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0: About the book

This 2025 edition gets you up to speed with Docker and
containers fast. No prior experience required.

Why should I read this book or care about Docker?

Docker has already changed how we build, share, and run
applications, and it’s poised to play a major role with emerging
technologies such as Wasm and AI.

So, if you want the best jobs working with the best technologies,
you need a strong Docker skillset. It will even give you a head
start learning and working with Kubernetes.

How I’ve organized the book

I’ve divided the book into two main sections:

1. The big picture stuff
2. The technical stuff

The big picture stuff gets you up to speed with the basics, such
as what Docker is, why we use containers, and fundamental
jargon such as cloud-native, microservices, and orchestration.



The technical stuff section covers everything you need to
know about images, containers, multi-container microservices
apps, and the increasingly important topic of orchestration. It
even covers WebAssembly, AI, vulnerability scanning,
debugging containers, high availability, and more.



Chapter breakdown

Chapter 1: Summarizes the history and future of Docker and
containers
Chapter 2: Explains the most important container-related
standards and projects
Chapter 3: Shows you a few ways to get Docker
Chapter 4: Walks you through deploying your first container
Chapter 5: Deep dive into the Docker Engine architecture
Chapter 6: Deep dive into images and image management
Chapter 7: Deep dive into containers and container
management
Chapter 8: Deep dive into containerizing applications
Chapter 9: Walks you through deploying and managing a
multi-container AI chatbot app with Docker Compose
Chapter 10: Walks you through building, containerizing, and
running a Wasm app with Docker
Chapter 11: Builds a highly-available and secure Swarm
cluster
Chapter 12: Walks you through deploying, scaling, and self-
healing a multi-container app running on Swarm
Chapter 13: Deep dive into Docker networking
Chapter 14: Walks you through building and working with
overlay networks



Chapter 15: Introduces you to persistent and non-persistent
data in Docker
Chapter 16: Covers all the major Linux and Docker security
technologies

Editions and updates

Docker, AI, and the cloud-native ecosystem are evolving fast,
and 2-3-year-old books are dangerously out of date. As a result,
I’m committed to updating the book every year.

If that sounds excessive, welcome to the new normal.

The book is available in hardback, paperback, and e-book on all
good book publishing platforms.

Kindle updates

Unfortunately, Kindle readers cannot get updates — even if you
delete the book and buy it again, you’ll get the older version you
originally purchased. I have no control over this and was
devastated when this change happened.

Feedback

If you like the book and it helps your career, share the love by
recommending it to a friend and leaving a review on Amazon or



Goodreads.

If you spot a typo or want to make a recommendation, email me
at ddd@nigelpoulton.com and I’ll do my best to respond.

That’s everything. Let’s get rocking with Docker!



Part 1: The big picture stuff



1: Containers from 30,000 feet

Containers have taken over the world!

In this chapter, you’ll learn why we have containers, what they
do for us, and where we can use them.

The bad old days

Applications are the powerhouse of every modern business.
When applications break, businesses break.

Most applications run on servers, and in the past, we were
limited to running one application per server. As a result, the
story went something like this:

Every time a business needed a new application, it had to buy a
new server. Unfortunately, we weren’t very good at modeling
the performance requirements of new applications, and we had
to guess. This resulted in businesses buying bigger, faster, and
more expensive servers than necessary. After all, nobody
wanted underpowered servers incapable of handling the app,
resulting in unhappy customers and lost revenue. As a result,
we ended up with racks and racks of overpowered servers
operating as low as 5-10% of their potential capacity. This was a
tragic waste of company capital and environmental resources.



Hello VMware!

Amid all this, VMware, Inc. gave the world a gift — the virtual
machine (VM) — a technology that allowed us to run multiple
business applications on a single server safely.

It was a game-changer. Businesses could run new apps on the
spare capacity of existing servers, spawning a golden age of
maximizing the value of existing assets.

VMwarts

But, and there’s always a but! As great as VMs are, they’re far
from perfect.

For example, every VM needs its own dedicated operating
system (OS). Unfortunately, this has several drawbacks,
including:

Every OS consumes CPU, RAM, and other resources we’d
rather use on applications
Every VM and OS needs patching
Every VM and OS needs monitoring

VMs are also slow to boot and not very portable.

Hello Containers!



While most of us were reaping the benefits of VMs, web scalers
like Google had already moved on from VMs and were using
containers.

A feature of the container model is that every container shares
the OS of the host it’s running on. This means a single host can
run more containers than VMs. For example, a host that can
run 10 VMs might be able to run 50 containers, making
containers far more efficient than VMs.

Containers are also faster and more portable than VMs.

Linux containers

Modern containers started in the Linux world and are the
product of incredible work from many people over many years.
For example, Google contributed many container-related
technologies to the Linux kernel. It’s thanks to many
contributions like these that we have containers today.

Some of the major technologies underpinning modern
containers include kernel namespaces, control groups (cgroups),
and capabilities.

However, despite all this great work, containers were incredibly
complicated, and it wasn’t until Docker came along that they



became accessible to the masses.

Note: I know that many container-like technologies pre-date
Docker and modern containers. However, none of them
changed the world the way Docker has.

Hello Docker!

Docker was the magic that made Linux containers easy and
brought them to the masses. We’ll talk a lot more about Docker
in the next chapter.

Docker and Windows

Microsoft worked hard to bring Docker and container
technologies to the Windows platform.

At the time of writing, Windows desktop and server platforms
support both of the following:

Windows containers
Linux containers

Windows containers run Windows apps and require a host
system with a Windows kernel. Windows 10, Windows 11, and
all modern versions of Windows Server natively support
Windows containers.



Windows systems can also run Linux containers via the WSL 2
(Windows Subsystem for Linux) subsystem.

This means Windows 10 and Windows 11 are great platforms
for developing and testing Windows and Linux containers.

However, despite all the work developing Windows containers,
almost all containers are Linux containers. This is because
Linux containers are smaller and faster, and more tooling exists
for Linux.

All of the examples in this edition of the book are Linux
containers.

Windows containers vs Linux containers

It’s vital to understand that containers share the kernel of the
host they’re running on. This means containerized Windows
apps need a host with a Windows kernel, whereas
containerized Linux apps need a host with a Linux kernel.
However, as mentioned, you can run Linux containers on
Windows systems that have the WSL 2 backend installed.

Terminology: A containerized app is an application
running as a container. We’ll cover this in a lot of detail later.

What about Mac containers?



There is no such thing as Mac containers. However, Macs are
great platforms for working with containers, and I do all of my
daily work with containers on a Mac.

The most popular way of working with containers on a Mac is
Docker Desktop. It works by running Docker inside a lightweight
Linux VM on your Mac. Other tools, such as Podman and
Rancher Desktop, are also great for working with containers on
a Mac.

What about Wasm

Wasm (WebAssembly) is a modern binary instruction set that
builds applications that are smaller, faster, more secure, and
more portable than containers. You write your app in your
favorite language and compile it as a Wasm binary that will run
anywhere you have a Wasm runtime.

However, Wasm apps have many limitations, and we’re still
developing many of the standards. As a result, containers
remain the dominant model for cloud-native applications.

The container ecosystem is also much richer and more mature
than the Wasm ecosystem.



As you’ll see in the Wasm chapter, Docker and the container
ecosystem are adapting to work with Wasm apps, and you
should expect a future where VMs, containers, and Wasm apps
run side-by-side in most clouds and applications.

This book is up-to-date with the latest Wasm and container
developments.

Docker an AI

Containers are already the industry standard for packaging and
running applications, and Docker is the most popular developer
tool for working with containers. As such, developers and
businesses are turning to Docker as the preferred platform for
developing and deploying AI and ML applications such as LLMs
and other GenAI apps.

However, a vital part of any AI or ML application is access to
specialized hardware such as Graphics Processing Units (GPU),
Tensor Processing Units (TPU), and Neural Processing Units
(NPU). At the time of writing, Docker supports NVIDIA GPUs. In
the future, we should expect Docker to support other GPUs,
TPUs, NPUs, and even WebGPU.

Later in the book, you’ll use Docker to deploy LLM applications
that can run on GPUs or regular CPUs.

https://en.wikipedia.org/wiki/WebGPU


What about Kubernetes

Kubernetes is the industry standard platform for deploying and
managing containerized apps.

Older versions of Kubernetes used Docker to start and stop
containers. However, newer versions use containerd, which is a
stripped-down version of Docker optimized for use by
Kubernetes and other platforms.

The important thing to know is that all Docker containers work
on Kubernetes.

Check out these books if you need to learn Kubernetes:

Quick Start Kubernetes: This is ~100 pages and will get you
up-to-speed with Kubernetes in a single day!
The Kubernetes Book. This is the ultimate book for
mastering Kubernetes.



I update both books annually to ensure they’re up-to-date with
the latest and greatest developments in the cloud native
ecosystem.

Chapter Summary

We used to live in a world where every business application
needed a dedicated, overpowered server. VMware came along
and allowed us to run multiple applications on new and existing
servers. However, following the success of VMware and
hypervisors, a newer, more efficient, and portable virtualization
technology called containers came along. However, containers
were complex and hard to implement until Docker came along
and made them easy. Wasm and AI are powering new
innovations, and the Docker ecosystem is evolving to work with



both. The book has entire chapters dedicated to working with AI
apps and Wasm apps on Docker.



2: Docker and container-related standards
and projects

This chapter introduces you to Docker and some of the most
important standards and projects shaping the container
ecosystem. The goal is to lay some foundations that we’ll build
on in later chapters.

This chapter has two main parts:

Docker
Container-related standards and projects

Docker

Docker is at the heart of the container ecosystem. However, the
term Docker can mean two things:

1. The Docker platform
2. Docker, Inc.

The Docker platform is a neatly packaged collection of
technologies for creating, managing, and orchestrating
containers. Docker, Inc. is the company that created the Docker
platform and continues to be the driving force behind
developing new features.



Let’s dive a bit deeper.

Docker, Inc.

Docker, Inc. is a technology company based out of Palo Alto and
founded by French-born American developer and entrepreneur
Solomon Hykes. Solomon is no longer at the company.

The company started as a platform as a service (PaaS) provider
called dotCloud. Behind the scenes, dotCloud delivered its
services on top of containers and had an in-house tool to help
them deploy and manage those containers. They called this in-
house tool Docker.

The word Docker is a British expression short for dock worker
referring to someone who loads and unloads cargo from ships.

In 2013, dotCloud dropped the struggling PaaS side of the
business, rebranded as Docker, Inc., and focused on bringing
Docker and containers to the world.

The Docker technology

The Docker platform makes it easy to build, share, and run
containers.



At a high level, there are two major parts to the Docker
platform:

The CLI (client)
The engine (server)

The CLI is the familiar docker  command-line tool for deploying
and managing containers. It converts simple commands into
API requests and sends them to the engine.

The engine comprises all the server-side components that run
and manage containers.

Figure 2.1 shows the high-level architecture. The client and
engine can be on the same host or connected over the network.

Figure 2.1 Docker client and engine.



In later chapters, you’ll see that the client and engine are
complex and comprise a lot of small specialized parts. Figure 2.2
gives you an idea of some of the complexity behind the engine.
However, the client hides all this complexity so you don’t have
to care. For example, you type friendly docker  commands into
the CLI, the CLI converts them to API requests and sends them
to the daemon, and the daemon takes care of everything else.

Figure 2.2 Docker CLI and daemon hiding complexity.

Let’s switch focus and briefly look at some standards and
governance bodies.

Container-related standards and projects

Several important standards and governance bodies influence
container development and the container ecosystem. Some of
these include:



The OCI
The CNCF
The Moby Project

The Open Container Initiative (OCI)

The Open Container Initiative (OCI) is a governance council
responsible for low-level container-related standards.

It operates under the umbrella of the Linux Foundation and
was founded in the early days of the container ecosystem when
some of the people at a company called CoreOS didn’t like the
way Docker was dominating the ecosystem. In response,
CoreOS created an open standard called appc that defined
specifications for things such as image format and container
runtime. They also created a reference implementation called
rkt (pronounced “rocket”).

The appc standard did things differently from Docker and put
the ecosystem in an awkward position with two competing
standards.

While competition is usually a good thing, competing standards
are generally bad, as they generate confusion that slows down
user adoption. Fortunately, the main players in the ecosystem
came together and formed the OCI as a vendor-neutral

https://www.opencontainers.org/
https://www.linuxfoundation.org/projects
https://github.com/appc/spec/


lightweight council to govern container standards. This allowed
us to archive the appc project and place all low-level container-
related specifications under the OCI’s governance.

At the time of writing, the OCI maintains three standards called
specs:

The image-spec
The runtime-spec
The distribution-spec

We often use a rail tracks analogy when explaining the OCI
standards:

When the size and properties of rail tracks were standardized, it
gave entrepreneurs in the rail industry confidence the trains,
carriages, signaling systems, platforms, and other products they
built would work with the standardized tracks — nobody
wanted competing standards for track sizes.

The OCI specifications did the same thing for the container
ecosystem and it’s flourished ever since. Docker has also
changed a lot since the formation of the OCI, and all modern
versions of Docker implement all three OCI specs. For example:

The Docker builder (BuildKit) creates OCI compliant-images

https://github.com/opencontainers/image-spec
https://github.com/opencontainers/runtime-spec
https://github.com/opencontainers/distribution-spec


Docker uses an OCI-compliant runtime to create OCI-
compliant containers
Docker Hub implements the OCI distribution spec and is an
OCI-compliant registry

Docker, Inc. and many other companies have people serving on
the OCI’s technical oversight board (TOB).

The CloudNative Computing Foundation (CNCF)

The Cloud Native Computing Foundation (CNCF) is another
Linux Foundation project that is influential in the container
ecosystem. It was founded in 2015 with the goal of “…advancing
container technologies… and making cloud native computing
ubiquitous”.

Instead of creating and maintaining container-related
specifications, the CNCF hosts important projects such as
Kubernetes, containerd, Notary, Prometheus, Cilium, and lots
more.

When we say the CNCF hosts these projects, we mean it
provides a space, structure, and support for projects to grow
and mature. For example, all CNCF projects pass through the
following three phases or stages:

https://www.cncf.io/


Sandbox
Incubating
Graduated

Each phase increases a project’s maturity level by requiring
higher standards of governance, documentation, auditing,
contribution tracking, marketing, community engagement, and
more. For example, new projects accepted as sandbox projects
may have great ideas and great technology but need help and
resources to create strong governance, etc. The CNCF helps with
all of that.

Graduated projects are considered ready for production and are
guaranteed to have strong governance and implement good
practices.

If you look back to Figure 2.2, you’ll see that Docker uses at least
two CNCF technologies — containerd and Notary.

The Moby Project

Docker created the Moby project as a community-led place for
developers to build specialized tools for building container
platforms.



Platform builders can pick the specific Moby tools they need to
build their container platform. They can even compose their
platforms using a mix of Moby tools, in-house tools, and tools
from other projects.

Docker, Inc. originally created the Moby project, but it now has
members including Microsoft, Mirantis, and Nvidia.

The Docker platform is built using tools from various projects,
including the Moby project, the CNCF, and the OCI.

Chapter summary

This chapter introduced you to Docker and some of the major
influences in the container ecosystem.

Docker, Inc., is a technology company based in Palo Alto that is
changing how we do software. They were the first movers and
instigators of the modern container revolution.

The Docker platform focuses on running and managing
application containers. It runs on Linux and Windows, can be
installed almost anywhere, and offers a variety of free and paid-
for products.

The Open Container Initiative (OCI) governs low-level container
standards and maintains specifications for runtimes, image



format, and registries.

The CNCF provides support for important cloud-native projects
and helps them mature into production-grade tools.

The Moby project hosts low-level tools developers can use to
build container platforms.



3: Getting Docker

There are lots of ways to get Docker and work with containers.
This chapter will show you the following ways:

Docker Desktop
Multipass
Server installs on Linux

I strongly recommend you install and use Docker Desktop. It’s
the best way to work with Docker, and you’ll be able to use it to
follow most of the examples in the book. I use it every day.

If you can’t use Docker Desktop, we’ll show you how to install
Docker in a Multipass VM, as well as how to perform a simple
installation on Linux. However, these installations don’t have all
the features of Docker Desktop.

Docker Desktop

Docker Desktop is a desktop app from Docker, Inc. and is the
best way to work with containers. You get the Docker Engine, a
slick UI, all the latest plugins and features, and an extension
system with a marketplace. You even get Docker Compose and a
Kubernetes cluster if you want to learn Kubernetes.



It’s free for personal use and education, but you’ll have to pay a
license fee if you use it for work and your company has over
250 employees or does more than $10M in annual revenue.

Docker Desktop on Windows 10 and Windows 11 Professional
and Enterprise editions supports Windows containers and Linux
containers. Docker Desktop on Mac, Linux, and Home editions
of Windows only support Linux containers. All of the examples
in the book and almost all of the containers in the real world
are Linux containers.

Let’s install Docker Desktop on Windows and MacOS.

Windows prereqs

Docker Desktop on Windows requires all of the following:

64-bit version of Windows 10/11
Hardware virtualization support must be enabled in your
system’s BIOS
WSL 2

Be very careful changing anything in your system’s BIOS.

Installing Docker Desktop on Windows 10 and 11



Search the internet for “install Docker Desktop on Windows”.
This will take you to the relevant download page, where you
can download the installer and follow the instructions. When
prompted, you should install and enable the WSL 2 backend
(Windows Subsystem for Linux).

Once the installation is complete, you need to manually start
Docker Desktop from the Windows Start menu. It may take a
minute to start, but you can watch the start progress via the
animated whale icon on the Windows taskbar at the bottom of
the screen.

Once it’s running, you can open a terminal and type some
simple docker  commands.

$ docker version 
<Snip> 
Server: Docker Desktop 4.37.0 (177092) 
 Engine: 
  Version:          27.4.0 
  API version:      1.47 (minimum version 1.24) 
  Go version:       go1.22.9 
  OS/Arch:          linux/amd64 
<Snip> 

Congratulations. You now have a working installation of Docker
on your Windows machine.



Notice how the Server  output shows OS/Arch: linux/amd64 .
This is because a default installation assumes you’ll be working
with Linux containers.

Some versions of Windows let you switch to Windows
containers by right-clicking the Docker whale icon in the
Windows notifications tray and selecting Switch to Windows
containers…. Doing this keeps existing Linux containers
running in the background, but you won’t be able to see or
manage them until you switch back to Linux containers mode.

Make sure you’re running in Linux containers mode so you can
follow along with the examples later in the book.

Installing Docker Desktop on Mac

Docker Desktop for Mac is like Docker Desktop for Windows —
a packaged product with a slick UI that gets you the full Docker
experience on your laptop.

Before proceeding with the installation, you need to know that
Docker Desktop on Mac installs the daemon and server-side
components inside a lightweight Linux VM that seamlessly
exposes the API to your local Mac environment. This means you
can open a terminal on your Mac and run docker  commands
without ever knowing it’s all running in a hidden VM. This is



also why Mac versions of Docker Desktop only work with Linux
containers — everything’s running inside a Linux VM.

Figure 3.1 shows the high-level architecture for Docker Desktop
on Mac.

Figure 3.1

The simplest way to install Docker Desktop on your Mac is to
search the web for “install Docker Desktop on MacOS”, follow
the links to the download, and then complete the simple
installer.

When the installer finishes, you’ll have to start Docker Desktop
from the MacOS Launchpad. It may take a minute to start, but
you can watch the animated Docker whale icon in the status bar
at the top of your screen. Once it’s started, you can click the
whale icon to manage Docker Desktop.



Open a terminal window and run some regular Docker
commands. Try the following.

$ docker version 
Client: 
 Version:           27.4.0-rc.3 
 API version:       1.47 
 OS/Arch:           darwin/arm64 
<Snip> 
Server: Docker Desktop 4.37.0 (177092) 
 Engine: 
  Version:          27.4.0-rc.3 
  API version:      1.47 (minimum version 1.24) 
  OS/Arch:          linux/arm64 
 containerd: 
  Version:          1.7.21 
 runc: 
  Version:          1.1.13 
 docker-init: 
  Version:          0.19.0 
<Snip> 

Notice that the OS/Arch:  for the Server component shows as
linux/amd64  or linux/arm64 . This is because the daemon
runs inside the Linux VM mentioned earlier. The Client
component is a native Mac application and runs directly on the
Mac OS Darwin kernel. This is why it shows as darwin/amd64
or darwin/arm64 .

You can now use Docker on your Mac.



Installing Docker with Multipass

Only consider this section if you can’t use Docker Desktop.

Multipass installations don’t ship with out-of-the-box support
for features such as docker scout , docker debug , and docker
init .

Multipass is a free tool for creating cloud-style Linux VMs on
your Linux, Mac, or Windows machine and is incredibly easy to
install and use. It’s an easy way to create multi-node production-
like Docker clusters.

Go to https://multipass.run/install  and install the right
edition for your hardware and OS.

Once installed, you only need three commands:

$ multipass launch  
$ multipass ls 
$ multipass shell 

Run the following command to create a new VM called node1
based on the docker image. The docker image has Docker pre-
installed and ready to go.

$ multipass launch docker --name node1 



It’ll take a minute or two to download the image and launch the
VM.

List VMs to make sure yours launched properly.

You’ll use the 192.168.x.x IP address when working with the
examples later in the book.

Connect to the VM with the following command.

$ multipass shell node1 

Once connected, you can run the following commands to check
your Docker version and list installed CLI plugins.

$ docker --version 
Docker version 26.1.0, build 9714adc 
 
$ docker info 

$ multipass ls 
 
Name                    State             IPv4             Image 
node1                   Running           192.168.64.37    Ubuntu 24.04 LT
                                          172.17.0.1 
                                          172.18.0.1 



Client: Docker Engine - Community 
 Version:    27.3.1 
 Context:    default 
 Debug Mode: false 
  Plugins: 
  buildx: Docker Buildx (Docker Inc.) 
    Version:  v0.17.1 
    Path:     /usr/libexec/docker/cli-plugins/docker-buildx 
  compose: Docker Compose (Docker Inc.) 
    Version:  v2.29.7 
    Path:     /usr/libexec/docker/cli-plugins/docker-compose 
  <Snip> 

You can type exit  to log out of the VM, and multipass shell
node1  to log back in. You can also type multipass delete
node1  and then multipass purge  to delete it.

Installing Docker on Linux

Only consider this section if you can’t use Docker Desktop, as it
doesn’t give you access to docker scout , docker debug , or
docker init .

These instructions show you how to install Docker on Ubuntu
Linux 24.04 and are just for guidance purposes. Lots of other
installation methods exist, and you should search the web for
the latest instructions.

$ sudo snap install docker 
<Snip> 



docker 27.2.0 from Canonical✓ installed 

Run some commands to test the installation. You’ll have to
prefix them with sudo .

$ sudo docker --version 
Docker version 27.2.0, build 3ab4256 
 
$ sudo docker info 
<Snip> 
Server: 
 Containers: 0 
  Running: 0 
  Paused: 0 
  Stopped: 0 
 Images: 0 
 Server Version: 27.2.0 
<Snip> 

If you don’t like adding sudo  before Docker commands, you
can run the following commands to create a docker group and
add your user account to it.

$ sudo groupadd docker 
 
$ sudo usermod -aG docker $(whoami) 

You’ll need to restart Docker for the changes to take effect. This
is how you restart Docker on many Ubuntu Linux distributions.



Yours may be different.

$ sudo service docker start 

Chapter Summary

You can run Docker almost anywhere, and installing it’s easier
than ever.

Docker Desktop gives you a fully functional Docker
environment on your Linux, Mac, or Windows machine and is
the best way to get a Docker development environment on your
local machine. It’s easy to install, includes the Docker Engine,
has a slick UI, and has a marketplace with lots of extensions to
extend its capabilities. It works with docker scout , docker
debug , and docker init , and it even lets you spin up a
Kubernetes cluster.

Multipass is a great way to spin up a local VM running Docker,
and there are lots of ways to install Docker on Linux servers.
These give you access to most of the free Docker features but
lack some of the features of Docker Desktop.



4: The big picture

This chapter will give you some hands-on experience and a
high-level view of images and containers. The goal is to prepare
you for more detail in the upcoming chapters.

We’ll break this chapter into two parts:

The Ops perspective
The Dev perspective

The ops perspective focuses on starting, stopping, deleting
containers, and executing commands inside them.

The dev perspective focuses more on the application side of
things and runs through taking application source code,
building it into a container image, and running it as a container.

I recommend you read both sections and follow the examples,
as this will give you the dev and ops perspectives. DevOps
anyone?

The Ops Perspective

In this section, you’ll complete all of the following:

Check Docker is working



Download an image
Start a container from the image
Execute a command inside the container
Delete the container

A typical Docker installation installs the client and the engine
on the same machine and configures them to talk to each other.

Run a docker version  command to ensure both are installed
and running.

$ docker version 
Client:                                     <<---- Start of client respons
 Version:           27.4.0-rc.3             -----┐ 
 API version:       1.47                         | 
 Go version:        go1.22.9                     | Client info block 
 OS/Arch:           darwin/arm64                 | 
 Context:           desktop-linux           -----┘ 
 
Server: Docker Desktop 4.37.0 (177092)      <<---- Start of server respons
 Engine:                                    -----┐ 
  Version:          27.4.0-rc.3                  | 
  API version:      1.47 (minimum version 1.24)  | 
  Go version:       go1.22.9                     | 
  OS/Arch:          linux/arm64                  | 
 containerd:                                     | Server block 
  Version:          1.7.21                       | 
 runc:                                           | 
  Version:          1.1.13                       | 
 docker-init:                                    | 
  Version:          0.19.0                  -----┘ 



If your response from the client and server looks like the
output in the book, everything is working as expected.

If you’re on Linux and get a permission denied while trying
to connect to the Docker daemon...  error, try again with
sudo  in front of the command — sudo docker version . If it
works with sudo , you’ll need to prefix all future docker
commands with sudo .

Download an image

Images are objects that contain everything an app needs to run.
This includes an OS filesystem, the application, and all
dependencies. If you work in operations, they’re similar to VM
templates. If you’re a developer, they’re similar to classes.

Run a docker images  command.

$ docker images 
REPOSITORY    TAG        IMAGE ID       CREATED       SIZE 

If you are working from a clean installation, you’ll have no
images, and your output will be the same as the book. If you’re
working with Multipass, you might see an image called
portainer/portainer-ce .



Copying new images onto your Docker host is called pulling.
Pull the ubuntu:latest  image.

Run another docker images  to confirm your pull command
worked.

$ docker images 
REPOSITORY      TAG      IMAGE ID        CREATED         SIZE 
nginx           latest   fb197595ebe7     10 days ago     280MB 

We’ll discuss where the image is stored and what’s inside it in
later chapters. For now, all you need to know is that images
contain enough of an operating system (OS) and all the code
and dependencies required to run a desired application. The
NGINX image you pulled includes a stripped-down version of
Linux and the NGINX web server app.

$ docker pull nginx:latest 
latest: Pulling from library/nginx 
ad5932596f78: Download complete 
e4bc5c1a6721: Download complete 
1bd52ec2c0cb: Download complete 
411a98463f95: Download complete 
df25b2e5edb3: Download complete 
e93f7200eab8: Download complete 
Digest: sha256:fb197595ebe76b9c0c14ab68159fd3c08bd067ec62300583543f0ebda35
Status: Downloaded newer image for nginx:latest 
docker.io/library/nginx:latest 



Start a container from the image

If you’ve been following along, you’ll have a copy of the
nginx:latest  image and you can use the docker run
command to start a container from it.

Run the following docker run  command to start a new
container called test from the ubuntu:latest  image.

$ docker run --name test -d -p 8080:80 nginx:latest 
e08c3535...30557225 

The long number confirms the container was created.

Let’s quickly examine that docker run  command.

docker run  tells Docker to start a new container. The --name
flag told Docker to call this container test and the -d  flag told it
to start the container in the background (detached mode) so it
doesn’t take over your terminal. The -p  flag told Docker to
map port 80  in the container to port 8080  on your Docker
host. Finally, the command told Docker to base the container on
the nginx:latest  image.

Run a docker ps  command to see the running container.



You should recognize the CONTAINER ID  from the long number
printed after the docker run  command. You should also
recognize the IMAGE , PORTS , and NAMES  columns from the
flags in the docker run  command. The COMMAND  field lists the
command Docker executed to start the NGINX app inside the
container.

Execute a command inside the container

Run the following command to attach your shell to a new Bash
process inside the container.

$ docker exec -it test bash 
root@e08c35352ff3:/# 

Your shell prompt will change to indicate you’re connected to
the container.

Run the following command to list files in your current
directory.

$ docker ps 
CONTAINER ID   IMAGE          COMMAND        CREATED      STATUS      PORT
e08c35352ff3   nginx:latest   "/docker..."   3 mins ago   Up 2 mins   0.0.



root@e08c35352ff3:/# ls -l 
total 64 
lrwxrwxrwx   1 root root    7 Jan  2 00:00 bin -> usr/bin 
drwxr-xr-x   2 root root 4096 Oct 31 11:04 boot 
drwxr-xr-x   5 root root  340 Jan 12 15:09 dev 
drwxr-xr-x   1 root root 4096 Jan  3 02:56 docker-entrypoint.d 
-rwxr-xr-x   1 root root 1620 Jan  3 02:56 docker-entrypoint.sh 
drwxr-xr-x   1 root root 4096 Jan 12 15:09 etc 
<Snip> 

If you’re familiar with Linux, you’ll recognize these are regular
Linux files and directories.

Try running a ps  command to list running processes.

root@e08c35352ff3:/# ps -elf 
bash: ps: command not found 

The command is not found because most containers only ship
with essential apps and tools to keep them small and reduce
attack vectors. Later in the book, we’ll show you how to use
Docker Desktop and Docker Debug to connect to running
containers and execute commands not included as part of the
container.

Type exit  to terminate your bash process and connect your
shell back to your local terminal. Your shell prompt will revert.



Run the following command to verify the test container is still
running.

The container is still running, and you can see it was created 7
minutes ago and has been running for 7 minutes.

Delete the container

Stop and kill the container using the docker stop  and docker
rm  commands.

$ docker stop test 
test 

It can take a few seconds for the container to stop.

$ docker rm test 
test 

Verify the container deleted properly by running the docker
ps  command with the -a  flag to list all containers, even those
in the stopped state.

$ docker ps 
CONTAINER ID   IMAGE          COMMAND        CREATED      STATUS      PORT
e08c35352ff3   nginx:latest   "/docker..."   7 mins ago   Up 7 mins   0.0.



Congratulations, you’ve pulled a Docker image, started a
container from it, logged in to it, executed a command inside it,
stopped it, and deleted it.

The Dev Perspective

Containers are all about applications.

You’ll complete all of the following steps in this section:

Clone an app from a GitHub repo
Inspect the app’s Dockerfile
Containerize the app
Run the app as a container

Run the following command to make a local clone of the repo.
This will copy the application code to your machine so you can
containerize it in a future step. You’ll need the git  CLI for this
to work.

$ git clone https://github.com/nigelpoulton/psweb.git 
Cloning into 'psweb'... 
remote: Enumerating objects: 63, done. 
remote: Counting objects: 100% (34/34), done. 

$ docker ps -a 
CONTAINER ID    IMAGE    COMMAND    CREATED    STATUS    PORTS    NAMES 



remote: Compressing objects: 100% (22/22), done. 
remote: Total 63 (delta 13), reused 25 (delta 9), pack-reused 29 
Receiving objects: 100% (63/63), 13.29 KiB | 4.43 MiB/s, done. 
Resolving deltas: 100% (21/21), done. 

Change into the psweb  directory and list its contents.

$ cd psweb 
 
$ ls -l 
total 32 
-rw-r--r--@ 1 nigelpoulton  staff  324  5 Feb 12:31 Dockerfile 
-rw-r--r--  1 nigelpoulton  staff  378  5 Feb 12:31 README.md 
-rw-r--r--  1 nigelpoulton  staff  341  5 Feb 12:31 app.js 
-rw-r--r--@ 1 nigelpoulton  staff  355  5 Feb 12:47 package.json 
drwxr-xr-x  3 nigelpoulton  staff   96  5 Feb 12:31 views 

The app is a simple Node.js web app running some static HTML.

Inspect the app’s Dockerfile

The Dockerfile is a plain-text document that tells Docker how to
build the app and dependencies into an image.

List the contents of the application’s Dockerfile.

$ cat Dockerfile 
 
FROM alpine 
LABEL maintainer="nigelpoulton@hotmail.com" 
RUN apk add --update nodejs npm curl 



COPY . /src 
WORKDIR /src 
RUN  npm install 
EXPOSE 8080 
ENTRYPOINT ["node", "./app.js"] 

You’ll learn more about Dockerfiles later in the book. Right
now, all you need to know is that each line represents an
instruction Docker executes to build the app into an image.

If you’ve been following along, you’ve pulled the application
code from a remote Git repo and looked at the application’s
Dockerfile.

Containerize the app

Run the following docker build  command to create a new
image based on the instructions in the Dockerfile. It will create
a new Docker image called test:latest .

Be sure to run the command from within the psweb  directory
and include the trailing period.

$ docker build -t test:latest . 
[+] Building 36.2s (11/11) FINISHED 
 => [internal] load .dockerignore                                         
 => => transferring context: 2B                                           
 => [internal] load build definition from Dockerfile                      
 <Snip> 



When the build completes, check that you have an image called
test:latest .

$ docker images 
REPO     TAG      IMAGE ID        CREATED          SIZE 
test     latest   0435f2738cf6    21 seconds ago   160MB 

Congratulations, you’ve containerized the app. That’s jargon for
building it into a container image that contains the app and all
dependencies.

Run the app as a container

Run the following command to start a container called web1
from the image. If you’re on a Windows machine, you’ll need to
replace the backslashes with backticks or run the command on
a single line without the backslashes.

$ docker run -d \ 
  --name web1 \ 
  --publish 8080:8080 \ 
  test:latest 

 => => naming to docker.io/library/test:latest                            
 => => unpacking to docker.io/library/test:latest                         



Open a web browser and navigate to the DNS name or IP
address of your Docker host on port 8080 . If you’re following
along on Docker Desktop, connect to localhost:8080  or
127.0.0.1:8080 . If you’re following along on Multipass,
connect to your Multipass VM’s 192.168 address on port 8080 .
Run an ip a | grep 192  command from within the Multipass
VM, or run a multipass ls  from your local machine to find the
address.

You will see the following web page.

Figure 4.1

Congratulations. You’ve copied some application code from a
remote Git repo, built it into a Docker image, and run it as a
container. We call this containerizing an app.

Clean up



Run the following commands to terminate the container and
delete the image.

$ docker rm web1 -f 
web1 
 
$ docker rmi test:latest 
Untagged: test:latest 
Deleted: sha256:0435f27...cac8e2b 

Chapter Summary

In the Ops section of the chapter, you downloaded a Docker
image, launched a container from it, logged into the container,
executed a command inside of it, and then stopped and deleted
the container.

In the Dev section, you containerized a simple application by
pulling source code from GitHub and building it into an image
using instructions in a Dockerfile. You then ran the app as a
container.

The things you’ve learned in this chapter will help you in the
upcoming chapters.



Part 2: The technical stuff



5: The Docker Engine

In this chapter, we’ll look under the hood of the Docker Engine.

This chapter has a strong operations focus, and you can use
Docker without knowing everything you’re about to learn.
However, to truly master something, you need to understand
what’s going on under the hood. So, if you want to master
Docker, you should read this chapter.

I’ve divided the chapter into the following sections:

Docker Engine – The TLDR
The Docker Engine
The influence of the Open Container Initiative (OCI)
runc
containerd
Starting a new container (example)
What’s the shim all about
How it’s implemented on Linux

Let’s learn about the Docker Engine.

Docker Engine – The TLDR



Docker Engine is jargon for the server-side components of
Docker that run and manage containers. If you’ve ever worked
with VMware, the Docker Engine is similar to ESXi.

The Docker Engine is modular and built from many small
specialized components pulled from projects such as the OCI,
the CNCF, and the Moby project.

In many ways, the Docker Engine is like a car engine:

A car engine is made from many specialized parts that work
together to make a car drive — intake manifolds, throttle
bodies, cylinders, pistons, spark plugs, exhaust manifolds,
and more.
The Docker Engine is made from many specialized tools that
work together to create and run containers — the API, image
builder, high-level runtime, low-level runtime, shims, etc.

Figure 5.1 shows the components of the Docker Engine that
create and run containers. Other components exist, but this
simplified diagram focuses on the components that start and
run containers.



Figure 5.1

Throughout the book, we’ll refer to runc and containerd with
lowercase “r” and “c”, which is how they’re both written in the
official project documentation. This means sentences starting
with either runc or containerd will not begin with a capital letter.

The Docker Engine

When Docker was first released, the Docker Engine had two
major components:

The Docker daemon (sometimes referred to as just “the
daemon”)
LXC

The daemon was a monolithic binary containing all the code for
the API, image builders, container execution, volumes,
networking, and more.



LXC did the hard work of interfacing with the Linux kernel and
constructing the required namespaces and cgroups to build and
start containers.

Replacing LXC

Relying on LXC posed several problems for the Docker project.

First, LXC is Linux-specific, and Docker had aspirations of being
multi-platform.

Second, Docker was evolving fast, and there was no way of
ensuring LXC evolved in the ways Docker needed.

To improve the experience and help the project evolve more
quickly, Docker replaced LXC with its own tool, libcontainer. The
goal of libcontainer was to be a platform-agnostic tool that gave
Docker access to the fundamental container building blocks in
the host kernel.

Libcontainer replaced LXC in Docker a very long time ago.

Breaking up the monolithic Docker daemon

As previously mentioned, the Docker Engine was originally a
monolith with almost all functionality coded into the daemon.



However, as time passed, this became more and more
problematic for the following reasons:

1. It got slower
2. It wasn’t what the ecosystem wanted
3. It’s hard to innovate on monolithic software

The project recognized these challenges and began a long-
running program to break apart and refactor the Engine so that
every feature became its own small specialized tool. Platform
builders could then re-use these tools to build other platforms.

This work of breaking apart the Docker daemon is an ongoing
process, and all of the code for building images and executing
containers has been removed and refactored into small,
specialized tools. Notable examples include removing the high-
level and low-level runtime functionality and re-implementing
them in separate tools called containerd and runc, both of
which are used by many different projects, including Docker,
Kubernetes, Firecracker, and Fargate. More recently (starting
with Docker Desktop 4.27.0), Docker has removed image
management from the daemon and now uses containerd’s
image management capabilities.



Figure 5.2 shows another view of the Docker Engine
components that are used to run containers and lists the
primary responsibilities of each component.

Figure 5.2 - Engine components and responsibilities

Other engine components exist.

The influence of the Open Container Initiative (OCI)

Around the same time that Docker, Inc. was refactoring the
Engine, the OCI was in the process of defining two container-
related standards:

1. Image Specification (image-spec)

https://www.opencontainers.org/
https://github.com/opencontainers/image-spec


2. Runtime Specification (runtime-spec)

Both specifications were released as version 1.0 in July 2017 and
are still vital today.

They’ve even added a third specification called the Distribution
Specification (distribution-spec) governing how images are
distributed via registries.

At the time of writing, the runtime-spec is at version 1.2.0, and
the image-spec and distribution-spec are both at version 1.1.0.
This demonstrates the slow-and-steady nature of these low-level
specifications that are heavily relied upon by so many other
projects — stability is the name of the game for low-level OCI
specs.

Docker, Inc. was a founding member of the OCI and was heavily
involved in defining the original specifications. It continues to
be involved by contributing code and helping guide the future
of the specifications.

All versions of Docker since 2016 have implemented the OCI
specifications. For example, Docker uses runc, the reference
implementation of the OCI runtime-spec, to create OCI-
compliant containers (runtime-spec). It also uses BuildKit to

https://github.com/opencontainers/runtime-spec


build OCI-compliant images (image-spec), and Docker Hub is an
OCI-compliant registry (registry-spec).

runc

As previously mentioned, runc (pronounced “run see” and
always written with a lowercase “r”) is the reference
implementation of the OCI runtime-spec. Docker, Inc. was
heavily involved in defining the spec and contributed the initial
code for runc.

runc is a lightweight CLI wrapper for libcontainer that you can
download and use to manage OCI-compliant containers.
However, it’s a very low-level tool and lacks almost all of the
features and add-ons you get with the Docker Engine.
Fortunately, as previously shown in Figure 5.2, Docker uses
runc as its low-level runtime. This means you get OCI-compliant
containers and the feature-rich Docker user experience.

On the jargon front, we sometimes say that runc operates at the
OCI layer, and we often refer to it as a low-level runtime.

Docker and Kubernetes both use runc as their default low-level
runtime, and both pair it with the containerd high-level
runtime:

https://github.com/opencontainers/runc


containerd operates as the high-level runtime managing
lifecycle events
runc operates as the low-level runtime executing lifecycle
events by interfacing with the kernel to do the work of
actually building containers and deleting them

You can see the latest releases here:

https://github.com/opencontainers/runc/releases

containerd

containerd (pronounced “container dee” and always written
with a lowercase “c”) is another tool that Docker created while
stripping functionality out of the daemon.

We refer to containerd as a high-level runtime as it manages
lifecycle events such as starting, stopping, and deleting
containers. However, it needs a low-level runtime to perform
the actual work. Most of the time, containerd is paired with
runc as its low-level runtime. However, as you saw in Figure 5.3,
it uses shims that make it possible to replace runc with other
low-level runtimes. We’ll go into more detail in the
WebAssembly chapter when you’ll see how to use Docker to
run WebAssembly apps.



The original plan was for containerd to be a small specialized
tool for managing container lifecycle events. However, it has
since grown to include the ability to manage images, networks,
and volumes.

One reason for adding more functionality is for projects such as
Kubernetes that want containerd to be able to push and pull
images. Fortunately, this extra functionality is modular,
meaning projects like Kubernetes can include containerd but
only take the pieces they need.

containerd was originally developed by Docker, Inc. and
donated to the Cloud Native Computing Foundation (CNCF). At
the time of writing, containerd is a graduated CNCF project,
meaning it’s stable and production-ready. You can see the latest
releases here:

https://github.com/containerd/containerd/releases

Starting a new container (example)

Now that you’ve seen the big picture, let’s see how to use
Docker to create a new container.

The most common way of starting containers is using the
Docker CLI. Feel free to run the following command to start a



new container called ctr1 based on the nginx  image.

$ docker run -d --name ctr1 nginx 

Run a docker ps  command to see if the container is running.

When you run commands like this, the Docker client converts
them into API requests and sends them to the API exposed by
the daemon.

The daemon can expose the API on a local socket or over the
network. On Linux, the local socket is /var/run/docker.sock
and on Windows it’s \pipe\docker_engine .

The daemon receives the request, interprets it as a request to
create a new container, and passes it to containerd. Remember
that the daemon no longer contains any code to create
containers.

The daemon communicates with containerd via a CRUD-style
API over gRPC.

$ docker ps 
CONTAINER ID   IMAGE    COMMAND                  CREATED         STATUS   
9cfb0c9aacb2   nginx    "/docker-entrypoint.…"   9 seconds ago   Up 9 seco

https://grpc.io/


Despite its name, even containerd cannot create containers. It
converts the required Docker image into an OCI bundle and tells
runc to use this to create a new container.

runc interfaces with the OS kernel to pull together all the
constructs necessary to create a container (namespaces,
cgroups, etc.). The container starts as a child process of runc,
and as soon as the container starts, runc exits.

Figure 5.3 summarizes the process.

Figure 5.3



Decoupling the container creation and management from the
Docker daemon and implementing it in containerd and runc
makes it possible to stop, restart, and even update the daemon
without impacting running containers. We sometimes call this
daemonless containers.

