info VERSION AS OF 2

Alternatively, you can use its short syntax represented by @v
followed by the version number:

SELECT * FROM product_info@v2

Figure 2-17 shows the result of querying version 2 of our table.

Figure 2-17. The result of querying version 2 of the product_info table

So, Delta Lake’s time travel enables you to independently
investigate different versions of the data without impacting the
current state of the table. This feature is possible thanks to

those extra data files that had been marked as removed in our
transaction log.

Rolling Back to Previous Versions

Delta Lake time travel is particularly useful in scenarios where
undesired data changes need to be rolled back to a previous
state. For instance, in case of bad writes or unintended data
modifications, you can easily undo these changes by reverting
to a previous version of the table.

Delta Lake offers the RESTORE TABLE command that allows you
to roll back the table to a specific timestamp or version number:

Imagine a scenario where data has been accidentally deleted
from our product_info table and we need to restore it.

DELETE FROM product_info

RESTORE TABLE <table_name> TO TIMESTAMP AS OF <timest

RESTORE TABLE <table_name> TO VERSION AS OF <version>

Upon executing the DELETE command, it removes all four
records currently in the table. You can easily confirm this by
querying the table again. In addition, we can review the table
history to see that the delete operation has been recorded as a
new table version, labeled as version 4 (Figure 2-18).

Figure 2-18. The output of the DESCRIBE HISTORY command after running the
DELETE command

To roll back the table to a previous version that existed before
the deletion occurred, specifically version 3, we can use the
RESTORE TABLE command:

RESTORE TABLE product_info TO VERSION AS OF 3

Figure 2-19 displays the output of the restoration operation. It
shows that two files have been restored, confirming the data
has been successfully restored to its original state. The
product_info table again contains the complete dataset, as it
did before the deletion took place. You can easily confirm this
by querying the table again.

Figure 2-19. The output of the RESTORE TABLE command on the product_info table

We can also examine what really happened at our table by
exploring its history:

DESCRIBE HISTORY product_info

Figure 2-20 displays the table history after the restoration
operation. It shows that this operation has been recorded as a
new table version, labeled version 5.

Figure 2-20. The output of the DESCRIBE HISTORY command after the restoration
operation

In summary, Delta Lake’s time travel brings a new level of
flexibility to data management within Delta tables. It provides
you with the capability to travel back in time to specific versions
of your tables and restore them to a previous state if needed.

Optimizing Delta Lake Tables

Delta Lake provides an advanced feature for optimizing table
performance through compacting small data files into larger
ones. This optimization is particularly significant as it enhances

the speed of read queries from a Delta Lake table. You trigger
compaction by executing the OPTIMIZE command:

OPTIMIZE <table_name>

Say you have a table that has accumulated many small files due
to frequent write operations. By running the OPTIMIZE
command, these small files can be compacted into one or more
larger files. This concept is illustrated in an example in Figure 2-
21, where the optimization process results in two consolidated
data files instead of six small files.

Figure 2-21. The process of optimizing Delta Lake tables using the OPTIMIZE
command

Table optimization improves the overall performance of the
table by minimizing overhead associated with file management
and enhancing the efficiency of data retrieval operations.

Z-Order Indexing

A notable extension of the OPTIMIZE command is the ability to
leverage Z-Order indexing. Z-Order indexing involves the
reorganization and co-location of column information within
the same set of files. To perform Z-Order indexing, you simply
add the ZORDER BY keyword to the OPTIMIZE command. This
should be followed by specifying one or more column names on
which the indexing will be applied:

OPTIMIZE <table_name>
ZORDER BY <column_names>

For instance, recalling our previous example in Figure 2-21, let’s
consider the data files containing a numerical column such as
ID that ranges between 1 and 100. Applying Z-Order indexing
to this column during the optimization process results in
different content written to the two compacted files. In this
case, Z-Order indexing will aim to have the first compacted file
contain values ranging from 1 to 50, while the subsequent file
contains values from 51 to 100, as illustrated in Figure 2-22.

Figure 2-22. Z-Order indexing

This strategic arrangement of data enables data skipping in
Delta Lake, which helps avoid unnecessary file scans during

query processing. In the provided example, if a query targets an
ID, such as 25, Delta Lake can quickly determine that ID #25
resides in the first compacted file. Consequently, it can
confidently ignore scanning the second file altogether, resulting
in significant time savings.

Let’s now optimize our product_info table that currently has
two small data files, as indicated in the numFiles field of the
table metadata (Figure 2-23):

DESCRIBE DETAIL product_info

Figure 2-23. The output of the DESCRIBE DETAIL command before optimization

We can use the OPTIMIZE command to combine these files
toward an optimal size:

OPTIMIZE product_info
ZORDER BY product_id

Figure 2-24 shows the output of the OPTIMIZE command. The
numFilesRemoved in the metrics column indicates that two
small data files have been soft deleted, while the
numFilesAdded metric indicates that a new optimized file is
added, compacting those two files.

Figure 2-24. The output of the OPTIMIZE command

In addition, we have added the Z-Order indexing with our
OPTIMIZE command. As an example, we apply Z-Order
indexing to the product_id column. However, with such a
small dataset, the benefits of Z-Order indexing may not be as
significant, and its impact may not be noticeable.

To confirm the result of the optimization process, let’s review
again the details of our table:

DESCRIBE DETAIL product_info

Indeed, as illustrated in Figure 2-25, the current table version
consists of only one consolidated data file, indicating the

success of the optimization operation.

Figure 2-25. The output of the DESCRIBE DETAIL command after optimization

In addition, we can check how the OPTIMIZE operation has
been recorded in our table history:

DESCRIBE HISTORY product_info

As expected and illustrated in Figure 2-26, the OPTIMIZE
command created another version of our table. This means that
version 6 is the most recent version of the table.

Figure 2-26. The output of the DESCRIBE HISTORY command after the optimization
operation

Lastly, let us explore the data files in our table directory:

%fs ls 'dbfs:/user/hive/warehouse/product_info'

In Figure 2-27, we can see that there are four data files in the
table directory. However, it is important to remember that our
current table version references only one file following the
optimization operation. This means that other data files in the
directory are unused files, and we can simply clean them up. In

the next section, we will learn how to achieve this task with
vacuuming.

Figure 2-27. The output of the %fs command on the product_info table directory
after optimization

In essence, Delta Lake’s OPTIMIZE command, coupled with Z-
Order indexing, offers a powerful mechanism to optimize table
performance. It enhances the speed of read queries by
compacting small files and intelligently organizing their column
information.

Vacuuming

Delta Lake’s vacuuming provides an efficient mechanism for
managing unused data files within a Delta table. As data evolves
over time, there might be scenarios where certain files become
obsolete, either due to uncommitted changes or because they
are no longer part of the latest state of the table. The VACUUM
command in Delta Lake enables you to clean up these
unwanted files, ensuring efficient storage management that
saves storage space and cost.

Here’s an example of how you might use the VACUUM
command:

VACUUM <table_name> [RETAIN num HOURS]

The process involves specifying a retention period threshold for
the files, so the command will automatically remove all files
older than this threshold. The default retention period is set to
seven days, meaning that the vacuum operation will prevent
you from deleting files less than seven days old. This is a safety
measure to ensure that no active or ongoing operations are still
referencing any of the files to be deleted.

It’s important to note that running the VACUUM command comes
with a trade-off. Once the operation is executed and files older
than the specified retention period are deleted, you lose the

ability to time travel back to a version older than that period.
This is because the associated data files are no longer available.
Therefore, it is crucial to carefully consider the retention period
based on your data retention policies and data storage
requirements.

Vacuuming in Action

Let’s optimize the storage and tidy up the file structure of our
product_info table. Before we start, let us first explore the
data files in our table directory:

%fs ls 'dbfs:/user/hive/warehouse/product_info'

As shown in Figure 2-28, there are currently four data files in
the table directory.

Figure 2-28. The output of the %fs command on the product_info table directory
before vacuuming

Remember, our current table version references only one file
following the optimization operation detailed in the previous
section. This means that other data files in the directory are
unused files, and we can simply clean them up using the
VACUUM command:

VACUUM product_info

However, upon executing the command, you realize that the
files are still present in the table directory. This is because, by
default, VACUUM retains files for a period of seven days to
ensure ongoing operations can still access them if needed.

To overcome this default behavior, we attempt to specify a
retention period of zero hours to retain only the current
version of the data:

VACUUM product_info RETAIN 0 HOURS

However, this command throws an exception since the
retention period is low, compared to the default retention
period of seven days. As a workaround solution, and for
demonstration purposes only, we can temporarily disable the
retention duration check in Delta Lake. It’s important to note
that this approach is not recommended for production
environments due to potential data integrity issues.

With the retention duration check disabled, we can now
proceed and rerun our VACUUM command with a 0 HOURS

IllegalArgumentException: requirement failed: Are you
to vacuum files with such a low retention period? If
currently writing to this table, there is a risk that
the state of your Delta table.

SET spark.databricks.delta.retentionDurationCheck.ena

https://oreil.ly/6Z59C

retention period. To confirm its output, let’s explore the table
directory:

%fs ls 'dbfs:/user/hive/warehouse/product_info'

Indeed, as illustrated in Figure 2-29, the operation this time
successfully removed the old data files from the table directory.

Figure 2-29. The output of the %fs command on the product_info table directory
after vacuuming

While the cleanup operation enhances storage efficiency, it
comes at the cost of losing access to older data versions for time
travel queries. Attempting to query an old table version results
in a “file not found” exception, since the corresponding data
files have been deleted during the previous VACUUM operation:

SELECT * FROM product_info@v1

FileReadException: Error while reading file

Dropping Delta Lake Tables

In the final step of managing Delta Lake tables within the
lakehouse architecture, we can drop the table and permanently
erase its associated data. Similar to SQL syntax, we use the DROP
TABLE command for this purpose:

DROP TABLE product_info

Upon executing this command, the table, along with its data,
will be deleted from the lakehouse environment. To confirm
this action, you can attempt to query the table again, only to
find that it is no longer found in the database. Furthermore, the
directory containing the table’s files is also completely removed:

%fs ls 'dbfs:/user/hive/warehouse/product_info'

p g
part-00000-40ada852-ef55-4367-994a-eae08e0684d4-c000.
File referenced in the transaction log cannot be foun
Caused by: FileNotFoundException: Operation failed: "
does not exist.", 404, GET, PathNotFound, "The specif

FileNotFoundException: No such file or directory
dbf / /hi / h / d

Thus, the VACUUM command provides a mechanism for
optimizing storage by removing unnecessary data files of Delta
Lake tables. However, it’s crucial to understand the impacts of
file retention duration and consider the trade-offs between
storage efficiency and historical data accessibility.

Conclusion

Throughout this chapter, we’ve explored how Delta Lake works,
demonstrating its essential role in transforming traditional data
lakes into reliable lakehouses. By mastering Delta Lake, you can
significantly enhance your data workflows and enable more
robust analytics. The knowledge gained from this chapter will
serve as a foundation for fully leveraging Delta Lake’s potential
in subsequent discussions and use cases.

Sample Exam Questions

Conceptual Question

 dbfs:/user/hive/warehouse/prod

1. Which of the following statements best describes the time
travel feature in Delta Lake?

1. It compacts old small files into larger ones to improve query
performance and optimize storage usage.

2. It partitions the table based on datetime columns, ensuring
that historical data retrieval is optimized.

3. It uses Z-Order indexing to reorganize datetime column
information within the same set of files, enhancing the
performance of range queries.

4. It generates periodic backups of the data to ensure that all
information can be easily restored in the event of system
failure.

5. It allows users to query Delta Lake tables at a specific point in
time, providing views of previous states of the data.

Code-Based Question

2. A data engineer is investigating a Delta Lake table named
customer_orders , which has experienced slow performance
for the past week. The engineer has found that it contains too
many small files, potentially contributing to these performance
issues.

To enhance the query performance for this table, which
command should the data engineer execute?

1. ZORDER BY customer_orders
2. OPTIMIZE customer_orders
3. VACUUM customer_orders
4. VACUUM customer_orders RETAIN 0 HOURS
5. RESTORE TABLE customer_orders TO TIMESTAMP AS OF

current_timestamp () - INTERVAL '7' DAYS

The correct answers to these questions are listed in Appendix C.

 A checksum is a unique value computed from the contents
of a file using an algorithm. It serves as a sort of digital
fingerprint that helps determine if any changes or corruption
have occurred in the associated file. In other words, a checksum
ensures data integrity of the associated file.

1

Chapter 3. Mastering Relational
Entities in Databricks

Relational entities, particularly databases, tables, and views, are
essential components for organizing and managing structured
data in Databricks. Understanding how these entities interact
with the metastore and storage locations is crucial for efficient
querying and data management. In this chapter, we will cover in
detail how these entities function within the Databricks
environment and understand their relationship with the
underlying storage.

Understanding Relational Entities

This section provides a detailed understanding of relational
entities in Databricks, covering databases, tables, and views,
with a focus on their interactions with both the metastore and
storage systems.

Databases in Databricks

In Databricks, a database essentially corresponds to a schema in
a data catalog. This means that when you create a database,

you’re essentially defining a logical structure where tables,
views, and functions can be organized. This collection of
database objects is called a schema. You have the flexibility to
create a database using either the CREATE DATABASE or CREATE
SCHEMA syntax, as they are functionally equivalent.

Every Databricks workspace includes a local data catalog, called
hive_metastore , that all clusters can access to persist object
metadata. The Hive metastore serves as a repository for
metadata, storing essential information about data structures
such as databases, tables, and partitions. This metadata includes
details like table definitions, data formats, and storage locations.

Default database

By default, a database named “default” is provided in the
hive_metastore catalog. When you create tables without
explicitly specifying a database name, they are created under
the default database. The data for these tables is stored in the
default directory for Hive, typically located at
/user/hive/warehouse on the DBFS, as illustrated in Figure 3-1.

Figure 3-1. Creating tables under the default database

Creating databases

Apart from the default database, you can create additional
databases using the CREATE DATABASE or CREATE SCHEMA
syntax. These databases are also stored in the Hive metastore,
with their corresponding folders under the default Hive
directory in /user/hive/warehouse. These database folders are
distinguished by the .db extension to differentiate them from
table directories, as illustrated in Figure 3-2.

Figure 3-2. Creating an additional database and tables within this database

Custom-location databases

Moreover, you can create databases outside of the default Hive
directory by specifying a custom location using the LOCATION
keyword in the CREATE SCHEMA syntax. In this case, the
database definition still resides in the Hive metastore, but the
database folder is located in the specified custom path. Tables
created within these custom databases will have their data
stored in the respective database folder within the custom
location, as illustrated in Figure 3-3.

Figure 3-3. Creating a database in a custom location

Tables in Databricks

In Databricks, there are two types of tables: managed tables and
external tables. Understanding the distinction between them is
essential for effectively managing your data. Table 3-1
summarizes the key differences between these two types of
tables.

Table 3-1. Comparison of managed and external tables in Delta Lake

Managed table External table

Created within its own
database directory:

CREATE TABLE table_name

Created outside the
database directory (in a
path specified by the LOC
ATION keyword):

CREATE TABLE table_name
LOCATION <path>

Dropping the table deletes
both the metadata and the
underlying data files of
the table.

Dropping the table only
removes the metadata of
the table. It does not
delete its underlying data
files.

Let’s dive deeper to gain a comprehensive understanding of
these two types of tables.

Managed tables

A managed table is the default type in Databricks, where the
table and its associated data are managed by the metastore,
typically the Hive metastore or Unity Catalog. When you create
a managed table, the table data is stored in a location controlled
by the metastore. This means that the metastore owns both the
metadata and the table data, enabling it to manage the complete
lifecycle of the table. This integrated management simplifies
data lifecycle management tasks, such as table deletion and
maintenance.

So, when you drop a managed table, not only is its metadata
removed from the metastore, but the underlying data files
associated with the table are also deleted from storage. This
approach ensures that the data remains consistent with the
table definition throughout its lifecycle. However, it’s essential
to exercise caution when dropping managed tables, as the
associated data will be permanently removed.

External tables

In contrast to managed tables, an external table in Databricks is
a table where only its metadata is managed by the metastore,
while the data files themselves reside outside the database
directory. When creating an external table, you specify the
location of the data files using the LOCATION keyword:

CREATE TABLE table_name
LOCATION <path>

Since the metastore does not own the underlying data files,
dropping an external table only removes the metadata
associated with the table, leaving its data files intact. This
distinction is crucial, as it enables you to manage the actual data
files of the table separately from its metadata. This is
particularly useful when working with data that is stored in
external locations outside the DBFS, like in S3 buckets or Azure
storage containers.

To better understand external tables, let’s revisit our diagram.
Figure 3-4 illustrates creating an external table in the default
database. We simply use the CREATE TABLE statement with the
LOCATION keyword. The definition of this external table will be
in the Hive metastore under the default database, while the
actual data files will reside in the specified external location.

Figure 3-4. Creating an external table in the default database

Similarly, we can create an external table in any database.
Figure 3-5 illustrates creating an external table in our database
db_x . First, we specify the database name via the USE
DATABASE or USE SCHEMA keyword. Then, we create the table
with the LOCATION keyword, indicating the path where the
external table data should be stored. This path could be the
same as the previous one used for default.table_3 table or a
different location, depending on our requirements. And again,
the table definition will be stored in the Hive metastore, while
the data files will be located in the given external location.

Figure 3-5. Creating an external table in the new database db_x

Even if the database was created in a custom location outside of
the default Hive directory, we can still create external tables
within it. Figure 3-6 illustrates this scenario by using our
custom-location database db_y . Once again, we specify the
database using the USE SCHEMA keyword and create the
external table with the LOCATION keyword. In this scenario,
let’s assume we choose the same path as in the previous
example. As before, the table definition will be stored in the
metastore, while the data files will be located in the specified
external location.

Figure 3-6. Creating an external table, table_3 , in the custom-location database
db_y

In summary, Databricks provides two types of tables: managed
tables and external tables. Depending on the use case and data
requirements, choosing the appropriate table type ensures
efficient data organization, storage, and maintenance. Opting
for managed tables ensures integrated management, while
choosing external tables provides greater flexibility and control
when managing your tables.

Putting Relational Entities into
Practice

Let’s now put theory into practice. In this section, we will use a
new SQL notebook titled “3.1 - Databases and Tables” to create
managed and external tables in various database types. In
addition, we will explore the differences in behavior when
dropping each type of table.

Working in the Default Schema

Before we start, let’s explore the Catalog Explorer, where we can
access the Hive metastore for our Databricks workspace. To

open the Catalog Explorer, click the Catalog tab in the left
sidebar of your Databricks workspace.

By default, under the hive_metastore catalog, there’s a
database named default , as illustrated in Figure 3-7. We’ll
begin by creating some tables within this default database.

Figure 3-7. Catalog Explorer showing the default database in hive_metastore

Creating managed tables

First, we create a managed table named managed_default and
populate it with data:

USE CATALOG hive_metastore;

CREATE TABLE managed_default
 (country STRING, code STRING, dial_code STRING);

INSERT INTO managed_default
VALUES ('France', 'Fr', '+33')

Since we’re not specifying the LOCATION keyword, this table is
considered managed in this database. Checking back in the
Catalog Explorer, we can confirm that the managed_default
table has been created under the default database. Alternatively,
without leaving the working notebook, you can directly access
the catalog by clicking the catalog icon located in the sidebar of
the notebook editor (Figure 3-8).

Figure 3-8. The catalog in the notebook editor showing the managed_default table

Executing the DESCRIBE EXTENDED command on our table
provides advanced metadata information, as illustrated in
Figure 3-9.

DESCRIBE EXTENDED managed_default

Figure 3-9. The output of the DESCRIBE EXTENDED command on the managed_default
table

Among this metadata information, we focus on three key
elements:

The type of table, which is indeed MANAGED
The location, which shows that our table resides in the
default Hive metastore under dbfs:/user/hive/warehouse
The provider, which confirms that this is a Delta Lake table

Creating external tables

Next, we create an external table within the default database. To
achieve this, we simply add the LOCATION keyword followed by
the desired storage path. In our case, we’ll store this table under
the /mnt/demo directory through the DBFS:

CREATE TABLE external_default
 (country STRING, code STRING, dial_code STRING)
LOCATION 'dbfs:/mnt/demo/external_default';

INSERT INTO external_default
VALUES ('France', 'Fr', '+33')

After creating and inserting data into this external table, you
can use the Catalog Explorer to verify the presence of the table
in the Hive metastore. In addition, running DESCRIBE EXTENDED
on the external table confirms its external nature and its
storage location under /mnt/demo, as illustrated in Figure 3-10.

DESCRIBE EXTENDED external_default

Figure 3-10. The output of the DESCRIBE EXTENDED command on the exter nal_
default table

Dropping tables

If you want to remove tables from the database, you can simply
drop them using the DROP TABLE command. However, it is
important to note that the behavior differs for managed and
external tables. Let’s discuss the consequences of this action on
each table type. We start by running the DROP TABLE command
on our managed table:

DROP TABLE managed_default

When you drop a table, it deletes its metadata from the
metastore. This means that the table’s definition, including its

schema, column names, data types, and other relevant
information, is no longer stored in the metastore. We can
confirm this by trying to query the table, which will result in a
“table not found” error:

SELECT * FROM managed_default

Dropping the managed table not only removes its metadata
from the metastore, but also deletes all associated data files
from the storage. This is confirmed by “a file not found”
exception received upon checking the table directory:

%fs ls 'dbfs:/user/hive/warehouse/managed_default'

However, when the external table is dropped, we see different
behavior:

[TABLE_OR_VIEW_NOT_FOUND] The table or view `managed_
Verify the spelling and correctness of the schema and

FileNotFoundException:
No such file or directory dbfs:/user/hive/warehouse/m

DROP TABLE external_default

Dropping the external table also removes its entry from the
metastore. We can confirm this by trying to query the table,
which should result in a “table not found” error. However, since
the underlying data is stored outside the database directory, the
data files remain intact. We can easily confirm that the data files
of the table still persist by checking the table directory:

%fs ls 'dbfs:/mnt/demo/external_default'

Figure 3-11 confirms that the data files of the external table
continue to exist in the table directory even after the table has
been dropped.

Figure 3-11. The output of the %fs command on the external_default table
directory

In Databricks, you can directly access a Delta table by querying
its directory using the following SELECT statement:

Figure 3-12 shows the result of directly querying the table
directory, confirming that the data of this external table remains
unaffected by dropping the table from the metastore.

Figure 3-12. The result of directly querying the external_default table directory

You can manually remove the table directory and its content by
the running the dbutils.fs.rm function in Python:

SELECT * FROM DELTA.`dbfs:/mnt/demo/external_default`

Working in a New Schema

In addition to the default database, we can also create additional
databases and manage tables within those databases. Let’s walk
through the process step-by-step.

Creating a new database

You can create a new database using either the CREATE SCHEMA
or CREATE DATABASE syntax, which are interchangeable:

CREATE SCHEMA new_default

Once the database is created, you can inspect its metadata using
the DESCRIBE DATABASE EXTENDED command. This command
provides information about the database, such as its location in
the underlying storage:

DESCRIBE DATABASE EXTENDED new_default

%python
dbutils.fs.rm('dbfs:/mnt/demo/external_default', True

As illustrated in Figure 3-13, the new database is stored under
the default Hive directory with a .db extension to distinguish it
from other table folders in the directory.

Figure 3-13. The output of the DESCRIBE DATABASE EXTENDED command on the
new_default schema

Creating tables in the new database

Let’s now create managed tables and external tables within our
newly created database. To create tables within a database, you
need first to set it as the current schema by specifying its name
through the USE DATABASE keyword:

USE DATABASE new_default;

-- create a managed table

CREATE TABLE managed_new_default
 (country STRING, code STRING, dial_code STRING);

INSERT INTO managed_new_default
VALUES ('France', 'Fr', '+33');

-- Create an external table
CREATE TABLE external_new_default
 (country STRING, code STRING, dial_code STRING)
LOCATION 'dbfs:/mnt/demo/external_new_default';

INSERT INTO external_new_default
VALUES ('France', 'Fr', '+33');

In the Catalog Explorer, you can locate the new schema and
confirm that the two tables have been successfully created
within this database. Alternatively, you can just refresh the
catalog in the notebook editor to show the new objects, as
shown in Figure 3-14.

Figure 3-14. Refreshing the catalog in the notebook editor shows the new_default
schema and its tables

By running DESCRIBE EXTENDED on each of these tables, we can
see that the first table is indeed a managed table created in its
database folder under the default Hive directory (Figure 3-15).
Meanwhile, the second table, where we use the LOCATION
keyword, has been defined as an external table under the
/mnt/demo location (Figure 3-16).

DESCRIBE EXTENDED managed_new_default

Figure 3-15. Metadata of the managed_new_default table

DESCRIBE EXTENDED external_new_default

Figure 3-16. Metadata of the external_new_default table

Dropping tables

Let’s proceed to drop the newly created tables:

DROP TABLE managed_new_default;
DROP TABLE external_new_default;

Dropping the tables removes their entries from the Hive
metastore. You can easily confirm this in the Catalog Explorer.
Moreover, this action on the managed table results in the
removal of its directory and associated data files from the
storage:

%fs ls 'dbfs:/user/hive/warehouse/new_default.db/mana

FileNotFo ndE ception N h fil di t

However, as expected, in the case of the external table, although
the table itself is dropped from the database, the directory and
its data files persist in the specified external location (Figure 3-
17).

%fs ls 'dbfs:/mnt/demo/external_new_default'

Figure 3-17. The output of the %fs command on the external_new_default table
directory

Working In a Custom-Location Schema

In our last scenario, we will create a database in a custom
location outside of the default Hive directory.

Creating the database

FileNotFoundException: No such file or directory
dbfs:/user/hive/warehouse/new_default.db/managed_new_

To achieve this, we begin by using the CREATE SCHEMA
statement, and we add the LOCATION keyword followed by the
desired storage path, in our case dbfs:/Shared/schemas:

CREATE SCHEMA custom
LOCATION 'dbfs:/Shared/schemas/custom.db'

You can inspect the Catalog Explorer to confirm that the
database has been created within the Hive metastore. Upon
closer examination, using the DESCRIBE DATABASE EXTENDED
command, we confirm that the database was situated in the
custom location we specified during its creation (Figure 3-18):

DESCRIBE DATABASE EXTENDED custom

Figure 3-18. The output of the DESCRIBE DATABASE EXTENDED command on the
custom schema

Creating tables

We proceed to use this database to create tables and populate
them with data. Again, we create both managed and external
tables:

USE DATABASE custom;

-- Create a managed table
CREATE TABLE managed_custom
 (country STRING, code STRING, dial_code STRING);

INSERT INTO managed_custom
VALUES ('France', 'Fr', '+33');

-- Create an external table
CREATE TABLE external_custom
 (country STRING, code STRING, dial_code STRING)
LOCATION 'dbfs:/mnt/demo/external_custom';

INSERT INTO external_custom
VALUES ('France', 'Fr', '+33');

You can inspect the Catalog Explorer to confirm that the two
tables have been successfully created within our new database.
In addition, by running DESCRIBE EXTENDED on each of these
tables, we can confirm that the managed_custom table is indeed
a managed table, since it is created in its database folder located
in the custom location (Figure 3-19). Meanwhile, the
external_custom table is an external table because its location
was specified during table creation (Figure 3-20).

DESCRIBE EXTENDED managed_custom

Figure 3-19. Metadata of the managed_custom table

DESCRIBE EXTENDED external_custom

Figure 3-20. Metadata of the external_custom table

Dropping tables

Let’s proceed to drop the newly created tables:

DROP TABLE managed_custom;
DROP TABLE external_custom;

Once more, dropping the tables removes both of their entries
from the Hive metastore. You can easily confirm this in the
Catalog Explorer. Dropping the managed table still removes its
directory and associated data files from the database directory
located in the custom location:

However, as expected, in the case of an external table, the
table’s directory and data files remain intact in their external
location (Figure 3-21).

%fs ls 'dbfs:/mnt/demo/external_custom'

%fs ls 'dbfs:/Shared/schemas/custom.db/managed_custom

FileNotFoundException:
No such file or directory dbfs:/Shared/schemas/custom

Figure 3-21. The output of the %fs command on the external_custom table
directory

Remember, you can manually remove the table directory and its
content by running the dbutils.fs.rm function in Python.

Setting Up Delta Tables

We’ve explored the dynamics of managed and external tables,
illustrating how they interact within the context of a different
type of databases. With this understanding, we’re equipped to
dive into more advanced topics on Delta Lake tables in the
following sections.

CTAS Statements

One of the key features of Delta Lake tables is their flexibility in
creation. While traditional methods like the regular CREATE
TABLE statements are available, Databricks also supports CTAS,

or CREATE TABLE AS SELECT , statements. CTAS statements
allow the creation and population of tables at the same time
based on the results of a SELECT query. This means that with
CTAS statements, you can create a new table from existing data
sources:

CREATE TABLE table_2
AS SELECT * FROM table_1

This simple yet powerful syntax shows how CTAS statements
work. In this example, we’re creating table_2 by selecting all
data from table_1 . CTAS statements automatically infer
schema information from the query results, eliminating the
need for manual schema declaration.

CTAS statements in Databricks offer a convenient means to
perform transformations on data during the creation of Delta
tables. These transformations can include tasks such as
renaming columns or selecting specific columns for inclusion in
the target table. Let’s illustrate this with an abstract example:

CREATE TABLE table_2
AS SELECT col_1, col_3 AS new_col_3 FROM table_1

In this example, the CTAS statement generates a new table
named table_2 , by selecting columns col_1 and col_3 from
table_1 . Additionally, the col_3 is renamed to new_col_3 in
the resulting table.

Moreover, a range of options can be added to the CREATE TABLE
clause to customize table creation, allowing for precise control
over table properties and storage configurations.

In the provided example, we illustrate several of these options:

Comment
The COMMENT clause enables you to provide a descriptive
comment for the table, helping in the discovery and
understanding of its contents. Here, we’ve added a comment
indicating that the table contains personally identifiable
information (PII), such as the user’s name and email.
Partitioning

CREATE TABLE new_users
 COMMENT "Contains PII"

 PARTITIONED BY (city, birth_date)
 LOCATION '/some/path'
 AS SELECT id, name, email, birth_date, city FROM use

https://oreil.ly/mApQm

The underlying data of the table can be partitioned into
subfolders. The PARTITIONED BY clause allows for data
partitioning based on one or more columns. In this case,
we’re partitioning the table by city and birth_date .

Partitioning can significantly enhance the performance of
large Delta tables by facilitating efficient data retrieval.
However, it’s important to note that for small to medium-
sized tables, the benefits of partition may be negligible or
outweighed by drawbacks. One significant drawback is the
potential emergence of what is known as the “small files
problem.” This problem arises when data partitioning results
in the creation of numerous small files, each containing a
relatively small amount of data.

While partitioning aims to improve query performance by
reducing the amount of data scanned, the presence of many
small files can prevent file compaction and efficiency in data
skipping. In general, partitioning should be selectively
applied based on the size and nature of the data.

External location
The location option enables the creation of external tables.
Remember, the LOCATION keyword allows you to specify the
storage location for the created table. This means that the

data associated with the table will be stored in an external
location specified by the provided path.

Comparing CREATE TABLE and CTAS

Table 3-2 summarizes the differences between regular CREATE
TABLE statements and CTAS (CREATE TABLE AS SELECT)
statements.

Let’s dive deeper to gain a comprehensive understanding of
these differences.

Schema declaration

Table 3-2. Comparison of CREATE TABLE and CTAS statements

 CREATE TABLE statement CTAS stateme

CREATE TABLE table_2
(col1 INT, col2 STRING, col3 DOUBLE)

CREATE TABLE table_
AS SELECT col1, col

Schema
declaration

Requires manual schema
declaration.

Does not allow
schema declar
automatically
table schema.

Populating
data

Creates an empty table; a
data loading statement,
such as INSERT INTO , is
required to populate it.

The table is cre
data as specifie

Regular CREATE TABLE statements require manual schema
declaration. For instance, you would explicitly specify the data
types for each column, such as integer for column 1, string
for column 2, and double for column 3. By contrast, CTAS
statements automate schema declaration by inferring schema
information directly from the results of the query.

Populating data

When using regular CREATE TABLE statements, an empty table
is created, requiring an additional step to load data into it, such
as using the INSERT INTO statement. By contrast, CTAS
statements simplify this process by simultaneously creating the
table and populating it with data from the output of the SELECT
statement. In the upcoming module, we’ll see CTAS statements
in action, observing how they offer a more efficient and
straightforward approach to table creation and data population
compared to traditional CREATE TABLE statements.

Table Constraints

After creating a Delta Lake table, whether through a regular
CREATE TABLE statement or a CTAS statement, you have the
option to enhance its integrity by adding constraints. Databricks
currently supports two types of table constraints:

NOT NULL constraints
CHECK constraints

When applying constraints to a Delta table, it’s crucial to ensure
that existing data in the table adheres to these constraints
before defining them; otherwise, the statement will fail. Once a
constraint is enforced, any new data that violates the constraint
will result in a write failure.

For instance, let’s consider the addition of a CHECK constraint to
the date column of a Delta table. CHECK constraints resemble
standard WHERE clauses used to filter datasets. They define
conditions that incoming data must satisfy in order to be
accepted into the table. For instance, suppose we want to
ensure that dates in the date column fall within a specific
range. We can add a CHECK constraint to enforce this condition:

ALTER TABLE table_name ADD CONSTRAINT <constraint_nam

ALTER TABLE my_table
ADD CONSTRAINT valid_date CHECK (date >= '2024-01-01'

In this example, valid_date is the name of our constraint, and
the condition ensures that the date column values fall within
the specified range for the year 2024. Any attempt to insert or
update data with dates outside this range will be rejected. This
helps maintain data consistency and integrity within the Delta
Lake table.

Cloning Delta Lake Tables

In Databricks, if you need to back up or duplicate your Delta
Lake table, you have two efficient options: deep clone and
shallow clone.

Deep cloning

Deep cloning involves copying both data and metadata from a
source table to a target. Here’s an example of how you might
use the command:

CREATE TABLE table_clone
DEEP CLONE source_table

Simply, use the CREATE TABLE statement, specify the name of
the new target table, and include the DEEP CLONE keyword
followed by the name of the source table.

This copy process can occur incrementally, allowing you to
synchronize changes from the source to the target location.
Simply, execute CREATE OR REPLACE TABLE instead in order to
create a new table version with the new changes:

CREATE OR REPLACE TABLE table_clone
DEEP CLONE source_table

It’s important to note that because in deep cloning all the data
must be copied over, this process may take quite a while,
especially for large source tables.

Shallow cloning

On the other hand, the shallow clone provides a quicker way to
create a copy of a table. It only copies the Delta transaction logs,
meaning no data movement takes place during shallow cloning:

CREATE TABLE table_clone
SHALLOW CLONE source_table

Shallow cloning is an ideal option for scenarios where, for
example, you need to test applying changes on a table without
altering the current table’s data. This makes it particularly

useful in development environments where rapid iteration and
experimentation are common.

Data integrity in cloning

Whether you choose deep cloning or shallow cloning, any
modifications made to the cloned version of the table will be
tracked and stored separately from the source. This ensures
that changes made during testing or experimentation do not
affect the integrity of the original source table.

Exploring Views

In Databricks, views serve as virtual tables without physical
data. A view is nothing but a saved SQL query against actual
tables, where this logical query is executed each time the view
is queried.

Figure 3-22 illustrates an abstract example of creating a view on
top of two tables by performing an inner join between them.
Each time the view is queried, the join operation will be
executed again against these tables.

Figure 3-22. A view object on top of two tables

To demonstrate how views function within Databricks, we will
use a new SQL notebook titled “3.2A - Views.” We start by
creating a table of data to be used in this demonstration, called
cars . This table contains columns for the ID, model, brand, and
release year of the cars.

USE CATALOG hive_metastore;

CREATE TABLE IF NOT EXISTS cars
(id INT, model STRING, brand STRING, year INT);

INSERT INTO cars
VALUES (1, 'Cybertruck', 'Tesla', 2024),
 (2, 'Model S', 'Tesla', 2023),
 (3, 'Model Y', 'Tesla', 2022),
 (4, 'Model X 75D', 'Tesla', 2017),
 (5, 'G-Class G63', 'Mercedes-Benz', 2024),
 (6, 'E-Class E200', 'Mercedes-Benz', 2023),
 (7, 'C-Class C300', 'Mercedes-Benz', 2016),
 (8, 'Everest', 'Ford', 2023),
 (9, 'Puma', 'Ford', 2021),
 (10, 'Focus', 'Ford', 2019)

After creating the table and inserting some data into it, you can
verify its creation in the Catalog Explorer. Additionally, we can

use the SHOW TABLES command to list all tables and views in
the default database:

SHOW TABLES

Figure 3-23 displays the output of the SHOW TABLES command.
As observed, we have a table named cars in the default
database.

Figure 3-23. The output of the SHOW TABLES command

View Types

There are three types of views available in Databricks: stored
views, temporary views, and global temporary views. Let’s
explore these different types of views and how they function
within the platform.

Stored views

Stored views, often referred to simply as views, are similar to
traditional database views. They are database objects where

their metadata is persisted in the database. To create a stored
view, we use the CREATE VIEW statement followed by the AS
keyword and the logical SQL query defining the view:

CREATE VIEW view_name
AS <query>

Let’s create a stored view that displays only Tesla cars from our
cars table. We use the CREATE VIEW statement, naming our
view view_tesla_cars , and specify the logical query following
the AS keyword. This query selects all records from the cars
table where the brand is equal to Tesla :

CREATE VIEW view_tesla_cars
AS SELECT *
 FROM cars
 WHERE brand = 'Tesla';

Running the SHOW TABLES command again confirms that the
view has been persisted in the default database and it is not a
temporary object, as shown in the isTemporary column in
Figure 3-24.

Figure 3-24. The output of the SHOW TABLES command after creating the
view_tesla_cars view

Once created, you can query the stored view using a standard
SELECT statement, treating it as if it were a table object:

SELECT * FROM view_tesla_cars;

Figure 3-25 displays the result of querying this view.

Figure 3-25. The result of querying the view_tesla_cars stored view

It’s worth noting that this result is retrieved directly from the
cars table. Remember, each time the view is queried, its
underlying logical query is actually executed against the source
table, in this case, the cars table.

Temporary views

The second type of views in Databricks is temporary views.
Temporary views are bound to the Spark session and are
automatically dropped when the session ends. They are handy
for temporary data manipulations or analyses. To create a
temporary view, you simply add the TEMPORARY , or TEMP ,
keyword to the CREATE VIEW command:

CREATE TEMP VIEW view_name
AS <query>

Let’s create a temporary view called temp_view_cars_brands .
This temporary view simply retrieves the unique list of brands
from our cars table (Figure 3-26):

CREATE TEMP VIEW temp_view_cars_brands
AS SELECT DISTINCT brand
 FROM cars;

SELECT * FROM temp_view_cars_brands;

Figure 3-26. The result of querying the temp_view_cars_brands temporary view

Running the SHOW TABLES command confirms the addition of
the temporary view to the list, as illustrated in Figure 3-27. The
isTemporary column indicates its temporary nature. In
addition, since it’s a temporary object, it is not persisted to any
database, as indicated by having no database specified in the
database column.

Figure 3-27. The output of the SHOW TABLES command after creating the
temp_view_cars_brands temporary view

The lifespan of a temporary view is limited to the duration of
the current Spark session. It’s essential to note that a new Spark
session is initiated in various scenarios within Databricks, such
as the following:

Opening a new notebook
Detaching and reattaching a notebook to a cluster
Restarting the Python interpreter due to a Python package
installation
Restarting the cluster itself

To confirm this, let’s create a new notebook called “3.2B - Views
(Session 2),” and observe the behavior of our created views
within it. In this new Spark session, let’s first run the SHOW
TABLES command:

USE CATALOG hive_metastore;

SHOW TABLES;

Figure 3-28 displays the output of the SHOW TABLES command
in the newly created Spark session. This result confirms the
existence of the cars table, as expected. In addition, the stored
view of Tesla cars also exists in this new notebook. However,
the temporary view of the car brands does not exist in this new
session.

Figure 3-28. The output of the SHOW TABLES command in a new Spark session

Global temporary views

Global temporary views behave similarly to other temporary
views but are tied to the cluster instead of a specific session.
This means that as long as the cluster is running, any notebook
attached to it can access its global temporary views. To define a

global temporary view, you add the GLOBAL TEMP keyword to
the CREATE VIEW command:

CREATE GLOBAL TEMP VIEW view_name
AS <query>

In our original “3.2A - Views” notebook, let’s create a global
temporary view, called global_temp_view_recent_cars . This
view retrieves all cars from our cars table released in 2022 or
later, ordered in descending order:

Global temporary views are stored in a cluster’s temporary
database, named global_temp . When querying a global
temporary view in a SELECT statement, you need to specify the
global_temp database qualifier:

CREATE GLOBAL TEMP VIEW global_temp_view_recent_cars
AS SELECT * FROM cars
 WHERE year >= 2022
 ORDER BY year DESC;

SELECT * FROM global_temp.global_temp_view_recent_car

Figure 3-29 displays the result of querying our global temporary
view, showing the latest entries from the cars table.

Figure 3-29. The result of querying the global temporary view

If you run the SHOW TABLES command, you will notice that our
global temporary view is not listed among other objects. This
occurs because, by default, the command only displays objects
in the default database. Since the global temporary views are
tied to the global_temp database, we need to use the command
SHOW TABLES IN , explicitly specifying the database name
global_temp :

SHOW TABLES IN global_temp;

In Figure 3-30, we can see the global_temp_view_recent_cars ,
which is indeed a temporary object tied to the global_temp
database. Since our temp_view_cars_brands is not tied to any
database, it’s typically shown with every SHOW TABLES
command.

Figure 3-30. The output of the SHOW TABLES command in the global_temp database

Now, let’s switch back to the second notebook, “3.2B - Views
(Session 2).” In this new Spark session, we can explore the
objects in the global_temp database (Figure 3-31).

Figure 3-31. The output of the SHOW TABLES command in the global_temp database
within the new Spark session

Since we are leveraging the same cluster, our global temporary
view also exists in this new session. As long as the cluster is
running, the global_temp database persists, and any notebook
attached to the cluster can access its global temporary views.
You can confirm this by querying the global temporary view to
see the recent cars in this new session.

Comparison of View Types

Understanding the distinctions between the view types and
their lifecycles is essential for effective data manipulation and
collaboration within your Spark environment. Table 3-3
summarizes the differences between these three types of views.

Creation syntax

There’s a slight difference in the CREATE VIEW statements for
temporary and global temporary views. For temporary views,
we include the TEMP keyword, whereas for global temporary
views, we add the GLOBAL TEMP keyword.

Accessibility

Table 3-3. Comparison of view types

 (Stored) view Temporary view G

Creation
syntax

CREATE VIEW CREATE TEMP VIEW C

Accessibility Accessed across
sessions/clusters

Session-scoped C

Lifetime Dropped only by
DROP VIEW

statement

Dropped when
session ends

D
r

Stored views are similar to tables in that their definitions are
stored in the metastore, but they don’t contain a physical copy
of the data they reference. Remember, a view essentially
represents a SQL query. Since stored views are saved in the
metastore, they can be accessed across multiple sessions and
clusters.

Temporary views, in contrast, are accessible only within the
current session. Global temporary views bridge the gap
between stored and temporary views; they can be accessed
across multiple sessions but are tied to the same cluster.

Lifetime

Lastly, when it comes to removing these views, different
methods apply. Stored views are dropped using the DROP VIEW
command, while temporary views are automatically dropped
when the session ends. Similarly, global temporary views are
automatically dropped, but this occurs when the cluster is
restarted or terminated.

Dropping Views

Let’s finally drop our stored view by running the DROP VIEW
command, like in standard SQL:

DROP VIEW view_tesla_cars;

If you want to delete temporary views without waiting for the
session to end or for the cluster to terminate, you can manually
achieve this by using the DROP VIEW command as well:

This allows you to manually clean up such resources when they
are no longer needed.

Thus, views in Databricks serve as a powerful solution for
organizing and manipulating data without the need to duplicate
it physically. With three types of views, Databricks offers a
variety of options to suit different use cases and requirements.

Conclusion

In conclusion, mastering relational entities such as databases,
tables, and views is fundamental to effectively organizing and
managing structured data in Databricks. By understanding their
interactions with the metastore and storage locations, you can

DROP VIEW temp_view_cars_brands;
DROP VIEW global_temp.global_temp_view_recent_cars;

enhance your data querying and management efficiency. This
chapter has provided a comprehensive overview of these
entities, setting the stage for further exploration of advanced
data management techniques within the Databricks
environment.

Sample Exam Questions

Conceptual Question

1. A data engineer is tasked with cleaning up unused Delta
tables from a production data catalog. When they drop a Delta
table, they notice that this action not only removes the table
entry from the catalog but also deletes the underlying data files.
Which of the following best explains this behavior?

1. The Delta table was created using a deep clone, which causes
both the source table and its data files to be removed when
the cloned table is dropped.

2. The Delta table was created using a shallow clone, and
shallow clones automatically delete the source table’s data
files when dropped.

3. The Delta table was created using an external location, so
dropping it removes all associated data files.

4. The Delta table was registered as a managed table, and by
default, managed tables delete both the metadata and data
files when dropped.

5. The Delta table was defined as a stored view, and dropping a
stored view automatically deletes the stored data files
associated with that view.

Code-Based Question

2. A data engineer at a growing e-commerce company is tasked
with creating an external Delta Lake table to store customer
information. The table needs to be located in the directory
dbfs:/ecommerce/customers.

Which of the following SQL statements correctly creates the
external Delta Lake table?

1. CREATE TABLE customers
(id INT , name STRING , email STRING)

EXTERNAL 'dbfs:/ecommerce/customers' ;

2. CREATE TABLE customers
USING DELTA
(id INT , name STRING , email STRING)

AS EXTERNAL ('dbfs:/ecommerce/customers');

3. CREATE TABLE customers

(id INT , name STRING , email STRING)

LOCATION 'dbfs:/ecommerce/customers' ;

4. CREATE TABLE customers
USING DELTA
(id INT , name STRING , email STRING)

LOCATION AS OF 'dbfs:/ecommerce/customers' ;

5. CREATE EXTERNAL TABLE customers
(id INT , name STRING , email STRING)

PATH = 'dbfs:/ecommerce/customers' ;

The correct answers to these questions are listed in Appendix C.

Chapter 4. Transforming Data
with Apache Spark

The Databricks platform provides numerous transformative
capabilities powered by Apache Spark. In this chapter, we will
navigate through various data transformations tasks such as
querying data files, writing to tables with various strategies, and
performing advanced ETL operations. Moreover, we will
discover the potential of higher-order functions and user-
defined functions (UDFs) in Spark SQL.

Querying Data Files

Querying files in Databricks is a fundamental aspect of data
exploration and analysis. In this section, we will explore the
process of querying file content using SQL-like syntax. The
primary mechanism for this is the SELECT statement, which
allows us to query files directly to extract the file content.

To initiate a file query, we use the SELECT * FROM syntax,
followed by the file format and the path to the file, as illustrated
in Figure 4-1. It’s important to note that the filepath is specified
between backticks (`</path/>`), and not single quotes

('</path/>'). This distinction is essential to prevent potential
syntax errors and ensure the correct interpretation of the path.

A filepath in this context can refer to a single file, or it can
incorporate a wildcard character to simultaneously read
multiple files. Alternatively, the path can point to an entire
directory, assuming that all files within that directory adhere to
the same format and schema. This flexibility is particularly
advantageous when dealing with large datasets spread across
multiple files.

Figure 4-1. SELECT statement to query files

For example, when querying a JSON file located at
path/file.json , the query would look like this:

SELECT * FROM json.`path/file.json`

We can demonstrate extracting data directly from files using a
real-world dataset representing an online school environment.
This dataset consists of three tables: students, enrollments, and
courses, illustrated in the entity-relationship diagram shown in
Figure 4-2.

Figure 4-2. Entity-relationship diagram of the online school dataset

In this demonstration, we will use a new SQL notebook titled
“4.1 - Querying Files.” We begin by running a helper notebook,
“School-Setup,” which can be found within the Include
subfolder in the book’s GitHub repository. This helper notebook
facilitates downloading the dataset to the Databricks file system
and prepares the working environment accordingly:

%run ../Includes/School-Setup

Querying JSON Format

The student data in this dataset is formatted in JSON. Let’s
review the students folder situated in our dataset directory. The
placeholder dataset_school referenced in the query is a
variable defined within our “School-Setup” notebook. It points
to the location where the dataset files are stored on the file
system:

Figure 4-3 shows that there are six JSON files in the students
folder.

%python
files = dbutils.fs.ls(f"{dataset_school}/students-jso
display(files)

Figure 4-3. The content of the students-json directory

To read a single JSON file, the SELECT statement is used with
the syntax SELECT * FROM json. , and then the full path for
the JSON file is specified between backticks. In SQL, we use the
dataset.school placeholder with the $ character to reference
the location where the dataset files are stored. This placeholder
is configured in the “School-Setup” notebook:

The result in Figure 4-4 displays the extracted student data,
including student ID, email, GPA score, profile information (in

SELECT * FROM json.`${dataset.school}/students-json/e

JSON format), and the last updated timestamp. As indicated, the
preview display shows all 300 records from the source file.

