
Security
Architecture for
Hybrid Cloud
A Practical Method
for Designing Security
Using Zero Trust
Principles

Mark Buckwell,
Stefaan Van daele

& Carsten Horst

SECURIT Y

“Security Architecture
for Hybrid Cloud provides
a wealth of information
to assist IT and security
professionals, from strategic
leadership to architects
to engineers.”

—Sarah Brown
Principal Cyber Security Lead,

NATO NCI Agency

“This book provides
comprehensive and
accessible coverage
of architecting for security
that will become a standard
reference in its field.”

—Paul Krause
Emeritus Professor, University of Surrey

Security Architecture
for Hybrid Cloud

linkedin.com/company/oreilly-media
youtube.com/oreillymedia

As the transformation to hybrid multicloud accelerates,
businesses require a structured approach to securing
their workloads. Zero trust principles require the use of
a systematic set of practices to deliver secure solutions.
Regulated businesses, in particular, demand rigor in the
architectural thinking process to ensure the effectiveness
of security controls and continued protection.

This book provides the first comprehensive method for
hybrid multicloud security, integrating proven architectural
techniques to deliver a comprehensive end-to-end security
method with compliance, threat modeling, and zero trust
practices. This method ensures repeatability and consistency
in the development of secure solution architectures.

Architects will learn how to effectively identify threats and
implement countermeasures through a combination of
techniques, work products, and a demonstrative case study
to reinforce learning. You’ll examine:

•	 The importance of developing a solution architecture
that integrates security for clear communication

•	 Roles that security architects perform and how the
techniques relate to nonsecurity subject matter experts

•	 How security solution architecture is related to design
thinking, enterprise security architecture, and engineering

•	 How architects can integrate security into a solution
architecture for applications and infrastructure using
a consistent end-to-end set of practices

•	 How to apply architectural thinking to the development
of new security solutions

Mark Buckwell is a cloud security
architect, speaker, and trainer with
30 years of industry experience.

Stefaan Van daele is a regional
CTO and security architect at
IBM Cybersecurity Services.

Carsten Horst is a security architect
and associate partner at IBM with
25 years of experience.

US $59.99	 CAN $74.99
ISBN: 978-1-098-15777-7

Praise for Security Architecture for Hybrid Cloud

Security Architecture for Hybrid Cloud provides a wealth of information to
assist IT and security professionals, from strategic leadership to architects to

engineers. It provides concrete, practical, and comprehensive information about
how to plan, design, build, and operate secure IT environments and solutions.

The information is well-structured, the writing precise and easy to read, and
provides numerous concrete examples to illustrate the points. I will find a prime spot

on my bookshelf for this book and expect it will be a valuable reference in my work.
—Sarah Brown, Principal Cyber Security Lead,

NATO NCI Agency

Security Architecture for Hybrid Cloud distills the collected wisdom of many
skilled practitioners with thousands of successful cloud deployments, and

provides an in-depth look at architectural thinking based on this experience.
The authors explain why architectural thinking is essential for larger-scale

systems and applications, some frameworks and patterns to avoid starting from
scratch each time, and how to take a balanced and iterative approach for

secure design and implementation. It’s a must-read for anyone responsible for
the security, scalability, availability, and usability of complex systems.

—Chris Dotson, Distinguished Engineer,
Author of Practical Cloud Security

This book provides comprehensive and accessible coverage of architecting
for security that will become a standard reference in its field.

—Paul Krause, Emeritus Professor, University of Surrey

This book is an excellent reference for anyone responsible
for integrating security into a solution architecture.

—Peter Vincent, Enterprise Security Architect, IBM

This book is an invaluable resource for anyone looking to secure their hybrid or public
cloud infrastructure, offering comprehensive best practices and actionable guidance.

—Professor Bart Preneel, Head of Computer Security and
Industrial Cryptography (COSIC), KU Leuven

This book is an essential read and reference for any discerning Architect. Security
considerations are, at a minimum, an essential consideration in all solutions

and enterprises, so are of worthy note for all Architects. At one level, this work
provides essential guidance for those seeking to ensure the viability and validation

of the security elements of their solutions, as well as guiding the vital efforts of
governance required to assure enterprises of their overall security. At the same time,

dedicated security professionals who seek to build upon proven robust practices in their
security solutions will gain strong insights as to how solid architectural thinking will

reinforce their expertise. A book that will only become more and more relevant.
—Paul Homan, Distinguished Engineer

and Architect Profession Lead, IBM

In an era where cyber threats are constantly evolving and becoming increasingly
sophisticated, it is imperative that the next generation of cybersecurity professionals

possess the skills and knowledge to enable them to design and deliver effective
security for the cloud. The popularity of architectural thinking for security among

students underscores its significance as a foundational pillar of cybersecurity
education. This excellent book serves as a valuable resource for students

and will further enhance their learning. I would recommend it to anyone
keen to learn more about security architectures in the cloud.

—Professor Steve Schneider, Director of Computer Science
Research Centre, University of Surrey

As security concerns evolve rapidly and zero-trust models become increasingly
prevalent, Security Architecture for Hybrid Cloud provides a structured approach

that is valuable for all software architects; not just security professionals.
—Murat Erder, Author of Continuous Architecture in Practice

Tackling IT Security for a complex system is daunting, but this
book gives an excellent overview of the wide range of topics which

you will need to consider, and how you should approach it.
—Kevin Robson, IT Architect, IBM

Mark Buckwell, Stefaan Van daele, and Carsten Horst

Security Architecture
for Hybrid Cloud

A Practical Method for Designing
Security Using Zero Trust Principles

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-15777-7

[LSI]

Security Architecture for Hybrid Cloud
by Mark Buckwell, Stefaan Van daele, and Carsten Horst

Copyright © 2024 Mark Buckwell, Stefaan Van daele, and Carsten Horst. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Simina Cali
Development Editor: Melissa Potter
Production Editor: Beth Kelly
Copyeditor: Tove Innis
Proofreader: Piper Editorial Consulting, LLC

Indexer: BIM Creatives, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

August 2024: First Edition

Revision History for the First Edition
2024-07-25: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098157777

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Security Architecture for Hybrid Cloud,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098157777

Table of Contents

Preface. xiii

Part I. Concepts

1. Introduction. 1
Foundational Security Techniques 2

Data-Centric Security 3
Secure by Design with Threat Modeling 4
Zero Trust Architecture 5
Compliance Management 7
Users of the Security Techniques 8

Architect Roles for Security 9
Security Architect 10
Infrastructure and Application Architect 12
Security Champion 12

Book Structure 12
Artifact Framework 13
Artifact Dependency Diagram 14
Case Study 16
Book Organization 18
Solution Architecture Decomposition 22
Method Techniques 23

Summary 24
Further Reading 25
Exercises 27

v

2. Architecture Concepts. 29
From Design Thinking to Compliance 30

Design Thinking and Consulting Practices 31
Transitioning to Architectural Thinking 32
Transitioning to Engineering 35
Operational Thinking 35
Enterprise Context 36
Compliance 36
Waterfall to Agile Delivery 37
Security Architecture in Agile 38

Enterprise and Solution Architecture 39
Enterprise Architecture 39
Solution Architecture 40

Zero Trust Architecture 41
Core Architecture Components 41
Architectural Thinking Integration 44
Zero Trust Solutions 48

Technique: Enterprise Security Architecture 48
Security Processes or Services? 49
Enterprise Architecture Decomposition 49
Security Services Responsibilities 54
Cloud Controls Mapping 56
Security Service Design 58

Summary 60
Exercises 61

Part II. Plan

3. Enterprise Context. 65
Chapter Artifacts 66
External Context 67

Laws and Regulations 67
Industry or Expert Organization Best Practices 70
Corporate Expectations 73
Consumer Expectations 74
Threat Landscape 74
Cybersecurity Vulnerabilities 75

Internal Context 75
Business and Information Systems Strategy 76
Current IT Environment and Security Control Plane 78
Policies, Practices, and Standards 79

vi | Table of Contents

Risk Management 79
Enterprise Architecture 80
Guiding Principles 80
Architecture Patterns and Automation 85
Enterprise Processes 85

Summary 86
Exercises 87

4. Requirements and Constraints. 89
Chapter Artifacts 89
Requirements Concepts 91

Functional Requirements 91
Non-Functional Requirements 91
Constraints 96
Specifying Quality Requirements 98
Prioritizing Requirements 101

Specifying Functional Requirements 102
Use Cases 103
Journey Maps 105
User Stories 106
Swimlane Diagrams 107
Separation of Duties Matrices 109

Case Study: Process Definition 111
Specifying Non-Functional Requirements 113

Sources of Non-Functional Requirements 113
Non-Functional Requirement Dependencies 115
Documenting Non-Functional Requirements 116
Improving Requirement Specification 117

Case Study: Specifying a Requirements Catalog 119
Identifying Security Requirements 120
Elaborating Security Requirements 121
Rewriting Security Requirements 122

Requirements Traceability 124
Summary 125
Exercises 126

Part III. Design

5. System Context. 131
Chapter Artifacts 131
Data Protection 133

Table of Contents | vii

Value of Data 133
Data Security Lifecycle 134
Metadata 136
Zero Trust and Data Flows 137

System Context Diagram 137
System and Security Architect Roles 138
System Context Concepts 139
Business and IT Context 144

Case Study: System Context Diagram 145
Identifying Human Actors 146
Identifying System Actors 148
Documenting the System Context 149

Information Asset Register 151
Data Classification 151
Actor Use Case and Data 155

Summary 157
Exercises 159

6. Application Security. 161
Chapter Artifacts 161
Functional Viewpoint 163
Component Architecture 163

Component Architecture Diagram 165
Sequence Diagram 166
Collaboration Diagram 167
Data Flow Diagram 168
Component Architectural Thinking Process 169

Case Study: Component Architecture 170
Security Concepts 175
Threat Modeling 177

Identify Boundaries 179
Identify Assets 180
Identify Threat Actors 181
Identify Threats 182
Identify Controls 186
Prioritization of Controls 192
Threat Modeling Tools 194

Case Study: Threat Model 196
Summary 201
Exercises 202

viii | Table of Contents

7. Shared Responsibilities. 205
Chapter Artifacts 206
Cloud Computing Concepts 208

Cloud Computing Benefits 208
Cloud Service Models 210
Cloud Computing Platforms 212
Cloud Security Responsibilities 214
Landing Zones 214
Hybrid Cloud Architecture 216
Using the Hybrid Cloud Architecture Diagram 218

Shared Responsibilities Model 219
Shared Responsibilities Stack Diagram 220
Cloud Service Provider Responsibilities 223
Cloud User Responsibilities 225
Cloud Security Policy Responsibility 227

Case Study: Shared Responsibility Model 228
Identifying PaaS Services 229
Identifying SaaS Services 229
Identifying the Compute Platforms 230
Identifying Environments 231
Documenting a Shared Responsibilities Stack Diagram 231

Summary 234
Exercises 235

8. Infrastructure Security. 237
Chapter Artifacts 238
Deployment Viewpoint 240

Deployment Architecture 242
Deployment Architecture Diagram 243
Deployment Architecture and Supporting Documentation 246
Architecting Infrastructure Security 248
Network Segmentation 255

Case Study: Deployment Architecture Diagram 258
Zero Trust-Based Security Infrastructure 264

Network-Based Solutions 264
Service Mesh Solutions 268
Endpoint-Based Solutions 269
Identity and Access Management 270
Architecting Zero Trust Practices 271

Case Study: Zero Trust 274
Cloud Architecture 276

Organizing Cloud Security 276

Table of Contents | ix

Cloud Architecture Diagram 280
High Availability 282

Case Study: Cloud Architecture Diagram 285
Summary 288
Exercises 290

9. Architecture Patterns and Decisions. 293
Chapter Artifacts 294
Architecture Patterns 295

Solution Architecture Patterns 297
Solution Design Patterns 299

Deployable Architecture 306
A Distributed Version Control System 307
Continuous Integration/Continuous Delivery (CI/CD) Pipeline 307
Infrastructure as Code Toolchain 307
Using a Deployable Architecture 308

Architectural Decisions 309
Documenting Architectural Decision Records 310
Forms of Architectural Decision 312
Managing Architectural Decisions 312

Case Study: Architectural Decision 314
Summary 318
Exercises 320

Part IV. Build

10. Secure Development and Assurance. 325
Chapter Artifacts 325
The Software Development Lifecycle 326
From DevOps to DevSecOps 330

Design 332
Develop 333
Build and Package 335
Deploy, Test, and Release 336
Operate and Monitor 338

Security Assurance 338
Cloud Security Operating Model 342
Risks, Assumptions, Issues, and Dependencies 347
Case Study: RAID Log 349
Summary 352
Exercises 353

x | Table of Contents

Part V. Run

11. Security Operations. 357
Chapter Artifacts 358
Shared Responsibilities 359
Defining Processes, Procedures, and Work Instructions 365
Case Study: Vulnerability Management Service 367

Process Definition 367
Procedures and Work Instructions Definition 374

Case Study: Deployment Architecture Update 376
Threat Detection Use Case 378
Case Study: Threat Detection Use Case 380
Incident Response Runbook 384
Case Study: Incident Response Runbook 387
Threat Traceability Matrix 391
Summary 392
Exercises 394

Part VI. Close

12. Closing Thoughts. 399
Getting Started 399

Don’t Forget the Basics 399
Minimum Viable Artifacts 400
Iterate for Maturity 401
Get the Balance Right 403
Security Silos 405

Artificial Intelligence in Security Architecture 405
AI for Security 405
Securing AI 408

Summary 412
Go Learn, Practice, and Share 412
Exercises 413

A. Case Study. 415

B. Artifact Mapping. 419

C. Exercise Solutions. 423

Index. 435

Table of Contents | xi

Preface

Twenty-five years ago, colleagues from the US traveled to the UK to help us develop
a method and course to train a new cohort of security architects. Back then, most
of the systems we dealt with were midrange or mainframes running a variant of
Windows or Unix, and most of the networks were internal or private. The internet,
cloud computing, containerized applications, Agile working, automation, and AI are
examples of the tremendous change the world of information systems has gone
through.

Hybrid Cloud for Simplicity

We will refer to hybrid cloud throughout for simplicity. Where you
see “hybrid cloud,” also read that it could include multiple cloud
services or be “multicloud.”

While many things have changed, the main security architecture concepts we created
25 years ago have remained constant. We started out with the following standard set
of concepts:

• Guiding principles (or security design objectives), based on protection from loss•
of confidentiality, integrity, and availability, set the stage for how to apply security
controls.

• A set of security domains, which we then called subsystems, to group the security•
controls.

• Threat modeling examined data in transit and at rest to identify threats and•
countermeasures to protect the data. (Although we didn’t call it threat model‐
ing in those days and used ideas from the Common Criteria to describe the
technique.)

• Network segmentation of a data center using zones and firewalls.•

xiii

https://oreil.ly/zRlfE

• A controls framework based on the Common Criteria protection profiles, pro‐•
viding a requirements catalog for security controls.

• Documentation and testing provided assurance of the security controls•
implementation.

We cover these concepts in this book, but many things have changed. One major
change that has had a significant impact on architectural thinking is the move to
hybrid (using both on-premises and cloud) and multicloud. It’s becoming a standard
platform architecture for many organizations, but it has multiplied the number of
different technology platforms and the number of security policies to apply.

Threats have expanded, technology platforms are becoming increasingly complex,
and protection mechanisms have become more sophisticated. Organizations now use
many different technology platforms and service providers that enforce many differ‐
ent security policies using different technologies. It presents an enormous challenge
to architect effective security in such a complex environment.

What Are Artifacts?

One word you will hear often is the term “artifact.” The term repre‐
sents content, such as a diagram or table, created during the archi‐
tectural thinking process. Combining artifacts into a document or
presentation describes an architecture for a solution. Some artifacts
depend on the creation of other artifacts. An artifact dependency
diagram is useful to describe the set of all artifacts and their
dependencies.

We’ve updated the method from 25 years ago to include techniques to handle the
complexity of hybrid cloud and tested it over the past seven years with over 1,000
IBMers and MSc students. The current method reflects changes in industry context
and improvements in architectural thinking, including:

• An artifact dependency diagram shows the architectural thinking domains and•
the dependencies between artifacts.

• Integration of zero trust principles throughout the method.•
• Integration with other architectural thinking and project management tech‐•

niques including design thinking, Agile practices, and DevSecOps.
• Consistency of the architecture diagrams to describe the functional components•

and deployment architecture.
• Introduction of new artifacts describing the complex shared responsibilities of•

hybrid cloud and new cloud architecture diagrams.

xiv | Preface

• Introduction of new control frameworks to use as requirements catalogs, includ‐•
ing the National Institute of Standards and Technology (NIST) Cybersecurity
Framework, NIST SP 800-53 Security and Privacy Controls for Information
Systems and Organizations, and Cloud Security Alliance (CSA) Cloud Controls
Matrix (CCM).

• Addition of new techniques for functional requirements definition, including•
design thinking and user stories.

• Introduction of updated techniques for threat modeling as the industry has•
developed new practices.

• Segmentation of networks has transformed into microsegmentation as it’s•
become easier to configure networks with virtual private cloud networking.

• Acceleration of the architectural thinking process through the use of architecture•
patterns and deployable architectures.

• Extension of the method to include security operations process and procedure•
definition, including threat detection and response.

• Inclusion of traceability for requirements, architecture decomposition, and•
threats to support demonstration of compliance, and threat detection and
response.

Security architecture has an important role to play throughout the different phases
of the design and delivery of an information system. This book will focus on the
artifacts and techniques for designing security that can overlay existing methods used
in systems and software development. Utilizing methods and artifacts to clearly com‐
municate the necessary security controls during implementation will introduce rigor.
We want to enable you to apply this thinking to whatever development methods and
practices you are already using.

Think of this as your “kit bag” of tools and techniques to pick up and use where
necessary. Don’t feel as though you need to rigidly apply everything in this book.
More importantly, this book should instill the right systematic architectural thinking
to embed security into systems so that you can effectively protect the processing
of sensitive assets. We expect many of you will create your own techniques to supple‐
ment what we describe.

For security architects, although your primary goal is to mitigate risks by protecting
valuable assets, this doesn’t mean you should override the other qualities required of
a solution, such as performance, availability, resilience, or cost. While your role is
primarily to protect the business, you also need to be cognizant of the other drivers in
your organization.

Preface | xv

Audience
We’ve written this book for anyone who is architecting security controls and design‐
ing the integration of them into an information system. Architectural thinking for
security isn’t only for a security architect; it’s the responsibility of all architects
designing an information system. It’s why this book is suitable for anyone involved in
architecting systems.

We currently teach these concepts and techniques as a part of cybersecurity degree
modules for UK NCSC-certified MSc degrees at two universities in the UK. The book
incrementally builds on the concepts and techniques throughout, making it suitable
for use in teaching. It’s thanks to the past students who asked for a book to study that
we authored this book.

We’re assuming that you already have some broad understanding of information
systems and cloud computing. Some hands-on experience will enable you to make
good architectural decisions. Architects don’t learn by drawing diagrams; they build
their expertise through the practical delivery of applications and infrastructure. Many
practicing architects worldwide use this approach.

Contents of This Book
This book takes you through the architectural thinking process, from understanding
the context of the solution, requirements gathering, architecture definition, and the
definition of security operations to secure the running of a workload or application.
A discussion of each technique enables you to more effectively communicate the
security characteristics for each part of the solution.

As a roadmap to the architectural thinking process, we’ve developed an artifact
dependency diagram describing the phases of developing an architecture through a
sequence of artifacts.

To support the learning process, the book has a case study to demonstrate the
step-by-step development of the artifacts that are part of a solution.

Chapter 1 contains a discussion setting the context, explaining how different roles
can use the method, and outlining the chapter structure for the book with an artifact
dependency diagram to follow.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

xvi | Preface

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Figure and Table Examples
Supplemental material (figures, etc.) is available for download at https://securityarchi
tecture.cloud.

If you have a technical question or a problem using the supplemental material, please
send email to support@oreilly.com.

This book is here to help you get your job done. If you wish to use content, and
that use falls outside the scope of Fair Use Guidelines, (such as selling or distributing
content from O’Reilly books, or incorporating a significant amount of material from
this book into your product’s documentation), please reach out to us for permission,
at permissions@oreilly.com.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Security Architec‐
ture for Hybrid Cloud by Mark Buckwell, Stefaan Van daele, and Carsten Horst
(O’Reilly). Copyright 2024 Mark Buckwell, Stefaan Van daele, and Carsten Horst,
978-1-098-15777-7.”

Preface | xvii

https://securityarchitecture.cloud
https://securityarchitecture.cloud
mailto:support@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/security-architecture-hybrid-
cloud.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
Without the help of co-instructors, MSc students, and class participants over the
years, the development of the techniques within this book would not have been
possible. Thank you for attending classes and providing feedback to help enhance the
documented techniques and artifacts. A special thanks to Pete Vincent, who has been
on this journey since the start and leads course delivery at the University of Warwick.

xviii | Preface

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/security-architecture-hybrid-cloud
https://oreil.ly/security-architecture-hybrid-cloud
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

We owe the opportunity to create the course and method to Martin Borrett and
Julian Meyrick, who gave us the challenge of building an MSc degree module for the
Warwick Manufacturing Group (WMG) at the University of Warwick.

Without the ongoing encouragement and support of Srini Tummalapenta, we
couldn’t have developed and shared the method with a global audience. The sponsor‐
ship and adoption of the method for internal reference architectures helped spread
and develop the concepts.

The book took a few other people besides the authors to make it a reality. Many
thanks to the technical reviewers, Murat Elder, Paul Krause, Kevin Robson, and Pete
Vincent. Each reviewer brought their unique experiences to challenge us and provide
great suggestions for some vital improvements. Many thanks to the fantastic O’Reilly
team, including Simina Calin, Melissa Potter, Greg Hyman, Kate Dullea, Tove Innis,
Beth Kelly, and the many others behind the scenes.