If you started the NGINX container earlier, you should delete it
using the following command.

$ docker rm ctr1 -f 

What’s the shim all about?

Some of the diagrams in the chapter have shown a shim
component.

Shims are a popular software engineering pattern, and the
Docker Engine uses them in between containerd and the OCI
layer, bringing the following benefits:

Daemonless containers
Improved efficiency
Pluggable OCI layer

We’ve already said that daemonless containers is the ability to
stop, restart, and even update the Docker daemon without



impacting running containers.

On the efficiency front, containerd forks a shim and a runc
process for every new container. However, each runc process
exits as soon as the container starts running, leaving the shim
process as the container’s parent process. The shim is
lightweight and sits between containerd and the container. It
reports on the container’s status and performs low-level tasks
such as keeping the container’s STDIN and STDOUT streams
open.

Shims also make it possible to replace runc with other low-level
runtimes.

How it’s implemented on Linux

On a Linux system, Docker implements the components we’ve
discussed as the following separate binaries:

/usr/bin/dockerd  (the Docker daemon)
/usr/bin/containerd

/usr/bin/containerd-shim-runc-v2

/usr/bin/runc

You can see all of these on a Linux-based Docker host by
running a ps  command. Some of the processes will only be



present when the system has running containers, and you can’t
see them if you’re using Docker Desktop on a Mac because the
Docker Engine is running inside a VM.

Do we still need the daemon

At the time of writing, Docker has stripped most of the
functionality out of the daemon. However, it still serves the
Docker API.

Chapter summary

The Docker Engine comprises the server-side components of
Docker and implements most of the code to build, share, and
run containers. It implements the OCI standards and is a
modular app comprising many small, specialized components.

The Docker daemon component implements the Docker API, but
most other functionality has been stripped out and
implemented as standalone composable tools such as
containerd and runc.

containerd performs image management tasks and oversees
container lifecycle management, such as starting, stopping, and
deleting containers. Docker, Inc. originally wrote it and then
contributed to the CNCF. It’s classed as a high-level runtime and



used by many other projects, including Kubernetes, Firecracker,
and Fargate.

containerd relies on a low-level runtime called runc to interface
with the host kernel and build containers. runc is the reference
implementation of the OCI runtime-spec and expects to start
containers from OCI-compliant bundles. containerd talks to
runc and ensures Docker images are presented to runc as OCI-
compliant bundles.

runc is based on code from libcontainer, you can run it as a
standalone CLI tool to create containers, and it’s used almost
everywhere that containerd is used.

Shims make it possible to use containerd with other low-level
runtimes.



6: Working with Images

This chapter is a dive deep into Docker images. You’ll learn
what images are, how to work with them, and how they work
under the hood. You’ll learn how to build your own in Chapter
8: Containerizing an application.

I’ve arranged the chapter as follows:

Docker images – The TLDR
Intro to images
Pulling images
Image registries
Image naming and tagging
Images and layers
Pulling images by digest
Multi-architecture images
Vulnerability scanning with Docker Scout
Deleting images

Docker images – The TLDR

Before getting started, all of the following terms mean the same
thing, and we’ll use them interchangeably: Image, Docker
image, container image, and OCI image.



An image is a read-only package containing everything you
need to run an application. This means they include application
code, dependencies, a minimal set of OS constructs, and
metadata. You can start multiple containers from a single
image.

If you’re familiar with VMware, images are a bit like VM
templates — a VM template is like a stopped VM, whereas an
image is like a stopped container. If you’re a developer, images
are similar to classes — you can create one or more objects
from a class, whereas you can create one or more containers
from an image.

The easiest way to get an image is to pull one from a registry.
Docker Hub is the most common registry, and pulling an image
downloads it to your local machine where Docker can use it to
start one or more containers. Other registries exist, and Docker
works with them all.

Docker creates images by stacking independent layers and
representing them as a single unified object. One layer might
have the OS components, another layer might have application
dependencies, and another layer might have the application.
Docker stacks these layers and makes them look like a unified
system.

https://hub.docker.com/


Images are usually small. For example, the official NGINX image
is around 80MB, and the official Redis image is around 40MB.
However, Windows images can be huge.

That’s the elevator pitch. Let’s dig a little deeper.

Intro to images

We’ve already said that images are like stopped containers. You
can even stop a container and create a new image from it. With
this in mind, images are build-time constructs, whereas
containers are run-time constructs. Figure 6.1 shows the build
and run nature of each and that you can start multiple
containers from a single image.

Figure 6.1



The docker run  command is the most common way to start a
container from an image. Once the container is running, the
image and the container are bound, and you cannot delete the
image until you stop and delete the container. If multiple
containers use the same image, you can only delete the image
after you’ve deleted all the containers using it.

Containers are designed to run a single application or
microservice. As such, they should only contain application
code and dependencies. You should not include non-essentials
such as build tools or troubleshooting tools.

For example, the official Alpine Linux image is currently about
3MB. This is because it doesn’t ship with six different shells,
three different package managers, and a bunch of tools you
“might” need once every ten years. In fact, it’s increasingly
common for images to ship without a shell or a package
manager — if the application doesn’t need it at run-time, the
image doesn’t include it. We call these slim images.

Another thing that keeps images small is the lack of an OS
kernel. This is because containers use the kernel of the host
they’re running on. The only OS-related components in most
images are filesystem objects, and you’ll sometimes hear people
say images contain just enough OS.



Unfortunately, Windows images can be huge. For example,
some Windows-based images can be gigabytes in size and take a
long time to push and pull.

Pulling images

A clean Docker installation has an empty local repository.

Local repository is jargon for an area on your local machine
where Docker stores images for more convenient access. We
sometimes call it the image cache, and on Linux it’s usually
located in /var/lib/docker/<storage-driver> . However, if
you’re using Docker Desktop, it will be inside the Docker VM.

Run the following command to inspect the contents of your
local repository. This example has three images relating to three
Docker Desktop extensions I’m running. Yours will be different
and may be empty.

The process of getting images is called pulling.

$ docker images 
REPOSITORY                             TAG       IMAGE ID       CREATED   
docker/disk-usage-extension            0.2.9     f4c95478a537   26 hours a
docker/logs-explorer-extension         0.2.6     417dd9a8f96d   26 hours a
portainer/portainer-docker-extension   2.19.4    908d04d20e86   2 months a



Run the following commands to pull the redis image and verify
it exists in your local repository.

Note: If you are following along on Linux and haven’t added
your user account to the local docker  Unix group, you may
need to add sudo  to the beginning of all the following
commands.

The image now exists in your local repository. However, I’ve
annotated a few interesting lines from the docker pull  output.

$ docker pull redis 
Using default tag: latest              <<---- Assume the 'latest' tag 
latest: Pulling from library/redis     <<---- Assume you want to pull from
08df40659127: Download complete        <<---- Pulling layer 
4f4fb700ef54: Already exists           <<---- Pulling layer (local copy mu
4fe7fa4aab04: Download complete        <<---- Pulling layer 
57dea0f129a5: Download complete        <<---- Pulling layer 
f546e941f15b: Download complete        <<---- Pulling layer 
f7f7da262cdb: Download complete        <<---- Pulling layer 
f45ab649e450: Download complete        <<---- Pulling layer 
983f900bbc88: Download complete        <<---- Pulling layer 
Digest: sha256:76d5908f5e19fcdd73daf956a38826f790336ee4707d9028f32b24ad9ac
Status: Downloaded newer image for redis:latest 
docker.io/library/redis:latest         <<---- docker.io = Docker Hub 
 
$ docker images 
REPOSITORY   TAG     IMAGE ID        CREATED       SIZE 
redis        latest  11c3e418c296    2 weeks ago   223MB 
<Snip> 



We’ll cover them in more detail later in the chapter but they’re
worth a quick mention now.

Docker is opinionated and made two assumptions when pulling
the image:

1. It assumed you wanted to pull the image tagged as latest
2. It assumed you wanted to pull the image from Docker Hub

You can override both, but Docker will use these as defaults if
you don’t override them.

The Redis image in the example has eight layers. However,
Docker only pulled seven layers because it already had a local
copy of one of them. This is because my system runs the
Portainer Docker Desktop extension, which is based on an
image that shares a common layer with the Redis image. You’ll
learn about this very soon, but images can share layers, and
Docker is clever enough only to pull the layers it doesn’t already
have.

Image registries

We store images in centralized places called registries. The job
of a registry is to securely store images and make them easy to
access from different environments.



Figure 6.2 shows the central nature of registries in the build >
share > run pipeline.

Figure 6.2

Most modern registries implement the OCI distribution-spec,
and we sometimes call them OCI registries. Most registries also
implement the Docker Registry v2 API, meaning you can use the
Docker CLI and other API tools to query them and work with
them in standard ways. Some offer advanced features such as
image scanning and integration with build pipelines.

The most common registry is Docker Hub, but others exist,
including 3rd-party internet-based registries and secure on-
premises registries. However, as previously mentioned, Docker
is opinionated and will default to Docker Hub unless you tell it
the name of a different registry. We’ll use Docker Hub for the
rest of the book, but the principles apply to other registries.



Image registries contain one or more image repositories, and
image repositories contain one or more images. Figure 6.3
shows an image registry with three repositories, each with one
or more images.

Figure 6.3 - Registry architecture

Official repositories

Docker Hub has the concept of official repositories that are
home to images vetted and curated by Docker and the
application vendor. This means they should contain up-to-date
high-quality code that is secure, well-documented, and follows
good practices.



Most of the popular applications and operating systems have
official repositories on Docker Hub, and they’re easy to identify
because they live at the top level of the Docker Hub namespace
and have a green Docker Official Image badge. The following list
shows a few official repositories and their URLs that exist at the
top level of the Docker Hub namespace:

nginx: https://hub.docker.com/_/nginx/
busybox: https://hub.docker.com/_/busybox/
redis: https://hub.docker.com/_/redis/
mongo: https://hub.docker.com/_/mongo/

Figure 6.4 shows the official Alpine and NGINX repositories on
Docker Hub. Both have the green Docker Official Image badge
and have over a billion pulls each. Also, notice how both are
available for a wide range of CPU architectures.

Figure 6.4 - Official repos on Docker Hub



Unofficial repositories

The next list shows two of my personal repositories in the “wild
west” of unofficial repositories that you should be very careful
when using.

nigelpoulton/gsd —
https://hub.docker.com/r/nigelpoulton/gsd-book/
nigelpoulton/k8sbook —
https://hub.docker.com/r/nigelpoulton/k8sbook/

Notice how they exist below the nigelpoulton second-level
namespace. This is one of several indications they are not
official repositories.

While there are lots of great images in unofficial repositories,
you should always start with the assumption that anything from
an unofficial repository is unsafe. This is based on the good
practice of never trusting software from the internet. In fact,
you should also exercise caution when downloading and using
Docker Official Images.

Image naming and tagging

Most of the time, you’ll work with images based on their names,
and you can learn a lot about an image from its name. Figure



6.5 shows a fully qualified image name, including the registry
name, user/organization name, repository name, and tag.
Docker automatically populates the registry and tag values if
you don’t specify them.

Figure 6.5 - Fully qualified image name

Addressing images from official repositories is easy. All you
need to supply is the repository name and image name
separated by a colon. Sometimes we call the image name the
tag. The format for a docker pull  command pulling an image
from an official repository is:

$ docker pull <repository>:<tag>

The example from earlier pulled the Redis image with the
following command. It pulled the image tagged as latest  from
the top-level redis  repository.

$ docker pull redis:latest 



The following examples show how to pull a few different official
images.

A couple of things are worth noting.

As previously mentioned, if you don’t specify an image tag
after the repository name, Docker assumes you want the
image tagged as latest . The command will fail if the
repository has no image tagged as latest .
Images tagged as latest  are not guaranteed to be the most
up-to-date in the repository.

Pulling images from unofficial repositories is almost the same as
pulling from official repositories — you just need to add a
Docker Hub username or organization name before the
repository name. The following example shows how to pull the

$ docker pull redis:8.0-M02 
//Pulls the image tagged as '8.0-M02' from the official 'redis' repository
 
$ docker pull busybox:glibc 
//Pulls the image tagged as 'glibc' from the official 'busybox' repository
 
$ docker pull alpine 
//Pulls the image tagged as 'latest' from the official 'alpine' repository



v2  image from the tu-demo  repository owned by a not-to-be-
trusted person whose Docker Hub ID is nigelpoulton .

$ docker pull nigelpoulton/tu-demo:v2 

To pull an image from a different registry, you just add the
registry’s DNS name before the repository name. For example,
the following command pulls the latest  image from Brandon
Mitchell’s regclient/regsync  repo on GitHub Container
Registry (ghcr.io).

Notice how the pull looks the same as it did with Docker Hub.
This is because GHCR supports the OCI registry-spec and
implements the Docker Registry v2 API.

Images with multiple tags

You can give a single image as many tags as you want.

$ docker pull ghcr.io/regclient/regsync:latest 
latest: Pulling from regclient/regsync 
f140ae7f526a: Download complete 
c1cb552669af: Download complete 
Digest: sha256:88b3d4dc3d7bf2d8ea6f641bea2be15142a9222db66d4b6f2043fc5cc19
Status: Downloaded newer image for ghcr.io/regclient/regsync:latest 
ghcr.io/regclient/regsync:latest 



At first glance, the following output might look like it’s listing
three images. However, on closer inspection it’s just two — the
b4210d0aa52f  image is tagged as latest  and v1 .

This is a great example of the latest  tag not relating to the
newest image in the repo. In this example, the latest  tag
refers to the same image as the v1  tag, which is actually older
than the v2  image.

Images and layers

As already mentioned, images are a collection of loosely
connected read-only layers where each layer comprises one or
more files.

Figure 6.6 shows an image with four layers. Docker takes care
of stacking them and representing them as a single unified
image.

$ docker images 
REPOSITORY               TAG       IMAGE ID       CREATED          SIZE 
nigelpoulton/tu-demo     latest    b4210d0aa52f   2 days ago       115MB 
nigelpoulton/tu-demo     v1        b4210d0aa52f   2 days ago       115MB 
nigelpoulton/tu-demo     v2        6ba12825d092   12 minutes ago   115MB 



Figure 6.6 - Image and stacked layers

You’re about to look at all of the following ways to inspect layer
information:

Pull operations
The docker inspect  command
The docker history  command

Run the following command to pull the node:latest  image
and observe it pulling the individual layers. Some newer
versions may have more or less layers, but the principle is the
same.

$ docker pull node:latest 
latest: Pulling from library/ubuntu 
952132ac251a: Pull complete 
82659f8f1b76: Pull complete 
c19118ca682d: Pull complete 
8296858250fe: Pull complete 



24e0251a0e2c: Pull complete 
Digest: sha256:f4691c96e6bbaa99d...28ae95a60369c506dd6e6f6ab 
Status: Downloaded newer image for node:latest 
docker.io/node:latest 

Each line ending with Pull complete represents a layer that
Docker pulled. This image has five layers and is shown in Figure
6.7 with layer IDs.

Figure 6.7 - Image layers and IDs

Another way to see image layers is to inspect the image with the
docker inspect  command. The following example inspects
the same node:latest  image pulled in the previous step.

$ docker inspect node:latest 
[ 
    { 
        "Id": "sha256:bd3d4369ae.......fa2645f5699037d7d8c6b415a10", 
        "RepoTags": [ 



            "node:latest" 
 
        <Snip> 
 
        "RootFS": { 
            "Type": "layers", 
            "Layers": [ 
                "sha256:c8a75145fc...894129005e461a43875a094b93412", 
                "sha256:c6f2b330b6...7214ed6aac305dd03f70b95cdc610", 
                "sha256:055757a193...3a9565d78962c7f368d5ac5984998", 
                "sha256:4837348061...12695f548406ea77feb5074e195e3", 
                "sha256:0cad5e07ba...4bae4cfc66b376265e16c32a0aae9" 
            ] 
        } 
    } 
] 

The trimmed output shows the five layers. However, it shows
their SHA256 hashes, which are different from the short IDs
shown in the docker pull  output.

The docker inspect  command is great for getting detailed
image information.

You can also use the docker history  command to inspect an
image and see its layer data. However, this command shows the
build history of an image and is not a strict list of layers in the
final image. For example, some Dockerfile instructions ( ENV ,
EXPOSE , CMD , and ENTRYPOINT ) only add metadata and don’t
create layers.



Base layers

All Docker images start with a base layer, and every time you
add new content, Docker adds a new layer.

Consider the following oversimplified example of building a
simple Python application. Your corporate policy mandates all
applications be built on top of the official Ubuntu 24:04 image.
This means the official Ubuntu 24:04 image will be the base
layer for this app. Installing your company’s approved version
of Python will add a second layer, and your application source
code will add a third. The final image will have three layers, as
shown in Figure 6.8. Remember, this is an oversimplified
example for demonstration purposes.

Figure 6.8



It’s important to understand that an image is the combination of
all layers stacked in the order they were built. Figure 6.9 shows
an image with two layers. Each layer has three files, meaning
the image has six files.

It also shows that the layers are stored as independent objects,
and the image is just metadata identifying the required layers
and explaining how to stack them.

Figure 6.9

In the slightly more complex example of the three-layer image
in Figure 6.10, the overall image only presents six files in the
unified view. This is because File 7 in the top layer is an updated
version of File 5 directly below (inline). In this situation, the file
in the higher layer obscures the file directly below it. This
means you update files and make other changes to images by
adding new layers containing the changes.



Figure 6.10 - Stacking layers

Under the hood, Docker uses storage drivers to stack layers and
present them as a unified filesystem and image. Almost all
Docker setups use the overlay2 driver, but zfs, btrfs, and vfs
are alternative options. However, whichever storage driver you
use, the developer and user experience are always the same.

Figure 6.11 shows how the three-layer image from Figure 6.10
will appear on the system — all three layers stacked and merged
into a single unified view.

Figure 6.11 - Unified view of multi-layer image



Sharing image layers

As previously mentioned, images can share layers, leading to
efficiencies in space and performance.

One of the earlier docker pull  commands generated an
Already exists message for one of the layers it pulled. This
occurred because one of my Docker Desktop extensions had
already pulled an image that used the exact same layer. As a
result, Docker skipped that layer as it already had a local copy.

Here’s the code from earlier, and Figure 6.12 shows two images
sharing the same layer.

$ docker pull redis:latest 
latest: Pulling from library/redis 
25d3892798f8: Download complete 
e5d458cf0bea: Download complete 
4f4fb700ef54: Already exists          <<---- This line 
<Snip> 



Figure 6.12 - Two images sharing a layer

Layers are also shared on the registry side. This means you can
store lots of similar images in a registry, and the registry will
save space by never storing more than a single copy of any
layer.

Pulling images by digest

So far, you’ve seen how to pull and work with images using
names (tags). While this is the most common method, it has a
problem — tags are arbitrary and mutable. This means it’s
possible to tag an image incorrectly or give a new image the
same tag as an older one. An extremely common example is the
latest  tag. For example, pulling the alpine:latest  tag a year
ago will not pull the same image as pulling the same tag today.



Consider a quick example outlining one potential implication of
trusting mutable tags. Imagine you have an image called
golftrack:1.5  and you get a warning that it has a critical
vulnerability. You build a new image containing the fix and
push the new image to the same repository with the same tag.

Take a moment to consider what just happened and the
implications.

You have an image called golftrack:1.5  that’s being used by
lots of containers in your production environment, and it has a
critical bug. You create a new version containing the fix. So far,
so good, but then you make the mistake. You push the new
image to the same repository with the same tag as the
vulnerable image. This overwrites the original image and
leaves you without a great way of knowing which of your
production containers are using the vulnerable image and
which are using the fixed image — both images have the same
tag!

This is where image digests come to the rescue.

Docker uses a content addressable storage model where every
image gets a cryptographic content hash that we usually call the
digest. As these are hashes of an image’s contents, it’s impossible



for two different images to have the same digest. It’s also
impossible to change an image without creating a new digest.
Fortunately, Docker lets you work with image digests instead of
just names.

If you’ve already pulled an image by name, you can see its
digest by running a docker images  command with the --
digests  flag as shown.

If you want to find an image’s digest before pulling it, you can
use the docker buildx imagetools  command. The following
example retrieves the image digest for the
nigelpoulton/k8sbook/latest  image on Docker Hub.

You can now use the digest to pull the image. I’ve trimmed the
command and the output for readability.

$ docker images --digests alpine 
REPOSITORY   TAG       DIGEST                       IMAGE ID       CREATED
alpine       latest    sha256:c5b1261d...8e1ad6b    c5b1261d6d3e   2 weeks

$ docker buildx imagetools inspect nigelpoulton/k8sbook:latest 
Name:      docker.io/nigelpoulton/k8sbook:latest 
MediaType: application/vnd.docker.distribution.manifest.list.v2+json 
Digest:    sha256:13dd59a0c74e9a147800039b1ff4d61201375c008b96a29c5bd17244
<Snip> 



It’s also possible to directly query the registry API for image
data, including digest. The following curl  command queries
Docker Hub for the digest of the same image.

Image hashes and layer hashes

You already know that images are just a loose collection of
independent layers. This means an image is just a manifest file
with some metadata and a list of layers. The actual application
and all its dependencies live in the layers that are fully
independent and have no concept of being part of an image.

$ docker pull nigelpoulton/k8sbook@sha256:13dd59a0...bce2e14b 
docker.io/nigelpoulton/k8sbook@sha256:13dd59a0...bce2e14b: Pulling from ni
59f1664fb787: Download complete 
a052f1888b3e: Download complete 
94a9f4dfa0e5: Download complete 
bb7e600677fa: Download complete 
edfb0c26f1fb: Download complete 
5b1423465504: Download complete 
2f232a362cd9: Download complete 
Digest: sha256:13dd59a0...bce2e14b 
Status: Downloaded newer image for nigelpoulton/k8sbook@sha256:13dd59a0...
docker.io/nigelpoulton/k8sbook:latest@sha256:13dd59a0...bce2e14b 

$ curl "https://hub.docker.com/v2/repositories/nigelpoulton/k8sbook/tags/?
  |jq '.results[].digest' 
 
"sha256:13dd59a0c74e9a147800039b1ff4d61201375c008b96a29c5bd17244bce2e14b" 



With this in mind, images and layers have their own digests as
follows:

Images digests are a crypto hash of the image’s manifest file
Layer digests are a crypto hash of the layer’s contents

This means all changes to layers or image manifests result in
new hashes, giving us an easy and reliable way to know if
changes have been made.

Content hashes vs distribution hashes

Docker compares hashes before and after every push and pull
to ensure no tampering occurs while data is crossing the
network. However, it also compresses images during push and
pull operations to save network bandwidth and storage space
on the registry. As a result of this compression, the before and
after hashes won’t match.

To get around this, each layer gets two hashes:

Content hash (uncompressed)
Distribution hash (compressed)

Every time Docker pushes or pulls a layer from a registry, it
includes the layer’s distribution hash and uses this to verify no
tampering occurred. This is one reason why the hashes in



different CLI and registry outputs don’t always match —
sometimes you’re looking at the content hash, and other times
you’re looking at the distribution hash.

Multi-architecture images

One of the best things about Docker is its simplicity. However, as
technologies grow, they inevitably get more complex. This
happened for Docker when it started supporting different
platforms and architectures, such as Windows and Linux on
variations of ARM, x64, PowerPC, s390x and more. Suddenly,
there were multiple versions of the same image for all the
different architectures, and developers and users had to put in
significant extra work to get the right version. This broke the
smooth Docker experience.

Multi-architecture images to the rescue!

Fortunately, Docker and the registry API adapted and became
clever enough to hide images for multiple architectures behind
a single tag. This means you can do a docker pull alpine  on
any architecture and get the correct version of the image. For
example, if you’re on an AMD64 machine, you’ll get the AMD64
image.



To make this happen, the Registry API supports two important
constructs:

Manifest lists
Manifests

The manifest list is exactly what it sounds like — a list of
architectures supported by an image tag. Each supported
architecture then has its own manifest that lists the layers used
to build it.

Run the following command to see the different architectures
supported behind the alpine:latest  tag.

$ docker buildx imagetools inspect alpine 
Name:      docker.io/library/alpine:latest 
MediaType: application/vnd.docker.distribution.manifest.list.v2+json 
Digest:    sha256:c5b1261d6d3e43071626931fc004f70149baeba2c8ec672bd4f27761
 
Manifests: 
  Name:      docker.io/library/alpine:latest@sha256:6457d53f...628977d0 
  MediaType: application/vnd.docker.distribution.manifest.v2+json 
  Platform:  linux/amd64 
 
  Name:      docker.io/library/alpine:latest@sha256:b229a851...d144c1d8 
  MediaType: application/vnd.docker.distribution.manifest.v2+json 
  Platform:  linux/arm/v6 
 
  Name:      docker.io/library/alpine:latest@sha256:ec299a7b...33b4c6fe 
  MediaType: application/vnd.docker.distribution.manifest.v2+json 
  Platform:  linux/arm/v7 
 



Your output may include additional annotations, but if you look
closely, you’ll see a single manifest list pointing to six manifests.

MediaType:

application/vnd.docker.distribution.manifest.list.v2+js

on  is the manifest list.

Each MediaType:
application/vnd.docker.distribution.manifest.v2+json

line refers to a manifest for each specific architecture.

Figure 6.13 shows how manifest lists and manifests are related.
On the left, you can see a manifest list with entries for the
different architectures supported by the image. The arrows
show that each entry in the manifest list points to a manifest

  Name:      docker.io/library/alpine:latest@sha256:a0264d60...93467a46 
  MediaType: application/vnd.docker.distribution.manifest.v2+json 
  Platform:  linux/arm64/v8 
 
  Name:      docker.io/library/alpine:latest@sha256:15c46ced...ab073171 
  MediaType: application/vnd.docker.distribution.manifest.v2+json 
  Platform:  linux/386 
 
  Name:      docker.io/library/alpine:latest@sha256:b12b826d...ba52a3a2 
  MediaType: application/vnd.docker.distribution.manifest.v2+json 
  Platform:  linux/ppc64le 



defining the image config and the list of layers making up the
image for that architecture.

Figure 6.13 - Manifest lists and manifests

Let’s step through a quick example.

Assume you’re using Docker Desktop on an M4 Mac where
Docker runs inside a linux/arm VM. You ask Docker to pull an
image, and Docker makes the relevant calls to the Registry API
to request the appropriate manifest list. Assuming it exists,
Docker then parses it for a linux/arm entry. If linux/arm entry
exists, Docker retrieves its manifest, parses it for the crypto IDs



of its layers, pulls each layer, and assembles them into the
image.

Let’s see it in action.

The following examples are from Docker Desktop on an ARM-
based Mac and Docker Desktop on an AMD-based Windows
machine running in Windows containers mode. Both start a new
container based the official golang  image and execute the go
version  command. The outputs show the version of Go and the
host’s platform and CPU architecture. Notice how both
commands are exactly the same, and Docker takes care of
pulling the correct image.

Both images are large and may take a while to download. You
do not need to complete these commands yourself.

Linux on arm64 example:

$ docker run --rm golang go version 
<Snip> 
go version go1.23.4 linux/arm64 

Windows on x64 example:

> docker run --rm golang go version 
<Snip> 



go version go1.23.4 windows/amd64 

You’ve already seen how to use the docker buildx
imagetools  command to see the manifest list and manifests for
an image. You can get similar information from the docker
manifest  command. The following example inspects the
manifest list for the official golang image on Docker Hub. You
can see it has images for Linux and Windows on a variety of
CPU architectures. You can run the same command without the
grep  filter to see the full JSON manifest list. Windows users
should replace the grep  command with Select-String
architecture,os

$ docker manifest inspect golang | grep 'architecture\|os' 
            "architecture": "amd64", 
            "os": "linux" 
            "architecture": "arm", 
            "os": "linux", 
            "architecture": "arm64", 
            "os": "linux", 
            "architecture": "386", 
            "os": "linux" 
            "architecture": "mips64le", 
            "os": "linux" 
            "architecture": "ppc64le", 
            "os": "linux" 
            "architecture": "s390x", 
            "os": "linux" 
            "architecture": "amd64", 
            "os": "windows", 
            "os.version": "10.0.20348.2227" 



            "architecture": "amd64", 
            "os": "windows", 
            "os.version": "10.0.17763.5329" 

Pulling the right image for your system is one thing, but what
about building images for all these different architectures?

The docker buildx  command makes it easy to create multi-
architecture images. For example, you can use Docker Desktop
on linux/arm  to build images for linux/amd  and possibly
other architectures. We’ll perform builds like these in future
chapters, but docker buildx  offers two ways to create multi-
architecture images:

Emulation
Build Cloud

Emulation mode performs builds for different architectures on
your local machine by running the build inside a QEMU virtual
machine emulating the target architecture. It works most of the
time but is slow and doesn’t have a shared cache.

Build Cloud is a service from Docker, Inc. that performs builds in
the cloud on native hardware without requiring emulation. It’s
very fast, lets you share a common build cache with teammates,
and is seamlessly integrated into Docker Desktop and any



version of the Docker Engine using a version of buildx
supporting the cloud driver. It also integrates with GitHub
actions and other CI solutions. At the time of writing, Docker
Build Cloud is a subscription service you have to pay for.

We’ll use both in future chapters, but I ran the following
command to build AMD and ARM versions of the
nigelpoulton/tu-demo  image using Docker Build Cloud.

$ docker buildx build \ 
  --builder=cloud-nigelpoulton-ddd-cloud \ 
  --platform=linux/amd64,linux/arm64 \ 
  -t nigelpoulton/tu-demo:latest --push . 

Vulnerability scanning with Docker Scout

Lots of tools and plugins exist that scan images for known
vulnerabilities.

We’ll look at Docker Scout, as it’s built into almost every level of
Docker, including the CLI, Docker Desktop, Docker Hub, and the
scout.docker.com  portal. It’s a very slick service, but it
requires a paid subscription. Other similar products and
services exist, but most require paid subscriptions.

Recent versions of Docker Desktop have the Scout CLI plugin
pre-installed and ready to go. If you’re running a different



version of Docker, you may be able to install the CLI plugin from
the GitHub repo.

You can use the docker scout quickview  command to get a
quick vulnerability overview of an image. The following
command analyses the nigelpoulton/tu-demo:latest  image.
If a local copy doesn’t exist, it pulls it from Docker Hub and
performs the analysis locally.

The output shows zero critical vulnerabilities (0C), one high
(1H), one medium (1M), and zero low (0L).

You can use the docker scout cves  command to get more
detailed information, including remediation advice.

$ docker scout cves nigelpoulton/tu-demo:latest 
 
    ✓ SBOM of image already cached, 66 packages indexed 

$ docker scout quickview nigelpoulton/tu-demo:latest 
 
    ✓ SBOM of image already cached, 66 packages indexed 
 
  Target             │  nigelpoulton/tu-demo:latest  │    0C     1H     1M
    digest           │  b4210d0aa52f                 │ 
  Base image         │  python:3-alpine              │    0C     1H     1M
  Updated base image │  python:3.11-alpine           │    0C     1H     1M
                     │                               │ 

https://github.com/docker/scout-cli


    ✗ Detected 1 vulnerable package with 2 vulnerabilities 
## Overview 
                    │        Analyzed Image 
────────────────────┼──────────────────────────────── 
  Target            │  nigelpoulton/tu-demo:latest 
    digest          │  b4210d0aa52f 
    platform        │ linux/arm64/v8 
    vulnerabilities │    0C     1H     1M     0L 
    size            │ 26 MB 
    packages        │ 66 
 
## Packages and Vulnerabilities 
   0C     1H     1M     0L  expat 2.5.0-r2 
pkg:apk/alpine/expat@2.5.0-r2?os_name=alpine&os_version=3.19 
 
    ✗ HIGH CVE-2023-52425 
      https://scout.docker.com/v/CVE-2023-52425 
      Affected range : <2.6.0-r0 
      Fixed version  : 2.6.0-r0 
<Snip> 

I’ve snipped the output so it only shows the critical and high
vulnerabilities, but several things are clear:

It has detected one vulnerable package containing two
vulnerabilities
The affected package is called expat and the vulnerable
version we’re running is 2.5.0-r2
It lists the vulnerability as CVE-2023-52425
It includes a link to a Scout report containing more info
It suggests we update to version 2.6.0-r0  which contains
the fix



Figure 6.14 shows how this looks in Docker Desktop, and you
get similar integrations and views in Docker Hub.

Figure 6.14 - Docker Scout integration with Docker Desktop

The scout.docker.com  portal provides an overview
dashboard, allows you to configure policies, and lets you set up
integrations with Docker Hub and other registries to remotely
scan and monitor multiple repositories.

Deleting Images

You can delete images using the docker rmi  command. rmi is
short for remove image.



Deleting images removes them from your local repository and
they’ll no longer show up in your docker images  commands.
The operation also deletes all directories on your local
filesystem containing layer data. However, Docker won’t delete
layers shared by multiple images until you delete all images that
reference them.

You can delete images by name, short ID, or SHA. You can also
delete multiple images with the same command.

The following command deletes three images — one by name,
one by short ID, and one by SHA. I’ve trimmed the output for
easier reading.

Docker will prevent the delete operation if the image is being
used by a container or referenced by more than one tag.
However, you can force the operation with the -f  flag, but you
should do so with caution, as forcing Docker to delete an image

$ docker rmi redis:latest af111729d35a sha256:c5b1261d...f8e1ad6b 
Untagged: redis:latest 
Deleted: sha256:76d5908f5e19fcdd73daf956a38826f790336ee4707d9028f32b24ad9a
Untagged: nigelpoulton/tu-demo:v2 
Deleted: sha256:af111729d35a09fd24c25607ec045184bb8d76e37714dfc2d9e55d13b3
Untagged: alpine:latest 
Deleted: sha256:c5b1261d6d3e43071626931fc004f70149baeba2c8ec672bd4f27761f8



in use by a container will untag the image and leave it on the
system as a dangling image.

A handy way to delete all images is to pass a list of all local
image IDs to the docker rmi  command. You should use this
command with caution, and if you’re following along on
Windows, it will only work in a PowerShell terminal.

$ docker rmi $(docker images -q) -f 

To understand how this works, download a couple of images
and then run docker images -q .

$ docker pull alpine 
<Snip> 
 
$ docker pull ubuntu 
<Snip> 
 
$ docker images -q 
44dd6f223004 
3f5ef9003cef 

See how the docker images -q  returns a list of local image IDs.
Passing this list to docker rmi  will delete all images on the
system as shown next.



$ docker rmi $(docker images -q) -f 
Untagged: alpine:latest 
Untagged: alpine@sha256:02bb6f428431fb...a33cb1af4444c9b11 
Deleted: sha256:44dd6f2230041...09399391535c0c0183b 
Deleted: sha256:94dd7d531fa56...97252ba88da87169c3f 
Untagged: ubuntu:latest 
Untagged: ubuntu@sha256:dfd64a3b4296d8...9ee20739e8eb54fbf 
Deleted: sha256:3f5ef9003cefb...79cb530c29298550b92 
Deleted: sha256:b49483f6a0e69...f3075564c10349774c3 
 
$ docker images 
REPOSITORY     TAG    IMAGE ID    CREATED     SIZE 

Let’s remind ourselves of some of the commands we’ve used.

Images – The commands

docker pull  is the command to download images from
remote registries. It defaults to Docker Hub but works with
other registries. The following command will pull the image
tagged as latest  from the alpine  repository on Docker
Hub: docker pull alpine:latest .
docker images  lists all the images in your Docker host’s
local repository (image cache). You can add the --digests
flag to see the SHA256 hashes.
docker inspect  gives you a wealth of image-related
metadata in a nicely formatted view.
docker manifest inspect  lets you inspect the manifest list
of images stored in registries. The following command will



show the manifest list for the regctl  image on GitHub
Container Registry (GHCR): docker manifest inspect
ghcr.io/regclient/regctl .
docker buildx  is a Docker CLI plugin that works with
Docker’s latest build engine features. You saw how to use the
imagetools  sub-command to query manifest-related data
from images.
docker scout  is a Docker CLI plugin that integrates with the
Docker Scout backend to perform image vulnerability
scanning. It scans images, provides reports on vulnerabilities,
and even suggests remediation actions.
docker rmi  is the command to delete images. It deletes all
layer data stored in the local filesystem, and you cannot
delete images that are in use by containers.

Chapter summary

This chapter taught you the important theory and fundamentals
of images.

You learned that images contain everything needed to run an
application as a container. This includes just enough OS, source
code, dependencies, and metadata.

You can start one or more containers from a single image.



Under the hood, Docker constructs images by stacking one or
more read-only layers and presenting them as a unified object.
Every image has a manifest that lists the layers that make up the
image and how to stack them.

You learned that image names are also called tags, they’re
mutable, and they don’t always pull the same image. For
example, pulling the alpine:latest  tag today will not pull the
same image as it will a year from now. Fortunately, every image
gets an immutable digest that you can use to guarantee you
always pull the intended image.

Docker Hub has the notion of curated official images that
should be safer to use than unofficial images. However, you
should always exercise caution when downloading software
from the internet, even official images from Docker Hub.

Images can share layers for efficiency, and Docker makes it easy
to build and pull images for lots of different CPU architectures,
such as ARM and AMD.

Docker Scout scans images for known vulnerabilities and
provides remediation advice. It requires a Docker subscription
and is integrated into the docker  CLI, Docker Hub, and Docker
Desktop.



In the next chapter, we’ll take a similar tour of containers — the
run-time sibling of images.



7: Working with containers

Docker implements the Open Container Initiative (OCI)
specifications. This means some of the things you’ll learn in this
chapter will apply to other container runtimes and platforms
that implement the OCI specifications.

I’ve divided the chapter into the following sections:

Container – The TLDR
Containers vs VMs
Images and containers
Check Docker is running
Starting a container
How containers start apps
Connecting to a running container
Inspecting container processes
The docker inspect  command
Writing data to a container
Stopping, restarting, and deleting a container
Killing a container’s main process
Debugging slim images and containers with Docker Debug
Self-healing containers with restart policies
The commands



Containers – The TLDR

Containers are run-time instances of images, and you can start
one or more containers from a single image.

Figure 7.1 shows multiple containers started from a single
image. The shared image is read-only, but you can write to the
containers.

Figure 7.1

You can start, stop, restart, and delete containers just like you
can with VMs. However, containers are smaller, faster, and more
portable than VMs. They’re also designed to be stateless and
ephemeral, whereas VMs are designed to be long-running and
can be migrated with their state and data.



Containers are also designed to be immutable. This means you
shouldn’t change them after you’ve deployed them — if a
container fails, you replace it with a new one instead of
connecting to it and making a live fix.

Containers should only run a single process and we use them to
build microservices apps. For example, an application with four
features, such as a web server, auth, catalog, and store, will have
four containers — one running the web server, one running the
auth service, one running the catalog, and another running the
store.

Containers vs VMs

Containers and VMs are both virtualization technologies for
running applications. They both work on your laptop, bare
metal servers, in the cloud, and more. However, the ways they
virtualize are very different:

VMs virtualize hardware
Containers virtualize operating systems

In the VM model, you power on a server and a hypervisor
boots. When the hypervisor boots, it claims all hardware
resources such as CPU, RAM, storage, and network adapters. To
deploy an app, you ask the hypervisor to create a virtual



machine. It does this by carving up the hardware resources into
virtual versions, such as virtual CPUs and Virtual RAM, and
packaging them into a VM that looks exactly like a physical
server. Once you have the VM, you install an OS and then an
app.

In the container model, you power on the same server and an
OS boots and claims all hardware resources. You then install a
container runtime such as Docker. To deploy an app, you ask
Docker to create a container. It does this by carving up OS
resources such as process trees and filesystems into virtual
versions and then packaging them as a container that looks
exactly like a regular OS. You then tell Docker to run the app
inside the container.

Figure 7.2 shows the two models side by side and attempts to
demonstrate the more efficient nature of containers with the
same server running 3x more containers than VMs.



Figure 7.2

In summary, hypervisors perform hardware virtualization
where they divide hardware resources into virtual versions and
package them as VMs. Container runtimes perform OS
virtualization where they divide OS resources into virtual
versions and package them as containers. VMs look and feel
exactly like physical servers. Containers look and feel exactly
like regular operating systems.

The VM tax

One of the biggest problems with the virtual machine model is
that you need to install an OS on every VM — every OS



consumes CPU, RAM, and storage and takes a relatively long
time to boot.

Containers get around all of this by sharing a single OS on the
host they’re running on. This gives containers all of the
following benefits over VMs:

Containers are smaller and more portable
You can run more containers on your infrastructure
Containers start faster
Containers reduce the number of operating systems you need
to manage (patch, update, etc.)
Containers present a smaller attack surface

Let’s briefly expand on each point.

Containers are smaller than VMs because they only contain
application code and a minimal set of OS-related constructs
such as essential filesystem objects. Because of this, they’re
typically only a few megabytes in size. On the other hand, every
VM needs a full OS, meaning they’re usually hundreds or
thousands of megabytes.

Because containers don’t contain their own OS, you can run a
lot more containers than VMs. For example, deploying 100
applications as VMs will require 100 operating systems, each



consuming CPU, memory, and storage, and each needing to be
patched and managed. However, deploying the same 100
applications as containers requires no additional operating
systems. This drastically reduces your OS management
overhead and allows you to allocate more system resources to
applications instead of operating systems.

Containers also start faster than VMs because they use the
host’s OS which is already booted. On the other hand, VMs need
to go through a full OS bootstrapping process before starting the
app.

One of the early concerns about containers centered around the
shared kernel model where all containers on the same host
share the host’s kernel. While this offers performance and
portability benefits, it’s less secure than the VM model where
every VM has its own dedicated kernel. For example, a rogue
container that exploits a vulnerability in the host’s kernel might
be able to impact every other container on the same host.
Fortunately, this is much less of a concern now that container
platforms have matured and ship with class-leading tools that
can make them more secure than non-container platforms. For
example, most container engines and platforms implement
sensible defaults for security-related technologies such as
SELinux, AppArmor, seccomp, capabilities, and more. You can



even configure these to make containers more secure than
VMs. Other technologies, such as image vulnerability scanning,
give you more control over the security of your software than
you ever had before.

At the time of writing, containers are the go-to solution for the
vast majority of new applications.

Pre-reqs

You’ll need a working Docker environment to follow along with
the examples, and I recommend Docker Desktop. Other Docker
setups should work, but you may have to manually install the
Docker Debug plugin if you want to follow along with those
examples.

Images and Containers

As previously mentioned, you can start multiple containers
from a single image. The image is read-only in this relationship,
but each container is read-write. As shown in Figure 7.3, Docker
accomplishes this by creating a thin read-write layer for each
container and placing it on top of the shared image.



Figure 7.3 - Container R/W layers

In this example, each container has its own thin R/W layer but
shares the same image. The containers can see and access the
files and apps in the image through their own R/W layer, and if
they make any changes, these get written to their R/W layer.
When you stop a container, Docker keeps the R/W layer and
restores it when you restart the container. However, when you
delete a container, Docker deletes its R/W layer. This way, each
container can make and keep its own changes without
requiring write access to the shared image.

Check Docker is running

Run a docker version  to check Docker is running. It’s a good
command because it checks the CLI and engine components.



$ docker version 
Client: 
 Version:           27.4.0 
 API version:       1.47 
 OS/Arch:           darwin/arm64 
<Snip> 
Server: Docker Desktop 4.30.0 (149282) 
 Engine: 
  Version:          27.4.0 
  API version:      1.47 (minimum version 1.24) 
  OS/Arch:          linux/arm64 
<Snip> 

As long as you get a response from the Client  and Server ,
you’re good to go and can skip to the next section.

