

Quick Start

Kubernetes

2025 Edition

The fastest way to get your head around Kubernetes!

Nigel Poulton @nigelpoulton

About the author

Nigel Poulton (@nigelpoulton)

Nigel is a technology geek who is passionate about learning
new technologies and making them easier for others to learn.

He's the author of best-selling books on Docker and Kubernetes,
and is the author of AI Explained: Facts, Fiction, and Future,
an exciting read into the impacts of AI on society and the future
of humanity. .

Nigel is a Docker Captain and has held senior technology roles
at large and small enterprises.

In his free time, he listens to audiobooks and watches science
fiction. He wishes he lived in the future and could explore
space-time, the universe, and other mind-bending phenomena.
He's passionate about learning, cars, and football (soccer). He
lives in England with his fabulous wife and three children.

• LinkedIn: Nigel Poulton

• Web: nigelpoulton.com

• BlueSky: @nigelpoulton

• X: @nigelpoulton

• Email: qskbook@nigelpoulton.com

https://www.amazon.com/dp/B0DHHK2R85
https://linkedin.com/in/nigelpoulton
https://nigelpoulton.com/
https://bsky.app/profile/nigelpoulton.bsky.social
https://twitter.com/nigelpoulton

Table of Contents

1. About the book
1. Chapter overview
2. What you’ll learn
3. Will the book make you a Kubernetes expert
4. Will you know what you’re talking about when you finish

the book
5. Editions
6. Terminology and responsible language
7. Feedback

2. The sample app
3. 1: What is Kubernetes

1. Microservices
2. Cloud-native
3. Orchestration
4. Other useful Kubernetes things to know
5. Chapter summary

4. 2: Why Kubernetes is so important
1. Why the cloud providers need Kubernetes
2. Why users need Kubernetes
3. Chapter Summary

5. 3: Kubernetes architecture
1. Control plane nodes and worker nodes

2. Hosted Kubernetes
3. Managing Kubernetes with the kubectl command line tool
4. Chapter summary

6. 4: Getting Kubernetes
1. Install Docker and kubectl with Docker Desktop
2. Create a multi-node Kubernetes cluster with Docker

Desktop
3. Create a multi-node Kubernetes cluster in the Civo Cloud
4. Get the sample app
5. Chapter summary

7. 5: Containerizing an app
1. Pre-requisites
2. The sample app
3. Containerize the app
4. Share the image on a registry
5. Chapter summary

8. 6: Running an app on Kubernetes
1. Pre-reqs
2. Deploy the app to Kubernetes
3. Connect to the app
4. Clean-up
5. Chapter summary

9. 7: Self-healing
1. Intro to Kubernetes Deployments

2. Self-heal from an app failure
3. Self-heal from an infrastructure failure
4. Chapter summary

10. 8: Scaling the app
1. Pre-requisites
2. Scale an application up
3. Scale an application down
4. Chapter summary

11. 9: Performing a rolling update
1. Pre-requisites
2. Deploy the rollout
3. Clean-up
4. Chapter summary

12. 10: What next
1. Books
2. Video courses
3. Events
4. Show some love
5. Let’s connect

13. Appendix A: Lab code
1. Chapter 5: Creating a containerized app
2. Chapter 6: Running an app on Kubernetes
3. Chapter 7: Adding self-healing
4. Chapter 8: Scaling the app

5. Chapter 9: Performing a rolling update
14. Terminology
15. More from the author

Landmarks

1. Begin Reading

About the book

This book has two goals:

Get you up-to-speed with Kubernetes fast
Explain everything as clearly as possible

I’ve carefully chosen the most important topics and hand-
crafted every chapter and example so the book is fun and
engaging while you learn.

You’ll love the book if you’re in a hands-on role and just getting
started with Kubernetes. You’ll also love it if you work in
technical marketing, sales, management, architecture,
operations, and more.

Chapter overview

The book has nine main chapters packed with theory and
hands-on demos.

Chapter 1: Introduces you to the concepts and clarifies
important jargon
Chapter 2: Explains why Kubernetes is so important
Chapter 3: Gets you up-to-speed with the main components
of Kubernetes

Chapter 4: Shows you how to get Kubernetes
Chapter 5: Walks you through containerizing a simple app
Chapter 6: Deploys the containerized app to Kubernetes
Chapter 7: Demonstrates self-healing from various
application and infrastructure failures
Chapter 8: Shows you how to scale an app up and down
Chapter 9: Rounds everything out with a zero-downtime
rolling update

What you’ll learn

You’ll learn why we have Kubernetes, what it is, and where it’s
going.

On the theory front, you’ll learn about microservices,
orchestration, why Kubernetes is the OS of the cloud, and
Kubernetes architecture. On the hands-on front, you’ll build a
cluster, containerize an app, deploy it, break it, see Kubernetes
fix it, scale it, and perform a rolling update.

And as this is a quick start guide, you’ll be up-to-speed in no
time.

Will the book make you a Kubernetes expert

No, but it will kickstart you on your journey to becoming an
expert.

Will you know what you’re talking about when you
finish the book

Yes, you’ll know more than enough to start deploying and
managing simple apps on Kubernetes.

Editions

The following English language editions are available on
Amazon and all good book retailers:

Paperback
Ebook

Several translations and an audio version are also available.

Terminology and responsible language

Throughout the book, I capitalize Kubernetes API objects. Wow,
we haven’t even started, and I’m throwing jargon around!

Put more simply, I spell Kubernetes features, such as Pods and
Services, with a capital letter. This helps you know when I’m

talking about a Kubernetes “Pod” and not a “pod” of whales.

The book also follows guidelines from the Inclusive Naming
Initiative, which promotes responsible language.

Feedback

If you like the book and it helps your career, share the love by
recommending it to a friend and leaving a review on Amazon,
Goodreads, or wherever you buy your books.

For other feedback, you can reach me at
qskbook@nigelpoulton.com.

https://inclusivenaming.org/
https://inclusivenaming.org/

The sample app

This is a hands-on book with a sample web app.

You can find the app and all supporting files on GitHub at:

https://github.com/nigelpoulton/qsk-book/

Don’t stress about the app and GitHub if you’re not a developer.
The focus of the book is Kubernetes, and we explain everything
as we go. You also don’t need to be a GitHub expert.

The code for the app is in the App folder and comprises the
following files.

app.js: The main application file
bootstrap.css: Design template for the application’s web
page
package.json: List of application dependencies
views: Folder with the contents of the application’s web page
Dockerfile: Tells Docker how to containerize the app

If you want to download the app now, run the following
command. You’ll need git installed on your machine. Later in
the book we’ll show you how to get git and download the app.

$ git clone https://github.com/nigelpoulton/qsk-book.git

$ cd qsk-book

Finally, I update the application and dependencies every year to
keep it clean and hopefully free from vulnerabilities.

1: What is Kubernetes

Kubernetes is an orchestrator of cloud-native microservices
applications.

That’s a lot of jargon, so let’s explain the following terms:

Microservices
Cloud-native
Orchestration

Microservices

In the past, we built and deployed monolithic applications.
That’s jargon for complex applications where every feature is
developed, deployed, and managed as a single large object.

Figure 1.1 shows a monolithic app with six features — web
front end, authentication, middleware, logging, data store, and
reporting. These are built, deployed, and managed as a single
large application, meaning if you need to change any part, you
need to change it all.

Figure 1.1

As a quick example, if you need to update the reporting feature,
you need to take the entire app down and update the whole
thing. This leads to high-risk updates requiring months of
advanced planning and implementation over long weekends.

However, the pain of monolithic applications doesn’t stop there.
If you want to scale a single feature, you have to scale the whole
thing.

On the flip side, microservices applications take the same set of
features and treats each as its own small application. Another
word for “small” is “micro”, and another word for “application”
is “service”. Hence, the term microservice.

If you look closely at Figure 1.2, you’ll see it’s the same
application as Figure 1.1. The only difference is that each
feature is developed independently, each is deployed
independently, and each can be updated and scaled
independently. But they work together to create the same
application experience.

The most common pattern is developing and deploying each
microservice as its own container. This way, if you need to scale
the reporting service, you just add more reporting containers. If
you need to update the reporting service, deploy a new
reporting container and delete the old one.

Figure 1.2

We loosely couple each microservice over the network, and
each one exposes an API that others can consume. These two

principles allow us to change individual microservices without
affecting others.

The following car analogy might help if you’re new to the
concept of APIs.

Cars come in all shapes and sizes — sports cars, SUVs, trucks,
petrol, diesel, electric, hybrid, hydrogen fuel cell, etc. However,
these differences are hidden from drivers behind a standard set
of controls, including a steering wheel and foot pedals. In this
model, the steering wheel and foot pedals are the car’s API —
how we consume its capabilities. This means a driver can get
into any car in the world and be able to drive it. For example, I
learned to drive in a front-wheel-drive petrol-engine car with
the steering wheel on the right and a manual gearbox.
However, I can step into an all-wheel drive electric car with the
steering wheel on the left and be able to drive it without having
to learn any new skills.

Well, it’s the same with microservices applications. As long as
you don’t change a microservice’s API, you can patch or update
it without impacting other microservices that consume it.

As well as the ability to update and scale individual features,
microservices applications lend themselves to smaller and

more agile development teams that can deliver faster. It’s
common to apply the two-pizza team rule that states that if you
can’t feed a development team on two pizzas, the team is too big.

However, microservices introduce their own challenges. For
example, they can become very complex, with lots of moving
parts owned and managed by different teams. This needs good
processes and good communication.

Finally, both of these — monolithic and microservices — are
called design patterns. The microservices design pattern is the
most common pattern in the current cloud era.

Cloud-native

This is easy, as we’ve covered some of it already.

A cloud-native app must:

Self-heal
Scale on demand
Support rolling updates

Let’s unpick some of that jargon.

Scaling on demand is the ability for applications and associated
infrastructure to automatically grow and shrink to meet

requirements. For example, an online retail app might need to
scale up infrastructure and application resources during
holidays. If you configure it correctly, Kubernetes can
automatically scale applications and infrastructure according to
demand.

Not only does this help businesses react more quickly to
unexpected changes, it also reduces infrastructure costs by
automatically scaling down.

Kubernetes can also self-heal applications. You tell Kubernetes
what an app should look like, such as how many instances of
each microservice. Kubernetes records this as your desired state
and watches the app to make sure it always matches desired
state. When things change, such as a failed microservice,
Kubernetes observes the failure and spins up a replacement.
We call this self-healing or resiliency.

Rolling updates is the ability to update parts of an application
without taking it offline and impacting consumers. These
consumers can be users, external apps, or other microservices
that are part of the same app. It’s a game-changer in today’s
always-on world, and we’ll see it in action later.

One final point. Cloud-native has almost nothing to do with the
public cloud. For example, deploying a monolithic application
to the cloud does not make it cloud-native. Whereas deploying
an application that self-heals, automatically scales, and does
rolling updates to your on-premises datacenter is cloud native.

In summary, we call applications cloud-native because they
possess the attributes we associate with public clouds —
resiliency, elasticity, always on, etc.

Orchestration

Orchestration can be a difficult concept to understand, but the
following sports analogy should help.

A football (soccer) team is a group of individual players. Each
has a different set of skills and attributes, and each has a
different role to play when the game starts.

Figure 1.3 shows an unorganized football team without a game
plan.

Figure 1.3

The coach comes along with the game plan and assigns each
player a position and a job. She also dictates how they play the
game, such as when to press, how high to press, and how
quickly to get the ball forward.

In short, the coach takes the chaos from Figure 1.3 and imposes
the order in Figure 1.4. She also reacts to real-time events, such
as injuries and tactical changes depending on the score.

Figure 1.4

Well… cloud-native microservices applications are a lot like
football teams.

