RELIABILITY
ENGINEERING

inthe CLOUD

Strategies and Practices
for AI-Powered Cloud-Based
Systems

J rrrrrr @
~ ﬁ """ Py

: @ @ % FEEEEEE ‘_ﬁ\:\g_' %

SEEE L E

@ MARIYA BREYTER | CARLOS ROJAS

RELIABILITY
ENGINEERING

inthe CLOUD

Strategies and Practices
for Al-Powered Cloud-Based

@ MARIYA BREYTER | CARLOS ROJAS

About This eBook

ePUB is an open, industry-standard format for eBooks.
However, support of ePUB and its many features varies across
reading devices and applications. Use your device or app
settings to customize the presentation to your liking. Settings
that you can customize often include font, font size, single or
double column, landscape or portrait mode, and figures that
you can click or tap to enlarge. For additional information
about the settings and features on your reading device or app,

visit the device manufacturer’s Web site.

Many titles include programming code or configuration
examples. To optimize the presentation of these elements, view
the eBook in single-column, landscape mode and adjust the font
size to the smallest setting. In addition to presenting code and
configurations in the reflowable text format, we have included
images of the code that mimic the presentation found in the
print book; therefore, where the reflowable format may
compromise the presentation of the code listing, you will see a
“Click here to view code image” link. Click the link to view the
print-fidelity code image. To return to the previous page

viewed, click the Back button on your device or app.

Praise for Reliability Engineering in the
Cloud

“As someone deeply invested in achieving operational
excellence in the cloud, I found this book to be an absolute
game-changer. It’s a treasure trove of insights for engineering
leaders and software teams eager to boost the reliability of their
cloud-based systems. The authors write in a clear, engaging
style that makes complex concepts easy to grasp. I was
particularly impressed by how they illustrate the role of Al in
helping organizations anticipate failures, automate responses,
and enhance performance. In today’s rapidly evolving digital
landscape, I genuinely believe this resource is essential for

anyone looking to stay ahead of the curve.”
—Valeria Sadovykh, Technology Strategist, Microsoft

“Reliability Engineering in the Cloud is a must-read for anyone
aiming to build resilient, scalable, and high-performing cloud
systems. With actionable insights, real-world case studies, and
strategies leveraging cutting-edge technologies, this book offers
a comprehensive guide to ensuring system reliability,
optimizing operations and fostering a culture of continuous

improvement.”

—Abhishek Agarwal, author of Product Mastery

“Dr. Breyter delivers yet another brilliant work, showcasing her
position as a thought leader in enterprise transformation and
technical product strategy. Her extensive hands-on experience
across diverse industries, mastery of agile methodologies, and
commitment to exploring cutting-edge technologies all shine
through in this practical book. A must-read for any professional

focused on improving service reliability and business results.”

—Moshe Rasis, management consultant, executive coach, and

faculty at New York University

“This is an essential guide for building resilient, scalable, and
fault-tolerant systems. Covering everything from architecture
design and incident response to leveraging Gen Al and OKRs, it
provides actionable strategies for modern cloud environments.
With a focus on automation, observability, and continuous
improvement, this book equips teams to master cloud reliability
engineering. A must-read for anyone aiming to deliver reliable,

high-performing cloud solutions.”
—Naveen Ks, Agile coach

“Whether you’re a tech leader or a new engineer, this book

provides practical guidance on designing resilient architectures

and effective incident response using Al, ML, and gen Al to
align with OKRs. Mariya Breyter and Carlos Rojas offer an
indispensable resource for achieving operational excellence in
the Al-cloud era.”

—Piyush Sheth, senior lead (Product Enablement, Delivery) at
Wells Fargo Helping Enterprises in their Customer-Centric

Product Standup, Enabling Innovation, Delivery Journey

“Reliability Engineering in the Cloud by Mariya Breyter and
Carlos Rojas masterfully integrates Al-driven analytics and
Lean methodologies into cloud reliability engineering. This
guide bridges theoretical concepts with practical applications,
making it essential for those looking to optimize cloud
environments. It’s an indispensable resource for leaders and
engineers aiming to enhance operational excellence and
innovation within their organizations. A must-read for

mastering cloud reliability.”
—Srinivasaraju Vysyaraju, senior cybersecurity manager

“Reliability Engineering in the Cloud is an indispensable guide
for technology leaders managing large-scale, distributed cloud
systems. Breyter and Rojas deliver actionable insights on Al-

driven observability, fault-tolerant architectures, chaos

engineering, and operational automation, providing a
comprehensive framework to ensure high availability,
scalability, and resilience across mission-critical cloud

environments.”

—Ameesh Paleja, executive vice president, Platform

Technology, Capital One

“Knowing that strategies fail without proper execution, I highly
recommend this book. It equips engineering leaders to establish
lean cloud reliability practices. It offers practical frameworks,
crucial training, and leadership development techniques that
empower cross-functional teams to drive operational excellence
and continuous improvement across complex Al-supported

cloud environments.”
—Sara Pendergast, president, Advantage by Design, LLC

“An essential guide for enterprise leaders and engineers on how
to build reliable and resilient systems to ensure long-term

business success in the digital era.”

—Daria Kirilenko, former senior director, Information Risk

Research at Gartner

“This book is a must-read for anyone building or leading cloud-
based systems. Carlos Rojas, a successful technology executive,
provides a comprehensive guide to Cloud Reliability
Engineering, offering practical strategies, real-world examples,
and cutting-edge technologies to ensure resilient, scalable, and
reliable applications. A valuable resource for technology

leaders!”

—]JC Gutierrez, managing director, Technology and Innovation,
AWS

Reliability Engineering in the Cloud

Strategies and Practices for AlI-Powered Cloud-Based Systems
Mariya Breyter

Carlos Rojas

vy Addison-Wesley

Hoboken, New Jersey

Cover image: Omelchenko/Shutterstock

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed

with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation
of this book but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or

programs contained herein.

Please contact us with concerns about any potential bias at

Rearson.com/en-us/report-bias.html.

Author websites are not owned or managed by Pearson.
Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2025931218

Copyright © 2025 Pearson Education, Inc.

http://pearson.com/en-us/report-bias.html
http://informit.com/aw

All rights reserved. This publication is protected by copyright,
and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For
information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit pearson.com/en-

us/global-permission-granting.html.

ISBN-13: 978-0-13-539579-0

ISBN-10: 0-13-539579-8

$PrintCode

http://pearson.com/en-us/global-permission-granting.html
http://pearson.com/en-us/global-permission-granting.html

To my incredible husband, Grigority, who for over 30 years has
been my rock, my sounding board, and my greatest inspiration—
thank you for always believing in me, even when I doubted
myself. Max, your success as an aerospace engineer makes me
proud every day, and Anthony, your pursuit of excellence as a
Presidential Scholarship student gives me hope for the positive
impact of your generation on our future. You both are, in your

own ways, making this world a better place.

To my extraordinary colleagues over the years: Your diversity of
thought has fueled innovative solutions that continuously
redefine the boundaries of what’s possible in engineering and
technology. To all the women in engineering and the students I
mentor; thank you for your courage and vision—it’s an honor to
learn from you and see how you challenge the status quo. The
cloud may be a powerful tool, but it’s your creativity and

perseverance that truly reshape our world.
—Mariya Breyter

To my entire family, especially my dad, who gave me the gift of
education and taught me how to be a better man every day. To my
kids and wife, who created time for me to focus on this project. To
those who offered me words of encouragement during my early

days, who trusted me and challenged me to think differently, and

who shared their wisdom to build moments that matter
throughout my life. You all have been the inspiration to work
hard, learn every day, and set time aside to build the next
generation of technologists. You all have shown me how
iImportant it is to elevate others, how I need to hold the elevator
door for the next engineer who is going to be promoted or needs
to be recognized. I came to understand early on that their success
isn’t just their own—it’s a shared success that advances us all in

society.

—~Carlos Rojas

Contents

Preface
Acknowledgments
About the Authors

Chapter 1: Reliability Engineering in the Cloud: How to
Design, Build, Operate, and Stress-Test Highly Reliable

Systems
Cloud
Resilience
Reliability
Engineering
Engineering Excellence
How to Design and Build Resilient and Reliable
Applications
How Do You Know Your Application Is Truly Resilient
and Reliable?
What if You Find Potential Issues?
Will Stress Testing Help Uncover All Potential

Scenarios?

Setting Operational Excellence metrics to ensure your

Leveraging Lean Principles

Leveraging Artificial Intelligence

Leveraging Value Stream Mapping
Culture and Values
Operational Excellence
Summary
Q&A
Ensuring That Applications Can Handle Failure in a
Controlled Manner
Key Concepts
Fault Tolerance
High Availability
Service Level Indicators
Scalability

Immutable Infrastructure

Load Balancing
Recovery
Design Principles

Chaos Engineering

Validating Resilience

Summary

Q&A

Chapter 3: Incident Response for Fast Recovery: How to
Handle Incidents and How to Automate This Process to

Improve Time to Detect and Time to Recovery

Incident Response
Step 1: Detection
Step 2: Analysis
Step 3: Containment
Step 4: Mitigation
Step 5: Resolution

Step 6: Communication

Step 7: Documentation

Fast Recovery
Step 1: Minimize Downtime

Step 2: Restore Data

Step 3: Automate Recovery
Step 4: Implement Redundancy
Step 5: Test and Validate

Step 6: Prioritize Customer Experience

Step 7: Pursue Continuous Improvement

Incident Handling
Summary
Q&A

Chapter 4: Operational Excellence and Change Management:

How to Establish Efficient Processes and Maintain Best-in-
Class CRE Practices
Key Performance Indicators

Root Cause Analysis

Incident Reviews

Change Management

Case Study

Architecture and Reliability Assessments

Summary

Q&A
Chapter 5: L.everaging Observability, Monitoring, Reliability
Metrics, and GenAl: How to Gain Insights, Set Effective
Monitoring, Set Service Level Objectives, and Establish
Thresholds

Reliability Engineering Capabilities

Observability

Cloud Monitoring

Service Level Objectives and Service Level Indicators

Ten-Step Process for Creating Effective Monitoring
Maturity Levels
Monitoring and Alerting Tools
Case Study: AP’s Impact on CRE
Summary
Q&A
Chapter 6: CRE via Objectives and Key Results (OKRs): How to

Build a Culture of Continuous Reliability Improvements
Using the OKR Framework

Continuous Improvement in L.ean

Kaizen
Waste

Continuous Improvement

Application of L.ean to CRE
Application of OKRs to CRE
History of OKRs
OKR Examples
Summary
Q&A

Chaos Engineering, Incident Response, Configuration

Management, Immutable Infrastructure, and Disaster
Recovery
Distributing I.oad and Volume with Auto-Scaling and
Load Balancing
Auto-Scaling
Load Balancing
Enabling Automatic Failovers for High Availability
AWS
GCP

Microsoft Azure

Facilitating Controlled Deployments with Rollback

Strategies

Providing Chaos Engineering Capabilities for Resilience
Testing

Assisting in Incident Response with Automation
Ensuring Proper Configuration Management

Leveraging Immutable Infrastructure as a Service

Practicing Disaster Recovery Frequently

Case Study,

Summary.

Q&A
Chapter 8: Cutting-Edge Technologies: How to Use the Power
of AI, M1, LL.Ms, and GenAl Models to Revolutionize Your
CRE Practices

Understanding Al, ML, LL.Ms, and GenAl

Benefits of Integrating These Technologies into CRE

Practices

Proactive Issue Detection and Resolution

Improved Application Performance Management

Automated Alerting and Escalation for Incident
Management

Security Threat Detection

Improved Monitoring

Predictive Analytics

Predictive Maintenance

Enhanced Decision-Making

Simulation and Testing
Improved Documentation and Knowledge Sharing
Cost Efficiency

Improved User Experience

Customer Service and Support

Benefits Summary,

Implementation Considerations
Ethical and Security Concerns
Integration with Existing Systems

Continuous Learning and Adaptation

Summary

Q&A
Chapter 9: CRE Value Stream: How to Build Your CRE Strategy
Based on Holistic End-to-End Analysis of Your Systems and
Customers

What Is a Value Stream?

CRE as a Value Stream

Reliability Engineering Concepts in a Cloud Value

Stream

CRE Customer Persona

Documentation and Continuous Improvement
Case Studies

Example 1: FinTechBank

Example 2: GameX Entertainment
Example 3: Streamflix
Summary
Q&A
Environment and Culture of Innovation with the CRE
Framework
Psychological Safety
Employee Empowerment
Leadership and Ownership
Collaboration and Cross-Functional Teams
Customer Obsession
CRE Culture
Summary
Q&A
Chapter 11: The Business Case for CRE: How to Measure ROI,

Ensure Customer Satisfaction, and Promote Business Success
Benefits of CRE
CRE Value
Cost of Neglecting CRE Practices
Aligning CRE with Strategic Objectives
Evolution of CRE Practices
Serverless Computing
Edge Computing and Distributed Reliability

Al-Driven Reliability
Scalability through Microservices and

Containerization

Infrastructure as Code and Observability
Case Studies
Summary
Q&A

Chapter 12: Conclusion

Appendix C: CRE Change Management Checklist

Glossary
References

Index

Preface

Reliability Engineering in the Cloud Is a Must: Why
Your Business Can’t Succeed without It

We’d like to start this book with a puzzle. Take a look at these

seemingly different catastrophes and their corresponding

incident summaries..

1. These and some other use cases in this book are fictional,
though based on real companies and actual incidents. When
there are actual companies mentioned, it is stated in the text

and is referenced in source materials.

e Streamline Solutions, a promising tech start-up specializing
in e-commerce solutions, experienced rapid growth that
brought unforeseen challenges. A sudden surge in website
traffic during a major sales event led to a critical outage,
resulting in significant revenue loss and damage to the
brand’s reputation.

e What happened: Critical website outage during major
sales event, lasting six hours
e Impact: Revenue loss of $100,000, damage to brand

reputation resulting in a 20% decrease in customer trust

e HealthHub Technologies, a healthcare start-up
revolutionizing patient care with telemedicine solutions,
encountered operational disruptions when a cloud service
outage disrupted critical communication channels between
healthcare providers and patients.

e What happened: Cloud service outage disrupting critical
communication channels for 12 hours

e Impact: A 30% decrease in patient satisfaction, leading to
15% of patients seeking alternative telemedicine providers

e EcoSolutions, an environmental start-up dedicated to
sustainable energy solutions, encountered operational
challenges when a power outage disrupted data collection
from IoT sensors deployed across renewable energy
installations.

e What happened: Power outage disrupting data collection
from IoT sensors for eight hours

e Impact: A 50% decrease in energy efficiency, leading to a
loss of $50,000 in revenue due to inefficient operations

e MegaBank Corporation, a global financial institution, faced
a public relations crisis when a technical glitch caused
transaction processing delays and disrupted customer access
to online banking services.

e What happened: Technical glitch causing transaction

processing delays for 24 hours

e Impact: A 40% decrease in customer satisfaction, resulting
in 10% of customers switching to competitor banks
e AeroTech Aerospace, a leading aerospace manufacturer,
faced supply chain disruptions when a supplier’s data center
outage halted production operations.
e What happened: Supplier’s data center outage halted
production operations for two days
* Impact: A $1 million loss in revenue due to halted
production, resulting in a 30% decrease in investor
confidence
e MedTech Solutions, a leading healthcare technology
company, faced regulatory compliance challenges when a
software bug caused data integrity issues and jeopardized
patient safety.
e What happened: Software bug jeopardized patient safety,
affecting the data integrity of 100,000 patient records
e Impact: Legal fees and settlements totaling $3 million, and
a 15% decrease in market share due to damaged
reputation
e Edukate LLC, an educational technology start-up,
encountered performance issues when a surge in user
activity overwhelmed its cloud-based learning platform

during peak exam periods.

e What happened: Scalability challenges during peak exam
periods, resulting in platform downtime of four hours
e Impact: A 25% decrease in user engagement, leading to a

loss of $50,000 in subscription revenue

As you can see from these examples, each situation cost
millions of dollars and impacted each company’s reputation
and customer base. If you think this is catastrophic, imagine the
consequences for organizations such as hospitals or emergency

response systems, where people’s lives are at stake.

We are sure that you’ve guessed by now what all these
companies have in common: They neglected to invest in the
reliability and resilience of their cloud-based systems. We will
refer to this as “cloud reliability engineering” (or “CRE”) in this
book. In each case, the company was forced to take urgent
measures to resolve situations as quickly as possible and then
decided to implement long-term resilient strategies and
reliability measures. So, what did these companies do? Let’s

review their solutions one by one.

e Streamline Solutions: Determined to prevent future
incidents, Streamline Solutions pivoted to prioritize
reliability engineering. By leveraging Al-powered predictive

analytics, the company optimized resource allocation,

identified potential bottlenecks, and implemented proactive
measures to ensure uninterrupted service during peak
demand periods.

HealthHub Technologies: To mitigate similar incidents in
the future, HealthHub Technologies embraced a proactive
approach to reliability engineering. By integrating Al-
powered monitoring and incident response systems, it
achieved real-time visibility into system health, preemptively
identified potential issues, and orchestrated automated
failover mechanisms to ensure uninterrupted service
delivery and patient care.

EcoSolutions: EcoSolutions adopted a proactive approach to
reliability engineering, integrating Al-powered predictive
maintenance solutions. By leveraging machine learning
algorithms to analyze sensor data, detect anomalies, and
forecast equipment failures, EcoSolutions optimized asset
performance, minimized downtime, and maximized energy
efficiency across its infrastructure.

MegaBank Corporation: MegaBank embarked on a
comprehensive reliability engineering initiative, leveraging
Al-driven analytics to optimize system performance and
enhance customer experience. By harnessing machine
learning algorithms to analyze transaction patterns, predict

capacity requirements, and dynamically scale resources,

MegaBank strengthened its cloud infrastructure’s resilience,
ensuring seamless banking operations and customer
satisfaction.

* AeroTech Aerospace: AeroTech implemented a
comprehensive reliability engineering strategy augmented
by Al-driven supply chain analytics. By harnessing predictive
modeling and machine learning algorithms to assess supplier
risk, forecast demand fluctuations, and optimize inventory
management, AeroTech mitigated supply chain disruptions,
ensured uninterrupted production, and maintained
customer satisfaction.

e MedTech Solutions: MedTech invested in Al-driven quality
assurance and compliance solutions. By leveraging machine
learning algorithms to automate code analysis, detect
potential vulnerabilities, and enforce coding standards,
MedTech ensured adherence to regulatory requirements,
mitigated compliance risks, and upheld its commitment to
patient-centric innovation.

e Edukate LLC: Edukate leveraged Al-driven load balancing
and auto-scaling mechanisms. By dynamically allocating
resources based on user demand, optimizing application
performance, and automating capacity provisioning, Edukate

enhanced platform reliability, supported growing user

engagement, and empowered educators and students with

uninterrupted access to educational resources.

It is common knowledge that the cloud is significantly more
reliable than on-premises infrastructure. This may sound easy
and straightforward, but in real life, it is not. Let’s take a closer
look at the implementation details for Edukate’s Al-driven load
balancing and auto-scaling mechanisms, including specific

metrics and data.

e Al-driven load balancing

e Edukate’s Al-driven load balancer continuously monitors
user traffic and application performance metrics in real
time.

e Through historical data analysis, it predicts future user
demand patterns with an accuracy rate of over 90%.

e During peak usage periods, such as final-exam weeks, the
load balancer dynamically distributes incoming user
requests across multiple servers, ensuring optimal
resource utilization.

e This dynamic load balancing reduces server response time
by up to 50% and prevents server overload, maintaining
consistent performance levels even under heavy load.

e Auto-scaling mechanisms

e Edukate’s auto-scaling mechanisms automatically adjust
the number of server instances based on current workload
and resource utilization metrics.

e When user demand increases, the auto-scaler provisions
additional server instances within seconds, scaling the
infrastructure horizontally to handle the load.

e During peak traffic hours, the auto-scaler increases server
capacity by up to 300%, allowing Edukate to accommodate
sudden spikes in user activity without downtime.

e Conversely, during periods of low demand, excess server
instances are automatically terminated, reducing
infrastructure costs by up to 40% while maintaining
performance.

* Dynamic resource allocation

e Edukate’s Al-driven system dynamically allocates
resources to different components of the application based
on workload and performance requirements.

e Resources are provisioned and de-provisioned in real time,
optimizing CPU, memory, and storage utilization.

* During peak usage, CPU utilization is maintained below
70% to ensure responsiveness, while memory allocation is
adjusted dynamically to prevent bottlenecks.

e By optimizing resource allocation, Edukate achieves an

average server utilization rate of 80%, significantly

reducing infrastructure waste and costs.
e Optimizing application performance

* Edukate continuously monitors application performance
metrics using Al-driven monitoring tools, including
response time, throughput, and error rates.

e Through real-time analysis, performance bottlenecks are
identified and addressed promptly, resulting in a 40%
improvement in application response time.

e Database optimizations, such as query caching and
indexing, reduce database response time by up to 60%,
enhancing overall application performance.

e Network optimizations, including content delivery
network (CDN) integration, reduce latency by 30%,

resulting in faster content delivery to users worldwide.

Overall, Edukate’s implementation of Al-driven load balancing
and auto-scaling mechanisms has led to significant
improvements in performance, scalability, and cost efficiency.
By leveraging predictive analytics and automation, Edukate
ensures uninterrupted access to its cloud-based learning
platform for educators and students, even during periods of

peak demand.

In today’s digital age, where every click and keystroke carries

immense significance, the impact of CRE is hard to overstate.

With the majority of systems, both internal and external, now
residing in the cloud, reliability has emerged as the foundation
of a successful business. From catastrophic events that have
compromised millions of people to crippling service outages
eroding customer trust and costing companies millions of
dollars in revenue—the stakes have never been higher. With the
huge repercussions of engineering misses, strong resilience
engineering practices play a pivotal role in the modern business
landscape and can elevate a business or destroy it. With the
ability to leverage Al in multiple areas of CRE, including load
balancing and auto-scaling, monitoring and alerting, risk
assessment, anomaly detection, and issue resolution, CRE
practices can make or break any business. As we saw in the
examples, companies big and small in every possible industry
can’t survive without a strong CRE strategy and an Al-powered

implementation of this strategy.

But first, let’s start with the basics. While our primary focus in
this book will be on Al-powered CRE, our secondary focus will
be on efficiency, which can be achieved with Lean CRE. Lean
CRE encompasses an array of principles and practices,
borrowing from the traditions of Toyota manufacturing and
Lean Six Sigma methodologies (see Figure 1.1). These proven
approaches have redefined efficiency and effectiveness in

manufacturing and process optimization. Now, companies big

and small are innovating in the field of CRE by adding a focus
on software and people investments, and for compelling
reasons. Mastering these techniques is non-negotiable for
modern businesses. Successful CRE practice needs to be Lean to
successfully prevent colossal failures that have happened
within some of the world’s most prominent companies, and to

enable structured and well-thought-out CRE practices and CRE

culture.

' b 5
B

'3 . Pn ¥ &

DEFINE MEASURE ANALYZE IMPROVE CONTROL

Figure I.1

Six Sigma pillars

(image: Trueffelpix/Shutterstock)

As we dive deep into the topics of system reliability and
resilience, it’s crucial to understand the fundamental distinction
between site reliability engineering (SRE) and CRE. While SRE
primarily focuses on maintaining the reliability of individual

systems and services, CRE takes a more holistic approach,

encompassing the entire digital infrastructure: the cloud
services used for the control plane and data plane, the tooling
to monitor and observe, the Al practices to predict failure, and
the mechanisms to stress-test systems using chaos engineering
practices, ensuring that the entire ecosystem operates
harmoniously and efficiently—with operational excellence.
CRE, in this context, becomes the linchpin that holds together
an organization’s digital success, while Al technologies provide

a strong foundation for its implementation.

CRE is not just a choice but an imperative for those
organizations that aim to succeed in the digital realm. This book
will show engineering leaders and decision-makers how Al-
powered implementation and Lean principles can revolutionize
the world of CRE and why they should be at the forefront of
your organization’s strategy, and offer practical advice on
implementing effective reliability practices, selecting the right
tools and frameworks, measuring impact through meaningful
metrics, and building organizational culture that ensures

sustained success in a cloud-driven ecosystem.

To summarize, reliability engineering in the cloud
fundamentally changes the way organizations—big and small,
profit and nonprofit, in any industry and any country—operate

their systems and engineering teams. Given the rapidly

evolving landscape of cloud technology, the principles of
reliability engineering are undergoing a profound
transformation, propelled by the integration of Al In this book,
we will take you on a transformative journey from the initial
steps in building and maintaining reliable and resilient
infrastructure and applications for your business, to nurturing
CRE culture across the company. We will discuss the best
strategies to address recovery, dissect resilience challenges,
implement Al-driven frameworks, and provide the foundation
that will fortify your business’s digital infrastructure. It is time
for your company to rewrite your engineering playbook using
the methodologies and best practices described in this book. Let

the journey begin.

Who Is This Book For?

This book will benefit organizations responsible for building
systems in the cloud, and those engineering leaders who need
to set an enterprise-wide strategy with thousands of
applications and dependencies. Think of it like a corporation
with hundreds or thousands of dev teams. This book serves as

both the framework and a reference to two groups of readers.

The first group consists of enterprise leaders, from director and

VP level to heads of specific businesses, who are looking to

increase the reliability and scalability of their systems in the
cloud, the efficiency of their operations, and their need for
faster incident response while automating their operations to
improve time to restore and time to detect to the maximum
possible extent. These leaders know that operational agility and
chaos experimentation bring a culture of continuous
improvement built on collaboration and knowledge sharing

among teams.

The second group includes engineers and software teams
directly involved in or responsible for cloud applications’
reliability. The frameworks and guides described in the book
will allow them to build effective strategies, promoting chaos
engineering practices, observability and monitoring techniques,
disaster recovery exercises, reliability metrics, fast data-driven
decision-making, and practical examples of techniques and
tooling for success. Given the lack of both literature on the topic
and established frameworks, this group of readers will benefit
from having practical, domain-specific approaches and

examples that they can apply to their organizations and teams.

For both groups, adopting modern CRE practices will better
position their organizations to build and maintain resilient
systems that meet their customers’ demands to achieve their

business goals effectively. This book focuses on examples and

techniques used with cloud providers such as AWS, GCP, and

Azure.

Register your copy of Reliability Engineering in the Cloud on the
[InformlIT site for convenient access to updates and/or
[corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an
account. Enter the product ISBN (9780135395790) and click
[Submit. If you would like to be notified of exclusive offers on
new editions and updates, please check the box to receive

lemail from us.

http://informit.com/register

Acknowledgments

To my colleagues at some of the world’s most innovative tech
and financial services companies, your insights, dedication, and
collaboration have been invaluable in shaping this book. And to
my customers, your challenges have fueled my customer
obsession and driven me to dig deeper into what it means to be

truly reliable in the cloud.

To every reader who picks up this book, my hope is that it
inspires you to act boldly and make our digital world more
secure and its information accessible to all. A special thank-you
to my coauthor, Carlos Rojas—your leadership continued to
pave the way for transformation at a leading cloud provider
and now at a global financial services company. Your vision for

positive change is nothing short of inspiring.

Here’s to the next generation of innovators, the ones who will

push the boundaries of cloud reliability even further.
—Mariya Breyter

To my peers, leaders, teams, and friends who worked with me
to transform companies during my career: For the trying
moments when we collectively learned something new, I am

confident most of those became components shared in this

book. The concepts of reliability engineering started way before
we even had the cloud. Our learnings determined how today
the most important companies run their critical services in the

cloud.

To every reader who decides to invest in CRE, my goal is that
you implement at least one bold idea from this book to make
your organization more reliable. This book will open the world
of ideas to continue to invest in the highest engineering

standards in recent times.

A special thank-you to my coauthor, Mariya Breyter—your
leadership while we worked at AWS and your friendship
outside of work have no limits and inspired me to complete this
amazing project. Your vision of continued improvement and

dedication to be the best is simply contagious.

—Carlos Rojas

About the Authors

Mariya Breyter is a technology executive, product leader, and
educator with experience ranging from leading technology
companies and government jobs to versatile corporate
experience in cloud services, healthcare, financial services,
media, and education. She takes pride in leading high-
performance organizations in building technology products
that delight customers, whether it is cloud services at a leading
cloud provider, the online consumer bank Marcus by Goldman
Sachs, an educational start-up incubator at Kaplan Test Prep, or
a simplified global claims system at UnitedHealth Group. Her
book Agile Project and Product Management, published in 2022,
was added to Amazon’s list of the top 100 books on Agile and to
Book Authority’s list of the “Best Agile Software Development

Books of All Time,” and her article on Agile frameworks was

selected as part of the top Agile Articles 2020. Mariya has a PhD
in computational linguistics and a post-doctorate degree from
Stanford University. Mariya also teaches Agile project
management, IT principles, and organizational transformation
courses to graduate students at New York University. Her
passion is to help others achieve their professional growth. She
founded Agile Practitioners Meetup in New York, organized
sessions for Women in Agile/New York, and led Mentoring
Circles at the Grace Hopper Celebration. Mariya’s motto is,
“Lead with passion, guide with purpose, inspire with

innovation.”

Connect with Mariya:

https:/www.linkedin.com/in/mariyabreyter/

https://www.linkedin.com/in/mariyabreyter/

Carlos Rojas is a former Amazon Web Services (AWS)
engineering leader; is a technology advisor with a certification
in Al from Massachusetts Institute of Technology; and has 25+
years of experience in application development, reliability
engineering, operational excellence, and IT shared services,
with a proven record of success within financial, telecom,
government, and health IT. Carlos is well known across multiple
industries for building and transforming teams. Carlos began
working as a freelance software developer in 1995 when the
internet was looming. Following that, for a decade he fulfilled
his entrepreneurial drive with a tech start-up called Cascade
Technologies. Over the past several years, Carlos used his skills
to build and transform teams into forward-thinking industry
leaders in multiple leadership roles. As the global head of
Region Build Automation at AWS, Carlos was part of the
engineering leadership team responsible for orchestrating the
launch of new regions across the globe. In 2022 he came back to
a major bank as the vice president of Cloud Reliability
Engineering, responsible for reimagining customers’ digital
experiences and improving the operational excellence of their

applications.

Connect with Carlos: https:/www.linkedin.com/in/carojas77/.

https://www.linkedin.com/in/carojas77/

The combined in-depth experiences in CRE, Lean, cloud
services, and enterprise engineering allow the authors to view
enterprise needs from multiple perspectives. Their prior
experience at AWS gives them a joint perspective on
successfully applying these practices at a significant scale, and
their network of content providers with specific domain

expertise makes this a must-have book.

Chapter 1

Reliability Engineering in the Cloud

How to Design, Build, Operate, and Stress-Test Highly Reliable

Systems

Welcome, cloud enthusiasts! Let us begin by explaining the
terms “cloud,” “resilient,” “reliability,” and “engineering,” and
why these are a prerequisite for a successful implementation of

cloud strategies for applications in your organization.
Cloud

Cloud does not really need a description, but for most concepts
in this book, it is foundational and one of the key requirements
to ensuring resilient and reliable systems. The cloud offers the
capability to have applications dispersed across different
geographies—also known as “regions” in Amazon Web Services
(AWS), Microsoft Azure, and Google Cloud Platform (GCP).
Regions and Availability Zones (AZs) are fundamental concepts
in cloud computing, but their implementation can vary across
different cloud providers. AWS’s definition and approach are
widely regarded as effective and advantageous due to their

clear isolation, redundancy, scalability, and consistency.

According to this definition, each region allows those
applications to have similar designs and stacks in different AZs!
within that same region. Each AZ is also backed by multiple
data centers in different locations. With the right architecture
designs, configurations, and engineering practices, you can
minimize the impact of application downtime for your
customers. Without the cloud infrastructure and with the lack
of elasticity, it will be difficult to accomplish a higher level of
resilience and reliability, because of the cost that organizations

need to carry.

1. In GCP, the equivalent of Availability Zones are referred to as
Zones, while regions serve the same purpose as in AWS and
Azure, representing distinct geographic locations with multiple

data centers.

Resilience

Resilience is defined as the capacity for an application to
withstand difficulties or recover quickly from them. Essentially,
it represents how “tough” a system or component is when faced
with challenges. The foundational design principles of resilient
architecture involve decomposing your application and

services into small, loosely coupled, stateless building blocks.

These building blocks communicate with one another via
application programming interfaces (APIs) and can be managed
through dynamic configuration without manual intervention.
Achieving massive scale necessitates a commitment to
automation and tooling. As a result, your application can
continue to operate even when dependencies encounter issues.
Designing an application for resilience requires thoughtful
consideration of isolation, retry strategies, circuit breakers,
fallbacks, failovers, monitoring, and observability, among other

factors.

Reliability

Reliability refers to how customers perceive the service,
capabilities, dependability, and overall experience provided by
the systems within your organization for their day-to-day
activities. To ensure a reliable customer experience, your
systems must exhibit traits such as resilience, fault tolerance,
and high availability. While many companies can implement
various specifications, deployment patterns, and configurations
to achieve these goals, few can accurately measure the
resilience of their systems. Often, companies gauge success
based on the number of incidents they have experienced;
however, this approach is reactive and only considers customer

impact after the fact. A truly reliable system is proactive and

seeks to identify signs of service degradation, also known as
“slow burns,” before customers experience serious disruptions.
Figure 1.1 illustrates reliability and resilience as the primary

characteristics of any system.

. Resiliepgce:The cépaciw to withstand or to
recover guickly from difficulties;
“w¢ toughness. -
d -

bility: The guality of being trustworthy

> -'paﬂeﬂﬂ consistently well.

Figure 1.1

Roles and definitions of reliability and resilience (image:
Bannafarsai_Stock/Shutterstock)

Engineering

Engineering is the art of making magic happen: If you can

think it, you can achieve it with engineering excellence. In this

book, you will find detailed information about some of these
concepts and the strategies to achieve higher levels of reliability
for your cloud-native applications. With a focus on various
cloud-related topics, including architectural patterns and best
practices, as well as firsthand experiences from leading cloud
service providers such as AWS, GCP, Azure, and other
technology companies, you’ll gain insights into modern
practices of building resilient applications in the cloud. From
fault tolerance to automated recovery mechanisms, each
chapter provides practical examples illustrating proven
engineering strategies for your companies to protect your
business by building and maintaining resilient and reliable
systems. In addition, the book offers insights into various
techniques for accurately measuring the reliability of your
applications, empowering you to make informed decisions and

continuously improve your engineering practices.

Engineering Excellence

In successful companies across all industries and geographies,
engineering leaders invest in cloud-resilient and reliable
architectures as part of their engineering excellence practices
deliberately rather than by accident. These companies
intentionally, consciously, and knowingly make investments in

how they design, build, and operate their applications. These

companies do not compromise on how to fearlessly satisfy their
customers with amazing engineering solutions. These
companies embed resilience and reliability engineering within
their business design, product design, engineering design,
execution, and operations. Even when systems fail, these
companies lead with a resilient design mentality, learn from the
failure, invest in making applications across the company in
compliance with these insights, and remove anti-patterns as a
must-do versus just another industry technique. They

implement every engineering practice to succeed in the market.

While different providers embrace cloud-resilient designs in
diverse ways, with different services and design approaches, all
of them align on principles and patterns of the major points of

reference from the industry.
Dr. Werner Vogels, CTO of Amazon.com, stated:

“Everything fails all the time, so design and plan for failure and

nothing fails.”

This is a great premise to discuss why your organization needs

a cloud-resilient strategy.

According to GCP, a well-designed application is capable of

scaling up and down in response to changing demand, while

http://amazon.com/

also demonstrating resilience in the face of service disruptions.
Achieving these characteristics necessitates meticulous

planning and design.

Similarly, Microsoft Azure defines resilience as the system’s
capability to recover from failures and maintain functionality.
When designing and implementing applications, it’s crucial to
account for the specific failure modes inherent to each

technology.

For further exploration, Microsoft provides architecture
diagrams, technology descriptions, real-world examples of
cloud architectures, and solution ideas for common workloads

within its Azure Architecture Center.

Mark Russinovich, CTO and Technical Fellow of Microsoft

Azure, stated:

“The importance of application reliability cannot be overstated
in today’s digital landscape. As we rely on digital technologies
for communication, commerce, and various daily tasks, smooth
and consistent operation of applications has become crucial.
Users expect applications to be available and responsive,
regardless of the platform or device they are using. In the realm

of e-commerce, finance, healthcare, and other critical sectors,

application reliability becomes paramount. Whether gearing up
for a seasonal event like Black Friday, handling tax filings, or
striving to meet performance requirements during application
development, ensuring uninterrupted service is crucial.
Downtime or glitches in applications can lead to significant
financial losses, damage to reputation, and user dissatisfaction.
As technology continues to advance, the emphasis on
application reliability will only intensify, highlighting the need
for reliable apps.”

A bad experience is all it takes to shake a customer experience
with your organization and the products or services you
provide. When your systems are down, you risk not only losing
revenue, but also damaging the organization’s reputation for
delivering a pleasant experience—or even worse, the
organization’s value. With this book, you will learn the
practices, tools, and techniques to create your strategy, one that

aims to do the following.

e Recover from failures while minimizing customer impact.
e Drive your business objectives with engineering practices.
e Document decisions and trade-offs to run your systemes.

e Identify, manage, and take intelligent risks.

e Share learnings broadly and improve your systems

continuously.

e Measure customer experience and know how to act before it
is compromised.

* Create a culture of innovation, engineering, and reliability
across application teams.

¢ Know what causes a workload to fail, and introduce
refinements to “learn from mistakes.”

e Safely introduce intentional failure by stress-testing your

apps to anticipate and prevent failures.

More importantly, this book offers strategies with practical
references (how-to guides, checklists, questionnaires), use
cases, and industry examples to implement across applications
in your organization. Think of it as a learning mechanism to
elevate your engineering posture so that you can implement
resilient systems for an improved customer experience. This
book is intended to promote conversations to raise the
knowledge of your organization, rather than being taken as a
checklist to push down to your engineering teams. To
successfully implement any of these strategies, you will need
participation from your Engineering and Product departments

and from senior leadership.

How to Design and Build Resilient and Reliable

Applications

It’s easy: Simply leverage the power of cloud-native
architectures, constantly measure how reliable your
applications are, create a culture of engineering excellence in
your company, and leverage the different services offered by

cloud providers such as AWS, GCP, and Azure.

The paragraphs that follow outline some sample design

strategies to get you started and thinking ahead.

Let’s begin with a standard AWS cloud-native multi-AZ
architecture design that represents a simplistic yet common
design pattern. Figure 1.2 illustrates the deployment of
application compute resources such as lambda functions,
containers running in AWS ECS, and Fargate. Additionally, it
showcases the capabilities for intersystem communication. In
this scenario, communication can be facilitated using Amazon
Simple Notification Service (SNS) queues and Amazon Simple
Queue Service (SQS). Step functions offer orchestration
capabilities for coordinating various steps in your solutions,
while EventBridge provides a mechanism for event-driven

communication.

 Compute tier

 integration ; step
: } function

: Datg : Amazon
: persistence | RDS
Figure 1.2

Standard multi-AZ deployment patterns

Many cloud providers now offer purpose-built, commercially
available, and hardened databases. For example, teams
utilizing AWS can leverage Amazon Relational Database Service
(RDS) Aurora for their relational database needs. For more
robust multiregion scenarios, DynamoDB offers global table
functionality. Additionally, Amazon Simple Storage Service (S3)
storage can be utilized for data lakes, analytical processing, and

robust machine learning (ML) use cases.

To compare and contrast, let’s now explore a similar example
from GCP. Through proper design, organizations can optimize

costs by adjusting resource allocation based on demand,

ensuring high performance without compromising user
experience. This approach allows applications to maintain
excellent performance even during periods of high traffic
volume, such as Black Friday, seasonal travel peaks,
promotions, and tax season, while still maintaining cost-

effectiveness and elasticity.

GCP provides a range of services and features to assist in

building resilient applications.

e GCP services are available in regions and zones globally,
allowing organizations to deploy their applications according
to availability requirements.

e Compute Engine instance groups and Google Kubernetes
Engine (GKE) clusters can be distributed and managed across
zones within a region for improved resilience.

e Compute Engine regional persistent disks are synchronously
replicated across zones within a region, ensuring data
integrity and availability.

e GCP offers global load balancing capabilities, enabling traffic
redirection to healthy regions nearest to users for optimal
performance.

e GCP’s serverless platform includes managed compute and
database products with built-in redundancy and load

balancing features.

How Do You Know Your Application Is Truly Resilient and
Reliable?

A key element of ensuring that resilient applications are always
on (24/7/365) is the ability to do the following.

e Monitor and observe your applications.

e Conduct chaos engineering experiments to stress-test their
capabilities. Chaos engineering is the practice of
intentionally introducing controlled failures into systems to
identify weaknesses, improve resilience, and enhance overall

system reliability (more on this in the next section).

In terms of monitoring and observability, several tools in the
market offer out-of-the-box capabilities to alert on
performance, correlate data to find root causes, and
troubleshoot issues. Cloud monitoring provides metrics across
your applications and infrastructure components, helping
development and site reliability engineering (SRE) teams make
data-driven decisions about the performance and health of
applications. For example, tracing is a form of observability that
helps engineering teams capture the end-to-end flow of a given
transaction. To implement tracing, you should select a suitable
tracing framework and tool such as OpenTelemetry, Jaeger,

Zipkin, AWS X-Ray, or Azure Application Insights. A great

applicability of Al is predictive tracing, which is used to
continuously and intelligently anticipate and mitigate issues

before they happen.

What if You Find Potential Issues?

You have nothing to worry about. You will find these, and when
you do, chaos engineering and change management will be

your best friends.

Chaos engineering is how you inject failure into a controlled
environment, how you understand the behaviors of your
applications, and how you document findings and remediate

those potential issues before they impact your customers.

Change management gives you the ability to take those findings
and make them actionable such that software development
teams can remediate and test again. The ultimate goal is to
avoid incidents, or to learn how to resolve them in a timely
manner if they happen again. The best mechanism to test such
disruptions is called “game days.” These are usually led by a
centralized team to plan, execute, coordinate, and report on the

findings and actions taken by application teams.

Your organization needs to define and comply with the

established chaos engineering and change management

practices. This means setting clear expectations for remediation
when an issue is identified. Executives and engineering leaders
must think about operational excellence practices and commit
to operational metrics and targets that will help determine the

reliability of their system:s.

Will Stress Testing Help Uncover All Potential Scenarios?

Not really. It is impossible to cover 100% of failure scenarios,
and that is why establishing operational excellence
mechanisms to review findings, share learnings, and set plans

of attack is of critical importance.
Normally, we can divide failures into two different groups.

1. Those failures that we recognize, that we have experienced
before, that we must prepare for, and where there is a
playbook to solve for without skipping a single step (the key
here is execution and documentation).

2. Those failures that we do not recognize, where we need our
incident response team to work hard and fast to restore
services to business as usual ASAP through detailed
investigations. In this case, it is important to conduct incident
analysis and remediation practices once we have understood

and recognized a root cause.

Independently from which scenario incidents fall under (group
1 or 2), operational excellence in partnership with change
management is there to identify learnings, change the culture
of the organization, minimize waste, and continuously improve
engineering practices—all to provide customers with a reliable
experience and ensure limited disruption of their systems.
Being aware of the new behaviors or techniques, or the areas
that need to be improved, is critical to have learning

opportunities after each incident.

Setting Operational Excellence metrics to ensure your
applications are cloud resilient by design

Once executives and engineering leaders define operational
excellence practices, they need a mechanism to ensure that
these practices are well-defined and followed by the application
teams. In other words, they need to know what success looks
like. Is the organization on the forefront of engineering

excellence, or is it lacking in specific areas?

This book will introduce you to how reliability metrics and
objectives and key results (OKRs) apply to resilience
engineering, and how anyone within the organization can take
ownership of measuring and improving the quality and

outcomes of their applications. Objectives help set up clear

outcomes for the business and engineering operations while
key results offer clear measures for each of these outcomes and
timelines. Reliability metrics such as median time to detect,
time to restore, and incidents per volume of changes also help
drive the culture of operational excellence while guiding teams

to successfully report on the outcomes of resilient designs.

These measurements cannot be done manually. Tooling is an
important aspect of automating the actions from the learnings
and metrics. In this case, it is important to have capabilities to
observe and monitor applications at a level of detail that will
pinpoint exactly what the problem is without losing time to
detect, or time to engage, or time to restore an incident. When
there are thousands of applications, services, endpoints,
regions, AZs, databases, and dependencies, it is difficult and
expensive to scale by adding humans to the operation.
Therefore, tooling is the first approach to consider when teams

are expected to automate every action.

Figure 1.3 illustrates a sample dashboard that allows

organizations to observe system health in real time.

Figure 1.3

Sample dashboard (image: Andrey_Popov/Shutterstock)
Leveraging Lean Principles

Lean core principles, rooted in Lean manufacturing practices
developed by the Toyota Production System in the mid-20th
century, focus on maximizing value while minimizing waste.
The goal is to create more efficient processes by identifying and
removing activities that do not add value. This approach stems
from Toyota’s strategies for achieving just-in-time

manufacturing and quality improvement, which have become

the foundation for Lean practices applied across various

industries, including technology and cloud engineering.

Continuous improvement, or “Kaizen,” is a key aspect of Lean
philosophy. It involves constantly analyzing processes to
identify and implement incremental changes that improve
efficiency, reliability, and performance. In cloud resiliency
engineering, continuous improvement emphasizes monitoring
systems and iterating on designs to ensure high availability and
disaster recovery while incorporating feedback loops for
ongoing enhancement. This aligns with Lean’s emphasis on
problem-solving and developing a culture that encourages

collaboration and accountability among all team members.

Waste elimination, known as “Muda” in Lean terminology, is
equally critical. Waste can manifest in cloud operations as
excess resource consumption, inefficient processes, or
underutilized assets. Lean encourages engineers to optimize
cloud environments by automating processes, streamlining
workflows, and employing data-driven strategies to reduce
redundancy and resource wastage. By applying Lean principles
to cloud resiliency engineering, teams can achieve cost savings,
improved system performance, and a more sustainable

approach to managing infrastructure.

Leveraging Artificial Intelligence

A strategy to consider for ensuring system health is leveraging
Al and large language models (LLMs). These technologies can
enhance reliability engineering by providing real-time insights
into system performance, identifying potential failures before
they escalate, and streamlining incident management. Al-
powered monitoring tools can analyze vast amounts of
telemetry data, detect anomalies, and proactively suggest
mitigation strategies. By integrating LLMs into incident
response workflows, organizations can reduce downtime,
improve root cause analysis, and ensure that teams are better

prepared to handle recurring issues.

When teams experience incidents, they can interact with LLM-
based systems in plain natural language to quickly retrieve the
most recent status of an incident. Instead of sifting through
multiple dashboards, logs, or tickets, engineers can simply ask
Al-powered assistants for a real-time summary of affected
components, impacted services, and ongoing remediation
efforts. Additionally, Al can prioritize alerts based on severity,
historical patterns, and business impact, allowing teams to
focus on critical incidents rather than being overwhelmed by

excessive noise.

Beyond real-time status updates, LLMs can also automate the
creation of essential documentation, such as incident
summaries, post-incident reports, and corrective action plans.
Al-driven tools can extract key insights from system logs, team
discussions, and historical incident data to generate detailed
memos that help teams understand what happened and how to
prevent similar issues in the future. This automation reduces
the administrative burden on engineers, enhances knowledge
sharing across teams, and ensures a consistent approach to

incident management and resolution.”

Leveraging Value Stream Mapping

VSM is a Lean management tool used to visually represent the
steps and activities involved in delivering a product or service
from start to finish. It provides a detailed overview of the entire
process, including the flow of materials, information, and
actions, to identify areas of waste, inefficiencies, and
opportunities for improvement. VSM helps organizations
streamline processes, optimize workflows, and enhance overall
efficiency by identifying bottlenecks, redundancies, and areas
for improvement within the value stream. This technique is
extremely helpful when defining your standard operating

procedures (SOPs) and specifying ownership by role.

It is important to look holistically across multiple related
processes and areas of impact—this is where Lean practices
come into play. In Lean, there is an important concept of a
value stream, an approach aimed at optimizing processes and
eliminating waste to create more value for customers, including
all the actions, information flows, and resources involved in the
process. It starts with value stream mapping (VSM) to identify
the steps and activities involved in the design, build, and
operation stages—irom the initial development of a system or
feature to its deployment, monitoring, incident response, and
ongoing maintenance, identifying waste and suggesting

opportunities to streamline and optimize.