Figure 4-4. The result of querying the students data in the export_001.json file

To query multiple files simultaneously, you can use the wildcard
character (*) in the path. For instance, you can easily query all
JSON files starting with the name export_ :

SELECT * FROM json.`${dataset.school}/students-json/e

Furthermore, you can query an entire directory of files,
assuming a consistent format and schema across all files in the
directory. In the following query, the directory path is specified
instead of an individual file:

When dealing with multiple files, adding the input_file_name
function becomes useful. This built-in Spark SQL function
records the source data file for each record. This helps in
troubleshooting data-related issues by precisely pinpointing
their exact source:

SELECT *, input_file_name() source_file
FROM json.`${dataset.school}/students-json`;

Figure 4-5 displays, in addition to the original columns, a new
column: source_file . This column provides supplementary
information about the origin of each record in the dataset.

SELECT * FROM json.`${dataset.school}/students-json`

Figure 4-5. The result of adding the source file information to the extracted student
data

Querying Using the text Format

When dealing with a variety of text-based files, including
formats such as JSON, CSV, TSV, and TXT, Databricks provides
the flexibility to handle them using the text format:

SELECT * FROM text.`path/file.txt`

This format allows you to extract the data as raw strings, which
provide significant advantages, especially in scenarios where
input data might be corrupted or contain anomalies. By
extracting data as raw strings, you can leverage custom parsing

logic to navigate and extract relevant values from the text-
based files.

We can query our students’ JSON data as raw text content using
the text format:

Figure 4-6 displays the student data as raw string. Each line of
the file is loaded as a record with one string column, named
value .

Figure 4-6. The result of querying the student data in text format

SELECT * FROM text.`${dataset.school}/students-json`

With this result, you can easily apply custom parsing or
transformation techniques to extract specific fields, correct
anomalies, or reformat the data as needed for subsequent
analysis.

Querying Using binaryFile Format

Moreover, there are scenarios where the binary representation
of file content is essential, such as when working with images or
unstructured data. In such cases, the binaryFile format is
suited for this task:

SELECT * FROM binaryFile.`path/sample_image.png`

In the sample query provided, the binaryFile format is
employed to query an image file (sample_image.png), allowing
you to work directly with the binary representation of the file’s
content.

We can use the binaryFile format to extract the raw bytes and
some metadata information of the student files:

SELECT * FROM binaryFile.`${dataset.school}/students-

As shown in Figure 4-7, the output of this query provides the
following details about each source file:

path provides the location of the source file on the storage.
modificationTime gives the last modification time of the
file.
length indicates the size of the file.
content represents the binary representation of the file.

Figure 4-7. The result of querying the student data in binary format

So, by using the binaryFile format, you can access both the
content and metadata of files, offering a detailed view of your
dataset.

In essence, Databricks enables you to efficiently handle a wide
array of data types and query them directly. Whether dealing

with a single file, multiple files, or an entire directory, a simple
SELECT statement can be used to retrieve and analyze data.

Querying Non-Self-Describing Formats

The previous querying approach is particularly effective with
self-describing file formats that possess a well-defined schema,
such as JSON and Parquet. By nature, these formats offer a built-
in structure that makes it easy to retrieve and interpret data
using SELECT queries.

However, when dealing with non-self-describing formats like
comma-separated-value (CSV), the SELECT statement may not
be as informative. Unlike JSON and Parquet, CSV files lack a
predefined schema, making the format less suitable for direct
querying. In such cases, additional steps, such as defining a
schema, may be necessary for effective data extraction and
analysis.

Let’s explore the result of reading the courses’ data, which is
provided in CSV format. Similar to previous examples, we can
try using the SELECT statement, but this time with the csv
format:

SELECT * FROM csv.`${dataset.school}/courses-csv`

As shown in Figure 4-8, the output of the query is not well-
parsed. The header row is extracted as a table row, and all
columns are loaded into a single column, _c0 . This behavior is
explained by the delimiter—the symbol used to separate
columns in the file—which, in this case, is a semicolon rather
than the standard comma.

Figure 4-8. The result of querying the course data in csv format

This issue highlights a challenge with querying files without a
well-defined schema, particularly in formats like CSV. In the
upcoming sections, we will learn how to address this challenge.

Registering Tables from Files with CTAS

Using CTAS (CREATE TABLE AS SELECT) statements allows you
to register tables from files, particularly when dealing with well-
defined schema sources like Parquet files. This process is crucial
for loading data into a lakehouse, allowing you to take full
advantage of the Databricks platform’s capabilities:

CREATE TABLE table_name
AS SELECT * FROM <file_format>.`/path/to/file`

CTAS statements simplify the process of creating Delta Lake
tables by automatically inferring schema information from the
query results. This eliminates the need for manual schema
declaration.

In the following example, we create and populate the student
data table using a CTAS statement. This ensures that the
resulting table is a Delta Lake table:

CREATE TABLE students AS
SELECT * FROM j `${d t t h l}/ t d t j `

Figure 4-9 displays the metadata of our new table, students .
The Provider value confirms the creation of a Delta Lake table.
This means that the CTAS statement has extracted the data from
the JSON files and loaded it into the students table in Delta
format (i.e., in Parquet data files along with a Delta transaction
log). Additionally, this table is identified as a managed table, as
indicated by the Type value.

SELECT * FROM json. ${dataset.school}/students-json ;

DESCRIBE EXTENDED students;

Figure 4-9. The output of the DESCRIBE EXTENDED command on the students table

Moreover, the schema has been automatically inferred from the
query results, a feature common to CTAS statements.
Remember, CTAS statements automatically infer schema
information from the query results, making them a suitable

choice for external data ingestion from sources with well-
defined schemas, such as Parquet files.

However, it’s important to note that CTAS statements come with
certain limitations. One significant limitation is that CTAS
statements do not support specifying additional file options.
This becomes a challenge when trying to ingest data from CSV
files or other formats that require specific configurations:

CREATE TABLE courses_unparsed AS
SELECT * FROM csv.`${dataset.school}/courses-csv`;

SELECT * FROM courses_unparsed;

Figure 4-10 shows that we have successfully created a Delta
Lake table; however, the data is not well-parsed.

Figure 4-10. The output of the table created by a CTAS statement from CSV files

Typically, CSV files have delimiter or encoding options that need
to be specified during the data loading process. In response to
this requirement, we will now explore an alternative solution.

Registering Tables on Foreign Data Sources

In scenarios where additional file options are necessary, an
alternative solution is to use the regular CREATE TABLE

statement, but with the USING keyword. Unlike CTAS
statements, this approach is particularly useful when dealing
with formats that need specific configurations. The USING
keyword provides increased flexibility by allowing you to
specify the type of foreign data source, such as CSV format, as
well as any additional files options, such as delimiter and
header presence:

CREATE TABLE table_name
 (col_name1 col_type1, ...)
USING data_source
OPTIONS (key1 = val1, key2 = val2, ...)
LOCATION path

However, it’s crucial to note that this method creates an
external table, serving as a reference to the files without
physically moving the data during table creation to Delta Lake.

Unlike CTAS statements, which automatically infer schema
information, creating a table via the USING keyword requires
you to provide the schema explicitly. So, this method offers
more control over the schema definition.

Example 1: CSV

For instance, to deal with CSV files stored in an external
location, the following example demonstrates the creation of a
table using a CSV foreign source:

CREATE TABLE csv_external_table
 (col_name1 col_type1, ...)
 USING CSV
 OPTIONS (header = "true",
 delimiter = ";")
 LOCATION = '/path/to/csv/files'

This code sample creates an external table that points to CSV
files located in the specified path. In addition, it configures the
header option to indicate the presence of a header in the files,
and the delimiter option is set to use a semicolon instead of
the default comma separator.

Let’s apply this method on our courses data:

1 CREATE TABLE courses_csv
2 (course_id STRING, title STRING, instructor STRING,
 DOUBLE)
3 USING CSV
4 OPTIONS (
5 header = "true",
6 delimiter = ";")
7 LOCATION "${dataset.school}/courses-csv"

In this example, the courses_csv table is created by specifying
the CSV format as a foreign source (line 3), indicating the
presence of a header in the files (line 5), defining the semicolon
as the delimiter (line 6), and, lastly, specifying the location of the
source files (line 7).

Once the table is created, querying it shows that we have the
courses’ data in a well-structured form (Figure 4-11).

SELECT * FROM courses_csv

7 LOCATION ${dataset.school}/courses csv

Figure 4-11. The result of querying the courses_csv table

It’s essential to note that when working with CSV files as a data
source, maintaining the column order becomes crucial,
especially if additional data files will be added to the source
directory. Spark relies on the specified order during table
creation to load data and apply column names and data types
correctly from CSV files. Therefore, any changes to the column
order could impact the integrity of the data loading process.

Example 2: database

Another scenario where the CREATE TABLE statement with the
USING keyword proves useful is when creating a table using a
JDBC connection, which allows referencing data in an external
SQL database. This approach enables you to establish a
connection to an external database by defining necessary
options such as the connection string, username, password, and
specific database table containing the data.

Here is an example of creating an external table using a JDBC
connection:

CREATE TABLE jdbc_external_table
USING JDBC
OPTIONS (
 url = 'jdbc:mysql://your_database_server:port',
 dbtable = 'your_database.table_name',
 user = 'your_username',
 password = 'your_password'
);

In this example, the following apply:

The url option specifies the JDBC connection string to your
external database.
The dbtable option indicates the specific table within the
external database.

The user and password are credentials required for
authentication.

This method facilitates seamless integration of data from
external SQL databases into the lakehouse environment,
allowing for cross-database analysis and reporting. By creating
an external table using a JDBC connection, you can access and
query data from the external database without physically
moving or duplicating the data.

Limitation

It’s crucial to be aware of the limitations associated with tables
having foreign data sources—they are not Delta tables. This
means that the performance benefits and features offered by
Delta Lake, such as time travel and guaranteed access to the
most recent version of the data, are not available for these
tables. This limitation becomes especially noticeable when
dealing with large database tables, potentially leading to
performance issues.

Let’s better understand the impact of not having a Delta table by
exploring the consequences of working with an external table
linked directly to CSV files. Before we start, let’s review the
table’s type and storage details:

DESCRIBE EXTENDED courses_csv

Figure 4-12 reveals that the table is an external table, and this
table is not a Delta table, as indicated in the Provider value.
This means that no data conversion to Delta format occurred
during table creation; instead, the table simply points to the CSV
files stored in the external location.

Figure 4-12. The output of the DESCRIBE EXTENDED command on the courses_csv
table

Additionally, the Storage Properties value captures all
metadata and options specified during table creation, ensuring

that data in the location is always read with these specified
options.

Impact of not having a Delta table

The absence of a Delta table introduces certain limitations and
impacts. Unlike Delta Lake tables, which guarantee querying
the most recent version of source data, tables registered against
other data sources, like CSV, may represent outdated cached
data. To illustrate this, we will add new data and observe the
resulting behavior of the table. First, let’s check the number of
files in the courses directory:

Figure 4-13 reveals that the directory currently contains four
files.

%python
files = dbutils.fs.ls(f"{dataset_school}/courses-csv"
display(files)

Figure 4-13. The list of the files in the courses directory

Since each file contains three records, the table holds a total of
twelve records, as shown in Figure 4-14.

Figure 4-14. The number of records in the courses_csv table after adding the new
file

Now, let’s run the following Python command to duplicate and
rename one of these files as copy_001.csv . This action
simulates the ingestion of new CSV files by a source system:

After this operation, exploring the courses directory confirms
that the new file has been added (Figure 4-15).

Figure 4-15. The list of the files in the courses directory after adding the new file

Despite adding new data to the directory, we notice that the
table does not immediately reflect the changes from 12 to 15

%python
dbutils.fs.cp(f"{dataset_school}/courses-csv/export_0
 f"{dataset_school}/courses-csv/copy_001

records, as shown in Figure 4-16.

Figure 4-16. The number of records in the courses_csv table after adding the new
file

Spark automatically caches the underlying data in local storage
for better performance in subsequent queries. However, the
external CSV file does not natively signal Spark to refresh this
cached data. Consequently, the new data remains invisible until
the cache is manually refreshed using the REFRESH TABLE
command:

REFRESH TABLE courses_csv

However, this action invalidates the table cache, necessitating a
rescan of the original data source to reload all data into

memory. This process can be particularly time-consuming when
dealing with large datasets.

Upon refreshing the table, querying it again retrieves the
updated count, as illustrated in Figure 4-17. This confirms the
need for manual cache refreshing when dealing with foreign
data sources like CSV.

Figure 4-17. The number of records in the courses_csv table after refreshing the
table

This observation emphasizes the trade-offs and considerations
associated with choosing between Delta tables and foreign data
sources when working with Databricks.

Hybrid approach

To address this limitation and leverage the advantages of Delta
Lake, a workaround involves creating a temporary view that
refers to the foreign data source. Then, you can execute a CTAS
statement on this temporary view to extract the data from the
external source and load it into a Delta table. This hybrid
approach allows you to combine the benefits of external tables
with the performance and features of Delta Lake.

Here’s an illustrative example of this process:

In this example, a temporary view is created referring to a
foreign data source. Then, a Delta Lake table is created by
executing a CTAS statement on the temporary view. This
process moves the data into a Delta format (Parquet data files +
transaction log in JSON format).

CREATE TEMP VIEW foreign_source_tmp_vw (col1 col1_typ
 USING data_source

 OPTIONS (key1 = "val1", key2 = "val2", ..., path = "

CREATE TABLE delta_table
AS SELECT * FROM foreign_source_tmp_vw

This approach highlights the flexibility of CTAS statements, as
they can be employed not only to query files but also to query
any object, such as a temporary view in this case.

In the same way, we can apply this approach on the course data,
delivered in CSV format. We first create a temporary view and
configure it to handle file options. Then, we execute a CTAS
statement to make a copy of the data from the temporary view
into a Delta table named courses :

Figure 4-18 displays the metadata information of the courses
table. It confirms that it is a Delta Lake table.

CREATE TEMP VIEW courses_tmp_vw
 (course_id STRING, title STRING, instructor STRING,

 price DOUBLE)
USING CSV
OPTIONS (
 path = "${dataset.school}/courses-csv/export_*.csv",
 header = "true",
 delimiter = ";"
);

CREATE TABLE courses AS
 SELECT * FROM courses_tmp_vw;

DESCRIBE EXTENDED courses

Figure 4-18. The output of the DESCRIBE EXTENDED command on the courses table

Finally, querying the table confirms that it contains well-parsed
data from the CSV files, as illustrated in Figure 4-19.

SELECT * FROM courses

Figure 4-19. The result of querying the courses table

In the following sections of the book, we will regularly refer to
this table whenever we need to access the courses data.

Writing to Tables

In this section, we cover the SQL syntax used for inserting and
updating records in Delta Lake tables. We will continue using
our online school dataset, consisting of three tables: students ,
enrollments , and courses , as illustrated in Figure 4-20.

Figure 4-20. Entity-relationship diagram of the school dataset

In this demonstration, we will use a new SQL notebook titled
“4.2 - Writing to Tables.” We begin by running the “School-
Setup” notebook to prepare our environment:

%run ../Includes/School-Setup

We initiate our exploration by using a CTAS statement to create
the enrollments Delta table from Parquet files:

CREATE TABLE enrollments AS

Once the table is created, we proceed to query its content:

SELECT * FROM enrollments

Figure 4-21 shows the query result. Since Parquet files have a
well-defined schema, we observe that Delta Lake has accurately
captured the schema and successfully extracted the data.

Figure 4-21. The result of querying the enrollments table

Replacing Data

SELECT * FROM parquet.`${dataset.school}/enrollments`

You can completely replace the content of a Delta Lake table
either by overwriting the existing table or by other traditional
methods like dropping and re-creating it. However, overwriting
Delta tables offers several advantages over the approach of
merely dropping and re-creating tables. Table 4-1 outlines these
benefits.

Table 4-1. Comparison of dropping and re-creating table versus overwriting
table methods

Drop and
recreate table

Overwrite table

Processing
time

Time-consuming
as it involves
recursively
listing
directories and
deleting large
files.

Fast process since
the updated data is
just a new table
version.

Leveraging
Delta’s time
travel

Deletes the old
versions of the
table, making its
historical data
unavailable for
retrieval.

Preserves the old
table versions,
allowing easy
retrieval of
historical data.

Drop and
recreate table

Overwrite table

Concurrency Concurrent
queries are
unable to access
the table while
the operation is
ongoing.

Concurrent
queries can
continue reading
the table
seamlessly while
the operation is in
progress.

ACID
guarantees

If the operation
fails, the table
cannot be
reverted to its
original state.

If the operation
fails, the table will
revert to its
previous state.

In summary, the process of overwriting tables provides
efficiency, reliability, and seamless integration with Delta’s
features such as time travel and ACID transactions. In
Databricks, there are two methods to completely replace the
content of Delta Lake tables:

CREATE OR REPLACE TABLE statements
INSERT OVERWRITE statements

1. CREATE OR REPLACE TABLE statement

The first method to achieve a complete table overwrite in Delta
Lake is by using the CREATE OR REPLACE TABLE statement, also
known as the CRAS (CREATE OR REPLACE AS SELECT)
statement. This statement fully replaces the content of a table
each time it executes:

Upon executing this statement, the enrollments table will be
overwritten with the newer data. To better understand what
happened in the table, let’s examine the table history:

DESCRIBE HISTORY enrollments

As illustrated in Figure 4-22, version 0 is nothing but a CTAS
statement. Meanwhile, the CREATE OR REPLACE statement has
generated a new table version. This new version reflects the
updated state of the table after the overwrite operation.

CREATE OR REPLACE TABLE enrollments AS
SELECT * FROM parquet.`${dataset.school}/enrollments`

Figure 4-22. The history log of the enrollments table

2. INSERT OVERWRITE

The second method for overwriting data in Delta Tables
involves using the INSERT OVERWRITE statement:

While this statement achieves a similar outcome to the CREATE
OR REPLACE TABLE approach mentioned earlier, there are some
key differences and nuances to consider. Unlike the CREATE OR
REPLACE TABLE statement, which can create a new table if it
doesn’t exist, INSERT OVERWRITE can only overwrite an existing
table. This means that the target table must already exist prior
to performing the operation.

After executing the INSERT OVERWRITE statement, the table
history is updated to reflect the overwrite operation:

INSERT OVERWRITE enrollments
SELECT * FROM parquet.`${dataset.school}/enrollments`

DESCRIBE HISTORY enrollments

As displayed in Figure 4-23, Delta Lake records this operation as
a new version, categorized as a standard WRITE operation.
However, the mode of this operation is marked as "Overwrite"
in the operationParameters field. This indicates that the
existing data was replaced with the new records from the query.

Figure 4-23. The history log of the enrollments table after the INSERT OVERWRITE
command

One significant advantage of using INSERT OVERWRITE is its
ability to overwrite only the new records that match the current
table schema. This prevents any risk of accidentally modifying
the table structure. Thus, INSERT OVERWRITE is considered a
more secure approach for overwriting existing tables.

When attempting to overwrite data using the INSERT
OVERWRITE statement with a schema that differs from the
existing table schema, a schema mismatch error will be
generated. Let’s consider an example where we attempt to add
an extra column, containing the source file name, to our table:

The previous command results in an exception indicating a
schema mismatch. This occurs because the schema of the new
data being inserted does not match the existing schema of the
enrollments table.

Delta Lake tables are by definition schema-on-write, which
means that Delta Lake enforces schema consistency during
write operations. Any attempt to write data with a schema that
differs from the table’s schema will be rejected to maintain data
integrity. This behavior differs from the first method of the
CREATE OR REPLACE TABLE statement, which replaces the
entire table along with its schema.

INSERT OVERWRITE enrollments
SELECT *, input_file_name() FROM parquet.`${dataset.s

AnalysisException: A schema mismatch detected when wr

Appending Data

One of the simplest methods to append records to Delta Lake
tables is through the use of the INSERT INTO statement. This
statement allows you to easily add new data to existing tables
from the result of a SQL query. Let’s explore how this process
works with the following command:

In our scenario, we use the INSERT INTO statement to add new
records to the enrollments table. Note that we are not
explicitly providing the corresponding column values to be
added. Instead, we’re using an input query to retrieve the new
data from Parquet files located in a given directory. This query
serves as the source of our new records, which we then insert
into the designated table using the INSERT INTO clause.

By executing this INSERT INTO statement, we will insert 700
new records into our table. To confirm the success of our
operation, we can perform a quick check to verify the updated
number of records in the enrollments table. Figure 4-24 shows

INSERT INTO enrollments
SELECT * FROM parquet.`${dataset.school}/enrollments-

that the number of enrollments has indeed increased, now
totaling 2850 records.

Figure 4-24. The number of records in the enrollments table after inserting new
data

While the INSERT INTO statement provides a convenient
means of appending records to tables, it lacks built-in
mechanisms to prevent the insertion of duplicate data. This
means that if the insertion query is executed multiple times, it
will write the same records to the target table repeatedly,
leading to the creation of duplicate entries.

To address this issue effectively, we turn to an alternative
method: the MERGE INTO statement.

Merging Data

The MERGE INTO statement enables you to perform upsert
operations—meaning you can insert new data and update
existing records—and even delete records, all within a single
statement. Let’s explore how we can use this statement to
update the student data in our online school dataset.

In this specific scenario, we aim to update student data with
modified email addresses and add new students into the table.
To accomplish this, we first create a temporary view containing
the updated student data. This view will serve as the source
from which we’ll merge changes into our students table:

The following merge operation is executed to merge the
changes from the student_updates temporary view into the
target students table, using the student ID as the key for
matching records. Let’s first look at the query, and then go into
its details:

CREATE OR REPLACE TEMP VIEW students_updates AS
SELECT * FROM json.`${dataset.school}/students-json-n

MERGE INTO students c
USING students_updates u
ON c. student_id = u. student_id
WHEN MATCHED AND c email IS NULL AND u email IS NOT N

Within this MERGE INTO statement, we define two primary
actions based on the matching status of records:

Update action (WHEN MATCHED clause)
When a match is found between the source and target
records, an update action is performed. This action involves
updating the email address and the last updated timestamp.
Notice that we introduce additional conditions to this action.
Specifically, we check if the email address in the current row
is null while the corresponding record in the
student_updates view contains a valid email address. For
such records, we proceed by updating the email field and the
last updated timestamp in the target table.
Insert action (WHEN NOT MATCHED clause)
For records in the student_updates view that do not match
any existing students based on the student ID, an insert
action is triggered. This ensures that all new students are
added into our target table.

Let’s now proceed with the execution of this query. Figure 4-25
presents the metrics summarizing the outcomes of our merge

WHEN MATCHED AND c.email IS NULL AND u.email IS NOT N

 UPDATE SET email = u.email, updated = u.updated
WHEN NOT MATCHED THEN INSERT *

operation.

Figure 4-25. The output of the MERGE INTO command on the students table

We observe that 100 records have been updated, reflecting the
changes in email addresses and last updated timestamps. In
addition, 201 new records have been inserted into the
students table. No records have been deleted during this
process since there was no delete action included in the query
(WHEN MATCHED [condition] THEN DELETE).

One of the key advantages of the MERGE INTO statement is its
ability to execute updates, inserts, and deletes within a single
atomic transaction. This ensures data consistency and integrity
by treating all operations as a single unit, thereby minimizing
the risk of inconsistencies or partial changes on the table data.

Additionally, the merge operation serves as an excellent
solution for preventing duplicates during record insertion. Let’s
consider another scenario where we have a set of new courses
to be inserted, delivered in CSV format. To facilitate this, we’ll
establish a temporary view based on this new data:

Now, we can use the MERGE INTO statement to synchronize the
courses table with the information sourced from the
temporary view courses_updates .

In this scenario, we exclusively focus on the condition where
there is no match. This implies that we’ll only insert new data if
it doesn’t already exist in our target table, based on the unique
key comprising both the course_id and the title fields.
Among the new courses, our interest lies only in inserting those
categorized under computer science. For this purpose, we’ll
specify that only records categorized under Computer Science
are eligible for insertion by adding an additional criterion:

CREATE OR REPLACE TEMP VIEW courses_updates
 (course_id STRING, title STRING, instructor STRING,
 category STRING, price DOUBLE)
USING CSV
OPTIONS (
 path = "${dataset.school}/courses-csv-new",
 header = "true",
 delimiter = ";"
);

MERGE INTO courses c
USING courses_updates u
ON c course id = u course id AND c title = u title

As displayed in Figure 4-26, the query execution resulted in the
insertion of three new records, all belonging to the computer
science category.

Figure 4-26. The output of the MERGE INTO command on the courses table

This operation is called insert-only merge, which demonstrates
one of the primary advantages of the merge operation: its
ability to prevent duplicate entries. To confirm this, let’s rerun
the previous query and see the resulting behavior.

As shown in Figure 4-27, the second execution of our merge
statement didn’t lead to the reinsertion of the records, as they
already exist in the table.

ON c.course_id = u.course_id AND c.title = u.title

WHEN NOT MATCHED AND u.category = 'Computer Science'
 INSERT *

Figure 4-27. The output of the second run of the MERGE INTO command on the
courses table

In conclusion, while the INSERT INTO statement offers a
straightforward method for appending records to tables, its
drawback of duplicate record insertion necessitates the
adoption of more robust strategies, such as the MERGE INTO
statement. With MERGE INTO , you can effectively upsert data to
avoid duplicates.

Performing Advanced ETL
Transformations

In this section, we will explore advanced transformations
available in Spark SQL, covering the capabilities it provides for
handling nested and complex data structures. We will continue
using our online school dataset, consisting of three tables:
students , enrollments , and courses .

In this demonstration, we will use a new SQL notebook titled
“4.3 - Advanced Transformations.” We begin by running the

“School-Setup” notebook to prepare our environment:

%run ../Includes/School-Setup

Dealing with Nested JSON Data

Let’s first recall our student data:

SELECT * FROM students

Figure 4-28 displays the result of querying the students table
created in the previous section. It shows a column containing
the profile information of each student, represented as a nested
JSON structure. Specifically, we notice the address information
of the profile is stored as a JSON object as well, comprising
street, city, and country details.

Figure 4-28. The result of querying the students table

To check the data type of the profile column, we can use the
DESCRIBE command, which helps in exploring the schema of
the table:

DESCRIBE students

In Figure 4-29, we observe that the profile column is nothing
but a string; it’s a JSON string.

Figure 4-29. The output of the DESCRIBE command on the students table

Spark SQL facilitates interaction with such JSON data by using a
colon syntax (:) to navigate through its nested structures. In
this example, we access the first name within the profile
column using the colon syntax. Similarly, we extract the nested
value of the country from the address within the profile:

The output in Figure 4-30 confirms that we have successfully
extracted the profile details from the JSON string.

SELECT student_id, profile:first_name, profile:addres
FROM students

Figure 4-30. The result of extracting the profile details using the colon syntax

Parsing JSON into Struct Type

Spark SQL goes further by providing functionality to parse JSON
objects into struct types—a native Spark type with nested
attributes. The from_json function is employed for this task,
but it requires knowledge of the schema of the JSON object in
advance:

SELECT from_json(profile, <schema>) FROM students;

In response to this requirement, we can use the
schema_of_json function, which derives the schema from
sample data of the JSON object, provided the fields are non-null.
In the following example, we provide sample data of a student’s

profile to obtain the corresponding schema. This schema is then
used in the from_json function to allow successful parsing of
JSON objects into struct types. Note that we could also use a
SQL-style column-type declaration for the schema instead of
inferring it. Additionally, we store the resulting records in a
temporary view for further analysis:

Figure 4-31 shows the result of parsing the profile JSON objects
into struct types. As illustrated, the preview display allows us to
expand and collapse the struct object, offering a convenient
way to explore its contents.

CREATE OR REPLACE TEMP VIEW parsed_students AS
 SELECT student_id, from_json(profile, schema_of_json
 "last_name":"Lundi", "gender":"Female", "address":{"
 "city":"Ottawa", "country":"Canada"}}')) AS profile_
 FROM students;

SELECT * FROM parsed_students

Figure 4-31. The result of parsing the profile JSON objects into struct types

Let’s check again the data type of the profile column by
running the DESCRIBE command on our view:

DESCRIBE parsed_students

Figure 4-32 confirms that the column profile_struct is
indeed of a struct type, and its inner address field is of a struct
type as well.

Figure 4-32. The output of the DESCRIBE command on the parsed_students table

Interacting with Struct Types

When working with struct types, a notable aspect is the ability
to interact with nested objects using standard period or dot (.)
syntax, compared to the colon syntax used for JSON strings. This
makes the code more intuitive and aligns with Spark’s native
representation.

SELECT student_id, profile_struct.first_name, profile
FROM parsed_students

The output in Figure 4-33 confirms that we have successfully
extracted the profile details from the struct type object using
the dot syntax.

Figure 4-33. The result of extracting the profile details using the dot syntax

Flattening Struct Types

Once a JSON string is converted to a struct type, Spark SQL
introduces a powerful feature—the ability to use the star (*)
operation to flatten fields and create separate columns:

CREATE OR REPLACE TEMP VIEW students_final AS
 SELECT student_id, profile_struct.*
 FROM parsed_students;

SELECT * FROM students_final

The output in Figure 4-34 confirms that this transformation
resulted in distinct columns for the first name, last name,
gender, and address elements of the profile field.

In summary, Spark SQL’s advanced transformations empower
you to handle nested and complex data structures with ease,
providing functionalities for parsing JSON objects into struct
types and performing operations on them.

Figure 4-34. The result of the star operation flattens the profile’s fields into separate
columns

Leveraging the explode Function

In this section, we shift our focus to the enrollments table and
explore an advanced feature in Spark SQL—the explode
function. Let’s begin by reviewing some fields within our table:

SELECT enroll_id, student_id, courses
FROM enrollments

Figure 4-35 shows that the courses column is an array of
structs.

Figure 4-35. The result of querying the enrollments table

Spark SQL provides dedicated functions for efficiently handling
arrays, like the explode function. This function allows us to

transform an array into individual rows, each representing an
element from the array:

Figure 4-36 displays the results of applying the explode
function to the courses array. Each course element now
occupies its own row, with the other information such as
student ID and enrollment ID being duplicated for each course.

Figure 4-36. The result of applying the explode function to the courses column

This layout is particularly useful when examining course-level
patterns or performing operations such as aggregations and

SELECT enroll_id, student_id, explode(courses) AS cou
FROM enrollments

joins with other tables.

Aggregating Unique Values

Moving forward, we explore another interesting function—the
collect_set function. This function is an aggregation function
that returns an array of unique values for a given field. It can
even deal with fields within arrays. In this example, the
courses_set column is formed as an array of arrays:

SELECT student_id,
 collect_set(enroll_id) AS enrollments_set,
 collect_set(courses.course_id) AS courses_set
FROM enrollments
GROUP BY student_id

Figure 4-37 displays the resulting aggregations.

Figure 4-37. The result of applying the collect_set function

In the courses_set column, we notice that, for instance, the
course with identifier C06 appears in multiple elements in the
array of student S00002 . To avoid such an issue, we can flatten
this nested array and retain only the distinct values. This can be
achieved in a two-step process. First, we apply the flatten
function to flatten the array, and then, we use the
array_distinct function to retain only the unique values:

SELECT student_id,
 collect_set(courses.course_id) As before_flatten,
 array_distinct(flatten(collect_set(courses.course_id
FROM enrollments
GROUP BY student_id

Figure 4-38 offers a before-and-after perspective, showcasing
the original state of the data and the result achieved after
applying the flatten and array_distinct functions.

Figure 4-38. The result of flattening the array

In practice, the flatten function is employed to transform the
nested array into a flat structure. Following this, the
array_distinct function is applied to eliminate any duplicate
values. This confirms, for example, that our course identifier
C06 of student S00002 is now represented only once in the
resulting array.

Mastering Join Operations in Spark SQL

Spark SQL also supports join operations to facilitate blending
data from different tables. It offers a variety of standard join
operations, including inner, outer, left, right, anti, cross, and
semi joins. In the following example, we’ll focus on an inner
join operation, where we combine the result of an explode
operation with the courses lookup table to extract the course’s
details, such as course titles and instructor names.

The first step in this operation involves performing an explode
operation on our dataset to transform array elements into
individual rows. Subsequently, we desire to enrich this
exploded data with additional information from the courses
lookup table. To achieve this, we execute an inner join based on
the common key, in this case, the course_id .

The syntax used for joining data in Spark SQL follows the
conventions of standard SQL. We specify the type of join we
want (inner, outer, left, right, etc.), the tables we are joining, and
the conditions for the join. In this example, an inner join is
applied based on matching the course_id key. This ensures
that only matching records from both tables are retained in the
final result set. Lastly, we store the enriched data in a temporary
view named enrollments_enriched :

CREATE OR REPLACE VIEW enrollments_enriched AS
SELECT *
FROM (
 SELECT *, explode(courses) AS course
 FROM enrollments) e
INNER JOIN courses c
ON e.course.course_id = c.course_id;

SELECT * FROM enrollments_enriched

Figure 4-39 displays the result of this join operation,
incorporating information from both the exploded data and the
courses lookup table. For each course, we can now easily
access its details like the title, instructor name, and category.

Figure 4-39. The result of joining enrollments with courses

Exploring Set Operations in Spark SQL

Similar to relational databases, Spark SQL supports various set
operations such as union, intersect, and except/minus. Let’s
explore these set operations by applying them to our
enrollments table, which currently holds 2,150 records,
alongside a temporary view that will introduce 700 new
records. To begin, we’ll create the view under the name
enrollments_updates :

Union operation

The union operation in Spark SQL enables the combination of
two datasets by stacking them vertically, with two variants
available: UNION and UNION ALL . While UNION (or UNION
DISTINCT) returns only distinct rows, UNION ALL includes all
rows from both datasets, preserving duplicates. In the following
example, we demonstrate the UNION ALL operation by
combining the old and new data of the enrollments table. This
results in a unified dataset that includes all records from both
sources, including duplicates:

CREATE OR REPLACE TEMP VIEW enrollments_updates
AS SELECT * FROM parquet.`${dataset.school}/enrollmen

SELECT * FROM enrollments
UNION ALL
SELECT * FROM enrollments_updates

Figure 4-40 displays 3,550 records as a result of this union
operation, which includes duplicate entries. This provides a
comprehensive view that incorporates both old and new
records.

Figure 4-40. The result of the union operation

Intersect operation

The intersect operation, on the other hand, returns the
common rows found in both datasets. This operation is useful
when identifying overlaps between two datasets. In the
following scenario, the INTERSECT command is applied to find
rows that exist in both the enrollments table and the
enrollments_updates view:

SELECT * FROM enrollments
INTERSECT
SELECT * FROM enrollments_updates

Figure 4-41 reveals that there are 700 records present in both
sources. This stems from the insertion of these 700 records into
the enrollments table, which we performed during the
“Appending Data” section.

Figure 4-41. The result of the intersect operation

Minus operation

An interesting use case of set operations involves leveraging the
MINUS operation to obtain records exclusive to one dataset. For
instance, if we execute enrollments minus
enrollments_updates , we effectively retrieve only the data
from the original enrollments table that does not overlap with
the 700 new records present in the enrollments_updates view:

SELECT * FROM enrollments
MINUS

SELECT * FROM enrollments_updates

Figure 4-42 displays the entries exclusive to the enrollments
table after excluding the 700 shared records. The minus
operation is particularly useful for isolating records of interest,
allowing you to focus only on them. In the provided example,
this allows you to focus on the enrollments ’ data before the
last insert operation performed on the table.

Figure 4-42. The result of the minus operation

In conclusion, the set operations available in Spark SQL enable
you to perform a range of tasks including combining,

comparing, and isolating datasets.

Changing Data Perspectives

In addition to its support for set operations, Spark SQL supports
creating pivot tables for transforming data perspectives using
the PIVOT clause. This provides a means to generate
aggregated values based on specific column values. This
transformation results in a pivot table, wherein the aggregated
values become multiple columns. Let’s explore the PIVOT
clause with a practical example, where we aggregate and flatten
the enrollment information for each student.

Before analyzing the query syntax, let’s first execute the query
and examine its output:

1 SELECT * FROM (
2 SELECT student_id, course.course_id AS course_id, c
3 FROM enrollments_enriched
4)
5 PIVOT (
6 sum(subtotal) FOR course_id IN (
7 'C01', 'C02', 'C03', 'C04', 'C05', 'C06',
8 'C07', 'C08', 'C09', 'C10', 'C11', 'C12')
9)

Figure 4-43 displays the resulting pivot table that illustrates the
aggregated sum of subtotal amounts per course for each
student.

Figure 4-43. The enrollments pivot table

The query syntax for generating the pivot table involves the
following steps:

1. Selecting its input data from a table or subquery (lines 1–4).
2. Calling the pivot clause (lines 5–9), which consists of three

key components:

1. Aggregation function: The sum(subtotal) specifies the
aggregation function to be applied, along with the column
to be aggregated.

2. FOR subclause: This subclause defines the pivot column,
course_id , which is the basis for creating multiple
columns in the output.

3. IN operator: The IN operator lists the distinct values of
the pivot column. In our case, it lists the distinct course IDs
(from C01 to C12), each presented as separate columns in
the pivot table.

In essence, the PIVOT clause in Spark SQL empowers you to
reshape and aggregate data dynamically. This capability is
essential for many analytical and machine learning tasks.

Working with Higher-Order
Functions

Higher-order functions in Databricks provide a powerful toolset
for working with complex data types, such as arrays. In this
section, we’ll cover two essential functions: FILTER and
TRANSFORM .

In this demonstration, we will use a new SQL notebook titled
“4.4 - Higher-Order Functions.” To ensure our environment is
properly configured, we start by executing the “School-Setup”
notebook, maintaining our focus on using the online school
dataset:

%run ../Includes/School-Setup

Let’s first review our student enrollment data, illustrated in
Figure 4-44:

SELECT * FROM enrollments

Figure 4-44. The result of querying the enrollments table

The query result demonstrates that the courses column is of
complex data type, specifically an array of struct objects. To

effectively work with such hierarchical data, it is essential to
use higher-order functions.

Filter Function

The FILTER function is a fundamental higher-order function
that enables the extraction of specific elements from an array
based on a given lambda function.

In the following example, we create a new column named
highly_discounted_ cour ses to identify courses that were
purchased with a significant discount. This column is populated
by filtering the courses field to only include courses with a
discount percentage of 60% or higher:

Figure 4-45 displays the filtered data, where the column
highly_discounted_ cour ses contains only the courses with a
discount percentage of 60% or higher.

SELECT
enroll_id,
courses,
FILTER (courses,
 course -> course.discount_percent >= 60) AS hi
FROM enrollments

Figure 4-45. The result of applying the FILTER function on the courses column

However, we observe that the column has several empty arrays.
To resolve this, we can use a WHERE clause to display only non-
empty array values. However, because a derived column
generally cannot be referenced directly within a WHERE clause,
using a subquery is essential to achieve the desired outcome:

By using this subquery that applies the WHERE clause to the size
of the returned column, you can successfully eliminate all
empty arrays.

Transform Function

The TRANSFORM function is another essential higher-order
function that facilitates the application of a transformation to
each item in an array, extracting the transformed values. In our

SELECT enroll_id, highly_discounted_courses
FROM (
 SELECT
 enroll_id,
 courses,
 FILTER (courses,
 course -> course.discount_percent >= 60) AS hig
 FROM enrollments)
WHERE size(highly_discounted_courses) > 0;

example, we apply a 20% tax to the subtotal value for each
course in the courses array:

Figure 4-46 displays the result of applying the TRANSFORM
function, which adds a new column, courses_after_tax ,
containing an array of transformed values for each element in
the courses array. The transformation, in this case, involves
calculating a 20% tax on the subtotal value and then rounding
the result.

SELECT
enroll_id,
courses,
TRANSFORM (
 courses,
 course -> ROUND(course.subtotal * 1.2, 2)) AS cour
FROM enrollments;

Figure 4-46. The result of applying the TRANSFORM function on the courses column

Clearly, the transform function extracts only the transformed
values by default. Instead, we can create a struct object
containing multiple elements. This struct object contains two
fields: the course ID for the original course, and
subtotal_with_tax reflecting the subtotal amount after
applying the tax:

SELECT
enroll_id,

Figure 4-47 displays the result of generating struct objects with
the TRANSFORM function. This allows for more structured and
detailed representation of the transformed data.

courses,
TRANSFORM (
 courses,
 course -> (course.course_id,
 ROUND(course.subtotal * 1.2, 2) AS subto
) AS courses_after_tax
FROM enrollments;

Figure 4-47. The result of generating struct types with the TRANSFORM function

In summary, higher-order functions in Databricks, like FILTER
and TRANSFORM , empower you to manipulate and extract
specific information from complex data structures.

Developing SQL UDFs

SQL user-defined functions (UDFs) are a powerful way to
encapsulate custom logic with a SQL-like syntax, making it
reusable across different SQL queries. Unlike external UDFs

written in Scala, Java, Python, or R, which appear as black boxes
to the Spark Optimizer, SQL UDFs leverage Spark SQL directly.
This typically provides better performance when applying
custom logic to large datasets.

In this section, we’ll explore the creation and usage of SQL UDFs
in a new SQL notebook titled “4.5 - SQL UDFs.” As we will
continue using our online school dataset, we begin by running
the “School-Setup” notebook to prepare our environment:

%run ../Includes/School-Setup

Creating UDFs

To create a SQL UDF, you need to specify a function name,
optional parameters, the return type, and the custom logic. In
the following example, we create a UDF named
gpa_to_percentage for converting students’ grade point
average (GPA) scores into percentage equivalents. The UDF
accepts a GPA score as a parameter of type DOUBLE and returns
the percentage score as integer . The conversion logic assumes
a GPA scale of 4.0, which is then translated into a percentage
scale by multiplying it by 25. Additionally, the calculated
percentage is rounded to the nearest integer using the round
function and then cast to an integer data type:

Applying UDFs

Once the UDF is created, you can use it in any SQL query like a
native function. In the following example, we apply the
gpa_to_percentage UDF on the gpa column within the
students table:

Figure 4-48 confirms that our function has been successfully
applied. The column percentage_score accurately provides
the equivalent percentage score for each student’s GPA.

CREATE OR REPLACE FUNCTION gpa_to_percentage(gpa DOUB
RETURNS INT

RETURN cast(round(gpa * 25) AS INT)

SELECT student_id, gpa, gpa_to_percentage(gpa) AS per
FROM students

Figure 4-48. The result of applying the gpa_to_percentage UDF

Understanding UDFs

SQL UDFs are permanent objects stored in the database,
allowing them to be used across different Spark sessions and
notebooks. The DESCRIBE FUNCTION command provides basic
information about the UDF, such as the database, input
parameters, and return type:

DESCRIBE FUNCTION gpa_to_percentage

As shown in Figure 4-49, the function belongs to the
de_associate_school database, created in the “School-Setup”
notebook. It accepts the gpa as an input of type DOUBLE and
returns an integer.

Figure 4-49. The output of DESCRIBE FUNCTION command on the gpa_to_percentage
UDF

Furthermore, the DESCRIBE FUNCTION EXTENDED command
offers more details, including the SQL logic used in the function:

DESCRIBE FUNCTION EXTENDED gpa_to_percentage

Figure 4-50 displays some of the extended metadata
information about our UDF. Specifically, the Body field reveals
the SQL logic implemented within the function.

Figure 4-50. The output of the DESCRIBE FUNCTION EXTENDED command on the
gpa_to_percentage UDF

Complex Logic UDFs

SQL UDFs can incorporate complex logic, such as using
standard SQL CASE WHEN statements to evaluate multiple
conditions. In the following example, we define a UDF that
takes a student’s GPA and returns its corresponding letter grade
based on the grading scale in Table 4-2.

Table 4-2. Grading scale

GPA (4.0 scale) Grade letter

3.50–4.0 A

2.75–3.44 B

2.0–2.74 C

Below 2.0 F

To map GPA scores to their corresponding letter grades, we use
a CASE WHEN statement within a function named
get_letter_grade :

CREATE OR REPLACE FUNCTION get_letter_grade(gpa DOUBL
RETURNS STRING
RETURN CASE
 WHEN gpa >= 3.5 THEN "A"
 WHEN gpa >= 2.75 AND gpa < 3.5 THEN "B"
 WHEN gpa >= 2 AND gpa < 2.75 THEN "C"

 ELSE "F"
 END

We can now apply this complex UDF to our dataset:

Figure 4-51 confirms that we have successfully applied our UDF.
As expected, the column letter_grade gives us the
corresponding letter grade to each student’s GPA.

Figure 4-51. The result of applying the get_letter_grade UDF

Thus, SQL UDFs in Databricks offer flexibility, reusability, and
the ability to incorporate complex logic. All this, while
benefiting from Spark’s optimization for parallel execution.

SELECT student_id, gpa, get_letter_grade(gpa) AS lett
FROM students

Dropping UDFs

Finally, you can remove UDFs when they are no longer needed
by using the DROP FUNCTION command:

DROP FUNCTION gpa_to_percentage;
DROP FUNCTION get_letter_grade;

After executing these commands, both UDFs will be completely
removed from the database.

Conclusion

In conclusion, this chapter has highlighted key techniques for
transforming data efficiently on the Databricks platform using
Apache Spark. We’ve explored methods for querying and
writing data, implemented advanced ETL operations, and
leveraged the flexibility of higher-order functions and UDFs.
With these tools, you are now equipped to perform robust data
transformations that are both powerful and adaptable to
diverse data processing needs.

Sample Exam Questions

Conceptual Question

1. A data engineer is tasked with replacing the content of a Delta
table in a data pipeline. During a team meeting, they discuss the
best approach for overwriting the table without disrupting
ongoing analyses while ensuring optimal performance. The
team considers two commands: INSERT OVERWRITE and CREATE
OR REPLACE TABLE .

Given this scenario, which of the following factors should the
data engineer consider when justifying the use of the INSERT
OVERWRITE command over CREATE OR REPLACE TABLE ?

1. The INSERT OVERWRITE operation is a more dynamic
technique that ensures schema evolution when overwriting
the table.

2. The INSERT OVERWRITE operation is a safer approach for
overwriting the table without changing its schema.

3. The INSERT OVERWRITE operation can automatically
optimize the table’s layout for better query performance after
the overwrite.

4. All of the above reasons explain why INSERT OVERWRITE is
recommended over CREATE OR REPLACE TABLE .

5. None of the above! Both commands operate the same way.

Code-Based Question

2. A data engineer at a financial services company is tasked with
creating a reusable SQL user-defined function (UDF). This
function will calculate interest based on dynamic inputs across
various datasets. The engineer needs to decide which code
block would be appropriate for this task.

Which of the following code blocks should the data engineer
use to create the SQL UDF?

1. CREATE FUNCTION calc_interest (amount DOUBLE , rate
DOUBLE)

RETURNS cast (amount * rate AS DOUBLE);

2. CREATE UDF calc_interest (amount DOUBLE , rate
DOUBLE)

RETURN amount * rate;
3. CREATE UDF calc_interest(amount DOUBLE , rate

DOUBLE)

RETURNS DOUBLE
RETURN amount * rate;

4. CREATE FUNCTION calc_interest (amount DOUBLE , rate
DOUBLE)

RETURNS DOUBLE
RETURN amount * rate;

5. DEF calc_interest (amount DOUBLE , rate DOUBLE)

RETURN cast (amount * rate AS DOUBLE);

The correct answers to these questions are listed in Appendix C.

Chapter 5. Processing Incremental
Data

In the previous chapters, we explored the fundamentals of
processing data in groups or batches at once. However, when
data is generated continuously, traditional batch processing
approaches tend to become insufficient. In this chapter, we will
explore the concepts and techniques for processing streaming
data, including Spark Structured Streaming and incremental
data ingestion from files. Moreover, we will discuss the concept
of medallion architecture and how to build it under the stream
processing model.

Streaming Data with Apache
Spark

Apache Spark provides robust support for processing streaming
data, enabling you to efficiently perform real-time analytics. At
the heart of this process is the concept of a data stream, which is
the focus of processing. To effectively work with streaming data
in Spark, let’s first understand what a data stream is and its
characteristics.

What Is a Data Stream?

A data stream represents an unbounded flow of data, often
originating from various sources such as sensors, log files, or
social media platforms. As new data is generated, it is appended
to the stream, making it a dynamic and constantly changing
dataset. Examples of data streams include the following:

Social media feeds
Continuous streams of posts, each containing text, user
information, and timestamps, that can be processed and
analyzed to track trends, sentiments, or user behavior.
Sensor readings
Temperature and humidity readings, or other metrics, from a
network of sensors in a smart building, used to optimize
energy consumption.
Log data
A stream of log messages from a server, containing system
events and error messages, used to monitor system
performance or detect security threats.