If you get an error code in the Server  section, this usually
means your Docker daemon (server) isn’t running or your user
account doesn’t have permission to access it. If you’re running
on Linux, you’ll need to ensure your user account is a member
of the local docker  Unix group. If it isn’t, you can add it by
running usermod -aG docker <username>  and restarting your
shell. Alternatively, you can prefix all docker  commands with
sudo .

Your account needs to be a member of the docker group so it
can access the API, which is exposed on a privileged local Unix
socket at /var/run/docker.sock . It’s also possible to expose
the API over the network.



If your user account is already a member of the local docker
group and you still get an error from the daemon, there’s a good
chance the Docker daemon isn’t running. Run one of the
following commands to check the status of the daemon.

Linux systems not using Systemd.

$ service docker status 
docker start/running, process 29393 

Linux systems using Systemd.

$ systemctl is-active docker 
active 

If the daemon isn’t running, start it with the appropriate
command for your system.

Starting a container

The docker run  command is the simplest and most common
way to start a new container.

Run the following command to start a new container called
webserver.



Let’s take a closer look at the command and the output.

docker run  tells Docker to run a new container

The -d  flag tells Docker to run it in the background as a
daemon process and detached from your local terminal

The name  flag tells Docker to name this container webserver.

The -p 5005:8080  flag maps port 5005  on your local system to
port 8080  inside the container. This works because the
container’s web server is listening on port 8080 .

The nigelpoulton/ddd-book:web0.1  argument tells Docker
which image to use to start the container.

When you hit Return, the Docker client converted the
command into an API request and posted it to the Docker API

$ docker run -d --name webserver -p 5005:8080 nigelpoulton/ddd-book:web0.1
Unable to find image 'nigelpoulton/ddd-book:web0.1' locally 
web0.1: Pulling from nigelpoulton/ddd-book 
4f4fb700ef54: Already exists 
cf2a607f33f7: Download complete 
0a1f0c111e9a: Download complete 
c1af4b5db242: Download complete 
Digest: sha256:3f5b281b914b1e39df8a1fbc189270a5672ff9e98bfac03193b42d1c02c
Status: Downloaded newer image for nigelpoulton/ddd-book:web0.1 
b5594b3b8b3fdce544d2ca048e4340d176bce9f5dc430812a20f1852c395e96b 



exposed by the Docker daemon. The Docker daemon accepted
the command and searched its local image repository for a copy
of the nigelpoulton/ddd-book:web0.1  image. It didn’t find
one, so it searched Docker Hub. In the example, it found one on
Docker Hub and pulled a local copy.

Once it had a local copy of the image, the daemon made a
request to containerd asking for a new container. containerd
then instructed runc to create the container and start the app. It
also performed the port mapping.

Run the following commands to verify Docker pulled the image
and started the webserver container.

You can also test the app by connecting a browser to port 5005
on your Docker host. If you’re using Docker Desktop, point your
browser to localhost:5005 . If you’re not running Docker

$ docker images 
REPOSITORY              TAG       IMAGE ID       CREATED          SIZE 
nigelpoulton/ddd-book   web0.1    3f5b281b914b   12 minutes ago   159MB 
 
$ docker ps 
CONTAINER ID   IMAGE             COMMAND           STATUS      PORTS      
b5594b3b8b3f   nigelpoulton...   "node ./app.js"   Up 2 mins   0.0.0.0:80-



Desktop, you may need to substitute localhost  with the name
or IP of the host Docker is running on.

Figure 7.4 - Web app running on container

Congratulations. Docker pulled a local copy of the image and
started a container running the app shown in the image.

How containers start apps

In the previous section, you created a container running a web
app. But how did the container know to start a web app?

There are three ways you can tell Docker how to start an app in
a container:



1. An Entrypoint  instruction in the image
2. A Cmd  instruction in the image
3. A CLI argument

You’ll learn more about these in the next chapter, but the
Entrypoint and Cmd instructions are optional image metadata
where you can store the command you want Docker to run to
start the default app. Then, whenever you start a container
from the image, Docker checks the Entrypoint or Cmd
instruction and executes the stored command.

Entrypoint  instructions cannot be overridden on the CLI, and
anything you pass in via the CLI will be appended to the
Entrypoint instruction as an argument.

Cmd  instructions are overridden by CLI arguments.

Run the following command to see if the nigelpoulton/ddd-
book:web0.1  image has an Entrypoint instruction. The
command searches the image metadata and returns any lines
containing the word “Entrypoint” as well as the three lines
immediately following it. Windows users will need to replace
the grep  command with Select-String -Pattern
'Entrypoint' -Context 0,3 .



$ docker inspect nigelpoulton/ddd-book:web0.1 | grep Entrypoint -A 3 
<Snip> 
"Entrypoint": [ 
    "node", 
    "./app.js" 
], 

This image has an Entrypoint instruction that translates into the
following command — node ./app.js . If you’re not familiar
with Node.js, it’s a simple command telling the Node.js runtime
to execute the code in the app.js  file.

If an image doesn’t have an Entrypoint instruction, you can
search for the presence of a Cmd instruction.

If an image doesn’t have either, you’ll need to pass an argument
on the CLI.

The format of the docker run  command is:

docker run <arguments> <image> <command> 

As mentioned, the <command>  is optional; you don’t need it if
the image has a Cmd or Entrypoint instruction. If you specify a
<command> , it will override a Cmd instruction but will be
appended to an Entrypoint instruction.



The following command starts a new background container
based on the Alpine image and tells it to run the sleep 60
command, causing it to run for 60 seconds and then exit. The -
-rm  flag cleans up the exited container so you don’t have to
delete it manually.

$ docker run --rm -d alpine sleep 60 

If you run a docker ps  command before the 60-second sleep
timer expires, you’ll see the container in the output. If you run
it after 60 seconds, the container will be gone. The --rm
argument automatically cleans up the exited container.

Most production images will specify an Entrypoint or Cmd
instruction.

Connecting to a running container

You can use the docker exec  command to execute commands
in running containers, and it has two modes:

Interactive
Remote execution

Interactive exec sessions connect your terminal to a shell
process in the container and behave like remote SSH sessions.



Remote execution mode lets you send commands to a running
container and prints the output to your local terminal.

Run the following command to start an interactive exec session
by creating a new shell process ( sh ) inside the webserver
container that is already running. The -it  flag makes it an
interactive exec session, and the sh  argument starts a new sh
process inside the container. sh  is a minimal shell program
installed in the container.

$ docker exec -it webserver sh 
/src # 

Notice how your shell prompt changed. This proves your
terminal is connected to the shell process inside the container.

Try executing a few common Linux commands. Some will
work, and some won’t. This is because container images are
usually optimized to be lightweight and don’t have all of the
normal commands and packages installed. The following
example shows a couple of commands — one succeeds, and the
other one fails.

The examples list the contents of your current directory and try
to edit the app.js  file with the vim  editor.



The vim  command fails because it isn’t installed in the
container.

Inspecting container processes

Most containers only run a single process. This is the
container’s main app process and is always PID 1.

Run a ps  command to see the processes running in your
container. You’ll need to be connected to the exec session from
the previous section for these commands to work.

/src # ps 
PID   USER     TIME  COMMAND 
    1 root      0:00 node ./app.js 
   13 root      0:00 sh 
   22 root      0:00 ps 

/src # ls -l 
total 100 
-rw-r--r--    1 root     root           324 Feb 20 12:35 Dockerfile 
-rw-r--r--    1 root     root           377 Feb 20 12:35 README.md 
-rw-r--r--    1 root     root           341 Feb 20 12:35 app.js 
drwxr-xr-x  183 root     root          4096 Feb 20 12:41 node_modules 
-rw-r--r--    1 root     root         74342 Feb 20 12:41 package-lock.json
-rw-r--r--    1 root     root           404 Feb 20 12:38 package.json 
drwxr-xr-x    2 root     root          4096 Feb 20 12:35 views 
<Snip> 
 
/src # vim app.js 
sh: vim: not found 



The output shows three processes:

PID 1 is the main application process running the Node.js
web app
PID 13 is the shell process your interactive exec session is
connected to
PID 22 is the ps  command you just ran

The ps  process terminated as soon as it displayed the output,
and the sh  process will terminate when you exit the exec
session. This means the only long-running process is PID 1
running the Node app.

If you kill the container’s main process (PID 1), you’ll also kill
the container. This is because containers only run while their
main process is executing — when that process is no longer
running, there’s no reason for the container to run. We’ll
demonstrate this later.

Type exit  to quit the exec session and return to your local
terminal.

Run another docker exec  command without specifying the -
it  flags. This will remotely execute the command without
creating an interactive session. The format of the command is



docker exec <container> <command> , and it will only work if
the container has the command you’re trying to execute.

$ docker exec webserver ps 
PID   USER     TIME  COMMAND 
    1 root      0:00 node ./app.js 
   42 root      0:00 ps 

This time, only two processes are running because you
terminated the sh  process when you typed exit  to quit the
previous interactive exec session.

The docker inspect  command

You’ll love the docker inspect  command as it’s a treasure
trove of detailed information about images and containers.

The following command retrieves full details of the running
webserver container, and I’ve snipped the output to highlight a
few interesting things. However, I recommend running the
command on your system and studying the output.

$ docker inspect webserver 
<Snip> 
"State": { 
    "Status": "running" 
}, 
"Name": "/webserver",  
    "PortBindings": {  



        "8080/tcp": [  
            { 
                "HostIp": "",           
                "HostPort": "5005"       
            } 
        ] 
    }, 
    "RestartPolicy": { 
        "Name": "no", 
        "MaximumRetryCount": 0 
    "Image": "nigelpoulton/ddd-book:web0.1", 
    "WorkingDir": "/src", 
    "Entrypoint": [ 
        "node", 
        "./app.js" 
    ], 
        } 
<Snip> 

The snipped output shows the container is running, is called
webserver, is binding port 8080  in the container to 5005  on the
host, has no restart policy, and is based on the
nigelpoulton/ddd-book:web0.1  image. The Entrypoint  block
lists the command that automatically runs every time the
container starts.

We’ll cover this in more detail later, but this container inherited
its Entrypoint instruction from the image you started it from.
You can verify this by running the following docker inspect
command against the image. I’ve snipped the output to
highlight the relevant section.



$ docker inspect nigelpoulton/ddd-book:web0.1 
<Snip> 
"Config": { 
    "WorkingDir": "/src", 
    "Entrypoint": [ 
        "node", 
        "./app.js" 
    ], 
<Snip> 

I recommend you take time to investigate the output of docker
inspect  commands. You’ll learn a lot.

Writing data to a container

In this section, you’ll exec onto the webserver  container and
edit the web server configuration to display a new message on
the home page. In the next section, you’ll stop and restart the
container and verify your changes aren’t lost.

WARNING: This section is for demonstration purposes only.
In the real world, you shouldn’t change live containers like
this. Any time you need to change a live container, you
should create and test a new container with the required
changes and then replace the existing container with the
new one.



Open a new interactive exec session to the webserver
container with the following command.

$ docker exec -it webserver sh 
/src # 

The container runs a simple Node.js web app that uses the
views/home.pug  file to build the app’s home page.

Run the following command to open the home.pug  file in the
vi  editor. Windows users can use Notepad or another editor.

/src # vi views/home.pug 

If you know how to use vi , you can go ahead and change the
text on line 8 after the h1  tag to anything you like and save
your changes.

Carefully follow these steps if you’re not familiar with vi :

1. Press the i  key to put vi  into insert mode
2. Use the arrow keys to navigate to line 8
3. Use your delete  key to delete the text after the h1  tag on

line 8
4. Type a new message of your choice



5. Press the escape  key to exit insert mode and return to
command mode

6. type :wq  and press enter save your changes and exit ( :wq  is
short for write and quit)

Once you’ve saved your changes, refresh your browser to see
the updates.

Type exit  to quit the exec session and return to your local
terminal.

Congratulations, you’ve updated the web server config.

Stopping, restarting, and deleting a container

In this section, you’ll execute the typical container lifecycle
events and see how they impact the changes you’ve made to the
container.

The following commands will only work if you’ve quit the
interactive exec session.

Check your container is still running.

$ docker ps 
CONTAINER ID   IMAGE             COMMAND           STATUS       PORTS     
b5594b3b8b3f   nigelpoulton...   "node ./app.js"   Up 51 mins   0.0.0.0:80



Stop it with the docker stop  command. It will take up to 10
seconds to gracefully stop.

$ docker stop webserver 
webserver 

Run another docker ps  command.

$ docker ps 
CONTAINER ID   IMAGE     COMMAND   CREATED   STATUS    PORTS     NAMES 

The container no longer shows in the list of running containers.
However, you can see it if you run the same command with the
-a  flag to show all containers, including stopped ones.

As you can see in the output, it still exists but is in the Exited
state. Restart it with the following command.

$ docker restart webserver 
webserver 

$ docker ps -a 
CONTAINER ID   IMAGE         COMMAND           STATUS                     
b5594b3b8b3f   nigelpou...   "node ./app.js"   Exited (137) About a minute



If you run another docker ps , you’ll see it in the Up  state.

Refresh your browser to see if Docker has saved your changes
to the home page or reverted to the original.

Docker has saved your changes!

You can also run the following command to return the contents
of the file directly from the container’s filesystem.

So far, you’ve seen that starting and stopping containers doesn’t
lose changes. You also saw that restarting them is very fast.

Run the following command to delete the container. The -f
flag forces the operation and doesn’t allow the app the usual 10-
second grace period to flush buffers and gracefully quit. Be

$ docker exec webserver cat views/home.pug 
 
html 
  head 
    title='Docker FTW' 
    link(rel='stylesheet', href='https://stackpath.bootstrapcdn.com/.... 
  body 
    div.container 
      div.jumbotron 
        h1 Everybody loves containers!    <<---- I changed this line 
<Snip> 



careful forcing operations like this, as Docker doesn’t ask you to
confirm.

$ docker rm webserver -f 
webserver 

Run a docker ps -a  to see if there’s any sign of the container.

$ docker ps -a 
CONTAINER ID   IMAGE     COMMAND   CREATED   STATUS    PORTS     NAMES 

All signs of the container are gone and you cannot restart it. You
can start a new instance by executing another docker run
command and specifying the same image, but it won’t have the
changes you made.

WARNING: As previously mentioned, changing live
containers like this is an anti-pattern and you shouldn’t do
it. We only showed it here to demonstrate how containers
work and how changes to the container’s filesystem (made to
the container’s own thin R/W layer) persist across restarts.
An anti-pattern is something that works but isn’t a good
practice as it can have unintended consequences.

Killing a container’s main process



Earlier in the chapter, we learned that containers are designed
to run a single process, and we said that killing this process also
kills the container.

Let’s test if that’s true.

Run the following command to start a new interactive container
called ddd-ctr based on the Ubuntu image and tell it to run a
Bash shell as its main process.

The command pulls the Ubuntu image and attaches your
terminal to the container’s Bash shell process.

Run a ps  command to list all running processes.

root@d3c892ad0eb3:/# ps 
  PID TTY          TIME CMD 
    1 pts/0    00:00:00 bash 
    9 pts/0    00:00:00 ps 

$ docker run --name ddd-ctr -it ubuntu:24.04 bash 
Unable to find image 'ubuntu:24.04' locally 
24.04: Pulling from library/ubuntu 
51ae9e2de052: Download complete 
Digest: sha256:ff0b5139e774bb0dee9ca8b572b4d69eaec2795deb8dc47c8c829becd67
Status: Downloaded newer image for ubuntu:24.04 
root@d3c892ad0eb3:/# 



PID 1 is the container’s main process and is the Bash shell you
told the container to run. The other one is the ps  command
and has already exited. This means the Bash process is the only
process running in the container.

If you type exit , you’ll terminate the Bash process and kill the
container. This is because containers only run while their main
process executes.

Test this by typing exit  to return to your local terminal and
then running a docker ps -a  command to see if the container
terminated.

As expected, the container is in the exited state and not running.
However, you can run the following two commands to restart it
and attach your shell to its main process.

$ docker restart ddd-ctr 
ddd-ctr 
 

root@d3c892ad0eb3:/# exit 
 
$ docker ps -a 
CONTAINER ID   IMAGE          COMMAND   STATUS                  NAMES 
d3c892ad0eb3   ubuntu:24.04   "bash"    Exited (0) 3 secs ago   ddd-ctr 



$ docker attach ddd-ctr 
root@d3c892ad0eb3:/# 

Your terminal is once again attached to the Bash shell in the
container.

You can type Ctrl PQ  to exit a container without killing the
process you’re attached to.

Type Ctrl PQ  to exit the container and run another docker
ps  command to verify the container is still running this time.

root@d3c892ad0eb3:/# <Ctrl PQ> 
read escape sequence 
 
$ docker ps 
CONTAINER ID   IMAGE          COMMAND   STATUS          NAMES 
d3c892ad0eb3   ubuntu:24.04   "bash"    Up 27 seconds   ddd-ctr 

The container is still up.

Now that you know how to exit containers without killing them,
let’s switch focus and see how to use Docker Debug to debug
slim containers and images.

Debugging slim images and containers with Docker
Debug



At the time of writing, Docker Debug is only included as part of
Docker Desktop and requires a Pro, Team, or Business
subscription.

It’s a widely accepted good practice to deploy slim images that
only contain app code and dependencies. This means no shell or
debugging tools and is a big part of making images and
containers small and secure. However, it also makes it difficult
to debug them when things go wrong.

This is where Docker Debug comes to the rescue by allowing
you to get shell access to images and containers that don’t
include a shell and seamlessly inject powerful debugging tools
into them.

At a high level, Docker Debug works by attaching a shell to a
container and mounting a toolbox loaded with debugging tools.
This toolbox is mounted as a directory called /nix  and is
available during your debugging session but is never visible to
the container. As soon as you exit the Docker Debug session, the
/nix  directory is removed. If you’re debugging a running
container, any changes you make are immediately visible to the
container and persist across container restarts. For example,
updating an index.html  during a Docker Debug session will
immediately update the running web app, and the changes will



persist if the container is stopped and restarted. If you’re
debugging an image or stopped container, the Docker Debug
session creates a debug sandbox and adds it to the image as a
R/W layer to make it feel like a running container. However,
changes you make while debugging an image or stopped
container are not persisted and are lost as soon as you quit the
debug session.

If you’ve been following along, you’ll have a running container
called ddd-ctr. If you don’t, you can start one by running
docker run --name ddd-ctr -it ubuntu:24.04 bash .

Run the following commands to attach to the container and see
if it has any debugging tools. The following docker attach
command is similar to the docker exec  commands you
learned earlier but automatically connects to a container’s main
process. You don’t need to run the docker attach  command if
you’re already connected to the container.

$ docker attach ddd-ctr 
root@d3c892ad0eb3:/# 
 
root@d3c892ad0eb3:/# ping nigelpoulton.com 
bash: ping: command not found 
 
root@d3c892ad0eb3:/# nslookup nigelpoulton.com 
bash: nslookup: command not found 
 



root@d3c892ad0eb3:/# vim 
bash: vim: command not found 

The commands all failed because none of the tools are installed
in this container. This would make debugging this container
difficult without Docker Debug.

Type Ctrl PQ  to gracefully disconnect from the container
without killing the Bash process.

In the following steps, you’ll use Docker Debug to get a shell
session to the container and run commands that aren’t installed
in the container. You can even use Docker Debug to get shell
access to containers and images that don’t include a shell.

You need to log in to Docker to use Docker Debug, and it only
works if you have a Pro, Team, or Business license.

$ docker login 
Authenticating with existing credentials... 
Login Succeeded 

Run the following command to check if you have the Docker
Debug CLI plugin. All modern versions of Docker Desktop
include this by default. Other Docker installations may not have
it, but you may be able to install it manually.



$ docker info 
Client: 
 Version:    26.1.1 
 Context:    desktop-linux 
 Debug Mode: false 
 Plugins: 
  debug: Get a shell into any image or container. (Docker Inc.) 
    Version:  0.0.29 
    Path:     /Users/nigelpoulton/.docker/cli-plugins/docker-debug 
<Snip> 

Once you’re logged in and have the plugin installed, you’re
ready to continue.

The format of the command is docker debug <image>|
<container> . We’ll open a Docker Debug session to the
running container called ddd-ctr.

$ docker debug ddd-ctr 

This is an attach shell, i.e.: 
- Any changes to the container filesystem are visible to the container dir
- The /nix directory is invisible to the actual container. 
                                                          Version: 0.0.37 



You’ve successfully connected to the running container and got
a new shell prompt ( docker > ). You also got some helpful info
displaying the short ID and name of the container you’re
debugging, as well as a reminder that any changes you make
will be visible to the container.

Try running the ping, nslookup , and vim  commands that
failed in the previous section. If you get stuck in the vim
session, just type :q  and press Enter .

root@d3c892ad0eb3 / [ddd-ctr]       
docker > 

docker > ping nigelpoulton.com  
PING nigelpoulton.com (192.124.249.126) 56(84) bytes of data. 
64 bytes from cloudproxy10126.sucuri.net (192.124.249.126): icmp_seq=1 ttl
64 bytes from cloudproxy10126.sucuri.net (192.124.249.126): icmp_seq=2 ttl
^C 
 
docker > nslookup nigelpoulton.com 
zsh: command not found: nslookup 
 
docker > vim 
~                   VIM  - Vi IMproved 
~                    version 9.0.1441 
~                by Bram Moolenaar et al. 
~      Vim is open source and freely distributable 
<Snip> 
:q 



The ping  and vim  commands worked, but the nslookup  still
failed. This is because the default Docker Debug toolbox
includes ping  and vim  but doesn’t include nslookup . Don’t
worry, though. You can use Docker Debug’s built-in install
command to add any package listed on search.nixos.org .

Run the following command to install the bind  package (which
includes the nslookup  tool), and then run the nslookup
command again.

The command worked, and nslookup  is now installed in your
toolbox and will be available in future Docker Debug sessions.

Congratulations, you’ve used Docker Debug to attach to a
running container and run troubleshooting commands that

docker > install bind 
Tip: You can install any package available at: https://search.nixos.org/pa
installing 'bind-9.18.19' 
<Snip> 
 
docker > nslookup nigelpoulton.com 
Server:   192.168.65.7 
Address:  192.168.65.7#53 
 
Non-authoritative answer: 
Name:     nigelpoulton.com 
Address:  192.124.249.126 



aren’t part of the container. You’ve also seen how to install
additional tools to your Docker Debug toolbox. Remember, any
changes you make to running containers are immediately
visible to the container and persist after you close the session.

Type exit  to terminate the debug session and return to your
local shell.

Run the following command to create a new Docker Debug
session that debugs the nigelpoulton/ddd-book:web0.1
image. Docker will automatically pull the image from Docker
Hub if you don’t have a local copy.

$ docker debug nigelpoulton/ddd-book:web0.1 

Note: This is a sandbox shell. All changes will not affect the actual imag
                                                      Version: 0.0.37 (BET
root@3f5b281b914b /src [nigelpoulton/ddd-book:web0.1] 
docker > 



Notice the different message this time. Debugging images
creates a sandbox shell and changes won’t affect the actual
image. This reminds you that debugging images and stopped
containers behaves differently from debugging running
containers:

Changes made while debugging a live container are persisted
Changes made while debugging images or stopped containers
are deleted when you quit the debug session

Run an nslookup  command to prove the tool is saved to your
toolbox and available for use without re-installing.

docker > nslookup craigalanson.com 
Server:   192.168.65.7 
Address:  192.168.65.7#53 
 
Non-authoritative answer: 
Name:     craigalanson.com 
Address:  198.185.159.144 
<Snip> 

Docker Debug has a built-in entrypoint  command that lets
you print, lint, and test an image or container’s Entrypoint or
Cmd command. These are the commands Docker executes to
start the container’s app.



Run the following entrypoint  command to reveal the default
command this container will run when it starts.

docker > entrypoint --print 
node ./app.js 

The entrypoint  command is clever enough to look for
Entrypoint and Cmd instructions.

Type exit  to quit the debug session.

In summary, Docker Debug is a fantastic tool for debugging slim
images and containers. It gets you shell access to containers and
images that don’t include a shell, and you can run
troubleshooting tools that aren’t available in the container or
image. Any changes you make to running containers take
immediate effect and persist across stop and restart operations.
However, changes made while debugging images and stopped
containers are lost when you close the session. In all cases, the
tools you install and use are never part of the container or
image.

Self-healing containers with restart policies

Container restart policies are a simple form of self-healing that
allows the local Docker Engine to automatically restart failed



containers.

You apply restart policies per container, and Docker supports
the following four policies:

no  (default)
on-failure

always

unless-stopped

The following table shows how each policy reacts to different
scenarios. A Y indicates the policy will attempt a container
restart, whereas an N indicates it won’t.



        Restart

Restart
Non-
zero

Zero
docker

stop
when

Daemon

policy
exit
code

exit
code

command restarts

no N N N N

on-failure Y N N Y

always Y Y N Y

unless-
stopped

Y Y N N

Non-zero exit codes indicate a failure occurred. Zero exit codes
indicate the container exited normally without an error.

We’ll demo some examples, but you should also do your own
testing.



Let’s demonstrate the always  policy by starting a new
interactive container with the --restart always  flag and
telling it to run a shell process. We’ll then type exit  to kill the
shell process and the container to see what happens.

Run the following command to start an interactive container
called neversaydie with the always  restart policy.

$ docker run --name neversaydie -it --restart always alpine sh 
/# 

Your terminal will automatically connect to the shell process
inside the container.

Type exit  to kill the shell process and return to your local
terminal. This will cause the container to exit with a zero exit
code, indicating a normal exit without any failures.

According to the previous table, the always  restart policy
should automatically restart the container.

Run a docker ps  command to see if this happened.

$ docker ps 
CONTAINER ID   IMAGE    COMMAND   CREATED          STATUS          NAMES 
1933623830bb   alpine   "sh"      35 seconds ago   Up 2 seconds    neversa



The container is running as expected. However, you can see it
was created 35 seconds ago but has only been running for 2
seconds. This is because you forced it to exit when you killed
the shell process, and then Docker automatically restarted it. It’s
also important to know that Docker restarted the same
container and didn’t create a new one. In fact, if you run a
docker inspect  against it, you’ll see the RestartCount  has
been incremented to 1. Remember to replace grep  with
Select-String -Pattern 'RestartCount'  if you’re on
Windows using PowerShell.

$ docker inspect neversaydie | grep RestartCount 
        "RestartCount": 1, 

An interesting feature of the --restart always  policy is that if
you stop a container with docker stop  and then restart the
Docker daemon, Docker will restart the container when the
daemon comes up. To be clear:

1. You start a new container with the --restart always  policy
2. You manually stop it with the docker stop  command
3. You restart Docker (or an event causes Docker to restart)
4. When Docker comes back up, it starts the stopped container



If you don’t want this behavior, you should try the unless-
stopped  policy.

If you are working with Docker Compose or Docker Stacks, you
can apply restart policies to services as follows. We’ll cover
these in more detail in later chapters.

services: 
  myservice: 
    <Snip> 
    restart_policy: 
      condition: always | unless-stopped | on-failure 

Clean up

You can run docker images  and docker ps -a  commands to
see the images you pulled and the containers you created as
part of this chapter. Your output will be similar to this.

$ docker images 
REPOSITORY                 TAG       IMAGE ID       CREATED        SIZE 
nigelpoulton/ddd-book      web0.1    3f5b281b914b   4 days ago     159MB 
ubuntu                     24.04     ff0b5139e774   13 days ago    138MB 
alpine                     latest    c5b1261d6d3e   4 weeks ago    11.8MB 
 
$ docker ps -a 
CONTAINER ID   IMAGE          COMMAND   CREATED       STATUS              
ac165419214f   alpine         "sh"      33 secs ago   Up 24 seconds       
5bd3741185fa   ubuntu:24.04   "bash"    3 mins ago    Exited (0) ~1min ago



You can delete individual containers with the docker rm
<container> -f  command and images with the docker rmi
command, and you should always delete containers before
images.

You can also delete all containers and all images with the
following two commands. Be warned though, Docker will not
prompt you for confirmation.

Both commands work by passing a list of all container/image
IDs to the delete command.

Containers – The commands

docker run  is the command to start new containers. You
give it the name of an image and it starts a container from it.

$ docker rm $(docker ps -aq) -f 
ac165419214f 
5bd3741185fa 
 
$ docker rmi $(docker images -q) 
Untagged: nigelpoulton/ddd-book:web0.1 
Deleted: sha256:3f5b281b914b1e39df8a1fbc189270a5672ff9e98bfac03193b42d1c02
Untagged: ubuntu:24.04 
Deleted: sha256:ff0b5139e774bb0dee9ca8b572b4d69eaec2795deb8dc47c8c829becd6
Untagged: alpine:latest 
Deleted: sha256:c5b1261d6d3e43071626931fc004f70149baeba2c8ec672bd4f27761f8



This example starts an interactive container from the Ubuntu
image and tells it to run the Bash shell: docker run -it
ubuntu bash .
Ctrl-PQ  is how you detach from a container without killing
the process you’re attached to. You’ll use it frequently to
detach from running containers without killing them.
docker ps  lists all running containers, and you can add the
-a  flag to also see containers in the stopped (Exited)  state.
docker exec  allows you to run commands inside containers.
The following command will start a new Bash shell inside a
running container and connect your terminal to it: docker
exec -it <container-name> bash . This next command runs
a ps  command inside a running container without opening
an interactive shell session: docker exec <container-name>
ps . For these to work, the container must include the Bash
shell.
docker stop  stops a running container and puts it in the
Exited (137)  state. It issues a SIGTERM to the container’s
PID 1 process and allows the container 10 seconds to
gracefully quit. If the process hasn’t cleaned up and stopped
within 10 seconds, it sends a SIGKILL to force the container to
terminate immediately.
docker restart  restarts a stopped container.



docker rm  deletes a stopped container. You can add the -f
flag to delete the container without having to stop it first.
docker inspect  shows you detailed configuration and run-
time information about a container.
docker debug  attaches a debug shell to a container or image
and lets you run commands that aren’t available inside the
container or image. It requires a Pro, Team, or Business
Docker subscription.

Chapter summary

In this chapter, you learned some of the major differences
between VMs and containers, including that containers are
smaller, faster, and more portable.

You learned how to start, stop, and restart containers with the
docker  CLI, and you saw that changes to a container’s
filesystem persist across restarts.

You learned that containers run a single process and terminate
if this process is killed. You also saw the three ways of telling a
container which app to run and how to start it — via Entrypoint
or Cmd instructions in the image metadata or via the docker
run  CLI.



You learned about Docker Debug and how it allows you to get a
shell to slim containers and run troubleshooting commands
that don’t exist in the container.

Finally, you learned how to attach restart policies to containers
and how the different restart policies work.



8: Containerizing an app

Docker makes it easy to package applications as images and run
them as containers. We call this process containerization, and
this chapter will walk you through the entire process.

I’ve divided the chapter as follows:

Containerizing an app – The TLDR
Containerize a single-container app
Moving to production with multi-stage-builds
Buildx, BuildKit, drivers, and Build Cloud
Multi-architecture builds
A few good practices

Containerizing an app – The TLDR

Docker aims to make it easy to build, share, and run
applications. We call this containerization and the process looks
like this:

1. Write your applications and create the list of dependencies
2. Create a Dockerfile that tells Docker how to build and run the

app
3. Build the app into an image
4. Push the image to a registry (optional)



5. Run a container from the image

You can see these five steps in Figure 8.1.

Figure 8.1 - Basic flow of containerizing an app

Containerize a single-container app

In this section, you’ll complete the following steps to
containerize a simple Node.js app:

Get the application code from GitHub
Create the Dockerfile



Containerize the app
Run the app
Test the app
Look a bit closer

I recommend you follow along with Docker Desktop. This is
because we’ll be using the new docker init  command, which
might not be installed on other versions of Docker. Don’t worry
if your Docker installation doesn’t have docker init , we
include instructions for you as well.

Get the application code

The application we’ll use is a Node.js web app that serves a web
page on port 8080 .

You’ll need a copy of the book’s GitHub repo containing the
application code. If you don’t already have it, run the following
command to get it. You’ll need git  installed, and the command
will create a new directory called ddd-book .

$ git clone https://github.com/nigelpoulton/ddd-book.git 
 
Cloning into 'ddd-book'... 
remote: Enumerating objects: 47, done. 
remote: Counting objects: 100% (47/47), done. 
remote: Compressing objects: 100% (32/32), done. 
remote: Total 47 (delta 11), reused 44 (delta 11), pack-reused 0 



Receiving objects: 100% (47/47), 167.30 KiB | 1.66 MiB/s, done. 
Resolving deltas: 100% (11/11), done. 

Change into the ddd-book/node-app  directory and list its
contents.

This directory is your build context because it contains the
application source code and the files listing dependencies.

For Docker to containerize it, it needs a Dockerfile with build
instructions. Let’s create it.

Create the Dockerfile

In the past, you had to create Dockerfiles manually. Fortunately,
newer versions of Docker support the docker init  command
that reads your build context, analyzes your application, and
automatically creates a Dockerfile implementing good practices.

$ cd ddd-book/node-app 
 
$ ls -l 
total 98 
-rw-r--r--@   1 nigelpoulton  staff    341 20 Feb 12:35 app.js 
drwxr-xr-x  103 nigelpoulton  staff   3296 12 Mar 16:18 node_modules 
-rw-r--r--    1 nigelpoulton  staff  39975 12 Mar 16:18 package-lock.json 
-rw-r--r--@   1 nigelpoulton  staff    355  8 Mar 10:10 package.json 
drwxr-xr-x    3 nigelpoulton  staff     96 20 Feb 12:35 views 



Run the following command to create a Dockerfile for the app.
If your Docker installation doesn’t have the docker init
plugin, you’ll have to skip this step.

Feel free to accept a newer version of Node.js, but complete all
other prompts as shown. You’ll need to run it from the node-
app  directory.

The process created a new Dockerfile and placed it in your
current directory. It looks like this.

$ docker init 
Welcome to the Docker Init CLI! 
<Snip> 
? What application platform does your project use? Node 
? What version of Node do you want to use? 23.3.0    <<---- Newer versions
? Which package manager do you want to use? npm 
? What command do you want to use to start the app? node app.js 
? What port does your server listen on? 8080 
 
CREATED: .dockerignore 
CREATED: Dockerfile 
CREATED: compose.yaml 
CREATED: README.Docker.md 
 
✔ Your Docker files are ready! 

1. ARG NODE_VERSION=20.8.0 
2. FROM node:${NODE_VERSION}-alpine 
3. ENV NODE_ENV production 



Lines 1 and 2 tell Docker to pull the node:23.3.0-alpine
image and use it as the base for the new image.

Line 3 tells Node to run in production mode. This is a Node.js
optimization that increases performance while minimizing
logging and other common development features.

Line 4 sets the working directory for the remaining steps. For
example, the RUN  and COPY  instructions on lines 5 and 7 will
run against the WORKDIR  directory, as will the node app.js
command on line 9.

Line 5 bind mounts the dependency files and installs them with
the npm ci --omit-dev  command.

Line 6 ensures Node.js runs the app as a non-root user.

4. WORKDIR /usr/src/app 
5. RUN --mount=type=bind,source=package.json,target=package.json \ 
    --mount=type=bind,source=package-lock.json,target=package-lock.json \ 
    --mount=type=cache,target=/root/.npm \ 
    npm ci --omit=dev 
6. USER node 
7. COPY . . 
8. EXPOSE 8080 
9. CMD node app.js 



Line 7 copies the application’s source code from your build
context (the first period) into the WORKDIR  directory (the second
period) inside the image.

Line 8 documents the application’s network port.

Line 9 is the command Docker will execute whenever it starts a
container from the image.

You now have everything Docker needs to build the application
into a container image — source code, dependencies, and a
Dockerfile.

Containerize the app

In this section, you’ll build the application into a container
image.

If your Docker installation doesn’t have the docker init
plugin and you didn’t follow the previous step, you’ll need to
rename the sample-Dockerfile  to Dockerfile  before
continuing.

Run the following command to build a new image called ddd-
book:ch8.node . Be sure to include the trailing period ( . ) as
this tells Docker to use your current working directory as the



build context. Remember, the build context is the directory
where your app files live.

I’ve snipped the output, but you can see four numbered steps
creating four image layers. These map to the instructions in the
Dockerfile.

Check the image exists in your Docker host’s local repository.

$ docker images 
REPO        TAG        IMAGE ID         CREATED              SIZE 
ddd-book    ch8.node   24dd040fa06b     18 minutes ago       242MB 

Congratulations, you’ve containerized the app as an OCI image!

$ docker build -t ddd-book:ch8.node . 
 
[+] Building 16.2s (12/12) FINISHED 
 => [internal] load build definition from Dockerfile           0.0s 
 => => transferring dockerfile: 1.21kB                         0.0s 
 => => transferring context: 659B                              0.0s 
 => [stage-0 1/4] FROM docker.io/library/node:20.8.0-alpine      3s   <<--
 => [stage-0 2/4] WORKDIR /usr/src/app                         0.2s   <<--
 => [stage-0 3/4] RUN --mount=type=bind,source=package...      1.1s   <<--
 => [stage-0 4/4] COPY . .                                     0.1s   <<--
 => exporting to image                                         0.2s 
 => => exporting layers                                        0.2s 
 => => writing image sha256:f282569b8bd0f0...016cc1adafc91     0.0s 
 => => naming to docker.io/library/ddd-book:ch8.node 



Run a docker inspect ddd-book:ch8.node  command to verify
the image and see the settings from the Dockerfile. You should
be able to see the image layers and metadata such as the
Exposed Ports , WorkingDir , and Entrypoint  values.

$ docker inspect ddd-book:ch8.node 
[ 
    { 
        "Id": "sha256:24dd040fa06baf6e40144c5a59f99a749159a932ecebb737751f
        "RepoTags": [ 
            "ddd-book:ch8.node" 
            <Snip> 
            "ExposedPorts": { 
                "8080/tcp": {} 
            "WorkingDir": "/usr/src/app", 
            "Cmd": [ 
                "/bin/sh", 
                "-c", 
                "node app.js" 
            ], 
            <Snip> 
            "Layers": [ 
                "sha256:5f4d9fc4d98de91820d2a9c81e501c8cc6429bc8758b43fcb2
                "sha256:6b20c4e93dbab9786f96268bbe32c208d385f2c4490a278ad3
                "sha256:012c308a78ec993a47fdb7c4c6d17b53d8ce2649a463be28ae
                "sha256:35a839ac7cc922afd896a0297e692141c77ed6e03eff6a70db
                "sha256:918caa8070410ccfb2c5b3b4d62ca66742c46bf21fe0bd4337
                "sha256:a48b3b3d0c5a693840e7e4abd7971f130b4447573483628bcb
                "sha256:ea2d4594dbbef4009441a33dd1dd4c5076d7fe09a171381a6b
            ] 
<Snip> 



You might wonder why the image has seven layers when only
four Dockerfile instructions created layers. This is because the
node:20.8.0-alpine  base image already had four layers.
Therefore, the FROM  instruction pulled a base image with four
layers, and then the WORKDIR, RUN  and COPY  instructions
added three more layers. You can see this in Figure 8.2.

Figure 8.2 - Dockerfile and image layers

Push the image to Docker Hub

This is an optional section, and you’ll need a Docker Hub
account to follow along. Go to hub.docker.com  and sign up for
a free one now.



You’ll complete the following steps:

1. Login to Docker Hub
2. Re-tag the image
3. Push the image

After creating images, you’ll normally push them to a registry
where you can keep them safe and make them accessible to
teammates and clients. Lots of registries exist, but Docker Hub
is the most common public registry and is where Docker pushes
images by default.

Log in to Docker Hub.

Once logged in, you need to re-tag the image. This is because
Docker uses the image tag to determine which registry and
repository to push it to.

$ docker login 
USING WEB-BASED LOGIN 
To sign in with credentials on the command line, use 'docker login -u <use
 
Your one-time device confirmation code is: PNXK-SGJG 
Press ENTER to open your browser or submit your device code here: https://
 
Login Succeeded 



If you run a docker images  command, you’ll see an image
tagged as ddd-book:ch8.node . If you push this image, Docker
will try to push it to a repository called ddd-book  on Docker
Hub. However, no such repository exists, and the command will
fail.

Run the following command to re-tag the image to include your
Docker ID. The format of the command is docker tag
<current-tag> <new-tag> , and it creates an additional tag for
the same image.

$ docker tag ddd-book:ch8.node nigelpoulton/ddd-book:ch8.node 

Run another docker images  command to see the image with
both tags. Notice how everything is identical except the REPO
column. This is because it’s the same image with different
names.

Push it to Docker Hub. You’ll need to be logged in with your
Docker ID for this to work, and you’ll need to use your Docker

$ docker images 
REPO                    TAG         IMAGE ID         CREATED          SIZE
nigelpoulton/ddd-book   ch8.node    24dd040fa06b     38 minutes ago   268M
ddd-book                ch8.node    24dd040fa06b     38 minutes ago   268M



ID instead of mine.

$ docker push nigelpoulton/ddd-book:ch8.node 
The push refers to repository [docker.io/nigelpoulton/ddd-book] 
e4ef261755c8: Pushed 
d25f74b85615: Pushed 
7e1aebde141d: Pushed 
7b3f8039e3c4: Pushed 
2a2799ae89a2: Mounted from library/node 
4927cb899c33: Mounted from library/node 
579b34f0a95b: Pushed 
ced319b3ffb5: Pushed 
ch8.node: digest: sha256:24dd040fa06baf...1f7f862963527a size: 856 

Figure 8.3 shows how Docker figured out where to push the
image.

Figure 8.3

Now that you’ve pushed the image to a registry, you can access
it from anywhere with an internet connection. You can also
grant other people access to pull it and push changes.



Run the app

As previously mentioned, the application is a web server
listening on port 8080 .

Run the following command to start it as a container. You’ll
have to delete the
nigelpoulton  image prefix or replace it with your ID.

$ docker run -d --name c1 \ 
  -p 5005:8080 \ 
  nigelpoulton/ddd-book:ch8.node 

The -d  flag runs the container in the background, and the --
name  flag calls it c1. The -p 5005:8080  maps port 5005  on
your Docker host to port 8080  inside the container, which
means you’ll be able to point a browser to port 5005  and reach
the app. The last line tells Docker to base the container on the
nigelpoulton/ddd-book:ch8.node  image you just built.

Docker will use the local copy of the image from the previous
steps. It only pulls a copy from Docker Hub if it doesn’t have a
local copy.

Check the container is running and verify the port mapping.



I’ve snipped the output for readability, but the container is
running, and port 5005  on the Docker host maps to port 8080
in the container.

Test the app

Open a web browser and point it to the DNS name or IP address
of your Docker host on port 5005 . If you’re using Docker
Desktop or a similar local environment, you can connect to
localhost:5005 . Otherwise, use the IP or DNS of the Docker
host on port 5005 .

You should see the app as shown in Figure 8.4.

$ docker ps 
 
ID    IMAGE              COMMAND           STATUS      PORTS              
49..  ddd-book:ch8.node  "node ./app.js"   UP 6 secs   0.0.0.0:5005->8080/



Figure 8.4

You can try the following if it doesn’t work:

1. Run a docker ps  command to ensure the c1 container is
running

2. Check port mapping is correct — 0.0.0.0:5005->8080/tcp
3. Check that firewall and other network security settings aren’t

blocking traffic to your Docker host on port 5005

Congratulations, the application is containerized and running as
a container!

Looking a bit closer

Now that you’ve containerized the application let’s take a closer
look at how some of the machinery works.



The docker build  command parses the Dockerfile one line at
a time, starting from the top.

You can insert comments by starting a line with the #
character, and the builder will ignore them.

All non-comment lines are called instructions or steps and take
the format <INSTRUCTION> <arguments> . Instruction names
are not case-sensitive, but it’s common to write them in
UPPERCASE to make the file easier to read.