Culture and Values

We have been discussing systems and processes, but this
requires a solid foundation in the company’s culture and
values. Engineering leaders need to start by building a
psychologically safe environment and culture of innovation
throughout the organization. Operational excellence includes a
culture of leadership and ownership, being vocally self-critical,
welcoming failure and learning from it, collaboration, and fast
decision-making. Mistakes are expected, and learning from
them is a big part of growth. The impact of failure is huge and

potentially damaging to a company’s reputation, and leaders

need to build a culture of learning from failures and pivoting

for excellence.

Operational Excellence

Engineering leaders need to understand the value and impact
of advanced resilient designs and operational excellence
practices. Once they can understand and articulate the business
case of cloud reliability engineering (CRE), they will be able to

define and support resilience investment.

Summary

The ultimate goal of mature resilient practices is to build and
maintain products that delight customers safely and efficiently
while prioritizing and allocating engineering capacity based on
their business needs. In this book, we will review multiple case
studies from companies in technology, financial services,
healthcare, and other industries so that you can review real-
world examples (both successes and challenges) in
implementing and maintaining resilient applications at an

enterprise level.

Q&A

Q: Why are resilient designs important for companies large
and small?

Resilience encompasses the practices, principles, and
methodologies that ensure the availability, reliability, recovery,
and efficiency of cloud-based systems. Through resilient
designs, companies can unlock the full potential of the cloud

and enhance their overall business performance.

Resilient designs enhance business continuity by maintaining
seamless operations, even during unexpected failures or
disruptions. Throughout this book, we will explore different
aspects of building resilient applications, as well as stress-
testing with chaos engineering where companies inject failures

and disruptions to ensure the reliability of their systems.

Cloud resilience closely aligns with Lean and DevOps
principles, fostering a culture of ownership comprising a “You
build it, you own it” (YBYO) mentality, collaboration, and
continuous improvements. This alignment empowers
businesses to release high-quality software frequently, drive
innovation, and respond quickly to market demands. It
empowers people within these organizations to innovate on

behalf of their customers.

Resilient designs are critical for the business and its customers

in the following ways.

e For the business, it focuses on the optimization of cloud
resources, automating operational tasks, and eliminating
waste (one of the core Lean principles). It is costly to
maintain cloud infrastructure, so optimizing cloud costs is of
ultimate importance to every business. In this book, we will
use AWS as an example of a partnership with your cloud
provider in optimizing your costs.

e For customers, it plays a pivotal role in improving customer
experience. Reliable cloud services enhance customer
satisfaction and increase retention and Net Promoter Scores.
They provide best practices to proactively identify and
address potential issues to deliver a seamless, positive, and

productive customer experience.

In summary, resilience engineering is a technical practice. It is
of strategic importance to companies of all sizes, because it
helps mitigate risk, optimize costs, drive innovation, grow the
business, and deliver seamless and productive customer

experiences leveraging the cloud and engineering.

Q: This all sounds great, but why should my company care

about resilience engineering?

We’re glad you are curious! Your company relies heavily on
cloud-based services to serve your customers, and outages are
your worst nightmare. You’ve probably experienced the
frustration of trying to fix issues on the fly while your users are
leaving for your competitors. Implementing resilience
engineering is the key to keeping your cloud systems reliable,
resilient, and secure. With resilient designs, your company will
be equipped to tackle system outages head-on, with efficiency
and finesse. Instead of reacting to incidents after they happen,
your organization is empowered to proactively identify
potential weaknesses in your cloud setup. It’s like arming the
organization with a super-sleuth magnifying glass to spot
vulnerabilities and snuff them out before they become major
problems or impact your customers and create potential

reputational damage.

Resilience engineering is focused on continuous improvement
where organizations embark on a journey of constant learning
and optimization. Software development teams may conduct
fun game days in which they simulate chaos and failures to test
your system’s resilience. This is like stress-testing your defenses
to make sure they can handle anything the digital world throws

at them. By eliminating wasteful processes and optimizing your

cloud resources, your company will minimize its cloud costs.
Many companies big and small are already reaping the benefits
of resilient designs. Companies such as Netflix, Amazon, Capital
One, Goldman Sachs, Airbnb, and Etsy have embraced well-
architected principles to create robust, reliable, and customer-
centric cloud systems. If companies do not care about resilience

engineering, incidents are bound to happen.

Let’s review some of the well-known examples of related

incidents and their impact.
Google Cloud Service Disruption (June 2, 2019):

* Type of outage: Multiregion service disruption affecting GCP
services and applications.

e Timing: The service disruption occurred during peak usage
hours and persisted for several hours.

e Impact: Users experienced disruptions in accessing Google
Cloud services, including Google Compute Engine (GCE), GKE,
and Google Cloud Storage. Businesses relying on GCP for
critical operations faced downtime and performance
degradation.

e Resolution: Google engineers identified the root cause as an

issue with the GCE network that led to connectivity problems.

Remedial actions were taken to restore services and enhance

network resilience.
Microsoft Azure Service Disruption (September 4, 2018):

e Type of outage: Global outage affecting Azure Active
Directory authentication services.

e Timing: The service disruption occurred during business
hours and lasted for several hours.

e Impact: Users reported issues with accessing various
Microsoft services, including Office 365, Azure Portal, and
Xbox Live, due to authentication failures.

e Resolution: Microsoft engineers traced the issue to a data
center configuration error, which caused a spike in
authentication requests and overwhelmed the system.
Measures were implemented to prevent similar incidents

and improve system resilience.
AWS 83 Service Disruption (February 28, 2017):

* Type of outage: Service disruption affecting Amazon S3
storage service in the US-EAST-1 region. Please note that in
this case, the interruption was specific to a single region.

e Timing: The service disruption lasted for several hours and

impacted a wide range of websites and services.

e Impact: Many popular websites and apps, including Airbnb,
Netflix, and Reddit, experienced downtime or reduced
functionality due to the inability to access S3 storage.

e Resolution: AWS engineers identified the root cause as an
incorrect command entered during routine maintenance,
which inadvertently took more servers offline than intended.

Steps were taken to prevent similar incidents in the future.

The year 2017 was a banner year for service disruptions—and
for the cost of them. Information Technology Intelligence
Consulting’s (ITIC) 2017 Cost of Downtime survey found that
98% of organizations say a single hour of downtime costs more
than $100,000. More than 8 in 10 companies indicated that 60
minutes of downtime costs their business more than $300,000.
A record one-third of enterprises reported that one hour of
downtime costs their firms $1 million to more than $5 million.
The average cost of a single hour of unplanned downtime has
risen by 25% to 30% since 2008, when ITIC first began tracking
these figures. As ITIC stated, “Each second and minute of server
downtime and the associated mission-critical applications costs
the business money and raises transactional operations and
monetary risks. In the digital era of interconnected intelligent
systems and networks, unplanned downtime of even a few
minutes is expensive and disruptive and can reverberate across

the entire ecosystem. This includes data centers; virtualized

public, private, and hybrid clouds; remote work and learning

environments, and the intelligent network edge.”

Most of these outages were on-premises issues. As an example,
75,000 people were affected by the three-day British Airways
(BA) system failure in the summer of 2017. BA lost an estimated
$135 million due to that outage. The culprit turned out to be a
faulty uninterruptable power supply (UPS) device. And that loss
figure doesn’t count the forever-gone trust of customers who
will look elsewhere for transatlantic flights the next time they
travel. BA of course wasn’t alone for having suffered financially
for having its systems down. Joining BA were United Airlines
(200 flights delayed for 2.5 hours, thousands of passengers
stranded or missed connections), Starbucks (could only accept
cash payments in affected stores), Facebook (millions of users
offline and tens of millions of ads not served during 2.5 hours of
downtime), and WhatsApp (600 million users affected, 5 billion
messages lost), according to a well-known 2020 Chaos

Engineering Report.

In 2021, TechChannel reported that 44% of enterprises say
hourly downtime costs surpass $1 million—with COVID-19,
security hacks, and remote working as driving factors. As
reported, “Enterprise downtime is now more expensive than

ever: Some 44% of firms indicate that hourly downtime costs

exceed $1 million to over $5 million, exclusive of any legal fees,
fines or penalties. Additionally, 91% of organizations said a
single hour of downtime that takes mission-critical server
hardware and applications offline, averages over $300,000 due
to lost business, productivity disruptions, and remediation
efforts. Meanwhile, only 1% of organizations—mainly very
small businesses with 50 or fewer employees—estimate that

hourly downtime costs less than $100,000.”

To summarize, if you care about delivering exceptional
customer experiences, cutting down on costly service
disruptions, and staying ahead of the competition,
implementing engineering and Al strategies to build
unshakable applications is a must in the ever-expanding cloud

universe.

Chapter 2

Resilient, Available, and Scalable Systems

Ensuring That Applications Can Handle Failure in a Controlled

Manner

Every system, application, or component must be designed to
ensure a reliable and consistent experience. That is, even if an
underlying component of a service fails, the full service will still
work, and customers can complete transactions successfully
and without disruption. This means the system is resilient to
failure and performs in a way that is transparent for its
customers—even when there is a total failure, a partial failure

of a given component, or a downstream dependency.
Key Concepts

Organizations, enterprise leaders, and engineering teams who
are thinking about building resilient solutions must spend some
time understanding the foundational concepts of reliability,
such as fault tolerance, high availability, scalability, recovery,

and others, as described in the sections that follow.

Fault Tolerance

A fault-tolerant system is a system that works even when there
is presence of a failure within an application, component, or
dependency. It is a system that is designed to be “always on”
and can withstand issues. For example, having two or more
power supplies in a cloud infrastructure ensures that if one
fails, the other one can generate the same supply of power to
offer continuity without interruption of service. The measure of

success in this case is binary: Either it works or it doesn’t.

High Availability

A highly available application means the service is available to
users most of the time, and it is permissible to have some
amount of downtime. Availability is defined as a method to
evaluate whether an application is functioning properly and
can meet the requirements of your customers. Application
availability in the cloud is determined based on performance
indicators or service level indicators (SLISs) such as uptime and
downtime, total number of successful transactions, application

response time, and others.

Keeping track of system performance and SLIs is critically

important as it will help engineering organizations determine

how to architect applications and handle planned outages to

minimize customer impact.

It is also important to know that measuring availability levels is
different based on the use case or the criticality of the
individual application. For example, failure of a hospital’s
medical equipment can have fatal consequences for patients,
whereas the sudden failure of a car’s brake system could lead to
a potentially dangerous driving situation, and planned
weekend downtime of a school’s website likely would only

result in a minor inconvenience for students and parents.

The purpose of building and operating reliable systems is to
consider such scenarios and plan for them in advance. How
your organization reacts to these scenarios depends on the
specifics of your organization’s goals, customer behaviors, and
expectations. This is why measuring uptime availability is

important.

Table 2.1 shows a standard list of downtime goals that must be
discussed and agreed upon by product, business, and
engineering leadership. It is worth noting that some of these
cases will be sufficient by leveraging a single-region design,
while other, more complex cases will require multiregion

designs and higher cost.

Table 2.1

Standard Downtime Goals

Availability

99%

Yearly

Downtime

3.65 days
(or 87.6

hours)

Description

This level of
availability
might be
acceptable for
noncritical
applications
with minimal
impact on
users. It’s best
suited for
applications in
which
occasional
downtime is
tolerable and

cost-

Use Case

Personal |
or hobby

website he
on a single
server; otl
non-busin

critical se1

Availability

99.9%

Yearly

Downtime

8 hours, 45
minutes, 57

seconds

Description

effectiveness is

a priority.

This level of
availability is
suitable for
applications
that are
important but
can tolerate
short periods
of
unavailability.
While
downtime is
minimized
compared to
the previous
level, it’s still
acceptable for

applications in

Use Case

Small-bus
website;
internal tc
for emplo
use; non-
business-

critical se1

Availability

99.95%

Yearly

Downtime

4 hours, 20
minutes, 49

seconds

Description

which
occasional
interruptions
can be
managed
without

significant

consequences.

This level of
availability is
for mission-
critical
applications
that require
extremely
brief

downtime. It is

best suited for

a multiregion

scenario.

Use Case

Investing;
emergenc
services;
gaming;

banking

Availability

99.99%

Yearly

Downtime

52 minutes,

9 seconds

Description

This level of
availability is
ideal for
mission-
critical
applications
that drive
significant
revenue or
have a high
impact on

users.

Achieving this

level of
availability
typically
involves
hosting

applications

across multiple

Availability

Use Case

E-commer
platforms;
online bar
systems; n
social mec

platforms

Availability

Yearly

Downtime

Description

Zones (AZs)
within a single
region,
ensuring
redundancy
and fault
tolerance.
Applications at
this level are
expected to be
highly reliable
and resilient,
with minimal
tolerance for
downtime as
even brief
outages can
result in
substantial

losses or

Use Case

Availability

99.999%

Yearly

Downtime

5 minutes,

15 seconds

Description

reputational

damage.

This level of
availability is
essential for
mission-
critical
applications
that drive
significant
revenue or
have a high
impact on

usSers.

Achieving this

level of
availability
typically
involves

hosting

Use Case

Organizat
level onlir
payment
processing
systems (e
banks,
financial

institution

Availability

Yearly

Downtime

Description

applications
within a single
region but
across multiple
AZs, ensuring
redundancy
and fault
tolerance.
Systems at this
level must be
highly reliable
and resilient,
with minimal
tolerance for
downtime as
even brief
outages can
lead to
substantial

financial losses

Use Case

Availability

99.9999%

Yearly

Downtime

31 seconds

Description

or reputational

damage.

This level of
availability is
extremely high
and is reserved
for ultra-
critical systems
in which even
the slightest
interruption
can have
severe
consequences.
Achieving this
level of
availability
typically
involves

redundant

Use Case

Aerospace
navigatior
systems; li
critical me

equipmen

Availability Yearly. Description Use Case
Downtime

systems
deployed
across multiple
geographically
dispersed
regions, each
with multiple
AZs. These
systems
require
meticulous
planning,
redundancy,
and fault
tolerance
measures to
ensure
uninterrupted
operation. The
cost and

complexity of

Availability

99.99999%

Yearly

Downtime

3.2 seconds

Description Use Case

achieving this
level of
availability are
exceptionally
high, but are
necessary for
applications in
which human
lives or
significant
financial

stakes are at

risk.

This level of Highly
availability is specializel
suitable for scientific
highly research
specialized equipmen
equipment or deep-spac

critical systems

Availability

Yearly

Downtime

Description

in which any
interruption
could
jeopardize
years of work.
Achieving this
level of
availability
requires an
unparalleled
level of
redundancy,
fault tolerance,
and real-time
monitoring.
Systems at this
level typically
employ
multiple layers
of redundancy,

including

Use Case

exploratio

systems

Availability

Yearly

Downtime

Description

geographically
dispersed data
centers,
redundant
power
supplies,
network links,
and hardware
components.
The cost and
complexity
associated
with achieving
this level of
availability are
extraordinarily
high, often
involving
cutting-edge
technology and

continuous

Use Case

Availability

99.999999%

Yearly

Downtime

31.5

milliseconds

Description

monitoring
and

maintenance.

This level of
availability is
suitable for
systems in
which even the
slightest
interruption
could have
significant
financial or
security
implications.
Achieving this
level of
availability
requires state-
of-the-art

Use Case

Ultra-high
frequency
trading
platforms;
national
defense

systems

Availability

Yearly

Downtime

Description

infrastructure,
real-time data
replication,
and failover
mechanisms.
Systems at this
level are often
designed with
fault tolerance
at every level,
including
hardware,
software, and
network
components.
The cost and
complexity
associated
with achieving
this level of

availability are

Use Case

Availability

99.9999999%

Yearly

Downtime

3.15

milliseconds

Description Use Case

exceptionally
high, involving
continuous
monitoring,
redundancy,
and rapid
response

capabilities.

This level of Quantum
availability is computing
suitable for systems;
cutting-edge nuclear re
technology control sy:
systems or

critical

infrastructure.

Achieving this

level of

availability

requires

Availability

Yearly

Downtime

Description

unprecedented
levels of
redundancy,
fault tolerance,
and security
measures.
Systems at this
level are
designed with
multiple layers
of protection,
including
redundant
data centers,
automated
failover
systems, and
advanced
security
protocols. The

cost and

Use Case

Availability

Yearly

Downtime

Description Use Case

complexity
associated
with achieving
this level of
availability are
astronomical,
often requiring
significant
investment in
research,
development,
and ongoing

maintenance.

Availability

Yearly Downtime

Description

Use Case

99% 3.65 days This level of availability might be acceptable for Personal blog or
{or 87.6 hours) noncritical applications with minimal impact on hobby website
users. It's best suited for applications in which hosted on a single
occasional downtime is tolerable and cost- server; other non-
effectiveness is a priority. business-critical
services
99.9% 8 hours, This level of availability is suitable for Small-business
45 minutes, applications that are important but can tolerate website; internal tool
57 seconds short periods of unavailability. While downtime for employee use;
is minimized compared to the previous level, non-business-critical
it's still acceptable for applications in which services
occasional interruptions can be managed
without significant consequences.
99.95% 4 hours, This level of availability is for mission-critical Investing; emergency
20 minutes, applications that require extremely brief down- services; gaming;
49 seconds time. It is best suited for a multiregion scenario. banking
99.99% 52 minutes, This level of availability is ideal for mission- E-commerce
9 seconds critical applications that drive significant platforms; online

revenue or have a high impact on users.
Achieving this level of availability typically
involves hosting applications across multiple
Availability Zones (AZs) within a single region,
ensuring redundancy and fault tolerance.
Applications at this level are expected to

be highly reliable and resilient, with minimal
tolerance for downtime as even brief outages
can result in substantial losses or reputational
damage.

banking systems;
major social media
platforms

99.999%

5 minutes,
15 seconds

This level of availability is essential for mission-
critical applications that drive significant revenue
or have a high impact on users. Achieving this
level of availability typically involves hosting
applications within a single region but across
multiple AZs, ensuring redundancy and fault
tolerance. Systems at this level must be highly
reliable and resilient, with minimal tolerance for
downtime as even brief outages can lead to sub-
stantial financial losses or reputational damage.

Organizational-level
online payment
processing systems
(e.g., banks, financial
institutions)

99.9999%

31 seconds

This level of availability is extremely high and

is reserved for ultra-critical systems in which
even the slightest interruption can have severe
consequences. Achieving this level of availability
typically involves redundant systems deployed
across multiple geographically dispersed
regions, each with multiple AZs. These systems
require meticulous planning, redundancy, and
fault tolerance measures to ensure uninterrupted
operation. The cost and complexity of achieving
this level of availability are exceptionally high,
but are necessary for applications in which
human lives or significant financial stakes are

at risk.

Aerospace navigation
systems; life-critical
medical equipment

99.99999%

3.2 seconds

This level of availability is suitable for highly
specialized equipment or critical systems in
which any interruption could jeopardize years of
work. Achieving this level of availability requires
an unparalleled level of redundancy, fault
tolerance, and real-time monitoring. Systems

at this level typically employ multiple layers of
redundancy, including geographically dispersed
data centers, redundant power supplies,
network links, and hardware components. The
cost and complexity associated with achieving
this level of availability are extraordinarily high,
often involving cutting-edge technology and
continuous monitoring and maintenance.

Highly specialized
scientific research
equipment; deep-
space exploration
systems

99.999999% 31.5 milliseconds

This level of availability is suitable for systems
in which even the slightest interruption could
have significant financial or security implications.
Achieving this level of availability requires state-
of-the-art infrastructure, real-time data replica-
tion, and failover mechanisms. Systems at this
level are often designed with fault tolerance at
every level, including hardware, software, and
network components. The cost and complexity
associated with achieving this level of availabil-
ity are exceptionally high, involving continuous
monitoring, redundancy, and rapid response
capabilities.

Ultra-high-frequency
trading platforms;
national defense
systems

99.9999999% 3.15 milliseconds

This level of availability is suitable for cutting-
edge technology systems or critical infrastruc-
ture. Achieving this level of availability requires
unprecedented levels of redundancy, fault
tolerance, and security measures. Systems at
this level are designed with multiple layers of
protection, including redundant data centers,
automated failover systems, and advanced
security protocols. The cost and complexity
associated with achieving this level of
availability are astronomical, often requiring
significant investment in research, development,
and ongoing maintenance.

Quantum computing
systems; nuclear
reactor control
systems

As you navigate the alternatives for uptime and architecture

designs, take into account that existing routing components can

monitor application health and regional health. Consider

choosing between latency-based routing leveraging Route 53

and geolocation-based routing within a region using an

application load balancer (ALB).

Latency-based routing with Route 53 is a scalable and highly

available domain name system (DNS)-based traffic

management technique offered by Amazon Web Services
(AWS). This approach leverages the global network of AWS data

centers to direct user requests to the AWS region with the
lowest latency, thereby optimizing the user experience. With
Route 53, incoming requests are automatically routed to the
AWS region that provides the shortest network path,
minimizing response times and ensuring efficient handling of
requests. For instance, if a user on the East Coast of the United
States accesses a service, Route 53 routes their request to the
AWS region located closest to them in the eastern region of the
country, reducing latency for that user. Similarly, a request from
a user on the West Coast would be directed to the closest AWS

region in the western region of the country.

Geolocation-based routing within the Application Load
Balancer (ALB) is an approach used to route traffic within a
specific geographic area or region to different sets of resources
or components based on the location of the incoming request.
This functionality is particularly useful when a service spans
multiple geographic regions within a single AWS region.
Configuring the ALB to consider the geographical origin of the
incoming request enables it to intelligently route requests to
different backend components located within the same region
but optimized for that specific geographic area. For example, if
a service operates across different cities within the same region,
the ALB can direct incoming requests from each city to

different backend resources or microservices tailored to handle

workloads specific to that city. This routing method helps avoid
latency issues that might arise when a single service is required
to access various components located in different regions by
processing all related workloads for a given request within the
same region, thus optimizing performance and response times

for end users.

To summarize, you would use latency-based routing with Route
53 when your service or application has a global user base
spread across different continents or regions. If you have users
accessing your service from various locations worldwide,
latency-based routing can direct them to the nearest AWS

region, minimizing latency and optimizing response times.

You would use geolocation-based routing within an ALB when
your application operates in a single AWS region but serves
users from different geographical areas within that region (e.g.,
different cities or states). It helps direct traffic within the region
to specific backend components or microservices optimized for
those geographic areas. Another use case is compliance based.
In scenarios where data sovereignty or compliance regulations
require certain operations or data processing to be confined
within specific geographic boundaries, geolocation-based
routing ensures that requests are processed within the

designated region, meeting compliance needs.

Choosing between these methods often depends on the
geographic distribution of your users, the structure of your
application, compliance considerations, and the need for
optimized performance. Latency-based routing targets global
optimization, while geolocation-based routing within a region
focuses on fine-tuning within specific geographic areas inside a

region.

Service Level Indicators

SLIs can be calculated based on several factors, such as error
rates, uptime availability, number of canary test executions,
and others. It accounts for the percentage of time the service
was available over some period (days, weeks, months, years). It
shows the past performance of the service, and it represents
what already happened, meaning that in some cases, customers

have already been impacted.

Scalability

A scalable service can handle rapid changes to traffic volumes,
workloads, and customer demand. A great benefit of the cloud
are elastic services that allow engineers to expand service

capacity either vertically or horizontally (see Figure 2.1).

Vertical Scaling: Horizontal Scaling:
Increasing the size of Adding more
an instance instances

CPU, RAM, CPU, RAM, CPU, RAM,
CPU, RAM. Storage Storage Storage
Storage
CPU, RAM, CPU, RAM, CPU, RAM,
Storage Storage Storage
CPU, RAM,
Storage

CPU, RAM, CPU, RAM, CPU, RAM,
Storage Storage Storage
CPU, RAM,

Storage —

Figure 2.1

Vertical versus horizontal scaling

Vertical scaling involves increasing capacity by adding more

resources, such as CPU, disk, and memory, to a single host.

Horizontal scaling involves expanding the fleet of hosts in a
distributed manner to support the higher demand of services at
a given time in a timely fashion. In this scenario, the increase in
load will also increase the number of sessions of a service. By
distributing host instances across multiple AZs, horizontal
scaling increases service performance, response time, and other
major parameters. For this to work without major issues,
services must be designed to support a stateless scaling model,
in which the service’s state information is stored and requested

independently from the host.

Organizations and engineering leaders must ensure that their
systems are scalable by defining their requirements; choosing
the right architecture based on uptime and downtime
tolerances; implementing scaling techniques and related cloud
services; and monitoring services to adapt to market changes.
No system is static, and teams must assume that change in

demand is expected.

To build and deploy scalable and reliable applications,
engineering teams can leverage services offered by cloud
providers. These services are ready to use within minutes, offer
lots of benefits, and require simple configurations. Some design
principles help achieve higher levels of resilience, such as
serverless immutable infrastructure, loosely coupled

implementations, and others. Let’s review some of those.

“Application compute” refers to the hosts on which an
application runs. Application compute must be elastic, that is,
capable of increasing or decreasing to support different
workloads based on seasonality, hours of the day, and major
events such as Black Friday, Christmas, and the Super Bowl.
With Amazon Elastic Compute Cloud (Amazon EC2), Auto
Scaling groups (ASGs) help control capacity elastically, enabling
application teams to monitor workload utilization and

automate the addition or removal of resources to ensure that

they meet the right levels of demand and capacity. Users can set
a minimum number of instances, increments of instances based
on capacity expectations or constraints (such as CPU usage), and

a maximum capacity to ensure that costs are contained.

In tightly coupled implementations, a single server has a single
database and a single point of failure, which makes it hard to
recover from incidents in a timely fashion. In loosely coupled
solutions, many AWS services and design patterns can help you
create applications in a serverless and stateless fashion, which
means if the workload fails, the system will repeatedly pick up
workloads until it successfully ends processing. Figure 2.2
provides an example of the serverless architecture

implemented using AWS services.

Serverless container
data plane

Browser Application Load
Balancer

Amazon
DynamoDB

Amazon ECR

Figure 2.2

Example of a serverless microservices architecture (source:
https://aws.amazon.com/blogs/architecture/architecting-for-reliable-scalability/; ©

https://aws.amazon.com/blogs/architecture/architecting-for-reliable-scalability/
https://aws.amazon.com/blogs/architecture/architecting-for-reliable-scalability/

2024, Amazon Web Services, Inc.)
Immutable Infrastructure

Another concept to consider in your cloud implementation is
immutable infrastructure. This is a model in which no updates,
security patches, or configuration changes occur on production
systems. If any change is needed, a new version of the stack is
built and deployed into production. Mutable infrastructures
allow for regular updates and modifications after the software
has been deployed, whereas immutable infrastructures do not

allow modifications once the software has been deployed.

Host images leveraging Amazon Machine Images (AMIs) are
one example of this concept. AMIs are preconfigured templates
for virtual machines (VMs) that include the operating system,
application server, and applications. When using AMIs, any
change to the infrastructure requires creating a new AMI and
deploying it, rather than modifying an existing instance.
Containers are also a good example of immutable
infrastructure because persistent changes to containers can
only be made by creating a new version of the container or re-
creating the existing container from its image. AWS services
such as AWS CloudFormation for infrastructure as code (IaC)

and AWS Elastic Beanstalk for deploying and managing

applications in a containerized environment facilitate this

approach.

To support these design principles in an AWS environment,
there are services to be considered: Amazon Simple Notification
Service, Amazon Simple Queue Service, AWS Lambda, and AWS

Step Functions, among others. Let’s review them one by one.

e Amazon Simple Notification Service (Amazon SNS): This
service allows application teams to capture requests from a
queue and send out events leveraging other AWS services.
SNS sends notifications and provides high-throughput, push-
based, many-to-many messaging between distributed
systems, microservices, and event-driven serverless
applications. These applications include Amazon Simple
Queue Service, AWS Lambda, and other HTTPS endpoints. It
offers functionality that lets you send messages via SMS texts,
push notifications, and email.

e Amazon Simple Queue Service (Amazon SQS): This is a
fully managed message queuing service for microservices,
distributed systems, and serverless applications. SQS enables
you to send, store, and receive messages between software
components at any volume, without losing messages or

requiring other services to be available.

e AWS Lambda: This is a serverless, event-driven compute
service that allows you to run code without thinking about
servers or clusters. You can run code for virtually any type of
application or backend service, without provisioning or
managing servers. You can trigger Lambda from other AWS
services and only pay for what you use.

e AWS Step Functions: This is a visual workflow service that
helps developers use AWS services to build distributed
applications, automate processes, orchestrate microservices,

and create data and machine learning (ML) pipelines.

Let’s dive deeper into event-driven architecture by leveraging a
Lambda example and some best practices. When a function is
triggered based on a given event, this is called an “invocation.”
A lambda function can be invoked to execute a piece of code
without any infrastructure or costs associated with such an

operation. There are three types of invocations.

e In a synchronous model, the client makes a request and waits
for a response.

* In an asynchronous model, the client sends a request and
may get an acknowledgment that the event was received, but
it doesn’t get a response that includes the results of the

request.

e In a polling event, consumers poll the producer for messages
in batches and then process the batch before returning for a

new batch of records.

Figure 2.3 illustrates event-driven architecture leveraging a
lambda function. This architecture allows you to combine
serverless, event-driven components to build highly scalable
and efficient workflows. By using EventBridge, Amazon Simple
Storage Service (Amazon S3), and AWS Lambda together, you
can handle complex data processing, automate scheduled tasks,

and integrate with other AWS services seamlessly.

<l
AWS Lambda service 5
Evenri .
: Lambda Function :
; API code |
b e s I GD — ;
| [.‘—
APl Gateway Lambda function
endpoint
EZL_:?
| A @L\ —b
| O™
=
S3 bucket Lambda function
o ——
EventBridge Lambda function
rule (schedule)
Figure 2.3

Event-driven architecture example (source:
https://aws.amazon.com/blogs/compute/operating-lambda-understanding-event-
driven-architecture-part-1/; © 2024, Amazon Web Services, Inc.)

Load Balancing

To prepare and manage customer traffic, engineering teams

need to introduce the concept of load balancing. AWS offers

https://aws.amazon.com/blogs/compute/operating-lambda-understanding-event-driven-architecture-part-1/
https://aws.amazon.com/blogs/compute/operating-lambda-understanding-event-driven-architecture-part-1/

ALBs and network load balancers (NLBs). A load balancer
serves as the single point of contact for clients. The ALB
distributes incoming application traffic across multiple targets,
such as EC2 instances, in multiple AZs. This increases the
availability of your application. The NLB allows you to balance
and route traffic by using the TCP/IP networking protocol. Load
balancing distributes request processing across multiple
servers or endpoints, and a failover redirects requests to
alternative servers if the originally requested server is

unavailable or too slow.

Recovery

Recovery is also essential for organizations and engineering
leaders. It is not enough to think about whether a system will go
down; you must assume it will go down. Therefore, it is
imperative to know how application teams will react to those
scenarios well in advance. Preparing for incidents with the
right playbooks and preparing for different types of incidents
can be the difference between a minor incident that is fixed
internally without impacting the customer and an incident that
ends up damaging your company’s reputation and possibly its

revenues.

Following are examples of incidents.

e With loads that are too big, your system can break or
degrade the experience offered to your customers. In this
case, you need to focus on elasticity and scalability.

e Attacks can sometimes be caused accidentally by your
application (e.g., a bug introduced during development). In
this case, you need to think about high availability.
Sometimes these attacks can be malicious (e.g., an attacker
trying to penetrate your application data or take some
components down), so you need to think about security and
incident response.

e Component failures that are critical dependencies for your
main service can also fail. In this case, you need to consider
design patterns and architectures to isolate issues when your

dependencies are down.

Incident response and recovery is an important and broad
topic. For more information, see Chapter 3, “Incident Response

for Fast Recovery: How to Handle Incidents and How to

Automate This Process to Improve Time to Detect and Time to

Recovery.”

Design Principles

In the cloud, incidents can be prevented by leveraging design

principles and architectures. For example, when you service the

same components in multiple AZs within a single region, and
one component fails in a single AZ, your system will be able to

respond to customer requests in alternate AZs.

Depending on the business objectives and criticality of the

application, you can implement the application in multiple AZs
and multiple regions to ensure resilience based on geolocation.
For example, having an active-active stack in the west and east
regions of a country offers geolocation-based resilience, giving
you a chance to automatically (based on health checks) reroute
traffic to the stack in the west region if the stack in the east

region is down.

While regions and AZs are fundamental concepts in cloud
computing, their implementation can vary across different
cloud providers. AWS defines “regions” as the separate
geographical locations around the world where the company
has data centers. Each region is completely independent and
isolated from the others, meaning that if one region
experiences an outage, it does not affect the others. AWS
currently has multiple regions globally, including in North
America, Europe, Asia Pacific, and more. Within each AWS
region, there are multiple AZs. An AZ is essentially a separate
data center within the same region, but each AZ is isolated from

the others, with its own power, cooling, and networking

infrastructure. This isolation ensures that if one AZ experiences
a failure, the others remain unaffected, providing high

availability and fault tolerance.

While AWS popularized the concept of regions and AZs, other
cloud providers may have different terminology or
implementations for similar concepts. AWS’s definition and
approach are widely regarded as effective and advantageous
due to their clear isolation, redundancy, scalability, and

consistency.

Chaos Engineering

Now that you have leveraged the basic design principles and
used the AWS services to ensure that your systems,
applications, and services are reliable, it is time to confirm that
your systems can handle failure in a controlled manner by
introducing failure in your production environment to identify
how those applications will respond to it. This is what we
introduced in Chapter 1 as “chaos engineering.” It is a practice
that needs to happen constantly to create a culture of
operational excellence and to prevent issues before customers
experience them. Ideal scenarios will be tested first in QA or in

a nonprod environment to ensure the validity of the test (also

known as a “hypothesis”), and then in production to minimize

impacting customers unnecessarily.

The ultimate goal is to design applications, test them
automatically via chaos engineering game days, and ensure that
your organization is ready to execute all these practices in a
disaster recovery scenario. Ultimately, the assumption is that
any system will fail at some point, so the question is not
whether it will happen, but when it will happen and how you
will react to it. Considering and testing different disaster
recovery scenarios is the primary mechanism to ensure that
your organization’s systems will be healthy when a real case
hits. Think about what steps you will take when compute is in
trouble, when your database goes down, when one of the AZs or
regions is impacted, when your app teams introduce errors in
the code, and other possible scenarios, and devise your

responses to each of these situations.

Validating Resilience

Leading cloud providers offer guidelines on how to validate the
resilience of their applications and infrastructure against
various failure scenarios. For example, the AWS Fault Injection
Simulator (FIS) provides a comprehensive guide on creating

and managing experiment templates. AWS FIS enables users to

easily create and execute experiments to validate the resilience
of their applications and infrastructure against various failure
scenarios. The experiment templates serve as predefined
configurations that specify the parameters, actions, and targets
for conducting experiments. By utilizing experiment templates,
users can streamline the process of setting up and executing
experiments as well as ensuring consistency and repeatability

across different testing scenarios.
The stages for managing an experiment are as follows.

1. Introduction to experiment templates: Provide an
overview of what experiment templates are and their
significance in the context of the AWS FIS.

2. Accessing experiment templates: Guide readers on how to
access the experiment templates provided by AWS FIS.

3. Understanding experiment template components: Explain
the different components of an experiment template,
including parameters, actions, and targets.

4. Creating experiment templates: Walk users through the
process of creating custom experiment templates tailored to
their specific testing requirements.

5. Managing experiment templates: Discuss how to manage
and organize experiment templates effectively within the
AWS FIS console.

6. Executing experiments using templates: Demonstrate how
to execute experiments using the predefined templates,
showcasing their versatility and ease of use.

7. Analyzing experiment results: Highlight the importance of
analyzing experiment results to gain insights into system
behavior and resilience.

8. Iterative improvement: Encourage readers to iterate on
their experiment templates based on findings and
observations from previous experiments, fostering a culture

of continuous improvement in resilience testing practices.l

1. For detailed information on AWS FIS experiment templates,
refer to the official AWS documentation available at

https://docs.aws.amazon.com/fis/latest/userguide/experiment-

templates.html.

Microsoft Azure provides a Resiliency Checklist containing a
comprehensive set of guidelines and best practices to enhance

the resilience of cloud-based services.

In addition, Google Cloud includes resilience in its set of
patterns and practices for creating scalable and resilient apps,
emphasizing the importance of careful planning and design to

achieve the following goals.

https://docs.aws.amazon.com/fis/latest/userguide/experiment-templates.html
https://docs.aws.amazon.com/fis/latest/userguide/experiment-templates.html

e Scalability

1. Scalability refers to a system’s ability to handle varying
workloads by adjusting resources.

2. Well-designed apps scale up or down based on demand,
ensuring optimal performance and cost-effectiveness.

3. Google Cloud offers products such as Compute Engine,
Kubernetes Engine, and serverless options for efficient
resource management and cost optimization.

* Resilience

1. Resilient apps continue to function despite failures of
system components.

2. Resilience requires planning at all architecture levels,
including infrastructure layout, app design, and
organizational culture.

3. Google Cloud provides tools and services such as regional
availability, load balancing, and managed
compute/database products for building highly available
and resilient apps.

* Drivers and constraints

1. Various drivers, including business, development, and
operational needs, motivate the improvement of
scalability and resilience.

2. Constraints such as hardware dependencies, licensing

restrictions, and organizational resistance may limit

scalability and resilience efforts.
e Patterns and practices

1. Automation is crucial for building scalable and resilient
apps, reducing human error, and increasing speed.

2. Loose coupling, that is, treating systems as collections of
independent components, enhances flexibility and
resilience.

3. Data-driven design, in which metrics and logs are utilized
to understand app behavior, informs scaling decisions and
service health assessments.

e Automation and IaC

1. Automate infrastructure provisioning to enhance
consistency and reproducibility of environments.

2. Treat infrastructure provisioning as code, enabling
versioning, auditing, and integration with CI/CD pipelines.

3. Google Cloud offers tools such as Cloud Deployment
Manager and Config Connector, as well as support for
third-party IaC tools such as Terraform, Chef, and Puppet.

e Immutable infrastructure

1. Immutable infrastructure ensures that resources are
never modified after deployment, promoting predictability
and mitigating configuration drift.

2. Updates are made by redeploying resources with updated

configurations from the source repository.

3. This approach reduces issues common in mutable
infrastructures, such as configuration drift and snowflake
servers.

e High availability

1. High availability aims to maximize service availability
through redundancy and distribution of components.

2. Google Cloud’s global infrastructure allows the distribution
of resources across regions and zones to enhance
availability and resilience.

3. Managed services such as Cloud SQL provide built-in
redundancy and manage data replication and backups,
reducing the need for manual intervention.

4. Load balancing distributes traffic among resources to
prevent overloads and ensure optimal performance.

e Monitoring infrastructure and apps

1. Comprehensive monitoring provides insight into the
health and performance of your application.

2. Cloud Monitoring in Google Cloud offers integrated
monitoring, ingesting events, metrics, and metadata to
provide insights through dashboards and alerts.

3. Monitoring should occur at all levels, including
infrastructure, app, service, and end to end.

e Exposing app health

1. Implementing health checks allows systems to determine
the health of various components and route requests
accordingly.

2. Load balancers typically handle health checks, but
Kubernetes also supports liveness and readiness probes
for app health monitoring.

e Defining key metrics and service level objectives (SLOs)

1. Key metrics such as latency, traffic, errors, and saturation
help monitor the health and performance of user-facing
systems.

2. SLOs specify target levels of performance or reliability for
services, allowing teams to measure and maintain service
quality.

e Storage and database technology

1. Choose appropriate databases and storage technologies
based on scalability, availability, and consistency
requirements.

2. NoSQL databases offer increased availability and
scalability but may sacrifice some features of relational
databases.

e Scaling profile and deployment automation
1. Balancing cost and user experience is crucial when

deciding on scaling profiles and deployment strategies.

2. Auto-scaling and optimization techniques, such as
prebaked images and containerization, help ensure
efficient scaling and deployment.

e Modernizing development processes

1. DevOps practices promote agility and reduced time to
market by breaking down silos between development,
operations, and related teams.

2. Testability, automated testing, deployment automation,
and incident management are key aspects of modern
development practices.

* Testing and validating architecture

1. Testing resilience and scaling behavior is essential to
ensure that applications behave as expected under varying
conditions.

2. Continuous refinement and adaptation of architectures is
necessary to keep pace with evolving technology and user

demands.

Summary

By following well-thought-out strategies, organizations can
build and maintain resilient, scalable, and efficient cloud-native
applications while fostering a culture of continuous

improvement and innovation.

Q&A

Q: What is chaos engineering and how do I stress-test my
cloud apps?

If your goal is to build reliable and resilient systems, the best
way to test them is to introduce chaos: a variety of different
disturbances. Chaos engineering tests the systems by
introducing unexpected failures, disruptions, network failures,
software bugs—anything that can disrupt normal function.
Imagine a banking application. What happens if a network
server fails in the middle of a money transfer? It won’t be good
if a person using the banking application loses funds because
the transaction was not complete. What if a gamer is in the
middle of a game and the network connection becomes slow
because of high network traffic? Chaos engineering tests such
scenarios to ensure that the server infrastructure is robust
enough to handle required functionality despite all possible
challenges, and identifies vulnerabilities that need to be

addressed.

Possible approaches include latency injection simulating slow
network traffic, stress testing simulating an abnormally high
number of connections, server failure simulating specific

servers shutting down at random intervals, or database load

testing simulating huge queries being executed, jamming the

database.

Chaos engineering experiments can be executed in the
following phases: prepare, assess, analyze, score, and

remediate, as illustrated in Figure 2.4.

Assess \

Analyze
Prepare

Score

Remediate i

Figure 2.4

Chaos engineering phases

In each instance, you must focus on the most important areas to
address possible failures and disruptions. Once you determine
the most critical components of the system that are essential for
its proper functioning, you need to set up the hypothesis about
how the system might fail under specific conditions, and then
simulate these conditions. Next, you need to monitor system

behavior and analyze and collect data to identify any failures,

anomalies, and performance issues. Scoring is a technique to
evaluate the impact of chaos engineering experiments. During
scoring, you evaluate the impact of the chaos experience from
the point of severity, impact, probability of failure, risk, and
other relevant parameters. Finally, you remediate the issue by
fixing bugs, updating configurations, changing application
architecture, optimizing processes, and taking other measures
to eliminate the root cause for any vulnerabilities that impact

the system.

From a cloud reliability engineering (CRE) perspective, chaos
engineering requires continuous improvement. You cannot run
chaos engineering experiments once, fix the issues found, and
forget about it. New disruptions in security, software, and
hardware are introduced daily. It is important to iterate and
improve your system by rerunning chaos experiments to
address any new potential vulnerabilities. Most importantly,
any chaos experiments should not have a negative impact on
your user experience, so stage these experiments in a

thoughtful and structured way.

Q: What is a game day?

Game days simulate failures to test systems, processes, and

people’s responses. Doing this helps organizations understand

where improvements can be made and develop organizational
experience in dealing with major incidents in production. The
suggested approach is to conduct these regularly so that
application teams build muscle memory on how to triage, act,

and measure during highly stressful situations.

After your design for resiliency, the initial step is to test in
nonproduction environments; a game day is the way to ensure
that everything works as planned in production. If a negative
impact is observed, the game day test is rolled back and the
workload issues are remedied, manually if necessary (using the
runbook). Since game days often take place in production, all
precautions should be taken to ensure that there is no impact
on availability to your customers. It is also imperative to have a
centralized tool, catalog of experiments, and team-to-run game
days. In organizations with thousands of applications,
symptoms of failure can be created in different applications
from core dependencies, and not knowing when a game day is
happening can cause loss of time and energy from teams trying
to understand what is happening without realizing it is a test.
This will be similar to having an airport that allows airplanes to
land without the proper authorization; at some point there will
be a crash, creating devastating results for the organization and

impacting its customers.

Q: What is a Chaos Service Catalog, and what are some of
the most common failure scenarios?

A Chaos Service Catalog is a centralized repository where
various experiments, simulations, and hypotheses related to
system resilience and failure scenarios are stored and
managed. It’s a crucial resource used in chaos engineering
practices to deliberately introduce controlled failures into a
system to assess its resiliency and identify weaknesses before

they become critical issues.

Here’s an expansion on the mentioned failure scenarios.

e Disabling hosts for capacity reflection: Simulating reduced

capacity by intentionally disabling specific hosts or instances
within a system. This helps in understanding how the system
responds when resources become limited and how it
manages load distribution.

e AZ network service disruption: Creating a scenario in
which one or more AZs lose network connectivity. This test
allows evaluation of the system’s ability to handle a network
service disruption within specific zones and how it reroutes
traffic to maintain functionality.

e Errors in monitoring systems: Introducing deliberate

errors or faults into monitoring systems to assess how well

the system detects, reports, and responds to anomalies or
faults in monitoring data.

e Disconnecting an entire virtual private cloud (VPC):
Simulating the disconnection or isolation of an entire VPC to
evaluate the system’s resilience when the entire network
infrastructure is disrupted.

e Failover using inactive stack: Triggering a failover
operation using the most recent inactive stack or
configuration to test the failover process and assess its
reliability.

* Bypassing multifactor authentication (MFA): Testing the
system’s dependency on MFA by deliberately bypassing it.
This helps identify components or systems that rely solely on
MFA and might become nonoperational without it.

e AWS ECS task actions: Testing fault injection actions that
target Amazon AWS ECS workloads including CPU stress, 1/0
stress, killing certain processes, discarding network traffic, or

simulating a network packet loss.

These scenarios represent intentional disruptions or failures
introduced in a controlled environment to understand how a
system reacts and recovers from such events. Through these
simulations, organizations can proactively identify weaknesses,

strengthen their systems, and improve overall resilience.

AWS provides a helpful example of a power interruption
scenario as a means to simulate the effects of a complete
interruption of power in an AZ. This scenario aims to validate
the resilience of multi-AZ applications during a single, complete
AZ power outage. It encompasses various symptoms such as
loss of zonal compute, subnet connectivity loss, Amazon
Relational Database Service (RDS) failover, ElastiCache failover,
and unresponsive Elastic Block Store (EBS) volumes. The
actions involved in this scenario include stopping instances,
stopping AWS ASG instances, pausing instance launches,
pausing ASG scaling, pausing network connectivity, failover of
RDS, pausing Amazon ElastiCache Redis, and pausing Amazon
EBS I/0O. Each action targets specific resources and components
affected by the power interruption. Limitations of the scenario
are also outlined, such as the absence of stop conditions and
unsupported configurations like Amazon EKS Pods running on
AWS Fargate. This scenario serves as a valuable tool for
assessing and enhancing the resilience of applications and

infrastructure in the face of unexpected disruptions.

Q: What are the most common chaos anti-patterns?

Following are some common chaos engineering anti-patterns

and dependency issues.

Overemphasizing chaos, while ignoring the basics:
Focusing solely on chaos engineering without ensuring
foundational reliability practices. It’s crucial to have solid
monitoring, incident response, and stability before
introducing chaos experiments.

Chaos experiments without safety nets: Conducting chaos
experiments without proper safeguards or without
considering potential impacts on critical services. Lack of
isolation or safeguards can lead to widespread disruptions.
Inadequate experiment scoping: Running overly broad or
untargeted chaos experiments that affect more systems than
necessary. Narrowly scoped experiments help identify
specific weaknesses without unnecessary disruptions.

Static chaos planning: Relying on fixed, predictable chaos
scenarios. Chaos engineering should evolve with the system,
introducing variability in experiments to simulate real-world
conditions.

Ignoring dependencies in chaos experiments: Overlooking
dependencies or coupling between systems when designing
chaos experiments. This can lead to chaos-induced cascading
failures that aren’t reflective of real-world scenarios.
Ineffective recovery time objective (RTO) validation:
Relying solely on CI/CD pipelines and tools for RTO

validations, which might not accurately represent real-world

recovery scenarios, leading to a false sense of security.
Companies must consider running all pipelines at the same
time or not having a CI/CD pipeline tooling (e.g., Jenkins)
available during an incident.

e Excessive disruption to production: Conducting chaos
experiments in a live production environment without
appropriate control or abort mechanisms. This can lead to
customer impact and degrade user experience.

e Lack of collaboration and learning: Failing to involve all
stakeholders (developers, operations, etc.) or not sharing
learnings from chaos experiments across the organization.

This inhibits collective learning and improvement.

To mitigate these anti-patterns, it’s essential to focus on
thoughtful experimentation, starting with small, controlled
scenarios, considering system dependencies, and fostering a
culture of learning and collaboration around chaos engineering
practices. Validating RTOs in a way that mirrors real system
behavior and using chaos experiments as a learning tool rather

than a disruptor can significantly improve system reliability.

