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Preface

Innovative technologies in data engineering empower
companies to leverage their growing data effectively, leading to
improved business outcomes. In this context, platforms like
Databricks have emerged as essential tools for managing,
processing, and analyzing vast amounts of data. However, this
evolution also brings the need for skilled professionals who can
navigate the Databricks platform efficiently and implement

robust data solutions that meet business needs.

Why I Wrote This Book

With over ten years of experience in the data sector, I've seen
firsthand how Databricks unlocks the power of big data to drive
business growth across various industries. Throughout my
journey, I have also witnessed how certification programs like
the Databricks Data Engineer Associate can serve as a
meaningful benchmark, validating the skills needed to succeed

in the real world of data engineering.

This book is the result of my passion for teaching and my deep
belief in the importance of hands-on learning. The goal is

simple: to guide you through the concepts, tools, and



techniques that you will need to not only pass the certification
exam but also excel as a data engineer in practical scenarios. By
combining fundamental knowledge with practical exercises, I
hope to provide you with a study guide that is as useful for
building your day-to-day data engineering skills as it is for

earning your certification.



Who This Book Is For

This book is designed for anyone seeking to advance their data
engineering skills, whether you’re just beginning your journey
or already have some experience in the field. It’s tailored
specifically for those preparing for the Databricks Data Engineer
Associate certification, but it also serves as a practical guide for
anyone who wants to gain a deeper understanding of the

Databricks platform and its many capabilities.

The book is ideal for individuals who already have a strong
foundation in SQL and a basic understanding of Python. If you
are familiar with manipulating data using SQL and are looking
to apply those skills within the Databricks platform, this guide
will help you bridge that gap. The choice to focus primarily on
SQL in this book reflects the structure of the certification exam,
where most code-based questions are demonstrated using SQL.
However, for more complex operations where SQL alone is

insufficient, Python is introduced to complement your learning.

What You Will Learn

This book is designed to provide a comprehensive, hands-on

learning experience, covering every topic youw’ll encounter on



the Databricks Certified Data Engineer Associate exam. The
curriculum aligns with the latest version of the certification
(V3), ensuring that you are well-prepared for the current exam

requirements.

Throughout the book, you’ll gain a deep understanding of
essential topics, categorized into five broad areas related to the

exam topics:

Databricks Lakehouse Platform

Explore the foundational aspects of the lakehouse
architecture, which brings together the benefits of data lakes
and data warehouses, enabling you to manage data
efficiently.

ELT with Spark SQL and Python

Learn how to extract, transform, and load data using Spark
SQL and Python, focusing on practical techniques that will
enhance your data processing skills.

Incremental data processing

Understand the methodologies for processing data
incrementally, allowing for real-time data updates.
Production pipelines

Discover best practices for building robust production
pipelines using Delta Live Tables and Databricks Jobs,
ensuring your workflows are reliable and scalable.

Data governance



Familiarize yourself with the governance aspects of data
management, including the introduction of Unity Catalog and
its integration with the Hive metastore.

A main emphasis in this book is on the Hive metastore, which
remains an essential part of the current exam version. Although
Databricks has introduced a new governance model, Unity
Catalog, the Hive metastore continues to be a valuable learning
resource, particularly for those starting out in data engineering.
The book leverages the simplicity and accessibility of the Hive
metastore to explain fundamental concepts, such as managing

Delta Lake, which are integral to mastering Databricks.

As Databricks evolves, so do its tools, and Unity Catalog is one of
the newest additions to its data governance model. Although
the Hive metastore remains essential for certification purposes,
this book also introduces Unity Catalog and explains how it
extends beyond the existing metastore, ensuring you are up to
speed with the latest features. By the time you reach Chapter 8,
you’ll understand how both systems work together and be

ready to handle the new governance features.

To help solidify your learning, each chapter ends with a “Sample
Exam Questions” section. These questions mirror the
complexity of the actual certification exam, giving you a clear

sense of what to expect. This practical approach ensures that, by



the end of the book, you’ll have not only covered the necessary
technical content but also developed the exam techniques and
confidence to tackle the real test. Solutions to these questions

are included in Appendix C for your reference.

What Not to Expect

While this book is comprehensive in preparing you for the
Databricks Certified Data Engineer Associate exam, certain
advanced topics and cloud-specific details fall beyond its scope.
Given that Databricks operates as a multi-cloud platform, you
may work on Microsoft Azure, AWS, or Google Cloud. However,
the exam content is cloud-agnostic, focusing solely on
Databricks fundamentals rather than cloud-specific

configurations or integrations.

For beginners setting up a Databricks workspace, Appendix A
provides guidance on creating workspaces across different
cloud providers. However, the core chapters focus strictly on
Databricks itself, omitting platform-specific instructions such as
configuring access to cloud-specific storage systems (e.g., AWS
S3 or Azure Blob Storage). For these specialized cloud
configurations, please consult Databricks documentation

pertinent to your provider.



This book focuses on preparing you for the Associate-level
certification, concentrating on foundational skills and concepts.
For those looking to delve into more advanced aspects of
Databricks or data engineering beyond the certification exam,
consider exploring further resources, documentation, or
advanced-level training. This way, yow’ll be equipped with the
foundational knowledge needed to progress smoothly into

more compleX areas.

GitHub Repository and
Community

To complement your learning experience, this book includes
hands-on examples and exercises designed to reinforce the
concepts presented in each chapter. The source code for all
these examples is hosted on GitHub (https:/github.com/derar-
alhussein/oreilly-databricks-dea). This allows you to experiment

with the material as you progress and see the concepts in

action.

For the best experience with these code examples, I
recommend using Databricks Runtime 13.3 LTS. This specific
runtime version ensures compatibility with the certification

exam content and minimizes the risk of encountering


https://github.com/derar-alhussein/oreilly-databricks-dea

discrepancies from newer, untested features. By following along
with this runtime, you’ll maintain alignment with the exam
requirements and be better equipped to handle exam-related

tasks without unexpected behavior.

The exercises in this book are designed to run on classical
compute resources within Databricks. Serverless clusters are
intentionally avoided, as they do not permit runtime version
selection and might default to newer versions outside the scope
of the certification exam. With classical clusters, you’ll have
more control over your learning environment, ensuring each

example runs consistently and matches the exam experience.

As you progress through the exercises and explore the
Databricks platform, you may encounter questions or technical
challenges that require assistance. For these situations, the
Databricks Community Forum is an excellent support resource.

The forum, accessible at https:/community.databricks.com,

allows you to search for previously answered questions or post
your own if you can’t find the information you’re seeking. The
community is active, and responses are often quick and

insightful, coming from both experts and peers within the field.

Conventions Used in This Book


https://community.databricks.com/

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLSs, email addresses, filenames, and

file extensions.

Constant width

Used for program listings, as well as within paragraphs to
refer to program elements such as variable or function
names, databases, data types, environment variables,

statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally
by the user.

Constant width italic
Shows text that should be replaced with user-supplied values

or by values determined by context.

TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.



WARNING

This element indicates a warning or caution.

Using Code Examples

If you have a technical question or a problem using the code

examples, please send email to support@oreilly.com.

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this
book into your product’s documentation does require

permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and

ISBN. For example: “Databricks Certified Data Engineer


mailto:support@oreilly.com

Associate Study Guide by Derar Alhussein (O’Reilly). Copyright
2025 Derar Alhussein, 978-1-098-16683-0.”

If you feel your use of code examples falls outside fair use or the

permission given above, feel free to contact us at

permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O’Reilly Media has provided technology and business

training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other

publishers. For more information, visit https://oreilly.com.

How to Contact Us


mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

Please address comments and questions concerning this book
to the publisher:

e O’Reilly Media, Inc.

* 1005 Gravenstein Highway North

e Sebastopol, CA 95472

¢ 800-889-8969 (in the United States or Canada)
e 707-827-7019 (international or local)

e 707-829-0104 (fax)

* https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access this

page at https://oreil.ly/databricks-associate-study-guide.

For news and information about our books and courses, visit
https://oreilly.com.

Find us on LinkedIn: https:/linkedin.com/company/oreilly-media

Watch us on YouTube: https:/youtube.com/oreillymedia
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How to Contact the Author

Follow the author on LinkedIn:

https:/www.linkedin.com/in/deraralhussein

Follow the author on Facebook:

https://www.facebook.com/DerarAlhussein

Follow the author on GitHub: https:/github.com/derar-alhussein

Visit the author’s website: https:/derar.cloud
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Chapter 1. Getting Started with
Databricks

Databricks is transforming the way data and artificial
intelligence (AI) are managed with its innovative Data
Intelligence Platform. This platform offers a unified solution
that addresses the limitations of traditional data systems,
providing a more comprehensive approach to work with data.
In this chapter, we will explore the Databricks Data Intelligence
Platform and its capabilities. We will begin with an overview of
the platform’s architecture and then delve into its key features,
including compute resource creation, notebook execution, and

Git integration.

Introducing the Databricks
Platform

Traditional data management has long relied on two primary
paradigms: data lakes and data warehouses. Each approach
comes with its own strengths and limitations, particularly in the
context of big data processing. Data lakes, while flexible, often
struggle with data quality and governance due to their

unstructured nature. Data warehouses, though structured, can



be rigid and costly, limiting their adaptability to the evolving
demands of diverse, high-volume, and high-velocity data. To
overcome these challenges, enterprises often deploy multiple
systems—data lakes for storing raw data for Al applications, and
data warehouses for business intelligence (BI) purposes.
However, this strategy leads to increased complexity, requires
frequent data transfers, and complicates data governance.
Databricks addresses these issues by offering a unified platform
that supports both data lake and data warehouse functionalities

in a single environment, known as the data lakehouse.

Understanding the Databricks Platform

The Databricks Data Intelligence Platform is an Al-powered data
lakehouse platform built on Apache Spark. A data lakehouse
represents a hybrid solution that combines the best aspects of
data lakes and data warehouses. Specifically, it integrates the
openness, scalability, and cost efficiency of data lakes with the
reliability, strong governance, and performance features of data

warehouses.

To illustrate the concept of a data lakehouse, imagine you have
a vast collection of books (data) that contains various genres,
formats, and authors. Traditionally, two separate systems would

be employed to manage these books:



Data warehouse

An organized library where books (data) are carefully
curated, processed, and stored in a specific format, facilitating
efficient analysis and querying. However, maintaining this
system is costly, and its rigid structure makes it challenging to
accommodate new or unconventional book formats.

Data lake

A vast, inexpensive, and unstructured repository where all
the books are stored without extensive organization or
processing. It resembles an endless, disordered storage shelf
where various items can be easily stored; however, locating a
specific item can be problematic.

A lakehouse represents a smart, adaptable library that
combines the best of both worlds: the vast, flexible, and
economic storage of a data lake with the structured, organized,

and analyzable system of a data warehouse.

In the real world, such integration ensures that enterprises can
store vast amounts of diverse data in low-cost cloud storage
while maintaining the ability to analyze it efficiently and
securely. This facilitates performing a wide variety of tasks in
one place, including data engineering, machine learning, and
analytics. Thus, the data lakehouse serves as a unified platform

where data engineers, data scientists, and analysts can all work



together. Figure 1-1 illustrates this convergence of capabilities

into a single, comprehensive platform.

Datalake Lakehouse Data warehouse
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Figure 1-1. Convergence of data lakes and data warehouses into a unified data
lakehouse platform

To understand how Databricks achieves this, let’s examine the

underlying architecture of its data lakehouse.

High-Level Architecture of the Databricks
Lakehouse

The Databricks lakehouse is designed with a layered
architecture that consists of four fundamental layers: the cloud

infrastructure, Databricks Runtime, data governance, and the



workspace. Figure 1-2 illustrates the high-level architecture of
the Databricks lakehouse, showcasing the relationships among

these layers.
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Figure 1-2. High-level architecture of the Databricks lakehouse

Each of these layers plays a vital role in ensuring the platform’s
scalability, reliability, and security. To gain a deeper
understanding of their individual contributions, let’s examine

each layer in detail, starting from the bottom:

Cloud infrastructure

At the foundation of the Databricks lakehouse architecture
lies the cloud infrastructure layer. Databricks is a multi-cloud
platform, meaning it is available on major cloud service
providers, including Microsoft Azure, Amazon Web Services
(AWS), and Google Cloud Platform (GCP). This layer is
responsible for providing the underlying hardware resources
that Databricks accesses on behalf of users. It enables the
provisioning of essential components, such as storage,
networking, and the virtual machines (VMs) or nodes that
form the backbone of a computing cluster running
Databricks Runtime.

Databricks Runtime

Databricks Runtime is a pre-configured virtual machine
image optimized for use within Databricks clusters. It
includes a set of core components, such as Apache Spark,
Delta Lake, and other essential system libraries. Delta Lake
enhances traditional data lakes by providing transactional
guarantees similar to those found in operational databases,
thereby ensuring improved data reliability and consistency.



In Chapter 2, we explore Delta Lake in detail to understand its
transformative impact on data lake reliability.

Data governance with Unity Catalog

At the core of the Databricks lakehouse architecture is Unity
Catalog, which provides a centralized data governance
solution across all data and Al assets. Unity Catalog is
designed to secure and manage data access across the
Databricks environment, ensuring that sensitive information
is accessible only to authorized users. This layer is crucial for
maintaining data security, integrity, and compliance across
the lakehouse platform. Chapter 8 provides an in-depth look
at Unity Catalog and its comprehensive features and
capabilities.

Databricks workspace

At the top of the architecture is the Databricks workspace,
which serves as the user interface for interacting with the
platform. It provides an interactive environment where users
can perform data engineering, analytics, and AI workloads
using a variety of languages, such as Python, SQL, R, and
Scala. The workspace offers a range of services, including
notebooks for development, dashboards for visualizing data,
and workflow management tools for orchestrating data
pipelines.

Deployment of Databricks Resources



When deploying Databricks resources within your cloud
provider’s environment, the architecture is divided into two
high-level components: the control plane and the data plane.
Figure 1-3 illustrates these two components and the interaction

between them.
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Figure 1-3. Databricks resource deployment architecture

Understanding the distinction between these components is
essential for effectively managing and securing your Databricks
environment. Let’s take a closer look at each component to

ensure a clear understanding of their individual roles:

Control plane

The control plane is managed by Databricks and hosts
various platform services within the Databricks account.
When you create a Databricks workspace, it is deployed
within the control plane, along with essential services such as
the Databricks user interface (UI), cluster manager, workflow
service, and notebooks. Thus, the control plane handles tasks
such as workspace management, cluster provisioning, and
job scheduling. It also provides the interface through which
users interact with the platform, including the web-based
notebooks, the Databricks REST API, and the command-line
interface (CLI).

Data plane

The data plane, on the other hand, resides within the user’s
own cloud subscription. This is where actual storage and
classic compute resources (non-serverless) are provisioned
and managed. When a user sets up a Spark cluster, the virtual
machines that comprise the cluster are deployed in the data
plane, within the user’s cloud account. Similarly, storage



resources, such as those used by the Databricks File System
(DBFS) or Unity Catalog, are also deployed in the data plane.

This separation of control and data planes offers several
advantages. First, it ensures that the compute and storage
resources remain within the user’s cloud environment,
providing greater control over data security and compliance.
Second, it allows Databricks to manage the operational aspects
of the platform, such as updates and maintenance, without

impacting the user’s data or compute resources.

Apache Spark™ on Databricks

Apache Spark, an open source data processing engine, is a
cornerstone of the Databricks platform, enabling fast and
scalable analytics. Databricks, founded by the original creators
of Apache Spark, has deeply integrated Spark into its platform,
making it one of the most optimized environments for running

Spark applications.

The key features of Apache Spark on Databricks include the

following:

Distributed data processing

Spark’s architecture is designed to process data in parallel
across multiple nodes in a cluster. On Databricks, this



capability is enhanced by the seamless integration with
cloud-based clusters, which can be scaled up or down
depending on the workload.

In-memory processing

One of Spark’s most significant advantages is its in-memory
processing capability. By keeping data in memory across the
cluster, Spark significantly reduces the time required for
iterative algorithms and complex computations.
Multi-language support

Databricks supports all the programming languages that
Spark does, including Scala, Python, SQL, R, and Java.

Batch and stream processing

Apache Spark on Databricks supports both batch and stream
processing, making it suitable for a variety of use cases.
Batch processing is ideal for historical data analysis and data
transformations, while stream processing enables real-time
analytics and processing of continuous data streams.
Flexible data handling

Databricks, powered by Spark, can handle structured, semi-
structured, and unstructured data. This flexibility is crucial in
modern data ecosystems where data comes in various forms,
such as CSV files, JSON objects, images, videos, and even
complex nested data structures.

Databricks File System (DBFS)



A key feature that enhances Spark’s distributed processing
capabilities on Databricks is the Databricks File System (DBFS).
The DBFS acts as an abstraction layer that simplifies file
management across the distributed environment. It allows
users to interact with cloud files as if they were stored on a local

file system.

When a file is created in a Databricks cluster and stored in the
DBES, it is actually persisted in the underlying cloud storage
associated with your cloud provider. This is illustrated in

Figure 1-4.
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Figure 1-4. Data persistence in the DBFS and the underlying cloud storage

For instance, a file stored in the DBFS on Azure Databricks
would really be stored in Azure Data Lake Storage (ADLS). This
design ensures that data remains durable and accessible, even

after the Spark cluster is terminated.

Setting Up a Databricks
Workspace



Creating a Databricks workspace is the first step toward
leveraging the platform’s capabilities for data engineering,
analytics, and machine learning. To set up a workspace, an
active Databricks account is required. Databricks offers a 14-day
free trial, allowing you to explore its features using your cloud
account on Azure, AWS, or Google Cloud. The setup instructions
vary slightly depending on the cloud provider you choose;
however; it’s important to note that the certification exam does
not include cloud-specific questions. This means that you won’t
be tested on the details of creating a workspace on a specific

cloud platform.

For detailed instructions on setting up a Databricks workspace
on each of these cloud platforms, refer to Appendix A. This
section provides step-by-step guidance on how to sign up for a
free trial with Databricks and create your first workspace. If you
do not have a cloud account or prefer a simpler environment
for personal use or training, Databricks also offers the
Community Edition. This is a lightweight version of Databricks,
which provides access to the key platform’s features at no cost.
To learn how to sign up for Databricks Community Edition, refer

to Appendix B.



Exploring the Databricks
Workspace

The Databricks workspace provides an easy-to-use and intuitive
interface, enabling users to interact with their data objects and
perform a wide variety of essential tasks. This represents a
unified working environment for data engineers, data analysts,

and machine learning engineers.

Overview of the Workspace Interface

Figure 1-5 illustrates the home page of the workspace interface,

highlighting several key platform navigation areas.

NOTE

The Databricks platform is frequently updated with enhancements and new
features. As a result, the workspace interface in newer versions may differ from the
examples provided here. While the core functionality remains the same, the

appearance and specific layout elements might vary.
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Figure 1-5. The home page of Databricks workspace

The interface displays a dynamic landing screen that shows
recently accessed items and suggested content, providing a
personalized experience. The layout is intuitively organized into
two primary sections: the sidebar and the top bar. To break it

down further let’s explore the key components of each section.

Sidebar

The sidebar, located on the left side of the interface, offers quick
access to the platform’s key services. It is organized into several

categories, each serving a specific function:
Common categories

Workspace

This is an integrated browser where you can organize and
manage all your resources, such as folders, notebooks, and
other files.

Catalog
This tab allows you to manage your data and Al assets,

such as databases, tables, and machine learning models.

Workflows



Here, you can deploy and orchestrate jobs, allowing for

automated processing and execution of your data tasks.

Compute
This tab is where you create and manage your compute
resources, such as classic clusters and pools. We’ll cover

cluster management in detail in the following section.

SQL

The SQL section provides access to Databricks SQL, a service
designed for running SQL workloads on your data. It is
particularly useful for analytics and reporting tasks.
Chapter 7 provides an in-depth look at Databricks SQL and its
capabilities. However, it’s important to note that Databricks
SQL is not available in the Community Edition. This is one of
the reasons why it is recommended to use the full trial in
your cloud environment instead of the Community Edition.
Data Engineering

This section focuses on collaboration among data engineers
for performing advanced data engineering tasks. It includes
tools and features that are essential for ingesting data and
creating data pipelines and jobs. In Chapter 6, we delve into
these topics to learn how to build production-grade pipelines
and orchestrate jobs effectively.

Machine Learning

This section offers a range of options tailored for machine
learning (ML) engineers. It includes features such as ML



experiments, feature stores, and capabilities for registering
and serving ML models. It’s worth noting that these topics are
not included in the Data Engineer Associate certification
exam.

Top bar

The top bar spans across the top of the workspace interface and

provides several important functions:

Search bar

This Al-powered search tool allows you to efficiently search
for various items within your workspace, including tables,
notebooks, dashboards, and more. It is an essential feature
for quickly locating resources in your workspace using
natural language.

Switch Workspaces

If you manage multiple workspaces or need to navigate
between different projects, the Switch Workspaces option
allows you to easily toggle between them.

Databricks Assistant

This is an Al-based workspace assistant designed to enhance
your experience with developing notebooks, queries, and
dashboards. It provides a conversational interface that
facilitates code generation, explanation, and troubleshooting,
thereby boosting your productivity inside the platform. It also
integrates with Unity Catalog to offer features such as table
searching with context awareness.



Profile settings

The profile settings give you access to user-related options,
such as managing your preferences, linking external
services, and setting up notifications. They also provide
access to admin-specific settings that help configure your
workspace environment.

Navigating the Workspace Browser

The workspace browser is a central feature of the Databricks
platform, providing an organized and structured environment
where you can manage all your project items, such as folders,

notebooks, scripts, or other files.

When you navigate to the Workspace tab from the left sidebar,
you enter your Home directory, where all your resources are

stored, as illustrated in Figure 1-6.
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Figure 1-6. The workspace browser in the Databricks platform

The workspace is structured hierarchically, making it easy to
organize your work. The left-hand menu includes several key
directories to help you manage your workspace effectively, such

as the following:

Home directory

The Home directory is your default location within the
workspace. It is personalized to each user’s personal
directory, providing a semi-private space where you can store
your files and folders.




Workspace directory

This is the root folder that contains all users’ personal
directories. From here, you can also access your Home
directory by going to Users > yourname@example.com.

Repos

This is the legacy service used for integrating your workspace
with Git repositories. It has now been replaced by Git folders,
which we cover in detail at the end of this chapter in
“Creating Git Folders”.

Trash

This folder contains deleted items, which are retained for 30
days before being permanently removed.

To add a new item in your Home directory, click the Create
button on the right side of the workspace browser. This allows
you to create various types of resources like folders and

notebooks, as shown in Figure 1-7.
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Figure 1-7. Create button in the workspace browser

As an example, use the Create button to add a new folder
named Demo; then open the folder to begin organizing your

files. Within any folder, you can further organize your resources



by creating subfolders, which helps to keep your workspace

clean and well-organized.

Next to the Create button, you will notice a menu icon

represented by three vertical dots, as displayed in Figure 1-8.

Import Created at
Export ),

Copy URL/path ).

Add to favorites

Figure 1-8. Menu icon in the workspace browser

This menu provides additional options for managing your
resources, such as importing code files from your local system
into your Databricks workspace and exporting the contents of

the current folder as an archived file.



Importing Book Materials

The exercises and examples provided in this book are hosted on
a GitHub repository. Importing these materials into your
Databricks workspace is an essential step to being able to follow
along with the content of the book. This section will guide you
through the process of importing these resources using two
primary methods: Git folders and DBC (Databricks Cloud) files.

Option 1: Git folders

For those using the full version of Databricks on a cloud
platform, such as AWS, Azure, or Google Cloud, the Git folders
feature offers a seamless integration with Git providers. This
allows you to clone remote repositories directly into your
Databricks workspace. To clone our book repository from

GitHub, follow these steps:

1. Navigate to your workspace browser: In your Databricks
workspace, navigate to the Workspace tab to access your
Home directory.

2. Create a Git folder: At the top of your directory, click the
Create button and select “Git folder” from the drop-down

menu, as illustrated in Figure 1-9.
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Figure 1-9. Adding a Git folder using the Create button in the workspace browser

This action will open a dialog box where you can specify the

GitHub repository you want to clone, as shown in Figure 1-10.
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Figure 1-10. Git folder creation dialog

3. Paste the GitHub repository URL: In the Git folder creation
dialog, paste the URL of the book’s GitHub repository
(https://github.com/derar-alhussein/oreilly-databricks-dea).

The interface will automatically detect the Git provider (e.g.,


https://github.com/derar-alhussein/oreilly-databricks-dea

GitHub) and fill in the repository name based on the URL
provided.

4. Create the Git folder: After confirming the details, click the
Create Git folder button to clone the repository. The cloned
repository will then appear as a folder in your workspace,
and you can navigate through its contents just as you would

with any other directory.

It’s important to note that this feature is available only in the
full version of Databricks. Users of the Databricks Community

Edition should refer to the alternative method outlined next.

Option 2: DBC files

On the Databricks Community Edition, Git integration through
Git folders is not supported. However, you can still import the
book’s materials by utilizing DBC files, which are archive files
designed for directly importing source code into Databricks
workspaces. To import the DBC file of our book’s resources,

follow these steps:

1. Download the DBC file from GitHub: Navigate to the book’s
GitHub repository and locate the Exports folder. From this

folder; download the file named book_materials.dbc to your

local machine.


https://github.com/derar-alhussein/oreilly-databricks-dea

2. Navigate to your workspace browser: In your Community
Edition workspace, navigate to the Workspace tab to access
your Home directory.

3. Use the Import option: At the top of your directory, click the
menu icon (represented by three vertical dots) and select the

Import option, as illustrated in Figure 1-11.
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Figure 1-11. Importing files using the menu icon in the workspace browser

This action will open a dialog box where you can specify the

file you want to import, as shown in Figure 1-12.
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Figure 1-12. File import dialog

4. Upload the DBC file: In the Import dialog, browse to select the
DBC file you downloaded earlier and import it into your

workspace.



By following these steps, you will have all the book’s resources
in your workspace, allowing you to replicate the solutions

within your own environment.

Creating Clusters

Clusters in Databricks form the backbone of data processing
and analytics on the platform. A cluster is essentially a
collection of computers, often referred to as nodes, instances, or
virtual machines, working together as a single entity. In the
context of Apache Spark, which powers Databricks, a cluster
comprises a master node known as the driver and several
worker nodes, as illustrated in Figure 1-13. The driver node is
primarily responsible for orchestrating the activities of the
worker nodes, which execute tasks in parallel, thereby enabling

efficient processing of large-scale data.
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Figure 1-13. Apache Spark cluster architecture: driver node and worker nodes

Databricks offers two primary types of clusters: all-purpose
clusters and job clusters. Each serves distinct purposes and use
cases, tailored to different stages of the data engineering and
analytics lifecycle. Table 1-1 summarizes the differences

between these two types of clusters.



Table 1-1. Comparison of all-purpose clusters and job clusters

Usage

Management

Termination

Cost

efficiency

All-purpose

cluster

Interactive
development

and data analysis

Manually
created and
managed by the

user

Manual or auto-
termination after

inactivity

Comes at a

higher expense

Job cluster

Automated job

execution

Automatically
created by the job

scheduler

Automatic
termination upon

task completion

Less expensive

Let’s dive deeper to gain a comprehensive understanding of

these two types of clusters.



All-Purpose Clusters

All-purpose clusters are designed for interactive, exploratory
tasks, making them ideal for development, and ad hoc analysis.
They offer flexibility and control to users who need a dynamic

environment to work with their data:

Usage

All-purpose clusters are mainly used for interactive tasks
where a user is actively involved. This includes writing and
testing code in notebooks and performing exploratory data
analysis (EDA). The interactive nature of these clusters makes
them essential for development and testing environments.
Management

Users can manually create and manage their all-purpose
clusters depending on their needs. This can be achieved
using the Databricks workspace interface, command-line
interface, or REST API.

Termination

All-purpose clusters can be terminated manually by the user
when they are no longer needed. Additionally, Databricks
provides an auto-termination feature, where you can specity
a period of inactivity after which the cluster will
automatically shut down. This feature is particularly useful in
reducing costs, as it prevents unnecessary resource
consumption when the cluster is idle.

Cost efficiency



All-purpose clusters cost more to run when compared to
other types of clusters. Additionally, they can become even
more expensive due to the need for manual control and
termination. Although auto-termination helps with cost
savings, it still enforces a minimum runtime of 10 minutes,
which can add to the overall expense.

In the next section, we will learn how to create and manage all-
purpose clusters within the Databricks workspace. These
clusters will be our primary tool for executing hands-on

exercises throughout this book.

Job Clusters

Job clusters, on the other hand, are optimized for automated
workloads. These clusters are designed to be ephemeral,
spinning up only when a job is triggered and terminating

immediately after the job is completed:

Usage

Job clusters are used primarily for running automated tasks,
such as scheduled jobs and data pipelines. They are
particularly useful in production environments where tasks
need to be executed without manual intervention. Examples
include extract, transform, and load (ETL) jobs, database
maintenance, and training machine learning models on a
scheduled basis.



Management

Unlike all-purpose clusters, job clusters are not created
manually by the user. Instead, they are automatically
provisioned by the Databricks job scheduler when a job is
triggered. This automation simplifies cluster management in
production, as there is no need for manual intervention to
start or stop clusters.

Termination

Job clusters are designed to be used for a single purpose and
terminate automatically once the assigned task is completed.
This ephemeral nature ensures that resources are utilized
only when necessary, which helps in optimizing costs and
enhancing the efficiency of resource allocation.

Cost efficiency

From a cost-efficiency standpoint, job clusters are generally
more economical than all-purpose clusters. Therefore, it is
recommended to use job clusters for production
environments to optimize costs.

In Chapter 6, we explore job clusters in the context of
Databricks Jobs and Delta Live Tables (DLT) pipelines.

Databricks Pools

In addition to offering various types of clusters, Databricks
provides cluster pools to further optimize resource usage and

reduce operational latency. Cluster pools are a powerful tool for



users who need to minimize the time it takes to spin up clusters,
especially in environments where job execution speed is

critical.
Understanding cluster pools

A cluster pool in Databricks is essentially a group of pre-
configured, idle virtual machines that are ready to be assigned
to clusters as needed. The primary advantage of using a cluster
pool is the reduction in both cluster start time and autoscaling
time whenever there are available nodes in the pool. This can
be particularly beneficial in scenarios where time is a critical
factor, such as in automated report generation and real-time

data processing tasks.

Cost considerations

While cluster pools offer significant operational benefits, they
come with important cost considerations. It’s essential to
understand that even though Databricks itself does not charge
for the idle instances in a pool, your cloud provider does. This is
because these instances, although idle, are actively running on
your cloud infrastructure, and as such, they incur standard

compute costs. Therefore, when using cluster pools, it is



important to balance the need for rapid cluster availability with

the associated cloud costs.

Creating All-Purpose Clusters

This guide walks you through the process of creating an all-

purpose cluster, from initial navigation to final configuration.

1. Navigating to the Compute tab

To begin, access the Compute tab from the left sidebar in your
Databricks workspace. This page is the central hub for
managing all your Databricks clusters, as illustrated in Figure 1-
14.
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Figure 1-14. Compute page in the Databricks workspace

This page presents various tabs at the top, including “All-
purpose compute,” “Job compute,” and Pools, each
corresponding to the different types of compute resources
discussed earlier. Additionally, there’s a tab for SQL warehouses,
which are dedicated compute resources for executing SQL
workloads within Databricks SQL. In Chapter 7, we delve deeply
into Databricks SQL and explore the nuances of SQL



warehouses. For the moment, let’s focus on setting up an all-
purpose cluster to get started with running interactive

workloads.

2. Initiating the cluster creation

Under the “All-purpose compute tab,” click the blue “Create
compute” button. This action opens the configuration page for

your new cluster, as illustrated in Figure 1-15.
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Figure 1-15. Compute cluster configuration page

3. Naming your cluster

The first step in the configuration process is naming your

cluster. The system provides a default name, but you can change



it by clicking the name field at the top. For example, you might

name your cluster “Demo Cluster” to reflect its purpose.

4. Setting the cluster policy

Next, yow’ll encounter the Policy setting. By default, this is set to
Unrestricted, allowing you full control over the cluster’s
configuration. In environments with stricter governance or
where specific configurations are mandated, other policies may

be in place to limit certain settings.

5. Configuring the cluster: Single-node versus multi-
node

Databricks allows you to choose between creating a single-node

cluster or a multi-node cluster:

Single-node cluster

This cluster operates with just a driver node, eliminating the
need for additional worker nodes. In this configuration, the
driver handles both driver and worker responsibilities,
executing all Spark jobs on a single machine. This setup is
more cost effective as it consumes fewer resources.
Multi-node cluster

If you need to handle larger datasets or more complex
processing tasks, you can opt for a multi-node cluster, which
includes one driver node and multiple worker nodes. This



setup allows parallel processing, making it suitable for
heavier workloads.