Acknowledgments from Mark Buckwell
Thank you to Professor Helen Treharne at the University of Surrey, who took a
chance by allowing the delivery of an MSc degree module that was fully managed by
myself and Theo Cudjoe. I couldn’t have delivered the module without the support
of Dr. Andrew Crossan and Professor Steve Schneider, who provided continuous
encouragement and patience in answering my questions on the teaching of a degree
module.

I am grateful to my co-authors, Stefaan and Carsten. Their relentless dedication over
late evenings and weekends, together with their invaluable ideas, have enabled the
delivery of a book that I believe is groundbreaking for cybersecurity solution design
and delivery.

Finally, I want to thank my family, especially my wonderful wife Lizzie, who put up
with me spending so much time on weekends and evenings writing the book, and
my children James and Sarah, who were always there to support and encourage me.
If you encounter any strange characters in the book, it’s due to my cat Mittens, who
kept me company by sitting on my keyboard while demanding her dinner.

Acknowledgments from Stefaan Van daele
I would like to thank my co-authors, Carsten and Mark, for the many interesting
exchanges of ideas and viewpoints on security architecture during the creation of
this book. I learned from each and every interaction. Additionally, writing a book
as a security consultant means spending even more hours behind a glaring laptop
screen. Therefore, I would like to thank my wife, Rita, for supporting me throughout
this entire journey and for bearing with my absence on many occasions, whether I
was upstairs just staring at an empty screen looking for inspiration or typing like a

Preface | xix

woodpecker on my keyboard. I would also like to thank my two daughters, Karlijn
and Lise, for being my biggest supporters even as they followed the journey a bit from
a distance.

Acknowledgments from Carsten Horst
In addition to the previous acknowledgements, I’d also like to thank all of the clients
I worked with, whose projects and problem statements helped me gain the necessary
experience to write this book. Thank you also to Kreshnik Rexha for his always very
constructive input. The creative collaboration with my co-authors, Mark and Stefaan,
has, throughout the whole writing process, been a significant inspiration for me.
I’d also like to thank my wonderful wife, Christina, and my daughters, Clara and
Caroline, whose admirable tolerance for activities such as writing books seems to
have no limits.

xx | Preface

PART I

Concepts

To introduce the book, we outline foundational security techniques and their use, and
we discuss the different architect roles and how they relate to security architecture.
We elaborate on the concepts of zero trust and the role of architectural thinking
in the solution development process. Finally, we clarify the difference between
enterprise and solution architecture, where this book is focusing on the solution
architecture. This builds the foundation before we go into the stages of the solution
lifecycle.

CHAPTER 1

Introduction

Security often gets simplified down to selecting security controls or countermeasures
that prevent loss of confidentiality, integrity, and availability. However, the integration
of the controls is just as important as selecting the controls. A series of architectural
decisions, informed by the sensitivity of the data and the context of the environment
around the system, guides the integration of the security controls.

There are publications providing useful guidance on the design and implementation
of cybersecurity technology, the use of software architecture methods, and the appli‐
cation of cloud security services. However, there is a need for a repeatable and
consistent way of approaching the architectural thinking for the secure design of an
information system hosted on hybrid cloud.

There is a need to clearly communicate the architectural thinking practices and
provide assurance that the controls deployment is effective and comprehensive. In
a regulated environment this is particularly important, as there needs to be trans‐
parency, starting with the design of the security controls through to the assurance
mechanisms used to demonstrate compliance.

This book will take you through a step-by-step process to architect security into a
solution that resides on hybrid cloud. This first chapter will set the context for the rest
of the book by describing:

• The need for effective integration of the foundational security techniques•
• The type of architect who should use the architectural thinking described within•

this book
• How the structure of the book uses an artifact dependency diagram as a roadmap•

to architectural thinking for security

1

Once you have read the introductory chapter, you may wish to skip to a chapter that’s
relevant to the current stage of your architectural thinking. However, we encourage
you to start at the beginning, as the end-to-end method helps you understand the
traceability of requirements, architecture decomposition, and threat modeling lead‐
ing to detection and response. Once you have read the end-to-end method, the book
will be a useful reference to dip into to refresh yourself on the techniques as you work
on the security for a solution architecture.

Let’s start by discussing the foundational security techniques for effective integration
of security and compliance into hybrid cloud solutions.

Foundational Security Techniques
There are many different security controls used to protect data from loss of confi‐
dentiality, integrity, and availability. Foundational security techniques integrate the
controls into a system. However, each of these techniques or concepts is normally
discussed independently and the ones chosen tend to be the favorite of the loudest
stakeholder or solution provider. None of these techniques alone is enough to design,
build, and run a secure system.

In this book, we integrate four foundational security techniques into an end-to-end
method:

• Compliance management•
• Data-centric security•
• Secure by design with threat modeling•
• Zero trust architecture•

Figure 1-1 shows how these techniques integrate together to form the foundation of
the method we will discuss.

At the center of the diagram are the three architectural thinking techniques we will
use to embed security into the architecture of a solution. This is all supported by the
demonstration of compliance shown around the outside.

Compliance takes a static, unfocused approach to security, but data moving through a
system is dynamic as it’s processed while in transit, at rest, and in use. Let’s start with
the technique, which focuses on the transaction flows and processing of data.

2 | Chapter 1: Introduction

Figure 1-1. Foundation techniques

Data-Centric Security
Data-centric security puts a focus on analyzing the flow of data through a system
from the start of a transaction to the end. At each stage of the journey, we consider
the security controls needed to protect the transaction flow in transit, at rest, and in
use.

The diagram in Figure 1-2 shows the flow of data as it passes through a system:

In the diagram, the shopper initiates a transaction to order some goods. The box rep‐
resents the organization, and the outer ellipse represents the boundary of the system
processing the data. Within the system, there are three interconnected subsystems
that process the data. The dotted line represents the transaction flows that transport
the data through the subsystems and require protection.

Foundational Security Techniques | 3

Figure 1-2. Data-centric security

Let’s walk through each of the transaction flows in order:

1. The order is first passed as a transaction flow from the shopper to the “Core1.
app” subsystem. When the order is ready to complete, the flow continues onto
the “Payments” subsystem and out to an external payment system, as shown in
flow 1.

2. After completion of the payment, the transaction returns to the “Payments”2.
subsystem and moves on to the “Delivery” subsystem to connect externally to
arrange for delivery, as shown in flow 2.

3. After the arrangement of the delivery, the confirmation of the order is then3.
returned to the “Core app” subsystem and the person who placed the order, as
shown in flow 3.

At many of the steps in this transaction flow, processing and aggregation of data are
taking place, increasing the value of the data and the need for increased controls. At
all stages of the transaction flow, we need to consider the security controls to protect
the data from loss of confidentiality, integrity, and availability.

Once we understand the transaction flows we can move on to secure by design.

Secure by Design with Threat Modeling
Secure by design uses threat modeling as a way to identify risk-based security con‐
trols directly to transactions and data that move through a technology product or
system.

4 | Chapter 1: Introduction

In their paper, Shifting the Balance of Cybersecurity Risk: Principles and Approaches
for Secure-by-Design and -Default, CISA and other national security organizations
define secure by design to mean where “technology products are built in a way
that reasonably protects against malicious cyber actors successfully gaining access to
devices, data, and connected infrastructure.” It means that engineers need to embed
security in the design of a software or hardware component through an assessment of
the risk by carrying out threat modeling.

Threat modeling identifies specific threats and builds on security policies, practices,
and processes that don’t specifically address the risks to sensitive data. You can extend
the practice to the examination of the application and infrastructure architecture for
the identification of risk-based controls.

To ensure the identification of all sensitive data, we use a systematic architectural
thinking approach for the examination of all the important data flows and transac‐
tions. Threat modeling practices need to work at scale across multiple computing
platforms in a hybrid cloud environment.

We will discuss threat modeling further in Chapter 6, including recent approaches
such as MITRE ATT&CK (Adversarial Tactics, Techniques, and Common Knowl‐
edge).

Zero Trust Architecture
Cloud computing and the use of mobile devices challenged the traditional concept
of a perimeter-based security model. Traditional “castle and moat” security models
assumed, after data passed through the perimeter, that everything inside a system
could be implicitly trusted. The change in thinking started with the Jericho Forum in
2007 releasing the Jericho Forum Commandments for a deperimiterized world where
it’s assumed a network perimeter doesn’t exist.

John Kindervag, from Forrester Research, then came up with the term “zero trust”
in 2010 and developed the phrase “never trust, always verify.” He identified zero trust
as a model that removes implicit trust within a system boundary and continuously
evaluates the risks by applying mitigations to business transactions and data flows
at every step of their journey. The phrase “assume breach” is also often associated
with zero trust and comes from the phrase “assume compromise” used by the US
Department of Defense in the 1990s.

The approach requires a combination of technologies, processes, practices, and cul‐
tural changes to be successfully implemented. It involves a fundamental shift in the
way organizations approach cybersecurity.

Foundational Security Techniques | 5

https://oreil.ly/TYB8z
https://oreil.ly/TYB8z
https://attack.mitre.org
https://oreil.ly/TkScf
https://oreil.ly/UKNzr

Zero trust basics
The zero trust model assumes that all business transactions and data flows, whether
originating from inside or outside the network, are potentially malicious. Every inter‐
action in a business transaction or data flow must be continuously validated to ensure
that only authorized users and devices can access sensitive business data. In effect, it
moves the perimeter from the system boundary to the point at which identification,
authentication, and authorization take place, resulting in identity becoming the new
perimeter. The whole concept often gets simplified down to the “never trust, always
verify” principle, but it’s more than that.

Zero trust architecture requires a cultural shift that emphasizes the importance of
security rather than just compliance throughout an organization. This means that
implementing a zero trust architecture involves not only the deployment of specific
technologies but also the development of processes and practices that promote a data
security-first mindset across the organization, building on the data-centric security
approach we discussed earlier.

When architecting and developing security for a system, an architect should follow
a set of principles, tenets, or simply a way of thinking to apply zero trust. Zero trust
isn’t an end-to-end method, and a comprehensive approach requires integration with
other architectural thinking techniques.

Zero trust principles
Organizations offer guidance in publications, including the US National Institute of
Standards and Technology (NIST) SP 800-207 Zero Trust Architecture document
that has a set of zero trust architecture tenets and the UK National Cyber Security
Centre (NCSC) Zero trust architecture design principles.

Zero Trust Network Architecture Principles

Don’t get confused by “zero trust network architecture principles”
that are used by solution providers to describe their products; they
are a subset of the overall zero trust principles.

Throughout the book, we show zero trust tenets and principles embedded in the
method. We’ve created five higher-level guiding principles in Table 1-1 mapped to the
tenets and principles. We’ve brought them back to the familiar phrases you might see
in marketing.

6 | Chapter 1: Introduction

https://oreil.ly/LBFUI
https://oreil.ly/LBFUI
https://oreil.ly/y_cR_
https://oreil.ly/y_cR_

Table 1-1. Zero trust tenets and principles mapping

Guiding principles NIST SP 800-207 Zero Trust Architecture tenets UK NCSC Zero Trust Architecture
Design Principles

Data-centric security 1. All data sources and computing services are1.
considered resources.

1. Know your architecture1.
including users, devices,
services, and data.

2. Know your user, service, and2.
device identities.

“Never trust, always
verify” or

Identity verification
+
Access control
+
Least privilege
+
Microsegmentation

3. Access to individual enterprise resources is granted on3.
a per-session basis.

4. Access to resources is determined by dynamic4.
policy—including the observable state of client
identity, application/service, and the requesting
asset—and may include other behavioral and
environmental attributes.

5. All resource authentication and authorization are5.
dynamic and strictly enforced before access is allowed.

4. Use policies to authorize4.
requests.

5. Authenticate and authorize5.
everywhere.

Data protection
everywhere

2. All communication is secured regardless of network2.
location.

7. Don’t trust any network,7.
including your own.

“Assume breach”
or

Continuous monitoring

5. The enterprise monitors and measures the integrity5.
and security posture of all owned and associated
assets.

6. The enterprise collects as much information as6.
possible about the current state of assets, network
infrastructure, and communications and uses it to
improve its security posture.

3. Assess user behavior, service,3.
and device health.

4. Focus your monitoring on users,4.
devices, and services.

Zero trust component
selection

8. Choose services which have8.
been designed for zero trust.

We then come to the need to demonstrate compliance, not just against the policies,
practices, and processes but against the threats we’ve identified.

Compliance Management
An organization uses compliance management processes to show it’s following a
set of rules, regulations, or standards given by external organizations, such as govern‐
ments and industry bodies. The process ensures that businesses follow these strict
requirements for operational risk, security, privacy, and resilience.

Compliance management includes checking that an information system meets a set
of policies, practices, and processes for the organization. They may only cover a
subset of the security controls needed to protect sensitive information, as they often
represent a minimum level of security that organizations must meet to avoid fines or
legal penalties.

Foundational Security Techniques | 7

Often, the security team can’t keep up with changes in technology, new system
vulnerabilities, emerging threats, or advanced attack techniques, resulting in slow or
delayed updates to security policies and standards. In some cases, it takes a security
incident to force improvements in protection to cope with new types of attacks or
security vulnerabilities not previously identified or blocked.

The continuous raising of the compliance bar sometimes requires the implementa‐
tion of new controls, even if the risk doesn’t justify the increased controls. There
are additional costs from the increased compliance, and the protection may still be
ineffective for the most sensitive data.

Compliance Is Not Security

Compliance is not security, and you won’t achieve compliance
without security. We’ve seen many organizations where there is sig‐
nificant investment spent demonstrating “noncompliance” through
compliance checking, control reviews, and audits, but little invest‐
ment takes place in security. Focus on security with traceability to
demonstrate compliance.
In Chapter 4, there is a discussion on compliance validation tech‐
niques, including traceability to demonstrate compliance, and in
Chapter 10, a discussion on compliance assurance techniques.

Let’s continue with a discussion on the users of the foundational security techniques
in the industry today.

Users of the Security Techniques
The techniques or models that we discuss in this section are often primarily used by
different types of security professionals, with the result that each of the different users
promotes their own favorite technique. The integration of these techniques isn’t often
written about or practiced as an integrated set of techniques.

So where do we see these techniques used today?

Data-centric security
We’ve seen architects overlay colored data flows for architecturally significant
data flows, but it’s not something we see regularly. Sometimes it’s used for secu‐
rity, and other times it’s just for showing the transaction flow.

Secure by design with threat modeling
Secure by design is mostly referenced for the development of a software product
using the software development lifecycle. It discusses the use of a threat model as
part of the design of a product. Since the release of Threat Modeling: Designing for
Security (Wiley) by Adam Shostack in 2014, software developers (or engineers)

8 | Chapter 1: Introduction

https://oreil.ly/myCZF
https://oreil.ly/myCZF

are more likely to use threat modeling as a technique during software develop‐
ment. We see the technique mostly used in software development rather than
used for the end-to-end design of a whole application, system, or system of
systems.

Zero trust architecture
Many different organizations are adopting zero trust architecture, but solution
providers dominate where they use the technique to sell products that tend to
focus on one domain, such as network security, identity management, or threat
management.

Compliance
Compliance is often the focus of risk and compliance organizations in many
regulated industries. We suspect it’s because it’s easier for auditors, consultants,
and executives to think about a series of checklists that don’t require the deep
technical background necessary to use other techniques.

This book will take you through a method that will integrate each of these techniques
together, but before we talk about a method, let’s consider who should be architecting
security into a solution.

Architect Roles for Security
Architectural thinking is the primary role of an architect. However, it’s a skill also
used by consultants and software engineers engaged in making architectural deci‐
sions. We will discuss further in Chapter 2 how architectural thinking fits with
consulting and engineering.

Architectural thinking for secure design is also not only for security architects; a
wide range of architect roles need to apply security to the development of an infor‐
mation system. Architects developing infrastructure or applications should adopt this
method, not just security architects.

In Agile development, there is a need for a hybrid role called a security champion,
who will have both architectural and engineering skills. They should be able to use
this method to advise the developers on embedding security into DevSecOps.

A range of different architect roles should use architectural thinking for security
techniques, including:

• Security architect•
• Infrastructure and application architect•
• Security champion•

Architect Roles for Security | 9

Let’s continue by discussing each of these architect roles and how they should be
using the method in this book.

Security Architect
A security architect is an architect with a specialty in security, compliance, and risk
management. We’ve split the role of a security architect further into four categories:
enterprise security architect, solution security architect, product security architect,
and advisory or consulting security architect. Each role has a common set of security
skills but a different focus with additional skills and experiences:

Enterprise security architect
A security professional who is a specialist in enterprise architecture and produces
enterprise-level guidance on the application of security to an enterprise. They
develop an enterprise architecture and guiding principles to align with the secu‐
rity strategy and guide the development of security in solution architectures.

They must have a good understanding of current threats and the direction of the
industry, as well as excellent communication skills, to align the enterprise with
the enterprise security strategy and architecture.

If you have this role, this book contains some overall guidance on enterprise
architecture in Chapters 2 and 3. Together with the rest of the book, these
chapters enable an enterprise security architect to understand the architectural
thinking for secure design process so they can provide the right inputs to support
architects in the solutioning of security.

Solution security architect
A security professional who is a specialist in the development of solution archi‐
tectures for security in specific projects or initiatives within an organization.
For example, they may develop an architecture for a specific solution, such as a
privileged access management service.

They must have a deep understanding of specific threats and risks associated
with the technology and a good understanding of the organization’s enterprise
strategy, enterprise architecture, policies, standards, and guidelines.

In addition, they need to have all the skills of infrastructure and application
architects in resilience, scalability, and operations, as they will be developing the
architecture for a security application.

They will work closely with engineers, developers, testers, and project managers.
They need to have excellent communication skills to explain security concerns to
non-technical stakeholders.

If you have this role, the whole of this book provides the security-specific
architecture activities needed for a security solution, but generic architecture

10 | Chapter 1: Introduction

techniques, available in other software and application architecture publications,
will supplement the techniques discussed in this book. The end of this chapter
contains references to other useful publications.

Product security architect
A security professional who is a specialist in the development of a security
product or suite of products. They’re often specialists in a specific security
domain, such as identity and access management or threat detection, with a
deep understanding of the products’ software and hardware requirements.

They will be responsible for the development of the architecture for a security
product and will work closely with the development and testing teams. For the
product to be quickly adopted, they will need to understand how it fits into an
enterprise environment and the benefits it delivers.

They will need great communication skills to explain the benefits of the product
to the product management team, which will market and sell the solution.

If you have this role, the whole of this book provides the security-specific
architecture activities needed for a software product, but generic architecture
techniques, available in other software architecture publications, will supplement
the techniques discussed in this book. The end of this chapter contains references
to other useful publications.

Advisory or consulting security architect
A security professional who is a specialist who advises an organization on how
to integrate security controls into its infrastructure and applications. They work
with the lead or chief architect for the project and sometimes with architects of
other disciplines to embed security into the solution developed.

They need to have a good understanding of not only industry best practices,
regulatory requirements, and security technologies but also infrastructure and
application architecture solutions. The architect has “T-shaped” skills with a deep
security understanding and a wide range of skills related to information systems.

They need to be able to talk about security with a wide range of stakeholders,
including those who aren’t technical and those who work on the specific imple‐
mentation of the security controls and have deep engineering skills.

If you have this role, the whole of this book provides the security-specific archi‐
tecture activities needed for an infrastructure or application architecture, and the
artifacts will need to overlay the architecture developed by an infrastructure or
application architect. The end of this chapter contains references to other useful
publications that will enable you to better support the architects you are advising.

Architect Roles for Security | 11

If you are an architect for an information system, think about what role you have in
integrating security into the solution architecture. The question isn’t whether you are
responsible, but to what extent.

Infrastructure and Application Architect
There are many projects or initiatives that don’t need the benefit of a specialist
security architect, the infrastructure or application architect will need to integrate
security into the solution. The infrastructure architect might be designing a cloud
platform, while the application architect might be designing a payments platform
that’s hosted on the cloud platform. In both cases, security will be the responsibility
of these architects. This book will help them with the architectural thinking for secure
design needed in their roles.

Security Champion
In an Agile or DevOps development environment, a security champion may take on
the role of an advisory security architect. In this case, the security professional will
have a mix of architectural thinking and engineering skills that enable them to get
into the details of advising a developer on how to develop code securely. Further
detail on this role is in Chapter 10.

Contextual Roles and Responsibilities

All the roles need to understand the end-to-end architectural
thinking process and the artifacts involved. Each role’s responsibili‐
ties for leading or assisting in the development of artifacts will vary.
As technical leaders, they will need to adapt their responsibilities
depending on the context of the organization, product, project, or
program.

Now that we’ve talked about the foundational security concepts requiring integration
into a method and the architect roles, let’s move on to a discussion of the structure of
the book that will enable an effective walkthrough of the method.

Book Structure
The book has a series of chapters that build a security architecture using techniques
to develop artifacts throughout the book. Each chapter focuses on specific artifacts
and techniques, giving you the opportunity to also use the book as a reference man‐
ual. Each chapter will highlight techniques that support zero trust. To help reinforce
the learning from the book, we’ve included examples of artifacts based on the case
study contained in Appendix A.

12 | Chapter 1: Introduction

Artifact Framework
Let’s start with looking at the framework used throughout this book, followed by the
detailed artifact dependency diagram.

In Figure 1-3, we show a framework for the architectural thinking that’s used to
develop a security architecture. Each block on the diagram represents a grouping of
related artifacts.

Figure 1-3. Artifact framework

At the top, we have the enterprise context, which includes all the organization inputs
used to architect a solution architecture, including business context and organization
policies. These artifacts are normally created before the solution architecture, but
sometimes they don’t exist and the project is responsible for their development. You
may have to fill in these details, which will add additional effort to the project.

Below that, we have the requirements, architecture and operations sections that
demonstrate the left to right development of the architecture. The requirements
section includes the artifacts for gathering the functional and non-functional require‐
ments for the solution. The architecture section includes the artifacts for the top-
down decomposition of the solution architecture, starting with the architecture
overview and system context. The operations section may be the last on this picture,
but it’s no less important and contains artifacts developed from the requirements and
architecture parts of the framework.