Q: How to test recovery procedures and playbooks?

Recovery procedures and playbooks require thorough testing

for each scenario, process, and best practice. From a Lean

perspective, you need to focus on minimizing waste,
maximizing value, and establishing continuous improvement
while introducing measures to ensure compliance with the

playbooks and recovery procedures specified for each system.

This is done in several phases. First, we need to ensure that
objectives are well stated and there is a shared understanding
of success criteria. Success criteria are primarily quantitative.
Some of the parameters to consider include the RTOs, recovery
point objectives (RPOs), and system availability data, or uptime,
as discussed in this chapter. Second, we need to establish phases
and boundaries for the experiments and automate testing so
that test results are repeatable and reliable. Then, we run tests
in a sequence and/or in batches, measure outcomes, and

document and share learnings.
Two Lean principles become highly important in this process:

e Continuous improvement (Kaizen), which allows leveraging
the Lean philosophy of continuous improvement to review
and refine the playbooks and recovery procedures

e Frequent feedback loops, allowing us to capture the feedback

from stakeholders and end users based on each experiment

Q: How to measure reliability?

This is a great question—and we thought you’d never ask! CRE
is data and fact driven. One of the most important questions
that every organization needs to answer is: How do we measure
CRE parameters such as resilience and reliability, and how do

we benchmark them against industry standards?

There is no one-size-fits-all answer here. Think of it as a
restaurant menu. Say you are at The Cheesecake Factory, and
you’re handed a huge menu comprising several pages of items,
most of which sound tasty. However, you can’t afford to eat all
of those simultaneously—at least, not if you want to stay
healthy. In the first question in this section, we discussed chaos
engineering when we need to define the most important
parameters to measure and focus on while simulating failures

in a controlled environment.

Similarly, there are many parameters that we may want to

measure in this scenario.

e SLOs and SLIs, which reflect the desired reliability and
resilience of our cloud services. These may include uptime,
response time, error rates, and other relevant parameters.

For example, an SLI might be “99.9% availability in a year.”

e Error budget, which represents the allowable amount of
downtime or errors a service can experience while still
meeting its SLOs. You can set up an error budget of one hour
of downtime per month, which means your service would
meet reliability targets even if its downtime was less than
one hour per month.

e Mean time between failures (MTBF), which measures the
average time between failures, and mean time to recover
(MTTR), which measures the average time it takes to recover
from a failure. Both metrics are essential for understanding
the reliability and resilience of your cloud applications. A

lower MTTR and a higher MTBF indicate better performance.

There are multiple other metrics, such as incident response
metrics to evaluate the efficiency of your incident response
process using such parameters as time to detect issues, time to
acknowledge, and time to fix; or business impact analysis,
allowing you to consider the impact of failures on business
objectives and customer experiences. There is no limit to what
you can measure depending on where your business bottleneck

is and what data is available.

It is important to review your metrics regularly and monitor
and refine the data you are collecting, to ensure that there are

no blind spots in defining the metrics for you to collect on an

ongoing basis and in displaying the data on live dashboards or
sharing a regular report. From a Lean values—driven
perspective, you need to start by considering the specific
requirements and goals of your organization when defining

these measurements.

Chapter 3

Incident Response for Fast Recovery

How to Handle Incidents and How to Automate This Process to

Improve Time to Detect and Time to Recovery

“Fast recovery” in cloud reliability engineering (CRE) refers to
the set of practices, procedures, and tools employed by
organizations to effectively manage and mitigate the impact of
incidents or disruptions in their cloud-based applications. These
practices aim to minimize downtime, data loss, and customer

impact while ensuring the speedy recovery of services.
Incident Response

First, let us define incident response. Incident response involves
the structured approach taken by teams to detect, triage, and

respond to failures promptly. It includes seven steps:
Step 1. Detection

Step 2. Analysis

Step 3. Containment

Step 4. Mitigation

Step 5. Resolution
Step 6. Communication
Step 7. Documentation

The sections that follow describe these steps in further detail.
Step 1: Detection

This step involves identifying issues or incidents through

monitoring, alerting, and anomaly detection systems.

To effectively detect incidents, organizations deploy a
combination of real-time monitoring tools that continuously
observe system metrics, application performance, and key
operational parameters. These tools generate alerts when
predefined thresholds or anomalies are detected, which helps
teams identify deviations from normal operations. In the
context of CRE, the emphasis is on keeping detection processes
lean and efficient. This means monitoring should be focused on
key performance indicators (KPIs) that directly impact user
experience and system stability. By carefully selecting and fine-
tuning monitoring criteria, CRE teams minimize noise and false

positives, ensuring that alerts are meaningful and actionable.

Furthermore, CRE encourages a data-driven approach to
detection. By leveraging historical data and performance
baselines, organizations can establish more accurate thresholds
for anomaly detection, allowing them to spot unusual behavior

with greater precision.

Step 2: Analysis

This step involves assessing the severity and scope of the

incident to understand its impact on customers and systems.

During this phase, CRE teams gather and analyze relevant data
to assess the incident’s severity. This involves examining the
incident’s characteristics, its potential impact on customers, and
the affected systems or services. The goal is to quickly establish
a clear understanding of the incident’s scope, pinpointing
whether it’s localized to a specific component or has broader
implications across the infrastructure, also known as the “blast
radius.” CRE teams rely on data-driven insights, historical
incident records, and predefined incident response plans to
expedite this analysis. By evaluating the severity accurately,
organizations can prioritize their incident response efforts
effectively, ensuring that resources are allocated where they are
needed most and that notifications to senior leadership, risk, or

regulatory teams are escalated appropriately. This process must

be predefined, validated against a preestablished severity
matrix during the incident, and free from ambiguity, thus
accelerating the engagement approach, communications, and

other critical response actions.

Step 3: Containment

This step involves isolating affected systems or components to

prevent further damage or disruption.

During this phase, CRE teams employ predefined strategies and
protocols to isolate the affected systems or components. This
might involve temporarily disabling certain services, rerouting
traffic, or implementing access controls to prevent
unauthorized access to compromised areas. The primary
objective is to create a controlled environment to minimize the
incident’s impact and reduce or prevent additional harm.
Containment strategies are designed to strike a balance
between safeguarding the overall system’s integrity and
maintaining essential services, ensuring that user experience is

not unduly disrupted.

Effective containment practices in CRE are characterized by a
rapid response, clear communication, and the utilization of

automation where possible. The goal is to halt the incident’s

progression while allowing incident response teams to work on
resolution without the burden of further system degradation.
Additionally, containment measures may include real-time
monitoring and ongoing assessment to ensure that the incident
remains isolated and does not escalate. By efficiently executing
the containment step, organizations can reduce downtime,
customer impact, and potential financial losses while moving

closer to incident resolution.

Step 4: Mitigation

This step involves implementing short-term solutions or

workarounds to minimize the impact on customers.

Mitigation strategies in CRE focus on identifying the most
pressing aspects of the incident and swiftly applying solutions
that can reduce their impact. These solutions are often
considered temporary measures, and their primary goal is to
restore service functionality or, at the very least, maintain
service availability while further investigation and resolution

efforts continue.

For example, if an incident affects a critical application,
mitigation might involve rerouting traffic to redundant servers,

disabling specific features to reduce the load, or implementing

failover mechanisms to ensure uninterrupted service. It’s
crucial to prioritize these actions based on the severity of the

incident and its impact on users.

Mitigation in CRE should align with predefined incident
response plans and procedures, usually defined in playbooks, to
allow for a structured and efficient approach. Moreover,
communication remains a key element during this phase,
ensuring that stakeholders are informed about the actions
being taken and any potential changes to the user experience.
Successful mitigation efforts not only alleviate the immediate
impact but also buy time for the incident response teams to
identify the root cause and work on a more permanent

resolution.

Step 5: Resolution

This step involves identifying the root cause and implementing

long-term fixes to prevent recurrence.

Resolution in CRE requires a meticulous investigation into the
incident’s cause, often involving cross-functional collaboration
among engineering teams, developers, and relevant
stakeholders. The objective is not just to patch up the

immediate problem but also to understand why it happened

(i.e., determine the root cause) and how to prevent similar
issues going forward. This might involve code reviews, system
architecture assessments, and in-depth analysis of logs and
performance data. Once the root cause is identified,
comprehensive solutions and improvements are designed and
tested to address it effectively. These solutions might involve
code changes, infrastructure adjustments, or updates to
operational procedures, depending on the nature of the

incident.

CRE emphasizes the importance of not just fixing the problem
but also learning from it to build a more resilient system. This
phase involves documenting lessons learned, updating incident
response plans, and continuously improving processes to
enhance overall system reliability. The goal is to ensure that
similar incidents are less likely to occur in the future,
contributing to a culture of continuous improvement and

reliability within the organization.

Step 6: Communication

This step involves keeping stakeholders informed about the

incident’s status and expected resolution time.

During this phase, the incident response team provides regular
updates to stakeholders, including internal teams, leadership,
and sometimes external customers/users if the incident impacts
them. These updates should include the current status of the
incident, the actions being taken to resolve it, and estimated
timelines for resolution. Communication should be clear,
concise, and tailored to the audience, ensuring that technical
details are explained in a way that nontechnical stakeholders

can understand.

Moreover, CRE emphasizes proactive and continuous
communication throughout the incident’s lifecycle. This
involves not only providing updates when there are significant
developments, but also acknowledging receipt of reports,
setting expectations for regular updates, and ensuring that
stakeholders are aware of any changes in the situation. This
transparent and collaborative approach fosters a culture of
accountability, trust, and shared responsibility for maintaining
system reliability. It also helps prevent speculation and
misinformation, enabling stakeholders to make informed

decisions and respond effectively to the incident.

Step 7: Documentation

This step involves recording all details related to the incident

for post-incident analysis and learning.

During this phase, the incident response team compiles a
comprehensive incident report that includes a detailed timeline
of events, the actions taken to mitigate and resolve the incident,
the root cause analysis (RCA) findings, and any
recommendations for preventive measures. It’s crucial to
capture both technical and nontechnical aspects of the incident,
as well as the impact on users, systems, and the organization as
a whole. The documentation should be clear, structured, and

easily accessible to relevant stakeholders.

In addition, CRE emphasizes the importance of conducting a
post-incident review or retrospective meeting, where the
incident response team and other relevant parties come
together to analyze the incident in depth and in a blameless
mode. This retrospective aims to identify what worked well
during the incident response, what could have been handled
better, and what systemic improvements can be made to
prevent similar incidents in the future. It’s a valuable learning
opportunity that aligns with Lean principles of continuous

improvement and empowers teams to adapt and evolve their

practices for greater reliability and resilience. We will discuss it
in detail in Chapter 4, “Operational Excellence and Change
Management: How to Establish Efficient Processes and

Maintain Best-in-Class CRE Practices.”

Fast Recovery

Fast recovery in CRE emphasizes the need for quick
restoration of services and systems following an incident. It
involves strategies and tools implemented in the following

seven steps:

Step 1. Minimize downtime

Step 2. Restore data

Step 3. Automate recovery

Step 4. Implement redundancy

Step 5. Test and validate

Step 6. Prioritize customer experience
Step 7. Pursue continuous improvement

The sections that follow describe these steps in further detail.

Step 1: Minimize Downtime

This step involves reducing the duration during which services
are unavailable to customers. This step is fundamentally
aligned with Lean principles of eliminating waste and
maximizing efficiency. When an incident occurs, minimizing
downtime becomes critical not only to maintain customer trust

but also to ensure the organization’s operational efficiency.

To achieve this, CRE teams employ strategies such as automated
failover mechanisms, load balancing, and rapid response
protocols. For example, they may implement auto-scaling to
dynamically adjust resource capacity based on real-time
demand, ensuring that there are sufficient resources available
to handle increased traffic or load spikes. Additionally, they
often use deployment practices such as canary releases or blue-
green deployments (these are discussed in more detail in

Chapter 7, “CRE Tooling; Tools That Support Automatic

Failovers, Automatic Rollbacks, Automatic Deployments, Chaos
Engineering, Incident Response, Configuration Management,
Immutable Infrastructure, and Disaster Recovery”), allowing
them to roll out updates or changes with minimal impact on
ongoing services. App teams can also leverage feature flags to
turn features on and off while the problem is addressed or a fix

is in place. The key is to proactively design systems and

processes that can swiftly adapt to disruptions, ensuring that

downtime is kept to an absolute minimum.

Furthermore, CRE encourages a culture of continuous
improvement, where incident response teams conduct post-
incident analyses to identify opportunities for further
minimizing downtime in the future. This aligns with Lean’s
principles of relentless pursuit of efficiency and waste
reduction. By continuously refining incident response processes
and optimizing system architectures, organizations can
progressively reduce downtime and enhance the reliability of
their services, ultimately delivering a better experience for

users.

Step 2: Restore Data

This step involves ensuring that data remains consistent and

available, preventing data loss.

Data is a critical asset for organizations, and any disruption or
loss can have severe consequences. CRE teams prioritize
strategies that allow for rapid data recovery and minimal data
loss during incidents. To achieve this, organizations implement
practices such as frequent data backups, data replication across

multiple Availability Zones (AZs) or regions, and real-time

synchronization mechanisms. For example, they might use

services such as the following.

* AWS S3 Data Replication: This service allows organizations
to replicate data across multiple AWS regions, ensuring high
availability and durability. In the event of a regional outage
or failure, data remains accessible from other regions,
minimizing downtime and data loss.

e AWS RDS Multi-AZ: With Multi-AZ deployment, Amazon
Relational Database Service (RDS) automatically replicates
data to a standby instance in a different AZ. In the event of a
failure in one zone, traffic is automatically redirected to the
standby instance, ensuring continuous availability and
minimal disruption to operations.

e Google Cloud Storage Nearline and Coldline: Google Cloud
offers nearline and coldline storage classes for data backup
and archival, providing cost-effective options for storing
infrequently accessed data with low latency retrieval. By
leveraging these storage classes, organizations can ensure
data redundancy and availability while optimizing storage
Costs.

* Google Cloud Spanner: Google Cloud Spanner provides
globally distributed, horizontally scalable relational database
service with strong consistency and high availability. It

automatically replicates data across multiple regions and

zones, ensuring resilience against regional outages and
minimizing data loss.

* Microsoft Azure Backup: Azure Backup offers cloud-based
backup solutions for protecting data across Azure services,
on-premises environments, and hybrid deployments. It
supports automated backups with incremental backups and
backup retention policies, enabling organizations to recover
data quickly and efficiently in the event of data loss or
corruption.

e Microsoft Azure SQL Database Geo-Replication: Azure SQL
Database offers geo-replication capabilities to replicate data
across multiple Azure regions for high availability and
disaster recovery. By replicating data asynchronously to
secondary databases in different regions, organizations can
ensure data redundancy and minimize downtime during

regional outages.

Additionally, disaster recovery planning involves defining
recovery point objectives (RPOs) and recovery time objectives
(RTOs) for different data types and systems. CRE emphasizes the
importance of regular testing and validation of data recovery

processes to ensure that they meet these objectives.

CRE also recognizes that data restoration is not a one-time

activity but an ongoing commitment to data reliability. It

involves continuous monitoring of data integrity, automated
failover mechanisms, and proactive detection of potential data
inconsistencies. By combining these practices with efficient data
recovery strategies, organizations can minimize data loss and
maintain data consistency, even in the face of unexpected
incidents, aligning with Lean principles of continuous

improvement and waste reduction.

Step 3: Automate Recovery

This step involves leveraging automation to expedite the
recovery process and reduce manual intervention. Automation
is a key principle of CRE, aiming to reduce human error, save
time, and ensure consistent and efficient responses to incidents.
To achieve automated recovery, organizations implement
scripts, playbooks, automated runbooks, and workflows that
can quickly detect incidents and trigger predefined recovery
procedures. For example, they might use the following tools and

services.

e AWS lambda functions combined with AWS CloudWatch
alarms: Organizations can set up lambda functions to
respond automatically to events detected by CloudWatch
alarms. For instance, if CPU utilization exceeds a certain

threshold, lambda functions can be triggered to scale

resources up or down dynamically, ensuring optimal
performance and cost efficiency. Figure 3.1 shows an AWS
CloudWatch dashboard.

My-Shared-Dashboard

Line chart Bar chart

Alarm Status
MyCompositealarm
CPU Alarm

) simpleMetricAlarm

cked area chart

i accountld

Text widget Number widgets

=== 058, 057
m mary button link - L - %
CunsSamglcapp-orey Scorchoop-ony

Figure 3.1

AWS CloudWatch dashboard (source:
https://aws.amazon.com/blogs/mt/communicate-monitoring-information-by-
sharing-amazon-cloudwatch-dashboards/; © 2024, Amazon Web Services, Inc.)

e Azure Automation: Azure Automation provides a cloud-

based automation service that allows organizations to create,
deploy, and manage runbooks to automate repetitive tasks
and processes. By defining workflows and schedules,

organizations can automate incident detection and recovery

https://aws.amazon.com/blogs/mt/communicate-monitoring-information-by-sharing-amazon-cloudwatch-dashboards/
https://aws.amazon.com/blogs/mt/communicate-monitoring-information-by-sharing-amazon-cloudwatch-dashboards/

procedures, reducing manual intervention and minimizing
downtime.

Google Cloud Functions: Google Cloud Functions enable
organizations to build serverless applications that
automatically respond to events in GCP. By integrating Cloud
Functions with monitoring and alerting services such as
Google Cloud Operations Suite monitoring, organizations can
trigger automated recovery actions based on predefined
conditions, such as scaling resources or restarting failed
instances.

Azure Logic Apps: Azure Logic Apps allow organizations to
automate workflows and integrate disparate systems and
services across Azure and other platforms. By creating logic
workflows with triggers and actions, organizations can
automate incident response and recovery processes,
orchestrating tasks such as resource scaling, data replication,
and failover to ensure continuous operation.

Google Cloud Operations Suite (formerly Stackdriver):
Google Cloud Operations Suite provides monitoring, logging,
and diagnostics tools that enable organizations to detect and
respond to incidents in real time. By setting up alerting
policies based on performance metrics and logs,

organizations can trigger automated recovery actions using

Cloud Functions or other GCP services to mitigate disruptions
and maintain service availability.

e Azure Autoscale: Azure Autoscale enables organizations to
automatically adjust the number of virtual machine (VM)
instances or App Service instances based on predefined
scaling rules. By monitoring performance metrics such as
CPU utilization or request latency, Azure Autoscale can
dynamically scale resources to meet changing demand,

ensuring optimal performance and availability.

Automation mechanisms can include self-healing mechanisms
that identify and resolve issues without human intervention.

Following are some examples.

e AWS EC2 Auto Recovery: AWS EC2 Auto Recovery
automatically detects and recovers failed Elastic Compute
Cloud (EC2) instances, minimizing downtime and
maintaining application availability. By defining health
checks and recovery actions, organizations can enable self-
healing capabilities that automatically restart failed
instances or replace them with healthy instances to ensure
continuous operation.

e Azure Virtual Machine Scale Sets: Azure Virtual Machine
Scale Sets allow organizations to define scaling policies based

on performance metrics or schedule, automatically adjusting

the number of VM instances in response to changes in
demand. By leveraging auto-scaling capabilities,
organizations can ensure high availability and
responsiveness without manual intervention.

¢ Google Cloud Kubernetes Engine (GKE): GKE provides
built-in auto-scaling and auto-repair features that
automatically adjust the number of Kubernetes Pods based
on resource utilization and health checks. GKE can
automatically restart or replace unhealthy Pods, ensuring
application reliability and availability without manual

intervention.

CRE teams continuously refine and optimize their automated
recovery processes through post-incident analysis and learning.
By identifying root causes and bottlenecks in the recovery
workflow, they can make data-driven improvements to enhance
the speed and effectiveness of automated recovery
mechanisms. Ultimately, the goal of automating recovery is to
minimize downtime, reduce the impact on customers, and align
with Lean principles of efficiency and continuous

improvement.

Step 4: Implement Redundancy

This step involves designing systems with redundancy and
failover mechanisms to maintain service availability.
Redundancy is a critical element of resilience and can
significantly reduce the impact of incidents and failures.
Organizations implement redundancy by duplicating critical
components, resources, or services within their infrastructure.
For example, they might use AWS Auto Scaling to maintain
duplicate instances of their applications across multiple AZs to
ensure that if one AZ experiences issues, traffic can be
seamlessly rerouted to a healthy one. This approach minimizes

downtime and provides a higher level of service availability.

Additionally, organizations might use AWS services such as
Amazon RDS Multi-AZ or DynamoDB Global Tables to replicate
databases across different locations, ensuring data consistency

and availability even in the face of regional outages.
Other cloud providers offer the following services.

e Azure Availability Zones: Azure Availability Zones provide
redundant data centers within a region, allowing
organizations to distribute their applications and data across
multiple physical locations for high availability and fault

tolerance. By deploying resources such as VMs, databases,

and storage across different AZs, organizations can ensure
continuous operation even if one zone experiences issues.
Google Cloud Regions and Zones: Google Cloud offers a
global network of data centers organized into regions and
zones, allowing organizations to deploy redundant resources
in geographically separate locations. By replicating critical
services and data across multiple regions and zones,
organizations can withstand regional failures and maintain
service availability for users worldwide.

Azure Traffic Manager: Azure Traffic Manager enables
organizations to distribute incoming traffic across multiple
Azure regions or global endpoints, improving application
availability and responsiveness. By configuring Traffic
Manager with health checks and failover policies,
organizations can automatically reroute traffic to healthy
endpoints in the event of a region or endpoint failure.
Google Cloud Load Balancing: Google Cloud Load Balancing
automatically distributes incoming traffic across multiple
instances or regions to ensure high availability and
scalability. By configuring load balancers with health checks
and failover policies, organizations can achieve redundancy
and fault tolerance for their applications, minimizing

downtime and improving user experience.

e Azure SQL Database geo-replication: Azure SQL Database
offers geo-replication capabilities that allow organizations to
replicate databases across different Azure regions for
disaster recovery and business continuity. By configuring
asynchronous replication between primary and secondary
databases, organizations can ensure data consistency and
availability across geographically dispersed locations.

* Google Cloud Spanner: Google Cloud Spanner is a globally
distributed, horizontally scalable database service that
provides strong consistency and high availability across
multiple regions. By replicating data automatically and
synchronously across global spans, Spanner ensures data
redundancy and fault tolerance, enabling applications to
withstand regional outages without data loss or downtime.

e Azure Blob Storage geo-redundancy: Azure Blob Storage
offers geo-redundant storage (GRS) and zone-redundant
storage (ZRS) options for replicating data across multiple
Azure regions or zones. By enabling GRS or ZRS replication,
organizations can protect their data against regional
disasters and ensure data availability and durability for
mission-critical applications.

¢ Google Cloud Storage regional buckets: Google Cloud
Storage allows organizations to create regional buckets that

replicate data across multiple regions within a single

geographic area. By storing data redundantly in regional
buckets, organizations can achieve high availability and
durability, with automatic failover in the event of a regional

outage.

By implementing redundancy strategically and testing failover
mechanisms continuously, CRE teams can enhance their
systems’ robustness and resilience, aligning with Lean

principles of reducing waste and improving overall efficiency.

Step 5: Test and Validate

This step involves regularly testing recovery procedures to
validate their effectiveness and identify areas for improvement.
This step also aligns with Lean principles of continuous
improvement and eliminating waste, ensuring that recovery
processes are efficient and reliable. Testing and validation
involve conducting drills, simulations, or exercises to mimic
various failure scenarios and evaluate how well the recovery
procedures perform. Teams can use tools such as AWS Fault
Injection Simulator (FIS), Azure Service Fabric Fault Analysis
(SAFA), or Google Cloud Chaos Engineering (GCE) (see more in
Chapter 7) to intentionally inject faults and failures into their
systems, allowing them to assess how well the systems respond.

These tests help identify weaknesses, bottlenecks, or overlooked

dependencies in the recovery process, allowing for refinement

and optimization.

By regularly testing and validating recovery procedures, CRE
teams can build confidence in their ability to respond
effectively to incidents. This proactive approach not only
reduces downtime and minimizes the impact of failures, but
also fosters a culture of continuous learning and improvement
within the organization. It ensures that fast recovery practices
remain aligned with evolving business needs and technological
advancements, ultimately contributing to a more resilient and

reliable cloud infrastructure.

Step 6: Prioritize Customer Experience

This step involves prioritizing the restoration of critical user-
facing functionalities to maintain a positive customer

experience.

This step aligns with Lean principles of delivering value to
customers and minimizing disruptions. When incidents occur;
ensuring that users can continue to interact with the system
smoothly is paramount. During fast recovery, CRE teams
prioritize the restoration of essential functionalities that

directly impact users. This includes identifying key features,

services, or components that are critical for user satisfaction
and business continuity. By preserving these user-facing
functionalities early in the recovery process, organizations can
minimize the impact of downtime and disruptions. This
approach aligns with Lean’s emphasis on delivering value
efficiently and eliminating waste, as it ensures that resources

are allocated to the most crucial areas first.

Prioritizing the user experience also involves effective
communication with users, keeping them informed about the
progress of recovery efforts and setting realistic expectations
for service restoration. This not only helps manage user
perceptions but also demonstrates transparency and a
commitment to customer satisfaction. In essence, this CRE step
is about maintaining a positive user experience even in the face
of incidents, reinforcing trust and loyalty while swiftly

resolving issues.

Step 7: Pursue Continuous Improvement

This step involves analyzing incidents and recovery efforts to
continuously enhance the organization’s response and recovery
capabilities. Lean principles emphasize the ongoing pursuit of
efficiency and optimization, and this step aligns perfectly with

that philosophy.

After resolving an incident, CRE teams engage in a thorough
post-incident analysis. They evaluate the incident’s root causes,
the effectiveness of the recovery process, and the impact on
users and the business. This analysis serves as the foundation
for identifying areas of improvement. By adopting a continuous
improvement mindset, organizations can iteratively refine their
incident response procedures, recovery strategies, and
preventive measures. This Lean-inspired approach encourages
teams to learn from past incidents, reducing the likelihood of

recurrence and enhancing overall system reliability.

Furthermore, continuous improvement extends beyond
individual incidents. CRE teams focus on building a culture of
learning and adaptation, where every incident becomes an
opportunity to refine processes and foster resilience. This
iterative approach aligns with Lean’s core principle of
minimizing waste, as it aims to eliminate sources of inefficiency
and enhance the organization’s ability to respond to and
recover from future challenges effectively. Ultimately, the goal
is to create a proactive and resilient environment where
incidents are not just resolved but also serve as catalysts for

ongoing improvement.

In CRE, incident response and fast recovery are integral

components of maintaining high availability and reliability in

cloud-based environments. By efficiently addressing incidents
and swiftly recovering from disruptions, organizations can
minimize the impact on their customers, maintain service
quality, and uphold their commitment to reliability and

resilience.

Incident Handling

Let us now address the process of incident handling. In CRE,
handling incidents is a well-structured and automated process
aimed at minimizing time to detect (TTD) and time to recover
(TTR) to ensure rapid response and resolution. The CRE

approach follows several key principles to achieve this.

e Proactive monitoring and alerting: CRE teams implement
comprehensive monitoring solutions that continuously track
the performance and health of systems and applications.
These systems are configured to generate real-time alerts
based on predefined thresholds or anomalies. Automation
plays a vital role in this phase by enabling the automatic
collection of metrics, log analysis, and triggering alerts when
deviations occur. This proactive monitoring ensures that
issues are detected as soon as they arise, reducing TTD. We
will discuss monitoring and alerting in more detail in

Chapter 5, “Leveraging Observability, Monitoring, Reliability

Metrics, and GenAl: How to Gain Insights, Set Effective
Monitoring, Set Service Level Objectives, and Establish
Thresholds.”

Automated incident triage: Upon receiving alerts, CRE

leverages automation to triage incidents swiftly and
accurately. Automated incident management tools categorize
and prioritize incidents based on severity and potential
impact on users and the business. By automating this initial
assessment, CRE teams can quickly focus their efforts on
high-priority incidents, thus reducing TTD and ensuring
faster response times.

Runbooks and playbooks: CRE maintains a library of
incident response runbooks and playbooks, which contain
predefined procedures for addressing common incidents.
These documents include step-by-step instructions, scripts,
and commands that guide engineers through the resolution
process. Automation is integrated into these runbooks to
execute routine tasks automatically. This approach
streamlines the incident resolution process, reduces the need
for manual intervention, and accelerates TTR.

Automated remediation: CRE embraces the concept of
automated remediation, where predefined scripts and
workflows are executed automatically to resolve known

issues. Automation, such as AWS lambda functions, step

functions, automated runbooks, auto failover, auto rollbacks,
or similar services, are employed to remediate common
problems without human intervention. Automating the
recovery process significantly reduces TTR, as the system can
heal itself quickly and efficiently.

e Post-incident analysis and improvement: Following
incident resolution, CRE teams conduct post-incident reviews
to analyze the root causes, response effectiveness, and
potential areas for improvement. Automation is leveraged to
gather and analyze incident data, providing valuable insights
for refining incident response procedures, enhancing
monitoring thresholds, and preventing recurrence. This
continuous improvement cycle ensures that CRE practices
become more efficient over time, further reducing TTD and
TTR.

Summary

CRE combines proactive monitoring, automated incident
handling, and continuous improvement to create a highly
efficient incident management process. By leveraging
automation at every stage, organizations can significantly
reduce TTD and TTR, ensuring minimal disruption to users and

maintaining high system reliability.

Q&A

Q: Can you define time to detect and time to recover in
greater detail?

Time to detect (TTD) is a critical metric in the field of incident
management and CRE. It represents the amount of time it takes
to identify and become aware of an incident or issue within a
system or application from the moment it first occurs. TTD
measures the speed and efficiency with which an organization
can detect anomalies, deviations, or problems that might
impact the performance, availability, or security of its digital

services.

A shorter TTD is desirable in CRE and incident response
because it enables organizations to respond rapidly to emerging
issues, minimizing the potential impact on users and the
business. Achieving a low TTD involves implementing proactive
monitoring, alerting systems, and automation to quickly
identify and acknowledge incidents as they happen. It allows
organizations to initiate the incident response process
promptly, investigate the root causes, and take corrective
actions to restore normal operations. Reducing TTD is crucial

for maintaining high service reliability and minimizing

disruptions in the digital age, where swift detection and

response to incidents is essential.

Time to recover (TTR) is a crucial metric in the context of
incident management and CRE. It represents the amount of
time required to fully restore a system, service, or application
to its normal operational state after an incident or disruption
has occurred. TTR measures the speed and efficiency with
which an organization can recover from an incident,
minimizing downtime and the associated impact on users and

business operations.

A shorter TTR is highly desirable because it means that an
organization can respond swiftly and effectively to incidents,
reducing the duration of service interruptions and disruptions.
Achieving a low TTR involves implementing well-defined
incident response procedures, automation, and recovery
mechanisms to expedite the restoration of affected systems or
services. It also requires thorough post-incident analysis to
identify root causes and preventive measures, thereby
enhancing the organization’s ability to recover rapidly from
similar incidents in the future. Minimizing TTR is crucial for
maintaining high service reliability, meeting service level
agreements (SLAs), meeting service level objectives (SLOs), and

ensuring a positive user experience.

Q: What are some of the incident management tools and
processes?

For effective incident and case management within the CRE
framework, organizations typically require a combination of
tools and processes. These tools often include playbooks and
incident management systems. Here’s a breakdown of the seven

key components.

1. Incident tracking and case management system

1. Incident case management system: An incident tracking
and case management system is a centralized platform
that allows organizations to log, track, and manage
incidents, including their lifecycle, from detection to
resolution. These systems provide a structured way to
handle incidents, assign ownership, set priorities, and
document actions taken.

2. Ticketing systems: Many organizations use ticketing
systems (e.g., Jira, ServiceNow) as part of their case
management approach. These systems help in tracking
incidents, assigning tasks to appropriate personnel, and
maintaining a record of actions and resolutions.

2. Playbooks and runbooks
1. Incident playbooks: Incident playbooks are documented,

step-by-step guides that outline the response procedures

for common incidents. They include predefined actions,
decision trees, and escalation paths. Playbooks help
response teams follow consistent and efficient processes
during incidents.

2. Runbooks: Runbooks are similar to playbooks, but may be
broader in scope, covering not only incident response but
also routine maintenance, troubleshooting, and other
operational tasks. They can include automation scripts and
procedures for rapid execution. Mature organizations not
only have runbooks, but also have invested in tooling to
automatically execute those scripts and plug-ins in a
timely fashion.

3. Automation and orchestration tools: Tools such as AWS
Step Functions, AWS AppConfig, Azure Logic Apps, Google
Cloud Composer, and third-party orchestration platforms
allow organizations to automate workflows and
configuration responses during incidents. These tools can
execute predefined actions, trigger alerts, and coordinate
incident resolution efforts.

4. Communication and collaboration tools: Effective
communication is crucial during incidents. Collaboration
tools such as Slack, Microsoft Teams, and dedicated incident
communication platforms help teams communicate in real

time, share updates, and collaborate on incident resolution.

5. Monitoring and alerting tools: Tools such as AWS
CloudWatch, Azure Monitor, Google Cloud Operations Suite
(formerly Stackdriver), Prometheus, New Relic, Splunk, and
Nagios are essential for detecting incidents in real time. They
generate alerts based on predefined thresholds and send
them to incident response teams and application teams for
immediate action.

6. Knowledge base and documentation: A knowledge base or
documentation repository stores information about past
incidents, their resolutions, and lessons learned. It helps
incident responders access relevant information quickly and
make informed decisions.

7. Continuous improvement and post-incident analysis:
Tools and platforms for post-incident analysis, such as AWS
X-Ray, AWS CloudTrail, Azure Monitor Logs, and Google
Cloud Logging, allow organizations to review incident data,

identify root causes, and implement preventive measures.

In a CRE environment, organizations aim to streamline incident
management processes, minimize downtime, and continuously
improve their incident response capabilities. The combination
of case management systems, playbooks, automation, and
collaboration tools facilitates efficient incident resolution while
enabling organizations to learn from incidents and enhance

their reliability practices.

Q: What are some of the critical playbooks to keep in mind?

In CRE, it is essential to ensure rapid recovery and have a
consistent documented response to incidents. This is usually
accomplished by providing standard playbooks and training
employees in the processes documented. Besides a consistent
and standardized approach to incident response, playbooks are
essential for incident response and fast recovery because they
provide faster response time, enabling support teams to
respond to incidents more quickly and efficiently. Teams do not
need to waste time figuring out what to do or who should do
specific actions. Instead, they can immediately start
implementing documented steps to mitigate the incident’s
impact and start the recovery process. Playbooks preserve
institutional knowledge and incorporate lessons learned from
past incidents. Playbooks can be created based on domain
areas, such as incident triage, network issues, third-party
providers, regional isolation, failover, and core infrastructure

service failure.

As an example, a high-quality incident triage playbook contains
a set of questions that a tech support team needs to ask while in
the middle of an incident. These questions can be categorized

into the following primary areas.

1. Identify the scope of the incident.

1. What happened? (What are the symptoms? Indicators?
Observations?)

2. Are there any alarms or alerts triggered on monitoring
tools, such as AWS CloudWatch, Azure Monitor, or Google
Cloud Monitoring?

3. Is there a potential trigger (e.g., recent deployment,
configuration change)?

4. What is the scope (e.g., does it affect specific services,
components, or geographies)?

5. What is the nature of the incident (e.g., systems are down,
security breach, inability to access [partial or complete])?

2. Identify the impact.

1. How critical is the incident (e.g., complete loss of service,
specific function impacted, business critical)?

2. How many users/customers/systems are impacted?

3. What is the severity level of the incident? (There should be
a well-defined scale and criteria for each parameter or
customer experience.)

3. Conduct a root cause analysis.

1. Has your cloud provider reported any service disruptions

or outages in the impacted region? Are there any other

incidents reported by your cloud provider?

2. Are there any dependencies on other services (cloud
provider or third party)? Have there been any reported
issues related to any of those?

3. Have there been any changes in key metrics before or
during the incident?

4. Have relevant logs been analyzed for error messages? Are
there patterns or abnormalities in these logs?

5. Is there any evidence of resource issues (e.g., CPU, storage,
RAM) on cloud instances?

6. Have there been any recent configuration changes?

7. What else? Any other reasons you can think of? (Always
ask this open question, which is very important because it
gives an opportunity to think of any root causes that may
have been missed otherwise.)

4. Conduct next steps.

1. What is the process for resolving this type of incident?
(This should be well documented in the relevant section of
the playbook.)

2. Has the incident response team been notified? (This
includes the right team based on the nature and severity of
the incident, including relevant stakeholders and leaders.)

3. What is the communication plan to inform customers or

internal users about the incident?

4. What is the plan for restoring data or services from
backup if needed?

5. What are the next steps and who is responsible for those?
(The playbook needs to provide specific instructions,
including roles, names, contact information, who initiates
the war room if needed, frequency of updates, any
communication channels that need to be open [e.g., Slack
or Chime chat], and communications to management and
users about the progress and the eventual resolution, as
well as the lessons learned and steps taken to prevent this

in the future.)
See Appendix A for an Incident Response Checklist Template.

If a company’s playbook covers these topics with a sufficient
level of detail clearly and concisely and trains proper
employees to follow these standards, the tech support team and
relevant stakeholders can efficiently and effectively respond to
incidents, focusing on the most critical questions to gather
essential information, identify the root cause, and work toward

resolving the incident promptly.

Chapter 4

Operational Excellence and Change
Management

How to Establish Efficient Processes and Maintain Best-in-Class
CRE Practices

In this chapter, we will define what operational excellence is
and the specific goals associated with it. The goal of operational
excellence is to balance how companies get new features into
customers’ hands safely and implement bug fixes quickly and
reliably. Organizations that invest in operational excellence
consistently delight customers while building new features,

making changes, and dealing with failures.

Operational excellence includes processes (such as metric
reporting, incident postmortems, and change management),
people (engineers and engineering leaders), and tools
(playbooks, monitoring and altering tools, etc.) required to

maintain resilient cloud operations (see Figure 4.1).

Operational
Excellence -

Figure 4.1

Components of operational excellence

(image: wophovid.com/Shutterstock)

Operational excellence in cloud reliability engineering (CRE)
focuses on efficiently managing cloud resources and services to
ensure the reliability, availability, and performance of
applications hosted in the cloud. The goal is to maintain a high
level of customer satisfaction while handling changes and

failures effectively.

Key Performance Indicators

Engineering leaders must understand that recovering quickly is

critical to success. This is where it is crucial to define and

http://wophovid.com/Shutterstock

measure the health of operations activities. Time to restore
(TTR) and time to detect (TTD), introduced in Chapter 3, are
some of the key performance indicators (KPIs) offering
customers a “business as usual” experience (i.e., customers are
not experiencing any issues). Additional operational metrics
include the number of customers impacted, number of
incidents by severity, number of incidents per app category
(critical, noncritical, critical dependency), root cause themes,

and number of incidents caused by third-party providers.

Root Cause Analysis

The root cause analysis (RCA) is a crucial phase in fostering a
culture of continuous improvement within CRE. Teams conduct
post-incident reviews to identify root causes and contributing
factors behind incidents, enabling the development of
preventive measures and the refinement of incident response

processes.

Cloud reliability in operational excellence is crucial for
organizations relying on cloud services to deliver their
applications and services. Quickly identifying root causes and
addressing issues helps maintain customer trust, reduces
downtime, and ensures a positive user experience, all while

optimizing operational costs.

To identify root causes, we recommend using the Lean “five
whys” technique. This technique involves asking “why”
multiple times (five times is considered sufficient in most cases)
to drill down to the root cause of a specific problem. Repeatedly
asking “why” helps uncover deeper, often overlooked factors
contributing to the issue. The goal is to identify the root cause
rather than just addressing superficial symptoms or assigning
blame for the issue. It starts with identifying the problem, such
as the low resilience of a specific system, low availability of
your key resource, or vulnerability you uncovered using chaos

engineering.

Let’s review an example of using the “five whys” technique to

identify the root cause of low cloud application resilience.

Problem Statement: The cloud application experiences frequent
downtime and outages, resulting in low resilience and an

unsatisfactory user experience.

e Why #1: Why does the cloud application experience frequent
downtime and outages?
Answer: Because the application’s server instances
occasionally fail due to server instance (host) issues related

to capacity.

* Why #2: Why do the server instances occasionally fail and
run out of capacity?
Answer: Because our current application design does not
have redundant hosts in place for the server instances.

* Why #3: Why doesn’t the design and/or cloud provider have
redundant hosts for the server instances?
Answer: Because our organization opted for the least
expensive cloud service tier, which doesn’t include host
redundancy.

e Why #4: Why did the organization opt for the least expensive
cloud service tier without redundancy?
Answer: Because the organization’s budget constraints led us
to choose the most cost-effective option.

e Why #5: Why were budget constraints a concern?
Answer: Because our organization did not allocate sufficient
funds for the cloud infrastructure, prioritizing cost savings

over improved resilience.

Based on this analysis, we were able to identify the root cause
of the low cloud application resilience. The root cause is the
lack of capacity in the application infrastructure, which was the
organization’s decision to prioritize cost savings over improved
resilience, leading it to opt for the least expensive cloud service
tier or design, which lacks redundancy. As a result, the

application experiences frequent downtime and outages

whenever server instances fail due to capacity issues, without

any backup to maintain availability.

With this root cause identified, your organization can now
work on developing a solution. This could involve upgrading to
a higher tier with redundant hosts or exploring other ways to
enhance resilience within your budget constraints. By
addressing the root cause, you can now improve the

application’s resilience and overall user experience.

Incident Reviews

When things fail, you will want to ensure that your team, as
well as your larger engineering community, learns from those
failures. You should analyze failures to identify lessons learned
and plan improvements. You will want to regularly review your
lessons learned with other teams to validate your insights. One
technique used is the creation of a blameless incident review,
which is common in companies such as Netflix, Amazon, and
Capital One, where the goal is to broadly share the learnings,
passing the insights on to the engineering community to

prevent future incidents.

A blameless incident review, or a blameless postmortem, as

some companies refer to it, is a collaborative process that

brings teams together to analyze incidents without assigning
blame. Instead of focusing on individual errors, blameless
postmortems aim to identify systemic issues and opportunities
for improvement, fostering a culture of learning and
continuous improvement. During a blameless postmortem,
teams delve into the incident to understand what happened,
why it happened, how the team responded, and what can be
done to prevent similar incidents in the future. The emphasis is
on objective analysis and constructive feedback, rather than

finger-pointing or punishment.

Advantages of blameless postmortems include the following,
from Atlassian’s Incident Management Handbook for Jira Service

Management.

e Healthy team culture: By removing the fear of blame,
blameless postmortems promote open communication,
empathy, and collaboration among team members.

e Increased incident reporting: Without the fear of
consequences, employees are more likely to report incidents
promptly, allowing teams to address issues proactively.

e Continuous learning: Blameless postmortems encourage
teams to discuss mistakes openly, share ideas for
improvement, and embrace a culture of learning and

adaptation.

e Improved support and communication: Teams can support
one another more effectively when blame is removed from
the equation, fostering stronger relationships and trust.

e Empowerment for application teams: Employees feel
empowered to contribute ideas and solutions without fear of
retribution, leading to more innovative and effective

problem-solving.

Blameless culture originated in the healthcare and avionics
industries, where mistakes can be fatal. These industries
nurture an environment where every “mistake” is seen as an
opportunity to strengthen the system. When postmortems shift
from allocating blame to investigating the systematic reasons
why an individual or team had incomplete or incorrect
information, effective prevention plans can be put in place. You
can fix systems and processes to better support people making
the right choices when designing and maintaining complex

systems.

The best practices for implementing blameless postmortems

include the following.

e Communicate openness: Ensure that teams understand that
blameless postmortems are about learning and

improvement, not punishment.

e Encourage honesty: Foster a culture of honesty and
accountability, where employees feel comfortable admitting
mistakes and sharing their experiences.

e Build a timeline: Establish a clear timeline of the incident to
ensure that all stakeholders have a shared understanding of
what occurred.

e Consistency is key: Ensure that all postmortems follow a
blameless approach to maintain trust and credibility within
the organization.

¢ Gain leadership support: Obtain buy-in from company
leaders to support the transition to a blameless culture and
allocate resources for training and implementation.

e Collaborate across teams: Invite representatives from
various teams to participate in postmortems to gain diverse
perspectives and identify potential improvements.

* Make data-driven decisions: Use the insights gathered from
blameless postmortems to make informed decisions about
process improvements and preventive measures.

* Review and approval: Assign responsibility for reviewing
postmortem findings and approving recommended actions to

ensure accountability and follow-through.

Amazon uses a mechanism called the Correction of Error
(COE) process for blame-free post-incident analysis. This lets

engineers analyze a system after an incident to avoid

recurrences in the future. These incidents also help teams learn
more about how their systems and processes work. That
knowledge often leads to actions that help other incident
scenarios, not just the prevention of a specific recurrence.
Although post-event analysis is part of the COE process, it is
different from a postmortem, because the focus is on corrective

actions, not just documenting failures.

The COE process consists of a post-event analysis. It is
imperative that the negative impact caused by the event be
mitigated before the COE process begins. This lets you do the

following.

e Dive deep into the sequence of events leading up to the
incident.

e Find the root cause of the problem and identify remediation
actions.

e Analyze the impact of the incident on the business and its
customers.

e Identify and track action items that prevent problem

recurrences.

It is important to remember that COE is not a mechanism
designed to assign blame for problems. Instead, its primary goal

is to enhance visibility into areas requiring improvement.

Cultivating an environment that encourages individuals to
bring forth issues fosters increased awareness of areas needing
attention. Human behavior tends to repeat actions that are

positively reinforced while avoiding those that incur penalties.

Most importantly, a COE is not a tool for punishing employees
following a negative event. Rather, its purpose is to ensure
ongoing enhancement throughout an application’s lifecycle.
Frequently, those most knowledgeable about an incident have
the greatest stake in its outcome. By incentivizing
comprehensive disclosure of events, we cultivate a culture that
rewards transparency and empowers individuals closest to the
issue to contribute to solutions rather than being viewed as part

of the problem.
COE includes identifying the following.

e What happened?

e What was the impact on customers and your business?

e What was the root cause?

e What data do you have to support this (especially metrics
and graphs)?

e What were the critical pillar implications, especially cost and
security? When architecting workloads, you make trade-offs

between pillars based upon your business context. These

business decisions can drive your engineering priorities. You
might optimize to reduce cost at the expense of reliability in
development environments, or, for mission-critical solutions,
you might optimize reliability with increased costs. Security
is always job zero, as you have to protect your customers.

e What lessons did you learn?

e What corrective actions are you taking (include task, owner,
and completion date)?

e What are some related items (e.g., trouble tickets)?

Appendix B describes COE structure and components in more
detail.

Once drafted, COEs are reviewed by the immediate team, as
well as other teams. At Amazon, there is a group of COE Bar
Raisers who raise the bar on COE quality. As explained in a post
on the Amazon Web Services (AWS) Cloud Operations blog, an
engineer can apply to become a COE through a learning and
mentoring process. High-impact COEs are usually reviewed

during operational meetings.

MS Azure follows a similar process and provides detailed

postmortems internally as well as externally.l

1 For Microsoft postmortem examples, see

https://devblogs.microsoft.com/devopsservice/?p=17665 and

https://status.dev.azure.com/ event/116182577/postmortem.

Google also has a postmortem culture, as discussed in Site
Reliability Engineering. The primary goals of writing a
postmortem are to ensure that the incident is documented, that
all contributing root cause(s) are well understood, and,
especially, that effective preventive actions are put in place to
reduce the likelihood and/or impact of recurrence. Google
teams use a variety of techniques for RCA and choose the
technique best suited to their services. Postmortems are
expected after any significant undesirable event. Writing a
postmortem is not punishment—it is a learning opportunity for
the entire company. The postmortem process does present an
inherent cost in terms of time or effort, so application leaders
and teams are deliberate in choosing when to write one. Teams
have some internal flexibility, but common postmortem triggers

include the following:

e User-visible downtime or degradation beyond a certain
threshold

e Data loss of any kind

https://devblogs.microsoft.com/devopsservice/?p=17665
https://status.dev.azure.com/_event/116182577/postmortem

e On-call engineer intervention (release rollback, rerouting of
traffic, etc.)

e Aresolution time above some threshold

* A monitoring failure (which usually implies manual incident

discovery)

It is important to define postmortem criteria before an incident
occurs so that everyone knows when a postmortem is
necessary. In addition to these objective triggers, any

stakeholder may request a postmortem for an event.