Each cloud-native app has lots of individual microservices that
do different things. Some serve web requests, some perform
authentication, some do logging, some persist data, some
generate reports, etc. And, just like a football team, they need
something to organize them into a useful app.

Enter Kubernetes.

Kubernetes takes a mess of independent microservices and
organizes them into meaningful apps, as shown in Figure 1.5. It

also responds to real-time events by self-healing, scaling, and
more.

Figure 1.5

In summary, Kubernetes is an application orchestrator that
brings different microservices together and organizes them into
a useful application. It also provides and manages cloud-native
features such as scaling, self-healing, and updates.

Other useful Kubernetes things to know

The name Kubernetes comes from the Greek word meaning
helmsman — a nautical term for the person who steers a ship.

The ship’s wheel is called the helm and is the inspiration for the
Kubernetes logo.

Figure 1.6. Kubernetes logo.

If you look closely, you’ll see the logo has seven spokes instead
of the usual 6 or 8. This is because some of the original
Kubernetes developers had worked on Google’s Borg project
and were also Star Trek fans. As such, they wanted to name
Kubernetes “Seven of Nine” after the famous Borg drone
rescued by the USS Voyager on stardate 25479. Copyright laws
prevented this, so the founders gave the logo seven spokes in a
subtle reference to “Seven of Nine”.

You’ll also see Kubernetes shortened to K8s. The 8 replaces the
eight letters between the leading “K” and the trailing “s”. It’s
usually pronounced “kates”.

Chapter summary

At the top of the chapter, we said that Kubernetes is an
orchestrator of cloud-native microservices applications.

Now that we’ve explained the jargon, you know this means
“Kubernetes runs and manages applications comprised of small
specialized parts that can self-heal, scale, and be updated
independently without downtime.” Those specialized parts are
called microservices and each one is usually deployed in its own
container.

However, that’s still a lot, and you don’t need to understand
everything yet. We’ll continue explaining things, and we’ll get
hands-on with lots of examples that will help.

2: Why Kubernetes is so important

As the title suggests, this chapter explains why we need
Kubernetes. We’ll cover two main areas:

Why the cloud providers need Kubernetes
Why users need Kubernetes

Both are important, and both are part of why Kubernetes will
be with us for a long time.

Why the cloud providers need Kubernetes

It all starts with Amazon Web Services (AWS).

Prior to 2006, the big tech companies were making easy money
selling servers, network switches, storage arrays, and licenses
for monolithic apps. Then, from way out in the left field,
Amazon launched AWS and turned the world upside down. It
was the birth of modern cloud computing.

At first, the big tech companies didn’t seem to care. Remember,
they were busy making money doing the same things they’d
done for decades. However, as soon as AWS started stealing
customers, the industry woke up and needed a response.

The first response was to debunk AWS by claiming there was no
such thing as the cloud. When that didn’t work, they re-
invented themselves as cloud companies and started competing
against AWS.

An early attempt was a huge community project called
OpenStack. To keep a long story short, OpenStack was a
community project building an open-source alternative to AWS.
It was a great project, and lots of amazing people contributed.
In fact, OpenStack still exists, it just never threatened AWS.

While all of this was happening, Google was running most of its
services at massive scale on Linux containers. Things like
Search and Gmail ran on billions of containers per week, and
scheduling all of these was a couple of in-house tools called
Borg and Omega.

Fast-forward a few years, and some of Google’s Borg and Omega
engineers built a new container platform called Kubernetes that
they open-sourced and donated to the Cloud Native Computing
Foundation (CNCF) in 2014 as the first-ever CNCF project.

Now then, Kubernetes is not an open-source version of Borg or
Omega. It’s a new project, built from scratch. Its only
connection to Borg and Omega is that its original developers

https://www.openstack.org/

worked on those projects and learned a lot from them.
However, Kubernetes is over 10 years old now and has gone off
in its own direction.

When Google open-sourced Kubernetes in 2014, Docker was
taking the world by storm. This caused most people to see
Kubernetes as a way to manage the explosive growth of
containers. And while that’s true, it’s only half the story.
Kubernetes is also excellent at abstracting and commoditizing
cloud and server infrastructure.

Abstracting and commoditizing infrastructure makes
Kubernetes similar to traditional operating systems such as
Linux and Windows. For example, Linux and Windows make it
so we don’t have to care if our traditional apps run on Cisco,
Dell, HPE, or XYZ servers. Kubernetes does the same by making
it so we don’t have to care if our cloud-native apps run on AWS,
Azure, Civo Cloud, or servers in our data center. Figure 2.1
shows a cloud-native app that runs on Kubernetes and can,
therefore, run on any of the four infrastructure platforms. This
is why you’ll hear Kubernetes referred to as the OS of the cloud.

Figure 2.1

Abstracting cloud infrastructure meant competing cloud
vendors could use Kubernetes to wipe out some of the value of
AWS — if they can get users to build applications to run on
Kubernetes, it shouldn’t matter which cloud they run on. This is
why cloud providers place Kubernetes front and center in their
offerings.

Why users need Kubernetes

The user community needs vendor-neutral platforms that
provide flexibility and have a strong future. As things stand,
Kubernetes fits the bill.

Kubernetes is an open-source project hosted and maintained by
the Cloud Native Computing Foundation (CNCF). The CNCF is a

Linux Foundation project with the goal of creating a vendor-
neutral cloud. Of course, some vendors have more influence
than others, but Kubernetes has remained vendor-neutral so
far.

As the OS of the cloud, Kubernetes gives users great flexibility
and helps avoid cloud lock-in.

Most of the major cloud vendors contribute to the upstream
Kubernetes project and use this as the basis of their own hosted
Kubernetes services. This creates a strong future for Kubernetes.

Figure 2.2 shows the upstream open-source Kubernetes project
and how it relates to vendor implementations. The upstream
project is where new features and developments happen. Cloud
vendors take the upstream project and use it to build their own
Kubernetes platforms and services. The diagram is very high-
level and only for illustration purposes.

Figure 2.2

As things stand, Kubernetes is vendor-neutral, enables cloud
flexibility, and has a strong future.

Chapter Summary

In this chapter, you learned that the major cloud providers are
heavily invested in the success of Kubernetes. This creates a
strong future for Kubernetes and makes it a safe platform for
users and companies to build on. Kubernetes also abstracts
underlying infrastructure the same way operating systems like
Linux and Windows do. This is why we call it the OS of the
cloud.

3: Kubernetes architecture

We’ve already said Kubernetes sits between applications and
infrastructure and acts like the OS of the cloud. Figure 3.1 shows
applications running on Kubernetes, which, in turn, runs on
various infrastructure platforms.

Figure 3.1

The diagram shows four Kubernetes installations running on
four different infrastructure platforms. However, all the
application sees is four Kubernetes clusters, it can’t see the
infrastructure below. This makes it easier to migrate
applications from one Kubernetes installation to another.

We call a Kubernetes installation a Kubernetes cluster.

There are a couple of things worth clarifying about Figure 3.1.

Firstly, it’s unusual for a single cluster to span multiple
infrastructures. For example, you aren’t likely to see a cluster
spanning multiple clouds. Likewise, you’re unlikely to see one
spanning an on-premises data center and a public cloud. This is
mainly because each Kubernetes cluster needs reliable low-
latency networks between nodes.

Secondly, although Kubernetes can run on many platforms,
containers have stricter requirements. For example, Windows
containers need Windows cluster nodes, and Linux containers
need Linux cluster nodes. The same applies to CPU
architectures — a container built for AMD/x86 won’t run on
clusters with only ARM CPUs.

Control plane nodes and worker nodes

A Kubernetes cluster is one or more machines with Kubernetes
installed. These machines can be physical servers, virtual
machines (VM), cloud instances, your laptop, Raspberry Pis, and
more. Installing Kubernetes on them and connecting them
creates a cluster. We deploy applications to clusters.

We refer to machines in a Kubernetes cluster as nodes, and
there are two types:

Control plane nodes
Worker nodes

Figure 3.2 shows a six-node Kubernetes cluster with three
control plane nodes and three worker nodes. It’s usually a good
practice to run apps on worker nodes and reserve the control
plane nodes for Kubernetes system services.

Figure 3.2

Control plane nodes

Control plane nodes run the internal Kubernetes system
services. These include the API server, the scheduler, the cluster
store, and more. Collectively, we refer to them as the control
plane. Each control plane node runs every control plane service.

With this in mind, having multiple control plane nodes for high
availability (HA) is a good practice. This way, the cluster keeps
running if one or more of them fails. In the real world, it’s
common for production clusters to have three or five control
plane nodes and to spread them across failure domains. Do not
put them all in the same rack under the same leaky aircon unit
on the same glitchy power supply.

Figure 3.3 shows a highly-available control plane with three
nodes. Each is in a separate failure domain with separate
network and power infrastructures.

Figure 3.3. Control plane HA.

As previously mentioned, the control plane runs all of the
following services:

API Server
Scheduler
Store
Cloud controller
More…

The API Server is the only part of a Kubernetes cluster you
interact directly with. For example, you send commands to
deploy, manage, and update apps to the API server. You even
send queries about the state of applications to the API server. In
this case, the API server queries the cluster store and sends the
response.

The Scheduler chooses which worker nodes to run applications
on.

The Store is where Kubernetes stores the state of the cluster and
the applications running on it.

The Cloud controller integrates Kubernetes with cloud services
such as cloud-based storage and cloud-based load balancers.

There are more control plane services, but those are the
important ones.

Worker nodes

Worker nodes are where user applications run and can be
Linux or Windows. Linux apps run on Linux nodes, and
Windows apps run on Windows nodes. Fortunately, a single
cluster can have a mix of node types, and almost all
applications are Linux.

Figure 3.4. Cluster with Linux and Windows worker nodes.

Worker nodes run two essential services:

Kubelet
Container runtime

The kubelet is the main Kubernetes agent. It joins workers to the
cluster and communicates with the control plane. For example,
it watches the API server for new work tasks and sends status
reports back to the API server.

The container runtime manages container lifecycle events such
as creating, starting, stopping, and deleting containers.

You should know that early versions of Kubernetes used Docker
as the container runtime. However, in 2016, Kubernetes added
the container runtime interface (CRI) that lets you choose from
a wide range of runtimes. Since then, containerd (pronounced
“container dee”) has replaced Docker as the default container
runtime in most Kubernetes environments. It’s a stripped-down
version of Docker and fully supports container images created
by Docker. Lots of other runtimes exist, but they’re beyond the
scope of a quick start book. See The Kubernetes Book for more
details.

Hosted Kubernetes

Hosted Kubernetes is a consumption model where a cloud
provider rents you a production-grade Kubernetes cluster.
Azure Kubernetes Service (AKS), Elastic Kubernetes Service
(EKS), Google Kubernetes Engine (GKE), and Civo Cloud

https://www.amazon.com/dp/1916585000

Kubernetes are all examples of hosted Kubernetes where the
cloud provider builds the cluster, owns the control plane, and is
responsible for all of the following:

Control plane performance
Control plane availability
Control plane updates

You’re usually responsible for:

Worker nodes
User applications
Paying the bill

Figure 3.5 shows the basic architecture and division of
responsibility for most hosted Kubernetes platforms.

Figure 3.5. Hosted Kubernetes architecture

Most of the cloud providers have hosted Kubernetes services.
Some of the more popular ones include:

AWS: Elastic Kubernetes Service (EKS)
Azure: Azure Kubernetes Service (AKS)
Civo: Civo Cloud Kubernetes
DO: Digital Ocean Kubernetes Service (DOKS)
GCP: Google Kubernetes Engine (GKE)
Linode: Linode Kubernetes Engine (LKE)

Others exist, and not all hosted services are equal. For example,
Civo Cloud Kubernetes is clean and easy to use. However, it may

lack some of the integrations and configuration options offered
by others. Try a few before deciding which is best for your
requirements.