Some instructions create new layers, whereas others add
metadata.

Examples of instructions that create new layers are FROM , RUN ,
COPY  and WORKDIR . Examples that create metadata include
EXPOSE , ENV , CMD , and ENTRYPOINT . The premise is this:

Instructions that add content, such as files and programs,
create new layers
Instructions that don’t add content don’t add layers and only
create metadata

You can run a docker history  command against any image to
see the instructions that created it.



A few things are worth noting from the output.

The bottom few lines that I’ve snipped from the book related to
the history of the node:23.3.0-alpine  base image that was
pulled by the FROM  instruction.

All lines ending with buildkit.dockerfile.v0  relate to
instructions from the Dockerfile used to build the image.

The CREATED BY  column lists the exact Dockerfile instruction
that created the layer or metadata.

Lines with a non-zero value in the SIZE  column created new
layers, whereas the lines with 0B  only added metadata. In this
example, three lines/instructions created layers.

$ docker history ddd-book:ch8.node 
 
IMAGE         CREATED BY                                    SIZE      COMM
24dd...a06b   CMD ["/bin/sh" "-c" "node app.js"]            0B        buil
<missing>     EXPOSE map[8080/tcp:{}]                       0B        buil
<missing>     COPY . . # buildkit                           98kB      buil
<missing>     USER node                                     0B        buil
<missing>     RUN /bin/sh -c npm ci --omit=dev # buildkit   13.6MB    buil
<missing>     WORKDIR /usr/src/app                          16.4kB    buil
<missing>     ENV NODE_ENV=production                       0B        buil
<Snip> 
<missing>     ADD alpine-minirootfs-3.21.0-aarch64.tar.gz   8.84MB    8.35



Run a docker inspect  to see the list of image layers.

As previously mentioned, the output shows seven layers
because the base image had four layers, and the Dockerfile
added three more.

Figure 8.5 maps the Dockerfile instructions to image layers. The
bold instructions with arrows create layers; the others create
metadata. The layer IDs will be different in your environment.

$ docker inspect ddd-book:ch8.node 
 
<Snip> 
}, 
"RootFS": { 
    "Type": "layers", 
    "Layers": [ 
                "sha256:5f4d9fc4d98de91820d2a9c81e501c8cc6429bc8758b43fcb2
                "sha256:6b20c4e93dbab9786f96268bbe32c208d385f2c4490a278ad3
                "sha256:012c308a78ec993a47fdb7c4c6d17b53d8ce2649a463be28ae
                "sha256:35a839ac7cc922afd896a0297e692141c77ed6e03eff6a70db
                "sha256:918caa8070410ccfb2c5b3b4d62ca66742c46bf21fe0bd4337
                "sha256:a48b3b3d0c5a693840e7e4abd7971f130b4447573483628bcb
                "sha256:ea2d4594dbbef4009441a33dd1dd4c5076d7fe09a171381a6b
    ] 
}, 



Figure 8.5

Note: Older builders didn’t create a layer for WORKDIR
instructions. However, the instruction modifies filesystem
permissions and the current builder creates a very small
layer. This behavior may change in the future.

It’s generally considered a good practice to use Docker Official
Images and Verified Publisher images as the base layer for new
images you create. This is because they maintain a high
standard and quickly implement fixes for known
vulnerabilities.

Moving to production with multi-stage builds

When it comes to container images… big is bad! For example:

Big means slow



Big means more potential vulnerabilities
Big means a larger attack surface

For these reasons, your container images should only contain
the stuff needed to run your applications in production.

This is where multi-stage builds come into play.

At a high level, multi-stage builds use a single Dockerfile with
multiple FROM  instructions — each FROM  instruction represents
a new build stage. This allows you to have a stage where you do
the heavy lifting of building the app inside a large image with
compilers and other build tools, but then you have another
stage where you copy the compiled app into a slim image for
production. The builder can even run different stages in parallel
for faster builds.

Note: A slim image is a very small image intended for
production use that only contains files and apps that are
absolutely necessary to run the application. They do not
include shells, package managers, or troubleshooting tools.

Figure 8.6 shows a high-level workflow. Stage 1 builds an image
with all the required build and compilation tools. Stage 2 copies
the app code into the image and builds it. Stage 3 creates a small



production-ready image containing only the compiled app and
anything needed to run it.

Figure 8.6

Let’s look at an example!

We’ll work with the code in the multi-stage  folder of the
book’s GitHub repo. It’s a simple Go app with a client and server
borrowed from the Docker samples buildme repo on GitHub.
Don’t worry if you’re not a Go programmer; you don’t need to
be. You only need to know that it compiles the client and server
apps into executable files that do not need the Go language or
any other tools or runtimes to execute.

Here’s the Dockerfile:



FROM golang:1.23.4-alpine AS base             <<---- Stage 0 
WORKDIR /src 
COPY go.mod go.sum . 
RUN go mod download 
COPY . . 
 
FROM base AS build-client                     <<---- Stage 1 
RUN go build -o /bin/client ./cmd/client 
 
FROM base AS build-server                     <<---- Stage 2 
RUN go build -o /bin/server ./cmd/server 
 
FROM scratch AS prod                          <<---- Stage 3 
COPY --from=build-client /bin/client /bin/ 
COPY --from=build-server /bin/server /bin/ 
ENTRYPOINT [ "/bin/server" ] 

The first thing to note is that there are four FROM  instructions.
Each of these is a distinct build stage, and Docker numbers them
starting from 0. However, we’ve given each stage a friendly
name:

Stage 0 is called base  and builds an image with compilation
tools, etc
Stage 1 is called build-client  and compiles the client
executable
Stage 2 is called build-server  and compiles the server
executable
Stage 3 is called prod  and copies the client and server
executables into a slim image



Each stage outputs an intermediate image that later stages can
use. However, Docker deletes them when the final stage
completes.

The goal of the base  stage is to create a reusable build image
with all the tools stages 1 and 2 need to build the client and
server applications. The image created by this stage is only used
to compile the executables and not for production. It pulls the
golang:1.23.4-alpine  image, which is over 350MB when
uncompressed. It sets the working directory to /src  and copies
in the go.mod  and go.sum  files from your working directory.
These files list the application dependencies and hashes. After
that, it uses the RUN  instruction to install the dependencies and
then the COPY  instruction to copy the application source code
into the image. All of this creates a large image with three layers
containing a lot of build stuff but not much app stuff. When this
build stage completes, it outputs a large image that later stages
can use.

The build-client  stage doesn’t pull a new image. Instead, it
uses the FROM base AS build-client  instruction to use the
intermediate image created by the base  stage. It then issues a
RUN  instruction to compile the client app into a binary
executable. The goal of this stage is to create an image with the
compiled client binary that later stages can reference.



The build-server  stage does the same for the server
component and outputs a similar image for use by later stages.

The prod  stage pulls the minimal scratch  image. It then runs
two COPY --from  instructions to copy the compiled client app
from the build-client  stage and the compiled server app from
the build-server  stage. It then tells Docker to run the server
app when it’s started as a container. This stage outputs the final
production image containing just the client and server binaries
inside a tiny scratch image and the metadata telling Docker how
to start the app.

The builder will run the base  stage first, then run the build-
client  and build-server  stages in parallel, and finally run the
prod  stage.

It will always attempt to run stages in parallel, but it can only do
this when no dependencies exist. For example, the build-
client  and build-server  stages both start with FROM
base... , meaning they depend on the base  stage and cannot
run until that stage is built. However, the build-client  and
build-server  can run in parallel because they don’t depend
on each other. To work out if build stages can run in parallel,
start reading the Dockerfile from the top and check if the FROM



instructions reference other FROM  instructions immediately
before or after — if they do, they can’t run in parallel.

Let’s see it in action.

Change into the multi-stage  directory and verify the
Dockerfile and associated app files exist.

$ ls -l 
 
total 28 
-rw-rw-r-- 1 ubuntu ubuntu  368 Mar 25 10:09 Dockerfile 
-rw-rw-r-- 1 ubuntu ubuntu  433 Mar 25 10:09 Dockerfile-final 
-rw-rw-r-- 1 ubuntu ubuntu  305 Mar 25 10:09 README.md 
drwxrwxr-x 4 ubuntu ubuntu 4096 Mar 25 10:09 cmd 
-rw-rw-r-- 1 ubuntu ubuntu 1013 Mar 25 10:09 go.mod 
-rw-rw-r-- 1 ubuntu ubuntu 5631 Mar 25 10:09 go.sum 

Build the image and watch the build-client  and build-
server  stages execute in parallel. This can significantly
improve the performance of large builds.

$ docker build -t multi:full . 
 
[+] Building 14.6s (15/15) FINISHED 
 => [internal] load build definition from Dockerfile                  0.0s
 => => transferring dockerfile: 736B                                  0.0s
 <Snip> 
 => [build-client 1/1] RUN go build -o /bin/client ./cmd/client       5.1s
 => [build-server 1/1] RUN go build -o /bin/server ./cmd/server       5.1s
 <Snip> 



Run a docker images  to see the new image.

$ docker images 
 
REPO    TAG       IMAGE ID       CREATED         SIZE 
multi   full      a7a01440f2b5   5 seconds ago   26.7MB 

The final production image is only 26MB, much smaller than the
350MB+ base image pulled by the base  stage to build and
compile the app. This is because the final prod  stage extracted
the compiled client and server binaries and placed them in a
tiny new scratch image.

Run a docker history  to see the final production image. It
only has two layers — one created by copying in the client
binary and the other by copying in the server binary. None of
the previous build stages are included in the final production
image.

$ docker history multi:full 
IMAGE          CREATED         CREATED BY                          SIZE   
a7a01440f2b5   2 minutes ago   ENTRYPOINT ["/bin/server"]          0B     
<missing>      2 minutes ago   COPY /bin/server /bin/ # buildkit   8.64MB 
<missing>      2 minutes ago   COPY /bin/client /bin/ # buildkit   8.53MB 



Multi-stage builds and build targets

You can also build multiple images from a single Dockerfile.

The previous example compiled client and server apps and
copied both into the same image. However, Docker makes it
easy to create a separate image for each by splitting the final
prod  stage into two stages as follows:

FROM golang:1.20-alpine AS base 
WORKDIR /src 
COPY go.mod go.sum . 
RUN go mod download 
COPY . . 
 
FROM base AS build-client 
RUN go build -o /bin/client ./cmd/client 
 
FROM base AS build-server 
RUN go build -o /bin/server ./cmd/server 
 
FROM scratch AS prod-client                 <<---- New stage 
COPY --from=build-client /bin/client /bin/ 
ENTRYPOINT [ "/bin/client" ] 
 
FROM scratch AS prod-server                 <<---- New stage 
COPY --from=build-server /bin/server /bin/ 
ENTRYPOINT [ "/bin/server" ] 

I’ve pre-created the Dockerfile and called it Dockerfile-final
in the multi-stage  folder, but you can see the only change is
splitting the final prod  stage into two stages — one for the



client build and the other for the server build. With a Dockerfile
like this, you tell a docker build  command which of the two
final stages to target for the build.

Let’s do it.

Run the following two commands to create two different images
from the same Dockerfile-final  file. Both commands use the
-f  flag to tell Docker to use the Dockerfile-final  file. They
also use the --target  flag to tell the builder which stage to
build from.

Check the builds and image sizes.

$ docker images 
REPOSITORY     TAG       IMAGE ID       CREATED           SIZE 
multi          full      a7a01440f2b5   4 minutes ago     26.7MB 
multi          server    a75778df1b9c   4 seconds ago     11.7MB 
multi          client    02b621e9415f   12 seconds ago    11.9MB 

$ docker build -t multi:client --target prod-client -f Dockerfile-final . 
<Snip> 
 
$ docker build -t multi:server --target prod-server -f Dockerfile-final . 
<Snip> 



You now have three images, and the client  and server
images are each about half the size of the full  image. This
makes sense because the full  image contains the client and
server binaries, whereas the others only include one.

Buildx, BuildKit, drivers, and Build Cloud

This section takes a quick look at the major build components.

Behind the scenes, Docker’s build system has a client and
server:

Client: Buildx
Server: BuildKit

Buildx is Docker’s latest and greatest build client. It’s
implemented as a CLI plugin and supports all the latest features
of BuildKit, such as multi-stage builds, multi-architecture
images, advanced caching, and more. It’s been the default build
client since Docker v23.0 and Docker Desktop v4.19. This means
every time you run a docker build  command, you’re
automatically using the Buildx builder.

You can configure Buildx to talk to multiple BuildKit instances,
and we call each instance of BuildKit a builder. Builders can run



on your local machine, in your cloud or datacenter, or Docker’s
Build Cloud.

If you point buildx at a local builder, image builds will be done
on your local machine. If you point it at a remote builder, such
as Docker Build Cloud, builds will be done on remote
infrastructure.

Figure 8.7 shows a Docker environment configured to talk to a
local and a remote builder.

Figure 8.7 - Docker build architecture

In the diagram, the local builder uses the docker-container
driver to create a local BuildKit instance inside a dedicated
container. All builds using this driver will run in the dedicated
container. The other option uses the cloud driver to send builds



to Docker’s Build Cloud service. Build Cloud offers fast builds
and a shared cache but requires a paid subscription.

When you run a docker build  command, buildx interprets the
command and sends the build request to the selected builder.
This includes the Dockerfile, command line arguments, caching
options, export options, and the build context (app and
dependency list). The builder performs the build and exports the
image. The Buildx client monitors the build and reports on
progress.

Run the following command to see the builders you have
configured on your system. I’ve trimmed the output in the
book, but you can see a local and a remote builder.

$ docker buildx ls 
NAME/NODE                  DRIVER/ENDPOINT         PLATFORMS 
builder *                  docker-container 
  builder0                 desktop-linux           linux/arm64, linux/amd6
                                                   linux/riscv64, linux/pp
                                                   linux/386, linux/mips64
                                                   linux/arm/v7, linux/arm
cloud-nigelpoulton-ddd     cloud 
  linux-arm64              cloud://nigel...arm64   linux/arm64* 
  linux-amd64              cloud://nigel...amd64   linux/amd64*, linux/amd
                                                   linux/amd64/v3,linux/am
<Snip> 



Notice how the first builder supports more platforms than the
cloud builder. This is because the docker-container driver
utilizes QEMU to emulate target hardware. It usually works but
can be slow.

The second builder is Docker’s Build Cloud, which only supports
AMD and ARM builds. Builds running in Build Cloud run on
native hardware and offer a shared cache so that teammates
can share a common cache for even faster builds. Complex
builds can be much quicker when executed on native hardware
such as Build Cloud.

Run a docker buildx inspect  command against one of your
builders.

$ docker buildx inspect cloud-nigelpoulton-ddd 
 
Name:          cloud-nigelpoulton-ddd 
Driver:        cloud 
Nodes: 
Name:      linux-arm64 
Endpoint:  cloud://nigelpoulton/ddd_linux-arm64 
Status:    running 
Buildkit:  v0.16.0 
Platforms: linux/arm64*, linux/arm/v6, linux/arm/v7 
Labels: 
 org.mobyproject.buildkit.worker.executor:         oci 
 org.mobyproject.buildkit.worker.hostname:         nigelpoulton_ddd-cloud_
 org.mobyproject.buildkit.worker.network:          host 
 org.mobyproject.buildkit.worker.oci.process-mode: sandbox 
 org.mobyproject.buildkit.worker.selinux.enabled:  false 



Let’s see how to perform multi-architecture builds.

Multi-architecture builds

You can use the docker build  command to build images for
multiple platforms and CPU architectures, including ones
different from your local machine. For example:

Docker on an AMD machine can build ARM images
Docker on an ARM machine can build AMD images

You also have the option to perform builds locally or in the
cloud. Both work with the standard docker build  command
and only require minimal backend configuration.

Run the following command to list your current builders.
Remember, a builder is an instance of BuildKit that will perform
builds.

 org.mobyproject.buildkit.worker.snapshotter:      overlayfs 
GC Policy rule#0: 
 All:        true 
 Keep Bytes: 25GiB 
<Snip> 

$ docker buildx ls 
NAME/NODE                  DRIVER/ENDPOINT         PLATFORMS 
builder *                  docker-container 



The book’s output shows two builders; the one with the asterisk
(*) is the default builder. In this example, the default builder is
called builder  and uses the docker-container  driver to
perform builds inside a local build container. Unless you specify
a different builder, all builds will run inside this build container.
It supports multiple architectures, including AMD, ARM, RISC-V,
s390x, and more.

If you don’t already have one, create a new builder called
container that uses the docker-container  driver with the
following command.

$ docker buildx create --driver=docker-container --name=container 

Run another docker buildx ls  to show the new builder. Don’t
worry if it shows as present but inactive.

  builder0                 desktop-linux           linux/arm64, linux/amd6
                                                   linux/riscv64, linux/pp
                                                   linux/386, linux/mips64
                                                   linux/arm/v7, linux/arm
cloud-nigelpoulton-ddd     cloud 
  linux-arm64              cloud://nigel...arm64   linux/arm64* 
  linux-amd64              cloud://nigel...amd64   linux/amd64*, linux/amd
                                                   linux/amd64/v4 
<Snip> 



Make it the default builder.

$ docker buildx use container 

Change into the web-app  directory and run the following
command to build the app into AMD and ARM images and
export them directly to Docker Hub.

Be sure to substitute your Docker ID as the command pushes
directly to Docker Hub and will fail if you try to push it to my
repositories. If you don’t have a Docker Hub account or don’t
want to push the images, you can replace the --push  with --
load .

$ docker buildx build --builder=container \ 
  --platform=linux/amd64,linux/arm64 \ 
  -t nigelpoulton/ddd-book:ch8.1 --push . 
 
[+] Building 79.3s (26/26) FINISHED 
 <Snip> 
 => [linux/arm64 2/5] RUN apk add --update nodejs npm curl                
 => [linux/amd64 2/5] RUN apk add --update nodejs npm curl                
 => [linux/amd64 3/5] COPY . /src                                         
 => [linux/amd64 4/5] WORKDIR /src                                        
 => [linux/amd64 5/5] RUN  npm install                                    
 => [linux/arm64 3/5] COPY . /src                                         
 => [linux/arm64 4/5] WORKDIR /src                                        
 => [linux/arm64 5/5] RUN  npm install                                    
 => exporting to image 
 <Snip> 



I’ve snipped the output, but you can still see two important
things:

Each Dockerfile instruction executed twice — once for AMD
and once for ARM
The last few lines show the image layers being pushed
directly to Docker Hub

Now that you’ve performed a build, the builder will show as
active and list the architectures it supports.

Figure 8.8 shows how the images for both architectures appear
on Docker Hub under the same repository and tag.

Figure 8.8 - Multi-platform image

 => => pushing layers                                                     
 => => pushing manifest for docker.io/nigelpoulton/ddd-book:web0.2@sha256:
 => [auth] nigelpoulton/ddd-book:pull,push token for registry-1.docker.io 



You can also perform the builds using Docker Build Cloud. This
is a cloud-based service that offers fast builds and lets you share
your build cache with teammates. It requires a paid
subscription.

If you have a Docker subscription that grants you access to
Build Cloud, you can go to build.docker.com  and configure
your first cloud builder. You can also create cloud builders from
the CLI as follows. If you’re following along, you’ll need to give
yours a different name.

$ docker buildx create --driver cloud nigelpoulton/ddd 

Once you have a cloud builder, you can either make it your
default builder with a docker buildx use <builder>
command, or you can specify it when performing individual
builds.

The following command uses the --builder  flag to use the
cloud-nigelpoulton-ddd cloud builder to build the same images
as in the previous steps. Remember to use your own cloud
builder if you’re following along.

$ docker buildx build \ 
  --builder=cloud-nigelpoulton-ddd \ 
  --platform=linux/amd64,linux/arm64 \ 



At the time of writing, Build Cloud supports various AMD and
ARM architectures, whereas the docker-container  driver
supports more but is slower and less reliable.

A few good practices

Let’s finish the chapter with a few best practices. This isn’t a full
list, and the advice applies to local builds and cloud builds.

Leverage the build cache

BuildKit uses a cache to speed up builds. The best way to see the
impact is to build a new image on a clean Docker host and then
repeat the same build immediately after. The first build will pull
images and take time to build layers. The second build will
instantly complete because the layers and other artifacts from
the first build are cached and leveraged by later builds.

If you use a local builder, the cache is only available to other
builds you execute on the same system. However, your entire
team can share the cache on Docker Build Cloud.

  -t nigelpoulton/ddd-book:ch8.1 --push . 
 
=> [internal] connected to docker build cloud service                     
<Snip> 



For each build, the builder iterates through the Dockerfile one
line at a time, starting from the top. For each line, it checks if it
already has the layer in its cache. If it does, a cache hit occurs,
and it uses the cached layer. If it doesn’t, a cache miss occurs,
and it builds a new layer from the instruction. Cache hits are
one of the best ways to make builds faster.

Let’s take a closer look.

Assume the following Dockerfile:

FROM alpine 
RUN apk add --update nodejs npm 
COPY . /src 
WORKDIR /src 
RUN npm install 
EXPOSE 8080 
ENTRYPOINT ["node", "./app.js"] 

The first instruction tells Docker to use the alpine:latest
image as its base image. If you already have a copy of this image,
the builder moves on to the next instruction. If you don’t have a
copy, it pulls it from Docker Hub.

The next instruction ( RUN apk... ) runs a command to update
package lists and install nodejs  and npm . Before executing the
instruction, Docker checks the build cache for a layer built from



the same base image using the same instruction. In this case, it’s
looking for a layer built by executing the RUN apk add --
update nodejs npm  instruction directly on top of the
alpine:latest  image.

If it finds a matching layer, it links to that layer and continues
the build with the cache intact. If it does not find a matching
layer, it invalidates the cache and builds the layer. Invalidating
the cache means the builder must execute all remaining
Dockerfile instructions in full and cannot use the cache.

Let’s assume Docker had a cached layer for the RUN  instruction
and that the layer’s ID is AAA.

The next instruction runs a COPY . /src  command to copy the
app code into the image. The previous instruction scored a
cache hit, meaning Docker can check if it has a cached layer
built by running a COPY . /src  against the AAA layer. If it has
a cached layer for this, it links to the layer and proceeds to the
next instruction. If it doesn’t have a cached layer, it builds it and
invalidates the cache for the rest of the build.

This process continues for the rest of the Dockerfile.

It’s important to understand a few things.



Any time an instruction results in a cache miss, the cache is
invalidated and no longer checked for the rest of the build. This
means you should write your Dockerfiles so that instructions
most likely to invalidate the cache go near the end of the
Dockerfile. This allows builds to benefit from the cache for as
long as possible.

You can force a build to ignore the cache by running docker
build  with the --no-cache  option.

It’s also important to understand that COPY  and ADD
instructions include logic to ensure the content you’re copying
into the image hasn’t changed since the last build. For example,
you might have a cached layer that Docker built by running a
COPY . /src  against the AAA image. However, if the files that
the COPY . /src  instruction copies into the layer have
changed since the cached layer was built, you cannot use the
cached layer as you’d get old versions of the files. To protect
against this, Docker performs checksums against each file it
copies. If the checksums don’t match, the cache is invalidated,
and Docker builds a new layer.

Only install essential packages

We often joke that we install the entire internet when we build
apps. As a quick example, the simple Node.js app used earlier in



the chapter depends on two packages:

Express
Pug

However, these packages depend on other packages, which in
turn depend on others. At the time of writing, building this
simple application with two dependencies actually downloads
over 110 packages!

Fortunately, some package managers provide a way for you to
only download and install essential packages instead of the
entire internet. One example is the apt  package manager that
lets you specify the no-install-recommends  flag so that it only
installs packages in the depends field and not every
recommended and suggested package. Each package manager
does this differently, but it’s worth investigating as it can
massively impact the size of your images.

Clean up

If you’ve followed along, you’ll have one running container and
several images in your local image repository. You should delete
the running container and, optionally, the local images.

Run the following command to delete the container.



$ docker rm c1 -f 

Optionally delete the local images with the following command.
Be sure to use the names of the images in your environment.

Containerizing an app – The commands

docker build  containerizes applications. It reads a
Dockerfile and follows the instructions to create an OCI
image. The -t  flag tags the image, and the -f  flag lets you
specify the name and location of the Dockerfile. The build
context is where your application files exist and can be a
directory on your local Docker host or a remote Git repo.
The Dockerfile FROM  instruction specifies the base image. It’s
usually the first instruction in a Dockerfile, and it’s
considered a good practice to build from Docker Official
Images or images from Verified Publishers. FROM  is also used
to identify new build stages in multi-stage builds.
The Dockerfile RUN  instruction lets you run commands
during a build. It’s commonly used to update packages and

$ docker rmi \ 
  multi:full multi:client multi:server ddd-book:ch8.node nigelpoulton/ddd-



install dependencies. Every RUN  instruction creates a new
image layer.
The Dockerfile COPY  instruction adds files to images, and
you’ll regularly use it to copy your application code into a
new image. Every COPY  instruction creates an image layer.
The Dockerfile EXPOSE  instruction documents an
application’s network port.
The Dockerfile ENTRYPOINT  and CMD  instructions tell Docker
how to run the app when starting a new container.
Some other Dockerfile instructions include LABEL , ENV ,
ONBUILD , HEALTHCHECK  and more.

Chapter summary

This chapter taught you how to containerize an application.
This is the process of building an app into a container image and
running it as a container.

You pulled some application source code from GitHub and used
the docker init  command to auto-generate a Dockerfile with
instructions telling Docker how to build the app into a container
image. You then used docker build  to create the image,
docker push  to push it to Docker Hub, and docker run  to run
it as a container.



Along the way, you learned that some Dockerfile instructions
add content to an image and therefore create new layers.
Instructions that don’t add content only create metadata.

After that, you learned how multi-stage builds allow you to
create small and efficient production images without the bloat
carried over from compiling the app.

After that, you learned that buildx is the default build client that
integrates with the latest features of the BuildKit build engine.
You learned how to create local and remote builders (BuildKit
instances) and how to use them to perform multi-architecture
builds.

You also learned the importance of the build cache for speeding
up builds and how to optimize Dockerfiles to leverage the build
cache.



9: Multi-container apps with Compose

In this chapter, you’ll deploy and manage a multi-container AI
chatbot using Docker Compose. Along the way, we’ll look at
how the chatbot app works.

The app is a multi-container app with three services — a web
interface, a backend API, and a model server. The model server
runs Ollama to execute a local instance of a large language
model (LLM) that’s pre-trained to answer developer-related
questions and keep answers short. LLMs require a lot of
memory and run best GPUs. However, not everyone has access
to GPUs, so I’ve configured the app to work on systems with
CPUs and a minimum of 8GB of RAM. I’ll show you how to
configure the app for GPUs if your Docker host has NVIDIA
GPUs.

When referring to Docker Compose, we usually shorten it to
Compose and always write it with a capital “C”.

I’ve organized the chapter as follows:

Compose – The TLDR
Compose background
Install Compose
The AI chatbot app

https://ollama.com/


Compose files
Deploy the app
Use the app
Inspect the app
Manage the app
Inspect the Ollama configuration

Compose – The TLDR

We create modern cloud-native applications by writing small
specialized services and combining them into a meaningful app.
We call them microservices applications, and they bring a lot of
benefits, such as self-healing, autoscaling, and rolling updates.
However, they can be complex.

For example, you might have a microservices app with the
following seven services:

Web frontend
Ordering
Catalog
Backend datastore
Logging
Authentication
Authorization



Instead of hacking these services together with complex scripts
and long docker  commands, Compose lets you describe them
in a simple YAML file called Compose file. You can then deploy
the entire app by running a docker compose up  command that
sends the Compose file to Docker, and Docker takes care of the
rest. Behind the scenes, Docker reads the file and runs the
commands to deploy everything defined in the file.

This means that Compose files are as important as your code
files, and you should manage them in a version control system
such as Git.

That’s the basics. Let’s dig deeper.

Compose background

When Docker was new, it had no way to deploy and manage
multi-container apps. To fill this gap, a company called Orchard
Labs built a tool called Fig that ran on top of Docker and let you
define complex multi-container apps in a simple YAML file. You
could even use the fig  command-line tool to manage the
entire application lifecycle.

Behind the scenes, Fig would read the YAML file and call the
appropriate docker  commands.



Fig was so good that Docker, Inc. acquired Orchard Labs and
rebranded Fig as Docker Compose. They renamed the command-
line tool from fig  to docker-compose , and then, more
recently, they folded it into the main docker  CLI with its own
compose  sub-command. Later in the chapter, you’ll run simple
docker compose  commands to deploy and manage the multi-
container chatbot app.

There is also a Compose Specification driving Compose as an
open standard for defining multi-container microservices apps.
It’s a community-led specification and kept separate from the
Docker implementation to maintain better governance and
clearer demarcation. However, Docker Compose is the reference
implementation, and you should expect Docker to implement
the full spec.

Reading the specification documentation is a great way to learn
the details.

Installing Compose

All modern versions of Docker come with Docker Compose pre-
installed, and you no longer need to install it as a separate
application.

https://www.compose-spec.io/


Test it with the following command. Be sure to use the docker
compose  command instead of the older docker-compose .

$ docker compose version 
Docker Compose version v2.31.0 

The AI chatbot app

We’ll deploy the multi-container AI chatbot app shown in Figure
9.1. It’s a clone of an official Docker app available on Docker
Hub. I’ve cloned it here so that I control the version you’ll use
and ensure it stays in sync with the instructions and workflow
of the book. I’ve also provided the app code and Dockerfiles,
and I’ve pre-built multi-architecture images — none of which
the official Docker app provided at the time of writing.

Figure9.1 - Sample app

https://hub.docker.com/r/ai/chat-demo


The app has a network, a volume, and three services. Each
service performs a specific task, and as shown in the diagram, is
deployed in its own container.

The frontend service runs a web server that exposes the chat
interface on port 3000  and talks to the backend API service on
port 8000 . The backend service runs a FastAPI server that
listens on port 8000  and forwards prompts (questions) from
the frontend service to the model server on port 11434  and
streams responses. The model server uses the Ollama runtime
to execute a local instance of a Mistral instruct LLM optimized
as a coding assistant. The model service mounts the
model_data volume to store the LLM. All three services
connect to the chatbot network.

This is all defined in the compose.yaml  file in the ai-compose
folder of the book’s GitHub repo.

In this example, all three services define and deploy a single
container. However, it’s possible for a service to deploy multiple
identical containers to help with performance and load-
balancing. You’ll do this in the Swarm chapter later in the book.

If you haven’t already done so, clone the repo on the machine
you’re running your Docker commands from. You’ll need git



installed, and the command will create a new directory called
ddd-book .

$ git clone https://github.com/nigelpoulton/ddd-book.git 

Change into the ddd-book/ai-compose  directory and list its
contents.

$ cd ddd-book/ai-compose/ 
$ ls -l 
total 24 
drwxr-xr-x@ 5 nigelpoulton  staff   160 18 Dec 12:25 backend 
drwxr-xr-x@ 8 nigelpoulton  staff   256 18 Dec 14:32 frontend 
drwxr-xr-x@ 4 nigelpoulton  staff   128 18 Dec 12:25 model 
-rw-r--r--@ 1 nigelpoulton  staff  1338 18 Dec 14:28 compose.yaml 

This directory is your build context, containing all the app code
and configuration files you need to deploy and manage the app.

The backend  folder contains the application code and
Dockerfile for the backend service
The frontend  folder contains the application code and
Dockerfile for the frontend service
The model  folder contains the application code and
Dockerfile for the model service
The compose.yaml  file is the Compose file that describes the
app (three services, one network, and one volume)



In a moment, you’ll run a docker compose  command to deploy
the app. That sends the compose.yaml  file to Docker, which will
read it and create the chatbot network, the model_data
volume, and a single container for each service (it’s possible to
deploy multiple containers per service and you’ll do this in
Chapter 12, Deploying apps to Swarm). It will mount the
model_data volume into the model container and connect all
three containers to the chatbot network.

Let’s take a closer look at the Compose file.

Compose files

Compose defines applications in YAML files called Compose files
that are usually called compose.yaml  or compose.yml .
However, you can use the -f  flag to specify a different file
name at run time.

Here is the Compose file we’ll be using.

volumes:                               <<---- Volumes are defined in this 
  model_data: 
networks:                              <<---- Networks are defined in this
  chatbot: 
services:                              <<---- Services are defined in this
  frontend:                            <<---- This block defines the front
    image: nigelpoulton/ddd-book:ai-fe    
    command: npm run start               
    networks:  



      - chatbot 
    ports: 
      - "3000:3000" 
    environment: 
      - PORT=3000 
      - HOST=0.0.0.0 
    depends_on: 
      - backend 
  backend:                             <<---- This block defines the backe
    image: nigelpoulton/ddd-book:ai-be 
    networks: 
      - chatbot 
    ports: 
      - "8000:8000" 
    environment: 
      - MODEL_HOST=http://model:11434 
    depends_on: 
      model: 
        condition: service_healthy 
  model:                               <<---- This block defines the model
    build: ./model 
    networks: 
      - chatbot 
    ports: 
      - "11434:11434" 
    volumes: 
      - model_data:/root/.ollama 
    environment: 
      - MODEL=${MODEL:-mistral:latest} 
    healthcheck: 
      test: ["CMD-SHELL", "curl -s http://localhost:11434/api/tags | jq -e
      interval: 10s 
      timeout: 5s 
      retries: 50 
      start_period: 900s 
    deploy: 
      resources: 
        limits: 
          memory: 8G 



The first thing to note is that the file has three top-level keys
with a block of code beneath each:

volumes
networks
services

The volumes  block defines a single volume, the networks
block defines a single network, and the services  block defines
three services.

Let’s look closer at each, starting with the volumes  and
networks  blocks.

volumes:               
  model_data:          
networks:              
  chatbot:             

The volumes block defines a single volume called model_data
that Docker will create on the host’s filesystem. Later in the file,
the model service will mount it and use it to store the LLM. The
networks block defines a single network called chatbot that all
three services will connect to.



The top-level services  key is mandatory and is where you
define application microservices. This file defines three
microservices called frontend, backend, and model, and
deploys a single container for each. You’ll learn how to scale
services with multiple identical containers in the chapter on
deploying apps to Swarm.

Let’s look at each in detail, starting with the frontend  service.

Let’s explain the fields.

frontend:  The service’s name, and all containers Docker
creates as part of this service will have “frontend” in their
names.

services:                               
  frontend:                              <<---- Service name (containers w
    image: nigelpoulton/ddd-book:ai-fe   <<---- Base containers on this im
    command: npm run start               <<---- Run this command to start 
    environment: 
      - PORT=3000                  <<---- Variable telling the app to use 
      - HOST=0.0.0.0               <<---- Variable telling the app to use 
    networks:                             
      - chatbot                    <<---- Connect container to the "chatbo
    ports:                                
      - "3000:3000"                <<---- Map port 3000 on the host to 300
    depends_on: 
      - backend                    <<---- Wait for backend to be running b



image:  Tells Docker which image to use when creating
containers for this service.
command:  Specifies the command Docker will execute to
start the app in every container it creates for this service.
environment:  Defines two environment variables the app
will use to know which port and network interfaces to serve
on.
networks:  Tells Docker to connect the service’s containers
to the chatbot  network. The network should already exist
or be defined in the networks  top-level key.
ports:  Tells Docker to map port 3000  on the Docker host to
port 3000  inside the container.
depends_on:  Tells Docker to wait for the backend service to
be running before starting this one.

Stepping through the block, Compose will instruct Docker to
create a container called frontend based on the
nigelpoulton/ddd-book:ai-fe  image. It will run an npm run
start  command to start the app, use a couple of environment
variables to bind the app to port 3000  on all interfaces, connect
the container to the chatbot network, and create a mapping so
that traffic hitting the Docker host on port 3000  will reach the
container on 3000 . Finally, it creates a dependency on the
backend service, ensuring this service will not start until the
backend service is running.



Specifying a command in a Compose file overrides CMD
commands specified in images and Dockerfiles. If the image or
Dockerfile uses an ENTRYPOINT instruction, commands
specified in Compose files are appended as arguments.

The backend service is similar.

Let’s step through this one.

backend:  The service’s name, and all containers created for
this service will inherit this in their names.
environment:  This service doesn’t specify a command ,
meaning it will execute the command specified in the
Dockerfile that created the image. However, it uses an
environment variable to tell the app where to find the model
server.

backend:                             <<---- Service name (containers will 
  image: nigelpoulton/ddd-book:ai-be     <<---- Base containers on this im
  environment: 
    - MODEL_HOST=http://model:11434  <<---- Variable telling app where to 
  networks: 
    - chatbot                        <<---- Connect container to the "chat
  ports: 
    - "8000:8000"                    <<---- Map port 8000 on the host to 8
  depends_on: 
    model: 
      condition: service_healthy     <<---- Wait for model server to be HE



network:  Tells Docker to connect backend service
containers to the chatbot network.
ports:  Maps port 8000  on the Docker host to port 8000
inside the container.
depends_on.model.condition: service_healthy  ensures
this service will only go live after the model service is
running and passed a healthcheck.

Compose will read this block and start a container called
backend and base it on the nigelpoulton/ddd-book:ai-be
image. It will execute the image’s CMD or ENTRYPOINT
command to start the app and inject the MODEL_HOST
environment variable into the app so it knows where to find the
model server. It will connect the container to the chatbot
network and map port 8000  on the Docker host to 8000  on the
container. Finally, it creates a dependency requiring the model
service to pass a healthcheck before this service accepts
requests.

Finally, let’s inspect the model service definition.

model:                        <<---- Service name (containers will inherit
  build: ./model              <<---- Build image from app and Dockerfile i
  environment:                <<---- Variable telling model server which L
    - MODEL=${MODEL:-mistral:latest} 
  volumes:                      
    - model_data:/root/.ollama    <<---- Mount model_data volume to /root/



model:  Name of the service and its container will inherit this
in its name.
build: ./model:  Tells Docker to build the image for this
service from the application files and Dockerfile in the
./model  directory.
environment:  Tells Ollama to use the model stored in the
MODEL variable.
volumes:  Mount the model_data volume into the container
at /root/.ollama
networks:  Connect to the chatbot network.
ports:  Mapp port 11434  on the docker host to 11434  on
the container.
deploy.resources.limits.memory:  Allocate 8GB of memory
to this service’s container

  networks: 
    - chatbot                 <<---- Attach container to chatbot network 
  ports: 
    - "11434:11434"           <<---- Map port 11434 on Docker host to 1143
  deploy: 
    resources: 
      limits: 
        memory: 8G            <<---- Allocate 8GB of memory to this servic
  healthcheck:                <<---- Defines healthcheck command and instr
    test: ["CMD-SHELL"...     <<---- Run this command to test the model he
    interval: 10s             <<---- Wait this long after the container fi
    timeout: 5s               <<---- Don't let checks run longer than 5 se
    retries: 50               <<---- Retry the healthcheck up to 50 times 
    start_period: 600s        <<---- Keep checking for up to 10 mins 



healthcheck:  Run the command in the test  field to
determine if the application is up and serving the model. The
actual command is much longer and I’ve trimmed it for the
book. The other values tell Docker to repeat the test for up to
50 times or 10 minutes.

Stepping through the block, this service is called model and
Compose will instruct Docker to build its image from the
Dockerfile and application files in the ./model  directory. This
service doesn’t define a command , so it will start the app using
the command specified in the Dockerfile’s CMD or
ENTRYPOINT property and use the MODEL environment
variable to know which LLM to serve. If the LLM doesn’t exist,
Ollama will pull it from the Ollama library and store it in
/root/.ollama , which is backed by the model_data volume. It
will attach the container to the chatbot network and map port
11434  on the Docker host to 11434  on the container. Finally, it
will allocate 8GB of RAM to the container and won’t mark itself
as healthy until the healthcheck command completes
successfully. According to the healthcheck settings, it will wait
10 seconds after the container starts before attempting the first
check. It will allow each check to run for five seconds and will
keep retrying for up to 10 minutes or 50 more times.



If your Docker host has access to NVIDIA GPUs, you’ll need to
remove the comment characters (#) from the following five
lines to ensure your model server gets access to your GPUs.
You’ll find the lines below the model service’s deploy  block.

This configuration allocates all  available GPUs to the model
service. However, you can be more granular by setting the
number of GPUs to 1, 2, 3, or however many GPUs your host has.

Finally, the app file for the model server is a shell script called
start.sh . It starts Ollama as a background service, checks for a
local copy of the LLM specified in the MODEL variable, and
pulls it from the Ollama library if it doesn’t have a local copy.

deploy 
  ... 
    ... 
      ... 
    reservations: 
      devices: 
        - driver: nvidia 
          count: all            <<---- Can set to an integer. E.g. 1, 2, 3
          capabilities: [gpu] 

#!/bin/bash 
set -e 
 
/bin/ollama serve &           <<---- Start Ollama in the background and 
OLLAMA_PID=$!                 <<---- acquire the Ollama PID 



Now that you understand how the Compose file works, let’s
deploy the app.

Deploy the app

In this section, you’ll use the Compose file to deploy the app.
You’ll need a local copy of the book’s GitHub repo, and you’ll
need to run all commands from the ai-compose  folder.

Run the following command to deploy the app. It may take a
few minutes if your internet connection is slow, as it pulls the

 
echo "Waiting for Ollama to start..."                        ------┐ 
for i in $(seq 1 30); do                                           | 
    if curl -s http://localhost:11434/api/tags >/dev/null; then    | 
        break                                                      | Wait 
    fi                                                             | 
sleep 1                                                            | 
done                                                         ------┘ 
 
if ! curl -s http://localhost:11434/api/tags | \             ------┐ 
    jq -e ".models[] | \                                           | 
    select(.name == \"${MODEL}\")" > /dev/null; then               | 
    echo "${MODEL} model not found. Pulling..."                    | Check
    /bin/ollama pull ${MODEL}                                      | pull 
else                                                               | 
    echo "${MODEL} model already exists"                           | 
fi                                                           ------┘ 
 
wait $OLLAMA_PID              <<---- Wait for Ollama to start 



Ollama image, which is ~1.5GB, and then it pulls the Mistral
model which is ~4GB.

I’ve trimmed the output so it only shows the major steps. These
include pulling the backend and frontend images, building the
model image, creating the network volume and containers,
pulling the Mistral LLM, and starting the app.

If you have a slow internet connection, the model server’s
healthcheck may fail with a dependency failed to start:

$ docker compose up 
 
[+] Running 7/15 
 - backend Pulled     
   <Snip> 
 - frontend Pulled 
   <Snip> 
 - Service model                       Built     
 - Network ai-compose_chatbot          Created   
 - Volume "ai-compose_model_data"      Created   
 - Container ai-compose-model-1        Created   
 - Container ai-compose-backend-1      Created   
 - Container ai-compose-frontend-1     Created 
Attaching to backend-1, frontend-1, model-1 
model-1     | mistral:latest model not found. Pulling... 
pulling manifest 
pulling manifest         <<---- This bit can take a long time on slow inte
<Snip> 
backend-1   | INFO:     Application startup complete. 
frontend-1  | [remix-serve] http://localhost:3000 (http://0.0.0.0:3000) 



container ai-compose-model-1 is unhealthy error message.
This usually means pulling the model took longer than the
value specified in healthcheck.start_period . You can run the
docker compose up  command again, and if it fails again, you
can increase the healthcheck start period in the Compose file so
the healthcheck has longer to keep trying.

We’ll look at the app in a minute, but let’s talk about the docker
compose  command first.

Running docker compose up  is the most common way to
deploy a Compose app. It sends the Compose file in the local
directory to Docker, and Docker runs the commands to deploy
everything defined in the file. This includes building and pulling
all the necessary images, creating all required networks and
volumes, and starting all containers.