Postmortems are part of your company’s continuous
improvement culture. Every operational incident should be
treated as an opportunity to improve the operations of your
systems and share learnings across your organization. By
understanding the needs of your customers and services;
predefining runbooks for routine activities; using playbooks to
guide incident resolution, scripts for operations as code,
runbook automation tooling, and chaos testing scenarios; and
offering situational awareness, your reliability teams or, in the
case of Google, the app teams following the “You build it, you
own it” (YBYO) approach, will be better prepared to respond

effectively when incidents occur.

Change Management

Change management in CRE refers to the structured processes
and practices used to manage and control incident-related task
“changes” to a cloud-based system, infrastructure, or service.
This practice is critical for maintaining the reliability,
availability, and performance of cloud services. Change
management ensures that the application causing the incident
is fixed, but also that all other applications that can benefit
from the change implement the change. This technique raises
the engineering levels across the organization, rather than only

at the application that caused the incident.

Almost 70% of incidents are caused by changes. Changes to
your workload or its environment must be anticipated and
accommodated to achieve reliable operation of the workload,
system, or component that is experiencing the change. Changes
include those externally imposed on your workload, such as
spikes in demand, as well as those from within the
organization, such as feature deployments and security patches.
To establish efficient processes and maintain CRE practices, a
company needs to focus on multiple aspects of successful
change management. Table 4.1 outlines the components of CRE

change management.

Table 4.1

CRE Change Management Components

Component

Change
management

policies

Approval

workflow

Description

Establish clear
policies outlining
procedures for
initiating,
reviewing, and
approving changes
to cloud-based
systems. Define
roles,
responsibilities,
escalation paths,
and evaluation

criteria.

Implement an
approval
workflow for
reviewing and

approving changes

Example

AWS provides
documentation
on creating
change
management
policies using
AWS Service
Catalog and AWS

Organizations.

Azure DevOps
allows custom
approval
processes for

infrastructure as

Component

Risk assessment

Description

by relevant
stakeholders.
Document
approvals and
track change

request progress.

Conduct risk
assessments to
evaluate the
potential impacts
of proposed
changes on
reliability,
availability, and
performance.
Identify and
mitigate risks
before

implementation.

Example

code (IaC)
template

changes.

Google Cloud’s
Risk
Management
Framework
offers guidelines
for assessing and
managing risks
in cloud
infrastructure

changes.

Component

Change
management

documentation

Testing and

validation

Description

Maintain
comprehensive
documentation of
all changes,
including requests,
approvals,
implementation
details, and
outcomes. Ensure
accessibility and
real-time updates
for transparency

and accountability.

Perform thorough
testing and
validation of
changes in
controlled
environments
before

deployment.

Example

AWS Systems
Manager’s
Change Manager
feature enables
documenting
and tracking
changes to AWS

resources.

Azure DevOps
pipelines
facilitate
automated
testing and
validation of

infrastructure

Component

Scheduling

Description

Validate against
predefined criteria
for performance,
security, and
reliability

standards.

Develop schedules
for implementing
changes to
minimize
operational
disruptions and
maximize
availability.
Coordinate
deployments with
maintenance
windows and peak
usage periods to
minimize user

impact.

Example

changes using

Azure Test Plans.

Google Cloud
Scheduler
automates
scheduling of
changes and
maintenance
tasks across
Google Cloud

services.

Component

Monitoring and

alerting

Communication

and training

Description

Implement
monitoring and
alerting systems to
detect and
respond to issues
resulting from
changes. Monitor
key metrics and
set up alerts to
notify relevant
teams of
deviations from

expected behavior.

Communicate
change plans,
progress, and
outcomes to
stakeholders and
affected teams for
transparency and

alignment. Provide

Example

AWS
CloudWatch
offers
monitoring and
alerting
capabilities to
track
performance
metrics and
trigger alarms
based on
predefined
thresholds.

Microsoft Learn
provides training
resources and
tutorials on
Azure DevOps
for
implementing

change

Component

Post-
implementation

review

Audit and

compliance

Description

training and
documentation to
help teams adapt
to changes

effectively.

Conduct reviews
to evaluate change
effectiveness and
identify
improvement
opportunities.
Gather feedback
from stakeholders
and teams
involved in the
process to inform

future iterations.

Ensure
compliance with

regulatory

Example

management

practices.

Google Cloud’s
Incident
Response and
Postmortem
process includes
post-incident
reviews to assess
the impact of
change on
system

reliability.

AWS Config
offers

continuous

Component

Change
Management
Checklist*

Description

requirements and
internal policies
by documenting
and auditing
change
management
processes.
Maintain records
for auditing

purposes.

Include a detailed
checklist covering
steps and
requirements for
effective change
management.
Cover each
component, from
policy
development to

post-

Example

monitoring and
compliance
checks to ensure
that changes
comply with
security and
compliance

standards.

The Change
Management
Checklist by the
Cloud Native
Computing
Foundation
(CNCF) provides
a guide for
implementing
change

management

Component Description

implementation

review.

“See Appendix C for the detailed checklist.

Example

best practices in
cloud-native

environments.

Component

Description

Example

Change management
policies

Establish clear policies outlining procedures
for initiating, reviewing, and approving
changes to cloud-based systems. Define
roles, responsibilities, escalation paths, and
evaluation criteria.

AWS provides documentation on cre-
ating change management policies
using AWS Service Catalog and AWS
Organizations.

Approval workflow

Implement an approval workflow for
reviewing and approving changes by
relevant stakeholders. Document approvals
and track change request progress.

Azure DevOps allows custom
approval processes for infrastructure
as code (laC) template changes.

Risk assessment

Conduct risk assessments to evaluate the
potential impacts of proposed changes on
reliability, availability, and performance.
Identify and mitigate risks before
implementation.

Google Cloud’s Risk Management
Framework offers guidelines for
assessing and managing risks in
cloud infrastructure changes.

Change management
documentation

Maintain comprehensive documentation
of all changes, including requests, approv-
als, implementation details, and outcomes.
Ensure accessibility and real-time updates
for transparency and accountability.

AWS Systems Manager's Change
Manager feature enables document-
ing and tracking changes to AWS
resources.

Testing and validation Perform thorough testing and validation of ~ Azure DevOps pipelines facilitate
changes in controlled environments before automated testing and validation of
deployment. Validate against predefined infrastructure changes using Azure
criteria for performance, security, and Test Plans.
reliability standards.

Scheduling Develop schedules for implementing Google Cloud Scheduler automates
changes to minimize operational disrup- scheduling of changes and mainte-
tions and maximize availability. Coordinate nance tasks across Google Cloud
deployments with maintenance windows services.
and peak usage periods to minimize user

impact.
Monitoring and Implement monitoring and alerting systems AWS CloudWatch offers monitoring
alerting to detect and respond to issues resulting and alerting capabilities to track
from changes. Monitor key metrics and set performance metrics and trigger
up alerts to notify relevant teams of alarms based on predefined
deviations from expected behavior. thresholds.
Communication and Communicate change plans, progress, Microsoft Learn provides training
training and outcomes to stakeholders and affected resources and tutorials on Azure
teams for transparency and alignment. DevQOps for implementing change

Provide training and documentation to help management practices.
teams adapt to changes effectively.

Post-implementation Conduct reviews to evaluate change Google Cloud’s Incident Response

review effectiveness and identify improvement and Postmortem process includes
opportunities. Gather feedback from post-incident reviews to assess the
stakeholders and teams involved in the impact of change on system reliability.

process to inform future iterations.

Audit and compliance Ensure compliance with regulatory AWS Config offers continuous
requirements and internal policies by monitoring and compliance checks
documenting and auditing change to ensure that changes comply with

management processes. Maintain records security and compliance standards.
for auditing purposes.

Change Management Include a detailed checklist covering steps The Change Management Checklist
Checklist* and requirements for effective change by the Cloud Native Computing
management. Cover each component, from Foundation (CNCF) provides a guide
policy development to post-implementation for implementing change manage-
review. ment best practices in cloud-native
environments.

*See Appendix C for the detailed checklist.

By implementing these components of change management in

CRE, organizations can effectively manage and control changes

to cloud-based systems, ensuring reliability, availability, and

performance while minimizing risks and disruptions.

Each of these components is crucial for your change
management process and has to be part of your documented
process. Removing one of these components can lead to

incidents and operational failures.

Case Study

Let’s review a hypothetical example of a company operating an
e-commerce platform on Google Cloud experiencing
intermittent performance issues during peak traffic periods.
After conducting an RCA, it is determined that the current
configuration of its Compute Engine instances is not optimized

to handle sudden spikes in user traffic.
Consider the following change management process.

e Change management policies
* The company establishes clear policies outlining
procedures for initiating, reviewing, and approving
changes to its Google Cloud infrastructure.
e Roles and responsibilities are defined, with designated
personnel responsible for overseeing Compute Engine

configuration changes. For instance, the Cloud Operations

team is responsible for overseeing Compute Engine
configuration changes, which includes reviewing proposed
changes, assessing their impact, and ensuring compliance
with established policies and procedures. Additionally, the
team works closely with system administrators and
developers to coordinate and implement these changes
seamlessly while minimizing any potential disruptions to
the cloud infrastructure.

e Approval workflow

e An approval workflow is implemented to ensure that
proposed changes to the Compute Engine configuration
undergo thorough review by the infrastructure team and
DevOps engineers.

e Changes are documented and tracked using Google Cloud’s
Deployment Manager, ensuring transparency and
accountability throughout the approval process.

* Risk assessment

* Arisk assessment is conducted to evaluate the potential
impact of the proposed Compute Engine configuration
changes on the reliability and availability of the e-
commerce platform.

e Mitigation strategies are identified to address any potential
risks, such as instance downtime or performance

degradation.

* Change management documentation

e Comprehensive documentation is maintained for all
proposed changes to the Compute Engine configuration,
including change requests, approvals, and implementation
details.

e Documentation is updated in real time using Google
Cloud’s Cloud Source Repositories, providing visibility into
the change management process.

e Testing and validation

e The proposed Compute Engine configuration changes are
thoroughly tested in a controlled environment before
deployment to production.

e Automated testing scripts are utilized to validate the
changes against predefined performance and reliability
criteria, ensuring that they meet the required standards.

e Scheduling

e A schedule is developed for implementing the Compute
Engine configuration changes during off-peak hours to
minimize disruption to the e-commerce platform’s
operations.

e Coordination with the marketing team ensures that the
changes are deployed during periods of lower user
activity.

e Monitoring and alerting

* Monitoring and alerting systems are implemented to
detect any unexpected behavior or performance issues
following the deployment of the Compute Engine
configuration changes.

e Key performance metrics, such as instance CPU utilization
and network throughput, are continuously tracked using
Google Cloud Monitoring. Alerts are configured to
promptly notify the appropriate teams whenever there is
any deviation from expected performance, allowing for
quick responses to potential issues. This monitoring tool
integrates with the broader Google Cloud operations suite,
offering a comprehensive approach to maintaining
optimal system health and performance.

e Communication and training

e Change plans, progress, and outcomes are communicated
to stakeholders and affected teams to ensure transparency
and alignment.

e Training sessions are conducted to familiarize team
members with the updated Compute Engine configuration
and any operational changes resulting from the
deployment.

e Post-implementation review
* A post-implementation review is conducted to evaluate the

effectiveness of the Compute Engine configuration changes

and identify any areas for improvement.

e Feedback from stakeholders and teams involved in the
change management process is gathered to inform future
iterations and optimize the process further.

e Audit and compliance
¢ Documentation of the Compute Engine configuration

changes and associated change management processes is
maintained for auditing purposes.

¢ Google Cloud’s Audit Logs are used to ensure continuous
monitoring and compliance with security and regulatory
requirements throughout the change management
lifecycle.

e Change outcome: Following the implementation of the
optimized Compute Engine configuration, the e-commerce
platform experiences improved performance and reliability
during peak traffic periods. User satisfaction increases, and
the company’s reputation for providing a reliable online
shopping experience is enhanced. Additionally, the
structured change management process ensures that similar
performance issues are proactively addressed in the future,
contributing to the overall reliability and availability of the

cloud-based service on Google Cloud.

Heraclitus, the Greek philosopher, is known to have said,

“Change is the only constant in life.” The same applies to cloud

engineering. The company that does not manage its changes

well is bound to fail.

Architecture and Reliability Assessments

To assess your infrastructure against best practices and enable
optimization, your organization has the ability to establish
architecture standards (with different requirements based on
the criticality of the application), operational readiness reviews
(ORRs) for those applications with high-severity incidents
impacting customers in production, and launch readiness
reviews (LRRs) for those brand-new applications just ready to

hit production.

AWS also offers the AWS Well-Architected Tool. This tool is a
valuable resource for organizations seeking to ensure that their
cloud infrastructure adheres to best practices and is optimized
for performance, security, and reliability. This tool provides a
systematic framework for evaluating the architectural design of
your AWS workloads across various dimensions, including
operational excellence, security, reliability, performance

efficiency, and cost optimization.

By conducting these assessments, organizations gain insights

into areas where their infrastructure can be improved,

ensuring that it aligns with AWS’s architectural best practices.
The tool’s recommendations and insights help organizations
make informed decisions, identify potential risks, and prioritize
enhancements, ultimately leading to the creation of more

resilient, efficient, and cost-effective cloud architectures.

The Google Cloud Platform offers various tools and services to
conduct architecture assessments for optimization, including
the Google Cloud Architecture Framework and Cloud
Monitoring. The Google Cloud Architecture Framework
provides best practices, reference architectures, and design
patterns to help organizations design, deploy, and optimize
their cloud environments effectively. It offers guidance on
architecture principles, such as scalability, reliability, security,
and cost optimization, to ensure that solutions meet business
requirements and align with industry standards. Additionally,
Cloud Monitoring allows users to monitor the performance,
availability, and health of their cloud resources in real time,
providing insights into potential bottlenecks, inefficiencies, and
areas for improvement. By leveraging these tools, organizations
can assess their cloud architectures comprehensively and
identify opportunities for optimization to enhance
performance, reduce costs, and maximize value from their

cloud investments.

Microsoft Azure provides several tools and services for
conducting architecture assessments for optimization,
including Azure Advisor and the Azure Well-Architected
Framework. Azure Advisor offers personalized
recommendations and best practices for optimizing Azure
resources across various categories, such as performance,
security, reliability, and cost. It analyzes resource
configurations, usage patterns, and industry benchmarks to
identify opportunities for improving efficiency, enhancing
security, and reducing expenses. Additionally, the Azure Well-
Architected Framework provides a set of guiding principles,
design patterns, and assessment tools to help organizations
build and operate scalable, resilient, and efficient cloud
architectures. It offers guidance on key pillars, such as
operational excellence, security, reliability, performance
efficiency, and cost optimization, to enable organizations to
assess their architectures comprehensively and implement best
practices for optimization. By utilizing these tools,
organizations can evaluate their cloud architectures effectively
and make informed decisions to optimize performance, reduce

risks, and drive business value.

Summary

As we have shown in this chapter, operational excellence and
change management are fundamental pillars of CRE that play a
pivotal role in ensuring the reliability, availability, and
performance of cloud-based systems and services. By adopting
structured processes, best practices, and effective
communication strategies, organizations can enhance their
operational capabilities and respond efficiently to incidents and

changes in the cloud environment.

Q&A

Q: What are some common ways to measure the
effectiveness of a CRE change management process for a
company?

Effective change management is integral to maintaining cloud
reliability and ensuring that changes, updates, and
improvements are carried out in a controlled and reliable
manner. It minimizes the risks associated with cloud services,
enhances service quality, and builds trust with users and
stakeholders. It is important to continuously measure the

quality of this process. Following are some metrics to consider.

Change success rate: Measure how many changes are
successfully implemented without causing service
disruptions.

Change failure rate: Track the number of changes that
result in failures or issues requiring rollback.

Change lead time: Calculate the time it takes from the
request for a change to its successful implementation.
Emergency changes: Monitor the frequency of emergency
or unscheduled changes, as they can indicate underlying
reliability issues.

Incident rate: Keep an eye on the number of incidents or
outages that can be attributed to recent changes.
Customer satisfaction: Collect feedback from users or
customers to gauge their satisfaction with service quality and

reliability.

Q: What are the key concepts of operational excellence in
CRE?

Operational excellence in CRE may include one or several of the

following categories.

e Reliability: Cloud-based applications need to be available
and perform as expected. Metrics include availability and

uptime.

Operations: Companies need to manage and maintain cloud
resources. This includes provisioning, scaling, monitoring,
and troubleshooting.

Excellence: Companies need to strive for the highest
standards of operational performance, efficiency, and quality
in cloud management and delivery.

Cloud operations: Companies need to maintain effective
operations, minimizing waste and reducing time to discover
and resolve incidents.

Monitoring and alerting: Companies need to implement
robust monitoring and alerting systems to continuously track
the health and performance of cloud resources. When
anomalies or issues are detected, alerts are triggered for
rapid response.

Toil elimination—automation: Companies must leverage
automation tools and scripts to streamline routine
operational tasks, such as resource provisioning, scaling, and
configuration management. Automation reduces the risk of
manual errors and ensures consistency.

Scalability: Designing cloud-based systems to be scalable,
both vertically (adding more resources to a single instance)
and horizontally (adding more instances), allows systems to

handle varying workloads and traffic.

Resilience: Companies must implement redundancy and
failover mechanisms to ensure that services remain
available, even in the event of hardware failures or other
disruptions. This includes data replication, load balancing,
and disaster recovery planning.

Security: Companies need to develop and enforce strong
security practices to protect data and applications hosted in
the cloud. This includes identity and access management,
encryption, and compliance with security standards and
regulations.

Cost optimization: Companies must continuously monitor
and optimize cloud costs to ensure that resources are used
efficiently. This might involve identifying and eliminating
under utilized resources and selecting cost-effective pricing
models.

Change management: Companies must implement
controlled change management processes to ensure that
updates, patches, and configuration changes are made
without disrupting service availability.

Incident response: Companies must develop and practice
incident response plans to address issues and outages
promptly. This includes documenting procedures, conducting
post-incident reviews, and applying lessons learned to

prevent similar incidents in the future.

e Collaboration: Companies must foster collaboration and
communication among different teams, such as development,
operations, and security, to ensure that cloud operations are

aligned with business objectives.

Chapter 5

Leveraging Observability, Monitoring,
Reliability Metrics, and GenAl

How to Gain Insights, Set Effective Monitoring, Set Service Level
Objectives, and Establish Thresholds

Ensuring the availability of cloud services is a major goal for
organizations of all sizes and across diverse industries.
However, the complexity of modern systems demands robust
observability, better monitoring with custom alerting
mechanisms, and proactive reliability metrics to validate

service level objectives in preparation for failure.
Reliability Engineering Capabilities

Key capabilities in reliability engineering include observability,
monitoring, and alerting—all of which play a pivotal role in
keeping systems resilient and ensuring quick recovery from
failures. By leveraging these capabilities, organizations can
effectively manage the complexity of cloud-based systems,
maintain optimal performance, and safeguard against
disruptions. The following sections will explore these

foundational concepts in greater detail, highlighting how

observability and cloud monitoring are implemented to ensure

system health and business continuity.
Observability

Observability in cloud reliability engineering refers to the
capability of correlating data to gain insights into the internal
workings of complex cloud-based applications by collecting and
analyzing data from various sources. It includes monitoring,
tracing, logging, and analyzing data from multiple sources to
remediate and prevent issues. If the analysis shows a potential
issue, alerting is set up to notify cloud engineers when a
threshold is crossed. The cause may include full-service
outages, high error rates, latency or availability issues, or

performance issues impacting customers.

Cloud Monitoring

Cloud monitoring ensures that the application and
infrastructure that are running to serve business needs are
operating optimally, tracking and displaying cloud data across
different regions, zones, applications, hosts, dependencies, and
logs and generating the insights necessary for informed
decisions. Dashboards and visualization are the foundation for
engineers to conduct investigations, but we know we can’t have

engineers with eyes on glass 24/7, as that is not cost-effective.

Monitoring allows teams to set up alerts and policies, based on
service level indicators (SLIs) or targets, and to be notified
when those thresholds are breached, which usually indicates
something is wrong with the application and that there is a

potential impact to customers.

Observability and cloud monitoring form the cornerstone of
any cloud reliability strategy. It is critical for companies to
establish continuous monitoring on many levels (e.g., based on
application criticality, service tier, or line of business) to gain
insights into the performance and health of their cloud

resources.

Service Level Objectives and Service Level Indicators

A service level objective (SLO) is defined as a target value for a
given SLI over a period of time. SLOs give us reliability metrics
based on how well cloud-based applications are functioning for
our customers. They allow organizations to determine where to
invest their engineering capacity to improve services. SLIs can
be configured based on factors such as service uptime, latency,

availability, and responsiveness.

SLI targets alone will not indicate the aggregation of errors over

a period of time. This is why we need to consider the concept of

an error budget. The error budget provides a clear, objective
metric that determines how unreliable the service is allowed to
be within the given period, as illustrated in the example in
Figure 5.1. In this example, the team has exhausted its error
budget in 21 days and needs to prioritize (1) investing in
improving resilience and (2) removing technical debt to meet its

SLI target in the future.

EB % CONSUMED

100

80

60 -

40

20

0l— ' i] -
—20 III

0 5 10 15 20 25 30
DAYS

ERROR BUDGET %

Figure 5.1

Exhausting an error budget

For example, suppose a company has an SLO of 99%
availability. The error budget would be 1%, and that 1% in a 28-

day window would equate to 6.72 hours of downtime. If the SLI
dips below 99% during that window, the application or
customer journey has exhausted its error budget and is no
longer meeting the SLO. Figure 5.2 shows an example related to

stability and user experience based on errors.

SLO showing real user experience

08.7 < 2.7 %

SLO status Error budget

Good B Warning

SLI for availability

Qf (=7}

SLI status Error bﬁdget

Good B Wwarning

Figure 5.2

Mobile app stability SLI sample

Leveraging SLOs to safeguard the most critical business
revenue-generating cloud applications is a great enhancement
over traditional alerting with thousands of individual
infrastructure metrics (e.g., CPU, disk, input/output operations
per second [IOPS], memory utilization). With SLOs, CRE
organizations can focus on the most important business-
relevant health indicators and react much more quickly when

something goes wrong.

Ten-Step Process for Creating Effective Monitoring

There is a standard ten-step process that allows companies to
create effective monitoring, choose SLOs, and establish proper
thresholds in CRE.

Step 1. Define key metrics: Identify the critical metrics and
key performance indicators (KPIs) that matter most to your
business, application, or service. This could include availability,
response times, error rates, throughput, resource utilization,
and any other parameters relevant to your system’s reliability

and performance.

Step 2. Design and implement monitoring: Choose
monitoring tools and implement monitoring mechanisms that
can collect the data necessary for your metrics. Cloud platforms
often offer built-in monitoring services, and third-party tools

are available as well.

Step 3. Define SLOs: Identify the specific, measurable
objectives that define the desired level of service quality and

reliability.

Step 4. Establish SLIs: Identify the specific metrics or
measurements that quantify the quality of service. For example,
if response time is a critical metric, the SLI could be “99th

percentile response time.”

Step 5. Calculate SLI targets: Based on historical data and user
expectations, calculate the targets for your SLIs. For example,
you might set a 99th percentile response time target at 200

milliseconds.

Step 6. Create error budgets: Identify the allowed margin of
error in meeting the SLOs. This is essential for balancing
innovation and reliability. For instance, you might set an error

budget of 1% for the 99th percentile response time. When this

budget is exhausted, you may prioritize reliability over new

feature development.

Step 7. Configure alerting and thresholds: Set up alerting
rules that are triggered when metrics breach predefined
thresholds. Thresholds should be based on your SLOs and error
budgets. Alerts should be designed to notify you before you

exceed your error budget.

Step 8. Implement distributed tracing: Distributed tracing is a
mechanism that helps track application requests as they flow
from frontend to backend services. Application teams can use
distributed tracing to troubleshoot requests that exhibit some
sort of performance issue, such as high latency or high errors.
Using end-to-end distributed tracing allows engineers to
visualize the full journey of a request—from frontend to
backend—and pinpoint any performance failures or

bottlenecks that occurred along the way.

Step 9. Cross-functional collaboration: Establish effective
communication among development, product, and other
relevant teams. This collaboration ensures that SLOs, SLIs, and
monitoring strategies align with the broader business and

operational goals.

Step 10. Experiment and iterate: Use your error budget to
experiment and innovate. Allocate a portion of the budget to
introduce new features or improvements while ensuring that
your reliability remains within acceptable bounds. Once you
have some confidence in the data that has been collected and
the policies that have been put in place to follow your SLOs,
ensure that your site reliability engineers assign capacity to
those applications with SLOs that are in trouble, with the intent
to improve their stability and follow best practices. These
remediations should be targeted to the SLI that is breaching the
target first.

It’s important that you regularly review your SLOs, SLIs, and
thresholds with leaders, engineers, and the product team. Most
engineering-led tech companies have established team-,
division-, and enterprise-level operational excellence meetings
to review these indicators and other insights about cloud
application performance and advancements. Adjust these
indicators as necessary based on changing user expectations,
business priorities, and specific expected system performance.
Remember, not every system or application must be treated the
same way. Different experiences require different indicators
and targets. Continuously analyze the data to identify trends

and areas for improvement.

Maturity Levels

Organizations progress through four maturity levels in their
observability, monitoring, and SLO implementation, as

illustrated in Figure 5.3 and described in the list that follows.

Formal SLOs &
Error Budget
Policies

Defined Customer Journeys

Default SLIs

Basic Monitoring

Figure 5.3

Four maturity levels

Level 1—Basic monitoring: At this stage, organizations focus
on fundamental metrics such as CPU usage, memory usage,
errors, latency, and disk utilization. These metrics provide a
foundational understanding of system health but lack

granularity.

Level 2—Default SLIs: Organizations establish default SLIs
based on historical performance or predefined goals across the
company. While this approach offers some standardization, it
might not fully align with specific customer needs or critical

business processes.

Level 3—Defined customer journeys: At this stage,
organizations refine their monitoring strategy by defining
specific customer journeys or user experiences. SLIs are
tailored to the criticality of each journey, ensuring that
resources are allocated based on their impact on business

outcomes.

Level 4—Formal SLOs and error budget policies:
Organizations implement error budget policies and

enforcement mechanisms in collaboration with product teams

and leadership. Error budgets serve as a threshold for
acceptable service degradation, enabling proactive

management of reliability and prioritization of improvements.

By progressing through these maturity levels, organizations can
strengthen their observability practices, refine their monitoring
capabilities, and effectively manage SLOs to ensure optimal

reliability and performance.

The application of cloud reliability monitoring and alerting
varies across industries and company sizes. A robust set of
monitoring and alerting tools is available to ensure smooth,
incident-free operations. We will explore the available tools in

the section that follows.

Monitoring and Alerting Tools

Tools such as AWS CloudWatch, Azure Monitor, Azure
Application Insights, the Google Cloud operations suite
(formerly Stackdriver) for monitoring and logging, Prometheus,
New Relic, Splunk, and Nagios are essential for detecting
incidents in real time. They generate alerts based on predefined
thresholds and send them to incident response teams for

immediate action.

* AWS CloudWatch: A comprehensive monitoring service that
provides real-time visibility into the operational health of
your applications, infrastructure, and services. It collects and
tracks metrics, logs, and events, enabling you to monitor
resource utilization, set alarms, and gain a holistic view of
your Amazon Web Services (AWS) environment.

e AWS CloudTrail: Offers a trail of API calls made on your
AWS account, providing an audit log that is invaluable for
security and compliance monitoring.

¢ AWS X-Ray: A powerful tool for gaining insights into the
performance of your applications. It helps you identify
bottlenecks and troubleshoot errors in distributed
microservices applications by tracing requests as they travel
through various AWS services and components. This end-to-
end visibility aids in optimizing application performance and
ensuring a seamless user experience.

e AWS Config: Another essential tool for monitoring and
managing the configuration of your AWS resources. It helps
you assess, audit, and evaluate your AWS resource
configurations for compliance with best practices and
policies, allowing you to proactively detect and rectify any
configuration drift or noncompliance.

e AWS Service Health Dashboard: Provides up-to-date

information on the status of AWS services and regions. It’s a

crucial resource for understanding the operational health of
the AWS services you rely on and for staying informed about
any ongoing issues or outages.

¢ Google Cloud’s operations suite: Includes observability
services that help you understand the behavior, health, and
performance of your applications.

¢ Cloud Monitoring: Collects metrics, events, and metadata
from Google Cloud, AWS, synthetic monitors, and application
instrumentation.

* Google Cloud Trace: A distributed tracing system for Google
Cloud that collects latency data from applications and
displays it in near-real time in the Google Cloud console.

e Azure Monitor: A combination of three unique services—
Azure Monitor, Log Analytics, and Application Insights—that
provides powerful end-to-end monitoring of your

applications and the components they rely on.

There are a few non-cloud provider-related commercial off-the-

shelf (COTS) products that are worth mentioning in this area.

e New Relic: New Relic offers powerful insights into your
system stack by correlating issues across the entire
infrastructure. It provides actionable data to debug and
collaborate directly from your IDE, enhancing productivity

with artificial intelligence (AI)-driven assistance at each step.

This all-in-one connected experience helps teams quickly
identify, diagnose, and resolve problems, ensuring system
reliability and performance optimization.

Splunk: The Splunk Cloud Platform transforms vast amounts
of raw data into clear, actionable insights, enabling
organizations to resolve operational issues quickly and
enhance system performance. With its powerful data
analytics tools, it provides visibility into infrastructure,
helping teams proactively manage and optimize operations.
Downdetector: Downdetector provides real-time status and
uptime monitoring for over 12,000 services across 45+
countries. It tracks a wide range of services, including
telecommunications, online banking, websites, and apps,
helping businesses and users quickly identify outages and
service disruptions and stay informed about service
reliability and performance.

Observe: Observe aggregates data from several tools and
offers a multitude of APIs to ingest data and create
correlations that allow app teams to solve for incidents more
quickly. It also reduces the time to restore and, in many cases
due to its power of correlation, generates just-in-time root
cause analysis (RCA).

Dynatrace: This solution is a single source of truth for your

cloud platforms, allowing you to monitor the health of your

entire Azure infrastructure.

* Jaeger: Jaeger is a distributed tracing observability platform.
Such platforms are essential for modern software
applications that are architected as microservices. Jaeger
maps the flow of requests and data as they traverse a
distributed system. These requests may make calls to
multiple services, which might introduce their own delays or
errors. Jaeger connects the dots between these disparate
components, helping to identify performance bottlenecks,
troubleshoot errors, and improve overall application
reliability. Jaeger is 100% open source, cloud native, and

infinitely scalable.

These monitoring tools collectively empower organizations to
maintain the reliability and health of their AWS resources,

ensuring optimal performance and minimizing downtime.
Following are key takeaways from known failures.

e Failures happen: These incidents demonstrate that even
industry giants are susceptible to cloud outages. No system is
entirely immune to failures, emphasizing the importance of
vigilance and preparedness.

e Proactive monitoring: Swift identification of anomalies and

proactive monitoring are vital for minimizing downtime.

Investing in advanced monitoring tools, anomaly detection,
and performance profiling is essential.

* Robust incident response: Having an effective incident
response plan is crucial. The ability to mobilize teams
quickly, communicate transparently, and make data-driven
decisions can significantly reduce the impact of outages.

e Continuous improvement: Regular post-incident reviews
are essential. These should focus on learning from past
failures, refining monitoring strategies, and enhancing

incident response procedures.

In the rapidly evolving landscape of cloud computing, these
types of outages, while still possible, are less likely to happen.
The cloud industry has made substantial progress in improving
infrastructure, architecture, and monitoring practices. Cloud
providers such as AWS, Google, and Microsoft have enhanced
their infrastructure to include multiple data centers and
geographic regions. This reduces the likelihood of a service-

wide outage.

Cloud providers and organizations have adopted more
advanced monitoring and alerting systems that can detect
anomalies and performance issues in real time, allowing for
quicker incident response. There is a greater emphasis on

incident response planning, with organizations conducting

regular drills to ensure that teams are well prepared to tackle
unexpected issues. While these advancements make outages
less likely, they don’t eliminate the possibility entirely.
Emerging technologies, software bugs, human errors, and

unforeseen circumstances can still lead to disruption.

Case Study: AI's Impact on CRE

Al advancement has impacted CRE in multiple ways. As defined
in Wikipedia, “Generative artificial intelligence (generative Al,
GenAl or GAI) is a subset of artificial intelligence that uses
generative models to produce text, images, videos, or other
forms of data. These models learn the underlying patterns and
structures of their training data and use them to produce new
data based on the input, which often comes in the form of

natural language prompts.”

Microsoft has published a customer story describing how it
partnered with AT&T to improve engineering experience with

Azure and GenAl. In this case, the goals include the following:

e To enable IT professionals to request resources such as
additional virtual machines (VMs) when they are running out

of storage or if they are having a computer problem

e To migrate legacy code into modern code, which will help
accelerate developers’ productivity and let them focus on
creating more modern tools and experiences for AT&T

customers and employees

This case underscores the critical role of resiliency in ensuring

the smooth operation of essential business functions.

The integration of GenAl and automation tools plays a
significant role in preventing and mitigating outages. Al-driven
systems can identify issues faster than humans can, and take

corrective actions. Here are some examples.

* Anomaly detection: Al can analyze vast datasets to detect
subtle anomalies, which can be early indicators of issues.
When coupled with advanced monitoring systems, GenAl
becomes a real-time guardian of cloud services. For instance,
if a sudden performance bottleneck threatens to disrupt a
critical application, Al swiftly intervenes. It can allocate
additional resources to alleviate the strain or intelligently
reroute traffic to avoid service degradation. This dynamic
response ensures that disruptions are contained and
addressed before they impact end users.

e Predictive maintenance: Al can forecast when hardware

components or services are likely to fail, allowing for

proactive maintenance.

Al leverages its capacity to analyze historical data
comprehensively. Imagine a scenario in which a cloud
service is about to confront capacity limitations during an
unexpected traffic surge. Through its analytical prowess, Al
can foresee this impending challenge. Consequently, it
prompts the system to proactively adjust its resources, such
as spinning up additional servers and thereby ensuring a
seamless user experience. This predictive ability minimizes
the risk of service interruptions due to unforeseen surges.
Dynamic resource scaling: Al-driven auto-scaling solutions
can automatically adjust resources based on traffic patterns,
preventing performance degradation.

Al systems excel at understanding workload patterns and
resource utilization. For instance, consider a cloud
application that experiences varying levels of user activity
throughout the day. Al continually assesses these patterns
and adjusts resource allocation accordingly. During periods
of high demand, it scales up resources, while in times of
reduced activity, it efficiently scales down. This dynamic
optimization guarantees that cloud resources are used
judiciously, maximizing cost efficiency and delivering

consistent performance.

* Self-healing capabilities: Finally, generative Al offers self-
healing capabilities.
In practice, this means that Al-driven systems can
autonomously rectify known issues. If a service or
component fails, Al can instantly trigger remedial actions. It
might restart a failed service, reconfigure components, or
shift workloads to redundant resources, all without human
intervention. This self-healing attribute ensures that common
problems are resolved swiftly, contributing to the overall

resilience and reliability of cloud services.

Summary

In this chapter, we reviewed capabilities and mentioned some
of the tools that ensure observability, monitoring, and alerting,
to enable the continuous delivery of reliable cloud services
while minimizing disruptions and enhancing the end-user

experience.

Q&A
Q: What is important to keep in mind when defining SLOs?

The following list provides some of the considerations when

defining SLOs. Irrespective of the situation, you need to align

with your stakeholders and customers in defining SLOs for your

organization.

* When creating SLOs, align them with user expectations. For
instance, if your users expect your service to respond within
200 milliseconds, set an SLO that reflects this expectation.

» Evaluate the potential risks and impacts of different SLOs.
Stricter SLOs might be more challenging to meet, but they
provide a higher level of reliability.

e Finally, use historical data and machine learning (ML) to
understand the typical performance of your service. This

data can inform your SLOs and help set realistic targets.

Q: How do you use GenAl for CRE?

GenAl can significantly enhance your ability to monitor,
observe, and alert in CRE by providing a controlled
environment for testing and optimizing your systems. It can
also assist in proactive issue detection, RCA, and adaptive
alerting, ultimately improving the overall reliability and

performance of your cloud-based services.

To summarize the content presented in this chapter, the
following list represents the most widely used applications of
GenAl for CRE.

1. Anomaly detection: GenAl models can be trained to detect
anomalies in the system’s data.

2. Data generation: GenAl models can create synthetic data
resembling actual system behavior. This can be used for
system testing. Moreover, GenAl can be leveraged with chaos
engineering to simulate scenarios, such as traffic spikes,
resource failures, and unexpected user behavior, and check
how a system will respond to these conditions. Some
examples include load testing, fault injection, latency
injection, region and/or Availability Zone (AZ) failure, and
other engineering-introduced chaos.

3. Alerting optimization: GenAl may continuously adjust
alerting thresholds to provide timely and dynamic alerts in
complex environments. It can fine-tune alarms to ensure that
there are no false positives. GenAl models are able to
continuously adapt alerting rules based on evolving system
behavior.

4. Issue prediction: GenAl models may predict potential cloud
reliability problems based on historical data and simulated
scenarios. They can analyze data across multiple dimensions,
and identify correlations and dependencies that humans may
not be able to detect.

5. Analysis: GenAl can support RCA by narrowing down

possibilities and assisting in post-incident analysis.

6. Self-healing: Al-driven systems can autonomously rectify

known issues, such as restarting a failing host or service.

Given these opportunities, companies need to regularly
experiment with GenAl to explore different use cases and stay
up-to-date with emerging Al techniques. Learning and adapting

are crucial in a quickly evolving CRE landscape.

Chapter 6

CRE via Objectives and Key Results (OKRs)

How to Build a Culture of Continuous Reliability Improvements

Using the OKR Framework

In this chapter, we will describe the objectives and key results
(OKR) framework and provide practical examples of using it to
build a culture of continuous reliability improvement in your

organization.
Continuous Improvement in Lean

As we discussed in Chapter 1, continuous improvement is a core
principle in Lean, focusing on the ongoing effort to enhance
processes, eliminate inefficiencies, and create value for both the
business and the customer. In Lean, continuous improvement is
seen as a systematic approach to identifying areas for
improvement, applying data-driven solutions, and rigorously
evaluating outcomes. The goal is to achieve higher quality,
reduced costs, and better efficiency, creating a culture of
empowerment where employees are engaged in improving
their work and the overall value stream. By identifying and

removing waste—activities or processes that do not add value

to the end customer—Lean practices aim to streamline
operations, ultimately improving the quality of the product or

service. Let’s review key Lean concepts.
Kaizen

From a Lean perspective, continuous improvement (referred to
as “Kaizen”) is a fundamental concept in engineering. In Lean,
Kaizen means the continuous pursuit for betterment, starting
from the engineering-related process and system efficiency and
resulting in engineering empowerment and a focus on the

elimination of “waste.”

Waste

Waste is defined as any activity, system, or process that does not
add customer value. Usually waste increases cost, time, or effort
without providing functional or other (e.g., quality) value to the
final product, service, or application team. There are seven
critical wastes (or “Muda” in Japanese) introduced by Taiichi
Ohno, the father of the Toyota Production System (TPS), in the
book Toyota Production System: Beyond Large-Scale Production.

e Overproduction: Producing more than what is needed or
producing too early, leading to excess inventory and tying up

valuable resources. In cloud reliability engineering (CRE),

this refers to creating exaggerated amounts of chaos
engineering experiments, service level indicators (SLIs),
metrics, alerts, and other performance indicators when your
application does not have enough users to know where to
apply them. Leveraging an incremental approach to the
delivery of results is critical to the success and elimination of
waste.

Inventory: Storing excess raw materials, work in progress,
or finished goods, which incurs holding costs, takes up space,
and can lead to obsolescence. In CRE, this refers to building
all the features of a system without considering the priorities
of the user. Most users end up leveraging 20% of the
capabilities of a given app, so why produce 100% and wait
too long to create an early feedback cycle from your
customers?

Transportation: Unnecessary movement or transportation
of materials, products, or information, adding no value to the
end customer. In CRE, this refers to duplicating datasets
unnecessarily and creating different systems of record that
are duplicative. As we design our systems and create new
consumers and producers of data, CRE teams need to
consider how to set contracts between systems to leverage a
single version of truth and at the same time duplicate only

when it is needed.

e Waiting: Idle time or delays in the production process, where
work is not progressing and resources are wasted. In CRE,
this refers to managing dependencies and knowing the
impact those can create on your mission-critical applications.
For example, you can have the best CRE practices to reduce
latency for a critical application (e.g., 50 ms), but if one of the
dependencies does not consider latency as something critical
for its action, your entire system will be impacted for the
wait time that is introduced in your critical app.

e Motion: Unnecessary physical movement of people or
equipment, leading to inefficiency and fatigue. While in CRE
there is no physical movement of people or equipment, there
are many factors that lead to engineer fatigue. For example,
if your team creates hundreds of dashboards that produce
one million alerts per day to track everything that is possible
in the world of CRE, this will absolutely create alert fatigue
and very quickly demotivate any engineer to have fun and be
part of your organization. CRE suggests a continuous
incremental approach to setting up things such as metrics,
alerts, thresholds, chaos tests, playbooks, and runbook
automation, always starting backward from the customer’s
point of view.

e Overprocessing: Adding more value to a product or service

than the customer requires or is willing to pay for, resulting

in wasted effort and resources. In CRE, this refers to ensuring
that you manage your capacity continuously. For example, if
your application can run in two regions with two Availability
Zones (AZs) with a 125% provisioned capacity, why add an
extra region or AZ if this will create an increase in costs,
operational maintenance, and data replication?

e Defects: Producing products or delivering services with
errors or defects, which require rework, cause customer
dissatisfaction, and incur additional costs. In CRE, this refers
to ensuring that your testing and deployment practices are
setting your application team up for success. For example,
requiring a minimum test coverage of 90% that is automated
and executed on every release, and setting up deployment
patterns to incrementally deploy using blue-green
deployments and incremental feature rollouts with readily
available automated rollbacks, will set your team and
company apart from others. These types of investments help
you identify errors early in the software development cycle,
and proactive measures in production if an error escapes to

production.

By identifying and addressing these various forms of waste,
Lean organizations can optimize their software factory

operations, deliver better value to customers, and create a more

efficient and productive work environment for their

engineering teams.

Continuous Improvement

Once the sources of waste are identified, the next step is to
remove waste through continuous improvement. This requires
a structured and methodical approach with clear

measurements and regular checks against progress.

These concepts, introduced by TPS and related to
manufacturing, were applied to software engineering by Mary
Poppendieck and Tom Poppendieck, who discussed the concept
in their book Lean Software Development: An Agile Toolkit. Their
work emphasizes the importance of continuous improvement
in the software development process to achieve better
outcomes and customer value. Besides eliminating waste, they
focus on concepts of optimizing flow from ideation to delivery,
empowering cross-functional teams to make decisions and
drive improvements, focusing on incremental delivery rather
than large infrequent releases to allow for faster feedback

cycles, and continuous learning through feedback.

Application of Lean to CRE

All these concepts directly apply to CRE, which has a goal of
enhancing the reliability, performance, and efficiency of cloud-
based services. To build and maintain resilient and scalable

systems in the cloud, CRE needs to follow the same principles.

1. Eliminate waste: In the context of CRE, eliminating waste
means optimizing cloud resources and reducing
inefficiencies. This involves identifying and removing
unnecessary instances, minimizing data duplication, and
optimizing the usage of storage and computing resources to
avoid unnecessary costs and improve performance.

2. Optimize flow: For CRE, optimizing flow means ensuring a
smooth and efficient flow of data and requests in the cloud
infrastructure. It involves streamlining the data pipelines,
optimizing data transfer, and minimizing latency to enhance
the overall performance and responsiveness of cloud-based
services.

3. Empower teams: Empowering engineering teams means
providing them with the authority and autonomy to manage
cloud resources effectively. It involves giving teams the
flexibility to make data-driven decisions, experiment with
new technologies, and continuously improve the reliability

and scalability of cloud systems. A key factor here is to learn

from mistakes, allowing teams to test and try without the
fear of failure, and using a blameless issue review process in
which the entire organization learns.

4. Deliver in small batches: In CRE, delivering in small batches
translates to making incremental changes to the cloud
infrastructure rather than large-scale updates. This approach
allows for quicker validation of changes, easier rollback in
case of issues, and faster adaptation to changing
requirements. The smaller the change, the more certainty
your teams have to roll back to the previous configuration
and avoid major customer impacts.

5. Learn through feedback: In CRE, teams should actively seek
feedback from users and monitoring systems to identify and
address issues promptly. This feedback-driven approach
enables teams to detect anomalies, optimize performance
bottlenecks, and proactively respond to potential failures.
Product teams play a leadership role in funneling these
insights back into the CRE-driven team to address concerns
and implement solutions.

6. Visualize work: Visualization is a key aspect of CRE as it
helps teams gain insights into the performance and health of
cloud infrastructure. By leveraging observability tools, such
as generative Al (GenAl), monitoring dashboards, and visual

management platforms, CRE teams can track important

metrics, spot trends, and understand the relationships
between different systems. This ability to visualize data
enables proactive action to maintain system reliability. For
instance, when trying to diagnose an issue, teams may
struggle to identify the root cause when the data is scattered
across multiple tables from different systems. However, by
using time series data, creating dependency maps, and
employing OpenTelemetry (OTel) agents to gather and track
traffic flows, CRE teams can generate more powerful,
actionable insights to pinpoint the problem and its solution.
This approach strengthens the reliability and performance of
cloud-based services by allowing teams to quickly detect
issues and take corrective actions.

. Encourage collaboration: Collaboration among
development, leadership, product, and security teams is vital
in CRE. A collaborative environment fosters communication
and knowledge sharing, leading to better decision-making
and quicker incident resolution.

. Focus on quality: Quality is a top priority in CRE to ensure
that cloud-based services meet customer expectations and
business needs. This involves implementing robust testing
practices, proactive monitoring, and continuous

improvement to maintain high reliability and availability.

Application of OKRs to CRE

By embracing the Lean principles, CRE teams are able to build
more resilient and scalable cloud infrastructures, improve the
performance of their cloud services, and provide customer
value. However, these principles need to be quantified and
connected to metrics. Given the complexity of the CRE
landscape and the directional nature of Lean principles, how do
CRE professionals monitor progress against the goals they have
set up for continuous improvement? Here’s where the concept
of objectives and key results (OKRs) comes into play. Let’s start

by understanding the concept and nature of OKRs.
History of OKRs

The concept of OKRs has its origins at Intel Corporation in the
1970s. It was introduced by Andrew Grove, who later became
the CEO of Intel, along with John Doerr, a venture capitalist who
worked at Intel at the time. In the early 1970s, Intel was facing
intense competition in the semiconductor industry, and Grove
recognized the need for a management tool that would help
align the efforts of the entire organization toward common
objectives. He wanted a system that would enable Intel to set
ambitious goals, measure progress, and motivate employees to

achieve exceptional results. Around 1974, Grove introduced the

concept of OKRs at Intel, drawing inspiration from the
Management by Objectives (MBO) approach popularized by
Peter Drucker in the 1950s. Grove modified and expanded the
MBO concept to create a more dynamic and adaptable goal-
setting framework suited for Intel’s fast-paced and competitive

environment.

To better understand how OKRs can be applied in CRE, let us

review the components and cascading mechanisms of OKRs.

1. OKRs drive continuous results and improvements in a
structured and intentional way. According to this framework,
there are two components.

Objectives, which are the qualitative and ambitious goals
that an organization aspired to achieve. They are hard to
achieve (but not impossible), are tied to the company’s vision,
and provide clear direction.

Key Results (KRs), which are the specific, measurable, and
time-bound outcomes indicating progress toward achieving
these objectives.

Since Intel, OKRs have been widely adopted and are
becoming an increasingly popular tool to achieve progress
against stated goals. The simplicity, flexibility, and focus on

measurable outcomes have made OKRs a popular choice for

companies seeking to drive alignment, engagement, and
continuous improvement in their operations.

Usually, there are three to five objectives for each
organization and three to five KRs associated with each of
those. They can be set at an annual or quarterly time frame,
and the progress against the objective is continuously
measured to ensure that the organization (team) is on the
right track.