Managing Kubernetes with the kubectl command
line tool

You’ll use the kubectl command line tool for most of your
day-to-day Kubernetes management tasks. There are lots of
ways to pronounce it, and all ways are acceptable. I pronounce
it “kube see tee ell”.

Management tasks include things such as deploying and
managing applications, checking the health of the cluster and
applications, and performing updates.

You can get kubectl for Linux, macOS, Windows, and more,
and you’ll see how to install it in the next chapter.

The following example command lists all nodes in a cluster.
You’ll run plenty of commands in the hands-on sections later.

$ kubectl get nodes

NAME STATUS ROLES AGE VERSI

qsk-server-0 Ready control-plane,etcd, 15s v1.32

qsk-agent-2 Ready <none> 15s v1.32

qsk-agent-0 Ready <none> 13s v1.32

qsk-agent-1 Ready <none> 10s v1.32

Chapter summary

In this chapter, you learned that Kubernetes clusters have
control plane nodes and worker nodes. These can run almost
anywhere, including bare metal servers, virtual machines, and
in the cloud. Control plane nodes run the system services that
keep the cluster running, whereas worker nodes run user
applications.

Most cloud platforms offer a hosted Kubernetes service. These
are an easy way to get a production-grade cluster where the
cloud provider manages performance, availability, and updates.
You manage the worker nodes and pay the bill.

You also learned that kubectl is the Kubernetes command
line tool.

4: Getting Kubernetes

This chapter’s goal is to get you a Kubernetes lab environment
so you can follow along with the examples later in the book.

To follow all of the examples, you need all of the following:

Docker
The kubectl command line tool
A multi-node Kubernetes cluster
The sample app

I recommend using Docker Desktop as it’s free for personal use
and the easiest way to get everything you need. The only minor
drawback is that you won’t be able to simulate an
infrastructure failure in Chapter 7. If you want to follow every
example, including the simulated infrastructure failure, you’ll
need to use a different Kubernetes cluster that allows you to
manually delete nodes. Don’t worry though, I’ll show you how
to get on in the Civo Cloud.

I’ve divided the chapter as follows:

Install Docker and kubectl with Docker Desktop
Create a multi-node Kubernetes cluster with Docker Desktop
Create a multi-node Kubernetes cluster in the Civo Cloud

Get the sample app

Install Docker and kubectl with Docker Desktop

Docker Desktop includes a full Docker development
environment and the kubectl command line tool. You can get
it for Windows, macOS, and Linux, it’s easy to install, and it’s
free for personal use. However, you’ll have to pay a license fee
if you use it for work and your company has more than 250
employees or does more than $10M in annual revenue.

Type “download docker desktop” into your favorite search
engine and follow the links to download the installer. After that,
it’s a next next next installer that requires admin privileges.
Windows users should install WSL 2 if prompted.

After the installation completes, you may need to start the app
manually.

Mac users get a Docker whale in the menu bar when it’s
running, whereas Windows users get it in the system tray at the
bottom.

Open a new terminal and run the following commands to check
you have Docker and kubectl .

$ docker --version

Docker version 27.4.0, build bde2b89

$ kubectl version --client

Client Version: v1.31.1

Congratulations, you’ve installed Docker and kubectl .

Windows users need to run Docker Desktop in Linux
containers mode to follow along with the examples. To do this,
right-click the Docker whale in the system tray and choose
Switch to Linux containers. If you don’t see this option, you’re
already running Linux containers mode.

Create a multi-node Kubernetes cluster with Docker
Desktop

Docker Desktop v4.38 and newer make it easy for you to build a
multi-node Kubernetes cluster.

Complete the following steps to enable the built-in Docker
Desktop multi-node Kubernetes cluster. It’s important that you
enable the kind multi-node cluster and not the older Kubeadm
single-node cluster.

1. Click your Docker whale icon
2. Choose Settings

3. Open the Kubernetes tab
4. Click the Enable Kubernetes slider
5. Choose the kind option
6. Choose an up-to-date version of Kubernetes
7. Move the slider to 3 nodes
8. Click Apply & restart

Figure 4.1

It can take a couple of minutes for Docker Desktop to build and
start the cluster.

If you don’t see the kind cluster option, you can try using the
Konami Code to enable it. Go to the Docker Desktop Settings
page and type the following key sequence on your keyboard

"up, up, down, down, left, right, left, right, b,

a" to reveal the hidden Experimental features page and
enable the MultiNodeKubernetes option. Go back to Settings >
Kubernetes, and you should now have the kind multi-node
cluster option.

Run the following command to make sure the cluster is up and
running. If the command times out, it’s probably because
Docker Desktop is still building the cluster.

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

desktop-control-plane Ready control-plane 3m36s v1.31.1

desktop-worker Ready <none> 3m16s v1.31.1

desktop-worker2 Ready <none> 3m16s v1.31.1

Congratulations. You have a multi-node Kubernetes cluster with
a single control plane node and two worker nodes.

Create a multi-node Kubernetes cluster in the Civo
Cloud

You only have to complete this section if you’re not using the
Docker Desktop Kubernetes cluster.

Most clouds have a hosted Kubernetes service, and you can
follow along on any. I’m showing you Civo Cloud Kubernetes
because it’s easy to use and you may get $500 of free credit
using the civo.com/nigel sign-up link. The free credit is
more than enough to complete all the examples in the book, it
lasts for three months following sign-up, and the link will work
until at least 2025. Even if the link no longer works, Civo Cloud
Kubernetes is simple to use and competitively priced.

Civo Cloud Kubernetes is a hosted Kubernetes service. As such:

It’s easy to setup
It’s multi-node
It’s production-grade
The control plane is managed by Civo
It offers advanced integrations with cloud services such as
storage and load balancers

As with all cloud services, you should remember to delete
resources when you’re no longer using them to avoid unwanted
costs.

Point your browser to civo.com/nigel and sign up for an
account. It’s a simple process, and you may still get $500 of free
credit that lasts for three months. You have to provide billing

details, but the free credits will be more than enough to
complete all the examples in the book.

Once you’ve created your account, log in to the Civo Dashboard,
click Kubernetes in the left navigation bar, and choose Create
new Cluster.

Give your cluster the following settings:

Name: qsk
How many nodes: 3
Select a size: Choose the small option from the Standard tab
Network: default
Firewall: default
Expand the Show advanced options section and choose a
K3S cluster with either of the CNI options and then select one
of the newest Kubernetes versions

Leave all other options as default and click Create Cluster.

It’ll take a couple of minutes for the cluster to build.

When it’s ready, you’ll be able to see basic cluster info on the
Civo dashboard.

Figure 4.2. Civo Cloud Kubernetes cluster.

Your cluster is ready, but you still need to configure kubectl .

Configure kubectl to talk to your Civo Cloud Kubernetes
cluster

kubectl uses a config file to know which cluster to manage
and which credentials to use.

The file is called config and is located in the following hidden
directories on Mac and Windows. We usually call it the
kubeconfig file.

Windows: C:\Users\<username>\.kube\config

macOS: /Users/<username>/.kube/config

The easiest way to configure kubectl for your new Civo Cloud
cluster is to:

1. Rename your existing kubeconfig file
2. Download and use the kubeconfig file from the Civo

dashboard

For the following to work, you’ll need to configure your
computer to show hidden folders. On macOS, open a Finder
window and type Command + Shift + period. On Windows 10
or 11, type “folder” into the Windows search bar and select the
File Explorer Options result. Select the View tab and click the
Show hidden files, folders, and drives button. Remember to
click the Apply button.

Navigate to your system’s hidden .kube directory and rename
your existing config file. Feel free to rename it to anything
you like, and it’s OK if the file doesn’t exist. If the directory
doesn’t exist, create it, and be sure to include the leading dot (.)
to make it a hidden directory.

Select your cluster in the Civo dashboard and download the
Kubeconfig file from the Cluster Information section, as shown
in Figure 4.3.

Figure 4.3. Download kubeconfig file.

Locate the downloaded file, copy it to the hidden ./kube
folder in your home directory, and rename it to config .

Once you’ve done this, run the following command to verify
that kubectl is talking to your Civo Cloud cluster.

$ kubectl get nodes

NAME STATUS ROLES AGE VERSIO

k3s-qsk-885e-node-pool-35d8-hrbx2 Ready <none> 5m v1.30

k3s-qsk-885e-node-pool-35d8-hrbx2 Ready <none> 5m v1.30

k3s-qsk-885e-node-pool-35d8-vm5fx Ready <none> 5m v1.30

The output shows a cluster with three worker nodes. You know
it’s your Civo Kubernetes cluster because the node names
include the name of your cluster prefixed with “k3s” (k3s-
qsk…). You’ll only see worker nodes because Civo manages the
control plane and hides it from your view.

At this point, your Civo Cloud Kubernetes cluster is up and
running, and you can use it to follow all the examples in the
book.

Remember to delete it when you no longer need it. Forgetting to
do this will waste energy and may incur unwanted costs.

Get the sample app

The sample app and associated files are located on GitHub. The
easiest way to get them is to clone the book’s repo with the git
command line tool.

Don’t worry if you don’t know how to use Git, nobody does ;-)

If you don’t already have it, you’ll need to install the git CLI
tool. Mac users can install it via Homebrew, and Windows users
can install it via Chocolatey or other package managers. For
other methods, search the internet for how to install the git CLI
and follow the instructions for your system.

Once you’ve installed it, run the following command to
download the sample app. It creates a new directory called
qsk-book and copies all the app files into it.

$ git clone https://github.com/nigelpoulton/qsk-book.git

Cloning into 'qsk-book'...

remote: Enumerating objects: 134, done.

remote: Counting objects: 100% (30/30), done.

remote: Compressing objects: 100% (25/25), done.

remote: Total 134 (delta 7), reused 21 (delta 3), pack-reused 104

Receiving objects: 100% (134/134), 74.92 KiB | 235.00 KiB/s, done

Resolving deltas: 100% (53/53), done.

Change into the qsk-book directory and list the files.

$ cd qsk-book

$ ls -l

drwxr-xr-x 7 nigelpoulton staff 224 App

drwxr-xr-x 8 nigelpoulton staff 256 Appv1.1

-rw-r--r-- 1 nigelpoulton staff 390 deploy.yml

-rw-r--r-- 1 nigelpoulton staff 225 pod.yml

-rw-r--r-- 1 nigelpoulton staff 929 readme.md

-rw-r--r-- 1 nigelpoulton staff 509 rolling-update.yml

-rw-r--r-- 1 nigelpoulton staff 217 svc.yml

You’re ready to follow along with the demos.

Chapter summary

Docker Desktop is a great way to get Docker, the kubectl
command line tool, and a multi-node Kubernetes cluster. It’s
free for personal use, but the built-in Kubernetes cluster isn’t
for production use.

Civo Cloud Kubernetes is a simple-to-use hosted Kubernetes
service. Civo manages the control plane and lets you size and
spec as many worker nodes as you need. As with all cloud
services, it costs money and you should remember to delete
when you’re no longer using it.

There are many other ways to get Kubernetes, but the ways
we’ve shown here are enough to get you started.

5: Containerizing an app

In this chapter, you’ll build an application into a container
image that you’ll use in future chapters. The process is called
containerization and the resulting app is called a containerized
app.

You’ll use Docker to containerize the app. This part of the
process isn’t specific to Kubernetes, and you won’t actually use
Kubernetes in this chapter. However, the things you’ll do are a
vital part of a typical Kubernetes workflow, and you’ll deploy
the containerized app to Kubernetes in the following chapters.

Docker and Kubernetes: Let’s clear up any potential
confusion about Kubernetes supposedly dropping support
for Docker. Kubernetes stopped using Docker as a container
runtime a long time ago in version 1.24. This means
Kubernetes 1.24 and later do not use Docker to start and
stop containers. However, apps containerized by Docker still
work on Kubernetes and probably make up the majority of
apps running on Kubernetes. This is because Kubernetes and
Docker both implement Open Container Initiative (OCI)
standards.