At the bottom left is the governance section, including the artifacts used to support
the overall development of the architecture and used at all stages of architecture
development.

Book Structure | 13

Finally, on the bottom right is the assurance section, which includes all the activities
necessary to give us confidence in the design and implementation of the security
controls, and these activities continue into Day-2 operations.

This is a starting point, and now we need to elaborate the framework.

Artifact Dependency Diagram
The framework in Figure 1-4 shows an artifact dependency diagram with the docu‐
ments, diagrams, and tables created using techniques contained within this book. In
the following chapters, we will walk through the creation of the artifacts using this
diagram as a roadmap.

The number of artifacts may look overwhelming, but the artifacts can be individual
diagrams and tables rather than a big document. It also has artifacts containing code,
such as a deployable architecture. Use the artifacts and techniques as tools, depending
on the project’s specific requirements.

Diagram Format

The original diagrams we produced have been redrawn for con‐
sistency and to support publishing requirements. If you want to
see selected original diagrams, they are hosted on the companion
website for the book.

It’s likely that, as an architect, you will come across these artifacts, with varying
levels of input depending on your role. As we discussed earlier, the application or
infrastructure architect will own some of these artifacts, and you may add content to
them. In other cases, you will own them. If someone doesn’t own them, it’s most likely
that you do. When it comes to operations artifacts, you may not create the artifacts,
but you are responsible for ensuring their delivery.

It’s also not necessary to use every one of the artifacts, and the time spent on each one
should be just enough to convey the architecturally important features of a system.
For instance, when validating the effectiveness of control mechanisms, you don’t
have to consider every single transaction flow that could occur within the system.
Instead, you should look for a representative collection of architecturally significant
transaction flows that enable you to review all major paths through the system at least
once.

14 | Chapter 1: Introduction

https://securityarchitecture.cloud
https://securityarchitecture.cloud

Figure 1-4. Artifact dependency diagram; see the original diagram

Create documentation appropriate to the context of the project and the sensitivity
of the data the system is processing. There will be a need to create significant
documentation for an application subject to regulations to give assurance to internal
risk management and external auditors. An organization that’s less tolerant of risk
may require the identification of an extended list of threats and countermeasures.

Book Structure | 15

https://oreil.ly/SAHC

Integration of Artifacts with Other Methods
We’ve used names for artifacts that may be different from the ones you use for
architectural thinking. We’ve tried to align with common industry names, and where
there isn’t agreement, we’ve tried to assign names that would be recognizable to most
software or infrastructure architects. We’ve provided a mapping between the artifact
names we used and other methods and publications in Appendix B.

You’ll often see that there is no equivalent artifact to the ones we propose. It just
highlights how other methods have a focus on specific parts of the architectural
thinking process. We’ve tried to create a set of artifacts and techniques that integrate
practices such as design thinking and stretch into the critical operational aspects of
security.

Using this generic set of artifact names, we hope you are able to overlay whatever
software architecture method you may be using. We’re not trying to dictate the
underlying methods used within your organization, but we hope you can find a way
to integrate and enhance the methods, artifacts, and techniques you are already using
today.

We have an interest in knowing if you integrate our thinking into other software
architecture methods or if you have any ideas to improve the method.

Now we need to discuss how best to demonstrate the use of the techniques to create
artifacts.

Case Study
We’ve found the best way to learn the techniques to create the artifacts is through a
case study that defines a problem with some business context, current IT architecture,
and an architecture overview diagram. We reference the case study contained in
Appendix A in each chapter and use it to create example artifacts to show the use of
the technique.

Figure 1-5 shows the artifacts contained within the case study. It provides an over‐
all business context to the project, through a discussion of the need to deliver a
system to charge polluting vehicles for entry into the city. It describes the current IT
architecture including the organizations that will need to integrate with the system,
such as Clean Air Pay that needs RabbitMQ integration. If this was a project for an
organization with many existing applications, there would be many more constraints
on the solution.

16 | Chapter 1: Introduction

Figure 1-5. Case study artifact dependency diagram

Book Structure | 17

As the system is processing personal data, the prevailing data privacy legislation
will guide the required controls. The application needs to meet the Payment Card
Industry Data Security Standard (PCI DSS) as it processes payments. The case study
says little about the existing security policies but does talk about using the NIST
Cybersecurity Framework as a practice the project needs to apply to the system.

The case study provides an architecture overview diagram to show the overall system.
Don’t expect the diagram to show all external actors for the system, and you may have
to identify extra information from the description or implied systems to integrate
with. This is the first diagram the project is likely to give you, or you need to create
it yourself. It’s a diagram that shows an overview of the solution, but it’s not expected
to be in a standard format and will be a diagram that anyone can understand from
a non-technical perspective. In the case study diagram, we have components joined
together by lines, but it could just be a block diagram of capabilities in groups
without lines showing control or data flow. It’s also likely to evolve over time, so keep
an eye on changes to this diagram from the lead architect, as the updates may change
your solution.

We will use an artifact dependency diagram in each chapter, to highlight the artifacts
we’re discussing. Let’s walk through each of the chapters and their contents.

Book Organization
As discussed before, the book has chapters organized broadly in the order of the
development process to construct a solution architecture with security included.
Figure 1-6 shows the solution lifecycle with the boxes Plan, Design, Build, and Run
representing the phases.

These solution lifecycle phases all feed the security architecture at the bottom of the
diagram. The Govern, Identify, Protect, Detect, Respond, and Recover blocks align
with the six functions in the NIST Cybersecurity Framework, which we will discuss in
Chapter 2, together with the security domains we’ve defined for an enterprise security
architecture.

We’ll now take you through the different parts of the book that align to the solution
lifecycle phases in Figure 1-6. Each part contains one or more chapters.

18 | Chapter 1: Introduction

https://oreil.ly/kRIvM
https://oreil.ly/kRIvM
https://oreil.ly/4P4yS
https://oreil.ly/4P4yS
https://oreil.ly/NuxnB

Figure 1-6. Architectural thinking for security framework; see the original diagram

Book Structure | 19

https://oreil.ly/SAHC

Part I. Concepts
We start the book with two chapters discussing the security and architecture concepts
used within the book. These chapters provide a foundation before we get into the
stages of the solution lifecycle:

Introduction
Chapter 1 will give you some background to architecture, security architecture,
and the approach this book uses to walk through the method.

Architecture Concepts
Chapter 2 discusses where architectural thinking fits into the design and develop‐
ment lifecycle, and the difference between enterprise and solution architecture.

Part II. Plan
We continue with the Plan phase in Figure 1-6, where we discuss obtaining require‐
ments from the enterprise context and then requirements definition:

Enterprise Context
Chapter 3 discusses the information that’s external to the development of the
solution architecture including business context, current IT environment, laws and
regulations, policies and standards, enterprise architecture, and guiding principles.

Requirements and Constraints
Chapter 4 discusses the gathering of requirements, starting with external laws,
regulations, and industry standards. It then goes on to discuss documenting the
functional and non-functional requirements for a system.

Part III. Design
Now that we’ve gathered the requirements, we continue with the Design phase in
Figure 1-6, where we discuss the design of the solution architecture, starting with the
functional components and moving on to the deployed architecture:

System Context
Chapter 5 discusses the core architectural thinking technique for protecting
sensitive assets by focusing the boundary of the system, on where the data
flows, where it’s stored, and where it’s processed. An architect uses the system
context diagram to define the boundaries of the system and the external actors
triggering data flows through interactions with the system. The chapter continues
by describing the documentation of an information asset register and the classifi‐
cation of the data to identify the types of controls depending on data sensitivity.

Application Security
Chapter 6 discusses the development of a functional architecture for an appli‐
cation or workload through documenting a component architecture diagram. It

20 | Chapter 1: Introduction

continues by starting with threat modeling at a high level for the application
components.

Shared Responsibilities
Chapter 7 will discuss the deployment of application subsystems onto technology
platforms and document the shared responsibilities for a set of hybrid cloud
platforms.

Infrastructure Security
Chapter 8 continues elaboration of the solution by deploying the functional
components onto infrastructure and ensuring data flows use zero trust principles
for protection. A deployment architecture diagram or cloud architecture diagram
provides the documentation for a hybrid cloud infrastructure architecture. The
architecture diagrams will then have the threat modeling repeated.

Architecture Patterns and Decisions
Chapter 9 looks at how you can accelerate architectural thinking by using archi‐
tecture patterns and deployable architectures. The chapter will then introduce the
use of architectural decision records.

Part IV. Build
Once we’ve designed a solution architecture, we continue with the Build phase in
Figure 1-6 by considering the development lifecycle:

Secure Development and Assurance
Chapter 10 looks at the development lifecycle and how architectural thinking for
security integrates into it, including Agile development and the role of a security
champion. We then look at the role of the risk, issue, assumption, and dependency
log during the design and development lifecycle.

Part V. Run
Finally, we need the system to remain secure after it’s live, so we discuss the opera‐
tional aspects of the system as shown in the Run phase in Figure 1-6:

Security Operations
Chapter 11 looks at elaborating the roles and responsibilities identified with the
shared responsibility diagram into a Responsible, Accountable, Consulted, and
Informed (RACI) table. The responsibilities are then documented through the
processes, procedures, and work instructions needed to secure the system. We then
continue with the documentation of the detection of threats and response to
incidents through a threat detection use case and incident response runbook.

Book Structure | 21

Part VI. Close
And the final chapter includes some closing thoughts:

Closing Thoughts
Chapter 12 concludes the book with some thoughts on best practices when
architecting security into a solution architecture.

Architectural thinking is the decomposition of a solution through an iterative process
into more and more detail. Let’s discuss how we will do that.

Solution Architecture Decomposition
Throughout the book, we break down the solution architecture of the information
system into layers, as shown in Figure 1-7. We start at the top layer by using a system
context diagram to describe the system’s boundary and how it connects to external
human and system actors. In Chapter 5, we will talk more about this.

We will then look at the functional components of the application, or workload, that
are inside the system boundary. We will describe how they interact with each other
and start to examine the threats to the application. In Chapter 6, we will examine this
in more detail.

Figure 1-7. Solution architecture decomposition layers

On the bottom layer, we will examine the deployment of the functional components
of the application onto the infrastructure and apply zero trust architecture practices.
In Chapter 8, we will explore this layer in more detail.

Other architecture models may introduce additional layers, but we’ve tried to make it
simple so you can apply the techniques to different architecture methods. However,
it’s likely that you will decompose each layer from a logical to a physical (or prescrip‐
tive) perspective. We give an example of that decomposition in Chapter 5. As another
example, look at the container, component, and code diagram decomposition in the
C4 Model.

22 | Chapter 1: Introduction

https://c4model.com

We continue with a discussion of the steps involved in architectural thinking and
decomposition.

Method Techniques
In each of the following chapters, you will find at least one architectural thinking
technique discussed.

We split the techniques into two types:

Enterprise
The techniques discussed apply to enterprise architecture and don’t use the case
study.

Case study
The techniques discussed use the case study in Appendix A to demonstrate how
to apply the techniques.

Table 1-2 lists the techniques and their type discussed in each chapter.

Table 1-2. Techniques by chapter

Chapter Technique type Technique
Chapter 2, “Architecture Concepts” Enterprise Enterprise security architecture

Chapter 3, “Enterprise Context” Enterprise All artifacts from the enterprise context group

Chapter 4, “Requirements and Constraints” Case study Use case
Journey map
User stories
Swimlane diagram
Separation of duties matrix
Non-functional requirements
Requirements traceability matrix

Chapter 5, “System Context” Case study System context diagram
Information asset register

Chapter 6, “Application Security” Case study Data flow diagram
Component architecture diagram
Sequence diagram
Collaboration diagram
Threat model

Chapter 7, “Shared Responsibilities” Case study Shared responsibility diagram

Chapter 8, “Infrastructure Security” Case study Deployment architecture diagram
Cloud architecture diagram

Chapter 9, “Architecture Patterns and Decisions” Case study Architecture patterns
Deployable architecture
Architectural decision record

Chapter 10, “Secure Development and
Assurance”

Case study Risks, assumptions, issues, and dependencies (RAID) log
Test strategy and plan

Book Structure | 23

Chapter Technique type Technique
Chapter 11, “Security Operations” Case study Shared responsibilities RACI

Process (swimlane diagram)
Statechart diagram
Procedures
Work instructions
Separation of duties matrix
Threat detection use case
Incident response runbook
Threat traceability matrix

Order of the Techniques

The order of the techniques throughout the book uses the same
order we teach students for the MSc degree module in the UK.
We designed the order to build up the architecture step by step.
The documentation of the architectural decision records and RAID
artifacts is something that should happen from the start of the
architectural thinking process, but it makes more sense to discuss it
after the completion of some architectural thinking.

In many chapters, we offer a QA checklist or extra detail on the steps you should
perform to help deliver quality artifacts.

At the end of each chapter there is an Exercises section with multiple choice ques‐
tions. The answers can be found in Appendix C. Further, summative questions with
answers can be found on the companion website.

Let’s close this chapter with some final thoughts.

Summary
We started by discussing four foundational techniques for designing security into
systems and how it’s a problem when they’re not integrated together, creating a
disjointed approach to integrating security into an information system. We believe
there is a need to integrate the techniques to create a robust security architecture
method to overlay existing information system and software architecture methods.

We went on to discuss the different types of architects that will use the method.
We believe that all types of information system architects need to be able to design
the security of an information system. A security architect is there to support other
architects and develop architecture for security services. Think about your role as a
consultant, architect, or engineer and how architectural thinking for security will fit
within your current projects.

24 | Chapter 1: Introduction

https://securityarchitecture.cloud

The final section discussed the structure of the book, with the artifact dependency
diagram helping frame the journey through the architectural thinking for secure
design method. The chapter contained a summary of later chapters, and the tech‐
niques used to create the artifacts. You might want to create a copy of the artifact
dependency diagram to pin on your wall and use as a prompt in your project.

In Chapter 2, we will take some time to reflect on where architectural thinking
fits into the development lifecycle. We often see a jump from design thinking to
software engineering without architectural thinking, causing problems with major
architectural changes needed at a later stage. We will also talk about the difference
between enterprise and solution architecture, as this can often get confused. These
topics will help give context to the following chapter, where we start on the journey
through the artifact dependency diagram.

Further Reading
While we discuss a comprehensive method for architecting security into an infor‐
mation system, an understanding of other topics such as cloud security, software
architecture, cybersecurity architecture, and enterprise security architecture will be
beneficial.

Rather than hiding this at the end of the book, you may wish to consult some of
these other books and online sources while you read our discussion of architectural
thinking for secure design.

For cloud security technology that spans multiple cloud service providers, a good
starting point is Practical Cloud Security (O’Reilly) by Chris Dotson. There are plenty
of other sources online and in books that focus on specific cloud service providers.

For cybersecurity solution architecture, we suggest reading Practical Cybersecurity
Architecture (Packt Publishing) by Ed Moyle and Diana Kelley.

If you would like to understand more about software architecture methods, we sug‐
gest three other sources. Practical Software Architecture (IBM Press) by Tilak Mitra
discusses a method used widely across IBM with a focus on on-premises architecture
for enterprise systems. For software architecture with an engineering approach, we
suggest reading Fundamentals of Software Architecture (O’Reilly) by Mark Richards
and Neal Ford. We also mention in several places the C4 Model by Simon Brown,
which provides a simple approach to visualizing software architecture.

Further Reading | 25

https://oreil.ly/bRCti
https://oreil.ly/89v5Z
https://oreil.ly/89v5Z
https://oreil.ly/l8bfs
https://oreil.ly/-kjjt
https://c4model.com

For enterprise and solution architecture, Enterprise Security Architecture (CRC Press)
by John Sherwood, Andrew Clark, and David Lynas describes the six-layer security
architecture known as Sherwood Applied Business Security Architecture (SABSA).
It’s referenced in other places, including The Open Group. From The Open Group,
there is the Open Enterprise Security Architecture (O-ESA) that has a framework for
enterprise security architecture.

Throughout the book, we will suggest additional reading.

26 | Chapter 1: Introduction

https://oreil.ly/yukDV
https://oreil.ly/umwhA

Exercises
1. Which of the following are the foundational security techniques used in the1.

method described in this book? Select all that apply.
a. Secure by design with threat modelinga.
b. Zero trust architectureb.
c. Confidential computingc.
d. Compliance managementd.
e. Data-centric securitye.

2. What are the characteristics of secure by design? Select all that apply.2.
a. It includes threat modeling.a.
b. It precedes architectural thinking.b.
c. It is targeted at the design of technology products.c.
d. It scales to design a system of systems.d.

3. What are characteristics of zero trust architecture? Select all that apply.3.
a. “Never trust, always verify.”a.
b. It’s only about network security.b.
c. Identity is the new perimeter.c.
d. It’s a product or solution.d.

4. Which one of these architect roles is specifically used in an Agile or DevOps4.
development environment?
a. Enterprise security architecta.
b. Application architectb.
c. Security championc.
d. Advisory security architectd.

5. Which of the artifact sections supports the overall development of the architec‐5.
ture during all stages of development?
a. Requirementsa.
b. Architectureb.
c. Operationsc.
d. Governanced.
e. Assurancee.

Exercises | 27

6. The artifact dependency diagram contains which of the following types of arti‐6.
facts? Select all that apply.
a. Diagramsa.
b. Event logsb.
c. Automationc.
d. Tablesd.

7. Which of the following statements is correct?7.
a. Solution architecture decomposition includes enterprise architecture, compo‐a.

nent architecture, and deployment architecture.
b. Solution architecture decomposition includes architecture overview, compo‐b.

nent architecture, and deployment architecture.
c. Solution architecture decomposition includes system context, componentc.

architecture, and deployment architecture.
d. Solution architecture decomposition includes system context, componentd.

architecture, and data flow diagram.

28 | Chapter 1: Introduction

CHAPTER 2

Architecture Concepts

Before we get into the method of integrating security and compliance into a security
architecture, we’re going to discuss two topics that offer some context to architectural
thinking.

First we’ll discuss the integration of architectural thinking into the design, build, and
operation lifecycle of a system. There seems to be a trend to focus on design thinking
and go straight to building or coding a system without considering architectural
thinking. This often leads to a serious gap in the design of an information system that
needs to support production workloads.

Second, you need to understand the difference between enterprise architecture and
solution architecture. These two types of architectural thinking can be misunderstood,
and the value of having both is sometimes not recognized. We will explore the value
each of these types of architecture brings to designing a secure and compliant system.

We then follow up with a deep dive into zero trust architecture, including the NIST
Core Zero Trust Logical Components. We continue with a discussion on how zero
trust integrates with other security practices for use in architecting security. We then
provide some guidance on solutions that support the implementation of zero trust.

We will go on to discuss a technique for the development of an enterprise security
architecture.

Let’s start with the first topic: understanding where architectural thinking fits into the
design and development lifecycle.

29

From Design Thinking to Compliance
Before getting into security architecture, it’s important to understand where architec‐
tural thinking fits in the design, build, and operation of an information system’s
lifecycle. First read the following sidebar as an example of the problems that can
occur without architectural thinking.

A Proof of Concept or a Minimum Viable Product?
Someone comes up with a new idea for an application, and they suggest building
a proof of concept (PoC) to prove the principles of the solution. The PoC gets the
go-ahead, and work starts to develop the solution through design thinking and Agile
working practices. Someone then says, “This should be a minimum viable product
(MVP) so we can announce it at the conference next month.”

What’s the problem with this? A PoC demonstrates the basic functionality, but that
doesn’t mean the application will be secure, resilient, scalable, etc. Architectural
thinking enables the system to support production workloads and may be missing
between the design thinking and engineering of the system. The architect hasn’t
ensured that the system meets the required architectural characteristics for a produc‐
tion service, and the completion of testing hasn’t confirmed production readiness.

So what could happen? The service may be well-received by new users right away, but
it becomes overwhelmed. The operations team struggles to scale the service because it
wasn’t designed to scale, but they get it under control (for now).

External threat agents are then paying attention to the service and have decided to test
the security of the system that’s not fully patched or locked down. They gain access
and start to extract sensitive information, but the organization running the system
doesn’t know this because there is no threat monitoring.

Someone urgently brought in a contract database administrator without conducting
any background checks, and now this person has privileged access to all the sensitive
data. There is no bastion host or threat monitoring in place, so this administrator
could extract all the data without anyone knowing about it.

Six months later, the hackers release the data, and customers leave the service for a
more secure platform while looking for recompense for their data loss.

Many of these problems have occurred before because a PoC became an MVP
without the necessary architectural thinking.

30 | Chapter 2: Architecture Concepts

So how should architectural thinking fit into the design of a system? We will examine
how design thinking, architectural thinking, engineering, operations, and compliance
integrate together as an end-to-end design process, as shown in Figure 2-1.

Figure 2-1. From design thinking to compliance

Let’s continue this section by working through the diagram from left to right in our
discussion.

Design Thinking and Consulting Practices
Over time there have been a number of consulting methods that gather business
requirements for developing applications. They’re a mix of generic practices used
in many different contexts but there are others specific to the business problem.
Many organizations currently use design thinking as a human centered and iterative
approach to problem-solving that emphasizes empathy, experimentation, and itera‐
tion. Depending on the source, the origin of the method is either Larry Leifer, the
founding director of the Stanford Center for Design Research, or David Kelley from
the global innovation agency IDEO.

Whatever the source, Stanford d.school suggests that design thinking is composed of
five stages:

1. Empathize: Understand users’ physical and emotional needs, and pain points.1.
2. Define: Define the core problem to solve.2.
3. Ideate: Generate many ideas to create prototypes.3.
4. Prototype: Iteratively generate prototype solutions.4.
5. Test: Obtain feedback from real users and the prototype solutions.5.

From Design Thinking to Compliance | 31

https://oreil.ly/_q4ri
https://www.ideou.com
https://oreil.ly/G0SVC

1 There is a debate about what these characteristics should be called. This will be discussed in Chapter 4.
2 We’ve deliberately used a scalability requirement for a security service. We see that it’s often forgotten that

security services have architecture characteristics that aren’t just about security.