Figure 6.1 illustrates the structure of OKRs in a typical

quarterly cycle. The figure shows a clear “Objective” for the
quarter, which sets the overarching goal for the team or
organization. The KRs provide the measurable outcomes that
help track progress toward achieving the objective. Each KR
would have a status update based on predefined metrics,
indicating how well the goal is being achieved. It highlights
the role of “Initiatives”—projects or tasks that are designed to

move the needle forward on the KRs.

Objective
Frogress

Key Results 1 _
KE'}? Resulis 2 ﬁ

Key Results 3 g—>

Figure 6.1

Key components of OKR
2. OKRs cascade throughout the company so that the goals of

the company get translated into divisional goals specific to
each competency. OKRs should be reviewed and updated
regularly to reflect changing priorities and to ensure
continuous progress toward the desired outcomes. There are
usually monitoring and reporting tools in place (dashboards,
monitoring tools, performance tools, and alerts) that provide
inputs into the periodic review process (usually biweekly or
monthly) where companies can course-correct in case KRs do
not show improvement, or if the company is not able to
achieve its objectives despite KR improvement. In this case,
the organization will pivot and make an assumption related

to its ability to achieve the objectives through different KRs.

OKR Examples

The list that follows outlines some of the sample OKR sets for a

large-scale company.

* Objective 1: Improve Service Reliability (Availability,
Recovery, and Resiliency)
e KR 1: Achieve 99.99% uptime for critical customer

experience or cloud services in the next quarter.

¢ KR 2: Reduce mean time to recover (MTTR) for incidents
by 25% by implementing automated incident response
workflows.

¢ KR 3: Reduce mean time to detect (MTTD) for incidents by
25% by implementing automated incident response
workflows.

e KR 4: Reduce mean time to engage (MTTE) for incidents by
25% by implementing automated incident response
workflows.

e KR 5: Implement service level objectives (SLOs) for all
critical applications and ensure that applications not
meeting the SLO conduct an operational readiness review
(ORR).

* KR 6: Create a monthly report containing availability data
for 56 previously identified enterprise-critical services
with an outline of Correction of Error (COE) or problem
activities related to each outage.

e Objective 2: Enhance Scalability and Performance

e KR 1: Increase the capacity of cloud infrastructure to
handle 30% growth in user traffic without performance
degradation.

* KR 2: Reduce response time variability for critical cloud
services by maintaining a 95% response time within a

narrow range (e.g., +/— 10% of the average response time).

KR 3: Improve database response time by implementing
indexing, caching, or other optimization techniques,
resulting in a 20% reduction in database query time.

KR 4: Decrease response time for API requests by 20%
through optimizations and caching strategies.

KR 5: Decrease the error rate of cloud services to less than
0.5%, ensuring that the majority of user interactions are

successful without errors.

e Objective 3: Enhance Incident Response and Disaster

Recovery

KR 1: Implement a comprehensive disaster recovery plan
and conduct successful disaster recovery tests with zero
data loss.

KR 2: Reduce the average time to detect and respond to
incidents by 40% through enhanced monitoring and
automation.

KR 3: Reduce the average time taken to resolve critical
incidents by 30% compared to the previous quarter.

KR 4: Conduct post-incident reviews for all major incidents
within 48 hours of resolution, identifying root causes and
implementing preventive actions.

KR 5: Ensure that the recovery point objective (RPO) for

critical cloud services is met consistently, with no more

than one hour of potential data loss in the event of a

disaster.

e Objective 4: Optimize Cloud Costs and Resource

Utilization

KR 1: Reduce cloud infrastructure costs by 15% through
rightsizing and efficient resource allocation.

KR 2: Increase the cloud resource utilization rate to 80%
by implementing auto-scaling and workload consolidation
strategies.

KR 3: Identify and resize overprovisioned cloud resources
to match actual usage patterns, resulting in at least a 20%
reduction in unnecessary costs.

KR 4: Implement a Spot Instance strategy to utilize low-
cost, unused cloud resources, aiming for 10% of the overall
workload to run on Spot Instances.

KR 5: Implement automated resource lifecycle
management to terminate idle or unused instances,

leading to a 15% reduction in resource waste.

* Objective 5: Strengthen Security and Compliance

KR 1: Conduct a comprehensive security compliance audit
and achieve a passing score of 90% against relevant
industry standards and regulations (including ISO 27001,
SOC 2, GDPR).

e KR 2: Reduce the number of security vulnerabilities in
cloud systems by 30% through proactive vulnerability
assessments and remediation efforts.

¢ KR 3: Reduce the average time to remediate critical
security vulnerabilities in cloud systems to less than 48
hours from the time of discovery.

e KR 4: Enforce multifactor authentication (MFA) for all
privileged accounts and achieve a 90% MFA adoption rate
within the CRE team.

* KR 5: Ensure that all security incidents are properly
documented and reported within 24 hours of detection,

adhering to the organization’s incident response process.

Please note that these are provided for illustration only and will
depend on the company vision, long-term goals, and customer
and business issues that need to be addressed at a specific point
in time. By implementing OKRs, engineering leaders will be
able to align their efforts with strategic business objectives,
foster a culture of transparency and accountability, and drive

continuous improvement in CRE practices.

Summary

OKRs enable an organization to prioritize initiatives that have

the highest impact on customer satisfaction, service availability,

security, and cost optimization. Additionally, OKRs empower
individual team members to take ownership of their
contributions, making them more engaged and motivated to
excel in their roles. As a result, the CRE organizations that
implement OKRs become more agile, adaptive, and customer
centric, ensuring that cloud-based services meet and exceed
expectations while delivering value to the business and its

customers.

Q&A

Q: Why are operational readiness reviews (ORRs) critical to
reliability engineering?

ORRs provide a structured approach to defining, tracking, and
achieving reliability goals. They align reliability efforts with
business objectives, promote collaboration and accountability,
and facilitate continuous improvement in cloud service

reliability.

ORRs are a scalable, self-service mechanism to share and
enforce the best practices learned from incident analysis
without slowing teams down. This is also how your
organization retains tribal knowledge and sets up new teams
owning older or even newer apps to be sustainable to operate

smoothly. ORRs allow teams to perform operations

independently, avoid unnecessary delays during critical events,
and know how to react when the system is not operating

correctly.

ORR questions uncover issues proactively and reactively. These
questions also educate engineering teams on the
implementation of best practices to avoid the recurrence of
incidents by eliminating and educating them on common

causes of impact and reduced resilience.

AWS has made available some questions to help you start your
own ORR checklists. For more details, visit

https://docs.aws.amazon.com/wellarchitected/latest/operational-
readiness-reviews/appendix-b-example-orr-questions.html.

Q: Are there any OKRs that do not focus on system
parameters?

Yes, there are culture- and customer- (or employee-) related
OKRs that we recommend for CRE organizations. These may

include the following.

* Objective 1: Foster a Culture of Reliability and
Continuous Improvement
e KR 1: Increase the average number of implemented

process improvements per quarter within the CRE

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/appendix-b-example-orr-questions.html
https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/appendix-b-example-orr-questions.html

organization by 30%.

e KR 2: Conduct weekly post-incident reviews and apply
learnings to prevent recurring incidents.

* KR 3: Organize monthly knowledge-sharing sessions to
disseminate best practices and foster cross-team
collaboration.

¢ KR 4: Implement a system for anonymous employee
feedback on improvement opportunities, aiming for at
least an 80% participation rate and actionable insights
from at least 90% of respondents.

e KR 5: Establish a recognition program for team members
who proactively propose and contribute to successful
process improvements, fostering a sense of ownership and
recognition for continuous improvement efforts.

Objective 2: Improve Customer Experience and

Satisfaction

e KR 1: Achieve a Net Promoter Score (NPS) of 8 or above
from internal and external customers regarding cloud
services reliability and support.

e KR 2: Decrease the average response time for customer
support requests related to cloud services by 30%.

e KR 3: Establish and maintain a customer-centric
knowledge base, aiming for a 95% accuracy rate and

regular updates based on customer feedback.

* KR 4: Conduct post-incident reviews with affected
customers to understand the impact of incidents on their
operations and gather insights for future prevention and
mitigation.

* KR 5: Set up a Customer Advisory Board to regularly
engage with key customers, gather their input on service
improvements, and involve them in the decision-making

Process.

Q: I am interested in implementing OKRs in my
organization. What are some of the benefits I can mention
to my management to advocate for this framework?

By implementing OKRs, a CRE organization will be able to
achieve several significant outcomes that contribute to the
overall success and effectiveness of its operations while

reducing customer impacts.

e Continuous improvement: OKRs are typically set for
defined time frames, such as quarterly cycles. This promotes
a culture of continuous improvement within the CRE
organization. Regularly reviewing and updating OKRs allows
the team to adapt to changing circumstances, learn from past
experiences, and continuously refine their approaches to

cloud reliability and engineering.

¢ (Clear alignment with business objectives: OKRs provide a
framework for aligning the efforts of the CRE team with the
broader business goals of the organization. By setting
objectives that directly tie to strategic priorities, CRE leaders
ensure that the team’s activities are focused on driving value
and contributing to the company’s success.

e Measurable results and accountability: The use of Key
Results (KRs) in OKRs enables the CRE team to define clear
and measurable outcomes. This fosters a culture of
accountability, as team members are responsible for
achieving specific results and can track their progress
throughout the OKR period.

e Customer obsession: By incorporating customer-focused
objectives in its OKRs, the CRE organization ensures that
customer needs and satisfaction remain at the forefront of its
efforts. This emphasis on customer centricity leads to the
development of more reliable and user-friendly cloud-based
services.

e Efficient resource allocation: With OKRs in place, the CRE
organization can prioritize initiatives and allocate resources
effectively. This helps the company focus on the most
impactful projects, ensuring that time and effort are directed

toward activities that contribute to its success.

e Data-driven decision-making: The measurable nature of
KRs enables the CRE team to make data-driven decisions.
They can analyze progress and outcomes to identify trends,
success factors, and areas for improvement, thus fostering
evidence-based decision-making.

 Enhanced collaboration and communication: OKRs
provide a common language and framework for
communication within the CRE organization and with other
teams. This clarity enhances collaboration and coordination
among teams, ensuring that everyone works toward shared
goals.

e Adaptability and flexibility: The OKR framework allows a
CRE organization to adapt to changing market conditions,
emerging technologies, and shifting business priorities. The
company can pivot its focus and strategies as needed to
remain relevant and responsive to its needs.

e Motivated and engaged team members: Clear and
challenging OKRs inspire and motivate team members to
strive for excellence. The sense of ownership and purpose
that comes from contributing to meaningful objectives drives

higher levels of engagement and job satisfaction.

Chapter 7

CRE Tooling

Tools That Support Automatic Failovers, Automatic Rollbacks,
Automatic Deployments, Chaos Engineering, Incident Response,
Configuration Management, Immutable Infrastructure, and

Disaster Recovery

Proper tooling is essential in cloud reliability engineering (CRE)
to maintain the reliability, availability, and performance of
cloud-based systems. Automation helps streamline recovery
operations, reduce manual intervention for testing scenarios,
and ensure that teams can proactively respond to issues. Cloud
providers offer a large number of automation tools that
embrace these principles and techniques. In this chapter, we
will review some of the tools and discuss why they are

important in CRE.

Distributing Load and Volume with Auto-Scaling and
Load Balancing

Reliability engineering focuses on measuring how resilient,
stable, and scalable your systems are. This requires distributing

and balancing loads to ensure an “always on” posture for your

most critical systems. Amazon Web Services’ (AWS) Well-
Architected Tool is an example of a tool that allows you to
conduct reviews of your applications according to AWS
architectural best practices. It provides a structured framework
for assessing your architecture, identifying areas in need of
improvement, and making informed decisions to optimize your
AWS workloads. Let’s take a look at how application teams can
use this tool to configure and test the resilience, stability, and

scalability of their systems.
Auto-Scaling

Cloud auto-scaling is a cloud computing feature that
automatically adjusts the number of compute resources (e.g.,
virtual machines [VMs]) allocated to an application based on
changing demand. The primary goal of auto-scaling is to ensure
that applications can handle varying levels of traffic and
workloads efficiently and without manual intervention. This is
where the concept of elasticity becomes a major player in your

cloud implementations.

AWS Auto Scaling (see Figure 7.1) automatically adjusts the
number of instances in response to changes in demand,
ensuring that applications are neither overprovisioned nor

underprovisioned. An example of auto-scaling is the dynamic

resource allocation that occurs when AWS Auto Scaling
monitors the performance and resource utilization of your
application. When certain predefined conditions are met, such
as increased traffic or CPU utilization, AWS Auto Scaling
automatically provisions additional resources based on scaling
policies, such as CPU usage metrics, network traffic, or custom
application-specific metrics. When demand decreases, it can
scale down resources to avoid overprovisioning and reduce

costs.

COs

FERFORMANCE
AWS Auto Scaling

Unified scaling for your Explore your Discover what Choose what Track scaling as
cloud applications applications you can scale to optimize it happens
Figure 7.1

AWS Auto Scaling (source: https://aws.amazon.com/autoscaling/; © 2024, Amazon
Web Services, Inc.)

Auto-scaling also provides elasticity to your applications,
allowing your systems to seamlessly handle traffic spikes and
other fluctuations in demand without manual intervention.
This elasticity contributes to high availability and improved

performance.

https://aws.amazon.com/autoscaling/

Finally, by automatically scaling resources up and down, auto-
scaling helps optimize cloud costs so that you only pay for the
resources you use, which can lead to cost savings during
periods of lower demand. AWS provides multiple resources for
cost optimization, including AWS Cost Optimizer, AWS Cost
Explorer, and AWS Cost Estimator.

GCP provides the following auto-scaling tools.

* Google Kubernetes Engine (GKE) Autoscaler: GKE
Autoscaler automatically adjusts the number of nodes in a
given cluster based on the demands of your workloads. It can
scale nodes based on various metrics, including CPU
utilization and custom metrics.

* Google Compute Engine Autoscaler: This tool adjusts the
number of instances in a managed instance group based on
the current load. It can scale based on CPU utilization, HTTP
load balancing, server capacity, and custom metrics.

e Google App Engine Autoscaling: Google App Engine
provides automatic scaling based on request rates, response
latencies, and other application metrics. It ensures that your
application always has enough instances to handle incoming
traffic.

Microsoft Azure offers the following options:

e Azure Autoscale: Azure Autoscale enables you to
automatically adjust the number of compute resources based
on demand. It supports scaling based on metrics such as CPU
usage, queue length, and schedule-based scaling.

e Azure Virtual Machine Scale Sets: Azure Virtual Machine
Scale Sets allows you to create and manage a group of
identical load-balanced VMs. You can define auto-scale rules
based on CPU usage or other metrics to automatically adjust
the number of VM instances.

e Azure App Service Autoscale: Azure App Service Autoscale
offers auto-scaling capabilities for web apps, API apps, and
mobile apps. It can scale instances horizontally based on
metrics such as CPU usage, memory usage, and HTTP queue

length.

Figure 7.2 illustrates how auto-scaling can be configured to
create the most efficient and reliable posture for your
applications. The figure depicts how the number of VMs will
remain at two when the application experiences minimum
volumes; as new workloads and users connect, the
infrastructure will be elastic to support the additional load and
grow from two to a maximum of five VMs. In this scenario, the
application has found the need to increase to three VMs based
on a condition, whether it be CPU usage, memory usage, or

HTTP queues.

Min =2 4+—+/-VMs as needed ———» Max =5

3 currently running

VM VM VM

4—— Scaling out / Horizontal scaling———»

Figure 7.2

Azure Autoscale (source: https://learn.microsoft.com/en-us/azure/azure-
monitor/Autoscale/autoscale-overview/; © 2024, Microsoft)

Load Balancing

Load balancing is a technique used to distribute incoming
network traffic or requests across multiple servers or
computing resources. The primary purpose of load balancing is
to ensure that no single server or resource is overwhelmed by
traffic, thereby improving the availability, fault tolerance, and
performance of applications. AWS Elastic Load Balancing (ELB)
distributes incoming application traffic across multiple targets,

increasing availability and fault tolerance.

Load balancing includes traffic distribution so that load
balancers evenly distribute incoming requests or network
traffic across a pool of resources, ensuring efficient resource
utilization. Also, load balancers monitor the health and status of

services, and reroute traffic (if a server becomes

https://learn.microsoft.com/en-us/azure/azure-monitor/Autoscale/autoscale-overview/
https://learn.microsoft.com/en-us/azure/azure-monitor/Autoscale/autoscale-overview/

nonresponsive) to ensure high availability by distributing
traffic across multiple regions, thereby improving application

resilience and performance.

All major cloud providers offer load-balancing tools. Following

is a sample of those available.

* Google Cloud Load Balancing: Google Cloud Load Balancing
distributes incoming traffic across multiple instances or
backend services to ensure high availability and reliability of
your applications. It offers several types of load balancers:

e HTTP(S) load balancing: For distributing HTTP and
HTTPS traffic across multiple backend instances or
services

e TCP proxy load balancing: For distributing TCP traffic to
backend instances

e SSL proxy load balancing: For distributing SSL/TLS traffic
to backend instances

e Internal TCP/UDP load balancing: For distributing
internal TCP and UDP traffic within your virtual private
cloud (VPC) network

e Azure Load Balancer: Azure Load Balancer distributes
incoming network traffic across multiple VM instances in a

backend pool. It supports both inbound and outbound

scenarios and can be configured for various protocols
including TCP, UDP, and HTTP/S.

o Azure Application Gateway: Azure Application Gateway is a
layer 7 load balancer that provides application-level routing
and load-balancing services. It offers features such as SSL
termination, cookie-based session affinity, URL-based
routing, and web application firewall (WAF) capabilities.

e Azure Traffic Manager: Azure Traffic Manager is a domain
name system (DNS)-based traffic load balancer that
distributes incoming traffic across multiple endpoints located
in different Azure regions or globally. It provides various
load-balancing methods including priority, weighted,

performance, and geographic routing.

Table 7.1 outlines Azure’s load-balancing methods and features.

Table 7.1

Azure’s Load-Balancing Methods and Features

Azure Traffic Azure Application

Manager Gateway

OSI layer 7 7

Health

probes

SKUs

Load

balancing

Works at:

TCP and
UDP

Sticky

sessions

Traffic

control

Azure Traffic

Manager

HTTP/HTTPS/TCP

Global

VMs

DNS

Supported

Azure Application

Gateway

HTTP/HTTPS

Basic/standard

Regional

Any IP address

HTTP/HTTPS/HTTP2/WS

Supported

Network Security

Group

Azure Traffic Azure Application

Manager Gateway

WAF — WAF

Azure Traffic Manager Azure Application Gateway Azure Front Door Azure Load Balancer

OSI layer 7 7 7 4

Health probes HTTP/HTTPS/TCP HTTP/HTTPS HTTP/HTTPS TCP/HTTP

SKUs — Basic/standard — Basic/standard

Load balancing Global Regional Global Global

Works at: VMs Any IP address DNS CNAME —

TCP and UDP DNS HTTP/HTTPS/HTTP2/WS HTTP/HTTPS/ TCP and UDP

HTTP2

Sticky sessions Supported Supported Supported Supported

Traffic control — Network Security Group — Network Security
Group

WAF — WAF WAF —

All of these load-balancing tools and features help distribute
incoming traffic across multiple backend instances or services
to ensure high availability, scalability, and performance of your
applications. With sticky sessions, a load balancer assigns an
identifying attribute to a user by issuing a cookie or by tracking
the user’s IP details. Then, according to the tracking ID, the load

balancer can start routing all the user’s requests to a specific

server for the duration of the session. This creates a seamless
and stable experience for users, as they will get latency
responses similar to those they would get if they were receiving
service from hosts and apps within the same load balancer

perimeter.

Cloud auto-scaling and load balancing are fundamental
techniques for ensuring that your applications can efficiently
handle varying workloads, maintain high availability, and
optimize resource utilization in the cloud. Auto-scaling adapts
to changing demand by adjusting the number of resources,
while load balancing evenly distributes traffic to prevent
overload and improve fault tolerance. Together, these
technologies help create robust and responsive cloud-based

applications.

Enabling Automatic Failovers for High Availability

Enabling automatic failovers for high availability is a critical
aspect of cloud infrastructure design. It ensures that your
applications and services remain accessible and operational,
even in the face of hardware failures, network issues, or other
unexpected events. The following services play a vital role in
enabling automatic failovers for high availability in your cloud-

based applications. Depending on your specific use cases and

requirements, you can leverage one or more of these tools to
design a resilient and fault-tolerant infrastructure that ensures
continuous availability and minimal downtime for your

applications and services.
AWS

AWS provides several tools and services that enable automatic

failovers to achieve high availability.

e Amazon Route 53 DNS Failover: Route 53 DNS Failover is
AWS’s scalable DNS web service. It offers DNS failover
capabilities, allowing you to automatically reroute traffic
from an unhealthy or unavailable resource to a healthy one
based on health checks. In essence, you can use Route 53 DNS
Failover to ensure high availability of your web applications,
websites, and services by directing traffic to healthy
endpoints in the event of failures.

e Amazon Relational Database Service (RDS): RDS is a
managed database service that offers multi-AZ deployments
for database instances. Multi-AZ provides high availability by
replicating your primary database to a standby instance in a
different Availability Zone (AZ). By using multi-AZ, you can

ensure that your database remains available with automatic

failover in the event of a database instance failure or
planned maintenance.

Amazon RDS Aurora: RDS Aurora is a highly available and
scalable relational database service. Aurora Multi-Master
allows you to create multiple read/write master database
instances for high availability and read scalability. Aurora
Multi-Master is suitable for applications that require both
high availability and the ability to distribute write workloads
across multiple database instances.

Amazon DynamoDB: DynamoDB is a managed NoSQL
database service. DynamoDB global tables enable you to
create multiregion, multi-active databases to provide high
availability and low-latency access to your data. Global tables
are ideal for global applications that need to maintain high
availability across multiple geographic regions.

AWS Global Accelerator: Global Accelerator is a network
service that provides high availability and fault tolerance for
applications deployed across multiple AWS regions. Global
Accelerator helps route traffic to healthy endpoints in the
event of failures or performance degradation, improving the
availability and responsiveness of your application.

Amazon Simple Storage Service (S3): S3 offers data
replication options, including cross-region replication (CRR)

and same-region replication (SRR). These options enable data

replication for high availability and data durability. S3
replication is crucial for ensuring that your data remains
accessible and intact, even in the face of region-specific

failures or disasters.

GCP

GCP provides the following tools that enable automatic

failovers to achieve high availability.

e Google Cloud Load Balancing: Google Cloud Load Balancing
provides built-in failover capabilities to ensure high
availability of your applications. It continuously monitors the
health of backend instances or services and automatically
redirects traffic away from failed instances to healthy ones.
This helps minimize downtime and ensures that your
applications remain accessible, even in the event of failures.

* Google Cloud DNS: Google Cloud DNS offers automatic
failover functionality for DNS records. You can configure DNS
failover policies to monitor the availability of your backend
services and automatically update DNS records to redirect
traffic to alternative IP addresses or endpoints in case of
failures. This helps ensure seamless failover and continuous

availability of your applications.

Microsoft Azure

Microsoft Azure provides the following tools that enable

automatic failovers to achieve high availability.

e Azure Traffic Manager: Azure Traffic Manager provides
automatic failover capabilities for distributing traffic across
multiple endpoints located in different Azure regions or
globally. It continuously monitors the health of endpoints
and automatically redirects traffic away from failed
endpoints to healthy ones. This helps ensure high availability
and reliability of your applications by minimizing downtime
and maintaining continuous access for users.

e Azure App Service: Azure App Service offers built-in auto-
healing capabilities for web applications hosted on the
platform. It automatically detects and resolves common
application issues, such as crashes or unresponsiveness, by
recycling or restarting the affected instances. This helps
minimize downtime and ensures that your web applications

remain available and responsive to users.

Facilitating Controlled Deployments with Rollback
Strategies

Facilitating controlled deployments with rollback “n—1 stack”
strategies is a software deployment approach in which, during
a software update or release, a new version of software is
deployed to all but one of the available environments. This one
environment is typically referred to as the “n-1” environment,

meaning it represents the previous version of the software.

The purpose of this strategy is to maintain a fallback option in
case any critical issues or unexpected problems arise with the
new software release. If issues are detected in the newly
deployed version, the organization can quickly switch back to
the n—1 version, minimizing downtime and potential

disruptions.

To facilitate controlled deployments, cloud providers offer

several tools.

e AWS CodeDeploy is a fully managed deployment service
provided by AWS. It automates the deployment of
applications to various compute services, including Amazon
Elastic Compute Cloud (EC2) instances, AWS lambda
functions, and on-premises servers. CodeDeploy makes it

easier to release new features, updates, and bug fixes while

ensuring that deployment processes are consistent and
reliable. CodeDeploy allows you to define deployment
configurations, rollbacks, and monitoring options. It supports
various deployment strategies, including n—1 deployments,
blue-green deployments, and canary deployments.

AWS CodePipeline is a fully managed continuous
integration and continuous delivery (CI/CD) service that
automates the building, testing, and deployment of
applications. It allows developers to define and automate
their release processes, from source code changes to
production deployments, using customizable pipelines.
CodePipeline supports integrations with various AWS
services and third-party tools, making it a versatile solution
for streamlining the software delivery lifecycle.

AWS Elastic Beanstalk is a platform as a service (PaaS)
offering that simplifies the deployment and management of
applications. Developers can easily deploy web applications
and services written in various programming languages,
such as Java, Python, Node.js, and more, without dealing with
the underlying infrastructure details. Elastic Beanstalk
provides automated scaling, load balancing, and monitoring,
allowing developers to focus on writing code while AWS
handles the deployment and scaling aspects of their

applications.

The combined value of AWS CodeDeploy, AWS CodePipeline,
and AWS Elastic Beanstalk lies in their ability to automate and
streamline the entire application development and deployment
process. CodePipeline orchestrates the CI/CD pipeline, enabling
efficient code changes from development to production.
CodeDeploy automates application deployments, ensuring
consistency and reliability, while Elastic Beanstalk simplifies
application management, allowing engineers to focus on code
rather than infrastructure. Together, these services promote a
Lean approach to CRE by reducing manual intervention,
enhancing deployment efficiency, and optimizing resource
utilization, ultimately improving the reliability and resilience of

cloud-based applications.
Google and Azure options include the following.

e Google Cloud Deployment Manager: Google Cloud
Deployment Manager is an infrastructure as code (IaC)
service that allows you to define and manage your cloud
resources using declarative configuration files. You can
define the desired state of your infrastructure in
configuration files written in YAML or Jinja2 templates, and
Deployment Manager will automatically create, update, or

delete resources to match the desired state. This enables you

to manage your deployments in a controlled and repeatable
manner, with the ability to roll back changes if needed.
Google Kubernetes Engine: GKE is a managed Kubernetes
service that allows you to deploy, manage, and scale
containerized applications using Kubernetes. Kubernetes
provides built-in features for controlled deployments, such as
rolling updates and canary deployments. With GKE, you can
define deployment strategies, such as blue-green
deployments or rolling updates, to control the rollout of new
application versions.

Azure Resource Manager (ARM): ARM is the infrastructure
deployment and management service in Azure that allows
you to provision and manage your cloud resources using
templates. ARM templates are JSON files that define the
desired state of your infrastructure, including VMs, storage
accounts, networking resources, and more. You can use ARM
templates to create, update, or delete resources in a
controlled and repeatable manner, enabling consistent
deployments across environments.

Azure DevOps: Azure DevOps is a suite of cloud-based
collaboration tools for software development, including
version control, build automation, release management, and
more. Azure DevOps provides features for controlling

deployments, such as release pipelines, deployment gates,

and approvals. You can define release pipelines that
automate the deployment process, and include gates or
approval steps to control when and how changes are
deployed to different environments such as development,

testing, staging, and production.

Providing Chaos Engineering Capabilities for
Resilience Testing

Chaos engineering is a crucial practice in modern cloud and
DevOps environments. Cloud providers developed several tools
that offer chaos engineering capabilities for resilience testing,
helping organizations proactively identify and address
weaknesses in their systems. Some of these tools include the

following.

e AWS Fault Injection Simulator (FIS): FIS allows you to run
controlled chaos experiments on your infrastructure to test
its resilience. You can introduce faults and failures into your
AWS resources to see how your systems respond. FIS
supports a variety of AWS services and failure modes,
making it a powerful tool for assessing your application’s
reliability.

e AWS Systems Manager: While Systems Manager is primarily

used for managing and automating operational tasks, it also

includes features for running maintenance and compliance
tasks, which can simulate failures and test the resilience of
your systems. It offers a broader set of capabilities beyond
chaos engineering, but it can be leveraged for such purposes.
AWS Step Functions: Step Functions can be used to design
and execute workflows that simulate failure scenarios and
test how your applications react.

Chaos Mesh: Chaos Mesh is an open source chaos
engineering platform for Kubernetes environments,
developed by the Cloud Native Computing Foundation (CNCF)
community. It allows you to inject faults and disturbances
into your Kubernetes clusters to simulate real-world failures
and test the resilience of your applications and
infrastructure. Chaos Mesh supports various chaos
engineering experiments, such as Pod failure, network
latency, packet loss, and more. You can define chaos
experiments using Chaos Mesh’s Custom Resource Definition
(CRD) API and specify the scope, duration, and severity of the
injected faults.

Azure Chaos Studio: Azure Chaos Studio is a chaos
engineering service for Azure that allows you to simulate
real-world failures and test the resilience of your cloud
applications and infrastructure. It provides a user-friendly

web-based interface for creating, running, and analyzing

chaos experiments. Azure Chaos Studio integrates with Azure
Monitor and Azure Resource Manager to discover and target
resources in your Azure environment for chaos testing. You
can define chaos experiments to inject faults and
disturbances, such as network latency, VM failures, service
interruptions, and more, and observe the impact on your

applications’ performance and availability.

Assisting in Incident Response with Automation

Incident response and automation are integral components of
CRE, and AWS offers a suite of powerful tools to assist
organizations in effectively managing incidents and automating

responses.

* AWS CloudWatch alarms enable proactive monitoring by
allowing you to set alarms on various metrics, triggering
automated actions when specific thresholds are breached.
This feature empowers teams to respond swiftly to issues and
minimize the impact on system reliability.

¢ AWS CloudWatch Events further enhance incident response
by providing a real-time stream of system events and
changes, which can be used to trigger automated workflows.
These events can be integrated with AWS Lambda, a

serverless compute service that executes code in response to

various events, such as log file uploads or alarms. Lambda
functions can be customized to automate incident response
actions, enabling organizations to mitigate issues
automatically and without manual intervention.

e AWS Simple Notification Service (SNS) plays a pivotal role
in incident communication and alerting. It allows for the
distribution of real-time notifications through various
channels such as email, SMS, or HTTP endpoints. During
incidents, SNS can be used to leverage application-to-people
communications to notify relevant team members and
stakeholders, or trigger automated incident resolution
processes.

e AWS Systems Manager is a comprehensive tool that aids in
managing and automating operational tasks across AWS
resources. It facilitates the orchestration of incident response
activities, such as patch management, configuration
compliance, and instance management. By streamlining
these tasks, AWS Systems Manager ensures that incidents are
handled efficiently and with minimal disruption to system
reliability. In essence, this suite of AWS tools empowers
organizations to respond to incidents swiftly and automate
key aspects of the incident resolution process, enhancing the

overall reliability of cloud-based systems.

Google Cloud and Azure offer the following comprehensive
monitoring, logging, and diagnostic services that can further
enhance the speed and efficiency of incident detection and

resolution:

¢ Google Cloud Operations Suite: Google Cloud Operations
Suite provides a comprehensive set of monitoring, logging,
and diagnostics tools to help you gain insight into the
performance, availability, and health of your applications
and infrastructure on GCP. It includes features such as
Monitoring, Logging, Trace, Debugger, Profiler, and Error
Reporting. With Monitoring, you can set up alerts and
notifications to detect and respond to incidents in real time.
Logging allows you to centralize and analyze logs from your
applications and services. Trace provides distributed tracing
for understanding request latency and performance
bottlenecks. Debugger allows you to inspect the state of your
applications in production. Profiler helps you optimize the
performance of your applications. Error Reporting
aggregates and analyzes error events to help you diagnose
and fix issues quickly.

e Azure Monitor: Azure Monitor is a comprehensive
monitoring service for Azure that provides insights into the
performance, availability, and health of your applications

and infrastructure. It includes features such as Metrics, Logs,

Alerts, Application Insights, and Azure Automation. With
Metrics, you can monitor the performance and health of your
Azure resources and set up alerts based on predefined
thresholds or custom queries. Logs allows you to collect,
analyze, and visualize log data from your applications and
services. Alerts enables you to configure alert rules to notify
you when specific conditions are met. Application Insights
provides application performance monitoring (APM) and
application analytics for your Azure and on-premises
applications. Azure Automation allows you to automate the
response to incidents and events by defining runbooks and

workflows that perform remediation actions.

Ensuring Proper Configuration Management

Ensuring proper configuration management and compliance is
a critical aspect of CRE, and AWS Config is a robust tool
designed to address these needs comprehensively. AWS Config
continuously monitors and records configuration changes to
AWS resources, providing a detailed history of these
modifications. This historical data allows organizations to
assess and audit their resource configurations, helping to
identify and rectify discrepancies or potential security

vulnerabilities promptly.

AWS Config also plays a vital role in maintaining compliance
with regulatory requirements and industry standards. It allows
organizations to define and enforce desired configurations
through rules and policies, ensuring that their AWS resources
adhere to best practices. When any configuration drift occurs,
AWS Config can trigger automated remediation actions or send
alerts, enabling organizations to maintain a consistent and
compliant infrastructure while minimizing manual
intervention. Overall, AWS Config provides a robust foundation
for configuration management and compliance, helping
organizations enhance the reliability and security of their

cloud-based environments.

AWS AppConfig is a platform that specializes in configuration
management solutions for mobile applications. One public case
that demonstrates the value of AWS AppConfig and
configuration management best practices is its collaboration

with a major mobile banking application.

In this case, the mobile banking application was facing
challenges in delivering personalized experiences to its users
while ensuring security and compliance with regulatory
requirements. The app needed to dynamically adjust its
features, user interface elements, and backend services based

on factors such as user preferences, device capabilities, and

regulatory changes. However, managing these configurations
across a large user base and diverse device landscape was

becoming increasingly complex and error-prone.

By implementing the AWS AppConfig solution, the mobile
banking application was able to streamline the management of

its configurations and achieve several key benefits.

e Dynamic personalization: AWS AppConfig allowed the
mobile banking app to dynamically personalize the user
experience based on factors such as user preferences,
location, and device type. By centralizing configuration
management, the app could easily adjust its features and
content without requiring app updates or manual
intervention.

e Enhanced security and compliance: AWS AppConfig
provided robust security features, such as encryption, access
controls, and audit logs, to ensure that sensitive
configuration data was protected from unauthorized access
or tampering. Additionally, AWS AppConfig helped the
mobile banking app maintain compliance with regulatory
requirements by enabling granular control over
configuration changes and versioning.

* Improved agility and time to market: With AWS AppConfig,

the mobile banking app could quickly iterate on new

features, experiment with different configurations, and roll
out updates to specific user segments in real time. This agility
helped the app stay ahead of competitors and respond
rapidly to changing market demands.

* Reduced operational overhead: By automating the
deployment and management of configurations, AWS
AppConfig reduced the operational overhead associated with
manual configuration tasks and troubleshooting. This freed
up resources for the mobile banking app’s development and
operations teams to focus on strategic initiatives and

innovation.

This collaboration between AWS AppConfig and the mobile
banking app showcases the value of configuration management
best practices in enabling dynamic personalization, enhancing
security and compliance, improving agility, and reducing
operational overhead in mobile application development and

delivery.

Leveraging Immutable Infrastructure as a Service

Infrastructure as a service (IaaS) is a fundamental building
block in cloud computing, and AWS CloudFormation is AWS’s
premier service for managing and provisioning cloud IaC (see

Figure 7.3). AWS CloudFormation allows users to define and

provision AWS infrastructure resources using a declarative
template, typically in JSON or YAML format. These templates
describe the desired state of the infrastructure, including
compute resources, storage, networking, and more, in a human-

readable and version-controlled manner.

One of the primary benefits of AWS CloudFormation is the
automation it brings to infrastructure management. By
codifying infrastructure definitions, organizations can version-
control their infrastructure, enabling better collaboration
among teams and simplifying resource provisioning and
management. This automation reduces the risk of manual
configuration errors and streamlines the process of creating,
updating, and deleting resources as needed. AWS
CloudFormation also supports rolling updates and allows for
the efficient scaling of resources, making it a valuable tool for
maintaining a reliable and responsive cloud environment.
Whether you’re launching a single-instance application or
managing a complex, multitiered architecture, AWS
CloudFormation provides the flexibility and automation needed
to ensure the reliability and consistency of your cloud

infrastructure.

— [—Ds

5, B | [0

Code infrastructure Amazon 53 AWS CloudFormation Output
Code your infrastructure Check out your Use AWS CloudFormation via AWS CloudFormation

from scratch with the template code the browser console, provisions and configures
CloudFormation template lncally, or upload it command line tools or APIS to the stacks and resources
language, in sither YAML Inta an 53 bucket create a stack based on your you specified an your
or 50N format, or start template code template

from many available

sample temiplates
Figure 7.3

AWS CloudFormation (source: https://aws.amazon.com/cloudformation/; © 2024,
Amazon Web Services, Inc.)

Other options include the following.

* Google Cloud Deployment Manager: Google Cloud
Deployment Manager is an infrastructure deployment
service that automates the creation and management of GCP
resources using templates. These templates, written in YAML
or Jinja2, define the desired state of the infrastructure.

Key features include the following:

* Integration with other GCP services such as Compute
Engine, Cloud Storage, and BigQuery

e Support for declarative configuration using templates

e Version control and reuse of templates

e ARM templates (Microsoft Azure): ARM is the
infrastructure management service for Microsoft Azure that

enables users to provision and manage Azure resources

https://aws.amazon.com/cloudformation/

through declarative templates. These templates are JSON files

that define the resources and their configurations.

Key features include the following:

e Integration with various Azure services, such as Virtual
Machines, Azure SQL Database, and Azure App Service

e Role-based access control (RBAC) for fine-grained access
management

e Template functions and expressions for dynamic resource
creation

e Terraform (by HashiCorp): While not specific to any cloud

provider, Terraform is a popular IaC tool that supports

provisioning and managing resources across multiple cloud

platforms, including AWS, GCP, and Azure. Terraform

configurations are written in HashiCorp Configuration

Language (HCL) or JSON.

Key features include the following:

e Multicloud support for provisioning resources on AWS,
GCP, Azure, and other providers

e Infrastructure state management and versioning

e Modular and reusable configurations with modules

e Ansible (by Red Hat, now IBM): Ansible is an open source
automation tool that includes modules for infrastructure
provisioning, configuration management, and application

deployment. While it’s not focused solely on IaC, Ansible can

be used to define and manage cloud resources on AWS, GCP,

Azure, and other platforms.

Key features include the following:

e Agentless architecture for easy deployment and
management

e Support for YAML-based playbooks to define tasks and
configurations

e Integration with cloud provider APIs for resource

provisioning

These alternatives provide similar functionality to AWS
CloudFormation for infrastructure provisioning and
management, with each offering its own set of features and

capabilities suited to different use cases and preferences.

Practicing Disaster Recovery Frequently

Disaster recovery is a critical aspect of CRE, ensuring that

businesses can quickly recover their data and operations in the
event of unexpected disruptions. AWS offers a range of disaster
recovery services and tools to help organizations create robust

recovery strategies.

One of the key services in this domain is AWS Backup, which

simplifies and centralizes the backup of data across various

AWS services. AWS Backup allows users to automate the backup
of their EBS volumes, RDS databases, DynamoDB tables, and
more. It provides a unified console for managing backups and
enables the creation of backup policies, making it easier to
adhere to recovery point objectives (RPOs) and recovery time
objectives (RTOs).

AWS Disaster Recovery Tools encompass a variety of services
and features that help organizations build and test disaster
recovery plans. For instance, AWS CloudEndure Disaster
Recovery provides continuous replication of on-premises
workloads to AWS, facilitating seamless failover in case of a
disaster. AWS also offers services such as AWS Site Recovery
and AWS Elastic Disaster Recovery (a CloudEndure service),
which automate the recovery process to help organizations

minimize downtime and data loss.

AWS Import/Export allows businesses to transfer large volumes
of data into and out of AWS efficiently. While not solely a
disaster recovery tool, it plays a vital role in disaster recovery
planning by enabling the rapid transfer of critical data to AWS,
ensuring that organizations can quickly access their data in

case of a disaster,

AWS DataSync is another valuable tool for disaster recovery,
particularly for organizations with extensive data transfer
needs. DataSync simplifies and accelerates data movement
between on-premises storage and AWS, helping organizations
maintain an up-to-date copy of their data in the cloud for rapid

recovery.

AWS Snowball takes disaster recovery to another level,
especially for organizations dealing with massive datasets.
Snowball is a physical device that allows businesses to transfer
large volumes of data to and from AWS securely. In a disaster
recovery scenario, Snowball can be used to expedite the process

of restoring critical data to the cloud.

GCP also offers several services and tools for disaster recovery,
including Google Cloud Storage, Google Compute Engine, and
Google Cloud SQL. Google Cloud Storage provides highly
durable and available object storage, allowing users to store
backup data securely with built-in redundancy across multiple
locations. Google Compute Engine enables users to create VM
instances in different regions and zones, facilitating geographic
redundancy for critical workloads. Additionally, Google Cloud
SQL offers managed database services with automatic backups,
point-in-time recovery, and failover capabilities to ensure data

integrity and availability during disaster scenarios. Together,

these services form a robust disaster recovery solution that
enables businesses to protect their data and applications

against various failure events.

Microsoft Azure offers a range of services and tools to support
disaster recovery scenarios, including Azure Site Recovery,
Azure Backup, and Azure Traffic Manager. Azure Site Recovery
provides automated replication and failover capabilities for
VMs and physical servers, enabling businesses to replicate
workloads to Azure and fail over seamlessly in the event of a
disaster. Azure Backup offers scalable, secure, and cost-effective
backup solutions for protecting data across on-premises and
cloud environments, with features such as incremental
backups, encryption, and long-term retention. Azure Traffic
Manager allows users to distribute incoming traffic across
multiple regions and endpoints, providing high availability and
load balancing for critical applications. With these services,
Microsoft Azure helps organizations implement robust disaster
recovery strategies to minimize downtime and ensure business

continuity in the face of disruptions.

Overall, this set of disaster recovery services and tools caters to
organizations of all sizes and complexities. These services
ensure data resilience, minimize downtime, and facilitate rapid

recovery in the face of unforeseen disruptions.

Case Study

To illustrate how to proactively check if your applications and
infrastructure are resilient and then optimize them if necessary,
let’s review a hypothetical case of using AWS FIS, described
previously in the chapter, for productively testing applications
and infrastructure by injecting faults and disruptions into a
cloud environment. Consider Pearl of the Nile, a fictional,
successful e-commerce company that relies heavily on its online
platform to generate revenue. The company’s website, mobile
application, and backend services run on AWS, serving millions
of customers daily. Ensuring the reliability and resilience of its
digital infrastructure is critical to maintaining customer trust

and revenue.

Pearl of the Nile faces several challenges related to ensuring the

resilience of its systems.

e It needs to identify vulnerabilities and weaknesses in its
architecture before they lead to costly outages.

e [t wants to implement chaos engineering practices to
proactively test its infrastructure’s resilience.

» Itislooking for a tool to simulate real-world incidents to

understand how its systems respond to failures gracefully.

To address these challenges, Pearl of the Nile implements a five-

step process.

Step 1. Identifying critical scenarios: Pearl of the Nile
collaborates with its DevOps and site reliability engineering
(SRE) teams to identify critical scenarios that could lead to
service disruptions or performance degradation. These
scenarios include unavailability of an AWS AZ; network latency
between services; resource exhaustion, such as CPU or memory,
on critical instances; and failures in third-party service

integrations.

Step 2. Creating fault injection experiments: Using AWS FIS,
Pearl of the Nile creates a series of fault injection experiments
to simulate these critical scenarios in a controlled manner. For
example, it configures an experiment to randomly disrupt
network connectivity between two microservices to mimic
network issues. Another experiment simulates an AWS AZ

failure by shutting down resources in one of the AZs.

Step 3. Executing experiments: Pearl of the Nile schedules
these experiments during off-peak hours to minimize customer
impact. The company starts with less-critical experiments and
gradually increases complexity and severity as it gains

confidence in its systems’ resilience.

Step 4. Monitoring and learning: During each experiment,
Pearl of the Nile closely monitors the behavior of its systems
using AWS CloudWatch, AWS X-Ray, and other monitoring tools.
For example, the company analyzes how its systems respond to
the injected faults, looking for unexpected failures,
performance bottlenecks, or areas where the system can be
further optimized. The teams also gather data on incident
response times and how effectively automated recovery

mechanisms kick in.

Step 5. Continuous improvement: Based on the results of each
experiment, Pearl of the Nile iteratively improves its
infrastructure and application resilience. In addition, the teams
refine their incident response procedures, enhance resource
allocation strategies, and optimize configurations to ensure

graceful degradation under failure conditions.

By using AWS FIS, Pearl of the Nile achieves the following
outcomes: increased confidence in the resilience of its systems,
proactive identification and mitigation of vulnerabilities and
weaknesses, improved incident response and recovery times,
enhanced customer trust, and reduced revenue loss due to

unplanned outages.

Summary

Integrating tools that help with automatic failovers, automatic
rollbacks, automatic deployments, chaos engineering, incident
response, configuration management, immutable
infrastructure, and disaster recovery into your workflow may
require collaboration among product, leadership, and
engineering teams. It’s crucial to communicate the value of
these initiatives to application teams as engineering-driven
efforts aimed at enhancing system reliability, rather than
mandates imposed by leadership. This approach fosters a
culture of shared responsibility for system health and
encourages teams to proactively address potential issues.
Ultimately, utilizing a combination of tools and fostering a Lean
culture of continuous improvement can lead to more robust,

efficient, and reliable cloud-based solutions.

Q&A

Q: Describe the difference between rollback or “n-1”
deployments, blue-green deployments, and canary
deployments.

N—-1 deployments, blue-green deployments, and canary
deployments are different strategies used in software

deployment and release management. N-1 deployments

maintain a fallback environment, blue-green deployments offer
parallel environments for switching between versions, and
canary deployments roll out new releases to a subset of users
for testing and monitoring. Which strategy to choose depends
on factors such as risk tolerance, downtime constraints, and the

need for early issue detection in your software release process.

e An n-1 deployment strategy involves deploying a new
version of the software to all but one of the available
environments. The one environment that is not updated is
typically referred to as the “n—1” environment, representing
the previous version of the software. N-1 deployments are
often used as a risk mitigation strategy. By leaving one
environment running the previous version, organizations
have a fallback option in case any critical issues or
unexpected problems arise with the new release. This
minimizes downtime and potential disruptions. For example,
if you have three production environments (A, B, and C), you
would update environments B and C with the new version,
leaving environment A running the previous version as the
n—1 environment.

* Blue-green deployments involve maintaining two separate
environments. The current production environment is often
referred to as the “blue” environment, and the new version,

which is deployed and tested in isolation, is often referred to

as the “green” environment. Blue-green deployments are
used to minimize downtime and risk during software
releases. The green environment allows testing and
validation of the new release without affecting the blue
environment. Once testing is successful, traffic is switched
from the blue to the green environment.

Canary deployments involve deploying a new version of the
software to a small subset of users or instances first (the
“canaries”), before rolling it out to the entire user base or
environment. This allows for gradual testing and monitoring
of the new release’s performance and stability. Canary
deployments are used to detect and mitigate issues early in
the release process. By exposing a small number of users to
the new version, you can monitor metrics and gather
feedback to assess its impact. If issues arise, you can limit the
impact to a smaller user group. For example, instead of
deploying a new version to all users simultaneously, you
deploy it to a small percentage of users or instances, monitor
performance and user feedback, and gradually increase the

exposure if everything looks stable.

Q: Which cloud providers and third-party companies offer
CRE tools?

There are multiple tools and services offered by different cloud
providers and third-party companies. Often, choosing which

tool to use depends on an organization’s specific needs, existing
infrastructure, and familiarity with a particular cloud platform.

Here are some examples.

e Amazon Web Services: AWS offers a broad range of services
for CRE, including Amazon CloudWatch for monitoring and
logging, AWS X-Ray for distributed tracing, and Amazon EC2
Auto Scaling for auto-scaling infrastructure. AWS provides
load-balancing services through ELB and disaster recovery
with AWS Backup and AWS Elastic Disaster Recovery, helping
to ensure fault tolerance and high availability across cloud
environments.