The command you executed didn’t specify the name or location
of the Compose file, so Docker assumed it was called
compose.yaml  in the local directory. However, you can use the
-f  flag to point to a Compose file with a different name in a
different directory. For example, you’d run the following
command if your Compose file was called chatbot.yaml  in the
llm  subfolder.



$ docker compose -f ./llm/chatbot.yaml up  

It’s also common to use the --detach  flag to bring the app up
in the background. We didn’t use it this time because I wanted
you to see the log messages showing Docker pulling and
building images and Ollama pulling the model.

Use the app

The app is up and running, and you can start using it.

Point your browser to your Docker host on port 3000  and ask
your chatbot some questions. You can connect to
localhost:3000  if you’re running Docker Desktop.



If you followed along and brought the application up in the
foreground, you’ll see the frontend, backend, and model
servers exchanging messages in your other terminal window
each time you issue a prompt. We’ll see more of this later, but if
you look closely, you’ll see the backend posting requests to the
model. I’ve formatted the JSON so it’s easier to read.

backend-1   | INFO: 172.18.0.4:40688 - "POST /api/v1/chat/stream HTTP/1.1"
backend-1   | INFO: app.routes.generation:Sending request to Ollama:  
{ 
   "model":"mistral", 
   "messages":[ 



Congratulations. You’ve successfully deployed a multi-container
AI chatbot using Docker Compose!

Inspect the app

Now that you’ve deployed the app, you can run regular docker
commands to see the images, containers, networks, and
volumes — remember, Compose uses regular Docker
commands and API calls to build and manage the app.

Open a new terminal window and run the following command
to see the images Docker pulled and built for the app.

      { 
         "role":"system", 
         "content":"You are a coding assistant. Keep your responses focuse
         development, and technical topics. Be concise and provide practic
         when relevant. Limit explanations to 2-3 sentences unless code ex
      }, 
      { 
         "role":"user", 
         "content":"How do I create an npm_modules folder for a Node.js pr
      } 
   ], 
   "stream":true, 
   "temperature":0.7 
} 

$ docker images 
REPOSITORY                  TAG        IMAGE ID         CREATED        SIZ
ai-compose-model            latest     627b3f7223ed     1 min ago      7.2



As per the instructions in the Compose file, Docker pulled the
frontend and backend images and used the Dockerfile in the
model  directory to build the model image.

If you look at the model service’s Dockerfile, you’ll see it pulls
an Ollama Docker image, updates and installs packages, sets a
couple of environment variables, copies the application’s
startup script and marks it as executable, sets some NVIDIA-
related variables for potential GPU use, documents the network
port, and lists the command to execute when the container
starts.

nigelpoulton/ddd-book       ai-be      828623f6f219     2 mins ago     126
nigelpoulton/ddd-book       ai-fe      47e007c828dc     2 mins ago     633

FROM ollama/ollama:0.5.4                           <<---- Base image 
RUN apt-get update && apt-get install -y...        <<---- Update & install
ENV OLLAMA_HOST=0.0.0.0                            <<---- Ollama to listen
ENV PATH=/usr/local/sbin:/usr/local/bin:/usr...    <<---- Update system pa
COPY start.sh /usr/local/bin/start.sh              <<---- Copy app startup
RUN chmod +x /usr/local/bin/start.sh               <<---- Make startup scr
ENV LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64   <<----
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility                      <<----
ENV NVIDIA_VISIBLE_DEVICES=all                                      <<----
EXPOSE 11434                                       <<---- Document network
ENTRYPOINT ["/bin/bash", "-c", "/usr/local/bin/start.sh"]      <<---- How 



Run the following commands to list the containers, network,
and volume.

Docker created all of the app resources defined in the Compose
file — three images, three containers, one network, and one
volume. It also added the project name to the start of every
resource name. The project name is the name of the build
context directory, which in our example is ai-compose . Doing
this makes it easy to locate and group resources that are part of
the same Compose apps.

Compose also adds a number to the end of each container name
in case a service has multiple replicas. For example, if the
frontend service has three replicas, Compose will call them ai-

$ docker ps 
IMAGE                         COMMAND                 STATUS              
nigelpoulton/ddd-book:ai-fe   "docker-entrypoint…"  Up 5 mins            a
nigelpoulton/ddd-book:ai-be   "uvicorn app.main:…"  Up 5 mins            a
ai-compose-model              "/bin/bash -c /usr…"  Up 5 mins (healthy)  a
 
$ docker network ls 
NETWORK ID     NAME                 DRIVER    SCOPE 
fe31e60beafa   ai-compose_chatbot   bridge    local 
<Snip> 
 
$ docker volume ls 
DRIVER    VOLUME NAME 
local     ai-compose_model_data 



compose-frontend-1, ai-compose-frontend-2, and ai-compose-
frontend-3.

At this point, the application is up and working.

Manage the app

In this section, you’ll see how to stop, restart, delete, and get the
status of Compose apps.

Check the status of the app.

The app is up and all three services are running.

Shut it down with the following command. If you started it in
the foreground, you’ll see messages requesting the app to
gracefully quit.

$ docker compose ls 
NAME                STATUS              CONFIG FILES 
ai-compose          running(3)          /Users/nigelpoulton/ddd-book/ai-co

$ docker compose down 
  frontend-1 exited with code 0 
  backend-1   | INFO:     Shutting down 
  backend-1   | INFO:     Waiting for application shutdown. 
  backend-1   | INFO:     Application shutdown complete. 
  backend-1   | INFO:     Finished server process [7] 



The output shows Docker removing all three containers and the
network. However, it doesn’t mention removing the volume or
images.

Run a docker volumes ls  command to see if the volume still
exists.

$ docker volume ls 
DRIVER    VOLUME NAME 
local     ai-compose_model_data 

The volume still exists and will still have the Mistral LLM files.
This is because Docker expects us to store important
information on volumes, so it doesn’t delete them when it
deletes other application resources such as networks and
containers.

Run a docker images  command to see if the images still exist.

  backend-1   | INFO:     Stopping reloader process [1] 
  backend-1 exited with code 0 
  model-1     | [GIN] 2025/01/01 - 12:50:52 | 200 | 1.11225ms | 127.0.0.1 
  model-1 exited with code 137 
  <Snip> 
  - Container ai-compose-frontend-1  Removed                              
  - Container ai-compose-backend-1   Removed                              
  - Container ai-compose-model-1     Removed                              
  - Network ai-compose_chatbot       Removed                              



Keeping the images and the volume can make redeploying the
app much quicker.

You’re about to redeploy the app. However, this time, you’ll
configure Compose to build the frontend and backend images
instead of pulling them or using the local copies already pulled.

Delete the frontend and backend images.

$ docker rmi nigelpoulton/ddd-book:ai-fe nigelpoulton/ddd-book:ai-be 
Untagged: nigelpoulton/ddd-book:ai-fe 
Deleted: sha256:47e007c8...fdce0962 
Untagged: nigelpoulton/ddd-book:ai-be 
Deleted: sha256:828623f6...4e30c2f6 

Now edit the Compose file to build both images instead of
pulling them. Adding a #  to the start of a line in a Compose file
tells Docker to ignore the line.

$ docker images 
REPOSITORY                 TAG        IMAGE ID         CREATED        SIZE
ai-compose-model           latest     627b3f7223ed     1 min ago      7.29
nigelpoulton/ddd-book      ai-be      828623f6f219     2 mins ago     126M
nigelpoulton/ddd-book      ai-fe      47e007c828dc     2 mins ago     633M

services: 
    frontend: 
#     image: nigelpoulton/ddd-book:ai-fe    <<---- Add # to start of this 



Save your changes and run the following command to redeploy
the app with the --detach  flag to start it in the background.

You can see that Docker followed your instructions and built
the backend and frontend images. It also shows the model
service showing as Healthy  because it’s configured with a
healthcheck in the Compose file. The other services show as
Started  because they don’t have healthchecks.

      build: ./frontend                     <<---- Remove # from start of 
      command: npm run start 
      develop: 
      <Snip> 
    backend: 
#     image: nigelpoulton/ddd-book:ai-be    <<---- Add # to start of this 
      build: ./backend                      <<---- Remove # from start of 
      networks: 
      <Snip> 

$ docker compose up --detach 
<Snip> 
[+] Running 7/7 
 - Service backend                  Built                                 
 - Service frontend                 Built                                 
 - Network ai-compose_chatbot       Created                               
 - Synchronized File Shares                                               
 - Container ai-compose-model-1     Healthy                               
 - Container ai-compose-backend-1   Started                               
 - Container ai-compose-frontend-1  Started                               



Check the current state of the app with the docker compose ps
command.

The output shows the containers, the commands they’re
executing, their current state, and the network ports they’re
listening on.

Run a docker compose top  to list the processes inside each
container. You should recognize some of the processes from the
Compose file and Dockerfiles.

$ docker compose ps 
NAME                   COMMAND                  SERVICE   STATUS      PORT
ai-compose-backend-1   "uvicorn app.main:ap…"   backend   Up 2 mins   0.0.
ai-compose-frontend-1  "docker-entrypoint.s…"   frontend  Up 2 mins   0.0.
ai-compose-model-1     "/bin/bash -c /usr/l…"   model     Up 2 mins   0.0.

$ docker compose top 
ai-compose-backend-1 
UID    PID     PPID   ...  CMD 
1000   13296   13278  ...  /usr/local/bin/python3.12 /usr/local/bin/uvicor
1000   13405   13296  ...  /usr/local/bin/python3.12 -c from multiprocessi
1000   13406   13296  ...  /usr/local/bin/python3.12 -c from multiprocessi
 
ai-compose-frontend-1 
UID    PID     PPID   ...  CMD 
1000   13364   13345  ...  npm run start 
1000   13411   13364  ...  node /app/node_modules/.bin/remix-serve ./build
 
ai-compose-model-1 



The PID numbers returned are the PID numbers as seen from
the Docker host (not from within the containers).

Run the following commands to stop the app and recheck its
status.

The app is down, but Docker hasn’t deleted any of its resources.
Verify this by checking the containers still exist.

UID    PID     PPID   ...  CMD 
root   13196   13178  ...  /bin/bash /usr/local/bin/start.sh 
root   13230   13196  ...  /bin/ollama serve 

$ docker compose stop 
[+] Stopping 3/3 
 - Container ai-compose-frontend-1  Stopped                               
 - Container ai-compose-backend-1   Stopped                               
 - Container ai-compose-model-1     Stopped                               
 
$ docker compose ls 
NAME                STATUS              CONFIG FILES 
 
$ docker compose ps 
NAME    COMMAND    SERVICE   STATUS    PORTS 

$ docker compose ps -a 
NAME                    IMAGE                         SERVICE   STATUS 
ai-compose-backend-1    nigelpoulton/ddd-book:ai-be   backend   Exited (0)
ai-compose-frontend-1   nigelpoulton/ddd-book:ai-fe   frontend  Exited (0)
ai-compose-model-1      ai-compose-model              model     Exited (13



All three containers still exist in the Exited  state. The ai-
compose-model-1 container shows a non-zero exit code
because Docker only allowed it 10 seconds to shut down. It
must not have completed a graceful shutdown during those ten
seconds, forcing Docker to kill it.

Refresh your browser to confirm the chatbot is not running.
The connection will be refused because the app is down and
nothing is listening on port 3000 .

Restart the app with the docker compose restart  command. It
will restart quickly because the resources already exist.

Verify the operation worked.

$ docker compose restart 
[+] Restarting 3/3 
 - Container ai-compose-backend-1   Started                               
 - Container ai-compose-frontend-1  Started                               
 - Container ai-compose-model-1     Started                               

$ docker compose ls 
NAME              STATUS          CONFIG FILES 
ai-compose        running(3)      /Users/nigelpoulton/temp/ddd-book/ai-com



Go back to your browser and refresh the page again. It should
be working.

Congratulations. You’ve deployed a multi-container AI chatbot
app and used Docker Compose to perform some common
management tasks.

Let’s inspect the Ollama configuration before cleaning up.

Inspect the Ollama configuration

This section has nothing to do with Compose but is useful if
you’re interested in Ollama and running LLMs locally.

As per Figure 9.3 (which you’ve already seen), the application is
a three-tier AI chatbot. The frontend service hosts a Remix web
server that connects to a FastAPI server running on the
backend service. The backend server integrates with the
Ollama instance running on the model service.



Figure9.3 - Sample app

Ollama is a popular open-source LLM runtime that lets you
download and execute LLMs locally. It might be helpful to think
of Ollama as Docker for LLMs as it lets you pull and push LLMs
and run them locally so that nothing leaves your local network.

The model service’s Dockerfile and startup script are in the
model  folder and you can inspect them to see how the image is
built and how the app works. However, the high-level process
involves pulling an Ollama container image from Docker Hub,
copying in the startup script, and configuring the container to
execute the startup script when it starts. The startup script starts
Ollama and pulls the Mistral LLM. Once up and running, the
model server exposes the Ollama API on port 11434 .



Open a shell session to the model server container. Your shell
prompt will change to a “#” to indicate you’re connected to the
model server.

$ docker exec -it ai-compose-model-1 sh 
# 

Check that Ollama is installed.

# ollama --version 
ollama version is 0.5.4-0-g2ddc32d-dirty 

Check for an Ollama server process.

PID 6 shows an active Ollama server process. This means
Ollama is running.

PID 1 is the startup script that started Ollama. It’s the start.sh
script from the model  folder that was copied into the image and

$ ps -ef 
ps -ef 
UID        PID  PPID  C STIME TTY          TIME CMD 
root         1     0  0 13:26 ?        00:00:00 /bin/bash /usr/local/bin/s
root         6     1  0 13:26 ?        00:00:00 /bin/ollama serve 
<Snip> 



set as the container’s main app by the Dockerfile. Here’s a
snipped copy of the Dockerfile for reference.

FROM ollama/ollama:0.5.4 
<Snip> 
COPY start.sh /usr/local/bin/start.sh 
<Snip> 
ENTRYPOINT ["/bin/bash", "-c", "/usr/local/bin/start.sh"] 

See if there are any local LLMs.

# ollama ls 
NAME              ID              SIZE      MODIFIED 
mistral:latest    f974a74358d6    4.1 GB    21 hours ago 

The output shows a local copy of a Mistral LLM. This matches
the MODEL=${MODEL:-mistral:latest}  environment variable
specified in the Compose file. The LLM is ~4GB and stored on
the model_data volume mounted at /root/.ollama  in the
model server container.

Inspect the Mistral LLM’s manifest file.

$ cat /root/.ollama/models/manifests/registry.ollama.ai/library/mistral/la
{ 
  "schemaVersion": 2, 
  "mediaType": "application/vnd.docker.distribution.manifest.v2+json", 
  "config": { 
    "mediaType": "application/vnd.docker.container.image.v1+json", 



I’ve snipped the output to save space in the book. The full
output lists all the layers that make up the model, including the
image metadata, the model template, parameters, the license,
and the model file.

You can see these layers by listing the contents of the
/root/.ollama/models/blobs  directory. The file names match
the SHA digests from the LLM’s manifest file.

    "digest": "sha256:42347cd80dc868877d2807869c0e9c90034392b2f1f001cae156
    "size": 485 
  }, 
  "layers": [ 
    { 
      "mediaType": "application/vnd.ollama.image.model", 
      "digest": "sha256:ff82381e2bea77d91c1b824c7afb83f6fb73e9f7de9dda631b
      "size": 4113289152 
    }, 
    <Snip> 
  ] 
} 

$ ls -hl /root/.ollama/models/blobs 
total 3.9G 
-rw-r--r-- 1 root root  485 Dec 19 16:28 sha256-42347cd8...021e2e19   <<--
-rw-r--r-- 1 root root  12K Dec 19 16:28 sha256-43070e2d...5e1379c1   <<--
-rw-r--r-- 1 root root  801 Dec 19 16:28 sha256-491dfa50...71045621   <<--
-rw-r--r-- 1 root root   30 Dec 19 16:28 sha256-ed11eda7...4003d337   <<--
-rw-r--r-- 1 root root   4G Dec 19 16:28 sha256-ff82381e...64aa5435   <<--



Let’s inspect the model’s image metadata file to learn about the
model. Feel free to inspect the license, template, and parameters
files. Your SHAs might be different.

We already know this is a Mistral model, but the manifest also
tells us it’s in the GGUF binary format, it’s a llama-style model,
we have the 7.2 billion parameter version, and it uses the Q4
quantization strategy.

$ cat /root/.ollama/models/blobs/sha256-42347cd8...021e2e19 | jq 
{ 
  "model_format": "gguf", 
  "model_family": "llama", 
  "model_families": [ 
    "llama" 
  ], 
  "model_type": "7.2B", 
  "file_type": "Q4_0", 
  "architecture": "amd64", 
  "os": "linux", 
  "rootfs": { 
    "type": "layers", 
    "diff_ids": [ 
      "sha256:ff82381e2bea77d91c1b824c7afb83f6fb73e9f7de9dda631bcdbca564aa
      "sha256:43070e2d4e532684de521b885f385d0841030efa2b1a20bafb76133a5e13
      "sha256:c43332387573e98fdfad4a606171279955b53d891ba2500552c2984a6560
      "sha256:ed11eda7790d05b49395598a42b155812b17e263214292f7b87d15e14003
    ] 
  } 
} 



You can verify all of this with Ollama as well.

# ollama show mistral 
  Model 
    architecture        llama     
    parameters          7.2B      
    context length      32768     
    embedding length    4096      
    quantization        Q4_0      
 
  Parameters 
    stop    "[INST]"      
    stop    "[/INST]"     
 
  License 
    Apache License                
    Version 2.0, January 2004   

See if your model is running.

Don’t worry if yours doesn’t show a running model. This is
because Ollama loads the model when you interact with it and
then unloads it from memory after five minutes of inactivity.
Just return to the chatbot’s web interface, ask it a question, and
run the ollama ps  command again. Your chatbot might

# ollama ps 
NAME              ID              SIZE      PROCESSOR    UNTIL            
mistral:latest    f974a74358d6    5.9 GB    100% CPU     4 minutes from no



respond slowly and show as Thinking while Ollama reloads it,
but it will show as running in when you re-run the ollama ps
command.

The output in the example shows 100% CPU  in the PROCESSOR
column, indicating this is running on a system without GPUs.
Your output will show GPUs if you’re running on GPUs.

Type exit  to log off the container and return to your local
terminal.

In summary, the model server runs Ollama to execute a private
chatbot based on the Mistral 7b LLM. You’ve seen how Docker
built the image and how Ollama pulled the LLM and served it
on the network. You also inspected the LLM’s manifest and saw
where Ollama keeps it in the filesystem. As it’s running locally,
nothing from your conversations with it leaves your corporate
network.

Clean up

Run the following command to stop and delete the app.

Do not use the --volumes  and --rmi all  flags if you plan to
use the chatbot again soon. This is because they’ll force Docker



to delete the volume (and LLM) and images, making restarting
the app a much longer process.

Multi-container apps with Compose – The
commands

docker compose up  is the command to deploy a Compose
app. It downloads or builds all images, containers, networks,
and volumes the app needs. It expects you to call the
Compose file compose.yaml , but you can use the -f  flag to
specify a custom filename. You’ll normally start apps in the
background with the --detach  flag.
docker compose ls  gives a brief overview of all running
Compose apps, including how many services are running and
the location of the Compose file.

$ docker compose down --volumes --rmi all 
 
  - Container ai-compose-frontend-1      Removed                          
  - Container ai-compose-backend-1       Removed                          
  - Container ai-compose-model-1         Removed                          
  - Network ai-compose_chatbot           Removed                          
  - Volume ai-compose_model_data         Removed                          
  - Image ai-compose-model:latest        Removed                          
  - Image nigelpoulton/ddd-book:ai-be    Removed                          
  - Image nigelpoulton/ddd-book:ai-fe    Removed                          



docker compose ps  lists the containers in the Compose app
and shows their current state, the command each container
is running, and network ports.
docker compose stop  stops all containers in a Compose app
without deleting them. You can easily restart them with
docker compose restart , and you shouldn’t lose any data.
docker compose restart  restarts a stopped Compose app. If
you make changes to the Compose file while it’s stopped,
these changes will not appear in the restarted app. Changes
to the Compose file only get picked up when you redeploy the
app.
docker compose down  stops and deletes a running Compose
app. By default, it deletes containers and networks but not
volumes and images.

Chapter Summary

In this chapter, you learned how to deploy and manage multi-
container applications using Docker Compose.

Compose is part of the Docker Engine and has its own docker
compose  sub-command. It lets you define multi-container
applications in declarative configuration files and deploy them
with a single command.



Compose files define all the containers, networks, volumes,
secrets, and other artifacts an application needs. You then use
the docker compose  command to post the Compose file to
Docker, and Docker deploys everything defined in it.

Once you’ve deployed the app, you can manage its entire
lifecycle using docker compose  sub-commands.

Docker Compose is popular with developers, and the Compose
file is an excellent source of application documentation — it
defines all the services that make up the app, the images they
use, the ports they publish, the networks and volumes they use,
and much more. As such, it can help bridge the gap between
development and operations teams. You should treat Compose
files as code and manage them in version control systems.



10: Docker and Wasm

Wasm (WebAssembly) is driving the third wave of cloud
computing, and Docker is evolving to take advantage.

We built the first wave on virtual machines (VMs), the second
on containers, and we’re building the third on Wasm. Each
wave drives smaller, faster, and more secure workloads, and all
three are working together to drive the future of cloud
computing.

In this chapter, you’ll write a simple Wasm application and use
Docker to containerize and run it in a container. The goal is to
introduce you to Wasm and show you how easy it is to work
with Docker and Wasm together.



The terms Wasm and WebAssembly mean the same thing, and
we’ll use the term Wasm.

I’ve divided the chapter as follows:

Pre-reqs
Intro to Wasm
Write a Wasm app
Containerize a Wasm app
Deploy a Wasm app

Pre-reqs

You’ll need all of the following if you plan on following along:

Docker Desktop 4.37+ with Wasm enabled
Rust 1.82+ with the Wasm target installed
Spin 3.1+

At the time of writing, support for Wasm is a beta feature in
Docker Desktop and doesn’t work with Multipass Docker VMs.
This may change in the future. It also means there’s a higher
risk of bugs. I’ve tested the examples in this chapter on Docker
Desktop 4.37.0.

Configure Docker Desktop for Wasm



Open the Docker Desktop UI, click the Settings icon at the top
right, and make sure Use containerd for pulling and storing
images is selected on the General tab. Next, click the Features
in development tab, select the Enable Wasm option and click
the blue Apply & restart button.

Figure 10.2 shows some of the settings.

Figure 10.2. Docker Desktop Wasm settings

Install Rust and configure for Wasm



Search the web for how to install Rust and follow the
instructions for your platform.

Once you’ve installed Rust, run the following command to
install the wasm32-wasip1 target so that Rust can compile to
Wasm.

$ rustup target add wasm32-wasip1 
info: downloading component 'rust-std' for 'wasm32-wasip1' 
info: installing component 'rust-std' for 'wasm32-wasip1' 

Install Spin

Spin is a Wasm framework and runtime that makes building
and running Wasm apps easy.

Search the web for how to install Fermyon spin and follow the
instructions for your system.

Run the following command to verify the installation.

$ spin --version 
spin 3.1.0 (1aa89da 2024-12-18) 

You’re ready to build and run Wasm apps on your local
machine.



Intro to Wasm and Wasm containers

Wasm is a new type of application that is smaller, faster, and
more portable than traditional Linux containers. However,
traditional Linux containers can do a lot more than Wasm apps.
For example, Wasm apps are currently great for AI workloads,
serverless functions, plugins, and edge devices, but not so good
for complex networking or heavy I/O.

However, Wasm is evolving fast and may become better at other
workloads in the future.

Digging a little deeper…

As we’re about to see, Wasm is a new virtual machine
architecture that programming languages compile to. So,
instead of compiling apps to Linux on ARM or Linux on AMD,
you compile them to Wasm and they’ll run on any system with a
Wasm runtime. Fortunately, Docker Desktop ships with several
Wasm runtimes.

Run the following command to see the list of Wasm runtimes
installed as part of your Docker Desktop environment. The first
time you run the command, it will download the image.



My installation has seven Wasm runtimes, including the
io.containerd.spin.v2  runtime we’ll use in the examples.

These Wasm runtimes allow containerd to deploy and manage
Wasm containers. A Wasm container is a Wasm binary running
inside a minimal scratch container so that you can build, ship,
and run them with familiar Docker tools such as the docker
run  command and Docker Hub.

Talk is cheap, though. Let’s see it in action.

Write a Wasm app

In this step, you’ll use spin to create a simple web server and
compile it as a Wasm app. In a later step, you’ll build, share, and
run the app as a Wasm container.

Change into a new directory and then run the following
command to create a new Wasm app called hello-world.

$ docker run --rm -i --privileged --pid=host jorgeprendes420/docker-deskto
io.containerd.wasmtime.v1 
io.containerd.wws.v1 
io.containerd.slight.v1 
io.containerd.wasmer.v1 
io.containerd.spin.v2 
io.containerd.lunatic.v1 
io.containerd.wasmedge.v1 



Respond to the prompts as shown in the example.

$ spin new hello-world -t http-rust 
Description: Wasm app 
HTTP path: /hello 

The command creates a new hello-world directory and
scaffolds a simple Rust-based web app. Change into this
directory and inspect the app files. If you don’t have the tree
command, you can run an ls -l  for similar results.

$ cd hello-world 
 
$ tree 
. 
├── Cargo.toml 
├── spin.toml 
└── src 
    └── lib.rs 

We’re only interested in the spin.toml  and src/lib.rs  files.

Edit the src/lib.rs  file and change the text inside the double
quotes as shown in the following snippet. This configures the
app to display Docker loves Wasm.

use spin_sdk::http::{IntoResponse, Request, Response}; 
<Snip> 
    Ok(http::Response::builder() 



Once you’ve saved your changes, run a spin build  command
to compile the app as a Wasm binary.

If you look at the first line of the output, you’ll see it’s running a
more complex cargo build  command that compiles the app as
a Wasm binary.

Run another tree  command to see the Wasm binary.

$ tree 
<Snip> 
└── target 
    └── wasm32-wasip1 
        └── release 
            └── hello_world.wasm 

        .status(200) 
        .header("content-type", "text/plain") 
        .body("Docker loves Wasm")?)             <<---- Change text inside
        .build()) 
} 

$ spin build 
Building component hello-world with `cargo build --target wasm32-wasip1 --
<Snip> 
Finished building all Spin components 



The output is much longer this time, and I’ve trimmed the
example in the book so you only see the hello_world.wasm
binary. This is the Wasm app, and it will run on any system with
the spin Wasm runtime.

You’ll containerize the app in the next section, but you should
test it works before proceeding.

Run a spin up  command to start the app using the local spin
runtime you installed earlier.

$ spin up 
Logging component stdio to ".spin/logs/" 
 
Serving http://127.0.0.1:3000 
Available Routes: 
  hello-world: http://127.0.0.1:3000/hello 

Point your browser to http://127.0.0.1:3000/hello  and
make sure the app works.



Figure 10.3. Wasm app running locally

Congratulations. You just built a simple web server, compiled it
to Wasm, and executed it locally using spin! In the next section,
you’ll containerize it and run it in Docker.

Press Ctrl-C  to kill the app.

Containerize a Wasm app

Docker Desktop lets you containerize Wasm apps so you can
use familiar Docker tools to push and pull them to OCI registries
and run them inside containers.

As always, you need a Dockerfile that tells Docker how to
package the app as an image. Create a new file called Dockerfile



in your current directory and populate it with the following
three lines.

FROM scratch 
COPY /target/wasm32-wasip1/release/hello_world.wasm . 
COPY spin.toml . 

The file references the scratch empty base image because
Wasm containers don’t need a Linux OS.

The two COPY instructions copy the hello_world.wasm  Wasm
app and the spin.toml  file into the image.

If you look closely, you’ll see that the spin.toml  file expects the
Wasm app to be in the target/wasm32-wasip1/release/
directory. However, the second COPY  instruction places it in the
root folder. This means we’ll need to update the spin.toml  file
so it knows where to find the app after the Dockerfile copies it
into the image’s root directory.

Edit the spin.toml  file and remove the leading path for the
source line as shown.

<Snip> 
[component.hello-world] 
source = "hello_world.wasm"       <<---- Remove any leading directories so
<Snip> 



Save your changes.

Run the following command to containerize the Wasm app. Be
sure to tag the image with your own Docker Hub username
instead of mine.

$ docker build \ 
  --platform wasi/wasm \ 
  --provenance=false \ 
  -t nigelpoulton/ddd-book:wasm . 

The --platform wasi/wasm  flag sets the image as a Wasm
image.

Some older versions of Docker have an older builder and will
fail. If this happens, try running the same command, but change
the first line to docker buildx build \ .

List the images on your system.

$ docker images 
REPOSITORY              TAG    IMAGE ID       CREATED          SIZE 
nigelpoulton/ddd-book   wasm   7b55889f1006   28 seconds ago   104kB 

See how the Wasm image looks like a regular image, just
smaller.



You can push and pull the image to Docker Hub and other OCI
registries as normal.

The following command pushes the image to one of my repos in
Docker Hub. Be sure to tag the image with your own Docker
username.

If you look at Docker Hub, you can see it’s recognized it as a
wasi/wasm image. You’ll also see there’s no vulnerability
analysis data. This is because image scanning tools can’t analyze
Wasm images yet.

$ docker push nigelpoulton/ddd-book:wasm 
The push refers to repository [docker.io/nigelpoulton/ddd-book] 
301823195c36: Pushed 
8966226af76a: Pushed 
wasm: digest: sha256:7b55889f1006285ed6c394dcc7a56aca8955c107587b2216340e5



Figure 10.4. Wasm image on Docker Hub

Run a Wasm container

Now that you’ve packaged the Wasm app as an OCI image and
pushed it to a registry, you can run it as a container.

The following command runs it in a new container called
wasm-ctr and maps it to port 5556  on your Docker host. The -
-runtime  flag makes sure Docker executes the container with
the spin Wasm runtime. Older versions of Docker Desktop may
not have the spin runtime and will fail.

$ docker run -d --name wasm-ctr \ 
  --runtime=io.containerd.spin.v2 \ 
  --platform=wasi/wasm \ 



  -p 5556:80 \ 
  nigelpoulton/ddd-book:wasm / 

You can check it’s running with a regular docker ps  command.

Connect your browser to http://localhost:5556/hello  to see
the app.

Figure 10.5. Wasm app running in container

Congratulations, your Wasm app is running inside a Wasm
container.

Clean up



Run the following commands to delete the container and the
local image. Use your own image name when deleting the
image.

You’ll still have a copy of the image on Docker Hub and the spin
app in your local filesystem. Feel free to delete these as well.

Chapter summary

In this chapter, you containerized a Wasm app and ran it in a
Wasm container.

Wasm is a new technology driving a new wave of cloud
computing. Wasm apps are smaller, faster, more secure, and
more portable than traditional Linux containers. However,
they’re not as flexible. For example, at the time of writing,
Wasm apps aren’t great for apps with heavy I/O requirements or
complex networking. This will change quickly as the Wasm
ecosystem is evolving fast.

$ docker rm wasm-ctr -f 
wasm-ctr 
 
$ docker rmi nigelpoulton/ddd-book:wasm 
Untagged: nigelpoulton/ddd-book:wasm 
Deleted: sha256:7b55889f1006285ed6c394dcc7a56aca8955c107587b2216340e592299



Fortunately, Docker already works with Wasm, and Docker
Desktop ships with a few popular Wasm runtimes. This means
you can use industry-standard tools such as docker build  and
docker run  to containerize and run Wasm apps. You can even
push them to OCI registries such as Docker Hub.



11: Docker Swarm

Now that you know how to install Docker, pull images, and
work with containers, the next logical step is to do it all at scale.
That’s where Docker Swarm comes into play.

I’ve split the chapter into the following main parts:

Docker Swarm – The TLDR
Swarm primer
Build a secure Swarm
Deploy and manage an app on swarm
Service logs
The commands

Docker Swarm – The TLDR

Docker Swarm is two things:

1. An enterprise-grade cluster of Docker nodes
2. An orchestrator of microservices apps

On the clustering front, Swarm groups one or more Docker
nodes into a cluster. Out of the box, you get an encrypted
distributed cluster store, encrypted networks, mutual TLS,
secure cluster join tokens, and a PKI that automatically



manages and rotates the swarm’s certificates. You can even add
and remove nodes non-disruptively. We call these clusters
“swarms”.

On the orchestration front, Swarm makes deploying and
managing complex microservices apps easy. You define
applications declaratively in Compose files and use simple
Docker commands to deploy them to the swarm. This is similar
to deploying Compose apps with docker compose  but is
optimized for scheduling and scaling applications across a
swarm.

In many ways, Docker Swarm is similar to Kubernetes — both
are clusters that run and manage containerized applications.
Kubernetes is more popular and has a more active community
and ecosystem. However, Swarm is easier to use and can be a
good choice for small-to-medium businesses and smaller
application deployments. Learning Swarm also prepares you to
learn and work with Kubernetes. In fact, if you plan on learning
Kubernetes, you should check out my books, Quick Start
Kubernetes and The Kubernetes Book.

Swarm primer

On the clustering front, a swarm is one or more Docker nodes
that can be physical servers, VMs, cloud instances, Raspberry



Pi’s, and more. The only requirement is that they all run Docker
and can communicate over reliable networks.

Terminology: When referring to the Docker Swarm
technology, we’ll write Swarm with an uppercase “S”. When
referring to a swarm cluster, we’ll use a lowercase “s”.

Every node in a swarm is either a manager or a worker:

Managers run the control plane services that maintain the
state of the cluster and manage applications
Workers run user applications

Out of the box, Swarm runs user applications on managers and
workers. However, you can configure your managers to focus
on cluster management operations by forcing all user
applications to run on worker nodes.

The swarm stores configuration and state data in an in-memory
distributed database that replicates across all manager nodes.
Fortunately, it’s automatically configured and takes care of
itself.

Swarm uses TLS to encrypt communications, authenticate
nodes, and authorize roles (managers and workers). It also
configures and performs automatic key rotation. And as with



the cluster store, all of this is automatically configured and
takes care of itself.

Figure 11.1 shows a high-level view of a swarm with three
managers, three workers, and a distributed cluster store
replicated across all three managers.

Figure 11.1 High-level swarm

On the orchestration front, Swarm makes it easy to deploy and
manage containerized applications. It balances workloads
across the cluster and adds cloud-native capabilities such as
self-healing, scaling, rollouts, and rollbacks.

That’s enough of a primer. Let’s build a swarm.

Build a secure swarm



In this section, you’ll build a secure swarm cluster. I’ll build the
cluster shown in Figure 11.2 with three managers and two
workers. Your cluster can be different, but the following rules
usually apply:

Three or five managers are recommended for high-
availability
Enough workers to handle application requirements

Figure 11.2 - Sample lab environment

Pre-reqs

If you’re following along, I recommend using Multipass to
create five Docker VMs on your laptop or local machine.
Multipass is free and easy to use, and I’ll use it for the examples.



However, running five Multipass VMs requires a lot of system
resources as each VM needs 2 CPUs, 40GB of disk space, and 4GB
of memory. If your system can’t handle this, you can create
fewer managers and workers or build your lab in Play with
Docker. Play with Docker (PWD) is a free cloud-based service
that lets you create up to five nodes in a 4-hour Docker
playground. Other Docker environments will also work. All you
need is one or more Docker nodes that can communicate over a
reliable network. You’ll also find it easier if you configure name
resolution so you can reference nodes by name rather than IP
address.

I don’t recommend following along on Docker Desktop as it
only supports a single node, which isn’t enough for some of the
examples later in the next chapter.

Build your Docker nodes

This section uses Multipass to build the swarm in Figure 11.2.

See Chapter 3 or search the web for how to install multipass and
follow the instructions to install it on your system.

Run the following five multipass launch  commands to create
five VMs running Docker. We’ll refer to each VM as a node, and
each will require 2 CPUs, 40GB of disk space, and 4GB of RAM. If

https://labs.play-with-docker.com/


your machine doesn’t have those resources, go to Play with
Docker and build your lab there.

Name three of the nodes mgr1 , mgr2 , and mgr3 , and name the
other two wrk1  and wrk2 . Yours will get different IPs, but that
doesn’t matter. It can take a couple of minutes to create each
VM.

$ multipass launch docker --name mgr1 
Launched: mgr1 
 
$ multipass launch docker --name mgr2 
Launched: mgr2 
 
$ multipass launch docker --name mgr3 
Launched: mgr3 
 
$ multipass launch docker --name wrk1 
Launched: wrk1 
 
$ multipass launch docker --name wrk2 
Launched: wrk2 

Run the following command and note the node IP addresses.
Yours will have different addresses, and you’re only interested
in the 192.168.x.x  address for each.

$ multipass ls 
Name           State             IPv4                Image 
mgr1           Running           192.168.64.61       Ubuntu 24.04 LTS 



                                 172.17.0.1 
mgr2           Running           192.168.64.62       Ubuntu 24.04 LTS 
                                 172.17.0.1 
mgr3           Running           192.168.64.63       Ubuntu 24.04 LTS 
                                 172.17.0.1 
wrk1           Running           192.168.64.64       Ubuntu 24.04 LTS 
                                 172.17.0.1 
wrk2           Running           192.168.64.65       Ubuntu 24.04 LTS 
                                 172.17.0.1 

Once you’ve built the nodes, you can log on to them with the
multipass shell  command and log out by typing exit .

Log on to one of the nodes and check that Docker is installed
and running.

$ multipass shell mgr1 
 
$ docker --version 
Docker version 27.3.1, build ce12230 

Type exit  to log out of the node and return to your local shell.

Once you’ve confirmed your nodes are working, you can move
to the next section and build a swarm.

Initializing a new swarm

The process of building a swarm is called initializing a swarm,
and this is the high-level process:



1. Initialize the first manager
2. Join additional managers
3. Join workers.

All Docker nodes start in single-engine mode and can only run
regular containers. Joining them to a swarm switches into
swarm mode and enables them to run advanced containers
called swarm services. More on services later.

When you run a docker swarm init  command on a Docker
node that’s currently in single-engine mode, Docker switches it
into swarm mode, creates a new swarm, and makes the node the
first manager of the swarm. You can then add more nodes as
managers and workers, and these nodes also get switched into
swarm mode.

You’re about to complete all of the following:

1. Initialize a new swarm from mgr1
2. Join mgr2 and mgr3 as additional managers
3. Join wrk1 and wrk2 as worker nodes

After completing the procedure, all five nodes will be in swarm
mode and part of the same swarm.



The examples will use the names and IPs from Figure 11.2.
Yours will be different, and you should use your own.

1. Log on to mgr1 and initialize a new swarm. Be sure to use the
private IP address of your mgr1 node.

Let’s step through the different parts of the command:
1. docker swarm init  tells Docker to initialize a new swarm

with this node as the first manager.
2. The --advertise-addr  flag is optional and tells Docker

which of the node’s IP addresses to advertise as the swarm
API endpoint. It’s usually one of the node’s IP addresses but
can also be an external load balancer.

3. The --listen-addr  flag tells Docker which of the node’s
interfaces to accept swarm traffic on. It defaults to the
same value as --advertise-addr  if you don’t specify it.
However, if --advertise-addr  is a load balancer, you
must use --listen-addr  to specify a local IP.

$ docker swarm init \ 
  --advertise-addr 192.168.64.61:2377 \ 
  --listen-addr 192.168.64.61:2377 
 
Swarm initialized: current node (d21lyz...c79qzkx) is now a manager. 
<Snip> 



I recommend specifying both flags in important production
environments. However, for most lab environments, you can
just run a docker swarm init  without any flags.
You can also specify a custom port for the advertise and listen
addresses, but using the default 2377  is common.

2. List the nodes in the swarm.

$ docker node ls 
ID            HOSTNAME   STATUS  AVAILABILITY  MANAGER STATUS 
d21...qzkx *  mgr1       Ready   Active        Leader 

mgr1 is the only node in the swarm and is listed as the
Leader. We’ll talk about leaders later.

3. Run the following command from mgr1 to see the commands
and tokens needed to add new workers and managers.

Notice how the outputs are identical except for the join
tokens ( SWMTKN... ). You should keep your join tokens

$ docker swarm join-token worker 
To add a manager to this swarm, run the following command: 
   docker swarm join --token SWMTKN-1-0uahebax...c87tu8dx2c 192.168.64.
 
$ docker swarm join-token manager 
To add a manager to this swarm, run the following command: 
   docker swarm join --token SWMTKN-1-0uahebax...ue4hv6ps3p 192.168.64.



secure, as they’re all that’s required to join other nodes to
your swarm!

4. Log on to mgr1 and use the correct command and token to
join it as a manager node. I’ve added the optional
advertise-addr  and listen-addr  flags in the example so
you know how to use them. You can leave them off, but if
you do use them, be sure to use the correct IPs for your
environment.

$ docker swarm join \ 
    --token SWMTKN-1-0uahebax...ue4hv6ps3p \ 
    10.0.0.1:2377 \ 
    --advertise-addr 192.168.64.62:2377 \ 
    --listen-addr 192.168.64.62:2377 
 
This node joined a swarm as a manager. 

If you experience joining problems, make sure the following
network ports are open between all nodes:
1. 2377/tcp:  for secure client-to-swarm communication
2. 7946/tcp and udp:  for control plane gossip
3. 4789/udp:  for VXLAN-based overlay networks

5. Repeat the previous step on mgr3 so that you have two
workers. If you specify the --advertise-addr  and --
listen-addr  flags, make sure you use mgr3’s IP addresses.



6. Log on to wrk1 and wrk2 and join them as workers using the
worker token from step 3. Again, you don’t have to use the --
advertise-addr  and --listen-addr  flags, but if you do, be
sure to use the correct IPs for your environment.

$ docker swarm join \ 
    --token SWMTKN-1-0uahebax...c87tu8dx2c \ 
    10.0.0.1:2377 \ 
    --advertise-addr 192.168.64.64:2377 \ 
    --listen-addr 192.168.64.64:2377 
 
This node joined a swarm as a worker. 

7. Log on to any of your manager nodes and run a docker node
ls  to see all the nodes in your swarm.

If you look closely at the MANAGER STATUS  column, you’ll see all
three managers are showing as either Reachable or Leader. The
nodes with nothing in this column are worker nodes. The

$ docker node ls 
ID                HOSTNAME    STATUS    AVAILABILITY    MANAGER STATUS 
0g4rl...babl8 *   mgr2        Ready     Active          Reachable      
2xlti...l0nyp     mgr3        Ready     Active          Reachable      
d21ly...9qzkx     mgr1        Ready     Active          Leader         
8yv0b...wmr67     wrk1        Ready     Active                         
e62gf...l5wt6     wrk2        Ready     Active                         



manager with the asterisk after its name is the one you’re
executing commands from.

Congratulations. You’ve created a five-node swarm with three
managers and two workers. The Docker Engine on each node is
now operating in swarm mode, and the swarm is secured with
TLS.

Swarm manager high availability

Swarm clusters are highly available (HA), meaning one or more
managers can fail, and the swarm will keep running.

Technically speaking, Swarm implements active/passive multi-
manager HA. This means a swarm with three managers will
have one active manager and two passive managers. We call
the active manager the “leader” and the passive managers
“followers”. The leader is the only manager that can update the
swarm configuration, but if it fails, one of the followers is
elected as the new leader and the swarm keeps running without
any service interruption. If you send commands to a follower, it
proxies them to the leader.

Figure 11.3 shows you issuing a command to a follower
manager requesting an update to the swarm. Step 1 shows you
issuing the command. Step 2 shows the follower manager



receiving and proxying the command to the leader. Step 3
shows the leader executing it.