Learning Design Thinking

You can learn more about design thinking from:

• Books, such as Design Thinking for Tech (Pearson) by George•
W. Anderson, which includes an overview of the popular
methods

• Online courses, including Coursera, O’Reilly, The Open Uni‐•
versity, and Udemy.

While design thinking focuses on the functional aspects of fulfilling customer needs,
it doesn’t explore the design of requirements such as security, compliance, scalabil‐
ity, resilience, and operability. Design thinking doesn’t offer a systematic approach
to architectural characteristics or non-functional requirements of an information
system.1

We’ve seen projects jump from design thinking to the coding of an application
without thinking about how the architecture of the application and infrastructure
supports the successful delivery of a production business process. The result is a
redesign and rebuild of an application when the application doesn’t scale, isn’t secure,
and doesn’t support the availability requirements of the business processes.

Design thinking needs to work with additional design processes to deliver a complete
and effective information system. This is where architectural thinking comes in at the
next stage.

Transitioning to Architectural Thinking
If you’re wondering where design thinking turns into architectural thinking, Grady
Booch, said it succinctly on X (formerly Twitter) in 2021:

All architecture is design, but not all design is architecture.
Architecture represents the set of significant design decisions that shape the form and
the function of a system, where significant is measured by cost of change.

For example, in design thinking, we might suggest that before a user accesses a
system, they need to complete identification and authentication with the functionality
built into the user interface. We could then add the requirement that the system
needs to support 500,000 users logging in using multi-factor authentication over a 15
minute period at the start of the business day.2 This peak capacity requirement will

32 | Chapter 2: Architecture Concepts

https://oreil.ly/OLDOB
https://oreil.ly/AIkXE
https://oreil.ly/TimuA
https://oreil.ly/fF62j
https://oreil.ly/fF62j
https://oreil.ly/SzsOM
https://oreil.ly/HvBjx
https://oreil.ly/HvBjx

require significant architectural decisions and architectural thinking for the solution
to deliver those requirements.

As discussed earlier there is difference between a proof of concept (PoC) and a
minimum viable product (MVP). With a PoC, design will focus on the proof of
functionality using test data and often not include architectural characteristics such
as performance, scalability, resilience, security, and compliance. An MVP is the
first implementation of a solution with minimum capacity but designed to scale to
meet future growth and meet minimum production architectural characteristics for
processing production data, including security and compliance.

This implies that the delivery of a PoC with design thinking using an Agile approach,
without deep architectural thinking, is insufficient for production services. A PoC
may involve making some architectural decisions, but not many to enable support for
production workloads. With an MVP, the solution needs deep architectural thinking
through clearly documented architecture, architectural decisions, and formal testing
to support production workloads.

An MVP Without Architectural Thinking

If you come across an MVP without architectural thinking to sup‐
port performance, scalability, security, and compliance, remember
that this is in reality a PoC. By calling the project an MVP, the
stakeholders may have the wrong expectations set, with the idea
that the MVP can go straight into production. The whole solution
may need rearchitecting to support production characteristics and
the project might need to be restarted.

Let’s discuss further about architecture, architectural thinking, and the role of an
architect.

The architecture of an information system, or collection of systems, consists of
functional components deployed on infrastructure while making significant decisions
about the architecture design. This is information system architecture or simply archi‐
tecture, and encompasses principles, relationships, processes, and standards that form
the system’s overall structure and operation.

Information System Architecture

We’ve used the term information system architecture rather than
IT architecture given that the system described is about processing
information using processes, people, and technology. It’s not just
about IT.

From Design Thinking to Compliance | 33

The aim of information system architecture is to match technology to business
needs, ensuring the technology is flexible, scalable, secure, resilient, and efficient in
supporting the organization’s objectives. An information system architecture defines
the boundaries, interfaces, and connections between different components to ensure
their seamless collaboration in line with the organization’s overarching IT strategy.

Architectural thinking is a methodical approach or process to construct an informa‐
tion system architecture through problem-solving and decision-making. It begins
by examining the overall context of the system and establishing a set of functional
and non-functional requirements. You should consider the functional components
of the application, including their interactions, before deployment on infrastructure
designed for architecture characteristics like adaptability, scalability, security, resil‐
ience, and efficiency. In terms of security, the process entails identifying threats,
then implementing countermeasures and threat detection to manage risks to the pro‐
cessing of the information assets. The architectural thinking process should ensure
alignment with the organization’s overall business and information strategies.

The individual who applies a systematic approach to architectural thinking to create
an information system architecture is an architect. Meanwhile, a security architect is
a person who takes a security-focused viewpoint when engaging in the practice of
architectural thinking.

There may be an overlap between an architect performing architectural thinking
and a consultant performing design thinking. A consultant normally focuses on the
business requirements, including the design of the organizational and process aspects
of an information system and doesn’t get into the technical or architectural aspects.
However, the consultant will perform some architectural thinking activities. As an
example, a consultant may make the architectural decision that the application is to
be cloud native using a containerized platform.

An Architect or a Consultant?

We’ve come across the view that a security solution is either deliv‐
ered by an architect or a consultant. In reality, many projects need
both the skills of a consultant to understand the business require‐
ments and the skills of an architect to design the technical solution.
A consulting architect may have a blend of the right skills and expe‐
rience, but asking a consultant to architect a solution architecture
without the appropriate skills and experience increases the risk of
project failure and an incomplete security solution.

34 | Chapter 2: Architecture Concepts

Transitioning to Engineering
When does architectural thinking become engineering? In The Art of Systems Archi‐
tecting (Routledge), Mark W. Maier and Eberhardt Rechtin introduce the distinction
between architecting and engineering, where “Engineering aims for technical optimi‐
zation, architecting for client satisfaction. Engineering is more of a science, and archi‐
tecting more of an art.” In other words, the engineering translates the architecture of
a system into a realizable implementation of the information system.

Maier and Rechtin expand on this by saying:

Architecting deals largely with unmeasurables using non-quantitative tools
based on practical lessons learned; that is, architecting is an inductive process.
Engineering deals almost entirely with measurables using analytical tools derived
from mathematics and the hard sciences; that is engineering is a deductive process.

Engineering is a process that designs, builds, and improves information systems by
applying scientific, mathematical, and practical knowledge. In this case, measurables
are the specific configuration, scripts, code, or physical hardware that’s used to con‐
struct an information system. That’s the role of a software or hardware engineer.
Software or information system engineering is just one of many disciplines with the
overarching goal of developing practical solutions to real-world problems.

There are different roles in the engineering of an information system, including
those of a software engineer for software development or a system reliability engineer
(SRE), who will be programming to achieve high levels of operational reliability.

There may be an overlap between an architect performing some engineering activities
and an engineer performing architectural thinking activities. As an example, a secu‐
rity architect may specify the individual firewall rules for deployment to a firewall to
secure the data flowing through a system, which is more aligned with an engineering
activity.

Operational Thinking
Operational thinking for security is critical to ensure the system continues to run
securely and rapidly handle threats. It’s a way of thinking that focuses on the practical,
day-to-day operations of managing and running an information system.

Operational thinking requires understanding and putting into action the processes,
procedures, and support systems needed for information systems to work effectively.
By adopting an operational mindset, organizations can enforce security on an ongo‐
ing basis.

From Design Thinking to Compliance | 35

https://oreil.ly/ElaJl
https://oreil.ly/ElaJl

Sometimes, we see security operations overlooked in the delivery of an application
with no capability to manage security. An adaptation is then required for the appli‐
cation to support the required security operations, with a project overrun and the
associated cost impact.

As a security architect, inclusion of the architecture for security operations at the start
of the design process is essential to ensuring effective security. Many operational pro‐
cesses require operational infrastructure that may require changes in the fundamental
architecture and the implementation of the application.

For example, the interception of an encrypted session between a client and a server
requires inspection of network traffic for malicious content and the leakage of con‐
fidential information. Aside from the additional network components required to
examine traffic, there is a change in the application architecture alongside the need
for a team to administer this new security service.

We will discuss the identification of the security services as a part of enterprise
architecture later in this chapter and the security operations responsibilities and
processes in Chapter 11. There is also the approach where development is integrated
with operations through a model called DevOps that we will discuss in Chapter 10.

Now that we’ve reached the end of the lifecycle, let’s discuss the enterprise context that
influences the design and compliance that ensures the effectiveness of security.

Enterprise Context
Figure 2-1 shows the enterprise context influencing the whole lifecycle, which consists
of internal and external factors that influence every stage from design thinking to
operational thinking. Factors external to an organization include legal and regulatory
frameworks and industry best practices. Internal policies, standards, processes, and
procedures used in developing the security architecture will incorporate mandated
security controls and guidance for delivery across the organization.

We will discuss the external and internal factors that influence architectural thinking
in Chapter 3.

Compliance
Figure 2-1 shows compliance supporting the whole lifecycle, which ensures the
design, build, and operation of the information system meet the relevant laws, regula‐
tions, policies, guidance, and procedures. The starting point is to define a baseline
set of requirements, starting with external factors and then internal factors. We will
discuss this further in Chapter 3.

Once you understand the baseline set of control requirements, it’s important to
demonstrate compliance by considering the requirements at each stage of design,

36 | Chapter 2: Architecture Concepts

development, and deployment. We do this by tracing requirements through each
stage of the design and development with an artifact like a traceability matrix. We will
discuss this further in Chapter 4.

There is a risk of ongoing development processes, operational processes, or a threat
actor changing the configuration of the system components. To prevent unauthorized
changes, this requires continuous compliance checks of the system configuration
and other assurance processes, such as penetration testing. Assurance processes offer
confidence in the secure operation of workloads. We will talk more about assurance
processes and how they support demonstrating compliance in Chapter 10.

Waterfall to Agile Delivery
The transition by organizations from traditional waterfall to Agile delivery represents
a significant shift in the delivery of information systems. The waterfall approach
to information system development requires the completion of each stage before
proceeding to the next. The model assumes the definition of requirements is at the
start and then frozen before development begins.

In contrast, the Agile approach is iterative and incremental, with development taking
place in short cycles known as sprints. Agile teams prioritize close collaboration with
customers and stakeholders, seeking frequent feedback to ensure that the software
they’re developing meets their needs. The Agile model emphasizes flexibility and
adaptability, allowing for easier change.

The need to deal with rapidly changing business and technological environments, a
desire for earlier time to market through an MVP, and higher customer satisfaction
were the driving forces behind the switch from waterfall to Agile delivery. Agile has
grown in popularity in recent years with the move to cloud, with many organizations
adopting it as their preferred development method.

Speed of Agile Development

Agile development of an application doesn’t necessarily deliver the
full function quicker than a waterfall development. It’s there to
deliver function incrementally, bring better stakeholder alignment,
and reduce the risk of delivering a solution that doesn’t meet the
needs of the stakeholders.

However it can create two camps: those who believe in waterfall and those who
believe in Agile. However, both waterfall and Agile have different benefits and draw‐
backs, and the approach chosen depends on the specific needs and constraints of a
given project or organization.

From Design Thinking to Compliance | 37

3 We will continue to use projects rather than products, even though secure by design starts with a product.
However, we’re focusing on architectural thinking for secure design, where a project manages the integration
of a system containing many products or where a program manages the integration of a system of systems.

4 We discuss quality attributes as non-functional requirements in Chapter 4.

In practice, a project may use both approaches, with waterfall for the development
of a secure, scalable, and resilient infrastructure architecture to support multiple
applications. With many applications and workloads using the same infrastructure,
architectural decisions have a greater impact requiring more careful architectural
thinking. The development of the application may then use an Agile approach.

Security Architecture in Agile
For the effective implementation of security, in addition to design thinking, a combi‐
nation of architectural thinking, engineering, and operations is crucial. While some
might associate architectural thinking with voluminous documentation from tradi‐
tional waterfall delivery, the architectural thinking process is still required during
Agile delivery.

With Agile delivery, architectural thinking must focus on “just enough” and “just-in-
time” documentation that’s iterative and integrated to support the Agile delivery
process. This book approaches these needs through the creation of individual archi‐
tectural artifacts rather than large documents to meet the needs of an Agile delivery
environment.

A further discussion of Agile development processes and roles is in Chapter 10.

Continuous Architecture
The use of individual artifacts created just in time, rather than a heavy deliverable-
based approach, aligns with a continuous architecture approach to architectural think‐
ing. Murat Erder, Pierre Pureur, and Eoin Woods have documented an approach
that integrates architectural thinking practices into Agile development practices in
Continuous Architecture in Practice (Addison-Wesley).

They propose that continuous architecture follows these six principles:

Principle 1
Architect products; evolve from projects to products.3

Principle 2
Focus on quality attributes, not on functional requirements.4

Principle 3
Delay design decisions until they are absolutely necessary.

38 | Chapter 2: Architecture Concepts

https://oreil.ly/Syw0N

5 The artifact diagram included artifacts and architectural thinking for all these stages of the development
lifecycle.

Principle 4
Architect for change—leverage the “power of small.”

Principle 5
Architect for build, test, deploy, and operate.5

Principle 6
Model the organization of your teams after the design of the system you are
working on.

If you are applying the artifacts and techniques discussed in this book in an Agile
working environment, we suggest you apply the principles and practices they have
documented.

Let’s go on to discuss enterprise architecture and solution architecture.

Enterprise and Solution Architecture
There are different types of architecture descriptions, and each serves a different
purpose with different techniques and outputs. This book is primarily about solution
architecture (SA), which provides a description of the architecture for the design and
implementation of an information system that supports the delivery of specific busi‐
ness or technology processes. However, enterprise architecture is also an important
part of the architectural thinking process.

Enterprise Architecture
An organization needs a methodical approach to ensure the continual alignment of
business objectives and goals with their information systems and technology. An
enterprise architecture (EA) is there to optimize the implementation of information
systems through consistency and best practices to improve the effectiveness of deliv‐
ery for an organization.

The most widely known enterprise architecture methodology and framework is the
TOGAF® Standard from The Open Group. The Open Group Architecture Frame‐
work (TOGAF) is a framework for developing an enterprise architecture. Organiza‐
tions use it as a structured development method to design, plan, implement, and
manage their enterprise architecture. It’s a great foundation for enterprise architec‐
ture as it’s vendor neutral and under continuous improvement.

The Open Group uses a definition for enterprise architecture from Gartner:

Enterprise and Solution Architecture | 39

https://oreil.ly/xLT3o
https://www.opengroup.org
https://oreil.ly/AAARg

The process of translating business vision and strategy into effective enterprise change
by creating, communicating, and improving the key principles and models that
describe the enterprise’s future state and enable its evolution.

An enterprise architecture provides guidance when developing a solution architec‐
ture. It gives an overall holistic view with architectural building blocks and associated
descriptions, guiding principles, and best practices for following across the different
projects while creating solution architectures.

We can use architecture building blocks (ABBs) to describe generic characteristics
or functionality as a part of an enterprise architecture for a defined problem space,
such as a whole organization, line of business, or major program. An EA can also
use the ABBs to describe how they relate internally or externally, but they don’t try to
describe the implementation of a specific information system.

The ABBs could also be high-level business processes or proposed generic IT com‐
ponents. We must also not forget that an information system is a blend of people,
processes, and technology. The ABBs can reflect this by describing them as services.

The Enterprise Continuum

In the TOGAF standard, there is an “Enterprise Continuum” chap‐
ter. It describes the process of keeping enterprise architectures,
building blocks, models, and solutions up to date and what their
interdependencies are. Patterns could be either assets in the Archi‐
tecture Continuum, or in the Solutions Continuum.

We will see later in this chapter that an enterprise architecture diagram can be
particularly useful in categorizing, communicating, and describing security services.

Solution Architecture
A solution architecture describes the architecture of a specific solution for infrastruc‐
ture, application, or workload. It will document the enterprise context, business
and IT requirements, the functionality of the workload, and the deployment of the
functionality onto deployed infrastructure. In other words, a solution architecture
describes the solving of a business problem in terms of an information system con‐
sisting of people, processes, and technology. It will describe how specific technologies
and products deliver the system’s capabilities.

40 | Chapter 2: Architecture Concepts

https://oreil.ly/d2Cpj
https://oreil.ly/d2Cpj

This book, including the artifacts and techniques, is about describing the security
and compliance aspects of a solution architecture. The solution architecture may also
describe the architecture for a security capability or service. We develop a solution
architecture to describe the solution for a specific business problem or the supporting
infrastructure on which to host workloads. It includes both a conceptual and a
lower-level prescribed or physical view of the architecture.

Policies, practices, and processes created at the enterprise or organization level will
serve as the foundation for a solution architecture’s security. Their development will
take place by incorporating external laws, regulations, and industry standards in
accordance with the organization’s risk tolerance. They will be the foundation of
compliance activities for the organization, but they won’t be sufficiently specific to
enable consistency of implementation across the organization. An enterprise archi‐
tecture, architecture patterns, and enterprise processes are likely to serve as a guide
for ensuring consistency in the implementation of security controls. We’ll discuss
the external and internal contexts that influence architectural thinking further in
Chapter 3.

Now let’s take a deeper dive into zero trust architecture, following on from what we
discussed in Chapter 1.

Zero Trust Architecture
We started with an overview of zero trust architecture concepts and principles and
will continue with a deeper discussion of the core logical components of a zero trust
architecture, which will provide further context on the subject.

We previously discussed zero trust principles, but they don’t help us understand the
practices we should use as part of architectural thinking. We’ll therefore continue
with a discussion on how the principles translate into the practices and highlight
where in the book we apply the practices.

Core Architecture Components
During many security architecture conversations around zero trust, a discussion on
the access model from the publication NIST SP 800-207 Zero Trust Architecture will
arise. It defines the zero trust tenets and provides a basic diagram to describe the
basic relationship between components and their interactions. Figure 2-2 comes from
the original diagram in NIST SP 800-207.

The diagram has a subject (human actor or user) using a system to access an enter‐
prise resource (data or functional component). Between the subject and resources, a
policy enforcement point (PEP) acts as a proxy determining what resource the subject
can access. The PEP uses the policy decision point (PDP) to make those decisions.

Zero Trust Architecture | 41

https://oreil.ly/GP8bk

Figure 2-2. NIST core zero trust logical components

A more detailed breakdown of the key elements follows:

Subject
The subject can be a human actor, system actor, or functional component that’s
looking to gain access to an enterprise resource, such as data.

Enterprise resource
This is a resource under the control of your organization, such as data, a device,
or functional component.

Policy enforcement point (PEP)
The PEP provides inline access control between the subject and the enterprise
resource managing the connection. The PEP will forward every access request
to the PDP for evaluation, and the PEP will enforce the decision returned by
the PDP. In reality, the PEP (and the PDP) often run on the same system as
the enterprise resource for performance reasons. There are multiple types of
configurations possible.

Policy decision point (PDP)
The PDP contains two components. The first component is the policy engine
(PE), which makes access decisions based on two data elements. First, it requires
policies that define who gets access to what kind of resource and under what
conditions. The second element is the contextual data needed by the access
decision rules. As you can see in the diagram, there is a wide range of diverse

42 | Chapter 2: Architecture Concepts

data sources that could provide contextual data. The second component is the
policy administrator that manages communication with the PEPs.

Adaptive-Based Access Control

This conceptual framework model isn’t new to people familiar with
adaptive-based access control solutions like the ones based on the
XACML standard, though there are some differences. The addition
of the policy administrator differs from the XACML standard. It’s
also sometimes called context-based restrictions or access control.

Control and data plane
The PEP manages the traffic in the data plane, the network path carrying the
application data. The communication between the PEP and the PDP is through
the control plane, which is a restricted component that’s separate from the data
plane.

Data sources
The components on the left and right represent possible data sources of contex‐
tual information for the PE (all the arrows should point to the PDP as they
represent the flow of contextual information to the PE). The contextual informa‐
tion could be about the subject who is requesting access, the device, the network
path, or the system hosting the data. A few terms that need expanding include:

• The continuous diagnostics and mitigations (CDM) system monitors the•
state of devices and applications and should apply patches/fixes as needed.

• The security information and event management (SIEM) system detects•
potential threats and vulnerabilities.

This conceptual architecture is there to support the “never trust, always verify”
principle and is applicable to those use cases where PEPs (and the related PDPs) can
make use of contextual data to make access decisions.

Zero Trust for Access Control in Cloud Native Applications

NIST published an addition to the FIPS 800-207 document in
early 2024. Quote from the NIST webpage: “The objective of this
publication is to provide guidance for realizing an architecture that
can enforce granular application-level policies while meeting the
runtime requirements of ZTA for multi-cloud and hybrid environ‐
ments.”

Now that we’ve described the conceptual zero trust architecture from NIST, we’ll
discuss the translation of the zero trust principles into practices for use throughout
the following chapters.

Zero Trust Architecture | 43

https://oreil.ly/tz6Zr
https://oreil.ly/1IgqN

Architectural Thinking Integration
Zero trust principles are easy to understand but sometimes hard to implement. As
you read in Chapter 1, there are multiple definitions and interpretations for the zero
trust practices to implement. We touched on zero trust architecture, but as it’s a
complex area that relates to much of the architectural thinking process, we want to
show you how it integrates into the method described throughout this book.

Zero trust is normally defined by a set of principles, tenets, or simply a way of
thinking. Zero trust isn’t an end-to-end method, and it needs integration with other
architectural thinking techniques for the development of a comprehensive security
solution. We’ve done this by converting the set of principles in Table 1-1 into a set of
practices, listed in Table 2-1, that you can apply during your architectural thinking.

Table 2-1. Zero trust principles to practices mapping

Principles Practices
Data-centric security Identity, data, and transaction identification

Never trust, always verify Continuous authentication

Adaptive access control

Least privilege

Microsegmentation

Data protection everywhere Encryption in transit, at rest, and in use

Assume breach Threat detection and response

The method described in the book distributes zero trust architectural thinking
throughout with a systematic way of identifying the resources and the security prac‐
tices involved in zero trust architecture. For this reason, you won’t find one single
section on zero trust architectural thinking within this book, and so we will help
direct you to the places where we integrate the practices into the method.