For demonstration, this guide will focus on configuring a multi-
node cluster to showcase the advanced configuration options

available.

6. Configuring the access mode

Databricks clusters offer different access modes depending on

how the cluster is intended to be used:

Shared access mode

This allows multiple users to share the cluster simultaneously
but restricts workloads to SQL and Python only. Shared
clusters are useful in collaborative environments where
several users need to access the same cluster.

Single user mode

This mode is appropriate if you are the only one using the
cluster. It ensures that the cluster resources are dedicated
solely to your tasks, potentially improving performance and
efficiency.

For this demonstration, select “Single user” mode as you are the

only user of this cluster.



7. Performance: Selecting the Databricks Runtime
version

The Databricks Runtime version is a critical choice, as it
determines the software environment in which your clusters
will operate. Databricks Runtime is a pre-configured virtual
machine image that includes specific versions of Apache Spark,

Scala, and various other libraries essential for data processing.

For this guide, choose Databricks Runtime 13.3 LTS (long-term
support), as illustrated in Figure 1-16. This runtime version
aligns with the version covered in the latest certification exam.
Newer versions might offer additional features and
optimizations that are not yet included in the exam. Sticking to
the recommended version ensures you’re studying the relevant

content for the test.
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Figure 1-16. Compute cluster configuration page (continued)

8. Enabling Photon

Photon is an optional feature you can enable to further enhance
your cluster’s performance. Photon is a high-speed query
engine developed in C++, designed to accelerate the execution
of SQL queries in Spark. Enabling Photon is particularly
beneficial for workloads that involve heavy SQL processing or
operations with many files, as it can significantly reduce query
execution times and enhance overall performance. However,
it’s essential to consider the additional costs associated with this

feature.

9. Configuring worker nodes



Worker nodes are the backbone of a multi-node cluster,
responsible for processing the distributed tasks assigned by the
driver node. Here, youw’ll configure the type and number of

worker nodes, as illustrated in Figure 1-17.
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Databricks allows you to choose from various virtual
machine types and sizes provided by your cloud provider
(e.g., Azure). These differ in terms of CPU cores, memory, and
storage options, which should be selected based on the
specific demands of your workloads. For simplicity, you may
choose to keep the default VM size.

Number of workers

Databricks offers an autoscaling feature, which dynamically
adjusts the number of workers based on the cluster’s
workload. Enabled by default, the “Enable autoscaling”
option allows you to specify a minimum and maximum range
for the number of workers. Databricks will automatically
increase or decrease the number of worker nodes within this
range based on demand. Alternatively, you can disable
autoscaling and set a fixed number of workers, such as 3,
ensuring that the cluster always operates with the specified
resources regardless of changes in workload.

10. Configuring the driver node

After configuring the worker nodes, you can set the
configuration for the driver node, which coordinates all tasks
across the cluster. You can either choose a different
configuration for the driver or simply match it with the worker

nodes, depending on your workload requirements.

11. Enabling auto-termination



To manage costs and optimize resource usage, Databricks
provides an auto-termination feature, which is also enabled by
default. By setting a specific duration of inactivity (e.g., 30
minutes), you can ensure that the cluster automatically shuts
down if it remains idle for that period. This feature is
particularly useful in preventing unnecessary charges for

clusters that are no longer in use.

12. Reviewing the cluster configuration

As you configure the cluster, Databricks provides a summary on
the right side of the screen, giving you a clear overview of your

selections, as shown in Figure 1-18.
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Figure 1-18. Cluster configuration summary

This summary includes important details such as the total
number of worker cores and RAM, the runtime version, and the
number of Databricks units (DBUs) the cluster will consume. A
DBU is a measure of processing capacity per hour, which helps
estimate the costs associated with running the cluster. For
example, a single-node cluster will generally consume fewer

DBUs compared to a multi-node cluster, making it a more cost-



effective choice for less demanding workloads. For precise DBU

pricing specific to your cloud and region, consult the Databricks

pricing page.

13. Creating the cluster

Once you have reviewed the configuration and ensured that it
meets your needs, click the Create button. Databricks will then
proceed to provision the required virtual machines, apply the
configurations, and install Databricks Runtime and any

additional specified libraries.

NOTE
If you are using the free tier on Microsoft Azure cloud, there is a compute limit of
four cores. To avoid a quota exceeded error, ensure that you use a single-node

cluster with a maximum of four cores.

Managing Your Cluster

Once your cluster in Databricks is provisioned and running,
indicated by a fully green circle next to its name, you have

several options for managing and monitoring it.

Controlling your cluster


https://oreil.ly/kCCy_

To access your cluster at any time, simply navigate to the
Compute tab in the left sidebar of your Databricks workspace.
This page lists all your clusters, displaying their current status,

whether running or terminated, as illustrated in Figure 1-19.
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Figure 1-19. Compute page in the Databricks workspace

From this page, you can quickly start or terminate your cluster

by clicking the play/stop button located on the right side of each



cluster’s entry. Next to this button is a menu icon represented
by three vertical dots. Clicking this icon opens a drop-down
menu with additional management features, including cloning

the cluster, editing its permissions, and deleting it.

By clicking the cluster’s name, you can access the configuration
settings and make adjustments as needed. For example, you
might want to change the instance type, adjust the number of
workers, or enable additional features like Photon. However, be
aware that changing the cluster configuration may require a

restart of the cluster; which interrupts any running jobs.

Managing your cluster

Effective cluster management goes beyond just starting and
stopping the cluster. Databricks provides tools to monitor the
cluster’s activity and troubleshoot any issues. These tools are
accessible from the cluster configuration page, as illustrated in

Figure 1-20.
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Figure 1-20. Compute cluster configuration page

Event log

The “Event log” records all significant actions related to the
cluster, such as when the cluster was created, terminated,
edited, or encountered any errors. This detailed tracking
enables effective monitoring and troubleshooting of cluster
activities.

Spark UI

The Spark Ul provides a comprehensive interface for
monitoring and debugging Apache Spark applications. It
provides detailed insights into job execution, stages, and
tasks that enable you to easily track performance and identify
bottlenecks.

Driver logs



“Driver logs” contains logs generated by the driver node
within the cluster. This log captures output from the
notebooks and libraries running on the cluste; making it an
essential tool for diagnosing and resolving issues during
development.

With our cluster up and running, we’re now ready to execute
code within Databricks notebooks. This will be the focus of the

following section.

Working with Notebooks

Databricks notebooks are interactive development
environments that enable you to write, debug, and execute
code in a collaborative setting. These notebooks offer advanced
capabilities that extend beyond those of traditional
environments like Jupyter Notebooks. Databricks notebooks
support multiple programming languages, including Python,
SQL, Scala, and R. In addition, they integrate seamlessly with
Spark clusters, allowing users to leverage distributed computing

resources directly from the notebook interface.

Creating a New Notebook



To begin working with notebooks in Databricks, navigate to the
Workspace tab in the left sidebar of your Databricks workspace.
To create a new notebook, click the blue Create button and
choose Notebook from the drop-down menu, as illustrated in

Figure 1-21.
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Figure 1-21. Adding new notebooks using the Create button in the workspace
browser

This action will create and open a new notebook, initially

named “Untitled Notebook.” The notebook is immediately ready



for use, but it’s good practice to rename it to something more
descriptive. To rename your notebook, simply click the title at
the top of the notebook interface and enter a new name, such

aS Demo Notebook.



Setting the Notebook Language

Databricks notebooks default to Python, but they support
multiple languages, including SQL, Scala, and R. If you need to
work in a language other than Python, you can easily change
the notebook’s default language. To do this, click the language
indicator at the top of the notebook, where it says “Python,” and
select the desired language from the drop-down menu, as

shown in Figure 1-22.
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Figure 1-22. Changing the default language in Databricks notebooks

Executing Code



Before executing any code, it’s necessary to connect your
notebook to an active cluster. Click the Connect button in the
top-right corner of the notebook interface, as illustrated in
Figure 1-23, and select the desired cluster, such as Demo Cluster

created earlier.
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Figure 1-23. Attaching a cluster to a Databricks notebook

If the cluster is currently terminated, selecting it will

automatically start it. Starting a terminated cluster can take a



few minutes, depending on factors like the cluster’s size and

configuration.

NOTE
Databricks offers serverless compute for notebooks, which allows you to run code
without the need to configure and deploy infrastructure. To use this feature, your

workspace must be enabled for Unity Catalog, and serverless compute must be

activated in your Databricks account.

Once the cluster is running, indicated by a fully green circle

next to its name, your notebook is ready to execute code.

Running code cells

Databricks notebooks use a cell-based structure, where each
cell can contain a block of code. This structure allows for
interactive development, where you can run each cell
independently, see immediate results, and make adjustments as

needed.

Let’s start by printing a simple “Hello World” message in our
notebook. To do this, enter the following Python command into
the first cell:

print("Hello World!")


https://oreil.ly/KNUXM

To run the cell, click the play button on the left side of the cell,
as displayed in Figure 1-24. Alternatively, you can use the
Shift+Enter keyboard shortcut to run the current cell and move
to the next one. This tends to be more efficient, especially when

running lots of cells in succession.

v Justnow (4 Python ﬁ N

print("Hetlo Horld!")

Hello World!

Figure 1-24. Running code cells in Databricks notebooks

The output of the cell—in this case, “Hello World!”—will appear
directly below the cell. This immediate feedback is one of the
key advantages of working with notebooks, allowing you to

experiment and iterate quickly. Other types of outputs can have




richer displays, and you’ll also see error messages, tool tips, or

other warnings here as you work.

Managing cells

Notebooks provide a flexible environment for organizing your
code. You can add, move, and remove cells to structure your
code logically. To add a new cell, hover your mouse just below
an existing cell, and you’ll see a + Code button appear, as

illustrated in Figure 1-25. Click this button to insert a new cell.



b/ lustnow ) Python G i
print("Hello World!")

Hello World!

Figure 1-25. Adding a new cell in Databricks notebooks

This approach allows you to break your code into manageable

sections, making it easier to develop, debug, and maintain.

Magic Commands

Magic commands in Databricks notebooks are special cell
instructions that provide additional functionality in the
notebook environment. These commands, which are prefixed

with a %, allow you to execute tasks that go beyond standard



code execution. Let’s explore these commands in detail,

highlighting their benefits and how to use them effectively.
Language magic command

By default, a notebook is set to one primary language, but you
may often need to use a different language within the same
notebook for specific tasks. Language magic commands allow
you to execute code cells in a language other than the
notebook’s default without changing the entire notebook’s

settings.

To switch the language for a specific cell, you just need to add
the language magic command at the beginning of the cell. For
example, if your notebook’s default language is Python, but you
need to run a SQL query, you would use the %sql magic
command. This command instructs the notebook to interpret

and execute the cell as SQL code:

%sql
SELECT "Hello world from SQL!"

When you enter a SQL query in a cell, Databricks automatically
prepends the %sql magic command if the cell’s content is

detected as SQL. The cell’s language indicator, located on the



right side of the cell, will also change to reflect the active

language, as shown in Figure 1-26.
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Figure 1-26. Language magic command in Databricks notebooks

If you want to manually change the language of a cell or
convert it to a text Markdown cell, you can also do so by
clicking this language indicator. This action will bring up a drop-

down menu that allows you to select the desired option.

Markdown magic command

Beyond code execution, Databricks notebooks support rich-text
formatting through the use of Markdown, which is enabled by
the %md magic command. Markdown is an annotation language
that allows you to format text and insert elements such as
images or links directly within the notebook. This feature is
particularly useful for documenting your analysis, adding notes,

or structuring your notebook into sections.

To add formatted text, simply start a cell with the %md magic
command, followed by your Markdown syntax. For instance, to
create headers of different levels, you might use the following

commands:

%emd

# Title 1
## Title 2
### Title 3



When you press Esc, the text will be rendered as headers with

varying levels of emphasis, as illustrated in Figure 1-27.

Ti” 91 e [] [ ¢
Ttle2
Ttle3

Figure 1-27. Markdown magic command in Databricks notebooks

Double-clicking a Markdown cell reopens its editor; where you’ll
find a toolbar with a range of formatting options such as bold,
italic, and list creation. It also offers the ability to add images

and hyperlinks, which enriches your notes or documentation.



Enhancing notebook navigation with Markdown

One of the significant advantages of using Markdown headers
in Databricks notebooks is that they automatically generate
entries in the notebook’s table of contents. The table of contents
is a navigational aid that allows you to quickly jump between

sections in your notebook.

To access the table of contents, click its icon in the left-hand

panel of the notebook editor; as shown in Figure 1-28.
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Figure 1-28. Table of contents in Databricks notebooks

As you add more Markdown headers, these will populate the
table of contents, providing an organized overview of your

notebook’s structure.

Run magic command



The %run magic command in Databricks notebooks is a
powerful tool that allows you to execute another notebook
within the current notebook. This feature is particularly useful

for supporting code modularity and reusability.

The %run command is designed to import and execute all the
content of a specified notebook into the current notebook. This
means that any variables, functions, or classes defined in the
referenced notebook become accessible in the notebook that
invoked the %run command. This is highly beneficial for
scenarios where you need to share common configurations and

functions across multiple notebooks.

To illustrate the use of the %run magic command, let’s walk
through a practical example where you have two notebooks—
our primary notebook named “Demo Notebook” and a

secondary notebook named “Setup”:

1. Creating the Setup notebook: First, create a new notebook
called “Setup” in your Home directory. In this notebook, you
define a simple variable, book_publisher, and assign it the

value OReilly:

book_publisher = "OReilly"



2.Using the %run command: Now, switch to your demo
notebook, where you want to access the variables of the
Setup notebook. In a new cell, use the %run magic command
followed by the path to the Setup notebook. Since both
notebooks are in the same directory, you can use the dot
symbol (.) to refer to the current directory, or alternatively,
you could use the full workspace path to specify the exact

location of the Setup notebook:

%»run ./Setup

3. Accessing the imported variable: After running the previous
command, the entire contents of the Setup notebook are
executed, bringing any defined variables and functions into
the scope of the demo notebook. To verify this, you can print
the book publisher variable in a new cell in the demo

notebook.

Figure 1-29 displays the output of the print command,
confirming that the book_publisher variable was successfully

imported from the Setup notebook into our demo notebook.
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Figure 1-29. Run magic command in Databricks notebooks

The %run magic command is an essential feature for anyone
working with Databricks notebooks, offering a seamless way to

create modular, maintainable, and reusable code.

FS magic command



When working within the Databricks environment, managing
files and interacting with the file system is a common task. The
%fs magic command provides a simple way to execute file
system operations directly within your notebook cells. This
command allows you to perform various tasks, such as copying,
moving, and deleting files and directories within your cloud

storage.

One of the most common uses of the %fs magic command is
listing the contents of a directory. For instance, if you want to
explore the sample datasets directory provided by Databricks,

you can use the following command:

%fs 1s '/databricks-datasets'

Running this command will list all files and folders within the
/databricks-datasets directory, displaying 55 items by default, as

illustrated in Figure 1-30.
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Figure 1-30. Output of the %fs 1s magic command on the /databricks-datasets
directory

While the %fs magic command is convenient, Databricks
provides a more flexible and powerful tool called dbutils . This
tool is particularly useful for integrating file system operations

directly into your Python code.

Databricks Utilities

Databricks Utilities ( dbutils ) provides a range of utility
commands for interacting with different services and tools

within Databricks, including the file system ( dbutils.fs).



To explore all available commands and their usage within

dbutils, you can use the help function:

dbutils.help()

If you’re interested in a specific utility within dbutils, you can
request detailed help for that particular module. For example, if
you want to learn more about the file system commands

provided by dbutils.fs, you can use this:

dbutils.fs.help()

This command will provide information about the file system
operations available, including how to perform common tasks
such as listing directories. To achieve similar functionality as
the %fs command using dbutils, you can list the contents of

the same directory with the following code:

files = dbutils.fs.ls("/databricks-datasets/")

This command not only lists the files but also stores the output
in a variable (files), which can be further manipulated within

your code.



Displaying the output

Directly printing the “files” variable might result in an output
that’s difficult to read:

print(files)

To present this information in a more user-friendly way,
Databricks provides the display function, which formats the

output in a tabular layout:

display(files)

Using this function, the results are neatly organized into
columns, such as filename, size, and type, making it easier to
understand and work with the data. Additionally, the display
function offers advanced features, like downloading the data as
a CSV file or visualizing the results in a graph, as shown in

Figure 1-31.
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Figure 1-31. Advanced features of the preview display, including data download and
visualization options

It’s important to be aware that while the display function is
useful, it has limitations when previewing large datasets, as it

shows only a subset of records.

Comparison: %fs magic command versus dbutils



Choosing between the %fs magic command and dbutils
depends on the complexity and requirements of your task. If
you need to perform a quick, one-off file system operation, the
%fs magic command is straightforward and easy to use. For
more complex tasks, especially when you need to manipulate
the output programmatically, dbutils is the better choice. It
allows you to store the results in variables, apply conditional
logic, loop through files, and more—all within your Python

code.

Download Notebooks

You may want to download a notebook to your local system for
various reasons, such as sharing with others or simply keeping
a local copy. Databricks offers a straightforward way to export

your notebooks by following these steps:

1. Navigate to the File menu: In the upper menu of your
notebook editor, click the File menu, as illustrated in Figure 1-
32.
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Figure 1-32. File menu in the Databricks notebook editor

2. Select Export: From the drop-down menu, choose the Export
option. This will present you with several formats for
downloading your notebook.

3. Choose file format: Click “Source file” to download the
notebook as a plain Python script (.py file). For an HTML
output, select IPython Notebook, which is useful for sharing

results without needing to render them within a workspace.

The downloaded file can be edited locally or easily imported
into a different Databricks workspace for further use. To import
a file into a specific folder on Databricks, simply click the menu
icon in the target folder and select the Import option, as shown

in Figure 1-33.
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Figure 1-33. Importing files using the menu icon in the workspace browser

By following these steps, you can ensure that you have the
flexibility to work with your notebooks across different

environments.



Notebook Versioning

As you develop your code in Databricks, you will likely make
numerous changes and refinements, which can be challenging
to track. To address this issue, Databricks provides a built-in
versioning system within its notebooks, allowing you to easily

manage and revert to previous versions of your code.
Accessing version history

To access the version history of a notebook, look for the
“Version history” icon located in the right sidebar of your
notebook editor. Clicking this icon opens a panel displaying the

version history, as illustrated in Figure 1-34.
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Figure 1-34. Accessing notebook version history

This “Version history” panel shows a chronological list of all

changes made to the notebook. Each entry in the list

corresponds to an auto-saved version of the notebook,

capturing the state of the notebook at that point in time.
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If you need to revert to a previous state of the notebook, simply
select the desired version from the list and click “Restore this
version.” This action reverts the current state of the notebook
to the selected version, undoing any changes made since that

version.

While this versioning feature is helpful for tracking changes, it
has limitations, especially in complex or collaborative projects.
It lacks advanced capabilities such as merging changes or
creating branches. Additionally, users can easily delete this
history, which may compromise its reliability. For a more robust
solution, Databricks provides integration with Git providers,

offering enhanced version control capabilities.

Versioning with Git

Databricks offers Git integration, allowing users to manage their
data projects using familiar Git workflows, including branching,
merging, committing, and pushing changes to remote
repositories. This feature is particularly beneficial for users who
need to manage complex projects, collaborate with team
members, or maintain a history of changes in a more controlled
and secure manner than what the basic notebook versioning

can offer,



This seamless integration is facilitated through Git folders,
formerly known as Databricks Repos, which enable source
control directly into your Databricks workspace. With Git
folders, you can synchronize your code with remote Git

repositories and perform common Git operations.

Setting Up Git Integration

When importing source code from a public repository like our
book’s GitHub repo, Git folders work seamlessly without
additional setup. However, for private repositories or when
performing Git operations like committing and pushing
changes, you must link your Databricks workspace with your
Git service provider. This setup ensures that you can perform all

necessary Git operations from within Databricks.
Prerequisites
Before setting up Git integration, ensure the following:

Access to a full version of Databricks

The Git integration feature is not available in the Databricks
Community Edition, so you’ll need access to a full version of
Databricks on a cloud platform like AWS, Azure, or Google
Cloud.

Git service account



You should have an account with a supported Git service
provider, such as GitHub or Azure DevOps.

Configuring Git integration

To configure Git integration in your Databricks workspace,

follow these steps:

1. Access your profile settings: In the Databricks workspace,
click your username profile icon located in the upper-right
corner. From the drop-down menu, select Settings.

2. Link your Git provider: In the Settings page, navigate to the
“Linked accounts” tab from the left side panel, as displayed in
Figure 1-35. Here, you will find options to link your
Databricks account with various Git service providers,
including GitHub, Azure DevOps, and Bitbucket. Select your
desired provider from the drop-down menu.

3. Authenticate your Git provider: If you are linking with
GitHub, you can use a more secure method through the
Databricks GitHub App, instead of using a personal access
token (PAT). Select the “Link Git account” option, and click
the Link button to start the process. You will be redirected to
GitHub to authorize the Databricks app to access your GitHub
account. Follow the on-screen instructions to complete the

process.
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Figure 1-35. Git integration settings in Databricks

4. Install the Databricks app on GitHub: After authorizing the
Databricks GitHub App, click Configure in GitHub, as shown

in Figure 1-36, to configure the app installation on your

GitHub account.
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Figure 1-36. Configuring GitHub integration in Databricks



In the configuration page, you can choose to grant access to
all your repositories or select specific repositories that

Databricks can interact with, as displayed in Figure 1-37.

Once you confirm your selections, click Install to complete the
setup. With this, your Databricks workspace is now fully
integrated with your chosen Git provider, enabling seamless

version control and collaboration.
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Figure 1-37. Databricks app installation in GitHub account

Creating Git Folders

For effective collaboration and version control, integrating a
private GitHub repository with Databricks is essential. This
process involves creating a Git folder within your Databricks
workspace and linking it to your private repository. The
following is a step-by-step guide to help you achieve this

integration:

1. Creating a private GitHub repository: To begin, ensure you
have a private GitHub repository set up. If you haven’t done
S0 yet, create a new one from your GitHub account and copy
its URL.

2. Cloning the repository in Databricks: Now that you have your
private repository ready, follow these steps to clone it into
your Databricks workspace:

1. Navigate to your workspace browser: In your Databricks
workspace, navigate to the Workspace tab to access your
Home directory.

2. Create a Git folder: At the top of your directory, click the
Create button and select “Git folder” from the drop-down

menu, as illustrated in Figure 1-38.
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Figure 1-38. Adding a Git folder using the Create button in the workspace
browser

This action will open a dialog box where you can specify
the GitHub repository you want to clone, as shown in

Figure 1-39.
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Figure 1-39. Git folder creation dialog

3. Paste the GitHub repository URL: In the Git folder creation
dialog, paste the URL of your private repository. The
interface will automatically detect the Git provider (e.g.,
GitHub) and fill in the repository name based on the URL
provided.



4. Create the Git folder: After confirming the details, click the

“Create Git folder” button to clone the repository.

Once the repository is cloned, you can navigate through its
contents like any other folder. Git folders are easily recognized
within the workspace browser by the current branch name

displayed next to the folder name, as illustrated in Figure 1-40.
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Figure 1-40. Branch name indicator in Git folders

Managing Git Branches



Branches are a fundamental aspect of Git, allowing multiple
developers to work on different features or fixes

simultaneously without interfering with the main codebase.

By default, your Git repository will open on the main branch. To
create a new local branch (e.g., a development branch), follow

these steps:

1. Open the Git dialog: Click the branch name indicator next to
the folder name. This will open the Git dialog, as shown in

Figure 1-41.
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Figure 1-41. Git dialog in Databricks

2. Create the branch: Click the Create Branch button, specify the

branch name (e.g., “dev” branch), and click Create.

This creates a local branch in the workspace and activates it
immediately, allowing you to start working on your changes,
just like you would on your machine. You can easily switch
between branches at any time using the drop-down menu next

to the Create Branch button.

With your development branch selected, you can begin
working on your project by creating new notebooks or
importing existing ones. Any edits you make to the source code
are contained within this branch, which keeps the main branch
stable and unaffected. Once your updates are ready and
thoroughly tested, you can commit and push them to the

remote repository.

Committing and Pushing Changes

Once you’ve made changes in your Git folder, you can commit
and push these changes to the remote repository to ensure your

work is saved and shared with others.



To commit your changes, follow these steps:

1. Open the Git dialog: Click the branch name indicator to open
the Git dialog.

2. Review changes: The Git dialog will display all the
modifications made in the current branch, as illustrated in

Figure 1-42.
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Figure 1-42. Committing and pushing changes using the Git dialog

3. Add a commit message: At the bottom of the dialog, write a
descriptive commit message summarizing the changes and
any other information your organization might require.

4. Commit & Push: Click the blue Commit & Push button. This
will save your changes locally and then push them to the

remote repository on GitHub.

After pushing your changes, you can verify the update on the
GitHub website. Navigate to your private repository and check
the development branch to ensure the changes have been

successfully applied.

Pulling Changes from GitHub

To keep your local repository in sync with the remote
repository, especially after merging branches or when working
in collaboration with others, pulling new changes is a common

operation.
Synchronizing with merged pull requests

As a fundamental principle of Git, changes made in one branch
are isolated from other branches until explicitly merged. To

verify this, switch to the main branch in your Git folder by



selecting it from the branch drop-down in the Git dialog. You
will notice that the changes made in the dev branch are not
visible in the main branch until a pull request (PR) is created

and merged.

Databricks Git folders do not support creating pull requests
directly; this must be done through your Git provider. For
GitHub, follow these steps:

1. Create a pull request: On GitHub, navigate to your sample-
project repository and create a pull request to merge changes
from the dev branch into the main branch.

2. Merge the pull request: Once the pull request is reviewed and

approved, merge it into the main branch on GitHub.

Pulling changes

To pull changes from the remote main branch to your local

repository in Git foldex, follow these steps:

1. Open the Git dialog: Click the branch name indicator in your
Git folder to open the Git dialog.

2. Initiate a pull: With the main branch selected, click the Pull
button, as displayed in Figure 1-43.



This action will fetch and merge changes from the remote main
branch into your local copy. After merging, you can review the
updates in your folder to ensure the integration was successful.
As a best practice, perform regular pulls to minimize conflicts,
especially in collaborative development environments where

multiple contributors are working on the same codebase.
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Figure 1-43. Pulling changes using the Git dialog

Conclusion

In conclusion, this chapter has provided an essential overview
of the Databricks Data Intelligence Platform, covering its
foundational architecture and offering practical guidance on
working with clusters and notebooks. By mastering these
essential components, you are now well-equipped to leverage
the full potential of Databricks, which will be further explored

in subsequent chapters.

Sample Exam Questions

Databricks certification exams primarily consist of multiple-
choice questions with a single correct answer. The questions are
categorized into two types: conceptual and code-based.
Preparing for both types is critical for passing the certification

exam.

Conceptual Questions

Conceptual questions focus on assessing your understanding of

the core principles and features of Databricks. These questions



typically ask you to recall definitions, describe functionality, or
identify the role of different components within the Databricks

environment.

Here is a sample conceptual question to give you a sense of

what you might encounter:

Question 1. According to the Databricks lakehouse
architecture, which of the following locations hosts the

customer data?

1. Control plane

2. Databricks account

3. Customer’s cloud account
4. Databricks Runtime

5. Workspace

This question tests your understanding of where Databricks
stores customer data. The correct answer to this question is

available in Appendix C.

Code-Based Questions

Code-based questions assess your ability to read, write, and
debug code in the Databricks environment. These questions

often present a block of code and ask you to either fill in



missing portions of code, identify errors, or suggest

modifications to ensure the code runs correctly.
Let’s look at a sample code-based question:

Question 2. A data engineer has written the following code
block within a cell in a SQL notebook, intending to list the files
in the Databricks datasets directory:

files = dbutils.fs.ls("/databricks-datasets/")
print(files)

However, the code returns a syntax error.

What modification should be made to the code block to resolve

this issue?

1. Replace print( files ) with display( files ).
2. Use the following command instead:
files = %fs ls 'databricks-datasets'
print( files )
3. Use the following command instead:
files = %fs l1ls 'databricks-datasets'
display( files )
4. Add %python at the beginning of the cell.
5.Add % run at the beginning of the cell.



This question tests your ability to properly use the Databricks
utility methods and understand how to display results in a
notebook environment. The correct answer to this question can

also be found in Appendix C.



Chapter 2. Managing Data with
Delta Lake

Data lakehouses leverage specialized storage frameworks to
enhance the functionality of traditional data lakes. Among these
frameworks, Delta Lake stands out as a leading technology that
powers the Databricks Lakehouse Platform. In this chapter, we’ll
explore the fundamental concepts of Delta Lake by first
introducing its core principles and then diving into its practical
usage. Following this, we’ll focus on advanced topics in Delta
Lake such as time travel, table optimization, and vacuum

operations.

Introducing Delta Lake

Traditional data lakes often suffer from inefficiencies and
encounter various challenges in processing big data. Delta Lake
technology is an innovative solution designed to operate on top
of data lakes to overcome these issues. To establish a clear
understanding of Delta Lake, let’s first study its definition as

provided by its original creators at Databricks.

What Is Delta Lake?



Delta Lake is an open-source storage layer that brings
reliability to data lakes by adding a transactional storage

layer on top of data stored in cloud storage.
—Databricks

In the context of data lakehouses, a storage layer refers to the
framework responsible for managing and organizing data
stored within the data lake. It serves as an intermediary
platform through which data is ingested, queried, and

processed.

In other words, Delta Lake is not a storage medium or storage
format. Common storage formats like Parquet or JSON define
how data is physically stored in the lake. However, Delta Lake
runs on top of such data formats to provide a robust solution

that overcomes the challenges of data lakes.

While data lakes are excellent solutions for storing massive
volumes of diverse data, they often encounter several
challenges related to data inconsistency and performance
issues. The primary factor behind these limitations is the
absence of ACID transaction support in a data lake. ACID stands
for atomicity, consistency, isolation, and durability, and

represents fundamental rules that ensure operations on data



are reliably executed, as in traditional databases. This absence
led to issues such as partially committed data and corrupted
files, ultimately affecting the overall reliability of the data stored
in the lake.

What makes Delta Lake an innovative solution is its ability to
overcome such challenges posed by traditional data lakes. Delta
Lake provides ACID transaction guarantees for data
manipulation operations in the lake. It offers transactional
capabilities that enable performing data operations in an atomic
and consistent manner. This ensures that there is no partially
committed data; either all operations within a transaction are
completed successfully or none of them is. These capabilities
allow you to build reliable data lakes that ensure data integrity,

consistency, and durability.

Delta Lake is optimized for cloud object storage. It seamlessly
integrates with leading cloud storage platforms such as Amazon

S3, Azure Data Lake Storage, and Google Cloud Storage.

On top of all this, Delta Lake is an open source library. Unlike
proprietary solutions, Delta Lake’s source code is freely

available to you on GitHub.



https://oreil.ly/delta

To put it all together, we can visualize these concepts through
an illustrative graph. In Figure 2-1, we highlight the key

elements that constitute the Delta Lake technology.
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Figure 2-1. Delta Lake technology
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The Delta Lake library is deployed on the cluster as part of the
Databricks Runtime. When you create a Delta Lake table within
this ecosystem, the data is stored on the cloud storage in one or
more data files in Parquet format. However, alongside these
data files, Delta Lake creates a transaction log in JSON format, as

illustrated in Figure 2-2.
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Figure 2-2. Delta Lake tables creation

The Delta Lake transaction log, often referred to as the Delta

Log, is an ordered record of every transaction performed on the



table since its creation. As a result, it functions as the source of
truth for the table’s state and history. So every time you query
the table, Spark checks this transaction log to determine the

most recent version of the data.

Each committed transaction is recorded in a JSON file. This file
contains essential details about the operations performed, such
as its type (insert, update, ..., etc.) and any predicate used during
these operations, including conditions and filters. Beyond
simply tracking the operations executed, the log captures the

names of all data files affected by these operations.

In the next section, we will see how these transactional
capabilities are leveraged by Delta Lake to ensure ACID

compliance during data retrieval and manipulation.

Understanding Delta Lake Functionality

Let’s learn how Delta Lake functions by looking at a series of
illustrative examples, each designed to provide a deeper
understanding of its behavior in different scenarios. For
instance, consider a situation where two users, Alice and Bob,
interact with a Delta Lake table. Alice represents a data
producer, while Bob is a data consumer. Their interaction on the

table can be described in four key scenarios: data writing and



reading, data updating, concurrent writes and reads, and, lastly,

failed write attempts. Let’s discuss them in detail one by one.