Figure 11.3

Leader and follower is Raft terminology, and we use it because
Swarm implements the Raft consensus algorithm to maintain a
consistent cluster state across multiple highly-available
managers.

The following good practices apply when it comes to manager
HA:

1. Always deploy an odd number of managers
2. Don’t deploy too many managers (3 or 5 is usually enough)
3. Spread managers across availability zones

https://raft.github.io/


Consider the two examples shown in Figure 11.4. The swarm on
the left has an even number of managers, and a network
incident has created a network partition with two managers on
either side. We call this a split brain because neither side can be
sure it has a majority and the cluster goes into read-only mode.
When this happens, your apps continue working as normal but
you can’t make changes to them or to the cluster. However, the
swarm on the right has an odd number of managers and
remains fully operational in read-write mode because the two
managers on the right side of the network partition know they
have a majority (quorum). So, even though the swarm on the
right has fewer managers than the one on the left, it has better
availability.

Figure 11.4 - Swarm high availability



As with all consensus algorithms, more participants means
longer times to achieve consensus. It’s like choosing where to
eat — it’s always quicker and easier for three people to decide
than it is for 33! With this in mind, having three or five
managers for HA is considered a best practice. Seven might
work, but three or five is best for most swarms.

A final word of caution regarding manager HA. While you
should spread your managers across availability zones, they
must be connected by fast and reliable networks. This means
you should think carefully and do lots of testing before
implementing multi-cloud HA.

Built-in Swarm security

Swarm ships with a lot of security features, such as a built-in
certificate authority (CA), mutual TLS, an encrypted cluster
store, encrypted networks, cryptographic node IDs and join
tokens, and more. Fortunately, Swarm automatically configures
them with sensible defaults.

Locking a Swarm

Despite all of Swarm’s security features, restarting an old
manager or restoring an old backup can compromise your
cluster. For example, a malicious actor with access to an old



manager node may be able to re-join it to the swarm and gain
unwanted access.

Fortunately, you can use Swarm’s autolock feature to force
restarted managers to present a key before being admitted back
into the swarm.

You can autolock new swarms at build time by passing the --
autolock  flag to the docker swarm init  command. If you
already have a swarm, you can autolock it with the docker
swarm update  command.

Run the following command from one of your swarm managers
to lock your existing swarm cluster.

While it’s possible to run a docker swarm unlock-key
command on any manager to view your unlock key, you should

$ docker swarm update --autolock=true 
Swarm updated. 
To unlock a swarm manager after it restarts, run the `docker swarm unlock`
provide the following key: 
 
   SWMKEY-1-XDeU3XC75Ku7rvGXixJ0V7evhDJGvIAvq0D8VuEAEaw 
 
Please remember to store this key in a password manager... 



also keep a secure copy outside of your cluster in case you’re
ever locked out of your swarm.

Log on to one of your managers, restart it, and then run a
docker node ls  command from it.

Docker has restarted, but the manager hasn’t been allowed to
re-join the swarm. You can prove this by running a docker
node ls  from one of your other managers and the restarted
manager will be listed as down  and unreachable .

Run the docker swarm unlock  command from the restarted
manager to re-admit it. You’ll be prompted to provide the
unlock key.

$ docker swarm unlock 
Please enter unlock key: <enter your key> 

Docker will re-admit the node to the swarm, and it will show as
ready  and reachable  in future commands.

$ docker node ls 
Error response from daemon: Swarm is encrypted and needs to be unlocked be



You should lock your production swarms and protect the
unlock keys.

Dedicated manager nodes

By default, Swarm runs user applications on workers and
managers. However, you may want to configure your
production swarm clusters to only run user applications on
workers. This allows managers to focus exclusively on control-
plane duties.

Run the following command on any manager to prevent it from
running user applications. You’ll need to use the names of your
managers, and you’ll need to run it for all managers if you want
to force user applications to run only on workers.

$ docker node update --availability drain mgr1 

You’ll see the impact of this in later steps when you deploy
services with multiple replicas.

Now that you’ve built a swarm and understand the concepts of
leaders and manager HA, the next chapter focuses on deploying
multi-container applications to a swarm.

Docker Swarm – The Commands



docker swarm init  creates a new swarm. The node you run
the command on becomes the first manager, and that node’s
Docker Engine switches to swarm mode.
docker swarm join-token  reveals the commands and
tokens required to join workers and managers to the swarm.
You add manager  to the command to get the manager join
token and worker  to get the worker token. Be sure to keep
your join tokens secure!
docker node ls  lists managers and workers and shows
which manager is the leader.
docker swarm update --autolock=true  locks a swarm and
requires restarted managers to present the cluster unlock
code before being re-admitted to the cluster
docker swarm unlock  allows a restarted manager to present
the cluster unlock code and re-join a locked swarm after a
reboot
docker node update --availability drain <node>

Chapter summary

Swarm is Docker’s native technology for managing clusters of
Docker nodes and orchestrating microservices applications. It is
similar to Kubernetes but less advanced and easier to use.



The enterprise-grade clustering component offers a wealth of
security and HA features that are automatically configured and
extremely simple to modify.

You’ll learn about Swarm orchestration in the next chapter.



12: Deploying apps to Swarm

Deploying and managing cloud-native microservices
applications at scale is hard. Fortunately, Docker Swarm makes
it easy.

I’ve split this chapter as follows:

Deploying apps with Docker Stacks – The TLDR
Build a Swarm lab
The sample app
Deploy the app
Manage the app

Deploying apps with Docker Stacks – The TLDR

Docker Stacks combine the benefits of Compose and Swarm to
create a platform for easy deployment and management of
complex multi-container apps on secure, highly available
infrastructure.

You build a swarm, define your apps in Compose files, and
deploy and manage them with the docker stack  command.

If you’ve been following along, you’ll already know Compose
and Swarm, so you’ll find Docker Stacks easy.



Build a Swarm lab

This section shows you how to build a three-node swarm lab
with a single manager and two workers. You can skip to the
next section if you already have a swarm.

You can build the lab in Multipass, Play with Docker, or just
about any Docker environment. However, I don’t recommend
using Docker Desktop, as the examples work best on multi-node
swarms, and Docker Desktop limits you to a single node.

Run the following command from the node that will be your
swarm manager.

$ docker swarm init 
Swarm initialized: current node (lhma...w4nn) is now a manager. 
<Snip> 

Copy the docker swarm join  command shown in the output
and paste it into the two nodes that will be workers.

Worker 1

$ docker swarm join --token SWMTKN-1-2hl6...-...3lqg 172.31.40.192:2377 
This node joined a swarm as a worker. 



Worker 2

Run the following command from your manager node to
confirm the swarm is initialized with one manager and two
workers.

$ docker node ls 
ID            HOSTNAME   STATUS     AVAILABILITY    MANAGER STATUS 
lhm...4nn *   mgr1       Ready      Active          Leader 
b74...gz3     wrk1       Ready      Active 
o9x...um8     wrk2       Ready      Active 

Now that you have a swarm lab, let’s look at the sample app.

The sample app

Figure 12.1 shows the application we’ll use for the rest of the
chapter. It’s a multi-container microservices application with:

Two services ( web-fe  and redis )
An encrypted overlay network ( counter-net )
A volume ( counter-vol )
A published port ( 5001 )

$ docker swarm join --token SWMTKN-1-2hl6...-...3lqg 172.31.40.192:2377 
This node joined a swarm as a worker. 



Figure 12.1

Terminology: Throughout this chapter, we’ll use the term
service to refer to the Docker service object that manages
one or more identical containers on a swarm. We’ll use the
terms container and replica interchangably. We’ll also refer
to the Compose file as the stack file, and sometimes we’ll
refer to the application as the stack.

Log on to a swarm manager and clone the book’s GitHub repo.
You’ll need the repo on your swarm manager for the examples
to work.

$ git clone https://github.com/nigelpoulton/ddd-book.git 
Cloning into 'ddd-book'... 
remote: Enumerating objects: 8904, done. 
remote: Counting objects: 100% (74/74), done. 
remote: Compressing objects: 100% (52/52), done. 



remote: Total 8904 (delta 21), reused 70 (delta 18), pack-reused 8830 
Receiving objects: 100% (8904/8904), 74.00 MiB | 4.18 MiB/s, done. 
Resolving deltas: 100% (1378/1378), done. 

Change into the ddd-book/swarm-app  directory.

$ cd ddd-book/swarm-app 

We’ll focus on the Compose file, but feel free to inspect the
application in the app  folder.

If you look at the Compose file, you’ll see it has three top-level
keys.

networks
volumes
services

Networks is where you define the networks the app needs,
volumes defines the volumes it needs, and services defines the
microservices that make up the app. The file is a simple
example of infrastructure as code — the application and its
infrastructure are defined in a configuration file that you use to
deploy and manage them.



If you expand each top-level key, you’ll see how things map to
Figure 12.1 with a network called counter-net, a volume called
counter-vol, and two services called web-fe and redis.

networks: 
  counter-net: 
volumes: 
  counter-vol: 
services: 
  web-fe: 
  redis: 

Let’s look at each section of the stack file.

Looking closer at the stack file

Stack files are identical to Compose files with a few differences
at run-time. For example, Docker Compose lets you build
images at run-time, but Docker Stacks don’t.

Let’s look at the networking elements defined in our stack file.

Networks and networking

One of the first things Docker does when you deploy an app
from a stack file is create the networks defined under the
networks  key. If they already exist, Docker doesn’t need to do
anything. But if they don’t exist, it creates them.



This app defines a single encrypted overlay network called
counter-net.

networks: 
  counter-net:             <<---- Network name 
    driver: overlay        <<---- Driver/type of network 
    driver_opts: 
      encrypted: 'yes'     <<---- Encrypt the data plane 

It needs to be an overlay network so it can span all nodes in the
swarm.

Encrypting the data plane will keep the application traffic
private, but it incurs a performance penalty that varies based on
factors such as traffic type and traffic flow. It’s not uncommon
for the performance penalty to be around 10%, but you should
perform your own testing against your own applications.

The stack also publishes the web-fe service on port 5001  on the
swarm-wide ingress network and maps it back to port 8080  on
all service replicas. This allows external clients to reach the
web-fe service by hitting any swarm node on port 5001 .

services: 
  web-fe: 
  <Snip> 
    ports: 



Let’s look at the volumes and mounts.

Volumes and mounts

The app defines a single volume called counter-vol  and
mounts it into the /app  directory on all web-fe  replicas. This
means all reads and writes to the /app  folder will be serviced
by the volume.

In this example, the volume will be a directory on the Docker
host’s filesystem but could easily be on an external storage
system.

Let’s look at the services.

      - target: 8080       <<---- Service replicas listen on this port 
        published: 5001    <<---- and are published externally on this por

volumes: 
  counter-vol:                 <<---- Volume name 
 
services: 
  web-fe: 
    <Snip> 
    volumes: 
      - type: volume 
        source: counter-vol    <<---- Mount the "counter-vol" volume to 
        target: /app           <<---- "/app" in all web-fe service replica



Services

Services are where most of the action happens. This application
defines two, so let’s look at each in turn.

The web-fe service

As you can see, the web-fe service defines an image, an app, the
desired number of replicas, rules for updating the app, a restart
policy, which network to connect to, which ports to publish, and
how to mount a volume. That’s a lot to take in, so I’ve annotated
it in the book. Take a minute to read the file and annotations.

web-fe: 
  image: nigelpoulton/ddd-book:swarm-app   <<---- Create all replicas with
  command: python app.py                   <<---- Run this command when ea
  deploy: 
    replicas: 4                   <<---- Deploy 4 replicas 
    update_config:                ------┐ When you perform an update, 
      parallelism: 2                    | update 2 replicas at a time, 
      delay: 10s                        | wait 10 seconds in between each 
      failure_action: rollback    ------┘ and perform a rollback if you en
    placement:                    ------┐ 
      constraints:                      | Only run replicas on worker node
        - 'node.role == worker'   ------┘  
    restart_policy:               ------┐ Only restart replicas if 
      condition: on-failure             | they've failed (non-zero return 
      delay: 5s                         | wait five seconds between each r
      max_attempts: 3                   | only attempt three restarts,  
      window: 120s                ------┘ and give up trying after two min
  networks: 
    - counter-net                 <<---- Connect replicas to the "counter-
  ports: 



The image  key is the only mandatory key and tells Docker
which image to use when creating service replicas (containers).
Swarm stacks don’t support building images at deployment
time, so the image must already exist. Docker is also opinionated
and assumes you want to pull images from Docker Hub.
However, you can add the registry’s DNS name before the image
name if you want to use a third-party registry. For example,
adding ghcr.io  before an image name will pull it from GitHub
Container Registry.

The command  key tells Docker how to start the app in each
replica. Our example tells it to execute python app.py  in all
replicas.

The deploy.replicas  key tells Swarm to deploy and manage
four service replicas (identical containers).

web-fe: 
  deploy: 
    replicas: 4 

    - published: 5001             ------┐ Publish the service externally o
      target: 8080                ------┘ map traffic to each replica on p
  volumes: 
    - type: volume 
      source: counter-vol         ------┐ Mount the "counter-vol" volume t
      target: /app                ------┘ "/app" in each service replica 



If you need to change the number of replicas after you’ve
deployed the service, you update the value of
deploy.replicas  in the stack file and then redeploy the stack.
We’ll see this later.

The deploy.update_config  block tells Docker how to perform
rollouts.

web-fe: 
  deploy: 
    update_config:                 
      parallelism: 2        
      delay: 10s              
      failure_action: rollback     

This application tells Docker to update two replicas at a time,
wait 10 seconds between each set of two, and to perform a
rollback if it encounters any problems.

Performing a rollback replaces the new replicas with fresh
copies of the old version. The default value for failure_action
is pause , which halts the update and may result in some
replicas running the old version and some running the new.
The other option is continue .

The deploy.placement  block forces all replicas onto worker
nodes. You’ll need to delete this section if you’re running a



single-node swarm with one manager and zero workers.

web-fe: 
  deploy: 
    placement: 
      constraints: 
        - 'node.role == worker' 

The deploy.restart_policy  block tells Docker what to do
when it encounters a failure during a rollout.

web-fe: 
  deploy: 
    restart_policy: 
      condition: on-failure 
      max_attempts: 3 
      delay: 5s 
      window: 120s 

This app tells Docker to restart replicas if they fail, to attempt a
maximum of 3 restarts, to wait 5 seconds between each restart
attempt, and to wait up to 120 seconds to decide if the restart
worked.

The networks  key tells Docker to attach all replicas to the
counter-net  network.

web-fe: 
  networks: 



    - counter-net 

The ports  block publishes the app on port 5001  on the ingress
network and port 8080  on the counter-net network. This
means external traffic can hit any swarm node on 5001  and get
redirected to the service replicas on 8080 .

web-fe: 
  ports: 
    - published: 5001 
      target: 8080 

Finally, the volumes  block mounts the counter-vol  volume
into each service replica’s /app  directory.

web-fe: 
  volumes: 
    - type: volume 
      source: counter-vol 
      target: /app 

The redis service

The redis service is much simpler. It pulls the redis:alpine
image, starts a single replica, and attaches it to the counter-
net  network. This is the same network as the web-fe  service,



meaning the two services will be able to communicate with
each other by name (redis and web-fe).

redis: 
  image: "redis:alpine" 
  networks: 
    counter-net: 

As previously mentioned, Compose files are a great source of
application documentation. For example, we can read this file
and know the application has two services, an encrypted
network, and a volume. We can also figure out how the services
communicate, how Docker publishes them outside of the
swarm, how it will deploy them, update them, and when it will
attempt restarts.

Let’s deploy and manage the app.

Deploy the app

If you plan on following this section, you’ll need a swarm and a
copy of the book’s GitHub repo on your swarm manager. The
examples use a three-node swarm with a single manager called
mgr1 and two workers called wrk1 and wrk2.

You deploy Stacks with the docker stack deploy  command,
and in its basic form it accepts two arguments:



The name of the stack file (Compose file)
The name of the stack (app)

We’ll use the compose.yaml  file in the ddd-book/swarm-app
folder, and we’ll call the app ddd.

Run all of the following commands from the swarm-app
directory on a swarm manager.

Deploy the stack.

$ docker stack deploy -c compose.yaml ddd 
Creating network ddd_counter-net 
Creating volume ddd_counter-vol 
Creating service ddd_web-fe 
Creating service ddd_redis 

A few things to note from the output.

Docker creates the networks and volumes before services. This
is because services depend on networks and volumes and may
fail to start if they don’t exist.

Docker also prefixes the name of the stack to every resource.
We called our stack ddd, causing Docker to prefix every
resource name with ddd followed by an underscore:



ddd_counter-net

ddd_counter-vol

ddd_web-fe

ddd_redis

When you executed the docker stack deploy  command, your
Docker client sent the command and the compose.yaml  file to a
swarm manager, and the leader manager initiated the work to
deploy everything defined in the file. In this case, Docker
created a new network called ddd_counter-net, a new volume
called ddd_counter-vol, and deployed the required number of
replicas for the web-fe and redis services.

However, it doesn’t end there. Swarm records all of this in the
cluster store as your desired state and runs a background loop
that constantly compares the observed state of the cluster with
the desired state saved in the cluster store. When the two states
match, the world is a happy place, and no further action is
needed. When they don’t match, Swarm takes action to bring
the observed state into line with desired state.

For example, if a worker hosting two of the four web-fe replicas
fails, the observed state of the cluster will drop from four web-fe
replicas to two and no longer match the desired state. As soon as
the swarm observes the discrepency, it will start two new



replicas to bring the observed state back in line with desired
state. We call this reconciliation or self-healing, and it’s a core
tenet of cloud-native applications.

You’ll soon learn that desired state and reconciliation are also at
the heart of scaling, rollouts, and rollbacks.

Inspect the app

You can check the status of services, volumes, and networks
with their usual commands, but the docker stack  command
also has a couple of options for checking the status of stacks:

docker stack ls  prints a list of running stacks and how
many services they have
docker stack ps <stack-name>  gives more detailed
information about a specific stack and its services and
replicas

Let’s look at both.

$ docker stack ls 
NAME      SERVICES 
ddd       2 
 
$ docker stack ps ddd 
NAME            IMAGE                            NODE   DESIRED STATE   CU
ddd_redis.1     redis:alpine                     mgr1   Running         Ru
ddd_web-fe.1    nigelpoulton/ddd-book:swarm-app  wrk1   Running         Ru



The docker stack ps  command is great for troubleshooting
services. You can see the image each replica is based on, which
nodes replicas are running on, as well as desired state and
current state. If you look closely, you’ll notice that Swarm has
honored the deploy.placement.constraints  property and
ensured web-fe replicas only run on worker nodes. It has also
evenly balanced the four web-fe replicas across both workers.
However, the redis replica is scheduled on the manager node
because it has no such placement constraint.

The following output shows two failed attempts to start web-fe
replicas on the wrk2  node.

You can also use the docker service logs  command to
inspect service logs. If you pass it the service name or ID, you’ll

ddd_web-fe.2    nigelpoulton/ddd-book:swarm-app  wrk2   Running         Ru
ddd_web-fe.3    nigelpoulton/ddd-book:swarm-app  wrk2   Running         Ru
ddd_web-fe.4    nigelpoulton/ddd-book:swarm-app  wrk1   Running         Ru

$ docker stack ps ddd 
NAME         NODE     DESIRED      CURRENT    ERROR 
web-fe.1     wrk2     Shutdown     Failed     "task: non-zero exit (1)" 
\_web-fe.1   wrk2     Shutdown     Failed     "task: non-zero exit (1)" 



get the logs for all service replicas. If you pass it a specific
replica name or ID, you’ll only get the logs for that replica.

The following example shows the logs for all replicas in the
ddd_web-fe  service.

$ docker service logs ddd_web-fe 
ddd_web-fe.1.i23puo71kq12@wrk1     |  * Serving Flask app 'app' 
ddd_web-fe.3.z4otpnjrvc58@wrk2     |  * Debug mode: on 
<Snip> 
ddd_web-fe.4.novrixi5iuxy@wrk2     |  * Debug mode: on 
ddd_web-fe.4.novrixi5iuxy@wrk2     |  * Debugger is active! 
ddd_web-fe.4.novrixi5iuxy@wrk2     |  * Debugger PIN: 127-233-151 

You can follow logs ( --follow ), tail them ( --tail ), and you
can sometimes get extra details ( --details ).

So far, you’ve used Docker commands to prove the stack is up
and running. However, you can also test it with your browser.

Run a docker stack services  command to get brief info on
both of the stack’s services, including the port the web-fe
service is published on.

$ docker stack services ddd 
NAME         MODE         REPLICAS   IMAGE                             POR
ddd_redis    replicated   1/1        redis:alpine 
ddd_web-fe   replicated   4/4        nigelpoulton/ddd-book:swarm-app   *:5



It’s published on port 5001 , meaning you can reach it by
pointing your browser to the name or IP of any swarm node on
5001 . If you’re using Multipass, the node IPs usually start with
192.168 , and you can find them by running a multipass list
command from your host’s terminal. Alternatively, you can run
an ip a  command inside the Multipass VM and use the IP
address of the enp0s1  interface.

Figure 12.2 shows a browser connecting to a swarm node with
the 192.168.64.41  IP address and reaching the app.

Figure 12.2

Let’s switch tack and see how to manage swarm stacks.

Manage the app



There are two ways to manage Docker stacks:

Imperatively
Declaratively

The imperative method is where you run Docker commands to
make changes to the stack. For example, you can use the
docker service scale  command to increase and decrease the
number of service replicas.

The declarative method is where you make all changes via the
stack file. For example, if you want to change the number of
service replicas, you edit the stack file with the desired replica
count and run another docker stack deploy  command.

The declarative method is the preferred method.

Consider the following example that demonstrates why you
should manage stacks declaratively.

Imagine you’ve deployed an app from a stack file that includes a
reporting service and a catalog service. The stack file includes
other services that are part of the app, but we’re only interested in
these two. It’s currently running five replicas of the reporting
service, but year-end reporting has started, and it’s experiencing
slow performance due to increased demand. You decide to run an



imperative docker service scale  command to increase the
number of reporting replicas to 10. This fixes the performance
issues, but the current state of the app is no longer in sync with
the stack file — the stack file defines five replicas but the cluster is
running 10. Later in the day, a colleague is tasked with rolling out
a new version of the catalog service — the catalog service is part
of the same app and, therefore, is defined in the same stack file as
the reporting service. Your colleague makes the changes
declaratively by editing the stack file with the new version of the
catalog service and then runs a docker stack deploy
command to push the updates. When Docker receives the
updated version of the stack file, it rolls out the new version of the
catalog service and changes the number of reporting replicas
back to five. This will cause the reporting service to start running
slowly again.

This is why you should make all changes declaratively via your
stack files and manage them in a version control system.

Getting back to the app you deployed, let’s do the following:

Increase the number of web-fe  replicas from 4 to 10
Update the web-fe service to the newer swarm-appv2 image



Edit the compose.yaml  file, increase the web-fe replica count to
10, and change the image to swarm-appv2 .

Save your changes and redeploy the app. This will cause Docker
to rollout a new version of the web-fe service with all 10
replicas running the new image.

$ docker stack deploy -c compose.yaml ddd 
Updating service ddd_redis (id: ozljsazuv7mmh14ep70pv43cf) 
Updating service ddd_web-fe (id: zbbplw0hul2gbr593mvwslz5i) 

Even though it looks like Docker has redeployed both services,
it hasn’t. It’s clever enough only to redeploy the bits you’ve
changed.

Run a docker stack ps  to see the rollout’s progress.

<Snip> 
services: 
  web-fe: 
    image: nigelpoulton/ddd-book:swarm-appv2     <<---- changed to swarm-a
    command: python app.py 
    deploy: 
      replicas: 10                               <<---- Changed from 4 to 
      <Snip>   

$ docker stack ps ddd 
NAME             IMAGE                               NODE    DESIRED   CUR



I’ve trimmed the output to fit the book, and I’ve only listed
some of the replicas. However, you can see a few things.

Swarm has evenly balanced the six new replicas across both
worker nodes. If your swarm has more nodes, Docker will
balance the new replicas across them all.

The top line shows the ddd_web-fe.1 replica running the old
image for the last 8 minutes. The next two lines show the
ddd_web-fe.2 replica. You can see that the old instance was
running the old image and that it was shut down 26 seconds ago
and replaced with a new instance running the new image. The
new replica has been running for 13 seconds.

The last line shows the ddd_web-fe.3 replica is still running the
old version.

It’s important to emphasize two things.

First, Docker followed the rules in the deploy.update_config
section of the Compose file. If you look at that section of the file

ddd_web-fe.1     nigelpoulton/ddd-book:swarm-app     wrk1    Running   Run
ddd_web-fe.2     nigelpoulton/ddd-book:swarm-appv2   wrk2    Running   Run
\_ddd_web-fe.2   nigelpoulton/ddd-book:swarm-app     wrk2    Shutdown  Shu
ddd_web-fe.3     nigelpoulton/ddd-book:swarm-app     wrk2    Running   Run
<Snip> 



again, you’ll see that Docker can update two replicas, wait for 10
seconds, update the next two, wait 10 seconds, and then attempt
a rollback to the previous version if it encounters any issues.

web-fe: 
  deploy: 
    update_config: 
      parallelism: 2 
      delay: 10s 
      failure_action: rollback 

Second, containers are immutable and Docker didn’t update the
existing containers to run the new image. It deleted and
replaced them with new containers running the new image.

After a short period, all 10 replicas will be running the updated
image.

Before moving on, it’s important to remind ourselves of the
reconciliation process that just happened. The application was
running with four web-fe replicas, all based on the swarm-app
image, and this was recorded in the cluster store as desired
state. We edited the Compose file to change all web-fe replicas
to use the newer swarm-appv2 image and increased the replica
count from four to ten. We saved our changes, ran a docker
stack deploy  command to push the updated Compose file to
the swarm, and the swarm updated the desired state. Shortly



after, swarm compared the observed state of the cluster with the
new desired state and noticed it had four web-fe replicas
running the swarm-app image but should actually have ten
web-fe replicas running the swarm-appv2 image. As such, it
deleted the existing four replicas and replaced them with ten
new replicas. And it did so according to the update rules defined
in the deploy.update_config  section of the Compose file.

Verify the rollout

Despite it looking like the update worked, there is a problem.

Refresh your browser to make sure you see the updated version
of the app with a purple WebAssembly is the future banner.

Something didn’t work as expected because it’s still displaying
the old web page!

The issue is with the volume. Let’s walk through what
happened.

The new image has the updated app version with the purple
WebAssembly is the future banner. The rollout deleted the old
replicas and replaced them with new ones running the new
version of the app. So far, so good. However, when Docker
started each new replica, it mounted the old volume with the



old app version. This had the effect of overwriting the new
version of the app with the old.

You should be aware of this behavior when working with
volumes. However, it will usually be fine because you typically
only use volumes for data stores, not for hosting application
binaries.

Let’s assume you realize the web-fe service is stateless and
doesn’t require a volume. The declarative way to remove the
volume is to edit the Compose file again, remove the volume
and volume mount, and redeploy the app. Let’s do it.

Edit the compose.yaml  file and make the following changes.

volumes:            <<---- Delete this line 
  counter-vol:      <<---- Delete this line 
<Snip> 
services: 
  web-fe: 
    image: nigelpoulton/ddd-book:swarm-appv2 
    <Snip> 
    volumes:                    <<---- Delete this line 
      - type: volume            <<---- Delete this line 
        source: counter-vol     <<---- Delete this line 
        target: /app            <<---- Delete this line 

Save your changes and redeploy.



$ docker stack deploy -c compose.yaml ddd 
Updating service ddd_redis (id: ozljsazuv7mmh14ep70pv43cf) 
Updating service ddd_web-fe (id: zbbplw0hul2gbr593mvwslz5i) 

The stack will update two replicas at a time and wait 10 seconds
between each. Once the stack has converged and all replicas are
updated, you should see the new version of the app as shown in
Figure 12.3. Refresh your browser a few times to make sure it
works. Don’t worry if some requests get the old version while
the rollout is in progress.

Figure 12.3 - The updated app

Eventually, all replicas will run the new version and return the
new web page. However, the volume will still exist, and you’ll
need to delete it manually.



Congratulations. You’ve successfully deployed and managed a
multi-container app using Docker Swarm and Docker Stacks.
You also learned to deploy and manage apps declaratively by
making all changes via the stack file (Compose file).

Clean up

If you’ve been following along, you’ve deployed an app with
two services, a network, and a volume.

You can delete the stack with the docker stack rm  command.
However, be warned that it deletes the stack without asking for
confirmation.

$ docker stack rm ddd 
Removing service ddd_redis 
Removing service ddd_web-fe 
Removing network ddd_counter-net 

The command deleted the network and services but not the
volume. This is because volume lifecycles are decoupled from
containers and services, and you need to delete them manually.

Run the following command on every swarm node hosting a
replica.



$ docker volume rm ddd_counter-vol 
ddd_counter-vol 

Deploying apps with Docker Stacks – The Commands

docker stack deploy  is the command you’ll run to deploy
and update stacks. You need to specify the name of the stack
and the stack file.
docker stack ls  lists all stacks on a swarm and shows the
number of services each one has.
docker stack ps  gives you detailed information about a
stack. It tells you which nodes replicas are running on, which
images they’re based on, and shows the desired state and
current state of each service replica.
docker stack rm  deletes a stack and doesn’t ask for
confirmation.

Chapter Summary

Stacks are Docker’s native solution for running cloud-native
microservices applications on Swarm clusters. They offer a
simple declarative interface for managing the entire lifecycle of
applications and infrastructure.

You start with application code and infrastructure requirements
— things like networks, ports, volumes, and secrets. You



containerize the application and combine all the services and
infrastructure definitions into a single declarative stack file. You
set the number of replicas, as well as rollout and restart policies.
Then, you use the docker stack deploy  command to deploy
the application from the stack file.

You should also perform all updates declaratively by updating
the stack file and redeploying the app.



13: Docker Networking

It’s always the network!

Any time we experience infrastructure issues, we always blame
the network. One of the reasons we do this is that networks are
at the center of everything. With this in mind, it’s important you
have a strong understanding of Docker networking.

In the early days of Docker, networking was hard. Fortunately,
these days it’s almost a pleasure ;-)

This chapter will get you up to speed with the fundamentals of
Docker networking. You’ll learn all the theory behind the
Container Network Model (CNM) and libnetwork, and you’ll get
your hands dirty with lots of examples. You’ll learn about
overlay networks in the next chapter.

I’ve divided the chapter into the following sections:

Docker networking – the TLDR
Docker networking theory
Single-host bridge networks
External access via port mappings
Connecting to existing networks and VLANs
Service Discovery



Ingress load balancing

A few quick things before we start.

Everything we’ll cover relates to Linux containers, and I
recommend you follow along using something like Multipass or
Play with Docker, as they give you easy access to some of the
Linux commands we’ll use. I don’t recommend following along
on Docker Desktop as it runs everything inside a Linux VM and
you won’t have access to the Linux commands.

Some of the examples explain how networking works on a
swarm. You’ll only be able to follow these if you’re following
along with a Swarm cluster.

Docker Networking – The TLDR

Docker runs microservices applications comprised of many
containers that work together to form the overall app. These
containers need to be able to communicate, and some will have
to connect with external services, such as physical servers,
virtual machines, or something else.

Fortunately, Docker has solutions for both of these
requirements.



Docker networking is based on libnetwork, which is the
reference implementation of an open-source architecture called
the Container Network Model (CNM).

For a smooth out-of-the-box experience, Docker ships with
everything you need for the most common networking
requirements, including multi-host container-to-container
networks and options for plugging into existing VLANs.
However, the model is pluggable, and the ecosystem can extend
Docker’s networking capabilities via drivers that plug into
libnetwork.

Last but not least, libnetwork also provides native service
discovery and basic load balancing.

That’s the big picture. Let’s get into the detail.

Docker networking theory

At the highest level, Docker networking is based on the
following three components:

The Container Network Model (CNM)
Libnetwork
Drivers



The CNM is the design specification and outlines the
fundamental building blocks of a Docker network.

Libnetwork is a real-world implementation of the CNM. It’s
open-sourced as part of the Moby project and used by Docker
and other platforms.

Drivers extend the model by implementing specific network
topologies such as VXLAN overlay networks.

Figure 13.1 shows all three.

Figure 13.1

Let’s take a closer look at each.

The Container Network Model (CNM)

https://mobyproject.org/


Everything starts with a design.

The design guide for Docker networking is the CNM that
outlines the fundamental building blocks of a Docker network.

I recommend you read the specification document, but at a high
level, it defines three building blocks:

Sandboxes
Endpoints
Networks

A sandbox is an isolated network stack inside a container. It
includes Ethernet interfaces, ports, routing tables, DNS
configuration, and everything else you’d expect from a network
stack.

Endpoints are virtual network interfaces that look, smell, and
feel like regular network interfaces. They connect sandboxes to
networks.

Networks are virtual switches (usually software
implementations of an 802.1d bridge). As such, they group
together and isolate one or more endpoints that need to
communicate.

https://github.com/moby/moby/blob/master/libnetwork/docs/design.md


Figure 13.2 shows how all three connect and relate to familiar
infrastructure components. Using CNM terminology, endpoints
connect sandboxes to networks. Every container you create will
have a sandbox with at least one endpoint connecting it to a
network.

Figure 13.2 The Container Network Model (CNM)

As the name suggests, the Container Network Model is all about
providing networking for containers. Figure 13.3 shows how
CNM components relate to containers — each container gets its
own sandbox which hosts the container’s entire network stack,
including one or more endpoints that act as Ethernet interfaces
and can be connected to networks.



Figure 13.3

Container A has a single interface (endpoint) and is only
connected to Network A. However, Container B has two
interfaces connected to Network A and Network B. The
containers can communicate with each other because they are
both connected to Network A. However, the two endpoints
inside of Container B cannot communicate with each other as
they’re on different networks.

It’s also important to understand that endpoints behave exactly
like regular network adapters, meaning you can only connect
them to a single network. This is why Container B needs two
endpoints if it wants to connect to both networks.

Figure 13.4 extends the diagram further by adding the Docker
host. Even though both containers are running on the same



host this time, their network stacks are completely isolated and
can only communicate via a network.

Figure 13.4

Libnetwork

Libnetwork is the reference implementation of the CNM. It’s
open-source, cross-platform (Linux and Windows), maintained
by the Moby project, and used by Docker.

Before Docker created libnetwork, it implemented all of its
networking code inside the daemon. However, over time, the
daemon became bloated and difficult for other projects to use.
As a result, Docker removed the networking code from the
daemon and refactored it as an external library called



libnetwork based on the CNM design. Today, Docker implements
all of its core networking in libnetwork.

As well as implementing the core components of the CNM,
libnetwork also implements the network control plane,
including management APIs, service discovery, and ingress-
based container load balancing.

Drivers

Libnetwork implements the control plane, but it relies on
drivers to implement the data plane. For example, drivers are
responsible for creating networks and ensuring isolation and
connectivity.

Docker ships with several built-in drivers that we sometimes
call native drivers or local drivers. These include bridge,
overlay, and macvlan, and they build the most common
network topologies. Third parties can also write network
drivers to implement other network topologies and more
advanced configurations.

Figure 13.5 shows the roles of libnetwork and drivers and how
they relate to control plane and data plane responsibilities.



Figure 13.5

Every network you create is owned by a driver, and the driver
creates and manages everything about the network. For
example, if you create an overlay network called prod-fe-cuda,
Docker will invoke the overlay driver to create the network and
its resources.

To meet the demands of complex, highly fluid environments, a
single Docker host or Swarm cluster can have multiple
heterogeneous networks managed by different drivers.

Let’s look at single-host bridge networks and connecting to
existing networks. You’ll learn about overlay networks in the
next chapter.

Single-host bridge networks



The simplest type of Docker network is the single-host bridge
network.

The name tells us two things:

Single-host tells us the network only spans a single Docker
host
Bridge tells us that it’s an implementation of an 802.1d bridge
(layer 2 switch)

Docker creates single-host bridge networks with the built-in
bridge driver. If you run Windows containers you’ll need to use
the nat driver, but for all intents and purposes they work the
same.

Figure 13.6 shows two Docker hosts with identical local bridge
networks, both called mynet. Even though the networks are
identical, they are independent and isolated, meaning the
containers in the picture cannot communicate, even if the
nodes are part of the same swarm.



Figure 13.6

Every new Docker host gets a default single-host bridge
network called bridge that Docker connects new containers to
unless you override it with the --network  flag.

The following commands show the output of a docker network
ls  command on Docker installation.

As always, you can run docker inspect  commands to get
more information. I highly recommend running the command
on your own system and studying the output.

$ docker network ls 
NETWORK ID        NAME        DRIVER        SCOPE 
c7464dce29ce      bridge      bridge        local    <<---- Default on all
c65ab18d0580      host        host          local 
42a783df0fbe      none        null          local 



$ docker network inspect bridge 
[ 
    { 
        "Name": "bridge",         
        "Id": "c7464dce2...ba2e3b8", 
        "Scope": "local", 
        "Driver": "bridge",       
        "EnableIPv6": false, 
        "IPAM": { 
            "Driver": "default", 
            "Options": null, 
            "Config": [ 
                { 
                    "Subnet": "172.17.0.0/16", 
                    "Gateway": "172.17.0.1" 
                } 
            ] 
        }, 
        "Internal": false, 
        "Attachable": false, 
        "Ingress": false, 
        "ConfigFrom": { 
            "Network": "" 
        }, 
        <Snip> 
    } 
] 

All bridge networks are based on the battle-hardened Linux
bridge technology that has existed in the Linux kernel for over
20 years. This means they’re high-performance and highly
stable. It also means you can inspect them using standard Linux
utilities.



The default bridge network on all Linux-based Docker hosts is
called bridge and maps to an underlying Linux bridge in the
host’s kernel called docker0 . This is shown in Figure 13.7.

Figure 13.7 - Mapping the default Docker “bridge” network to the

“docker0” bridge in the host’s kernel

You can run a docker network inspect  command to confirm
that the bridge network is based on the docker0 bridge in the
host’s kernel. If you’re on Windows using PowerShell, you’ll
need to replace grep  with SelectString .

$ docker network inspect bridge | grep bridge.name 
"com.docker.network.bridge.name": "docker0", 

Now run these Linux commands to inspect the docker 0 bridge
from the Linux host. You might need to manually install the
brctl  utility.



$ brctl show 
bridge name       bridge id             STP enabled    interfaces 
docker0           8000.0242aff9eb4f     no              
docker_gwbridge   8000.02427abba76b     no 
 
$ ip link show docker0 
3: docker0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc... 
    link/ether 02:42:af:f9:eb:4f brd ff:ff:ff:ff:ff:ff 

The first command lists all the bridges on your Docker host and
shows if they have any devices connected to them. The example
in the book shows the docker0  bridge with no devices
connected in the interfaces  column. You’ll only see the
docker_gwbridge  if your host is a member of a swarm cluster.

The second command shows the configuration and state of the
docker0  bridge.

Figure 13.8 shows the complete stack with containers
connecting to the bridge  network, which, in turn, maps to the
docker0  Linux bridge in the host’s kernel. It also shows how
you can use port mappings to publish connected devices on the
Docker host’s interface. More on port mappings later.



Figure 13.8

In the next few steps, you’ll complete all of the following:

1. Create a new Docker bridge network
2. Connect a container to the new network
3. Inspect the new network
4. Test name-based discovery

Run the following command to create a new single-host bridge
network called localnet .

$ docker network create -d bridge localnet 
f918f1bb0602373bf949615d99cb2bbbef14ede935fbb2ff8e83c74f10e4b986 



The long number returned by the command is the network’s ID
and you’ll need it in the next step.

As expected, the command creates a new Docker bridge
network called localnet  that you can list and inspect with the
usual docker  commands. However, behind the scenes, it also
creates a new Linux bridge in the host’s kernel.

Run another brctl show  command to see it.

$ brctl show 
bridge name        bridge id             STP enabled    interfaces 
br-f918f1bb0602    8000.0242372a886b     no 
docker0            8000.024258ee84bc     no 
docker_gwbridge    8000.02427abba76b     no 

The example in the book shows a new bridge called br-
f918f1bb0602  with no devices connected. If you look closely at
the name, you’ll recognize f918f1bb0602  as the first 12
characters from the ID of the new localnet  network you just
created.

At this point, the bridge configuration on the host looks like
Figure 13.9, with three Docker networks and three associated
bridges in the host’s kernel.



Figure 13.9

Let’s create a new container called c1  and attach it to the new
localnet  bridge network.

$ docker run -d --name c1 \ 
  --network localnet \ 
  alpine sleep 1d 

Once you’ve created the container, inspect the localnet
network and verify the container is connected to it. You’ll need
the jq  utility installed for the command to work. Leave off the
"| jq"  if it doesn’t work.

$ docker network inspect localnet --format '{{json .Containers}}' | jq 
{ 
  "09c5f4926c87da12039b3b510a5950b3fe9db80e13431dc17d870450a45fd84a": { 
    "Name": "c1", 
    "EndpointID": "27770ac305773b352d716690fb9f8e05c1b71e10dc66f67b88e93cb
    "MacAddress": "02:42:ac:15:00:02", 
    "IPv4Address": "172.21.0.2/16", 
    "IPv6Address": "" 
  } 
} 



The output shows the c1  container and its IP address. This
proves Docker connected it to the network.

If you run another brctl show  command, you’ll see the c1
container’s interface connected to the br-1597657726bc
bridge.

$ brctl show 
bridge name        bridge id             STP enabled     interfaces 
br-f918f1bb0602    8000.0242372a886b     no              veth833aaf9 
docker0            8000.024258ee84bc     no 
docker_gwbridge    8000.02427abba76b     no 

Figure 13.10 shows the updated configuration. Your veth IDs
will be different, but the important thing to understand is that
every veth is like a cable with an interface on either end. One
end is connected to the Docker network, and the other end is
connected to the associated bridge in the kernel.



Figure 13.10

If you add more containers to the localnet  network, they’ll all
be able to communicate using names. This is because Docker
automatically registers container names with an internal DNS
service and allows containers on the same network to find each
other by name. The exception to this rule is the built-in bridge
network that does not support DNS resolution.

Let’s test name resolution by creating a new container called
c2  on the same localnet  network and seeing if it can ping the
c1  container.

Run the following command to create the c2  container on the
localnet  network. You’ll need to type exit  if you’re still
logged in to the c1  container.



$ docker run -it --name c2 \ 
  --network localnet \ 
  alpine sh 

Your terminal will switch into the c2  container.

Try to ping the c1  container by name.

# ping c1 
PING c1 (172.21.0.2): 56 data bytes 
64 bytes from 172.21.0.2: seq=0 ttl=64 time=1.564 ms 
64 bytes from 172.21.0.2: seq=1 ttl=64 time=0.338 ms 
64 bytes from 172.21.0.2: seq=2 ttl=64 time=0.248 ms 
<Control-c> 

It works! This is because all containers run a DNS resolver that
forwards name lookups to Docker’s internal DNS server that
holds name-to-IP mappings for all containers started with the -
-name  or --net-alias  flag.

Type exit  to log out of the container and return to your local
shell.

External access via port mappings

So far, we’ve said that containers on bridge networks can only
communicate with other containers on the same network.
However, you can get around this by mapping containers to



ports on the Docker host. It’s a bit clunky and has a lot of
limitations, but it might be useful for occasional testing and
development work.

Figure 13.11 shows a single Docker host running two
containers. The web  container on the right is running a web
server on port 80  that is mapped to port 5005  on the Docker
host. The client  container on the left is sending requests to
the Docker host on port 5005  and the external client at the
bottom is doing the same. Both requests will hit the host’s IP on
port 5005  and be redirected to the web server running in the
web  container.