Let’s explore each of these practices and discuss them in further detail.

Identity, data, and transaction identification
There needs to be a systematic way of considering all resources for the transportation
and storage of the data. Without understanding the resources, we don’t know what
and where we need to protect the data assets. We do this by identifying the actors,
data, and transaction flows through the system.

The identification starts with the creation of a system context diagram to identify
users, devices, and services that are external to the system, as discussed in Chapter 5.
The process continues through understanding the transaction flows and the threats
to the data, traveling through the functional components discussed in Chapter 6. The

44 | Chapter 2: Architecture Concepts

process repeats with the flows through the deployed components on the infrastruc‐
ture covered in Chapter 8.

Continuous authentication
In traditional identity and access management (IAM) solutions, a subject (human
or system) will identify and authenticate with the session and it will stay open until
the session is inactive or there is a requirement to re-authenticate after many weeks.
However, how do we know that the session created two days ago is from the same
person or system?

Authentication isn’t only required at the start of a user or system session but also
continuously during the lifetime of the session, also known as continuous authentica‐
tion. If contextual information changes during the active session, then the system
re-evaluates the access policies, and the outcome could be the termination of the
active session.

Continuous authentication may include checking behavioral patterns such as typing
speed, biometric authentication such as fingerprint scans, device authentication such
as the security compliance of a device, and contextual information such as time of day
or location. Detection of threats is possible by using the alerts from the continuous
authentication mechanism when authentication fails.

We consider the use of continuous authentication as a part of the threat modeling
analysis for the transaction flows through the system in Chapter 8.

There isn’t yet widespread implementation of this practice, but it’s often implemented
with adaptive access control that shares these mechanisms.

Adaptive access control
Adaptive access control provides access based on the context of the subject accessing
the enterprise resources. The access could increase or decrease depending on the
context in which the user is accessing the system. For example, accessing from an
office space may offer increased permissions over accessing remotely.

Behavioral patterns may alter the level of access depending on information, such as
normal login times. Risk-based decisions may enable higher levels of access if using
a trusted device and other contextual information, such as the location of the device.
Adaptive access control should contain real-time access control components, like a
PEP or the access logic built in, and should make use of the maximum possible
information from the available contextual data.

Once a system makes a decision on the level of access, the capability may use a
combination of access control approaches such as role-based access control, attribute-
based access control and risk-based access control.

Zero Trust Architecture | 45

In many systems, the technical capability doesn’t currently exist to perform adaptive
access control and the impact on performance would make it undesirable. At the time
of writing, the focus has been on zero trust solutions at the network edge using zero
trust network access (ZTNA), which we will discuss further later on.

However, on cloud platforms, system-to-service, system-to-system, and service-to-
service communication uses fine-grain access control and is starting to use adaptive-
based access control with strong authentication for the boundaries of network
segments and cloud services. We expect this to evolve into full zero trust capabilities
for every network segment and cloud service connection.

We consider the use of adaptive access control as a part of the threat modeling
analysis for the transaction flows through the system in Chapter 8.

Least privilege
Least privilege is a principle and practice that says a user or system should receive
the minimum permissions to complete the activities they need to perform. As well
as only having minimum access, a subject should have no access by default, and
for sensitive processes, there should be the enforcement of separation of duties.
Fine-grain access controls are available for the implementation of least privilege
through role-based access control, attribute-based access control, and risk-based
access control.

At the application layer, identity governance and administration solutions must
ensure that employees don’t have more entitlements and roles than they need to
perform their job. This is especially difficult as privilege creep occurs when an
employee has legacy entitlements from their past roles where revocation of privileges
hasn’t taken place.

In Chapter 4, we start examining the required privileges through the documentation
of the functional requirements using a swimlane diagram and a separation of duties
matrix.

In Chapter 8, we discuss the need to authorize sessions with least privilege between
application components, services, and devices. Authorization takes place in real time
through decisions based on the context of the requester. At the network level, the
implementation of least privilege is also through microsegmentation to restrict the
resources and services the workload has access to.

46 | Chapter 2: Architecture Concepts

Multiple Policy Enforcement Points

It’s suggested in the NIST model that a PEP provides a centralized
policy decision to evaluate authorizations in real time. In reality,
there will be multiple policy enforcement points, and they won’t
always be on the boundary of a system, as shown in ZTNA. For
example, a cloud platform will have its own PEP that may be
separate from the network and application PEPs.

In Chapter 11, we continue with a discussion on the use of a RACI matrix, process
(swimlane diagram), procedure, and work instructions to help define least privilege
requirements for security operations.

Microsegmentation
In the past, we split data centers into network segments containing hundreds of
devices, but today we use microsegmentation, where compute resources are in small
isolated segments to reduce lateral movement on a network. We discuss this further
in Chapter 8.

Encryption in transit, at rest, and in use
Encryption of data in transit and at rest is an essential mechanism to protect sensitive
data from disclosure, particularly on a cloud platform where you aren’t in control of
cloud operations. Encryption of data at rest needs to effectively prevent privileged
users from having access to the most sensitive data. We will discuss this further in
Chapter 8.

Threat detection and response
Assume breach means that the security design for a system should assume the
compromise of the surrounding components on the same network and see them as
hostile systems instead of trusted neighbors. This assumption is also true for all other
systems with whom a system establishes a network connection. With this practice,
the focus shifts to security monitoring to detect possible anomalies in all security
domains.

During the threat modeling process, in Chapters 6 and 8, we discuss the identification
of potential threats and any abnormal behavior. We can then use the identified threats
for threat detection and incident response, as we discuss in Chapter 11.

Zero Trust Architecture | 47

Zero Trust Solutions
There are typical zero trust-based solutions that could enable you to realize the zero
trust principles. It’s beyond the scope of this book to do a deep dive on zero trust-
based solutions, as they’re rapidly evolving, but we’ll give a summary here. Table 2-2
shows potential security solutions for the zero trust principles in the security domain.

Table 2-2. Examples of zero trust-based solutions

Zero trust
principle

IAM Data Application Endpoint Network

Never trust,
always verify

• Just-in-time•
access

• Privileged access•
management

• Continuous•
authentication

• Adaptive access•
control

• Digital rights•
management

• Adaptive access•
control

• Adaptive•
access
control

• Allowed•
processes
list

• Trusted•
computing base

• Privileged access•
management

• Adaptive access•
control

• Microsegmentation•
• Dynamic network•

access control
• Zero trust network•

access

Data
protection
everywhere

• mTLS•
• Certificate•

manager
• Key manager &•

HSM

• mTLS•
• Certificate•

manager
• Key•

manager &
HSM

• mTLS•
• Certificate•

manager
• Key manager &•

HSM

• IPSec•

Assume
breach

• User & entity•
behavior
analytics

• Data loss•
prevention

• Endpoint•
detection &
response

• Endpoint•
detection &
response

• File integrity•
monitoring

• Network detection &•
response

Although this table isn’t a comprehensive overview, it gives you a general idea of the
kinds of zero trust-based solutions you can choose from to achieve the result that the
zero trust principles require.

Now let’s discuss a technique for the development of an enterprise security architec‐
ture. With this technique, we’re not using the case study.

Technique: Enterprise Security Architecture
Experience has shown that a lack of a standard security taxonomy, or organization
of security capabilities, can create confusion across an organization. There are many
different security processes that need organizing, and there is a need for a standard
approach to decomposition from top-level security domains to the deployed services.

48 | Chapter 2: Architecture Concepts

Security Processes or Services?
Before we go on to describe the enterprise architecture, let’s explain why we prefer
to use the term service rather than process to describe a security capability. Many
organizations refer to a capability as a process to correspond with control process
owners. A section of a control framework, such as access control or network security,
has a process owner assigned to it. There may be a second level of process ownership
within that section of a control framework. However, we prefer to refer not to a
process but to a service because:

• Security capabilities consist of technology, processes, and people—not just pro‐•
cesses. Security capabilities need a service design to ensure quality of delivery.

• Security capabilities often deliver requirements from multiple sections of a con‐•
trol framework—making process alignment based on control framework sections
inappropriate.

For example, site-to-site virtual private network (VPN) isn’t a process, it’s a technol‐
ogy service that’s administered by an operations team using processes. It needs
quality of service as it needs to be available 24×7, and if it fails, it needs a Recovery
Time Objective (RTO) of near zero as it supports the availability of the service. It also
needs to meet control requirements from identity management, access control, and
network security. Using a process to represent what is a service is insufficient.

A security service is also the representation used in Enterprise Security Architecture
(CRC Press) by John Sherwood, Andrew Clark, and David Lynas and in The
Open Group document “Integrating Risk and Security within a TOGAF® Enterprise
Architecture”.

Enterprise Architecture Decomposition
We need a systematic and consistent approach for decomposition from a high-level
set of groups that we will call domains. Figure 2-3 starts with domains that we
decompose into categories that then decompose into security services.

Figure 2-3. Enterprise architecture decomposition

Technique: Enterprise Security Architecture | 49

https://oreil.ly/w30wj
https://www.opengroup.org
https://www.opengroup.org
https://oreil.ly/4d4jc
https://oreil.ly/4d4jc

Miller’s Law

Miller’s Law suggests that an average human can hold in short-term
memory 7±2 objects. At each layer in the model, we’ve tried to
create groupings of less than seven items. It’s designed to be simple
to understand but also complete so we can describe all security
capabilities or services within it.

We will now go on to explain each of these stages of decomposition.

Security domains
Many organizations use enterprise architecture diagrams to sell a product or solution
set, so they often leave them incomplete, otherwise it will show gaps in their solution.
We need domains that classify a complete set of security services. So we’ve defined
six security domains that should be familiar to you already. The selection of the set
of six domains, as shown in Figure 2-4, came from merging many different enterprise
security architectures from around the industry. We then assigned every security
service we could find from different enterprise security architectures or models into
one of the six domains.

Figure 2-4. Enterprise security architecture domains

Opinionated Security Domains

The domains suggested should work for you as well, but often
organizations have their own set of opinionated security domains
that you should consider adopting. Just make sure the domains
cover all types of control capabilities as a starting point. Using a
single enterprise architecture with consistent decomposition is the
key benefit to your organization.

The granting of access to an application for processing data has defined the order of
the security domains. Reading the domains left to right, an end user will use Identity
and Access before gaining access to an application. This gives access to a Network

50 | Chapter 2: Architecture Concepts

that controls access to an Application that processes Data that resides on an Endpoint.
Services that Detect and Respond to threats are responsible for protecting the entire
application. In effect, the order of the domains shows a process or transaction flow.

The domain at the top reflects the need for governance, risk, and compliance pro‐
cesses to operate the security services residing within the domains. The domain at
the bottom provides supporting services, such as change management or capacity
management, to effectively operate a security service.

NIST Cybersecurity Framework
You may be thinking, “What about the NIST Cybersecurity Framework with the
Govern, Identify, Protect, Detect, Respond, and Recover functions organized by
cybersecurity outcomes?”

The framework focuses on the full range of both technical and non-technical con‐
trols, whereas we’ve focused on the technical capabilities for architectural thinking.
You will also find that the majority of the capabilities map to the Protect function,
which doesn’t give a simple decomposition for an enterprise architecture. Figure 2-5
shows a broad mapping between the NIST functions and the security domains we’ve
defined.

Figure 2-5. Functions to domains mapping

We could use both the NIST Cybersecurity Framework functions and the enterprise
architecture domains but this will just make things confusing with two different
representations.

We can now further decompose these security domains into categories.

Technique: Enterprise Security Architecture | 51

https://oreil.ly/6Kq9N

Security categories
We then decompose the security domains into five categories for each domain, as
shown in Figure 2-6. We could have created different numbers of categories for each
domain, but we wanted to make the decomposition easier to remember with a fixed
five categories for each domain.

Figure 2-6. Enterprise security architecture domains; see the original diagram

The diagram becomes useful as a heat map to show what’s relevant to your specific
context. For example, you could shade the diagram to show what security services
are relevant to the solution architecture you are designing. You could add colors to
represent the compliance status of the service, such as red, amber, and green, which
enables a focus on the areas of interest.

52 | Chapter 2: Architecture Concepts

https://oreil.ly/SAHC

Decomposition Alignment

At this level of decomposition, the categories your organization
uses are likely to be different but similar to those shown in Fig‐
ure 2-6. The important thing to keep in mind is that an organi‐
zation with a standard enterprise security architecture will have
better alignment across different projects.

Security Service Management
We highlighted security service management in Figure 2-6 as separate from any other
service management activities because it contains two important categories required
for the effective enforcement of security controls.

This becomes particularly important when the resources requiring security are across
many different technology platforms and are using microsegmentation. This creates
large numbers, potentially millions, of access control list rules together with the secu‐
rity configuration of resources. This needs policy-based security configuration where
resources are matched to a policy, not individual configuration items. Centralized
policy and standards management becomes extremely important.

Once the policies and standards are in place, there needs to be independent reporting
to ensure the enforcement of the policies and standards, and to drive behavior. Secu‐
rity services need to meet service levels to support applications. Centralized reporting,
analytics, and measurements become essential for confidence in the security of your
systems.

Next, we move on to decomposition into security services.

Security services
As we’re limited in space, we then decompose some categories into security services,
as shown in Figure 2-7. As an example, identity lifecycle management decomposes into
four security services. They decompose down to a level you can implement primarily
as a single technical component. The joiners, movers, leavers (JML) service is probably
implemented within the HR system. The create, modify and delete ID service is
probably part of an identity management system and will use the JML service. An
application access request may be part of an identity management system or some
other system. It will need a bit of discussion to get this right, but how services are
already delivered will have a strong influence.

Technique: Enterprise Security Architecture | 53

Figure 2-7. Security process or service decomposition

Modularity

We’ve given simple guidance on selecting the grouping of security
services. If you want to get into more of a software engineering
approach to modularity, we suggest you look at using cohesion,
coupling, and connascence in Chapter 3 of Fundamentals of Soft‐
ware Architecture.

Documenting an enterprise security architecture provides the organization with a
standard security taxonomy with domains, categories, and services. But how else
could we use the enterprise security architecture?

Security Services Responsibilities
Different teams and organizations can handle the delivery of security services. The
enterprise architecture also provides a way of describing the team or organization
that owns delivery of the services.

In Figure 2-8 we’ve split the services into three layers showing the organization or
team delivering the services. The diagram shows that the cloud platform, infrastruc‐
ture operations, and security operations provide different security services.

We’ve only shown some examples of security services, but there will be many more
for your organization. If externally managed security services organizations are pro‐
viding some services, there might be additional layers of responsibilities. What other
additional security services could you add to this diagram for your organization?

54 | Chapter 2: Architecture Concepts

https://oreil.ly/-kjjt
https://oreil.ly/-kjjt

Figure 2-8. Security services responsibility layers

With some services, there is a split between operation and administration. For exam‐
ple, the cloud service provider will operate the virtual private cloud (VPC) network‐
ing of the cloud platforms and make it available for the infrastructure operations
team to configure and administer the cloud networking. Understanding this adminis‐
tration interface will define the responsibilities of the infrastructure operations team.

We’ve also split the cloud platform services into those that are publicly exposed and
those that are private. Consumers of the cloud service will use the public services, and
the private services will support the secure operation of those public services.

The solution architecture team can use this diagram to comprehend the distribution
of duties within an organization and decide who they should consult with when
designing the solution. We’ve found that documenting such a diagram reduces the
need for each project to spend effort discovering the split of responsibilities and
improves the effectiveness of security services for the organization.

Technique: Enterprise Security Architecture | 55

6 It’s a rough mapping, where it’s likely you would come up with a different mapping with some more work.
7 It’s one of our frustrations that there are many references to “secure by design” but little about the need to

have a documented solution architecture as a part of that design.

This is a simplified diagram showing shared responsibilities, as the security services
will vary depending on the technology platforms used by an application. We will
discuss shared responsibilities further in Chapter 7.

Cloud Controls Mapping
We thought we would show how useful the enterprise security architecture could be
at identifying gaps in control frameworks. We’ve mapped the Cloud Security Alliance
Cloud Controls Matrix v4 (CSA CCM), used for cloud computing, showing where
each of the controls maps to in the enterprise security architecture in Figure 2-9.6

Industry frameworks provide a good starting point, but as you will see, there are gaps
in the controls you might require, including:

• There are control requirements for network and disaster recovery (DR) architec‐•
ture but no requirement for a documented solution architecture for the rest of
the security services.7 There is no requirement for architectural governance.

• While there is a section on application and interface security, there is no require‐•
ment for threat modeling in the CSA CCM.

• There is a control requirement for data loss prevention (DLP), but only for•
endpoints. There is no requirement for web or email DLP.

• While there are controls for APIs and encryption keys, there is nothing identified•
for the management of secrets or API keys.

• While there is a requirement for logging commands, there is no explicit require‐•
ment for a bastion or jump host with the ability to video record login sessions.

• There are no control requirements for some ABBs, such as image security and•
remote network access.

This is a good example of why frameworks should provide guidance but not the final
set of controls. Develop controls based on the legal and regulatory requirements, your
assessment of the threat landscape, and the risk tolerance of your organization.

Let’s move on. We’ve discussed how you should use services rather than processes,
but how should you describe a security service?

56 | Chapter 2: Architecture Concepts

https://oreil.ly/TjY9s
https://oreil.ly/TjY9s

Figure 2-9. CSA CCM mapping on enterprise security architecture

Technique: Enterprise Security Architecture | 57

8 We left security and compliance management out of this list as it’s the core of the architectural thinking for
security method we’re discussing.

Security Service Design
A security service needs a specification to be effectively designed, delivered, and
operated. It’s not just there to meet a set of security requirements; it’s a service
that has performance, resilience, support, and other architectural characteristics. It’s
what’s called a service design.

The need for service design has increased dramatically with the advent of hybrid
cloud. In the past, we might have used passwords or other secrets to authenticate
communication between application components. A change in those secrets might
happen every 12 or 24 months (if at all). With cloud applications, these secrets
change every day, hour, or even minute. A failure of a security service can cause an
immediate application failure, and therefore security services need security service
quality to meet the needs of the most critical application.

We’ve seen this come as a shock to security operations teams as they struggle to
respond to the increasing demands of cloud native workloads. The hours of service
and response times change, the capacity can increase by factors of 10 or 100 times
today, and the service needs to be highly available and recover rapidly through
automation. For this reason, we recommend treating security services as any other
critical business service by starting with the documentation of a service design.

So what does a service design need to include? Let’s continue with a list of topics to
consider:8

Service catalog
Start by adding the security service to a service catalog, defining the details of the
service, status, and dependencies. This applies to both public and private security
services. Describe the delivery characteristics of the service. For example, is there
an API, CLI, and console interface provided to support the service?

Service level management
Define what’s required in terms of service levels for the security service. Who
will provide level 1, 2, and 3 support? What hours and response times will they
operate? What skills and experience will staff require? Does this match up to the
availability and service continuity requirements?

The hours of service often need to move from business day hours with on call
support to full 24×7 service with response times of minutes, not hours. The
number of security specialists for a service may need to increase from two to six
to cover sickness and time off.

58 | Chapter 2: Architecture Concepts

The delivery of support for security services needs to use the same service man‐
agement processes used by other critical business services. A security operations
team must not become an island and re-create existing service management
processes.

Service performance and capacity
There is a need to scale the security services to meet the demands of the business.
We’ve seen existing security services not scale to meet the needs of cloud native
services. It needs careful thought and planning as transaction rates increase and
the hourly, daily, weekly, and monthly profiles of transaction rates vary.

Although a security operations team may wish to make things simple by hosting
security services using an on-premises control plane, the increased latency and
reduced capacity of stretching services may not support new types of workload.

The security services will need integration with the performance management
services to monitor and alert for immediate service issues, including support for
short-, medium-, and long-term planning.

Service availability
A security service needs to meet availability targets in support of the availability
targets for the workloads it supports. Establishment of service level objectives
(SLOs) enables the development of the architecture for the service.

Consider the hours of service and what level of downtime is acceptable for the
service. The availability characteristics of the workloads and the impact of loss
of the service influence the availability characteristics. Consider if you can have
downtime for updates of the service such as security patches. In Chapter 5, we
discuss creating a data classification scheme for availability, and based on the
classification, we can assign a set of availability and continuity requirements.

Service continuity
Service continuity considers what happens when (not if) the service has an
outage. What’s the recovery time objective (RTO) and recovery point objective
(RPO) needed to meet the availability characteristics of the service? Like avail‐
ability, use a data classification scheme to define the service continuity require‐
ments.

The security service is likely to require instant failover within local data centers
or availability zones. But what happens when there is a regional failure? How
quickly must the security service recover in a remote location to support the
workloads?

An application may require recovery within 30 minutes, but to do that, it may
need 5 minutes of recovery time with no loss of data from a secrets manager ser‐
vice. With hybrid cloud computing, the security service architect needs a broad

Technique: Enterprise Security Architecture | 59

range of skills to understand the different storage and database architectures
available.

In summary, a security capability is a service that requires consideration of service
levels, performance, capacity, availability, and continuity in addition to security, risk,
and compliance. Let’s wrap up this chapter.

Summary
We started this chapter by understanding the role of architectural thinking in the
development lifecycle. Being able to communicate its importance will equip you with
the skills to fight your corner when it comes to including architectural thinking in a
project. Included in the discussion was the difference between an MVP and a PoC,
which will enable you to identify the danger signs when an MVP is in reality a PoC.

Remember that both consultants and architects, each with different skills and experi‐
ence, have a critical role in projects. Consultants are there to discover and develop the
business requirements to meet the needs of the stakeholders. They could be internal
to an organization or brought in from an external professional services organization.
An architect continues by expanding the non-functional requirements or architec‐
tural characteristics, then developing an architecture to meet those requirements for
communication with those in engineering roles.

Throughout this book, we often refer to just an architect, and that’s because security
is the responsibility of all information systems architects, not just the security archi‐
tect. A security architect is there to advise as a subject matter expert (SME) and focus
on the architectural thinking for the security services.