If you’re already familiar with containerizing apps, you can
skip this chapter and use a pre-created image.

Figure 5.1 shows the workflow you’ll follow. We’ll briefly touch
on step 1, but the chapter will focus on steps 2 and 3. Future
chapters will cover step 4.

Figure 5.1

I’ve divided the chapter as follows:

Pre-requisites
The sample app
Containerize the app
Share the app on a registry

Pre-requisites

You’ll need all of the following to complete this chapter:

A copy of the app files
Docker
A Docker account

The sample app is in the book’s GitHub repo. If you haven’t
already done so, run the following command to download it to
your computer. It creates a new folder in your current directory
and copies the sample app to it.

$ git clone https://github.com/nigelpoulton/qsk-book.git

Cloning into 'qsk-book'...

Change into the qsk-book directory and run an ls command
to make sure you have the files.

$ cd qsk-book

$ ls -l

drwxr-xr-x 7 nigelpoulton staff 224 App

drwxr-xr-x 8 nigelpoulton staff 256 Appv1.1

-rw-r--r-- 1 nigelpoulton staff 390 deploy.yml

-rw-r--r-- 1 nigelpoulton staff 225 pod.yml

-rw-r--r-- 1 nigelpoulton staff 929 readme.md

-rw-r--r-- 1 nigelpoulton staff 509 rolling-update.yml

-rw-r--r-- 1 nigelpoulton staff 217 svc.yml

Chapter 4 showed you how to get Docker.

You’ll need a Docker account if you want to share the
containerized app on Docker Hub. Personal accounts are free
and enable you to follow along. Point your web browser to
hub.docker.com and complete the sign-up form.

The sample app

The sample app is a Node.js web app.

Change into the App folder (qsk-book/App) and list the files.

$ cd App

$ ls -l

Dockerfile

app.js

bootstrap.css

package.json

views

These files make up the application, and it’s good to know what
each one does.

Dockerfile : Contains instructions telling Docker how to
containerize the app
app.js : Main application file
bootstrap.css : Stylesheet template that determines how
the application’s web page looks

package.json : List of dependencies
views : Folder containing HTML to populate the app’s web
page

The file of most interest to us is the Dockerfile, which contains
the instructions Docker executes to build the app into a
container image. Ours is simple and looks like this.

FROM node:current-slim

LABEL MAINTAINER=nigelpoulton@hotmail.com

COPY . /src

WORKDIR /src

RUN npm install

EXPOSE 8080

CMD ["node", "./app.js"]

Let’s step through it.

The FROM instruction tells Docker to pull the node:current-
slim image from Docker Hub and use it as the base layer for
the new image. It contains a minimal Linux OS with Node
already installed.

The LABEL instruction lets us add metadata to the image.

The COPY instruction tells Docker to copy all the files in the
same directory as the Dockerfile into the image’s /src folder.

This will copy all the app files and the files listing dependencies.

The WORKDIR instruction sets the working directory for the
rest of the instructions in the Dockerfile.

The RUN instruction tells Docker to run an npm install
command to install the dependencies listed in package.json .

The EXPOSE instruction adds metadata to the image
documenting the application’s network port. This matches the
port specified in the app.js file.

The CMD instruction tells Kubernetes how to start the app
when it creates the container.

In summary, the Dockerfile tells Docker to base the image on
the node:current-slim image, copy in the app code, install
dependencies, and document the network port and the app.

Once you’ve cloned the repo, you’re ready to containerize the
app.

Containerize the app

Containerization is the process of packaging the application and
all dependencies into a container image. When the process
completes, we say the app is containerized.

The terms container image and containerized app mean the
same thing.

Use the following docker build command to containerize the
app. A few quick things to note.

Run the command from the directory with the Dockerfile
Substitute nigelpoulton with your own Docker account ID
Include the dot (“.”) at the end of the command
The command reads the Dockerfile one line at a time, starting
from the top

If you don’t have a Docker account, run the command exactly as
it is.

$ docker build -t nigelpoulton/qsk-book:1.0 .

[+] Building 66.9s (7/7) FINISHED 0.1s

<Snip>

=> naming to docker.io/nigelpoulton/qsk-book:1.0 0.0s

Once the command completes, you’ll have a new image
containing the app and its dependencies. This is the
containerized app.

Run the following command to see the image. Yours may have a
different name, and the output may display other images on

your system.

$ docker images

REPOSITORY TAG IMAGE ID CREATED

nigelpoulton/qsk-book 1.0 e7162dc0ab84 58 seconds ago

If you’re running Docker Desktop, you might see multiple
images labeled registry.k8s.io . These are system images
used to run the built-in Kubernetes cluster.

Now that you’ve successfully containerized the app, the next
step is to host and share it in a registry.

Share the image on a registry

This section is optional, and you’ll need a Docker account if you
want to follow along. You can use a pre-created image in the
later chapters if you don’t follow along.

Container registries are centralized places to store and retrieve
images.

Lots of registries exist. Some are on the internet, but you can
run your own private registry on your own private network.
We’ll use Docker Hub as it’s the most popular and easiest to use.

Run the following command to push your new image to Docker
Hub. Remember to substitute nigelpoulton with your own
Docker account username. The operation will fail if you use
mine, as you cannot push images to my repositories.

$ docker push nigelpoulton/qsk-book:1.0

The push refers to repository [docker.io/nigelpoulton/qsk-book]

5d81e947f003: Pushed

1570c05e389d: Pushed

f5c6876bb3d7: Pushed

<Snip>

392f6305b5da: Pushed

1.0: digest: sha256:e7162dc0ab84e0de6ea75698d5172...3de34c82190 si

Go to hub.docker.com and make sure the image is present.
Remember to browse your own repos.

Figure 5.2

At this point, you’ve containerized the application and pushed it
to Docker Hub. This means you’re ready to deploy it to
Kubernetes.

Chapter summary

In this chapter, you learned that a containerized app is just a
regular app that’s built and packaged as a container image.

You used the git CLI to clone the book’s GitHub repo into a
local folder on your computer. You then used Docker to
containerize the app and push it to Docker Hub. Along the way,
you learned that a Dockerfile is a list of instructions telling
Docker how to containerize an app.

6: Running an app on Kubernetes

In this chapter, you’ll deploy a containerized application to
Kubernetes.

If you’ve been following along, you’ll deploy the app you
containerized in the previous chapter. If you skipped that, I’ve
got a publicly available image you can use.

I’ve divided the chapter into these three sections:

Pre-reqs
Deploy the app
Test the app

Pre-reqs

You need a working Kubernetes cluster with kubectl
configured to talk to your cluster. See Chapter 3.

If you’re using Docker Desktop on Windows, you’ll need to be in
Linux containers mode. Just right-click the Docker whale in
the system tray and choose Switch to Linux containers. If your
system doesn’t have this option, you’re already in Linux
containers mode.

Run the following command to ensure kubectl is talking to
the correct cluster.

$ kubectl get nodes

NAME STATUS ROLES AGE VER

desktop-control-plane Ready control-plane 18h v1

desktop-worker Ready <none> 18h v1

desktop-worker2 Ready <none> 18h v1

The output shows kubectl talking to a three-node Docker
Desktop cluster configured with a single control plane node and
two workers. Worker nodes show as <none> in the ROLES
column. If you’re running hosted Kubernetes on your cloud,
you may only see worker nodes because the control plane is
managed by the cloud platform and hidden from view.

If your kubectl connects to the correct cluster, you can move
straight to the Deploy the app to Kubernetes section. Try the
following options if you’re connecting to the wrong cluster.

If you’re running Docker Desktop, click the Docker whale icon
and select the correct cluster from the Kubernetes Context
option. Figure 6.1 shows my setup with a Docker Desktop
cluster and another called qsk on Civo Cloud.

Figure 6.1

Try the following procedure if you don’t have Docker Desktop.

List all contexts defined in your kubeconfig file. A context is just
a combination of a cluster and an authentication token.

$ kubectl config get-contexts

CURRENT NAME CLUSTER AUTHINFO

* docker-desktop docker-desktop docker-desktop

 qsk qsk qsk

The output lists two contexts, and the one with the asterisk (*) is
your current context. Your output may be different.

Run the following command if you need to switch contexts. This
example switches to the qsk context, but you can switch to any

valid context by changing the last argument of the command.

$ kubectl config use-context qsk

Switched to context "qsk".

Run another kubectl get nodes command to see if it’s
connecting the right cluster. If it returns the correct nodes and
they’re showing as Ready, you’re ready to deploy the app.

Deploy the app to Kubernetes

The first thing to know about deploying containers to
Kubernetes is that you have to wrap them in Pods. For now,
think of a Pod as a lightweight wrapper that allows Kubernetes
to run a container.

Figure 6.2 shows a Pod called first-pod wrapping a single
container called web-ctr. All this Pod is doing is wrapping the
container with metadata so it can run on Kubernetes.

Figure 6.2

Your first Kubernetes Pod

The Pod you’ll deploy is defined in a YAML file called pod.yml
in the root of the book’s GitHub repo.

The name of the file isn’t important, but the contents follow
strict YAML rules. If you don’t already know, YAML is a popular
language for configuration files and is very strict about
indentation.

1 kind: Pod

2 apiVersion: v1

3 metadata:

4 name: first-pod

5 labels:

6 project: qsk-book

7 spec:

8 containers:

9 - name: web-ctr

10 image: nigelpoulton/qsk-book:1.0

11 ports:

12 - containerPort: 8080

This Pod wraps a single container. Lines 1-7 are the Pod
metadata, and lines 8-12 define the container it wraps.

Let’s have a closer look.

The kind and apiVersion fields tell Kubernetes the type and
version of the object you’re deploying. In this case, we’re telling
Kubernetes to create a new Pod based on version 1 of the Pod
specification.

The metadata block gives the Pod a name and a label. We’ll
use the name later to help us identify the Pod when it’s running,
and we’ll use the label to connect it to a load balancer.

The spec section defines the containers the Pod will run. This
Pod runs a single container, called web-ctr, based on the image
created in the previous chapter. You can change this to your
own image if you followed along in the previous chapter. If you
didn’t follow along, leave it as it is.

Figure 6.3 shows the Pod wrapping the container. Remember,
Kubernetes will only run containers wrapped in Pods.

Figure 6.3

Deploy the app (Pod)

The recommended way to deploy a new Pod is with the
kubectl apply command. This sends the Pod’s YAML file to
Kubernetes, and the control plane deploys everything defined
in the file.

Run the following command to list any existing Pods on your
cluster. You won’t have any if you’re working with a new
cluster.

$ kubectl get pods

No resources found in default namespace.

Run the following commands from the qsk-book folder where
the pod.yml file is located. If you’re currently in the App
directory (check with pwd), you’ll need to back up one
directory level with the “ cd .. ” command.

Deploy the Pod with the following command.

$ kubectl apply -f pod.yml

pod/first-pod created

The command sent the pod.yml file to the API server, where
the request was authenticated and authorized using the
credentials from your kubeconfig file. After that, Kubernetes
added the Pod definition to the cluster store, and the scheduler
allocated it to a worker node.

Check to see if it’s running. It may take a few seconds for
Kubernetes to pull the image and start it.

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

first-pod 1/1 Running 0 32s

Congratulations, the containerized app is running inside a Pod
on your Kubernetes cluster!

Inspect the app

kubectl provides the get and describe commands to
query the configuration and state of objects. You’ve already
seen that kubectl get provides very basic info. The following
example shows a kubectl describe , which returns a lot
more detail. In fact, I’ve trimmed the output so it only shows the
most relevant parts. Take a minute to look through the output.