Processing data streams present a unique set of challenges due
to their dynamic and ever-growing nature. To handle such
continuous flows of information, there are typically two
primary approaches:

Recompute

In this classical approach, each time new data arrives, the
entire dataset is reprocessed to incorporate the new
information. While this method ensures accuracy, it can be
computationally intensive and time-consuming, especially for
large datasets.
Incremental processing
Alternatively, incremental processing involves developing
custom logic to identify and capture only the new data that
has been added since the last update. This approach reduces
processing overhead by focusing solely on the changes,
thereby improving efficiency.

One powerful tool for incremental processing of data streams is
Spark Structured Streaming, which is part of Apache Spark.

Spark Structured Streaming

Spark Structured Streaming is a scalable stream processing
engine that revolutionizes the way data streams are processed
and queried. It enables querying of infinite data sources,
automatically detecting new data as it arrives and persisting
results incrementally into target data sinks, as illustrated in
Figure 5-1. A sink is often a durable storage system such as files
or tables that serves as the destination for the processed data.

Figure 5-1. Spark Structured Streaming

In Structured Streaming, the key idea is to handle live data
streams as unbounded, continuously growing tables, where
each incoming data item is appended as a new row, as
illustrated in Figure 5-2. This design allows you to apply familiar
SQL and DataFrame operations on streaming data in the same
way you would with batch data. By unifying batch and
streaming operations, Structured Streaming eliminates the need
for separate technology stacks and facilitates the migration of
your existing batch Spark jobs to streaming jobs.

Figure 5-2. Fundamental concept of Spark Structured Streaming
(image adapted from https://spark.apache.org)

The append-only requirement of streaming sources

One fundamental prerequisite for a data source to be
considered valid for streaming is that it must adhere to the
append-only requirement in Structured Streaming. This
condition implies that data can only be added to the source, and
existing data cannot be modified. If a data source allows data to
be updated, deleted, or overwritten, it is then considered no
longer streamable.

Therefore, it is essential to ensure that your data sources
conform to this requirement in order to take advantage of the
benefits of streaming data processing.

https://spark.apache.org/

Delta Lake as streaming source

Spark Structured Streaming seamlessly integrates with various
data sources, including directories of files, messaging systems
like Kafka, and Delta Lake tables as well. Delta Lake is well-
integrated with Spark Structured Streaming using the
DataStreamReader and DataStreamWriter APIs in PySpark.

DataStreamReader

In Python, the spark.readStream method allows you to query
a Delta Lake table as a streaming source. This functionality
enables processing both existing data in the table and any new
data that arrives subsequently. The result is a “streaming”
DataFrame, which allows for applying transformations just like
one would on a static DataFrame:

streamDF = spark.readStream.table("source_table")

DataStreamWriter

Once the necessary transformations have been applied, the
results of the streaming DataFrame can be persisted using its
writeStream method:

streamDF.writeStream.table("target_table")

This method enables configuring various output options to
store the processed data into durable storage. Let’s explore the
following example, where we have two Delta Lake tables,
Table_1 and Table_2 . The goal is to continuously stream data
from Table_1 to Table_2 , appending new records into
Table_2 every two minutes, as illustrated in Figure 5-3.

Figure 5-3. Streaming data between two Delta Lake tables

To achieve this, we use the following Python code. This code
sets up a Structured Streaming job in Spark that continuously
monitors Table_1 for new data, processes it at regular
intervals of two minutes, and appends the new records to
Table_2 :

streamDF = spark.readStream
 .table("Table_1")

streamDF.writeStream
 .trigger(processingTime="2 minutes")
 .outputMode("append")
 .option("checkpointLocation", "/path")
 .table("Table_2")

In this code snippet, we start by defining a streaming
DataFrame streamDF against the Delta table Table_1 using the
spark.readStream method. Whenever a new version of the
table is written, a new micro-batch containing the new data will
come in through this readStream .

Next, we use the writeStream method to define the streaming
write operation on the streamDF . Here, we specify the
processing trigger interval using the trigger function, indicating
that Spark should check for new data every two minutes. This

means that the streaming job will be triggered at regular
intervals of two minutes to process any new incoming data in
the source.

We then set the output mode to “append” using the
outputMode function. This mode ensures that only newly
received records since the last trigger will be appended to the
output sink, which in this case is the Delta table Table_2 .

Additionally, we specify the checkpoint location using the
checkpointLocation option. Spark uses checkpoints to store
metadata about the streaming job, including the current state
and progress. By providing a checkpoint location, Spark can
recover the streaming job from failures and maintain its state
across restarts.

Streaming Query Configurations

Now, let’s examine the configurations of DataStreamWriter in
detail.

Trigger Intervals

When setting up a streaming write operation, the trigger
method defines how often the system should process incoming
data. This timing mechanism is referred to as the trigger

interval. There are two primary trigger modes: continuous and
triggered, as illustrated in Table 5-1.

Table 5-1. Trigger intervals of DataStreamWriter

Mode Usage Behavior

Continuous
.trigger(processingTime=
 "5 minutes")

Processes
data at fix
intervals
every 5
minutes).
Default
interval:
500ms.

Triggered
#deprecated
.trigger(once=True)

Processes
available
in a single
micro-bat
then stop
automatic

Let’s dive deeper to gain a comprehensive understanding of
these two modes.

Continuous mode: Near-real-time processing

In this mode, the streaming query will continuously run to
process data in micro-batches at regular intervals. By default, if
no specific trigger interval is provided, the data will be
processed every half a second. This is equivalent to using the
option processingTime="500ms" . Alternatively, you have the
flexibility to specify another fixed interval according to your
requirements. For instance, you might opt to process the data at
a specified interval, such as every five minutes, by using the

Mode Usage Behavior

.trigger(availableNow=True)
Processes
available
in multipl
micro-
batches, t
stops
automatic

option processingTime="5 minutes" . This mode ensures a
continuous flow of data, enabling near-real-time data
processing.

Triggered mode: Incremental batch processing

In contrast to continuous mode, the triggered mode offers a
batch-oriented approach known as incremental batch
processing. In this mode, the streaming query processes all
available data since the last trigger and then stops
automatically. This mode is suited for scenarios where data
arrival is not constant, eliminating the need for continuously
running resources. Under the triggered mode, two options are
available: Once and availableNow :

Trigger.Once
With this option, the stream processes the currently available
data, all at once, in a single micro-batch. However, this can
introduce challenges related to scalability when dealing with
large volumes of data, as it may lead to out-of-memory (OOM)
errors.
Trigger.availableNow
Similarly, the availableNow option also facilitates batch
processing of all currently available data. However, it
addresses scalability concerns by allowing data to be
processed in multiple micro-batches until completion. This

option offers flexibility in handling large data batches while
ensuring efficient resource utilization.

NOTE

Since Databricks Runtime 11.3 LTS, the Trigger.Once setting has been deprecated.
However, it’s possible that you may encounter references to it in the current exam
version or in older documentation. Databricks now recommends using
Trigger.AvailableNow for all incremental batch processing workloads.

Output Modes

When writing streaming data, you can specify the output mode
to define how the data is written to the target. There are
primarily two output modes available: append mode and
complete mode, as illustrated in Table 5-2.

Append mode

Append mode is the default output mode if no specific mode is
provided. It appends only new rows that have been received
since the last trigger to the target table. This mode is suitable for
scenarios where the target sink needs to maintain a

Table 5-2. Output modes of DataStreamWriter

Mode Usage Behavior

Append
(default)

.outputMode("append")
Only newly
received
rows are
appended to
the target
table with
each batch.

Complete
.outputMode("complete")

The target
table is
overwritten
with each
batch.

continuously growing dataset based on the incoming streaming
data.

Complete mode

Complete mode recomputes and rewrites the entire results to
the sink every time a write is triggered. It replaces the entire
contents of the output sink with the latest computed results
with each batch. This mode is commonly used for updating
summary tables with the latest aggregates.

Checkpointing

Checkpointing is a mechanism for saving the progress
information of the streaming query. The checkpoints are stored
in a reliable storage system, such as the DBFS or cloud storage
like Amazon S3 or Azure Storage. This approach ensures that if
the streaming job crashes or needs to be restarted, it can
resume processing from the last checkpointed state rather than
starting from scratch.

One important aspect to note about checkpoints in Apache
Spark is that they cannot be shared between multiple streaming
jobs. Each streaming write operation requires its own separate
checkpoint location. This separation ensures that each
streaming application maintains its own processing guarantees

and doesn’t interfere with or rely on the checkpoints of other
jobs.

Structured Streaming Guarantees

Spark Structured Streaming offers, primarily, two guarantees to
ensure end-to-end reliable and fault-tolerant stream processing:
fault recovery and exactly-once semantics.

Fault recovery

In case of failures, such as node crashes or network issues, the
streaming engine is capable of resuming processing from where
it left off. This is achieved through the combination of
checkpointing and a mechanism called write-ahead logs. They
enable capturing the offset range corresponding to the data
being processed during every trigger, which makes it possible to
recover from failures without any data loss.

It’s important to note that this guarantee mainly depends on the
repeatability of the data sources. Data sources such as cloud-
based object storage or pub/sub messaging services are typically
repeatable, meaning that the same data can be read multiple
times if needed. This allows the streaming engine to restart or
reprocess the data under any failure condition.

Exactly-once semantics

Structured Streaming also guarantees that each record in the
stream will be processed exactly once, even in the event of
failures and retries. This is ensured by the implementation of
idempotent streaming sinks. Idempotency means that if
multiple writes occur for the same entities, no duplicates will be
written to the sink. It relies on the offset of the entities as a
unique identifier to recognize any duplicates and ignore them.

In essence, by accurately tracking offsets from replayable
sources and leveraging idempotent sinks, Structured Streaming
ensures reliable end-to-end processing, without any risk of data
loss or duplication, even in the presence of failures.

Unsupported operations

As discussed earlier, infinite data sources are viewed as
unbounded tables in Structured Streaming. While most
operations are identical to those of batch processing, there are
certain operations that are not supported due to the nature of
streaming data. Operations such as sorting and deduplication
introduce complexities in a streaming context and may not be
directly applicable or feasible.

While a full discussion of these limitations is beyond the scope
of this Associate-level certification, it’s essential to know that
there are alternative mechanisms to address similar
requirements. For example, you can use advanced streaming
techniques like windowing and watermarking for performing
such operations over specific time windows. A detailed
understanding of these techniques is typically expected at a
more advanced level, particularly for the Databricks Data
Engineer Professional certification.

Implementing Structured
Streaming

Let’s delve into the practical implementation of Spark
Structured Streaming for enabling incremental data processing.
We will continue using our online school dataset, consisting of
three tables: students , enrollments , and courses , as
illustrated in Figure 5-4.

Figure 5-4. Entity-relationship diagram of the online school dataset

In this demonstration, we will use a new Python notebook titled
“5.1 - Structured Streaming.” We begin by running the “School-
Setup” helper notebook to prepare our environment:

%run ../Includes/School-Setup

Structured Streaming provides high-level APIs in both SQL and
Python for manipulating streaming data. However, regardless of
the chosen language, the initial step always involves using the
spark.readStream method from the PySpark API. This is the

reason behind our utilization of a Python notebook in this
context. The spark.readStream method allows you to query a
Delta table as a streaming source and create a streaming
DataFrame accordingly:

stream_df = spark.readStream.table("courses")

Once the streaming DataFrame is created, you can apply a wide
range of transformations and operations to manipulate and
analyze the streaming data. These transformations can be
expressed in either SQL or Python syntax.

Streaming Data Manipulations in SQL

To begin manipulating streaming data using SQL, it is essential
to convert the streaming DataFrame into a format that SQL can
interpret and query. This can be achieved by registering a
temporary view from the streaming DataFrame using the
createOrReplaceTempView function:

Creating a temporary view against a streaming DataFrame
results in a streaming temporary view. This allows you to

stream_df.createOrReplaceTempView("courses_streaming_

apply most SQL transformations on streaming data just like you
would with static data. You can query this streaming temporary
view using a standard SELECT statement, as shown here:

%sql
SELECT * FROM courses_streaming_tmp_vw

This query does not behave like a typical SQL query. Instead of
executing once and returning a set of results, it initiates a
continuous stream that runs indefinitely. As new data arrives in
the source, it appears in the query results in near real time. To
facilitate performance monitoring of such streams, Databricks
Notebooks provide an interactive dashboard associated with
the streaming query, as illustrated in Figure 5-5.

Figure 5-5. Streaming query results

In practice, we don’t typically display the results of streaming
queries in a notebook unless there is a need to inspect them
during development. To stop an active streaming query, you can
simply click Interrupt at the top of the cell.

Applying transformations

On a streaming temporary view, you can apply various
transformations and operations. For instance, you can perform
aggregations such as as counting occurrences within the
streaming data:

Because we are querying a streaming object, this aggregation
becomes a stateful streaming query that executes continuously
and updates dynamically to reflect any changes in the source.
Figure 5-6 displays the output of this streaming query.

%sql
SELECT instructor, count(course_id) AS total_courses
FROM courses_streaming_tmp_vw
GROUP BY instructor

Figure 5-6. Streaming aggregation results

It’s important to understand that at this stage, none of the
records is stored anywhere; they are simply being displayed in
the current notebook environment. In the following discussion,
we will explore how to persist them to a durable storage.
However, before proceeding, let us stop this active streaming
query.

Remember, when working with streaming data, certain SQL
operations are not directly supported. For example, attempting
to sort our streaming data based on a given column will lead to
an error:

%sql
SELECT *
FROM courses_streaming_tmp_vw
ORDER BY instructor

Executing this command results in an exception, clearly
indicating that the sorting operation is not supported on all

AnalysisException: Sorting is not supported on stream
unless it is on aggregated DataFrame/Dataset in Compl

streaming datasets. As mentioned earlier, more advanced
techniques like windowing and watermarking can be used to
overcome such limitations. However, they are considered
beyond the scope of this book.

Persisting streaming data

Persisting streaming data to a durable storage involves
returning our logic back to the PySpark DataFrame API. For this,
we begin by defining a new temporary view to encapsulate our
desired output:

With this SQL statement, we are creating another temporary
view to hold the aggregated data. It’s considered a “streaming”
temporary view since it is derived from a query against a
streaming object, specifically against our
courses_streaming_tmp_vw view.

%sql
CREATE OR REPLACE TEMP VIEW instructor_counts_tmp_vw
 SELECT instructor, count(course_id) AS total_courses
 FROM courses_streaming_tmp_vw
 GROUP BY instructor
)

Once the streaming temporary view is created, we can access
the output data using the PySpark DataFrame API. In the
following snippet, the spark.table function loads the data
from our streaming temporary view into a streaming
DataFrame:

It’s essential to understand that Spark differentiates between
streaming and static DataFrames. Consequently, when loading
data from a streaming object, it’s interpreted as a streaming
DataFrame, while loading data from a static object yields a static
DataFrame. This highlights the importance of using
spark.readStream from the beginning (instead of
spark.read) to support later incremental writing.

Now that we have our streaming DataFrame in place, we can
proceed to persist the results to a Delta table using the
writeStream method. This method enables configuring the
output with several parameters, such as trigger intervals,
output modes, and specifying a checkpoint location:

result_stream_df = spark.table("instructor_counts_tmp

(result_stream_df.writeStream
 .trigger(processingTime='3 seconds')
 .outputMode("complete")

In this configuration, the trigger interval is set to three seconds,
meaning the stream will attempt an update every three seconds
by checking the source for new data. The output mode is
specified as “complete,” indicating that the entire target table
should be overwritten with the new calculations during each
trigger interval. Additionally, the checkpoint location is
provided to track the progress of the stream processing. Lastly,
the target table is set to instructor_counts .

Executing this command initiates a streaming query,
continuously updating the target table as new data arrives.
Figure 5-7 visualizes this process through its interactive
dashboard.

 .output ode(co p ete)
 .option("checkpointLocation",
 "dbfs:/mnt/DEA-Book/checkpoi
 .table("instructor_counts")
)

Figure 5-7. Streaming write operation

From this dashboard, we can observe a noticeable spike,
indicating that our data has been processed. Subsequently, we

can proceed to query the target table to validate the results:

%sql
SELECT * FROM instructor_counts

It’s important to note that directly querying the target table does
not trigger a streaming query. It’s simply a normal, static table,
rather than a streaming DataFrame.

Figure 5-8 displays the result of querying the
instructor_counts table, confirming that the data has been
written successfully. This result shows that each instructor
currently teaches only one course.

Figure 5-8. The result of querying the instructor_counts table

Meanwhile, the streaming write query remains active, waiting
for new data to arrive in the source. To illustrate this, let us add
new data to our source table, the courses table:

%sql
INSERT INTO courses
values ("C16", "Generative AI", "Pierre B.", "Compute
 ("C17", "Embedded Systems", "Julia S.", "Compu
 ("C18", "Virtual Reality", "Bernard M.", "Comp

Upon executing this command, you can observe the processing
of this batch of data using the dashboard of our streaming
query, as shown in Figure 5-9.

Figure 5-9. Processing the new streaming data

Subsequently querying our target table reveals updated course
counts for each instructor. As illustrated in Figure 5-10, some

instructors’ course counts have increased as more records are
processed.

Figure 5-10. The result of querying the instructor_counts table after processing the
new data

Now, let’s explore another scenario to demonstrate incremental
batch processing. However, before proceeding, let’s stop our
previous streaming write query. In a development
environment, it is a good practice to stop active streams to
prevent them from running indefinitely. Failing to do so can
lead to unnecessary costs and resource consumption, as the

cluster will not be able to auto-terminate if the process remains
active.

In our next scenario, we will introduce a set of courses taught
by new instructors and incorporate them into our source table:

In this scenario, we will modify the trigger method to change
our query from a continuous mode, executed every three
seconds, to a triggered mode. We accomplish this using the
availableNow trigger option:

%sql
INSERT INTO courses
values ("C19", "Compiler Design", "Sophie B.", "Compu
 ("C20", "Signal Processing", "Sam M.", "Comput
 ("C21", "Operating Systems", "Mark H.", "Compu

(result_stream_df.writeStream
 .trigger(availableNow=True)
 .outputMode("complete")
 .option("checkpointLocation",
 "dbfs:/mnt/DEA-Book/checkpoi
 .table("instructor_counts")
 .awaitTermination()
)

With the availableNow trigger option, the query will process
all newly available data at the time of the read and
automatically stop upon completion. In this case, we can
optionally use the awaitTermination method to halt execution
of other cells in the notebooks until the incremental batch write
finishes successfully.

By running this command, you can observe that the streaming
query was operated in a batch mode. It stopped automatically
after processing the three recently added records. To confirm
this, you can query the target table again to see that there are
now 18 instructors instead of the previous 15.

Streaming Data Manipulations in Python

Manipulating streaming data in Python syntax is
straightforward; there is no need for any temporary object or
view. You can apply your data processing directly on the
streaming DataFrame using the PySpark DataFrame API:

import pyspark.sql.functions as F

output_stream_df = (stream_df.groupBy("instructor")
 .agg(F.count("course_id").alias("t

In this snippet, we are performing the same aggregation
operation previously executed using SQL syntax, but now using
PySpark. We group our stream_df based on the instructor
column and apply the count aggregation function to the
course_id column. It’s worth mentioning that streaming
DataFrames, like static DataFrames, are immutable. This means
that when you apply transformations to a DataFrame, it always
creates a new DataFrame and leaves the original unchanged. In
our case, this creates a new streaming DataFrame named
output_stream_df .

At this point, the output streaming DataFrame has been created,
but the stream itself is not yet active. This means that Spark
hasn’t started processing the input data. To activate the stream,
we need to perform an action, such as writing or displaying the
data. In Databricks notebooks, you can call the display function
on a streaming DataFrame to display the streaming data, as
illustrated in Figure 5-11:

display(output_stream_df)

Figure 5-11. Displaying the streaming DataFrame

We can now stop this data stream and examine how to persist
the results.

To persist these results to durable storage, we simply use the
writeStream method directly on the streaming DataFrame:

It’s essential to note that we are using a different checkpoint
location for this new streaming query. Remember, each stream
requires its own separate checkpoint location to ensure
processing guarantees.

Once the streaming write is completed, you can query the
resulting table directly:

(output_stream_df.writeStream
 .trigger(availableNow=True)
 .outputMode("complete")
 .option("checkpointLocation",
 "dbfs:/mnt/DEA-Book/checkpoints/in
 .table("instructor_counts_py")
 .awaitTermination()
)

%sql
SELECT * FROM instructor_counts_py

Alternatively, you can use the PySpark DataFrame API to query
the table. This can be achieved using the spark.read method:

In this code snippet, the spark.read method is used to create a
static DataFrame against our table. Then, the display function is
invoked to show the queried data, as shown in Figure 5-12.

instructor_counts_df = spark.read.table("instructor_c

display(instructor_counts_df)

Figure 5-12. The result of querying the instructor_count_py table

In conclusion, Spark Structured Streaming provides a powerful
and flexible solution for handling streaming data processing
tasks. By using either Spark SQL or PySpark DataFrame APIs,
you can perform a variety of data manipulations on streaming
data sources, including Delta Lake. This enables you to build
end-to-end reliable data pipelines for a wide range of use cases,
from real-time analytics to incremental data ingestion, as you
are about to see.

Incremental Data Ingestion

Data ingestion is a crucial step in data engineering pipelines,
particularly when dealing with files stored in cloud storage. In
this section, we will explore the different techniques of
incrementally loading data from files into Delta Lake. Our focus
will be on two primary methods: the COPY INTO command and
Auto Loader.

Introducing Data Ingestion

Data ingestion, as used in this book, refers to the process of
loading data from files into Delta Lake tables. One of the
significant challenges in data ingestion is the need to avoid
reprocessing the same files multiple times. In a traditional data
pipeline, each time the pipeline is run, it would reprocess all the
files, including those that have already been ingested
previously. This approach can be computationally expensive,
time-consuming, and can lead to additional deduplication work,
especially when dealing with large datasets, and this is where
incremental data ingestion comes into play.

Incremental data ingestion involves loading only files newly
received since the last data ingestion cycle. This approach

ensures that data pipelines are optimized by avoiding the
reprocessing of previously ingested files, thereby reducing the
processing time and resources required. Databricks offers two
efficient mechanisms for the incremental processing of newly
arrived files in a storage location: the COPY INTO SQL
command and Auto Loader. Let us examine these methods in
detail and learn how to implement them effectively.

COPY INTO Command

The COPY INTO command is a SQL statement that facilitates the
loading of data from a specified file location into a Delta table.
This command operates in an idempotent and incremental
manner, meaning that each execution will only process new
files from the source location, while previously ingested files
are ignored.

The syntax for the COPY INTO command is straightforward and
is structured as follows:

1 COPY INTO my_table
2 FROM '/path/to/files'
3 FILEFORMAT = <format>
4 FORMAT_OPTIONS (<format options>)
5 COPY_OPTIONS (<copy options>)

The command structure specifies the target table (line 1), the
source file location (line 2), the format of the source files such
as CSV or Parquet (line 3), any pertinent file options (line 4), and
additional options to control the ingestion operation (line 5).

For instance:

COPY INTO my_table
FROM '/path/to/files'
FILEFORMAT = CSV
FORMAT_OPTIONS ('delimiter' = '|',
 'header' = 'true')
COPY_OPTIONS ('mergeSchema' = 'true')

In this example, the command is configured to ingest data into a
Delta Lake table, named my_table , from a given source
location. This location contains CSV files characterized by
having headers and a specific delimiter, |. Furthermore, the
COPY_OPTIONS parameter is leveraged to facilitate schema
evolution in response to modifications in the structure of the
incoming data.

Auto Loader

The second method for loading data incrementally from files in
Databricks is Auto Loader. It leverages Structured Streaming in
Spark to efficiently process new data files as they become
available in a storage location. Notably, Auto Loader offers
scalability by allowing for handling billions of files and
supporting real-time ingestion rates of millions of files per hour.

Built upon Spark’s Structured Streaming framework, Auto
Loader employs checkpointing to track the ingestion process
and store metadata information about the discovered files. This
ensures that data files are processed exactly once by Auto
Loader. Moreover, in the event of a failure, Auto Loader
seamlessly resumes processing from the point of interruption.

Implementation

As an integral part of Spark’s Structured Streaming, you can
work with Auto Loader by using the readStream and
writeStream methods:

spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", <source_format>
 .load(’/path/to/files’)
 .writeStream

Auto Loader introduces a specific format of DataStreamReader
named cloudFiles . The cloudFiles.format option is
employed to specify the format of the source files. Then, the
load function is used to indicate the location of the source files,
where Auto Loader detects and queues new arrivals for
ingestion. Subsequently, data is written into a target table using
the DataStreamWriter, with the checkpointLocation
parameter indicating where checkpointing information should
be stored.

Schema management

Auto Loader offers a convenient feature that enables automatic
schema detection for loaded data, allowing you to create tables
without explicitly defining the data schema. Moreover, if new
columns are added, the table schema can evolve accordingly.
However, to avoid inference costs during each stream startup,
the inferred schema can be stored for subsequent use. This is
achieved by specifying a location where Auto Loader can store
the schema using the cloudFiles.schemaLocation option.

 .option("checkpointLocation", <checkpoint_di
 .table(<table_name>)

Note that the schema inference behavior of Auto Loader varies
depending on the file format. For formats with typed schemas,
such as Parquet, Auto Loader extracts the predefined schemas
from the files. On the other hand, for formats that don’t encode
data types, like JSON and CSV, Auto Loader infers all columns as
strings by default. To enable inferring column data types from
such sources, you can set the option
cloudFiles.inferColumnTypes to true:

It’s worth mentioning that the designated schema location can
be identical to the checkpoint location for simplicity and
convenience; they will not conflict.

Comparison of Ingestion Mechanisms

spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", <source_format>)
 .option("cloudFiles.inferColumnTypes", "true"
 .option("cloudFiles.schemaLocation", <schema_
 .load(’/path/to/files’)
 .writeStream
 .option("checkpointLocation", <checkpoint_dir
 .option("mergeSchema", "true")
 .table(<table_name>)

When deciding between the COPY INTO command and Auto
Loader for your data ingestion tasks, it’s important to consider
two key factors, which are summarized in Table 5-3.

Table 5-3. Comparison of the incremental data ingestion mechanisms

 COPY INTO Auto Loader

File volume Thousands of files Millions of files

Efficiency Less efficient at
scale

Efficient at
scale

File volume

The COPY INTO command is ideal for scenarios where the
volume of incoming files is relatively small, typically on the
order of thousands. It offers simplicity and straightforward
execution, making it well-suited for smaller-scale data ingestion
tasks. On the other hand, Auto Loader is suited for scenarios
where the volume of incoming files is on the order of millions
or more over time.

Efficiency

Auto Loader has the capability to split processing into multiple
batches, thereby enabling faster and more efficient data
ingestion compared to the COPY INTO command. This attribute
makes Auto Loader an ideal choice for environments
characterized by high data velocity and volume.

As a general best practice, Databricks recommends using Auto
Loader when ingesting data from cloud object storage.

Auto Loader in Action

Let’s walk through the practical implementation of Auto Loader
for incremental data ingestion from files. We will continue
using our online school dataset, consisting of three tables:
students , enrollments , and courses .

In this demonstration, we will use a new Python notebook titled
“5.2 - Auto Loader.” We begin by running the “School-Setup”
helper notebook to prepare our environment:

%run ../Includes/School-Setup

In this scenario, we will leverage Auto Loader to incrementally
ingest student enrollment data from JSON files into a target

Delta table. Before setting up our Auto Loader stream, let’s
inspect our source directory:

Figure 5-13 displays the contents of the source directory,
showing that it currently hosts a single JSON file.

Figure 5-13. The content of the source directory

Now, we’ll set up Auto Loader to efficiently handle the ingestion
of this file and any new files arriving in the directory.

Setting up Auto Loader

Remember, Auto Loader uses the readStream and
writeStream methods from Spark’s Structured Streaming API.
Here’s an example of how to set up Auto Loader for our use
case:

files = dbutils.fs.ls(f"{dataset_school}/enrollments-
display(files)

In this configuration, the cloudFiles format represents the
Auto Loader stream, with three additional options:

cloudFiles.format
Specifies the format of the data files being ingested, in this
case, JSON.
cloudFiles.inferColumnTypes
Enables Auto Loader to automatically determine the data
types of the columns.
cloudFiles.schemaLocation
Sets the directory where Auto Loader can store the inferred
schema information.

(spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.inferColumnTypes","tru
 .option("cloudFiles.schemaLocation",
 "dbfs:/mnt/DEA-Book/checkpoints/en
 .load(f"{dataset_school}/enrollments-json-
 .writeStream
 .option("checkpointLocation",
 "dbfs:/mnt/DEA-Book/checkpoints/en
 .table("enrollments_updates")
)

Subsequently, we use the load method to define the location of
our data source files.

Following that, we immediately chain a writeStream method
to write the ingested data into a target table called
enrollments_updates . Furthermore, we provide a location for
storing checkpoint information, enabling Auto Loader to track
the ingestion process. It’s worth noting that both schema and
checkpoint information are stored within the same directory.

Upon executing the previous command, a streaming query is
initiated, as illustrated in Figure 5-14. This query remains active,
continuously processing new data as it arrives in the data
source directory.

Figure 5-14. Streaming write operation by Auto Loader

To confirm the successful data ingestion, we can review the
contents of the updated table by executing a standard SELECT

statement:

%sql
SELECT * FROM enrollments_updates

Figure 5-15 displays the result of querying our target table after
the initial ingestion. At this point, the table contains 1,000
records, confirming that our stream is correctly configured and
that data is being successfully processed and stored in the target
table.

Figure 5-15. The result of querying the enrollments_updates table

Observing Auto Loader

As part of this demonstration, we can simulate an external
system adding new data files to our source directory. This is
achieved by the load_new_data helper function, which is
provided with our online school dataset. Each execution of this
function mimics the external system adding a single file of 1,000
records:

load_new_data()

After running the command, a new file is successfully copied to
our source directory, as shown in Figure 5-16.

Figure 5-16. The output of executing the load_new_data function

To further increase the volume of data for our demonstration,
let’s run the previous command a second time for adding
another file.

With two new files added, we can re-examine the contents of
our source directory to confirm their presence:

Figure 5-17 displays the updated contents of the source
directory, confirming the addition of two new files. Remember,
our Auto Loader stream is still active, continuously scanning
the directory for new files and processing any that are detected.
With this set up, the new files will be processed automatically.

Figure 5-17. The content of the source directory after landing a new data file

Returning to our Auto Loader stream above, you can observe its
current activity through the provided dashboard. It indeed
indicates the reception of new batches of data, as illustrated in
Figure 5-18.

files = dbutils.fs.ls(f"{dataset_school}/enrollments-
display(files)

Figure 5-18. Auto Loader stream processing after landing two new data files

To confirm that the new data has been successfully processed
and ingested into our target table, we can check the number of

records in the table:

%sql
SELECT count(*) FROM enrollments_updates

This command reveals that our enrollments_updates table
now has a total of 3,000 records, confirming the insertion of
data from the new files. This highlights Auto Loader’s capability
to detect and process new files as soon as they appear in the
source directory, demonstrating its efficiency and reliability for
near-real-time data ingestion. Of course, you can also execute
Auto Loader in incremental batch mode by using the
availableNow trigger option.

Exploring table history

After successfully updating our Delta Lake table using Auto
Loader, it’s valuable to review the history of changes made to
the table during this process. To achieve this, let’s run the
DESCRIBE HISTORY command on the enrollments_updates
table:

%sql
DESCRIBE HISTORY enrollments_updates

Figure 5-19 displays our table history, revealing three new table
versions, each corresponding to an update triggered by the
Auto Loader stream. It’s evident that each of these entries aligns
with the arrival of one of our data files at the source. Note in
particular that writeSteam registers the operation as a
streaming update rather than a normal write operation (see
Chapter 2 for more on the Dela Lake transaction log).

Figure 5-19. The history log of the enrollments_updates table

Cleaning up

At the end of this demonstration, we can tidy up by performing
two cleanup actions: dropping the table and removing the
checkpoint directory. However, let’s first revisit our Auto Loader
query and stop the active streaming job.

With the streaming job interrupted, we can proceed to drop the
enrollments_updates table:

%sql
DROP TABLE enrollments_updates

Finally, we remove the checkpoint location associated with our
Auto Loader stream by running the dbutils.fs.rm function:

In summary, Auto Loader has proven to be a powerful tool for
automating the data ingestion process, allowing for efficient
and scalable data loading. Its ability to handle high volumes of
data makes it an essential component of many modern data
pipelines. In the next section, we’ll explore how to take Auto
Loader to the next level by using it in a medallion architecture,
enabling even more complex and scalable data processing
workflows.

Medallion Architecture

dbutils.fs.rm("dbfs:/mnt/DEA-Book/checkpoints/enrollm

A medallion architecture is a robust approach for efficiently
processing data through multiple stages of transformation. In
this section, we will delve into the fundamental concepts and
benefits of this architecture. Following this, we will explore a
step-by-step guide on implementing a medallion architecture on
the Databricks platform.

Introducing Medallion Architecture

A medallion architecture, also referred to as multi-hop
architecture, is a data design pattern that logically organizes
data in a multi-layered approach. Its primary objective is to
gradually enhance both the structure and the quality of data as
it progresses through successive processing layers.

The layered approach

The medallion architecture is structured into three principal
layers, each serving a distinct purpose in the data refinement
process. These layers are symbolically termed bronze, silver,
and gold, indicating their ascending order of quality and value,
as illustrated in Figure 5-20.

Figure 5-20. Medallion architecture

Let’s dive deeper to gain a comprehensive understanding of
each of these layers.

Bronze layer

The foundation of the medallion architecture starts at the
bronze layer, which is the initial stage of data ingestion. At this
layer, data is ingested from external systems and stored in its
rawest form. This raw data is retained in tables known as
bronze tables, which serve as repositories for unprocessed data.
The data stored in these tables is exactly as it was received from

the source systems, without any transformations or
modifications. This approach ensures that the original data is
preserved, preventing data loss and enabling easy auditing and
traceability.

The data sources that feed into the bronze layer are diverse and
varied. They can range from structured data files to operational
databases. Moreover, the bronze tables are also common
destinations for streaming data from platforms like Kafka,
enabling real-time data ingestion and processing.

So, the bronze layer’s primary function is to ensure that all data
is captured and stored, regardless of its source or quality. This
provides a comprehensive snapshot of information in its
original form, serving as a single source of truth for your data
projects.

Silver layer

As data moves up to the silver layer, it goes through significant
processing to improve its quality and utility for further analysis.
This middle layer focuses on data cleansing, normalization, and
validation. Incorrect or irrelevant data points are filtered out,
and inconsistencies are resolved to ensure data reliability.
Moreover, this stage often involves enriching the data by

joining fields from various datasets, thereby providing a more
integrated and coherent view. For instance, data from different
departmental databases might be consolidated to provide a
comprehensive view of organizational operations.

So, the enhancements made at the silver layer are designed to
prepare the data for various analytical tasks that require a
higher degree of data integrity and accuracy.

Gold layer

The final layer is the gold tables, where data reaches its most
business-ready form. This layer is characterized by its role in
facilitating high-level business analytics and intelligence. Data
at this stage is often aggregated and summarized to support
specific business needs, such as performance metrics, financial
summaries, and customer insights.

So, the transformations at the gold layer make the data ready
for reporting, dashboarding, and advanced analytics in machine
learning and AI.

Benefits of Medallion Architectures

The medallion architecture offers several advantages that can
be summarized by the following key points:

Simplicity
The architecture represents a simplified data model that is
intuitive and easy to understand and implement. By
organizing data into distinct layers, each serving a specific
purpose, the complexity of data management and
maintenance is significantly reduced.
Incremental ETL
This architecture enables incrementally transforming and
loading data as it arrives. This facilitates integrating new data
and propagating it through each layer of the architecture.
Hybrid workloads
The architecture offers the flexibility to combine both
streaming and batch processing within a unified pipeline.
Each stage can be configured to operate either as a batch or a
streaming job, depending on the nature of the data and the
desired processing latency.
Table reconstruction
Another major benefit of this architecture is the ability to
regenerate downstream tables from raw data at any time.
This capability is particularly valuable in scenarios where
data quality issues are detected during post-processing and
must be solved at the source.

Building Medallion Architectures

In this section, we will walk through a step-by-step process to
implement a complete medallion architecture in Databricks. As

a practical example, we will demonstrate how to manage our
school enrollments using this approach. So, we will continue
using our dataset, consisting of three tables: students ,
enrollments , and courses .

In this exercise, we will use a new Python notebook titled “5.3 -
Medallion Architecture.” We begin by running the “School-
Setup” helper notebook to prepare our environment:

%run ../Includes/School-Setup

Let’s start by revisiting the contents of our source directory:

At present, there are three JSON files within the directory, as
illustrated in Figure 5-21.

files = dbutils.fs.ls(f"{dataset_school}/enrollments-
display(files)

Figure 5-21. The content of the source directory enrollments-json-raw

These files represent the raw material of our data pipeline,
awaiting ingestion into the bronze layer tables.

Establishing the bronze layer

Our journey of implementing a medallion architecture begins in
the bronze layer, which is the foundational layer for data
ingestion. It serves as the initial repository that captures all
incoming data in its rawest form, before any transformation or
cleansing occurs.

Configuring Auto Loader

The first step in the bronze layer typically involves configuring
Auto Loader against the source directory. Here, we configure

our Auto Loader stream to process the input files and load the
data into a Delta Lake table:

In this segment, we start by initiating a streaming read
operation from our JSON source files. The reader is set to infer
the columns’ data types automatically, ensuring that they are

import pyspark.sql.functions as F

(spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format", "json")
 .option("cloudFiles.inferColumnTypes","tru
 .option("cloudFiles.schemaLocation",
 f"{checkpoint_path}/enrollments_br
 .load(f"{dataset_school}/enrollments-json-
 .select("*",
 F.current_timestamp().alias("arriv
 F.input_file_name().alias("source_
 .writeStream
 .format("delta")
 .option("checkpointLocation",
 f"{checkpoint_path}/enrollments_br

 .outputMode("append")
 .table("enrollments_bronze")
)

correctly identified without explicit declaration. The data is then
combined with two supplementary pieces of metadata available
through Auto Loader:

arrival_time
Timestamp of when the data is ingested, which is valuable for
tracking and auditing purposes.
source_file
The name of the file from which the data is sourced, aiding in
data lineage and troubleshooting.

After the data is read and supplemented with this metadata, it is
streamed directly into a Delta table named
enrollments_bronze .

Upon activating this Auto Loader stream, we can observe that a
new batch of data has been detected and processed, as
illustrated in Figure 5-22.

Figure 5-22. Streaming write operation by Auto Loader

To inspect the raw data that has been captured, we can simply
query the enrollments_bronze table:

%sql
SELECT * FROM enrollments_bronze

Figure 5-23 displays the result of this query, confirming the
successful ingestion of the data along with the added metadata
fields: arrival_time and source_file .

Figure 5-23. The result of querying the enrollments_bronze table

Next, we can verify the volume of data that has been written
into the bronze layer:

%sql
SELECT count(1) FROM enrollments_bronze

This command reveals that 3,000 records have been persisted,
which corresponds to our three source files, each containing
1,000 records. This confirms that our ingestion process is
correctly configured and functioning as expected.

To demonstrate the stream processing capabilities of our data
pipeline, let’s simulate the arrival of new data in the source
directory using our load_new_data function:

load_new_data()

Output: Loading 04.json file to the school dataset

Returning to our previous active stream, we observe that the
new data is immediately detected and processed by the
streaming query, as illustrated in Figure 5-24.

Figure 5-24. Auto Loader stream processing after landing the new data file

By re-querying the number of records in the bronze table, we
can verify that the new data has been successfully ingested. As
shown in Figure 5-25, the table now contains 4,000 records,
reflecting an increase of 1,000 records since our last ingestion
process.

Figure 5-25. The number of records in the enrollments_bronze table after loading
the new input file

Creating a static lookup table

In preparation for data processing within the subsequent layers,
we may need to integrate additional data sources that can
enrich our primary datasets. In our case, we require a static
lookup table of student information. This table will be used in
the silver layer to join with the enrollment data in order to add
more depth and context to our analysis. To create our static
lookup, we use the spark.read method to construct a static
DataFrame from the students’ JSON files:

Before proceeding further, let’s examine the structure and
contents of the newly created lookup DataFrame:

display(students_lookup_df)

The results, visualized in Figure 5-26, illustrate that the
students lookup DataFrame consists of several columns such
as student ID, email, and profile information.

students_lookup_df = (spark.read
 .format("json")
 .load(f"{dataset_school}/stude

Figure 5-26. Displaying the students_lookup_df DataFrame

With our bronze layer established, we can now progress to the
next phase of our data processing pipeline—the silver layer.

Transitioning to the silver layer

In the silver layer, our focus shifts to refining and enhancing the
data acquired from the bronze layer. At this stage, we refine the
raw data by adding contextual information, formatting values,
and performing data quality checks. Our objective is to ensure
that the data is clean, structured, and optimized for downstream
processing and analysis.

In the following code snippet, we initiate a streaming read
operation on the enrollments_bronze table, and then we apply
a series of transformations to enrich and refine the data:

enrollments_enriched_df = (spark.readStream
 .table("enrollments_bronze")

where("quantity > 0")

The transformations applied in this step include the following:

Data cleansing
We exclude any enrollments with no items (quantity > 0),
ensuring that only valid records are processed further.
Timestamp formatting
We parse the enrollment timestamp from the Unix time
format into a human-readable format using the
from_unixtime function to facilitate easier understanding
and interpretation.
Data enrichment
We enrich the enrollment data by joining it with the student
information from our static lookup DataFrame
students_lookup_df . This adds the students’ email
addresses to the enrollment records.
Column selection
Finally, we select specific columns of interest for further
analysis, including enrollment ID, quantity, student ID, email,

 .where(quantity > 0)
 .withColumn("formatted_timestamp",
 F.from_unixtime("enroll_timestamp",
 "yyyy-MM-dd HH:mm:ss")
 .join(students_lookup_df, "student_id")
 .select("enroll_id", "quantity", "student_id", "
 "formatted_timestamp", "courses")
)

formatted timestamp, and course information.

These transformations are executed using the PySpark API.
However, it’s worth noting that similar operations can also be
achieved using Spark SQL. By registering a streaming
temporary view against the bronze table, we can leverage SQL
queries to perform the same transformations, just like we did
earlier in this chapter.

Subsequently, we proceed to persist this processed streaming
data into a dedicated silver table. We accomplish this by
performing a stream write operation on the
enrollments_enriched_df DataFrame:

This code snippet sets up a continuous streaming write into the
enrollments_silver table. By specifying the output mode as
"append" , new records will be added to the table as they are

(enrollments_enriched_df.writeStream
 .format("delta")
 .option("checkpointLocation",
 f"{checkpoint_path}/en
 .outputMode("append")
 .table("enrollments_silver"))

processed, ensuring that the table is incrementally populated
with the latest data from the bronze layer.

Upon executing the previous command, our stream is activated,
and data starts flowing into the silver table, as illustrated in
Figure 5-27.

Figure 5-27. Stream processing in the silver layer

To verify the written data, let’s query the enrollments_silver
table:

%sql
SELECT * FROM enrollments_silver

Figure 5-28 displays the result of querying our silver table. The
presence of all 4,000 records confirms the successful data
processing and writing.

Figure 5-28. The result of querying the enrollments_silver table

To further demonstrate the dynamic capabilities of our data
pipeline, let’s trigger the arrival of new data files in our source
directory using the load_new_data function. We then monitor
the propagation of this new data through the bronze layer and
into the silver layer.

load_new_data()

Output: Loading 05.json file to the school dataset

The new data now seamlessly propagates through the pipeline,
starting from the active Auto Loader steam and continuing
through to the silver layer. We can track the progress of
processing using the dashboard associated with each stream.
Figure 5-29 showcases the latest updates in the silver layer,
confirming the successful handling of the new data by our
stream.

Figure 5-29. Stream processing in the silver layer after landing the new data file

With the addition of 1,000 records from the latest file, the total
count in the enrollments_silver table now stands at 5,000
records, as shown in Figure 5-30.

Figure 5-30. The number of records in the enrollments_silver table after loading
the new input file

From here, we can now advance to the final phase of our
medallion architecture—the gold layer.

Advancing to the gold layer

In the gold layer, we concentrate on providing high-level
aggregations and summaries. This layer is important for
supporting business intelligence and analytics applications by
presenting the data in its most refined form.

Our task here involves creating an aggregate table that
summarizes the daily number of course enrollments per
student. To accomplish this, we initiate a streaming read
operation on the enrollments_silver table, and then we
perform the necessary transformations to aggregate the data by
student ID, email, and day:

In the previous code, the date_trunc function is used to
truncate the timestamp to the day level, allowing us to group
the data by day.

enrollments_agg_df =(spark.readStream
 .table("enrollments_silver")
 .withColumn("day", F.date_trunc("DD", "for
 .groupBy("student_id", "email", "day")
 .agg(F.sum("quantity").alias("courses_coun
 .select("student_id", "email", "day", "cou
)

Once this aggregation logic is applied, we can proceed to persist
the aggregated data into a dedicated gold table named
daily_student_courses :

In this configuration, we specify the output mode as
"complete" , indicating that the entire aggregation result
should be rewritten each time the logic runs.

NOTE

Structured Streaming assumes data is being appended only in the upstream tables.
Once a table is updated or overwritten, it becomes invalid for streaming reads.
Therefore, reading a stream from such a gold table is not supported. To alter this
behavior, options like skipChangeCommits can be utilized, although they may come
with other implications that need to be considered. See the Databricks
documentation for more information.

(enrollments_agg_df.writeStream
 .format("delta")
 .outputMode("complete")
 .option("checkpointLocation",
 f"{checkpoint_path}/daily_student_
 .trigger(availableNow=True)
 .table("daily_student_courses"))

https://oreil.ly/8ZrqL

By running this streaming query, our stream will process all
available data in micro-batches and then stop automatically,
thanks to the availableNow trigger option. This approach
allows us to seamlessly integrate streaming and batch
workloads within the same pipeline.

Now, we can inspect the aggregated data written into the
daily_student_courses table:

%sql
SELECT * FROM daily_student_courses

Figure 5-31 displays the contents of our gold table, showcasing
the daily enrollment statistics. You can observe that the
students currently have course counts ranging between 5 and
10, reflecting the cumulative enrollment till now.

Figure 5-31. The result of querying the daily_student_courses table

Let’s simulate the arrival of more new data by triggering the
ingestion of another file into our source directory. This action
initiates the propagation of data through our pipeline, from the
bronze to the silver and gold layers:

load_new_data()

Output: Loading 06.json file to the school dataset

The new data will automatically propagate into both the bronze
and silver layers as they maintain active continuous streams in
place. Figure 5-32 illustrates the updated progress of the stream
processing in the silver sayer after receiving the new data.

Figure 5-32. Stream processing in the silver layer after landing the new data file

However, for the gold layer, it’s necessary to explicitly rerun its
streaming query to update the table. Remember, this query was
configured as an incremental batch job using the
availableNow trigger option.

Upon re-executing the streaming write query of our gold table,
the newly ingested data is processed to reflect the latest
changes. To confirm the successful update, we can again query
the daily_student_courses table. Figure 5-33 illustrates the
updated content of this gold table, showcasing students with an
increased number of course enrollments.

Figure 5-33. The result of querying the daily_student_courses table after
processing the new data

Stopping active streams

Finally, at the end of this demonstration, it’s important to ensure
that all active streams in our notebook are properly terminated.
This can be easily achieved by executing a loop that iterates
through each active stream in the current Spark session and
stops them:

for s in spark.streams.active:
 print("Stopping stream: " + s.id)

s.stop()

Conclusion

In conclusion, the medallion architecture provides a structured
and incremental approach to data processing, which is highly
beneficial for modern data engineering tasks. By organizing
data into distinct layers based on its level of refinement, this
architecture enables you to efficiently process and analyze data,
while ensuring data quality and accuracy. This makes it the
ideal choice for building data pipelines in the lakehouse that
can support a wide range of data-driven applications and
analytics.

Sample Exam Questions

Conceptual Question

1. A data engineering team is working on a large-scale data
pipeline for a global e-commerce platform. The platform collects

 s.stop()
 s.awaitTermination()

Stopping stream: 1de86382-39ec-4909-af5e-eebbd5bdc166
Stopping stream: f9086ea8-1091-4ba5-8682-476260b449ca

vast amounts of customer transaction data, which is
continuously landed into a cloud storage system in file format.
The team needs to process this incoming data in near real-time,
ensuring that all new files are ingested efficiently, without
missing any records. The team decides to use Auto Loader for
this task.

Based on this scenario, which of the following statements best
describes how Auto Loader can help the data engineering team
in this situation?

1. Auto Loader requires no computing resources, allowing
users to process unlimited amounts of data without affecting
performance.

2. Auto Loader automatically detects and processes new data
files as they arrive in cloud storage, without reprocessing
previously processed files.

3. Auto Loader reprocesses the entire set of files in cloud
storage each time new data is added, which ensures that no
file is missed.