Writing and reading scenario

In this first scenario, we will examine how data is written to and read from a
Delta Lake table by Alice and Bob.
Write operation by Alice

Alice initiates this scenario by creating the Delta table and
populating it with data, as illustrated in Figure 2-3. The Delta
module stores the table, for example, in two data files (part 1
and part 2), and saves them in a Parquet format within the table
directory on the storage. Upon the completion of writing the
data files, the Delta module adds a transaction log, labeled as
000.json, into the _delta_log subdirectory. This transaction log
captures metadata information about the changes made to the
Delta table. This includes the operation type, the name of the
newly created data files, the transaction timestamp, and any

other relevant information.
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Figure 2-3. Writing and reading scenario
Read operation by Bob

Subsequently, Bob queries the Delta table through a SQL
SELECT statement. However, before directly accessing the data
files, the Delta module always begins by consulting the
transaction log associated with the table. In this particular case,
it starts by reading the 000.json transaction log located in the
_delta_log subfolder. This log contains metadata information
regarding the data files part 1.parquet and part 2.parquet that
capture the changes made by Alice during the write operation.
The Delta module proceeds by reading these two data files and

returning the results to Bob.

So, Delta Lake follows a structured approach for managing and
processing the data in the lake. It always uses the transaction
log as a point of reference to interact with the data files of Delta
Lake tables.

Updating scenario

In our second scenario, Alice makes an update to a record
residing in file part 1.parquet of the Delta table, as illustrated in
Figure 2-4. However, since Parquet files are immutable—

meaning their contents cannot be changed after they are



written—Delta Lake takes a unique approach to updates.
Instead of directly modifying the record within the existing file,
the Delta module makes a copy of the data from the original file
and applies the necessary updates in a new data file, part
3.parquet. It then updates the log by writing a new transaction
record (001.7json ). The new log file is now aware that the data
file part 1.parquet is no longer relevant to the current state of
the table.
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Figure 2-4. Updates scenario

When Bob attempts to read data from the table, the Delta
module first consults the transaction log to determine the valid
files for the current table version. In this instance, the log
indicates that only the parquet files part 2 and part 3 are
included in the latest version of the table. As a result, the Delta
module confidently reads data from these two files and ignores

the outdated file part 1.parquet.

So, Delta Lake follows the principle of immutability; once a file
is written to the storage layer, it remains unchanged. The
approach of handling updates through file copying and
transaction log management ensures that the historical
versions of data are preserved. This offers a comprehensive
record of all modifications performed on the table. We will
explore in the following section how to leverage these historical
versions for tasks such as auditing, rollbacks, and time travel

queries.

Concurrent writes and reads scenario

In this scenario, Alice and Bob are both interacting with the
table simultaneously, as illustrated in Figure 2-5. Alice is

inserting new data, initiating the creation of a new data file, part



4.parquet. Meanwhile, Bob is querying the table, where the
Delta module starts by reading the transaction log to determine

which Parquet files contain the relevant data.

At the time Bob executes the query, the transaction log includes
information about the Parquet files part 2 and part 3 only, as the
file part 4.parquet is not fully written yet. So, Bob’s query reads
the two latest files available that represent the current table
state at that moment. Using this methodology, Delta Lake
guarantees that you will always get the most recent version of
the data. Your read operations will never have a deadlock state

or conflicts with any ongoing operation on the table.
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Figure 2-5. Concurrent writes and reads scenario

Finally, once Alice’s query finishes writing the new data, the
Delta module adds a new JSON file to the transaction log, named

002.json.

In summary, Delta Lake’s transaction log helps avoid conflicts
between write and read operations on the table. So, even when
write and read operations are occurring simultaneously, read
operations can proceed without waiting for the writes to
complete. This capability helps maintain the reliability and

performance of data operations on Delta Lake tables.

Failed writes scenario

Here is our last scenario: imagine that Alice attempts again to
insert new data into the Delta table, as illustrated in Figure 2-6.
The Delta module begins writing the new data to the lake in a
new file, part 5.parquet. However, an unexpected error occurs
during this operation, resulting in the creation of an incomplete
file. This failure prevents the Delta module from recording any

information related to this incomplete file in the transaction log.
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Figure 2-6. Failed writes scenario

Now, when Bob queries the table, the Delta module starts, as
usual, by reading the transaction log. Since there is no
information about the incomplete file part 5.parquet in the log,
only the parquet files part 2, part 3, and part 4 will be
considered for the query output. Consequently, Bob’s query is
protected from accessing the incomplete or dirty data created

by Alice’s unsuccessful write operation.

In essence, Delta Lake guarantees the prevention of reading
incomplete or inconsistent data. The transaction log serves as a
reliable record of committed operations on the table. And in the
event of a failed write, the absence of corresponding
information in the log ensures that subsequent queries won’t be
affected by incomplete data. Later in this chapter, we will
explore how uncommitted and unused data files in the table

directory can be cleaned up using vacuum operations.

Delta Lake Advantages

Delta Lake’s strength arises from its robust transaction log,
which serves as the backbone of this innovative solution. This
log empowers Delta Lake to deliver a range of features and

advantages that can be summarized by the following key points:



Enabling ACID transactions

The main advantage of the transaction log is that it enables
Delta Lake to execute ACID transactions on traditional data
lakes. This feature helps maintain data integrity and
consistency when performing data operations, ensuring that
they are processed reliably and efficiently.

Scalable metadata handling

Another primary benefit of Delta Lake is the ability to handle
table metadata efficiently. The table metadata, which
represents information about the structure, organization,
and properties of the table, is stored in the transaction log
instead of a centralized metastore. This strategy enhances
query performance when it comes to listing large directories
and reading vast amounts of data. It also includes table
statistics to accelerate operations.

Full audit logging

Additionally, the transaction log serves as a comprehensive
audit trail that captures every change occurring on the table.
It tracks all modifications, additions, and deletions made to
the data, along with the timestamps and user information
associated with each operation. This allows you to trace the
evolution of the data over time, which facilitates
troubleshooting issues and ensures data governance.

Working with Delta Lake Tables



In this section, we dive into the practical aspects of Delta Lake.
We’ll walk through essential tasks such as creating Delta Lake
tables, inserting data, updating tables with new information,
and exploring the underlying directory structure. Through
hands-on examples, you’ll gain a comprehensive understanding

of how Delta Lake works in your Databricks environment.

We will conduct these exercises within a new SQL notebook,

named “2.1 - Delta Lake,” which you can find on the book’s

GitHub repository.

In Databricks, tables are organized in a database within a
catalog. For the sake of simplicity and ease of storage access, we
will use the hive_metastore catalog, which is available by
default in every Databricks workspace. A detailed discussion on
data catalogs will be provided in the next chapter. For the
present, let us proceed by executing the following command to

set the active catalog in our notebook to hive_metastore:

USE CATALOG hive metastore

This command configures the current notebook to use the
hive_metastore catalog, ensuring that all subsequent

operations on Delta Lake tables are executed under this catalog.


https://github.com/derar-alhussein/oreilly-databricks-dea

Creating Tables

Creating Delta Lake tables closely resembles the conventional
method of creating tables in standard SQL. It starts with the
CREATE TABLE keyword followed by the table name. Then, you
provide the schema of the table by specifying the columns along
with their corresponding data types. Consider the following
example where we create an empty Delta Lake table named

product_info:

CREATE TABLE product_info (
product_id INT,
product name STRING,
category STRING,
price DOUBLE,
quantity INT

)
USING DELTA;

In this example, product_info represents a table designed to
store product-related details. It includes five columns:
product_id oftype integer, product_name and category of
type string, price oftype double, and quantity (integer

representing available stock of each product).



It’s worth mentioning that explicitly specifying USING DELTA
identifies Delta Lake as the storage layer for the table, but this
clause is optional. Even in its absence, the table will still be
recognized as a Delta Lake table since DELTA is the default table

format in Databricks.

Catalog Explorer

After creating the Delta Lake table named product_info using
the provided SQL script, you can explore it via the Catalog
Explorer interface, as shown in Figure 2-7. To open the Catalog
Explorer, click the Catalog tab in the left sidebar of your

Databricks workspace.



Catalog Explorer © sendfeedbeck A (9)Demo Cluster 14,68, 4 Cares. v
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Figure 2-7. Catalog Explorer interface

In the interface, navigate to the default database in the left
panel to find the product_info table. If you click it, you can
examine the table’s columns, review sample data entries, and

explore additional information displayed on the right panel.

Inserting Data

In Delta Lake, data insertion can be easily achieved through the
use of the standard SQL INSERT INTO statement, as defined by
ANSI SQL. Like in standard SQL, you can use this statement to

add a single line or multiple lines of data:

INSERT INTO product_info (product_id, product_name, c
VALUES (1, 'Winter Jacket', 'Clothing', 79.95, 100);

INSERT INTO product _info (product _id, product name, c
VALUES

(2, 'Microwave', ‘'Kitchen', 249.75, 30),

(3, 'Board Game', 'Toys', 29.99, 75),

(4, 'Smartcar', 'Electronics', 599.99, 50);

Each operation on the table represents an individual

transaction influencing the table’s state. In this context, each



INSERT statement generates a separate data file within the
table directory. So, after executing these two INSERT
commands, two distinct data files will be added to the table
directory. The first file contains the initial single record, while
the second data file contains the three additional records that
were inserted in the subsequent INSERT statement. This
example simulates real-world scenarios where data is written to
a table in several operations, such as data ingestion by multiple

runs of scheduled jobs.

By executing the previous two INSERT commands, four records
will be inserted into the table. But if you execute them in the
same cell, the displayed result will indicate the successful
insertion of just three records. This outcome occurs due to the
default behavior in the notebook editor wherein only the result
of the last command executed within the cell is typically

displayed.

TIP
To view the outcomes of individual SQL statements when having multiple
commands in a single cell, select each specific SQL statement separately and press
Shift+Ctrl+Enter to run the selected text. Alternatively, you can use separate cells for

each SQL statement.



To access and verify the inserted data, simply query the table
through the standard SQL SELECT statement:

SELECT * FROM product_info

Figure 2-8 displays the result of the SELECT query on the
product_info table. It displays the four inserted records,
confirming that the two transactions were successfully

performed on the table.

1%, product_id £ product_name & category 1.2 price 1%, quantity
2 | Microwave Kitchen 249.75 30
3  Board Game Tays 29.99 75
4 . Smartphone . Electronics 599.99 . 50
1 . Winter Jacket . Clathing 79.95 . 100

Figure 2-8. The result of the SELECT statement from the product_info table

Like in SQL, you can also filter data based on conditions using
the WHERE clause and aggregate information if needed with
GROUP BY.

Exploring the Table Directory

As previously discussed, the execution of the two transactional
operations on the table resulted in creating two small data files

in the table directory. To validate this, we can use the DESCRIBE



DETAIL command on our table. This command enables you to
explore the metadata of Delta Lake tables. It provides essential
information about the table, such as the numFiles field,

indicating the number of data files in the current table version:

DESCRIBE DETAIL product_info

Figure 2-9 shows the output of the DESCRIBE DETAIL command
on the product_info table. The numFiles column confirms
that the table indeed has two data files resulting from our two

INSERT operations.

2. name £ location s numFiles £ sizelnBytes

spark_catalog.default.product_info dbfs: userfhive/warehouse/product _info 2 33t

Figure 2-9. The output of the DESCRIBE DETAIL command on the product_info table

Additionally, the previous command shows the location of the
table, indicating the directory where the table files are stored on
the storage. As indicated, the product_info table is stored

under dbfs:/user/hive/warehouse/product_info.



WARNING

If you are working with Unity Catalog, be aware that tables will be stored in a
different location marked by __unitystorage, which is fully managed by Unity
Catalog. This means that certain commands, such as listing table contents, may not
function correctly due to restricted access to this managed storage. Therefore, in the
context of this book, it is advisable to switch to the Hive metastore using the
command USE CATALOG hive metastore.

To gain a deeper understanding of the table’s file structure, you
can use the %fs 1s magic command that allows you to explore

the contents of the table directory:

%fs 1ls 'dbfs:/user/hive/warehouse/product _info'

Figure 2-10 illustrates the result of executing the %fs
command. It shows that the table directory indeed holds two

data files, both in Parquet format.

name bsie A modficationTime 4
1 el Jog 0 1708652042000
L part-00000-2a095030-0814-4072-ad60-S034c0%e e 000 napoyoarcuet 1505 1708652049000
3 art-00000-04060878-0c67-dbes-Jee3-5707te 1 3af7-c000 snappy parquet 177 1708552048000

Figure 2-10. The output of the %fs command on the product_info table directory



Furthermore, the table directory contains the _delta_log
subdirectory, which contains the transaction log files of the
table.

Updating Delta Lake Tables

Now, considering update operations, let’s explore a scenario
where the task involves adjusting the price of product 3 (Board

Game) by incrementing its price by $10:

UPDATE product_info
SET price = price + 10
WHERE product _id = 3

Examining the table directory after this update operation
reveals an interesting observation: a new file addition (Eigure 2-
11).



& rame b & modicationTime

I el log/ 0 1708793922000
] ) part=00000-40ada8h2-gf55-4367-994a-cae08e0684d4-c000 snappy.parquet 1683 1708793936000
3 part-00000-485c4e80-678f-4c03-9330-67159%2 1 5eb8-c000 snappy parquet 170t 1708793040000
b ) part-00000-a2132¢7e-29b5-4332-a7ce-30886¢37e7dd-c000.snappy parquet 1701 1708794052000

Figure 2-11. The output of the %fs command after the update operation

As previously mentioned, when updates occur, Delta Lake
doesn’t directly modify existing files but rather creates updated
copies of them. Afterward, Delta Lake leverages the transaction
log to indicate which files are valid in the current version of the
table. To confirm this behavior, you can run the DESCRIBE
DETAIL command again to display the table metadata following
this update, as illustrated in Figure 2-12.

5 name i location & numFiles £ sizelnBytes
spark_catalog.default product _info  dbfs:/user/hive/warehouse/product _info ! 33¢

Figure 2-12. The output of the DESCRIBE DETAIL command after the update
operation



The numFiles column shows that the count of the table’s files is
still 2, and not 3! These are the two files that represent the
current table version, including the newly updated file resulting
from the recent update operation. When querying the Delta
table again, the query engine leverages the transaction logs to
identify all the data files that are valid in the current version
and exclude any outdated data files. If you query the table after
this update operation, you can verify that the pricing

information of product 3 has been successfully updated.

NOTE

Starting from Databricks Runtime Version 14, adjustments have been made to the
way update and delete operations are applied, affecting the associated data files in
the table directory. This change is due to the introduction of deletion vectors in Delta
Lake.

Exploring Table History

In Delta Lake, the transaction log maintains the history of
changes made to the tables. To access the history of a table, you
can use the DESCRIBE HISTORY command:

DESCRIBE HISTORY product _info


https://oreil.ly/CfOM5

Figure 2-13 illustrates the table history, revealing four distinct
versions starting from the table creation at version 0. Moving
forward, versions 1 and 2 indicate write operations on the table,
representing our two insert commands, while version 3
indicates the update operation. All this information is captured

within the transaction log of the table.

£, version F@limestamp Bouseiame & operaion 4 operatonParameters

3 2024-02-207T17:00:52.000400:00  Derar Alhussein ~ UPDATE > {"preclcate™"[\"product #2123
2 2024-02-24716:59:01.000400:00  Derar Alhussgin ~ WRITE ) {'mode":"Append" "statsOnLoad":
1 2024-02-247165857.00040000  Derar Alussemn  WRITE > {'mode""Append""statsOnLoad":
0 2004-02-24716:58:42.000400:00  Derar Alnussein ~ CREATETABLE  » {"parttionBy":"[|"'description":nu

Figure 2-13. The output of the DESCRIBE HISTORY command on the product_info
table

The transaction log is located under the _delta_log folder in the
table directory. You can navigate to this folder using the %fs 1s

command:

%fs 1ls 'dbfs:/user/hive/warehouse/product info/ delta

4



Figure 2-14 illustrates the contents of the _delta _log folder
located within the product_info table directory. You can
observe that it contains nothing but JSON files, along with their
associated checksum!? files (having the .crc extension). Each
JSON file corresponds to a distinct version of the Delta Lake
table. In the context of the product_info table, we observe
four JSON files, corresponding precisely to the four table
versions examined previously through the DESCRIBE HISTORY

command.
. name 1% size = 1% modificationTime

00000000000000000000.crc 2220 1708793932000
00000000000000000000.json 1224 1708793922000
00000000000000000001.crc 2926 1708793940000
00000000000000000001.json 1282 1708793937000
00000000000000000002.crc 3619 1708793942000
00000000000000000002.json 1274 1708793941000
00000000000000000003.crc 3632 1708794054000
00000000000000000003.json 1927 1708794052000

Figure 2-14. The output of the %fs command on the _delta_log folder



To gain a deeper understanding of the transaction log, we can
use the %fs head command to explore the content of one of
those JSON files. In particulary, we can examine the latest JSON

file that represents version 3 of the table:

%fs head
'dbfs:/user/hive/warehouse/product_info/ delta log/eg¢

4

{ "commitInfo":{"operation": "UPDATE", "timestamp": 1
"userName": "Derar Alhussein", ...}
}
{ "add":{"path": "part-00000-a2la2e7e-29b5-433a-c000.
"modificationTime": 1708794052000, ...}
}
{ "remove":{"path": "part-00000-485c4e80-678f-4c03-ck
"deletionTimestamp": 1708794052717, ...}

The output of the %fs head command shows that the JSON file
contains structured JSON data about our update operation. The
add element specifies the new data file appended to the table,
while the remove element specifies the data file marked for soft
deletion—in other words, it’s no longer part of the latest table

version.



Exploring Delta Time Travel

Time travel is a feature in Delta Lake that allows you to retrieve
previous versions of data in Delta Lake tables. The key aspect of
Delta Lake time travel is the automatic versioning of the table.
This versioning provides an audit trail of all the changes that
have happened on the table. Whenever a change is made to the
data, Delta Lake captures and stores this change as a new
version. Each version represents the state of the table at a

specific point in time.

To explore the historical versions of a Delta table, you can
leverage the DESCRIBE HISTORY command in SQL. This
command provides a detailed log of all the operations
performed on the table, including information such as the
timestamp of the operation, the type of operation (insert,
update, delete, etc.), and any additional metadata associated

with the change.

Here’s an example of how you might use the DESCRIBE
HISTORY command:

DESCRIBE HISTORY <table name>;



This command returns a result set containing the operations
performed on the specified table in reverse chronological order,

along with relevant details for each operation.

Let’s review again the history of the product_info table:

DESCRIBE HISTORY product _info

Figure 2-15 displays the table history, illustrating how Delta
Lake’s versioning system automatically assigns a unique
version number and timestamp to every operation performed

on a table.

£, verio F@limestamp B userkame & operation ¢ operatonParameters

3 2004-00-24T17:00:52.000400:00  Derar Alussein  UPDATE » {"predicate™"]\"(product_jo#2123
2 2024-00-2471659:01.000400:00  Derar Alhussein ~ WRITE ) {'mods","Append"'statsOnLoad":
1 2024-02-247165857.00040000  Derar Alussen ~ WRITE ) {'mode""Append"statsOnLoad":
0 204-02-24716:58:42.000400:00  Derar Alnussein ~ CREATETABLE  » {"parttionBy""[|"'description":nu

Figure 2-15. The output of the DESCRIBE HISTORY command on the product_info
table

Our table has currently four distinct versions:



Version 0

This is the initial version of the table, representing its state at
creation. Since the table was created empty, this version
captures only the initial schema and metadata of the table.
Versions 1 and 2

These versions indicate write operations on the table,
representing our two insert commands.

Version 3

This version indicates the update operation on the table,
which represents the latest state of the table. Additionally,
note that this update operation includes the predicate used to
match records in the operationParameters column.

Querying Older Versions

To query older versions of a table, Delta Lake offers two distinct

approaches, using either the timestamp or the version number.

Querying by timestamp

The first method allows you to retrieve the table’s state as it

existed at a specific point in time. This involves specifying the

desired timestamp in the SELECT statement using the

TIMESTAMP AS OF keyword:

SELECT * FROM <table name> TIMESTAMP AS OF <timestamgp

4



Querying by version number

The second method involves using the version number

associated with each operation on the table, as illlustrated in the

table history in Figure 2-16.

£ version {5 tmestamp £ userhame 2, operation 5 operationParameters

3 2024-02-24717:00:52.000+00:00 Derar Alhussein UPDATE » {"predicate":"\"product_io#2123
2 2024-02-24716:59:01.000+00:00 Derar Alhussein WRITE ) {"modg";"Append""statsOnLoaa"
1 2024-02-24716:58:57.000+00:00 Derar Alhussein WRITE ) {"'mode";"Append" "statsOnLoad";
0 202-02-24716:58:42.000+00:00 Derar Alussein CREATE TABLE > {"parttionBy™"[J"'description":nu

Figure 2-16. The output of the DESCRIBE HISTORY command on the product_info
table

You can use the VERSION AS OF keyword to travel back in time

to a specific version of the table:

SELECT * FROM <table name> VERSION AS OF <version>



Consider a scenario where we need to retrieve the product data
exactly as it existed before the update operation, identified as
version 2 in our product_info table. We can simply use the

following query:

SELECT * FROM product_info VERSION AS OF 2

Alternatively, you can use its short syntax represented by @v

followed by the version number:

SELECT * FROM product_info@v2

Figure 2-17 shows the result of querying version 2 of our table.

1%, product_id | 28 product_name | 4% category 1.2 price i, quantity

2 Microwave Kitchen 249.75 30
3 Board Game Toys 29.99 7
4 .Smartphune .EEectronics . h99.99 50
1 .Winter Jacket Clothing . 789.95 100

Figure 2-17. The result of querying version 2 of the product_info table

So, Delta Lake’s time travel enables you to independently
investigate different versions of the data without impacting the

current state of the table. This feature is possible thanks to



those extra data files that had been marked as removed in our

transaction log.

Rolling Back to Previous Versions

Delta Lake time travel is particularly useful in scenarios where
undesired data changes need to be rolled back to a previous
state. For instance, in case of bad writes or unintended data
modifications, you can easily undo these changes by reverting

to a previous version of the table.

Delta Lake offers the RESTORE TABLE command that allows you

to roll back the table to a specific timestamp or version number:

RESTORE TABLE <table name> TO TIMESTAMP AS OF <timest

RESTORE TABLE <table name> TO VERSION AS OF <version>

»

Imagine a scenario where data has been accidentally deleted

from our product_info table and we need to restore it.

DELETE FROM product_info



Upon executing the DELETE command, it removes all four
records currently in the table. You can easily confirm this by
querying the table again. In addition, we can review the table
history to see that the delete operation has been recorded as a

new table version, labeled as version 4 (Eigure 2-18).

£ version F@timestamp B userName &% operation ¢ operationParameters

4 2024-02-25100:09:54.000+00:00 Derar Alhussein DELETE ) {"predicate”:"[\"true|']"}

3 2024-02-24717:00:52,000+400:00 Derar Alhussein UPDATE > {"predicate""[\"(product_
2 2024-02-24716:59:01.000+00:00 Derar Alhussein WRITE > {"mode":"Append" "statsC
1 2024-02-24716:58:57.000+00:00 Derar Alhussein WRITE > {"mode":"Append""statsC
0 2024-02-24716:58:42.00000:00 Derar Alnussein CREATE TABLE > {"partitionBy":"[]" " descriy

Figure 2-18. The output of the DESCRIBE HISTORY command after running the
DELETE command

To roll back the table to a previous version that existed before
the deletion occurred, specifically version 3, we can use the
RESTORE TABLE command:

RESTORE TABLE product_info TO VERSION AS OF 3



Figure 2-19 displays the output of the restoration operation. It
shows that two files have been restored, confirming the data
has been successfully restored to its original state. The
product_info table again contains the complete dataset, as it
did before the deletion took place. You can easily confirm this

by querying the table again.

£ table,size after restore. & num_of files_after restore % num_removed files £ num_restored.files

3384 ! 0 /

Figure 2-19. The output of the RESTORE TABLE command on the product_info table

We can also examine what really happened at our table by

exploring its history:
DESCRIBE HISTORY product_info

Figure 2-20 displays the table history after the restoration
operation. It shows that this operation has been recorded as a

new table version, labeled version 5.



£, vrsin ﬁMmW

5 2024-02-25T00:33:33.000+0000
4 2024-02-25700:09:54,000+00:00
3 2004-02-4T170052.000400:00
2 2024-02-4716:59:01.000400:00
I 2004-02-24T16:58:57.00040000
0 2024-02-24T16:58:42.000400:0

ﬁm%m

Derar Aussein
Derar Ahussein
Derar Alussein
Derar Alussen
Derar Aussein

Derar Alhussein

Bovertion g operationParameter

RESTORE ) {"verson".'3""tmestamp
DELETE ) {"reclcate""rue|")')
UPDATE ) {'preciate""'(product_
WAITE ) {'mode"."Append'statsO
WAITE ) {'mode",'Append"statsC
CREATETABLE ) {"narttionBy™"["‘deseri

Figure 2-20. The output of the DESCRIBE HISTORY command after the restoration

operation

In summary, Delta Lake’s time travel brings a new level of

flexibility to data management within Delta tables. It provides

you with the capability to travel back in time to specific versions

of your tables and restore them to a previous state if needed.

Optimizing Delta Lake Tables

Delta Lake provides an advanced feature for optimizing table

performance through compacting small data files into larger

ones. This optimization is particularly significant as it enhances



the speed of read queries from a Delta Lake table. You trigger

compaction by executing the OPTIMIZE command:

OPTIMIZE <table name>

Say you have a table that has accumulated many small files due
to frequent write operations. By running the OPTIMIZE
command, these small files can be compacted into one or more
larger files. This concept is illustrated in an example in Figure 2-
21, where the optimization process results in two consolidated

data files instead of six small files.



OPTIMIZE my_table

PP

Figure 2-21. The process of optimizing Delta Lake tables using the OPTIMIZE
command



Table optimization improves the overall performance of the
table by minimizing overhead associated with file management

and enhancing the efficiency of data retrieval operations.

Z-Order Indexing

A notable extension of the OPTIMIZE command is the ability to
leverage Z-Order indexing. Z-Order indexing involves the
reorganization and co-location of column information within
the same set of files. To perform Z-Order indexing, you simply
add the ZORDER BY keyword to the OPTIMIZE command. This
should be followed by specifying one or more column names on

which the indexing will be applied:

OPTIMIZE <table name>
ZORDER BY <column_names>

For instance, recalling our previous example in Figure 2-21, let’s
consider the data files containing a numerical column such as
ID that ranges between 1 and 100. Applying Z-Order indexing
to this column during the optimization process results in
different content written to the two compacted files. In this
case, Z-Order indexing will aim to have the first compacted file
contain values ranging from 1 to 50, while the subsequent file

contains values from 51 to 100, as illustrated in Figure 2-22.
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Figure 2-22. Z-Order indexing

This strategic arrangement of data enables data skipping in

Delta Lake, which helps avoid unnecessary file scans during



query processing. In the provided example, if a query targets an
ID, such as 25, Delta Lake can quickly determine that ID #25
resides in the first compacted file. Consequently, it can
confidently ignore scanning the second file altogether, resulting

in significant time savings.

Let’s now optimize our product_info table that currently has
two small data files, as indicated in the numFiles field of the

table metadata (Figure 2-23):

DESCRIBE DETAIL product _info

. name % location y numFiles £ sizelnBytes
spark_catalog.default product_info dbfs:/user/hivewarehouse/product_info 2 3384

Figure 2-23. The output of the DESCRIBE DETAIL command before optimization

We can use the OPTIMIZE command to combine these files

toward an optimal size:

OPTIMIZE product _info
ZORDER BY product_id



Figure 2-24 shows the output of the OPTIMIZE command. The
numFilesRemoved in the metrics column indicates that two
small data files have been soft deleted, while the
numFilesAdded metric indicates that a new optimized file is

added, compacting those two files.

&, path b metrics

dbfsjuser/hive/warehouse/product_info > {"numFilesAdded":1 "numFilesRemoved":2 "lesAdded" {"min". 1745, "max". 174..

Figure 2-24. The output of the OPTIMIZE command

In addition, we have added the Z-Order indexing with our
OPTIMIZE command. As an example, we apply Z-Order
indexing to the product_id column. However, with such a
small dataset, the benefits of Z-Order indexing may not be as

significant, and its impact may not be noticeable.

To confirm the result of the optimization process, let’s review

again the details of our table:

DESCRIBE DETAIL product_info

Indeed, as illustrated in Figure 2-25, the current table version

consists of only one consolidated data file, indicating the



success of the optimization operation.

. name + =0 & location %, numFiles 4 sizelnBytes
spark_catalog.default.product _info dbfs:/user/hive/warehouse/product_info 1 1745

Figure 2-25. The output of the DESCRIBE DETAIL command after optimization

In addition, we can check how the OPTIMIZE operation has

been recorded in our table history:

DESCRIBE HISTORY product _info

As expected and illustrated in Figure 2-26, the OPTIMIZE
command created another version of our table. This means that

version 6 is the most recent version of the table.



£, vrsion F@limestamp

6 2024-02-28T02:44:34.000:00:0
5 2024-02-25700:33:33.000400:00
4 2024-02-25T00:09:54.000:00:00
3 2004-02-24T17:0052000400:00
1 2024-02-24716:38.01.000+0000
1 J024-00-24T16:58.57.000400:00
0 2024-02-24716:58:42000400:00

ABc userName

Derar Alhussein
Derar Alnussein
Derar Alhussen
Derar Alhussen
Derar Alhussein
Derar Alnussein

Derar Alnussein

B operaion 5 operationParameter

OPTIMIZE ) {"redicate""[|"'2OrderBy"."["product i
RESTORE ) {"version">"3""tmestamp"nul)

DELETE ) {'oredicate”" [\ "ruel"T'

UPDATE ) {"oredlcate"""[product jdg2123 = 3)|'1")
WAITE ) {'mode"."Apoend" "statsOnLoad" false"par
WRITE ) {'mode"."Append" "statsOnLoad" false"'par
CREATETABLE {"nerttonBy""[)""description” nul ishlanag

Figure 2-26. The output of the DESCRIBE HISTORY command after the optimization
operation

Lastly, let us explore the data files in our table directory:

%fs 1ls 'dbfs:/user/hive/warehouse/product _info'

In Figure 2-27, we can see that there are four data files in the

table directory. However; it is important to remember that our

current table version references only one file following the

optimization operation. This means that other data files in the

directory are unused files, and we can simply clean them up. In



the next section, we will learn how to achieve this task with

vacuuming.
% name ysize £ modificationTime
_(elta_log/ 0 1708793922000

> part-00000-40ada852-ef55-4367-994a-eae(8e0684d4-c000.snappyparquet - 1683 1708793936000
» part-00000-485¢c4e80-678f-4c03-9330-67159215eb8-c000.snappy.parquet 1701 1708793940000
» part-00000-82ca5e99-c61f-44b7-80d4-d66f3e3f7208-c000.snappy.parquet 1745 1708829074000
» part-00000-a21a2e7e-2905-433a-a7ce-3d886f37e7dd-c000.snappy.parquet 1701 1708794052000

Figure 2-27. The output of the %fs command on the product_info table directory
after optimization

In essence, Delta Lake’s OPTIMIZE command, coupled with Z-
Order indexing, offers a powerful mechanism to optimize table
performance. It enhances the speed of read queries by
compacting small files and intelligently organizing their column

information.

Vacuuming



Delta Lake’s vacuuming provides an efficient mechanism for
managing unused data files within a Delta table. As data evolves
over time, there might be scenarios where certain files become
obsolete, either due to uncommitted changes or because they
are no longer part of the latest state of the table. The VACUUM
command in Delta Lake enables you to clean up these
unwanted files, ensuring efficient storage management that

saves storage space and cost.

Here’s an example of how you might use the VACUUM

command:

VACUUM <table_name> [RETAIN num HOURS]

The process involves specifying a retention period threshold for
the files, so the command will automatically remove all files
older than this threshold. The default retention period is set to
seven days, meaning that the vacuum operation will prevent
you from deleting files less than seven days old. This is a safety
measure to ensure that no active or ongoing operations are still

referencing any of the files to be deleted.

It’s important to note that running the VACUUM command comes
with a trade-off. Once the operation is executed and files older

than the specified retention period are deleted, you lose the



ability to time travel back to a version older than that period.
This is because the associated data files are no longer available.
Therefore, it is crucial to carefully consider the retention period
based on your data retention policies and data storage

requirements.

Vacuuming in Action

Let’s optimize the storage and tidy up the file structure of our
product_info table. Before we start, let us first explore the

data files in our table directory:

%fs 1ls 'dbfs:/user/hive/warehouse/product _info'

As shown in Figure 2-28, there are currently four data files in

the table directory.



X' name {

_(elta_log 0
> part-00000-40ada852-¢f55-4367-994a-eae086068404-c000.snappy.parquet 1683
» part-00000-485¢c4e80-678f-4c03-9330-67159215eb8-c000.5nappy.parquet 1701
> part-00000-82cabe99-c61t-44b7-80d4-d6613e3f7208-c000.snappy.parquet 1745
> part-00000-a21a2e7e-2905-433a-a7ce-3d886f37e7da-c000.snappy.parquet 1701

size | £ modificationTime

1708793922000
1708793936000
1708793940000
1708829074000
1708794052000

Figure 2-28. The output of the %fs command on the product_info table directory

before vacuuming

Remember, our current table version references only one file

following the optimization operation detailed in the previous

section. This means that other data files in the directory are

unused files, and we can simply clean them up using the

VACUUM command:

VACUUM product_info

However, upon executing the command, you realize that the

files are still present in the table directory. This is because, by

default, VACUUM retains files for a period of seven days to

ensure ongoing operations can still access them if needed.