$ kubectl describe pod first-pod

Name: first-pod

Namespace: default

Node: desktop-worker/172.19.0.4

Labels: project=qsk-book

Status: Running

IP: 10.244.2.2

Containers:

 web-ctr:

 Container ID: containerd://c8d2f10fc11dba5d8ef...7b66f36c0bc

 Image: nigelpoulton/qsk-book:1.0

 Port: 8080/TCP

 State: Running

 <Snip>

Conditions:

 Type Status

 Initialized True

 Ready True

 ContainersReady True

 PodScheduled True

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 <Snip>

 Normal Started 51s kubelet Started container web-ctr

The Pod is up, and it has an IP address. However, this is an
internal IP address that isn’t accessible from outside the cluster.
You need to put a Kubernetes Service in front of the app if you
want to access it from outside the cluster.

Connect to the app

We always connect to Pods through a Service.

A Service is a Kubernetes object designed to provide stable
networking for Pods. As shown in Figure 6.4, they have a front-
end and a back-end. The front-end provides a name, IP, and
port that clients can send requests to. The back-end forwards
these requests to Pods with matching labels.

Figure 6.4

We often use the term object when referring to things running
on Kubernetes. You’ve already deployed a Pod object, and
you’re about to deploy a Service object. We also capitalize the
first letter of Kubernetes objects so that it’s clear we’re referring
to the Kubernetes objects and not something else. For example,
Pod, Service, Deployment, and Ingress are all names of
Kubernetes objects that have other meanings outside of
Kubernetes. By capitalizing the first letter, you can be sure
we’re referring to the Kubernetes object.

Your first Kubernetes Service

We’ll deploy the Service defined in the svc.yml file in the root
folder of the book’s GitHub repo.

Here’s what the file looks like.

1 kind: Service

2 apiVersion: v1

3 metadata:

4 name: svc-lb

5 spec:

6 type: LoadBalancer

7 ports:

8 - port: 5555

9 targetPort: 8080

10 selector:

11 project: qsk-book

Let’s step through it.

The first two lines are similar to the Pod YAML. They tell
Kubernetes to deploy a Service object using the v1 specification.

The metadata section names the Service svc-lb. Other Pods on
the cluster can connect to this name if they need to access the
Pods behind it.

The spec section is where the magic happens. This one defines
a LoadBalancer Service that accepts traffic on port 5555 and
forwards it on port 8080 to any Pods with the project=qsk-
book label. If your cluster is in the cloud, it will provision one
of your cloud’s internet-facing load balancers. If your cluster is
on Docker Desktop, it will be accessible on localhost .

Figure 6.5 shows a Kubernetes cluster on the Civo Cloud. The
app in the Pod is listening on port 8080 and fronted by the svc-
lb Service. As this is a LoadBalancer Service, it creates an
internet-facing load balancer on the Civo cloud that listens on
the internet on port 5555 . Clients hitting the load balancer on
that port will be routed to the Pod.

Figure 6.5

A quick word on labels

Labels are the main way that Kubernetes connects objects.

If you look closely at the pod.yml and svc.yml files, you’ll
see they both reference the project: qsk-book label.

Figure 6.6

The Service accepts traffic on port 5555 and forwards it to all
Pods with the project=qsk-book label on port 8080 . It also
maintains an up-to-date list of Pods with the label.

Currently, only one Pod has the label. However, if you add more,
Kubernetes will forward traffic to them all. You’ll see this in the
next chapter.

Deploy the Service

As with Pods, you deploy Services with kubectl apply .

Run the following command to deploy the Service. Be sure to
run it from the qsk-book folder where the svc.yml file is
located.

$ kubectl apply -f svc.yml

service/svc-lb created

Verify the Service is up and running. You can also run a
kubectl describe svc svc-lb command to get more
detailed info.

$ kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

svc-lb LoadBalancer 10.96.118.148 localhost 5555:304

Your output may show <pending> in the EXTERNAL-IP
column while your cloud provisions an internet-facing load
balancer. This can take a few minutes on some cloud platforms.

Let’s look closer at the output.

The Service is called svc-lb, and the type is correctly set as
LoadBalancer.

The CLUSTER-IP is the Service’s internal IP address and is
what Pods on the same cluster will use to access it.

The EXTERNAL-IP is the address we’ll use to connect to the
app. If you’re following along on a cloud, this will be a public IP
or DNS name you can access from the internet. If you’re using
Docker Desktop, it may be localhost or another IP address
you can access from your local machine.

The PORT(S) column lists the ports the Service is accessible
on. We’ll use the first value, 5555 .

Point a browser to the address in the EXTERNAL-IP column on
port 5555 to see the app. If you’re using Docker Desktop and
the IP doesn’t work, try again with localhost:5555 .

Figure 6.7

Congratulations, you’ve containerized an app, deployed it to
Kubernetes in a Pod, and used a Service to connect to it.

Clean-up

Let’s tidy things up ready for the next chapter.

Run the following command to delete the Pod. It may take a few
seconds for the Pod to terminate while it waits for the app to
gracefully shut down.

$ kubectl delete pod first-pod

pod "first-pod" deleted

Leave the Service running as you’ll use it again in future
chapters.

Chapter summary

In this chapter, you learned that containerized apps have to be
wrapped in Pods if they want to run on Kubernetes.
Fortunately, Pods are lightweight constructs and add no
overhead.

You saw a simple Pod defined in a YAML file and learned how to
deploy it to Kubernetes with the kubectl apply command.
You also learned how to inspect objects with kubectl get and
kubectl describe .

Finally, you learned that Kubernetes Services make Pods
accessible outside the cluster.

So far, you’ve built, deployed, and connected to a containerized
app. However, you haven’t seen self-healing, scaling, or any
other cloud-native features. You’ll perform all of these in the
upcoming chapters.

7: Self-healing

In this chapter, you’ll learn about the Kubernetes Deployment
object and use it to make the sample app resilient.

I’ve arranged the chapter as follows:

Intro to Kubernetes Deployments
Self-heal from an app failure
Self-heal from an infrastructure failure

Intro to Kubernetes Deployments

Kubernetes has lots of objects that add features and capabilities.
You’ve already used a Service object to add networking, and
you’re about to use a Deployment object to add self-healing
(resiliency). In the upcoming chapters, you’ll expand the same
Deployment object to enable scaling and rolling updates.

As with Pods and Services, you define Deployments in YAML
manifest files.

Figure 7.1 shows the Deployment manifest we’ll use. It’s marked
up to show the container nested in the Pod and the Pod nested
in the Deployment.

Figure 7.1

It’s important to understand that each level of nesting, or
wrapping, adds something:

The container adds the OS and app dependencies
The Pod adds metadata so it can run on Kubernetes
The Deployment adds cloud-native features such as self-
healing, scaling, and rollouts

How Deployments work

There are two main parts to Deployments.

1. The object
2. The controller

At the highest level, the object holds the definition, whereas the
controller implements it and makes sure it runs properly.

Consider a quick example.

You have a Deployment YAML that defines a Pod and requests
five replicas. You use kubectl to post it to the API server, and
five Pods get scheduled to the cluster.

At this point, desired state and observed state are in sync — you
asked for five Pods, and you’ve got five Pods. But let’s say a node
running one of the Pods fails, causing you to drop from five
Pods to four. Observed state no longer matches desired state.

Without Kubernetes, this would be a problem that a person
would need to fix. However, the Kubernetes Deployment
controller constantly watches the cluster and will notice the
change. It knows you desire five Pods, but it can only observe
four. So, it’ll start a new Pod to bring observed state back into
sync with desired state.

The technical term for this is reconciliation, but we often call it
self-healing.

Let’s test it.

Self-heal from an app failure

In this section, you’ll use a Kubernetes Deployment to deploy
five replicas of a Pod. After that, you’ll manually delete a Pod
and see Kubernetes self-heal.

You’ll use the deploy.yml file in the root of the book’s GitHub
repo. It defines five replicas of the app you containerized in
previous chapters.

kind: Deployment <<---- Type of object

apiVersion: apps/v1 <<---- Version of object schema

metadata:

 name: qsk-deploy

spec:

 replicas: 5 <<---- How many Pod replicas

 selector:

 matchLabels: <<---- Tells the Deployment con

 project: qsk-book <<---- to manage Pods with this

 template:

 metadata:

 labels:

 project: qsk-book <<---- Give all Pods this label

 spec:

 containers:

 - name: web-ctr

 imagePullPolicy: Always <<---- Never use local images

 ports:

 - containerPort: 8080 <<---- Network port

 image: nigelpoulton/qsk-book:1.0 <<---- Container ima

We use the terms Pod, instance, and replica to mean the same
thing — a Pod running a containerized app.

Check your cluster for any existing Pods and Deployments.

$ kubectl get pods

No resources found in default namespace.

$ kubectl get deployments

No resources found in default namespace.

Now use kubectl to deploy the Deployment to your cluster.
Run the command from the same folder as the deploy.yml
file.

$ kubectl apply -f deploy.yml

deployment.apps/qsk-deploy created

Check the status of the Deployment and the Pods it’s managing.

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

qsk-deploy 5/5 5 5 10s

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

qsk-deploy-85dffd5d64-4rbdr 1/1 Running 0 26s

qsk-deploy-85dffd5d64-df88c 1/1 Running 0 26s

qsk-deploy-85dffd5d64-f256l 1/1 Running 0 26s

qsk-deploy-85dffd5d64-mhpfc 1/1 Running 0 26s

qsk-deploy-85dffd5d64-qsjn2 1/1 Running 0 26s

You requested five replicas, and you’ve got five replicas. This
means the observed state matches your desired state, and
there’s no more work for the Deployment controller to do.
However, the controller keeps running in the background,
constantly comparing the current state of the cluster with your
desired state.

Delete a Pod

As with all software, Pods and their apps can crash and fail.
However, if a Deployment controller manages them, Kubernetes
will attempt to recover from failures by starting new Pods to
replace failed ones.

Run a kubectl delete pod command to manually delete one
of the Pods. You’ll need to use a Pod name from your
environment, and it may take a few seconds for the Pod to
delete.

$ kubectl delete pod qsk-deploy-85dffd5d64-4rbdr

pod "qsk-deploy-85dffd5d64-4rbdr" deleted

As soon as the Pod disappears, observed state will drop to four
and no longer match the desired state of five. The Deployment
controller will notice this and automatically start a new one so
that observed state goes back to five.

List the Pods again to see if Kubernetes started a new one.

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

qsk-deploy-85dffd5d64-9kvn9 1/1 Running 0 40s

qsk-deploy-85dffd5d64-df88c 1/1 Running 0 3m5

qsk-deploy-85dffd5d64-f256l 1/1 Running 0 3m5

qsk-deploy-85dffd5d64-mhpfc 1/1 Running 0 3m5

qsk-deploy-85dffd5d64-qsjn2 1/1 Running 0 3m5

Notice how the first Pod in the list has only been running for 40
seconds. This is the new one Kubernetes automatically created
to reconcile desired state.

Congratulations. You just simulated an app failure, and
Kubernetes self-healed without needing help.

Let’s see how Kubernetes deals with an infrastructure failure.

Self-heal from an infrastructure failure

In this section, we’ll simulate an infrastructure failure by
deleting a worker node.

When a worker node fails, all Pods on the node are lost.
However, if the Pods are managed by a Deployment controller,
Kubernetes will start replacements on surviving nodes.

If your cluster is on a cloud that implements node pools, your
cloud will also replace the failed node. However, this is a
feature of your cloud’s hosted Kubernetes service and not a
feature of Deployments — Deployments only heal Pods.

You can only follow the steps in this section if you have a multi-
node cluster and have the ability to delete worker nodes. If you
built a multi-node cluster on the Civo Cloud, as explained in
Chapter 3, you can follow along. You cannot follow along on
Docker Desktop as there’s no documented way to delete a
cluster node.