4. Auto Loader is based on the COPY INTO command to ensure
new files are detected and processed in real-time.

5. Auto Loader supports only batch processing, making it
unsuitable for streaming or continuously updating data
pipelines.

Code-Based Question

2. A data engineer uses the following Structured Streaming
query to process incoming orders and compute the total cost of
each order, including tax. The processed data is then written to
a table named new_orders :

The engineer needs the query to execute multiple micro-
batches to process all available data, and then stop
automatically when there is no more data left to process.

Which of the following lines of code fills in the blank to achieve
the desired outcome?

1. trigger ("micro-batches")

(spark.table("orders")
 .withColumn("total_after_tax", col("total")+co
 .writeStream
 .option("checkpointLocation", checkpointPath)
 .outputMode("append")
 .__________
 .table("new_orders"))

2. trigger (once = True)

3. trigger (processingTime = "0 seconds")

4. trigger (micro-batches = True)

5. trigger (availableNow = True)

The correct answers to these questions are listed in Appendix C.

Chapter 6. Building Production
Pipelines

As our data pipelines grow in complexity, we need to consider
how to productionize them to ensure reliability, scalability, and
maintainability. This is where building production pipelines
comes in, and it’s the focus of the following pages. In this
chapter, we’ll explore how to create robust and efficient
production pipelines using Delta Live Tables and Databricks
Jobs. We will delve into the nuances of controlling data quality,
capturing data changes, and orchestrating workflows to
automate our pipelines.

Exploring Delta Live Tables

Delta Live Tables (DLT) is a powerful tool that enables you to
build production data pipelines with ease. By providing a simple
and intuitive way to manage data pipelines, DLT empowers you
to focus on extracting insights from your data. In this section,
we will delve into the world of Delta Live Tables, exploring its
key features, benefits, and use cases.

Introducing Delta Live Tables

Delta Live Tables is a declarative ETL framework powered by
Apache Spark for building reliable and maintainable data
pipelines. It’s designed to simplify the process of creating large-
scale data processing pipelines, while maintaining table
dependencies and data quality.

Figure 6-1 illustrates a sample DLT pipeline, which will be built
in the subsequent section of this chapter.

Figure 6-1. Example of a DLT pipeline

As shown, the DLT pipeline is well-visualized, allowing you to
easily identify your tables and the dependencies between them.

Benefits of Delta Live Tables

DLT provides several advantages over Apache Spark and other
traditional ETL frameworks, including the following:

Simplified pipeline construction
DLT offers a declarative approach to pipeline construction,
enabling you to write less code and thereby reduce
complexity and development time.
Maintain table dependencies
DLT uses directed acyclic graphs (DAGs) to efficiently manage
table dependencies within data pipelines, enhancing their
reliability and maintainability.
Support for data quality control
DLT provides built-in support for data quality control,
ensuring the production of high-quality data outputs.

Comparison of DLT and Spark Structured Streaming

The primary goal of DLT is to reduce the overhead associated
with constructing and maintaining complex pipelines. To better
understand the differences between DLT and Spark Structured
Streaming, let’s compare their key features, outlined in Table 6-
1.

Table 6-1. Comparison of DLT and Spark Structured Streaming

Spark Structured
Streaming

DLT

Python
syntax

spark.readStream
 .format("cloudFiles")
 .option("cloudFiles.format",
 "json")
 .load('/some/path/')

.writeStream
 .option("checkpointLocation",
 "/path")
 .table("orders_raw")

import dlt

@dlt.table
def orders_raw():
 return (spark.re
 .for
 .opt

 .loa
)

SQL
support

Cannot create streaming
tables in Spark SQL
syntax only. It needs to
pass by PySpark to
register streaming tables.

Supports creati
tables in SQL v
MING TABLE sy

Data
quality
control

Supports basic data
quality control using
Delta Lake table
constraints.

Provides advan
control using D

Let’s dive deeper to gain a comprehensive understanding of
these differences.

Syntax

One of the most notable differences between DLT and Spark
Structured Streaming lies in their Python syntax. Spark
Structured Streaming employs the readStream and
writeStream methods to define incremental tables. In contrast,
DLT simplifies this process through the use of the @dlt.table
decorator, which defines incremental tables without the need
for explicit stream writing. This decorator abstracts the
complexities of streaming data management, including
checkpointing, which is automatically managed by DLT.

SQL support

SQL support is another area where DLT and Spark Structured
Streaming diverge significantly. As discussed in Chapter 5, Spark
Structured Streaming does not inherently support the creation
of streaming tables solely using SQL syntax. Instead, you must
use PySpark to read and write streaming tables. On the other
hand, DLT supports the creation of incremental tables using
simple SQL syntax via the CREATE STREAMING TABLE statement.
This feature allows users to leverage their SQL skills directly
without needing to delve into PySpark or Scala.

Data quality control

Another significant difference between DLT and Spark is their
support for data quality control. Apache Spark lacks native
support for data quality control, leaving it up to developers to
implement their own solutions. While Delta Lake table
constraints (e.g., check constraints) do help in this area, DLT, by
contrast, can natively enforce advanced data quality standards
using DLT expectations. These expectations provide enhanced
capabilities for validation conditions, actions, and tracking
violations. This built-in support for advanced data quality
control makes DLT a more robust and reliable choice for data
processing.

In essence, while the DLT framework is built on top of Apache
Spark, their differences mean that any code written for Spark
cannot be directly deployed within the DLT framework. You
must refactor your existing Spark code to conform to the DLT
syntax and leverage its features, such as the DLT expectations.

DLT object types

Delta Live Tables provides various object types to handle
different use cases and requirements. In DLT, you can create

three primary types of objects: streaming tables, live tables, and
live views. Each type has distinct characteristics and purposes.

Streaming tables

A streaming table in DLT is designed to process only the new
data added since the last pipeline run. This type of table is
particularly useful for scenarios where continuous data
ingestion and near-real-time processing are crucial. To create a
streaming table in DLT using SQL syntax, you can use the
following statement:

CREATE OR REFRESH STREAMING TABLE my_table AS
SELECT * FROM <streaming source>

The input data source for this type of tables must be a streaming
source, such as an autoloader stream or an append-only Delta
table, which can be read using the STREAM function in SQL. For
example, the following statement demonstrates how to create a
new streaming table, table_2 , that streams data from an
existing append-only table, table_1 :

CREATE OR REFRESH STREAMING TABLE table_2 AS
SELECT * FROM STREAM(table_1)

Each time the pipeline runs, the streaming table table_2 will
process only the new data that has been added to table_1
since the previous pipeline run.

Materialized views

In addition to streaming tables, DLT also supports the creation
of nonstreaming table objects, known as materialized views.
Materialized views, previously known as live tables, reprocess
the entire source dataset each time the pipeline runs. This type
of object is suitable for scenarios where data sources don’t
adhere to the append-only pattern required by streaming
sources. This means that materialized views can handle input
data that contains updates, deletes, or overwrites. The SQL
syntax for creating a materialized view in DLT is
straightforward:

CREATE OR REPLACE MATERIALIZED VIEW my_mview AS
SELECT * FROM <batch source>

For instance, the following statement illustrates how to create a
new materialized view, mview_1 , from an existing table,
table_3 :

CREATE OR REPLACE MATERIALIZED VIEW mview_1 AS
SELECT * FROM table_3

Each time the pipeline runs, the materialized view, mview_1 , is
completely updated to reflect the latest data in table_3 ,
replacing any existing data in mview_1 with the new results of
the query.

Table 6-2 summarizes the main differences between streaming
tables and materialized views in DLT.

Live views

Live views in DLT are temporary view objects that are scoped to
the DLT pipeline they belong to. Unlike tables in DLT, live views
are not persisted to the catalog, and they exist only for the

Table 6-2. Comparison of streaming tables and materialized views in DLT

 Streaming tables Mat

Data
processing

Processes only new data added since
the last pipeline run

Rep
with

SQL syntax
CREATE STREAMING TABLE my_table
AS <streaming query>

CREA
AS

Input data
source

Input data source must be a
streaming source, such as

Auto Loader
Append-only table read via STREA
M function

Inpu
data

duration of the current pipeline run. This makes them ideal for
intermediate data transformations and quality checks, where
the results do not need to be saved for long-term access. To
create a live view in DLT, simply use the CREATE LIVE VIEW
statement, followed by the logic to define the transformation or
computation:

CREATE TEMPORARY LIVE VIEW my_temp_view AS <query>

Once created, the live view can be queried like a regular DLT
table, allowing you to easily integrate it into your pipeline
workflow.

With this foundation, we can now turn our attention to the next
important aspect of working with DLT objects, which is defining
constraints on them.

DLT Expectations

One of the advanced features of DLT is the ability to enforce
data quality through constraints, which are specified using the
CONSTRAINT keyword in SQL syntax. This capability allows
defining conditions that data must meet to be considered valid,
thereby enhancing the overall data integrity and reliability.

When creating a DLT table or view using SQL syntax,
constraints are used to collect metrics on constraint violations.
This is achieved through the following syntax:

The CONSTRAINT keyword allows for the definition of
conditions that the data must satisfy. If the data fails to meet
these conditions, it is considered a violation. The ON
VIOLATION clause specifies the action that should be taken
when such violations occur. This clause can significantly
influence how data is handled during the pipeline processing.

The ON VIOLATION clause provides three main actions that can
be taken when a constraint is violated:

DROP ROW
This action removes records that do not meet the specified
constraints. It ensures that only data conforming to the
defined quality rules is retained in the dataset. This mode is
useful for cleansing data by removing invalid entries
automatically.
FAIL UPDATE
In this mode, any violation of the constraints causes the
entire pipeline to fail. This strict approach ensures that no
invalid data passes through, thus maintaining the highest

CONSTRAINT <constraint_name> EXPECT (<condition>) ON

level of data integrity. This action is beneficial in scenarios
where data correctness is critical, and any deviation from the
expected quality must be addressed immediately.
No action (default)
If the ON VIOLATION clause is omitted, records that violate
the constraints are still included in the dataset, but the
violations are reported in the metrics. This approach allows
for tracking data quality issues without interrupting the
pipeline’s operation. It provides visibility into the data quality
problems while allowing the workflow to proceed.

These actions are summarized in Table 6-3.

Table 6-3. List of actions for violations of DLT constraints

ON VIOLATI

ON actions
Behavior

DROP ROW Discards records that violate
constraints

FAIL UPDAT
E

Causes the pipeline to fail when a
constraint is violated

No action Keeps records violating constraints, but
reports them in metrics

The ability to choose from these different actions provides
flexibility in handling data quality issues according to specific
business requirements and priorities.

Now that we’ve learned the essential concepts behind Delta
Live Tables, it’s time to get hands-on and apply these concepts in
practical settings.

Implementing DLT Pipelines

In this section, we will delve into the construction of a
medallion architecture using Delta Live Tables. As in the
previous chapter, our primary focus remains on the
management of school enrollments. So, we will continue to
employ our existing dataset, which includes three primary
tables: students , enrollments , and courses , as illustrated in
Figure 6-2.

Figure 6-2. Entity-relationship diagram of the online school dataset

DLT pipelines are implemented using Databricks notebooks
written in either Python or SQL. For this demonstration, we will

work in a new SQL notebook titled “6.1 - Delta Live Tables.”
Within this notebook, we will declare all DLT tables that
together implement a simple medallion architecture.

The first step in the process involves specifying the path to our
dataset. We use the SET command to declare a variable that
holds the location of our dataset:

This command sets a variable named school.dataset_path
with a default value referring to the directory containing our
input data. We will explore later how to define this variable as a
parameter when configuring our DLT pipelines. This approach
will allow us to pass the dataset location dynamically to the
pipeline, further enhancing the flexibility of our data
architecture.

Bronze layer

Remember, in the medallion architecture, tables are organized
into layers that represent different stages of data processing.
The bronze layer is the initial layer that captures data in its most
raw form. At this stage, we will create two DLT objects that

SET school.dataset_path=dbfs:/mnt/DE-Associate-Book/d

represent our two data sources before any transformation or
cleansing.

Creating a streaming table

We first declare a DLT table to handle incremental data
ingestion from our source directory using Auto Loader. Since
our source data is incremental, we must declare the DLT table
as a streaming table to support this type of data feed. To do this,
we simply add the STREAMING keyword to the table declaration:

In the previous SQL statement, we create a streaming table
named enrollments_raw to ingest JSON-formatted data
incrementally using Auto Loader. The cloud_files method
provides a direct way to use Auto Loader in SQL. This method
accepts three parameters: the source location of the data files,
the file format, and an optional map containing key-value pairs
of reader settings. In this example, the map function specifies
the cloudFiles.inferColumnTypes option as true, allowing

CREATE OR REFRESH STREAMING TABLE enrollments_raw
COMMENT "The raw courses enrollments, ingested from e
AS SELECT * FROM cloud_files("${school.dataset_path}/
 "json",
 map("cloudFiles.inferColu

Auto Loader to automatically infer column types based on the
data.

Note that we also add the COMMENT clause to annotate the table
with a description, providing additional context and metadata.
This information is particularly useful for enhancing the
discoverability and understandability of the data source for
other users.

Upon running this query, you will notice that it only displays the
schema of the table, as illustrated in Figure 6-3.

Figure 6-3. Output of creating the enrollments_raw DLT table

In Databricks notebooks, executing a DLT query only performs
a syntax validation of the statement, without actually
processing the data. To populate DLT tables with data, you need

to create and run a DLT pipeline, which will be covered in the
next section.

The displayed schema includes details about the columns, their
data types, and any other relevant metadata inferred from the
raw JSON data files. This immediate feedback is useful for
verifying that the structure of the data aligns with expectations.

Creating a materialized view

The second object in the bronze layer is the students
materialized view, which contains student data that is sourced
from JSON input files. This object plays an essential role as a
lookup table in the silver layer of this data pipeline.

Since our student information may be updated or deleted in the
source, we create this object as a materialized view. Remember,
sources that update, delete, or overwrite data break the append-
only requirement of streaming source, preventing us from
creating DLT streaming tables. By employing materialized
views, we ensure that the entire dataset from the source is

CREATE OR REPLACE MATERIALIZED VIEW students
COMMENT "The students lookup table, ingested from stu
AS SELECT * FROM json.`${school.dataset_path}/student

reprocessed with each pipeline run, thus handling any new
changes in the data.

Silver layer

The next step in our data pipeline is the implementation of the
silver layer. At this stage, we apply essential data processing
operations, including data cleansing and enrichment, to
transform raw data into a more structured and meaningful
format.

In this context, we declare a silver table, enrollments_cleaned ,
which enhances the enrollment data and integrates it with
additional student information. Notably, when referencing
other DLT tables within the same pipeline, it is essential to use
the correct syntax. Specifically, we employ the LIVE prefix and
the STREAM method to query these tables:

CREATE OR REFRESH STREAMING TABLE enrollments_cleaned
 CONSTRAINT valid_order_number EXPECT (enroll_id IS N
 DROP ROW
)
COMMENT "The cleaned courses enrollments with valid e
AS
 SELECT enroll_id, quantity, o.student_id,
 c.profile:first_name as f_name, c.profile:las

cast(from unixtime(enroll timestamp

The LIVE keyword serves as a namespace required to refer to
any DLT object in the same pipeline. The STREAM method allows
us to query a table as a streaming source, enabling incremental
data processing. Note that reading from a streaming source
using the STREAM method requires defining the target table as a
streaming table to write the data incrementally.

Furthermore, in this example, we leverage DLT expectations to
add a quality control measure using the CONSTRAINT keyword.
We define a constraint, valid_order_ num ber , to ensure that
the order_id column is not null. If a row violates this
constraint, it will be automatically dropped, as defined by the
ON VIOLATION clause. This prevents invalid records from being
written to the table.

Gold layer

The gold layer represents the final and most refined stage of our
data pipeline. At this layer, data is typically transformed into

 cast(from_unixtime(enroll_timestamp,
 'yyyy-MM-dd HH:mm:ss') AS timestamp) form
 o.courses, c.profile:address:country as count
 FROM STREAM(LIVE.enrollments_raw) o
 LEFT JOIN LIVE.students c
 ON o.student_id = c.student_id

highly aggregated, analytically optimized formats designed to
support business intelligence, and advanced analytics.

Here, we create a gold object that provides the daily number of
courses per student in a specific region, namely the United
Kingdom. This object is declared as a materialized view,
enabling it to replace the aggregated values with each pipeline
update:

Now that we have established our multi-hop layers, we can
proceed to configure and run a DLT pipeline from this
notebook.

Configuring DLT Pipelines

CREATE OR REPLACE MATERIALIZED VIEW uk_daily_student_
COMMENT "Daily number of courses per student in Unite
AS
 SELECT student_id, f_name, l_name,

 date_trunc("DD", formatted_timestamp) order_d
 sum(quantity) courses_counts
 FROM LIVE.enrollments_cleaned
 WHERE country = "United Kingdom"
 GROUP BY student_id, f_name, l_name, date_trunc("DD"

In this section, we will explore how to use our notebook to
create a new DLT pipeline. To get started, navigate to the
Workflows tab on the left sidebar in your Databricks workspace.
On the top, select the Delta Live Tables tab. This will take you to
the DLT page, where you can create and manage your DLT
pipelines, as shown in Figure 6-4. Alternatively, you can directly
access the DLT page by clicking the Delta Live Tables option
under the Data Engineering section in the left sidebar.

Figure 6-4. Delta Live Tables page

Once you are on this DLT page, click the “Create pipeline”
button to start configuring your new DLT pipeline.

The pipeline configuration process consists of five main steps:
General configurations, Source code, Destination, Compute, and
Advanced configurations, as displayed in Figure 6-5.

Figure 6-5. The “Create pipeline” interface

General configurations

In this step, we need first to fill in a pipeline name, for instance,
“School Demo DLT.” This will help identify our pipeline in the
Delta Live Tables page.

Next, we need to choose our pipeline mode. The pipeline mode
is the trigger method that specifies how often the pipeline
should process incoming data. Similar to Spark Structured
Streaming, there are two primary pipeline modes: continuous
and triggered, as summarized in Table 6-4.

Table 6-4. Pipeline modes of Delta Live Tables

Mode Behavior Additional configurations

Continuous The pipeline
continuously
runs to
process
incoming
data at
regular
intervals
(e.g., every 2
minutes).

SET pipelines.trigger.in

Choosing between continuous and triggered modes depends on
your specific use case and requirements. For this
demonstration, we will be running our pipeline in the triggered
mode.

Source code

In this step, you need to specify the source code for your DLT
pipeline. Use the navigator to locate and select the notebook
with your DLT tables definition. In our case, we will choose the

Mode Behavior Additional configurations

Triggered The pipeline
runs once to
process all
available
data, then
shuts down
until the
next manual
or scheduled
execution.

No additional configuration

notebook “6.1 - Delta Live Tables,” which we developed in the
previous section.

Destination

In the Destination section, we need to specify the storage
options for our DLT pipeline. Let’s choose the Hive metastore
option and fill in a database name in the “Target schema” field.
For example, let’s use school_dlt_db as a schema name. This
will define the schema where our DLT tables will be stored.

Next, in the “Storage location” field, let’s enter a path where the
pipeline logs and data files will be stored. In our case, we will
use dbfs:/mnt/DEA-Book/dlt. This directory will contain all the
files generated by our pipeline, including logs, data files, and
other metadata. We will explore this directory in more detail in
the upcoming section.

Figure 6-6 displays the completed Destination section of our
DLT pipeline configuration.

Figure 6-6. The completed Destination section of the DLT pipeline configuration

Compute

In this step, we will configure the compute resources for our
DLT pipeline, as a new cluster will be created for data
processing. You can set the cluster mode to either Autoscaled or
Fixed size. For our pipeline, let’s choose Fixed size, as displayed
in Figure 6-7. Then, set the number of workers to 0 to create a
single-node cluster. This means your pipeline will run on a
single machine, which is suitable for small-scale pipelines or
development environments.

Figure 6-7. The completed Compute section of the DLT pipeline configuration

Notice the summary on the left side of the screen, which shows
the DBU estimate. This estimate is similar to the one provided in
the Databricks Compute UI when configuring all-purpose
clusters.

Under Advanced configurations , you can further customize
your pipeline’s compute resources. You can choose the “Worker
type” and “Driver type” to specify the machine types and size
for your cluster, as shown in Figure 6-8.

Figure 6-8. Instance types settings of the DLT pipeline’s Advanced configuration

NOTE

If you are on a free tier on Microsoft Azure cloud, there is a compute limit of four
cores. By default, DLT creates a cluster with eight cores, which leads to a quota
exceeded error when running your DLT pipeline. To resolve this issue, you need to
use a single-node cluster of a maximum of four cores. In the Advanced
configuration section, make sure to choose a four-core cluster for the driver type.
There’s no need to set the Worker type since we configured a cluster of zero
workers.

Advanced configurations

In the Advanced section, you can also customize your pipeline
by adding configuration parameters. These parameters allow
you to dynamically pass values to your pipeline, making it more
flexible and easier to manage. To add a new configuration
parameter, click the “Add configuration” button, and enter its
key-value pair. In this example, we will define the path to our
data source as follows:

Key: Set the key to school.dataset_path . Remember, this
parameter is used in our notebook to specify the path to our
school dataset files.
Value: Set the value to the location of our dataset, which is
located at dbfs:/mnt/DE-Associate-Book/datasets/school.

Figure 6-9 displays the completed Advanced section of our DLT
pipeline configuration.

Figure 6-9. The completed Advanced section of the DLT pipeline configuration

Finally, let’s click the Create button to complete the pipeline
configuration process. As soon as we click Create, we will be
redirected to our newly established pipeline interface, as
illustrated in Figure 6-10.

Figure 6-10. DLT pipeline interface

Running DLT pipelines

With our pipeline now established, we are ready to run it and
begin processing our data. However, before running DLT
pipelines, you have the option to choose between two running
modes: Development and Production, as illustrated in Figure 6-
11.

Figure 6-11. DLT pipeline running modes

Production mode

In Production mode, the DLT framework is optimized for
reliability and scalability. When running a pipeline in this mode,
the following occurs:

A new job cluster is created for each pipeline run, and it is
terminated when the pipeline is stopped.
The cluster is restarted for recoverable errors, such as
memory leaks or stale credentials.
Execution is retried in case of specific errors, such as a failure
to start a cluster.

This mode is suitable for production environments where data
processing needs to be reliable, scalable, and fault-tolerant.

Development mode

In Development mode, the DLT framework is optimized for ease
of development and testing. When running a pipeline in this
mode, the following takes place:

The job cluster is reused to avoid the overhead of restarts,
making it faster to iterate and test changes. By default, the
cluster runs for two hours, but this can be changed using the
pipelines.clusterShutdown.delay setting in the pipeline
configuration.

Pipeline retries are disabled, allowing you to immediately
detect and fix errors.

This mode is suitable for interactive development
environments where rapid iteration and testing are essential.

For now, let us work in the Development mode and proceed by
clicking the Start button to run the pipeline. The initial run may
take several minutes while the job cluster is provisioned, as
shown in Figure 6-12.

Figure 6-12. DLT pipeline execution

Once the pipeline has completed its run, you can monitor its
execution and view its results in the interface, as illustrated in
Figure 6-13.

Figure 6-13. DLT pipeline execution result

The pipeline execution interface is divided into three main
sections:

Directed acyclic graph (DAG)
In the middle of the interface, you will find the DAG
visualization that represents the entities involved in the
pipeline and their relationships. The DAG provides a clear
and concise overview of the pipeline’s execution flow.
Pipeline details
On the right-hand side, you can view detailed information
about the pipeline, including its configuration, cluster details,
and execution statistics.
Event log
Located at the bottom of the interface, the event log displays
all the events related to the running pipeline, including
information, warnings, and errors.

By clicking any entity in the DAG, you can explore its details, as
displayed in Figure 6-14. This includes its run status and other
metadata information, such as the comment we set during the
table definition. Additionally, under the Schema tab here, we
can view the list of the table’s columns and their data types.

Figure 6-14. The details of the enrollments_raw DLT table

Data quality metrics

If you select the enrollments_cleaned table, you can view its
data quality metrics in the right-hand side, as shown in Figure 6-
15. Since this table has data expectations declared, the metrics
are collected and displayed here.

Figure 6-15. Data quality metrics of the enrollments_cleaned DLT table

In this case, the results show that there are no records violating
the constraint, indicating that the data meets our expected
quality standards.

Modifying DLT pipelines

Let’s now return to our notebook and add another table to see
how this change is reflected in the pipeline. To do this, we’ll
open the notebook associated with our pipeline by clicking the
link in the “Pipeline details” section, as displayed in Figure 6-16.

Figure 6-16. Accessing the source code notebook for the DLT pipeline

At the end of the notebook, let’s add a new DLT table definition
similar to the previous gold table declaration. This time, we’ll
modify the filter to focus on France instead of the United
Kingdom. Additionally, we’ll experiment by intentionally
omitting a keyword, specifically the LIVE prefix, to observe
how this change affects the pipeline’s behavior:

CREATE OR REPLACE MATERIALIZED VIEW fr_daily_student_
COMMENT "Daily number of courses per student in Franc
AS

Executing this query in the notebook only validates its syntax,
and no runtime errors are thrown at this point. To observe the
full impact of these changes, we need to rerun the pipeline. For
this, let’s return to our pipeline interface and click the Start
button again.

As illustrated in Figure 6-17, the previous pipeline run resulted
in an error.

 SELECT student_id, f_name, l_name,
 date_trunc("DD", formatted_timestamp) order_d
 sum(quantity) courses_counts
 --FROM LIVE.enrollments_cleaned
 FROM enrollments_cleaned
 WHERE country = "France"
 GROUP BY student_id, f_name, l_name, date_trunc("DD"

Figure 6-17. Failure of the DLT pipeline

By clicking the error in the event log, we can view the detailed
error message. The error message indicates that a table or view
is not found, which is due to the missing namespace keyword
LIVE in the table definition. This confirms that the absence of
the keyword caused the pipeline to fail, as it could not locate the
enrollments_cleaned table in the DLT pipeline context.

To resolve this issue, we need to correct the table definition by
adding the LIVE keyword before the table name, specifically
LIVE.enrollments_cleaned .

Here is the corrected SQL query:

CREATE OR REPLACE MATERIALIZED VIEW fr_daily_student_
COMMENT "Daily number of courses per student in Franc
AS
 SELECT student_id, f_name, l_name,
 date_trunc("DD", formatted_timestamp) order_d
 sum(quantity) courses_counts
 FROM LIVE.enrollments_cleaned
 WHERE country = "France"
 GROUP BY student_id, f_name, l_name, date_trunc("DD"

With this correction in place, we can proceed and restart our
pipeline.

Figure 6-18 shows that our pipeline successfully completes after
this modification, with the new gold table now integrated in the
data flow.

Figure 6-18. The updated DLT pipeline after the modification

Full refresh

In Delta Live Tables, there may be situations where you need to
reprocess all available data from scratch, clearing all existing

data and reloading it from streaming sources. This is where the
“Full refresh” feature comes in, providing a convenient and
efficient way to accomplish this task.

To initiate a “Full refresh” in DLT, follow these simple steps:

1. Click the drop-down arrow next to the Start button.
2. Select the “Full refresh all” option from the drop-down menu,

as illustrated in Figure 6-19.

Figure 6-19. Full refresh of the DLT pipeline

When you trigger a “Full refresh,” DLT clears all data from each
table, effectively resetting the entire dataset. Then, it loads all
data from the streaming sources, ensuring that your tables are
refreshed with the latest information. This process is useful
when you need to correct erroneous data or reload updated
data after making changes to your streaming sources.

Examining DLT pipelines

Now, let’s delve deeper into the underlying mechanisms of
Delta Live Tables to better understand how it operates.
Remember, the events and information displayed in the DLT
pipeline interface are stored in the configured underlying
storage. This storage configuration was provided during the
initial setup and configuration of our DLT pipeline, as shown in
Figure 6-20.

Figure 6-20. Configuration settings for the DLT pipeline

To gain insights into our pipeline storage location, we’ll create a
new SQL notebook named “6.2 - Output Exploration” and start
our demo all-purpose cluster to run the commands.

Let us begin by exploring the content of the pipeline storage
location:

%fs ls "dbfs:/mnt/DEA-Book/dlt"

Figure 6-21 illustrates the structure of our pipeline storage,
revealing four main directories: autoloader, checkpoints, system,
and tables.

Figure 6-21. The content of the pipeline storage location

The system directory captures all the activities associated with
the DLT pipeline, including the event logs. To explore the events
stored in the system directory, let’s examine the events
subfolder:

%fs ls "dbfs:/mnt/DEA-Book/dlt/system/events"

Figure 6-22 reveals that the pipeline events are stored as a Delta
Lake table within this directory.

Figure 6-22. The content of the pipeline events directory

To explore the event logs, let us query this Delta Lake table:

SELECT * FROM delta.`dbfs:/mnt/DEA-Book/dlt/system/ev

Figure 6-23 displays the result of querying the pipeline events
table. It demonstrates that all events displayed in the DLT user
interface are stored in this Delta table, including log messages,
event levels (such as INFO , ERROR , or METRICS), and additional
details.

Figure 6-23. The result of querying the pipeline events table

Analyzing such event logs provides valuable insights into
pipeline execution, performance, and potential issues or errors
encountered during processing.

Continuing our exploration of the DLT pipeline storage, let’s
focus now on the tables directory, which contains the DLT tables
generated by the pipeline:

%fs ls "dbfs:/mnt/DEA-Book/dlt/tables"

Figure 6-24 illustrates the contents of the tables directory,
showcasing our five DLT tables stored within it.

Figure 6-24. The content of the pipeline tables directory

Instead of querying these tables directly, we can access them
through the catalog. To do this, we will first return to our DLT
pipeline interface, where we can get their database and catalog
name. Selecting any table in the DAG visualization, we can view
the database information associated with that table, as
illustrated in Figure 6-25.

Figure 6-25. The database information of the uk_daily_student_courses DLT table

Clicking the target table link opens the table details in the
Catalog Explorer. As shown in Figure 6-26, our pipeline database
and its associated tables are listed in the Hive metastore.

Figure 6-26. The DLT database and tables in the Catalog Explorer

Returning to the “6.2 - Output Exploration” notebook, we can
now read our DLT tables. For instance, let’s query the
uk_daily_student_courses gold table:

Figure 6-27 illustrates the content of our gold table, indicating
that it contains 123 records.

Figure 6-27. The result of querying the uk_daily_student_courses DLT table

SELECT * FROM hive_metastore.school_dlt_db.uk_daily_s

Finally, at the end of our pipeline development, it’s essential to
terminate the pipeline cluster to avoid unnecessary costs. To do
this, navigate to the Cluster section in the pipeline details panel
and click “View details,” as shown in Figure 6-28.

Figure 6-28. The Cluster information section in the pipeline details panel

This action will redirect you to the cluster configuration page,
where you can simply click the Terminate button.

In summary, DLT is an innovative solution for building ETL
pipelines that offers several advantages over Spark Structured
Streaming. DLT provides simplified syntax, automatic
checkpointing, and built-in support for data quality control.
With this solid understanding of DLT, we can now delve into
more advanced topics, specifically the mechanism for capturing
data changes and its implementation within DLT.

Capturing Data Changes

Capturing and replicating data changes is a crucial aspect of
building robust ETL pipelines, as it ensures that the data reflects
the latest source modifications. This process, known as change
data capture (CDC), is the primary focus of this section. Here,
we’ll explore the fundamental concepts of CDC and provide
guidance on implementing this process using Delta Live Tables.

Definition

Change data capture (CDC) is a process that identifies and
captures changes made to data in a data source and delivers a
record of those changes to a target. This technique is essential

for keeping data systems synchronized and ensuring that any
updates in the source are accurately reflected in the target.

CDC captures three types of row-level changes, as illustrated in
Figure 6-29:

Insertions
New records that are added to the source and need to be
inserted into the target.
Updates
Existing records in the source that have been modified and
need to be updated in the target.
Deletions
Records that have been removed from the source and need
to be deleted from the target.

Figure 6-29. Change data capture (CDC)

By capturing and processing row-level changes, CDC ensures
that a target database reflects the current state of the source
database.

CDC Feed

Changes are logged at the source as events, each containing the
data of the affected records along with relevant metadata
information. This metadata includes the following:

Operation type
Indicates whether the record was inserted, updated, or
deleted.
Timestamp/version number
Indicates the order in which changes occurred, ensuring that
changes can be applied in the correct sequence.

Figure 6-30 presents an example of CDC events for state
temperatures, illustrating the modifications that need to be
applied to a target table.

Figure 6-30. Example of CDC events

This CDC feed contains the following events:

New York
This state has two update events targeting the existing record
for New York. In this case, only the most recent change must
be applied, meaning only the latest version of the record will
be reflected in the target table.
California
This record is marked for deletion. In such a case, the full
record data is not required; only the record identifier and the
metadata information indicating the deletion are needed.
Washington and Florida
These are new records that need to be inserted into the target
table.

So, this CDC feed provides the data of the records, the metadata
that indicates the type of change (insert, update, or delete), and
the order of changes.

Figure 6-31 shows the latest version of the target table after
applying the previous CDC feed.

Figure 6-31. Applying a CDC feed into a target table

The following changes are reflected:

New York
The target table shows the most recent record for New York,
as the existing record was overwritten by the latest update.
California
This record is absent in the target table because it was
marked for deletion in the CDC feed.
Washington and Florida
Both of these records are present in the target table as new
entries.

This confirms that the target table has been successfully
synchronized with the latest updates from the source, ensuring
data integrity and consistency are maintained.

CDC Sources

CDC data typically originates from two main sources: databases
with built-in CDC features, and third-party software known as
CDC agents.

Databases with built-in CDC features

Many modern databases come equipped with built-in change
data capture features. These databases maintain change logs
that record every change made to the data within the database.
These logs capture detailed information about inserts, updates,
and deletes performed on the tables within the database.

For example, Microsoft SQL Server change data capture is a
feature that tracks changes to SQL Server tables. This logs the
details of these changes, including the type of operation and the
affected rows, enabling efficient and accurate data
synchronization. Delta Lake also has a built-in change data feed
(CDF) feature for this purpose.

CDC agents

CDC agents are third-party software processes that continuously
monitor a database for any changes. When a change is detected,
these agents capture the details of the change, including the
type of operation (insert, update, delete), the affected rows, and
the data before and after the change. These agents can work
with various database systems and provide a flexible solution
for CDC.

For instance, Debezium is an open source CDC platform that
supports several popular databases, including MySQL,

https://debezium.io/

PostgreSQL, SQL Server, and MongoDB. It captures and streams
changes in real time, providing a powerful tool for keeping data
in sync across different systems.

CDC Feed Delivery

CDC feeds can be delivered from the source in various formats.
Two common methods are as follows:

Data stream
The CDC events are continuously streamed from the source
to the target system, allowing for near-real-time data
synchronization.
JSON files
The CDC events can be periodically captured and stored in
JSON files, which are then processed to apply the changes to
the target system.

Both methods ensure that the target system remains
synchronized with the source, reflecting all changes accurately
and promptly.

CDC in DLT

Delta Live Tables provides robust support for processing CDC
feeds using the APPLY CHANGES INTO command. This command

is designed to simplify the application of CDC events into a
target table, ensuring that the target table accurately reflects the
changes captured from the source. This DLT implementation for
CDC eliminates many common errors associated with applying
change records, making the process more accurate and reliable.

APPLY CHANGES INTO command

The APPLY CHANGES INTO command allows you to apply
changes from a CDC feed table into a DLT table, which serves as
the target table. Here’s an example of the command:

APPLY CHANGES INTO LIVE.target_table
FROM STREAM(LIVE.cdc_feed_table)
KEYS (key_field)
APPLY AS DELETE WHEN operation_field = "DELETE"
SEQUENCE BY sequence_field
COLUMNS *

This command is composed of several key elements, including
the following:

Target table specification
LIVE.target_table is the DLT table into which the changes
will be applied. This table must be created before executing
the APPLY CHANGES INTO command.

Source table
STREAM(LIVE.cdc_feed_table) specifies the CDC feed table
as a streaming source. This table contains the change events
that need to be processed.
Primary keys
KEYS identifies the primary key fields used to determine if a
record already exists in the target table. If the key exists, the
record will be updated; if not, a new record will be inserted.
As a reminder, keys must be unique.
Delete condition
APPLY AS DELETE WHEN specifies that records representing
deletion operation should be removed from the target table.
Sequencing key
SEQUENCE BY indicates the field used to order the operations.
This ensures that changes are applied in the correct
sequence.
Columns
COLUMNS * specifies that all fields from the CDC feed should
be included in the target table. You can also specify a subset
of columns if needed.

By using this command, you can efficiently synchronize
changes from a source into a target table, ensuring that it
remains up-to-date and accurately reflects the latest state of the
data.

Advantages of APPLY CHANGES INTO

The APPLY CHANGES INTO command offers several advantages
for processing CDC feeds in the DLT framework:

Reduced code complexity
Traditionally, handling CDC involved extensive custom logic,
potentially spanning hundreds of lines of code. Implementing
this logic manually requires steps to handle inserts, updates,
and deletes, along with mechanisms for ordering,
deduplication, and merging. With APPLY CHANGES INTO ,
much of this complexity is abstracted away, reducing the
code required to a few lines and making it more manageable
and maintainable.
Automatic ordering of late-arriving records
The command leverages the user-provided sequencing key to
automatically order records, ensuring that downstream
results are accurately recomputed if records arrive out of
order.
Performing upsert operations
The default behavior for insert and update operations is to
upsert the CDC events into the target table. This means that
the command updates existing rows that match the specified
key or inserts new records if no matching record exists.
Flexible delete handling
Optional handling for delete events can be specified with the
APPLY AS DELETE WHEN condition.
Multiple key fields

You can specify one or many fields as the primary key for a
table.
Excluding columns
You can use the EXCEPT keyword to specify columns to
ignore, enabling precise control over column selection
during CDC processing.
Built-in support for slowly changing dimensions
The command supports storing records as slowly changing
dimensions (SCD), type 1 or type 2. By default, it creates a type
1 SCD table, meaning that each unique key has at most one
record, and updates overwrite the original information.

Disadvantages of APPLY CHANGES INTO

Despite its numerous benefits, the APPLY CHANGES INTO
command has a notable disadvantage:

Breaking append-only requirement for streaming sources
Since the command involves updating and deleting data in
the target table, it breaks the append-only requirement for
streaming table sources. Consequently, the updated table can
no longer be used as a streaming source in subsequent
layers.

Now that we’ve covered the essential concepts of CDC feed
processing, we’re ready to take the next step and apply them in

https://oreil.ly/NbWkE

a practical, hands-on exercise. Let’s move on to the next section
to put our knowledge into action!

Processing Change Data Capture

In this section, we will delve into the process of handling CDC
feeds in Delta Live Tables. The objective here is to modify our
school DLT pipeline to add CDC processing capabilities. Through
this process, we will gain a deeper understanding of CDC feeds
and unlock the full potential of data processing in the DLT
framework.

Before we dive into the DLT pipeline implementation, let’s first
examine the CDC data that we will process in this
demonstration. The data is delivered as JSON files, which
contain a series of change events captured from our source
system. To begin, we will create a simple SQL notebook titled
“6.3 - Land New Data” to land these new files in our source
directory and explore the data.

In this notebook, we start by running the “School-Setup” helper
notebook to prepare our environment:

%run ../Includes/School-Setup

Next, we load a new file of the CDC feed using the following
helper function:

load_new_json_data()

Upon execution, the function loads the file 02.json into our
school dataset directory, as indicated by the output:

With this new file now available, let’s take a closer look at its
content. We use the following SQL command to directly query
the JSON file:

This command retrieves all the records from the specified JSON
file, displaying CDC records for our courses table, as shown in
Figure 6-32.

Output: Loading 02.json courses file to the school da

%sql
SELECT * from json.`${dataset.school}/courses-cdc/02.

Figure 6-32. The result of querying the courses CDC data

As shown, in addition to the course’s information data, the
results also include two operational columns: row_status and
row_time :

row_status

This column indicates the type of operation performed on
each record. It can have one of the following values:

Insert
Indicates a new record has been added

Update
Indicates an existing record has been modified

Delete
Indicates a record has been removed

It’s important to recognize that insert and update operations
always involve complete and valid records, whereas delete
operations have null values for all fields except the key
columns, which in this case is course_id .

row_time
This column records the timestamp of the operation, which
will serve as a sequence key in our CDC data processing. This
key is crucial for maintaining the order of changes and
ensuring data consistency during the processing stage.

Extending DLT Pipelines with New
Notebooks

Building on the simple DLT pipeline we implemented earlier in
this chapter, we will now expand it by adding a new notebook.
This new notebook will define additional DLT tables for
processing the courses CDC data.

Figure 6-33 illustrates the target result of our updated DLT
pipeline. It shows the integration of the new notebook with our
existing DLT pipeline. This approach demonstrates the
flexibility of DLT, allowing us to seamlessly incorporate new
data processing tasks into existing pipelines. Later in this
section, we will cover how to modify an existing pipeline to
incorporate additional notebooks.

Figure 6-33. The updated DLT pipeline after integrating the CDC processing

To achieve this result, let’s begin by creating a new SQL
notebook named “6.4 - CDC Pipeline” where we’ll define our
new DLT tables. In this notebook, we start by specifying the path
to our source dataset:

The next step involves creating a bronze table to ingest the
courses CDC feed. For this purpose, we use Auto Loader to
incrementally load the input JSON files from our source
directory:

With the bronze table established and ingesting the raw CDC
feed, we now proceed to create the silver table. The silver table
is our target table, where we will apply the changes from the
CDC feed to maintain up-to-date course data.

SET school.dataset_path=dbfs:/mnt/DE-Associate-Book/d

CREATE OR REFRESH STREAMING TABLE courses_bronze
COMMENT "The raw courses data, ingested from CDC feed
AS SELECT * FROM cloud_files("${school.dataset_path}/

The process of creating the silver table begins with its
declaration. Remember, we need to declare the table separately
before applying the changes, since the APPLY CHANGES INTO
command requires a pre-existing target table:

CREATE OR REFRESH STREAMING TABLE courses_silver;

This command initializes the silver table if it doesn’t already
exist, ensuring it’s ready to receive and apply changes from the
CDC feed.

Once the silver table is declared, we can use the APPLY CHANGES
INTO command to specify how changes from the bronze table
should be applied to the silver table. The following command
accomplishes this:

APPLY CHANGES INTO LIVE.courses_silver
 FROM STREAM(LIVE.courses_bronze)
 KEYS (course_id)
 APPLY AS DELETE WHEN row_status = "DELETE"
 SEQUENCE BY row_time
 COLUMNS * EXCEPT (row_status, row_time)

Let’s break down the components of this command:

APPLY CHANGES INTO LIVE.courses_silver

This specifies the target table, courses_silver , where the
changes from the CDC feed will be applied.
FROM STREAM(LIVE.courses_bronze)
This specifies the courses_bronze table as the streaming
source of our CDC feed.
KEYS (course_id)
This identifies course_id as the primary key for matching
records. If a record with the same course_id exists in the
target table, it will be updated; otherwise, a new record will
be inserted.
APPLY AS DELETE WHEN row_status = "DELETE"
This condition specifies that records with a row_status of
"DELETE" should be removed from the target table.
SEQUENCE BY row_time
This clause orders the operations by the row_time field. This
ensures that changes are applied in the correct sequence,
preserving the chronological order of events.
COLUMNS * EXCEPT (row_status, row_time)
This clause indicates that all columns from the CDC feed
should be included in the target table, except for the
operational columns row_status and row_time . These
columns are used for processing changes but are not needed
in the final table.

By running this command, we can maintain an up-to-date and
accurate view of the courses_silver data, which can then be
leveraged in the subsequent layers.

At this point, we’ve reached the last stage of our data pipeline:
the gold layer. Here, we’ll define a simple aggregate query to
create a materialized view that provides a higher-level
summary of our course data:

It is crucial to note that this gold table is not defined as a
streaming table. This is because the courses_silver table,
which is the source of our data here, is being updated and
deleted. As a result, it’s no longer valid to use it as a streaming
source for this new table. Remember that, in a streaming
context, data sources are expected to be append-only, meaning
new records are continuously added without updates or
deletions.

In the final step of our data pipeline, we’ll also demonstrate how
to define a DLT view that joins and references tables across
notebooks. This capability is a powerful feature of Delta Live

CREATE OR REPLACE MATERIALIZED VIEW instructor_counts
 COMMENT "Number of courses per instructor"
AS SELECT instructor, count(*) as courses_count,
 current_timestamp() updated_time
 FROM LIVE.courses_silver
 GROUP BY instructor

Tables, allowing you to create complex data pipelines that span
multiple notebooks.

In the following command, we create a DLT view that joins two
tables from different notebooks:

CREATE TEMPORARY LIVE VIEW courses_sales
 AS SELECT b.title, o.quantity
 FROM (
 SELECT *, explode(courses) AS course
 FROM LIVE.enrollments_cleaned) o
 INNER JOIN LIVE.courses_silver b
 ON o.course.course_id = b.course_id;

In this example, we are joining our courses_silver table to
the enrollments_cleaned table, which was created in a
previous notebook (“6.1 - Delta Live Tables”). This capability is
enabled by DLT’s support for combining multiple notebooks
into a unified pipeline. Consequently, any notebook within the
pipeline can reference tables and views defined in other
notebooks using the LIVE keyword. This means that the LIVE
namespace allows you to access objects at the DLT pipeline
level, instead of being limited to individual notebooks.

Now that we have completed our new notebook (“6.4 - CDC
Pipeline”), let’s integrate it into the “School Demo” DLT pipeline

that we built earlier. To achieve this, follow the steps outlined
here and illustrated in Figure 6-34:

1. Go to the pipeline interface and click the Settings button.
2. Under the Source code configuration section, click “Add

source code.”
3. Navigate to select the “6.4 - CDC Pipeline” notebook.
4. Once added, click Save to confirm the changes.

Figure 6-34. Adding the new notebook to the “School Demo” DLT pipeline

Upon saving, you’ll notice that the Pipeline details panel now
references two notebooks instead of one, as displayed in
Figure 6-35.

Figure 6-35. The pipeline details after adding the new notebook

With the updated configuration in place, let’s run the pipeline
by clicking the Start button.

Upon executing the pipeline, the updated DAG is generated, as
displayed in Figure 6-36. As expected, the updated pipeline
includes the additional tables created by the new notebook, as
well as the courses_sales view that combines data from both
notebooks’ tables.

Figure 6-36. The updated DLT pipeline after integrating the CDC processing

By incorporating the new notebook into our “School” DLT
pipeline, we’ve successfully expanded our data processing
capabilities and created a more comprehensive data pipeline.

In conclusion, the DLT framework provides a powerful
mechanism for processing CDC feeds, offering a range of
features that enhance data integrity and freshness. By keeping
your data up-to-date and responsive to changes, you can ensure
that your analytics are always accurate and reflect the most
recent information.

Orchestrating Workflows

Databricks offers an advanced job orchestration capability to
build and automate data workflows. In this section, we will dive
into the details of Databricks Jobs, exploring how to create,
configure, run, and debug jobs to optimize your workflow
orchestration.

Introducing Databricks Jobs

Databricks Jobs is an integrated workflow orchestration tool
within the Databricks platform. It is designed to facilitate the

creation, scheduling, and monitoring of complex data
workflows in the lakehouse environment. This feature can be
leveraged to automate the processing of data pipelines, train
and deploy machine learning models, and execute various data
analysis activities.

With Databricks Jobs, you can easily automate your workflows
by defining a series of tasks that need to be executed in a
specific order, as illustrated in Figure 6-37. Each task within the
job serves a specific purpose, contributing to the overall
objective of the workflow.

Figure 6-37. Example of a Databricks job

A key feature of Databricks Jobs is its flexibility in terms of task
execution. A task can be anything from executing a notebook or
saved SQL query to running an entire DLT pipeline, Python
script, or JAR file. Additionally, tasks can evaluate conditional
logic, such as if-else statements, and even trigger the execution
of another job. This range of options allows you to create
customized workflows that meet your specific needs, making it
an essential tool for your data projects.

To illustrate the capabilities of Databricks Jobs, we will now
create a multi-task job and explore its features in a hands-on
demonstration.

Creating Databricks Jobs

In this practical section, I will guide you through a step-by-step
process for creating a multi-task job in Databricks. The job will
automate the data management of our online school scenario.
This involves retrieving data into a source directory,
transforming and processing the data, and lastly analyzing and
validating the results.

Our demonstration will focus on creating a multi-task job that
consists of three interconnected tasks, as illustrated in Figure 6-
38. The first task involves executing a notebook that imports a
new batch of data into our source directory. The second task
triggers our “School Demo” DLT pipeline, which processes the
new data through a series of tables. Finally, the third task
executes the output exploration notebook to verify the results
of the pipeline. By combining these tasks into a single multi-task
job, we can automate our data ingestion, processing, and
analysis.