It’s important that your organization has a standard way to decompose and commu‐
nicate the problem space for security. We discussed an enterprise security architecture
and our approach to its construction, which should give you some ideas for your
own. Ensure you think about security services, not just capabilities, when you are
developing your own enterprise security architecture.

Now that we’ve discussed the role of architectural thinking in the development lifecy‐
cle and the use of an enterprise security architecture, the next chapter will continue
by thinking about the external and internal sources of security requirements.

60 | Chapter 2: Architecture Concepts

Exercises
1. What characteristics does design thinking have? Select all that apply.1.

a. It uses experimentation.a.
b. It is an iterative process.b.
c. It focuses on non-functional requirements.c.
d. It is an empathetic, human-centered process.d.

2. True or False: A team is starting the testing for the core business functionality2.
of an application where testing the non-functional requirements is out of scope.
After testing, the system is ready to be considered a minimum viable product
(MVP).
a. Truea.
b. Falseb.

3. What does Grady Booch say about architecture? Select all that apply.3.
a. All architecture is design, but not all design is architecture.a.
b. Design represents the set of significant decisions that shape the form andb.

function of a system.
c. The cost of implementation is a metric for important architecture decisions.c.
d. Significant design decisions are measured by the cost of the requirementd.

definition.
4. True or False: A consultant can design a resilient, scalable, available, adaptable,4.

secure, and compliant system using architectural thinking.
a. Truea.
b. Falseb.

5. True or false: Specifying firewall rules is an example of an architectural thinking5.
activity.
a. Truea.
b. Falseb.

6. True or false: Architectural thinking doesn’t apply to DevOps, as there is no need6.
to consider architectural characteristics.
a. Truea.
b. Falseb.

Exercises | 61

7. An enterprise architecture has which of the following characteristics? Select all7.
that apply.
a. Provides alignment with business objectives and goalsa.
b. Is described using System Building Blocks (SBBs)b.
c. Provides a holistic view of architecture for an organizationc.
d. Provides a vendor-specific architectured.

8. A solution architecture has which of the following characteristics? Select all that8.
apply.
a. It solves a business problem using an information system.a.
b. It only provides a conceptual view of a system.b.
c. It describes how specific technologies deliver the system’s capabilities.c.
d. It’s guided by architecture patterns, enterprise architecture, and enterprised.

processes.
9. Which of the following is true about the NIST Core Zero Trust Architecture?9.

a. A Policy Enforcement Point (PEP) makes policy decisions based on the typea.
of enterprise resource and the identity management policy.

b. Enterprise resources include data, cloud resources, and administrators.b.
c. A Policy Engine (PE) makes security decisions based on the kind of enterprisec.

resource and the access policy.
d. Administration of the security policies is part of the Policy Enforcementd.

Administrator (PEA).
10. The term service should be used for security capabilities rather than alignment to10.

a process or control framework because _____. Select all that apply.
a. A service consists of technology, processes, and people.a.
b. They need only control requirements to define the capabilities.b.
c. Service design is required to ensure the quality of delivery.c.
d. A service often delivers requirements from a single section of an industryd.

control framework.
11. True or false: An industry control framework is a definitive source for specifying11.

security control requirements.
a. Truea.
b. Falseb.

62 | Chapter 2: Architecture Concepts

PART II

Plan

The plan phase is where we discuss obtaining requirements from the enterprise
context, covering both external and internal contexts. We elaborate on how we
translate this into a requirements catalog documenting functional and non-functional
requirements and how we establish requirement traceability.

CHAPTER 3

Enterprise Context

When starting to architect a solution, the architect starts to gather requirements
external to the organization and internally as a part of enterprise governance. The
requirements can often become inflexible constraints on the design, delivery, and
operation of the infrastructure and application.

External factors such as laws and regulations include mandatory security, privacy, and
compliance requirements for organizations to implement. Industry and professional
organizations also offer best practices and standards for the design and operation of
the information system.

Internally, there are many documents that govern the design and delivery of an infor‐
mation systems architecture, including security policies, practices, guiding principles,
and an enterprise architecture. Their role is to support the consistent and effective
enforcement of security controls and information systems across the organization.

For a comprehensive security architecture, a product, project, or program needs to
consider both external and internal factors that guide the design and implementation
of a solution architecture. This chapter will expand on many of these topics and
show how the external and internal context can help support the delivery of effective
security and compliance across an organization.

All the contextual information discussed in this chapter should ideally already exist
at the top level of an organization to help you integrate security into a solution archi‐
tecture. However, there may be gaps in the contextual information that will require
filling in, and you may also need to assess how useful the contextual information is
for the development of your architecture.

65

Chapter Artifacts
This chapter’s main goal is to discuss the external and internal context of an organiza‐
tion and sources of information used to design security for a solution architecture.
The artifact dependency diagram, shown in Figure 3-1, highlights, with white text in
a black shaded box, the artifacts for discussion in this chapter. The enterprise context
splits into two groups of artifacts labeled the external context and internal context.

Figure 3-1. Enterprise context chapter artifacts

66 | Chapter 3: Enterprise Context

We’re going to start with the external context and then follow that with the internal
context.

External Context
There are many external influences that mandate or provide guidance for the design,
delivery, and operation of security and compliance. This first major section will
examine the external context by discussing the following topics:

• Laws and Regulations•
• Industry or Expert Organization Best Practices•
• Corporate Expectations•
• Consumer Expectations•
• Threat Landscape•
• Cybersecurity Vulnerabilities•

We will discuss each of these topics, including how they might impact your solution
architecture and how you might use them during your architectural thinking, starting
with laws and regulations.

Laws and Regulations
Governments and other organizations develop laws and regulations for security,
privacy, and resilience to keep people, organizations, and society safe from possible
risks, breaches, and weaknesses. They provide rules, guidelines, and protections to
keep sensitive information private, safe, and available while information systems are
processing it.

Laws are broad rules that are a legally binding and enforceable component of a
country’s legal system to ensure organizations and individuals meet certain standards.
They provide protection through the legal system, and not complying can have
serious repercussions such as fines, penalties, or even criminal sanctions. They differ
from country to country and also have regional variations, such as those found in
each state of the US.

In general, laws are stable and adapt slowly to changing social, economic, and tech‐
nological conditions. Legislative bodies, such as parliaments or congresses, enact
new laws and revise existing ones in response to new societal needs, advances in
knowledge, and emerging challenges, such as critical infrastructure, cloud, and AI.

Laws often require regulatory organizations and governmental organizations to
ensure adherence to particular guidelines or requirements. The regulatory bodies
often play an important role in legal interpretation, implementation, enforcement,

External Context | 67

and adjudication. They develop regulations that are more detailed and provide spe‐
cific, practical instructions and guidelines on how to comply with the laws. They
typically address technical, operational, or administrative issues. Their creation often
involves public input, stakeholder consultations, and industry expert opinions.

Laws and regulations that aren’t made for security might have an impact on informa‐
tion security. For example, the Sarbanes Oxley Act of 2002 in the US contains provi‐
sions for financial reporting, corporate governance, risk management, and auditing
of public companies as a response to fraud and institutional failures. This resulted in
increased information security obligations on organizations.

In general, the inclusion of laws and regulations about security, privacy, and resilience
falls within the following five domains:

Data protection and privacy
Data protection and privacy legislation exists to secure sensitive personal infor‐
mation while also protecting an individual’s right to privacy. There are numerous
data protection and privacy laws that specify how organizations must collect,
use, store, and share personal information. These laws require organizations to
acquire consent from individuals, implement security measures, and provide
individuals with the ability to view, modify, and delete personal data.

In the European Union, the General Data Protection Regulation (GDPR) defines
the control requirements. In the United States, each state is creating its own laws,
creating a patchwork of different protections. At the time of this writing, the
California Consumer Privacy Act (CCPA) is leading the way in setting standards
for privacy in the US.

Ensure you understand not only the laws for a country or region related to the
storage of the data but also where access is coming from and where the data
flows. If IT support or development originates from a remote country, export
of the data will happen if the display of data takes place on the screen of the
IT support personnel. This is a complex area, and getting legal advice is highly
recommended to ensure the right legal agreements and controls are in place.

Breach notification
Many jurisdictions have laws mandating organizations notify individuals and the
proper authorities in the case of a data breach or security incident. These laws
usually specify the timing, content, and method of notification. The goal is to
promote transparency and provide affected individuals with the opportunity to
act to protect themselves.

The GDPR mandates breach notification to individuals within 72 hours of dis‐
covery. The CCPA doesn’t give a specific time but does say a notification must
take place as soon as possible without unreasonable delay.

68 | Chapter 3: Enterprise Context

https://sarbanes-oxley-act.com
https://gdpr.eu
https://oreil.ly/WZEv6

Understand the breach notification requirements for the data processing jurisdic‐
tions and implement the appropriate technology, processes, and personnel to
meet these needs.

Cybercrime and law enforcement
Cybercrime legislation is primarily concerned with criminalizing cybercrime
activities such as hacking, unauthorized access, data theft, fraud, and other
destructive acts. It creates legal frameworks for prosecuting offenders and deter‐
mining the consequences. These regulations also make it easier for law enforce‐
ment authorities to collaborate in the fight against cybercrime threats.

In the United States, the Computer Fraud and Abuse Act (CFAA) is a federal
law enacted in 1986 that criminalizes various forms of unauthorized access,
computer fraud, and related activities. In Europe, the NIS2 Directive includes
guidelines on cross-border collaboration for information exchange and notifica‐
tion of cyber incidents.

These laws or regulations often result in the creation of national Computer
Security Incident Response Team (CSIRT) organizations that support companies
in responding to threats and investigating security incidents. Make sure it’s
clear how the incident management process of your organization integrates with
national CSIRT organizations.

Critical infrastructure protection
Many countries have laws that support the protection of critical infrastructure,
such as energy, transportation, healthcare, and finance, because they know how
important it is to protect essential services. These laws often add additional
security requirements, risk assessments, incident reporting requirements, and
ways to share information to make critical systems more secure and reliable.

In Europe, the NIS2 Directive aims to enhance the security and resilience of
critical infrastructure and digital services across the EU. In the US, for the
electric power industry, the Department of Homeland Security has developed
the Critical Infrastructure Protection (CIP) Standards. It provides cybersecurity
requirements and measures to protect the security and resilience of the power
grid.

Ensure you understand whether the classification of the system you are architect‐
ing could be critical national infrastructure and the resulting legislation that
applies.

Operational resiliency
In recent years, operational resilience has emerged as a critical risk for financial
institutions to manage. They must follow guidelines for protecting, detecting,
containing, recovering from, and repairing incidents involving information sys‐

External Context | 69

https://oreil.ly/rSlSW
https://oreil.ly/umEbE

tems. The publication of guidelines on how to report incidents, test operational
resilience, and monitor third-party risk has heightened interest in this sector.

In Europe, the recent Digital Operational Resilience Act (DORA) has become
a focus for financial services organizations and has created much debate on its
application to cloud workloads.

Make sure you understand whether the system you are architecting has any
operational resilience laws and regulations that might apply.

During our discussion of security, privacy, and resilience domains, we gave examples
of laws, regulations, and standards that may apply. Ensure you understand what laws
and regulations apply based on the location of data processing, transportation, and
access.

Many laws and regulations provide guidance rather than specific controls, and it’s
up to the organization to interpret them based on its own risk tolerance before
defining specific security controls to protect data and meet the needs of its business.
The organization then adds additional controls to meet its risk appetite, as many
laws and regulations only require a minimum baseline set of controls. For global
organizations that want to deploy global security controls, this creates a challenge to
show compliance with many laws and regulations.

The Chief Information Security Officer (CISO) and their team should have already
incorporated these laws and regulations into the organization’s policies, practices, and
processes for architecting security for information systems.

As an architect, you normally don’t need to do this work, but what if your organiza‐
tion doesn’t have suitable policies, practices, and processes? You should then look at
using industry guidelines, standards, and frameworks, as they will identify many of
the controls you need. Further research may determine the need for additional legal
and regulatory controls.

Following on from the laws and regulations there is a need for further in-depth
guidance. This is where industry or expert organization best practices come in.

Industry or Expert Organization Best Practices
As we discussed previously, laws and regulations provide high-level guidance but
aren’t necessarily directly implementable by an organization. Organizations obtain
further guidance from industry or expert organizations that issue further guidelines,
standards, and other control documentation to help accelerate the definition of
specific security controls. They’re often developed through consensus and used to
form a baseline for security controls within an organization.

70 | Chapter 3: Enterprise Context

In general, industry or expert best practices cover the following four areas:

Expert organization best practices
Expert organizations have created best practices based on industry consensus.
One example is the Center for Internet Security (CIS), which has created Critical
Security Controls to provide a prescriptive, prioritized, and simplified set of
best practices for cybersecurity. The Cloud Security Alliance (CSA) has created
a Cloud Controls Matrix (CCM) for security in a cloud context. These control
frameworks are applicable to most organizations and are a good starting point
if you have no security controls framework or policy. They provide high-level
requirements and broadly map to a set of security services but without detailed
requirements, making them easy to use.

Expert organization standards or benchmarks
Other organizations have created standards that define the security configuration
for specific software. The Center for Internet Security (CIS) has created bench‐
marks for cloud providers, operating systems, server software, desktop software,
DevSecOps tools, mobile devices, and multifunction print devices. NIST has a
catalog of Security Technical Implementation Guides (STIGs) or benchmarks in
the NIST National Checklist Program repository. Benchmark definitions may
use the Security Content Automation Protocol (SCAP), which many tools sup‐
port to check the compliance of software. As an architect, you need to build the
system to support benchmarks and tooling to enable ongoing compliance.

National standards organizations
At a national level, the US National Institute of Standards and Technology
(NIST) has created the Cybersecurity Framework, with “a set of activities to
achieve specific cybersecurity outcomes, and references examples of guidance
to achieve those outcomes.” The core comprises four elements: functions, cate‐
gories, subcategories, and informative references. In the new v2.0 framework,
there are six functions that form the primary pillars of a successful and holistic
cybersecurity program. The v2.0 release lists the core functions as:

Govern
The organization’s cybersecurity risk management strategy, expectations, and
policy are established, communicated, and monitored.

Identify
The organization’s current cybersecurity risks are understood.

Protect
Safeguards to manage the organization’s cybersecurity risks are used.

Detect
Possible cybersecurity attacks and compromises are found and analyzed.

External Context | 71

https://www.cisecurity.org
https://oreil.ly/0iZ1n
https://oreil.ly/0iZ1n
https://oreil.ly/F7wQi
https://oreil.ly/vyZ-A
https://www.cisecurity.org
https://oreil.ly/EPiIl
https://oreil.ly/EPiIl
https://oreil.ly/xBjbc
https://oreil.ly/6Kq9N

Respond
Actions regarding a detected cybersecurity incident are taken.

Recover
Assets and operations affected by a cybersecurity incident are restored.

Many other countries, including Canada, the United Kingdom, Australia, Japan,
and the EU, have embraced, referenced, or taken inspiration from the NIST
Cybersecurity Framework.

The NIST Cybersecurity Framework is high-level and broadly maps to a set
of security services without specific requirements. If you wish to have a more
detailed list of control requirements, NIST SP800-53r5 Security and Privacy
Controls for Information Systems and Organizations provides a detailed catalog
of control requirements with implementation guidance. It’s also available using
the Open Security Controls Assessment Language (OSCAL) to automate compli‐
ance checking of controls.

Industry standards
Specific industries also develop security control frameworks and standards to
which organizations must adhere. A good example is the Payment Card Industry
Data Security Standard (PCI DSS) from the PCI Security Standards Council,
which is a set of controls any organization involved in processing payments must
comply with. More broadly, the examination of financial organizations in the
US uses the Federal Financial Institutions Examination Council’s (FFIEC) IT
Examination Handbook.

ISO/IEC 27001 Information System Management System

Looking at this list, you may be thinking, “Where’s ISO/IEC
27001?" We left this standard out because its focus is on an infor‐
mation security management system rather than a set of controls
for a hybrid cloud architecture. ISO/IEC 27001 provides standards
for the organization of a CISO team that will provide enterprise
policies, practices, and procedures to guide an architect designing
a solution architecture. More than likely, your organization and
cloud service providers will need to comply, but that’s not the focus
of this book.

All these industry and expert standards can create confusion, as sometimes it’s
unclear where to start. If you are an architect who doesn’t have a security policy
or framework available in your organization, the standards from the CSA, CIS, and
NIST are great places to start to form a catalog of requirements for your solution.
However, all standards are incomplete and they provide a minimum baseline that

72 | Chapter 3: Enterprise Context

https://oreil.ly/pwGJ_
https://oreil.ly/pwGJ_
https://oreil.ly/Zrm6c
https://oreil.ly/lVV3-
https://oreil.ly/lVV3-
https://oreil.ly/Rs-Is
https://oreil.ly/Rs-Is
https://oreil.ly/KT4GT
https://oreil.ly/KT4GT

requires additional risk-based controls suitable for the protection of data for an
organization and workload.

If you have multiple security frameworks and standards to comply with, you may
have to merge these different control requirements into a single baseline set of
control requirements for your project. For example, an organization may need to
be compliant with the control requirements of the countries it does business in. A
combined framework can support the consistent implementation of controls and
ongoing compliance. We will talk later in this chapter about a service-based approach
to doing this.

Even if an organization meets required legal and regulatory requirements, and uses
industry standards, there may be an expectation for more confidence in the security
and privacy controls.

Corporate Expectations
Organizations want to trade with partners that protect their data and the data of
their customers. As a minimum, they expect organizations to meet standard control
frameworks and standards for their industry, country, or state before they start
adding their own control requirements.

Larger organizations use control frameworks and standards for their industry, but
smaller organizations also have schemes to support consumer confidence. Schemes
such as Cyber Essentials from the UK National Cyber Security Centre (NCSC)
and Essential Eight from the Australian Cyber Security Centre (ACSC) provide
confidence in the security of services by enabling organizations to demonstrate the
implementation of a core set of controls.

To show more extensive compliance, service providers will use external audits and
certifications from independent organizations to demonstrate the depth of their con‐
trols. Compliance pages for the main cloud providers show a mix of global, regional,
government, and industry programs; these providers include AWS, Azure, Google
Cloud Platform (GCP) and IBM Cloud.

As a security architect, a software as a service (SaaS) provider may need to meet
different control frameworks and standards. The third-party risk from cloud service
providers and their suppliers will be an important consideration in meeting legal and
regulatory requirements. Compliance and audit reports provide some assurance, but
often the security will depend on the way you architect the system to integrate cloud
security services. There are also external factors, such as threats and vulnerabilities,
that you will be less in control of but need to consider.

External Context | 73

https://oreil.ly/5m3gk
https://oreil.ly/RDONO
https://oreil.ly/dXKVi
https://oreil.ly/AEj0u
https://oreil.ly/XSSm9
https://oreil.ly/XSSm9
https://oreil.ly/k8Aue

1 Even within a single trading bloc like the EU, each country has its own set of security controls that require
compliance. The number of control frameworks is still expanding and is being used to protect countries’ own
local companies from suppliers outside their country. We can only hope control frameworks and certifications
consolidate.

Unfortunately, these standards are proliferating, with organizations having to meet
standards for every country in which they operate. Each has a slightly different set of
controls and certifications, adding to the cost of doing business in each country.1

Consumer Expectations
Consumer or user expectations about the security and privacy of online applications
can also shape the security and compliance of organizations. They expect the encryp‐
tion of their data and the protection of their privacy. Some will avoid sites that
don’t have multi-factor authentication. Some consumers prefer using an online appli‐
cation with visible assurance that demonstrates the safeguarding of their security and
privacy.

Demonstrating high levels of security contributes to increased trust in the service and
the organization that supports it. Schemes like Cyber Essentials and Essential Eight
are designed to improve the security of small businesses and the confidence of their
customers in the effectiveness of the data protection implementation.

Threat Landscape
The external threat landscape will guide the choice of security controls for an infor‐
mation system. Many factors will come into play in assessing the threat to a specific
organization, such as the industry of the organization, the country of hosting, the
technology components used, and the level of exposure to the internet.

Performing research on the threat landscape can help you make better decisions on
protection mechanisms that need to be in place. There are many government, indus‐
try, and expert reports available to review and identify the top threats to focus on.
If you are in an industry using specialist technology, such as operational technology,
ensure you review threat landscape reports specific to your industry.

The European Union Agency for Cybersecurity (ENISA) Threat Landscape (ETL)
report for 2022 identified the top eight threat groupings, including ransomware,
malware, social engineering, threats against data, threats against availability, disinfor‐
mation and misinformation, and supply chain targeting. As an architect, review these
threats from the latest reports and consider what control mechanisms are in place to
protect your solution from these threats.

To understand more specific threats to your organization, threat research companies
can search the dark web and threat actor internet sites for chatter specific to your

74 | Chapter 3: Enterprise Context

https://oreil.ly/bjgfN
https://oreil.ly/bjgfN

2 See “Guiding Principles” on page 80 for a discussion.

organization. For more prominent organizations or where information has a high
value, this will be a useful step to understand any further steps needed to protect an
information system.

We will discuss more about the threats and threat modeling in Chapter 6. Threats also
come from vulnerabilities within the technology the system is using.

Cybersecurity Vulnerabilities
The technology components used in building an information system are highly likely
to contain vulnerabilities for consideration in the design of a solution architecture. It
may be as simple as ensuring patching of the software and firmware. However, it may
require adaptation of the architecture to close vulnerabilities and provide defense in
depth.2 A useful source of software vulnerabilities for specific software is the MITRE
Common Vulnerabilities and Exposures (CVE) database.

It’s important that the technology be rapidly patched to mitigate any zero-day vulner‐
abilities that may come to light during the operation of the system. An architect
must identify the processes, technology, and operations team that will ensure the
information system will remain secure. It may be that there is already an operations
infrastructure to support patching of common technology components, but support
isn’t always available for patching all technologies, and this will become part of your
solution architecture to close this gap.