The following command lists all Pods and the worker nodes
they’re running on. I’ve trimmed the output to fit the book, and
the Pod names are different to the previous examples because
these are from a different cluster I have running on the cloud.

$ kubectl get pods -o wide

NAME READY STATUS AGE NODE

qsk-deploy-668c8bdb95-29lpt 1/1 Running 5 mins k3s..

qsk-deploy-668c8bdb95-5lbx7 1/1 Running 5 mins k3s..

qsk-deploy-668c8bdb95-gxdds 1/1 Running 5 mins k3s..

qsk-deploy-668c8bdb95-hm6qj 1/1 Running 5 mins k3s..

qsk-deploy-668c8bdb95-wdzp8 1/1 Running 5 mins k3s..

See how Kubernetes has spread the five Pods across all three
worker nodes.

The next step will delete the k3s…worker1 worker node and
kill the two Pods running on it.

The following process shows how to delete the worker node on
Civo Cloud Kubernetes. Deleting it this way simulates sudden
node failure. Other clouds are different and you cannot do this
on Docker Desktop clusters.

1. Open your Kubernetes cluster in the Civo dashboard
2. Scroll down to Node Pools
3. Click the X on the node you wish to delete
4. Click Recycle node

Figure 7.2

The following command verifies the node is no longer part of
the cluster. It can take a minute or two for the missing node to
disappear from the command output, but if you wait too long,
the Civo cloud will automatically replace it.

$ kubectl get nodes

NAME STATUS ROLES AGE V

k3s-qsk-885e-8a46b7-node-pool-worker2 Ready <none> 2h v

k3s-qsk-885e-8a46b7-node-pool-worker3 Ready <none> 2h v

The worker1 node is deleted, and the output only returns the
two remaining healthy nodes.

The Deployment controller creates replacement Pods as soon as
it notices the missing ones. Run the following command to
verify this. It may take a few seconds for the replacement Pods
to reach the Running state.

$ kubectl get pods -o wide

NAME READY STATUS AGE

qsk-deploy-668c8bdb95-5lbx7 1/1 Running 6 mins

qsk-deploy-668c8bdb95-gxdds 1/1 Running 6 mins

qsk-deploy-668c8bdb95-wdzp8 1/1 Running 6 mins

qsk-deploy-668c8bdb95-dfg4p 1/1 ContainerCreating 20 secs

qsk-deploy-668c8bdb95-5gsrf 1/1 ContainerCreating 20 secs

The output shows Kubernetes creating two new Pods to replace
the two that were lost when we deleted the k3s…worker1 node.
Both have been scheduled to surviving worker nodes.

You can verify the state of the Deployment with the following
command.

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

qsk-deploy 5/5 5 5 6m

Congratulations. You’ve simulated an infrastructure failure, and
Kubernetes automatically replaced the missing Pods.

After a few more minutes, Civo Cloud will replace the deleted
node and return the cluster to three worker nodes. This is a
feature of Civo Cloud and not the Kubernetes Deployment
controller. It works because Civo Cloud’s implementation of
node pools also has the notion of desired state. When I created
the cluster, I requested three worker nodes. When one of them
failed, the Civo cloud noticed the change and added a new one
to keep the cluster at three.

Although the cluster is back to three worker nodes, Kubernetes
won’t re-balance your existing Pods across all available nodes.
This means you’ll have a three-node cluster with all Pods
running on just two nodes.

Chapter summary

In this chapter, you learned that Kubernetes has a Deployment
object that works with the Deployment controller to implement
self-healing of Pods. The Deployment controller runs on the
control plane, ensuring observed state matches desired state.

You also saw how Deployments wrap Pods, which in turn wrap
containers, which in turn wrap applications.

You used kubectl to deploy an app via a Deployment object
and tested self-healing. You manually deleted a Pod and a
worker node and watched Kubernetes self-heal from both
failures.

Civo Cloud Kubernetes also replaced the deleted/broken worker
node.

8: Scaling the app

In this chapter, you’ll scale the app up and down. The methods
you’ll learn are manual and require a human to implement
them. In the real world, you’ll use objects like the Horizontal
Pod Autoscaler (HPA) to make scaling automatic. These are
beyond the scope of a quick start book, but the things you’ll
learn here will serve as a solid foundation for more advanced
techniques.

I’ve split the chapter as follows.

Pre-requisites
Scale an application up
Scale an application down
The role of labels
Declarative vs imperative

Pre-requisites

If you’ve been following along, you’ll already have a single
Deployment managing five replicas of the app you
containerized in Chapter 5. You’ll also have a Kubernetes
Service providing networking for the Pods. If you already have
these, you can skip to the Scale an application up section.

If you haven’t followed along, run the following commands to
deploy the app and Service. You’ll need a working cluster, and
be sure to run the command from the root of the book’s GitHub
repo where the deploy.yml and svc.yml files are located.

$ kubectl apply -f deploy.yml -f svc.yml

deployment.apps/qsk-deploy created

Run these commands to make sure they’re running.

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

qsk-deploy 5/5 5 5 96 seconds

$ kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

svc-lb LoadBalancer 10.96.118.148 172.19.0.7 5555:30

You can move to the next section as soon as all five replicas and
the Service are running.

Scale an application up

In this section, you’ll edit the Deployment YAML file, increase
the replica count to ten, and re-send the file to Kubernetes. This
will kick off the reconciliation process and increase the number
of replicas to ten.

Before doing this, it’s important to know that the unit of scaling
in Kubernetes is the Pod. This means Kubernetes adds Pods to
scale up and deletes Pods to scale down.

Check the current number of replicas.

$ kubectl get deployment qsk-deploy

NAME READY UP-TO-DATE AVAILABLE AGE

qsk-deploy 5/5 5 5 16m

Use your favorite editor to edit the deploy.yml file, set the
spec.replicas field to 10, and save your changes.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: qsk-deploy

spec:

 replicas: 5 <<---- Change this to 10

 selector:

 matchLabels:

 project: qsk-book

<Snip>

Be sure you’ve saved your changes.

Three important things will happen when you re-send the file
to Kubernetes:

1. The desired state will change from five replicas to ten
2. The Deployment controller will observe the five replicas and

realize it doesn’t match the desired state of ten
3. The Deployment controller will schedule five new replicas to

increase the total number to ten

This is the exact same reconciliation process you saw when
Kubernetes self-healed from Pod failures — observed state
didn’t match desired state, so Kubernetes fixed it.

Run the following command to send the updated file to
Kubernetes.

$ kubectl apply -f deploy.yml

deployment.apps/qsk-deploy configured

Run a couple of commands to check the status of the
Deployment and verify it’s now managing ten Pods.

$ kubectl get deployment qsk-deploy

NAME READY UP-TO-DATE AVAILABLE AGE

qsk-deploy 10/10 10 10 19m

$ kubectl get pods

NAME READY STATUS AGE

qsk-deploy-668c8bdb95-5lbx7 1/1 Running 19 mins

qsk-deploy-668c8bdb95-gxdds 1/1 Running 19 mins

qsk-deploy-668c8bdb95-wdzp8 1/1 Running 19 mins

qsk-deploy-668c8bdb95-dfg4p 1/1 Running 14 mins

qsk-deploy-668c8bdb95-5gsrf 1/1 Running 14 mins

qsk-deploy-668c8bdb95-28scb 1/1 Running 41 secs <<-

qsk-deploy-668c8bdb95-dgs9s 1/1 Running 41 secs <<-

qsk-deploy-668c8bdb95-h7pp7 1/1 Running 41 secs <<-

qsk-deploy-668c8bdb95-q54kq 1/1 Running 41 secs <<-

qsk-deploy-668c8bdb95-sb8wm 1/1 Running 41 secs <<-

The new Pods might take a few seconds to start, but you can
quickly identify them based on their age.

If you followed the examples in the previous chapter and
deleted a node, Kubernetes will schedule most of the new Pods
on the new node. This is Kubernetes trying to balance the Pods
across all your worker nodes.

Congratulations. You’ve manually scaled the application from
five replicas to ten using the declarative method. This is jargon
for declaring a new desired state in the YAML file and using the
file to update the cluster. We’ll explain this in greater detail
later.

Scale an application down

In this section, you won’t edit and re-post the YAML file.
Instead, you’ll use the kubectl scale command to scale the

number of Pods back down to five. We call this the imperative
method and it’s not as recommended as the declarative method.

Run the following command.

$ kubectl scale --replicas 5 deployment/qsk-deploy

deployment.apps/qsk-deploy scaled

Check the number of Pods. As always, deleted Pods can take a
few seconds to fully terminate. After a few seconds, you’ll only
see the five remaining Pods.

$ kubectl get pods

NAME READY STATUS RESTARTS A

qsk-deploy-668c8bdb95-5lbx7 1/1 Running 0 2

qsk-deploy-668c8bdb95-gxdds 1/1 Running 0 2

qsk-deploy-668c8bdb95-wdzp8 1/1 Running 0 2

qsk-deploy-668c8bdb95-dfg4p 1/1 Running 0 1

qsk-deploy-668c8bdb95-5gsrf 1/1 Running 0 1

Congratulations. You’ve imperatively scaled the application
back down to five replicas.

Jargon: Imperative means using the CLI instead of editing
and re-posting the YAML file.

The role of labels

Deployments use labels to ensure they only manage the Pods
they created.

Whenever a Deployment creates a Pod, it gives the new Pod a
label. It then uses this label to keep track of which Pods it
created and can manage.

For example, Figure 8.1 shows a single Deployment and five
Pods. However, only four of the Pods were created by the
Deployment and have its label. The Deployment doesn’t manage
the one on the far right because it has a different label.

Figure8.1

Consider a couple of quick examples.

If you scale the Deployment down from four Pods to two, it will
only delete Pods with the app=qsk label.

If you scale it up, Kubernetes will add more Pods with the same
label.

This means existing Services sending traffic to the Deployment’s
Pods will automatically send traffic to the new Pods as they’ll
have the same label. You can see this in Figure 8.2

Figure8.2

Declarative vs imperative

You’ve seen two ways to perform updates:

Declaratively
Imperatively

The declarative method is preferred and requires you to
perform all updates by updating the YAML configuration files
and re-sending them to Kubernetes.

The imperative method uses CLI commands to perform updates
and isn’t recommended for live production environments.

Consider the following example.

You have a Deployment YAML file defining four replicas of a Pod
that you deploy to your cluster. Everything is fine until demand
increases and the app starts responding slowly. Somebody else
comes along and runs a kubectl scale command to increase
the number of replicas from four to eight. This fixes the slow
response times, but the state of the cluster and the YAML file are
no longer in sync — the cluster is running eight replicas, but the
Deployment YAML file only defines four.

Sometime later, you need to push a new version of the app. To
accomplish this, you open the YAML file, update the image
version it references, save your changes, and re-post the file to the
cluster. This successfully updates the version of the app, but it
also decreases the number of replicas to four!

If demand is still high, the app will start responding slowly again,
and you may think the problem is with the new version and not
realize you accidentally reduced the number of replicas.

Reasons like this are why it’s considered a good practice to
manage everything declaratively.

Edit your deploy.yml file, set the number of replicas back to
five, and save your changes. It now matches the observed state
of your cluster.

Chapter summary

In this chapter, you learned how to manually scale a
Deployment by editing its YAML file and re-sending it to
Kubernetes. This is called the declarative method. You also saw
that it’s possible to perform scaling operations using the
kubectl scale command. This is the imperative method and
not recommended.

9: Performing a rolling update

In this chapter, you’ll perform a zero-downtime rolling update
on the app we’ve been using in the previous chapters. If you’re
unsure what a zero-downtime rolling update is, great, you’re
about to find out.

We’ll divide this chapter as follows.

Pre-requisites
Performing a rollout

Pre-requisites

If you’ve followed along in previous chapters, you’ll already
have the qsk-deploy Deployment managing five replicas and
the svc-lb Service providing stable networking. If you do, skip
to the Performing a rollout section.