To overcome this default behavior, we attempt to specify a
retention period of zero hours to retain only the current

version of the data:

VACUUM product_info RETAIN @ HOURS

IllegalArgumentException: requirement failed: Are you
to vacuum files with such a low retention period? If
currently writing to this table, there is a risk that
the state of your Delta table.

However, this command throws an exception since the
retention period is low, compared to the default retention
period of seven days. As a workaround solution, and for
demonstration purposes only, we can temporarily disable the
retention duration check in Delta Lake. It’s important to note
that this approach is not recommended for production

environments due to potential data integrity issues.

SET spark.databricks.delta.retentionDurationCheck.ena

4

With the retention duration check disabled, we can now

proceed and rerun our VACUUM command with a @ HOURS


https://oreil.ly/6Z59C

retention period. To confirm its output, let’s explore the table
directory:

%fs 1ls 'dbfs:/user/hive/warehouse/product _info'

Indeed, as illustrated in Figure 2-29, the operation this time

successfully removed the old data files from the table directory.

B name fysize £ modificationTime

_delta_log/ 0 1708793922000
part-00000-82cabe99-c61f-44h7-8004-d66f3e372b8-c000.snappy.parquet 1745 1708829074000

Figure 2-29. The output of the %fs command on the product_info table directory
after vacuuming

While the cleanup operation enhances storage efficiency, it
comes at the cost oflosing access to older data versions for time
travel queries. Attempting to query an old table version results
in a “file not found” exception, since the corresponding data

files have been deleted during the previous VACUUM operation:

SELECT * FROM product_info@vl

FileReadException: Error while reading file



part-00000-40ada852-ef55-4367-994a-eae08e0684d4-c000.
File referenced in the transaction log cannot be foun

Caused by: FileNotFoundException: Operation failed:
does not exist.", 404, GET, PathNotFound, "The specif

4

Dropping Delta Lake Tables

In the final step of managing Delta Lake tables within the
lakehouse architecture, we can drop the table and permanently
erase its associated data. Similar to SQL syntax, we use the DROP

TABLE command for this purpose:

DROP TABLE product_info

Upon executing this command, the table, along with its data,
will be deleted from the lakehouse environment. To confirm
this action, you can attempt to query the table again, only to
find that it is no longer found in the database. Furthermore, the

directory containing the table’s files is also completely removed:

%fs 1ls 'dbfs:/user/hive/warehouse/product _info'

FileNotFoundException: No such file or directory

"~



abts:/user/hive/warenouse/prod

4

Thus, the VACUUM command provides a mechanism for
optimizing storage by removing unnecessary data files of Delta
Lake tables. However it’s crucial to understand the impacts of
file retention duration and consider the trade-offs between

storage efficiency and historical data accessibility.

Conclusion

Throughout this chapter, we’ve explored how Delta Lake works,
demonstrating its essential role in transforming traditional data
lakes into reliable lakehouses. By mastering Delta Lake, you can
significantly enhance your data workflows and enable more
robust analytics. The knowledge gained from this chapter will
serve as a foundation for fully leveraging Delta Lake’s potential

in subsequent discussions and use cases.

Sample Exam Questions

Conceptual Question



1. Which of the following statements best describes the time

travel feature in Delta Lake?

1. It compacts old small files into larger ones to improve query
performance and optimize storage usage.

2. It partitions the table based on datetime columns, ensuring
that historical data retrieval is optimized.

3. It uses Z-Order indexing to reorganize datetime column
information within the same set of files, enhancing the
performance of range queries.

4. It generates periodic backups of the data to ensure that all
information can be easily restored in the event of system
failure.

5. It allows users to query Delta Lake tables at a specific point in

time, providing views of previous states of the data.

Code-Based Question

2. A data engineer is investigating a Delta Lake table named
customer_orders , which has experienced slow performance
for the past week. The engineer has found that it contains too
many small files, potentially contributing to these performance

issues.



To enhance the query performance for this table, which

command should the data engineer execute?

ZORDER BY customer _orders
OPTIMIZE customer_orders
VACUUM customer _orders

VACUUM customer _orders RETAIN © HOURS

Gk WD e

RESTORE TABLE customer_orders TO TIMESTAMP AS OF
current_timestamp () - INTERVAL '7' DAYS

The correct answers to these questions are listed in Appendix C.

1 A checksum is a unique value computed from the contents
of a file using an algorithm. It serves as a sort of digital
fingerprint that helps determine if any changes or corruption
have occurred in the associated file. In other words, a checksum

ensures data integrity of the associated file.



Chapter 3. Mastering Relational
Entities in Databricks

Relational entities, particularly databases, tables, and views, are
essential components for organizing and managing structured
data in Databricks. Understanding how these entities interact
with the metastore and storage locations is crucial for efficient
querying and data management. In this chapter, we will cover in
detail how these entities function within the Databricks
environment and understand their relationship with the

underlying storage.

Understanding Relational Entities

This section provides a detailed understanding of relational
entities in Databricks, covering databases, tables, and views,
with a focus on their interactions with both the metastore and

storage systems.

Databases in Databricks

In Databricks, a database essentially corresponds to a schema in

a data catalog. This means that when you create a database,



you’re essentially defining a logical structure where tables,
views, and functions can be organized. This collection of
database objects is called a schema. You have the flexibility to
create a database using either the CREATE DATABASE or CREATE

SCHEMA syntax, as they are functionally equivalent.

Every Databricks workspace includes a local data catalog, called
hive_metastore, that all clusters can access to persist object
metadata. The Hive metastore serves as a repository for
metadata, storing essential information about data structures
such as databases, tables, and partitions. This metadata includes

details like table definitions, data formats, and storage locations.
Default database

By default, a database named “default” is provided in the
hive_metastore catalog. When you create tables without
explicitly specifying a database name, they are created under
the default database. The data for these tables is stored in the
default directory for Hive, typically located at

/user/hive/warehouse on the DBFS, as illustrated in Figure 3-1.
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Figure 3-1. Creating tables under the default database

Creating databases

Apart from the default database, you can create additional
databases using the CREATE DATABASE or CREATE SCHEMA
syntax. These databases are also stored in the Hive metastore,
with their corresponding folders under the default Hive
directory in /user/hive/warehouse. These database folders are
distinguished by the .db extension to differentiate them from

table directories, as illustrated in Figure 3-2.



CREATE SCHEMA db_x;

USE SCHEMA db x:
CREATE TABLE table 1;
CREATE TABLE table 2;
Workspace
Local hive
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Figure 3-2. Creating an additional database and tables within this database

Custom-location databases

Moreover, you can create databases outside of the default Hive
directory by specifying a custom location using the LOCATION
keyword in the CREATE SCHEMA syntax. In this case, the
database definition still resides in the Hive metastore, but the
database folder is located in the specified custom path. Tables
created within these custom databases will have their data
stored in the respective database folder within the custom

location, as illustrated in Figure 3-3.



CREATE SCHEMA db.y:
LOCATION 'dbfs:/custom/path/db_y.db'

USESCHEMA db.y:
CREATE TABLE table_I;
CREATE TABLE table 2;

Workspace

Local hive )
metastore default . db_X . db_y

fable 1 otable | otable 1
*fable 2 *table 2 *fable 2

v !

dbfs:lcustomlpath1

r Storage
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Figure 3-3. Creating a database in a custom location

Tables in Databricks

In Databricks, there are two types of tables: managed tables and
external tables. Understanding the distinction between them is
essential for effectively managing your data. Table 3-1
summarizes the key differences between these two types of
tables.



Managed table

Created within its own

database directory:

CREATE TABLE table name

Dropping the table deletes
both the metadata and the
underlying data files of
the table.

Table 3-1. Comparison of managed and external tables in Delta Lake

External table

Created outside the
database directory (in a
path specified by the LOC
ATION keyword):

CREATE TABLE table name
LOCATION <path>

Dropping the table only
removes the metadata of
the table. It does not
delete its underlying data
files.

Let’s dive deeper to gain a comprehensive understanding of

these two types of tables.

Managed tables



A managed table is the default type in Databricks, where the
table and its associated data are managed by the metastore,
typically the Hive metastore or Unity Catalog. When you create
a managed table, the table data is stored in a location controlled
by the metastore. This means that the metastore owns both the
metadata and the table data, enabling it to manage the complete
lifecycle of the table. This integrated management simplifies
data lifecycle management tasks, such as table deletion and

maintenance.

So, when you drop a managed table, not only is its metadata
removed from the metastore, but the underlying data files
associated with the table are also deleted from storage. This
approach ensures that the data remains consistent with the
table definition throughout its lifecycle. However; it’s essential
to exercise caution when dropping managed tables, as the

associated data will be permanently removed.

External tables

In contrast to managed tables, an external table in Databricks is
a table where only its metadata is managed by the metastore,
while the data files themselves reside outside the database
directory. When creating an external table, you specify the
location of the data files using the LOCATION keyword:



CREATE TABLE table name
LOCATION <path>

Since the metastore does not own the underlying data files,
dropping an external table only removes the metadata
associated with the table, leaving its data files intact. This
distinction is crucial, as it enables you to manage the actual data
files of the table separately from its metadata. This is
particularly useful when working with data that is stored in
external locations outside the DBFS, like in S3 buckets or Azure

storage containers.

To better understand external tables, let’s revisit our diagram.
Figure 3-4 illustrates creating an external table in the default
database. We simply use the CREATE TABLE statement with the
LOCATION keyword. The definition of this external table will be
in the Hive metastore under the default database, while the

actual data files will reside in the specified external location.
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Figure 3-4. Creating an external table in the default database

Similarly, we can create an external table in any database.
Figure 3-5 illustrates creating an external table in our database
db_x . First, we specify the database name via the USE
DATABASE or USE SCHEMA keyword. Then, we create the table
with the LOCATION keyword, indicating the path where the
external table data should be stored. This path could be the
same as the previous one used for default.table_ 3 table ora
different location, depending on our requirements. And again,
the table definition will be stored in the Hive metastore, while

the data files will be located in the given external location.
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Figure 3-5. Creating an external table in the new database db_x

Even if the database was created in a custom location outside of
the default Hive directory, we can still create external tables

within it. Figure 3-6 illustrates this scenario by using our

custom-location database db_y . Once again, we specify the
database using the USE SCHEMA keyword and create the
external table with the LOCATION keyword. In this scenario,
let’s assume we choose the same path as in the previous
example. As before, the table definition will be stored in the
metastore, while the data files will be located in the specified

external location.
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Figure 3-6. Creating an external table, table_3, in the custom-location database
db y

In summary, Databricks provides two types of tables: managed
tables and external tables. Depending on the use case and data
requirements, choosing the appropriate table type ensures
efficient data organization, storage, and maintenance. Opting
for managed tables ensures integrated management, while
choosing external tables provides greater flexibility and control

when managing your tables.

Putting Relational Entities into
Practice

Let’s now put theory into practice. In this section, we will use a
new SQL notebook titled “3.1 - Databases and Tables” to create
managed and external tables in various database types. In
addition, we will explore the differences in behavior when

dropping each type of table.

Working in the Default Schema

Before we start, let’s explore the Catalog Explorer, where we can

access the Hive metastore for our Databricks workspace. To



open the Catalog Explorer; click the Catalog tab in the left

sidebar of your Databricks workspace.

By default, under the hive_metastore catalog, there’s a
database named default, as illustrated in Figure 3-7. We’ll

begin by creating some tables within this default database.



Catalog E)(p|0rer (2 Send feedback + Add @Demo Cluster 14 GB 4 Cores v

8 default b UsewithBliools v [NOERCRS
v L| hive metastore
d fie Owner: Not set //
‘ ) 8 default
) Q samples Default Hive database i

Tables  Details  Permissions

Location ~ dbfs:/userfhive/warehouse

Properties

Figure 3-7. Catalog Explorer showing the default database in hive _metastore

Creating managed tables



First, we create a managed table named managed_default and

populate it with data:

USE CATALOG hive metastore;

CREATE TABLE managed default
(country STRING, code STRING, dial code STRING);

INSERT INTO managed_default
VALUES ('France', 'Fr', '+33")

Since we’re not specifying the LOCATION keyword, this table is
considered managed in this database. Checking back in the
Catalog Explorer, we can confirm that the managed_default
table has been created under the default database. Alternatively,
without leaving the working notebook, you can directly access
the catalog by clicking the catalog icon located in the sidebar of
the notebook editor (Figure 3-8).
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Figure 3-8. The catalog in the notebook editor showing the managed_default table



Executing the DESCRIBE EXTENDED command on our table
provides advanced metadata information, as illustrated in
Figure 3-9.

DESCRIBE EXTENDED managed default

B col_name 4% data_type . comment
Uredieu By SpdrK 3.4. 1

Type MANAGED

Location dbfs:/user/hive/warehouse/managed_default

Provider delta

Nwnar ront

Figure 3-9. The output of the DESCRIBE EXTENDED command on the managed_default
table

Among this metadata information, we focus on three key

elements:

e The type of table, which is indeed MANAGED
¢ The location, which shows that our table resides in the
default Hive metastore under dbfs:/user/hive/warehouse

e The provider, which confirms that this is a Delta Lake table



Creating external tables

Next, we create an external table within the default database. To
achieve this, we simply add the LOCATION keyword followed by
the desired storage path. In our case, we’ll store this table under
the /mnt/demo directory through the DBFS:

CREATE TABLE external default
(country STRING, code STRING, dial code STRING)
LOCATION 'dbfs:/mnt/demo/external default';

INSERT INTO external default
VALUES ('France', 'Fr', '+33')

After creating and inserting data into this external table, you
can use the Catalog Explorer to verify the presence of the table
in the Hive metastore. In addition, running DESCRIBE EXTENDED
on the external table confirms its external nature and its

storage location under /mnt/demo, as illustrated in Figure 3-10.

DESCRIBE EXTENDED external_default



2% col_name | % data_type 2% comment
LIedleu by SPdIK 3.4. |

Type EXTERNAL

Location dbfs:/mnt/demo/external_default

Provider delta

Ownar rant

Figure 3-10. The output of the DESCRIBE EXTENDED command on the external_
default table

Dropping tables

If you want to remove tables from the database, you can simply
drop them using the DROP TABLE command. However it is
important to note that the behavior differs for managed and
external tables. Let’s discuss the consequences of this action on
each table type. We start by running the DROP TABLE command

on our managed table:

DROP TABLE managed default

When you drop a table, it deletes its metadata from the

metastore. This means that the table’s definition, including its



schema, column names, data types, and other relevant
information, is no longer stored in the metastore. We can
confirm this by trying to query the table, which will result in a

“table not found” error:

SELECT * FROM managed default

[TABLE_OR_VIEW _NOT_FOUND] The table or view “managed_
Verify the spelling and correctness of the schema and

4

Dropping the managed table not only removes its metadata
from the metastore, but also deletes all associated data files
from the storage. This is confirmed by “a file not found”

exception received upon checking the table directory:

%fs 1ls 'dbfs:/user/hive/warehouse/managed default'

FileNotFoundException:
No such file or directory dbfs:/user/hive/warehouse/n

4

However, when the external table is dropped, we see different

behavior:



DROP TABLE external default

Dropping the external table also removes its entry from the
metastore. We can confirm this by trying to query the table,
which should result in a “table not found” error. However; since
the underlying data is stored outside the database directory, the
data files remain intact. We can easily confirm that the data files

of the table still persist by checking the table directory:

%fs 1s 'dbfs:/mnt/demo/external default'’

Figure 3-11 confirms that the data files of the external table

continue to exist in the table directory even after the table has

been dropped.
4 name ysite. £ modifcationTime
_(elta_log/ 0 1708878942000

part-00000-dbbeed99-e747-44d9-a277-defdc7eefd55-c000.snappy.parquet 1045 1708878945000

Figure 3-11. The output of the %fs command on the external_default table
directory



In Databricks, you can directly access a Delta table by querying

its directory using the following SELECT statement:

SELECT * FROM DELTA. dbfs:/mnt/demo/external default"

>

Figure 3-12 shows the result of directly querying the table
directory, confirming that the data of this external table remains

unaffected by dropping the table from the metastore.

Table v +

2% country 2% code 2% dial_code
1 ' France Fr +33

v Trow | 5.34 seconds runtime

Figure 3-12. The result of directly querying the external_default table directory

You can manually remove the table directory and its content by

the running the dbutils.fs.rm functionin Python:



%python
dbutils.fs.rm('dbfs:/mnt/demo/external default', True

4

Working in a New Schema

In addition to the default database, we can also create additional
databases and manage tables within those databases. Let’s walk

through the process step-by-step.

Creating a new database

You can create a new database using either the CREATE SCHEMA

or CREATE DATABASE syntax, which are interchangeable:

CREATE SCHEMA new_default

Once the database is created, you can inspect its metadata using
the DESCRIBE DATABASE EXTENDED command. This command
provides information about the database, such as its location in

the underlying storage:

DESCRIBE DATABASE EXTENDED new_default



As illustrated in Figure 3-13, the new database is stored under
the default Hive directory with a.db extension to distinguish it

from other table folders in the directory.

B, database_description_item 1%, database_description_value
Namespace Name new_default

Comment

Location dbfs: user/hive/warehouse/new_default.db
Numar rant

Figure 3-13. The output of the DESCRIBE DATABASE EXTENDED command on the
new_default schema

Creating tables in the new database

Let’s now create managed tables and external tables within our
newly created database. To create tables within a database, you
need first to set it as the current schema by specifying its name

through the USE DATABASE keyword:

USE DATABASE new_default;

-- create a managed table



CREATE TABLE managed new_default
(country STRING, code STRING, dial code STRING);

INSERT INTO managed new_default
VALUES ('France', 'Fr', '+33');

-- Create an external table
CREATE TABLE external new default

(country STRING, code STRING, dial code STRING)
LOCATION 'dbfs:/mnt/demo/external new_default';

INSERT INTO external new default
VALUES ('France', 'Fr', '+33');

In the Catalog Explorer, you can locate the new schema and
confirm that the two tables have been successfully created
within this database. Alternatively, you can just refresh the
catalog in the notebook editor to show the new objects, as

shown in Figure 3-14.
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Figure 3-14. Refreshing the catalog in the notebook editor shows the new_default
schema and its tables

By running DESCRIBE EXTENDED on each of these tables, we can
see that the first table is indeed a managed table created in its
database folder under the default Hive directory (Eigure 3-15).
Meanwhile, the second table, where we use the LOCATION
keyword, has been defined as an external table under the

/mnt/demo location (Figure 3-16).

DESCRIBE EXTENDED managed new_default

& col_name 4% data_type

Type MANAGED
Location dbfs:/userfhive/warehouse/new_default.db/managed_new_default

Provider delta

Figure 3-15. Metadata of the managed_new_default table

DESCRIBE EXTENDED external new default



& col_name = A% data_type

Type EXTERNAL
Location dbfs:/mnt/demo/external_new_default
Provider delta

Figure 3-16. Metadata of the external_new_default table

Dropping tables

Let’s proceed to drop the newly created tables:

DROP TABLE managed new_default;
DROP TABLE external new default;

Dropping the tables removes their entries from the Hive
metastore. You can easily confirm this in the Catalog Explorer.
Moreover, this action on the managed table results in the
removal of its directory and associated data files from the

storage:

%fs 1ls 'dbfs:/user/hive/warehouse/new_default.db/mana

4



FlleNoTroundkxception: NO Sucn tlle or directory
dbfs:/user/hive/warehouse/new_default.db/managed _new_

4

However, as expected, in the case of the external table, although
the table itself is dropped from the database, the directory and
its data files persist in the specified external location (Figure 3-
17).

%fs 1s 'dbfs:/mnt/demo/external new default'

B, name fysize £ modicationTime
_(elta fog/ 0 1708886523000

pat-00000-ed0309f1-Toed-40ee-a881-Saeaad 1 76aTE-cO00 shappypacuet 1074 1708888525000

Figure 3-17. The output of the %fs command on the external_new_default table
directory

Working In a Custom-Location Schema

In our last scenario, we will create a database in a custom

location outside of the default Hive directory.

Creating the database



To achieve this, we begin by using the CREATE SCHEMA
statement, and we add the LOCATION keyword followed by the

desired storage path, in our case dbfs:/Shared/schemas:

CREATE SCHEMA custom
LOCATION 'dbfs:/Shared/schemas/custom.db’

You can inspect the Catalog Explorer to confirm that the
database has been created within the Hive metastore. Upon
closer examination, using the DESCRIBE DATABASE EXTENDED
command, we confirm that the database was situated in the

custom location we specified during its creation (Figure 3-18):

DESCRIBE DATABASE EXTENDED custom



B, database_description_item B, database_description_value

Namespace Name custom

Comment

Location dbfs:/Shared/schemas/custom.db
Nwinar rant

Figure 3-18. The output of the DESCRIBE DATABASE EXTENDED command on the
custom schema

Creating tables

We proceed to use this database to create tables and populate
them with data. Again, we create both managed and external

tables:

USE DATABASE custom;

-- Create a managed table
CREATE TABLE managed custom
(country STRING, code STRING, dial code STRING);

INSERT INTO managed custom
VALUES ('France', 'Fr', '+33');



-- Create an external table
CREATE TABLE external custom

(country STRING, code STRING, dial code STRING)
LOCATION 'dbfs:/mnt/demo/external custom';

INSERT INTO external custom
VALUES ('France', 'Fr', '+33');

You can inspect the Catalog Explorer to confirm that the two
tables have been successfully created within our new database.
In addition, by running DESCRIBE EXTENDED on each of these
tables, we can confirm that the managed _custom table is indeed
a managed table, since it is created in its database folder located
in the custom location (Eigure 3-19). Meanwhile, the
external_custom table is an external table because its location

was specified during table creation (Figure 3-20).

DESCRIBE EXTENDED managed custom



2% col_name = % data_type

Type MANAGED
Location dbfs:/Shared/schemas/custom.db/managed_custom
Provider delta

Figure 3-19. Metadata of the managed_custom table

DESCRIBE EXTENDED external custom

22 col_name | & data_type

Type EXTERNAL
Location dbfs:/mnt/demo/external_custom
Provider delta

Figure 3-20. Metadata of the external_custom table

Dropping tables

Let’s proceed to drop the newly created tables:



DROP TABLE managed custom;
DROP TABLE external_custom;

Once more, dropping the tables removes both of their entries
from the Hive metastore. You can easily confirm this in the
Catalog Explorer. Dropping the managed table still removes its
directory and associated data files from the database directory

located in the custom location:

%fs 1ls 'dbfs:/Shared/schemas/custom.db/managed custon

4

FileNotFoundException:
No such file or directory dbfs:/Shared/schemas/custon

»

However, as expected, in the case of an external table, the
table’s directory and data files remain intact in their external

location (Figure 3-21).

%fs 1ls 'dbfs:/mnt/demo/external custom’



2 name ysite 4 modifcationTime

_elta_Jog/ 0 1708908057000
part-00000-140'104ad-8a23-474d-99e0-87225bcc129a-c000 snappyparguet 1074 1708908059000

Figure 3-21. The output of the %fs command on the external_custom table
directory

Remember, you can manually remove the table directory and its

content by running the dbutils.fs.rm function in Python.

Setting Up Delta Tables

We’ve explored the dynamics of managed and external tables,
illustrating how they interact within the context of a different
type of databases. With this understanding, we’re equipped to
dive into more advanced topics on Delta Lake tables in the

following sections.

CTAS Statements

One of the key features of Delta Lake tables is their flexibility in
creation. While traditional methods like the regular CREATE
TABLE statements are available, Databricks also supports CTAS,



or CREATE TABLE AS SELECT, statements. CTAS statements
allow the creation and population of tables at the same time
based on the results of a SELECT query. This means that with
CTAS statements, you can create a new table from existing data

sources:

CREATE TABLE table_2
AS SELECT * FROM table_1

This simple yet powerful syntax shows how CTAS statements
work. In this example, we’re creating table 2 by selecting all
data from table_1.CTAS statements automatically infer
schema information from the query results, eliminating the

need for manual schema declaration.

CTAS statements in Databricks offer a convenient means to
perform transformations on data during the creation of Delta
tables. These transformations can include tasks such as
renaming columns or selecting specific columns for inclusion in

the target table. Let’s illustrate this with an abstract example:

CREATE TABLE table 2
AS SELECT col 1, col 3 AS new _col 3 FROM table 1



In this example, the CTAS statement generates a new table
named table_2, by selecting columns col_1 and col_3 from
table_ 1. Additionally, the col_3 isrenamedto new_col 3 in

the resulting table.

Moreover, a range of options can be added to the CREATE TABLE
clause to customize table creation, allowing for precise control

over table properties and storage configurations.

CREATE TABLE new _users
COMMENT "Contains PII™

PARTITIONED BY (city, birth_date)
LOCATION '/some/path’
AS SELECT id, name, email, birth_date, city FROM use

4

In the provided example, we illustrate several of these options:

Comment

The COMMENT clause enables you to provide a descriptive
comment for the table, helping in the discovery and
understanding of its contents. Here, we’ve added a comment
indicating that the table contains personally identifiable
information (PII), such as the user’s name and email.

Partitioning


https://oreil.ly/mApQm

The underlying data of the table can be partitioned into
subfolders. The PARTITIONED BY clause allows for data
partitioning based on one or more columns. In this case,

we’re partitioning the table by city and birth_date.

Partitioning can significantly enhance the performance of
large Delta tables by facilitating efficient data retrieval.
However it’s important to note that for small to medium-
sized tables, the benefits of partition may be negligible or
outweighed by drawbacks. One significant drawback is the
potential emergence of what is known as the “small files
problem.” This problem arises when data partitioning results
in the creation of numerous small files, each containing a

relatively small amount of data.

While partitioning aims to improve query performance by
reducing the amount of data scanned, the presence of many
small files can prevent file compaction and efficiency in data
skipping. In general, partitioning should be selectively

applied based on the size and nature of the data.

External location

The location option enables the creation of external tables.
Remember, the LOCATION keyword allows you to specify the
storage location for the created table. This means that the



data associated with the table will be stored in an external
location specified by the provided path.

Comparing CREATE TABLE and CTAS

Table 3-2 summarizes the differences between regular CREATE
TABLE statements and CTAS (CREATE TABLE AS SELECT)

statements.



Table 3-2. Comparison of CREATE TABLE and CTAS statements

CREATE TABLE statement

CREATE TABLE table_2
(coll INT, col2 STRING, col3 DOUBLE)

Schema Requires manual schema

declaration declaration.

Populating Creates an empty table; a
data data loading statement,
such as INSERT INTO, is

required to populate it.

CTAS stateme

CREATE TABLE table_
AS SELECT coll, col

Does not allov
schema declar
automatically

table schema.

The table is cr

data as specifi

Let’s dive deeper to gain a comprehensive understanding of

these differences.

Schema declaration



Regular CREATE TABLE statements require manual schema
declaration. For instance, you would explicitly specify the data
types for each column, such as integer for column 1, string
for column 2, and double for column 3. By contrast, CTAS
statements automate schema declaration by inferring schema

information directly from the results of the query.

Populating data

When using regular CREATE TABLE statements, an empty table
is created, requiring an additional step to load data into it, such
as using the INSERT INTO statement. By contrast, CTAS
statements simplify this process by simultaneously creating the
table and populating it with data from the output of the SELECT
statement. In the upcoming module, we’ll see CTAS statements
in action, observing how they offer a more efficient and
straightforward approach to table creation and data population

compared to traditional CREATE TABLE statements.

Table Constraints

After creating a Delta Lake table, whether through a regular
CREATE TABLE statement or a CTAS statement, you have the
option to enhance its integrity by adding constraints. Databricks

currently supports two types of table constraints:



e NOT NULL constraints

e (CHECK constraints

ALTER TABLE table name ADD CONSTRAINT <constraint_nan

>

When applying constraints to a Delta table, it’s crucial to ensure
that existing data in the table adheres to these constraints

before defining them; otherwise, the statement will fail. Once a
constraint is enforced, any new data that violates the constraint

will result in a write failure.

For instance, let’s consider the addition of a CHECK constraint to
the date column of a Delta table. CHECK constraints resemble
standard WHERE clauses used to filter datasets. They define
conditions that incoming data must satisfy in order to be
accepted into the table. For instance, suppose we want to
ensure that dates in the date column fall within a specific

range. We can add a CHECK constraint to enforce this condition:

ALTER TABLE my_table
ADD CONSTRAINT valid _date CHECK (date >= '2024-01-01'



In this example, valid_date is the name of our constraint, and
the condition ensures that the date column values fall within
the specified range for the year 2024. Any attempt to insert or
update data with dates outside this range will be rejected. This
helps maintain data consistency and integrity within the Delta
Lake table.

Cloning Delta Lake Tables

In Databricks, if you need to back up or duplicate your Delta
Lake table, you have two efficient options: deep clone and

shallow clone.

Deep cloning

Deep cloning involves copying both data and metadata from a
source table to a target. Here’s an example of how you might

use the command:

CREATE TABLE table clone
DEEP CLONE source_table

Simply, use the CREATE TABLE statement, specify the name of
the new target table, and include the DEEP CLONE keyword

followed by the name of the source table.



This copy process can occur incrementally, allowing you to
synchronize changes from the source to the target location.
Simply, execute CREATE OR REPLACE TABLE instead in order to

create a new table version with the new changes:

CREATE OR REPLACE TABLE table clone
DEEP CLONE source table

It’s important to note that because in deep cloning all the data
must be copied over; this process may take quite a while,

especially for large source tables.

Shallow cloning

On the other hand, the shallow clone provides a quicker way to
create a copy of a table. It only copies the Delta transaction logs,

meaning no data movement takes place during shallow cloning:

CREATE TABLE table clone
SHALLOW CLONE source_table

Shallow cloning is an ideal option for scenarios where, for
example, you need to test applying changes on a table without

altering the current table’s data. This makes it particularly



useful in development environments where rapid iteration and

experimentation are common.

Data integrity in cloning

Whether you choose deep cloning or shallow cloning, any

modifications made to the cloned version of the table will be
tracked and stored separately from the source. This ensures
that changes made during testing or experimentation do not

affect the integrity of the original source table.

Exploring Views

In Databricks, views serve as virtual tables without physical
data. A view is nothing but a saved SQL query against actual
tables, where this logical query is executed each time the view

is queried.

Figure 3-22 illustrates an abstract example of creating a view on
top of two tables by performing an inner join between them.
Each time the view is queried, the join operation will be

executed again against these tables.



Table |

CREATE VIEW view x
ASSELECTAT, A4 B2 B3
FROM table |
INNER JOIN table 2 ..

\

Table 2

Figure 3-22. A view object on top of two tables



To demonstrate how views function within Databricks, we will
use a new SQL notebook titled “3.2A - Views.” We start by
creating a table of data to be used in this demonstration, called
cars . This table contains columns for the ID, model, brand, and

release year of the cars.

USE CATALOG hive metastore;

CREATE TABLE IF NOT EXISTS cars
(id INT, model STRING, brand STRING, year INT);

INSERT INTO cars

VALUES (1, 'Cybertruck', 'Tesla', 2024),
(2, 'Model S', 'Tesla', 2023),
(3, 'Model Y', 'Tesla', 2022),
(4, 'Model X 75D', 'Tesla', 2017),
(5, 'G-Class G63', 'Mercedes-Benz', 2024),
(6, "E-Class E200', 'Mercedes-Benz', 2023),
(7, 'C-Class (C300', 'Mercedes-Benz', 2016),
(8, 'Everest', 'Ford', 2023),
(9, 'Puma', 'Ford', 2021),
(10, 'Focus', 'Ford', 2019)

After creating the table and inserting some data into it, you can

verify its creation in the Catalog Explorer. Additionally, we can



use the SHOW TABLES command to list all tables and views in
the default database:

SHOW TABLES

Figure 3-23 displays the output of the SHOW TABLES command.

As observed, we have a table named cars in the default

database.
ABC database ABc tableName Y= isTemporary
default cars false
Figure 3-23. The output of the SHOW TABLES command
View Types

There are three types of views available in Databricks: stored
views, temporary views, and global temporary views. Let’s
explore these different types of views and how they function

within the platform.
Stored views

Stored views, often referred to simply as views, are similar to

traditional database views. They are database objects where



their metadata is persisted in the database. To create a stored
view, we use the CREATE VIEW statement followed by the AS
keyword and the logical SQL query defining the view:

CREATE VIEW view name
AS <query>

Let’s create a stored view that displays only Tesla cars from our
cars table. We use the CREATE VIEW statement, naming our
view view_tesla_cars, and specify the logical query following
the AS keyword. This query selects all records from the cars

table where the brand is equal to Tesla:

CREATE VIEW view tesla cars
AS SELECT *

FROM cars

WHERE brand = 'Tesla';

Running the SHOW TABLES command again confirms that the
view has been persisted in the default database and it is not a
temporary object, as shown in the isTemporary column in

Figure 3-24.