Using a hybrid cloud architecture brings new threats from the complexity of using
different technologies, the range of platforms, the differing service models, and the
industry of the workloads. The technology architected on top of the cloud platform is
under your control, and patching the cloud platform is the responsibility of the cloud
service provider. However, it’s not always clear, and it’s important you understand
what they patch and their impact on your architecture. You may not have control
of their patching, and as a result, you may need to make your solution resilient
to availability zone outages and automatic recovery after an update to the cloud
platform.

Now that we’ve completed our discussion on the external context, let’s continue with
a discussion of the internal context.

Internal Context
There are many internal policies, standards, guidelines, and architecture documenta‐
tion that guide the design, delivery, and operation of security and compliance. This
section will examine the internal context by discussing the following topics:

Internal Context | 75

https://www.cve.org
https://www.cve.org

• Business and Information Systems Strategy•
• Current IT Environment and Security Control Plane•
• Policies, Practices, and Standards•
• Risk Management•
• Enterprise Architecture•
• Guiding Principles•
• Architecture Patterns and Automation•
• Enterprise Processes•

We will discuss each of these topics, including how they might impact your solution
architecture and how you might handle them during your architectural thinking.
Let’s start by discussing the influence of business and information systems strategy.

The Role of a Technical Leader

You may think some topics we discuss relate to a project manager
and aren’t in your remit. However, an architect is often the tech‐
nical leader for a project and a subject matter expert. The role
requires the identification of project technical activities and a close
working relationship with the project manager to ensure inclusion
in the project planning. Have a read of The Software Architect
Elevator (O’Reilly) by Gregor Hohpe to understand the extended
role of the architect to “join the dots” across the organization.

Business and Information Systems Strategy
The business and information systems strategy for the organization has an influence
on the architecture of a solution. Read the annual report for your organization and
you may find some strategy topics included. They may help support the case to
implement security and compliance controls for the system.

Let’s start with some business strategy areas to watch out for:

Vision and mission
The vision and mission set the overall aspirations of the organization and the
purpose of the organization to enable delivery. For example, the organization
may be targeting business-to-business rather than the consumer market. Does
that change the external control framework you need to comply with?

76 | Chapter 3: Enterprise Context

https://oreil.ly/DtnT7
https://oreil.ly/DtnT7

Market analysis
A market analysis will look at the market for your organization, customer seg‐
ments, and competitors. How does your organization compare to your competi‐
tors? Have they had a recent data breach? What could you learn from that? How
could you increase clients’ confidence that it won’t happen to your organization?

Value proposition
The value proposition may identify how your organization wants to stand out. Is
there something in the value proposition that you need to consider? For example,
there may be an objective to be a “trusted” organization. How could security,
privacy, and compliance help with this? Perhaps completing an external audit or
obtaining a security certificate demonstrating the security of the system.

Strategic goals and initiatives
Are there specific projects in delivery that have an impact on your project?
You may need to align with some ongoing projects, or a project may deliver
a capability you need. Perhaps an update of the security policy is in progress?
Or a new supplier compliance framework is in development that your managed
security services supplier must comply with.

From an information systems (IS) strategy and enterprise architecture perspective,
some areas to look out for include:

Alignment with business goals
An information systems strategy should start with the alignment of IS with the
business strategy. This section of the IS strategy will contain some topics we dis‐
cussed in business strategy but might give further insight on the implementation.

Technology vision
The technology vision may require the use of specific technologies or a transfor‐
mation to a new technology platform that may require a change in dimensions
for security services as the technology changes. For example, if the organization
is moving from primarily monolithic applications using waterfall development
techniques to a container-based architecture using Agile working practices, there
is a need for a new architecture with a new set of security services.

Infrastructure and architecture
What existing security infrastructure exists, and are there any required archi‐
tecture patterns for adoption? Are there enterprise processes, procedures, and
standards for adoption by the security services?

Internal Context | 77

3 If you are creating your own IPC processes for security operations, then we would suggest you reconsider.
We’ve seen a security operations team bypass standard change review processes and impact all servers across
the whole organization. They failed to perform a risk-based deployment approach by testing and performing
staged deployments.

IT operations and service management
What processes for IT operations and service management will security services
need to integrate with? Your organization is likely to require security projects to
use the standard incident, problem, and change (IPC) processes.3

Data strategy
More recently, the new role of Chief Data Officer (CDO) has been to oversee the
processes and solutions that an organization uses to process data. You may need
to take their guidance into account when including security in your solution
architecture.

As an architect for a project, it’s not just the specific requirements of the project
that you need to take into consideration but also the other internal strategies and
architecture that influence the project. Take time to understand the influences they
bring.

Current IT Environment and Security Control Plane
It’s unlikely you will have complete freedom to select the technology components, as
the technology used within the current IT environment will guide and constrain the
delivery of services. With security you’ll need to ask yourself, where’s the security con‐
trol plane? In other words, where are all the security services and their management
tooling hosted? The location for the hosting of the security services can have an
impact on the running of the workloads or applications. Don’t assume the current
location of the security services is suitable for your project.

We’ve seen the hosting of security services in an on-premises data center, with
communications stretched to each of the cloud platforms. When stretching services
from on-premises to a cloud platform, what if there was a failure in the network
between the control plane and the cloud platform? If the hosting of encryption keys
is on premise, how long will it be before the workloads fail to operate? Does the
architecture of the security services compromise the availability requirements for the
workloads? Is an alternative architecture required? You need to balance the security
controls with other risk aspects and the capability to deliver the workloads.

Another consideration is the latency between the control plane and the running
workloads. If the security services are synchronous, is it going to slow the operation
of the workload? If there is a unique encryption key for every transaction, what’s the
impact of a 10 ms latency versus a 2 ms latency with a cloud native security service?
You may need to adapt the security services to meet workload needs.

78 | Chapter 3: Enterprise Context

An alternative might be to have a distributed security control plane with resiliency or
latency-sensitive security services hosted within the cloud platform and less critical or
less frequently used components in an on-premises data center. Some organizations
use the point of presence (PoP) or network location data center, connecting the
on-premises data center with the cloud, to make the control plane independent of
both the on-premises data centers and the cloud platforms. Another option would be
a co-location data center near cloud data centers.

The security services may have a predefined location, but consider the architectural
characteristics of the workloads consuming the security services to understand the
potential risks.

Policies, Practices, and Standards
It’s likely the CISO team from your organization has combined the external laws
and regulations we discussed earlier with the culture, values, threat landscape, and
risk tolerance of an organization to guide the development of policies, practices, and
standards for security and compliance. An organization with a strong security culture
is more likely to prioritize and invest in robust security controls, while others may
resist the deployment of more costly and constraining controls.

To develop a solution architecture, you need to understand the policies, practices,
and standards that will guide the deployment of security controls in the solution
architecture you are designing. In our earlier discussions, we talked about the use of
an enterprise architecture and the definition of security services. The security services
will identify the integration points for your solution. The security guidelines and
standards will guide the engineering aspects of solution delivery.

There is likely to be a controls checklist for the project, and you will need to complete
a mapping demonstrating how you will deliver the controls. If you already have a
set of predefined security services, a significant number of controls should already
be predefined, and you will need to define how the services will integrate with your
solution.

Don’t just consider applying a baseline set of security policies, practices, and stand‐
ards. You also need to consider risk-based security controls.

Risk Management
Risk management processes for an organization may require additional security
controls for an information system. They may identify the organization-level threats
and risks that systems need to mitigate based on the risk landscape. Review the
organization’s risk register for risks relevant to the information system architecture.

As well as suggesting additional controls, the risk management process may tem‐
porarily accept the risk of a security control not immediately applied to a system. Due

Internal Context | 79

to a dependency on another project to deliver a security service, there may be a delay
in control implementation. It may also be that in the early stages of deployment, and
the risk doesn’t justify the cost of implementation.

Threat modeling enables the identification of risks specific to the solution architec‐
ture and there is a discussion of this is in Chapter 6.

Enterprise Architecture
The enterprise architecture (EA) of an organization enables the alignment of an
organization’s business objectives and goals with its IT infrastructure and resources.
The practice provides a strategic perspective with longer-term guidance, enabling
organizational alignment. There may be an overall enterprise architecture or an
enterprise security architecture you need to consider in developing your solution
architecture. We discussed the enterprise architecture and some techniques in “Enter‐
prise and Solution Architecture” on page 39. Refresh your understanding and review
how this might impact your design.

Guiding Principles
A set of guiding principles can inform the application of security to a solution
architecture. They offer values and beliefs that act as a foundation for choosing what
to do and how to do it. They provide a framework for an organization to make
architectural decisions.

Typically, an organization will establish enterprise-level security guiding principles
for projects when designing security for a solution architecture. These principles aid
in directing the design and implementation of the architectural thought process for
integrating security into solutions. The project may also add additional principles that
are more specific to the context of the project.

Here are some security guiding principles that your organization may already use and
can be a starting point if they don’t already exist:

Defense in depth
The principle of defense in depth refers to the practice of deploying multiple
layers of security controls (defense) against potential threats or attacks within a
given information system. Its purpose is to provide redundant levels of defense
so that if a security control fails or exploitation of a vulnerability occurs, the
system will continue to protect the information assets. The layers of defense
encompass human, technical, physical, and process security controls. A multi-
layered approach provides a more robust and resilient defense strategy.

For example, the removal of malware occurs at multiple points using capabilities
such as a firewall, an email gateway, a web gateway, and an endpoint. Typically,
different capabilities come from different technology suppliers. If one supplier

80 | Chapter 3: Enterprise Context

offers a solution with a security flaw, another supplier may offer an effective
technology that prevents a threat actor from exploiting the first flaw.

Least privilege
The principle of least privilege dictates that every component or user must have
only the permissions or privileges necessary to carry out its intended function.
There can be a tendency for the builders of systems to grant extensive privileges
as a quick way to get information systems operational.

For example, the permissions for a toolchain may give it the right to administer
all user IDs, which it doesn’t need, which would give an unprivileged user the
ability to create users and add new privileges for themselves.

Over time, in the management of a system, the assignment of temporary priv‐
ileges or permissions for a change or temporary role may happen that aren’t
removed, resulting in permission creep. Routine reviews of permissions to detect
permission creep ensure the enforcement of least privilege.

Minimize attack surface
The principle of minimize attack surface is the practice of minimizing an infor‐
mation system’s potential points of vulnerability and attack. The number of
potential entry points for an attacker to compromise a system serves as a measure
of the attack surface. Reducing the attack surface can make an attack more
difficult.

We can use a few essential techniques to reduce the attack surface:

Remove unused and vulnerable services and functionality
Disabling or, ideally, eliminating services that are insecure or unused can
reduce the attack surface. For example, when you uninstall the FTP service
from an operating system, it removes the possibility of an attacker using the
service. Baseline security standards or benchmarks, as discussed in “Industry
or Expert Organization Best Practices” on page 70, are a good starting point.
You should use continuous compliance checks to verify that capabilities
aren’t reinstalled or re-enabled.

Regularly patch and update
Updating software with security patches and improving security functional‐
ity can reduce the number of vulnerabilities that attackers can exploit. You
should use continuous compliance checks to verify that applied software
updates aren’t removed.

Network segmentation
Dividing the network into segments, or subnets, reduces the attack surface
if an attacker gains access to one segment. It becomes more difficult to tra‐
verse from one component within a segment to another component within

Internal Context | 81

4 We use separation rather than segregation as the latter has an association with racial discrimination and social
injustice. The word separation is more neutral and less controversial.

another segment. This technique started with simple three-tier network seg‐
ments shared by multiple applications and progressed to microsegmentation,
which we discuss later in this chapter and in Chapter 8.

Secure coding practices
Developers can avoid coding vulnerabilities when they develop software
by following good coding practices. Software developers should use tech‐
niques such as input validation, session management, and cryptographic
practices to reduce the attack surface. We will be talking more about this in
Chapter 10.

Separation of duties4

The principle of separation of duties involves dividing privileged tasks between
multiple individuals or roles to prevent conflicts of interest and unauthorized
actions. We use the approach to reduce the risk of disclosing secrets, making
errors, committing fraud, and engaging in malicious activities. A single individ‐
ual shouldn’t have full access to perform a business-critical process. The process
should require multiple parties to complete its execution.

Here are some key use cases for using separation of duties:

Prevention of fraud
Using separation of duties reduces the potential for fraud. For example, the
person who approves the request for a financial transaction shouldn’t be
the same person or someone in the same role as the person who initiated
the transaction. It would therefore need collusion for an illegal financial
transaction to take place.

Security controls compromise
Separation of duties is often used as a way of ensuring an individual can’t
compromise the security of a system. For example, the requester of access
can’t approve access to a system, or using multiple key holders in a key
ceremony for the initialization of a hardware security module (HSM) ensures
the secrecy of the master key.

Quality assurance
Having multiple people or roles in a transaction can improve the quality of
the process. For example, in code development, the person who reviews and
approves the check-in of code is separate from the person who developed
and checked in the code.

82 | Chapter 3: Enterprise Context

We will be talking about the design of processes to enforce separation of
duties in Chapter 4.

Zero trust
The principles of zero trust revolve around the idea of not automatically trusting
any user, device, or system attempting to access a network or its resources. We’ve
discussed this in Chapters 1 and 2 and will further discuss applying the practices
in Chapters 6 and 8.

Microsegmentation
Microsegmentation is the practice of partitioning a network into smaller, more
discrete zones using granular security policies and access controls. It recognizes
that various application components have different security needs and risk pro‐
files, rather than treating the entire network or an application layer as a single
entity. Every layer of each application has its own network segment, rather than
sharing layers between applications.

The principle ensures that security breaches or compromises in one segment
don’t automatically spread to other components by isolating the network seg‐
ments. This containment helps lessen the impact of a security breach.

By default, network access controls restrict traffic, and we establish explicit rules
to allow traffic only as needed. By ensuring that entities (users, devices, or
applications) only have access to the resources necessary to perform their role,
these access controls uphold the principle of least privilege.

We will be talking further about how to apply this principle to hybrid cloud
infrastructure in Chapter 8.

Secure by default
Architects and engineers should prioritize security from the initial design and
configuration through deployment by following the principle of secure by default
in systems, software, and technologies. By default, the configuration of a system
or piece of software should provide a high level of security without requiring the
user or administrator to make additional modifications or settings.

The goal of secure by default is to reduce the risk from potential vulnerabilities by
ensuring that a system’s or software’s default configuration complies with security
best practices and implements strong security measures. Even if users aren’t
actively aware of or involved in the security configuration process, the system or
software helps to protect them and their data by providing a secure default state.

We will be talking more about security in development in Chapter 10.

Internal Context | 83

Secure by design
The principle of secure by design is an approach to designing and developing
information systems, software products, or services with a strong focus on inte‐
grating security measures from the start of the design process. The principle aims
to embed security as an integral part of system design rather than treat it as an
afterthought or add-on feature.

This principle is often associated with threat modeling and secure engineering
practices during software development. The method we discuss in this book is
about a set of techniques and artifacts that extend this principle into an integra‐
ted architectural thinking method for the integration of complex systems.

KISS
The KISS principle stands for keep it simple, stupid. According to this principle,
most systems perform better when they’re kept simple rather than made com‐
plex. Therefore, architects should prioritize simplicity as a primary goal and
strive to avoid complexity whenever possible.

We often see the incorporation of more and more controls in security, where
managing integration becomes increasingly complex. It creates a greater risk of
misconfiguration and limited resources with the skills to operate the security
services 24×7. Using a smaller number of controls and operating them more
effectively may be a better strategy.

Always keep KISS in mind. Ask yourself: If I add this new control, will I add
more risk to the solution than the control mitigates?

Open design
The principle of open design refers to an approach that promotes transparency,
collaboration, and the sharing of the security solution for external review. It’s
the opposite of security by obscurity, where the security of the system relies on
hiding the design and implementation.

Experience has shown that enabling a wider review of a solution has enabled the
identification of weaknesses or vulnerabilities. This has been especially valuable
in the cryptography community, where algorithms are open to review across the
wider community to identify potential weaknesses.

Making design information, blueprints, specifications, and other design compo‐
nents openly available to a larger community is a key component of open design.
It promotes the involvement of many stakeholders and enables group feedback
and advancement. It doesn’t mean you need to publish it on the internet, but
make sure you get a wide ranging review of the solution.

We’ve now discussed a set of security guiding principles at the organizational or
enterprise level. It will be your role to add context to each principle and apply them to

84 | Chapter 3: Enterprise Context

the solution you’re working on. Projects may also define guiding principles specific to
their project. We will discuss this further in Chapter 9.

Architecture Patterns and Automation
Solution architectures in an organization that follow guiding principles and industry
best practices are similar to each other. They will have consistent controls imple‐
mented for securing data and enabling easier integration between applications. For
these reasons, often the organization will create a set of architecture patterns for reuse
across the enterprise to accelerate the development of an effective security solution.

Architecture patterns can also have corresponding automation to enable rapid
deployment of solutions. In our artifact dependency diagram, we use the artifact
Deployable Architecture to represent the automation of an architecture pattern. We
will expand on architecture patterns and deployable architectures in Chapter 9.

Enterprise Processes
Policies, guidelines, and practices provide useful guidance for static controls, but for
describing a sequence of activities, tasks, and workflows, there is a need for enterprise
processes. Processes define the order of activities performed, the roles that need to
perform the activities, control points to perform checks, and activities recorded for an
audit trail.

ISO 9001:2015 Quality Management Principle 4 defines an approach by considering
an organization as a set of activities described through processes, procedures, and
work instructions. A process defines the activities performed and why. You can apply
processes to a broad range of different contexts, as they don’t define how you will
complete the activities or the individual steps in performing the activities. A large
enterprise will write them to be independent of technology, enabling application in a
broad range of contexts and ensuring they don’t change even if the technology does.

Organizations use enterprise processes because they provide quality delivery with
consistency, efficiency, reduced cost, reduced interruptions, and improved risk man‐
agement. They ensure processes, with the associated procedures and work instruc‐
tions, include the appropriate control points and audit events to ensure compliance
with the policies of the organization. The definition of security processes should
ideally be organization-wide, with procedures and work instructions to implement
the processes defined within a line of business.

In your development of security for a solution architecture, ensure you have a good
understanding of enterprise processes and procedures you may need to comply with.
We will discuss processes, procedures, and work instructions further in Chapter 11.

Internal Context | 85

https://oreil.ly/Xxt6r

Summary
During this chapter, we discussed the importance of examining the external and
internal context for your organization when designing security for a solution archi‐
tecture. With the internal context, you may find much of the information missing.
You may need to develop the missing content and make assumptions to enable the
development of a solution architecture, including security and compliance.

Earlier in the chapter, we discussed the secure by design principle. Often, the impres‐
sion given is that the design of an information system only needs secure by design
thinking, even for the most complex of mission-critical systems, whereas architec‐
tural thinking is also needed.

For example, secure by design guidance, such as the joint Security by Design guid‐
ance, is more applicable to individual engineering at the level of compute, network,
or storage components. However, it doesn’t guide the architecture design for the
integration of the different components together when integrating a complex system.

The following chapters will discuss a series of techniques and artifacts that will
enable architectural thinking for secure design in the development of a hybrid cloud
workload. We will continue the discussion with the documentation of requirements
that will form the foundation of the ongoing architectural thinking.

86 | Chapter 3: Enterprise Context

https://oreil.ly/DgFlB
https://oreil.ly/DgFlB

Exercises
1. What are the characteristics of laws and regulations? Select all that apply.1.

a. Provide a minimum baselinea.
b. Always apply globallyb.
c. Provide guidancec.
d. Vary depending on locationd.

2. Which of the following frameworks provides a detailed catalog of security con‐2.
trol requirements?
a. Center for Internet Security (CIS) Critical Security Controls (CSC)a.
b. Cloud Security Alliance (CSA) Cloud Controls Matrix (CCM)b.
c. NIST Cybersecurity Frameworkc.
d. NIST SP 800-53 Security and Privacy Controls for Information Systems andd.

Organizations
3. What should a business strategy contain that may influence the application of3.

security? Select all that apply.
a. Vision and missiona.
b. Technology visionb.
c. Value propositionc.
d. Data strategyd.

4. Where could I locate the security control plane if I wanted it independent of the4.
data centers hosting the workload or application? Select all that apply.
a. In a cloud data centera.
b. In a network point of presence (PoP) data centerb.
c. In an on-premises data centerc.
d. In a co-location data centerd.

5. What are the key use cases for separation of duties? Select all that apply.5.
a. Prevention of frauda.
b. Security control compromiseb.
c. Separation of assurancec.
d. Quality assuranced.

Exercises | 87

6. What’s the security principle that delivers a high level of security configuration6.
without requiring additional modifications or settings?
a. Secure by designa.
b. Zero trustb.
c. Secure by defaultc.
d. Defense in depthd.

7. A security process has which of the following characteristics? Select all that apply.7.
a. It defines how activities will be completed.a.
b. It is independent of technology.b.
c. It assigns activities to roles.c.
d. It defines control points.d.

88 | Chapter 3: Enterprise Context

CHAPTER 4

Requirements and Constraints

Requirements for an information system give a specification or description of the
functional capabilities a system should deliver, along with characteristics or qualities
it should adopt. Mandatory external and internal demands placed on a system turn
requirements into constraints.

People often use non-functional requirements, architectural characteristics, and qual‐
ities interchangeably. They all refer to the same sort of requirements that define the
approach to system delivery. We will discuss this further later in this chapter.

Documentation of requirements happens in different forms, depending on the type
of requirement and the types of development and delivery methods. In this chapter,
we will discuss the different techniques and focus on those techniques that are most
appropriate for the definition of security requirements.

Finally, we will look at how traceability of requirements through the documentation
of the architecture, operational documentation, and testing is essential to providing
confidence in the delivery and operation of the requirements.

Chapter Artifacts
This chapter’s main goal is to discuss the definition and documentation of security
requirements for a system. Figure 4-1 highlights, with white text in a black shaded
box, across the top of the artifact dependency diagram the requirements and con‐
straints that come from the external and internal context of the organization. In
the requirements domain, we highlight artifacts for the definition of functional and
non-functional requirements, with the requirements traceability matrix highlighted at
the bottom right.