Figure 6-38. Demo multi-task job

To create such a job in Databricks, you can follow these steps:

1. Navigate to the Workflows tab from the left sidebar.
2. Under the Jobs tab, click the “Create job” button, as displayed

in Figure 6-39.

Figure 6-39. Databricks Jobs page

After clicking the “Create job” button, you will be presented
with the job configuration interface, as shown in Figure 6-40.
This interface allows you to define the details of your job,
including its name, tasks, and schedule.

Figure 6-40. The job configuration interface

At the top of the job configuration interface, you will see a
default name assigned to the job (New Job yyyy-MM-DD
HH:mm:ss). Click this name to rename it to something more
descriptive, such as “School Demo Job.” This will help you
identify the job and its purpose in your Databricks workspace.

With the job name updated, you can now start configuring each
of the tasks that will be executed as part of the job.

Task 1: Landing data

As shown in Figure 6-40, the interface defaults to configure the
first task in the job. So, let’s fill in the details for our first task
dedicated to landing new data in our source directory:

Task name
Enter a name for the task, such as Land_New_Data . This
name clearly indicates the purpose of the task, which is to
land a new batch of data in the source directory.
Task type
From the drop-down menu, select Notebook. This indicates
that the task will run a Databricks notebook.
Source
Specify the location of the notebook. It can be in your
Databricks workspace or in a remote Git repository. For this

example, the notebook is located within the workspace.
Path
Browse to select the notebook named “6.3 - Land New Data.”
This notebook contains a simple call to our land_new_data
function.
Cluster configuration
From the cluster drop-down, under Existing All-Purpose
Clusters, select your “Demo Cluster.” We’re choosing this here
as a matter of convenience for the example. It’s important to
note that for production jobs, ephemeral job clusters are
preferred due to their lower cost. Remember, job clusters are
temporary and automatically terminated after the job is
completed, reducing unnecessary resource usage.

After filling out these details, click the “Create task” button. This
action will create a job consisting of a single task, as shown in
Figure 6-41.

Figure 6-41. A single-task job

This is just the beginning—we can add more tasks to our job to
create a multi-task workflow.

Task 2: DLT pipeline

The next step involves adding a Delta Live Tables pipeline task.
This task should be executed following the successful
completion of the first task to process the newly received data.
This will ensure a seamless and logical progression in our
workflow.

To add another task, click the “+ Add task” blue button shown at
the bottom of the task flow chart. Select its type as “Delta Live
Tables pipeline,” and configure it as follows:

Task name
Enter Run_DLT_Pipeline as the name for the new task.
Task type
Keep the “Delta Live Tables pipeline” type selected. This
indicates that the task will run a DLT pipeline.
Pipeline selection
Select our “School Demo DLT” pipeline that we created
during the previous section.
Dependency configuration

The “Depends on” field will default to your previously
defined task, Land_New_Data , so no changes are needed
here. This ensures that the DLT pipeline task will run only
after the successful completion of the data landing task. Note
that tasks can have multiple dependencies, if desired.

Now, click the “Create task” button to finalize the addition of the
new task.

At this point, your workflow will include two tasks: the initial
Land_New_Data task and the subsequent Run_DLT_Pipeline
task just created, as shown in Figure 6-42. The dependency
defined between these tasks ensures that the DLT pipeline
processes the newly landed data, maintaining the integrity and
sequence of operations.

Figure 6-42. Job with two tasks

Task 3: Output exploration

The final step involves adding a task for output exploration and
verification. This task will run an additional notebook designed
to explore and display the results of the DLT pipeline, ensuring
that the data processed through the previous tasks is accessible
and correctly formatted for further analysis.

Before adding the new task, make sure to click the
Run_DLT_Pipeline task in the flow chart. This ensures that the
new task will be correctly linked to follow the DLT pipeline
execution. Now, click the “+ Add task” blue button, choose
Notebook as the task type from the menu, and enter the
following details for the new task:

Task name
Enter a name for the new task, such as Output_Exploration .
Task type
Leave the Notebook type selected. This specifies that the task
will execute a Databricks notebook.
Source
Select Workspace since our notebook is located within the
Databricks workspace.
Path

Browse to select the “6.2 - Output Exploration” notebook
from the previous session, which is specifically designed to
show the pipeline results. Remember, this notebook contains
code to display the content of the pipeline’s storage location
and query the gold table where the processed data is stored.
Cluster selection
From the cluster drop-down, select the Demo Cluster. As with
previous tasks, the Demo Cluster is used here for
demonstration purposes, but job clusters should be used in
production to optimize costs and resource management.
Dependency configuration
The “Depends on” field will automatically default to the
previously selected task, which is the Run_DLT_Pipeline
task in this case. This ensures that the Output_Exploration
task will run only after the DLT pipeline task has successfully
completed. If the “Depends on” field is not correctly set,
manually adjust it to ensure proper task sequencing.

Now, click the “Create task” button to complete the task
creation process.

With the addition of the output exploration task, your workflow
now includes three interconnected tasks, as illustrated in
Figure 6-43. This setup ensures a complete and systematic data
processing and validation cycle.

Figure 6-43. Job with three tasks

Now, our attention turns to configuring the job settings to
ensure seamless execution and management.

Configuring Job Settings

With the job structure in place, the next step involves managing
its settings through the right-hand side panel, as illustrated in
Figure 6-44. This allows you to control various aspects of your
job, including scheduling, notifications, and permissions.

Figure 6-44. Job settings panel

Scheduling the job

The Schedules section is where you can set up and manage job
execution timing. Simply click the “Add trigger” button to
explore scheduling options.

The Scheduled trigger type allows you to specify when and how
often the job should run, as shown in Figure 6-45.

Figure 6-45. Job scheduling settings

Additionally, you can define the schedule using Quartz Cron
syntax, which provides more precise advanced control over job
execution timing, as illustrated in Figure 6-46. For example, you
might set the job to run at specific times on certain days of the
week.

For the purposes of this demonstration, no schedule needs to be
set, so you can cancel out of the scheduling window. In a
production environment, setting a schedule can be crucial for
automating workflows.

https://oreil.ly/sGxSa

Figure 6-46. Job scheduling using cron syntax

Setting job notifications

Job notifications keep you informed about the status of your
job, allowing you to respond quickly to any issues that may
arise. You can receive notifications at multiple email addresses
or through pre-defined system destinations such as Slack,
Microsoft Teams, or any webhook-based service.

To configure job notifications, click the “Edit notifications”
button in the job settings panel. From there, you can add
notifications to alert you at various stages of the job’s lifecycle,
such as when the job starts, succeeds, or fails. These
notifications can be sent via email or through system
destinations, as shown in Figure 6-47.

Figure 6-47. Job notifications settings

With notifications in place, you can rest assured that you’ll be
promptly alerted to any changes in your job’s status, enabling

efficient job monitoring.

Managing permissions

The permissions section allows you to control access and
management rights for the job. This includes defining who can
run, manage, or review the job, as shown in Figure 6-48. You
can assign these permissions to individual users or user groups
defined in the workspace. Additionally, you can also transfer
ownership of the job to another user or group, which is
particularly useful in collaborative environments or when team
roles change.

Figure 6-48. Job permissions settings

Properly managing permissions ensures that only authorized
personnel can modify or execute the job or access potentially
sensitive information, enhancing security and control over your
workflows.

Running the Job

With all tasks and configurations in place, the final step is to
execute the job and review its output. This ensures that each
task runs as expected and produces the desired results.

To start the job, simply click the “Run now” button at the top
right of the job interface since we didn’t define a pre-set
schedule. This initiates the execution of all configured tasks in
the specified order.

To view the job’s execution, navigate to the Runs tab, where you
can see the list of all runs associated with the job, as illustrated
in Figure 6-49.

Figure 6-49. Job permissions settings

To delve deeper into the job execution, click the highlighted
“Start time” link of the current run to open its detailed view.
This allows you to track the real-time status of each task’s run in
the job, as displayed in Figure 6-50. The task’s flow chart
updates in real time, indicating which tasks are currently
running, completed, or have encountered issues. This enables
you to identify any potential problems and take corrective
action promptly.

Figure 6-50. The current run of the “School Demo Job” job

Reviewing task results

Upon the job’s run completion, it’s essential to review the
results of each task to ensure that they have executed correctly
and produced the expected outcomes.

Task 1: Landing data

Clicking the first task, in the job’s run interface, reveals its
results within an executed copy of the notebook, as shown in
Figure 6-51. This shows that two new input files have been
successfully landed in the source directory, confirming that the
data landing process executed correctly.

Figure 6-51. The result of executing the Land_New_Data task

With the data landing confirmed, let’s move forward to Task 2
and examine the DLT Pipeline.

Task 2: DLT pipeline

When reviewing the output of the DLT task, you’ll notice that it
doesn’t display results directly in the run interface. Instead, a
link is provided that directs you to the DLT pipeline UI, as
shown in Figure 6-52.

Figure 6-52. The output of the Run_DLT_Pipeline task

By clicking this link, you’ll be redirected to the DLT interface,
where you can view the status of the pipeline run with the new
data. This allows you to explore the pipeline’s execution and
verify that it has processed the data correctly.

Task 3: Output exploration

Clicking the third task reveals the output of its associated
notebook, showcasing the final processed data. This displays the
output of all cells in the notebook, including the content of the
pipeline storage location and the results from the gold table.
The updated table results provide a clear confirmation that the
data workflow has been successfully executed through each
processing stage of the task sequence.

Debugging Jobs

In our previous scenario, we demonstrated the successful
execution of a data workflow, where every task was carefully
designed to produce a correct output. However, in the real
world, things don’t always go as planned. In this section, we’ll
explore what happens when our data workflow encounters an
unexpected error, leading to a job failure.

Let’s consider a simple example in the “6.2 - Output
Exploration” notebook, which is the source notebook for the
third task in our job. Let’s try to query a table that doesn’t exist
in our database, such as a table for the daily students’ courses in
the USA:

SELECT * FROM hive metastore school dlt db usa daily

When we run the job, the system attempts to access the
specified table. However, due to the table’s nonexistence, the
job fails as expected, as illustrated in Figure 6-53.

Figure 6-53. The failed run of the “School Demo Job” job

To diagnose the issue, we click the failed task, where detailed
error messages can be accessed. In this case, the error message
indicates a “table or view not found” AnalysisException , as
shown in Figure 6-54.

SELECT FROM hive_metastore.school_dlt_db.usa_daily_

Figure 6-54. The result of executing the “Output Exploration” task

Repairing runs

Let’s explore how to correct the error and successfully rerun
the job. This involves fixing the erroneous query and utilizing
the “Repair run” feature in Databricks Jobs.

To resolve the issue caused by querying a nonexistent table, we
need to correct the table name in our notebook. As an
alternative, let’s query the daily students’ courses in an existing
region, such as France, instead of the USA:

With this correction in place, we can revisit our failed run and
explore our options for recovery.

Upon reviewing the details page for the failed run, we’re
presented with a valuable feature—the “Repair run” button, as
displayed in Figure 6-55. This button offers a convenient way to
handle such scenarios, allowing you to rerun only the failed
tasks, rather than re-executing the entire job from scratch.

SELECT * FROM hive_metastore.school_dlt_db.fr_daily_s

Figure 6-55. The” Repair run” feature

By clicking the “Repair run” button, we can choose which tasks
to rerun, as illustrated in Figure 6-56. In our case, only the
Output_Exploration task is selected by default to be re-
executed.

Figure 6-56. Task selection for run repair

After confirming the tasks to be rerun, we click “Repair run (1)”
to initiate the process. Databricks intelligently manages the
workflow, executing only the corrected task while preserving
the results of previously successful tasks.

Upon completion of the run repair, the job status should reflect
success, confirming that the job has been successfully repaired.
You can verify that the output now includes the data from the
gold table of France, indicating that the corrected query has
been executed without issues.

This seamless recovery process showcases the robustness and
flexibility of Databricks Jobs, empowering you to rapidly
recover from errors and restore your workflows to optimal
performance.

Conclusion

In conclusion, we’ve reached the end of our journey through
the world of production pipeline development and
orchestration. We’ve explored how to create and execute a
complete data workflow, how to handle its errors and
exceptions, and how to repair it and recover from failures. With
these skills in hand, you can now confidently tackle complex
data workflows, ensuring efficient and reliable data processing.

Sample Exam Questions

Conceptual Question

1. An ETL solution uses a declarative approach to establish
reliable and maintainable data processing pipelines, while
preserving table dependencies and ensuring data quality.

Which of the following technologies corresponds to this
definition?

1. Delta Live tables
2. Delta Lake
3. Spark Structured Streaming
4. Databricks jobs
5. Databricks workflows

Code-Based Question

2. A data engineer is developing a Delta Live Tables pipeline to
handle data ingestion from a source system that generates
events reflecting dataset changes. Each change event includes
metadata indicating whether a record was inserted, updated, or
deleted, along with a timestamp for ordering the events.

Which command would best enable the data engineer to solve
this problem?

1. UPSERT
2. COPY INTO

3. INSERT INTO
4. MERGE INTO
5. APPLY CHANGES INTO

The correct answers to these questions are listed in Appendix C.

Chapter 7. Exploring Databricks
SQL

Databricks SQL is an essential component within the Databricks
ecosystem, simplifying the process of querying, visualizing, and
alerting on data. It empowers data analysts and business
intelligence professionals to easily uncover insights and extract
value from their data. This chapter explores Databricks SQL,
covering its various components, such as SQL endpoints,
dashboards, and alerts.

What Is Databricks SQL?

Databricks SQL (DBSQL) is a data warehousing solution
specifically designed for scalable business intelligence
applications. It offers features for executing and managing SQL
queries, creating interactive dashboards, and setting up alerts,
all while maintaining unified governance. With Databricks SQL,
teams can easily analyze and visualize large datasets, share
insights, and make data-driven decisions.

In the Databricks workspace, you can find Databricks SQL tools
in the left sidebar, under the SQL section, as illustrated in

Figure 7-1.

Figure 7-1. Databricks SQL menu

As shown, Databricks SQL offers a range of new options,
including the following:

SQL editor
An intuitive interface for writing and executing SQL queries
Queries
A repository for storing and managing frequently used
queries
Dashboards
A visualization tool for creating interactive dashboards
Alerts
A feature for setting up custom alerts and notifications based
on data changes
Query history
A log of executed queries, facilitating tracking and auditing
SQL warehouses
Scalable compute resources optimized for executing SQL
workloads

Each of these components plays a crucial role in leveraging the
full potential of Databricks SQL. Let’s take a closer look at each
of them, starting with SQL warehouses.

Creating SQL Warehouses

SQL warehouses are the backbone of Databricks SQL, providing
the computational power necessary to run SQL queries at scale.
They are essentially compute clusters based on Apache Spark
and the Photon engine. These clusters are highly optimized for
SQL workloads and provide some additional benefits that
enhance performance and increase concurrency compared to
traditional clusters. This enables you to efficiently manage and
execute your queries and dashboards.

To get started with SQL warehouses, let’s navigate to the SQL
Warehouses tab in the left sidebar of the Databricks workspace.
This page is the control center for creating and managing your
SQL computational resources, as shown in Figure 7-2.

Figure 7-2. SQL warehouses page

Configuring a SQL Warehouse

To set up a new SQL warehouse, click the “Create SQL
warehouse” blue button, which will prompt a configuration
window, as illustrated in Figure 7-3. Here, we can specify the
details of our new warehouse.

Figure 7-3. SQL warehouse configuration window

Let’s create a SQL warehouse instance, which we’ll call “Demo
Warehouse.” For this demonstration, we’ll set the cluster size to
2X-Small to allocate minimal resources suitable for light
workloads. We will leave all other options at their default
settings and proceed to click Create.

SQL warehouses typically take a few minutes to start. However,
you may also have the option to choose a Serverless compute
type, as illustrated in Figure 7-4. This offers a fully managed
service by Databricks that does not require managing
infrastructure in your cloud account. It starts instantly, without
the need to wait for provisioning any resources.

Figure 7-4. SQL warehouse configuration window with Serverless compute type

Once the creation process is complete, our SQL warehouse is
running and ready to be used, as shown in Figure 7-5.

Figure 7-5. Fully operational SQL warehouse

SQL Endpoints

A key feature of SQL Warehouses is the provisioning of SQL
endpoints, which allow external business intelligence (BI) or
other SQL-based tools to connect and access data in the
lakehouse. To connect to your SQL warehouse, you can refer to
the connection information provided under the “Connection
details” tab, as shown in Figure 7-6.

Figure 7-6. Connection details of the SQL warehouse

With our SQL warehouse up and running, we can now leverage
its capabilities for an array of SQL workloads. In the next
sections, we will explore how to use the SQL warehouse to
create dashboards, run queries, and more.

Designing Dashboards

Dashboards in Databricks SQL offer a dynamic way to visualize
data and insights derived from SQL queries. They enable you to
create interactive and shareable visualizations of your data,
making it easier to understand and communicate complex
information.

To begin working with dashboards, navigate to the Dashboards
tab in the left sidebar of your Databricks workspace. Here, you
can manage your existing dashboards or create new ones, as
shown in Figure 7-7. You can also explore sample dashboards
by clicking the “View samples gallery” button.

Figure 7-7. Dashboards page in Databricks SQL

Creating a New Dashboard

To create a new dashboard, click the “Create dashboard” button
in the upper-right corner of the page. This opens the dashboard
editor interface, which consists of two panes: the Canvas pane
and the Data pane, as illustrated in Figure 7-8:

Canvas pane
This is where you design your dashboard. You can drag and
drop different visual elements, such as charts, graphs, and
tables, to create a visually appealing and informative layout.
Data pane
In this pane, you define the source datasets for your
dashboard. There, you can specify the data sources that will
feed data to your visualizations.

Figure 7-8. Dashboard editor interface

At the top of the dashboard editor interface interface, you will
see a default name assigned to the dashboard (New Dashboard
yyyy-MM-dd HH:mm:ss). Click this name to rename it to
something more descriptive, such as “School Demo Dashboard.”
This gives our dashboard a clear and descriptive title.

Before you can start building your dashboard, make sure you
have a SQL warehouse connected, as displayed in Figure 7-9.

Figure 7-9. Connecting a running SQL warehouse to the dashboard

The dashboard’s functionality depends on the SQL warehouse,
as it is responsible for retrieving data and displaying the

visualizations.

Creating data sources

The Data pane in the dashboard editor interface allows you to
define the source datasets for your dashboard, as displayed in
Figure 7-10. This is a crucial step in building a functional
dashboard, as these datasets provide the input data for your
visualizations.

Figure 7-10. Dashboard Data pane

Each dataset is defined as either a SQL query or a table, which
provides flexibility and power in shaping your data insights.
Let’s add a new dataset by clicking the “+ Create from SQL”
button in the left panel. This opens a SQL editor to write our
custom query, as shown in Figure 7-11.

Figure 7-11. Dashboard Data pane

For this demonstration, we will write a SQL query that
combines the two gold tables created previously by the “School”

DLT pipeline. But before we dive into the query, let’s rename the
dataset to a meaningful name that can be easily identified in the
Canvas pane. To do this, simply double-click the default dataset
name (Untitled dataset) in the left panel and enter a new name,
such as “Daily Student Courses.”

Now, let’s write our SQL query that consolidates the school
statistics data from two regions: the United Kingdom and
France.

After writing the query, click the Run button to view and verify
the query output. This ensures that your dataset is correctly
defined and ready for use in your dashboard.

SELECT "United Kingdom" region, student_id, f_name, l
 order_date, courses_counts
FROM hive_metastore.school_dlt_db.uk_daily_student_co

UNION

SELECT "France" region, student_id, f_name, l_name,
 order_date, courses_counts
FROM hive_metastore.school_dlt_db.fr_daily_student_co

Remember, you can add additional datasets depending on your
requirements, allowing you to incorporate multiple data
sources and insights into your dashboard. These datasets can
also be queries that leverage functions during execution or
provide advanced filtering logic, which can be very useful for
gaining deeper insights into your data.

With our dataset created, we can now switch to the Canvas
pane to start building our dashboard. This is where we will
design and lay out our visualizations, leveraging the data from
our newly created dataset.

Designing visualizations

The Canvas pane enables you to design your dashboard by
adding visualizations and filters. From the toolbar at the
bottom, you can pick a widget to add, including a visualization,
text box, or filter, as illustrated in Figure 7-12.

Figure 7-12. Toolbar in the Canvas pane

To create a visualization, simply pick the visualization widget
and place it on the Canvas pane. Databricks SQL supports a wide
range of visualization types, including area, bar, combo, counter,
heatmap, histogram, line, pie, pivot, scatter, and table charts.
This flexibility allows you to choose the most appropriate and
effective visualization type to communicate your data insights.

Once you’ve added a visualization widget to the Canvas pane, a
configuration panel for this visualization will appear on the
right side, as illustrated in Figure 7-13. Here, you can specify the
details of your visualization, including the dataset, visualization
type, aggregation, and formatting options.

Figure 7-13. The configuration panel of a visualization widget

Let’s configure this visualization widget to display a pie graph
that shows the total course counts per region. To achieve this,
complete the following steps:

1. Selecting the dataset: First, select the dataset “Daily Student
Courses” that we created in the Data pane. This dataset
contains the data we want to visualize.

2. Choosing the visualization type: Next, select the visualization
type. In this case, we want to create a pie graph, so we choose
the “Pie” option from the list of supported visualizations.

3. Customize the visualization settings: For a pie graph, we need
to set the angle field and group by field. To do this, we do the
following:
1. Set the angle field to SUM (courses_counts) by clicking

the plus (+) button and selecting the courses_counts field.
This will default to the sum aggregation function, which
calculates the total number of courses. If needed, choose
an alternative aggregation function to match your
application.

2. Choose the “region” field as the color/group by field to
display multiple categories in the graph.

After configuring these settings, you should see a pie graph that
displays the total course counts per region, as illustrated in
Figure 7-14.

Figure 7-14. Pie graph for the total course counts per region

You can further customize this visualization by giving it a
descriptive title, modifying its color scheme, and adjusting its
size and position. This helps make the visualization more
visually appealing and easier to understand for viewers.

In the same way, you can add other visualizations of different
types depending on your business needs. By combining various
visualizations, you can create a rich and informative dashboard
that provides a comprehensive view of your data.

Defining filters

In addition to visualizations, Databricks SQL allows you to add
dynamic filters to your dashboard. These filters enable viewers
to refine the data presented in visualizations by filtering on
specific fields. To add a filter to your dashboard, simply pick the
filter widget from the toolbar at the bottom and place it on the
Canvas pane, as shown in Figure 7-15.

Figure 7-15. Adding a filter to the dashboard

Next, we need to configure the widget to filter based on a
specific field—in this case, the “region” field. To achieve this,
follow these simple steps:

1. Navigate to the right-hand panel of the selected filter widget.
2. Locate the Fields section and click the plus (+) button.
3. Select the “region” field.

Figure 7-16 displays the updated canvas after configuring the
region filter.

Figure 7-16. Dashboard view after applying the region filter

With this filter in place, our visualizations will update
dynamically depending on the selected region. This means that
when a user selects a specific region from the filter, the
visualizations will automatically refresh to display only the data
relevant to that region. This interactive filtering capability
enables users to quickly and easily explore the data from
different perspectives.

Sharing a Dashboard

When you create a new dashboard, it is initially saved as a draft,
indicated by the Draft label in the top bar, as shown in Figure 7-
17. This draft status allows you to refine and finalize your
dashboard before sharing it with others.

Figure 7-17. Draft version of the dashboard

You can share the draft with other users in your workspace to
facilitate collaborative development and feedback. To share a
dashboard, simply click the Share button at the top right of the
dashboard editor. This opens a window where you can add
users and set their permissions, allowing you to control who
can manage, edit, run, or view the dashboard draft (Figure 7-
18).

Figure 7-18. Setting permissions for sharing the dashboard draft

By assigning appropriate permissions, you can control the level
of access each user has to your dashboard, ensuring a secure
and controlled environment for collaboration. It’s worth
mentioning that when you share a dashboard draft, all users
interact with the data and visualizations using their own
credentials. This means that their individual permissions and
access levels are applied, preventing unauthorized access to the
underlying data.

Publishing a Dashboard

Once you’re satisfied with your dashboard draft, you can
publish it to create a clean copy that can be shared with any
user in your organization. Publishing a dashboard allows others
to view and interact with the visualizations and make data-
driven decisions.

To publish your dashboard, click the Publish button at the top
right, as displayed in Figure 7-19.

Figure 7-19. Publishing the dashboard

This will open a window that prompts you to choose how the
published dashboard will access live data and run queries. You
can select to use either your own embedded credentials or
those of the viewing user, as shown in Figure 7-20.

Figure 7-20. Publish options—selecting data access credentials

If you are publishing the dashboard for users in your
organization without access to your Databricks workspace,
select the option to embed credentials. This ensures that the
dashboard’s queries can run and visualizations can render
properly for these users.

After publishing, you can view the live dashboard by clicking
the Draft label at the top bar and selecting the published
version, as displayed in Figure 7-21. This indicates that the
dashboard is now live and accessible to others via its published
link.

Figure 7-21. The published version of the dashboard

Republishing a New Version

The published version of your dashboard remains unchanged
until you publish again. Meanwhile, you can continue making
modifications and improvements in the draft version without
affecting the publicly shared copy. This allows you to easily
design and test a newer version of your dashboard before
resharing it with your audience.

To switch from the published to the draft version, simply click
the label at the top bar and select Draft, as illustrated in
Figure 7-22.

Figure 7-22. Switching between published and draft versions of the dashboard

By effectively managing draft and published versions, you can
continuously improve your dashboards while providing a
consistent experience for end users.

Managing SQL Queries

Databricks SQL provides a comprehensive solution for
managing SQL queries, enabling you to create ad hoc queries,

save them in a workspace directory, and schedule automatic
refreshes or alerts based on their results. This flexibility enables
efficient data exploration and reporting.

To start creating SQL queries, let’s navigate to the SQL Editor tab
from the left sidebar of the workspace. This interface provides
an integrated environment for writing, executing, and
scheduling SQL queries, as illustrated in Figure 7-23.

Figure 7-23. SQL editor in Databricks SQL

Before writing any queries, ensure you are connected to a
running SQL warehouse, as illustrated in Figure 7-24. This
connection provides you with the computational power
necessary for executing your SQL queries. If you attach it to a
warehouse that has shut down, it will start automatically.

Figure 7-24. Connecting a running SQL warehouse to the SQL editor

On the left panel of the SQL editor, you’ll find the schema
browser where you can navigate your databases and tables.
Expand the hive_metastore catalog to view the
school_dlt_db database, which contains all the tables created
by your DLT pipeline.

To view the columns of a table, simply expand the table in the
schema browser, as shown in Figure 7-25. This provides a
detailed list of columns as well as some indicators for column
types, enabling you to understand the structure of your data
and write more informed and accurate queries.

Figure 7-25. Exploring table columns in the schema browser

Writing a SQL Query

The SQL editor simplifies the process of writing queries by
allowing you to interactively insert tables and columns into the

query text. This feature allows you to quickly add the necessary
objects to your query without having to type them out
manually.

To insert a table or column into your query text, you can simply
hover over the object name and click the double arrows button
next to it, as illustrated in Figure 7-26.

Figure 7-26. Inserting tables and columns into the query text

This convenient feature significantly speeds up query
composition, ensuring accuracy and reducing manual input
errors.

To illustrate the simplicity of writing queries in Databricks SQL,
let’s construct a basic query. Here is an example:

Once the query is written, you can execute it by clicking the
Run button in the SQL editor. The results will be displayed in the
results pane below the editor. Figure 7-27 showcases the results
of our query, which returns 123 records that meet the specified
criteria.

SELECT * FROM hive_metastore.school_dlt_db.uk_daily_s
WHERE courses_counts > 0

Figure 7-27. Query results in the SQL editor

From this pane, you can download the result set or create
standalone visualizations, which can easily be added to new or
existing dashboards.

Saving a Query

Once we have written and executed our query, we may want to
save it for future use. Databricks SQL provides a convenient
way to save our queries, making it easy to reuse them or share
them with others.

To save our query, we simply click the Save button located at
the top bar of the query editor. This will prompt us to give our
query a name, as displayed in Figure 7-28. In our case, let’s
name our query school_stats . Note that you can also name
your query directly in the query tab, just like other objects in
the workspace.

Figure 7-28. Saving a query in the SQL editor

Later in this chapter, we’ll discuss how to effectively manage
our saved SQL queries and leverage them to set up
customizable alerts.

Scheduling a Query

Scheduling queries in Databricks SQL allows you to automate
the refresh of query results, ensuring that data is up-to-date
without manual intervention. This feature is particularly useful
when working with dynamic data that changes frequently, as it
allows you to stay informed about the latest insights and trends.

To add a schedule to our query, we click the Schedule button
located at the top bar of the query editor and then click “Add
schedule,” as shown in Figure 7-29.

Figure 7-29. Adding a schedule to a query in the SQL editor

This opens a window with scheduling options, allowing us to
specify when and how often the query should run, as illustrated
in Figure 7-30.

Figure 7-30. Query scheduling options

By scheduling queries to run at regular intervals, you
significantly reduce the manual workload involved in
maintaining up-to-date datasets. This is particularly useful for
reports and other scenarios where fresh insights are critical or
where queries may have long running times.

Browsing Saved Queries

Once we have saved our queries, we need a convenient way to
access and manage them. Databricks SQL provides a dedicated
interface for browsing saved queries, making it easy to find,
organize, and reuse our queries.

To explore our saved queries, we navigate to the Queries tab on
the left sidebar of the workspace, as shown in Figure 7-31. This
tab provides a centralized location for all our saved queries,
allowing us to quickly find and access the queries we need.

Figure 7-31. Queries interface in Databricks SQL

As shown, this tab displays a list of all our saved queries, along
with relevant information such as the query name, creator
name, and creation time. We can sort and filter the list to
narrow down our search, making it easy to find specific queries
or groups of queries.

At the top of the interface, there are also tabs for favorite
queries we might reference frequently and trashed queries we
want to review from time to time. Overall, the Queries page
provides an organized and efficient way to manage our queries,
allowing us to reuse our work and accelerate our data analysis
tasks.

Setting Up Alerts

In Databricks SQL, we can take our data analysis to the next
level by setting up alerts. Alerts are a powerful feature that
enables us to monitor our data and receive notifications when
reported values deviate from expected thresholds. By
leveraging our saved queries, we can create alerts that
periodically run queries, evaluate defined conditions, and send
notifications when a condition is met.

In this demonstration, we will create an alert that notifies us
when there is high demand for courses. This alert will be
triggered when the number of course enrollments exceeds a
threshold of 1,000, indicating high demand.

Creating an Alert

To create an alert, we navigate to the Alerts page from the left
sidebar, as displayed in Figure 7-32. This interface displays all
previously created alerts and their most recent statuses, serving
as a reference for managing alerts. From here, we click “Create
alert” in the top-right corner to start configuring the new alert.

Figure 7-32. Alerts interface in Databricks SQL

First, let’s configure the basis details of the alert, as shown in
Figure 7-33.

Figure 7-33. Basic configurations of the new alert

Provide a descriptive name for the alert that reflects its purpose
or the specific metric and source it monitors. For instance, let’s
name our alert courses_high_demand . Then, choose the saved
query that will be executed to evaluate the alert condition. This

query should return the data you want to monitor. In our case,
let’s choose our saved query titled school_stats .

Next, let’s proceed by defining the condition that will trigger the
alert, as illustrated in Figure 7-34.

Figure 7-34. Condition configurations of the new alert

In this example, we set the value column to courses_counts
with a threshold of a sum greater than 1,000. This means the
alert will trigger if the total count of courses exceeds 1,000.
Currently, the value in the table is 328, which is below the
defined threshold.

Leave all other options at their default settings, and click
“Create alert” to finalize the creation process. Figure 7-35
displays the newly created alert, showcasing the configured
settings.

https://oreil.ly/GMEjA

Figure 7-35. The courses_high_demand alert

Now that we’ve successfully created our alert, the next essential
step is to set its schedule.

Scheduling the Alert

To ensure timely notifications, it is important to schedule how
frequently you want to check for alerts. When you schedule an
alert, it periodically runs its underlying query and evaluates the
alert criteria according to this schedule. If the criteria are met,
notifications are sent to defined destinations. Notably, this
scheduling is separate from any other schedule that may be
associated with the underlying query.

To add a schedule to our alert, we click the “Add schedule” link
in the schedules section, as illustrated in Figure 7-36.

Figure 7-36. Adding a schedule to the courses_high_demand alert

This opens a window with scheduling options, allowing you to
specify when and how often the alert should be evaluated, as
shown in Figure 7-37.

Figure 7-37. Alert scheduling options

After defining the schedule settings, you need to configure the
notification destinations by clicking the Destinations tab, as
illustrated in Figure 7-38. You can set up notifications to be sent
to multiple email addresses or to system destinations such as
Slack, Microsoft Teams, or any webhook-based service.

https://oreil.ly/YG1MH

Figure 7-38. Alert destinations configuration

To add a destination, we use the drop-down menu to select an
available notification destination or start typing a username
from the workspace to add their email address. This allows us to
customize the notification recipients and ensure that the right
users are informed when the alert is triggered.

Finally, let’s click Create to save our changes and activate the
alert.

Now, on the next scheduled execution, if the total value of
courses_counts changes and exceeds the defined threshold of
1,000, the alert will be triggered, and we will receive a
notification at the configured destinations.

By setting up and scheduling alerts in Databricks SQL, you can
ensure that critical business metrics are continuously
monitored, and you receive timely notifications whenever
important conditions are met. This allows for prompt actions
and informed decision-making.

Conclusion

In conclusion, Databricks SQL provides a robust data
warehousing solution, offering a comprehensive suite of tools
for efficiently managing and analyzing data. Through its

intuitive interface and robust features, you can easily create
scalable SQL warehouses, design informative dashboards, and
manage complex queries. By mastering these skills, you can
unlock the full potential of your data and drive business
insights at scale.

Sample Exam Questions

Conceptual Questions

1. Which of the following compute resources is required to
render a dashboard in Databricks SQL?

1. A job cluster.
2. An all-purpose cluster.
3. A SQL warehouse.
4. A BI engine.
5. None of the above! Databricks dashboards don’t require

compute resources to render visualizations.

2. A data engineer is setting up an alert in Databricks SQL to
ensure timely action is taken when an anomaly is detected in a
data flow. They want to notify the data operations team when
this alert is triggered.

Which of the following notification destinations is supported in
Databricks and can be configured by the data engineer in
response to a triggered alert?

1. Webhook-based service.
2. WhatsApp.
3. SMS.
4. All of the above options are valid notification destinations in

Databricks.
5. None of the above notification destinations is supported in

Databricks.

The correct answers to these questions are listed in Appendix C.

Chapter 8. Implementing Data
Governance

Databricks offers a robust data governance model designed to
ensure the security, quality, and compliance of data throughout
its lifecycle. This chapter delves into the key components of the
Databricks data governance model, with a focus on data
security. We will specifically examine data access management
within the traditional Hive metastore and compare it with
Databricks’ governance solution, Unity Catalog.

What Is Data Governance?

Data governance is a strategic approach to managing data
within an organization, ensuring that data is accurate, secure,
and used responsibly. It involves the development and
enforcement of policies and procedures to control data across
various stages of its lifecycle—from ingestion and storage to
processing and sharing. Data governance incorporates several
key components, which are illustrated in Figure 8-1.

Figure 8-1. Components of data governance

Data cataloging
Effective data governance requires a comprehensive
understanding of an organization’s data assets. A data catalog
plays a crucial role in this process by serving as a centralized
repository for metadata, which facilitates efficient data
discovery and access.
Data security
Robust data governance involves defining data access
permissions to ensure that only authorized individuals or
groups can access specific data. This practice is essential for
maintaining data confidentiality and ensuring compliance
with regulations such as the European General Data
Protection Regulation (GDPR).
Monitoring and auditing
Comprehensive auditing of data access and usage is a
fundamental aspect of strong data governance. It involves
monitoring who is accessing the data, as well as when and
how it is being used. This practice helps organizations ensure
compliance with data protection regulations and reduce the
risk of unauthorized access.
Data lineage
Data lineage refers to the tracking and visualization of the
flow of data assets from their origin to their final destination.
This is vital for data governance as it ensures transparency,
data reliability, and compliance. By mapping dependencies
between different resources, data lineage facilitates
troubleshooting and identifying potential impacts of changes.

https://gdpr-info.eu/

Data discovery
A key element of data governance is ensuring that data is
easily discoverable, allowing data teams to efficiently locate
data assets across the organization. This helps prevent data
duplication and promotes better data utilization.

Databricks addresses these components with its new
governance solution, Unity Catalog. Unity Catalog offers
advanced governance capabilities, including fine-grained access
control, data auditing, lineage tracking, and enhanced data
discovery. Previously, Databricks relied on the Hive metastore,
which was primarily focused on managing metadata for tables
and schemas and had limited governance features.

In the following sections, we will explore how data governance
is implemented within Databricks by examining two key
aspects: managing data security in the existing Hive metastore
and exploring advanced data governance with Unity Catalog. By
understanding the transition from the Hive metastore to Unity
Catalog, you will gain insights into how Databricks has evolved
its data governance strategy to meet the demands of modern
data management.

Managing Data Security in the
Hive Metastore

In Databricks, the Hive metastore is the traditional, legacy
solution for managing metadata and ensuring data governance.
It serves as a local repository for metadata about tables,
columns, partitions, and databases in each workspace,
facilitating efficient querying and data management. Effective
data security in the Hive metastore is essential to ensure that
sensitive data is protected and accessed only by authorized
users.

The data governance model of the Hive metastore focuses on
controlling access to data objects within the hive_metastore
catalog. This model enables administrators to perform key
operations programmatically through Spark SQL, including
granting, denying, and revoking access permissions. These
capabilities are used to manage who can view or manipulate
data, thus supporting robust data governance.

Granting Permissions

The primary command used for managing data access is the
GRANT statement. This command is used to provide a specific

privilege on a data object to a user or group. The general syntax
for this command is as follows:

For example, to grant read access on a table named
product_info to a user with the email user_1@example.com,
the following command is used:

In this example, user_1 is given permission to perform
SELECT operations on the product_info table, allowing them
to read data from this object. Such precise control helps ensure
that users have access only to the data they need, thus
maintaining data security and integrity.

Besides tables, permissions can also be granted on various other
objects. Let’s explore these different types of securable objects
available in the Hive metastore.

Data object types

GRANT <privilege> ON <object-type> <object-name> TO <

GRANT SELECT ON TABLE product_info TO user_1@ex

In the Hive metastore, permission management extends across
various types of data objects. The hierarchy of these objects is
structured into three primary levels, as illustrated in Figure 8-2.

Figure 8-2. Data object hierarchy in the Hive metastore

The hive_metastore catalog
At the top of this hierarchy is the hive_metastore catalog.
This catalog acts as a container for all data objects managed
by the metastore. In Databricks, the Hive metastore is limited

to this single default catalog, meaning that you cannot create
additional catalogs within the Hive metastore.
Schemas (databases)
Within the hive_metastore catalog, there are schemas (also
known as databases). A schema is a logical grouping of tables,
views, and functions. Schemas facilitate granular access
control, enabling administrators to manage permissions at a
more detailed level than the catalog.
Tables, views, and functions
These objects are fundamental data objects within a schema
This level is ideal for situations where access needs to be
restricted to particular entities within a database.

Databricks provides granular control over access to any of these
data objects using the GRANT statement:

In this context, <object-type> indicates the type of securable
object, as outlined in Table 8-1.

GRANT <privilege> ON <object-type> <object-name> TO <

Table 8-1. Types of securable objects in the Hive metastore

Object Scope

CATALOG Controls access to the entire data
catalog

SCHEMA Controls access to a specific database

TABLE Controls access to a managed or
external table

VIEW Controls access to a SQL view

FUNCTION Controls access to a specific named
function

ANY FILE Controls access to the underlying file
system

By specifying the appropriate object types, administrators can
precisely manage permissions and ensure secure and efficient
access control.

Having identified these types of data objects on which privileges
can be configured, let’s now examine the specific privileges that
can be granted.

Object privileges

Object privileges are permissions that can be granted to users or
groups to perform various actions on data objects within the
metastore. These privileges are granted using the GRANT
statement:

In this context, <privilege> represents the specific action
being allowed. Table 8-2 outlines the various privileges
available in the Hive metastore and the capabilities they grant.

GRANT <privilege> ON <object-type> <object-name> TO <

Table 8-2. Object privileges in the Hive metastore

Privilege Ability

SELECT Read access to an object.

MODIFY Add, delete, and modify data within an
object.

CREATE Create new objects.

READ_METAD
ATA

View an object and its metadata.

USAGE Required to perform any action on a
database object, but has no direct effect
on its own.

ALL PRIVIL
EGES

Grants all the above privileges
simultaneously.

Let’s dive deeper to gain a comprehensive understanding of
these privileges.

SELECT privilege

This privilege grants read access to an object. Users with the
SELECT privilege can query and retrieve data from the database
object, such as a table, but cannot modify it:

MODIFY privilege

The MODIFY privilege allows users to add new data, delete
existing data, and make modifications to the data within the
object. This is translated by the ability to perform INSERT ,
UPDATE , and DELETE operations on a table:

CREATE privilege

With the CREATE privilege, a user can create new objects. This
is typically used for creating tables, views, or other schema
objects within the database:

GRANT SELECT ON TABLE product_info TO user_1@example.

GRANT MODIFY ON TABLE product_info TO user_1@example.

GRANT CREATE ON SCHEMA sales_db TO user_1@example.com

READ_METADATA privilege

This privilege permits users to view an object along with its
metadata. Metadata includes information about the structure of
the object and its properties.

USAGE privilege

The USAGE privilege, while not providing any direct access or
ability on its own, is a prerequisite for performing any other
actions on a database object. It is often combined with other
privileges to enable their functionalities:

ALL PRIVILEGES

This is a comprehensive privilege that grants all the individual
privileges mentioned previously to a user or group. It simplifies
the process of assigning multiple permissions by bundling them
together.

GRANT READ_METADATA ON TABLE product_info TO user_1@e

GRANT USAGE ON SCHEMA sales_db TO user_1@example.com;

To illustrate the application of these privileges, consider a
scenario where we want to provide a user with full control over
the sales_db schema. To achieve this, we would use the
following command:

This command ensures that user1 can read data, modify data,
create new objects, and view metadata, and has the necessary
USAGE privilege on the sales_db schema.

Granting privileges by role

In the Hive metastore, managing access to data objects is
restricted to certain roles. To grant privileges on an object, one
must be either a Databricks administrator or the owner of that
particular object. Table 8-3 illustrates the different roles in the
Hive metastore and the privileges that can be granted by each
of them.

GRANT ALL PRIVILEGES ON SCHEMA sales_db TO user_1@exa

Table 8-3. Roles in the Hive metastore

Role Can grant access privileges for

Databricks
administrator

All objects in the catalog and the
underlying file system

Catalog owner All objects in the catalog

Database
owner

All objects in the database

Database
object owner

Only the specific object within the
database (table, view, …)

Let’s explore the details of each role and its abilities:

Databricks administrator
This role has the highest level of access, capable of granting
privileges for all objects within the hive_metastore catalog
as well as the underlying file system. This broad scope of
authority enables comprehensive management and
oversight of the data infrastructure.
Catalog owner

A catalog owner has the ability to grant access privileges for
all objects contained within the hive_metastore catalog.
This includes databases, tables, views, and functions,
allowing for centralized control at the catalog level.
Database owner
Database owners are empowered to grant privileges for all
objects within a single database. This includes tables, views,
and functions within that particular database, ensuring that
database-specific access control is managed efficiently.
Database object owner
Database object owners can grant privileges solely for the
object they own within the database, such as a table, view, or
function.

Understanding these roles and their associated privileges is
crucial for maintaining a well-organized and secure data
environment. Properly assigning and managing these roles
ensures that access control is enforced at the appropriate levels,
reducing the risk of unauthorized access while facilitating
efficient data management.

Advanced Privilege Management

In the Hive metastore, managing object privileges extends
beyond merely granting access. You can also explicitly deny
access and revoke previously granted permissions, providing a

comprehensive set of tools to ensure precise control over data
access.

REVOKE operation

The REVOKE operation removes permissions that were
previously granted to a user or group. This operation is
essential for dynamically managing access as organizational
roles and requirements change.

The syntax is as follows:

Here is an example of the operation:

In this example, the command removes the previously granted
SELECT permission on the product_info table from user1 .

DENY operation

The DENY operation is used to explicitly prevent a user or group
from accessing specific resources or performing certain actions.

REVOKE <privilege> ON <object-type> <object-name> FRO

REVOKE SELECT ON TABLE product_info FROM user_1

This operation takes precedence over any other permissions
that might otherwise allow access, ensuring that certain users
or groups are definitively blocked from specific actions.

The syntax is as follows:

Here is an example:

This command will prevent user1 from performing the SELECT
action on the product_info table, regardless of other granted
permissions.

SHOW GRANTS operation

The SHOW GRANTS operation allows administrators to view the
current permissions assigned to a specific object. This command
is useful for auditing and verifying access controls, ensuring
that only authorized users have the necessary permissions.

The syntax is as follows:

DENY <privilege> ON <object-type> <object-name> TO <u

DENY SELECT ON TABLE product_info TO user_1@exa

SHOW GRANTS ON <object-type> <object-name>

Here is an example of the operation:

SHOW GRANTS ON TABLE product_info

This command will list all the permissions granted to each user
or group for the product_info table, providing a clear
overview of who has access and what actions they can perform.

With this clear understanding of object privileges, let’s now turn
our attention to the Databricks platform to see how these
concepts can be applied in Databricks SQL.

Managing Permissions with Databricks
SQL

In this section, we’ll explore the practical steps for managing
permissions for databases, tables, and views in the Hive
metastore within the context of an HR example. We’ll first cover
the process of adding users and groups specific to HR personnel
within the Databricks workspace. Then, we’ll discuss assigning
the appropriate permissions through Databricks SQL to ensure
secure access to sensitive HR data.

Adding users

To begin managing permissions in Databricks SQL, we need to
first add the designated users within our Databricks workspace.
For this demonstration, we will add three fictional users: Alice,
Bob, and Eve. Here’s a step-by-step guide to adding them:

1. Navigate to user settings: In the upper-right corner of any
Databricks page, click your username and select Settings
from the drop-down menu.

2. Access identity management: From the left sidebar, select
“Identity and access,” and then click Manage next to Users, as
displayed in Figure 8-3.

Figure 8-3. Identity and access settings in Databricks workspace

3. Add users: On the Users management page, click “Add user,”
and enter the email of each new user:
alice@example.com
bob@example.com
eve@example.com

Figure 8-4 illustrates the final outcome of the user additions.

Figure 8-4. The result of user additions

With these users added to the workspace, we can now proceed
to add a new group and assign permissions.

Adding groups

To streamline permission management and apply access
controls across multiple users, groups can be utilized in
Databricks. Here, we demonstrate how to add a group named
hr_team and assign users to this group:

1. Access user settings: Navigate again to the Settings menu.
2. Access identity management: From the left sidebar, select

“Identity and access,” and then click Manage next to Groups,
as shown in Figure 8-5.

Figure 8-5. Identity and access management

3. Add group: On the Groups management page, click “Add
group,” enter the group name as hr_team , and confirm the
addition. Figure 8-6 illustrates the result of the group
addition.

Figure 8-6. The Groups management page after adding the hr_team group

4. Add members to the group: Click the group name hr_team
from the groups list to open the group settings. Under the
Members tab, click “Add member,” and add the users Alice

(alice@example.com) and Bob (bob@example.com) to this
group.

Figure 8-7 displays the final outcome of adding the hr_team
group with its members.

Figure 8-7. The result of adding the hr_team group with its members

By grouping users, permissions can be managed more
efficiently. Permissions granted to the group will automatically
apply to all its members, simplifying access control
administration.

Creating data objects

For this demonstration, we will create some data objects in the
Hive metastore, specifically focusing on creating a database and
defining a table and a stored view within this database.

To follow along with this section, you will need to use
Databricks SQL. Begin by navigating to the SQL editor located in
the left sidebar of the Databricks workspace. Before executing
any commands, ensure that a SQL warehouse you can use is
running.

Our first step is to create a new database called hr_db within
the hive_metastore catalog. The command for creating this
database is as follows:

CREATE DATABASE IF NOT EXISTS hive_metastore.hr_db
LOCATION 'dbfs:/mnt/demo/hr_db.db';

After creating the database, the next step is to define a table and
populate it with sample data. We will create a table named
employees with columns for ID, name, salary, and city. To do
this, execute the following SQL commands:

CREATE TABLE hive_metastore.hr_db.employees
(id INT, name STRING, salary DOUBLE, city STRING);

INSERT INTO hive_metastore.hr_db.employees
VALUES (1, "Felipe", 3000, "London"),
 (2, "Sachin", 3400, "New York"),
 (3, "Anna", 3600, "London"),
 (4, "Hong-Thai", 3200, "London"),
 (5, "Charlotte", 3500, "New York"),
 (6, "Amine", 3400, "New York"),
 (7, "Emily", 3200, "London");

In addition, create a view named london_employees_vw to
display employees located in London:

CREATE VIEW hive_metastore.hr_db.london_employees_vw
AS SELECT * FROM hive_metastore.hr_db.employees WHERE

After executing these commands, you can explore the created
objects in the Catalog Explorer. Figure 8-8 displays the structure
and contents of the hr_db database within the
hive_metastore catalog.