ABC database ABC tableName v= isTemporary

default cars false
default view_tesla_cars false

Figure 3-24. The output of the SHOW TABLES command after creating the
view_tesla_cars view

Once created, you can query the stored view using a standard

SELECT statement, treating it as if it were a table object:

SELECT * FROM view tesla cars;

Figure 3-25 displays the result of querying this view.

1 id 2 model & brand 1% year
1 | Cybertruck Tesla 2024
2 Model S Tesla 2023
3  Model Y Tesla 2022
4 ' Model X 75D Tesla 2017

Figure 3-25. The result of querying the view_tesla_cars stored view



It’'s worth noting that this result is retrieved directly from the
cars table. Remembery each time the view is queried, its
underlying logical query is actually executed against the source

table, in this case, the cars table.

Temporary views

The second type of views in Databricks is temporary views.
Temporary views are bound to the Spark session and are
automatically dropped when the session ends. They are handy
for temporary data manipulations or analyses. To create a
temporary view, you simply add the TEMPORARY, or TEMP,
keyword to the CREATE VIEW command:

CREATE TEMP VIEW view nhame
AS <query>

Let’s create a temporary view called temp_view_cars_brands .
This temporary view simply retrieves the unique list of brands

from our cars table (Figure 3-26):

CREATE TEMP VIEW temp view cars_brands
AS SELECT DISTINCT brand
FROM cars;



SELECT * FROM temp_view cars_brands;

AEC brand
1 Mercedes-Benz
2 Tesla
3 Ford

Figure 3-26. The result of querying the temp_view_cars_brands temporary view

Running the SHOW TABLES command confirms the addition of
the temporary view to the list, as illustrated in Figure 3-27. The
isTemporary column indicates its temporary nature. In

addition, since it’s a temporary object, it is not persisted to any

database, as indicated by having no database specified in the

database column.



ABc database Aac tableName v= isTemporary

default cars false
default view_tesla_cars false
temp_view_cars_brands true

Figure 3-27. The output of the SHOW TABLES command after creating the
temp_view_cars_brands temporary view

The lifespan of a temporary view is limited to the duration of
the current Spark session. It’s essential to note that a new Spark
session is initiated in various scenarios within Databricks, such

as the following:

e Opening a new notebook

e Detaching and reattaching a notebook to a cluster

e Restarting the Python interpreter due to a Python package
installation

e Restarting the cluster itself

To confirm this, let’s create a new notebook called “3.2B - Views
(Session 2),” and observe the behavior of our created views
within it. In this new Spark session, let’s first run the SHOW
TABLES command:



USE CATALOG hive metastore;

SHOW TABLES;

Figure 3-28 displays the output of the SHOW TABLES command
in the newly created Spark session. This result confirms the
existence of the cars table, as expected. In addition, the stored
view of Tesla cars also exists in this new notebook. However,

the temporary view of the car brands does not exist in this new

session.
ABc database ABc tableName Y= isTemporary
default cars false
default view_tesla_cars false

Figure 3-28. The output of the SHOW TABLES command in a new Spark session

Global temporary views

Global temporary views behave similarly to other temporary
views but are tied to the cluster instead of a specific session.
This means that as long as the cluster is running, any notebook

attached to it can access its global temporary views. To define a



global temporary view, you add the GLOBAL TEMP keyword to
the CREATE VIEW command:

CREATE GLOBAL TEMP VIEW view_name
AS <query>

In our original “3.2A - Views” notebook, let’s create a global
temporary view, called global temp_view recent_cars. This
view retrieves all cars from our cars table released in 2022 or

latey, ordered in descending order:

CREATE GLOBAL TEMP VIEW global_ temp_view_recent_cars
AS SELECT * FROM cars

WHERE year >= 2022

ORDER BY year DESC;

Global temporary views are stored in a cluster’s temporary
database, named global_temp . When querying a global
temporary view in a SELECT statement, you need to specify the

global_temp database qualifier:

SELECT * FROM global temp.global temp_view_recent_car

4



Figure 3-29 displays the result of querying our global temporary

view, showing the latest entries from the cars table.

1% id 2% model 2% brand 1% year
1 Cybertruck Tesla 2024
5 G-Class G63 Mercedes-Benz 2024
2  Model S Tesla 2023
6 E-ClassE200 = Mercedes-Benz 2023
8 Everest Ford 2023
3  Model Y Tesla 2022

Figure 3-29. The result of querying the global temporary view

If you run the SHOW TABLES command, you will notice that our
global temporary view is not listed among other objects. This
occurs because, by default, the command only displays objects
in the default database. Since the global temporary views are
tied to the global temp database, we need to use the command
SHOW TABLES IN, explicitly specifying the database name
global temp:

SHOW TABLES IN global_temp;



In Figure 3-30, we can see the global temp_view_recent_cars,
which is indeed a temporary object tied to the global_ temp
database. Since our temp_view_cars_brands is not tied to any

database, it’s typically shown with every SHOW TABLES

command.
ABc database ABc tableName v= isTemporary
global_temp global_temp_view_recent_cars true

temp_view_cars_brands true

Figure 3-30. The output of the SHOW TABLES command in the global_temp database

Now, let’s switch back to the second notebook, “3.2B - Views
(Session 2).” In this new Spark session, we can explore the

objects in the global_temp database (Figure 3-31).

ABc database ABc tableName v= isTemporary

global_temp global_temp_view_recent_cars true

Figure 3-31. The output of the SHOW TABLES command in the global_temp database
within the new Spark session



Since we are leveraging the same cluster, our global temporary
view also exists in this new session. As long as the cluster is
running, the global_ temp database persists, and any notebook
attached to the cluster can access its global temporary views.
You can confirm this by querying the global temporary view to

see the recent cars in this new session.

Comparison of View Types

Understanding the distinctions between the view types and
their lifecycles is essential for effective data manipulation and
collaboration within your Spark environment. Table 3-3

summarizes the differences between these three types of views.



Table 3-3. Comparison of view types

(Stored) view Temporary view

Creation

CREATE VIEW CREATE TEMP VIEW
syntax

Accessibility  Accessed across Session-scoped

sessions/clusters

Lifetime Dropped only by  Dropped when
DROP VIEW session ends
statement

Creation syntax

There’s a slight difference in the CREATE VIEW statements for
temporary and global temporary views. For temporary views,
we include the TEMP keyword, whereas for global temporary
views, we add the GLOBAL TEMP keyword.

Accessibility



Stored views are similar to tables in that their definitions are
stored in the metastore, but they don’t contain a physical copy
of the data they reference. Remember, a view essentially
represents a SQL query. Since stored views are saved in the
metastore, they can be accessed across multiple sessions and

clusters.

Temporary views, in contrast, are accessible only within the
current session. Global temporary views bridge the gap
between stored and temporary views; they can be accessed

across multiple sessions but are tied to the same cluster.

Lifetime

Lastly, when it comes to removing these views, different
methods apply. Stored views are dropped using the DROP VIEW
command, while temporary views are automatically dropped
when the session ends. Similarly, global temporary views are
automatically dropped, but this occurs when the cluster is

restarted or terminated.

Dropping Views

Let’s finally drop our stored view by running the DROP VIEW

command, like in standard SQL:



DROP VIEW view tesla cars;

If you want to delete temporary views without waiting for the
session to end or for the cluster to terminate, you can manually

achieve this by using the DROP VIEW command as well:

DROP VIEW temp_view_cars_brands;
DROP VIEW global temp.global temp view recent cars;

This allows you to manually clean up such resources when they

are no longer needed.

Thus, views in Databricks serve as a powerful solution for
organizing and manipulating data without the need to duplicate
it physically. With three types of views, Databricks offers a

variety of options to suit different use cases and requirements.

Conclusion

In conclusion, mastering relational entities such as databases,
tables, and views is fundamental to effectively organizing and
managing structured data in Databricks. By understanding their

interactions with the metastore and storage locations, you can



enhance your data querying and management efficiency. This
chapter has provided a comprehensive overview of these
entities, setting the stage for further exploration of advanced
data management techniques within the Databricks

environment.

Sample Exam Questions

Conceptual Question

1. A data engineer is tasked with cleaning up unused Delta
tables from a production data catalog. When they drop a Delta
table, they notice that this action not only removes the table
entry from the catalog but also deletes the underlying data files.
Which of the following best explains this behavior?

1. The Delta table was created using a deep clone, which causes
both the source table and its data files to be removed when
the cloned table is dropped.

2. The Delta table was created using a shallow clone, and
shallow clones automatically delete the source table’s data
files when dropped.

3. The Delta table was created using an external location, so

dropping it removes all associated data files.



4. The Delta table was registered as a managed table, and by
default, managed tables delete both the metadata and data
files when dropped.

5. The Delta table was defined as a stored view, and dropping a
stored view automatically deletes the stored data files

associated with that view.

Code-Based Question

2. A data engineer at a growing e-commerce company is tasked
with creating an external Delta Lake table to store customer
information. The table needs to be located in the directory

dbfs:/ecommerce/customers.

Which of the following SQL statements correctly creates the

external Delta Lake table?

1. CREATE TABLE customers
( id INT , name STRING , email STRING )
EXTERNAL ‘'dbfs:/ecommerce/customers' ;
2. CREATE TABLE customers
USING DELTA
( id INT , name STRING , email STRING )
AS EXTERNAL ( 'dbfs:/ecommerce/customers' );
3. CREATE TABLE customers



( id INT , name STRING , email STRING )
LOCATION ‘'dbfs:/ecommerce/customers' ;
4. CREATE TABLE customers
USING DELTA
( id INT , name STRING , email STRING )
LOCATION AS OF 'dbfs:/ecommerce/customers' ;
5. CREATE EXTERNAL TABLE customers
( id INT , name STRING , email STRING )

PATH = 'dbfs:/ecommerce/customers’' ;

The correct answers to these questions are listed in Appendix C.



Chapter 4. Transforming Data
with Apache Spark

The Databricks platform provides numerous transformative
capabilities powered by Apache Spark. In this chapter, we will
navigate through various data transformations tasks such as
querying data files, writing to tables with various strategies, and
performing advanced ETL operations. Moreover, we will
discover the potential of higher-order functions and user-
defined functions (UDFs) in Spark SQL.

Querying Data Files

Querying files in Databricks is a fundamental aspect of data
exploration and analysis. In this section, we will explore the
process of querying file content using SQL-like syntax. The
primary mechanism for this is the SELECT statement, which

allows us to query files directly to extract the file content.

To initiate a file query, we use the SELECT * FROM syntax,
followed by the file format and the path to the file, as illustrated
in Figure 4-1. It’s important to note that the filepath is specified

between backticks ( " </path/>" ), and not single quotes



( "</path/>"). This distinction is essential to prevent potential

syntax errors and ensure the correct interpretation of the path.

A filepath in this context can refer to a single file, or it can

incorporate a wildcard character to simultaneously read

multiple files. Alternatively, the path can point to an entire

directory, assuming that all files within that directory adhere to

the same format and schema. This flexibility is particularly

advantageous when dealing with large datasets spread across

multiple files.
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For example, when querying a JSON file located at

path/file.json, the query would look like this:

SELECT * FROM json.

"path/file.json’

We can demonstrate extracting data directly from files using a

real-world dataset representing an online school environment.

This dataset consists of three tables: students, enrollments, and

courses, illustrated in the entity-relationship diagram shown in

Figure 4-2.

student id

email

gpd
profile

lpdated

enroll id

timestamp
student id
quantity
fota

COUrSeS

course id
title

instructor
ategory

price

Figure 4-2. Entity-relationship diagram of the online school dataset



In this demonstration, we will use a new SQL notebook titled
“4.1 - Querying Files.” We begin by running a helper notebook,
“School-Setup,” which can be found within the Include
subfolder in the book’s GitHub repository. This helper notebook
facilitates downloading the dataset to the Databricks file system

and prepares the working environment accordingly:

%run ../Includes/School-Setup

Querying JSON Format

The student data in this dataset is formatted in JSON. Let’s
review the students folder situated in our dataset directory. The
placeholder dataset_school referenced in the queryis a
variable defined within our “School-Setup” notebook. It points
to the location where the dataset files are stored on the file

system:

%python
files = dbutils.fs.ls(f"{dataset school}/students-jsc
display(files)

Figure 4-3 shows that there are six JSON files in the students
folder.



ABE path

dofs: mnt/DE-Associate datasets/school students-jsonjexport_001,son
dofs: mntjDE-AsSociate/datasets/school students-jsonjexport_002.son
dofs: mnt/DE-AsSociate/datases/school students-jsonjexport_003,son
dofs: mnt/DE-Associate/datasets/school students-json/export_004. son
dofs: mnt/DE-Associate Gatasets/school students-jsonjexport_005,s0n

dofs: mntjDE-AsSociate/datasets/school students-jsonjexport_006.son

Figure 4-3. The content of the students-json directory

& name

export_001,50n
export_002.json
export_003,50n
export_004 json
export_005.j50n

export_006.json

£

82347
82976
82755
82049
82704
55220

site £ modifcationTimg

1709070937000
1709070937000
1709070937000
1709070937000
1709070937000
1709070937000

To read a single JSON file, the SELECT statement is used with
the syntax SELECT * FROM json., and then the full path for
the JSON file is specified between backticks. In SQL, we use the

dataset.school placeholder with the $ character to reference

the location where the dataset files are stored. This placeholder

is configured in the “School-Setup” notebook:

SELECT * FROM json. ${dataset.school}/students-json/e

4

The result in Figure 4-4 displays the extracted student data,

including student ID, email, GPA score, profile information (in



JSON format), and the last updated timestamp. As indicated, the

preview display shows all 300 records from the source file.
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Figure 4-4. The result of querying the students data in the export_001.json file

To query multiple files simultaneously, you can use the wildcard
character ( *) in the path. For instance, you can easily query all

JSON files starting with the name export_:

SELECT * FROM json. ${dataset.school}/students-json/e

4



Furthermore, you can query an entire directory of files,
assuming a consistent format and schema across all files in the
directory. In the following query, the directory path is specified

instead of an individual file:

SELECT * FROM json. ${dataset.school}/students-json"

4

When dealing with multiple files, adding the input_file name
function becomes useful. This built-in Spark SQL function
records the source data file for each record. This helps in
troubleshooting data-related issues by precisely pinpointing

their exact source:

SELECT *, input_file name() source file
FROM json. ${dataset.school}/students-json ;

Figure 4-5 displays, in addition to the original columns, a new
column: source_file. This column provides supplementary

information about the origin of each record in the dataset.
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Figure 4-5. The result of adding the source file information to the extracted student
data

Querying Using the text Format

When dealing with a variety of text-based files, including
formats such as JSON, CSV, TSV, and TXT, Databricks provides
the flexibility to handle them using the text format:

SELECT * FROM text. path/file.txt”

This format allows you to extract the data as raw strings, which
provide significant advantages, especially in scenarios where
input data might be corrupted or contain anomalies. By

extracting data as raw strings, you can leverage custom parsing



logic to navigate and extract relevant values from the text-
based files.

We can query our students’ JSON data as raw text content using

the text format:

SELECT * FROM text. ${dataset.school}/students-json’

4

Figure 4-6 displays the student data as raw string. Each line of
the file is loaded as a record with one string column, named

value.

ABc Value

v {"student_id""S00301" "email"."thomas lane@qmail.com" "qpa";1.06, "profle"
{\"first_name\"|"Thomas|""last_namel":\"Lane|""gender|":\"Male|" | address|"{\"street|":\"06 Boulevard Victor
Hugo!""city|"\"Paris\"\"country". "France)"})" "updated"."2021-12-14T23:15:43.3752")

v {"student_id","500302" "email":"ocolegatele@blogger.com’ "gpa".1.13 " profilg"."
{\'first_name\"|"Ocllial" | "ast_name|"\"Colegate\""gender\":'Female|"\"address|"{)"street|""07 Sommers
Parkway\""city\":"Lyon|"|"country\""France)"}}" "updated"."2021-12-14T23:15:43.375Z")

v {"student_id""500303" "email"."acolledged2@nbcnews.com’ "gpa”.3.62,"profile":"
{\"first_name"|"Andros\"\"last_namel"\'Colledge!"\"qender\"\"Male\" \"address\"{\"street\"|"342 Katie

Figure 4-6. The result of querying the student data in text format



With this result, you can easily apply custom parsing or
transformation techniques to extract specific fields, correct
anomalies, or reformat the data as needed for subsequent

analysis.

Querying Using binaryFile Format

Moreover, there are scenarios where the binary representation
of file content is essential, such as when working with images or
unstructured data. In such cases, the binaryFile format is

suited for this task:
SELECT * FROM binaryFile. path/sample_image.png"

In the sample query provided, the binaryFile format is
employed to query an image file ( sample_image.png ), allowing
you to work directly with the binary representation of the file’s

content.

We can use the binaryFile format to extract the raw bytes and

some metadata information of the student files:

SELECT * FROM binaryFile. ${dataset.school}/students-

4



As shown in Figure 4-7, the output of this query provides the
following details about each source file:

e path provides the location of the source file on the storage.

e modificationTime gives the last modification time of the
file.

e length indicates the size of the file.

e content represents the binary representation of the file.
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Figure 4-7. The result of querying the student data in binary format

So, by using the binaryFile format, you can access both the
content and metadata of files, offering a detailed view of your
dataset.

In essence, Databricks enables you to efficiently handle a wide

array of data types and query them directly. Whether dealing



with a single file, multiple files, or an entire directory, a simple

SELECT statement can be used to retrieve and analyze data.

Querying Non-Self-Describing Formats

The previous querying approach is particularly effective with
self-describing file formats that possess a well-defined schema,
such as JSON and Parquet. By nature, these formats offer a built-
in structure that makes it easy to retrieve and interpret data

using SELECT queries.

However, when dealing with non-self-describing formats like
comma-separated-value (CSV), the SELECT statement may not
be as informative. Unlike JSON and Parquet, CSV files lack a
predefined schema, making the format less suitable for direct
querying. In such cases, additional steps, such as defining a
schema, may be necessary for effective data extraction and

analysis.

Let’s explore the result of reading the courses’ data, which is
provided in CSV format. Similar to previous examples, we can
try using the SELECT statement, but this time with the csv

format:

SELECT * FROM csv. ${dataset.school}/courses-csv’



As shown in Figure 4-8, the output of the query is not well-
parsed. The header row is extracted as a table row, and all
columns are loaded into a single column, _ce . This behavior is
explained by the delimiter—the symbol used to separate
columns in the file—which, in this case, is a semicolon rather

than the standard comma.

B _c0

course_id:title;instructor:category;price

C01:Data Structures and Algorithms; Tracy N.:Computer Science;49
C02:JavaScript Design Patterns:Ali M..Computer Science; 28
C03;Neural Network;Adam R.;.Computer Science;35
course_id:title:instructor:category;price

C04:Robot Dynamics and Control:Mark G..Computer Science;20

C05:Pvthon Proarammina:Luciano C.:Comnuter Science:47

Figure 4-8. The result of querying the course data in csv format



This issue highlights a challenge with querying files without a
well-defined schema, particularly in formats like CSV. In the

upcoming sections, we will learn how to address this challenge.

Registering Tables from Files with CTAS

Using CTAS ( CREATE TABLE AS SELECT ) statements allows you
to register tables from files, particularly when dealing with well-
defined schema sources like Parquet files. This process is crucial
for loading data into a lakehouse, allowing you to take full

advantage of the Databricks platform’s capabilities:

CREATE TABLE table name
AS SELECT * FROM <file_ format>. /path/to/file’

CTAS statements simplify the process of creating Delta Lake
tables by automatically inferring schema information from the
query results. This eliminates the need for manual schema

declaration.

In the following example, we create and populate the student
data table using a CTAS statement. This ensures that the

resulting table is a Delta Lake table:

CREATE TABLE students AS

—— = — S —_—— e A 8



SELECI * FRUM Json. ${dataset.school}/students-json ;

DESCRIBE EXTENDED students;

Figure 4-9 displays the metadata of our new table, students .
The Provider value confirms the creation of a Delta Lake table.
This means that the CTAS statement has extracted the data from
the JSON files and loaded it into the students table in Delta
format (i.e., in Parquet data files along with a Delta transaction
log). Additionally, this table is identified as a managed table, as
indicated by the Type value.



i col_name 15 data_type £ comment

emal string null
0pa double null
profil string null
studentjd ~ string ll
Updated  string null

Type MANAGED
Location ~ dbfs:/user/hive/warehouse/de_associate_school.db/students

Provider  delta

Figure 4-9. The output of the DESCRIBE EXTENDED command on the students table

Moreover, the schema has been automatically inferred from the
query results, a feature common to CTAS statements.
Remember, CTAS statements automatically infer schema

information from the query results, making them a suitable



choice for external data ingestion from sources with well-

defined schemas, such as Parquet files.

However; it’s important to note that CTAS statements come with
certain limitations. One significant limitation is that CTAS
statements do not support specifying additional file options.
This becomes a challenge when trying to ingest data from CSV

files or other formats that require specific configurations:

CREATE TABLE courses_unparsed AS
SELECT * FROM csv. ${dataset.school}/courses-csv ;

SELECT * FROM courses_unparsed;

Figure 4-10 shows that we have successfully created a Delta

Lake table; however, the data is not well-parsed.



£ 0

course_id:title;instructor:category;price

C01;Data Structures and Algorithms; Tracy N..Computer Science;49
C02:JavaScript Design Patterns:Ali M.:Computer Science; 28
C03;Neural Network:Adam R.,.Computer Science; 35
course_id:title;instructor:category:price

C04;Robot Dynamics and Control:Mark G..Computer Science:20

C05:Pvthon Praarammina:Luciano C.:Comouter Science:47
Figure 4-10. The output of the table created by a CTAS statement from CSV files

Typically, CSV files have delimiter or encoding options that need
to be specified during the data loading process. In response to

this requirement, we will now explore an alternative solution.

Registering Tables on Foreign Data Sources

In scenarios where additional file options are necessary, an

alternative solution is to use the regular CREATE TABLE



statement, but with the USING keyword. Unlike CTAS
statements, this approach is particularly useful when dealing
with formats that need specific configurations. The USING
keyword provides increased flexibility by allowing you to
specify the type of foreign data source, such as CSV format, as
well as any additional files options, such as delimiter and

header presence:

CREATE TABLE table name
(col namel col typel, ...)
USING data source
OPTIONS (keyl = vall, key2 = val2, ...)
LOCATION path

However, it’s crucial to note that this method creates an
external table, serving as a reference to the files without

physically moving the data during table creation to Delta Lake.

Unlike CTAS statements, which automatically infer schema
information, creating a table via the USING keyword requires
you to provide the schema explicitly. So, this method offers

more control over the schema definition.

Example 1: CSV



For instance, to deal with CSV files stored in an external
location, the following example demonstrates the creation of a

table using a CSV foreign source:

CREATE TABLE csv_external table
(col namel col typel, ...)
USING CSV
OPTIONS (header = "true",

delimiter = ";")
LOCATION = '/path/to/csv/files'

This code sample creates an external table that points to CSV
files located in the specified path. In addition, it configures the
header option to indicate the presence of a header in the files,
and the delimiter option is set to use a semicolon instead of

the default comma separator.

Let’s apply this method on our courses data:

1 CREATE TABLE courses_csv

2 (course_id STRING, title STRING, instructor STRING,
DOUBLE)

3 USING CSV

4 OPTIONS (

5 header = "true",

6 delimiter = ";")

7 IOCATTON "¢fdatacet <rhanll/canrcac-reu"
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In this example, the courses_csv table is created by specifying
the CSV format as a foreign source (line 3), indicating the

presence of a header in the files (line 5), defining the semicolon
as the delimiter (line 6), and, lastly, specifying the location of the

source files (line 7).

Once the table is created, querying it shows that we have the

courses’ data in a well-structured form (Eigure 4-11).

SELECT * FROM courses_csv
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Figure 4-11. The result of querying the courses_csv table

It’s essential to note that when working with CSV files as a data
source, maintaining the column order becomes crucial,
especially if additional data files will be added to the source
directory. Spark relies on the specified order during table
creation to load data and apply column names and data types
correctly from CSV files. Therefore, any changes to the column

order could impact the integrity of the data loading process.

Example 2: database



Another scenario where the CREATE TABLE statement with the
USING keyword proves useful is when creating a table using a
JDBC connection, which allows referencing data in an external
SQL database. This approach enables you to establish a
connection to an external database by defining necessary
options such as the connection string, username, password, and

specific database table containing the data.

Here is an example of creating an external table using a JDBC

connection:

CREATE TABLE jdbc_external table

USING JDBC

OPTIONS (
url = "jdbc:mysql://your _database server:port',
dbtable = 'your database.table name’,

user = 'your_username',
password = 'your_ password'
)5

In this example, the following apply:

e The url option specifies the JDBC connection string to your
external database.
e The dbtable option indicates the specific table within the

external database.



e The user and password are credentials required for

authentication.

This method facilitates seamless integration of data from
external SQL databases into the lakehouse environment,
allowing for cross-database analysis and reporting. By creating
an external table using a JDBC connection, you can access and
query data from the external database without physically

moving or duplicating the data.

Limitation

It’s crucial to be aware of the limitations associated with tables
having foreign data sources—they are not Delta tables. This
means that the performance benefits and features offered by
Delta Lake, such as time travel and guaranteed access to the
most recent version of the data, are not available for these
tables. This limitation becomes especially noticeable when
dealing with large database tables, potentially leading to

performance issues.

Let’s better understand the impact of not having a Delta table by
exploring the consequences of working with an external table
linked directly to CSV files. Before we start, let’s review the

table’s type and storage details:



DESCRIBE EXTENDED courses_csv

Figure 4-12 reveals that the table is an external table, and this
table is not a Delta table, as indicated in the Provider value.
This means that no data conversion to Delta format occurred
during table creation; instead, the table simply points to the CSV

files stored in the external location.

ABc col_name ABc data_type

Type EXTERNAL

Provider CSvV

Location dbfs:/mnt/DE-Associate-Book/datasets/school/courses-csv
Serde Library org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
InputFormat org.apache.hadoop.mapred.SequenceFilelnputFormat
QOutputFormat org.apache.hadoop.hive.ql.io.HiveSequenceFileQutputFormat

Storage Properties  [delimiter=:, header=true]

Figure 4-12. The output of the DESCRIBE EXTENDED command on the courses_csv
table

Additionally, the Storage Properties value captures all

metadata and options specified during table creation, ensuring



that data in the location is always read with these specified

options.

Impact of not having a Delta table

The absence of a Delta table introduces certain limitations and
impacts. Unlike Delta Lake tables, which guarantee querying
the most recent version of source data, tables registered against
other data sources, like CSV, may represent outdated cached
data. To illustrate this, we will add new data and observe the
resulting behavior of the table. First, let’s check the number of

files in the courses directory:

%python
files = dbutils.fs.ls(f"{dataset school}/courses-csv"

display(files)

Figure 4-13 reveals that the directory currently contains four
files.



# palh & name G & modficationTime

s mnt [DE-Associate-Book|datasets/schoolfcourses-csviexport_001.csv  export 001 csv 14 1709073092000
ofsmnt/DE-Associate-Book|datasets/school courses-csvjexport_00Z.csv  export 00205 23 1700073092000
tofs,fmnt/DE-Associate-Book/datasets/schaol courses-csy/export_003.csv  export_003.csv 13 1709073092000
ofsmnt/DE-Associate-Book|datasets/school courses-csvjexport_004.csv  export_00d.cov 28 1700073092000

Figure 4-13. The list of the files in the courses directory

Since each file contains three records, the table holds a total of

twelve records, as shown in Figure 4-14.

SELECT COUNT(1) FROM courses_csv

Table v +
123 count(1)
1 12

Figure 4-14. The number of records in the courses_csv table after adding the new
file



Now, let’s run the following Python command to duplicate and

rename one of these files as copy_001.csv . This action

simulates the ingestion of new CSV files by a source system:

%python

dbutils.fs.cp(f"{dataset_school}/courses-csv/export €
f"{dataset_school}/courses-csv/copy_ 001

»

After this operation, exploring the courses directory confirms

that the new file has been added (Figure 4-15).

ABc path k' name ¢

[ dbfs/mnt/DE-Associate-Book/datasets/schoollcourses-csvicopy_001.csv - copy 00Tcsv 214
 dbfs:/mntDE-Associate-Book/datasets/school/courses-csviexport_001.csv export 001.csv 214
3 dbfs:/mnt/DE-Associate-Book/datasets/school/courses-csviexport_002.csv export 002.csv 223
4 dofs:/mntjDE-Associate-Book/datasets/schoolcourses-csviexport_003.cov export 003.csv 213

5 dbfs:/mntDE-Associate-Book/datasets/school/courses-csviexport_004.csv export 004csv 218

ysize 4 modifcationTime

1709128163000
1709073092000
1709073092000
1709073092000
1709073092000

Figure 4-15. The list of the files in the courses directory after adding the new file

Despite adding new data to the directory, we notice that the

table does not immediately reflect the changes from 12 to 15



records, as shown in Figure 4-16.

SELECT COUNT(1) FROM courses_csv

Table v S
123 count(1)
1 12

Figure 4-16. The number of records in the courses_csv table after adding the new
file

Spark automatically caches the underlying data in local storage
for better performance in subsequent queries. However, the
external CSV file does not natively signal Spark to refresh this
cached data. Consequently, the new data remains invisible until
the cache is manually refreshed using the REFRESH TABLE

command:

REFRESH TABLE courses_csv

However, this action invalidates the table cache, necessitating a

rescan of the original data source to reload all data into



memory. This process can be particularly time-consuming when

dealing with large datasets.

Upon refreshing the table, querying it again retrieves the
updated count, as illustrated in Figure 4-17. This confirms the
need for manual cache refreshing when dealing with foreign

data sources like CSV.

SELECT COUNT(1) FROM courses_csv

Table v +
123 count(1)
1 15

Figure 4-17. The number of records in the courses_csv table after refreshing the
table

This observation emphasizes the trade-offs and considerations
associated with choosing between Delta tables and foreign data

sources when working with Databricks.

Hybrid approach



To address this limitation and leverage the advantages of Delta
Lake, a workaround involves creating a temporary view that
refers to the foreign data source. Then, you can execute a CTAS
statement on this temporary view to extract the data from the
external source and load it into a Delta table. This hybrid
approach allows you to combine the benefits of external tables

with the performance and features of Delta Lake.

Here’s an illustrative example of this process:

CREATE TEMP VIEW foreign source_tmp_vw (coll coll tygp

USING data_source

OPTIONS (keyl = "vall", key2 = "val2", ..., path =

CREATE TABLE delta table
AS SELECT * FROM foreign_source_tmp_vw

In this example, a temporary view is created referring to a
foreign data source. Then, a Delta Lake table is created by
executing a CTAS statement on the temporary view. This
process moves the data into a Delta format (Parquet data files +

transaction log in JSON format).



This approach highlights the flexibility of CTAS statements, as
they can be employed not only to query files but also to query

any object, such as a temporary view in this case.

In the same way, we can apply this approach on the course data,
delivered in CSV format. We first create a temporary view and
configure it to handle file options. Then, we execute a CTAS
statement to make a copy of the data from the temporary view

into a Delta table named courses:

CREATE TEMP VIEW courses tmp vw
(course_id STRING, title STRING, instructor STRING,

price DOUBLE)

USING CSV

OPTIONS (
path = "${dataset.school}/courses-csv/export *.csv",
header = "true",

delimiter = ";"

)s

CREATE TABLE courses AS
SELECT * FROM courses_tmp_vw;

Figure 4-18 displays the metadata information of the courses
table. It confirms that it is a Delta Lake table.



DESCRIBE EXTENDED courses

ABc col_name ABc data_type

Type MANAGED

Location dbfs: userfhive/warehouse/de_associate_school.db/courses
Provider delta

Figure 4-18. The output of the DESCRIBE EXTENDED command on the courses table

Finally, querying the table confirms that it contains well-parsed
data from the CSV files, as illustrated in Figure 4-19.

SELECT * FROM courses



& course.id 4% title B instructor &% category .2 price

C01 Data Structures and Algorithms TracyN. ~ Computer Science 49
C02 JavaScript Desion Patterns Al M. Computer Science 28
C03 Neural Network AdamR.  ComputerScience 35

(04 Robot Dvnamics and Contral ~ Mark G. Comouter Science N

Figure 4-19. The result of querying the courses table

In the following sections of the book, we will regularly refer to

this table whenever we need to access the courses data.

Writing to Tables

In this section, we cover the SQL syntax used for inserting and
updating records in Delta Lake tables. We will continue using
our online school dataset, consisting of three tables: students,

enrollments, and courses, as illustrated in Figure 4-20.



student id

email

gpd
profile

lpdated

enroll id

timestamp
student jd
quantity
tota

COLIrSEs

course id
title

instructor
ategory

price

Figure 4-20. Entity-relationship diagram of the school dataset

In this demonstration, we will use a new SQL notebook titled

“4.2 - Writing to Tables.” We begin by running the “School-

Setup” notebook to prepare our environment:

»srun .