Figure 13.11



Let’s test the setup to see if it works.

Create a new container called web  running NGINX on port 80
and map it to port 5005  on the Docker host. If you’re still
logged on to the container from the previous example, you’ll
need to type exit  first.

$ docker run -d --name web \ 
  --network localnet \ 
  --publish 5005:80 \ 
  nginx 

Verify the port mapping.

$ docker port web 
80/tcp -> 0.0.0.0:5005 
80/tcp -> [::]:5005 

The output shows the port mapping exists on all interfaces on
the Docker host.

You can test external access by pointing a web browser to the
Docker host on port 5005 . You’ll need to know the IP or DNS
name of your Docker host (if you’re following along on
Multipass it will probably be your Multipass VM’s 192.168.x.x
address). You’ll see the Welcome to nginx! page.



Let’s create another container and see if it can reach the web
container via the port mapping.

Run the following command to create a new container called
client  on the bridge  network.

$ docker run -it --name client --network bridge alpine sh 
# 

The command will log you into the container and your prompt
will change.

Install the curl  utility.

Now connect to the IP of your Docker host on port 5005  to see
if you can reach the container.

# curl 192.168.64.69:5005 
<!DOCTYPE html> 
<html> 
<head> 
<title>Welcome to nginx!</title> 

# apk add curl 
fetch https://dl-cdn.alpinelinux.org/alpine/v3.19/main/aarch64/APKINDEX.ta
fetch https://dl-cdn.alpinelinux.org/alpine/v3.19/community/aarch64/APKIND
(1/8) Installing ca-certificates (20240226-r0) 
<Snip> 



... 
</html> 

You’ve reached the NGINX web server running on the c1
container via a port mapping to the Docker host’s IP.

Even though this works, it’s clunky and doesn’t scale. For
example, no other containers or host processes will be able to
use port 5005  on the host. This is one of the reasons that single-
host bridge networks are only useful for local development or
very small applications.

Connecting to existing networks and VLANs

The ability to connect containerized apps to external systems
and physical networks is important. A common example is
partially containerized apps where the parts running in
containers need to be able to communicate with the parts not
running in containers.

The built-in MACVLAN driver (transparent if you’re using
Windows containers) was created with this in mind. It gives
every container its own IP and MAC address on the external
physical network, making each one look, smell, and feel like a
physical server or VM. This is shown in Figure 13.12.



Figure 13.12 - MACVLAN driver making containers visible on external

networks

On the positive side, MACVLAN performance is good as it
doesn’t require port mappings or additional bridges. However,
you need to run your host NICs in promiscuous mode, which
isn’t allowed on many corporate networks and public clouds.
So, MACVLAN will work on your data center networks if your
network team allows promiscuous mode, but it probably won’t
work on your public cloud.

Let’s dig a bit deeper with the help of some pictures and a
hypothetical example. This example will only work if your host
NIC is in promiscuous mode on a network that allows it. It also
requires an existing VLAN 100. You can adapt it if the VLAN
config on your physical network is different. You can follow
along without the VLANs, but you won’t get the full experience.



Assume you have the network shown in Figure 13.13 with two
VLANs:

Figure 13.13

Next, you add a Docker host and connect it to the network.

Figure 13.14

Now comes the requirement to attach a container to VLAN 100.
To do this, you create a new Docker network with the macvlan
driver and configure it with all of the following:



Subnet info
Gateway
Range of IPs it can assign to containers
Which of the host’s interfaces or sub-interfaces to use

Run the following command to create a new MACVLAN
network called macvlan100 that will connect containers to
VLAN 100. You may need to change the name of the parent
interface to match the parent interface name on your system.
For example, changing -o parent=eth0.100  to -o
parent=enp0s1.100 . The parent interface must be connected to
the VLAN, and you’ll need to type exit  if you’re still logged on
to the container from the previous example.

Docker will create the macvlan100  network and a new sub-
interface on the host called eth0.100@eth0 . The config now
looks like this.

$ docker network create -d macvlan \ 
  --subnet=10.0.0.0/24 \ 
  --ip-range=10.0.0.0/25 \ 
  --gateway=10.0.0.1 \ 
  -o parent=eth0.100 \        <<---- Make sure this matches your system 
  macvlan100 



Figure 13.15

The MACVLAN driver creates standard Linux sub-interfaces and
tags them with the ID of the VLAN they will connect to. In this
example, we’re connecting to VLAN 100, so we tag the sub-
interface with .100  ( -o parent=eth0.100 ).

We also used the --ip-range  flag to tell the new network
which sub-set of IP addresses it can assign to containers. It’s
vital that you reserve this range of addresses for Docker, as the
MACVLAN driver has no management plane feature to check if
IPs are already in use.



If you inspect the network, you’ll be able to see the important
configuration information. I’ve snipped the output to show the
most relevant parts.

$ docker network inspect macvlan100 
[ 
    { 
        "Name": "macvlan100", 
        "Driver": "macvlan", 
        "IPAM": { 
            "Config": [ 
                { 
                    "Subnet": "10.0.0.0/24", 
                    "IPRange": "10.0.0.0/25", 
                    "Gateway": "10.0.0.1" 
                } 
            ] 
        }, 
        "Options": { 
            "parent": "enp0s1.100" 
        }, 
    } 
] 

Once you’ve created the macvlan100  network, you can connect
containers to it and Docker will assign the IP and MAC
addresses on the underlying VLAN so they’ll be visible to other
systems.

The following command creates a new container called
mactainer1  and connects it to the macvlan100  network.



$ docker run -d --name mactainer1 \ 
  --network macvlan100 \ 
  alpine sleep 1d 

The config now looks like Figure 13.16.

Figure 13.16

However, remember that the underlying network (VLAN 100)
does not see any of the MACVLAN magic, it only sees the
container with its MAC and IP addresses, meaning the
mactainer1 container will be able to communicate with every
other system connected to VLAN 100!



Note: If you can’t get this to work, it might be because your
host NIC isn’t in promiscuous mode. Also, remember that
public cloud platforms normally block promiscuous mode.

At this point, you’ve got a MACVLAN network and used it to
connect a new container to an existing VLAN. If you have the
complete setup, with the existing VLAN, you can test that the
container is reachable form other system on the VLAN.

However, it doesn’t stop there. The Docker MACVLAN driver
supports VLAN trunking. This means you can create multiple
MACVLAN networks that connect to different VLANs. Figure
13.17 shows a single Docker host running two MACVLAN
networks connecting containers to two different VLANs.



Figure 13.17

Troubleshooting connectivity problems

A quick note on troubleshooting connectivity issues before
moving on to service discovery.

Daemon logs and container logs can be useful when
troubleshooting connectivity issues.

If you’re running Windows containers, you can view them in
the Windows Event Viewer or directly in
~\AppData\Local\Docker . For Linux containers, it depends on
which init system you’re using. If you’re running a systemd,



Docker will post logs to journald and you can view them with
the journalctl -u docker.service  command. If you’re using
a different init system, you might want to check the following
locations:

Ubuntu systems running upstart :
/var/log/upstart/docker.log

RHEL-based systems: /var/log/messages
Debian: /var/log/daemon.log

You can also tell Docker how verbose you want daemon logging
to be. To do this, edit the daemon config file at
/etc/docker/daemon.json  and set "debug"  to "true"  and
"log-level"  to one of the following:

debug – the most verbose option
info – the default value and second-most verbose option
warn – third most verbose option
error – fourth most verbose option
fatal – least verbose option

The following snippet from a daemon.json  enables debugging
and sets the level to debug . It will work on all Docker
platforms.



{ 
  <Snip> 
  "debug":true, 
  "log-level":"debug", 
  <Snip> 
} 

If your daemon.json  file doesn’t exist, create it. Also, be sure to
restart Docker after making any changes to the file.

That was the daemon logs. What about container logs?

You can normally view container logs with the docker logs
command. If you’re running Swarm, you should use the docker
service logs  command. However, Docker supports a few
different log drivers, and they don’t all work with native Docker
commands. For some of them, you might have to view logs
using the platform’s native tools.

json-file  and journald  are probably the easiest to configure
and they both work with the docker logs  and docker
service logs  commands.

The following snippet from a daemon.json  shows a Docker
host configured to use journald .

{ 
  "log-driver": "journald" 



} 

You can also start a container or a service with the --log-
driver  and --log-opts  flags to override the settings in
daemon.json .

Container logs work on the premise that your application runs
as PID 1 and sends logs to STDOUT  and errors to STDERR . The
logging driver then forwards everything to the locations
configured via the logging driver.

The following is an example of running the docker logs
command against a container called vantage-db  that is
configured with the json-file  logging driver.

There’s a good chance you’ll find network connectivity errors in
the daemon logs or container logs.

$ docker logs vantage-db 
1:C 2 Feb 09:53:22.903 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo 
1:C 2 Feb 09:53:22.904 # Redis version=4.0.6, bits=64, commit=00000000, mo
1:C 2 Feb 09:53:22.904 # Warning: no config file specified, using the defa
1:M 2 Feb 09:53:22.906 * Running mode=standalone, port=6379. 
1:M 2 Feb 09:53:22.906 # WARNING: The TCP backlog setting of 511 cannot be
1:M 2 Feb 09:53:22.906 # Server initialized 
1:M 2 Feb 09:53:22.906 # WARNING overcommit_memory is set to 0! 



Service discovery

As well as core networking, libnetwork also provides service
discovery that allows all containers and Swarm services to
locate each other by name. The only requirement is that the
containers be on the same network.

Under the hood, Docker implements a native DNS server and
configures every container to use it for name resolution.

Figure 13.18 shows a container called c1 pinging another
container called c2 by name. The same principle applies to
Swarm service replicas.

Figure 13.18

Let’s step through the process.



Step 1: The c1 container issues a ping c2  command. The
container’s local DNS resolver checks its cache to see if it has
an IP address for c2. All Docker containers have a local DNS
resolver.
Step 2: The local resolver doesn’t have an IP address for c2,
so it initiates a recursive query to the embedded Docker DNS
server. All Docker containers are pre-configured to know
how to send queries to the embedded DNS server.
Step 3: The Docker DNS server maintains name-to-IP
mappings for every container you create with the --name  or
--net-alias  flags. This means it knows the IP address of the
c2 container.
Step 4: The DNS server returns the IP address of the c2
container to the local resolver in the c1 container. If c1 and c2
are on different Docker networks it won’t return the IP
address — name resolution only works for containers on the
same network.
Step 5: The c1 container sends the ping request (ICMP echo
request) to the IP address of c2.

Just to confirm a few points.

Docker will automatically register the name and IP of every
container you create with the --name  or net-alias  flag with
the embedded Docker DNS service. It also automatically



configures every container to use the embedded DNS service to
convert names to IPs. And name resolution (service discovery)
is network scoped, meaning it only works for containers and
services on the same network.

One last point on service discovery and name resolution…

You can use the --dns  flag to start containers and services with
a customized list of DNS servers, and you can use the --dns-
search  flag to add custom search domains for queries against
unqualified names (i.e., when the application doesn’t specify
fully qualified DNS names for services they consume). You’ll
find both of these useful if your applications query names
outside of your Docker environment such as internet services.

Both of these options work by adding entries to the container’s
/etc/resolv.conf  file.

Run the following command to start a new container with the
infamous 8.8.8.8  Google DNS server and nigelpoulton.com
as a search domain for unqualified queries.

$ docker run -it --name custom-dns \ 
  --dns=8.8.8.8 \ 
  --dns-search=nigelpoulton.com \ 
  alpine sh 



Your shell prompt will change to indicate you’re connected to
the container.

Inspect its /etc/resolv.conf  file.

The file’s contents might be slightly different if you connect the
container to a custom network, but the options work the same.

Type exit  to return to your local terminal.

Ingress load balancing

This section only applies to Docker Swarm.

Swarm supports two ways of publishing services to external
clients:

Ingress mode (default)
Host mode

# cat /etc/resolv.conf 
 
  Generated by Docker Engine. 
  This file can be edited; Docker Engine will not make further changes onc
  has been modified. 
 
nameserver 8.8.8.8 
search nigelpoulton.com 



External clients can access ingress mode services via any swarm
node — even nodes not hosting a service replica. However, they
can only access host mode services via nodes running replicas.
Figure 13.19 shows both modes.

Figure 13.19

Ingress mode is the default, meaning any time you create a
service with -p  or --publish , Docker will publish it in ingress
mode. If you want to publish a service in host mode, you’ll need
to use the --publish  flag with the mode=host  option. The
following example publishes a service in host mode and will
only work on a swarm.



$ docker service create -d --name svc1 \ 
  --publish published=5005,target=80,mode=host \ 
  nginx 

A few notes about the command. docker service create  lets
you publish services using either long form syntax or short form
syntax.

The short form looks like -p 5005:80  and you’ve seen it a few
times already. However, you cannot publish a service in host
mode using the short form.

Long form looks like this: --publish
published=5005,target=80,mode=host . It’s a comma-separated
list with no whitespace after the commands, and the options
work as follows:

published=5005  makes the service available to external
clients via port 5005
target=80  makes sure requests hitting the published port
get mapped back to port 80  on service replicas
mode=host  makes sure requests will only reach the service if
they arrive on nodes running a service replica

You’ll almost always use ingress mode.



Behind the scenes, ingress mode uses a layer 4 routing mesh
that Docker calls the service mesh or the swarm-mode service
mesh. Figure 13.20 shows the basic traffic flow when an
external request hits the cluster for a service exposed in ingress
mode.

Figure 13.20

Let’s quickly walk through the diagram.

The command at the top deploys a new Swarm service called
svc1  with one replica, attaches it to the overnet  network and
publishes it on port 5005  on the ingress network. Docker
automatically creates the ingress network when you create the
swarm, and it attaches every node to it. The act of publishing



the service on port 5005  makes it accessible via port 5005  on
every swarm node because every node is connected to the
ingress network. Docker also creates a swarm-wide rule to
route all traffic hitting nodes on port 5005  to port 80  in the
svc1 replicas via the ingress network.

Now let’s track that external request.

1. The external client sends a request to Node 1 on port 5005
2. Node 1 receives the request and knows to forward traffic

arriving on port 5005  to the ingress network
3. The ingress network forwards the request to Node 2 which is

running a replica
4. Node 2 receives the request and passes it to the replica on

port 80

If the service has multiple replicas, swarm is clever enough to
balance requests across them all.

Clean up

If you’ve been following along, you’ll have a lot of containers,
networks, and services that you probably want to clean up.

Run the following command to delete the services you created.



$ docker service rm svc1 

Now, delete the standalone containers you created.

$ docker rm c1 c2 client web mactainer1 -f 

Finally, delete the networks you created.

$ docker network rm localnet macvlan100 

Docker Networking – The Commands

Docker networking has its own docker network  sub-
command, and the main commands include:

docker network ls  lists all the Docker networks available
to the host.
docker network create  is how you create a new Docker
network. You have to give the network a name and you can
use the -d  flag to specify which driver creates it.
docker network inspect  provides detailed configuration
information about Docker networks.
docker network prune  deletes all unused networks on a
Docker host.



docker network rm  Deletes specific networks on a Docker
host or swarm.

You also ran some native Linux commands.

brctl show  prints a list of all kernel bridges on the Docker
host and shows if any containers are connected.
ip link show  prints bridge configuration data. You ran an
ip link show docker0  to see the configuration of the
docker0 bridge on your Docker host.

Chapter Summary

The Container Network Model (CNM) is the design document
for Docker networks and defines the three major constructs —
sandboxes, endpoints, and networks.

Libnetwork is the reference implementation of the CMN and is
an open-source project maintained by the Moby project. Docker
uses it to implement its core networking, including control
plane services such as service discovery.

Drivers extend the capabilities of libnetwork by implementing
specific network topologies, such as bridge and overlay
networks. Docker ships with built-in drivers, but you can also
use third-party drivers.



Single-host bridge networks are the most basic type of Docker
network but are only suitable for local development and very
small applications. They do not scale, and you need to map
containers to host ports if you want to publish services outside
of the network.

Overlay networks are all the rage and are excellent container-
only multi-host networks. We’ll talk about them in-depth in the
next chapter.

The macvlan driver lets you create Docker networks that
connect containers to existing physical networks and VLANs.
They make containers first-class citizens on external networks
by giving them their own MAC and IP addresses. Unfortunately,
you have to run your host NICs in promiscuous mode, meaning
they won’t work in public clouds.



14: Docker overlay networking

Overlay networks are at the center of most cloud-native
microservices apps, and this chapter will get you up to speed on
how they work in Docker.

I’ve divided the chapter into the following sections:

Docker overlay networking – The TLDR
Docker overlay networking history
Building and testing overlay networks
Overlay networks explained

Let’s do some networking magic!

Docker overlay networking – The TLDR

Real-world containers need a reliable and secure way to
communicate without caring which host they’re running on or
which networks those hosts are connected to. This is where
overlay networks come into play — they create flat, secure,
layer 2 networks that span multiple hosts. Containers on
different hosts can connect to the same overlay network and
communicate directly.



Docker offers native overlay networking that is simple to
configure and secure by default.

Behind the scenes, Docker builds overlay networking on top of
libnetwork and the native overlay driver. Libnetwork is the
canonical implementation of the Container Network Model
(CNM), and the overlay driver implements all of the machinery
to build overlay networks.

Docker overlay networking history

In March 2015, Docker, Inc. acquired a container networking
startup called Socket Plane with two goals in mind:

1. Bring overlay networking to Docker
2. Make container networking simple for developers

They accomplished both goals, and overlay networking
continues to be at the heart of container networking in 2024
and the foreseeable future.

However, there’s a lot of complexity hiding behind the simple
Docker commands. Knowing the commands is probably enough
if you’re a casual Docker user. However, if you plan to use
Docker in production, especially if you plan to use Swarm and
Docker networking, then the things we’ll cover will be vital.



Building and testing Docker overlay networks

You’ll need at least two Docker nodes configured in a swarm to
follow along. The examples in the book show the two nodes on
different networks connected by a router, but yours can be on
the same network. You can follow along with two Multipass
VMs on the same laptop or computer, but any Docker
configuration will work as long as the nodes can communicate.
I don’t recommend using Docker Desktop as you only get a
single node and won’t get the full experience.

Figure 14.1 shows the initial lab configuration. Remember, your
nodes can be on the same network, this will just mean your
underlay network is simpler. We’ll explain underlay networks
later.

Figure 14.1



Build a Swarm

If you’re following along, you’ll need a swarm because overlay
networks leverage the swarm’s key-value store and other
security features.

This section builds a two-node swarm with two Docker nodes
called node1 and node2. If you already have a swarm, you can
skip this section.

You’ll need to substitute the IP addresses and names with the
values from your environment. You’ll also need to ensure the
following network ports are open between the two nodes:

2377/tcp  for management plane comms
7946/tcp  and 7946/udp  for control plane comms (SWIM-
based gossip)
4789/udp  for the VXLAN data plane

Run the following command on node1.

$ docker swarm init 
 
Swarm initialized: current node (1ex3...o3px) is now a manager. 

The command output includes a docker swarm join
command. Copy this command and run it node2.



$ docker swarm join \ 
  --token SWMTKN-1-0hz2ec...2vye \ 
  172.31.1.5:2377 
This node joined a swarm as a worker. 

You now have a two-node Swarm with node1 as a manager and
node2 as a worker.

Create a new overlay network

Let’s create a new encrypted overlay network called uber-net.

Run the following command from your manager node (node1).

$ docker network create -d overlay -o encrypted uber-net 
vdu1yly429jvt04hgdm0mjqc6 

That’s it. You’ve created a brand-new encrypted overlay
network. The network spans both nodes in the swarm and
Docker uses TLS to encrypt it (AES in GCM mode). It also rotates
the encryption keys every 12 hours.

If you don’t specify the -o encrypted  flag, Docker will still
encrypt the control plane (management traffic) but won’t
encrypt the data plane (application traffic). This can be
important, as encrypting the data plane can decrease network
performance by approximately 10%.



List the networks on node1.

The new network is at the bottom of the list called uber-net and
is scoped to the entire swarm ( SCOPE = swarm ). This means it
spans every node in the swarm. However, if you list networks
on node2 you won’t see the uber-net network. This is because
Docker only extends overlay networks to worker nodes when
they need them. In our example, Docker will extend the uber-
net network to node2 when it runs a container that needs it.
This lazy approach to network deployment improves scalability
by reducing the amount of network gossip on the swarm.

Attach a container to the overlay network

Now that you have an overlay network let’s connect a container
to it.

$ docker network ls 
NETWORK ID     NAME              DRIVER    SCOPE 
65585dda7500   bridge            bridge    local 
7e368a1105c7   docker_gwbridge   bridge    local 
a38083cdab1c   host              host      local 
4dsqo7jc36ip   ingress           overlay   swarm 
d97e92a23945   none              null      local 
vdu1yly429jv   uber-net          overlay   swarm   <<---- New overlay netw



By default, you can only attach containers that are part of
swarm services to overlay networks. If you want to add
standalone containers, you need to create the overlay with the -
-attachable  flag.

The example will create a swarm service called test with two
replicas on the uber-net network. One replica will be deployed
to node1 and the other to node2, causing Docker to extend the
overlay network to node2.

Run the following commands from node1.

$ docker service create --name test \ 
   --network uber-net \ 
   --replicas 2 \ 
   ubuntu sleep infinity 

Check the status of the service.

The NODE  column shows one replica running on each node.

$ docker service ps test 
ID          NAME    IMAGE           NODE      DESIRED STATE   CURRENT STAT
sm1...1nw   test.1  ubuntu:latest   node1     Running         Running 
tro...kgk   test.2  ubuntu:latest   node2     Running         Running 



Switch over to node2 and run a docker network ls  to verify it
can now see the uber-net network.

Congratulations. You’ve created a new overlay network
spanning two nodes on separate underlay networks and
attached two containers to it. You’ll appreciate the simplicity of
what you’ve done when we reach the theory section and learn
about the outrageous complexity going on behind the scenes!

Test the overlay network

Figure 14.2 shows the current setup with two containers
running on different Docker hosts but connected to the same
overlay.

Figure 14.2



The following steps will walk you through obtaining the
container names and IP addresses and then seeing if they can
ping each other.

Switch back to node1 and run a docker network inspect  to
see the overlay network’s subnet information and any IP
addresses it’s assigned to service replicas.

$ docker network inspect uber-net 
[ 
    { 
        "Name": "uber-net", 
        "Id": "vdu1yly429jvt04hgdm0mjqc6", 
        "Scope": "swarm", 
        "Driver": "overlay", 
        "EnableIPv6": false, 
        "IPAM": { 
            "Driver": "default", 
            "Options": null, 
            "Config": [ 
                { 
                    "Subnet": "10.0.0.0/24",                   <<---- Subn
                    "Gateway": "10.0.0.1"                      <<---- Subn
                } 
        "Containers": { 
                "Name": "test.1.tro80xqwm7k1bsyn3mt1fjkgk",    <<---- Repl
                "IPv4Address": "10.0.0.3/24",                  <<---- Cont
                <Snip> 
            }, 
<Snip> 



I’ve snipped the output and highlighted the subnet info and the
IPs of connected containers. One thing to note is that Docker
only shows you the IP addresses of containers running on the
local node. For example, the output in the book only shows the
IP of the first replica called test.1.tro...kgk . If you run the
same command on node2 , you’ll see the name and IP of the
other replica.

Run the following commands on both nodes to get the local
container names, IDs, and IP addresses of both replicas and
make a note of them.

The ID at the end of the second command ( d7766923a5a7 ) is
the container ID as returned by the docker ps  command.
You’ll need to substitute the value from your environment.

I have the following in my environment :

$ docker ps 
CONTAINER ID   IMAGE           COMMAND           CREATED    STATUS     NAM
d7766923a5a7   ubuntu:latest   "sleep infinity"  2 hrs ago  Up 2 hrs   tes
 
$ docker inspect \ 
  --format='{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}}' d776
10.0.0.3 



replica 1: ID=d7766923a5a7, Name=test.1.tr0...kgk,
IP=10.0.0.3

replica 2: ID=b6c897d1186d, Name=test.2.sm1...1nw,
IP=10.0.0.4

Figure 14.3 shows the configuration so far. Subnet and IP
addresses may be different in your lab.

Figure 14.3

As you can see, a layer 2 overlay network spans both nodes, and
each container is connected to it with its own IP. This means the
container on node1 can ping the container on node2 even
though both nodes are on different underlay networks.

Let’s test it. You’ll need the names and IPs of your containers.



Log on to either of the containers and install the ping  utility.

$ docker exec -it d7766923a5a7 bash 
 
# apt update && apt-get install iputils-ping -y 
<Snip> 
Reading package lists... Done 
Building dependency tree 
Reading state information... Done 
<Snip> 
Setting up iputils-ping (3:20190709-3) ... 
Processing triggers for libc-bin (2.31-0ubuntu9) ... 

Now ping the remote container by IP and then by replica ID.

Congratulations. The containers can ping each other via the
overlay network, and all the traffic is encrypted.

# ping 10.0.0.4 
PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data. 
64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=1.06 ms 
64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=1.07 ms 
64 bytes from 10.0.0.4: icmp_seq=3 ttl=64 time=1.03 ms 
64 bytes from 10.0.0.4: icmp_seq=4 ttl=64 time=1.26 ms 
^C 
 
# ping test.2.sm180xqwm7k1bsyn3mt1fj1nw 
PING test.2.sm180xqwm7k1bsyn3mt1fj1nw (10.0.0.4) 56(84) bytes of data. 
64 bytes from test.2.sm1...1nw.uber-net (10.0.0.4): icmp_seq=1 ttl=64 time
64 bytes from test.2.sm1...1nw.uber-net (10.0.0.4): icmp_seq=2 ttl=64 time
64 bytes from test.2.sm1...1nw.uber-net (10.0.0.4): icmp_seq=3 ttl=64 time
^C 



You can also trace the route of the ping command. This will
report a single hop, proving that the containers are
communicating directly via the overlay network — blissfully
unaware of any underlay networks being traversed.

You’ll need to install traceroute  in the container for this to
work.

So far, you’ve created an overlay network and a swarm service
that connected two containers to it. Swarm scheduled the
containers to two different nodes and you proved they could
ping each other via the overlay network.

Now that you’ve seen how easy it is to build and use secure
overlay networks, let’s find out how Docker builds them behind
the scenes.

Overlay networks explained

# apt install traceroute 
<Snip> 
 
# traceroute 10.0.0.4 
traceroute to 10.0.0.4 (10.0.0.4), 30 hops max, 60 byte packets 
 1  test-svc.2.sm180xqwm7k1bsyn3mt1fj1nw.uber-net (10.0.0.4)  1.110ms  1.0



First and foremost, Docker uses VXLAN tunnels to create virtual
layer 2 overlay networks. So, let’s do a quick VXLAN primer.

VXLAN primer

At the highest level, Docker uses VXLANs to create layer 2
networks on top of existing layer 3 infrastructure. That’s a lot of
jargon that means you can create simple networks on top of
complex networks. The hands-on example in the previous
sections created a new 10.0.0.0/24 layer 2 network that
abstracted a more complex network topology below. See Figure
14.4 and remember that your underlay network configuration
was probably different.

Figure 14.4



Fortunately, VXLAN is an encapsulation technology and,
therefore, transparent to existing routers and network
infrastructure. This means the routers and other infrastructure
in the underlay network see the VXLAN/overlay traffic as
regular IP/UDP packets and handle it without requiring
changes.

To create the overlay, Docker creates a VXLAN tunnel through
the underlay networks, and this tunnel is what allows the
overlay traffic to flow freely without having to interact with the
complexity of the underlay networks.

Terminology: We use the terms underlay networks or
underlay infrastructure to refer to the networks the overlay
tunnels through.

Each end of the VXLAN tunnel is terminated by a VXLAN Tunnel
Endpoint (VTEP), and it’s this VTEP that encapsulates and de-
encapsulates the traffic entering and exiting the tunnel. See
Figure 14.5.



Figure 14.5

The image shows the layer 3 infrastructure as a cloud for two
reasons:

It can be a lot more complex than the two networks and a
single router from the previous diagrams
The VXLAN tunnel abstracts the complexity and makes it
opaque

In reality, the VXLAN tunnel traverses the underlay network.
However, I don’t show this in the diagram to keep the diagram
simple.

Traffic flow example



The hands-on examples from earlier had two hosts connected
via an IP network. You deployed an overlay network across
both hosts, connected two containers to it, and did a ping test.
Let’s explain some of the things that happened behind the
scenes.

Docker created a new sandbox (network namespace) on each
host with a new switch called Br0. It also created a VTEP with
one end connected to the Br0 virtual switch and the other end
connected to the host’s network stack. The end in the host’s
network stack got an IP address on the underlay network that
the host is connected to and was bound to UDP port 4789 .
Finally, the two VTEPs on each host created a VXLAN tunnel as
the backbone for the overlay network.

Figure 14.6 shows the configuration. Remember, the VXLAN
tunnel goes through the networks at the bottom of the diagram;
I’ve just drawn it higher up for readability.



Figure 14.6

At this point, you’ve created the VXLAN overlay, and you’re
ready to connect containers.

Docker now creates a virtual Ethernet adapter (veth) in each
container and connects it to the local Br0 virtual switch. The
final topology looks like Figure 14.7, and although it’s complex,
you should now see how the containers communicate over the
VXLAN overlay despite their hosts being on two separate
networks — the overlay is a virtual network tunneled through
the underlay networks.



Figure 14.7

Now that you know how Docker creates overlay networks, let’s
see how the two containers communicate.

Warning! This section is very technical, and you don’t need
to understand it all for day-to-day operations.

For this example, we’ll call the container on node1 “C1” and the
container on node2 “C2”. We’ll also assume C1 wants to ping C2
like we did in the practical example earlier. Figure 14.8 shows
the full configuration with container names and IPs added.



Figure 14.8

C1 initiates a ping request to 10.0.0.4  — the IP address of C2.

C1 doesn’t have an entry for 10.0.0.4  in its local MAC address
table (ARP cache), so it floods the packet on all interfaces,
including the veth interface connected to the Br0 bridge. The
Br0 bridge knows it can forward traffic for 10.0.0.4  to the
connected VTEP interface and sends a proxy ARP reply to the
container. This results in the veth learning how to forward the
packet by updating its own MAC table to send all future packets
for 10.0.0.4  directly to the local VTEP. The Br0 switch knew
about the C2 container because Docker propagates details of all
new containers to every swarm node via the network’s built-in
gossip protocol.



Next, the veth in the C1 container sends the ping to the VTEP
interface which encapsulates it for transmission through the
VXLAN tunnel. The encapsulation adds a VXLAN header
containing a VXLAN network ID (VNID) that maps traffic from
VLANs to VXLANs and vice versa — each VLAN gets mapped to
its own VNID so that packets can be de-encapsulated on the
receiving end and forwarded to the correct VLAN. This
maintains network isolation.

The encapsulation also wraps the frame in a UDP packet and
adds the IP of the remote VTEP on node2 in the destination IP
field. It also adds the UDP/4789 socket information. This
encapsulation allows the packets to be routed across the
underlay networks without the underlays knowing anything
about VXLAN.

When the packet arrives at node2, the host’s kernel sees it’s
addressed to UDP port 4789  and knows it has a VTEP bound to
this socket. This means it sends the packet to the VTEP, which
reads the VNID, de-encapsulates it, and sends it to its own local
Br0 switch on the VLAN corresponding to the VNID. From there,
it delivers it to the C2 container.

And that, my friends, is how Docker uses VXLAN to build and
operate overlay networks — a whole load of mind-blowing



complexity beautifully hidden behind a single Docker
command.

I’m hoping that’s enough to get you started and help you when
talking to your networking team about the networking aspects
of your Docker infrastructure. On the topic of talking to your
networking team… don’t approach them thinking that you now
know everything about VXLAN. If you do, you’ll probably
embarrass yourself. I’m speaking from experience ;-)

One final thing. Docker also supports layer 3 routing within an
overlay network. For example, you can create a single overlay
network with two subnets, and Docker will handle the routing.
The following command will create a new overlay called prod-
net with two subnets. Docker will automatically create two
virtual switches called Br0 and Br1 inside the sandbox and
handle all the routing.

Clean up

If you followed along, you’ll have created an overlay network
called uber-net and deployed a service called test. You may also
have created a swarm.

$ docker network create --subnet=10.1.1.0/24 --subnet=11.1.1.0/24 -d overl



Run the following command to delete the test service.

$ docker service rm test 

Delete the uber-net network with the following command. You
may have to wait a few seconds while Docker deletes the
service using it.

$ docker network rm uber-net 

If you no longer need the swarm, you can run a docker swarm
leave -f  command on both nodes. You should run it on node2
first.

Docker overlay networking – The commands

docker network create  tells Docker to create a new
network. You use the -d overlay  flag to use the overlay
driver to create an overlay network. You can also pass the -o
encrypted  flag to tell Docker to encrypt network traffic.
However, performance may drop in the region of 10%.
docker network ls  lists all the container networks visible to
a Docker host. Docker hosts running in swarm mode only see
overlay networks if they run containers attached to the



network. This keeps network-related management traffic to a
minimum.
docker network inspect  shows detailed information about
a particular container network. You can find out the scope,
driver, IPv4 and IPv6 info, subnet configuration, IP addresses
of connected containers, VXLAN network ID, encryption
state, and more.
docker network rm  deletes a network.

Chapter Summary

In this chapter, you created a new Docker overlay network and
learned about the technologies Docker uses to build them.



15: Volumes and persistent data

Stateful applications that create and manage data are a big part
of modern cloud-native apps. This chapter explains how Docker
volumes help stateful applications manage their data.

I’ve split the chapter into the following parts:

Volumes and persistent data – The TLDR
Containers without volumes
Containers with volumes
The commands

Volumes and persistent data – The TLDR

There are two main types of data — persistent and non-
persistent.

Persistent data is the stuff you care about and need to keep. It
includes things like customer records, financial data, research
results, audit data, and even some types of logs. Non-persistent
data is the stuff you don’t care about and don’t need to keep.
We call applications that create and manage persistent data
stateful apps, and applications that don’t create or manage
persistent data stateless apps.



Both are important, and Docker has solutions for both.

For stateless apps, Docker creates every container with an area
of non-persistent local storage that’s tied to the container
lifecycle. This storage is suitable for scratch data and temporary
files, but you’ll lose it when you delete the container or the
container terminates.

Docker has volumes for stateful apps that create and manage
important data. Volumes are separate objects that you mount
into containers, and they have their own lifecycles. This means
you don’t lose the volumes or the data on them when you
delete containers. You can even mount volumes into different
containers.

That’s the TLDR. Let’s take a closer look.

Containers without volumes

In the early days of Docker, containers were only good for
stateless applications that didn’t generate important data.
However, despite being stateless, many of these apps still
needed a place to write temporary scratch data. So, as shown in
Figure 15.1, Docker creates containers by stacking read-only
image layers and placing a thin layer of local storage on top. The



same technology allows multiple containers to share the same
read-only image layers.

Figure 15.1 Ephemeral container storage

This thin layer of local storage is integral to the read-write
nature of containers. For example, if an application needs to
update existing files or add new files, it makes the changes in
the local storage layer, and Docker merges them into the view of
the container. However, the local storage is coupled to the
container’s lifecycle, meaning it gets created when you create
the container, and deleted when you delete it. This means it’s
not a good place for data that you need to keep (persist).

Docker keeps the local storage layer on the Docker host’s
filesystem, and you’ll hear it called various names such as the
thin writeable layer, ephemeral storage, read-write storage, and
graphdriver storage. It’s usually located in the following
locations on your Docker hosts:



Linux containers: /var/lib/docker/<storage-driver>/...
Windows containers:
C:\ProgramData\Docker\windowsfilter\...

Even though the local storage layer allows you to update live
containers, you should never do this. Instead, you should treat
containers as immutable objects and never change them once
deployed. For example, if you need to fix or change the
configuration of a live container, you should create and test a
new container with the changes and then replace the live
container with the new one.

To be clear, applications like databases can change the data they
manage. But users and configuration tools should never change
the container’s configuration, such as its network or application
configuration. You should always make changes like these in a
new container and then replace the old container with the new
one.

If your containers don’t create persistent data, this thin writable
layer of local storage will be fine, and you’ll be good to go.
However, if your containers create persistent data, you need to
read the next section.

Containers with volumes



There are three main reasons you should use volumes to handle
persistent data in containers:

Volumes are independent objects that are not tied to the
lifecycle of a container
You can map volumes to specialized external storage systems
Multiple containers on different Docker hosts can use
volumes to access and share the same data

At a high level, you create a volume, then create a container,
and finally mount the volume into the container. When you
mount it into the volume, you mount it into a directory in the
container’s filesystem, and anything you write to that directory
gets stored in the volume. If you delete the container, the
volume and data will still exist. You’ll even be able to mount the
surviving volume into another container.

Figure 15.2 shows a Docker volume outside the container as a
separate object. The volume is mounted into the container’s
filesystem at /data , and anything you write to that directory
will be stored on the volume and exist after you delete the
container.



Figure 15.2 High-level view of volumes and containers

The image also shows that you can map the volume to an
external storage system or a directory on the Docker host.
External storage systems can be cloud services or dedicated
storage appliances, but either way, the volume’s lifecycle is
decoupled from the container. All of the container’s other
directories use the thin writable layer in the local storage area
on the Docker host.

Creating and managing Docker volumes

Volumes are first-class objects in Docker. This means there’s a
docker volume  sub-command, and a volume resource in the
API.

Run the following command to create a new volume called
myvol.



$ docker volume create myvol 
myvol 

By default, Docker creates new volumes with the built-in local
driver. And, as the name of the driver suggests, these volumes
are only available to containers on the same node as the
volume. You can use the -d  flag to specify a different driver,
but you’ll need to install the driver first.

Third-party drivers provide advanced features and access to
external storage systems such as cloud storage services and on-
premises storage systems such as SAN and NAS. Figure 15.3
shows a Docker host connected to an external storage system
via a plugin (driver).

Figure 15.3 Plugging external storage into Docker

https://docs.docker.com/engine/extend/legacy_plugins/#volume-plugins


Once you’ve created the volume, you can see it with the docker
volume ls  command and inspect it with the docker volume
inspect  command.

$ docker volume ls 
DRIVER              VOLUME NAME 
local               myvol 
 
$ docker volume inspect myvol 
[ 
    { 
        "CreatedAt": "2024-05-15T12:23:14Z", 
        "Driver": "local", 
        "Labels": null, 
        "Mountpoint": "/var/lib/docker/volumes/myvol/_data", 
        "Name": "myvol", 
        "Options": null, 
        "Scope": "local" 
    } 
] 

Notice that the Driver  and Scope  fields are both set to local .
This means you created the volume with the local driver, and
it’s only available to containers on this Docker host.
Mountpoint  tells you where the volume exists in the Docker
host’s filesystem.

By default, Docker gives every volume created with the local
driver its own directory on the host under
/var/lib/docker/volumes . This means anyone with access to



the Docker host can bypass the container and access the
volume’s contents directly in the host’s filesystem. You saw this
in the Docker Compose chapter when we copied a file directly
into a volume’s directory on the Docker host, and the file
immediately appeared in the volume inside the container.
However, that’s not a recommended practice.

Now that you’ve created a volume, you can create containers to
use it. However, before you do that, there are two ways to delete
Docker volumes:

docker volume prune

docker volume rm

The docker volume prune --all  command deletes all
volumes not mounted into a container or service replica, so use
it with caution!

The docker volume rm  command is more precise and lets you
specify which volumes to delete.

Neither command will delete a volume in use by a container or
service replica.

The myvol volume you created isn’t used by a container, so you
can delete it with either command. Be careful if you use the



prune  command, as it may also delete other volumes.

Congratulations. You’ve created, inspected, and deleted a
Docker volume, and none of the actions involved a container.
This proves that volumes are decoupled from containers.

At this point, you know all the commands to create, list, inspect,
and delete Docker volumes. You’ve even seen how to deploy
them via Compose files in the Compose and Swarm stacks
chapters. However, you can also deploy volumes via Dockerfiles
by using the VOLUME  instruction. The format is VOLUME
<container-mount-point> . Interestingly, you cannot specify a
host directory when you define volumes in a Dockerfile. This is
because host directories can differ depending on your host OS,
and you could easily break your builds if you specified a
directory that doesn’t exist on a host. As a result, defining a
volume in a Dockerfile requires you to specify host directories
at deployment time.

$ docker volume prune --all 
 
WARNING! This will remove all local volumes not used by at least one conta
Are you sure you want to continue? [y/N] y 
Deleted Volumes: 
myvol 
 
Total reclaimed space: 0B 



Using volumes with containers

Let’s see how to use volumes with containers.

Run the following command to create a new standalone
container called voltainer that mounts a volume called bizvol.

$ docker run -it --name voltainer \ 
    --mount source=bizvol,target=/vol \ 
    alpine 

The command specified the --mount  flag, telling Docker to
mount a volume called bizvol into the container at /vol . The
command completed successfully even though you didn’t have
a volume called bizvol. This raises an important point:

If you specify a volume that already exists, Docker will use it
If you specify a volume that does not exist, Docker will create
it

In our case, bizvol didn’t exist, so Docker created it and
mounted it into the container.

Type Ctrl PQ  to return to your local shell, and then list
volumes to make sure Docker created it.



# <Ctrl-PQ> 
 
$ docker volume ls 
DRIVER              VOLUME NAME 
local               bizvol 

Even though volumes are decoupled from containers, Docker
won’t let you delete this one because it’s in use by the voltainer
container.

Try to delete it.

As expected, you can’t delete it.

The volume is brand new, so it doesn’t have any data. Let’s
exec  onto the container and write some data to it.

$ docker exec -it voltainer sh 
 
# echo "I promise to write a book review on Amazon" > /vol/file1 

The command writes some text to a file called file1 in the /vol
directory where the volume is mounted.

$ docker volume rm bizvol 
Error response from daemon: remove bizvol: volume is in use - [b44d3f82...



Run a few commands to make sure the file and data exist.

# ls -l /vol 
total 4 
-rw-r--r-- 1 root  root   50 May 23 08:49 file1 
 
# cat /vol/file1 
I promise to write a book review on Amazon 

Type exit  to return to your Docker host’s shell, and then
delete the container with the following commands.

# exit 
 
$ docker rm voltainer -f 
voltainer 

Check that Docker deleted the container but kept the volume.

$ docker ps -a 
CONTAINER ID     IMAGE    COMMAND    CREATED       STATUS 
 
$ docker volume ls 
DRIVER              VOLUME NAME 
local               bizvol 

As the volume still exists, you can view its contents in the
Docker host’s local filesystem. Remember, though, that it’s not
recommended to access volumes directly via the host’s



filesystem. We’re just showing you how to do it for
demonstration and educational reasons.

Run the following commands from your Docker host terminal.
They’ll show the contents of the volume’s directory on your
Docker host. The first command will show that the file still
exists, and the second will show its contents.

This step won’t work on Docker Desktop, as Docker Desktop
runs inside a VM. You may have to prefix the commands with
sudo .

$ ls -l /var/lib/docker/volumes/bizvol/_data/ 
total 4 
-rw-r--r-- 1 root root 50 Jan 12 14:25 file1 
 
$ cat /var/lib/docker/volumes/bizvol/_data/file1 
I promise to write a book review on Amazon 

Great, the volume and the data still exist.

Let’s see if you can mount the existing bizvol volume into a
new service or container. Run the following command to create
a new container called newctr that mounts bizvol at /vol .

$ docker run -it \ 
  --name newctr \ 



  --mount source=bizvol,target=/vol \ 
  alpine sh 

Your terminal is now attached to the newctr container. Check to
see if the volume and data are mounted as expected.