Now that we have created our database and its objects, the next
step is configuring their permissions to control access. Properly
setting permissions ensures that only authorized users and
groups can access and manipulate data objects, thereby
maintaining data security and integrity.

Figure 8-8. Reviewing the hr_db schema in the Catalog Explorer

Configuring object permissions

In this step, we will grant permissions to the necessary users
and groups, allowing them to interact with our database and its
objects effectively.

Granting privileges to a group

We begin by granting several privileges on the entire HR
database (hr_db) to the hr_team group. This will enable all
members of this group to read and modify the data, access
metadata information, and create new objects such as tables
and views within this database. The SQL command to achieve
this is as follows:

GRANT SELECT, MODIFY, READ_METADATA, CREATE
ON SCHEMA hive_metastore.hr_db TO hr_team;

With this command, the HR team members will have the
permissions to perform a range of actions on the hr_db
schema, enhancing their ability to manage and utilize the HR
data effectively.

In addition to the previously granted privileges, users must
have the USAGE privilege to perform any action on database
objects. Without this privilege, the objects within the database
cannot be accessed or utilized by the group. The following
command grants the USAGE privilege to the hr_team group:

By executing this command, the hr_team group members will
have the ability to use the database objects, ensuring they can
interact with both data and metadata as needed.

Granting privileges to an individual user

In addition to configuring permissions for groups, it is often
necessary to assign specific privileges to individual users for
more customized access control. To illustrate this, we will grant
read access on the london_employees_vw view to the user Eve
(eve@example.com), who is not a member of the hr_team .

The SQL command to grant the specified permission to Eve is as
follows:

GRANT USAGE ON SCHEMA hive_metastore.hr_db TO hr_team

GRANT SELECT
ON VIEW hive_metastore.hr_db.london_employees_vw TO `

This selective permission allows Eve to access the information
she needs without requiring her to be added to the hr_team
group with broader permissions.

NOTE

While it is possible to assign privileges to individual users, it is generally
recommended to grant permissions to groups. This practice simplifies permission
management, especially in dynamic organizational environments where team
structures frequently change.

Reviewing assigned permissions

After configuring the necessary permissions for groups and
individual users, it is important to verify that these permissions
have been applied correctly. The SHOW GRANTS command is
used to display the assigned privileges, ensuring transparency
and accuracy in permission management.

To review the permissions assigned on the hr_db schema, we
use the following SQL command:

SHOW GRANTS ON SCHEMA hive_metastore.hr_db;

Executing this command produces the list of granted privileges
on our database, as displayed in Figure 8-9. This confirms that
the HR team has all the required permissions.

Figure 8-9. The output of the SHOW GRANTS command on the hr_db schema

Additionally, this figure shows that the user who created the
database (in this case, me) is the owner of the database.

To review the permissions assigned to the
london_employees_vw view, we use the following SQL
command:

SHOW GRANTS ON VIEW hive_metastore.hr_db.london_emplo

This command produces the list of granted privileges on our
view, confirming that Eve has the SELECT privilege, as
illustrated in Figure 8-10.

Figure 8-10. The output of the SHOW GRANTS command on the london_employees_vw
view

Moreover, this figure shows that the HR team has inherited the
relevant privileges on this view from the database level.

Managing permissions in Catalog Explorer

Beyond the SQL editor, we can also manage permissions
through the Catalog Explorer. This simplifies the process of
configuring access controls, making it easier for administrators
who prefer a visual interface over writing SQL commands. To
access the Catalog Explorer, click the Catalog tab in the left
sidebar of your Databricks workspace.

In the Catalog Explorer, locate the database you previously
created (hr_db). Clicking the database name will display a list of
contained tables and views on the left-hand side. On the right-
hand side, you will see detailed information about the database,
such as owner information, as displayed in Figure 8-11.

Figure 8-11. Reviewing the hr_db schema in the Catalog Explorer

From this interface, you can change the owner of the database
by clicking the pencil icon next to the owner’s name. It’s worth
noting that the owner of a database can be set as either an
individual user or a group of users. This is necessary to ensure

that the correct person or team has administrative control and
access to the database, which is especially important when
there are changes in personnel or when database management
responsibilities need to be reassigned.

Reviewing and modifying permissions

Under the Permissions tab, you can review the current
permissions for the database. This tab lists the granted
privileges, such as those for the hr_team group, as illustrated in
Figure 8-12.

Figure 8-12. Reviewing the permissions of the hr_db schema in the Catalog Explorer

In the interface, you have the capability to manage access
permissions, including granting and revoking privileges from
users or groups. Next, we’ll go through a step-by-step guide for
each of these operations.

Granting new permissions

To grant new permissions, such as allowing all workspace users
to review metadata about the database, use the following steps:

1. Click the Grant button: Begin by clicking the Grant blue
button, which will open the grant permissions dialog, as
shown in Figure 8-13.

2. Select the group: In the dialog, search for and select the “All
workspace users” group from the list of available groups.

3. Choose privileges: Next, select the specific privileges you
want to grant. In this case, you will choose both
READ_METADATA and USAGE privileges.

4. Confirm granting of permissions: Finally, click the Grant
button to apply the permissions.

Figure 8-13. The grant permissions dialog in the Catalog Explorer

Figure 8-14 illustrates the interface where the two newly
granted privileges to all the workspace users are displayed.

Figure 8-14. The permissions interface of the hr_db schema showing the newly
granted privileges

This interface simplifies the process of granting permissions,
eliminating the need to write complex SQL commands. Users
can easily manage permissions through intuitive steps, making
it accessible even for those with limited technical knowledge.

Revoking permissions

To remove existing privileges from a user or group, follow these
steps:

1. Select the privilege(s) you want to revoke.
2. Click the Revoke button.

This action will remove the selected privilege from the
designated user or group. For instance, consider the example
shown in Figure 8-15. Here, the action of revoking the CREATE
privilege from the hr_team is illustrated.

Figure 8-15. Revoking permissions via the Catalog Explorer

By revoking the CREATE privilege, the hr_team will no longer
be able to create new objects within the hr_db schema.

Managing permissions for database objects

The Catalog Explorer not only allows you to manage database-
level permissions but also extends this capability to individual
data objects, such as tables and views. To manage permissions
for these objects, click the desired table or view name from the
left-side navigator, and open its Permissions tab, as displayed in
Figure 8-16.

Figure 8-16. Reviewing the permissions of the london_employees_vw view in the
Catalog Explorer

This figure illustrates the permissions interface for the
london_employees_vw view, showing its current privileges and
providing options to revoke and grant new permissions.

Limitations of the Catalog Explorer

While the Catalog Explorer is a versatile and powerful tool for
managing data objects and permissions, there are some
limitations. Specifically, the ANY FILE object cannot be
managed through the Catalog Explorer and must be handled
using the SQL editor.

Query History

One of the notable features of Databricks SQL is the query
history functionality. This feature provides the ability to view all
SQL queries executed in Databricks SQL, including those run
behind the scenes by the Catalog Explorer.

To view these queries, simply select the Query History tab from
the left sidebar of your Databricks workspace. This opens the
query history interface, listing all executed queries along with

details such as the query text, the execution time, and the
executing user, as shown in Figure 8-17.

Figure 8-17. Query history in Databricks SQL

This transparency allows users to understand the exact
commands being run and provides an opportunity to learn and
replicate these commands manually if needed.

In conclusion, while the Hive metastore serves as a
foundational component for metadata management, it offers
only basic governance capabilities. It is clear that it lacks some
advanced security and governance features required for
modern data environments. This is where Unity Catalog comes
into play, which will be the focus of our next section.

Governing Data with Unity
Catalog

In the previous sections, we discussed the data governance
model of Databricks with a default Hive metastore, highlighting
its key features and limitations. Now, we turn our attention to
Unity Catalog, the innovative governance solution introduced
by Databricks. Unity Catalog represents a significant
advancement in data management, offering a more robust and
scalable architecture. This overview will delve into the key
aspects of Unity Catalog, detailing its architecture, the
hierarchical organization of its data objects, and its enhanced

security model designed to meet the evolving needs of modern
data governance.

What Is Unity Catalog?

Unity Catalog (UC) is an open source, centralized governance
solution that spans across all your workspaces on any cloud. It
unifies governance for all data and AI assets in your lakehouse,
including files, tables, machine learning models, and
dashboards. This centralization ensures consistent access
controls, and simplified data management, which enhances
overall data governance and security.

Unity Catalog Architecture

Before the introduction of Unity Catalog, metastore
management, user and group definitions, as well as access
control, were handled within individual workspaces. This
approach required separate configurations for each workspace,
which could lead to inconsistencies and inefficiencies.

With Unity Catalog, governance and access control have been
centralized, significantly improving manageability and
consistency across multiple workspaces, as illustrated in
Figure 8-18. Unity Catalog operates independently of individual

https://www.unitycatalog.io/

workspaces and is managed via the account console, a user
interface designed for administrative tasks.

Figure 8-18. Databricks workspaces management before and after Unity Catalog

This figure illustrates how Unity Catalog decouples user, group,
and metastore management from individual workspaces,
offering a centralized approach to data governance.

Key Architectural Changes

There are three main components to the changes implemented
by Unity Catalog:

Centralized user and group management
Unity Catalog utilizes the account console for managing users
and groups, which can then be assigned to multiple
workspaces. This approach means that user and group
definitions are consistent across all workspaces assigned to
Unity Catalog.
Separation of metastore management
Unlike the workspace-specific metastore used previously,
Unity Catalog’s metastores are managed centrally per cloud
region through the account console. A single Unity Catalog
metastore can serve multiple workspaces, allowing them to
share the same underlying storage. This consolidation
simplifies data management, improves data accessibility, and
reduces data duplication, as multiple workspaces can access
the same data without needing to replicate it across different
environments.
Centralized access control
Access controls within Unity Catalog are controlled centrally
and apply across all workspaces. This ensures that defined
policies and permissions are enforced consistently across the
organization, thereby enhancing overall security.

UC Three-Level Namespace

In the traditional Hive metastore, where there is only a single
catalog, a two-level namespace (schema.table) was sufficient
to address tables within schemas. While this structure is simple
and effective for many use cases, it can become limiting as data
volume and complexity increase, particularly in large-scale
environments where a more granular level of organization is
beneficial.

To address these limitations, Unity Catalog introduces a three-
level namespace that enhances data organization and
management. This new structure incorporates an additional
layer called catalogs, which sits above schemas in the hierarchy.
The updated format for accessing tables becomes
catalog.schema.table , as illustrated in Figure 8-19.

Figure 8-19. Transition to Unity Catalog’s three-level namespace

To better understand the structure of Unity Catalog and its
organization, let us explore the hierarchical model of its data
objects in detail.

Data Object Hierarchy

The hierarchy of data objects in Unity Catalog begins with the
metastore, which serves as the top-level logical container, as
illustrated in Figure 8-20. The metastore holds metadata,
including information about the objects it manages and the
access control lists (ACLs) that govern access to these objects.

Figure 8-20. Unity Catalog hierarchy

Detailed Hierarchical Structure

Unity Catalog’s hierarchical structure is based on relationships
among a number of objects:

Metastore
The metastore is the top-level entity in Unity Catalog,
containing catalogs and managing metadata and access
control. It operates independently from workspaces,
providing enhanced security and a unified governance
model.
Catalogs
Within each metastore, catalogs act as high-level containers
for organizing data objects. They represent the first part of
the three-level namespace. A metastore can contain multiple
catalogs, allowing for flexible and scalable data organization.
Schemas (databases)
Schemas reside within catalogs and represent the second part
of the three-level namespace. They are commonly referred to
as databases. Schemas group related data and AI assets,
facilitating organized data management.
Data and AI assets
These are the third part of the three-level namespace. They
reside within schemas and represent the actual data
structures and AI artifacts managed by Unity Catalog, such as
tables, views, storage volume, registered machine learning
models, and functions.
Storage access objects

Unity Catalog allows you to set custom locations in cloud
storage for storing managed and external tables. This
introduces new securable objects to govern data access to
these locations: storage credentials and external locations. A
storage credential abstracts long-term access keys from cloud
storage providers, while an external location links a given
storage location with a storage credential.
Delta sharing entities
Unity Catalog also supports Delta Sharing, an open protocol
designed for the efficient exchange of large datasets. Within
Unity Catalog, shares represent collections of assets that can
be shared with designated consumers (Recipients). Please
note that Delta Sharing is not included as a topic in the
Databricks Data Engineer Associate certification exam.

By understanding the relationships among these objects, you
can effectively manage your data infrastructure and leverage
Unity Catalog’s capabilities.

Identity Management

Unity Catalog categorizes identities into three types: users,
service principals, and groups. These identities are referred to
as principals and play a vital role in managing access and
permissions.

Users

Users are individuals who interact with the Databricks
environment. Each user is uniquely identified by their email
address, which serves as a unique identifier. Users can be
assigned various roles, including administrative roles, allowing
them to perform advanced tasks such as managing metastores,
assigning metastores to workspaces, and managing other users.

Service principals

Service principals are designed to represent automated tools or
applications. They are identified by an application ID, which
ensures that automated processes have a distinct identity
separate from human users. Service principals can be assigned
administrative roles similar to users, allowing them to perform
essential tasks programmatically. This capability is particularly
useful for facilitating automation and integration with other
systems.

Groups

Groups are collections of users and service principals, treated as
a single entity. Groups simplify the management of permissions
by allowing administrators to assign roles and privileges to a
group rather than to individual users. Groups can be nested
within other groups. For example, a parent group named

“Employees” could contain subgroups such as “HR” and
“Finance.” This nesting capability mirrors organizational units
or functional departments and allows for efficient delegation of
access rights at different levels. Additionally, principals can
belong to multiple non-nested groups.

By leveraging these identity types, administrators can
streamline access control and ensure that both human and
automated entities operate within their designated scopes.

Identity federation

In Databricks, identities are managed at two distinct levels: the
account level and the workspace level. Unity Catalog introduces
a feature called identity federation, which simplifies identity
management by allowing identities to be created once at the
account level and then assigned to multiple workspaces as
needed. Figure 8-21 visually demonstrates how identities
created at the account level can be federated across multiple
workspaces.

Figure 8-21. Identity federation in Unity Catalog

This approach is recommended for effective identity
management across multiple workspaces. It significantly
reduces the overhead associated with maintaining multiple
copies of identities at workspace levels. As a result, it
streamlines administrative tasks and enhances security and
consistency across the Databricks environment.

UC Security Model

Unity Catalog offers a robust security model for permissions
management based on standard ANSI SQL. It enhances data

protection by offering granular access controls tailored to
different types of operations and resources. This flexible and
reliable model ensures efficient management and control over
data access in the lakehouse.

Unity Catalog continues to use the GRANT statement for
assigning privileges on securable objects to principals:

The UC security model provides a comprehensive set of
privileges designed to efficiently manage access to various data
and AI objects and underlying storage. Notably, two specific
privileges now replace the legacy ANY FILE privilege from the
Hive metastore, enhancing storage-related permissions. Here’s
a breakdown of the key categories:

Core privileges

CREATE

Allows users to create new objects, such as a catalog
(CREATE CATALOG), a schema (CREATE SCHEMA), a table or
view (CREATE TABLE), or a function (CREATE FUNCTION).

USE

GRANT <privilege> ON <object-type> <object-name> TO <

Grants the ability to use a specified catalog (USE CATALOG)
or schema (USE SCHEMA). Without this privilege, users
cannot interact with the objects within the catalog or
schema.

SELECT

Permits users to read data from tables or views.

MODIFY

Enables users to modify data within tables, including
inserting, updating, and deleting records.

Storage-related privileges

READ FILES

Allows users to read files directly from the underlying
storage linked to volumes and external locations.

WRITE FILES

Allows users to write files to the underlying storage.

Execution privilege

EXECUTE

Grants permission to invoke user-defined functions or load
a machine learning model for inference.

Figure 8-22 demonstrates the complete security model of Unity
Catalog, highlighting its distinct approach compared to the Hive
metastore’s security model.

Figure 8-22. Security model of Unity Catalog

This comprehensive security model in Unity Catalog provides a
clear and detailed framework for managing data access,
supporting the needs of modern, data-driven organizations.

Accessing the Hive Metastore

Unity Catalog introduces advanced data governance and
security features, but it is designed to be additive. This means
that existing systems and data structures, such as the legacy
Hive metastore, remain accessible and functional even after
Unity Catalog is enabled.

When Unity Catalog is enabled in a Databricks workspace, the
legacy Hive metastore remains available through its
hive_metastore catalog, as illustrated in Figure 8-23. This
catalog provides seamless access to the Hive metastore that is
local to the workspace, ensuring that users can continue to
interact with their existing data without interruption.

Figure 8-23. Coexistence of Unity Catalog and the legacy Hive metastore

This additive nature of Unity Catalog ensures a smooth
transition to advanced data governance, and full compatibility
with existing workflows and data assets.

Unity Catalog Features

In addition to its centralized and secure governance model,
Unity Catalog offers the following features designed to enhance
data management, accessibility, and traceability:

Automated lineage
This feature tracks and visualizes the origin and usage of data
assets across notebooks, workflows, queries, and dashboards,
providing transparency and traceability.
Data search and discovery
Unity Catalog offers capabilities for tagging and documenting
data assets along with a powerful search interface, making it
easier for users to find data.
System tables
Unity Catalog provides access to your account’s operational
data through system tables, including audit logs, billable
usage, and lineage information. This facilitates better
monitoring and management of your data lakehouse.

Together, these features empower organizations to manage
their data assets more efficiently, ensuring compliance and
facilitating deeper insights.

Unity Catalog in Action

To leverage Unity Catalog, Databricks workspaces need to be
properly configured and enabled. This process involves
attaching the workspaces to a Unity Catalog metastore, which
serves as a top-level container for all Unity Catalog metadata per
cloud region.

Enabling workspaces for Unity Catalog

Databricks now automatically enables new workspaces for
Unity Catalog. These workspaces are linked to a Unity Catalog
metastore that is automatically provisioned in the same region.
This simplifies the process for users and ensures that new
workspaces are ready to take advantage of Unity Catalog’s
features right from the start.

Verifying Unity Catalog enablement

To verify whether your Databricks workspace is enabled for
Unity Catalog, simply review the list of catalogs available in the
Catalog Explorer. A UC-enabled workspace will display at least
two additional catalogs besides the legacy hive_metastore and
samples catalogs, as displayed in Figure 8-24.

Figure 8-24. UC catalogs in the Catalog Explorer

These new catalogs include the following:

Main or workspace-named catalog
This is a local workspace catalog. Depending on whether
Unity Catalog was enabled manually or automatically, this

catalog might be named main or reflect the name of your
workspace.
System catalog
This catalog hosts system tables that provide historical
observability across your account, facilitating, among other
things, operational insights and audit logging.

If you can see these catalogs, your workspace is all set up to
utilize Unity Catalog’s features. If not, you will need to manually
enable your workspace for Unity Catalog.

Manual enabling of Unity Catalog

If your Databricks workspace was not automatically enabled for
Unity Catalog, you can enable it by manually attaching it to a
Unity Catalog metastore within the same region. If a Unity
Catalog metastore is not already available in that region, you
must create one through the Databricks account console.

Accessing account console

To manage your metastores and perform other administrative
tasks in Unity Catalog, you need to access the Databricks
account console as an account administrator. Depending on
your cloud provider, you’ll access the console via different
URLs:

AWS: https://accounts.cloud.databricks.com
Azure: https://accounts.azuredatabricks.net
GCP: https://accounts.gcp.databricks.com

Upon logging in, you will be directed to the account console
homepage, as displayed in Figure 8-25.

https://accounts.cloud.databricks.com/
https://accounts.azuredatabricks.net/
https://accounts.gcp.databricks.com/

Figure 8-25. The Databricks account console

This interface provides tools for performing various
administrative tasks at the account level, including managing

workspaces, metastores, and identities, as well as monitoring
account usage logs.

Creating a new metastore

In Databricks, each cloud region requires its own Unity Catalog
metastore. This metastore can be linked to multiple workspaces
within the same region, providing a unified view of the data
across these workspaces. Data from other metastores can be
accessed using Delta Sharing if needed to enable cross-regional
federation.

To create a new metastore within a Databricks region, follow
these steps:

1. Navigate to the account console and click Catalog from the
left sidebar.

2. Click “Create metastore” to begin the setup process for your
new metastore, as illustrated in Figure 8-26.

Figure 8-26. The configuration panel for creating a new metastore in Unity
Catalog

3. Enter metastore details.
1. Name: Provide a unique name for the new metastore.
2. Region: Select the region where the metastore will be

deployed. Ensure this is the same region as the workspaces
that will access the data. Remember, only one metastore
can be created per region.

3. Root storage path (optional): Specify the path to the
storage container or bucket that will serve as the default
location for storing managed tables. If this is not provided,
a storage path must be specified at the catalog level each
time a new catalog is created in the metastore.

4. Identity identifier: If a storage location is specified, provide
the identifier of an identity that has the appropriate access
permissions for that location. This information varies
depending on your cloud provider:

1. — AWS: Use an identity and access management (IAM)
role.

2. — Azure: Use an access connector for Azure Databricks
resource.

3. — GCP: A service account is automatically created for
you. However, you must manually grant it access

permissions to the specified storage location later.

A full discussion of all this information is beyond the scope
of the certification exam. For detailed instructions, refer to
the respective Databricks documentation for your cloud
provider.

4. Click Create to finalize the creation of the metastore.

In the next step, select the workspaces you want to link to the
new metastore, as displayed in Figure 8-27. Remember, you can
only select workspaces in the same region as the metastore.

Figure 8-27. Metastore assignment to workspaces

Lastly, click Assign to activate Unity Catalog for the selected
workspaces, or click Skip to proceed without linking any
workspaces at this time. If you choose to skip, you can link
workspaces to this metastore later.

Assigning existing metastore

Once a metastore has been created in Unity Catalog, you can
assign it to workspaces at any time. Follow these steps to
complete the assignment:

1. Navigate to the Databricks account console.
2. Click Catalog from the left sidebar.
3. Select the metastore you want to assign to workspaces.
4. Click the Workspaces tab within the metastore view, as

illustrated in Figure 8-28.

Figure 8-28. Exploring the workspaces of an existing metastore

5. Click “Assign to workspace.”

6. Choose one or more workspaces in the same region in which
the metastore is provisioned, as shown in Figure 8-29.

Figure 8-29. Assigning the metastore to additional workspaces

7. Scroll to the bottom of the dialog and click Assign.
8. On the confirmation dialog, click Enable.

After the assignment is complete, the newly assigned
workspace(s) will appear in the metastore’s Workspaces tab,
ensuring they now have access to the data and governance
policies defined in that metastore.

Running Unity Catalog workloads

Running workloads in Unity Catalog requires that your compute
resources meet specific security and compliance requirements.
Notably, clusters that were created prior to enabling Unity
Catalog in your workspace do not meet these security
standards. As a result, these pre-existing clusters cannot be used
to access data or other objects managed by Unity Catalog.

Creating a UC-compliant cluster

To run Unity Catalog workloads, it is essential to create a new
cluster after enabling your workspace for Unity Catalog. When
configuring a new cluster, the compliance with Unity Catalog
can be verified through the summary card in the cluster
configuration, as illustrated in Figure 8-30.

Figure 8-30. Creating a Unity Catalog–compliant cluster

Alternatively, you can use an SQL warehouse to run Unity
Catalog workloads, as SQL warehouses are inherently compliant
with Unity Catalog requirements.

Managing data catalogs

In Unity Catalog, managing data catalogs is an essential aspect
that allows you to organize and secure your data across
workspaces. You can create a new catalog in a metastore from
any workspace linked to that metastore.

To follow along with this section, you will need to use
Databricks SQL in a workspace enabled for Unity Catalog. Begin
by navigating to the SQL editor located in the left sidebar of
your Databricks workspace. Before executing any commands,
ensure that your SQL warehouse is up and running.

Creating a new catalog

To create a new catalog, use the CREATE CATALOG command in
Spark SQL. For example, to create a catalog named hr_catalog ,
execute the following command:

CREATE CATALOG IF NOT EXISTS hr_catalog;

This command will successfully create the catalog if your
metastore is already configured with a root storage location.
Otherwise, you will encounter the following error:

This error indicates that a storage location is required for the
managed tables in the catalog. To resolve this error, you have
two options:

Set up a metastore-level storage location
Update the metastore configuration to define a root storage
location for the entire metastore. This location will serve as
the default storage path for all catalogs within the metastore.
Provide a catalog-level storage location
When creating the catalog, specify a default storage location
by using the MANAGED LOCATION clause, as demonstrated in
the following command:

CREATE CATALOG IF NOT EXISTS hr_catalog
MANAGED LOCATION '<location-path>';

ERROR: Metastore storage root URL does not exist.
Please provide a storage location for the catalog (fo
CATALOG myCatalog MANAGED LOCATION '<location-path>')
Alternatively set up a metastore root storage locatio
storage location for all catalogs in the metastore.

Each of these options requires pre-configuring the storage
location path by creating an external location object and its
associated storage credential object. This setup process is
detailed in the Databricks documentation for your cloud
provider and is beyond the scope of the certification exam.

Verifying the created catalog

After successfully executing the CREATE CATALOG command,
you can verify the existence and proper creation of the catalog
through the Catalog Explorer, as displayed in Figure 8-31.

Figure 8-31. List of UC catalogs in the Catalog Explorer after creating hr_catalog

As shown in the figure, each newly created catalog contains a
default database named default and a system database named
information_schema . This informa tion _schema database
contains a set of views that reference system tables in the
system catalog, offering catalog-level historical observability.

Alternatively, you can run the following command to show all
catalogs in the metastore:

SHOW CATALOGS;

Figure 8-32 illustrates the output of this command, which lists
all catalogs in the metastore, including our newly created
catalog hr_catalog .

Figure 8-32. The output of the SHOW CATALOGS command after creating hr_catalog

What makes Unity Catalog particularly noteworthy is its ability
to streamline access across various workspaces. Specifically, any

workspace that is linked to this metastore will now have access
to the hr_catalog . This unified access allows regional teams to
seamlessly query and analyze the same datasets from a
centralized repository whenever they have the appropriate
permissions.

Granting permissions

Let’s now grant permissions for creating schemas, creating
tables, and using the catalog to all users on the account. These
permissions can be combined in a single GRANT command, as
shown here:

This command grants the specified permissions to the group
account users , which typically includes all users associated
with the Databricks account. Similarly, you can assign
permissions to other account-level groups or individual users.

After granting permissions, it is important to verify that the
correct privileges have been assigned. This can be done using
the SHOW GRANT statement, which displays the permissions
associated with a specific catalog, schema, or table. To check the

GRANT CREATE SCHEMA, CREATE TABLE, USE CATALOG ON CAT
TO `account users`;

grants on the hr_catalog , you can run the following
command:

SHOW GRANT ON CATALOG hr_catalog;

This command produces the list of grants on our catalog,
confirming that all account users have the granted privileges, as
illustrated in Figure 8-33.

Figure 8-33. The output of the SHOW GRANT command on the hr_catalog

Creating schemas

In addition to the default database in a catalog, we can create
new databases using the CREATE SCHEMA command. To create a
schema named hr_db within the hr_catalog , we execute the
following command:

CREATE SCHEMA IF NOT EXISTS hr_catalog.hr_db;

After creating a new schema, we can verify its existence and
ensure it has been properly added to the catalog using the
Catalog Explorer. Alternatively, we can use the SHOW SCHEMAS
command, which lists all schemas within a specified catalog. To
list all schemas in the hr_catalog , we run the following
command:

SHOW SCHEMAS IN hr_catalog;

Figure 8-34 illustrates the results of executing this command.
The output includes a list of all schemas within the
hr_catalog , including the newly created schema hr_db .

Figure 8-34. The output of the SHOW SCHEMAS command in the hr_catalog

Managing Delta tables

Unity Catalog integrates seamlessly with Delta Lake, enabling
the creation and management of Delta Lake tables. To create a
Delta Lake table in Unity Catalog, you use the CREATE TABLE
command with the three-level namespace in the format
<catalog>.<schema>.<table> . This approach ensures that the
table is appropriately placed within the catalog and schema
hierarchy.

For instance, to create a table named jobs in the hr_db
schema of the hr_catalog , you can execute the following
command:

Once the table is created, data can be inserted using the INSERT
INTO command, as in the following example:

INSERT INTO hr_catalog.hr_db.jobs
VALUES (1, "Software Engineer", 3000, 5000),
 (2, "Data Engineer", 3500, 5500),
 (3, "Web Developer", 2800, 4800);

CREATE TABLE IF NOT EXISTS hr_catalog.hr_db.jobs
(id INT, title STRING, min_salary DOUBLE, max_salary

Afterward, we can view advanced metadata information about
the table using the DESCRIBE TABLE EXTENDED command:

DESCRIBE EXTENDED hr_catalog.hr_db.jobs;

The output of this command reveals that our table is a managed
table created in the root storage of the metastore, as illustrated
in Figure 8-35.

Figure 8-35. The output of the DESCRIBE EXTENDED command on the jobs table

Dropping tables

To drop a managed table, the DROP TABLE command is used,
which effectively removes the table from the catalog. For

example, to drop our jobs table, we run the following
command:

DROP TABLE hr_catalog.hr_db.jobs;

Unlike traditional Hive metastore behavior, dropping a
managed table in Unity Catalog does not immediately delete the
table’s directory from the underlying storage. Instead, Unity
Catalog retains the data files for a period of 30 days before
permanently deleting them. If you examine the root storage of
the metastore in your cloud account, you’ll find that the table
directory and its data files remain present after dropping the
table, as shown in Figure 8-36.

Figure 8-36. The content of the jobs table directory, in a GCP bucket, after executing
the DROP TABLE command

During a seven-day period after deletion, it is possible to
recover a recently dropped table using the UNDROP TABLE
command. This feature is particularly useful in scenarios where
a table is accidentally deleted or needs to be restored for further
use, enhancing data safety and management. To recover the
jobs table, we run the following command:

UNDROP TABLE hr_catalog.hr_db.jobs;

After executing this command, you can query the table to
confirm that it has been successfully recovered. For example,
use the following command to verify the contents of the
recovered table:

SELECT * FROM hr_catalog.hr_db.jobs;

This query should return the data that was present in the table
before it was dropped, confirming that the recovery process
was successful.

Conclusion

In conclusion, implementing data governance within
Databricks through Unity Catalog represents a significant
advancement in managing and securing data assets. Unity
Catalog offers a comprehensive suite of governance features
that streamline data management, enhance security, and ensure
regulatory compliance. For organizations still using the legacy
Hive metastore, Databricks strongly recommends transitioning
to Unity Catalog to fully leverage these advanced capabilities.
Adopting Unity Catalog will significantly enhance your
organization’s ability to govern and secure data effectively,

better positioning you to meet both regulatory requirements
and operational demands.

Sample Exam Questions

Conceptual Question

1. Which of the following represents the hierarchy of relational
entities in Unity Catalog?

1. Metastore → Catalog → Table → Schema (Database)
2. Schema (Database) → Metastore → Catalog → Table
3. Metastore → Catalog → Schema (Database) → Table
4. Catalog → Metastore → Schema (Database) → Table
5. Schema (Database) → Catalog → Table → Metastore

Code-Based Question

2. A data engineer uses the following SQL query:

GRANT MODIFY ON TABLE inventory TO supply_team

Which of the following describes the ability granted by the
MODIFY privilege?

1. It gives the ability to add data to the table.
2. It gives the ability to delete data from the table.
3. It gives the ability to modify data in the table.
4. All of the above abilities are granted by the MODIFY privilege.
5. None of these options correctly describes the ability granted

by the MODIFY privilege.

The correct answers to these questions are listed in Appendix C.

Chapter 9. Certification Overview

As you approach the final stage of your certification journey, it’s
time to prepare for the exam. In this chapter, we will provide a
comprehensive overview of the certification exam, detailing its
format, structure, and the key topics you need to focus on. We’ll
also offer a practical guide on how to register and what to
expect on exam day. To further enhance your preparation, we
will share valuable resources for practice exams, enabling you
to assess your knowledge and skills effectively.

Exploring the Exam Format

Before taking the Databricks Data Engineer Associate exam, it’s
important to familiarize yourself with the exam layout. The
exam typically consists of 45 questions that you are required to
complete within a 90-minute timeframe. However, depending
on the difficulty of specific questions, you may occasionally
encounter an additional 4 to 5 questions, bringing the total
number to approximately 50 questions.

The passing score has been established through rigorous
statistical analysis, considering the varying levels of difficulty
among the questions. Currently, the passing mark is

approximately set at 75%. However, to increase your chances of
certification, it’s advisable to aim for at least 80%, which means
correctly answering a minimum of 40 questions out of the
potential 50.

Key Topics Covered

The questions expected during the exam are distributed across
several core topics, ensuring comprehensive coverage of the
platform’s capabilities. The distribution is as follows:

1. Databricks Lakehouse Platform—24%
11 questions out of 45 will focus on the use and benefits of
the Databricks Data Intelligence Platform. This includes
understanding its architecture and core components,
particularly Delta Lake.

2. Building ETL Pipelines—29%
13 questions will cover the creation of ETL pipelines using
Apache Spark SQL and Python. This section emphasizes
practical knowledge of transforming and processing batch
datasets and working with higher-order functions and user-
defined functions (UDFs) in Spark.

3. Incremental Data Processing—22%

10 questions will delve into processing data incrementally.
This topic involves understanding how to manage streaming
data and design incremental medallion architectures.

4. Production Pipelines—16%
7 questions will explore topics on constructing production
pipelines and performing Databricks SQL analytics. This
involves implementing DLT pipelines, creating end-to-end
workflows, and visualizing data using Databricks
Dashboards.

5. Data Governance and Security—9%
4 questions will assess knowledge of data governance and
security practices. This includes understanding access
controls in Hive and Unity Catalog to ensure secure and
compliant data management.

Figure 9-1 visually represents the distribution of exam
questions across these essential topics.

Figure 9-1. Distribution of the Databricks Data Engineer Associate exam questions

Rest assured, all these topics have been covered in depth
throughout this book. The chapters are carefully designed to
align with the exam topics, ensuring that you’re fully prepared
for the assessment.

Out-of-Scope Topics

While focusing on the key areas is crucial, it’s equally important
to recognize which topics will not appear on this Associate-level

Data Engineer exam. The following subjects are considered out
of scope:

Apache Spark internals
Detailed mechanisms and underlying architecture of Apache
Spark will not be tested.
Databricks CLI and REST API
Knowledge related to the Databricks command-line interface
and RESTful API is not required.
Data modeling concepts
Questions concerning data modeling principles are excluded
from the exam content.
GDPR/CCPA
Regulations like the General Data Protection Regulation
(GDPR) and California Consumer Privacy Act (CCPA) will not
be assessed.
Monitoring and logging production jobs
Practical aspects of tracking and logging in production
environments are not included.
Dependency management and testing
Topics related to managing dependencies in projects and
testing methodologies are also not part of this exam.

By understanding both the key topics and those that are out of
scope, you can tailor your study plan effectively, focusing on the
areas that will enhance your chances of success in the
certification exam.

Code Snippet Language

In code-based questions, data manipulation will primarily be
demonstrated using SQL whenever applicable. If SQL is not
suitable—such as in Spark Structured Streaming—code snippets
will be provided in Python.

Familiarity with both SQL and Python will be essential, as it will
enable you to navigate and understand the code effectively,
ensuring you can correctly answer any code-based question.

Registering for the Exam

Before scheduling your exam, it’s essential to understand the
associated costs and policies. Understanding these details can
help ensure a smoother registration process and better
preparation for your exam experience.

Registration Fee

Each attempt at the certification exam requires a fee of $200,
excluding applicable taxes. Candidates may retake the exam as
many times as necessary to achieve a passing score. However, a
fee of $200 is required for each attempt, and there is a
mandatory 14-day waiting period between retakes. This policy is

designed to allow sufficient time for review and preparation
before retesting.

Exam Platform Overview

Databricks exams are conducted online through the Kryterion
Webassessor platform, a globally recognized and secure online
exam portal. The platform can be accessed directly via this link:
https://www.webassessor.com/databricks. To register for the
exam, you need first to create an account on the platform by
clicking the Create New Account link, as displayed in Figure 9-2.

https://www.webassessor.com/databricks

Figure 9-2. Webassessor platform sign-in page

You will be required to provide basic personal information,
including your name, email address, and contact details. Once
your account is set up, log in to your account to access the main
dashboard of the Webassessor platform.

Scheduling the Exam

Once logged into your account, follow these steps to scheduling
your exam:

1. Navigate to the exam registration page: Access the “Register
for an Exam” option on the top bar of the Webassessor
platform. This will open the page where you can view the
available Databricks certification exams, as shown in
Figure 9-3.

Figure 9-3. Register for the exam on the Webassessor platform

From this list, locate the Databricks Certified Data Engineer
Associate certification and click Continue next to it to
proceed to the scheduling page.

2. Select date and time: Next, you will be presented with a
calendar where you can choose the most suitable date and
time for your exam, as displayed in Figure 9-4.

Figure 9-4. Exam date and time selection

Available slots will vary based on demand, so it is advisable to
book your exam well in advance. After selecting the date and
time, click the Schedule button to proceed to payment.

3. Completing payment: Follow the prompts on the payment
page to enter your payment details and complete the
transaction. Once payment is processed, you will receive an
email confirmation with the details of your exam booking.

Troubleshooting and Support

The Kryterion support team offers assistance through a live
chat feature, which allows for prompt resolution of any issues
that arise before or during the exam. In the event of any
technical problems, you can quickly contact the support team
through the Kryterion Support Center, which can be accessed
via this link: https://kryterion.force.com/support.

Once you have navigated to the support page, you will find a
chat icon located at the bottom-right corner of the page.
Clicking this icon will open a chat window where you can
communicate with a support representative in real time.

https://kryterion.force.com/support

This feature is particularly useful for resolving urgent issues
that occur just before or during your exam. Whether you’re
experiencing difficulty with the exam scheduling or having
trouble launching the exam, the live chat allows for immediate
assistance without the need for email exchanges or long wait
times.

Getting Ready for the Assessment

Before the day of your exam, review the instructions sent to
you via a reminder email, and take the necessary steps to
prepare your testing environment. On the day of your
scheduled exam, it is recommended that you log in to your
Webassessor account 15 minutes before your exam start time.
This extra time will allow you to finalize your setup and ensure
that your computer is ready for the assessment.

Once logged in, navigate to the My Assessments page from the
top bar of the Webassessor platform. Here, you will find your
scheduled exam listed, along with the date and time, as shown
in Figure 9-5. From this page, you can launch your exam or, if
necessary, reschedule or cancel it.

Figure 9-5. My Assessments page on the Webassessor platform

Before launching your exam, make sure to complete the
following prerequisites if you haven’t done so already:

Installing the assessment software: Click the “Install secure
browser” button to download and install the required
assessment software. This program manages your exam
environment and runs in full-screen mode, preventing access
to other applications or files on your computer during the
exam. Please note that some common corporate software
may not function optimally within the secure test
environment. Therefore, it is advisable to use a personal
computer with a camera to avoid potential issues.
Enroll in biometrics: Next, click the “Enroll in biometrics”
button to verify your identity, a crucial step to ensure you are
the person taking the exam.

Once these steps are completed, you can proceed by clicking the
Launch button to start your exam.

Exam Proctoring

Databricks exams incorporate a strict proctoring process to
ensure the integrity and security of the assessment.

Understanding what to expect during the proctoring process
will help you prepare appropriately and avoid any issues during
the exam.

Webcam monitoring
Throughout the duration of the exam, you will be monitored
in real time by a Webassessor Proctor via your computer’s
webcam. So, it is important to ensure that your webcam is
fully functional prior to the exam.
Microphone and audio restrictions
In addition to webcam monitoring, your microphone must be
operational for the entire duration of the exam. Please be
aware that reading the exam questions aloud is strictly
prohibited.
Testing environment requirements
No test aids are permitted during the exam. This means you
will not be allowed to use notes, textbooks, or any other
external resources. Your physical testing environment must
be clean and free from any such materials. The proctor may
inspect your testing area via the webcam before the exam
begins to ensure it meets these requirements.

It is essential to understand that the proctor’s role is to maintain
fairness and security. While the proctor can assist with technical
issues that may arise during the exam, they will not provide any
assistance regarding the content of the exam. For example, if
you encounter a problem with your computer or internet

connection, the proctor can guide you through resolving the
issue; however, they are not allowed to clarify or explain any of
the exam questions.

Exam Result

Upon completing the certification exam, the grading process is
both immediate and automated. As soon as you finish your test
and submit your answers, the assessment software will
instantly display your pass or fail result.

Although you receive your exam result immediately, the formal
credentials—your badge and certificate—are not delivered
instantaneously. If you pass the exam, your official certification
will be sent to you via email within 24 hours. The email you
receive will contain a link directing you to the Databricks
Credentials platform, accessible at
https://credentials.databricks.com. From this platform, you can
manage, share, and verify all your certifications, as displayed in
Figure 9-6.

https://credentials.databricks.com/

Figure 9-6. Databricks Credentials platform

This digital certification confirms your achievement and can be
easily shared on social platforms or added to your professional
profiles, such as LinkedIn.

Practice Exams

When preparing for certification, practice exams offer valuable
opportunities to familiarize yourself with the exam format and
types of questions, providing you with a solid foundation before
taking the actual exam. To assist with your preparation for this
certification, two valuable sources of practice exams are
available: an official static practice exam from Databricks and
interactive practice tests on various third-party learning
platforms.

Official Databricks Practice Exam

One of the primary resources for exam preparation is the
official Databricks practice test, which is accessible in PDF
format. This static practice exam can be downloaded directly.

This document contains 45 questions that are representative of
the kinds of questions you will encounter in the real exam.

https://oreil.ly/practexam

However, these questions are no longer part of the current
exam. Upon completing this practice exam, you can evaluate
your performance by reviewing the answer key provided at the
end of the document.

Interactive Practice Exams

For a more dynamic and immersive exam preparation
experience, interactive practice exams are available on some
popular learning platforms. One such resource is the Udemy
course provided by the author, which offers a series of practice
exams tailored to this certification. The course can be accessed
here: https://oreil.ly/Udemy-alhussein.

These interactive practice exams simulate the live exam
environment, providing a timed and structured approach to
exam preparation. They allow you to experience the pressure
and time constraints that come with the real exam. After
completing a practice exam, you receive immediate feedback,
including a pass or fail result. This feedback is invaluable, as it
comes with detailed explanations for each question, helping
you understand your mistakes and reinforce your knowledge.

To maximize your chances of success on the actual certification
exam, it is recommended to aim for 100% accuracy in practice

https://oreil.ly/Udemy-alhussein

exams. By repeatedly taking these tests until you achieve a
perfect score, you’ll ensure that you are well prepared for the
questions and scenarios presented in the real exam.

Seeking Assistance

If you have any concerns specific to Databricks certifications,
such as exam content, registration issues, or credential
inquiries, the best course of action is to reach out directly to the
Databricks support team. You can contact them through their
support page. This channel is specifically designed for
certification-related inquiries and ensures that your questions
are addressed by official support staff.

Final Thoughts

Congratulations on making it this far! This study guide was
designed to help you on your journey to becoming a Databricks
Certified Data Engineer Associate. You’ve now covered all the
topics and skills needed for this certification exam. With a solid
understanding of Databricks and data engineering concepts,
you’re ready to take the next step.

https://oreil.ly/C8t17

As you prepare for the big day, keep in mind that the secret to
passing the exam is consistent practice. It’s not enough to just
read and understand the concepts; you need to put them into
action. Take the time to review all the hands-on exercises in this
book and apply them in your Databricks workspace to reinforce
your understanding. Lastly, utilize the practice exams
mentioned in this chapter to assess your knowledge and adjust
your study plan accordingly.

It’s often said that success is just 1% inspiration and 99% hard
work. This is especially true when it comes to preparing for an
exam. Your dedication and consistent effort will pay off, not
only in passing the exam but in equipping you with valuable
skills for your career. Stay focused, practice consistently, and
trust in the work you’ve put in.

I wish you all the best in obtaining your Databricks Data
Engineer Associate certification. I’d love to hear about your
exam results, so feel free to share them with me on LinkedIn!

https://www.linkedin.com/in/deraralhussein

Appendix A. Signing Up for
Databricks

If you are new to Databricks, the company provides a 14-day
free trial in your cloud account of Microsoft Azure, Amazon
Web Services (AWS), or Google Cloud Platform (GCP). During
this period, you have access to all the features available within
the Databricks ecosystem, allowing for a thorough exploration
of its capabilities. However, it’s important to understand that
while Databricks itself is free during this trial, the platform
relies on cloud compute resources, which are billed separately
by the cloud provider.

Most cloud providers offer promotional credits for new users,
which can be applied toward these additional costs. To take
advantage of these credits, you would need to sign up for the
respective cloud provider’s free tier using a credit card. For
instance, when you sign up for the Microsoft Azure free tier,
you get a $200 credit valid for the first 30 days. This credit can
significantly offset the costs associated with running Azure
Databricks during your trial period.

https://oreil.ly/7bpR_

Deploying Databricks on
Microsoft Azure

Although Databricks offers similar functionalities across
different cloud providers, its integration with Microsoft Azure
stands out due to its native integration. On Azure, Databricks is
offered as a first-party service known as Azure Databricks. This
tight integration allows you to deploy Databricks using the same
familiar Azure Portal interface that is used to manage other
Azure services.

Here is a step-by-step guide to deploying Databricks on
Microsoft Azure:

1. Access the Azure Portal: Begin by navigating to the Azure
Portal. If you don’t already have an Azure account, you’ll
need to create one to proceed.

2. Search for Databricks: Once logged in, use the search bar at
the top of the Azure Portal to search for “Databricks.” From
the search results, select the Azure Databricks service, as
illustrated in Figure A-1.

https://portal.azure.com/

Figure A-1. Searching for Databricks service in the Azure Portal

3. Create a Databricks workspace: On the Azure Databricks
page, click the Create button to start setting up a new
Databricks workspace, as displayed in Figure A-2.

Figure A-2. Azure Databricks page in the Azure Portal

4. Subscription selection: You will be prompted to select your
Azure subscription. If you have multiple subscriptions,
choose the one under which you want to deploy Databricks,
as shown in Figure A-3.

Figure A-3. New Databricks workspace configuration in the Azure Portal

5. Create a resource group: Next, you need to either select an
existing resource group or create a new one. A resource
group is essentially a container that holds related resources
for an Azure solution. If you want to create a new resource
group, click the “Create new” option below the resource
group drop-down menu. It’s a good practice to use a
descriptive name, such as “databricks-demo-rg,” which will
contain all the resources associated with this demonstration.

6. Name your workspace: Enter a name for your Databricks
workspace, such as “Demo-Workspace.”

7. Choose a region: Select the Azure region where your
workspace resources will be deployed. The choice of region
can affect performance, cost, and availability of certain
workspace features.

8. Pricing tier: Azure Databricks offers two main pricing tiers:
Standard and Premium. The Standard tier includes core
Databricks features, while the Premium tier offers advanced
features such as Databricks SQL, Delta Live Tables (DLT), and
role-based access control (RBAC), which we use in this book.
To explore the full range of Databricks capabilities, select the
Trial (Premium - 14-Days Free DBUs) option. This will give
you access to the Premium tier for the duration of the trial.

https://oreil.ly/p8XR_

9. Review and create: After configuring your workspace, click
the “Review + create” button to review your settings. If
everything looks correct, click Create to begin the
deployment process.

10. Deployment: Once you confirm the workspace creation,
you’ll be directed to the deployment page, as illustrated in
Figure A-4. Here, you can monitor the progress of the
deployment.

Figure A-4. Deploying the new Databricks workspace

11. Resource management: After the deployment is complete,
you have the option to review the deployment details;
otherwise, click “Go to resource,” as displayed in Figure A-5
to access the overview page of your new Databricks
workspace.

Figure A-5. Completed Databricks workspace deployment

Figure A-6 shows the overview page of your newly
provisioned Databricks workspace. Along with this
workspace, Azure has automatically set up a managed
resource group to organize related resources efficiently.

Figure A-6. The overview page of the new Databricks workspace

If you click the name of this managed resource group, you
can explore the cloud resources associated with your
workspace, as illustrated in Figure A-7.

Figure A-7. The managed resource group of the new Databricks workspace

This group contains the resources necessary for your
Databricks workspace to function, such as a storage account

used for the DBFS and associated network resources.
12. Launch your workspace: Go back to the resource overview

page and click Launch Workspace, as displayed in Figure A-8,
to open your Databricks workspace.