./Includes/School-Setup

We initiate our exploration by using a CTAS statement to create

the enrollments Delta table from Parquet files:

CREATE TABLE enrollments AS



SELECT * FROM parquet. ${dataset.school}/enrollments"

>

Once the table is created, we proceed to query its content:

SELECT * FROM enrollments

Figure 4-21 shows the query result. Since Parquet files have a
well-defined schema, we observe that Delta Lake has accurately

captured the schema and successfully extracted the data.
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Figure 4-21. The result of querying the enrollments table

Replacing Data



You can completely replace the content of a Delta Lake table
either by overwriting the existing table or by other traditional
methods like dropping and re-creating it. However, overwriting
Delta tables offers several advantages over the approach of

merely dropping and re-creating tables. Table 4-1 outlines these
benefits.



Table 4-1. Comparison of dropping and re-creating table versus overwriting

table methods

Processing

time

Leveraging
Delta’s time

travel

Drop and

recreate table

Time-consuming
as it involves
recursively
listing
directories and
deleting large
files.

Deletes the old
versions of the
table, making its
historical data
unavailable for

retrieval.

Overwrite table

Fast process since
the updated data is
just a new table

version.

Preserves the old
table versions,
allowing easy
retrieval of

historical data.



Concurrency

ACID

guarantees

Drop and

recreate table

Concurrent
queries are
unable to access
the table while
the operation is

ongoing.

If the operation
fails, the table
cannot be
reverted to its

original state.

Overwrite table

Concurrent
queries can
continue reading
the table
seamlessly while
the operation is in

progress.

If the operation
fails, the table will
revert to its

previous state.

In summary, the process of overwriting tables provides
efficiency, reliability, and seamless integration with Delta’s
features such as time travel and ACID transactions. In
Databricks, there are two methods to completely replace the

content of Delta Lake tables:



e CREATE OR REPLACE TABLE statements
e INSERT OVERWRITE statements

1. CREATE OR REPLACE TABLE statement

The first method to achieve a complete table overwrite in Delta
Lake is by using the CREATE OR REPLACE TABLE statement, also
known as the CRAS ( CREATE OR REPLACE AS SELECT)
statement. This statement fully replaces the content of a table

each time it executes:

CREATE OR REPLACE TABLE enrollments AS
SELECT * FROM parquet. ${dataset.school}/enrollments"

4

Upon executing this statement, the enrollments table will be
overwritten with the newer data. To better understand what

happened in the table, let’s examine the table history:

DESCRIBE HISTORY enrollments

As illustrated in Figure 4-22, version 0 is nothing but a CTAS
statement. Meanwhile, the CREATE OR REPLACE statement has
generated a new table version. This new version reflects the

updated state of the table after the overwrite operation.



ﬁmmﬁWMp Buseame | peation b peaonParameers

2402287175, Derar Ahussen ~ CREATE ORREPLACE TABLE ASSELECT ) {'pattionBy" " estription"nul “sManaged":"ru
0 2024-02-08T150..  Derar Ahussein  CREATE TABLE AS SELECT ) {'parttondy" ' "descrotion®nul isWnaged": "

Figure 4-22. The history log of the enrollments table

2. INSERT OVERWRITE

The second method for overwriting data in Delta Tables
involves using the INSERT OVERWRITE statement:

INSERT OVERWRITE enrollments
SELECT * FROM parquet. ${dataset.school}/enrollments"

»

While this statement achieves a similar outcome to the CREATE
OR REPLACE TABLE approach mentioned earlier;, there are some
key differences and nuances to consider. Unlike the CREATE OR
REPLACE TABLE statement, which can create a new table if it
doesn’t exist, INSERT OVERWRITE can only overwrite an existing
table. This means that the target table must already exist prior

to performing the operation.

After executing the INSERT OVERWRITE statement, the table

history is updated to reflect the overwrite operation:



DESCRIBE HISTORY enrollments

As displayed in Figure 4-23, Delta Lake records this operation as
a new version, categorized as a standard WRITE operation.
However, the mode of this operation is marked as "Overwrite"
in the operationParameters field. This indicates that the

existing data was replaced with the new records from the query.

MMnﬁWMp Gouseame | peation b peeonParameers

D 01187175, Derar hussen  WRITE ) {"mode"Overwre"'tatsOnLoad" fale"‘prtiont
[ 2024-00-267175.,  Derar Ahussein ~ CREATE ORREPLACE TABLE ASSELECT ) {"pattionBy" " estrition"ul “shanaged"”:"ru
0 20-00-187150., Derar Ahussein ~ CREATE TABLE AS SELECT ) {'pattonBy". " cescrnion” nulisMnaged"."u

Figure 4-23. The history log of the enrollments table after the INSERT OVERWRITE
command

One significant advantage of using INSERT OVERWRITE is its
ability to overwrite only the new records that match the current
table schema. This prevents any risk of accidentally modifying
the table structure. Thus, INSERT OVERWRITE is considered a

more secure approach for overwriting existing tables.



When attempting to overwrite data using the INSERT
OVERWRITE statement with a schema that differs from the
existing table schema, a schema mismatch error will be
generated. Let’s consider an example where we attempt to add

an extra column, containing the source file name, to our table:

INSERT OVERWRITE enrollments
SELECT *, input_file name() FROM parquet. ${dataset.s

AnalysisException: A schema mismatch detected when wr

4

The previous command results in an exception indicating a
schema mismatch. This occurs because the schema of the new
data being inserted does not match the existing schema of the

enrollments table.

Delta Lake tables are by definition schema-on-write, which
means that Delta Lake enforces schema consistency during
write operations. Any attempt to write data with a schema that
differs from the table’s schema will be rejected to maintain data
integrity. This behavior differs from the first method of the
CREATE OR REPLACE TABLE statement, which replaces the

entire table along with its schema.



Appending Data

One of the simplest methods to append records to Delta Lake
tables is through the use of the INSERT INTO statement. This
statement allows you to easily add new data to existing tables
from the result of a SQL query. Let’s explore how this process

works with the following command:

INSERT INTO enrollments
SELECT * FROM parquet. ${dataset.school}/enrollments-

4

In our scenario, we use the INSERT INTO statement to add new
records to the enrollments table. Note that we are not
explicitly providing the corresponding column values to be
added. Instead, we’re using an input query to retrieve the new
data from Parquet files located in a given directory. This query
serves as the source of our new records, which we then insert
into the designated table using the INSERT INTO clause.

By executing this INSERT INTO statement, we will insert 700
new records into our table. To confirm the success of our
operation, we can perform a quick check to verify the updated

number of records in the enrollments table. Figure 4-24 shows



that the number of enrollments has indeed increased, now

totaling 2850 records.

SELECT count(1) FROM enrollments

Table v +
2
1°3 count(1)
1 2850

Figure 4-24. The number of records in the enrollments table after inserting new
data

While the INSERT INTO statement provides a convenient
means of appending records to tables, it lacks built-in
mechanisms to prevent the insertion of duplicate data. This
means that if the insertion query is executed multiple times, it
will write the same records to the target table repeatedly,

leading to the creation of duplicate entries.

To address this issue effectively, we turn to an alternative
method: the MERGE INTO statement.

Merging Data



The MERGE INTO statement enables you to perform upsert
operations—meaning you can insert new data and update
existing records—and even delete records, all within a single
statement. Let’s explore how we can use this statement to

update the student data in our online school dataset.

In this specific scenario, we aim to update student data with
modified email addresses and add new students into the table.
To accomplish this, we first create a temporary view containing
the updated student data. This view will serve as the source

from which we’ll merge changes into our students table:

CREATE OR REPLACE TEMP VIEW students updates AS
SELECT * FROM json. ${dataset.school}/students-json-n

4

The following merge operation is executed to merge the
changes from the student_updates temporary view into the
target students table, using the student ID as the key for
matching records. Let’s first look at the query, and then go into
its details:

MERGE INTO students c
USING students updates u
ON c. student_id = u. student_id

LILCENT MAT AUCN AND ~ AmAaa1l TC NI AR 11 AmAaa 1l TC NNT N
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UPDATE SET email = u.email, updated = u.updated
WHEN NOT MATCHED THEN INSERT *

Within this MERGE INTO statement, we define two primary

actions based on the matching status of records:

Update action ( WHEN MATCHED clause)
When a match is found between the source and target
records, an update action is performed. This action involves
updating the email address and the last updated timestamp.
Notice that we introduce additional conditions to this action.
Specifically, we check if the email address in the current row
is null while the corresponding record in the
student_updates view contains a valid email address. For
such records, we proceed by updating the email field and the
last updated timestamp in the target table.
Insert action ( WHEN NOT MATCHED clause)
For records in the student updates view that do not match
any existing students based on the student ID, an insert
action is triggered. This ensures that all new students are
added into our target table.

Let’s now proceed with the execution of this query. Figure 4-25

presents the metrics summarizing the outcomes of our merge



operation.

123 num_affected_rows 123 num_updated_rows 123 num_deleted_rows 123 num_inserted_rows

301 100 0 201

Figure 4-25. The output of the MERGE INTO command on the students table

We observe that 100 records have been updated, reflecting the
changes in email addresses and last updated timestamps. In
addition, 201 new records have been inserted into the
students table. No records have been deleted during this
process since there was no delete action included in the query
(WHEN MATCHED [condition] THEN DELETE ).

One of the key advantages of the MERGE INTO statement is its
ability to execute updates, inserts, and deletes within a single
atomic transaction. This ensures data consistency and integrity
by treating all operations as a single unit, thereby minimizing

the risk of inconsistencies or partial changes on the table data.

Additionally, the merge operation serves as an excellent
solution for preventing duplicates during record insertion. Let’s
consider another scenario where we have a set of new courses
to be inserted, delivered in CSV format. To facilitate this, we’ll

establish a temporary view based on this new data:



CREATE OR REPLACE TEMP VIEW courses_updates
(course_id STRING, title STRING, instructor STRING,
category STRING, price DOUBLE)

USING CSV

OPTIONS (
path = "${dataset.school}/courses-csv-new",
header = "true",

delimiter = ";"

)s

Now, we can use the MERGE INTO statement to synchronize the
courses table with the information sourced from the

temporary view courses_updates .

In this scenario, we exclusively focus on the condition where
there is no match. This implies that we’ll only insert new data if
it doesn’t already exist in our target table, based on the unique
key comprising both the course_id and the title fields.
Among the new courses, our interest lies only in inserting those
categorized under computer science. For this purpose, we’ll
specify that only records categorized under Computer Science

are eligible for insertion by adding an additional criterion:

MERGE INTO courses c
USING courses updates u

NNl ~ FAILNnEA aAd — 1 ~FAltnea A AND ~ FAa4+TA — 0 FaAa+T1A
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WHEN NOT MATCHED AND u.category = 'Computer Science'
INSERT *

As displayed in Figure 4-26, the query execution resulted in the
insertion of three new records, all belonging to the computer

science category.

2

{ 2 2

5 num_affected_rows 1 num_updated_rows 123 num_deleted_rows 1 num_inserted_rows

3 0 0 3

Figure 4-26. The output of the MERGE INTO command on the courses table

This operation is called insert-only merge, which demonstrates
one of the primary advantages of the merge operation: its
ability to prevent duplicate entries. To confirm this, let’s rerun

the previous query and see the resulting behavior.

As shown in Figure 4-27, the second execution of our merge
statement didn’t lead to the reinsertion of the records, as they

already exist in the table.



2

{ 2 2

s num_affected_rows = 1% num_updated_rows 123 num_deleted_rows 1% num_inserted_rows

0 0 0 0

Figure 4-27. The output of the second run of the MERGE INTO command on the
courses table

In conclusion, while the INSERT INTO statement offers a
straightforward method for appending records to tables, its
drawback of duplicate record insertion necessitates the
adoption of more robust strategies, such as the MERGE INTO
statement. With MERGE INTO, you can effectively upsert data to

avoid duplicates.

Performing Advanced ETL
Transformations

In this section, we will explore advanced transformations
available in Spark SQL, covering the capabilities it provides for
handling nested and complex data structures. We will continue
using our online school dataset, consisting of three tables:

students, enrollments, and courses.

In this demonstration, we will use a new SQL notebook titled

“4.3 - Advanced Transformations.” We begin by running the



“School-Setup” notebook to prepare our environment:

%run ../Includes/School-Setup

Dealing with Nested JSON Data

Let’s first recall our student data:

SELECT * FROM students

Figure 4-28 displays the result of querying the students table
created in the previous section. It shows a column containing
the profile information of each student, represented as a nested
JSON structure. Specifically, we notice the address information
of the profile is stored as a JSON object as well, comprising

street, city, and country details.



12gpa A prof

1@a0l.. 1.95 v {"first_name";"Susana’,'last_name","Gonnely" "gender","Female’,'address";
{"street":'760 Express Court"'city":" Obrenovac"'country""Serbia"}

'@nb.. 3.33 v {'first_name"."Ronna" 'last_name"."Gonning" 'gender":*Non-binary" "address":

{"stret"."'48 Grim Way" "city"."Metsemotihaba” "country". 'Botswana']}

a.qov 1.08 | v {"first_name"."Reade" 'last_name"."Goode" "qender"."Male''address":
{"street":'975 Mendota Center" 'city":"Seabra" ' country":'Brazil'}

n@sk.. 197 v {"first_name","Row",'last_name":"Goodier" "gender": "Female" ‘address"

Figure 4-28. The result of querying the students table

£sty

50060
S0060
50060

S0060

To check the data type of the profile column, we can use the

DESCRIBE command, which helps in exploring the schema of

the table:

DESCRIBE students

In Figure 4-29, we observe that the profile column is nothing

but a string; it’s a JSON string.



ABC col_name

email

gpa
profile
student_id

updated

ABc data_type

string
double
string
string

string

2. comment

null
null
null
null

null

Figure 4-29. The output of the DESCRIBE command on the students table

Spark SQL facilitates interaction with such JSON data by using a

colon syntax ( : ) to navigate through its nested structures. In

this example, we access the first name within the profile

column using the colon syntax. Similarly, we extract the nested

value of the country from the address within the profile:

SELECT student _id, profile:first name, profile:addres

FROM students

The output in Figure 4-30 confirms that we have successfully
extracted the profile details from the JSON string.



2 student_id 2 first_name ABc country
500601 Susana Serbia

500602 Ronna Botswana
500603 Reade Brazil

SNNAN4A Row LInited Kinadom

Figure 4-30. The result of extracting the profile details using the colon syntax

Parsing JSON into Struct Type

Spark SQL goes further by providing functionality to parse JSON
objects into struct types—a native Spark type with nested
attributes. The from_json function is employed for this task,
but it requires knowledge of the schema of the JSON object in

advance:
SELECT from_json(profile, <schema>) FROM students;

In response to this requirement, we can use the
schema_of json function, which derives the schema from
sample data of the JSON object, provided the fields are non-null.

In the following example, we provide sample data of a student’s



profile to obtain the corresponding schema. This schema is then
used in the from_json function to allow successful parsing of
JSON objects into struct types. Note that we could also use a
SQL-style column-type declaration for the schema instead of
inferring it. Additionally, we store the resulting records in a

temporary view for further analysis:

CREATE OR REPLACE TEMP VIEW parsed_students AS
SELECT student_id, from_json(profile, schema_of_ json

"last name":"Lundi", "gender":"Female", "address":{"
"city":"Ottawa", "country":"Canada"}}')) AS profile_
FROM students;

SELECT * FROM parsed_students

Figure 4-31 shows the result of parsing the profile JSON objects
into struct types. As illustrated, the preview display allows us to
expand and collapse the struct object, offering a convenient

way to explore its contents.



2% student_id & profile_struct

S00601 Vv object

v address:
city: "Obrenovac"
country: "Serbia"
street: "760 Express Court"
first_name: "Susana"
gender: "Female"
last_name: "Gonnely"

S00602 Vv object

v address:
city: "Metsemotlhaba"

country: "Botswana"
street: "48 Grim Wav"

Figure 4-31. The result of parsing the profile JSON objects into struct types

Let’s check again the data type of the profile column by
running the DESCRIBE command on our view:



DESCRIBE parsed_students

Figure 4-32 confirms that the column profile_struct is
indeed of a struct type, and its inner address field is of a struct

type as well.

ABc col_name ABc data_fype
student id  string
profile_struct  structcadaress:struct<cty:string country:string street:string first_name:string,genderstrng,last_name:string>

Figure 4-32. The output of the DESCRIBE command on the parsed_students table

Interacting with Struct Types

When working with struct types, a notable aspect is the ability
to interact with nested objects using standard period or dot (.)
syntax, compared to the colon syntax used for JSON strings. This
makes the code more intuitive and aligns with Spark’s native

representation.

SELECT student _id, profile struct.first name, profile
FROM parsed students



The output in Figure 4-33 confirms that we have successfully
extracted the profile details from the struct type object using

the dot syntax.

ABc student_id 2 first_name ABc country
500601 Susana Serbia

500602 Ronna Botswana
500603 Reade Brazil

SNNAN4 Row LInited Kinadom

Figure 4-33. The result of extracting the profile details using the dot syntax

Flattening Struct Types

Once a JSON string is converted to a struct type, Spark SQL
introduces a powerful feature—the ability to use the star (*)

operation to flatten fields and create separate columns:

CREATE OR REPLACE TEMP VIEW students final AS
SELECT student _id, profile struct.*
FROM parsed students;



SELECT * FROM students_final

The output in Figure 4-34 confirms that this transformation
resulted in distinct columns for the first name, last name,

gender, and address elements of the profile field.

In summary, Spark SQL’s advanced transformations empower
you to handle nested and complex data structures with ease,
providing functionalities for parsing JSON objects into struct

types and performing operations on them.



% student id g address £ first_name 1% last_name 15, gender

500601 v object Susna ~ Connely  Female

city: "Obrenovac”
country: "Serbia"
street: "760 Express Court'

500602 v object Ronna Gonning ~~ Non-binary
city: "Metsemotihaba'

country: "Botswana'
street: "48 Grim Way'

500603 v object Reade Goode Male
citv; "Seabra'
Figure 4-34. The result of the star operation flattens the profile’s fields into separate
columns

Leveraging the explode Function

In this section, we shift our focus to the enrollments table and
explore an advanced feature in Spark SQL—the explode

function. Let’s begin by reviewing some fields within our table:



SELECT enroll id, student _id, courses
FROM enrollments

Figure 4-35 shows that the courses column is an array of

structs.



2 enroll_id ABc student_id g% courses

000000000004243  S00002 v array
v ()
course_id: "C07"

discount_percent: 15
subtotal: 28.05

v 1
course_id: "C06"

discount_percent: 90
subtotal: 2.2

000000000004321  S00003 v array
v (:
course id: "C04"

Figure 4-35. The result of querying the enrollments table

Spark SQL provides dedicated functions for efficiently handling

arrays, like the explode function. This function allows us to



transform an array into individual rows, each representing an

element from the array:

SELECT enroll id, student id, explode(courses) AS cou
FROM enrollments

Figure 4-36 displays the results of applying the explode
function to the courses array. Each course element now
occupies its own row, with the other information such as

student ID and enrollment ID being duplicated for each course.

ool id & student id & course

000000000003559 S00001 ¥ {"course_id":"CO""discount_percent".70,"subtotal".7.2}
000000000004243 500002 {"course_id"."CO7" "discount_percent":15,"subtotal" 28,05}
000000000004243 S00002 > {"course_id";"C06"'discount_percent".90,"subtotal".2.2}

000000000004321 S00003 > {"course id"'CO4""discount vercent"10."subtotal" 18}

Figure 4-36. The result of applying the explode function to the courses column

This layout is particularly useful when examining course-level

patterns or performing operations such as aggregations and



joins with other tables.

Aggregating Unique Values

Moving forward, we explore another interesting function—the
collect_set function. This function is an aggregation function
that returns an array of unique values for a given field. It can
even deal with fields within arrays. In this example, the

courses_set column is formed as an array of arrays:

SELECT student_id,
collect set(enroll id) AS enrollments_set,
collect set(courses.course _id) AS courses_set
FROM enrollments
GROUP BY student id

Figure 4-37 displays the resulting aggregations.
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Figure 4-37. The result of applying the collect_set function

In the courses_set column, we notice that, for instance, the
course with identifier Co6 appears in multiple elements in the
array of student Se00e02 . To avoid such an issue, we can flatten
this nested array and retain only the distinct values. This can be
achieved in a two-step process. First, we apply the flatten
function to flatten the array, and then, we use the

array_distinct function to retain only the unique values:

SELECT student id,
collect set(courses.course_id) As before flatten,
array_distinct(flatten(collect set(courses.course id
FROM enrollments
GROUP BY student_id



Figure 4-38 offers a before-and-after perspective, showcasing

the original state of the data and the result achieved after

applying the flatten and array_distinct functions.
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Figure 4-38. The result of flattening the array
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In practice, the flatten function is employed to transform the

nested array into a flat structure. Following this, the

array_distinct function is applied to eliminate any duplicate

values. This confirms, for example, that our course identifier

Co6 of student S@0002 is now represented only once in the

resulting array.

Mastering Join Operations in Spark SQL



Spark SQL also supports join operations to facilitate blending
data from different tables. It offers a variety of standard join
operations, including inner, outer, left, right, anti, cross, and
semi joins. In the following example, we’ll focus on an inner
join operation, where we combine the result of an explode
operation with the courses lookup table to extract the course’s

details, such as course titles and instructor names.

The first step in this operation involves performing an explode
operation on our dataset to transform array elements into
individual rows. Subsequently, we desire to enrich this
exploded data with additional information from the courses
lookup table. To achieve this, we execute an inner join based on

the common key, in this case, the course_id.

The syntax used for joining data in Spark SQL follows the
conventions of standard SQL. We specify the type of join we
want (inner, outer, left, right, etc.), the tables we are joining, and
the conditions for the join. In this example, an inner join is
applied based on matching the course_id key. This ensures
that only matching records from both tables are retained in the
final result set. Lastly, we store the enriched data in a temporary

view named enrollments_enriched:



CREATE OR REPLACE VIEW enrollments_enriched AS
SELECT *
FROM (
SELECT *, explode(courses) AS course
FROM enrollments) e
INNER JOIN courses c

ON e.course.course_id = c.course_id;

SELECT * FROM enrollments_enriched

Figure 4-39 displays the result of this join operation,
incorporating information from both the exploded data and the
courses lookup table. For each course, we can now easily

access its details like the title, instructor name, and category.
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Figure 4-39. The result of joining enrollments with courses



Exploring Set Operations in Spark SQL

Similar to relational databases, Spark SQL supports various set
operations such as union, intersect, and except/minus. Let’s
explore these set operations by applying them to our
enrollments table, which currently holds 2,150 records,
alongside a temporary view that will introduce 700 new
records. To begin, we’ll create the view under the name

enrollments _updates:

CREATE OR REPLACE TEMP VIEW enrollments updates
AS SELECT * FROM parquet. ${dataset.school}/enrollmen

»

Union operation

The union operation in Spark SQL enables the combination of
two datasets by stacking them vertically, with two variants
available: UNION and UNION ALL .While UNION (or UNION
DISTINCT ) returns only distinct rows, UNION ALL includes all
rows from both datasets, preserving duplicates. In the following
example, we demonstrate the UNION ALL operation by
combining the old and new data of the enrollments table. This
results in a unified dataset that includes all records from both

sources, including duplicates:



SELECT * FROM enrollments
UNION ALL
SELECT * FROM enrollments_updates

Figure 4-40 displays 3,550 records as a result of this union
operation, which includes duplicate entries. This provides a
comprehensive view that incorporates both old and new

records.
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Figure 4-40. The result of the union operation



Intersect operation

The intersect operation, on the other hand, returns the
common rows found in both datasets. This operation is useful
when identifying overlaps between two datasets. In the
following scenario, the INTERSECT command is applied to find
rows that exist in both the enrollments table and the

enrollments_updates view:

SELECT * FROM enrollments
INTERSECT
SELECT * FROM enrollments updates

Figure 4-41 reveals that there are 700 records present in both
sources. This stems from the insertion of these 700 records into
the enrollments table, which we performed during the

“Appending Data” section.
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Figure 4-41. The result of the intersect operation
Minus operation

An interesting use case of set operations involves leveraging the
MINUS operation to obtain records exclusive to one dataset. For
instance, if we execute enrollments minus
enrollments_updates , we effectively retrieve only the data
from the original enrollments table that does not overlap with

the 700 new records present in the enrollments_updates view:

SELECT * FROM enrollments
MINUS



SELECT * FROM enrollments updates

Figure 4-42 displays the entries exclusive to the enrollments

table after excluding the 700 shared records. The minus

operation is particularly useful for isolating records of interest,

allowing you to focus only on them. In the provided example,

this allows you to focus on the enrollments’data before the

last insert operation performed on the table.
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Figure 4-42. The result of the minus operation
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In conclusion, the set operations available in Spark SQL enable

you to perform a range of tasks including combining,



comparing, and isolating datasets.

Changing Data Perspectives

In addition to its support for set operations, Spark SQL supports
creating pivot tables for transforming data perspectives using
the PIVOT clause. This provides a means to generate
aggregated values based on specific column values. This
transformation results in a pivot table, wherein the aggregated
values become multiple columns. Let’s explore the PIVOT
clause with a practical example, where we aggregate and flatten

the enrollment information for each student.

Before analyzing the query syntax, let’s first execute the query

and examine its output:

SELECT * FROM (

SELECT student_id, course.course_id AS course_id, c
FROM enrollments enriched

)

PIVOT (

sum(subtotal) FOR course_id IN (
'col', 'CO2', 'C@3', 'Co4', 'CO5', 'CP6',
'‘co7', 'Ce8', 'CO9', 'Cle', 'Ci1', 'C12'")

O 00 N O L1l h W N BB



Figure 4-43 displays the resulting pivot table that illustrates the
aggregated sum of subtotal amounts per course for each

student.
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Figure 4-43. The enrollments pivot table

The query syntax for generating the pivot table involves the

following steps:

1. Selecting its input data from a table or subquery (lines 1-4).
2. Calling the pivot clause (lines 5-9), which consists of three

key components:



1. Aggregation function: The sum( subtotal ) specifies the
aggregation function to be applied, along with the column
to be aggregated.

2. FOR subclause: This subclause defines the pivot column,

course_id, which is the basis for creating multiple
columns in the output.

3. IN operator: The IN operator lists the distinct values of
the pivot column. In our case, it lists the distinct course IDs
(from C@1 to C12), each presented as separate columns in

the pivot table.

In essence, the PIVOT clause in Spark SQL empowers you to
reshape and aggregate data dynamically. This capability is

essential for many analytical and machine learning tasks.

Working with Higher-Order
Functions

Higher-order functions in Databricks provide a powerful toolset
for working with complex data types, such as arrays. In this
section, we’ll cover two essential functions: FILTER and
TRANSFORM.



In this demonstration, we will use a new SQL notebook titled
“4.4 - Higher-Order Functions.” To ensure our environment is
properly configured, we start by executing the “School-Setup”
notebook, maintaining our focus on using the online school

dataset:

%run ../Includes/School-Setup

Let’s first review our student enrollment data, illustrated in

Figure 4-44:

SELECT * FROM enrollments
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Figure 4-44. The result of querying the enrollments table

The query result demonstrates that the courses column is of

complex data type, specifically an array of struct objects. To



effectively work with such hierarchical data, it is essential to

use higher-order functions.

Filter Function

The FILTER function is a fundamental higher-order function
that enables the extraction of specific elements from an array

based on a given lambda function.

In the following example, we create a new column named
highly discounted_courses to identify courses that were
purchased with a significant discount. This column is populated
by filtering the courses field to only include courses with a

discount percentage of 60% or higher:

SELECT
enroll id,
courses,
FILTER (courses,
course -> course.discount_percent >= 60) AS hi
FROM enrollments

Figure 4-45 displays the filtered data, where the column
highly discounted_courses contains only the courses with a

discount percentage of 60% or higher.
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Figure 4-45. The result of applying the FILTER function on the courses column



However, we observe that the column has several empty arrays.
To resolve this, we can use a WHERE clause to display only non-
empty array values. However, because a derived column
generally cannot be referenced directly within a WHERE clause,

using a subquery is essential to achieve the desired outcome:

SELECT enroll id, highly discounted courses
FROM (
SELECT
enroll id,
courses,
FILTER (courses,
course -> course.discount_percent >= 60) AS hig
FROM enrollments)
WHERE size(highly discounted courses) > 0;

By using this subquery that applies the WHERE clause to the size
of the returned column, you can successfully eliminate all

empty arrays.

Transform Function

The TRANSFORM function is another essential higher-order
function that facilitates the application of a transformation to

each item in an array, extracting the transformed values. In our



example, we apply a 20% tax to the subtotal value for each

course in the courses array:

SELECT
enroll id,
courses,
TRANSFORM (
courses,
course -> ROUND(course.subtotal * 1.2, 2) ) AS cour
FROM enrollments;

Figure 4-46 displays the result of applying the TRANSFORM
function, which adds a new column, courses_after tax,
containing an array of transformed values for each element in
the courses array. The transformation, in this case, involves
calculating a 20% tax on the subtotal value and then rounding

the result.
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Figure 4-46. The result of applying the TRANSFORM function on the courses column

Clearly, the transform function extracts only the transformed
values by default. Instead, we can create a struct object
containing multiple elements. This struct object contains two
fields: the course ID for the original course, and

subtotal _with_tax reflecting the subtotal amount after

applying the tax:

SELECT
enroll id,



courses,
TRANSFORM (
courses,
course -> (course.course id,
ROUND(course.subtotal * 1.2, 2) AS subtc
) AS courses_after tax
FROM enrollments;

Figure 4-47 displays the result of generating struct objects with
the TRANSFORM function. This allows for more structured and

detailed representation of the transformed data.
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Figure 4-47. The result of generating struct types with the TRANSFORM function

In summary, higher-order functions in Databricks, like FILTER
and TRANSFORM, empower you to manipulate and extract

specific information from complex data structures.

Developing SQL UDFs

SQL user-defined functions (UDFs) are a powerful way to
encapsulate custom logic with a SQL-like syntax, making it

reusable across different SQL queries. Unlike external UDFs



written in Scala, Java, Python, or R, which appear as black boxes
to the Spark Optimizer, SQL UDFs leverage Spark SQL directly.
This typically provides better performance when applying

custom logic to large datasets.

In this section, we’ll explore the creation and usage of SQL UDFs
in a new SQL notebook titled “4.5 - SQL UDFs.” As we will
continue using our online school dataset, we begin by running

the “School-Setup” notebook to prepare our environment:

%run ../Includes/School-Setup

Creating UDFs

To create a SQL UDF, you need to specify a function name,
optional parameters, the return type, and the custom logic. In
the following example, we create a UDF named
gpa_to_percentage for converting students’ grade point
average (GPA) scores into percentage equivalents. The UDF
accepts a GPA score as a parameter of type DOUBLE and returns
the percentage score as integer . The conversion logic assumes
a GPA scale of 4.0, which is then translated into a percentage
scale by multiplying it by 25. Additionally, the calculated
percentage is rounded to the nearest integer using the round

function and then cast to an integer data type:



CREATE OR REPLACE FUNCTION gpa_to percentage(gpa DOUE
RETURNS INT

RETURN cast(round(gpa * 25) AS INT)

Applying UDFs

Once the UDF is created, you can use it in any SQL query like a
native function. In the following example, we apply the
gpa_to_percentage UDF on the gpa column within the
students table:

SELECT student_id, gpa, gpa_to percentage(gpa) AS per
FROM students

Figure 4-48 confirms that our function has been successfully
applied. The column percentage_score accurately provides

the equivalent percentage score for each student’s GPA.
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Figure 4-48. The result of applying the gpa_to_percentage UDF

Understanding UDFs

SQL UDFs are permanent objects stored in the database,
allowing them to be used across different Spark sessions and
notebooks. The DESCRIBE FUNCTION command provides basic
information about the UDF, such as the database, input

parameters, and return type:

DESCRIBE FUNCTION gpa_to percentage

As shown in Figure 4-49, the function belongs to the
de_associate_school database, created in the “School-Setup”
notebook. It accepts the gpa as an input of type DOUBLE and

returns an integer.



12 function_desc

Function: spark_catalog.de_associate_school.gpa_to_percentage
Type: SCALAR
Input: gpa DOUBLE

Returns: INT

Figure 4-49. The output of DESCRIBE FUNCTION command on the gpa_to_percentage
UDF

Furthermore, the DESCRIBE FUNCTION EXTENDED command

offers more details, including the SQL logic used in the function:

DESCRIBE FUNCTION EXTENDED gpa to percentage

Figure 4-50 displays some of the extended metadata
information about our UDF. Specifically, the Body field reveals

the SQL logic implemented within the function.