If you haven’t followed along, complete these steps to get ready.

1. Get a Kubernetes cluster and configure kubectl (see
Chapter 3)

2. Clone the book’s GitHub repo
3. Deploy the sample app and Service

If you haven’t already done so, clone the book’s GitHub repo
and change into the qsk-book folder.

$ git clone https://github.com/nigelpoulton/qsk-book.git

Cloning into 'qsk-book'...

$ cd qsk-book

Run the following command to deploy the app and the Service.
Be sure to run it from the qsk-book folder.

$ kubectl apply -f deploy.yml -f svc.yml

deployment.apps/qsk-deploy created

service/svc-lb created

Run a kubectl get deployments and a kubectl get svc
command to make sure the application and Service are
running.

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

qsk-deploy 5/5 5 5 18s

$ kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

svc-lb LoadBalancer 10.43.156.109 74.220.16.41 5555:31773/

It may take a minute for all five Pods to enter the ready state
and the Service to get a public IP (“localhost” on Docker
Desktop). Once you have these, proceed to the next section.

Deploy the rollout

In this section, you’ll perform a rolling update so that all five
replicas run a new version of the app. You’ll force Kubernetes to
update one replica at a time, with a short pause between each.

On the jargon front, we use the terms rollout, update, and
rolling update to mean the same thing.

Figure 9.1 shows the high-level process of updating a running
app to a new version. I’ve already completed steps 1-3 so we
can focus on step 4.

Figure 9.1

You’ll complete the following:

1. Edit the deploy.yml file to configure the update settings
and specify the new version of the image

2. Re-send the updated YAML file to Kubernetes
3. Observe the update process
4. Test the new version

Edit the Deployment YAML file

Open the deploy.yml file and make all the changes shown in
the following snippet.

Lines 10-15 tell Kubernetes how to perform the update (we’ll
explain these soon)
Line 26 updates the image to version 1.1 (the image is already
built and hosted on Docker Hub)

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: qsk-deploy

5 spec:

6 replicas: 5

7 selector:

8 matchLabels:

9 project: qsk-book

10 minReadySeconds: 20 <<---- Add this line

11 strategy: <<---- Add this line

12 type: RollingUpdate <<---- Add this line

13 rollingUpdate: <<---- Add this line

14 maxSurge: 1 <<---- Add this line

15 maxUnavailable: 0 <<---- Add this line

16 template:

17 metadata:

18 labels:

19 project: qsk-book

20 spec:

21 containers:

22 - name: web-ctr

23 imagePullPolicy: Always

24 ports:

25 - containerPort: 8080

26 image: nigelpoulton/qsk-book:1.1 <<---- Set to 1.1

Before going any further, YAML is strict about proper
indentation. This means you need to be extra careful that
you’ve indented each new line the correct number of spaces.
Also, you cannot mix and match tabs and spaces in the same
file.

If you have issues editing the file, there is a pre-completed
version called rolling-update.yml that you can rename to
deployment.yml and use.

Be sure to save your changes.

Understand the update settings

You added the following six lines that tell Kubernetes how to
perform the update.

10 minReadySeconds: 20

11 strategy:

12 type: RollingUpdate

13 rollingUpdate:

14 maxSurge: 1

15 maxUnavailable: 0

minReadySeconds on line ten tells Kubernetes to wait 20
seconds after updating each replica. This means Kubernetes
will update the first replica, wait 20 seconds, update the second
replica, wait 20 seconds, update the third, etc.

Inserting waits like this allows you to run tests and ensure the
new replicas work as expected before updating them all. In the
real world, you’ll wait longer than 20 seconds between replica
updates.

Also, Kubernetes doesn’t actually update replicas. It deletes
existing replicas and replaces them with brand-new ones
running the new version.

Lines 11 and 12 force Kubernetes to perform the update using
the RollingUpdate strategy. This defaults to updating one replica
at a time and is different from the Recreate strategy that deletes
and replaces all Pods in one go.

Lines 14 and 15 force Kubernetes to update one Pod at a time as
follows…

maxSurge=1 gives Kubernetes permission to add one extra
Pod during the rollout process. In our case, the desired state is
five Pods, so this setting allows the rollout to temporarily surge
to six Pods. maxUnavailable=0 on line 15 prevents the update
from going below five Pods. When combined, lines 14 and 15
force Kubernetes to add a sixth replica with the new version
and then delete an existing replica running the old version. This
process repeats until all five Pods are replaced with new Pods
running the new version.

Perform the rolling update

Make sure you’ve saved your changes, then use kubectl
apply to send the updated configuration file to Kubernetes.

$ kubectl apply -f deploy.yml

deployment.apps/qsk-deploy configured

Kubernetes will record a new desired state of five Pods running
version 1.1 of the image in the cluster store. The Deployment
controller will observe the cluster, see that it’s managing five
Pods on a different version, and start replacing them, one at a
time, with a 20-second wait between each.

Monitor and check the rolling update

You can monitor the progress of the job with the following
command. I’ve trimmed the output to fit the page.

If your output looks different, it may be because you waited too
long to run the command, and the operation has already
completed.

$ kubectl rollout status deployment qsk-deploy

Waiting for rollout to finish: 1 out of 5 have been updated...

Waiting for rollout to finish: 1 out of 5 have been updated...

Waiting for rollout to finish: 2 out of 5 have been updated...

Waiting for rollout to finish: 2 out of 5 have been updated...

Waiting for rollout to finish: 3 out of 5 have been updated...

Waiting for rollout to finish: 3 out of 5 have been updated...

Waiting for rollout to finish: 4 out of 5 have been updated...

Waiting for rollout to finish: 4 out of 5 have been updated...

Waiting for rollout to finish: 2 old replicas are pending terminat

Waiting for rollout to finish: 1 old replicas are pending terminat

deployment "qsk-deploy" successfully rolled out

You can also point your web browser at the app and keep
refreshing the page. Some of your requests might return the
original version of the app, whereas others might return the
new version. Once all five replicas are up to date, all requests
will return the latest version.

Figure 9.2

Congratulations. You’ve performed a successful rolling update.

Clean-up

The following commands delete the Deployment and Service
from your cluster.

$ kubectl delete deployment qsk-deploy

deployment.apps "qsk-deploy" deleted

$ kubectl delete svc cloud-lb

service "cloud-lb" deleted

If your cluster is in the cloud, be sure to delete it when you no
longer need it. Failure to do this will incur unwanted costs and
consume unnecessary energy and resources.

Chapter summary

In this chapter, you learned how to use a Kubernetes
Deployment to perform a rolling update.

You edited the Deployment YAML file and added instructions to
control the flow of the update. You also updated the version of
the application image and sent the updated configuration to
Kubernetes. Finally, you monitored and verified the operation.

10: What next

Congratulations on finishing the book. I hope you loved it!

If you read it all and followed the examples, you’ve learned the
fundamentals and are ready for your next steps.

Here are some quick suggestions. And yes, I’m recommending
more of my own stuff. But here’s the truth.

If you like this book, you’ll love my other stuff
I’m super busy and don’t get a chance to read and test other
people’s stuff

Of course, if you didn’t like this, I’m gutted. But that’s life, and
you probably won’t like my other stuff either. If that’s you, I’d
love you to email me and tell me what you didn’t like at
qskbook@nigelpoulton.com.

Books

If you like books and want to continue your Kubernetes
journey, check out The Kubernetes Book. It follows on from
here, goes into a lot more detail, is regularly listed as a best-
seller on Amazon, has the most Amazon ratings and reviews of

all Kubernetes books, and is regularly listed as the best
Kubernetes book in annual ratings. I also update it annually.

If you liked this book and want a similar introduction to Docker,
check out my Getting Started with Docker book. You’ll also
learn how to deploy an LLM chatbot app with Docker.

Some of my books are also available in audio format so that you
can learn on the go. I do all the narrations, so there are no AI
voices or paid narrators who can’t pronounce Kubernetes. I also
tweak the audiobooks so they’re easier to listen to.

If you’re unsure about technical books in audio format, the
following Audible reviews should help.

Fantastic audiobook on a highly technical subject

This is probably the best example of how an audiobook on a very
technical topic should be! Nigel skips the dry stuff but explains
the concepts very clearly and even with some humor. He really
engages the listener. Even as a former k8s user, this more than
refreshed my memory, it also lamented me important concepts!

Super Engaging Overview of Kubernetes

Really enjoyed this overview of Kubernetes. Nigel’s narration of
the book is really engaging and he has adapted it well for an
audiobook. I will be looking out for more of his audiobooks :)

Video courses

If you like video courses, I’ve got lots on pluralsight.com.
They’re a lot of fun and apparently “laugh out-loud funny” —
not my words.

Events

I’m a huge fan of community events.

My favorite in-person event is KubeCon, and I recommend you
attend if you can. You’ll meet great people and learn a lot from
the sessions.

I also recommend local community meetups. Just google any of
the following to find one that is local to you.

“Kubernetes meetup near me”
“Cloud native meetup near me”

Show some love

I’d consider it a personal favor if you write a short review or
give the book some stars on Amazon. You can leave an Amazon
review if you got the book from somewhere else. Cheers!

Let’s connect

Finally, thanks again for reading my book. Feel free to connect
with me on any of the usual platforms where we can discuss
Kubernetes and other cool technologies.

• LinkedIn: Nigel Poulton

• Web: nigelpoulton.com

• BlueSky: @nigelpoulton

• X: @nigelpoulton

https://linkedin.com/in/nigelpoulton
https://nigelpoulton.com/
https://bsky.app/profile/nigelpoulton.bsky.social
https://twitter.com/nigelpoulton

• Email: gsd@nigelpoulton.com

Appendix A: Lab code

This appendix contains all the lab exercises from the book. It
assumes you’ve installed Docker, have a Kubernetes cluster,
installed the git CLI, and configured kubectl .

Chapter 5: Containerizing an app

Clone the book’s GitHub repo.

$ git clone https://github.com/nigelpoulton/qsk-book.git

Cloning into 'qsk-book'...

Change into the qsk-book/App directory and run an ls
command to list its contents.

$ cd qsk-book/App

$ ls

Dockerfile app.js bootstrap.css

package.json views

Run the following command to build the application into a
container image. Be sure to run it from within the App
directory. If you have a Docker Hub account, make sure you use
your own Docker account ID.

$ docker build -t nigelpoulton/qsk-book:1.0 .

[+] Building 66.9s (7/7) FINISHED 0.1s

<Snip>

=> naming to docker.io/nigelpoulton/qsk-book:1.0 0.0s

Verify that Docker created the image and that it’s present on
your local machine.

$ docker images

REPOSITORY TAG IMAGE ID CREATED

nigelpoulton/qsk-book 1.0 e7162dc0ab84 58 seconds ago

Push the image to Docker Hub. This step will only work if you
have a Docker account. Remember to substitute your Docker
account ID.

$ docker push nigelpoulton/qsk-book:1.0

The push refers to repository [docker.io/nigelpoulton/qsk-book]

5d81e947f003: Pushed

1570c05e389d: Pushed

f5c6876bb3d7: Pushed

<Snip>

392f6305b5da: Pushed

1.0: digest: sha256:e7162dc0ab84e0de6ea75698d5172...3de34c82190 si

Chapter 6: Running an app on Kubernetes

List the Nodes in your K8s cluster.

$ kubectl get nodes

NAME STATUS ROLES AGE VER

desktop-control-plane Ready control-plane 18h v1

desktop-worker Ready <none> 18h v1

desktop-worker2 Ready <none> 18h v1

Run the following from the root of the GitHub repo. If you’re
currently in the App directory, you’ll need to run a cd ..
command to back up one level.

Deploy the application defined in pod.yml .

$ kubectl apply -f pod.yml

pod/first-pod created

Check the Pod is running.