Figure A-8. Launching the new Databricks workspace

You will notice that the platform uses Azure Entra ID for single
sign-on (SSO), simplifying the login process and ensuring that
your workspace adheres to your organization’s security policies.
Figure A-9 illustrates the Databricks workspace showing its
main interface and navigation options.

Figure A-9. The home page of the Databricks workspace

Congratulations! You have now successfully created your Azure
Databricks workspace. This workspace serves as your central
hub for performing data engineering, machine learning, and
analytics tasks. In Chapter 1, we navigate the workspace
interface and explore the various features that Databricks
offers.

To create additional workspaces, simply navigate back to the
Azure Databricks service page in the Azure Portal. From there,
you can manage your workspaces and create new ones as
needed.

Deploying Databricks on Amazon
Web Services

If you’re considering using Databricks on AWS, you can start
with a free trial subscription available through AWS
Marketplace.

NOTE

Databricks workspaces operating on AWS incur additional costs related to the NAT
gateway deployed with the workspace. Even if no clusters are actively running in
your workspace, you will still be charged for the NAT gateway usage. You can review
NAT gateway pricing on the AWS website.

https://oreil.ly/90Fyz

Here are detailed instructions for creating your first Databricks
workspace via the AWS Marketplace:

1. Log in to your AWS account: Start by logging into your AWS
account Console.

2. Search for Databricks: In the AWS Console, use the search bar
to look for “Databricks.” Under the Marketplace tab, select
“Databricks Data Intelligence Platform,” as illustrated in
Figure A-10. Alternatively, you can directly access the listing.

https://console.aws.amazon.com/
https://oreil.ly/FsBYX

Figure A-10. Searching for Databricks product in the AWS account console

3. View purchase options: On the Databricks Data Intelligence
Platform product page, click “View purchase options,” as
shown in Figure A-11.

Figure A-11. The Databricks Data Intelligence Platform product page in the AWS
Marketplace

4. Subscribe: At the bottom of the subscription page, click the
Subscribe button, as displayed in Figure A-12, to begin the
subscription process.

Figure A-12. Subscribing to Databricks Data Intelligence Platform product from
the AWS Marketplace

5. Set up your account: Once the subscription process is
completed, a confirmation message will appear at the top of
the page, as shown in Figure A-13. At this point, click “Set up
your account” to create a new Databricks account on the
Databricks website.

Figure A-13. The confirmation message for setting up a new Databricks account

6. Enter account details: As illustrated in Figure A-14, you need
to provide your email address, first and last names, and

company name (or “Personal” if using a personal email). Fill
in these details, and then click “Sign up.”

Figure A-14. Entering Databricks account details

7. Verify your email address: Open your email and use the
provided login to complete the setup of your Databricks
account.

8. Logging in to Databricks: Log in to your Databricks account
console using your email address and a one-time password.
This account console allows you to manage all your
Databricks workspaces.

9. Workspace setup: In the setup page of the Databricks
workspace, as displayed in Figure A-15, provide the following
details:
1. Enter a friendly workspace name: Provide a name for your

workspace, such as “Demo-Workspace.”
2. Select the region: Choose the AWS region where your

workspace will be deployed. The choice of region can
affect performance, cost, and availability of certain
workspace features.

3. Start quickstart: Click “Start quickstart” to initiate the
setup.

https://oreil.ly/ns_dV

Figure A-15. Setting up your first Databricks workspace on AWS

10. Create CloudFormation stack: You’ll be redirected to the AWS
Console to continue the configuration using CloudFormation.
On the stack creation form, scroll to locate and select the
checkbox shown in Figure A-16 and then click “Create stack.”

Figure A-16. Creating the CloudFormation stack on AWS for the Databricks
workspace

11. Receive workspace URL: The successful completion of the
stack creation, as illustrated in Figure A-17, means that your
workspace is ready. You will subsequently receive an email
containing the URL for accessing your new workspace.

Figure A-17. Successful completion of the CloudFormation stack creation for the
Databricks workspace

12. Log in to your workspace: Access your new Databricks
workspace by using the workspace URL sent to you via email.

Congratulations! You have successfully created your Databricks
workspace on AWS. To ensure easy access in the future, I
recommend bookmarking the workspace URL in your web
browser.

Additional Workspaces and
Account Management

Once you’ve set up one Databricks workspace, you might want
to create additional workspaces for different projects or teams.
You can do this easily through the Databricks account console:

1. Access the Databricks account console.
2. Create additional workspaces: Under the Workspaces tab,

click “Create workspace,” as shown in Figure A-18.

https://accounts.cloud.databricks.com/

Figure A-18. Creating additional workspaces from the Databricks account console

3. Use the quickstart option by repeating steps 9 to 12 as
outlined previously.

Deploying Databricks on Google
Cloud Platform

If you’re interested in exploring Databricks on GCP, you can
begin with a free trial subscription available through Google

Cloud Marketplace.

NOTE

Google Cloud applies an additional per-workspace cost for the Google Kubernetes
Engine (GKE) cluster required to manage Databricks infrastructure in your GCP
account. Even if no clusters are actively running in your workspace, you will still be
charged for this GKE cluster. For detailed pricing information, visit the GKE pricing
page.

To create a free trial subscription of Databricks on GCP and
create your first Databricks workspace, follow these steps:

1. Log in to Google Cloud Platform: Start by logging into your
Google Cloud Platform account.

2. Select or create a project: Choose an existing Google Cloud
project or create a new one. Ensure that billing is enabled for
the project and that you have the Billing Account
Administrator permission. Billing must be active to use
Databricks.

3. Search for Databricks: Use the search bar in the Google Cloud
Console to look for “Databricks,” as illustrated in Figure A-19.
Select the Databricks product from the search results.
Alternatively, you can access the Databricks product directly.

https://oreil.ly/HXOJd
https://console.cloud.google.com/
https://oreil.ly/OPSaG

Figure A-19. Searching for Databricks product in the GCP account console

4. Subscribe to Databricks: Click on the SUBSCRIBE button to
begin the subscription process, as displayed in Figure A-20.

Figure A-20. Subscribing to Databricks from the Google Cloud Marketplace

5. Accept terms: Review the terms and conditions, and click
SUBSCRIBE to agree, as shown in Figure A-21.

Figure A-21. Reviewing the terms and conditions for the Databricks subscription

Once your subscription request is sent, click GO TO PRODUCT
PAGE to proceed, as shown in Figure A-22.

Figure A-22. Subscription request submitted to Databricks

6. Sign Up with Databricks: Click SIGN UP WITH DATABRICKS, as
illustrated in Figure A-23, to create a new Databricks account.

Figure A-23. Sign up with Databricks

7. Enter your company name if using a professional email, or
type “Personal” if using a personal email. Then, click Sign in
with Google, as illustrated in Figure A-24.

Figure A-24. Entering company name during Databricks sign-up

8. Manage your Databricks account: Click MANAGE ON
PROVIDER, as displayed in Figure A-25, to access your
Databricks account.

Figure A-25. Databricks trial is active

9. Select subscription plan: Choose the Premium subscription
plan, as shown in Figure A-26, and click Continue to proceed

with the premium features of Databricks.

Figure A-26. Selecting the Databricks subscription plan

10. Create a Databricks workspace:
1. Access Databricks console: In your Databricks account

console, go to the Workspaces tab on the left sidebar and
click “Create workspace,” as shown in Figure A-27.

Figure A-27. Creating a workspace from the Databricks account console

This opens the workspace creation page, as illustrated in
Figure A-28.

Figure A-28. Workspace creation page in the Databricks account console

2. Workspace configuration: Enter the following details:
1. Enter workspace name: Provide a friendly name for

your workspace, such as “Demo-Workspace.”
2. Select region: Choose the target region where your

Databricks workspace will be deployed. The choice of
region can affect performance, cost, and availability of
certain workspace features.

3. Enter Cloud project ID: Input your Google Cloud project
ID, which can be located on your project dashboard, as
demonstrated in Figure A-29.

https://oreil.ly/-hLcN

Figure A-29. Locating Google Cloud project ID on the project dashboard

3. Click Save to initiate the creation of your workspace.
11. Refresh and check status: Refresh the Workspaces page to

check the status of your workspace creation, as displayed in
Figure A-30.

Figure A-30. Databricks workspace in provisioning status

12. Log in to your workspace: Once the workspace is ready, click
Open, as displayed in Figure A-31, to log in to your Databricks
workspace.

Figure A-31. Databricks workspace in running status

Congratulations! You’ve successfully created your Databricks
workspace on Google Cloud. To ensure easy access in the future,
bookmark the workspace URL in your preferred web browser. If
you need to create additional Databricks workspaces, you can
return to the Databricks account console at any time.

https://accounts.gcp.databricks.com/

Appendix B. Databricks
Community Edition

Databricks Community Edition provides a free and accessible
way for you to explore the capabilities of Databricks without the
need for a cloud account. However, it is limited compared to the
full trial available on cloud platforms like AWS, Azure, or
Google Cloud. The full cloud-based trial provides access to
production-grade functionalities such as Databricks SQL, Delta
Live Tables, and Git folders, which are not included in the
Community Edition.

If you do not yet have a cloud account, it is possible to create
one at no cost. Major cloud providers generally offer free tiers,
which allow you to explore their services within specified usage
limits. This option provides an opportunity to experience the
full capabilities of Databricks in a cloud environment, which is
essential for understanding and preparation for the exam.

Nevertheless, the Community Edition remains a good starting
point for anyone new to Databricks, offering an opportunity to
explore the platform’s core concepts and tools. To sign up for
Databricks Community Edition, follow these steps:

1. Visit Databricks Community Edition: Start by navigating to
the Databricks Community Edition sign-in page.

2. Sign up: Click Sign Up, as illustrated in Figure B-1.

https://community.cloud.databricks.com/

Figure B-1. Signing up for Databricks Community Edition

3. Enter your details: Fill in your personal information, as
illustrated in Figure B-2. Enter your full name, email address,
and job title. In the Company field, enter your company name
(or “Personal” if using a personal email); then click Continue.

Figure B-2. Sign-up form for Databricks account

4. Select Community Edition: At the bottom of the registration
page, click “Get started with Community Edition,” as
displayed in Figure B-3.

Figure B-3. Getting started with Community Edition

5. Complete security verification: Confirm that you are not a
robot by solving the puzzle provided.

6. Verify your email address: Go to your email inbox and locate
the verification email sent by Databricks. Click the link within
the email to confirm your email address.

7. Set your account password: After verifying your email, you
will be prompted to set a password for your new Databricks
account, as shown in Figure B-4. Choose a secure password to
complete the setup and log in to your workspace.

Figure B-4. Password setup for the Databricks Community Edition account

Congratulations! You have successfully created your Databricks
workspace on the Community Edition. You can access your

workspace at any time by visiting
https://community.cloud.databricks.com and logging in with the
email and password you set during the registration process.

https://community.cloud.databricks.com/

Appendix C. Answers to Sample
Exam Questions

This appendix provides the correct answers to the sample exam
questions from Chapter 1 to Chapter 8.

Chapter 1: Getting Started with
Databricks

1. C
2. D

Chapter 2: Managing Data with
Delta Lake

1. E
2. B

Chapter 3: Mastering Relational
Entities in Databricks

1. D
2. C

Chapter 4: Transforming Data
with Apache Spark

1. B
2. D

Chapter 5: Processing Incremental
Data

1. B
2. E

Chapter 6: Building Production
Pipelines

1. A
2. E

Chapter 7: Exploring Databricks
SQL

1. C
2. A

Chapter 8: Implementing Data
Governance

1. C
2. D

Index

A

access control
centralized, in Unity Catalog, Key Architectural Changes
database-specific, Granting privileges by role
granular, facilitated by schemas, Data object types
verifying, SHOW GRANTS operation

access modes for Databricks clusters, 6. Configuring the
access mode
accessing views, comparison of view types, Accessibility
account console

accessing in Unity Catalog, Accessing account console
creating additional workspaces, Additional Workspaces
and Account Management
management of Unity Catalog via, Unity Catalog
Architecture
managing users and groups in Unity Catalog, Key
Architectural Changes

ACID transactions, What Is Delta Lake?, Delta Lake
Advantages
Advanced Compute configurations (DLT pipeline), Compute

Advanced configurations (DLT pipeline), Advanced
configurations
agents (CDC), CDC agents
aggregations

aggregating unique values using Spark SQL collect_set
function, Aggregating Unique Values
creating aggregate table in gold layer of medallion
architecture, Advancing to the gold layer
performing on streaming data using SQL, Applying
transformations

AI (artificial intelligence)
AI assets in Unity Catalog, Detailed Hierarchical Structure
workspace assistant, Top bar

alerts
Databricks SQL feature for, What Is Databricks SQL?
setting up in Databricks SQL, Setting Up Alerts-Scheduling
the Alert

creating an alert, Creating an Alert-Creating an Alert
notification destinations, Conceptual Questions
scheduling an alert, Scheduling the Alert

alerts interface in Databricks SQL, Creating an Alert
ALL PRIVILEGES, ALL PRIVILEGES
all-purpose clusters

about, All-Purpose Clusters

comparison with job clusters, Creating Clusters
creating, Creating All-Purpose Clusters-Managing your
cluster

configuration, single-node versus multi-node, 5.
Configuring the cluster: Single-node versus multi-node
configuring access mode, 6. Configuring the access
mode
configuring driver node, 10. Configuring the driver node
configuring worker nodes, 9. Configuring worker nodes
controlling your cluster, Controlling your cluster
enabling auto-termination, 11. Enabling auto-
termination
enabling Photon, 8. Enabling Photon
initiating cluster creation, 2. Initiating the cluster
creation
managing your cluster, Managing your cluster
naming the cluster, 3. Naming your cluster
navigating workspace Compute tab, 1. Navigating to the
Compute tab
selecting Databricks Runtime version, 7. Performance:
Selecting the Databricks Runtime version
setting cluster policy, 4. Setting the cluster policy
summary of cluster configuration, 12. Reviewing the
cluster configuration

Amazon Web Services (AWS), High-Level Architecture of the
Databricks Lakehouse

deploying Databricks on, Deploying Databricks on Amazon
Web Services-Deploying Databricks on Amazon Web
Services
signing up for Databricks on, Signing Up for Databricks

AnalysisException (schema mismatch), 2. INSERT
OVERWRITE
ANSI SQL, UC Security Model
answers to sample exam questions, Answers to Sample Exam
Questions-Chapter 8: Implementing Data Governance
ANY FILE object, Limitations of the Catalog Explorer, UC
Security Model
Apache Spark on Databricks, Apache Spark™ on Databricks

benefits of Delta Live Tables over, Benefits of Delta Live
Tables
clusters, architecture of, Creating Clusters
developing UDFs in Spark SQL, Developing SQL UDFs-
Dropping UDFs
higher-order functions, working with, Working with
Higher-Order Functions-Transform Function
performing advanced ETL transformations, Performing
Advanced ETL Transformations-Changing Data
Perspectives

querying data files, Querying Data Files-Hybrid approach
CTAS statements, registering tables from files,
Registering Tables from Files with CTAS
querying JSON format, Querying JSON Format
querying non-self-describing formats, Querying Non-
Self-Describing Formats-Registering Tables from Files
with CTAS
querying using binaryFile format, Querying Using
binaryFile Format
querying using text format, Querying Using the text
Format
registering tables on foreign data sources, Registering
Tables on Foreign Data Sources-Hybrid approach

Spark UI for monitoring and debugging applications,
Managing your cluster
streaming data with, Processing Incremental Data-
Unsupported operations
transforming data with, Transforming Data with Apache
Spark
writing to Delta Lake tables, Writing to Tables-2. INSERT
OVERWRITE

Append mode (output mode of DataStreamWriter), Append
mode, Transitioning to the silver layer

append-only requirement (streaming sources), The append-
only requirement of streaming sources, Materialized views,
Creating a materialized view
appending data to Delta Lake tables, Appending Data
APPLY AS DELETE WHEN, APPLY CHANGES INTO command,
Extending DLT Pipelines with New Notebooks
APPLY CHANGES INTO command, CDC in DLT-Disadvantages
of APPLY CHANGES INTO

advantages for processing CDC feeds in DLT, Advantages of
APPLY CHANGES INTO
disadvantages of, Disadvantages of APPLY CHANGES INTO
key elements of, APPLY CHANGES INTO command
silver table created as target table, Extending DLT Pipelines
with New Notebooks
specifying how changes from bronze table are applied to
silver table, Extending DLT Pipelines with New Notebooks

APPLY CHANGES INTO LIVE.courses_silver, Extending DLT
Pipelines with New Notebooks
arrays

collect_set function returning array of unique values,
Aggregating Unique Values
TRANSFORM function applied to, Transform Function
transforming into individual rows using explode function
in Spark SQL, Leveraging the explode Function

array_distinct function, Aggregating Unique Values
AS keyword, Stored views
assessment software, installing, Getting Ready for the
Assessment
assistance, seeking for Databricks certification concerns,
Seeking Assistance
auditing, What Is Data Governance?
Auto Loader

comparison to COPY INTO, Comparison of Ingestion
Mechanisms
conceptual exam question about, Conceptual Question
configuring in medallion architecture, Configuring Auto
Loader
direct way to use in SQL, Creating a streaming table
implementation for incremental data ingestion from files,
Auto Loader in Action-Cleaning up

cleaning up after, Cleaning up
observing Auto Loader in action, Observing Auto Loader
setting up Auto Loader, Setting up Auto Loader
table history during processing, Exploring table history

loading data incrementally from files, Auto Loader
schema management, Schema management

auto-termination, All-Purpose Clusters

enabling for all-purpose cluster, 11. Enabling auto-
termination

automated lineage feature (Unity Catalog), Unity Catalog
Features
availableNow trigger option, Triggered mode: Incremental
batch processing, Persisting streaming data, Advancing to the
gold layer

executing Auto Loader in incremental batch mode,
Observing Auto Loader

awaitTermination method, Persisting streaming data
AWS (Amazon Web Services), High-Level Architecture of the
Databricks Lakehouse

deploying Databricks on, Deploying Databricks on Amazon
Web Services-Deploying Databricks on Amazon Web
Services
signing up for Databricks on, Signing Up for Databricks

Azure, High-Level Architecture of the Databricks Lakehouse
Databricks file storage on, Databricks File System (DBFS)
deploying Databricks on, Deploying Databricks on
Microsoft Azure-Deploying Databricks on Microsoft Azure
free tier on, compute limit of four cores, 13. Creating the
cluster
signing up for Databricks on, Signing Up for Databricks

Azure Data Lake Storage (ADLS), Databricks File System
(DBFS)
Azure DevOps, Configuring Git integration

B

batch processing
Apache Spark on Databricks, Apache Spark™ on
Databricks
combined with stream processing in medallion
architecture, Benefits of Medallion Architectures
incremental, executing Auto Loader in, Observing Auto
Loader
incremental, scenario demonstrating, Persisting streaming
data
incremental, with DataStreamWriter, Triggered mode:
Incremental batch processing
unification of batch and streaming operations in Spark
Structured Streaming, Spark Structured Streaming

binaryFile format, querying with, Querying Using binaryFile
Format
biometrics, enrolling in, Getting Ready for the Assessment
Bitbucket, Configuring Git integration
bronze layer (medallion architecture)

about, Bronze layer

creating bronze table to ingest CDC feed, Extending DLT
Pipelines with New Notebooks
designing for DLT pipeline, Bronze layer
establishing, Establishing the bronze layer

browser (workspace), navigating, Navigating the Workspace
Browser-Navigating the Workspace Browser
business analytics, Gold layer

C

Canvas pane (dashboard editor), Creating a New Dashboard
defining filters for new dashboard, Defining filters
designing visualizations for new dashboard, Designing
visualizations-Designing visualizations

CASE WHEN statements, Complex Logic UDFs
Catalog Explorer, Catalog Explorer

DLT database and tables in, Examining DLT pipelines
managing permissions in, Managing permissions in
Catalog Explorer-Query History

granting new permissions, Granting new permissions
limitations of Catalog Explorer, Limitations of the
Catalog Explorer
managing permissions for database objects, Managing
permissions for database objects

reviewing and modifying permissions, Reviewing and
modifying permissions
revoking permissions, Revoking permissions

reviewing created data objects in, Creating data objects
showing default database in hive_metastore, Working in
the Default Schema

catalog owner role (Hive metastore), Granting privileges by
role
Catalog tab (workspace), Catalog Explorer
catalog.schema.table UC namespace, UC Three-Level
Namespace
catalogs, What Is Data Governance?

creating new catalog, Creating a new catalog
displayed in Unity Catalog-enabled workspaces, Verifying
Unity Catalog enablement
getting catalog name for DLT pipeline, Examining DLT
pipelines
granting permissions on in Unity Catalog, Granting
permissions
managing data catalogs in Unity Catalog, Managing data
catalogs
in Unity Catalog metastore, Detailed Hierarchical Structure
verifying created catalog in Unity Catalog, Verifying the
created catalog

CDC (see change data capture)
CDC agents, CDC agents
cells (code)

managing in notebooks, Managing cells
running in notebooks, Running code cells

certification overview
exam format, exploring, Exploring the Exam Format-Code
Snippet Language
final thoughts, Final Thoughts
getting ready for assessment, Getting Ready for the
Assessment-Exam Result
practice exams, Practice Exams
registering for the exam, Registering for the Exam-
Scheduling the Exam
seeking assistance for certification concerns, Seeking
Assistance
troubleshooting and support from Kryterion support,
Troubleshooting and Support

change data capture (CDC), Capturing Data Changes-
Extending DLT Pipelines with New Notebooks

CDC feed, CDC Feed
changes reflected in, CDC Feed
events in, CDC Feed

latest version of target table after applying changes, CDC
Feed
metadata information in, CDC Feed

CDC feed delivery, CDC Feed Delivery
defined, Definition
handling CDC feeds in Delta Live Tables, Processing Change
Data Capture
new notebook for DLT pipeline defining tables to process
CDC data, Extending DLT Pipelines with New Notebooks-
Extending DLT Pipelines with New Notebooks
sources for, CDC Sources

CHECK constraints, Table Constraints
checkpoints

in each stream of streaming data, Streaming Data
Manipulations in Python
removing for Auto Loader stream implementation,
Cleaning up
for streaming jobs in Spark Structured Streaming,
DataStreamWriter, Checkpointing

cloning Delta Lake tables
data integrity in cloning, Data integrity in cloning
deep cloning, Cloning Delta Lake Tables
shallow cloning, Shallow cloning

cloud

cloud object storage, Delta Lake optimized for, What Is
Delta Lake?
signing up for Databricks trial on cloud providers, Signing
Up for Databricks

cloud infrastructure (Databricks lakehouse), High-Level
Architecture of the Databricks Lakehouse

deployment of Databricks resources in, Deployment of
Databricks Resources
file storage, Databricks File System (DBFS)
setting up a Databricks workspace, Setting Up a Databricks
Workspace

cloudFiles format (DataStreamReader), Implementation,
Setting up Auto Loader
cloudFiles.inferColumnTypes option, Schema management,
Setting up Auto Loader
cloudFiles.schemaLocation option, Schema management,
Setting up Auto Loader
cloud_files method, Creating a streaming table
clusters, Creating Clusters-Managing your cluster

all-purpose clusters, All-Purpose Clusters
cluster pools in Databricks, Databricks Pools
Cluster section in DLT pipeline details, Examining DLT
pipelines

comparison of all-purpose and job clusters, Creating
Clusters
Compute and Advanced configurations in DLT pipeline,
Compute
creating all-purpose clusters, Creating All-Purpose Clusters-
Managing your cluster
creating Unity Catalog-compliant cluster, Creating a UC-
compliant cluster
job clusters, Job Clusters

code
executing in notebooks, Executing Code-Managing cells

choosing language with language command, Language
magic command

code snippets, language on certification exam, Code Snippet
Language
code-based exam questions, Code-Based Questions
collect_set function, Aggregating Unique Values
colon syntax (:), use in Spark SQL on nested JSON data,
Dealing with Nested JSON Data
column data types, inference by Auto Loader, Schema
management
columns

exploring table columns in schema browser, Managing
SQL Queries

inserting into SQL query text, Writing a SQL Query
COLUMNS * (APPLY CHANGES INTO), APPLY CHANGES INTO
command
COLUMNS * EXCEPT clause, Extending DLT Pipelines with
New Notebooks
COMMENT clause (CREATE TABLE), CTAS Statements,
Creating a streaming table
committing changes to Git, Committing and Pushing Changes
Community Edition (Databricks), Setting Up a Databricks
Workspace, Databricks Community Edition-Databricks
Community Edition

importing DBC files into workspace, Option 2: DBC files
Complete mode (output mode of DataStreamWriter),
Complete mode
complex logic user-defined functions, Complex Logic UDFs
Compute configuration (DLT pipeline), Compute

Advanced configurations, Compute
Compute tab (workspace), 1. Navigating to the Compute tab

controlling your clusters from, Controlling your cluster
concurrent writes and reads (Delta Lake), Concurrent writes
and reads scenario
conditions for new alert, configuring, Creating an Alert
configurations

configuring DLT pipelines, Configuring DLT Pipelines-
Examining DLT pipelines

Advanced, Advanced configurations
Compute, Compute
Destination, Destination
examining underlying mechanisms of DLT, Examining
DLT pipelines-Examining DLT pipelines
Full refresh, Full refresh
General configurations, General configurations
main steps in, Configuring DLT Pipelines
modifying pipelines, Modifying DLT pipelines
running modes, Running DLT pipelines-Data quality
metrics

Connection details tab (SQL warehouse), SQL Endpoints
CONSTRAINT keyword, DLT Expectations, Silver layer

ON VIOLATION clause, DLT Expectations
constraints

created on DLT tables or views using SQL syntax, DLT
Expectations
on Delta Lake tables, Table Constraints

continuous mode trigger interval, Persisting streaming data
changing to triggered mode, Persisting streaming data
DLT pipelines, General configurations

continuous mode trigger interval (DataStreamWriter),
Continuous mode: Near-real-time processing
control plane, Deployment of Databricks Resources
COPY INTO command, COPY INTO Command

comparison to Auto Loader, Comparison of Ingestion
Mechanisms

core privileges in Unity Catalog, UC Security Model
cost considerations for cluster pools, Cost considerations
CRAS (CREATE OR REPLACE AS SELECT) statement, 1. CREATE
OR REPLACE TABLE statement
CREATE CATALOG command, Creating a new catalog
CREATE DATABASE command, Creating databases
CREATE DATABASE IF NOT EXISTS, Creating data objects
CREATE LIVE VIEW statement, Live views
CREATE ON SCHEMA command, Granting privileges to a
group
CREATE OR REFRESH STREAMING TABLE statement,
Streaming tables, Creating a streaming table
CREATE OR REPLACE FUNCTION statement, Creating UDFs
CREATE OR REPLACE MATERIALIZED VIEW statement,
Materialized views, Creating a materialized view
CREATE OR REPLACE TABLE statement, 1. CREATE OR
REPLACE TABLE statement, Conceptual Question

DEEP CLONE keyword, Deep cloning

CREATE privilege, CREATE privilege
revoking in Catalog Explorer, Revoking permissions
in Unity Catalog, UC Security Model

CREATE SCHEMA command, Creating databases, Creating
schemas

LOCATION keyword, Custom-location databases, Creating
the database

CREATE STREAMING TABLE statement, SQL support
CREATE TABLE AS SELECT, CTAS Statements

(see also CTAS statements)
CREATE TABLE statement, Creating Tables

comparison to CTAS statements, Comparing CREATE TABLE
and CTAS
DEEP CLONE keyword, Deep cloning
LOCATION keyword, External tables, Creating external
tables
range of options in CTAS statements, CTAS Statements
SHALLOW CLONE keyword, Shallow cloning
USING keyword, Registering Tables on Foreign Data
Sources
using with three-level namespace in Unity Catalog,
Managing Delta tables

CREATE TEMPORARY LIVE VIEW, Extending DLT Pipelines
with New Notebooks

CREATE VIEW command, Creating data objects
AS keyword, Stored views
GLOBAL TEMP keyword, Global temporary views
TEMPORARY or TEMP keywords, Temporary views

creation syntax, comparison for view types, Creation syntax
CSV files

from foreign data source, creating tables from, Example 1:
CSV
querying, Querying Non-Self-Describing Formats-
Registering Tables from Files with CTAS

CTAS (CREATE TABLE AS SELECT) statements, CTAS
Statements

comparison to CREATE TABLE, Comparing CREATE TABLE
and CTAS
registering tables from files, Registering Tables from Files
with CTAS
using on foreign data source in temporary view to create
Delta table, Hybrid approach

D

DAGs (directed acyclic graphs), Development mode
updated DLT pipeline after integrating CDC processing,
Extending DLT Pipelines with New Notebooks

dashboard editor interface, Creating a New Dashboard

dashboards
designing in Databricks SQL, Designing Dashboards-
Republishing a New Version

creating new dashboard, Creating a New Dashboard-
Defining filters
sharing a dashboard, Sharing a Dashboard-Republishing
a New Version

visualization tool for in Databricks SQL, What Is Databricks
SQL?

data and AI assets in Unity Catalog, Detailed Hierarchical
Structure
data cataloging, What Is Data Governance?

(see also catalogs)
data catalogs

managing in Unity Catalog, Managing data catalogs
(see also catalogs)

data cleansing, Silver layer
data discovery, What Is Data Governance?
data engineering

section in Databricks workspace sidebar, Sidebar
data governance, Introducing the Databricks Platform,
Implementing Data Governance-Code-Based Question

components of, What Is Data Governance?
defined, What Is Data Governance?

exam questions on, Key Topics Covered
governing data with Unity Catalog, High-Level Architecture
of the Databricks Lakehouse, Governing Data with Unity
Catalog-Dropping tables
managing data security in Hive metastore, Managing Data
Security in the Hive Metastore-Query History

granting permissions, Granting Permissions-Granting
privileges by role

data handling, flexible (Apache Spark on Databricks), Apache
Spark™ on Databricks
Data Intelligence Platform, Getting Started with Databricks
data lakehouses, Understanding the Databricks Platform
data lakes, Understanding the Databricks Platform

challenges to, overcoming with Delta Lake, What Is Delta
Lake?

data lineage, What Is Data Governance?
automated lineage feature in Unity Catalog, Unity Catalog
Features

data objects
creating in Hive metastore, Creating data objects
hierarchy of, in Unity Catalog, Data Object Hierarchy
privileges to perform actions on in Hive metastore, Object
privileges
types of, in Hive metastore, Data object types

securable object types, Data object types
Data pane (dashboard editor), Creating a New Dashboard

defining data sources for new dashboard, Creating data
sources

data persistence in DBFS and cloud storage, Databricks File
System (DBFS)
data plane, Deployment of Databricks Resources
data quality control

in Delta Live Tables versus Spark Structured Streaming,
Comparison of DLT and Spark Structured Streaming
using CONSTRAINT keyword in DLT creation of streaming
table, Silver layer

data quality metrics (DLT pipeline), Data quality metrics
data search and discovery feature (Unity Catalog), Unity
Catalog Features
data security, What Is Data Governance?

(see also security)
data streams, What Is a Data Stream?

(see also streaming data with Apache Spark)
CDC feed delivery via, CDC Feed Delivery
processing, challenges with, What Is a Data Stream?

data warehouses, Understanding the Databricks Platform
database object owner role (Hive metastore), Granting
privileges by role

database owner role (Hive metastore), Granting privileges by
role
databases

with built-in CDC features, Databases with built-in CDC
features
CDC agents working with, CDC agents
contained in newly created catalog, Verifying the created
catalog
creating using Databricks SQL, Creating data objects
external SQL database, creating tables from, Example 2:
database
getting database name for DLT pipeline, Examining DLT
pipelines
managing permissions for data objects in using Catalog
Explorer, Managing permissions for database objects
or schemas in hive_metastore catalog, Data object types
or schemas in Unity Catalog, Detailed Hierarchical
Structure

databases in Databricks, Databases in Databricks-Tables in
Databricks

creating and working in new databases, Working in a New
Schema-Working In a Custom-Location Schema

creating new database, Creating a new database

creating tables in new database, Creating tables in the
new database
dropping tables, Dropping tables

creating databases, Creating databases
custom-location databases, Custom-location databases,
Working In a Custom-Location Schema-Dropping tables

creating tables, Creating tables
creating the database, Creating the database
dropping tables, Dropping tables

default database, Default database, Working in the Default
Schema-Working in a New Schema

creating external tables in, Creating external tables
creating managed tables in, Creating managed tables
dropping tables, Dropping tables

global_temp database, Global temporary views
Databricks

account console, Accessing account console
signing up for free trial, Signing Up for Databricks

Databricks administrator role (Hive metastore), Granting
privileges by role
Databricks Assistant (in workspace top bar), Top bar
Databricks Certified Data Engineer Associate certification,
Scheduling the Exam
Databricks Cloud (DBC) files, Importing Book Materials

importing into workspace, Option 2: DBC files
Databricks Community Edition, Databricks Community
Edition-Databricks Community Edition

Git integration through Git folders, not supported, Option
2: DBC files

Databricks Credentials platform, Exam Result
Databricks File System (see DBFS)
Databricks GitHub App, Configuring Git integration
Databricks Jobs

configuring job settings, Configuring Job Settings-
Managing permissions

job notifications, Setting job notifications
permissions, Managing permissions
scheduling the job, Scheduling the job

creating multi-task job, Creating Databricks Jobs-Task 3:
Output exploration

configuring the tasks, Creating Databricks Jobs-Task 3:
Output exploration
job configuration interface, Creating Databricks Jobs

debugging jobs, Debugging Jobs
repairing runs, Repairing runs

introduction to, Introducing Databricks Jobs
running the job, Running the Job-Task 3: Output
exploration

reviewing task results, Reviewing task results-Task 3:
Output exploration
viewing job's execution, Running the Job

Databricks lakehouse
exam topics for Databricks Lakehouse platform, Key Topics
Covered
high-level architecture of, High-Level Architecture of the
Databricks Lakehouse

Databricks Runtime, High-Level Architecture of the
Databricks Lakehouse

adjustments to updates and deletes on tables, from Version
14 onward, Updating Delta Lake Tables

Databricks Runtime version, 7. Performance: Selecting the
Databricks Runtime version
Databricks SQL, Exploring Databricks SQL-Conceptual
Questions

about, What Is Databricks SQL?-What Is Databricks SQL?
range of new options, What Is Databricks SQL?

compute resources required to render dashboard in,
Conceptual Questions
creating SQL warehouses, Creating SQL Warehouses-SQL
Endpoints

configuring SQL warehouse, Configuring a SQL
Warehouse

SQL endpoints, SQL Endpoints
dashboards in, Designing Dashboards-Republishing a New
Version

creating new dashboard, Creating a New Dashboard-
Defining filters
sharing a dashboard, Sharing a Dashboard-Republishing
a New Version

managing permissions with, Managing Permissions with
Databricks SQL-Query History

adding groups, Adding groups
adding users, Adding users
configuring object permissions, Configuring object
permissions
creating data objects, Creating data objects
granting privileges to a group, Granting privileges to a
group
granting privileges to individual user, Granting
privileges to an individual user
managing permissions in Catalog Explorer, Managing
permissions in Catalog Explorer-Query History
reviewing assigned permissions, Reviewing assigned
permissions

managing SQL queries, Managing SQL Queries-Browsing
Saved Queries

browsing saved queries, Browsing Saved Queries
saving a query, Saving a Query
scheduling a query, Scheduling a Query
writing a query, Writing a SQL Query

setting up alerts, Setting Up Alerts-Scheduling the Alert
creating an alert, Creating an Alert-Creating an Alert
scheduling an alert, Scheduling the Alert

Databricks units (DBUs), 12. Reviewing the cluster
configuration
Databricks Utilities (dbutils), Databricks Utilities
DataFrames

creating streaming DataFrame, Implementing Structured
Streaming
persisting streaming DataFrame, using writeStream
method, DataStreamWriter
static lookup table, creating in medallion architecture,
Creating a static lookup table
stream write operation on, Transitioning to the silver layer
streaming, DataStreamReader
streaming versus static, Spark differentiating between,
Persisting streaming data
streaming, data manipulations in Python, Streaming Data
Manipulations in Python

datasets

extracting data from, using real-world dataset example,
Querying Data Files
querying JSON format dataset, Querying JSON Format
source, defining for new dashboard, Creating data sources

DataStreamReader, DataStreamReader
cloudFiles format, Implementation

DataStreamWriter, DataStreamWriter
streaming query configurations, Streaming Query
Configurations

checkpoints, Checkpointing
output modes, Output Modes
trigger intervals, Trigger Intervals

DBC (Databricks Cloud) files, Importing Book Materials
importing into workspace, Option 2: DBC files

DBFS (Databricks File System), Databricks File System (DBFS),
Default database
DBSQL (see Databricks SQL)
DBUs (Databricks units), 12. Reviewing the cluster
configuration
dbutils (Databricks Utilities), Databricks Utilities
dbutils.fs.rm function (Python), Dropping tables, Dropping
tables, Cleaning up
debugging jobs, Debugging Jobs

repairing runs, Repairing runs

DEEP CLONE keyword
in CREATE OR REPLACE TABLE, Deep cloning
in CREATE TABLE, Deep cloning

deep cloning, Deep cloning
default database, Default database, Verifying the created
catalog

external table definitions in, External tables
deletions

APPLY AS DELETE WHEN, APPLY CHANGES INTO
command
in CDC, Definition
DELETE FROM command, Rolling Back to Previous
Versions
DELETE privileges on data objects in Hive metastore,
MODIFY privilege
materialized views handling data with, Materialized views
performed with MERGE INTO, Merging Data

Delta Lake, Managing Data with Delta Lake-Code-Based
Question

advantages of, Delta Lake Advantages
Delta tables as streaming source, Implementing Structured
Streaming
introduction to, Introducing Delta Lake

loading data from files into tables, Introducing Data
Ingestion
managing Delta Lake tables in Unity Catalog, Managing
Delta tables
as streaming source, Delta Lake as streaming source
streaming data between two tables, DataStreamWriter
tables, optimizing, Optimizing Delta Lake Tables
tables, working with, Working with Delta Lake Tables-
Exploring Table History

Catalog Explorer, Catalog Explorer
creating tables, Creating Tables
exploring table directory, Exploring the Table Directory-
Exploring the Table Directory
exploring table history, Exploring Table History
inserting data, Inserting Data
updating tables, Updating Delta Lake Tables

time travel in, Exploring Delta Time Travel
querying older table versions, Querying Older Versions
rolling back to previous table versions, Rolling Back to
Previous Versions

transaction log, Delta Lake Transaction Log
transactional capabilities ensuring ACID compliance,
examples, Understanding Delta Lake Functionality-Failed
writes scenario

concurrent writes and reads scenario, Concurrent writes
and reads scenario
failed writes scenario, Failed writes scenario
writing and reading scenario, Write operation by Alice

vacuuming unused data files in Delta tables, Vacuuming-
Dropping Delta Lake Tables

Delta Live Tables (DLT), Exploring Delta Live Tables-
Examining DLT pipelines

adding DLT pipeline task to Databricks job, Task 2: DLT
pipeline
change data capture in, CDC in DLT-Disadvantages of
APPLY CHANGES INTO
configuring DLT pipelines, Configuring DLT Pipelines-
Examining DLT pipelines

Compute, Compute
data quality metrics, Data quality metrics
Destination, Destination
Full refresh, Full refresh
General configurations, General configurations
modifying pipelines, Modifying DLT pipelines
pipeline execution interface, Development mode
running modes, Running DLT pipelines
Source code, Source code

DLT pipeline task, reviewing results of, Task 2: DLT
pipeline
extending DLT pipelines with new notebooks, Extending
DLT Pipelines with New Notebooks-Extending DLT
Pipelines with New Notebooks

adding new notebook to pipeline, Extending DLT
Pipelines with New Notebooks
updated pipeline after integrating CDC processing,
Extending DLT Pipelines with New Notebooks

implementing DLT pipelines, Implementing DLT Pipelines-
Gold layer

creating materialized view, Creating a materialized view
creating streaming table, Creating a streaming table
designing bronze layer, Bronze layer
gold layer, Gold layer
implementing silver layer, Silver layer

introduction to, Introducing Delta Live Tables
benefits of Delta Live Tables, Benefits of Delta Live
Tables
comparison of DLT and Spark Structured Streaming,
Comparison of DLT and Spark Structured Streaming-
Data quality control
DLT object types, DLT object types
materialized views, creating, Materialized views

streaming tables in DLT, Streaming tables
live views in, Live views
processing change data capture feeds in, Processing
Change Data Capture

Delta Log, Delta Lake Transaction Log
(see also Delta Lake, transaction log)

Delta Sharing entities in Unity Catalog, Detailed Hierarchical
Structure
DELTA table format, Creating Tables
Delta tables

accessing directly using SELECT * FROM DELTA, Dropping
tables
impact of not having, Impact of not having a Delta table

DENY operation, DENY operation
deployments

deploying Databricks on Amazon Web Services, Deploying
Databricks on Amazon Web Services-Deploying Databricks
on Amazon Web Services
deploying Databricks on Azure, Deploying Databricks on
Microsoft Azure-Deploying Databricks on Microsoft Azure
deploying Databricks on Google Cloud Platform, Deploying
Databricks on Google Cloud Platform-Deploying Databricks
on Google Cloud Platform

DESCRIBE DATABASE EXTENDED command, Creating a new
database

running on custom-location database, Creating the
database

DESCRIBE DETAIL command, Exploring the Table Directory
output after table updates, Updating Delta Lake Tables
output after Z-Order indexing optimization, Z-Order
Indexing

DESCRIBE EXTENDED command
running on external tables in default database, Creating
external tables
running on managed tables in default database, Creating
managed tables
running on tables in custom-location database, Creating
tables
running on tables in new database, Creating tables in the
new database

DESCRIBE FUNCTION command, Understanding UDFs
DESCRIBE FUNCTION EXTENDED command, Understanding
UDFs
DESCRIBE HISTORY command, Exploring Table History,
Querying by version number

output after table restoration, Rolling Back to Previous
Versions

output after using DELETE command, Rolling Back to
Previous Versions
output after Z-Order indexing optimization, Z-Order
Indexing

DESCRIBE TABLE EXTENDED command, Managing Delta
tables
Destination configuration (DLT pipeline), Destination
details on DLT pipeline in execution interface, Development
mode
Development mode (DLT pipeline), Development mode-Data
quality metrics
directed acyclic graphs (DAGs), Development mode

updated DLT pipeline after integrating CDC processing,
Extending DLT Pipelines with New Notebooks

directories (workspace), Navigating the Workspace Browser
display function (dbutils), Displaying the output
distributed data processing (Apache Spark on Databricks),
Apache Spark™ on Databricks
DLT (see Delta Live Tables)
@dlt.table decorator, Syntax
dot (.) syntax, using to interact with nested objects,
Interacting with Struct Types
draft version of new dashboard, Sharing a Dashboard
Driver logs (clusters), Managing your cluster

driver nodes (clusters), Creating Clusters
configuring for all-purpose cluster, 10. Configuring the
driver node

DROP FUNCTION command, Dropping UDFs
DROP ROW action, DLT Expectations
DROP TABLE command, Dropping Delta Lake Tables

dropping tables from custom-location database, Dropping
tables
running on managed versus external tables, Dropping
tables
using on tables in new database, Dropping tables
using to drop Delta Lake table in Unity Catalog, Dropping
tables

DROP VIEW command, Lifetime
dropping stored, temporary, and global temporary views,
Dropping Views

dropping and replacing tables versus overwriting table
methods, Replacing Data
dropping tables, Conceptual Question
duplicates

prevented during record insertion using MERGE INTO,
Merging Data
using INSERT INTO versus MERGE INTO, Merging Data

E

endpoints (SQL)
provided in SQL warehouses, SQL Endpoints

errors
failure of DLT pipeline, Modifying DLT pipelines
metastore not configured with root storage location,
Creating a new catalog

ETL
benefits of Delta Live Tables over other ETL frameworks,
Benefits of Delta Live Tables
building ETL pipelines, exam topic, Key Topics Covered
incremental, in medallion architecture, Benefits of
Medallion Architectures

ETL transformations, performing in Spark SQL, Performing
Advanced ETL Transformations-Changing Data Perspectives

aggregating unique values, Aggregating Unique Values
flattening struct types, Flattening Struct Types
handling nested JSON data, Dealing with Nested JSON Data
mastering join operations, Mastering Join Operations in
Spark SQL
pivot tables for transforming data perspectives, Changing
Data Perspectives
set operations, Exploring Set Operations in Spark SQL-
Minus operation
using explode function, Leveraging the explode Function

Event log (clusters), Managing your cluster
event log in DLT pipeline execution interface, Development
mode
event logs for DLT pipeline, Examining DLT pipelines
events

in CDC feed, CDC Feed
displayed in DLT pipelines, storage of, Examining DLT
pipelines
stored in system directory of DLT pipelines, Examining DLT
pipelines

exactly-once processing guarantee (Spark Structured
Streaming), Exactly-once semantics
examination for certification, Certification Overview-Seeking
Assistance

answers to sample exam questions, Answers to Sample
Exam Questions-Chapter 8: Implementing Data
Governance
exploring the exam format, Exploring the Exam Format-
Code Snippet Language

code snippet language, Code Snippet Language
distribution of questions, Key Topics Covered
key topics covered, Key Topics Covered
out-of-scope topics, Out-of-Scope Topics

final thoughts on, Final Thoughts

getting ready for assessment, Getting Ready for the
Assessment-Exam Result

exam proctoring, Exam Proctoring
exam result, Exam Result
prerequisites before launching into exam, Getting Ready
for the Assessment

practice exams, Practice Exams
registering for the exam, Registering for the Exam-
Scheduling the Exam

exam platform overview, Exam Platform Overview
registration fee, Registration Fee
scheduling the exam, Scheduling the Exam

troubleshooting and support for, Troubleshooting and
Support

EXECUTE privilege in Unity Catalog, UC Security Model
execution interface (DLT pipeline), Development mode
expectations (DLT), DLT Expectations, Silver layer, Data
quality metrics
explode function, Leveraging the explode Function
exporting files using notebook editor, Download Notebooks
external tables, External tables-External tables, Creating
tables

(see also tables in Databricks)
comparison to managed tables, Tables in Databricks

creating in default database, Creating external tables
creating in new database, Creating tables in the new
database

F

FAIL UPDATE action, DLT Expectations
fault recovery guarantee (Spark Structured Streaming), Fault
recovery
File menu (notebook editor), Download Notebooks
file systems

commands provided by dbutils, Databricks Utilities
comparison of fs magic command versus dbutils,
Comparison: %fs magic command versus dbutils
fs magic command, use in notebooks, FS magic command

filepath, Querying Data Files
FILTER function, Filter Function
filters, defining for dashboard in Databricks SQL, Defining
filters
flatten function, Aggregating Unique Values
flattening struct types using Spark SQL, Flattening Struct
Types
foreign data sources

creating tables from, Registering Tables on Foreign Data
Sources-Hybrid approach

CSV files, Example 1: CSV
hybrid approach using temporary view and CTAS
statement, Hybrid approach
impacts of not having Delta table, Impact of not having a
Delta table
limitations of tables having foreign data sources,
Limitation
SQL database, Example 2: database

FROM STREAM keyword, Extending DLT Pipelines with New
Notebooks
from_json function, Parsing JSON into Struct Type
fs magic command, FS magic command

comparison to dbutils file system commands, Comparison:
%fs magic command versus dbutils
fs head command, exploring transaction log JSON files,
Exploring Table History
fs ls command, using to navigate to transaction log,
Exploring Table History
fs ls command, using to understand table file structure,
Exploring the Table Directory
output after table updates, Updating Delta Lake Tables
table directory output after Z-Order indexing optimization,
Z-Order Indexing

Full refresh (DLT pipeline), Full refresh

functions
function objects in Hive metastore, Data object types
higher-order functions, working with, Working with
Higher-Order Functions-Transform Function

G

GCP (Google Cloud Platform), High-Level Architecture of the
Databricks Lakehouse

deploying Databricks on, Deploying Databricks on Google
Cloud Platform-Deploying Databricks on Google Cloud
Platform
signing up for Databricks on, Signing Up for Databricks

General configurations (DLT pipeline), General
configurations
Git, Versioning with Git-Pulling changes

committing and pushing changes, Committing and Pushing
Changes
creating Git folders, Creating Git Folders-Managing Git
Branches
importing Git folders into Databricks workspace, Option 1:
Git folders
managing Git branches, Managing Git Branches
setting up integration with Databricks, Setting Up Git
Integration-Configuring Git integration

configuring Git integration in workspace, Configuring
Git integration
prerequisites, Prerequisites

GitHub, Configuring Git integration
creating private GitHub repository, Creating Git Folders
integrating with, Configuring Git integration
pulling changes from, Pulling Changes from GitHub

global temporary views, Global temporary views
comparison to stored and temporary views, Comparison of
View Types

global_temp database, Global temporary views
gold layer (medallion architecture)

about, Gold layer
creating for DLT pipeline, Gold layer
gold table used to extend DLT pipeline, Extending DLT
Pipelines with New Notebooks
proceeding to, Advancing to the gold layer
SQL query combining two gold tables created previously,
Creating data sources