# cat /vol/file1 
I promise to write a book review on Amazon 

Congratulations. You’ve created a volume, written some data to
it, deleted the original container, mounted it in a second
container, and verified the data still exists.

Type exit  to leave the container and jump over to Amazon to
leave the book review you promised to write.

If you left a review, thanks! If you didn’t, I’ll cry, but I’ll live ;-)

Sharing storage across cluster nodes

Integrating Docker with external storage systems lets you
present shared storage to multiple nodes so that the containers
running on different nodes can share the same volumes. These
external systems can be cloud storage services or enterprise
storage systems in your on-premises data centers. For example,
you can present a single storage LUN or NFS share (shared



volume) to multiple Docker hosts so that any container on
those hosts can access and share the volume. Figure 15.4 shows
an external storage system presenting a shared volume to two
Docker nodes. The Docker nodes use the appropriate driver for
the external system to make the shared volume available to
either or both containers.

Figure 15.4

Building a shared setup like this requires a lot of things. You
need access to specialized storage systems and knowledge of
how they work. You also need a volume driver/plugin that
works with the external storage system. Finally, you need to
know how your applications read and write to the shared
storage to avoid potential data corruption.

Potential data corruption



Data corruption is a major concern for any shared storage
configuration.

Assume the following example based on Figure 15.4.

The application running in ctr1 writes an update to the shared
volume. However, instead of directly committing the update, it
keeps it in a local cache for faster recall. At this point, the
application in ctr1 thinks it’s written data to the volume.
However, before ctr1 flushes its cache and commits the data to
the volume, the app in ctr2 updates the same data with a
different value and commits it directly to the volume. At this
point, both applications think they’ve updated the data in the
volume, but in reality, only the application in ctr2 has. A few
seconds later, ctr1 flushes the data to the volume and
overwrites the changes made by the application in ctr2.
However, neither of the applications is aware of the changes the
other has made.

This is why you need to design applications that share data to
coordinate updates to shared volumes.

Clean up

If you’ve been following along, you’ll have a container and a
volume.



Run the following command to delete the container.

$ docker rm  

Now, run this command to delete the volume.

$ docker volume rm bizvol 

Volumes and persistent data – The Commands

docker volume create  creates new volumes. By default, it
creates them with the local driver, but you can use the -d
flag to specify a different driver.
docker volume ls  lists all volumes on your Docker host.
docker volume inspect  shows you detailed volume
information. You can use this command to see where a
volume exists in the Docker host’s filesystem.
docker volume prune  deletes all volumes not in use by a
container or service replica. Use with caution!
docker volume rm  deletes specific volumes that are not in
use.

Chapter Summary

There are two main types of data: persistent and non-persistent.



Persistent data is data you need to keep, and non-persistent data
is data you don’t need to keep.

By default, all containers get a layer of writable non-persistent
storage that lives and dies with the container. We sometimes
call this local storage, and it’s ideal for non-persistent data.
However, if your apps create data you need to keep, you should
store the data in a Docker volume.

Docker volumes are first-class objects in the Docker API, and
you manage them independently of containers using their own
docker volume  sub-command. This means deleting containers
doesn’t delete the data in their volumes.

A few third-party plugins exist that provide Docker with access
to specialized external storage systems.

Volumes are the recommended way to work with persistent
data in Docker environments.



16: Docker security

If security is hard, we’re less likely to implement it. Fortunately,
most of the security in Docker is easy and pre-configured with
sensible defaults. This means you get a moderately secure
experience with zero effort. The defaults are not perfect, but
they’re a good starting point.

Docker supports all major Linux security technologies and adds
some of its own. As such, I’ve divided the chapter so we cover
the Linux security technologies first and finish the chapter
covering the Docker technologies:

Docker security – The TLDR
Linux security technologies

Kernel namespaces
Control Groups
Capabilities
Mandatory Access Control
seccomp

Docker security technologies
Swarm security
Docker Scout and vulnerability scanning
Docker Content Trust
Docker secrets



The chapter focuses heavily on Linux, but the sections relating
to Docker security technologies apply to Linux and Windows
containers.

Docker security – The TLDR

Good security is about layers and defence in depth, and more
layers is always better. Fortunately, Docker offers a lot of
security layers, including the ones shown in Figure 16.1.

Figure 16.1

As you can see, Docker leverages the common Linux security
and workload isolation technologies, including namespaces,
control groups, capabilities, mandatory access control (MAC),
and seccomp. It ships with sensible defaults for each one, but
you can customize them to your specific requirements.



Docker also has its own security technologies, including Docker
Scout and Docker Content Trust.

Docker Scout offers class-leading vulnerability scanning that
scans your images, provides detailed reports on known
vulnerabilities, and recommends solutions. Docker Content
Trust (DCT) lets you cryptographically sign and verify images.

If you use Docker Swarm, you’ll also get all of the following that
Docker automatically configures: cryptographic node IDs,
mutual authentication (TLS), automatic CA configuration and
certificate rotation, secure cluster join tokens, an encrypted
cluster store, encrypted networks, and more.

Other security-related technologies also exist, but the important
thing to know is that Docker works with the major Linux
security technologies and adds a few of its own. Sometimes, the
Linux security technologies can be complex and challenging to
work with, but the native Docker ones are always easy.

Kernel Namespaces

Kernel namespaces, usually shortened to namespaces, are the
main technology for building containers.



Let’s quickly compare namespaces and containers with
hypervisors and virtual machines (VM).

Namespaces virtualize operating system constructs such as
process trees and filesystems, whereas hypervisors virtualize
physical resources such as CPUs and disks. In the VM model,
hypervisors create virtual machines by grouping virtual CPUs,
virtual disks, and virtual network cards so that every VM looks,
smells, and feels like a physical machine. In the container
model, namespaces create virtual operating systems
(containers) by grouping virtual process trees, virtual
filesystems, and virtual network interfaces so that every
container looks, smells, and feels exactly like a regular OS.

At a very high level, namespaces provide lightweight isolation
but do not provide a strong security boundary. Compared with
VMs, containers are more efficient, but virtual machines are
more secure.

Don’t worry, though. Platforms like Docker implement
additional security technologies, such as cgroups, capabilities,
and seccomp, to improve container security.

Namespaces are a tried and tested technology that’s existed in
the Linux kernel for a very long time. However, they were



complex and hard to work with until Docker came along and
hid all the complexity behind the simple docker run  command
and a developer-friendly API.

At the time of writing, every Docker container gets its own
instance of the following namespaces:

Process ID (pid)
Network (net)
Filesystem/mount (mnt)
Inter-process Communication (ipc)
User (user)
UTS (uts)

Figure 16.2 shows a single Docker host running two containers.
The host OS has its own collection of namespaces we call the
root namespaces, and each container has its own collection of
equivalent isolated namespaces. Applications in containers
think they’re running on their own host and are unaware of the
root namespaces or namespaces in other containers.



Figure 16.2

Let’s briefly look at how Docker uses each namespace:

Process ID namespace: Docker uses the pid namespace to
give each container its own isolated process tree. This means
every container gets its own PID 1 and cannot see or access
processes running in other containers. Nor can any container
see or access processes running on the host.
Network namespace: Docker uses the net namespace to
provide each container with an isolated network stack. This
stack includes interfaces, IP addresses, port ranges, and
routing tables. For example, every container gets its own
eth0 interface with its own unique IP and range of ports.
Mount namespace: Every container has its own mnt
namespace with its own unique isolated root ( / ) filesystem.
This means every container can have its own /etc , /var ,



/dev , and other important filesystem constructs. Processes
inside a container cannot access the host’s filesystem or
filesystems in other containers.
Inter-process Communication namespace: Docker uses the
ipc namespace for shared memory access within a container.
It also isolates the container from shared memory on the host
and other containers.
User namespace: Docker gives each container its own users
that are only valid inside the container. It also lets you map
those users to different users on the Docker host. For
example, you can map a container’s root user to a non-root
user on the host.
UTS namespace: Docker uses the uts namespace to provide
each container with its own hostname.

Remember, a container is a collection of namespaces that
Docker organizes to look like a regular OS. These namespaces
provide isolation, but they are not a strong enough security
boundary on their own. This is why Docker augments container
security with the technologies we’re about to discuss.

Control Groups

If namespaces are about isolation, control groups (cgroups) are
about limits.



Think of containers as similar to rooms in a hotel. While each
room might appear to be isolated, they actually share a lot of
things such as water supply, electricity supply, air conditioning,
swimming pool, gym, elevators, breakfast bar, and more.
Containers are similar — even though they’re isolated, they
share a lot of common resources such as the host’s CPU, RAM,
network I/O, and disk I/O.

Docker uses cgroups to limit a container’s use of these shared
resources and prevent any container from consuming them all
and causing a denial of service (DoS) attack.

Capabilities

The Linux root user is extremely powerful, and you shouldn’t
use it to run apps and containers.

However, it’s not as simple as running them as non-root users,
as most non-root users are so powerless that they are practically
useless. What’s needed is a way to run apps and containers with
the exact set of permissions they need — nothing more, nothing
less.

This is where capabilities come to the rescue.



Under the hood, the Linux root user is a combination of a long
list of capabilities. Some of these capabilities include:

CAP_CHOWN: lets you change file ownership
CAP_NET_BIND_SERVICE: lets you bind a socket to low-
numbered network ports
CAP_SETUID: lets you elevate the privilege level of a process
CAP_SYS_BOOT: lets you reboot the system.

The list goes on and is long.

Docker leverages capabilities so that you can run containers as
root but strip out all the capabilities you don’t need. For
example, suppose the only capability your container needs is
the ability to bind to low-numbered network ports. In that case,
Docker can start the container as root, drop all root capabilities,
and then add back the CAP_NET_BIND_SERVICE capability.

This is a good example of implementing the principle of least
privilege as you end up with a container that only has the
capabilities it needs. Docker also sets restrictions to prevent
containers from re-adding dropped capabilities.

Docker ships with sensible out-of-the-box capabilities, but you
should configure your own for your production apps and



containers. However, configuring your own requires extensive
effort and testing.

Mandatory Access Control systems

Docker works with major Linux MAC technologies such as
AppArmor and SELinux.

Depending on your Linux distribution, Docker applies default
AppArmor or SELinux profiles to all new containers, and
according to the Docker documentation, the default profiles are
moderately protective while providing wide application
compatibility.

You can tell Docker to start containers without these policies,
and you can configure your own. However, as with capabilities,
configuring your own policies is very powerful but requires a
lot of effort and testing.

seccomp

Docker uses seccomp to limit which syscalls a container can
make to the host’s kernel.

Syscalls are how applications ask the Linux kernel to perform
tasks. At the time of writing, Linux has over 300 syscalls and the
default Docker profile disables approximately 40-50.



As per the Docker security philosophy, all new containers get a
default seccomp profile configured with sensible defaults
designed to provide moderate security without impacting
application compatibility.

As always, you can customize your own seccomp profiles or tell
Docker to start containers without one. Unfortunately, the
Linux syscall table is long, and configuring custom seccomp
policies may be prohibitively complex for some users.

Final thoughts on the Linux security technologies

Docker supports most of the important Linux security
technologies and ships with sensible defaults that add security
without being too restrictive. Figure 16.3 shows how Docker
uses them to build a defence in depth security posture with
multiple layers.



Figure 16.3 - Linux security defense in depth

Some of these technologies require knowledge of the Linux
kernel and can be complex to customize. Fortunately, many
platforms, including Docker, ship with defaults that are a good
place to start.

Docker security technologies

Let’s switch our focus to some of the security technologies
Docker offers.

Swarm security

Docker Swarm lets you cluster multiple Docker hosts and
manage applications declaratively. Every Swarm comprises



manager nodes and worker nodes that can be Linux or
Windows. Managers host the control plane and are responsible
for configuring the cluster and dispatching work tasks. Workers
run application containers.

Fortunately, swarm mode includes many security features that
Docker automatically configures with sensible defaults. These
include:

Cryptographic node IDs
TLS for mutual authentication
Secure join tokens
CA configuration with automatic certificate rotation
Encrypted cluster store
Encrypted networks

Let’s walk through building a secure swarm and configuring
some of the security aspects.

If you’re following along, you’ll need three Docker hosts that
can ping each other by name. The examples use three hosts
called mgr1, mgr2, and wrk1.

Configure a secure Swarm



Run the following command from the node you want to be the
first manager. We’ll run the example from mgr1.

$ docker swarm init 
 
Swarm initialized: current node (7xam...662z) is now a manager. 

That’s it! You’ve configured a secure swarm with a
cryptographic cluster ID, an encrypted cluster store, a certificate
authority (CA) with a 90-day certificate rotation policy, a set of
secure join tokens to use when adding new managers and
workers, and configured the current manager with a client
certificate for mutual TLS — all with a single command!

The CA is for internal Swarm security, and you should be careful
using it for anything else.

Figure 16.4 shows the current swarm configuration. Some of
the details may be different in your lab.



Figure 16.4

Let’s join mgr2 as an additional manager.

Joining new managers is a two-step process:

Extract the secure join token
Execute a docker swarm join  command with the join token
on the node you’re adding

Run the following command from mgr1 to extract the manager
join token.

$ docker swarm join-token manager 
To add a manager to this swarm, run the following command: 
 
    docker swarm join --token \ 
    SWMTKN-1-1dmtwu...r17stb-2axi5...8p7glz \ 
    172.31.5.251:2377 

The output gives you the full command and join token to run
on mgr2. The join token and IP address will be different in your
lab.

The format of the join command is:



docker swarm join --token <manager-join-token> <ip-

of-existing-manager>:<swarm-port>

The format of the token is:

SWMTKN-1-<hash-of-cluster-certificate>-<manager-

join-token>

Copy the command and run it on mgr2:

List the nodes in your swarm.

$ docker node ls 
ID                HOSTNAME   STATUS    AVAILABILITY    MANAGER STATUS 
7xamk...ge662z    mgr1       Ready     Active          Leader 
i0ue4...zcjm7f *  mgr2       Ready     Active          Reachable 

You now have a two-node swarm with mgr1 and mgr2 as
managers. Both have access to the cluster store and are
configured with client certificates for mutual TLS.

In the real world, you’ll always run three or five managers for
high availability.

$ docker swarm join --token SWMTKN-1-1dmtwu...r17stb-2axi5...8p7glz 172.31
 
This node joined a swarm as a manager. 



Figure 16.5 shows the updated swarm with both managers.

Figure 16.5

Adding worker nodes is a similar two-step process — extract the
join token and run the command on the node.

Run the following command on either of the managers to
expose the worker join command and token.

$ docker swarm join-token worker 
 
To add a worker to this swarm, run the following command: 
 
    docker swarm join --token \ 
    SWMTKN-1-1dmtw...17stb-ehp8g...w738q \ 
    172.31.5.251:2377 

Copy the command and run it on wrk1:



Run another docker node ls  from either of your managers.

Your swarm has two managers and a worker. The managers are
configured for high availability (HA) and the cluster store is
replicated to both. The worker node is part of the swarm but
cannot access the cluster store. Figure 16.6 shows the final
configuration.

$ docker swarm join --token SWMTKN-1-1dmtw...17stb-ehp8g...w738q 172.31.5.
 
This node joined a swarm as a worker. 

$ docker node ls 
ID                 HOSTNAME     STATUS     AVAILABILITY   MANAGER STATUS 
7xamk...ge662z *   mgr1         Ready      Active         Leader 
ailrd...ofzv1u     wrk1         Ready      Active 
i0ue4...zcjm7f     mgr2         Ready      Active         Reachable 



Figure 16.6

Now that you’ve built a secure Swarm, let’s examine some of
the security aspects.

Swarm join tokens

The only requirement for joining managers and workers is
possession of the secure join token. This means you should
keep them safe and never post them on public repos or even
internal repos that are not restricted.

Every swarm maintains two distinct join tokens:

Manager token
Worker token

Every join token has four distinct fields separated by dashes
( - ):

PREFIX - VERSION - SWARM ID - TOKEN

The prefix is always SWMTKN  and allows you to pattern-match
against it to prevent people from accidentally posting it publicly.
The VERSION  field indicates the version of the swarm. The



Swarm ID  field is a hash of the swarm’s certificate. The TOKEN
field is the worker or manager token.

As you can see in the following table, the manager and worker
tokens for any given swarm are identical except for the final
TOKEN  field.

If you suspect either of your join tokens are compromised, you
can revoke them and issue new ones with a single command.
The following example revokes the existing manager token and
issues a new one.

$ docker swarm join-token --rotate manager 
 
Successfully rotated manager join token. 

Role Prefix Version Swarm ID Token

Manager SWMTKN 1
1dmtwusdc…
r17stb

2axi53

Worker SWMTKN 1
1dmtwusdc…
r17stb

ehp8g



Existing managers are unaffected, but you can only add new
ones with the new token.

As expected, the last field is the only difference between the old
and new tokens.

Docker keeps a copy of join tokens in the encrypted cluster
store.

TLS and mutual authentication

Docker issues every manager and worker with a client
certificate that they use for mutual authentication. It identifies
the node, the swarm it’s a member of, and whether it’s a
manager or worker.

You can inspect a node’s client certificate on Linux with the
following command.

$ sudo openssl x509 \ 
  -in /var/lib/docker/swarm/certificates/swarm-node.crt \ 
  -text 
 
Certificate: 
    Data: 
        Version: 3 (0x2) 
        Serial Number: 
            7c:ec:1c:8f:f0:97:86:a9:1e:2f:4b:a9:0e:7f:ae:6b:7b:b7:e3:d3 
        Signature Algorithm: ecdsa-with-SHA256 
        Issuer: CN = swarm-ca 



As shown in Figure 16.7, the Subject  field uses the standard O ,
OU , and CN  fields to specify the Swarm ID, the node’s role, and
the node ID:

The Organization (O) field stores the Swarm ID
The Organizational Unit (OU) field stores the node’s role in
the swarm
The Canonical Name (CN) field stores the node’s crypto ID.

You can also see the certificate rotation period in the Validity
section.

        Validity 
            Not Before: May 23 08:23:00 2024 GMT 
            Not After : Aug 21 09:23:00 2024 GMT 
        Subject: O = tcz3w1t7yu0s4wacovn1rtgp4, OU = swarm-manager,  
            CN = 2gxz2h1f0rnmc3atm35qcd1zw 
        Subject Public Key Info: 
<SNIP> 



Figure 16.7

You can match these values to the corresponding values from a
docker info  command.

Swarm CA configuration

$ docker info 
<SNIP> 
 Swarm: active 
  NodeID: 2gxz2h1f0rnmc3atm35qcd1zw     <<---- Relates to the CN field 
  Is Manager: true                      <<---- Relates to the OU field 
  ClusterID: tcz3w1t7yu0s4wacovn1rtgp4  <<---- Relates to the O field 
 <SNIP> 
  CA Configuration: 
  Expiry Duration: 3 months             <<---- Relates to the validity blo
  Force Rotate: 0 
  Root Rotation In Progress: false 
 <SNIP> 



You can use the docker swarm update  command to configure
the certificate rotation period. The following example changes it
to 30 days.

$ docker swarm update --cert-expiry 720h 

Swarm allows nodes to renew certificates early so that all nodes
don’t update at exactly the same time.

You can configure a new swarm to use an external CA by
passing the --external-ca  flag to docker swarm init
command, and you can use the docker swarm ca  command to
manage other CA-related settings.

$ docker swarm ca --help 
 
Usage:  docker swarm ca [OPTIONS] 
 
Display and rotate the root CA 
 
Options: 
      --ca-cert pem-file          Path to the PEM-formatted root CA certif
                                  for the new cluster 
      --ca-key pem-file           Path to the PEM-formatted root CA key to
                                  new cluster 
      --cert-expiry duration      Validity period for node certificates (n
                                  (default 2160h0m0s) 
  -d, --detach                    Exit immediately instead of waiting for 
                                  to converge 
      --external-ca external-ca   Specifications of one or more certificat



The cluster store

The cluster store is where Docker keeps the configuration and
state of a swarm. It’s also critical to other Docker technologies,
such as overlay networks and secrets. This is why overlay
networks and many other advanced security features only work
in swarm mode.

The cluster store is based on the popular etcd distributed
database and is automatically encrypted and replicated to all
managers.

Docker handles day-to-day maintenance, but you should
implement strong backup and recovery procedures for
production clusters.

That’s enough about swarm mode security for now. Let’s look at
some Docker security technologies that don’t require swarm
mode.

Docker Scout and vulnerability scanning

  -q, --quiet                     Suppress progress output 
      --rotate                    Rotate the swarm CA - if no certificate 
                                  provided, new ones will be generated 



Every container runs multiple software packages that are
susceptible to bugs and vulnerabilities that malicious actors can
exploit.

Image scanning analyzes your images and produces a detailed
list of all the software packages it uses. We call this list a
software bill of materials (SBOM), and the image scanning
system compares the SBOM against databases of known
vulnerabilities and provides a report of vulnerabilities in your
software. Most vulnerability scanners will rank the
vulnerabilities and provide advice on fixes.

Vulnerability scanning is now an integral part of most software
supply chains.

Docker Scout is Docker’s native scanning platform and works
with Docker Hub, Docker Desktop, the Docker CLI, and even
has its own Docker Scout Dashboard. However, it’s a
subscription-based service.

Other scanning platforms are available, but most of these also
require some form of subscription.

If you’re using Docker Desktop, you can run the following
command to see an example of Docker Scout.



The output shows zero critical vulnerabilities (0C), four high
(4H), two medium (2M), and zero low (0L).

You can also run a docker scout cves  command to get more
detailed information, including remediation advice.

$ docker scout cves nigelpoulton/tu-demo:latest 
 
    ✓ SBOM of image already cached, 66 packages indexed 
    ✗ Detected 6 vulnerable packages with a total of 8 vulnerabilities 
## Overview 
                    │        Analyzed Image 
────────────────────┼──────────────────────────────── 
  Target            │  nigelpoulton/tu-demo:latest 
    digest          │  b4210d0aa52f 
    platform        │ linux/arm64 
    vulnerabilities │    0C     4H     2M     0L 
    size            │ 26 MB 
    packages        │ 66 
 

$ docker scout quickview nigelpoulton/tu-demo:latest 
 
    ✓ Provenance obtained from attestation 
    ✓ Pulled 
    ✓ Image stored for indexing 
    ✓ Indexed 66 packages 
 
  Target             │  nigelpoulton/tu-demo:latest  │    0C     4H     2M
    digest           │  b4210d0aa52f                 │ 
  Base image         │  python:3-alpine              │    0C     2H     1M
  Updated base image │  python:3.11-alpine           │    0C     1H     1M
                     │                               │ 



## Packages and Vulnerabilities 
   0C     1H     1M     0L  expat 2.5.0-r2 
pkg:apk/alpine/expat@2.5.0-r2?os_name=alpine&os_version=3.19 
 
    ✗ HIGH CVE-2023-52425 
      https://scout.docker.com/v/CVE-2023-52425 
      Affected range : <2.6.0-r0 
      Fixed version  : 2.6.0-r0 
 
   ✗ MEDIUM CVE-2023-52426 
      https://scout.docker.com/v/CVE-2023-52426 
      Affected range : <2.6.0-r0 
      Fixed version  : 2.6.0-r0 
<Snip> 

I’ve snipped the output, so it only shows some of the
vulnerabilities. However, even from the snipped output in the
book, you can see:

Scout has scanned 66 packages and detected several
vulnerabilities
We’re using version 2.5.0-r2  of the expat package which
has one high (1H) and one medium (1M) vulnerability
The high vulnerability is listed as CVE-2023-52425  and the
medium as CVE-2023-52426
The report includes links to Scout reports containing more
info on each vulnerability
Scout recommends updating to expat version 2.6.0-r0
which contains fixes for both



Figure 16.8 shows what it looks like in in Docker Desktop, and
you get similar integrations and views in Docker Hub.

Figure 16.8 - Docker Scout integration with Docker Desktop

If you subscribe to Docker Scout, you can use the
scout.docker.com  portal to configure policies and integrations
with Docker Hub and other registries.

As good as vulnerability scanning is, it only scans images and
doesn’t detect security problems with networks, nodes, or
orchestrators. Also, not all image scanners are equal. For
example, the best ones perform deep binary-level scans,



whereas others may just look at package names and do not
inspect content closely.

In summary, scanning tools are great for inspecting your images
and detecting known vulnerabilities. Beware though, with great
knowledge comes great responsibility — once you’re aware of
vulnerabilities, you’re responsible for mitigating or fixing them.

Signing and verifying images with Docker Content
Trust

Docker Content Trust (DCT) makes it simple for you to verify the
integrity and publisher of images and is especially important
when you’re pulling images over untrusted networks such as
the internet.

At a high level, DCT lets you sign your images when you push
them to registries like Docker Hub. It also lets you verify the
images you pull and run as containers.

Figure 16.9 shows the high-level process.



Figure 16.9 - Docker Content Trust image signing and verification

You can also use DCT to provide context, such as whether or not
a developer has signed an image for use in a particular
environment such as prod or dev, or whether an image has
been superseded by a newer version and is therefore stale.

The following steps walk you through configuring Docker
Content Trust, signing and pushing an image, and then pulling
the signed image.

If you plan on following along, you’ll need a cryptographic key
pair. If you don’t already have one, you can run the following
docker trust  command to generate one. The command
generates a new key pair called nigel and loads it to the local
trust store ready for use. It will prompt you to enter a
passphrase; don’t forget it :-)



If you already have a key pair, you can import and load it with
docker trust key load key.pem --name nigel .

The next step is associating your key pair with the image
repository to which you’ll push signed images. This example
associates the nigel.pub  key with the nigelpoulton/ddd-
trust  repo on Docker Hub. Your key file and repo will be
different, and the repository doesn’t have to exist before you
run the command.

$ docker trust signer add --key nigel.pub nigel nigelpoulton/ddd-trust 
Adding signer "nigel" to nigelpoulton/dct... 
Initializing signed repository for nigelpoulton/dct... 
Enter passphrase for root key with ID aee3314:  
Enter passphrase for new repository key with ID 1a18dd1:  
Repeat passphrase for new repository key with ID 1a18dd1:  
Successfully initialized "nigelpoulton/dct" 
Successfully added signer: nigel to nigelpoulton/dct 

Now that you’ve loaded the key pair and associated it with a
repository, the final step is to sign an image and push it to the
repo.

$ docker trust key generate nigel 
Generating key for nigel... 
Enter passphrase for new nigel key with ID 1f78609:  
Repeat passphrase for new nigel key with ID 1f78609:  
Successfully generated and loaded private key.... key available: /Users/ni



The following command signs a local image called
nigelpoulton/ddd-trust:signed  and pushes it to Docker Hub.
Your image will have a different name and you’ll push it to a
different repo.

The push operation creates the repo on Docker Hub and then
signs and pushes the image. You can view the repo on Docker
Hub, and you can run the following command to inspect its
signing data.

$ docker trust inspect nigelpoulton/ddd-trust:signed --pretty 
 
Signatures for nigelpoulton/ddd-trust:signed 
  SIGNED TAG   DIGEST                               SIGNERS 
  signed       30e6d35703c578ee...4fcbbcbb0f281     nigel 
 

$ docker trust sign nigelpoulton/ddd-trust:signed 
Signing and pushing trust data for local image nigelpoulton/ddd-trust:sign
The push refers to repository [docker.io/nigelpoulton/ddd-trust] 
6495b414566f: Mounted from nigelpoulton/ddd-book 
798676f7ef8b: Mounted from nigelpoulton/ddd-book 
bca4290a9639: Mounted from nigelpoulton/ddd-book 
28ad2149d870: Mounted from nigelpoulton/ddd-book 
4f4fb700ef54: Mounted from nigelpoulton/ddd-book 
5e1fc7f5df34: Mounted from nigelpoulton/ddd-book 
signed: digest: sha256:b65f9a1aa4e670bbafd0fbb91281ea95f9cdc5728aa546579e2
Signing and pushing trust metadata 
Enter passphrase for nigel key with ID 92330ea: 
Successfully signed docker.io/nigelpoulton/ddd-trust:signed 



List of signers and their keys for nigelpoulton/ddd-trust:signed 
  SIGNER    KEYS 
  nigel     4d6f1bf55702 
 
Administrative keys for nigelpoulton/ddd-trust:signed 
  Repository Key: 5e72e54afafb8444f...6b2744b32010ad22 
  Root Key: 40418fc47544ca630...69a2cb89028c22092 

You can export the DOCKER_CONTENT_TRUST  variable with a
value of 1  to force a Docker host to sign and verify all images.

$ export DOCKER_CONTENT_TRUST=1 

Once enabled, you won’t be able to pull and work with
unsigned images.

Test it by trying to pull an unsigned image.

You can no longer pull images without trust data!

Delete the local copy of the image you just signed and pushed so
that you can try pulling it from Docker Hub. Your image name
will be different.

$ docker pull nigelpoulton/ddd-book:web0.2 
Error: remote trust data does not exist for docker.io/nigelpoulton/ddd-boo
does not have trust data for docker.io/nigelpoulton/ddd-book 



$ docker rmi nigelpoulton/ddd-trust:signed 
Untagged: nigelpoulton/ddd-trust:signed@sha256... 
<Snip> 

Now, try pulling the image.

The pull worked because the image has valid trust data.

In summary, Docker Content Trust is an important technology
that helps you verify the integrity of the images you pull and
run. It’s simple to configure in its basic form, but more
advanced features, such as context, can be more complex.

Docker Secrets

Most applications leverage sensitive data such as passwords,
certificates, and SSH keys. Fortunately, Docker lets you wrap
them inside secrets to keep them secure.

$ docker pull nigelpoulton/ddd-trust:signed 
Pull (1 of 1): nigelpoulton/ddd-trust:signed@sha256:30e6... 
docker.io/nigelpoulton/ddd-trust@sha256:30e6... Pulling from nigelpoulton/
08409d417260: Pull complete 
Digest: sha256:30e6d35703c578ee703230b9dc87ada2ba958c1928615ac8a674fcbbcbb
Status: Downloaded newer image for nigelpoulton/ddd-trust@sha256:30e6... 
Tagging nigelpoulton/ddd-trust@sha256:30e6d... as nigelpoulton/ddd-trust:s
docker.io/nigelpoulton/ddd-trust:signed 



Note: Secrets only work in swarm mode as they leverage the
cluster store.

Behind the scenes, Docker encrypts secrets when they’re at rest
in the cluster store and while they’re in flight on the network. It
also uses in-memory filesystems to mount secrets into containers
and operates a least-privilege model, where secrets are only
available to services that have been explicitly granted access.
There’s even a docker secret  command.

Figure 16.10 shows the high-level workflow of creating a secret
and deploying it to service replicas:

Figure 16.10 - Secret workflow



Let’s go through the five steps in the diagram. I’ve used a key
symbol to show the secret, and it’s only available to the dark
containers.

1. You create the secret
2. Docker stores it in the encrypted cluster store
3. You create a service (the dark containers) and grant it access

to the secret
4. Docker encrypts the secret when sending it over the network

to service replicas
5. Docker mounts the secret into service replicas as an

unencrypted file in an in-memory filesystem

The light-colored containers are part of a different service and
cannot access the secret.

As soon as replicas using the secret terminate, Docker destroys
the in-memory filesystem and flushes the secret from the node.

Docker mounts secrets in their unencrypted form so that
applications can use them without needing keys to decrypt
them.

You can create and manage secrets with the docker secret
command and attach them to services by passing the --secret
flag to the docker service create  command.



Clean up

If you’ve followed along, you’ve created a swarm, added a
signer, created a new repo on Docker Hub, and exported an
environment variable to sign and verify images automatically.

Run the following command to disable Docker Content Trust.
You’ll need to run it on every node where you enabled Docker
Content Trust.

$ unset DOCKER_CONTENT_TRUST 

Remove the signer from the repository you created. Your signer
and repository will have different names.

$ docker trust signer remove nigel nigelpoulton/ddd-trust 
Removing signer "nigel" from nigelpoulton/ddd-trust... 
all signed tags are currently revoked, use docker trust sign to fix 

You may also want to delete the repositories you created on
Docker Hub and delete the local key files on your system
(usually a .pub file in your home directory)

Delete the swarm by running the following command on all
swarm nodes. You should run it on the swarm managers last.



$ docker swarm leave -f 

Chapter Summary

You can configure Docker to be extremely secure. It supports all
of the major Linux security technologies such as kernel
namespaces, cgroups, capabilities, MAC, and seccomp. It ships
with sensible defaults for all of these, but you can customize
and even disable them.

In addition to the Linux security technologies, Docker includes
an extensive set of its own security technologies. Swarms are
built on TLS and are secure out of the box. Docker Scout
performs binary-level image scans and provides detailed
reports of known vulnerabilities and suggested fixes. Docker
Content Trust lets you sign and verify images, and Docker
secrets allow you to share sensitive data with swarm services.



What next

Thank you so much for reading my book. You’re on your way to
mastering Docker and containers, and you’ve worked with a
multi-container AI chatbot app.

Get involved with the community

There’s a vibrant cloud-native community full of helpful people.
Get involved with Docker groups and chats on the internet, and
look up your local Docker or cloud-native meetup (search for
“Docker meetup near me”).

Kubernetes

Now that you understand Docker, a great next step is
Kubernetes. It’s a lot like Swarm but has a larger scope and a
more active community.

If you liked this book, you’ll love my Kubernetes books.



Feedback and reviews

Books live and die by Amazon reviews and stars.

I live and breathe this book, ensuring you get the most up-to-
date content that’s easy to read and understand. So, please take
a moment to leave a kind review on Amazon or Goodreads.

Also, ping me at ddd@nigelpoulton.com  if you want to suggest
content or fixes for future editions.

Connect with me

Finally, thanks for reading my book. Feel free to connect with
me on any of the usual platforms to discuss Docker, Kubernetes,
Wasm, AI, and other technologies.



• LinkedIn: Nigel Poulton

• Web: nigelpoulton.com

• BlueSky: @nigelpoulton

• X: @nigelpoulton

• Email: ddd@nigelpoulton.com

https://linkedin.com/in/nigelpoulton
https://nigelpoulton.com/
https://bsky.app/profile/nigelpoulton.bsky.social
https://twitter.com/nigelpoulton


Terminology

This glossary defines some of the most common Docker and
container-related terms used in the book.

If you think I’ve missed anything important, ping me at
ddd@nigelpoulton.com.



Term Definition (according to Nigel)

API

Application Programming Interface.
In the case of Docker, all resources
are defined in the Docker API, which
is RESTful and exposed via the
Docker Daemon.

   

Base image

The first layer of all container
images. Created by the Dockerfile
FROM  instruction and usually
contains a minimal set of OS
constructs required by an
application.

   

Build

The process of building a new
container image. Docker builds
images by stepping through a set of
instructions defined in a Dockerfile.



Term Definition (according to Nigel)

   

Build Cloud

A subscription service that performs
fast and efficient image builds in
Docker’s cloud infrastructure. It
allows you to share a common build-
cache among teams for very fast
builds.

   

BuildKit

Docker’s build engine that
implements advanced build features
such as advanced caching, multi-
stage builds, and multi-architecture
builds.

   



Term Definition (according to Nigel)

Buildx

Docker’s latest and greatest build
client that supports all the latest
features of BuildKit, such as multi-
stage builds and multi-architecture
images. Buildx has been Docker’s
default build client since Docker
Engine v23.0 and Docker Desktop
v4.19.

   

Capability

Linux kernel technology used by
Docker to create user accounts with
the precise set of system access they
need.

   



Term Definition (according to Nigel)

Chatbot

A computer program that can
participate in text-based human
conversations and often
indistinguishable from a human.

   

Cloud native

A loaded term that means different
things to different people. Cloud
native is a way of designing, building,
and working with modern
applications and infrastructure. I
consider an application to be cloud
native if it can self-heal, scale on-
demand, perform rolling updates,
and versioned rollbacks.

   



Term Definition (according to Nigel)

Cluster store

Docker Swarm’s distributed database
that holds the state of the cluster and
apps. Based on the etcd distributed
database, it is automatically
encrypted and automatically
distributed across all swarm
managers for high availability.

   

Compose

An open specification for defining,
deploying, and managing multi-
container microservices apps.
Docker implements the Compose
spec and provides the docker
compose  command to make it easy to
work with Compose apps.

   



Term Definition (according to Nigel)

Container

A container is a collection of kernel
namespaces organized to look, smell,
and feel like a regular operating
system. Each container runs a single
application, and containers are
smaller, faster, and more portable
than virtual machines. We
sometimes call them Docker
containers or OCI containers

   

Container
Network Model

Pluggable interface enabling
different network topologies and
architectures. Third parties provide
CNM plugins for overlay networks
and BGP networks, as well as various
implementations of each.

   



Term Definition (according to Nigel)

Container
runtime

Software running on every Docker
node responsible for pulling
container images, starting
containers, stopping containers, and
other low-level container operations.
Docker uses two runtimes that work
together: containerd is Docker’s
high-level runtime that manages
lifecycle events such as starting and
stopping containers, whereas runc is
Docker’s low-level runtime that
interfaces with kernel constructs
such as namespaces and cgroups.

   

containerd

Industry-standard container runtime
used by Docker and most Kubernetes
clusters. Donated to the CNCF by
Docker, Inc. Pronounced “container
dee”.



Term Definition (according to Nigel)

   

Containerize
The process of packaging an
application and all dependencies into
a container image.

   

Control Groups
(cgroups)

Linux kernel feature that Docker
uses to limit the amount of host CPU,
RAM, disk, and network resources a
container uses.

   

Desired state

How your cluster and applications
should be. For example, the desired
state of an application microservice
might be five replicas of xyz
container listening on port 8080/tcp.
Vital to reconciliation.



Term Definition (according to Nigel)

   

Docker

Platform that makes it easy to work
with containerized apps. It allows
you to build images, as well as run
and manage standalone containers
and multi-container apps.

   

Docker Debug

Docker CLI plugin that lets you easily
debug slim images and containers
that don’t ship with any debugging
tools.

   



Term Definition (according to Nigel)

Docker
Desktop

Desktop application for Linux, Mac,
and Windows that makes working
with Docker easy. It has a slick UI and
many advanced features like image
management, vulnerability scanning,
and Wasm support.

   

Docker Hub

High-performance OCI-compliant
image registry. Docker Hub has over
57PB of storage and handles an
average of 30K requests per second.

   

Docker, Inc.

US-based technology company
making it easy for developers to
build, ship, and run containerized
applications. The company behind
the Docker platform.



Term Definition (according to Nigel)

   

Docker init
A new Docker CLI plugin that creates
high-fidelity Dockerfiles and makes it
easy to scaffold Compose apps.

   

Docker Scout

Docker’s native vulnerability
scanning service. Scout is a
subscription service that integrates
with the Docker CLI, Docker Desktop,
Docker Hub, and other image
registries.

   

Dockerfile
Plain text file with instructions telling
Docker how to build an application
into a container image.



Term Definition (according to Nigel)

   

etcd
The open-source distributed database
used by Docker Swarm.

   

Image

Archive containing application code,
all dependencies, and the metadata
required to start a single application
as a container. We sometimes call
them OCI images, container images,
or Docker images.

   

Ingress
network

Hidden network on all Docker
Swarm clusters used to publish
services to external clients.

   



Term Definition (according to Nigel)

Kernel
namespace

Feature of the Linux kernel used by
Docker to isolate containers from
processes running on the host and in
other containers.

   

Large
Language
Model (LLM)

An AI application that can participate
in human conversations and create
human-like answers and ideas. The
book’s AI chatbot app uses an LLM
that is trained as a coding assistant
that can help answer coding
questions and provide coding
samples.

   



Term Definition (according to Nigel)

Layer

Image layers contain modifications to
the base image or the layer below
them. Docker builds images by
stacking layers, each containing
changes to the layer below it. A
simple example is a base layer that
has basic OS constructs, followed by
a layer with the application. The two
combined layers create the image
with the OS and app.

   

libcontainer

A Go library that uses namespaces,
cgroups, and capabilities to build
containers. Docker uses libcontainer
via the runc low-level runtime that is
a CLI wrapper around libcontainer.

   



Term Definition (according to Nigel)

libnetwork
The Go library used by Docker to
create and manage container
networks.

   

Microservices

Design pattern for modern
applications. Individual application
features are developed as their own
small applications
(microservices/containers) and
communicate via APIs. They work
together to form a useful application.

   



Term Definition (according to Nigel)

Multi-
architecture
builds
(sometimes
called multi-
platform
builds)

Allows you to build images for
multiple architectures and platforms
with a single docker build
command. For example, you can run
a single docker build  command on
an AMD-based Windows system to
build an AMD image and an ARM
image.

   



Term Definition (according to Nigel)

Multi-stage
build

Allows you to create very small
images (slim images). You build your
images in stages and only carry
forward the necessary artifacts for
each next stage. Each build stage is
represented by its own FROM
instruction in your Dockerfile, and
later build stages use the COPY --
from  instruction to use artifacts from
previous stages and leave everything
else behind.

   

Observed state

Also known as current state or actual
state. The most up-to-date view of the
cluster and running applications.
Docker Swarm is always working to
make observed state match desired
state.



Term Definition (according to Nigel)

   

Ollama

Open-source runtime for running
LLMs locally. A bit like Docker for
LLMs — Ollama can pull and push
LLMs and run them locally on your
computer.

   

Open
Container
Initiative (OCI)

Lightweight governance body
responsible for creating and
maintaining standards for low-level
container technologies such as
images, runtimes, and registries.
Docker creates OCI-compliant
images, implements an OCI-
compliant runtime, and Docker Hub
is an OCI-compliant registry.

   



Term Definition (according to Nigel)

Orchestrator

Software that deploys and manages
apps. Docker Swarm and Kubernetes
are examples of orchestrators that
manage microservices apps, keep
them healthy, scale them up and
down, and more…

   

Overlay
network

A large flat layer-2 network that
spans multiple swarm nodes. All
containers on the same overlay
network can communicate with each
other even if they’re on different
Docker hosts that are on different
networks. The built-in overlay driver
creates overlay networks using
advanced VXLAN technologies. They
are only supported by Docker
Swarm.



Term Definition (according to Nigel)

   

Push Upload an image to a registry.

   

Pull Download an image from a registry.

   

Reconciliation

The process of watching the state of
an application and ensuring
observed state matches desired state.
Docker Swarm runs reconciliation
loops, ensuring applications run how
you want them to.

   



Term Definition (according to Nigel)

Registry

Central place for storing and
retrieving images. We sometimes call
them OCI registries, container
registries, or Docker registries.

   

Repository
An area of a registry where you store
related container images. You can set
access controls per repository.

   

Seccomp
Secure computing Linux kernel
feature used by Docker to restrict the
syscalls available to a container.

   



Term Definition (according to Nigel)

Secret
The way Docker Swarm lets you
inject sensitive data into a container
at run-time.

   

Service

Capital “S” is a Docker Swarm feature
that augments containers with self-
healing, scaling, rollouts, and
rollbacks.

   

Spin

Framework that makes it easy to
build, deploy, and run Wasm apps.
Docker Desktop ships with the spin
runtime. Created by Fermyon
Technologies, Inc.

   



Term Definition (according to Nigel)

Swarm (also
known as
Docker Swarm)

Docker’s native orchestration
platform. A lightweight and easy
alternative to Kubernetes.

   

Volume

Where containers store important
data they need to keep. You can
create and delete volumes
independently from containers.

   

Wasm
(WebAssembly)

New virtual machine architecture
that is smaller, faster, more portable,
and more secure than traditional
containers. Wasm apps run
anywhere with a Wasm runtime.

   



Term Definition (according to Nigel)

YAML
Yet Another Markup Language. You
write Compose files in YAML. It’s a
superset of JSON.
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