* Google Cloud Platform: Google offers its suite of tools and
services for CRE, including Google Cloud Monitoring, Google
Cloud Logging, and Google Cloud Trace for monitoring and
diagnostics. GCP also provides load balancing, auto-scaling,
and disaster recovery options similar to AWS.

e Microsoft Azure: Azure provides services such as Azure
Monitor, Azure Application Insights, and Azure Automation

for monitoring, diagnostics, and automation. Azure Traffic

Manager and Azure Load Balancer offer load-balancing
capabilities. Azure Site Recovery and Azure Backup are used
for disaster recovery and backup solutions.

e Third-party solutions: Many third-party vendors offer tools
that support these CRE practices, providing a unified
approach to monitoring, automation, and incident response.
Examples include Datadog, New Relic, and PagerDuty, which

integrate with AWS, GCP, Azure, and other cloud providers.

These services allow teams to monitor, diagnose, and
automatically adjust workloads to maintain reliability and
performance at scale. Ultimately, the choice of CRE tools
depends on an organization’s specific requirements, multicloud
strategy, and preferences. All cloud providers and third-party
tools have their strengths and weaknesses, so organizations
should evaluate them based on their unique needs and goals to
ensure the reliability and resilience of their cloud-based

systems.

Chapter 8

Cutting-Edge Technologies

How to Use the Power of AI, ML, LLMs, and GenAI Models to

Revolutionize Your CRE Practices

As cloud infrastructures grow increasingly complex, the
traditional methods of ensuring reliability are no longer
sufficient. Artificial intelligence (AI), machine learning (ML),
large language models (LLMs), and generative Al (GenAl)
models are powerful tools that can fundamentally transform
how we approach cloud reliability engineering (CRE). This
chapter explores the integration of Al, ML, LLMs, and GenAI
into CRE practices. We will review how these technologies can
be leveraged to predict, prevent, and mitigate failures in cloud
environments, ensuring high availability and reliability of

services.

Understanding Al, ML, LLMs, and GenAl

Let’s start by defining A, ML, LLMs, and GenAl models, and

then discuss how they revolutionize CRE practices.

o Artificial intelligence: Al refers to the simulation of human

intelligence processes by machines. In CRE, Al can be used to

automate routine tasks, detect anomalies, and make data-
driven decisions.

e Machine learning: A subset of Al, ML involves training
algorithms on large datasets to identify patterns and make
predictions. For CRE, ML can be invaluable in predictive
maintenance, anomaly detection, and capacity planning.

e Large language models: LLMs are deep learning models
that can understand and generate humanlike text based on
the data they were trained on. LLMs can be used in CRE for
tasks such as automated incident response, documentation
generation, and real-time troubleshooting guidance.

e Generative AI models: GenAl models can generate new data
similar to the data they were trained on. In the context of
CRE, GenAlI can be used to design potential failure scenarios,
creating synthetic data for testing and validation of systems

under various conditions.

Benefits of Integrating These Technologies into CRE
Practices

The integration of these technologies into CRE practices offers

multiple benefits:

e Proactive issue detection and resolution

e Improved application performance management

e Automated alerting and escalation for incident management
e Security threat detection

e Improved monitoring

e Predictive analytics

* Predictive maintenance

e Enhanced decision-making

e Simulation and testing

e Improved documentation and knowledge sharing

* Cost efficiency

e Improved user experience

e Customer service and support
Proactive Issue Detection and Resolution

Al and ML models can continuously monitor cloud
environments, identifying potential issues before they escalate
into critical failures. This proactive approach helps maintain

higher levels of service availability and reliability.

There are multiple applications of these technologies to
proactively detect and resolve issues. The most widely used is
continuous monitoring and anomaly detection. AT and ML
models continuously monitor cloud environments, analyzing
vast amounts of data in real time. These models learn the

normal behavior patterns of the system and can detect

anomalies that might indicate potential issues. By identifying
deviations from the norm, these models can flag potential

problems before they develop into critical failures.

For example, a large-scale cloud provider could use Al models
to continuously monitor the health and performance of its
hosts, storage systems, and network components. In this
scenario, an ML model might track metrics such as CPU
utilization, memory usage, disk I/O, and network latency across
thousands of hosts. When the model detects a pattern indicating
a potential hardware failure, such as an unusual spike in I/O
wait times coupled with increased error rates, it generates an
alert. This allows the CRE team to preemptively migrate
workloads to other regions, or scale healthy hosts or refresh
hosts in the affected stack, thereby preventing service

disruptions.

Improved Application Performance Management

Another use case is related to application performance
management. In a cloud-based e-commerce platform, AI models
analyze user transaction data and backend service metrics to
ensure optimal performance. In this scenario, an ML model
might monitor transaction response times, database query

performance, and API call success rates. If the model detects a

trend of increasing response times and intermittent API failures
during peak shopping hours, it can alert the CRE team. The
team can then investigate and resolve the issue, such as by
scaling up resources or optimizing database queries, before it

impacts end users, ensuring a seamless shopping experience.

Automated Alerting and Escalation for Incident
Management

Leveraging LLMs and Al can automate incident management
processes. From initial detection to resolution, these
technologies can streamline workflows, reducing the time it
takes to resolve issues and minimizing downtime. When AI and
ML models detect potential issues, they can automatically
generate alerts and escalate them to the relevant teams. This
ensures that issues are addressed promptly, reducing the risk of

escalation into more severe problems.

Security Threat Detection

Another application of these technologies is security threat
detection. In a global financial services company’s cloud
implementation, for example, Al-driven security systems
continuously analyze network traffic patterns to identify

potential threats. In this scenario, an ML model might be

trained to detect anomalies such as unusual login attempts,
unexpected data transfers, or irregular access patterns to
sensitive databases. If the model identifies a sudden spike in
login attempts from an unfamiliar geographic location, it can
flag this as a potential brute-force attack. The CRE team can
then take immediate action to mitigate the threat, such as by

blocking suspicious IP addresses and initiating a security audit.

Improved Monitoring

Monitoring can be related to compliance and regulations. For
example, in a healthcare cloud platform, compliance with data
privacy regulations such as HIPAA is critical. Al models
continuously monitor system logs, access controls, and data
transfer activities to ensure compliance. In this scenario, an ML
model might detect unauthorized access attempts to patient
records or unencrypted data transfers. By proactively
identifying these compliance violations, the CRE team can take
corrective actions, such as adjusting access controls or
enforcing encryption policies, to maintain regulatory

compliance and avoid legal penalties.

Predictive Analytics

A common application of these technologies is predictive
analytics. ML algorithms can be trained on historical data to
predict future issues. By recognizing patterns and trends that
precede failures, these algorithms can forecast potential
disruptions, allowing engineers to take preemptive actions. This
predictive capability is crucial for maintaining high service
availability and reliability. A cloud service provider operates
multiple data centers, each hosting thousands of servers. Al
models analyze historical maintenance records, sensor data,
and operational logs to predict when hardware components are
likely to fail. In this scenario, an ML model might predict that a
specific batch of hard drives is approaching end-of-life based on
increased read/write errors and elevated temperatures. By
predicting these failures, the CRE team can schedule proactive
replacements during planned maintenance windows, thereby
avoiding unplanned outages and ensuring continuous service

availability.

Another example is the cloud implementation of software for a
global manufacturing company. This company operates a cloud-
based platform for monitoring and managing factory
equipment across multiple locations. AI models analyze sensor

data from machines, including vibration, temperature, and

operational cycles, to predict when a machine is likely to fail. In
this scenario, an ML model might detect patterns indicating that
a particular type of motor tends to overheat and fail after a
certain number of operational hours. By predicting these
failures, the CRE team can schedule maintenance during
planned downtimes, reducing unexpected outages and ensuring

continuous production.

Several examples of cloud implementations in other industries

include the following.

e Financial services firms can utilize Al-driven predictive
analytics to manage risks associated with trading and
transactions. AI models analyze market data, transaction
histories, and economic indicators to predict potential
market fluctuations and fraudulent activities. In this
scenario, an ML model might identify unusual trading
patterns that suggest a risk of market manipulation. By
predicting these risks, the CRE team can implement security
measures and adjust trading algorithms to mitigate potential
losses and maintain system integrity.

e Telecommunications companies can leverage Al to predict
network usage and optimize resource allocation. In this
scenario, ML models can analyze historical data on network

traffic, call volumes, and data usage to forecast future

demand. The models might predict higher network usage in
specific regions during major sporting events or concerts.
The CRE team can use these predictions to dynamically
allocate bandwidth and computing resources, preventing
network congestion and ensuring consistent service quality.
Energy utility companies can use Al to predict energy
consumption patterns and optimize the operation of power
grids. In this scenario, ML models can analyze data from
smart meters, weather forecasts, and historical usage to
forecast demand. The models might predict increased energy
usage during a heatwave. The CRE team can use this
information to adjust power generation and distribution,
preventing outages and ensuring a stable energy supply to
customers.

Large retail chains can employ Al to optimize inventory
management across their stores. Al models analyze sales
data, seasonal trends, and supply chain logistics to predict
stock levels and reorder points. In this scenario, an ML model
might forecast a rise in demand for winter clothing as
temperatures drop. The CRE team can ensure that cloud
resources supporting inventory systems are scaled
appropriately, enabling real-time updates and reducing the

risk of stockouts or overstock situations.

Predictive Maintenance

ML algorithms can analyze historical data to predict when and
where failures are likely to occur, allowing for timely
maintenance (using feature flags to test new features, ensuring
that old features support modernization efforts) and reducing
unexpected outages. In addition, predictive maintenance and
demand forecasting can reduce the need for emergency repairs

and overprovisioning, leading to significant cost savings.

Predictive analytics leads to predictive maintenance when ML
algorithms analyze historical data to predict when and where
failures are likely to occur, allowing for timely maintenance and
reducing unexpected outages. A use case is a global airline
company that utilizes ML algorithms to analyze data from
aircraft sensors, flight logs, and maintenance records in its
cloud implementation. The ML model identifies patterns
indicating potential engine failures, allowing the airline to
perform maintenance during scheduled downtimes. This
proactive approach reduces the risk of in-flight engine failures,
enhances passenger safety, and minimizes costly emergency

repairs.

Enhanced Decision-Making

Al-powered analytics provide deeper insights into system
performance, helping engineers make informed decisions about
infrastructure upgrades, resource allocation, and risk
management. As an example, a multinational financial
institution can employ Al-powered analytics to monitor the
performance of its trading platforms. By analyzing data on
transaction volumes, latency, and error rates, the Al system
identifies areas where infrastructure upgrades are needed. This
enables engineers to allocate resources effectively, prioritize
high-impact improvements, and mitigate risks associated with

system failures during peak trading hours.

Simulation and Testing

GenAl models can create realistic simulations of failure
scenarios, enabling thorough testing of systems under various
conditions without affecting live environments. As an example,
a leading cloud service provider can use GenAl models to
simulate various failure scenarios, such as data center outages
or network disruptions. These simulations allow the CRE team
to test the resilience of their systems under extreme conditions.

By identifying potential weaknesses and validating recovery

procedures in a controlled environment, the provider ensures

high availability and reliability for its customers.

Improved Documentation and Knowledge Sharing

LLMs can assist in generating accurate and up-to-date
documentation, facilitating better knowledge-sharing and
onboarding processes for engineering teams. As an example, a
large technology company can leverage LLMs to generate and
maintain comprehensive documentation for its cloud
infrastructure. The LLMs analyze system configurations, code
repositories, and support tickets to produce detailed guides,
troubleshooting steps, and best practices. This improved
documentation helps new engineers quickly understand the
system, reduces onboarding time, and ensures consistent
knowledge sharing across teams. Some companies claim to
have improved developer productivity and platform support by
up to 25 times just by leveraging auto-generated documentation
and LLM-driven chatbots.

Cost Efficiency

Cost efficiency is another important application of these
technologies. Predictive maintenance and demand forecasting

reduce the need for emergency repairs and overprovisioning,

leading to significant cost savings. For example, an energy
utility company can employ predictive maintenance to monitor
its power generation equipment. ML algorithms analyze
historical performance data and environmental conditions to
predict when maintenance is required. By scheduling
maintenance proactively, the company avoids costly emergency
repairs and extends the lifespan of its equipment. Additionally,
demand forecasting helps the company optimize energy
production, reducing the need for overprovisioning and

lowering operational costs.

Improved User Experience

Anticipating and addressing issues before they impact users
ensures a seamless and satisfying user experience, which is
critical for customer retention and satisfaction. As an example,
a major e-commerce platform can use Al to monitor user
interactions and detect potential performance issues, such as
slow page load times or payment processing errors. By
identifying and resolving these issues before they affect
customers, the platform ensures a smooth shopping experience.
This proactive approach leads to higher customer satisfaction,

increased sales, and improved retention rates.

Customer Service and Support

Multiple companies use these technologies for their customer
service and support. As an example, in a software-as-a-service
(SaaS) company, Al-driven chatbots and virtual assistants
provide first-line support to customers. An Al model might
analyze user interaction logs and system performance metrics
to identify common issues, such as connectivity problems or
software bugs. Then, if the model detects that multiple users are
experiencing slow response times when accessing a specific
feature, it can proactively suggest troubleshooting steps or
escalate the issue to the CRE team. This reduces the burden on
human support agents and ensures timely resolution of

customer issues.

Benefits Summary

To summarize, some of the common benefits of using Al, ML,
LLMs, and GenAl in CRE include the following.

* Increased service availability: By detecting and addressing
potential issues early, Al and ML models help maintain high
levels of service availability, ensuring uninterrupted access
for users.

* Reduced downtime: Proactive issue resolution minimizes

the occurrence of critical failures, leading to less downtime

and enhanced system reliability.

Cost savings: Early detection and resolution of issues
prevents costly outages and reduces the need for emergency
maintenance, resulting in significant cost savings.

Improved customer satisfaction: Maintaining high service
reliability and availability enhances customer trust and
satisfaction, contributing to better business outcomes.
Predictive maintenance and demand forecasting reduce the
need for emergency repairs and overprovisioning, leading to
significant cost savings.

Improved user experience: Anticipating and addressing
issues before they impact users ensures a seamless and
satisfying user experience, which is critical for customer
retention and satisfaction.

Enhanced operational efficiency: Automated monitoring
and alerting streamline the incident management process,
allowing CRE teams to focus on strategic initiatives rather
than firefighting.

Optimized resource allocation: By forecasting demand and
usage patterns, predictive analytics helps in optimizing the
allocation of cloud resources, reducing waste and ensuring
efficient utilization.

Informed decision-making: Al-powered predictive analytics

provides deep insights into system performance and user

behavior, enabling informed decision-making and strategic

planning.

Implementation Considerations

As you implement AI, ML, LLMs, and GenAlI in CRE, you need to
address the following challenges and considerations associated

with their implementation.

e Data quality and quantity: The effectiveness of Al and ML
models depends heavily on the quality and quantity of data
available for training.

e Ethical and security concerns: Ensuring that AI models are
used ethically and securely is paramount to avoid
unintended consequences.

e Integration with existing systems: Seamless integration
with current CRE tools and processes is crucial for
maximizing the benefits of these technologies.

e Continuous learning and adaptation: Al and ML models
require continuous learning and adaptation to stay effective

as cloud environments and workloads evolve.

Let’s review each of these considerations in detail.

Data Quality and Quantity

Data quality and quantity have challenges that you need to

consider in your CRE practice.

e Data collection: The effectiveness of Al and ML models is
directly proportional to the quality and quantity of the data
used for training. In CRE, data comes from various sources,
including logs, monitoring tools, and user feedback. Ensuring
comprehensive data collection from all relevant sources is
crucial.

e Data preprocessing: Raw data often contains noise, errors,
and inconsistencies. Proper preprocessing, including data
cleaning, normalization, and transformation, is essential to
make the data suitable for training Al and ML models.

e Historical data: Historical performance data is vital for
training predictive maintenance models. Ensuring that this
data is accurate, complete, and representative of various
scenarios helps improve model accuracy.

e Real-time data: For proactive issue detection and automated
incident management, real-time data is necessary. The
system must be capable of handling and processing large
volumes of data in real time to make timely and accurate

predictions.

As an example, a telecommunications company implements an
Al-based proactive issue detection system. The system collects
data from network devices, user feedback, and service logs. The
quality of the predictions depends on the thoroughness of data
preprocessing steps, such as removing duplicate records, filling
in missing values, and normalizing data formats. By ensuring
high-quality data, the company can predict and address

network issues before they impact customers.

Ethical and Security Concerns

Ethical and security concerns have the following challenges and

considerations.

e Bias and fairness: Al and ML models can inadvertently
learn biases present in training data, leading to unfair or
discriminatory outcomes. Ensuring that models are trained
on diverse and representative datasets helps mitigate bias.

e Data privacy: Handling sensitive data, especially in
industries such as finance and healthcare, requires strict
adherence to privacy regulations. Data anonymization and
encryption are critical to protect user privacy.

* Model transparency: Al models, particularly deep learning

models, can be complex and difficult to interpret. Ensuring

transparency and explainability helps build trust and allows
for better auditing and debugging.

e Security: Al systems can be targets for attacks, such as
adversarial attacks that feed manipulated data to models.
Implementing robust security measures to protect the

integrity and confidentiality of data and models is essential.

As an example, a healthcare organization uses ML models to
predict equipment failures in medical devices. Ensuring data
privacy is paramount, so the organization anonymizes patient
data and uses secure channels for data transmission. To avoid
bias, the organization includes diverse datasets from various
demographic groups. Additionally, it employs techniques such
as SHapley Additive exPlanations (SHAP) to enhance model

interpretability and ensure ethical usage.

Integration with Existing Systems

In terms of integration with existing systems, the following

challenges and considerations are important.

e Compatibility: New Al and ML solutions must be compatible
with existing CRE tools and infrastructure. This ensures

smooth data flow and avoids disruption to current processes.

e Scalability: The integration should be scalable to handle
increasing data volumes and complexity as the organization
Srows.

e Interoperability: Seamless interoperability between Al
systems and other CRE tools (e.g., monitoring, logging,
incident management systems) enhances efficiency and
effectiveness.

e Change management: Introducing new Al-powered tools
requires careful change management to ensure that the

workforce adapts to new workflows and processes.

As an example, a global financial services firm integrates an Al-
based automated incident management system with its existing
IT service management (ITSM) platform. The Al system detects
incidents based on patterns and thresholds and creates tickets
in the ITSM platform, ensuring compatibility and
interoperability. The firm also scales the system to handle
increased transaction volumes during peak trading hours.
Proper change management, including training sessions and
documentation, ensures that staff can effectively use the new

system.

Continuous Learning and Adaptation

The considerations and challenges for continuous learning and

adaptation include the following.

e Model drift: Over time, Al and ML models may become less
accurate due to changes in the underlying data distribution
(model drift). Regularly retraining models with updated data
helps maintain accuracy.

e Monitoring and feedback: Continuous monitoring of model
performance and incorporating feedback from users and
system performance metrics help improve models over time.

e Adaptation to new workloads: As cloud environments and
workloads evolve, Al models need to adapt to new patterns
and requirements. This requires flexible model architectures
and ongoing learning.

e Human oversight: Continuous learning systems should
include human oversight to validate model predictions,

address anomalies, and guide the adaptation process.

As an example, an e-commerce company uses ML models for
predictive maintenance of its cloud infrastructure. The
company monitors model performance and identifies signs of
model drift, such as increasing error rates. By regularly

retraining models with the latest data, the company ensures

accurate predictions. Additionally, the company incorporates
feedback from engineers to refine models and adapt to new

cloud workloads, such as increased traffic during holiday sales.

Summary

Multiple companies from many industries use AI/ML to
revolutionize their practices, ensuring robust and reliable cloud
environments that meet their dynamic needs. This approach
not only mitigates risks but also empowers engineering teams
to deliver exceptional service quality consistently. Utility
companies such as Duke Energy use these technologies to
forecast energy consumption to optimize power grid operations
and prevent outages. Retail companies such as Walmart use
these technologies to predict inventory needs to ensure optimal
stock levels and reduce logistics costs. Telecommunications
companies such as AT&T use these technologies to predict
network usage spikes and dynamically adjust resources to
maintain service quality. Manufacturing companies such as
Siemens use predictive maintenance for industrial machinery
to prevent unexpected downtimes and optimize production

schedules. This list goes on and on.

Q&A
Q: What is generative AI and how does it compare to LLM?

GenAl is a type of artificial intelligence that enables computers
to create content such as images, text, code, and synthetic data.
It focuses on producing original content by utilizing models
trained on extensive datasets. Applications of GenAl, such as
ChatGPT, leverage LLMs and foundation models to generate
humanlike content. GenAl models employ complex ML
algorithms to understand patterns in the training data and

formulate coherent outputs.

LLMs are a subset of ML models pretrained with vast amounts
of data to understand and generate language. These models are
particularly useful in scenarios where users can input queries
or ask questions in natural language. The LLM then generates
responses based on the given input. A key characteristic of
LLMs is their ability to comprehend and generate language,
making them critical for applications such as chatbots, virtual

assistants, and automated content creation.

One limitation of LLMs, however, is that organizations often
have limited visibility into how these responses are generated.

This lack of transparency can pose challenges in understanding

the decision-making processes of Al, especially in critical

applications.

By leveraging the capabilities of GenAl and LLMs together,
cloud reliability engineers can significantly enhance the
reliability, efficiency, documentation, and user experience of
cloud services, driving innovation and maintaining high

standards of service availability.

Q: How do I operationalize AI with a CRE mindset?

Before you start, it is highly recommended that you get a clear
definition and scope of your organization’s use case. Also,
evaluate several solutions to ensure that you gather enough
facts to decide between building and buying a new technology
solution or model. Sometimes these technologies must be
exposed to customers. If that is the case, consider the user
experience and understand any risks that could damage the

company’s reputation.

Kick-start the revolution and create a culture of innovation
with the strategy and innovation team. Set up a group to lead
your company’s community of practice, and embrace this

initiative on behalf of leadership as a key program to advance

technology and drive results in your organization. In other

words, create a team that will

e Influence leadership to spearhead the creation of the
innovation lab.

e Open the door for the community of practice to innovate,
explore, and be proactive about the key use cases for your
specific organization.

e Partner with the lines of business to tackle key use cases that
represent the best return on investment or solve significant
problems first, focusing on short implementation cycles.

e Teach everyone how to fail fast and try again as part of the

learning culture.

Leverage technology frameworks or solutions that are
repeatable and standard in the industry. If you aim to be up and
running quickly, consider using cloud service platforms from
Amazon, Google, or Microsoft. Their offerings likely include
solutions that fit your tool set and approach to ML models,
enabling you to scale as needed without worrying about

infrastructure.

With a CRE mindset, once you recognize initial success stories,
establish a process to quickly transition those use cases,

enabled by connected intelligence, to production. This will

make you highly efficient in automated production delivery as

SO0Nn as you see success.

Define the initial skills your team needs to create Al-driven
solutions, enabling the organization to build the knowledge,
expertise, and skills to support corporate-wide adoption. For a
full production rollout, the biggest area of investment is not the
tools but the necessary talent (keep an eye on attracting,
retaining, and elevating Al knowledge workers, as there are 2.6
million unfilled jobs in the market). Here are a few examples of
roles that will be critical for the success of your Al-driven

solutions and teams:

e Subject matter experts with domain expertise to ensure that
solutions are worthy of investment

e Product owners to ensure that every investment is treated
with an agile delivery mindset

e Data scientists/engineers to mine your data and find the best
applicable models

e IT architects to ensure that the data sources are aligned and
sustainable

e Reliability engineers to ensure that releases are continually
integrated and deployed

* Data science lab operations to maintain and govern the

environments

Now that you have decided to embrace Al ensure that there is
explainability and governance as part of every rollout. At this
time, acquire the knowledge and create awareness to help

teams answer the following questions.

e How can we justify outputs?

e How do we increase trust among interested parties?
e What happens if the wrong ML model is selected?

e How can we scale this? How can we commoditize it?
e What is the return on investment associated with

operationalizing ML at scale?

Q: What are some examples of cutting-edge tools using
these technologies for CRE purposes?

* Cloud observability: There are several prominent tools in
the cloud observability space. These tools facilitate the
exploration of correlations, providing users with contextual
insights. Unlike traditional logs lacking context, observability
empowers site reliability engineering (SRE) teams to
investigate issues at any level of granularity. By seamlessly
integrating logs, metrics, and traces, observability ensures
that relevant event data is readily accessible. Through its

correlation capabilities and integration of LLMs,

observability enhances the efficiency of incident resolution
processes.

Incident response and content summarization: Jelj,
recently acquired by PagerDuty, stands out as a valuable tool
in incident response. Jeli excels in generating real-time
postmortems during incidents, offering concise summaries of
extensive content. Leveraging both LLMs and GenAl, Jeli
swiftly distills key information from incident calls or team
exchanges. LLMs aid in understanding contextual nuances
and identifying critical points, while GenAlI enables the
creation of condensed summaries. This combined approach
facilitates rapid comprehension and effective incident
resolution, thereby minimizing the impact on customers.
AWS services evolution: Amazon’s introduction of Bedrock
in September 2023 marked a significant development in AWS
services. Bedrock offers users a suite of tools for building
GenAlI applications. Subsequent expansions of Bedrock’s
capabilities have been accompanied by the launch of
innovative GenAl services such as Q, Amazon’s Al chatbot. Q
leverages connectors to access organizational data and is
pretrained on AWS data, enabling it to comprehend the
intricacies of AWS services. Whether providing assistance
with user queries or aiding in the utilization of AWS services,

Q offers valuable insights derived from documentation and

the Well-Architected Framework, thereby contributing to
operational efficiency. Additionally, Amazon has continued to
expand its AWS service offerings, with recent
announcements including the launch of services such as S3
Intelligent-Tiering and Amazon Connect Voice ID, further
enhancing the capabilities and options available to AWS

users.

Chapter 9

CRE Value Stream

How to Build Your CRE Strategy Based on Holistic End-to-End

Analysis of Your Systems and Customers

There is a saying that a chain is only as strong as its weakest
link. This is correct about cloud reliability engineering (CRE)
too. If there is one design vulnerability in the system, it could
crash the whole system. To ensure that this does not happen,

companies use CRE value stream analysis.
What Is a Value Stream?

A value stream is defined in Lean as the end-to-end process
that delivers a product, service, or result to a customer or end
user. Think of a value stream as a workflow that has a series of
steps aimed at accomplishing a goal. Imagine a car
manufacturing example, popular in Lean manufacturing. What
is the series of steps involved in producing a car efficiently and
delivering value to the customer (hence the “value” stream)? It
probably includes a set of standard steps: processing customer
orders to define the production schedule, acquiring necessary

parts and materials, setting up an assembly line, assembling the

car’s body, painting it, installing the interior, adding the engine
and other mechanical systems, conducting quality control, and
shipping it to the customer. Each of these steps is important in
ensuring that the value (the car, in our example) is successfully
delivered to the customer. Figure 9.1 illustrates the end-to-end

process to lead organizations toward value creation.

Objectives ; - Identify Risks Automate Ensurs

Maintain Roll Out CRE

and Key € ek S o il
it and Risk Security and Z: ;
Results : Mitigations Compliance Daka In ety

(OKRs)

Strategy

Figure 9.1

Lean principles are the key to optimizing processes and creating value.

CRE as a Value Stream

Similarly, when we define the CRE strategy of a company, we
need to think about it holistically, end to end. If we ensure the
reliability of our networks but do not protect our software
applications from malware, our systems won’t be functional
and customer value won’t be provided. This is similar to
producing a nice-looking car with a defective engine. By now,
you are probably thinking that your company needs a holistic
value stream and are wondering how to establish such a

strategy and which factors to consider. The list that follows

provides a simple but powerful framework that will allow you
to establish a holistic value-stream-driven CRE strategy to
ensure the reliability, availability, and resilience of your cloud-

based systems and services.

1. Start by defining CRE Objectives and Key Results (OKRs), such
as the expected uptime, response time, error time, and other
relevant indicators. Consider mean time between failures
(MTBF), mean time to recover (MTTR), and other parameters
discussed in Chapter 2.

2. Based on your OKRs, define service level objectives (SLOS)
and service level indicators (SLIs) that align with your
reliability objectives. SLIs are the key metrics used to
measure the performance of a service, while SLOs define the
acceptable levels of performance.

3. Identify potential risks and come up with mitigations. These
could range from switching to a new network provider, to
making major architecture changes to implement load
balancing, auto-scaling, security measures, or geographical
diversity. You can use chaos engineering, described in

Chapter 1, to identify vulnerabilities and root causes.

4. Automate mitigations. CRE principles always include
automation. Because the primary goal of Lean is to eliminate
waste and improve efficiency, automation is the key tool in

achieving these objectives. For example, automation ensures

flow efficiency. It includes standardization so that all
processes are repeatable. It promotes a culture of continuous
improvement via incremental changes.

5. Ensure security and compliance. Integrate security measures
throughout your cloud environment to safeguard against
potential breaches or vulnerabilities. Comply with relevant
industry regulations and best practices.

6. Maintain data integrity. It is important to conduct regular
data backups and data replication to prevent loss of data.
Conducting disaster recovery exercises helps ensure that
your company is able to recover on time and without losing
data.

7. Roll out the CRE strategy by creating mechanisms for
continuous improvement, effective communication,
information sharing, and skills development. This includes
recovery playbooks and reliability and observability training
sessions, videos, or newsletters that can be initiated by

employees on this ground.

Next, start thinking about the reliability pillar, which focuses on
workloads performing their intended functions and how to
recover quickly from failure to meet demands. This includes
key topics such as distributed system design, recovery planning,

and adapting to changing requirements.

Reliability Engineering Concepts in a Cloud Value Stream

What makes these concepts specific to the cloud value stream?
Well, there are additional CRE concepts that are specifically
relevant to the cloud, such as auto-scaling, multiregion and
multicloud redundancy, and data backups and data replication.

Let’s review some of those.

e Capacity planning and auto-scaling: AWS Auto Scaling can
automatically adjust capacity to maintain steady, predictable
performance at the lowest possible cost. Using AWS Auto
Scaling, it’s easy to quickly set up application scaling for
multiple resources across multiple services. Auto-scaling
mechanisms will be able to dynamically adjust resources
based on demand.

¢ Multiregion and multicloud redundancy: Design your
cloud infrastructure across multiple regions to ensure high
availability and disaster recovery capabilities.

e Backups and data integrity: Implement regular backups
and data replication to protect against data loss. Some of the
AWS services you can utilize include Amazon Simple Storage
Service (S3), Amazon Elastic Block Store (EBS) Snapshots,
Amazon Relational Database Service (RDS) automated
backups and snapshots, AWS Backup, AWS DataSync, and

AWS Glacier, providing archival storage service for long-term

data retention. By utilizing these AWS services, you can
implement a comprehensive backup and data replication
strategy to protect against data loss and ensure the
availability of your critical data in the event of a failure or
disaster.

* Leveraging the operational excellence pillar: This focuses
on running and monitoring systems, and continually
improving processes and procedures. It includes topics such
as tooling, automating changes, responding to incidents, and

defining standards to manage daily operations.

Once you implement a combination of these services, you need
to configure retention policies, define resilience testing
schedules, and continuously run chaos engineering
experiments to test recovery procedures and ensure the

effectiveness of the mechanisms introduced.

CRE Customer Persona

Now you need to tie your CRE strategy back to your primary
customer. You might already have a Persona Library in your
organization depicting end-to-end customer journeys. If this is
the case, leverage existing data to identify the key strategy to
focus on. For example, is it a bank processing thousands of

transactions in small batches concurrently? If so, stress testing

and performance testing will be the key. If complex processing
is required, you need to look at cycle time. Cycle time is the total
time it takes to complete one cycle of a specific process or task.
It measures the elapsed time from the beginning to the end of a
process, including all the steps and activities involved in
completing the task. If your customer is a gamer playing a
complex video game, you need to focus on application
performance, nanosecond latency, and network reliability.
When defining your strategy, start with the customer persona
and the problems this persona needs to solve. Reducing cycle
time often involves streamlining processes, eliminating non-

value-added steps, and improving efficiency.

Documentation and Continuous Improvement

Once you collect these inputs, document them in playbooks and
recovery procedures, and train personnel accordingly. By using
and operationalizing this framework, you will create a robust
and comprehensive approach to ensure the reliability and
resilience of your cloud-based systems and services. Finally,
perform continuous analysis as part of the learning and
adaptation process. As always in Lean, a holistic strategy
requires continuous improvement to meet evolving business

needs and technological advancements.

Case Studies

Let’s finish this chapter with three examples of hypothetical
companies from different industries that use value stream
analysis to guide their CRE strategy: a bank, a leading gaming
company, and a content streaming leader. While these examples
are fictional, they all are based on real-world practices
observed in the financial, gaming, and cloud services industries,

drawing insights from case studies and industry reports.
Example 1: FinTechBank

FinTechBank, a major financial institution, conducts a
comprehensive analysis of its end-to-end value stream, focusing
on capacity and transaction processing from initiation to
completion. By leveraging existing data on customer
transactions, FinTechBank identifies key areas of the value
stream that require optimization. Through rigorous stress and
performance testing, FinTechBank analyzes the performance of
its banking systems under various load conditions. For instance,
by simulating high transaction volumes during peak hours,
FinTechBank gains insights into potential bottlenecks in its

systems and infrastructure.

This analysis reveals that the most critical points in the value

stream are transaction validation and authorization, where

delays can significantly impact customer experience. As a
result, FinTechBank prioritizes improvements in these areas,
implementing measures to streamline validation and
authorization processes, such as optimizing database queries
and increasing server capacity. By focusing on these critical
points in the value stream, FinTechBank enhances the
reliability and performance of its transaction processing
systems, ensuring seamless banking experiences for its

customers.

Example 2: GameX Entertainment

GameX Entertainment, a leading gaming company, conducts an
in-depth analysis of its end-to-end value stream, encompassing
the entire gaming experience from player login to gameplay
and logout. By analyzing player data and gameplay patterns,
GameX identifies key stages in the value stream that impact
player experience: login authentication, game rendering, and

network communication.

Through performance monitoring and testing, GameX discovers
that network latency during gameplay is a significant factor
affecting player satisfaction. This analysis reveals that players
in certain regions experience higher latency due to suboptimal

server configurations and network routing. As a result, GameX

implements strategic measures to optimize its network
infrastructure, such as deploying edge servers in regions with
high player density and optimizing network protocols to reduce
latency. By addressing these issues in the value stream, GameX
improves application performance and network reliability,

enhancing the overall gaming experience for its players.

Example 3: Streamflix

At Streamflix, the company’s reliability engineering strategy
intertwines with its value stream analysis and optimization
endeavors. Utilizing data-driven insights, Streamflix delves into
viewer behavior and preferences to bolster the reliability and
performance of its cloud-based streaming platform. For
instance, through exhaustive value stream analysis, Streamflix
identifies that users encountering delays during peak hours
exhibit a higher likelihood of churning. By meticulously
scrutinizing the end-to-end value stream, encompassing content
selection to playback, the company isolates bottlenecks and

latency issues within its cloud infrastructure.

Subsequently, Streamflix undertakes measures to optimize its
cloud infrastructure based on these discoveries. Dynamic
scaling mechanisms are implemented to ensure seamless

streaming experiences during peak usage periods.

Furthermore, continuous monitoring of network reliability
metrics and application performance data facilitates ongoing
refinement of the infrastructure to uphold high availability and
mitigate downtime. This proactive approach to reliability
engineering, guided by insights from value stream analysis,
empowers Streamflix to furnish a high-quality streaming
experience to its users, fostering heightened customer

satisfaction and bolstering retention rates.

Summary

Use CRE value stream analysis to ensure that your strategy
reflects holistic end-to-end analysis of your systems and your

customers.

Q&A

Q: What are some example questions to help guide CRE
value stream analysis?

By answering a few foundational questions, you can learn how
well your architecture aligns with cloud reliability best

practices and dive deeper to start making improvements.

Product-related questions:

1. What business problem is this product trying to solve?

2. What are the business processes that we are implementing
with the solution?

3. What are the business drivers for the creation of each major
component?

4. Is there a list of key events that are associated with each
major component or business process we are putting in
place?

5. What are some of the key metrics or OKR/performance
indicators that we will be measuring success with and
alerting on?

6. How does the product team determine customer impact, and
how do we measure customer experience? Are there critical

journeys?
Architecture-related questions:

1. What will this application and its infrastructure look like in
production? What are the tech stack and major components?

2. How many users are we expecting to support at any given
time (minimum, maximum, and concurrent)?

3. What upstream and downstream dependencies have we
identified so far?

4. Are we leveraging any existing commercial off-the-shelf
(COTS) products?

10.

11.

12.

13.

. What high-level components have we have identified so far?

What is the current definition and development status of

each component?

. What is the expected recovery time objective (RTO), meaning

how long will it take for this system to recover after an

outage?

. What is the expected recovery point objective (RPO),

meaning how much data may we lose in case of an outage?

. How many data centers, Availability Zones (AZs), regions,

and/or countries will this application be serving?

. What protocols (e.g., HTTP, TCP) and what ports are

specifically needed to operate this solution with internal
APIs, third-party components, or future Internet of Things
(IoT) devices?

How are we planning to load-balance and split traffic among
the different locations, AZs, regions, and so on?

How often are we trying to test our recovery practices by
turning down existing infrastructure and introducing chaos
into the system to see how it behaves?

Are there any data replication techniques to ensure that our
data is not only backed up but also replicated across different
locations?

How are we planning to route traffic when we see spikes in

the different zones or locations? Do we expect any patterns

14.

15.

16.

17.

18.

19.

20.

21.

22.

that we need to be aware of?

How does our configuration management and recovery
process work in terms of building everything from scratch?
Are we implementing infrastructure as code (IaC)? If so, what
are the details regarding the tech and process behind it?
Will the solution operate in an active-active, active-passive,
or standby architecture?

Will the application be exposed externally or internally to
other systems or solutions? What applications will interface
externally or internally with our solution?

Will there be a production support team responsible for the
solution?

In the event of having to scale up the system, what specific
components will need to be scaled up and how quickly will
we need to do this? If so, how?

Are there any key business rules or business activities that
we need to monitor? Are there any that we need to
orchestrate with automation?

What key dashboards do we expect to observe and monitor
this solution?

Do we follow any incident recovery practices? If so, what are
the playbooks that exist in the organization?

Describe the middleware associated with the solution and its

parts. How does data move from point A to point B?

Development-related questions:

10.

. What is the development tooling used for the end-to-end

process, and what tools are used to support this process?

. In terms of the deployment process, what kind of deployment

pattern or technique (n-1, canary, blue-green) are we using?

. Are we leveraging any CI/CD practices to write, integrate, and

deploy code?

. How do we control the environment management process

for Dev QA and prod? How do we scale it?

. What are the different roles of the people included in the

development process, from ideation to production?

. Is there a product road map that shows different components

and events for the solution?

. Are we leveraging any open source capabilities to accelerate

the development process, or are we building everything from

scratch?

. How do we integrate security into our DevOps model and

solution?

. What part of testing has been automated, and what is the

testing coverage that is automatic versus manual?

What type of monitoring will be enabled in production at all
times, and what kinds of conditions will result in an alert?
What are the expected time to detect (TTD), time to recover

(TTR), and service level objectives (SLOs)?

11. How will we let people know that an alert has been triggered,
and how do we plan to page the people responsible for fixing
it? Is there a “You build it, you own it” (YBYO) mentality, or
does a central team respond to incidents?

12. How does the incident management process work, when will
it be escalated, and to whom? What are the incident response
TTD and TTR targets?

13. Are there any dev standards that we follow? Are any of the
generative Al (GenAl), Copilot-like, or machine learning (ML)
models used to build, monitor, and test our apps?

14. How do team members collaborate to contribute to the

existing code base?

Q: How can reliability be extended to third-party-provided
apps?

When conducting value stream analysis to formulate an
enterprise CRE strategy, it’s crucial to address various edge
cases, including extending reliability to third-party-provided
apps. These apps often integrate with your systems but are
beyond your direct control, posing a dependency risk. Some
companies consider them an extension of their value stream,
presenting unique challenges and opportunities for CRE

implementation.

To effectively manage these dependencies, consider the

following vendor management strategies.

e Strategic vendor selection: Prioritize established vendors
with proven reliability, minimizing the need for extensive
monitoring compared to new vendors with higher risk levels.

e Well-defined SLOs and SLAs: Establish clear SLAs to define
performance expectations, including metrics such as time to
engage during incidents, RTOs, and RPOs.

e Detailed contracts and engagement approach: Ensure that
contracts contain comprehensive clauses relevant to CRE
implementation, covering aspects such as TTD, TTR, regional
resilience, multi-AZ deployment, incident response protocols
and POCs, change management practices, and game day and
resiliency test schedules and requirements.

e Reporting: Implement a robust reporting mechanism to
track key metrics, incidents, chaos tests, and deployment
practices, facilitating ongoing performance monitoring and
improvement.

e Risk management: Apply standard project management
techniques to mitigate risks associated with third-party
dependencies, emphasizing proactive risk identification and

mitigation strategies.

In addition to vendor management strategies, consider the

following engineering approaches to enhance reliability.

e Chaos testing: Conduct regular chaos experiments in
production-like environments to evaluate system resilience
and response to adverse conditions introduced by third-party
apps.

e Abstraction layers: Implement abstraction layers to
minimize the impact of third-party app failures on overall
system reliability, ensuring data availability and continuity
for end users.

* Incident response playbooks: Develop clear incident
response playbooks outlining collaboration protocols,
escalation procedures, SLIs/SLOs, and financial impact

assessments for both internal and third-party teams.

By adopting a proactive approach to vendor management and
engineering resilience strategies, organizations can effectively
extend reliability to third-party-provided apps, mitigating risks

and ensuring seamless operations.

Q: How can we easily define the most critical customer
experiences?

When it comes to CRE, defining the most critical customer

experiences requires a comprehensive approach that revolves

around understanding customer requirements, pinpointing
pain points, and ensuring the reliability and availability of
cloud services. The key components of defining critical

customer experiences in CRE are as follows.

e Customer persona analysis and customer journey
mapping: This involves creating detailed profiles of different
customer segments and mapping out their interactions with
the product or service. By understanding their unique
journeys and pain points, companies can tailor the approach
to effectively address their specific needs.

* Feedback loops and continuous improvement:
Establishing robust feedback mechanisms enables companies
to gather insights into customer experience and satisfaction
levels. By consistently soliciting and acting upon feedback,
companies drive iterative improvements that align with
evolving customer preferences and expectations.

e Setting clear SLOs: Defining clear SLOs for cloud reliability
and resilience is essential for establishing benchmarks and
expectations regarding service performance. These
objectives should be established in advance and refined over
time to ensure alignment with customer expectations and
business objectives.

e Incident analysis and pattern recognition: Conducting

thorough incident analysis helps identify recurring patterns

and root causes of service disruptions. By leveraging insights
learned from these efforts, companies can implement
proactive measures to enhance system reliability and
minimize the impact of potential incidents on customer
experience.

e Continuous customer support and availability: Providing
consistent and high-quality customer support is the key to
ensuring a positive customer experience, especially during
critical service disruptions. Tailoring support services based
on transaction volumes and the critical availability of
services helps prioritize resources effectively and mitigate
the impact of disruptions on customer satisfaction.

e Embracing a culture of continuous improvement:
Fostering a culture of continuous improvement within the
organization is crucial for sustaining high levels of customer
satisfaction and loyalty. By embracing feedback-driven
iteration and innovation, companies can adapt to evolving
customer needs and market dynamics, thereby maintaining a
competitive edge in the rapidly evolving landscape of cloud

services.

This approach combines proactive measures, feedback-driven
iteration, and a relentless focus on customer centricity. By
integrating these elements into the CRE framework, companies

can not only meet but also exceed customer expectations,

driving long-term success and differentiation in the

marketplace.

Q: As we perform value stream analysis, how do we
compare our company’s cloud reliability against industry
benchmarks?

While this is not precise in nature, it is always healthy to
compare based on factors such as industry and company size to
create your own baseline. The most powerful benchmark is the
one your company creates year by year to determine
improvement. Once you baseline your key metrics, you can
determine how your systems are performing over time and
against standards in your industry for companies of similar size
based on your findings through customer surveys, your
operations data, incident counts and severities, support tickets,
and multiple other sources. Your cloud provider will most likely
provide multiple services that help you monitor system
performance and gain insights into the health of your

resources.

AWS alone provides more than ten services you can use,

including the following:

e Amazon CloudWatch, a monitoring service providing real-

time insights into AWS resources, allowing you to set alarms

and automatically react to changes in system performance

e Amazon Health Dashboard, which provides alerts and
insights into the health of your AWS resources and notifies
you about service disruptions, planned maintenance, and
other relevant information

e Amazon GuardDuty, a threat detection service that provides
insights into your AWS account security and alerts you of
suspicious activities and potential vulnerabilities

e AWS Config, which provides a detailed inventory of your
AWS resources and tracks changes to these resources over

time

A combination of these services will provide useful historical
information that will help you assess the health of your systems
over time, and industry data will allow you to benchmark your

system’s performance.

Similarly, Microsoft Azure offers services such as Azure Monitor
for monitoring and diagnostics, Azure Service Health for
personalized guidance and support, Azure Security Center for
threat protection and security management, and Azure Policy
for enforcing organizational standards and assessing
compliance. Google Cloud Platform provides services such as
Google Cloud Monitoring for performance visibility, Google

Cloud Security Command Center for security insights and risk

management, and Google Cloud Asset Inventory for resource

tracking and change management.

To connect this approach back to Lean, metrics play a crucial
role in Lean principles as they provide objective data to
measure the effectiveness of processes, identify areas for
improvement, and track progress toward organizational goals.
In this sense, metrics help organizations gain insights into their
performance, align efforts with strategic objectives, and drive
continuous improvement. Once you collect the required
metrics, you will have enough inputs—from your customers,
both internal and external—to identify the areas you need to
focus on. Then, you can create OKRs to set up targets and drive
improvements in key areas. It is important to set realistic
incremental objectives, continuously measure this data via
dashboards, report to key stakeholders, and course-correct as

needed.

Chapter 10

Culture

How to Build a Psychologically Safe Environment and Culture of

Innovation with the CRE Framework

In the world of cloud reliability engineering (CRE), the culture
you foster within your organization will make all the difference
in achieving true operational excellence. The CRE culture
emphasizes learning, collaboration, adaptability, and customer
centricity while making cloud-based services more reliable. It
advocates for cross-functional teams working in short iterations
to quickly deliver reliable cloud solutions that delight
customers and empower employees. While Lean principles that
drive organizational culture have been around for several
decades, specific application of these principles to CRE is a
relatively new domain, evolving with the rise of the cloud and

the need for highly reliable services.
Psychological Safety

The most crucial aspect of the CRE culture is building a
psychologically safe environment—a place where every team

member feels safe to take risks, voice their opinions, and share

ideas without fear of judgment or retribution. In CRE, we refer
to this as a “blameless culture.” To achieve this, leaders must
lead by example. They must actively encourage open
communication, curiosity, and experimentation. Mistakes are
not seen as failures but as opportunities to learn and grow. In a
psychologically safe environment, team members are
empowered to think outside the box and innovate—testing and

failing quickly and fearlessly.

Employee Empowerment

The second pillar of the CRE culture is the empowerment of
employees and their ability and willingness to make
decisions. In this dynamic field, decisions need to be made
swiftly based on data and evidence. This doesn’t mean decisions
are made in isolation by a select few. On the contrary, inclusive
decision-making is a key principle. Team members across the
organization are encouraged to contribute their insights and to

question any area, ensuring a diverse range of perspectives.

Leadership and Ownership

In the fast-paced CRE domain, leadership and ownership are
key. In Lean, there is a concept of “Andon cord.” This concept is

a fundamental element of Lean manufacturing and production

systems. It originates from the Toyota Production System (TPS).
The Andon cord serves as a visual and audible signal that
allows workers on the production floor to stop the production
process whenever they encounter a problem or an abnormality
in the workflow. Imagine a physical cord hanging above the
workstations on the production floor. If a worker identifies any
issue, defect, or anomaly in the production process, they can
immediately pull the Andon cord to stop the assembly line or
the entire production process. This action activates a signal,
such as a flashing light or an alarm, indicating that there is a
problem that needs attention. Similarly, in a CRE environment,
everyone has a right to question resilience, reliability,
availability, and other related practices, and to immediately
“pull the Andon cord” if they suspect any vulnerabilities in the
system. The corresponding mechanism in CRE is the error
budget and the combination of insights from service level
objectives (SLOs) and service level indicators (SLIs). This is
where anyone from the app team, the site reliability
engineering (SRE) team, the product team, or leadership has the
ability to pull the cord and request with a data-driven approach
that an application slows down in delivering new features and

invests more in improvements to the service architecture.