Google Cloud Platform (GCP), High-Level Architecture of the
Databricks Lakehouse

deploying Databricks on, Deploying Databricks on Google
Cloud Platform-Deploying Databricks on Google Cloud
Platform

signing up for Databricks on, Signing Up for Databricks
governance (see data governance)
GRANT statement, Granting Permissions, Granting privileges
to a group

GRANT SELECT ON TABLE, Granting Permissions
GRANT USAGE ON SCHEMA, Granting privileges to a group
granting privileges to individual user, Granting privileges
to an individual user
granular control over access to data objects in Hive
metastore, Data object types
use in Unity Catalog, UC Security Model

granting permissions in Catalog Explorer, Granting new
permissions
granting permissions in Unity Catalog, Granting permissions
GROUP BY clause, Inserting Data
groups

adding to Databricks workspace, Adding groups
centralized management in Unity Catalog, Key
Architectural Changes
granting privileges to using Databricks SQL, Granting
privileges to a group
in Unity Catalog, Groups

Groups management page, Adding groups

H

higher-order functions, working with, Working with Higher-
Order Functions-Transform Function

FILTER function, Filter Function
TRANSFORM function, Transform Function

history
table changes during ingestion by Auto Loader, Exploring
table history
table history in Delta Lake, Exploring Table History

Hive metastore, What Is Data Governance?
ANY FILE privilege, replacements in Unity Catalog, UC
Security Model
coexistence with Unity Catalog, Accessing the Hive
Metastore
managing data security in, Managing Data Security in the
Hive Metastore-Query History

advanced privilege management, Advanced Privilege
Management-SHOW GRANTS operation
granting permissions, Granting Permissions-Granting
privileges by role
managing permissions with Databricks SQL, Managing
Permissions with Databricks SQL-Query History

two-level namespace, UC Three-Level Namespace
hive_metastore catalog, Working with Delta Lake Tables,
Exploring the Table Directory, Data object types

default database, Default database, Working in the Default
Schema

I

identity and access settings in Databricks workspace, Adding
users, Adding groups
identity federation, Identity federation
identity management in Unity Catalog, Identity Management-
Identity federation

groups, Groups
identity federation, Identity federation
service principals, Service principals
users, Users

image files, querying using binaryFile format, Querying Using
binaryFile Format
imports

importing files into Databricks workspace, Importing Book
Materials-Option 2: DBC files
importing files using menu icon in workspace browser,
Download Notebooks

in-memory processing (Apache Spark on Databricks), Apache
Spark™ on Databricks
incremental data, processing, Processing Incremental Data-
Code-Based Question

exam questions on, Key Topics Covered
implementing Spark Structured Streaming, Implementing
Structured Streaming-Streaming Data Manipulations in
Python
incremental batch processing, Triggered mode:
Incremental batch processing
incremental processing of data streams, What Is a Data
Stream?
ingestion of incremental data, Incremental Data Ingestion-
Cleaning up
streaming data with Apache Spark, Streaming Data with
Apache Spark-Unsupported operations
using medallion architecture, Medallion Architecture-
Conclusion

indexing, Z-Order, on Delta Lake tables, Z-Order Indexing-Z-
Order Indexing
ingestion of incremental data, Incremental Data Ingestion-
Cleaning up

comparison of COPY INTO and Auto Loader, Comparison of
Ingestion Mechanisms
implementing Auto Loader for, Auto Loader in Action-
Cleaning up
using Auto Loader, Auto Loader
using COPY INTO command, COPY INTO Command

inner joins, Mastering Join Operations in Spark SQL
input_file_name function, using in SELECT * FROM, Querying
JSON Format
INSERT INTO statement, Inserting Data, Appending Data

using to insert data into Delta Lake table in Unity Catalog,
Managing Delta tables

INSERT OVERWRITE statement, 2. INSERT OVERWRITE,
Conceptual Question
insert-only merges, Merging Data
insertions

in CDC, Definition
INSERT privilege on data objects in Hive metastore,
MODIFY privilege
performed with MERGE INTO, Merging Data

instance types in DLT pipeline configurations, Compute
interactive practice exams, Interactive Practice Exams
INTERSECT command, Intersect operation

J

JDBC connection, creating tables via, Example 2: database
job clusters

about, Job Clusters
comparison with all-purpose clusters, Creating Clusters

jobs, Orchestrating Workflows

(see also Databricks Jobs)
job configuration interface, Creating Databricks Jobs

joins
DLT view joining two tables from different notebooks,
Extending DLT Pipelines with New Notebooks
mastering join operations in Spark SQL, Mastering Join
Operations in Spark SQL

JSON
CDC events stored in JSON files, CDC Feed Delivery
CDC feed data delivered as JSON files, Processing Change
Data Capture
Delta Lake transaction log, Delta Lake Transaction Log
exploring transaction log files, Exploring Table History
handling nested JSON data in Spark SQL, Dealing with
Nested JSON Data
parsing into struct types using Spark SQL, Parsing JSON
into Struct Type
querying as raw text using text format, Querying Using the
text Format
querying dataset formatted in, using Apache Spark,
Querying JSON Format

K

key-value pairs

in Advanced configurations for DLT pipeline, Advanced
configurations

KEYS keyword, APPLY CHANGES INTO command, Extending
DLT Pipelines with New Notebooks
Kryterion Webassessor platform, Exam Platform Overview

(see also Webassessor platform)
Kryterion support team, assistance from, Troubleshooting
and Support

L

landing data task, Task 1: Landing data
reviewing results of, Task 1: Landing data

language magic command, Language magic command
left joins, Mastering Join Operations in Spark SQL
lifetime, comparison for view types, Lifetime
LIVE keyword, Silver layer

LIVE.target_table, APPLY CHANGES INTO command
omitting, Modifying DLT pipelines

live views in Delta Live Tables, Live views, Extending DLT
Pipelines with New Notebooks
LOCATION keyword

in CREATE SCHEMA, Custom-location databases, Creating
the database

in CREATE TABLE, External tables, Creating external tables,
CTAS Statements

log data, What Is a Data Stream?
lookup table (static DataFrame), creating in medallion
architecture, Creating a static lookup table

M

machine learning (ML)
section in Databricks workspace sidebar, Sidebar

magic commands, Magic Commands-FS magic command
% prefix, Magic Commands
fs, FS magic command

versus dbutils, Comparison: %fs magic command versus
dbutils

language, Language magic command
md (Markdown), Markdown magic command
run, Run magic command

main or workspace-named catalog, Verifying Unity Catalog
enablement
managed tables, Managed tables, Creating tables

(see also tables in Databricks)
in catalog, storage location required for, Creating a new
catalog
comparison to external tables, Tables in Databricks

creating in default database, Creating managed tables
creating in new database, Creating tables in the new
database
dropping in Unity Catalog, Dropping tables

Markdown, using in notebooks, Markdown magic command
enhancing notebook navigation with, Enhancing notebook
navigation with Markdown

materialized views, Materialized views, Extending DLT
Pipelines with New Notebooks

creating for DLT pipeline, Creating a materialized view
creating for gold layer in DLT pipeline, Gold layer

md magic command, Markdown magic command
medallion architecture, Medallion Architecture-Conclusion

benefits of, Benefits of Medallion Architectures
bronze layer, Bronze layer
building, Building Medallion Architectures-Conclusion

configuring Auto Loader, Configuring Auto Loader
creating static lookup table, Creating a static lookup
table
establishing bronze layer, Establishing the bronze layer
proceeding to gold layer, Advancing to the gold layer
transitioning to silver layer, Transitioning to the silver
layer

gold layer, Gold layer

layered approach, The layered approach
silver layer, Silver layer

MERGE INTO statement, Merging Data-Merging Data
executing updates, inserts, and deletes in single atomic
transaction, Merging Data
WHEN MATCHED clause, Merging Data
WHEN NOT MATCHED clause, Merging Data

merging data in Delta Lake tables, Merging Data-Merging
Data
metadata

provided by DESCRIBE EXTENDED run on managed table,
Creating managed tables
READ_METADATA privilege in Hive metastore,
READ_METADATA privilege
scalable handling of in Delta Lake, Delta Lake Advantages
viewing advanced information using DESCRIBE TABLE
EXTENDED, Managing Delta tables

metastores, Implementing Data Governance
(see also Hive metastore)
assigning existing Unity Catalog metastore, Assigning
existing metastore
configured with root storage location, Creating a new
catalog

creating new Unity Catalog metastore, Creating a new
metastore
separation of metastore management in Unity Catalog, Key
Architectural Changes
metastore in Unity Catalog, Detailed Hierarchical Structure

microphone and audio restrictions while taking certification
exam, Exam Proctoring
Microsoft Azure (see Azure)
MINUS operation, Minus operation
MODIFY privilege, MODIFY privilege, Granting privileges to a
group, Code-Based Question

in Unity Catalog, UC Security Model
modifying permissions in Catalog Explorer, Reviewing and
modifying permissions
monitoring and auditing, What Is Data Governance?
multi-node clusters, 5. Configuring the cluster: Single-node
versus multi-node
My Assessments page (Webassessor), Getting Ready for the
Assessment

N

namespaces
three-level namespace, Managing Delta tables

Unity Catalog three-level namespace, UC Three-Level
Namespace

naming all-purpose clusters, 3. Naming your cluster
nodes (cluster), configuring single-node versus multi-node
cluster, 5. Configuring the cluster: Single-node versus multi-
node
non-self-describing formats, querying files with, Querying
Non-Self-Describing Formats-Registering Tables from Files
with CTAS
normalization, Silver layer
NOT NULL constraints, Table Constraints
notebooks (Databricks), Working with Notebooks-Restoring a
previous version

creating, Creating a New Notebook
downloading to your local system, Download Notebooks
executing code, Executing Code-Managing cells

managing cells, Managing cells
running code cells, Running code cells

executing DLT query in, Creating a streaming table
extending DLT pipelines with new notebooks, Extending
DLT Pipelines with New Notebooks-Extending DLT
Pipelines with New Notebooks

adding new notebook to pipeline, Extending DLT
Pipelines with New Notebooks

defining DLT view joining tables across notebooks,
Extending DLT Pipelines with New Notebooks
DLT support for combining notebooks, Extending DLT
Pipelines with New Notebooks

interactive dashboard to monitor streaming queries,
Streaming Data Manipulations in SQL
magic commands, Magic Commands-FS magic command

fs command, FS magic command
language command, Language magic command
md (Markdown) command, Markdown magic command
navigation, enhancing with Markdown, Enhancing
notebook navigation with Markdown
run command, Run magic command

Notebook type task, Task 3: Output exploration
setting language for, Setting the Notebook Language
using Databricks Utilities (dbutils), Databricks Utilities
versioning, Notebook Versioning

accessing version history, Accessing version history
restoring previous version, Restoring a previous version

written in Python or SQL, use in implementing DLT
pipelines, Implementing DLT Pipelines

notifications (job), Setting job notifications

O

object privileges in Hive metastore, Object privileges-ALL
PRIVILEGES

advanced privilege management, Advanced Privilege
Management-SHOW GRANTS operation
ALL PRIVILEGES, ALL PRIVILEGES
CREATE privilege, CREATE privilege
MODIFY privilege, MODIFY privilege
SELECT privilege, SELECT privilege
USAGE privilege, USAGE privilege

objects
configuring object permissions with Databricks SQL,
Configuring object permissions
data objects, types of, in Hive metastore, Data object types
object types in Delta Live Tables, DLT object types
working with nested objects in Spark SQL, Interacting with
Struct Types

official Databricks practice exam, Official Databricks Practice
Exam
ON VIOLATION clause (CONSTRAINT), DLT Expectations,
Silver layer

omitted, no action, DLT Expectations
operation type (CDC feed), CDC Feed
OPTIMIZE command, Optimizing Delta Lake Tables

ZORDER BY keyword, Z-Order Indexing-Z-Order Indexing

outer joins, Mastering Join Operations in Spark SQL
output exploration task, Task 3: Output exploration

results of executing failed task, Debugging Jobs
reviewing results of, Task 3: Output exploration

output modes (DataStreamWriter), Output Modes
append, Transitioning to the silver layer
complete, Persisting streaming data

outputMode function, DataStreamWriter
overwriting tables

versus dropping and recreating tables, Replacing Data
using CREATE OR REPLACE TABLE, 1. CREATE OR REPLACE
TABLE statement
using INSERT OVERWRITE, 2. INSERT OVERWRITE

P

Parquet file format, Delta Lake Transaction Log
immutability of files, Updating scenario

PARTITIONED BY clause (CREATE TABLE), CTAS Statements
paths specifying filepath in SELECT * FROM, Querying Data
Files
performance

enhancing by enabling Photon for all-purpose cluster, 8.
Enabling Photon

selecting Databricks Runtime version, 7. Performance:
Selecting the Databricks Runtime version

permissions
advanced privilege management in Hive metastore,
Advanced Privilege Management-SHOW GRANTS
operation
granting in Hive metastore, Granting Permissions-Granting
privileges by role

data object types, Data object types
granting privileges by role, Granting privileges by role
object privileges, Object privileges-ALL PRIVILEGES

granting in Unity Catalog, Granting permissions
job permissions, managing, Managing permissions
managing with Databricks SQL, Managing Permissions
with Databricks SQL-Query History

adding groups, Adding groups
adding users, Adding users
configuring object permissions, Configuring object
permissions
creating data objects, Creating data objects
granting privileges to a group, Granting privileges to a
group
granting privileges to individual user, Granting
privileges to an individual user

managing permissions in Catalog Explorer, Managing
permissions in Catalog Explorer-Query History
reviewing assigned permissions, Reviewing assigned
permissions

setting for sharing a dashboard, Sharing a Dashboard
Unity Catalog security model for managing, UC Security
Model-UC Security Model

persistence
persisting output of streaming DataFrame, Streaming Data
Manipulations in Python
persisting processed streaming data into dedicated silver
layer table, Transitioning to the silver layer
persisting streaming data, Persisting streaming data

Photon, enabling for all-purpose cluster, 8. Enabling Photon
pie graphs, Designing visualizations
pipeline modes of Delta Live Tables, General configurations
PIVOT clause, Changing Data Perspectives
Policy setting (clusters), 4. Setting the cluster policy
populating data

using CREATE TABLE versus CTAS statements, Populating
data

practice exams, Practice Exams
interactive practice exams, Interactive Practice Exams

official Databricks practice exam, Official Databricks
Practice Exam

primary keys, APPLY CHANGES INTO command
print function (dbutils), Displaying the output
privileges, Granting Permissions

(see also permissions)
proctoring (certification exam), Exam Proctoring
Production mode (DLT pipeline), Production mode
production pipelines, building, Building Production Pipelines-
Code-Based Question

capturing data changes, Capturing Data Changes-Extending
DLT Pipelines with New Notebooks
Delta Live Tables, Exploring Delta Live Tables-Examining
DLT pipelines
exam questions on, Key Topics Covered
orchestrating workflows, Orchestrating Workflows-
Repairing runs

profile settings (in workspace top bar), Top bar
programming languages

setting language for notebooks, Setting the Notebook
Language
support by Apache Spark on Databricks, Apache Spark™
on Databricks
support by Databricks notebooks, Working with Notebooks

support by Databricks workspace, High-Level Architecture
of the Databricks Lakehouse

publishing dashboards, Publishing a Dashboard
republishing a new version, Republishing a New Version

pulling changes from GitHub, Pulling Changes from GitHub
pushing changes to Git, Committing and Pushing Changes
PySpark API, Implementing Structured Streaming

data transformations executed in silver layer of medallion
architecture, Transitioning to the silver layer

PySpark DataFrame API, Persisting streaming data, Streaming
Data Manipulations in Python
Python

code snippet language on certification exam, Code Snippet
Language
default language for notebooks, Setting the Notebook
Language
manually removing tables using dbutils.fs.rm, Dropping
tables
spark.readStream method from PySpark API,
Implementing Structured Streaming
streaming data manipulations in, Streaming Data
Manipulations in Python-Streaming Data Manipulations in
Python

syntax differences between DLT and Spark Structured
Streaming, Syntax

Q

Quartz Cron syntax, scheduling jobs using, Scheduling the job
queries

Queries repository for Databricks SQL, What Is Databricks
SQL?
query history log in Databricks SQL, What Is Databricks
SQL?, Query History
streaming query configurations in DataStreamWriter,
Streaming Query Configurations

queries interface in Databricks SQL, Browsing Saved Queries

R

READ FILES privilege, UC Security Model
read operations (Delta Lake), Read operation by Bob

concurrent writes and reads, Concurrent writes and reads
scenario

READ_METADATA privilege, READ_METADATA privilege,
Granting privileges to a group

granting in Catalog Explorer, Granting new permissions
recompute approach, data stream processing, What Is a Data
Stream?

recovering recently dropped tables, Dropping tables
registering for certification exam, Registering for the Exam-
Scheduling the Exam
regulations and compliance, What Is Data Governance?
relational entities, Mastering Relational Entities in
Databricks-Code-Based Question

databases in Databricks, Understanding Relational Entities-
Tables in Databricks
setting up Delta tables, Setting Up Delta Tables-Data
integrity in cloning
tables in Databricks, Tables in Databricks-External tables
views, exploring, Exploring Views-Dropping Views
working in custom-location schema, Working In a Custom-
Location Schema-Dropping tables
working in default schema, Putting Relational Entities into
Practice-Working in a New Schema
working in new schema, Working in a New Schema-
Working In a Custom-Location Schema

repairing runs, Repairing runs
replacing data in Delta Lake tables, Replacing Data-2. INSERT
OVERWRITE

using CREATE OR REPLACE TABLE, 1. CREATE OR REPLACE
TABLE statement
using INSERT OVERWRITE, 2. INSERT OVERWRITE

republishing new version of a dashboard, Republishing a
New Version
resources (Databricks)

deployment within cloud provider's environment,
Deployment of Databricks Resources

RESTORE TABLE command, Rolling Back to Previous Versions
TO TIMESTAMP AS OF, Rolling Back to Previous Versions
TO VERSION AS OF, Rolling Back to Previous Versions

retention duration check in Delta Lake, disabling
temporarily, Vacuuming in Action
reviewing assigned permissions, Reviewing assigned
permissions, Reviewing and modifying permissions
REVOKE operation, REVOKE operation
revoking permissions in Catalog Explorer, Revoking
permissions, Managing permissions for database objects
right joins, Mastering Join Operations in Spark SQL
roles, granting privileges by in Hive metastore, Granting
privileges by role
row-level changes (CDC), Definition
run magic command, Run magic command
running modes for DLT pipelines, Running DLT pipelines-
Data quality metrics

configuring DLT pipelines

examining underlying mechanisms, Examining DLT
pipelines-Examining DLT pipelines

Development mode, Development mode
Production mode, Production mode

running Unity Catalog workloads, Running Unity Catalog
workloads-Dropping tables
runs of jobs, repairing, Repairing runs
Runtime version (Databricks), 7. Performance: Selecting the
Databricks Runtime version

S

saved queries, browsing in Databricks SQL, Browsing Saved
Queries
saving queries in Databricks SQL, Saving a Query
schedules

scheduling alerts in Databricks SQL, Scheduling the Alert
alert destination configuration, Scheduling the Alert
options for scheduling, Scheduling the Alert

scheduling jobs, Scheduling the job
scheduling query in Databricks SQL, Scheduling a Query

schemas, Working in the Default Schema
(see also databases in Databricks)
creating in Unity Catalog, Creating schemas

CTAS statements inferring from query results, Registering
Tables from Files with CTAS
or databases in Hive metastore, Data object types
or databases in Unity Catalog, Detailed Hierarchical
Structure
files lacking predefined schema, querying, Querying Non-
Self-Describing Formats
management by Auto Loader, Schema management
reviewing permissions assigned to, Reviewing assigned
permissions
schema browser in SQL editor, Managing SQL Queries
schema declaration in CREATE TABLE versus CTAS
statements, Schema declaration
schema mismatch exception, 2. INSERT OVERWRITE
for tables created via USING keyword, manual creation of
schema, Registering Tables on Foreign Data Sources

schema_of_json function, Parsing JSON into Struct Type
search bar (in workspace top bar), Top bar
security, What Is Data Governance?

exam questions on, Key Topics Covered
managing data security in Hive metastore, Managing Data
Security in the Hive Metastore-Query History

advanced privilege management, Advanced Privilege
Management-SHOW GRANTS operation

granting permissions, Granting Permissions-Granting
privileges by role
managing permissions with Databricks SQL, Managing
Permissions with Databricks SQL-Query History

Unity Catalog security model, UC Security Model-UC
Security Model

SELECT * FROM statement, Inserting Data
file queries, initiating, Querying Data Files
querying entire directory of files, Querying JSON Format
querying JSON format dataset, Querying JSON Format
querying multiple files simultaneously using wildcard
character (*) in path, Querying JSON Format
querying stored view, Stored views
SELECT * FROM DELTA, Dropping tables
TIMESTAMP AS OF keyword, Querying by timestamp
using input_file_name function and source file
information, Querying JSON Format
VERSION AS OF keyword, Querying by version number

SELECT operations, permission for, Granting Permissions
SELECT privilege, SELECT privilege, Granting privileges to a
group, Reviewing assigned permissions

in Unity Catalog, UC Security Model
sensor readings, What Is a Data Stream?

SEQUENCE BY keyword, APPLY CHANGES INTO command,
Extending DLT Pipelines with New Notebooks
serverless compute

for notebooks, Executing Code
service principals in Unity Catalog, Service principals
SET command, Implementing DLT Pipelines
set operations in Spark SQL, Exploring Set Operations in
Spark SQL-Minus operation

intersect operation, Intersect operation
minus operation, Minus operation
union operation, Union operation

SHALLOW CLONE keyword (CREATE TABLE), Shallow cloning
shared access mode (clusters), 6. Configuring the access mode
sharing a dashboard, Sharing a Dashboard-Republishing a
New Version

publishing a dashboard, Publishing a Dashboard
SHOW CATALOGS command, Verifying the created catalog
SHOW GRANT statement, Granting permissions
SHOW GRANTS operation, SHOW GRANTS operation,
Reviewing assigned permissions
SHOW SCHEMAS command, Creating schemas
SHOW TABLES command

confirming persistence of stored view in default database,
Stored views

listing all tables and views in default database, Exploring
Views
showing temporary view, Temporary views

SHOW TABLES IN command, Global temporary views
sidebar (workspace interface), Sidebar
silver layer (medallion architecture)

about, Silver layer
creating silver table to apply changes from CDC feed in DLT
pipeline, Extending DLT Pipelines with New Notebooks
implementing for DLT pipeline, Silver layer
transitioning to, Transitioning to the silver layer

single user mode (clusters), 6. Configuring the access mode
single-node clusters, 5. Configuring the cluster: Single-node
versus multi-node
skipChangeCommits option, Advancing to the gold layer
social media feeds, What Is a Data Stream?
Source code configuration (DLT pipeline), Source code
source file information, including in dataset query, Querying
JSON Format
source table for APPLY CHANGES INTO, APPLY CHANGES
INTO command
Spark (see Apache Spark on Databricks)
Spark SQL, Transforming Data with Apache Spark

(see also Apache Spark on Databricks)

CREATE CATALOG command, Creating a new catalog
Spark Structured Streaming, Spark Structured Streaming-
Unsupported operations

assumption that data is only being appended to upstream
tables, Advancing to the gold layer
Auto Loader built upon, Auto Loader
comparison of Delta Live Tables to, Comparison of DLT and
Spark Structured Streaming-Data quality control
guarantees offered by, Structured Streaming Guarantees
implementing, Implementing Structured Streaming-
Streaming Data Manipulations in Python

spark.readStream method, DataStreamReader, Implementing
Structured Streaming, Implementation, Setting up Auto
Loader

versus @dlt.table decorator, Syntax
spark.table function, Persisting streaming data
spark.writeStream method, Implementation, Setting up Auto
Loader

versus @dlt.table decorator, Syntax
SQL

advanced ETL transformations in Spark SQL, Performing
Advanced ETL Transformations-Changing Data
Perspectives

aggregating unique values, Aggregating Unique Values

flattening struct types, Flattening Struct Types
handling nested JSON data, Dealing with Nested JSON
Data
interacting with struct types, Interacting with Struct
Types
mastering join operations, Mastering Join Operations in
Spark SQL
parsing JSON into struct type, Parsing JSON into Struct
Type
set operations, Exploring Set Operations in Spark SQL-
Minus operation
using explode function, Leveraging the explode
Function

code snippet language on certification exam, Code Snippet
Language
CONSTRAINT keyword, DLT Expectations
COPY INTO command, COPY INTO Command
CREATE TABLE statement, Creating Tables
creating live views in Delta Lake Tables, Live views
creating materialized view in Delta Live Tables,
Materialized views
creating streaming tables in DLT using, Streaming tables
Databricks SQL, Exploring Databricks SQL-Conceptual
Questions

managing SQL queries, Managing SQL Queries-Browsing
Saved Queries
query combining two gold tables created previously,
Creating data sources

developing user-defined functions in Spark SQL,
Developing SQL UDFs-Dropping UDFs

exam question on, Code-Based Question
direct use of Auto Loader in, Creating a streaming table
INSERT INTO statement, Inserting Data
saved queries against tables, or views, Exploring Views
SELECT * FROM statement, Inserting Data
Spark SQL, data transformations in, Transitioning to the
silver layer
SQL section, Databricks workspace sidebar, Sidebar
statement, choosing to create external Delta Lake table,
Code-Based Question
streaming data manipulations in, Streaming Data
Manipulations in SQL-Persisting streaming data
support for creating streaming tables in Spark SQL versus
Delta Live Tables, SQL support
switching to in specific cell in notebooks, Language magic
command
Unity Catalog permissions management based on ANSI
SQL, UC Security Model

use in Spark Structured Streaming along with DataFrame
operations, Spark Structured Streaming
working with higher-order functions in Spark SQL,
Working with Higher-Order Functions-Transform Function

SQL editor, What Is Databricks SQL?, Managing SQL Queries,
Creating data objects

query results in, Writing a SQL Query
saving queries in, Saving a Query
scheduling queries in, Scheduling a Query
simplifying writing of SQL queries, Writing a SQL Query

SQL endpoints in SQL warehouses, SQL Endpoints
SQL warehouses (Databricks SQL), What Is Databricks SQL?,
Creating data objects

connecting a running SQL warehouse, Managing SQL
Queries
creating, Creating SQL Warehouses-SQL Endpoints

configuring SQL warehouse, Configuring a SQL
Warehouse

using to run Unity Catalog workloads, Creating a UC-
compliant cluster

star (*) operation, using to flatten struct types in Spark SQL,
Flattening Struct Types
stateful streaming queries, Applying transformations
stopping active streams, Stopping active streams

storage
exploring content of DLT pipeline storage location,
Examining DLT pipelines-Examining DLT pipelines
metastore not configured with root storage location,
Creating a new catalog
storage-related privileges in Unity Catalog, UC Security
Model

storage access objects in Unity Catalog, Detailed Hierarchical
Structure
storage layer, What Is Delta Lake?

(see also Delta Lake)
Storage location field (DLT pipeline), Destination
stored views, Stored views

comparison to temporary and global temporary views,
Comparison of View Types

STREAM function (SQL), Streaming tables
STREAM method, Silver layer
stream processing (Apache Spark on Databricks), Apache
Spark™ on Databricks
streaming data processing

combined with batch processing in medallion architecture,
Benefits of Medallion Architectures
demonstrating in Auto Loader in medallion architecture,
Configuring Auto Loader

stopping active streams, Stopping active streams
streaming data with Apache Spark, Streaming Data with
Apache Spark-Unsupported operations

data streams, defined, What Is a Data Stream?
implementing Spark Structured Streaming, Implementing
Structured Streaming-Streaming Data Manipulations in
Python

streaming data manipulations in Python, Streaming
Data Manipulations in Python-Streaming Data
Manipulations in Python
streaming data manipulations in SQL, Streaming Data
Manipulations in SQL-Persisting streaming data

Spark Structured Streaming, Spark Structured Streaming-
Unsupported operations

STREAMING keyword, Creating a streaming table
streaming tables

bronze table to ingest CDC feed in DLT pipeline, Extending
DLT Pipelines with New Notebooks
comparison with materialized views in DLT, Materialized
views
creating for DLT pipeline, Creating a streaming table
creating in Delta Live Tables versus Spark Structured
Streaming, Comparison of DLT and Spark Structured
Streaming

https://calibre-pdf-anchor.a/#a1373

in Delta Live Tables, Streaming tables
gold table not defined as, Extending DLT Pipelines with
New Notebooks
identifying as source table for APPLY CHANGES INTO,
APPLY CHANGES INTO command

streaming temporary views, Streaming Data Manipulations in
SQL
struct types

flattening, using Spark SQL, Flattening Struct Types
interacting with, using Spark SQL, Interacting with Struct
Types
parsing JSON into, using Spark SQL, Parsing JSON into
Struct Type

Structured Streaming (see Spark Structured Streaming)
Switch Workspaces option (workspace top bar), Top bar
system catalog, Verifying Unity Catalog enablement
system database, Verifying the created catalog
system tables in Unity Catalog, Unity Catalog Features

T

table columns
exploring in schema browser, Managing SQL Queries

table or view not found error message, Debugging Jobs
tables

created from foreign data sources
external CSV files, Example 1: CSV
external SQL databases, Example 2: database
limitations of, Limitation

CTAS statements simplifying creation of Delta Lake tables
from query results, Registering Tables from Files with CTAS
table objects in Hive metastore, Data object types

tables (Delta Lake)
managing in Unity Catalog, Managing Delta tables
as streaming source, Implementing Structured Streaming
streaming data between, DataStreamWriter

tables directory (DLT pipeline), Examining DLT pipelines
tables in Databricks, Tables in Databricks-External tables

accessing in Unity Catalog with three-level namespace, UC
Three-Level Namespace
creating external tables in default database, Creating
external tables
creating in custom-location database, Creating tables
creating managed tables in default database, Creating
managed tables
creating tables in new database, Creating tables in the new
database
dropping from custom-location database, Dropping tables
dropping tables from default database, Dropping tables

dropping tables from new database, Dropping tables
external tables, External tables-External tables
inserting table into SQL query text, Writing a SQL Query
managed tables, Managed tables
nonstreaming tables or materialized views in DLT,
Materialized views
regeneration downstream from raw data in medallion
architecture, Benefits of Medallion Architectures
setting up Delta tables, Setting Up Delta Tables-Data
integrity in cloning

cloning Delta Lake tables, Cloning Delta Lake Tables
comparison of CREATE TABLE and CTAS statements,
Comparing CREATE TABLE and CTAS
constraints, Table Constraints
using CTAS statements, CTAS Statements

tasks, Introducing Databricks Jobs
in multi-task Databricks job, Creating Databricks Jobs

DLT pipeline task, Task 2: DLT pipeline
landing data task, Creating Databricks Jobs
output exploration task, Task 3: Output exploration

reviewing task results, Reviewing task results-Task 3:
Output exploration
task selection for run repair, Repairing runs

temporary views, Temporary views-Global temporary views

comparison to stored and global temporary views,
Comparison of View Types
creating for foreign data source, Hybrid approach
global temporary views, Global temporary views
registering from streaming DataFrames, Streaming Data
Manipulations in SQL
storing results of parsing JSON into struct in, Parsing JSON
into Struct Type

terminations
all-purpose clusters, All-Purpose Clusters
enabling auto-termination for clusters, 11. Enabling auto-
termination
job clusters, Job Clusters
terminating DLT pipeline cluster, Examining DLT pipelines

testing environment (certification), preparing for, Getting
Ready for the Assessment
testing environment requirements during certification exam,
Exam Proctoring
text format, querying with, Querying Using the text Format
time travel (Delta Lake), Exploring Delta Time Travel-Rolling
Back to Previous Versions

conceptual questions on, Conceptual Question
hampered by VACUUM operations, Vacuuming in Action
querying older table versions, Querying Older Versions

rolling back to previous table versions, Rolling Back to
Previous Versions

TIMESTAMP AS OF (SELECT * FROM), Querying by timestamp
timestamp/version number (CDC feed), CDC Feed
top bar (workspace interface), Top bar
transaction log (Delta Lake), Delta Lake Transaction Log

for each table, Exploring the Table Directory
full audit logging in, Delta Lake Advantages

transactions, Inserting Data
TRANSFORM function, Transform Function
transformations of data, Transforming Data with Apache
Spark

(see also Apache Spark on Databricks)
applied in silver layer of medallion architecture,
Transitioning to the silver layer
applying in SQL manipulations of streaming data, Applying
transformations

trigger intervals (DataStreamWriter), Trigger Intervals
continuous mode, Continuous mode: Near-real-time
processing
triggered mode, Triggered mode: Incremental batch
processing

trigger settings, exam question on, Code-Based Question

Trigger.availableNow setting, Triggered mode: Incremental
batch processing
Trigger.Once setting (deprecated), Triggered mode:
Incremental batch processing
triggered mode

DLT pipelines, General configurations
setting for streaming query, Persisting streaming data

triggers in job schedules, Scheduling the job

U

UC (see Unity Catalog)
UDFs (see user-defined functions)
UNDROP TABLE command, Dropping tables
UNION ALL operation, Union operation
UNION keyword, Creating data sources
UNION operation, Union operation
unique values

aggregating using collect_set in Spark SQL, Aggregating
Unique Values

Unity Catalog, High-Level Architecture of the Databricks
Lakehouse, What Is Data Governance?, Governing Data with
Unity Catalog-Conclusion

in action, Unity Catalog in Action-Dropping tables
accessing account console, Accessing account console

assigning existing metastore to workspaces, Assigning
existing metastore
creating new metastore, Creating a new metastore
enabling workspaces for Unity Catalog, Enabling
workspaces for Unity Catalog
manually enabling Unity Catalog, Manual enabling of
Unity Catalog
running Unity Catalog workloads, Running Unity Catalog
workloads-Dropping tables
verifying enablement in workspaces, Verifying Unity
Catalog enablement

architecture, Unity Catalog Architecture
coexistence with Hive metastore, Accessing the Hive
Metastore
data object hierarchy, Data Object Hierarchy
defined, What Is Unity Catalog?
features to enhance data management, accessibility, and
traceability, Unity Catalog Features
hierarchical structure, detailed, Detailed Hierarchical
Structure
hierarchy of relational entities in, Conceptual Question
identity management in, Identity Management
integration with Databricks Assistant in workspace, Top
bar

key architectural changes, Key Architectural Changes
security model, UC Security Model-UC Security Model
three-level namespace, UC Three-Level Namespace
unitystorage, table commands and, Exploring the Table
Directory

unsupported operations in Spark Structured Streaming),
Unsupported operations
updates

in CDC, Definition
performed with MERGE INTO, Merging Data
UPDATE privilege on data objects in Hive metastore,
MODIFY privilege
updating Delta Lake tables, Updating Delta Lake Tables
updating scenario, Delta Lake, Updating scenario

USAGE privilege, USAGE privilege, Granting privileges to a
group

granting in Catalog Explorer, Granting new permissions
USE CATALOG hive_metastore command, Exploring the Table
Directory
USE DATABASE keyword, External tables

setting new database as current schema, Creating tables in
the new database

USE privilege in Unity Catalog, UC Security Model
USE SCHEMA keyword, External tables

user-defined functions (UDFs)
developing SQL UDFs, Developing SQL UDFs-Dropping
UDFs

complex logic UDFs, Complex Logic UDFs
creating UDFs, Creating UDFs
dropping UDFs, Dropping UDFs
understanding UDFs, Understanding UDFs

users
adding within Databricks workspace, Adding users
centralized management in Unity Catalog, Key
Architectural Changes
granting privileges to individual user, Granting privileges
to an individual user
in Unity Catalog, Users

Users management page, Adding users
USING DELTA clause (CREATE TABLE), Creating Tables
USING keyword (CREATE TABLE), Registering Tables on
Foreign Data Sources

V

VACUUM command, Vacuuming
default retention period for files, Vacuuming in Action
RETAIN 0 HOURS, Vacuuming in Action

vacuuming (in Delta Lake), Vacuuming-Dropping Delta Lake
Tables
validation of data, Silver layer
variables

declaring variable holding location of dataset,
Implementing DLT Pipelines

VERSION AS OF keyword (SELECT * FROM), Querying by
version number
versions

notebook versioning, Notebook Versioning
versioning with Git, Versioning with Git-Pulling changes

views, Exploring Views-Dropping Views
comparison of view types, Comparison of View Types

accessibility, Accessibility
creation syntax, Creation syntax

creating view on top of two tables by performing inner join
between them, Exploring Views
creating with Databricks SQL, Creating data objects
dropping, Dropping Views
live views in Delta Live Tables, Live views
materialized views in DLT, Materialized views
reviewing permissions assigned to, Reviewing assigned
permissions

revoking privileges assigned to in Catalog Explorer,
Managing permissions for database objects
temporary views

using with CTAS to create Delta tables from foreign data
sources, Hybrid approach

types of, View Types-Global temporary views
global temporary views, Global temporary views
stored views, Stored views
temporary views, Temporary views-Global temporary
views

view objects in Hive metastore, Data object types
violations of constraints, DLT Expectations, Silver layer
virtual machines (VMs)

selecting VM size for worker nodes in clusters, 9.
Configuring worker nodes

visualizations
designing for new dashboard in Databricks SQL, Designing
visualizations-Designing visualizations

W

Webassessor platform
logging into your account prior to exam, Getting Ready for
the Assessment

monitoring by Webassessor Proctor via computer's
webcam, Exam Proctoring
My Assessments page, Getting Ready for the Assessment
overview of, Exam Platform Overview
prerequisites before launching into exam, Getting Ready
for the Assessment
scheduling certification exam, Scheduling the Exam
viewing available Databricks certification exams,
Scheduling the Exam

WHEN MATCHED clause (MERGE INTO), Merging Data
WHEN NOT MATCHED clause (MERGE INTO), Merging Data
WHERE clause, Inserting Data

CHECK constraints and, Table Constraints
use with FILTER function, Filter Function

worker nodes (clusters), Creating Clusters
configuring for all-purpose cluster, 9. Configuring worker
nodes

workflows, orchestrating, Orchestrating Workflows-
Repairing runs

configuring job settings, Configuring Job Settings-
Managing permissions
creating Databricks jobs, Creating Databricks Jobs-Task 3:
Output exploration
debugging jobs, Debugging Jobs

introduction to Databricks Jobs, Introducing Databricks
Jobs
running the job, Running the Job-Task 3: Output
exploration

workspaces (Databricks), High-Level Architecture of the
Databricks Lakehouse, Exploring the Databricks Workspace-
Option 2: DBC files

Catalog tab, Catalog Explorer
creating additional workspaces, Additional Workspaces
and Account Management
Databricks SQL, What Is Databricks SQL?
enabling for Unity Catalog, Enabling workspaces for Unity
Catalog
importing book materials (example), Importing Book
Materials-Option 2: DBC files
management before and after adopting Unity Catalog,
Unity Catalog Architecture
navigating to Compute tab, 1. Navigating to the Compute
tab
navigating workspace browser, Navigating the Workspace
Browser-Navigating the Workspace Browser
overview of workspace interface, Overview of the
Workspace Interface-Top bar
setting up, Setting Up a Databricks Workspace

Unity Catalog metastore, assigning to, Creating a new
metastore
Unity Catalog metastore, existing, assigning to, Assigning
existing metastore
verifying Unity Catalog enablement, Verifying Unity
Catalog enablement
Workflows tab

Delta Live Tables, Configuring DLT Pipelines
Workspace tab, creating notebook with, Creating a New
Notebook

WRITE FILES privilege, UC Security Model
writeStream method, Persisting streaming data
writing and reading data (Delta Lake), Write operation by
Alice

concurrent writes and reads, Concurrent writes and reads
scenario
failed writes scenario, Failed writes scenario
writing to tables, Writing to Tables-Merging Data

appending data, Appending Data
merging data, Merging Data-Merging Data
replacing data, Replacing Data-2. INSERT OVERWRITE

Z

Z-Order indexing, Z-Order Indexing-Z-Order Indexing

About the Author

Derar Alhussein is a senior data engineer with a master’s
degree in data mining. He has over a decade of hands-on
experience in software and data projects, including large-scale
data projects on Databricks. Derar is a Databricks MVP and
holds eight certifications from Databricks, showcasing his
proficiency in the field. He is also an experienced instructor,
with a proven track record of success in training thousands of
data engineers, helping them to develop their skills and obtain
industry-recognized certifications.

Colophon

The animal on the cover of Databricks Certified Data Engineer
Associate Study Guide is a sacred kingfisher (Todiramphus
sanctus). This striking bird has a bright turquoise back, head,
and wings, contrasting with a white neck and chest. It can be
found widely throughout Southeast Asia, Australia, New
Zealand, and various Pacific islands. The sacred kingfisher’s
name is derived from its cultural significance in some Pacific
Island societies. For instance, in Polynesian mythology, the birds
were associated with the sea and fishing, and venerated for
having control over the waves. Their bright feathers were also
used in traditional crafts and apparel.

The kingfisher’s long, pointed bill is ideal for catching prey.
Unlike other kingfisher species that dive below the water to
catch fish, the bulk of the sacred kingfisher’s diet consists of
animals it hunts on land, such as crustaceans, small reptiles,
frogs, and insects. It is considered a medium-sized bird at about
8–9 inches long.

Sacred kingfishers are known for their aerial agility and
distinctive mating calls, which are often described as as a
piercing “kek-kek” sound. They are typically solitary but may be

seen in pairs during the breeding season from September to
January. The birds nest in burrows, which they excavate in
riverbanks, hollow trees, or termite mounds. The female lays a
clutch of 3–6 white eggs, and both parents share the incubation
and chick-rearing duties. Typically, there will be two clutches in
each breeding season.

While the sacred kingfisher’s population is stable, many of the
animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on an
antique engraving from Pictorial Museum of Animated Nature.
The series design is by Edie Freedman, Ellie Volckhausen, and
Karen Montgomery. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading
font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

	Preface
	Why I Wrote This Book
	Who This Book Is For
	What You Will Learn
	What Not to Expect
	GitHub Repository and Community
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	How to Contact the Author
	Acknowledgments

	1. Getting Started with Databricks
	Introducing the Databricks Platform
	Understanding the Databricks Platform
	High-Level Architecture of the Databricks Lakehouse
	Deployment of Databricks Resources
	Apache Spark™ on Databricks
	Databricks File System (DBFS)

	Setting Up a Databricks Workspace
	Exploring the Databricks Workspace
	Overview of the Workspace Interface
	Navigating the Workspace Browser
	Importing Book Materials

	Creating Clusters
	All-Purpose Clusters
	Job Clusters
	Databricks Pools
	Creating All-Purpose Clusters
	Managing Your Cluster

	Working with Notebooks
	Creating a New Notebook
	Setting the Notebook Language
	Executing Code
	Magic Commands
	Databricks Utilities
	Download Notebooks
	Notebook Versioning

	Versioning with Git
	Setting Up Git Integration
	Creating Git Folders
	Managing Git Branches
	Committing and Pushing Changes
	Pulling Changes from GitHub

	Conclusion
	Sample Exam Questions
	Conceptual Questions
	Code-Based Questions

	2. Managing Data with Delta Lake
	Introducing Delta Lake
	What Is Delta Lake?
	Delta Lake Transaction Log
	Understanding Delta Lake Functionality
	Delta Lake Advantages

	Working with Delta Lake Tables
	Creating Tables
	Catalog Explorer
	Inserting Data
	Exploring the Table Directory
	Updating Delta Lake Tables
	Exploring Table History

	Exploring Delta Time Travel
	Querying Older Versions
	Rolling Back to Previous Versions

	Optimizing Delta Lake Tables
	Z-Order Indexing

	Vacuuming
	Vacuuming in Action

	Dropping Delta Lake Tables
	Conclusion
	Sample Exam Questions
	Conceptual Question
	Code-Based Question

	3. Mastering Relational Entities in Databricks
	Understanding Relational Entities
	Databases in Databricks
	Tables in Databricks

	Putting Relational Entities into Practice
	Working in the Default Schema
	Working in a New Schema
	Working In a Custom-Location Schema

	Setting Up Delta Tables
	CTAS Statements
	Comparing CREATE TABLE and CTAS
	Table Constraints
	Cloning Delta Lake Tables

	Exploring Views
	View Types
	Comparison of View Types
	Dropping Views

	Conclusion
	Sample Exam Questions
	Conceptual Question
	Code-Based Question

	4. Transforming Data with Apache Spark
	Querying Data Files
	Querying JSON Format
	Querying Using the text Format
	Querying Using binaryFile Format
	Querying Non-Self-Describing Formats
	Registering Tables from Files with CTAS
	Registering Tables on Foreign Data Sources

	Writing to Tables
	Replacing Data
	Appending Data
	Merging Data

	Performing Advanced ETL Transformations
	Dealing with Nested JSON Data
	Parsing JSON into Struct Type
	Interacting with Struct Types
	Flattening Struct Types
	Leveraging the explode Function
	Aggregating Unique Values
	Mastering Join Operations in Spark SQL
	Exploring Set Operations in Spark SQL
	Changing Data Perspectives

	Working with Higher-Order Functions
	Filter Function
	Transform Function

	Developing SQL UDFs
	Creating UDFs
	Applying UDFs
	Understanding UDFs
	Complex Logic UDFs
	Dropping UDFs

	Conclusion
	Sample Exam Questions
	Conceptual Question
	Code-Based Question

	5. Processing Incremental Data
	Streaming Data with Apache Spark
	What Is a Data Stream?
	Spark Structured Streaming
	Streaming Query Configurations
	Structured Streaming Guarantees
	Unsupported operations

	Implementing Structured Streaming
	Streaming Data Manipulations in SQL
	Streaming Data Manipulations in Python

	Incremental Data Ingestion
	Introducing Data Ingestion
	COPY INTO Command
	Auto Loader
	Comparison of Ingestion Mechanisms
	Auto Loader in Action

	Medallion Architecture
	Introducing Medallion Architecture
	Building Medallion Architectures

	Conclusion
	Sample Exam Questions
	Conceptual Question
	Code-Based Question

	6. Building Production Pipelines
	Exploring Delta Live Tables
	Introducing Delta Live Tables
	DLT Expectations
	Implementing DLT Pipelines
	Configuring DLT Pipelines

	Capturing Data Changes
	Definition
	CDC Feed
	CDC Sources
	CDC Feed Delivery
	CDC in DLT
	Processing Change Data Capture
	Extending DLT Pipelines with New Notebooks

	Orchestrating Workflows
	Introducing Databricks Jobs
	Creating Databricks Jobs
	Configuring Job Settings
	Running the Job
	Debugging Jobs

	Conclusion
	Sample Exam Questions
	Conceptual Question
	Code-Based Question

	7. Exploring Databricks SQL
	What Is Databricks SQL?
	Creating SQL Warehouses
	Configuring a SQL Warehouse
	SQL Endpoints

	Designing Dashboards
	Creating a New Dashboard
	Sharing a Dashboard
	Publishing a Dashboard
	Republishing a New Version

	Managing SQL Queries
	Writing a SQL Query
	Saving a Query
	Scheduling a Query
	Browsing Saved Queries

	Setting Up Alerts
	Creating an Alert
	Scheduling the Alert

	Conclusion
	Sample Exam Questions
	Conceptual Questions

	8. Implementing Data Governance
	What Is Data Governance?
	Managing Data Security in the Hive Metastore
	Granting Permissions
	Advanced Privilege Management
	Managing Permissions with Databricks SQL

	Governing Data with Unity Catalog
	What Is Unity Catalog?
	Unity Catalog Architecture
	Key Architectural Changes
	UC Three-Level Namespace
	Data Object Hierarchy
	Detailed Hierarchical Structure
	Identity Management
	UC Security Model
	Accessing the Hive Metastore
	Unity Catalog Features
	Unity Catalog in Action

	Conclusion
	Sample Exam Questions
	Conceptual Question
	Code-Based Question

	9. Certification Overview
	Exploring the Exam Format
	Key Topics Covered
	Out-of-Scope Topics
	Code Snippet Language

	Registering for the Exam
	Registration Fee
	Exam Platform Overview
	Scheduling the Exam

	Troubleshooting and Support
	Getting Ready for the Assessment
	Exam Proctoring
	Exam Result

	Practice Exams
	Official Databricks Practice Exam
	Interactive Practice Exams

	Seeking Assistance
	Final Thoughts

	A. Signing Up for Databricks
	Deploying Databricks on Microsoft Azure
	Deploying Databricks on Amazon Web Services
	Additional Workspaces and Account Management
	Deploying Databricks on Google Cloud Platform

	B. Databricks Community Edition
	C. Answers to Sample Exam Questions
	Chapter 1: Getting Started with Databricks
	Chapter 2: Managing Data with Delta Lake
	Chapter 3: Mastering Relational Entities in Databricks
	Chapter 4: Transforming Data with Apache Spark
	Chapter 5: Processing Incremental Data
	Chapter 6: Building Production Pipelines
	Chapter 7: Exploring Databricks SQL
	Chapter 8: Implementing Data Governance

	Index
	About the Author