2% function_desc

Function:  spark_catalog.de_associate_school.gpa_to_percentage
Type:  SCALAR
Input:  gpa DOUBLE

Returns:  INT
Owner:  root

Body: ~ CAST(ROUND(gpa * 25) AS INT)

Figure 4-50. The output of the DESCRIBE FUNCTION EXTENDED command on the
gpa_to percentage UDF

Complex Logic UDFs

SQL UDFs can incorporate complex logic, such as using
standard SQL CASE WHEN statements to evaluate multiple
conditions. In the following example, we define a UDF that
takes a student’s GPA and returns its corresponding letter grade

based on the grading scale in Table 4-2.



Table 4-2. Grading scale

GPA (4.0 scale) Grade letter

3.50-4.0 A
2.75-3.44 B
2.0-2.74 C
Below 2.0 F

To map GPA scores to their corresponding letter grades, we use
a CASE WHEN statement within a function named

get letter grade:

CREATE OR REPLACE FUNCTION get_ letter_grade(gpa DOUBL
RETURNS STRING
RETURN CASE

WHEN gpa >= 3.5 THEN "A"

WHEN gpa >= 2.75 AND gpa < 3.5 THEN "B"

WHEN gpa >= 2 AND gpa < 2.75 THEN "C"

ELSE "F"
END



We can now apply this complex UDF to our dataset:

SELECT student _id, gpa, get letter grade(gpa) AS lett

FROM students

Figure 4-51 confirms that we have successfully applied our UDF.

As expected, the column letter_grade gives us the

corresponding letter grade to each student’s GPA.
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Figure 4-51. The result of applying the get_letter_grade UDF

Thus, SQL UDFs in Databricks offer flexibility, reusability, and
the ability to incorporate complex logic. All this, while

benefiting from Spark’s optimization for parallel execution.



Dropping UDFs

Finally, you can remove UDFs when they are no longer needed
by using the DROP FUNCTION command:

DROP FUNCTION gpa_to percentage;
DROP FUNCTION get letter grade;

After executing these commands, both UDFs will be completely

removed from the database.

Conclusion

In conclusion, this chapter has highlighted key techniques for
transforming data efficiently on the Databricks platform using
Apache Spark. We’ve explored methods for querying and
writing data, implemented advanced ETL operations, and
leveraged the flexibility of higher-order functions and UDFs.
With these tools, you are now equipped to perform robust data
transformations that are both powerful and adaptable to

diverse data processing needs.

Sample Exam Questions



Conceptual Question

1. A data engineer is tasked with replacing the content of a Delta
table in a data pipeline. During a team meeting, they discuss the
best approach for overwriting the table without disrupting
ongoing analyses while ensuring optimal performance. The
team considers two commands: INSERT OVERWRITE and CREATE
OR REPLACE TABLE.

Given this scenario, which of the following factors should the
data engineer consider when justifying the use of the INSERT
OVERWRITE command over CREATE OR REPLACE TABLE ?

1. The INSERT OVERWRITE operation is a more dynamic
technique that ensures schema evolution when overwriting
the table.

2. The INSERT OVERWRITE operation is a safer approach for
overwriting the table without changing its schema.

3. The INSERT OVERWRITE operation can automatically
optimize the table’s layout for better query performance after
the overwrite.

4. All of the above reasons explain why INSERT OVERWRITE is
recommended over CREATE OR REPLACE TABLE .

5. None of the above! Both commands operate the same way.



Code-Based Question

2. A data engineer at a financial services company is tasked with
creating a reusable SQL user-defined function (UDF). This
function will calculate interest based on dynamic inputs across
various datasets. The engineer needs to decide which code

block would be appropriate for this task.

Which of the following code blocks should the data engineer
use to create the SQL UDF?

1. CREATE FUNCTION calc_interest (amount DOUBLE , rate
DOUBLE )

RETURNS cast (amount * rate AS DOUBLE );

2. CREATE UDF calc_interest (amount DOUBLE , rate
DOUBLE )

RETURN amount * rate;

3. CREATE UDF calc_interest(amount DOUBLE , rate
DOUBLE )

RETURNS DOUBLE
RETURN amount * rate;

4. CREATE FUNCTION calc_interest (amount DOUBLE , rate
DOUBLE )

RETURNS DOUBLE
RETURN amount * rate;
5. DEF calc_interest (amount DOUBLE , rate DOUBLE )



RETURN cast (amount * rate AS DOUBLE );

The correct answers to these questions are listed in Appendix C.



Chapter 5. Processing Incremental
Data

In the previous chapters, we explored the fundamentals of
processing data in groups or batches at once. However, when
data is generated continuously, traditional batch processing
approaches tend to become insufficient. In this chapter, we will
explore the concepts and techniques for processing streaming
data, including Spark Structured Streaming and incremental
data ingestion from files. Moreover, we will discuss the concept
of medallion architecture and how to build it under the stream

processing model.

Streaming Data with Apache
Spark

Apache Spark provides robust support for processing streaming
data, enabling you to efficiently perform real-time analytics. At
the heart of this process is the concept of a data stream, which is
the focus of processing. To effectively work with streaming data
in Spark, let’s first understand what a data stream is and its

characteristics.



What Is a Data Stream?

A data stream represents an unbounded flow of data, often
originating from various sources such as sensors, log files, or
social media platforms. As new data is generated, it is appended
to the stream, making it a dynamic and constantly changing

dataset. Examples of data streams include the following:

Social media feeds

Continuous streams of posts, each containing text, user
information, and timestamps, that can be processed and
analyzed to track trends, sentiments, or user behavior.

Sensor readings

Temperature and humidity readings, or other metrics, from a
network of sensors in a smart building, used to optimize
energy consumption.

Log data

A stream of log messages from a server, containing system
events and error messages, used to monitor system
performance or detect security threats.

Processing data streams present a unique set of challenges due
to their dynamic and ever-growing nature. To handle such
continuous flows of information, there are typically two

primary approaches:

Recompute



In this classical approach, each time new data arrives, the
entire dataset is reprocessed to incorporate the new
information. While this method ensures accuracy, it can be
computationally intensive and time-consuming, especially for
large datasets.

Incremental processing

Alternatively, incremental processing involves developing
custom logic to identify and capture only the new data that
has been added since the last update. This approach reduces
processing overhead by focusing solely on the changes,
thereby improving efficiency.

One powerful tool for incremental processing of data streams is

Spark Structured Streaming, which is part of Apache Spark.

Spark Structured Streaming

Spark Structured Streaming is a scalable stream processing
engine that revolutionizes the way data streams are processed
and queried. It enables querying of infinite data sources,
automatically detecting new data as it arrives and persisting
results incrementally into target data sinks, as illustrated in
Figure 5-1. A sink is often a durable storage system such as files

or tables that serves as the destination for the processed data.
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Figure 5-1. Spark Structured Streaming

In Structured Streaming, the key idea is to handle live data
streams as unbounded, continuously growing tables, where
each incoming data item is appended as a new row, as
illustrated in Figure 5-2. This design allows you to apply familiar
SQL and DataFrame operations on streaming data in the same
way you would with batch data. By unifying batch and
streaming operations, Structured Streaming eliminates the need
for separate technology stacks and facilitates the migration of

your existing batch Spark jobs to streaming jobs.
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Figure 5-2. Fundamental concept of Spark Structured Streaming
(image adapted from https:/spark.apache.org)

The append-only requirement of streaming sources

One fundamental prerequisite for a data source to be
considered valid for streaming is that it must adhere to the
append-only requirement in Structured Streaming. This
condition implies that data can only be added to the source, and
existing data cannot be modified. If a data source allows data to
be updated, deleted, or overwritten, it is then considered no

longer streamable.

Therefore, it is essential to ensure that your data sources
conform to this requirement in order to take advantage of the

benefits of streaming data processing.



https://spark.apache.org/

Delta Lake as streaming source

Spark Structured Streaming seamlessly integrates with various
data sources, including directories of files, messaging systems
like Kafka, and Delta Lake tables as well. Delta Lake is well-
integrated with Spark Structured Streaming using the

DataStreamReader and DataStreamWriter APIs in PySpark.

DataStreamReader

In Python, the spark.readStream method allows you to query
a Delta Lake table as a streaming source. This functionality
enables processing both existing data in the table and any new
data that arrives subsequently. The result is a “streaming”
DataFrame, which allows for applying transformations just like

one would on a static DataFrame:

streamDF = spark.readStream.table("source table")

DataStreamWriter

Once the necessary transformations have been applied, the
results of the streaming DataFrame can be persisted using its

writeStream method:

streamDF.writeStream.table("target table")



This method enables configuring various output options to

store the processed data into durable storage. Let’s explore the

following example, where we have two Delta Lake tables,

Table_1 and Table_2.The goalis to continuously stream data

from Table_1 to Table_2, appending new records into

Table_2 every two minutes, as illustrated in Figure 5-3.

Table

Nev data added
since last 2 min

StreamDF

#

Table?

Figure 5-3. Streaming data between two Delta Lake tables



To achieve this, we use the following Python code. This code
sets up a Structured Streaming job in Spark that continuously
monitors Table_1 for new data, processes it at regular
intervals of two minutes, and appends the new records to
Table 2:

streamDF = spark.readStream
.table("Table 1")

streamDF.writeStream
.trigger(processingTime="2 minutes")
.outputMode("append")
.option("checkpointLocation", "/path")
.table("Table 2")

In this code snippet, we start by defining a streaming
DataFrame streamDF against the Delta table Table_1 using the
spark.readStream method. Whenever a new version of the
table is written, a new micro-batch containing the new data will

come in through this readStream.

Next, we use the writeStream method to define the streaming
write operation on the streamDF . Here, we specify the
processing trigger interval using the trigger function, indicating

that Spark should check for new data every two minutes. This



means that the streaming job will be triggered at regular
intervals of two minutes to process any new incoming data in

the source.

We then set the output mode to “append” using the
outputMode function. This mode ensures that only newly
received records since the last trigger will be appended to the

output sink, which in this case is the Delta table Table 2.

Additionally, we specify the checkpoint location using the
checkpointLocation option. Spark uses checkpoints to store
metadata about the streaming job, including the current state
and progress. By providing a checkpoint location, Spark can
recover the streaming job from failures and maintain its state

across restarts.

Streaming Query Configurations

Now, let’s examine the configurations of DataStreamWriter in
detail.

Trigger Intervals

When setting up a streaming write operation, the trigger
method defines how often the system should process incoming

data. This timing mechanism is referred to as the trigger



interval. There are two primary trigger modes: continuous and

triggered, as illustrated in Table 5-1.



Table 5-1. Trigger intervals of DataStreamWriter

Mode Usage

Continuous
.trigger(processingTime=

"5 minutes")

Triggered
#deprecated

.trigger(once=True)

Behavior

Processes
data at fi>
intervals
every 5
minutes).
Default
interval:
500ms.

Processes
available
in a singli
micro-bat
then stop

automati



Mode Usage Behavior

. . Processes
.trigger(availableNow=True) qvailable
in multip
micro-
batches, t
stops

automati

Let’s dive deeper to gain a comprehensive understanding of

these two modes.
Continuous mode: Near-real-time processing

In this mode, the streaming query will continuously run to
process data in micro-batches at regular intervals. By default, if
no specific trigger interval is provided, the data will be
processed every half a second. This is equivalent to using the
option processingTime="500ms" . Alternatively, you have the
flexibility to specify another fixed interval according to your
requirements. For instance, you might opt to process the data at

a specified interval, such as every five minutes, by using the



option processingTime="5 minutes" . This mode ensures a
continuous flow of data, enabling near-real-time data

processing.

Triggered mode: Incremental batch processing

In contrast to continuous mode, the triggered mode offers a
batch-oriented approach known as incremental batch
processing. In this mode, the streaming query processes all
available data since the last trigger and then stops
automatically. This mode is suited for scenarios where data
arrival is not constant, eliminating the need for continuously
running resources. Under the triggered mode, two options are

available: Once and availableNow :

Trigger.Once
With this option, the stream processes the currently available
data, all at once, in a single micro-batch. Howevery, this can
introduce challenges related to scalability when dealing with
large volumes of data, as it may lead to out-of-memory (OOM)
errors.

Trigger.availableNow

Similarly, the availableNow option also facilitates batch
processing of all currently available data. However; it
addresses scalability concerns by allowing data to be
processed in multiple micro-batches until completion. This



option offers flexibility in handling large data batches while
ensuring efficient resource utilization.

NOTE
Since Databricks Runtime 11.3 LTS, the Trigger.Once setting has been deprecated.
However, it’s possible that you may encounter references to it in the current exam
version or in older documentation. Databricks now recommends using

Trigger.AvailableNow for all incremental batch processing workloads.

Output Modes

When writing streaming data, you can specify the output mode
to define how the data is written to the target. There are
primarily two output modes available: append mode and

complete mode, as illustrated in Table 5-2.



Table 5-2. Output modes of DataStreamWriter

Mode Usage Behavior

Append Only newly

(default) -outputMode(“append") received
rOws are
appended to
the target
table with

each batch.

Complete ) ) The target
.outputMode("complete™) table is
overwritten
with each
batch.

Append mode

Append mode is the default output mode if no specific mode is
provided. It appends only new rows that have been received
since the last trigger to the target table. This mode is suitable for

scenarios where the target sink needs to maintain a



continuously growing dataset based on the incoming streaming
data.

Complete mode

Complete mode recomputes and rewrites the entire results to
the sink every time a write is triggered. It replaces the entire
contents of the output sink with the latest computed results
with each batch. This mode is commonly used for updating

summary tables with the latest aggregates.

Checkpointing

Checkpointing is a mechanism for saving the progress
information of the streaming query. The checkpoints are stored
in a reliable storage system, such as the DBFS or cloud storage
like Amazon S3 or Azure Storage. This approach ensures that if
the streaming job crashes or needs to be restarted, it can
resume processing from the last checkpointed state rather than

starting from scratch.

One important aspect to note about checkpoints in Apache
Spark is that they cannot be shared between multiple streaming
jobs. Each streaming write operation requires its own separate
checkpoint location. This separation ensures that each

streaming application maintains its own processing guarantees



and doesn’t interfere with or rely on the checkpoints of other

jobs.

Structured Streaming Guarantees

Spark Structured Streaming offers, primarily, two guarantees to
ensure end-to-end reliable and fault-tolerant stream processing:

fault recovery and exactly-once semantics.

Fault recovery

In case of failures, such as node crashes or network issues, the
streaming engine is capable of resuming processing from where
it left off. This is achieved through the combination of
checkpointing and a mechanism called write-ahead logs. They
enable capturing the offset range corresponding to the data
being processed during every trigger, which makes it possible to

recover from failures without any data loss.

It’s important to note that this guarantee mainly depends on the
repeatability of the data sources. Data sources such as cloud-
based object storage or pub/sub messaging services are typically
repeatable, meaning that the same data can be read multiple
times if needed. This allows the streaming engine to restart or

reprocess the data under any failure condition.



Exactly-once semantics

Structured Streaming also guarantees that each record in the
stream will be processed exactly once, even in the event of
failures and retries. This is ensured by the implementation of
idempotent streaming sinks. Idempotency means that if
multiple writes occur for the same entities, no duplicates will be
written to the sink. It relies on the offset of the entities as a

unique identifier to recognize any duplicates and ignore them.

In essence, by accurately tracking offsets from replayable
sources and leveraging idempotent sinks, Structured Streaming
ensures reliable end-to-end processing, without any risk of data

loss or duplication, even in the presence of failures.

Unsupported operations

As discussed earlier, infinite data sources are viewed as
unbounded tables in Structured Streaming. While most
operations are identical to those of batch processing, there are
certain operations that are not supported due to the nature of
streaming data. Operations such as sorting and deduplication
introduce complexities in a streaming context and may not be

directly applicable or feasible.



While a full discussion of these limitations is beyond the scope
of this Associate-level certification, it’s essential to know that
there are alternative mechanisms to address similar
requirements. For example, you can use advanced streaming
techniques like windowing and watermarking for performing
such operations over specific time windows. A detailed
understanding of these techniques is typically expected at a
more advanced level, particularly for the Databricks Data

Engineer Professional certification.

Implementing Structured
Streaming

Let’s delve into the practical implementation of Spark
Structured Streaming for enabling incremental data processing.
We will continue using our online school dataset, consisting of
three tables: students, enrollments, and courses, as

illustrated in Figure 5-4.
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Figure 5-4. Entity-relationship diagram of the online school dataset

In this demonstration, we will use a new Python notebook titled
“5.1 - Structured Streaming.” We begin by running the “School-

Setup” helper notebook to prepare our environment:

%run ../Includes/School-Setup

Structured Streaming provides high-level APIs in both SQL and
Python for manipulating streaming data. However, regardless of
the chosen language, the initial step always involves using the
spark.readStream method from the PySpark API. This is the



reason behind our utilization of a Python notebook in this
context. The spark.readStream method allows you to query a
Delta table as a streaming source and create a streaming

DataFrame accordingly:

stream_df = spark.readStream.table("courses"”

Once the streaming DataFrame is created, you can apply a wide
range of transformations and operations to manipulate and
analyze the streaming data. These transformations can be

expressed in either SQL or Python syntax.

Streaming Data Manipulations in SQL

To begin manipulating streaming data using SQL, it is essential
to convert the streaming DataFrame into a format that SQL can
interpret and query. This can be achieved by registering a
temporary view from the streaming DataFrame using the

createOrReplaceTempView function:

stream_df.createOrReplaceTempView("courses streaming

4

Creating a temporary view against a streaming DataFrame

results in a streaming temporary view. This allows you to



apply most SQL transformations on streaming data just like you
would with static data. You can query this streaming temporary

view using a standard SELECT statement, as shown here:

%sql
SELECT * FROM courses_streaming tmp_vw

This query does not behave like a typical SQL query. Instead of
executing once and returning a set of results, it initiates a
continuous stream that runs indefinitely. As new data arrives in
the source, it appears in the query results in near real time. To
facilitate performance monitoring of such streams, Databricks
Notebooks provide an interactive dashboard associated with

the streaming query, as illustrated in Figure 5-5.
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Figure 5-5. Streaming query results

In practice, we don’t typically display the results of streaming
queries in a notebook unless there is a need to inspect them
during development. To stop an active streaming query, you can
simply click Interrupt at the top of the cell.

Applying transformations

On a streaming temporary view, you can apply various
transformations and operations. For instance, you can perform
aggregations such as as counting occurrences within the

streaming data:

%sql

SELECT instructor, count(course_id) AS total courses
FROM courses streaming tmp vw

GROUP BY instructor

Because we are querying a streaming object, this aggregation
becomes a stateful streaming query that executes continuously
and updates dynamically to reflect any changes in the source.

Figure 5-6 displays the output of this streaming query.
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Figure 5-6. Streaming aggregation results

It’s important to understand that at this stage, none of the
records is stored anywhere; they are simply being displayed in
the current notebook environment. In the following discussion,
we will explore how to persist them to a durable storage.

However, before proceeding, let us stop this active streaming

query.

Remember, when working with streaming data, certain SQL
operations are not directly supported. For example, attempting
to sort our streaming data based on a given column will lead to

an error.

%sql

SELECT *

FROM courses streaming tmp_ vw
ORDER BY instructor

AnalysisException: Sorting is not supported on strean
unless it is on aggregated DataFrame/Dataset in Compl

»

Executing this command results in an exception, clearly

indicating that the sorting operation is not supported on all



streaming datasets. As mentioned earlier; more advanced
techniques like windowing and watermarking can be used to
overcome such limitations. However, they are considered

beyond the scope of this book.

Persisting streaming data

Persisting streaming data to a durable storage involves
returning our logic back to the PySpark DataFrame API. For this,
we begin by defining a new temporary view to encapsulate our

desired output:

%sql

CREATE OR REPLACE TEMP VIEW instructor_counts_tmp_vw
SELECT instructor, count(course_id) AS total courses
FROM courses_streaming tmp_ vw
GROUP BY instructor

)

With this SQL statement, we are creating another temporary
view to hold the aggregated data. It’s considered a “streaming”
temporary view since it is derived from a query against a
streaming object, specifically against our

courses_streaming_tmp_vw view.



Once the streaming temporary view is created, we can access
the output data using the PySpark DataFrame APIL In the
following snippet, the spark.table function loads the data
from our streaming temporary view into a streaming

DataFrame:

result _stream df = spark.table("instructor counts tmp

4

It’s essential to understand that Spark differentiates between
streaming and static DataFrames. Consequently, when loading
data from a streaming object, it’s interpreted as a streaming
DataFrame, while loading data from a static object yields a static
DataFrame. This highlights the importance of using
spark.readStream from the beginning (instead of

spark.read ) to support later incremental writing.

Now that we have our streaming DataFrame in place, we can
proceed to persist the results to a Delta table using the
writeStream method. This method enables configuring the
output with several parameters, such as trigger intervals,

output modes, and specifying a checkpoint location:

(result_stream df.writeStream
.trigger(processingTime="3 seconds")
.outpbutMode("complete™)



T N 1 k4

.option("checkpointLocation",
"dbfs:/mnt/DEA-Book/checkpoi
.table("instructor_counts")

In this configuration, the trigger interval is set to three seconds,
meaning the stream will attempt an update every three seconds
by checking the source for new data. The output mode is
specified as “complete,” indicating that the entire target table
should be overwritten with the new calculations during each
trigger interval. Additionally, the checkpoint location is
provided to track the progress of the stream processing. Lastly,

the target table is set to instructor_counts.

Executing this command initiates a streaming query,
continuously updating the target table as new data arrives.
Figure 5-7 visualizes this process through its interactive
dashboard.



v ) 6cb295a1-207e-a72-bdaa-575019835che  Lastupdted: 10 econds ago

Dashhoard  Raw Data

putvs. Processing Rate~~ Qrecfs  Orecls | Bateh Duraton 37018 ms 10 ms
records per second Input rate Processingrate | in miliseconds Average Latest
0k
).8-\\
8 \ g
1%
\\
]d \\ Uk'
\
\
1 \ %
\
\
0 . 0
0 R 2 L . A 2
eyt eyt t

<pyspark.sqLstreaning,query. StreaningQuery at 8x7f3chdgat3ed>

Figure 5-7. Streaming write operation

From this dashboard, we can observe a noticeable spike,

indicating that our data has been processed. Subsequently, we



can proceed to query the target table to validate the results:

%sql
SELECT * FROM instructor counts

It’s important to note that directly querying the target table does
not trigger a streaming query. It’s simply a normal, static table,

rather than a streaming DataFrame.

Figure 5-8 displays the result of querying the
instructor_counts table, confirming that the data has been
written successfully. This result shows that each instructor

currently teaches only one course.



2% instructor 1% total_courses

Bernard M. 1
Tiffany M. 1
Andriy R. 1
Daniel M. 1
Pierre B. 1
Chris N. 1
Julia S. 1
Inhn R 1

Figure 5-8. The result of querying the instructor_counts table

Meanwhile, the streaming write query remains active, waiting
for new data to arrive in the source. To illustrate this, let us add

new data to our source table, the courses table:

%sql

INSERT INTO courses

values ("C1l6", "Generative AI", "Pierre B.", "Compute
("C17", "Embedded Systems", "Julia S.", "Compu
("C18", "Virtual Reality", "Bernard M.", "Comg

4



Upon executing this command, you can observe the processing
of this batch of data using the dashboard of our streaming

query, as shown in Figure 5-9.
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Figure 5-9. Processing the new streaming data

Subsequently querying our target table reveals updated course

counts for each instructor. As illustrated in Figure 5-10, some




instructors’ course counts have increased as more records are

processed.

28 instructor 1% total_courses

Bernard M. 2
Tiffany M. 1
Andriy R. 1
Daniel M. 1
Pierre B. 2
Chris N. 1
Julia S. 2
Inhn R 1

Figure 5-10. The result of querying the instructor_counts table after processing the
new data

Now, let’s explore another scenario to demonstrate incremental
batch processing. However, before proceeding, let’s stop our
previous streaming write query. In a development
environment, it is a good practice to stop active streams to
prevent them from running indefinitely. Failing to do so can

lead to unnecessary costs and resource consumption, as the



cluster will not be able to auto-terminate if the process remains

active.

In our next scenario, we will introduce a set of courses taught

by new instructors and incorporate them into our source table:

%sql

INSERT INTO courses

values ("C19", "Compiler Design", "Sophie B.", "Compu
("C20", "Signal Processing", "Sam M.", "Comput
("C21", "Operating Systems", "Mark H.", "Compu

4

In this scenario, we will modify the trigger method to change
our query from a continuous mode, executed every three
seconds, to a triggered mode. We accomplish this using the

availableNow trigger option:

(result _stream df.writeStream
.trigger(availableNow=True)
.outputMode("complete")
.option("checkpointLocation",

"dbfs:/mnt/DEA-Book/checkpoi
.table("instructor_counts")
.awaitTermination()



With the availableNow trigger option, the query will process
all newly available data at the time of the read and
automatically stop upon completion. In this case, we can
optionally use the awaitTermination method to halt execution
of other cells in the notebooks until the incremental batch write

finishes successfully.

By running this command, you can observe that the streaming
query was operated in a batch mode. It stopped automatically
after processing the three recently added records. To confirm
this, you can query the target table again to see that there are

now 18 instructors instead of the previous 15.

Streaming Data Manipulations in Python

Manipulating streaming data in Python syntax is
straightforward; there is no need for any temporary object or
view. You can apply your data processing directly on the

streaming DataFrame using the PySpark DataFrame API:

import pyspark.sql.functions as F

output_stream df = (stream _df.groupBy("instructor")
.agg(F.count("course id").alias("t

4



In this snippet, we are performing the same aggregation
operation previously executed using SQL syntax, but now using
PySpark. We group our stream_df based on the instructor
column and apply the count aggregation function to the
course_id column. It’s worth mentioning that streaming
DataFrames, like static DataFrames, are immutable. This means
that when you apply transformations to a DataFrame, it always
creates a new DataFrame and leaves the original unchanged. In
our case, this creates a new streaming DataFrame named

output_stream df.

At this point, the output streaming DataFrame has been created,
but the stream itself is not yet active. This means that Spark
hasn’t started processing the input data. To activate the stream,
we need to perform an action, such as writing or displaying the
data. In Databricks notebooks, you can call the display function
on a streaming DataFrame to display the streaming data, as

illustrated in Figure 5-11:

display(output_stream_df)
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Figure 5-11. Displaying the streaming DataFrame

We can now stop this data stream and examine how to persist

the results.

To persist these results to durable storage, we simply use the

writeStream method directly on the streaming DataFrame:

(output_stream df.writeStream
.trigger(availableNow=True)
.outputMode("complete")
.option("checkpointLocation",

"dbfs:/mnt/DEA-Book/checkpoints/in
.table("instructor_counts py")
.awaitTermination()

It’s essential to note that we are using a different checkpoint
location for this new streaming query. Remember, each stream
requires its own separate checkpoint location to ensure

processing guarantees.

Once the streaming write is completed, you can query the
resulting table directly:



%sql
SELECT * FROM instructor_counts py

Alternatively, you can use the PySpark DataFrame API to query

the table. This can be achieved using the spark.read method:

instructor_counts_df = spark.read.table("instructor c

display(instructor _counts_df)

In this code snippet, the spark.read method is used to create a
static DataFrame against our table. Then, the display function is

invoked to show the queried data, as shown in Figure 5-12.
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Bernard M. 2
Tiffany M. {
Andriy R. 1
Daniel M. 1
Pierre B. 2
Chris N. 1
Julia S. 2
Inhn R 1

Figure 5-12. The result of querying the instructor_count_py table

In conclusion, Spark Structured Streaming provides a powerful
and flexible solution for handling streaming data processing
tasks. By using either Spark SQL or PySpark DataFrame APIs,
you can perform a variety of data manipulations on streaming
data sources, including Delta Lake. This enables you to build
end-to-end reliable data pipelines for a wide range of use cases,
from real-time analytics to incremental data ingestion, as you

are about to see.



Incremental Data Ingestion

Data ingestion is a crucial step in data engineering pipelines,
particularly when dealing with files stored in cloud storage. In
this section, we will explore the different techniques of
incrementally loading data from files into Delta Lake. Our focus
will be on two primary methods: the COPY INTO command and

Auto Loader.

Introducing Data Ingestion

Data ingestion, as used in this book, refers to the process of
loading data from files into Delta Lake tables. One of the
significant challenges in data ingestion is the need to avoid
reprocessing the same files multiple times. In a traditional data
pipeline, each time the pipeline is run, it would reprocess all the
files, including those that have already been ingested
previously. This approach can be computationally expensive,
time-consuming, and can lead to additional deduplication work,
especially when dealing with large datasets, and this is where

incremental data ingestion comes into play.

Incremental data ingestion involves loading only files newly

received since the last data ingestion cycle. This approach



ensures that data pipelines are optimized by avoiding the
reprocessing of previously ingested files, thereby reducing the
processing time and resources required. Databricks offers two
efficient mechanisms for the incremental processing of newly
arrived files in a storage location: the COPY INTO SQL
command and Auto Loader. Let us examine these methods in

detail and learn how to implement them effectively.

COPY INTO Command

The COPY INTO command is a SQL statement that facilitates the
loading of data from a specified file location into a Delta table.
This command operates in an idempotent and incremental
manney, meaning that each execution will only process new
files from the source location, while previously ingested files

are ignored.

The syntax for the COPY INTO command is straightforward and

is structured as follows:

1 COPY INTO my_table

2 FROM '/path/to/files'

3 FILEFORMAT = <format>

4 FORMAT_OPTIONS (<format options>)
5 COPY_OPTIONS (<copy options>)



The command structure specifies the target table (line 1), the
source file location (line 2), the format of the source files such
as CSV or Parquet (line 3), any pertinent file options (line 4), and

additional options to control the ingestion operation (line 5).

For instance:

COPY INTO my table
FROM '/path/to/files’
FILEFORMAT = CSV

FORMAT_OPTIONS ('delimiter' = "|",
"header' = 'true')
COPY_OPTIONS ('mergeSchema' = 'true')

In this example, the command is configured to ingest data into a
Delta Lake table, named my_table, from a given source
location. This location contains CSV files characterized by
having headers and a specific delimiter; |. Furthermore, the
COPY_OPTIONS parameter is leveraged to facilitate schema
evolution in response to modifications in the structure of the

incoming data.

Auto Loader



The second method for loading data incrementally from files in
Databricks is Auto Loader It leverages Structured Streaming in
Spark to efficiently process new data files as they become
available in a storage location. Notably, Auto Loader offers
scalability by allowing for handling billions of files and

supporting real-time ingestion rates of millions of files per hour.

Built upon Spark’s Structured Streaming framework, Auto
Loader employs checkpointing to track the ingestion process
and store metadata information about the discovered files. This
ensures that data files are processed exactly once by Auto
Loader. Moreover, in the event of a failure, Auto Loader

seamlessly resumes processing from the point of interruption.

Implementation

As an integral part of Spark’s Structured Streaming, you can
work with Auto Loader by using the readStream and

writeStream methods:

spark.readStream
.format("cloudFiles")
.option("cloudFiles.format", <source_format>
.load(’ /path/to/files”’)
.writeStream



.option("checkpointLocation", <checkpoint di
.table(<table name>)

Auto Loader introduces a specific format of DataStreamReader
named cloudFiles.The cloudFiles.format option is
employed to specify the format of the source files. Then, the
load function is used to indicate the location of the source files,
where Auto Loader detects and queues new arrivals for
ingestion. Subsequently, data is written into a target table using
the DataStreamWriter, with the checkpointLocation
parameter indicating where checkpointing information should

be stored.

Schema management

Auto Loader offers a convenient feature that enables automatic
schema detection for loaded data, allowing you to create tables
without explicitly defining the data schema. Moreover; if new
columns are added, the table schema can evolve accordingly.
However, to avoid inference costs during each stream startup,
the inferred schema can be stored for subsequent use. This is
achieved by specifying a location where Auto Loader can store

the schema using the cloudFiles.schemalLocation option.



Note that the schema inference behavior of Auto Loader varies
depending on the file format. For formats with typed schemas,
such as Parquet, Auto Loader extracts the predefined schemas
from the files. On the other hand, for formats that don’t encode
data types, like JSON and CSV, Auto Loader infers all columns as
strings by default. To enable inferring column data types from
such sources, you can set the option

cloudFiles.inferColumnTypes to true:

spark.readStream
.format("cloudFiles")
.option("cloudFiles.format", <source_format>)
.option("cloudFiles.inferColumnTypes", "true"
.option("cloudFiles.schemalLocation", <schema_
.load(’ /path/to/files”’)

.writeStream

.option("checkpointLocation", <checkpoint dir
.option("mergeSchema", "true")
.table(<table_name>)

It’s worth mentioning that the designated schema location can
be identical to the checkpoint location for simplicity and

convenience; they will not conflict.

Comparison of Ingestion Mechanisms



When deciding between the COPY INTO command and Auto
Loader for your data ingestion tasks, it’s important to consider

two key factors, which are summarized in Table 5-3.