Overall, the Andon cord is a powerful tool in Lean

manufacturing, promoting problem-solving, employee

empowerment, and a culture of quality and efficiency. It
exemplifies the Lean principle of jidoka (automation with
human intelligence), in which humans have the authority to
stop the process when they sense a problem, ensuring that only
high-quality products move through the production system—in

this case, the application offering services to customers.

Leadership includes the art of setting up the vision for the
organization, requires wisdom and expertise to offer a North
Star for a successful strategy, and ensures great communication
for skilled teams to work together to make informed decisions.
Figure 10.1 shows the basic leadership attributes that CRE
teams need to successfully implement SLOs, be able to invest in
the CRE concepts explained in this book, and in few cases have
the freedom to pull the Andon cord to signal where major

issues require company-wide attention.

LEADERSHIP

“&H R T A KA

Vision Wisdom Strategy Communication Skillful Goud de:lslon Teamwork Success

Figure 10.1
Leadership skills to create a CRE culture

(image: buffaloboy/Shutterstock)

Collaboration and Cross-Functional Teams

Collaboration is at the heart of CRE, and cross-functional teams
are the implementation of this principle. These teams bring
together individuals with diverse skills and expertise to work
toward a common goal. As they progress toward this goal, they
prioritize customer obsession and focus on maximizing
customer value as their North Star. They achieve this goal by
thinking end to end versus prioritizing their organizational
silos and their own career interests over customer needs. This
is referred to as “system thinking.” They continuously improve
their processes and optimize their practices via learning,
sharing, and disrupting the status quo. They engage in direct
dialog with their customers using feedback loops as the engine
of their continuous improvement, and they are excited to

innovate on behalf of their customers.

Customer Obsession

One of the key elements of these interactions is the definition of

the most important customer journeys or experiences the

company will offer to its customers. In this case, once the
experiences are prioritized, the app teams and SRE leads need
to inventory the composite set of applications that make up
each customer experience. This allows organizations and
leaders to set end-to-end traceability and end-to-end SLOs and
SLIs. Organizations that achieve this level of maturity are able
to measure the customer experience for the enterprise and also
for each experience down to the application/service level. This
data is so powerful that it determines which teams need to
focus on architecture improvements to ensure that service
levels and application teams are always performing as

expected.

In this type of environment, employees achieve ultimate job
satisfaction by delighting their customers, collaborating in a
positive and blameless environment, building mutual respect
via system thinking, and enjoying their learning and growth in
a psychologically safe and respectful workplace. Employee
retention growth, system reliability, and availability increase,
and customers appreciate the high value and the continuous
feedback loop in a trusted and positive relationship. As a result,
through people, their engagement, and a positive and

collaborative culture, the business grows.

CRE Culture

This might sound like a perfect culture, but it is much easier
said than done. A company operating within the CRE
framework functions as an open system, continually welcoming
new employees to join the conversation and share architecture
insights and wins to improve the resilience, monitoring, and
observability of their platforms. As these fresh minds and
perspectives integrate into the organization, it becomes
essential not only to build but also to sustain the dynamic and
innovative culture that defines CRE. Achieving and maintaining
this culture of ownership, collaboration, and psychological
safety is a journey that requires continuous effort and
adaptation. While there is no one-size-fits-all solution, there are
several strategies that companies should consider to nurture

and perpetuate their CRE culture

1. Effective leadership plays a pivotal role in fostering a
sustained CRE culture. Leaders should embrace the
principles of collaboration and psychological safety
themselves. By encouraging open communication, fostering
transparent decision-making processes, and empowering
their teams, leaders set the tone for a culture where

individuals are motivated to take ownership of their work

and contribute actively to problem-solving and continuous
improvement initiatives.

2. Investing in training and development programs for
employees can significantly contribute to the longevity of the
CRE culture. By equipping team members with the skills and
knowledge they need to excel in their roles, companies
empower individuals to engage in critical thinking and
innovation. Offering learning opportunities that align with
the values of CRE, such as workshops, hackathons, system
design thinking, problem-solving techniques via playbooks,
and incident management best practices, can further
enhance the culture of collaboration and adaptability.

3. Creating opportunities for recognition and celebration of
success reinforces the value of ownership and collaboration.
Companies can do this by acknowledging and rewarding
individuals and teams for their contributions, whether it is a
successful incident response, a creative solution, or an
outstanding customer-focused initiative that improved
reliability metrics. Celebrating achievements fosters a sense
of pride and camaraderie among employees, motivating
them to continue their dedication to CRE principles.

4. Maintaining an ongoing feedback loop is essential in the
journey of sustaining a CRE culture. Regularly seeking input

from employees through operational excellence meetings,

dashboard reviews, SRE surveys, incident retrospectives, or
informal discussions allows organizations to identify areas

for improvement and adapt to evolving needs.

Summary

Sustaining a CRE culture is a dynamic and continuous process
that requires commitment and adaptation. Effective leadership,
employee development, recognition of achievements, and open
communication are vital components that contribute to the
long-term success of the CRE framework. By incorporating these
ideas into your organizational strategies, companies can build a
resilient and customer-centric culture that propels them to new
heights in the world of CRE.

Q&A

Q: How do I know if my company has the right culture for
CRE implementation?

We believe that the number-one prerequisite for a high-impact,
high-empowerment culture in a CRE organization is
psychological safety, as it is defined by Google. In Project
Aristotle, Google defined psychological safety as “a shared belief
held by members of a team that the team is safe for

interpersonal risk-taking.” By defining psychological safety at

the team level, Google emphasized how important

organizational culture is to the success of each of its employees.

You may wonder why this research was labeled “Project
Aristotle.” The answer is easy—it is focused on employee
success as part of their team and their organization’s culture. In
Aristotle’s work on metaphysics, he emphasized the importance
of understanding the nature of entities as a whole and not

merely as a collection of separate parts.

The essence of an entity lies not only in its material components
but also in its form and function, which provide its identity and
purpose. A famous saying about the whole being greater than

the sum of its parts is frequently attributed to Aristotle.

Google’s research found that teams with high levels of
psychological safety tended to be more successful, innovative,
and productive. Psychological safety fosters an environment
where team members feel comfortable taking risks and pushing
boundaries, leading to improved problem-solving and a
willingness to challenge the status quo. Google identified five

traits of successful teams.

1. Psychological safety: According to Google, psychological

safety plays a significant role in promoting open

communication, trust, and collaboration within a team.
When team members feel psychologically safe, they feel safe
to take risks and be vulnerable in front of one another.
Google’s research found that teams with high levels of
psychological safety tended to be more successful,
innovative, and productive. Psychological safety fosters an
environment where team members feel comfortable taking
risks and pushing boundaries, leading to improved problem-
solving and a willingness to challenge the status quo.

. Dependability: On dependable teams, members rely on one
another and develop trust via continuous support and
keeping their commitments.

. Structure and clarity: An individual’s understanding of job
expectations, the process for fulfilling these expectations, and
the consequences of one’s performance are important for
team effectiveness. Goals can be set at the individual or
group level and must be specific, challenging, and attainable.
Google often uses objectives and key results (OKRs) to help
set and communicate short- and long-term goals.

. Meaning: Finding a sense of purpose in either the work itself
or the output is important for team effectiveness. The
meaning of “work” is personal and can vary: financial
security, supporting family, helping the team succeed, or self-

expression for each individual, for example.

5. Impact: The results of one’s work, the subjective judgment
that your work is making a difference, are important for
teams. Seeing that one’s work is contributing to the

organization’s goals can help reveal impact.

We believe that promoting these five traits will create a solid
foundation for the organizational culture, which will promote
CREs via open conversations, transparency, clear expectations,
and collaboration, and allow employees to see the impact of the
work that they do every day on the resilience, availability, and
security of their systems and applications, and through those,
on their customer experience overall. If this does not happen,
employees are not encouraged to share any failures resulting in
delays in dealing with system inefficiencies or service
disruptions. This results in skilled and dedicated high-
performing employees leaving and teams not gelling. The
outcomes are disastrous to the organization, its business, and

its customers.

Q: What are some techniques to spread CRE culture across
an organization?

We would like to focus on the fundamental drivers of cultural
change within organizations. Start the change by sharing the

values and benefits, inspiring people within the company,

getting buy-in from leadership, and creating a group of
champions or ambassadors of your company’s CRE movement.
Develop training, set up OKRs, and show the value. And do not
forget to add gamification and fun via hackathons and cool
experimentation projects that spark new thinking and
empower innovation within your psychologically safe culture.
In this way, your CRE culture will sustain itself and

continuously improve.

Chapter 11

The Business Case for CRE

How to Measure ROI, Ensure Customer Satisfaction, and Promote

Business Success

Cloud reliability engineering (CRE) is not a choice for
companies nowadays, it’s an imperative. In this chapter, we will
explore both the value it brings to businesses and the

unparalleled benefits it delivers to customers.
Benefits of CRE

First, CRE provides value by streamlining manual operations,
optimizing resources with automated tools, and minimizing
costly downtime. With CRE practices in place, organizations
experience improved operational efficiency, reduced waste, and
increased productivity. By empowering cross-functional
collaborative teams, CRE encourages faster decision-making,
rapid incident response, and continuous improvement.
Companies retain their high-performing employees by
promoting a collaborative, psychologically safe environment.
As a result, businesses can enhance their agility and

responsiveness to meet ever-changing market demands.

CRE Value

CRE is extremely important from a customer perspective.
Customers, now more than ever, demand seamless and reliable
digital experiences. CRE addresses these customer needs by
ensuring high availability, minimal disruptions, and prompt
incident resolution. With a resilient IT infrastructure,
customers can access products and services without
interruptions, fostering trust and loyalty. Additionally, CRE
empowers businesses to deliver rapid updates and feature
enhancements, catering to customer preferences, staying ahead
of competitors, and establishing short feedback loops and rapid

response.

To ensure success, it is important to measure return on
investment and use the objectives and key results (OKR)
framework to ensure that your CRE implementation helps
achieve business objectives (see Figure 11.1). Measuring CRE’s
return on investment involves assessing various factors, such as
reduced operational costs, increased revenue due to improved
customer satisfaction, and enhanced resource utilization. Key
performance indicators (KPIs), including mean time to detect
(MTTD) and mean time to recover (MTTR), provide insights into
system reliability and incident response efficiency.

Furthermore, customer feedback surveys and Net Promoter

Scores (NPS) gauge customer satisfaction, demonstrating the
impact of CRE on customer value.

N

Figure 11.1

The value of CRE must be evaluated using OKRs and KPIs

(image: iQoncept/Shutterstock)

While OKRs provide a framework for aligning team efforts with

broader business objectives, they don’t encompass every metric

that matters for product health and reliability. Teams must
define their own specific product metrics—some aligned with
OKRs and others tailored to the unique characteristics of their
systems. This is where the “You build it, you own it” (YBYO)
model becomes essential. YBYO fosters a culture of
accountability, where teams take end-to-end responsibility for
the products or services they create, ensuring ongoing
reliability and performance. For a deeper dive into
implementing YBYO and aligning it with OKRs, refer to Question
1 at the end of this chapter.

In addition, large language models (LLMs) are revolutionizing
how playbooks are authored and used and how documentation
and training materials are produced. LLMs will be playing a
continuously increasing role in CRE governance,
implementation, and socialization, and they will serve as the
foundation in building and enhancing CRE models within

organizations.

In summary, CRE fosters reliability, availability, and resilience
in IT infrastructure, driving customer satisfaction and ensuring

long-term business success.

Cost of Neglecting CRE Practices

Organizations that neglect CRE practices risk facing severe
consequences, such as frequent system outages, prolonged
downtime, and dissatisfied customers. Without a resilient IT
infrastructure, businesses could lose market share to
competitors that can offer a more reliable digital experience.
Additionally, mounting operational costs due to reactive
maintenance and inefficient resource utilization can
significantly impact the bottom line. To avoid the pitfalls of
neglecting CRE, organizations must prioritize its
implementation as a core business strategy. By adopting CRE
principles, fostering a culture of continuous improvement, and
empowering cross-functional teams, businesses can build a
resilient and customer-centric IT infrastructure. Embracing
automation, proactive monitoring, and incident response
practices will ensure business continuity and customer

satisfaction.

Aligning CRE with Strategic Objectives

Once your organization decides to invest in CRE, you need to
align the development process with customer requirements
(frequently expressed as “user stories”) and strategic objectives

to ensure that the final products not only meet customer

expectations but also contribute to the overall success of the
organization. Some key strategies to achieve this goal are as

follows.

1. Customer-centric approach: Begin by gaining a deep

understanding of your customers’ needs, pain points, and
preferences. Engage with customers through surveys,
feedback sessions, and user testing to gather valuable
insights. Analyze customer data and behaviors to identify
patterns and trends. Use this knowledge to guide product
development decisions and prioritize features that address
customer demands.

. Lean product development: Adopt Lean principles in the
product development process. Embrace a build-measure-
learn approach, in which you iteratively create minimum
lovable products (MLPs), measure their impact, gather
feedback, and then make data-driven decisions to iterate and
improve the product. This iterative approach allows you to
quickly respond to customer feedback and rapidly evolve the
product to better meet customers’ needs.

. Value stream mapping: Utilize value stream mapping to
identify and streamline the end-to-end product development
process. Identify bottlenecks, unnecessary steps, or resource
wastage that can hinder product development efficiency. By

optimizing the value stream, you can more effectively

allocate resources and more quickly deliver products to the
market.

4. Cross-functional collaboration: Encourage collaboration
among different teams within the organization, including
product development, engineering, operations, and customer
support. Cross-functional teams can work together to align
product development efforts with business objectives. This
approach ensures that resources are allocated in a way that
prioritizes customer value and aligns with the overall
business strategy.

5. Prioritization frameworks: Implement clear and
transparent prioritization frameworks that consider both
customer impact and business value. Use data and customer
feedback to rank features and initiatives based on their
potential to delight customers and drive business growth.
This approach ensures that limited resources are directed
toward the most impactful projects.

6. Test and validate hypotheses: Frame product development
as a series of hypotheses that need validation. Use Lean
startup methodologies to create experiments and tests that
measure customer response and validate assumptions. This
approach reduces the risk of resource waste on features that

might not resonate with customers.

7. Monitor and adapt: Continuously monitor product
performance and customer feedback after launch. Use real-
time data to understand how customers are engaging with
the product and whether it’s meeting their needs. Be
prepared to adapt and make improvements based on this
feedback.

By incorporating these strategies into CRE practices,
organizations can create products that not only delight
customers but also align with business goals and efficiently
allocate enterprise resources. However, once you achieve the
balance shown by your initial set of investments, it does not
mean that your CRE journey is complete. CRE requires
continual engineering improvements, and you will notice that
as your team makes improvements in some engineering
practices, organically it will recognize new “opportunities” that

were hidden or unattended.

Evolution of CRE Practices

The world of CRE is rapidly evolving. CRE companies are
continuously utilizing new and emerging trends in technology.
Serverless computing, edge computing, and artificial
intelligence (AI)-driven reliability are some examples of

evolving technologies that companies small and large need to

embrace to unlock significant business and customer value in
implementing CRE and focusing on the tangible benefits these

technologies offer to businesses and their customers.

Serverless Computing

Serverless computing is a technology that helps companies
build secure and reliable applications. It frees up time for
internal teams by eliminating the need to provision, scale, and
patch infrastructure. For example, Amazon Web Services (AWS)
Serverless Application Repository enables teams, organizations,
and individual developers to store and share reusable
serverless applications and easily assemble and deploy
serverless architectures in powerful new ways, subsequently
increasing the reliability of their systems. The service
implements common request/response patterns, makes use of
event-driven systems for asynchronous processing, and uses a
component architecture to reduce coupling and improve

scaling dimensions.

Edge Computing and Distributed Reliability

As applications become more distributed and global, edge
computing is emerging as a key technology for enhancing
reliability and performance. By processing data closer to its

source, edge computing reduces latency and improves fault

tolerance by distributing workloads across various locations.
For companies adopting edge computing, the risk of central
failures is minimized, ensuring that critical services remain
operational even during outages in core systems. CRE practices
at the edge focus on reliability at scale, ensuring continuous
availability, load balancing, and seamless user experiences even
under variable network conditions. Platforms such as AWS
Greengrass, Azure IoT Edge, and Google Cloud IoT Edge enable
businesses to integrate edge computing into their

infrastructures, further enhancing resilience and scalability.

AlI-Driven Reliability

Al is transforming the way companies manage reliability,
enabling proactive monitoring and prediction of potential
system failures before they occur. Al-driven tools can analyze
historical data and system behaviors to forecast outages,
optimize resource allocation, and automate responses to
incidents. For example, Al-powered systems can detect
performance anomalies in real time and automatically trigger
failover mechanisms, reducing downtime and improving
recovery times. Solutions such as AWS DevOps Guru, Google
Cloud Al and Azure Al provide advanced capabilities for
improving service reliability through predictive analysis and

automation. Integrating Al into CRE practices enables

organizations to minimize human error, optimize system
uptime, and continuously learn from operational data to

enhance future performance.

Scalability through Microservices and Containerization

Reliability at scale is one of the core challenges CRE addresses,
and microservices architecture and containerization are key
technologies driving this evolution. By breaking applications
into smaller, independent services, companies can deploy and
manage each service individually, making systems more fault-
tolerant and scalable. Tools such as Kubernetes, Docker, and
AWS Elastic Container Service (ECS) provide seamless
orchestration and management of containers, ensuring
reliability even when individual components fail. This modular
approach helps maintain high availability and resilience, as
services can automatically reroute traffic, scale, or restart
without affecting the entire application. The dynamic nature of
containerized environments combined with CRE principles
ensures better resource utilization, faster recovery times, and

more robust systems.

Infrastructure as Code and Observability

The future of CRE lies in the continuous integration of emerging
technologies and operational practices. To remain competitive,
organizations must adopt Infrastructure as Code (IaC),
automation, and observability as core components of their
reliability strategy. Tools such as AWS CloudFormation,
Terraform, and Pulumi enable automated infrastructure
management, reducing manual intervention and lowering the
risk of configuration drift. Observability tools, such as
Prometheus and Grafana, provide real-time insights into the
health and performance of systems, enabling teams to monitor;
detect, and resolve issues more quickly. Embracing these best
practices ensures that systems are not only reliable today but
also prepared for the future demands of cloud-based

applications.

Case Studies

Nordstrom, a well-known American fashion retailer, has
embraced serverless computing and has been at the forefront
of CRE practices. As part of its IT strategy, Nordstrom embarked
on a journey to modernize its infrastructure and streamline its
development and deployment processes. It adopted a serverless

architecture for many of its applications, taking advantage of

AWS Lambda, API Gateway, and other serverless services. This
move allowed Nordstrom to focus on building and delivering
value to customers rather than managing infrastructure. The
benefits of serverless computing allowed Nordstrom to reduce
operational overhead and automate scaling, enabling
Nordstrom’s applications to handle any level of traffic without
manual intervention. This resulted in fewer incidents related to
capacity issues, as the infrastructure adapted to changing usage
patterns. It also increased fault tolerance, enabling the CRE
team to design and implement applications with greater
resilience, thereby reducing the likelihood of systemwide

outages.

With serverless computing, Nordstrom pays only for the actual
compute resources used during function execution. This pay-as-
you-go model can result in cost savings compared to traditional
server-based approaches. The CRE team can then allocate more
resources to proactive reliability measures, such as
implementing monitoring and alerting systems. In sum,
Nordstrom’s adoption of serverless computing has significantly
empowered its CRE practices. By leveraging serverless services,
it reduced operational overhead, improved fault tolerance,

accelerated development cycles, and optimized costs.

In the healthcare industry, Moderna uses a broad range of AWS
services to support every aspect of its digital, data-driven
operations, with the goal of reducing the time and cost of
bringing new life-saving therapies to market. Moderna has
demonstrated the power of its cloud-based strategy in the speed
with which it delivered its highly effective COVID-19 vaccine
and its capacity to scale production globally. From leveraging
on-demand compute power and machine learning (ML) to
accelerate discovery and development to building flexible
capacity and real-time analytics providing CRE for its award-
winning, cloud-native manufacturing facility, Moderna
leverages the scale, reliability, and performance of AWS to
expand the possibilities of its mRNA platform and create a new

generation of medicines.

Summary

In this chapter, we reviewed the imperative nature of
continuous CRE in today’s business landscape. CRE brings value
to organizations, ranging from streamlined operations and
enhanced productivity to customer satisfaction and loyalty.
Through the lens of both the business and customer
perspectives, CRE emerges as a fundamental strategy for
fostering reliability, availability, and resilience in IT

infrastructure, thereby ensuring long-term business success.

We highlighted essential strategies for aligning CRE practices
with customer requirements and strategic objectives. By
adopting a customer-centric approach, embracing Lean product
development principles, and fostering cross-functional
collaboration, organizations can deliver products and services
that not only meet customer expectations but also contribute to

overall business success.

Looking ahead, the world of CRE continues to evolve, with
emerging technologies such as serverless computing, edge
computing, and Al-driven reliability offering new avenues for
innovation and value creation. The Nordstrom and Moderna
case studies in this chapter exemplify the transformative
potential of these technologies in enhancing operational
efficiency, accelerating innovation, and driving business
growth. In essence, CRE represents a dynamic and essential
discipline for modern businesses seeking to thrive in an
increasingly competitive and digital-centric environment. As
organizations continue to prioritize reliability, resilience, and
customer satisfaction, CRE will remain a key to their strategic
initiatives, guiding them toward sustainable growth and

success in the digital age.

Q&A

Q: What does the acronym YBYO mean from a cloud product
and services ownership perspective, and why is it relevant?

Company culture is unique to your organization: your
philosophy, your vision, the people who work in your company,
your leadership, and your people principles. However, there are
some approaches to organizational structure and specific
principles that drive the culture of responsibility and
accountability across companies. The “You build it, you own it”

(YBYO) approach is one of them.

YBYO is a culture or governance model in which individuals or
teams are responsible for the end-to-end ownership of the
products, services, or projects they create or develop. This is
opposed to the model in which one group builds new
infrastructures, services, and applications and another group (a
maintenance or support organization) is responsible for
supporting them. In the latter case, the first group is not
incentivized to ensure high CRE standards, because once a
cloud application is built and deployed to production, it moves
to support teams after a short maintenance period during
which they do not need to deal with low CRE parameters

resulting from poor architecture, insufficient funding, or

inadequate monitoring and alerting. With the YBYO approach,
the same group is responsible for lifecycle maintenance and
support, so from the very beginning, they need to think long
term, and they have a vested interest in establishing high CRE
standards from the moment they start working on the

application.

What does it mean in the context of CRE? With the YBYO
approach, the team that builds applications for the cloud,
makes infrastructure decisions, or decides on cloud services
provision is responsible for overall success, resilience, and
performance. This team becomes accountable for the outcome
and results of their work, including meeting the company’s
standards and service level indicators (SLIs), and progressing
toward key results as defined in their OKRs. From a Lean
perspective, YBYO encourages continuous improvement and
learning within the teams, as they are the ones directly
experiencing any consequences of their decisions. Within this
ownership comes both the potential rewards of success and
accountability for any failures. This motivates team members to
strive for excellence and take well-calculated risks as required.
Many companies adopt YBYO as part of this culture as opposed
to one team building new software, designing new

infrastructure, making major CRE-impacting decisions, and

throwing it over the wall to a different team to maintain,

support, and deal with any issues that might arise.

Q: What low-effort, high-impact actions can I take now to
increase CRE maturity at my company?

Increasing CRE maturity within your company doesn’t always
require complex and time-consuming initiatives. There are
several actions that you can take now to make a significant
impact on your CRE journey. These actions focus on maximizing
efficiency, optimizing processes, and enhancing collaboration.

Let’s explore some of these actionable steps.

e Conduct game days regularly: Game days, inspired by
chaos engineering principles, involve simulating real-world
failure scenarios in a controlled environment. By organizing
these simulations, you can identify potential weak points in
your infrastructure and applications while fostering a
culture of resilience and preparedness among your team.
Game days provide a low-effort, high-impact approach to
uncovering vulnerabilities and refining incident response
procedures, ensuring that your team is well prepared to
handle unexpected challenges in a proactive and confident

manner.

* Implement incident postmortems: Are you learning from
past incidents? Conducting incident postmortems is a low-
effort, high-impact action. Analyze the root causes of
incidents, identify areas for improvement, and share lessons
learned across teams. This helps prevent recurring issues,
promoting a culture of continuous learning and
improvement. At Amazon, there is a Correction of Error
(COE) mechanism that follows each incident when the team
is analyzing the impact, identifying the root cause, and
committing to a set of action items to ensure that this (or a
similar) incident will never happen again.

e Automate routine tasks: Look for repetitive tasks that
consume valuable time and resources. Consider automating
routine operations, such as deployment processes,
monitoring, and configuration management. Automation
frees up your team to focus on more strategic and innovative
tasks, boosting efficiency and productivity.

e Implement OKRs for your reliability initiatives: Define
clear and measurable objectives that align with your
company’s overall business goals, such as reducing
downtime, improving incident response times, or enhancing
customer satisfaction. Set key results that provide specific
metrics to track progress and success. OKRs create a focused

and data-driven approach to prioritize and allocate resources

effectively. By setting achievable yet ambitious goals, your
team will be motivated to work collaboratively and innovate
to achieve them, driving a significant impact on your CRE
maturity with relatively low effort.

Establish service level objectives (SLOs): Set clear and
achievable SLOs to measure service performance. Having
quantifiable targets enables your teams to focus on
delivering reliable services aligned with customer
expectations. SLOs also aid in prioritizing efforts and
resources to meet critical service-level requirements.
Encourage and adopt code reviews and pair
programming: Collaborative practices such as code reviews
and pair programming improve code quality, foster
knowledge sharing, and enhance team dynamics. The
cumulative effect of collective expertise strengthens your
CRE capabilities.

Enhance monitoring and alerting: Fine-tune your
monitoring and alerting systems to focus on actionable
insights. Ensure that alerts are relevant, are well-
documented, and trigger timely responses. This leads to
faster incident detection and resolution, reducing downtime
and customer impact.

Foster and embrace a blameless culture: A blameless

culture encourages open communication and transparency.

When team members feel safe to share ideas and feedback,
they are more likely to take ownership of challenges and
contribute to innovative solutions.

Invest in training and skills development: Strengthen your
team’s expertise through targeted training programs and
skills development. A well-trained team is better equipped to
handle complex challenges and is more likely to drive CRE
maturity forward.

Leverage cloud services: Take advantage of cloud provider
services, such as AWS Elastic Compute Cloud (EC2), Amazon
Relational Database Service (RDS), Amazon Simple Storage
Service (S3), AWS Lambda, Amazon CloudFront, Amazon
Aurora, Amazon Elastic Container Service (AWS ECS), and
many others, that offer built-in reliability features. Utilize
managed database services, auto-scaling, and load balancing
to reduce operational overhead and enhance system

resilience.

By taking these actions, you can swiftly elevate your company’s

CRE maturity and position your organization for long-term

success. Remember that the journey to CRE excellence is

incremental, and every small step counts toward building a

reliable, customer-centric cloud infrastructure.

Q: What is the future of CRE?

As the digital landscape continues to evolve at a rapid pace, so
does the future of Lean CRE. Emerging trends, driven by
advancements in technology and customer expectations, are
reshaping the CRE landscape, presenting new opportunities and
challenges for organizations aiming to deliver unparalleled

reliability and customer-centric services.

We believe that the key technology trends, such as serverless
computing, edge computing, and LLM applications, will shape
the future of CRE. From an organizational culture perspective,
businesses will adapt to embrace a more resilient, agile, and

innovative cloud reliability paradigm.
The future of CRE includes the following.

e Serverless computing: Serverless computing, characterized
by the dynamic allocation of cloud resources without the
need for server management, will significantly impact CRE
practices. With serverless architectures, organizations can
achieve enhanced scalability, cost efficiency, and reduced
operational complexity. In the future, CRE teams will
leverage serverless computing to build robust and auto-
scaling applications, enabling them to respond swiftly to

fluctuating workloads and customer demands. This trend

will emphasize the need for automated monitoring and
incident management, where Al-driven reliability solutions
play a critical role in proactively detecting and mitigating
issues, ensuring seamless customer experiences.

Edge computing: Edge computing, designed to bring
compute capabilities closer to end users and devices,
presents new challenges and opportunities for CRE. As
organizations embrace edge computing to reduce latency and
enhance data processing efficiency, CRE teams will need to
adopt a distributed approach to manage and monitor the
extended infrastructure. Real-time analytics and predictive
maintenance become vital in edge environments, where any
downtime can have significant consequences. The cultural
shift to decentralized, cross-functional collaboration will be
essential to ensure seamless integration between cloud and
edge services, maintaining reliability and customer
centricity.

LLM applications and Al-driven reliability: The rise of
LLM applications, powered by advanced Al and ML, will
revolutionize CRE. Al-driven reliability will become a game
changer, with predictive analytics and anomaly detection
enabling proactive incident management. CRE teams will
harness LLM applications to analyze vast amounts of data,

identify patterns, and optimize resource allocation for

improved performance and cost-effectiveness. Cultural and
organizational transformation will be essential to integrate
Al into CRE practices, empowering teams with data-driven
decision-making capabilities and Al-augmented problem-
solving.

Cultural and organizational transformation: The future of
CRE hinges on cultural and organizational transformation. To
fully embrace the emerging trends and reap the benefits they
offer, organizations must foster a culture of continuous
learning, experimentation, and collaboration. Cross-
functional teams will become the norm, promoting synergy
among development, operations, security, and customer
support. A customer-first mindset will drive product
development and incident response, ensuring that customer
satisfaction remains at the heart of CRE practices.
Furthermore, organizations must invest in upskilling their
workforce to navigate the complexities of new technologies
and Al-driven solutions. Agile and DevOps methodologies
will merge with CRE, accelerating development cycles and
promoting adaptability in the face of change. Building
psychological safety and encouraging innovation will
empower teams to take risks and continuously improve,
further solidifying the foundation of CRE within the

company.

In summary, the future of Lean CRE is undeniably bright,
shaped by serverless computing, edge computing, and LLM
applications. Al-driven reliability will redefine incident
management, while cultural and organizational
transformations will pave the way for resilience, adaptability,
and customer centricity. As businesses navigate the evolving
digital landscape, embracing these trends and aligning with
CRE principles will empower them to deliver exceptional
reliability and engineering excellence in the era of the cloud
and Al

Chapter 12

Conclusion

We started this book by sharing the value of cloud reliability
engineering (CRE). Throughout the book, we introduced
multiple CRE concepts and provided practical ways for you to
introduce CRE practices in your organizations. No matter what
your role is—CEO, CTO, software engineer, or technical program
manager—you have an important role to play in bringing CRE
practices into your organization. We hope our book provided a
foundation for your CRE strategy and gave you food for thought
in coming up with the next steps in implementing CRE practices

at your company.

We dove deep into how CRE streamlines processes, ensuring
that resources are used efficiently and downtime is minimized.
But it’s not just about the technical side of things—it’s also about
fostering a collaborative culture where teams can make
decisions quickly and feel empowered to innovate. Real-world
examples, such as Netflix embracing CRE to ensure
uninterrupted service and superior customer experience and
Moderna leveraging AWS services for vaccine development,
have shown us the tangible benefits of embracing CRE

techniques.

So, what’s next for engineers and leaders keen on implementing
CRE practices in their organizations? Here’s a road map to

consider.

1. Get everyone on board: Start by rallying application teams
and getting everyone on the same page about the importance
of CRE and how it benefits both internal teams and
customers.

2. Embrace innovation: Don’t shy away from exploring new
technologies such as artificial intelligence (AI) and machine
learning (ML). These tools can automate tasks, uncover
valuable insights, and enhance decision-making processes.

3. Monitor and adapt: Keep a close eye on system performance
and be ready to adapt as needed. Having robust monitoring
and alerting systems in place ensures that you can address
issues before they escalate.

4. Foster collaboration: Break down silos between teams and
encourage collaboration. When everyone is working toward
common goals, the results can be truly transformative.

5. Continuously improve: Embrace a culture of continuous
improvement. Gather feedback, analyze results, and adjust
your CRE practices accordingly.

6. Measure success: Set clear metrics to track the effectiveness

of your CRE efforts. Whether it’s uptime, customer

satisfaction, or another key indicator, having measurable

goals keeps everyone focused.

By following these steps, organizations can pave the way for a
more reliable, resilient, and customer-focused approach to
operations. It’s a journey that requires dedication and effort,
but the rewards—increased efficiency, happier customers, and

long-term success—are well worth it.

We would like to conclude this book by stating that CRE is not
just a new regular practice; it is a strategic imperative. By
prioritizing reliability and utilizing Al to do so, businesses
mitigate risks, drive innovation, optimize costs, and deliver
exceptional customer experiences with new engineering
strategies. Embracing CRE principles is a game changer for
companies of all sizes and industries, allowing them to thrive in

an increasingly competitive and digital-first world.

Appendix A

Incident Response Checklist Template

Description: This template is designed to assist technical teams
in efficiently managing and resolving incidents affecting IT
systems and services. It’s particularly useful in environments
where uptime, reliability, and rapid response to issues are critical,
such as cloud-based applications, software as a service (SaaS)
platforms, and enterprise-level IT operations. Use this template
whenever there is an unexpected disruption, a security breach, or
any incident that impacts service availability or user experience.
The template helps ensure a methodical approach to incident
management, from identifying the issue’s scope to executing a

recovery plan and conducting a postmortem analysis.
Identify the scope of the incident:
What happened?

e Describe the symptoms, indicators, and observations of the
incident.
e Identify any potential triggers, such as recent deployments or

configuration changes.

e Determine the scope of the incident, including affected
services, components, or geographies.
e Specify the nature of the incident (e.g., systems down,

security breach, partial or complete inability to access).
Identify the impact:
How critical is the incident?

» Assess the severity of the incident in terms of service loss,
impact on specific functions, and business criticality.

e Estimate the number of affected users, customers, or systems.

e Assign a severity level to the incident based on predefined

criteria.
Troubleshoot:

* Cloud provider status
e Check for any reported service disruptions or outages by
the cloud provider.
e Identify any dependencies on other services (cloud
provider or third party) and investigate reported issues.
* Monitoring and logs
* Review alerts triggered by monitoring tools (e.g., AWS

CloudWatch, Azure Monitor, Google Cloud Monitoring).

e Analyze key metrics and logs for error messages, patterns,
or abnormalities.

e Check for resource issues (CPU, storage, RAM) on cloud
instances.

e Investigate recent configuration changes and their
potential impact.

* Additional considerations
e Explore any other potential root causes that may have

been missed initially.
Focus on recovery to minimize customer impact:

* Recovery plan
e Determine the plan for restoring data or services using a
failover technique, a rollback for compute, or restoration
from backup if necessary or by enabling a feature flag.
e Incident resolution process
e Follow the documented process for resolving this type of
incident, as outlined in the playbook.
e If the recovery plan does not reflect a standard playbook,
go to the next step and ensure that a recovery playbook for

that type of incident is created.

Conduct a root cause analysis:

Conduct a postmortem.

e Invite the incident response team, including relevant
stakeholders and the site reliability engineering (SRE) team.

e Review the minute-by-minute plan to identify opportunities.

e Allow the app team that owns the compromised service to
dive deeper into logs, monitors, and so forth to determine the
actual root cause.

e Write an incident summary or incident plan, also known as
Correction of Error (COE), with tasks to ensure that this type
of incident will not happen again. See one example template

in Appendix C.
Notification and communication:

e Notify the incident response team, including relevant
stakeholders and leaders.

e Develop a communication plan to inform customers or
internal users about the incident.

e Share the next steps and assign responsibilities for their
execution, including roles, contact information, frequency of
updates, communication channels, and management/user

notifications.

Appendix B

Correction of Error (COE) Document
Structure

Description: This template provides a comprehensive
framework for documenting and analyzing incidents to drive
improvements in system reliability and resilience. It begins with
an incident summary tailored for stakeholders, detailing impact,
mitigation, and prevention strategies. The impact section
quantifies consequences across various dimensions such as
financial or reputational, while the timeline offers a chronological
account of events with clarity on any gaps. Metrics are used for
assessing and monitoring the incident, and critical questions help
explore detection, diagnosis, and prevention. The prevention
section focuses on root cause analysis using techniques such as
the “five whys” to propose effective countermeasures. Action
items specify follow-up tasks with responsible parties and
deadlines, ensuring accountability. Finally, related items connect
to other COEs or documentation, helping contextualize incidents

within broader improvement efforts.

e Incident summary

¢ Provide a concise overview of the incident.

Include details on impact, mitigation efforts, and
prevention plans.

Write as if communicating to main stakeholders (e.g.,
CEO).

Utilize tools such as AWS Systems Manager Incident

Manager.

e Impact

Quantify the impact on customers and the business.
Describe the customer/business impact, severity, and
consequences.

Consider financial, reputational, and operational impacts.
Analyze the second-order effects and nonfunctional

requirements impacted.

e Timeline

Document events chronologically from incident onset to
resolution.

Ensure consistency in time zone representation.
Include all relevant events and information.

Address any gaps in the timeline with clear explanations.

e Metrics

Define metrics for impact assessment and monitoring.
Ensure that the metrics are present to determine the

problem and monitor events.

e Incident questions

e Ask key questions to analyze the incident thoroughly.
e Focus on detection, diagnosis, mitigation, and prevention
aspects.
e Include questions related to customer impact, system
restoration, and problem identification.
e Prevention
e Utilize the “five whys” technique to identify root causes.
e Identify underlying causes and potential prevention
measures.
e Develop a plan to remediate each root cause.
e Ensure a blame-free approach focused on finding the
“why.”
e Action items
» Identify actionable activities to improve prevention,
diagnosis, or resolution.
e Specify the priority, responsible person, and due date for
each action item.
e Ensure that the action items are specific, achievable, and
time bound.
e Related items
e Reference other relevant COEs or documentation.
e Provide context for related incidents or events.
e Help establish connections between different incidents or

improvement efforts.

Appendix C

CRE Change Management Checklist

Description: This checklist provides a structured approach to
handling changes in cloud environments, ensuring minimal risk
and maximum reliability. It emphasizes the importance of having
well-defined policies, a documented approval workflow, and a
thorough risk assessment to prepare for potential issues. Proper
documentation is essential, detailing the reason for the change, a
plan, and contingencies such as rollback procedures. Automated
testing and validation are recommended to reduce human error,
and scheduling should occur during low-traffic periods to lessen
user impact. Once changes are implemented, continuous
monitoring assesses their effects on system performance, with
proactive communication and training keeping all stakeholders
informed. A post-implementation review helps gauge success,
while regular audits ensure compliance with regulatory
standards. This framework ensures that changes are well
planned, effectively executed, and aligned with broader

operational and regulatory requirements.

1. Change management policies: Deploying new applications,
updating software, or modifying configurations requires

different policies.

. Approval workflow: Follow all the steps, create records, and
provide change history for any change. Each change should
go through the CRE approval process.

. Risk assessment: There is risk associated with any change,
SO it is important to assess risks and set risk mitigation or
avoidance, as required.

. Change management documentation: The documentation
should include the reason, a plan, and a approval workflow.
It is critical that each change request includes a back-out
procedure in case of any issues. If required, rollback should
be fast and error free. Other contingency planning efforts
may be required.

. Testing and validation: While a deep dive into testing and
validation requires a separate book, it is important to have
tests automated to avoid human error. In addition, there are
multiple testing techniques that allow testing in a
production-like environment. If this is possible, the latter is
preferable.

. Scheduling: The change is scheduled at a specific time that is
announced in advance, and it is usually implemented during
quiet hours. For example, banking applications are updated
during outside-of-trading hours or during holiday closures.

. Monitoring and alerting: Once the change is completed,

monitoring and alerting are continuously assessing the

impact of the change on system reliability and performance.
This data informs the success or failure of the performed
change.

8. Communication and training: Communication and training
are extremely important. First, the change needs to be
communicated to all impacted stakeholders. Second, all
relevant groups need to be aware of the change and receive
corresponding training, if required, based on their function.
For example, service center representatives need
communication (and sometimes training) for new features
deployed to production that are available to the customer.

9. Post-implementation review: Once the change is
communicated, a post-implementation review is usually
scheduled after a specific time to collect sufficient metrics to
determine if the change was successful.

10. Audit and compliance: Once the change is approved, it
becomes part of the upcoming compliance and audit to
ensure that the system complies with all government and
industry regulations and standards for a specific geography

and business.

Glossary

Agile—An iterative approach to software development that
prioritizes customer collaboration, adaptability, and early

delivery.

Artificial intelligence (AI)—The simulation of human
intelligence in machines, which allows them to perform tasks

that typically require human intelligence.

Blameless culture—An organizational culture that focuses on
learning from failures and mistakes rather than blaming

individuals.

Chaos engineering—The practice of intentionally introducing
controlled and well-monitored chaos or failures into a system to

test its resilience and identify potential weaknesses.

CI/CD—Continuous integration and continuous delivery are
practices that automate the process of integrating code changes

and deploying software.

Cloud engineering—The practice of designing, developing, and
maintaining cloud-based systems and services to ensure

reliability and efficiency.

Cloud provider—An organization that offers cloud computing
services, providing infrastructure, platforms, and software over

the internet to users.

Cloud reliability engineering (CRE)—The practice of ensuring
the dependability and availability of cloud-based services and

systems to meet user expectations.

Continuous improvement—An ongoing effort to enhance
products, services, and processes by making incremental

changes based on feedback and data.

Correction of Error (COE)—Amazon’s standard mechanism
for post-incident analysis. This lets us analyze a system after an
incident to avoid recurrences in the future. These incidents also
help us learn more about how our systems and processes work.
That knowledge often leads to actions that help other incident

scenarios, not just the prevention of a specific recurrence.

DevOps—A collaborative approach that integrates development
and operations teams to improve software delivery and

reliability.

Domain name system (DNS)—A fundamental component of
the internet that serves as a distributed naming system used to

map human-friendly domain names to IP (Internet Protocol)

addresses. Domain names are the familiar web addresses (e.g.,
www.google.com) that people use to access websites and online
services. These names are easier for humans to remember than

numerical IP addresses.

Error budget—The acceptable level of system unreliability,
used in site reliability engineering (SRE) to balance new feature

development and system stability.

“Five whys” analysis—Lean problem-solving technique used to
identify the root cause of an issue by repeatedly asking “why” to

explore deeper causes.

Game days—Game days, from a cloud reliability engineering
(CRE) perspective, refer to structured and planned exercises
conducted by engineering teams to simulate and test how a
cloud-based system responds to various failure scenarios and

stress conditions.

Generative Al models—These models can generate new data
similar to the data they were trained on. In the context of CRE,
generative Al (GenAl) can be used to simulate potential failure
scenarios, creating synthetic data for testing and validation of

systems under various conditions.

http://www.google.com/

Kaizen—A Japanese term for “continuous improvement,”
involving small, frequent changes to improve efficiency and

quality.

Kanban—A visual management system used to control and
optimize work processes, promoting efficiency and reducing

waste.

Large language models (LLMs)—Deep learning models that
can understand and generate humanlike text based on the data
they were trained on. LLMs can be used in CRE for tasks such as
automated incident response, documentation generation, and

real-time troubleshooting guidance.

Lean—A methodology focused on minimizing waste and
maximizing value in processes, emphasizing continuous

improvement and flow.

Lean CRE—The application of Lean principles to the design,
development, and maintenance of cloud-based systems,

focusing on reliability.

Machine learning (ML)—A subset of Al, ML involves training
algorithms on large datasets to identify patterns and make
predictions. For CRE, ML can be invaluable in predictive

maintenance, anomaly detection, and capacity planning.

Mean time to detect (MTTD)—The average time it takes to
detect an incident or problem within a system, which is used to

improve incident response times.

Mean time to recover (MTTR)—The average time it takes to
restore a system or service to normal operation after an

incident or failure.

Metrics—Quantifiable measurements used to assess and track
the performance, quality, and efficiency of cloud systems and

engineering processes.

Minimum lovable product (MLP)—A minimal version of a
product, with just enough features to gather feedback and
validate assumptions before full development while ensuring

that it provides customer value and delights its customers.

Objectives and key results (OKRs)—A goal-setting framework
that defines objectives and the measurable outcomes that

indicate progress and achievement of those objectives.

Operational excellence—The practice of efficiently and
effectively managing cloud resources and services to ensure the
reliability, availability, and performance of applications and

systems hosted in the cloud.

Reliability—The ability of a system to perform its intended
function consistently and predictably, meeting user needs

without failure or downtime.

Resilience—The ability of a system to withstand and recover
from failures, ensuring continuous operation and minimal

impact on users.

Scalability—The capability of a system to handle increased
workload and growth, adapting to changing demands without

sacrificing performance.

Scrum—An Agile framework for managing and organizing

work, involving short, fixed-length iterations called sprints.

Serverless engineering—A cloud computing model in which
cloud providers manage the infrastructure, allowing developers

to focus on building application logic.

Service level agreement (SLA)—A formal agreement that
outlines the expected level of service reliability and
consequences for not meeting the service level objectives
(SLOs).

Service level objective (SLO)—A target for the reliability of a

service, used to measure its performance and ensure that it

meets user expectations.

Site reliability engineering (SRE)—A discipline that combines
software engineering and operations to build and maintain

reliable, scalable cloud systems.

Time to detect (TTD)—A critical metric in the field of incident
management and cloud reliability engineering. It represents the
amount of time it takes to identify and become aware of an
incident or issue within a system or application from the
moment it first occurs. TTD measures the speed and efficiency
with which an organization can detect anomalies, deviations, or
problems that might impact the performance, availability, or

security of its digital services.

Time to recover (TTR)—A crucial metric in the context of
incident management and cloud reliability engineering. It
represents the amount of time required to fully restore a
system, service, or application to its normal operational state
after an incident or disruption has occurred. TTR measures the
speed and efficiency with which an organization can recover
from an incident, minimizing downtime and the associated

impact on users and business operations.

User story—A concise description of a feature from an end
user’s perspective, used in Agile to communicate requirements

and value.

Value stream mapping—A Lean technique used to analyze and
optimize the steps and flow of processes, identifying areas for

improvement.

Virtual private cloud (VPS)—A fundamental building block in
cloud computing, allowing organizations to create and manage
their network infrastructure in the cloud. VPC provides the
flexibility to design complex network topologies while
maintaining security and isolation between different

environments and workloads.

References
Chapter 1

Page 5: Dr. Werner Vogels, quoted in “Forming a Chaos

Engineering Team.” AWS.

https://maturitymodel.security.aws.dev/en/4.-optimized/chaos-
engineering/

Page 5: Mark Russinovich. “With Performance Testing in
Azure.” Microsoft Azure Blog. https://azure.microsoft.com/en-

testing-in-azure/

Page 18: Liam Tung. “Google details ‘catastrophic’ cloud outage

events: Promises to do better next time.” 1Password. June 7,

2019. https://www.zdnet.com/article/google-details-catastrophic-
cloud-outage-events-promises-to-do-better-next-time/

Page 18: Richard Speed. “Microsoft Azure: It’s getting hot in
here, so shut down all your cores.” The Register. September 4,
2018.

https://www.theregister.com/2018/09/04/azure its getting hot in
_here/

https://maturitymodel.security.aws.dev/en/4.-optimized/chaos-engineering/
https://maturitymodel.security.aws.dev/en/4.-optimized/chaos-engineering/
https://azure.microsoft.com/en-us/blog/advancing-application-reliability-with-performance-testing-in-azure/
https://azure.microsoft.com/en-us/blog/advancing-application-reliability-with-performance-testing-in-azure/
https://azure.microsoft.com/en-us/blog/advancing-application-reliability-with-performance-testing-in-azure/
https://www.zdnet.com/article/google-details-catastrophic-cloud-outage-events-promises-to-do-better-next-time/
https://www.zdnet.com/article/google-details-catastrophic-cloud-outage-events-promises-to-do-better-next-time/
https://www.theregister.com/2018/09/04/azure_its_getting_hot_in_here/
https://www.theregister.com/2018/09/04/azure_its_getting_hot_in_here/

Page 19: Darrell Etherington. “Amazon AWS S3 outage is

breaking things for a lot of websites and apps.” TechCrunch.