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

first-pod 1/1 Running 0 32s

Get detailed info about the running Pod. This output is snipped.

$ kubectl describe pod first-pod

Name: first-pod

Namespace: default

Node: desktop-worker/172.19.0.4

Labels: project=qsk-book

Status: Running

IP: 10.244.2.2

<Snip>

Deploy the Service.

$ kubectl apply -f svc.yml

service/svc-lb created

Check the external IP (public IP) of the Service. Your Service
will only have an external IP if it’s running on a cloud.

$ kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

svc-lb LoadBalancer 10.96.118.148 localhost 5555:304

Point your browser to the IP from the EXTERAL-IP column.

Run the following command to delete the Pod.

$ kubectl delete pod first-pod

pod "first-pod" deleted

Chapter 7: Self-healing

Run the following command to deploy the application specified
in deploy.yml . This will deploy the app with five Pod replicas.

$ kubectl apply -f deploy.yml

deployment.apps/qsk-deploy created

Check the status of the Deployment and Pods it is managing.

$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

qsk-deploy 5/5 5 5 10s

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

qsk-deploy-85dffd5d64-4rbdr 1/1 Running 0 26s

qsk-deploy-85dffd5d64-df88c 1/1 Running 0 26s

qsk-deploy-85dffd5d64-f256l 1/1 Running 0 26s

qsk-deploy-85dffd5d64-mhpfc 1/1 Running 0 26s

qsk-deploy-85dffd5d64-qsjn2 1/1 Running 0 26s

Delete one of the Pods. Be sure to use the name of a Pod from
your environment.

$ kubectl delete pod qsk-deploy-85dffd5d64-4rbdr

pod "qsk-deploy-85dffd5d64-4rbdr" deleted

List the Pods to see the new Pod Kubernetes automatically
started.

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

qsk-deploy-85dffd5d64-9kvn9 1/1 Running 0 40s

qsk-deploy-85dffd5d64-df88c 1/1 Running 0 3m5

qsk-deploy-85dffd5d64-f256l 1/1 Running 0 3m5

qsk-deploy-85dffd5d64-mhpfc 1/1 Running 0 3m5

qsk-deploy-85dffd5d64-qsjn2 1/1 Running 0 3m5

The new Pod is the one that’s been running for less time than
the others.

Chapter 8: Scaling the app

Edit the deploy.yml file and change the number of replicas
from five to ten. Save your changes.

Re-send the Deployment to Kubernetes.

$ kubectl apply -f deploy.yml

deployment.apps/qsk-deploy configured

Check the status of the Deployment and Pods.

$ kubectl get deployment qsk-deploy

NAME READY UP-TO-DATE AVAILABLE AGE

qsk-deploy 10/10 10 10 19m

$ kubectl get pods

NAME READY STATUS AGE

qsk-deploy-668c8bdb95-5lbx7 1/1 Running 19 mins

qsk-deploy-668c8bdb95-gxdds 1/1 Running 19 mins

qsk-deploy-668c8bdb95-wdzp8 1/1 Running 19 mins

qsk-deploy-668c8bdb95-dfg4p 1/1 Running 14 mins

qsk-deploy-668c8bdb95-5gsrf 1/1 Running 14 mins

qsk-deploy-668c8bdb95-28scb 1/1 Running 41 secs <<-

qsk-deploy-668c8bdb95-dgs9s 1/1 Running 41 secs <<-

qsk-deploy-668c8bdb95-h7pp7 1/1 Running 41 secs <<-

qsk-deploy-668c8bdb95-q54kq 1/1 Running 41 secs <<-

qsk-deploy-668c8bdb95-sb8wm 1/1 Running 41 secs <<-

Scale the app down with kubectl scale .

$ kubectl scale --replicas 5 deployment/qsk-deploy

deployment.apps/qsk-deploy scaled

Check the number of Pods.

$ kubectl get pods

NAME READY STATUS RESTARTS A

qsk-deploy-668c8bdb95-5lbx7 1/1 Running 0 2

qsk-deploy-668c8bdb95-gxdds 1/1 Running 0 2

qsk-deploy-668c8bdb95-wdzp8 1/1 Running 0 2

qsk-deploy-668c8bdb95-dfg4p 1/1 Running 0 1

qsk-deploy-668c8bdb95-5gsrf 1/1 Running 0 1

Edit the deploy.yml file and set the number of replicas back
to five and save your changes.

Chapter 9: Performing a rolling update

Edit the deploy.yml file and change the image version from
1.0 to 1.1.

Also, add the following lines in the spec section. See
rolling-update.yml for reference.

minReadySeconds: 20

strategy:

 type: RollingUpdate

 rollingUpdate:

 maxSurge: 1

 maxUnavailable: 0

Save your changes.

Send the updated YAML file to Kubernetes.

$ kubectl apply -f deploy.yml

deployment.apps/qsk-deploy configured

Check the status of the rolling update.

$ kubectl rollout status deployment qsk-deploy

Waiting to finish: 1 out of 5 new replicas have been updated...

Waiting to finish: 1 out of 5 new replicas have been updated...

Waiting to finish: 2 out of 5 new replicas have been updated...

<Snip>

The following commands will clean up by deleting the
Deployment and Service objects.

$ kubectl delete deployment qsk-deploy

deployment.apps "qsk-deploy" deleted

$ kubectl delete svc svc-lb

service "svc-lb" deleted

If your Kubernetes cluster is running in the cloud, remember to
delete it when you’re done. This avoids wasting resources,
energy, and money.

Terminology

This glossary defines some of the most common Kubernetes-
related terms used in the book. I’ve only included terms used in
the book. For a more comprehensive coverage of Kubernetes,
see The Kubernetes Book.

Ping me if you think I’ve missed anything important:

qskbook@nigelpoulton.com
https://nigelpoulton.com/contact-us
https://twitter.com/nigelpoulton
https://www.linkedin.com/in/nigelpoulton/

As always, I know that some of you are passionate about
definitions of technical terms. That’s OK, and I’m not saying my
definitions are better than anyone else’s — they’re just here to
be helpful.

Term Definition (according to Nigel)

API Server

Part of the Kubernetes control plane and
runs on all control-plane nodes. All
communication with Kubernetes goes
through the API Server. kubectl
commands and responses go through the
API Server.

Container

Application and dependencies packaged
to run on Docker or Kubernetes. As well
as application stuff, every container is an
isolated virtual operating system with its
own process tree, filesystem, shared
memory, and more.

Term Definition (according to Nigel)

Cloud-native

An application that can self-heal, scale on-
demand, and can perform rolling updates
and rollbacks. They’re usually
microservices apps and run on
Kubernetes.

Container
runtime

Low-level software running on every
Kubernetes worker node. Responsible for
pulling container images and starting and
stopping containers. The most famous
container runtime is Docker, however,
containerd is now the most popular
container runtime used by Kubernetes.

Term Definition (according to Nigel)

Controller

Control plane process running as a
reconciliation loop monitoring the cluster
and ensuring the observed state of the
cluster matches desired state.

Control plane
node

Cluster node running control plane
services. The brains of a Kubernetes
cluster. You should deploy three or five
for high availability.

Cluster store
Part of the control plane that holds the
state of the cluster and apps.

Term Definition (according to Nigel)

Deployment

Controller that deploys and manages a set
of stateless Pods. Performs rolling
updates and rollbacks and can self-heal
from Pod failures.

Desired state

What the cluster and apps should be like.
For example, an application’s desired
state might be five replicas of xyz
container listening on port 8080/tcp.

K8s

Shorthand way to write Kubernetes. The
“8” replaces the eight characters in
Kubernetes between the “K” and the “s”.
Pronounced “Kates”.

Term Definition (according to Nigel)

kubectl
Kubernetes command line tool. Sends
commands to the API Server and queries
state via the API Server.

Kubelet

The main Kubernetes agent running on
every cluster node. It watches the API
Server for new work assignments and
maintains a reporting channel back.

Label
Metadata applied to objects for grouping.
For example, Services send traffic to Pods
based on matching labels.

Term Definition (according to Nigel)

Manifest file

YAML file that holds the configuration of
one or more Kubernetes objects. For
example, a Service manifest file is
typically a YAML file that holds the
configuration of a Service object. When
you post a manifest file to the API Server,
its configuration is deployed to the cluster.

Microservices

A design pattern for modern applications.
Application features are broken into their
own small applications
(microservices/containers) and
communicate via APIs. They work
together to form a useful application.

Term Definition (according to Nigel)

Node

Also known as worker node. The nodes in
a cluster that run user applications. Must
run the kubelet process and a container
runtime.

Observed
state

Also known as current state or actual
state. The most up-to-date view of the
cluster and running applications.

Orchestrator

Software that deploys and manages
microservices apps. Kubernetes is the
most popular orchestrator of
microservices apps.

Term Definition (according to Nigel)

Pod

A thin wrapper that enables containers to
run on Kubernetes. Defined in a YAML
file. The smallest unit of deployment on a
Kubernetes cluster.

Reconciliation
loop

A controller process watching the state of
the cluster via the API Server, ensuring
observed state matches desired state. The
Deployment controller runs as a
reconciliation loop.

Service

Capital “S”. Kubernetes object for
providing network access to apps running
in Pods. Can integrate with cloud
platforms and provision internet-facing
load balancers.

Term Definition (according to Nigel)

YAML
Yet Another Markup Language.
Kubernetes configuration files are written
in YAML.

More from the author

https://www.amazon.com/dp/1916585000
https://www.amazon.com/dp/1916585000

https://www.amazon.com/dp/1916585000

https://www.amazon.com/dp/1916585302
https://www.amazon.com/dp/1916585302

https://www.amazon.com/dp/1916585302

https://www.amazon.com/dp/1916585256
https://www.amazon.com/dp/1916585256

https://www.amazon.com/dp/1916585256

https://www.amazon.com/dp/B0DHHK2R85
https://www.amazon.com/dp/B0DHHK2R85

https://www.amazon.com/dp/B0DHHK2R85

	About the book
	Chapter overview
	What you’ll learn
	Will the book make you a Kubernetes expert
	Will you know what you’re talking about when you finish the book
	Editions
	Terminology and responsible language
	Feedback

	The sample app
	1: What is Kubernetes
	Microservices
	Cloud-native
	Orchestration
	Other useful Kubernetes things to know
	Chapter summary

	2: Why Kubernetes is so important
	Why the cloud providers need Kubernetes
	Why users need Kubernetes
	Chapter Summary

	3: Kubernetes architecture
	Control plane nodes and worker nodes
	Hosted Kubernetes
	Managing Kubernetes with the kubectl command line tool
	Chapter summary

	4: Getting Kubernetes
	Install Docker and kubectl with Docker Desktop
	Create a multi-node Kubernetes cluster with Docker Desktop
	Create a multi-node Kubernetes cluster in the Civo Cloud
	Get the sample app
	Chapter summary

	5: Containerizing an app
	Pre-requisites
	The sample app
	Containerize the app
	Share the image on a registry
	Chapter summary

	6: Running an app on Kubernetes
	Pre-reqs
	Deploy the app to Kubernetes
	Connect to the app
	Clean-up
	Chapter summary

	7: Self-healing
	Intro to Kubernetes Deployments
	Self-heal from an app failure
	Self-heal from an infrastructure failure
	Chapter summary

	8: Scaling the app
	Pre-requisites
	Scale an application up
	Scale an application down
	Chapter summary

	9: Performing a rolling update
	Pre-requisites
	Deploy the rollout
	Clean-up
	Chapter summary

	10: What next
	Books
	Video courses
	Events
	Show some love
	Let’s connect

	Appendix A: Lab code
	Chapter 5: Creating a containerized app
	Chapter 6: Running an app on Kubernetes
	Chapter 7: Adding self-healing
	Chapter 8: Scaling the app
	Chapter 9: Performing a rolling update

	Terminology
	More from the author