Table 5-3. Comparison of the incremental data ingestion mechanisms

COPY INTO Auto Loader
File volume Thousands of files Millions of files
Efficiency Less efficient at Efficient at
scale scale

File volume

The COPY INTO command is ideal for scenarios where the
volume of incoming files is relatively small, typically on the
order of thousands. It offers simplicity and straightforward
execution, making it well-suited for smaller-scale data ingestion
tasks. On the other hand, Auto Loader is suited for scenarios
where the volume of incoming files is on the order of millions

Oor more over time.

Efficiency



Auto Loader has the capability to split processing into multiple
batches, thereby enabling faster and more efficient data
ingestion compared to the COPY INTO command. This attribute
makes Auto Loader an ideal choice for environments

characterized by high data velocity and volume.

As a general best practice, Databricks recommends using Auto

Loader when ingesting data from cloud object storage.

Auto Loader in Action

Let’s walk through the practical implementation of Auto Loader
for incremental data ingestion from files. We will continue
using our online school dataset, consisting of three tables:

students, enrollments, and courses.

In this demonstration, we will use a new Python notebook titled
“5.2 - Auto Loader.” We begin by running the “School-Setup”

helper notebook to prepare our environment:

%run ../Includes/School-Setup

In this scenario, we will leverage Auto Loader to incrementally

ingest student enrollment data from JSON files into a target



Delta table. Before setting up our Auto Loader stream, let’s

inspect our source directory:

files = dbutils.fs.ls(f"{dataset school}/enrollments-
display(files)

Figure 5-13 displays the contents of the source directory,

showing that it currently hosts a single JSON file.

&, path £ name £y size. £ modifcationTime

dbfs: mnt/DE-Associate-Book datasets/school/enrollments-json-rawf01json 01json 179874 1714529091000

Figure 5-13. The content of the source directory

Now, we’ll set up Auto Loader to efficiently handle the ingestion

of this file and any new files arriving in the directory.
Setting up Auto Loader

Remember, Auto Loader uses the readStream and
writeStream methods from Spark’s Structured Streaming API.
Here’s an example of how to set up Auto Loader for our use

case.



(spark.readStream
.format("cloudFiles")
.option("cloudFiles.format", "json")
.option("cloudFiles.inferColumnTypes", "tru
.option("cloudFiles.schemalLocation",
"dbfs:/mnt/DEA-Book/checkpoints/en
.load(f"{dataset school}/enrollments-json-
.writeStream
.option("checkpointLocation",
"dbfs:/mnt/DEA-Book/checkpoints/en
.table("enrollments_updates™)

In this configuration, the cloudFiles format represents the

Auto Loader stream, with three additional options:

cloudFiles. format

Specifies the format of the data files being ingested, in this
case, JSON.

cloudFiles.inferColumnTypes

Enables Auto Loader to automatically determine the data
types of the columns.

cloudFiles.schemalocation

Sets the directory where Auto Loader can store the inferred
schema information.



Subsequently, we use the load method to define the location of

our data source files.

Following that, we immediately chain a writeStream method
to write the ingested data into a target table called
enrollments_updates . Furthermore, we provide a location for
storing checkpoint information, enabling Auto Loader to track
the ingestion process. It’s worth noting that both schema and

checkpoint information are stored within the same directory.

Upon executing the previous command, a streaming query is
initiated, as illustrated in Figure 5-14. This query remains active,
continuously processing new data as it arrives in the data

source directory.



v ) eh108350-deatedeae-0d6

Dashhoard  Raw Data

B5-OaaB77etes  Lastupated: 15 seconds ago

Iout v Processig Rate
1800/ per second

AT

Iputrte Processing rat

fi826ms 1ms

Average Latest

‘wpmhqlsmmmquy mmmwmw at xTfebe3al>

Figure 5-14. Streaming write operation by Auto Loader

To confirm the successful data ingestion, we can review the

contents of the updated table by executing a standard SELECT




statement:

%sql
SELECT * FROM enrollments updates

Figure 5-15 displays the result of querying our target table after
the initial ingestion. At this point, the table contains 1,000
records, confirming that our stream is correctly configured and
that data is being successfully processed and stored in the target
table.

£ courses Bemolid £ enroll timestamp quantiy & stud

[ [{"course_id"'C0S" 'discount_percent"75,"subtotal":10.29}] 000000000006341 1657520256 1 500788
2 [["course_jd";'C08" "discount_percent":75"subtotal":10.25]] 000000000006342 1657520256 1 300788
3 [["course_jd""C02" 'discount_percent"65,"subtotal"3.8}]  000000000006343 1657531717 1 500654
4 W'course id""C02""discount percent":70"subtotal"8.41 0000000000634 165731717 1 S00654

V1,000 0w | 204 seconds runtme

Figure 5-15. The result of querying the enrollments_updates table

Observing Auto Loader



As part of this demonstration, we can simulate an external
system adding new data files to our source directory. This is
achieved by the load_new_data helper function, which is
provided with our online school dataset. Each execution of this
function mimics the external system adding a single file of 1,000

records:

load new data()

After running the command, a new file is successfully copied to

our source directory, as shown in Figure 5-16.

» v % Python ¢ [,
load_new_data()

Loading @2.json file to the school dataset

Figure 5-16. The output of executing the load_new_data function

To further increase the volume of data for our demonstration,
let’s run the previous command a second time for adding
another file.




With two new files added, we can re-examine the contents of

our source directory to confirm their presence:

files = dbutils.fs.ls(f"{dataset school}/enrollments-
display(files)

Figure 5-17 displays the updated contents of the source
directory, confirming the addition of two new files. Remember;
our Auto Loader stream is still active, continuously scanning
the directory for new files and processing any that are detected.
With this set up, the new files will be processed automatically.

# path &, name| £ size £ modifcationTime

dofs; mnt/DE-Associate-Book|datasetsfschool/enrollments-json-raw/0,son 01json 179874 1714529091000
dofs; mnt/DE-Associate-Book|datasetsfschool/enrollments-json-raw/02json 02json 179833 1714619542000
dofs: mnt[DE-Associate-Book/datasetsfschool/enrolments-json-raw/03son 03json | 170758 1714623297000

Figure 5-17. The content of the source directory after landing a new data file

Returning to our Auto Loader stream above, you can observe its
current activity through the provided dashboard. It indeed
indicates the reception of new batches of data, as illustrated in

Figure 5-18.
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Figure 5-18. Auto Loader stream processing after landing two new data files

To confirm that the new data has been successfully processed

and ingested into our target table, we can check the number of



records in the table:

%sql
SELECT count(*) FROM enrollments updates

This command reveals that our enrollments updates table
now has a total of 3,000 records, confirming the insertion of
data from the new files. This highlights Auto Loader’s capability
to detect and process new files as soon as they appear in the
source directory, demonstrating its efficiency and reliability for
near-real-time data ingestion. Of course, you can also execute
Auto Loader in incremental batch mode by using the

availableNow trigger option.

Exploring table history

After successfully updating our Delta Lake table using Auto
Loader; it’s valuable to review the history of changes made to
the table during this process. To achieve this, let’s run the
DESCRIBE HISTORY command on the enrollments updates
table:

%sql
DESCRIBE HISTORY enrollments updates



Figure 5-19 displays our table history, revealing three new table
versions, each corresponding to an update triggered by the
Auto Loader stream. It’s evident that each of these entries aligns
with the arrival of one of our data files at the source. Note in
particular that writeSteam registers the operation as a
streaming update rather than a normal write operation (see

Chapter 2 for more on the Dela Lake transaction log).

£ versin F@timestamp BuserName % operation 5 operationParameters

3 2020-05-02704:2... Derar Alrussein STREAMING UPDATE  {*outputMode"."Anpend" "queryla":"ed198360-4ca
2 2024-05-02703:1... Derar Alhussein STREAMING UPDATE » {outputMode""Append""queryld":"eh198350-4ca
1 2004-05-02703:1... Derar Alussein STREAING UPDATE  {"outputbode""Append " queryld";"e198350-4ca
0 2024-05-02703:1., Derar Alnussein CREATETABLE ) {"parttionBy""[]"'description":nul"isManaged”"tr

Figure 5-19. The history log of the enrollments_updates table

Cleaning up

At the end of this demonstration, we can tidy up by performing
two cleanup actions: dropping the table and removing the
checkpoint directory. However let’s first revisit our Auto Loader

query and stop the active streaming job.



With the streaming job interrupted, we can proceed to drop the

enrollments_updates table:

%sql
DROP TABLE enrollments updates

Finally, we remove the checkpoint location associated with our

Auto Loader stream by running the dbutils.fs.rm function:

dbutils.fs.rm("dbfs:/mnt/DEA-Book/checkpoints/enrolln

4

In summary, Auto Loader has proven to be a powerful tool for
automating the data ingestion process, allowing for efficient
and scalable data loading. Its ability to handle high volumes of
data makes it an essential component of many modern data
pipelines. In the next section, we’ll explore how to take Auto
Loader to the next level by using it in a medallion architecture,
enabling even more complex and scalable data processing

workflows.

Medallion Architecture



A medallion architecture is a robust approach for efficiently
processing data through multiple stages of transformation. In
this section, we will delve into the fundamental concepts and
benefits of this architecture. Following this, we will explore a
step-by-step guide on implementing a medallion architecture on

the Databricks platform.

Introducing Medallion Architecture

A medallion architecture, also referred to as multi-hop
architecture, is a data design pattern that logically organizes
data in a multi-layered approach. Its primary objective is to
gradually enhance both the structure and the quality of data as

it progresses through successive processing layers.
The layered approach

The medallion architecture is structured into three principal
layers, each serving a distinct purpose in the data refinement
process. These layers are symbolically termed bronze, silver;
and gold, indicating their ascending order of quality and value,

as illustrated in Figure 5-20.
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Figure 5-20. Medallion architecture

Let’s dive deeper to gain a comprehensive understanding of

each of these layers.
Bronze layer

The foundation of the medallion architecture starts at the
bronze layer, which is the initial stage of data ingestion. At this
layer;, data is ingested from external systems and stored in its
rawest form. This raw data is retained in tables known as
bronze tables, which serve as repositories for unprocessed data.

The data stored in these tables is exactly as it was received from



the source systems, without any transformations or
modifications. This approach ensures that the original data is
preserved, preventing data loss and enabling easy auditing and

traceability.

The data sources that feed into the bronze layer are diverse and
varied. They can range from structured data files to operational
databases. Moreover, the bronze tables are also common
destinations for streaming data from platforms like Kafka,

enabling real-time data ingestion and processing.

So, the bronze layer’s primary function is to ensure that all data
is captured and stored, regardless of its source or quality. This
provides a comprehensive snapshot of information in its
original form, serving as a single source of truth for your data

projects.

Silver layer

As data moves up to the silver layer it goes through significant
processing to improve its quality and utility for further analysis.
This middle layer focuses on data cleansing, normalization, and
validation. Incorrect or irrelevant data points are filtered out,
and inconsistencies are resolved to ensure data reliability.

Moreover;, this stage often involves enriching the data by



joining fields from various datasets, thereby providing a more
integrated and coherent view. For instance, data from different
departmental databases might be consolidated to provide a

comprehensive view of organizational operations.

So, the enhancements made at the silver layer are designed to
prepare the data for various analytical tasks that require a

higher degree of data integrity and accuracy.

Gold layer

The final layer is the gold tables, where data reaches its most
business-ready form. This layer is characterized by its role in
facilitating high-level business analytics and intelligence. Data
at this stage is often aggregated and summarized to support
specific business needs, such as performance metrics, financial

summaries, and customer insights.

So, the transformations at the gold layer make the data ready
for reporting, dashboarding, and advanced analytics in machine

learning and Al

Benefits of Medallion Architectures

The medallion architecture offers several advantages that can

be summarized by the following key points:



Simplicity

The architecture represents a simplified data model that is
intuitive and easy to understand and implement. By
organizing data into distinct layers, each serving a specific
purpose, the complexity of data management and
maintenance is significantly reduced.

Incremental ETL

This architecture enables incrementally transforming and
loading data as it arrives. This facilitates integrating new data
and propagating it through each layer of the architecture.
Hybrid workloads

The architecture offers the flexibility to combine both
streaming and batch processing within a unified pipeline.
Each stage can be configured to operate either as a batch or a
streaming job, depending on the nature of the data and the
desired processing latency.

Table reconstruction

Another major benefit of this architecture is the ability to
regenerate downstream tables from raw data at any time.
This capability is particularly valuable in scenarios where
data quality issues are detected during post-processing and
must be solved at the source.

Building Medallion Architectures

In this section, we will walk through a step-by-step process to

implement a complete medallion architecture in Databricks. As



a practical example, we will demonstrate how to manage our
school enrollments using this approach. So, we will continue
using our dataset, consisting of three tables: students,

enrollments, and courses.

In this exercise, we will use a new Python notebook titled “5.3 -
Medallion Architecture.” We begin by running the “School-

Setup” helper notebook to prepare our environment:

%run ../Includes/School-Setup

Let’s start by revisiting the contents of our source directory:

files = dbutils.fs.ls(f"{dataset school}/enrollments-
display(files)

At present, there are three JSON files within the directory, as

illustrated in Figure 5-21.



ABC path Goane fyste & modfiaonTng

oot DE-Aosociae-Book GaasetsSchoolenvolments-son-rawf0tjson O%jsen 179874 1714529091000
oot DE-Aosociae-Book GetasetsSchoolenvolments-son-raw02json  Q2jsen 179833 1714619542000
cofs ot DE-Assocate-Book atasetsschoolenvolments-son-tan03json - (3json 176758 1714623297000

Figure 5-21. The content of the source directory enrollments-json-raw

These files represent the raw material of our data pipeline,

awaiting ingestion into the bronze layer tables.
Establishing the bronze layer

Our journey of implementing a medallion architecture begins in
the bronze layer, which is the foundational layer for data
ingestion. It serves as the initial repository that captures all
incoming data in its rawest form, before any transformation or

cleansing occurs.
Configuring Auto Loader

The first step in the bronze layer typically involves configuring

Auto Loader against the source directory. Here, we configure



our Auto Loader stream to process the input files and load the
data into a Delta Lake table:

import pyspark.sql.functions as F

(spark.readStream
.format("cloudFiles")
.option("cloudFiles.format", "json")
.option("cloudFiles.inferColumnTypes","tru
.option("cloudFiles.schemalLocation",
f"{checkpoint_path}/enrollments_br
.load(f"{dataset school}/enrollments-json-
.select("*",
F.current_timestamp().alias("arriv
F.input_file name().alias("source_
.writeStream
.format("delta")
.option("checkpointLocation",
f"{checkpoint_path}/enrollments_br

.outputMode("append")
.table("enrollments_bronze")

In this segment, we start by initiating a streaming read
operation from our JSON source files. The reader is set to infer

the columns’ data types automatically, ensuring that they are



correctly identified without explicit declaration. The data is then
combined with two supplementary pieces of metadata available
through Auto Loader:

arrival_ time

Timestamp of when the data is ingested, which is valuable for
tracking and auditing purposes.
source_file

The name of the file from which the data is sourced, aiding in
data lineage and troubleshooting.

After the data is read and supplemented with this metadata, it is
streamed directly into a Delta table named

enrollments_bronze.

Upon activating this Auto Loader stream, we can observe that a
new batch of data has been detected and processed, as

illustrated in Figure 5-22.
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Figure 5-22. Streaming write operation by Auto Loader

To inspect the raw data that has been captured, we can simply

query the enrollments_bronze table:

%sql

SELECT * FROM enrollments bronze

Figure 5-23 displays the result of this query, confirming the

successful ingestion of the data along with the added metadata

fields: arrival time and source file.

dowss  Bemlid Aol i, & Qe £ st F@arrival_time B tuee fl

1) (oo .. Q0000000000341 1657520056
1) [oowse 0", 0000000006342 1657520058

) [eourse ™. 0000000006343 1657531717

4 [eouren " (ONAONANNANR3LE  16ATRITNT

v 3001 | 091 econd g

02400317, oo ot DE-Associte
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Figure 5-23. The result of querying the enrollments_bronze table



Next, we can verify the volume of data that has been written

into the bronze layer:

%sql
SELECT count(1) FROM enrollments_bronze

This command reveals that 3,000 records have been persisted,
which corresponds to our three source files, each containing
1,000 records. This confirms that our ingestion process is

correctly configured and functioning as expected.

To demonstrate the stream processing capabilities of our data
pipeline, let’s simulate the arrival of new data in the source

directory using our load_new_data function:

load new_data()

Output: Loading ©4.json file to the school dataset

Returning to our previous active stream, we observe that the
new data is immediately detected and processed by the

streaming query, as illustrated in Figure 5-24.
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Figure 5-24. Auto Loader stream processing after landing the new data file

By re-querying the number of records in the bronze table, we
can verify that the new data has been successfully ingested. As
shown in Figure 5-25, the table now contains 4,000 records,
reflecting an increase of 1,000 records since our last ingestion

process.

5sq1
SELECT count(1) FROM enrollments_bronze

Table v+

%3 count(1)

1 4000

Figure 5-25. The number of records in the enrollments_bronze table after loading
the new input file

Creating a static lookup table



In preparation for data processing within the subsequent layers,
we may need to integrate additional data sources that can
enrich our primary datasets. In our case, we require a static
lookup table of student information. This table will be used in
the silver layer to join with the enrollment data in order to add
more depth and context to our analysis. To create our static
lookup, we use the spark.read method to construct a static
DataFrame from the students’ JSON files:

students_lookup df = (spark.read
.format("json")
.load(f"{dataset school}/stude

4

Before proceeding further, let’s examine the structure and

contents of the newly created lookup DataFrame:

display(students_lookup_ df)

The results, visualized in Figure 5-26, illustrate that the
students lookup DataFrame consists of several columns such

as student ID, email, and profile information.



£ email 1.2 gpa | &% profile % student_id 4% upda

lthomas.lane@gmail.eom 1.06 » {"first_name":"Thomas" "last_name":"Lan... 500301 2021-12
ocolegatele@blogger.com 1.13  » {"first_name":"Odilia" "last_name":"Coleg... 500302 2021-12
acolledged2@nbcnews.com  3.62 > {“first_name":"Andros" "last_name":"Colle... 500303 2021-12
null 1.18 » {"first_name":"Iver" "last_name":"Collet""... 500304 2021-12
nenlliarRr@emin adi 109 | [Miret nama""DanaMact nama-"Pallisr" | QNN2ANR IN91-19

Figure 5-26. Displaying the students_lookup_df DataFrame

With our bronze layer established, we can now progress to the

next phase of our data processing pipeline—the silver layer.

Transitioning to the silver layer

In the silver layer, our focus shifts to refining and enhancing the
data acquired from the bronze layer. At this stage, we refine the
raw data by adding contextual information, formatting values,
and performing data quality checks. Our objective is to ensure
that the data is clean, structured, and optimized for downstream

processing and analysis.

In the following code snippet, we initiate a streaming read
operation on the enrollments_bronze table, and then we apply

a series of transformations to enrich and refine the data:

enrollments_enriched df = (spark.readStream
.table("enrollments_bronze")

N | N V4N | U TR I I Fa N LIRY



.wnere( quantity > v )
.withColumn("formatted timestamp",
F.from unixtime("enroll timestamp",
"yyyy-MM-dd HH:mm:ss")
.join(students_lookup df, "student id")
.select("enroll id", "quantity", "student_ id", "
"formatted timestamp", "courses"

The transformations applied in this step include the following:

Data cleansing

We exclude any enrollments with no items (quantity > 0),
ensuring that only valid records are processed further.
Timestamp formatting

We parse the enrollment timestamp from the Unix time
format into a human-readable format using the
from_unixtime function to facilitate easier understanding
and interpretation.

Data enrichment

We enrich the enrollment data by joining it with the student
information from our static lookup DataFrame
students_lookup df.This adds the students’ email
addresses to the enrollment records.

Column selection

Finally, we select specific columns of interest for further
analysis, including enrollment ID, quantity, student ID, email,



formatted timestamp, and course information.

These transformations are executed using the PySpark API.
However; it’s worth noting that similar operations can also be
achieved using Spark SQL. By registering a streaming
temporary view against the bronze table, we can leverage SQL
queries to perform the same transformations, just like we did

earlier in this chapter.

Subsequently, we proceed to persist this processed streaming
data into a dedicated silver table. We accomplish this by
performing a stream write operation on the

enrollments_enriched_df DataFrame:

(enrollments_enriched _df.writeStream
.format("delta")
.option("checkpointLocation",
f"{checkpoint_ path}/en
.outputMode("append")
.table("enrollments _silver"))

4

This code snippet sets up a continuous streaming write into the
enrollments_silver table. By specifying the output mode as

"append" , new records will be added to the table as they are



processed, ensuring that the table is incrementally populated

with the latest data from the bronze layer.

Upon executing the previous command, our stream is activated,
and data starts flowing into the silver table, as illustrated in

Figure 5-27.
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Figure 5-27. Stream processing in the silver layer

To verify the written data, let’s query the enrollments_silver
table:

%sql
SELECT * FROM enrollments_silver

Figure 5-28 displays the result of querying our silver table. The
presence of all 4,000 records confirms the successful data

processing and writing.

Gomld Aoty A suden.. el F@formatted_timeslamp g U

1 0000000000036 1500004 sfartarchreuterscom 2022-07-12T171357.00., ) [{'course "
1 0000000000939 100094 arbarafh@reuterscom 2022-07-12T17:4357.00.,  [['oourse "

3 0000000000837 1 S004%  sfatardh@reuterscom 2022-07-12T17135700., ) [{"course_ "

A AMANNAAAAAQ20A 1 ¢hnAaA efairhardfhArantare sam NN AOTATALRTON Y [amures 1Al

v 400 rows | 1.41seconds urim

Figure 5-28. The result of querying the enrollments_silver table



To further demonstrate the dynamic capabilities of our data
pipeline, let’s trigger the arrival of new data files in our source
directory using the load_new_data function. We then monitor
the propagation of this new data through the bronze layer and

into the silver layer.

load new_data()

Output: Loading ©5.json file to the school dataset

The new data now seamlessly propagates through the pipeline,
starting from the active Auto Loader steam and continuing
through to the silver layer. We can track the progress of
processing using the dashboard associated with each stream.
Figure 5-29 showcases the latest updates in the silver layer
confirming the successful handling of the new data by our

stream.
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Figure 5-29. Stream processing in the silver layer after landing the new data file

With the addition of 1,000 records from the latest file, the total
count in the enrollments_silver table now stands at 5,000

records, as shown in Figure 5-30.

%sqL
SELECT count(1) FROM enrollments_silver

Table v +

%3 count(1)

1 5000

Figure 5-30. The number of records in the enrollments_silver table after loading
the new input file

From here, we can now advance to the final phase of our

medallion architecture—the gold layer.

Advancing to the gold layer



In the gold layer, we concentrate on providing high-level
aggregations and summaries. This layer is important for
supporting business intelligence and analytics applications by

presenting the data in its most refined form.

Our task here involves creating an aggregate table that
summarizes the daily number of course enrollments per
student. To accomplish this, we initiate a streaming read
operation on the enrollments_silver table, and then we
perform the necessary transformations to aggregate the data by

student ID, email, and day:

enrollments _agg df =(spark.readStream
.table("enrollments_silver")
.withColumn("day", F.date_trunc("DD", "for
.groupBy("student_id", "email", "day")
.agg(F.sum("quantity").alias("courses_coun

.select("student_id", "email", "day", "cou

In the previous code, the date_trunc function is used to
truncate the timestamp to the day level, allowing us to group
the data by day.



Once this aggregation logic is applied, we can proceed to persist
the aggregated data into a dedicated gold table named

daily student courses:

(enrollments_agg df.writeStream
.format("delta™)
.outputMode("complete")
.option("checkpointLocation",

f"{checkpoint path}/daily student_
.trigger(availableNow=True)
.table("daily student_courses"))

In this configuration, we specify the output mode as
"complete" , indicating that the entire aggregation result

should be rewritten each time the logic runs.

NOTE
Structured Streaming assumes data is being appended only in the upstream tables.
Once a table is updated or overwritten, it becomes invalid for streaming reads.
Therefore, reading a stream from such a gold table is not supported. To alter this
behavior, options like skipChangeCommits can be utilized, although they may come

with other implications that need to be considered. See the Databricks

documentation for more information.



https://oreil.ly/8ZrqL

By running this streaming query, our stream will process all
available data in micro-batches and then stop automatically,
thanks to the availableNow trigger option. This approach
allows us to seamlessly integrate streaming and batch

workloads within the same pipeline.

Now, we can inspect the aggregated data written into the

daily student_courses table:

%sql
SELECT * FROM daily student courses

Figure 5-31 displays the contents of our gold table, showcasing
the daily enrollment statistics. You can observe that the
students currently have course counts ranging between 5 and

10, reflecting the cumulative enrollment till now.
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Figure 5-31. The result of querying the daily student_courses table

Let’s simulate the arrival of more new data by triggering the
ingestion of another file into our source directory. This action
initiates the propagation of data through our pipeline, from the

bronze to the silver and gold layers:

load new_data()

Output: Loading 66.json file to the school dataset



The new data will automatically propagate into both the bronze
and silver layers as they maintain active continuous streams in
place. Figure 5-32 illustrates the updated progress of the stream

processing in the silver sayer after receiving the new data.
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Figure 5-32. Stream processing in the silver layer after landing the new data file

However, for the gold layer; it’s necessary to explicitly rerun its
streaming query to update the table. Remember; this query was
configured as an incremental batch job using the

availableNow trigger option.

Upon re-executing the streaming write query of our gold table,
the newly ingested data is processed to reflect the latest
changes. To confirm the successful update, we can again query
the daily_student_courses table. Figure 5-33 illustrates the
updated content of this gold table, showcasing students with an

increased number of course enrollments.
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300836 dkownot!r@columbiaedy  2022-07-17700:00:00.000+00:00 b
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Figure 5-33. The result of querying the daily student_courses table after
processing the new data

Stopping active streams

Finally, at the end of this demonstration, it’s important to ensure
that all active streams in our notebook are properly terminated.
This can be easily achieved by executing a loop that iterates
through each active stream in the current Spark session and

stops them:

for s in spark.streams.active:
print("Stopping stream: " + s.id)

< <tnn()\



ey

s.awaitTermination()

Stopping stream: 1de86382-39ec-4905-af5e-eebbd5bdcl6€
Stopping stream: f9086ea8-1051-4ba5-8682-476260b449ca

4

Conclusion

In conclusion, the medallion architecture provides a structured
and incremental approach to data processing, which is highly
beneficial for modern data engineering tasks. By organizing
data into distinct layers based on its level of refinement, this
architecture enables you to efficiently process and analyze data,
while ensuring data quality and accuracy. This makes it the
ideal choice for building data pipelines in the lakehouse that
can support a wide range of data-driven applications and

analytics.

Sample Exam Questions

Conceptual Question

1. A data engineering team is working on a large-scale data

pipeline for a global e-commerce platform. The platform collects



vast amounts of customer transaction data, which is
continuously landed into a cloud storage system in file format.
The team needs to process this incoming data in near real-time,
ensuring that all new files are ingested efficiently, without
missing any records. The team decides to use Auto Loader for
this task.

Based on this scenario, which of the following statements best
describes how Auto Loader can help the data engineering team

in this situation?

1. Auto Loader requires no computing resources, allowing
users to process unlimited amounts of data without affecting
performance.

2. Auto Loader automatically detects and processes new data
files as they arrive in cloud storage, without reprocessing
previously processed files.

3. Auto Loader reprocesses the entire set of files in cloud
storage each time new data is added, which ensures that no
file is missed.

4. Auto Loader is based on the COPY INTO command to ensure
new files are detected and processed in real-time.

5. Auto Loader supports only batch processing, making it
unsuitable for streaming or continuously updating data

pipelines.



Code-Based Question

2. A data engineer uses the following Structured Streaming
query to process incoming orders and compute the total cost of
each order, including tax. The processed data is then written to

a table named new_orders:

( spark.table("orders")
.withColumn("total after tax", col("total")+c
.writeStream
.option("checkpointLocation", checkpointPath)
.outputMode("append")

.table("new_orders"))

The engineer needs the query to execute multiple micro-
batches to process all available data, and then stop

automatically when there is no more data left to process.

Which of the following lines of code fills in the blank to achieve

the desired outcome?

1. trigger ( "micro-batches")



2. trigger ( once = True )
3. trigger ( processingTime = "@ seconds" )
4. trigger ( micro-batches = True )

5. trigger ( availableNow = True )

The correct answers to these questions are listed in Appendix C.



Chapter 6. Building Production
Pipelines

As our data pipelines grow in complexity, we need to consider
how to productionize them to ensure reliability, scalability, and
maintainability. This is where building production pipelines
comes in, and it’s the focus of the following pages. In this
chapter, we’ll explore how to create robust and efficient
production pipelines using Delta Live Tables and Databricks
Jobs. We will delve into the nuances of controlling data quality,
capturing data changes, and orchestrating workflows to

automate our pipelines.

Exploring Delta Live Tables

Delta Live Tables (DLT) is a powerful tool that enables you to
build production data pipelines with ease. By providing a simple
and intuitive way to manage data pipelines, DLT empowers you
to focus on extracting insights from your data. In this section,
we will delve into the world of Delta Live Tables, exploring its

key features, benefits, and use cases.

Introducing Delta Live Tables



Delta Live Tables is a declarative ETL framework powered by
Apache Spark for building reliable and maintainable data
pipelines. It’s designed to simplify the process of creating large-
scale data processing pipelines, while maintaining table

dependencies and data quality.

Figure 6-1 illustrates a sample DLT pipeline, which will be built

in the subsequent section of this chapter.
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Figure 6-1. Example of a DLT pipeline

As shown, the DLT pipeline is well-visualized, allowing you to

easily identify your tables and the dependencies between them.



Benefits of Delta Live Tables

DLT provides several advantages over Apache Spark and other

traditional ETL frameworks, including the following:

Simplified pipeline construction

DLT offers a declarative approach to pipeline construction,
enabling you to write less code and thereby reduce
complexity and development time.

Maintain table dependencies

DLT uses directed acyclic graphs (DAGs) to efficiently manage
table dependencies within data pipelines, enhancing their
reliability and maintainability.

Support for data quality control

DLT provides built-in support for data quality control,
ensuring the production of high-quality data outputs.

Comparison of DLT and Spark Structured Streaming

The primary goal of DLT is to reduce the overhead associated
with constructing and maintaining complex pipelines. To better
understand the differences between DLT and Spark Structured
Streaming, let’s compare their key features, outlined in Table 6-
1.



Table 6-1. Comparison of DLT and Spark Structured Streaming

Python

syntax

SQL
support

Data
quality

control

Spark Structured

Streaming

spark.readStream
.format("cloudFiles")
.option("cloudFiles.format",
"json")
.load('/some/path/")
.writeStream
.option("checkpointLocation",
"/path")
.table("orders_raw")

Cannot create streaming
tables in Spark SQL
syntax only. It needs to

pass by PySpark to

register streaming tables.

Supports basic data
quality control using
Delta Lake table

constraints.

DLT

import dlt
@dlt.table
def orders_raw():
return (spark.re
.for

.opt

.loa

Supports creat
tables in SQL v
MING TABLE sy

Provides advar

control using [



Let’s dive deeper to gain a comprehensive understanding of

these differences.
Syntax

One of the most notable differences between DLT and Spark
Structured Streaming lies in their Python syntax. Spark
Structured Streaming employs the readStream and
writeStream methods to define incremental tables. In contrast,
DLT simplifies this process through the use of the @d1t.table
decorator, which defines incremental tables without the need
for explicit stream writing. This decorator abstracts the
complexities of streaming data management, including

checkpointing, which is automatically managed by DLT.

SQL support

SQL support is another area where DLT and Spark Structured
Streaming diverge significantly. As discussed in Chapter 5, Spark
Structured Streaming does not inherently support the creation
of streaming tables solely using SQL syntax. Instead, you must
use PySpark to read and write streaming tables. On the other
hand, DLT supports the creation of incremental tables using
simple SQL syntax via the CREATE STREAMING TABLE statement.
This feature allows users to leverage their SQL skills directly

without needing to delve into PySpark or Scala.



Data quality control

Another significant difference between DLT and Spark is their
support for data quality control. Apache Spark lacks native
support for data quality control, leaving it up to developers to
implement their own solutions. While Delta Lake table
constraints (e.g., check constraints) do help in this area, DLT, by
contrast, can natively enforce advanced data quality standards
using DLT expectations. These expectations provide enhanced
capabilities for validation conditions, actions, and tracking
violations. This built-in support for advanced data quality
control makes DLT a more robust and reliable choice for data

processing.

In essence, while the DLT framework is built on top of Apache
Spark, their differences mean that any code written for Spark
cannot be directly deployed within the DLT framework. You

must refactor your existing Spark code to conform to the DLT

syntax and leverage its features, such as the DLT expectations.

DLT object types

Delta Live Tables provides various object types to handle

different use cases and requirements. In DLT, you can create



three primary types of objects: streaming t