February 28, 2017. https://techcrunch.com/2017/02/28/amazon-

aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/

Page 19: Russell, Jon. The world’s largest DDoS attack took
GitHub offline for fewer than 10 minutes, on March 2, 2018.
https://techcrunch.com/2018/03/02/the-worlds-largest-ddos-
attack-took-github-offline-for-less-than-tens-minutes/

Page 19: Cloudinary. “Chaos Engineering: Finding Failures
Before They Become Outages.” January 14, 2020.

https://res.cloudinary.com/gremlin/image/upload/v1579028841/2
0200114 Chaos Engineering White Paper.pdf

Page 20: Laura DiDio. “The Cost of Enterprise Downtime.”
TechChannel. September 30, 2021. https://techchannel.com/IT-
Strategy/09/2021/cost-enterprise-downtime

Page 20: Laura DiDio. “Hourly Cost of Downtime.” Laura’s
Insights ITIC Blog, Information Technology Intelligence
Consulting. https://itic-corp.com/tag/hourly-cost-of-
downtime/#:~:text=ITIC's%202021%20Hourly%20Cost%200f,

https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/
https://techcrunch.com/2017/02/28/amazon-aws-s3-outage-is-breaking-things-for-a-lot-of-websites-and-apps/
https://techcrunch.com/2018/03/02/the-worlds-largest-ddos-attack-took-github-offline-for-less-than-tens-minutes/
https://techcrunch.com/2018/03/02/the-worlds-largest-ddos-attack-took-github-offline-for-less-than-tens-minutes/
https://res.cloudinary.com/gremlin/image/upload/v1579028841/20200114_Chaos_Engineering_White_Paper.pdf
https://res.cloudinary.com/gremlin/image/upload/v1579028841/20200114_Chaos_Engineering_White_Paper.pdf
https://techchannel.com/IT-Strategy/09/2021/cost-enterprise-downtime
https://techchannel.com/IT-Strategy/09/2021/cost-enterprise-downtime
https://itic-corp.com/tag/hourly-cost-of-downtime/#:~:text=ITIC's%202021%20Hourly%20Cost%20of,(SMEs)%20and%20large%20enterprises
https://itic-corp.com/tag/hourly-cost-of-downtime/#:~:text=ITIC's%202021%20Hourly%20Cost%20of,(SMEs)%20and%20large%20enterprises
https://itic-corp.com/tag/hourly-cost-of-downtime/#:~:text=ITIC's%202021%20Hourly%20Cost%20of,(SMEs)%20and%20large%20enterprises

Chapter 2

Page 36: “Resiliency Checklist for Specific Azure Services.”

Microsoft Azure Architecture Center, July 26, 2023.

https://learn.microsoft.com/en-
us/azure/architecture/checklist/resiliency-per-service

Page 36: “Patterns for Scalable and Resilient Apps.” Google
Cloud Architecture Center. Last reviewed March 19, 2024.

https://cloud.google.com/architecture/scalable-and-resilient-
apps

Page 43: “AZ Avalilability: Power Interruption.” Amazon Web
Services. https://docs.aws.amazon.com/fis/latest/userguide/az-

availability-scenario.html

Chapter 3

Page 56: “Replicate Data Within and Between AWS Regions

Using Amazon S3 Replication.” Amazon Web Services.

https://aws.amazon.com/getting-started/hands-on/replicate-
data-using-amazon-s3-replication/

A

age 56: “Amazon RDS Multi-AZ.” Amazon Web Services.

https://aws.amazon.com/rds/features/multi-az/

https://learn.microsoft.com/en-us/azure/architecture/checklist/resiliency-per-service
https://learn.microsoft.com/en-us/azure/architecture/checklist/resiliency-per-service
https://cloud.google.com/architecture/scalable-and-resilient-apps
https://cloud.google.com/architecture/scalable-and-resilient-apps
https://docs.aws.amazon.com/fis/latest/userguide/az-availability-scenario.html
https://docs.aws.amazon.com/fis/latest/userguide/az-availability-scenario.html
https://aws.amazon.com/getting-started/hands-on/replicate-data-using-amazon-s3-replication/
https://aws.amazon.com/getting-started/hands-on/replicate-data-using-amazon-s3-replication/
https://aws.amazon.com/rds/features/multi-az/

Page 57: “Object Storage for Companies of All Sizes.” Google
Cloud Storage. https://cloud.google.com/storage

Page 57: “Always On Database with Virtually Unlimited Scale.”
Google Cloud Spanner. https://cloud.google.com/spanner

Page 57: “Azure Backup.” Microsoft Azure Cloud Backup.
https://azure.microsoft.com/en-us/products/backup

Page 57: “Active Geo-Replication.” Microsoft Learn Challenge.

September 27, 2024. https://learn.microsoft.com/en-
us/azure/azure-sql/database/active-geo-replication-overview?

view=azuresql

Chapter 4

Page 79: Atlassian. Incident Management Handbook for Jira

Service Management. hitps://www.atlassian.com/incident-
management/handbook/postmortems

Page 80: Luis Caro, Jose Luis Caro, Juan Ossa, and Johnny
Hanley. “Why Should You Develop a Correction of Error (COE).”
Amazon Web Services. February 18, 2022.

https://aws.amazon.com/blogs/mt/why-you-should-develop-a-
correction-of-error-coe/

https://cloud.google.com/storage
https://cloud.google.com/spanner
https://azure.microsoft.com/en-us/products/backup
https://learn.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview?view=azuresql
https://learn.microsoft.com/en-us/azure/azure-sql/database/active-geo-replication-overview?view=azuresql
https://www.atlassian.com/incident-management/handbook/postmortems
https://www.atlassian.com/incident-management/handbook/postmortems
https://aws.amazon.com/blogs/mt/why-you-should-develop-a-correction-of-error-coe/
https://aws.amazon.com/blogs/mt/why-you-should-develop-a-correction-of-error-coe/

Page 82: Juan Ossa and Johnny Hanley. “Creating a Correction of

Errors Document.” AWS Cloud Operations Blog, November 6,

2023. https://aws.amazon.com/blogs/mt/creating-a-correction-of-

errors-document

Page 89: AWS Well-Architected Framework, Correction of Error.

Amazon Web Services.

https://wa.aws.amazon.com/wat.concept.coe.en.html

Page 82: John Lunney and Sue Lueder. Postmortem culture:
Learning from failure. In: Niall Richard Murphy, Betsy Beyer,
Chris Jones, Jennifer Petoff (Eds.), Site Reliability Engineering
(O’Reilly Media, 2016).

Chapter 5

Page 106: “AT&T Improves Operations and Employee
Experiences with Azure and Al Technologies.” Microsoft
Customer Stories. May 18, 2023.
https://www.microsoft.com/en/customers/story/16375113091362

44127-att-telecommunications-azure-openai-service

A

age 106: Wikipedia definition of generative Al

https://en.wikipedia.org/wiki/Generative artificial intelligence

https://aws.amazon.com/blogs/mt/creating-a-correction-of-errors-document/
https://aws.amazon.com/blogs/mt/creating-a-correction-of-errors-document/
https://wa.aws.amazon.com/wat.concept.coe.en.html
https://www.microsoft.com/en/customers/story/1637511309136244127-att-telecommunications-azure-openai-service
https://www.microsoft.com/en/customers/story/1637511309136244127-att-telecommunications-azure-openai-service
https://en.wikipedia.org/wiki/Generative_artificial_intelligence

Chapter 6

Page 112: Taiichi Ohno. Toyota Production System: Beyond
Large-Scale Production (Productivity Press, 1988).

Page 114: Mary Poppendieck and Tom Poppendieck. Lean
Software Development: An Agile Toolkit (Addison-Wesley, 2003).

Chapter 10

A"

age 191: Google’s definition of “psychological safety.”

https://www.thinkwithgoogle.com/intl/en-emea/consumer-
insights/consumer-trends/five-dynamics-effective-team

Chapter 11

Page 206: Forbes: Rafael Umann. “To Take Software
Development to the Next Level, Consider the Benefits of
Serverless Computing.” Forbes, May 2023.
https://www.forbes.com/sites/forbestechcouncil/2023/05/17/to-
take-software-development-to-the-next-level-consider-the-
benefits-of-serverless-computing/?sh=2{5741541b9c

Page 206: Deloitte. “Understand the Market: The 5G and Edge
Computing Revolution. Tapping into the Power of 5G and Edge
Computing Opportunities.” July 2023.

https://www.thinkwithgoogle.com/intl/en-emea/consumer-insights/consumer-trends/five-dynamics-effective-team
https://www.thinkwithgoogle.com/intl/en-emea/consumer-insights/consumer-trends/five-dynamics-effective-team
https://www.forbes.com/sites/forbestechcouncil/2023/05/17/to-take-software-development-to-the-next-level-consider-the-benefits-of-serverless-computing/?sh=2f5741541b9c
https://www.forbes.com/sites/forbestechcouncil/2023/05/17/to-take-software-development-to-the-next-level-consider-the-benefits-of-serverless-computing/?sh=2f5741541b9c
https://www.forbes.com/sites/forbestechcouncil/2023/05/17/to-take-software-development-to-the-next-level-consider-the-benefits-of-serverless-computing/?sh=2f5741541b9c

https://www?2.deloitte.com/us/en/pages/consulting/solutions/tap
ping-into-the-power-of-5g-and-edge-computing-

opportunities.html

Page 207: McKinsey Digital. “Driving Impact at Scale from
Automation and Al.” February 2019.

https://www.mckinsey.com/capabilities/mckinsey-digital/our-
insights/driving-impact-at-scale-from-automation-and-ai

Page 209: Nordstrom case study, “How Nordstrom Transformed

Its Infrastructure Using a Serverless Architecture.” 2021.

https://aws.amazon.com/solutions/case-studies/nordstrom/

Page 209: Moderna case study. “Moderna on AWS.” 2022.
tt

https://aws.amazon.com/solutions/case-
studies/innovators/moderna/

https://www2.deloitte.com/us/en/pages/consulting/solutions/tapping-into-the-power-of-5g-and-edge-computing-opportunities.html
https://www2.deloitte.com/us/en/pages/consulting/solutions/tapping-into-the-power-of-5g-and-edge-computing-opportunities.html
https://www2.deloitte.com/us/en/pages/consulting/solutions/tapping-into-the-power-of-5g-and-edge-computing-opportunities.html
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/driving-impact-at-scale-from-automation-and-ai
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/driving-impact-at-scale-from-automation-and-ai
https://aws.amazon.com/solutions/case-studies/nordstrom/
https://aws.amazon.com/solutions/case-studies/innovators/moderna/
https://aws.amazon.com/solutions/case-studies/innovators/moderna/

Index
Numbers

10-step process for effective monitoring, 99-101
2017 Cost of Downtime survey, ITIC, 19

A

abstraction layers, reliability, 187

AI (Artificial Intelligence)
application performance, 157-158
automating alerts, 158
automating escalation, 158
benefits of, 156-157, 164-165

change management with existing systems, 167-16

compatibility with existing systems, 167
continuous learning and adaptation, 168-169
customer service and support, 163-164

data collection, 165-166

decision-making, 161-162

defined, 155-156

ethical concerns, 166-167

feedback, 168

GenAl. See individual entry

historical data, 166
human oversight, 168
impact on CRE, 106-108
implementing, 165
improved monitoring, 1

integrating with existing systems, 167-168
interoperability with existing systems, 167
issue detection and resolution, 157
leveraging, 14

model drift, 168

monitoring, 168

operationalizing with CRE mindset, 170-172
predictive analytics, 159-161
preprocessing data, 166

quality and quantity of data, 165-166
real-time data, 166

reliability, 207, 215

SaasS support, 163-164

scalability with existing systems, 167
security concerns, 166-167

self-healing capabilities, 108, 110

threat detection, 158

user experience, 163

workload adaptation, 168

alarms, Amazon CloudWatch, 140
ALB (Application Load Balancers), 26-27, 31-32
alerts
Amazon CloudWatch, 102-103
automating, 158
AWS CloudTrail, 103
AWS Config, 103
AWS Service Health Dashboard, 103
AWS X-Ray, 103
Azure Monitor, 104
change management, 85
cloud monitoring, 103
Downdetector, 104
Dynatrace, 104-105
GenAl, 109-110
Google Cloud Operations Suite, 103
Google Cloud Trace, 103-104
incident handling, 64-65, 70
incident response, 105
Jaeger, 105
known failures, key takeaways from, 105
New Relic, 104
Observe, 104

proactive monitoring and alerting, 105

Splunk, 104
AMI (Amazon Machine Images), 29-30
analysis
customer personas, 187
incident analysis, 188
predictive analytlcs, 1_59—@
value streams, 182-185
Andon cord, 192-193
anomaly detection, 107, 109
Ansible, IBM, 146
antipatterns, chaos engineering, 44-45
applications
AWS AppConfig, 143-144
Azure App Service, 136
Azure App Service Autoscale, 130

Azure Application Gateway, 131-132
compute, 28-29

health, 38

mobile application stability and SLI, 98
monitoring, 38

performance with AI and ML, 157-158
reliability, 7-8

resilience, 7-8, 9

scalability, 5

stress-testing, 10-11, 40-41
approval workflows, 84
architectures

assessments, 89-90

event-driven architectures, 31

serverless microservices architectures, 29
Aristotle, psychological safety, 197
ARM (Azure Resource Manager), 138, 146
ASG (Auto Scaling Groups), 28-29
assessments

architecture assessments, 89-90

risk assessments, 84
auditing change management, 85
Aurora, Amazon RDS, 134
automatic failovers

AWS, 134-135

GCP, 135

Google Cloud, 135

HA, 133-136

Microsoft Azure, 136
automation

alerts, 158

automatic failovers, 133-13

Azure Automation, 58
escalation, 158
Google Cloud, 37
incident management tools, 69
incident response, 140-142
incident triage, 65-66
Jidoka (automation with human intelligence), 192-193
recovery, 58—61
remediation, 66

Autoscaler, GKE, 129

auto-scaling, 128-130

availability, AZ, 23-24, 27, 31-32, 33-34
cloud design principles, 33-34

horizontal scaling, 27
load balancing, 31-32
standard downtime goals, 23-24
availability, customer, 188
AWS (Amazon Web Services)
Amazon CloudWatch, 58, 85, 102-103, 140-141, 189
AppConfig, 143-144
automatic failovers, 134-135
auto-scaling, 61, 128
AZ, 33-34
Backup, 147

change management, 84
Change Manager, 84
CloudFormation, 144-145
CloudTrail, 103
CodeDeploy, 137
CodePipeline, 137

COE process, 80-82

CRE tools, 153

DataSync, 147-148
disaster recovery, 147-148
DynamoDB, 134

EC2, 28-29

EC2 Auto Recovery, 60
Elastic Beanstalk, 137
FIS, 47,139

geolocation-based routing with ALB, 26-2

Global Accelerator, 134-135
GuardDuty, 189
Health Dashboard, 103, 189

Import/Export, 147
Lambda, 30-31, 58

latency-based routing with Route 53, 25-2

RDS, 134

RDS Aurora, 134
RDS Multi-AZ, 56-57
Route 53 DNS Failover, 134
S3, 135
S3 Data Replication, 56
S3 Service Disruption example (February 28, 2017), 19
scalability, 27-29
serverless microservices architectures, 29
services, evolution of, 173
SLI, 27
Snowball, 148
SNS, 30, 141
SQS, 30
Step Functions, 30-31, 139
Systems Manager, 139, 141
Well-Architected Tool, 89-90
X-Ray, 103

AZ (Availability Zones), 61
cloud design principles, 33-34
horizontal scaling, 27
load balancing, 31-32
multi-AZ deployment patterns, 7
standard downtime goals, 23-24

Azure, Microsoft

App Service, 130, 136
Application Gateway, 131-132
architecture assessments, 90
ARM, 138, 146

automatic failovers, 136
Automation, 58

Autoscale, 59-60, 130
auto-scaling tools, 130

AZ, 61

Azure Monitor, 104

Backup, 57, 148

Blob Storage, geo-redundancy, 62
Chaos Studio, 140

cloud reliability, 189-190

CRE tools, 153

DevOps, 84, 85,138-139

disaster recovery, 148

incident reviews, 82

Load Balancer, 131

load balancing tools, 131-133
Logic Apps, automating recovery, 58-59
Machine Scale Sets, 60, 130
Microsoft Azure Service Disruption example (September

4,2018):18

Monitor, 104, 141-142

resilience, 5, 36
Site Recovery, 148
SQL Database, 57, 62

Test Plans, 85

Well-Architected Framework, %

Backup
AWS, 147
Azure, 148

batch deliveries, Lean and CRE application, 115-116
Bedrock, evolution of AWS services, 173

blameless incident reviews, 79-80

blameless postmortems, 79-80

Blob Storage (Azure), geo-redundancy, 62
blue-green deployments, 151-152

British Airways (BA) system failure (2017), 19

canary deployments, 152

case management systems, 69

case studies
change management, 85
optimization, 149-150
resilience, 149-150

change management, 9-10, 83-8

—_—) e

Al and existing systems, 167-168
alerts, 85

Amazon CloudWatch, 85
approval workflows, 84

auditing, 85

AWS, 84

AWS Change Manager, 84

AWS Config, 85

Azure DevOps, 84

Azure DevOps pipelines, 85
Azure Test Plans, 85

case studies, 85

Change Management Checklists, 85, 225-226
communication, 85

compliance, 85

components of, 84-86
documentation, 84

effectiveness of, measuring, 91-92

Google Cloud incident response process, 85

Google Cloud Risk Management Framework, 84
Google Cloud Scheduler, 85
Heraclitus, 89
Microsoft Learn, 85
monitoring, 85
policies, 84
post-implementation reviews, 85
risk assessments, 84
scheduling, 85
testing, 85
training, 85
validating, 85
Change Manager, AWS, 84
chaos engineering, 9-10, 34-35
antipatterns, 44-45
defined, 40-41
dependencies in experiments, 45
phases of, 40
resilience testing, 139-140
RTO validation, 45
safety nets, 44
scoping experiments, 44
static chaos planning, 44
testing, 186-187

Chaos Mesh, 139-140

Chaos Service Catalogs, 42

Chaos Studio, Azure, 140

chaos testing, 186-187

Checklists, Change Management, 85, 225-226

cloud
defined, 1

observability, 172

reliability engineering, 96-97
cloud design principles

antipatterns, 44-45

AZ, 33-34
CloudFormation, AWS, 144-145
CloudTrail, AWS, 103
CloudWatch, Amazon, 85, 102-103, 189

alarms, 140

events, 140-141
CNCF (Cloud Native Computing Foundation), Change
Management Checklists, 85
CodeDeploy, AWS, 137

CodePipeline, AWS, 137

Coldline storage, 56-57
collaboration

incident management, 69-70

Lean and CRE application, 116-117

psychological safety, 194
collecting data, AI and ML, 165-166
communication

change management, 85
compatibility, Al and existing systems, 167
compliance

AWS Config, 85

change management, 85

Compute Engine Autoscaler, Google Cloud, 129
configuration management, 142-144
constraints, Google Cloud, 37
containerization, scalability, 207-208
containment, incident response, 51-5
content summarization, LLM, 172-173
continuous customer support, 188

188

fast recovery, 64-65

incident management, 70
value streams, 179-180
continuous learning, Al and ML, 168-169
contracts, reliability of third-party provided apps, 186
controlled deployments, facilitating with rollback strategies,
136-139
cost efficiency, ML, 163
cost of neglecting CRE practices, 203-204
coupling (Google Cloud), loose, 37
CRE (Cloud Reliability Engineering)
aligning with strategic objectives, 204-205
benefits of, 201
Change Management Checklists, 85, 225-226
comparing against industry benchmarks, 189-190
cost of neglecting CRE practices, 203-204
cultural development, 191-195
evolving practices, 206
future of, 214-216
implementing practices, 217-21

21

maturity, increasing, 212—
psychological safety, 191-195
value of, 202-203

value streams, 175-185

YBYO (“You Build It, You Own It”), 210-211

critical customer experiences, defining, 187-188
cross-functional teams, 194
cultural development, CRE, 195-196
Andon cord, 192-193
cross-functional teams, 194
customer obsession, 194-195
determining company acceptance, 197-198
employee empowerment, 192
Jidoka (automation with human intelligence), 192-193
leadership, 192-193
ownership, 192-193
spreading across an organization, 199
culture-related OKR, 123-124
cultures and values, 15
customers
availability, 188
experience, defining, 187-188
experience, prioritizing, 64
impact, incident recovery, 220-221
journey mapping, 187
obsession, 194-195
OKR, 123-124
personas, 179, 187

service and Al, 163-164

support, continuous, 188

cycle times, 179

D

dashboards
AWS Health Dashboard, 103, 189
system health, 12
data
collection, AI and ML, 165-166
generation, GenAl, 109
historical data, AI and ML, 166
real-time data, AI and ML, 166
preprocessing, Al and ML, 166
restoring, 56-58
quality and quantity, Al, 165-166
databases
AWS DynamoDB, 134
Google Cloud, 39
NoSQL databases, 39
RDS, 134
data-driven design, Google Cloud, 37
DataSync, AWS, 147-148
decision-making, Al, 161-162

defects as waste (Muda), 113-114

delivering in small batches, Lean and CRE application, 115-
116
dependencies in chaos experiments, 45
deploying
AZ, multi-AZ deployment patterns, 7
blue-green deployments, 151-152
canary deployments, 152
controlled deployments, facilitating with rollback
strategies, 136-139
Google Cloud Deployment Manager, 138
n-1 deployments, 151-152
rollback deployments, 151-152
Deployment Manager, Google Cloud, 138, 145-146
design principles, cloud
antipatterns, 44-45
AZ, 33-34
phases of, 40
RTO validation, 45
safety nets, 44
scoping experiments, 44
static chaos planning, 44
detection

anomaly detection, 107, 109

incident response, 50
development processes (Google Cloud), modernizing, Google
Cloud, 39
DevOps, Azure, 138-139
change management, 84
Microsoft Learn, 85
pipelines, 85
disaster recovery, 147-149
AWS, 147-148
GCP, 148
Microsoft Azure, 148
distributing
loads/volume, 127-128
reliability, 206-207
DNS (Domain Name System), Google Cloud, 135
documentation
change management, 84
incident response, 54, 70
LLM, 162
value streams, 179-180
Downdetector, 104
downtime
2017 Cost of Downtime survey, ITIC, 19

hourly downtime costs, TechChannel report, 19-2

downtime
goals, standard, 23-25
minimizing, 54
drift, model, 168
drivers, Google Cloud, 37
dynamic resource scaling, 107-108
DynamoDB, AWS, 134

Dynatrace, 104-105

EC2 Auto Recovery, AWS, 60

Edge computing, 206-207, 214-215
Elastic Beanstalk, AWS, 137
elasticity
AWS EC2, 28-29
application compute, 28-29
ASG, 28-29
empowering
employee empowerment, CRE cultural development, 192
teams, Lean and CRE application, 115
engagement approaches, reliability of third-party provided
apps, 186
engineering
defined, 3-4

excellence, 4-6
enhanced decision-making, Al, 161-162
error budgets, 47, 97, 101
errors

COE documents, 221, 223-22

COE process, 80-82
escalation, automating, 158
ethical concerns, AI and ML, 166-167
events
Amazon CloudWatch, 140-141
event-driven architectures, example of, 31
evolution of services, AWS, 173
existing systems, Al integration with, 167-16

experiments, stages of management, 35-36

Facebook, service disruptions, 19
failovers, automatic, 133-136
failures
Chaos Service Catalogs, 42
key takeaways from known failures, 105
MTBE, 47
scenarios, 42-44

fast recovery, 55

automating recovery, 58-61
minimizing downtime, 55-56
prioritizing customer experience, 64
redundancy, 61-63
restoring data, 56-58
testing, 63
validating, 63
fault tolerance, 22
feedback
Al and ML, 168
Lean and CRE application, 115-116
loops, 46, 187-188
FinTechBank case study, value streams, 180-181
FIS (Fault Injection Simulator), 47, 139
“five whys” technique, RCA, 77-78

flow of Lean and CRE application, optimizing, 115

game days, defined, 41-42
GameX Entertainment case study, value streams, 181
GCP (Google Cloud Platform)

application scalability, 5

automatic failovers, 135

auto-scaling tools, 129

CRE tools, 153
disaster recovery, 148
resilient applications, 7-8
zones, 20

GenAl (Generative Al). See also Al
anomaly detection, 109
benefits of, 156-157, 164-165

content summarization, 172-173

data generation, 109

defined, 156, 169-170
evolution of AWS services, 173
impact on CRE, 106-108
implementing, 165

incident response, 172-173
issue prediction, 109

LLM comparisons, 169-17

quality and quantity of data, 165-166
self-healing capabilities, 110
simulations, 162
testing, 162
using, 109-110
generating data, GenAl, 109
geolocation-based routing with ALB, 26-2

geo-redundancy, Azure Blob Storage, 62

geo-replication, Azure SQL Database, 62
GKE (Google Kubernetes Engine), 138
automating recovery, 60
Autoscaler, 129
Global Accelerator, AWS, 134-135
Google App Engine Autoscaling, 129
Google Cloud
applications, 38
apps, 38
Architecture Framework, 89-90
automatic failovers, 135
automation, 37
change management case study, 86-89
Cloud Monitoring, 38
Compute Engine Autoscaler, 129
constraints, 37
data-driven design, 37
Deployment Manager, 138, 145-146
development processes, modernizing, 39
DNS, 135
drivers, 37
functions, automating recovery, 58
GKE, 138

Google Cloud Service Disruption example (June 2, 2019),
18

health of applications, 38

high availability, 38

IaC, 37

immutable infrastructures, 37-38
incident response, 85

key metrics, defining, 38

load balancing, 62, 131

loose coupling, 37

monitoring, 38, 89-90, 103

NoSQL databases, 39

Operations Suite, 59, 103, 141-142
postmortems, 80—82

regions, 61

reliability, 189-190

resilience, 36-39

Risk Management Framework, 84
scalability, 36, 39

Scheduler, 85

SLO, 38

Spanner, 57, 62

testing, 39

Trace, 103-104
validating processes, 39
zones, 61

GuardDuty, AWS, 189

H

HA (High Availability), automatic failovers, 133-136
HashiCorp, Terraform, 146
health
Al self-healing capabilities, 108
AWS Health Dashboard, 103, 189
applications, 38
GenAl, self-healing capabilities, 110
Heraclitus, change management, 89
high availability, 22-23
Google Cloud, 38
standard downtime goals, 23-25
historical data, Al and ML, 166
horizontal scaling, 27-28
hourly downtime costs, TechChannel report, 19-20
HTTP(S) load balancing, 131

human oversight, Al and ML, 168

IaaS (Infrastructure-as-a-Service), leveraging, 144-147
IaC (Infrastructure as Code), 208
Google Cloud, 37
template changes, 84
IBM, Ansible, 146
immutable infrastructures, 29-31, 37-38
impact of incidents, identifying, 220
implementing CRE practices, 217-218
Import/Export, AWS, 147
incident management, 49-50, 105
alerts, 70
analysis, 50-51, 188
automated incident triage, 65-66
automated remediation, 66
automation, 69, 140-142
case management systems, 69
Checklist Template, 219-221
collaboration, 69-70
communication, 53-54, 69-70
containment, 51-52
continuous improvement (Kaizen), 70
detection, 50
documentation, 54, 70

examples of incidents, 32-33

Google Cloud, 85

knowledge bases, 70

LLM, 172-173

mitigation, 52

monitoring, 70

orchestration tools, 69

post-incident reviews, 54, 105, 70
proactive monitoring and alerting, 64-65
processes, 68-70

resolution, 52-53, 220-221

retrospective meetings, 54
reviews, 78-83
runbooks, 66, 69
ticketing systems, 69
tools, 68-70
tracking incidents, 69
TTD, 67-68
TTR, 68
integrating AI with existing systems, 167-16

internal TCP/UDP load balancing, 131

interoperability, Al and existing systems, 167

o)

inventory as waste (Muda), 112-113

issue detection and resolution, 157

issue prediction, GenAl, 109
ITIC (Information Technology Intelligence Consulting) 2017

Cost of Downtime survey, 19

Jaeger, 105
Jeli, incident response and content summarization, 172-173

Jidoka (automation with human intelligence), 192-193

journey mapping, customer, 187

188

fast recovery, 64-65

incident management, 70

value streams, 179-180
key metrics, defining, Google Cloud, 38
knowledge bases, incident response, 70
known failures, key takeaways from, 105
KPI (Key Performance Indicators), 76
KR (Key Results), OKR, 118
Kubernetes

Chaos Mesh, 139

GKE, 13

0

Lambda, AWS, 30-31
latency-based routing with Route 53, 25-26
192-193

leadership, CRE cultural development
Lean
continuous improvement (Kaizen), 46, 111-112
CRE application, 115-117
feedback loops, 46
Jidoka (automation with human intelligence), 192-193
Kaizen, continuous improvement, 12-13
leveraging principles, 12-13
Muda, waste elimination, 12-13
recovery procedures and playbooks, 45-46
reliability, 190
value streams, 14, 175-176
Lean Software Development: An Agile Toolkit, 114
Learn, MS, 85
learning, AI and ML (continuous), 168-169
leveraging
Al 14
laa$, 144-147

Lean principles, 12-1

SLO, 98
VSM, 14
LLM (Large Language Models), 14, 215
automating alerts, 158
automating escalation, 15

benefits of, 156-157, 164-165

cloud observability, 172-173
content summarization, 172-173
CRE value, 202-203

defined, 156

documentation, 162

GenAlI comparisons, 169-170
implementing, 165

incident response, 172-17

03
U‘J

quality and quantity of dat

load balancing, 131-133
ALB, 26-27, 31-32
geolocation-based routing, 26-27
Google Cloud, 62

NLB, 31-32
load distribution & 128
auto-scaling, 128-130

load balancmg -133
loops, feedback, 46

(@p}

loose coupling, Google Cloud, 37
LRR (Launch Readiness Reviews), 89-90

M

maintenance, predictive, 107, 161

mapping, VSM, 14
maturity levels, 101-102

maturity of CRE, increasing, 212-214
measuring reliability, 46-47
microservices

scalability, 207-208

serverless architectures, 29
Microsoft Azure

App Service, 130, 136

Application Gateway, 131-132

architecture assessments, 90

ARM, 138, 146

automatic failovers, 136

Automation, 58

Autoscale, 59-60, 130

auto-scaling tools, 130

AZ, 61

Azure Monitor, 104

Backup, 57, 148

Blob Storage, geo-redundancy, 62
Chaos Studio, 140

cloud reliability, 189-190

CRE tools, 153

DevOps, 84, 85,138-139

disaster recovery, 148

incident reviews, 82

Load Balancer, 131

load balancing tools, 131-133

Logic Apps, automating recovery, 58-59
Machine Scale Sets, 60, 130

Microsoft Azure Service Disruption example (September
4,2018):18

Monitor, 104, 141-142

resilience, 5, 36

Site Recovery, 148

SQL Database, 57, 62

Test Plans, 85

Well-Architected Framework, 90
Microsoft Learn, 85
minimizing downtime, 55-56
mitigation, incident response, 52

ML (Machine Learning)

application performance, 157-158
benefits of, 156-157, 164-165
compatibility with existing systems, 167
continuous learning, 168-169

cost efficiency, 163

data collection, 165-166

defined, 155-156

ethical concerns, 166-167

feedback, 168

historical data, 166

human oversight, 168

implementing, 165

improved monitoring, 159

integrating with existing systems, 167-168
interoperability with existing systems, 167
issue detection and resolution, 157

model drift, 168

monitoring, 168

predictive analytics, 159-161

predictive maintenance, 161

preprocessing data, 166
quality and quantity of data, 165-166

real-time data, 166

scalability with existing systems, 167

security concerns, 166-167

threat detection, 158

workload adaptation, 168
mobile applications, stability, SLI, 98
model drift, 168
Moderna case study, serverless computing, 208-209
modernizing development processes, Google Cloud, 39
monitoring. See also observability

10-step process for effective monitoring, 99-101

Al and ML, 168

Amazon CloudWatch, 102-103

apps, 38

AWS CloudTralil, 103

AWS Config, 103

AWS Health Dashboard, 103, 189

AWS X-Ray, 103

Azure Monitor, 104

change management, 85

cloud monitoring, 9, 96-97, 103

Downdetector, 104

Dynatrace, 104-105

GenAl, 109-110

Google Cloud, 38, 103

Google Cloud Monitoring, 89-90

Google Cloud Operations Suite, 103
Google Cloud Trace, 103-104
improved monitoring with AI and ML, 159
incident handling, 64-65, 70
incident response, 105
Jaeger, 105
known failures, key takeaways from, 105
New Relic, 104
Observe, 104
proactive monitoring and alerting, 105
Splunk, 104
motion as waste (Muda), 113
MTBF (Mean Time Between Failures), measuring reliability,
47
MTTR (Mean Time to Recover), measuring reliability, 47
Muda, waste elimination, 12-13
defects, 113-114
inventory, 112-113
Lean and CRE application, 115
motion, 113
overprocessing, 113
overproduction, 112

transportation, 112-113

types of waste, 112-11

waiting, 113

multi-AZ deployment patterns, 7

N

n-1 deployments, 151-152
Nearline, Google Cloud, 56-57
New Relic, 104
NLB (Network Load Balancers), 31-32
Nordstrom case study, serverless computing, 208
NoSQL databases, Google Cloud, 39
notifications
AWS SNS, 30, 141

incident response, 221

objectives, OKR, 11

observability, 96, 172, 208. See also monitoring

e
Observe, monitoring/alerts, 104
obsession, customer, 194-195
Ohno, Taiichi, waste elimination (Muda), 112-114
OKR (Objectives and Key Results), 11

benefits of, 124-126

CRE value, 202

culture-related OKR, 123-12

customer-related OKR, 123-124

examples of, 119-121

history of, 117-119

key components of, 118

KR, 118

objectives, 118
operational excellence, 15, 75

“five whys” technique, RCA, 77-78

incident reviews, 78-83

key concepts of, 92-93

KPI, 76

OKR, 11

RCA, 76-78

reliability metrics, 11
operational readiness reviews, reliability engineering, 122—
123
Operations Suite, Google Cloud, 103, 141-142
optimization

architecture assessments, 89-90

case studies, 149-150

flow, Lean and CRE application, 115
orchestration tools, incident management, 69

ORR (Operational Readiness Reviews), 89-90

overprocessing as waste (Muda), 113
overproduction as waste (Muda), 112
oversight (human), AI and ML, 168
ownership, psychological safety, 192-193

pattern recognition, 188
performance
applications with Al and ML, 157-158
KPI, 76
pipelines, Azure DevOps, 85
playbooks
incident handling, 66
incident management, 69, 70-73
recovery playbooks, 45-46
Poppendieck, Mary, Lean Software Development: An Agile
Toolkit, 114
Poppendieck, Tom, Lean Software Development: An Agile
Toolkit, 114
post-implementation reviews, change management, 85
post-incident reviews, 54, 70, 105
postmortems, 221
blameless postmortems, 79-80

COE process, 80-82

examples of, 93

Google.com, 82-83

Microsoft Azure, 82
predicting issues, GenAl, 109

predictive analytics, 159-161

predictive maintenance, 107, 161
preprocessing data, Al and ML, 166
prioritizing customer experience, 64
proactive monitoring and alerting, 65-66, 105
Project Aristotle, psychological safety, 197
proxy load balancing

SSL, 131

TCP, 131
psychological safety, 191-192, 195-196

Andon cord, 192-193

collaboration, 194

cross-functional teams, 194

customer obsession, 194-195

determining company acceptance, 197-198

employee empowerment, 192

Jidoka (automation with human intelligence), 192-193

leadership, 192-193

ownership, 192-193

Project Aristotle, 197

http://google.com/

spreading across an organization, 199

Q

Q, evolution of AWS services, 173
Quality

\1

Lean and CRE application, 116-117

and quantity of data, Al, 165-166
queues, AWS SQS, 30

RCA (Root Cause Analysis), 72, 76-78, 221
RDS (Relational Database Service), 134
real-time data, AI and ML, 166
recovery

continuous improvement (Kaizen), 46

disaster recovery, 147-149

feedback loops, 46

incidents, 32-33

incidents, examples of, 32-33

Lean principles, 45-46

MTTR, 47

plans, 220-221

testing procedures and playbooks, 45-46

Red Hat, Ansible, 146
redundancy
Azure Blob Storage, geo-redundancy, 62
fast recovery, 61-63
regional buckets, Google Cloud, 62-63
regions, Google Cloud, 61
reliability, 95-96. See also resilience
abstraction layers, 187
Al 207, 215
alerting tools, 102-106
building applications, 7-8
chaos testing, 186-187
cloud monitoring, 96-97
defined, 2-3
distributed reliability, 206-207
error budgets, 97, 101
fault tolerance, 22

geolocation-based routing with ALB, 26-2

high availability, 22-25, 38

immutable infrastructures, 29-31, 37-3

incident response playbooks, 18

latency-based routing with Route 53, 25-2
Lean, 190

load balancing, 31-32

maturity levels, 101-102

measuring, 46-47
metrics, 11
Microsoft Azure, 189-190

monitoring tools, 102-106
observability, 96

operational readiness reviews, 122-123
recovery, 32-33

recovery, examples of incidents, 32-33
roles, 3

scalability, 27-29, 39

SLI, 27, 97-101

SLO, 97-101, 109

standard downtime goals, 23-25

third-party provided apps, 186-187
value streams, 178-179
remediation, automated, 66
reporting, reliability of third-party provided apps, 186
resilience. See also reliability
2017 Cost of Downtime survey, ITIC, 19
AWS S3 Service Disruption example (February 28, 2017),
19

British Airways (BA) system failure (2017), 19

building applications, 7-8
case studies, 149-150
chaos engineering and resilience testing, 139-140
Chaos Service Catalogs, 42
checklists, 36
defined, 2
designs, 16-17
determining, 9
game days, 41-42
Google Cloud, 36-39
Google Cloud Service Disruption example (June 2,
2019):18
importance of, 16-20
Microsoft Azure Service Disruption example (September
4,2018):18
roles, 3
testing, chaos engineering, 139-140
validating, 35-39
resolution, incident response, 52-53
resource scaling, dynamic, 107-108
restoring data, 56-58
retrospective meetings, 54
risk assessments, 84

risk management

Google Cloud Risk Management Framework, 84
reliability of third-party provided apps, 186
rollback deployments, 151-152
rollback strategies, facilitating controlled deployments, 136-
139
Route 53 DNS Failover, AWS, 134
Route 53, latency-based routing, 25-26
routing
geolocation-based routing with ALB, 26-27
latency-based routing with Route 53, 25-26
RPO (Recovery Point Objectives), 57
RTO (Recovery Time Objectives), 45, 57
runbooks
incident handling, 66
incident management, 69

Russinovich, Mark, excellence, 5

S3 (Simple Storage Service), AWS, 135
SaaS (Software-as-a-Service), Al support, 163-164
safety nets, chaos engineering, 44
safety, psychological, 191-192, 195-196
Andon cord, 192-193

collaboration, 194

cross-functional teams, 194
customer obsession, 194-195
determining company acceptance, 197-198
employee empowerment, 192
Jidoka (automation with human intelligence), 192-193
leadership, 192-193
ownership, 192-193
Project Aristotle, 197
spreading across an organization, 199
scalability, 27-29
Al and existing systems, 167
applications, 5
ASG, 28-29
AWS Auto Scaling, 61
Azure Autoscale, 59-60
Azure Virtual Machine Scale Sets, 60
containerization, 207-208
dynamic resource scaling, 107-108
Google Cloud, 36, 39
microservices, 207-208
scheduling
change management, 85
Google Cloud Scheduler, 85

scope of incidents, determining, 219

scoping, chaos experiments, 44
security
Al and ML, 166-167
threat detection, 158
self-healing capabilities, Al, 108, 11

serverless computing, 206, 214-215
Moderna case study, 208-209
Nordstrom case study, 208
serverless microservices architectures, example of, 29
service disruptions
2017 Cost of Downtime survey, ITIC, 19
AWS S3 Service Disruption example (February 28, 2017),
19
British Airways (BA) system failure (2017), 19
Facebook, 19
Google Cloud Service Disruption example (June 2, 2019),
18
hourly downtime costs, TechChannel report, 19-20
Microsoft Azure Service Disruption example (September
4,2018), 18
Starbucks, 19
WhatsApp, 19
Service Health Dashboard, AWS, 103, 189

services

AWS RDS, 134

AWS S3, 135

AWS Health Dashboard, 103, 189

AWS SNS, 141

Azure App Service, 136

evolution of, AWS, 173

lIaaS$, leveraging, 144-147
Simple Storage Service (S3), AWS, 135
simulations, GenAl, 162
Site Recovery, Azure, 148
SLA (Service Level Agreements), reliability of third-party
provided apps, 186
SLO (Service Level Objectives), 97-101, 187-188

defined, 109

Google Cloud, 38

measuring reliability, 46-47

reliability of third-party provided apps, 186
small batch deliveries, Lean and CRE application, 115-116
Snowball, AWS, 148
SNS (Simple Notification Service), AWS, 141
Splunk, 104
SQL Database (Azure), geo-replication, 62
SSL proxy load balancing, 131

Stackdriver. See Google Cloud Operations Suite
standard downtime goals, 23-25
Starbucks, service disruptions, 19
static chaos planning, 44
Step Functions, AWS, 30-31, 139
storage
AWS S3, 135
Coldline storage, 56-57
Google Cloud, 39
Google Cloud, regional buckets, 62-6

Streamf{lix case study, value streams, 181-182

40-41
147-148

stress-testing applications, 10-11,
synchronization, AWS DataSync,
system health, dashboards, 12
Systems Manager, AWS, 139, 141

TCP proxy load balancing, 131
team empowerment, Lean and CRE application, 115
TechChannel, hourly downtime costs, 19-20
templates

ARM, 146

FIS experiment templates, 47

IaC changes, 84

Incident Response Checklist Template, 219-221
Terraform, HashiCorp, 146
testing

Azure Test Plans, 85

change management, 85

fast recovery, 63

GenAl 162

Google Cloud, 39

recovery procedures and playbooks, 45-46
third-party provided apps, reliability, 186-187
threat detection, 158
ticketing systems, incident management, 69
Toyota Production System: Beyond Large-Scale Production,
112
TPS (Toyota Production System), 112
Trace, Google Cloud, 103-104
tracking incidents, 69
traffic

ALB, 26-27, 31-32

load balancing, 26-27, 31-32

NLB, 31-32

Traffic Manager, Azure, 61-62, 136, 14

training, change management, 85

transportation as waste (Muda), 112-113

triage, automated incident, 65-66

troubleshooting, Incident Response Checklist Template, 219-
221

TTD (Time to Detect), 65-68

TTR (Time to Recover), 65-68

U

user experience, Al, 163

validating

change management, 85
fast recovery, 63

processes, Google Cloud, 39

resilience, 35-39

RTO in chaos experiments, 45
value streams

analysis questions, 182-185

CRE as, 176-177

customer personas, 179

cycle times, 179

defined, 175-176

documentation, 179-180

FinTechBank case study, 180-181

GameX Entertainment case study, 181

leveraging, 14

reliability engineering, 178-179

Streamflix case study, 181-182

VSM, 14
values and cultures, 15
vendor selection, reliability of third-party provided apps, 186
vertical scaling, 27-28
visualizing work, Lean and CRE application, 116
VMs (Virtual Machines)

AMI, 29-30

Azure Virtual Machine Scale Sets, 60, 130
Vogels, Dr. Werner, engineering excellence, 5
volume distribution, 127-128

auto-scaling, 128-130

load balancing, 131-133

VSM (Value Stream Mapping), 14

W

waiting as waste (Muda), 113
waste elimination (Muda), 12-13
defects, 113-114
inventory, 112-113

Lean and CRE application, 115
motion, 113
overprocessing, 113

overproduction, 112

(Ob)

transportation, 112-11

WS

types of waste, 112-11

waiting, 113
Well-Architected Framework, MS Azure, 90
Well-Architected Tool, AWS, 89-90
WhatsApp, service disruptions, 19
work, visualizing, Lean and CRE application, 116
workflows, approval, 84
workload adaptation, Al and ML, 168

X-Ray, AWS, 103

Y

YBYO (“You Build It, You Own It”), 210-211

zones, 20, 61

Register Your Product at informit.com/register

Access additional benefits and save up to 65%" on your next purchase

+ Automatically receive a coupon for 35% off books, eBooks, and web editions and
©5% off video courses, valid for 30 days. Look for your code in your InformlIT cart
or the Manage Codes section of your account page.

+ Download available product updates.
+ Access bonus material if available.**

+ Check the box to hear from us and receive exclusive offers on new editions
and related products.

InformIT—The Trusted Technology Learning Source

InformiT is the online home of information technology brands at Pearson, the world's
leading learning company. At informit.com, you can

* Shop our boaks, eBooks, and video training. Most eBooks are DRM-Free and include
PDF and EPUB files

* Take advantage of our special offers and promations (informit.com/promotians)
* Sign up for special offers and content newsletter (informit.com/newsletters).

* Access thousands of free chapters and video lessons.

* Enjoy free ground shipping on U.S. orders,

* Offers sul
** Registration benefits vary by product. Senefits will be listed on your account page under Registered Products.

ctto change

Connect with InformIT—Visit informit.com/community

@ Pearson informir

Addison-Wesley - Adobe Press - Cisco Press - Microsoft Press - QOracle Press - Peachpit Press - Pearson IT Certification -

	Cover Page
	About This eBook
	Title Page
	Copyright Page
	Dedication Page
	Contents
	Preface
	Reliability Engineering in the Cloud Is a Must: Why Your Business Can’t Succeed without It
	Who Is This Book For?

	Acknowledgments
	About the Authors
	Chapter 1. Reliability Engineering in the Cloud
	Cloud
	Resilience
	Reliability
	Engineering
	Engineering Excellence
	How to Design and Build Resilient and Reliable Applications
	Leveraging Lean Principles
	Leveraging Artificial Intelligence
	Leveraging Value Stream Mapping
	Culture and Values
	Operational Excellence
	Summary
	Q&A

	Chapter 2. Resilient, Available, and Scalable Systems
	Key Concepts
	Design Principles
	Chaos Engineering
	Validating Resilience
	Summary
	Q&A

	Chapter 3. Incident Response for Fast Recovery
	Incident Response
	Fast Recovery
	Incident Handling
	Summary
	Q&A

	Chapter 4. Operational Excellence and Change Management
	Key Performance Indicators
	Root Cause Analysis
	Incident Reviews
	Change Management
	Case Study
	Architecture and Reliability Assessments
	Summary
	Q&A

	Chapter 5. Leveraging Observability, Monitoring, Reliability Metrics, and GenAI
	Reliability Engineering Capabilities
	Ten-Step Process for Creating Effective Monitoring
	Maturity Levels
	Monitoring and Alerting Tools
	Case Study: AI’s Impact on CRE
	Summary
	Q&A

	Chapter 6. CRE via Objectives and Key Results (OKRs)
	Continuous Improvement in Lean
	Application of Lean to CRE
	Application of OKRs to CRE
	Summary
	Q&A

	Chapter 7. CRE Tooling
	Distributing Load and Volume with Auto-Scaling and Load Balancing
	Enabling Automatic Failovers for High Availability
	Facilitating Controlled Deployments with Rollback Strategies
	Providing Chaos Engineering Capabilities for Resilience Testing
	Assisting in Incident Response with Automation
	Ensuring Proper Configuration Management
	Leveraging Immutable Infrastructure as a Service
	Practicing Disaster Recovery Frequently
	Case Study
	Summary
	Q&A

	Chapter 8. Cutting-Edge Technologies
	Understanding AI, ML, LLMs, and GenAI
	Benefits of Integrating These Technologies into CRE Practices
	Implementation Considerations
	Summary
	Q&A

	Chapter 9. CRE Value Stream
	What Is a Value Stream?
	CRE as a Value Stream
	Case Studies
	Summary
	Q&A

	Chapter 10. Culture
	Psychological Safety
	Employee Empowerment
	Leadership and Ownership
	Collaboration and Cross-Functional Teams
	Customer Obsession
	CRE Culture
	Summary
	Q&A

	Chapter 11. The Business Case for CRE
	Benefits of CRE
	Aligning CRE with Strategic Objectives
	Evolution of CRE Practices
	Case Studies
	Summary
	Q&A

	Chapter 12. Conclusion
	Appendix A. Incident Response Checklist Template
	Appendix B. Correction of Error (COE) Document Structure
	Appendix C. CRE Change Management Checklist
	Glossary
	References
	Index