89

Figure 4-1. Requirements and constraints chapter artifact dependency diagram

We’re going to start with a discussion on some concepts about requirements that will
frame the discussion of the artifacts used to describe requirements.

90 | Chapter 4: Requirements and Constraints

Requirements Concepts
Requirements give a description of what an information system must deliver and
offer guidance for the development of a solution architecture. They specify the
functionality, architecture characteristics, and constraints of a system. Let’s discuss
this in a bit more detail.

Functional Requirements
Functional requirements describe what an information system is to deliver. In other
words, they define the functional aspects of the information system as delivered by
software. Functional requirements describe the sequence of activities, when they start
and end, the inputs and outputs, and the behavior and processing of the data.

The second characteristic of functional requirements is that they describe the primary
functionality provided by the system, such as placing an order for a product online.
For security, this could be describing the sequence of steps for a customer to log into
an online store but not the login sequence for the system administrator, which is a
non-functional requirement. However, the techniques and artifacts used in describing
the requirements can be the same for both.

Security can bring additional perspectives to consider when describing functional
requirements. What are the decisions that affect the security of the system? How do
we record activities to provide an audit trail? How do we monitor for activities that
may be a threat to the system?

As an architect, you may be thinking that gathering requirements is the job of a
business analyst or a security consultant. Even if someone else gathers those require‐
ments, you will be accountable for the security architecture, and therefore you need
to ensure that you receive complete and high-quality requirements.

When you have the complete context, you need to be able to challenge and modify
non-security requirements, as they may have a negative impact on other character‐
istics of the system. Examples of this might be whether the application uses multi-
factor authentication for login and whether it’s mandatory for authenticating certain
transactions.

Non-Functional Requirements
Non-functional requirements describe how the information system should deliver the
required functionality. They’re often described as the architecture characteristics of the
system and include security, privacy, scalability, availability, recoverability, usability,
and many other characteristics.

Requirements Concepts | 91

You will find that many non-functional requirements apply to the overall system
rather than specific parts of it. The non-functional requirement in Table 4-1 shows a
requirement that applies to the whole system.

Table 4-1. System-wide non-functional requirement

ID Requirement
NFR_SEC_AU_001 A change of all authentication credentials used in system-to-system communication MUST take place

every 30 days.

Many non-functional requirements are included in control frameworks, security poli‐
cies, and practices. You may end up with hundreds of these enterprise-wide, detailed
requirements.

However, other non-functional requirements will be specific to the delivery of a
capability in your solution architecture. The non-functional requirement in Table 4-2
shows a requirement that applies to a specific component of a system.

Table 4-2. Single capability non-functional requirement

ID Requirement
NFR_SEC_FW_001 The edge firewall MUST support a peak application transaction rate of 1,000 active connections and 10

MB/sec outbound.

Characteristics, Qualities, or Non-Functional Requirements
Organizations use different terms to describe non-functional requirements, such as
architectural characteristics or quality properties.

In Chapter 4 of Fundamentals of Software Architecture, Richards and Ford make
the case for the use of the term architectural characteristics because the term non-
functional requirements is self-denigrating. In other words, it could suggest that non-
functional requirements aren’t as important as functional requirements. This is far
from the truth, as using non-functional requirements to describe the implementation
of functional requirements is just as important.

ISO/IEC 25010:2023 on systems and software engineering uses the term product
quality properties, which consist of eight categories of characteristics:

• Functional suitability•
• Performance efficiency•
• Compatibility•
• Usability•
• Reliability•

92 | Chapter 4: Requirements and Constraints

https://oreil.ly/-kjjt
https://oreil.ly/sfxga

• Security•
• Maintainability•
• Portability•

The security category contains subcharacteristics such as confidentiality, integrity,
availability, non-repudiation, accountability, and authenticity. This should look like a
familiar list to you. However, the eight categories they use are a small subset of what
falls within the scope of non-functional requirements.

We’re sticking with the term non-functional requirements, as architectural character‐
istics seems to imply that they’re not requirements, and the qualities described by ISO
25010:2023 are just a small part of the scope of non-functional requirements. Just be
aware that when you read different publications, they may refer to non-functional
requirements using different terms.

Let’s now discuss some categories of non-functional requirements (or architectural
characteristics) that are important to architectural thinking for secure design:

Security
Security is normally expressed as the requirement to protect data from loss
of confidentiality, integrity, and availability. You could say security is more
of a family of architectural characteristics. From them, you can derive other
requirements. Protection from loss of confidentiality requires identification and
authentication to support accountability.

Many of these requirements come from policies, standards, and guidelines for
the organization, but external industry standards specific to the application may
add additional requirements. For example, an organization may require the use
of at least transport layer security (TLS) 1.2, but the external standard requires
TLS 1.3, which may then constrain the technology components used in the
solution.

Collect the applicable policies, standards, and guidelines together at the start of
a project and identify the control requirements that may cause you problems in
terms of compliance. Add those to your list of risks or issues for management in
your project. We will further discuss managing project risks and issues later in
Chapter 10.

Privacy
With privacy enabled, an individual or group can protect themselves or infor‐
mation about themselves to control what information is publicly exposed. The
domain of security, which encompasses concepts such as appropriate disclosure
of information, somewhat interconnects with privacy.

Requirements Concepts | 93

As discussed in Chapter 3, privacy is important to consider for the protection of
sensitive personal information. There may be laws or regulations, such as GDPR,
that derived requirements will come from.

Scalability
Scalability is the ability of an information system to increase its compute, storage,
and networking capacity. If the system doesn’t scale, it can result in a loss of
availability. It’s an important consideration for an architect developing a solution
for a security service. If a security service can’t scale to meet the growth of
customers, this could result in an outage of the overall system.

For example, the design of a privileged access management system may be for the
infrequent retrieval of passwords when booting a server. The frequency greatly
increases in a container environment and unless the service scales, it can cause a
denial of service, impacting the availability of the service. You need to architect
scalability from the start, together with ongoing planning from the security oper‐
ations team. The inclusion of performance and capacity management becomes
an important part of the solution for a privileged access management solution.

Availability
Availability focuses on keeping an information system available. With the move
to cloud native applications that require continuous availability of security serv‐
ices, this becomes more important to the design of security services.

In the past, we might have rebooted an encrypted server every few months. The
loss of a key management server would not have had an immediate impact and
a reschedule of a server reboot could take place. In a container environment
rebooted every few minutes or seconds, a key required for container startup
becomes critical. There would be an immediate impact from the loss of a key
manager.

For this reason, security services often need to have availability characteristics
exceeding those of the applications they’re supporting. You may need to consider
keeping a security service available even after multiple failures of the infrastruc‐
ture have occurred. The security operations team may need to move from on-call
support with response times of hours to 24×7 support with response times of
minutes.

Recoverability
Recoverability is the ability to recover data, services, and operations rapidly after
a disruption to a service. We’ve discussed how critical security services become in
the discussion on scalability and availability. It follows that recovery of the service
is critical, especially due to the change in compute architecture to cloud native
container applications.

94 | Chapter 4: Requirements and Constraints

In the recovery of a data center, security services will often need to be priority for
recovery to enable the subsequent recovery of applications. Ensure backups are
complete, data is synchronized, and recovery is regularly tested to guarantee you
meet the needs of the dependent applications.

There are two key measurements for recovery: recovery point objective (RPO)
and recovery time objective (RTO). RPO is the extent of the data loss when a
failure occurs with an information system. Ideally, this is none, but when copying
the data to a remote site with significant latency, the use of synchronous data
replication may not be possible and asynchronous replication will result in data
loss. Consider how you handle the data loss.

The RTO represents the time taken to recover from a failure. If the application
has to recover within 30 minutes, the dependent security services may only have
10 minutes to recover, leaving 20 minutes for the application to recover. This may
require the improvement of the availability characteristics to handle multiple
component failures and increase the resilience of the security services.

Locking Your Keys in the Car

In the recovery of security services, you need to consider the recov‐
ery sequence. The retrieval of keys may not be possible unless
storage has already completed decryption. For example, it could
be that the reboot of the firewall can’t take place as it enables
communication with the HSM required to decrypt the boot disk
of the firewall. If there isn’t a different method to retrieve the keys,
we can’t resolve this circular dependency. This is the keys locked in
the car scenario, where you can’t open the car because of the keys
locked inside. The same consideration needs to take place with
secrets management and certificate management.

Usability
Usability is the ease with which a user or operator interacts with an information
system. With security, it’s particularly important because if the barrier to usability
is too great, users will try to work around the security control placed in their way.

For example, the rules for reuse of a password have increased in sophistication
over the years as users find a way to make it easy to remember their passwords.
Another example is cumbersome identity verification processes that result in
users providing false information to bypass the controls.

When adding security, think about whether it will promote behaviors that add
additional vulnerabilities or bypass of controls.

Requirements Concepts | 95

Software Architecture Characteristics

We haven’t tried to list all categories of non-functional require‐
ments. Have a look in Chapter 4 of Fundamentals of Software
Architecture for a more extensive discussion of architecture charac‐
teristics and the different categories of architecture characteristics
(also known as non-functional requirements).

Security is often described as a non-functional requirement, but in reality, security is
also specified through functional requirements. A login sequence for an application
will require functionality to identify and authenticate the user before accessing the
application. An example of a non-functional requirement associated with the func‐
tional requirement for the login of a user is in Table 4-3.

Table 4-3. Non-functional requirement

ID Requirement
NFR_SEC_IA_001 The login sequence MUST take no more than 30 seconds to complete if 70% of the users start a login

sequence between 8:30 a.m. and 9:30 a.m. on a business day.

It can get even more confusing because a security requirement can be both func‐
tional and non-functional, depending on the context. The key difference is that a
functional requirement is about the primary functionality of the application, whereas
non-functional requirements are about how the delivery of the functionality takes
place.

For example, the requirement for identification and authentication of a customer
is a functional requirement for the user interface of an online store, whereas the
requirement for identification and authentication of all internal system-to-system
connections is a non-functional requirement. With the first requirement, the sys‐
tem can’t meet the primary system functionality without it, but with the second
requirement, the system can meet all functional requirements with unauthenticated
system-to-system connections.

Constraints
Many requirements become constraints on the solution architecture. Start with con‐
sideration of the external laws, regulations, and standards, as they become mandatory
requirements for your solution. You will then consider these constraints through the
normal requirements gathering process.

However, there are many other constraints created by the current IT environment
and selected software components that may be less obvious and take work to dis‐
cover. These include the following four important areas:

96 | Chapter 4: Requirements and Constraints

https://oreil.ly/-kjjt
https://oreil.ly/-kjjt

Software versions
Software version dependencies come from the underlying operating systems
and middleware. You may get into a “deadly embrace” where your application
software only supports an old unsupported library and an upgrade is impossible
because the company that supplied the software no longer exists. This has the
impact that the upgrade of all other software that depends on the unsupported
library isn’t possible. The security vulnerabilities will then increase over time and
you may need to find additional security controls to mitigate the risk.

When you are architecting a system that has predefined software components,
make sure the dependencies of all the software components line up in terms of
their versions and dependent software components.

Security protocols
Even if supported versions of software components exist, the protocols may
not align. For example, the TLS protocol, used for session-level encryption,
has received upgrades to address newly identified vulnerabilities. Although your
security standards may require TLS 1.3, the software may only support TLS v1.2
and lower. It could become even more difficult if interfacing software depreciates
older protocols or ciphers and doesn’t support TLS v1.2, so they can’t integrate.

You will need to perform a check of the integration points to ensure the soft‐
ware protocols align. You may need to record risks for older protocols with
vulnerabilities and mitigation put in place to prevent the exploitation of potential
vulnerabilities. In this case, you may wrap the TLS in an Internet Protocol
Security (IPsec) virtual private network (VPN) or encrypt the payload inside the
TLS session.

API versions
With the use of REST APIs in many cloud services there is a need to version
control for the development of new capabilities and vulnerability removal. The
software integrating with the APIs needs updates to support new APIs as the
depreciation of older APIs takes place. You have no choice but to make these
changes as the change in versions isn’t under your control.

If your security services rely on cloud APIs to implement security controls,
ensure you have thought about the ongoing support for upgrading to new APIs.
This consideration for ongoing support exists across all security services and is
a significant risk that will need additional work during the development of your
solution architecture.

Agent incompatibility
Security requires many different software agents for detecting threats, checking
compliance, or performing configuration. Version incompatibilities may mean

Requirements Concepts | 97

1 There are many different definitions of what SMART stands for. We’ve chosen this definition because we
believe it delivers the best quality security and compliance requirements.

you can’t install the agents on an older version of the operating system. This is an
important consideration during your product selection.

Another challenge is the use of security appliances that can’t support security
agents, such as enterprise detection and response (EDR) agents. These security
appliances then become a risk as monitoring for threats can’t take place. Often,
these appliances are just a version of Linux that would support the agents but the
suppliers don’t want to allow it for their support purposes. You may need to apply
compensating controls.

As you can see from this discussion, there are many constraints that come out of
the current IT environment and the software components selected as a part of the
architectural thinking process. These investigations may result in new requirements
or updates to the project risks, issues, assumptions, and dependencies that we will
discuss managing in Chapter 9.

The next step is to consider how we might ensure the quality of the requirements we
document.

Specifying Quality Requirements
We need to ensure that the definition of quality requirements is part of our architec‐
tural thinking process. One approach is to use the SMART framework. SMART refers
to making requirements specific, measurable, attainable, relevant, and time-bound:1

Specific
Requirements must clearly specify the needs of the business. They must be clear,
consistent, simple, unambiguous, and at an appropriate level of detail. A good
starting point is to use the Five Ws: ask who, what, when, where, and why. They
can help you define the problem more clearly so you can be more specific in your
requirement definition.

Measurable
The construction of requirements must be such that it’s possible to verify their
implementation. Non-functional requirements often should be quantifiable and
enable measurement of progress toward achievement. Ask yourself: Can you
create a test for the requirement? Part of verification is through traceability of
requirements, including testing, which we will discuss later in this chapter.

Attainable
The requirement should be technically feasible and be possible within the con‐
straints of your solution architecture. Ask subject matter experts on the specific

98 | Chapter 4: Requirements and Constraints

2 Sometimes the R in SMART is defined as reasonable. The criterion is to validate that the requirement has the
appropriate resources to deliver the solution. We don’t use that, as reasonable timescales are included in the
time-bound criterion and then the overall requirement is tested for reasonableness as a part of prioritizing
requirements.

3 Sometimes the T in SMART is traceable. Traceability of requirements through requirements specification,
solution architecture, implementation, and testing is more related to ensuring the quality of requirements
implementation than the quality of the written requirement itself. We will talk about the traceability of
requirements later in this chapter.

technology solution to review the requirements. Check whether there has been
successful delivery of the requirement before. If not, how sure are you that it’s
achievable? Perhaps record a risk or assumption in the project RAID log to track
any concerns. We will discuss this artifact in Chapter 10.

Relevant2

Requirements must align with the overall business objectives and result in a val‐
uable outcome. These requirements may pertain to the primary functionality or
the security and compliance needs essential for conducting business. Be careful
not to add security requirements that are outside the needs of the business or
don’t match the risk tolerance of the organization.

Time-bound3

The requirement should clearly specify when the capability is to be in place to
ensure the alignment of the project team. Should the threat detection system
be in place even for the start of the proof of concept, or can it wait until six
months after the system has gone into production? The timescales may need
a documented rationale through an architectural decision record. We will talk
about how to document an architectural decision record in Chapter 9.

We’ve specified specific, measurable, and relevant criteria as a must, as all require‐
ments should meet these criteria. Whereas attainable and time-bound criteria use
should, as they can depend on the later definition of the overall dependencies, priori‐
ties, and risks of the overall project. Considering the requirements as a whole can
enable a better assessment of these criteria.

Let’s have a look at a couple of examples, starting with a poorly specified requirement
in Table 4-4.

Table 4-4. Poorly specified requirement

ID Requirement
REQ_1 An alert should immediately be raised with the relevant team for ransomware.

Requirements Concepts | 99

4 We’re sure you could improve the requirement, given more context and time.

It’s not specific, as it doesn’t specify who should raise the alert. How quick is immedi‐
ate? We don’t know who the “relevant team” is. What does “for ransomware” mean?
It’s not measurable because it’s not specific enough. We have no idea whether it’s
attainable or relevant, as it’s not well specified. Time isn’t included. It fails to meet any
of the quality criteria.

We’ve also demonstrated how not to label a requirement. Using the label REQ_1
doesn’t give us an idea of what domain the requirement is from, and using 1 rather
than 001 makes it difficult to sort.

Then we’ve created a well-specified requirement in Table 4-5.4

Table 4-5. Well-specified requirement

ID Requirement
NFR_SEC_TD_001 The threat detection system MUST be in place before the system contains client data to issue an alert

to the security operations center (SOC) within 15 minutes on the detection of event patterns that could
indicate potential ransomware.

The requirement tells us the component that raises the alert and who will receive it.
It’s more specific in that it’s about the detection of event patterns that could indicate
potential ransomware. The patterns will be part of the detailed specification. It’s
time-bound by defining when threat detection needs to be in place. It’s measurable,
as within 15 minutes of detection, the alert needs raising. The requirement is relevant
given its threat, which is a real risk to the organization.

How long it takes to detect the threat is difficult to specify, and defining additional
requirements specifying the types of attack detection is an improvement. We can’t tell
whether it’s attainable as we don’t have the project context. It’s a vast improvement
over the first requirement.

You will notice the requirement has a complex sentence construction. Not every
requirement will meet all these criteria, but they provide a quality checklist to see
if you have missed documenting different aspects of a solution. The application of
criteria may vary across different requirements. For example, the expression of the
time-bound criterion may be in a single requirement that then applies to multiple
requirements specifying the functionality.

We’ve also labeled the requirement in a better format. NFR stands for Non-
Functional Requirement, SEC is for the group of security requirements, TD is for
Threat Detection, and 001 is a sortable number.

Now that we have clear requirements, how could we prioritize them?

100 | Chapter 4: Requirements and Constraints

5 The authors prefer the use of won’t, as any requirements that are not implemented based on lower priority
are likely to be categorized as Could have. Sometimes you may need to specify that a requirement won’t be
implemented because you know someone who wants the requirement outside of the immediate project and
you want to make it clear that the requirement must not be implemented.

Prioritizing Requirements
We often end up with a long list of requirements for the solution architecture. While
the implementation of some requirements is immediate, for others, the implementa‐
tion priority can be within a specific time period.

For a minimum viable project (MVP), we must provide a username and password
for identification and authentication and could offer multi-factor authentication if
there is sufficient time. Another example is, with a small number of consumers of the
service, we could decide that we must offer an RTO of 48 hours to start and could
offer an RTO of 4 hours if we’ve had sufficient time to implement it.

One commonly used technique for prioritizing requirements is the MoSCoW
method, where the capital letters represent:

Must have
The project will implement the requirement. The completion of the project can’t
take place without the delivery of the requirements categorized as Must.

Should have
The project will attempt to implement the requirement within the time given but
may not have time to do so.

Could have
The project could implement, but won’t necessarily implement, the requirement.
More than likely, the implementation of the requirement won’t happen.

Would or Won’t have5

This could mean the project would have the requirement included if there was
time, but it’s not critical. An alternative is to sometimes specify a project won’t
implement a requirement. Perhaps because the requirement would introduce
additional cost or complexity and needs to be explicitly excluded from a solution
to ensure it doesn’t get implemented.

Let’s give some examples of prioritized requirements based on two sprints of a
project, as shown in Table 4-6.

Requirements Concepts | 101

Table 4-6. Prioritized requirements

Reference Sprint 1 Sprint 2 Requirement
REQ_SEC_1 MUST MUST All users MUST be identified and authenticated before given access to the system.

REQ_SEC_2 SHOULD MUST All users MUST be authenticated using multi-factor authentication.

REQ_SEC_3 COULD SHOULD All users MUST be presented with a legal warning about unauthorized use of the system.

The table shows three requirements related to the identification and authentication of
a user by a system with phased implementation. There must always be identification
and authentication, with multi-factor authentication next and a legal notice coming
later.

Now that we have a way of assessing the quality of requirements and a way of
prioritizing them, let’s move on to the specification of requirements, starting with
functional requirements.

Specifying Functional Requirements
There are many different ways of specifying functional requirements. Writing func‐
tional requirements can be as simple as something the system will provide, such as in
Table 4-7.

Table 4-7. Example use case description

ID Requirement
FR_SEC_IA_001 The system will identify and authenticate a user using a username and password.

However, this doesn’t describe the sequence of activities or the actors engaged in the
activities. In this section, we’re going to introduce a selection of different techniques,
show the artifact, and discuss their use in the context of specifying functional require‐
ments.

We will discuss the following techniques:

• Use cases•
• Journey maps•
• User stories•
• Swimlane diagrams•
• Separation of duties matrices•

102 | Chapter 4: Requirements and Constraints

Use cases, a technique developed in the 1980s by Ivar Jacobson, who later codevel‐
oped the Unified Modeling Language (UML), will be our starting point.

Use Cases
A use case is a description of system interactions by human and system actors. We
will identify use cases as part of defining the system context diagram in Chapter 5.
They need further description through the use of a UML use case diagram and use
case descriptions.

We can use a UML use case diagram to visualize the behavior of a system with a box
representing the system or subsystem boundary, people representing the human and
system actors, and the use cases inside the box. We’ve taken a subset of the actors and
use cases from the case study to show a use case diagram in Figure 4-2.

Figure 4-2. Case study UML use case diagram

The diagram shows the involvement of actors in each use case, but we need some
more detail about the use case. We can document them either as an informal descrip‐
tion or in a prescribed template, such as shown in Table 4-8.

Specifying Functional Requirements | 103

Table 4-8. Case study use case description
Name of use case: Driver registration

Description: Register the driver details and the vehicles they own

Actors: Driver

Preconditions: 1. The driver must not be registered already1.

Flow: 1. Register a username and password for the portal1.
2. A validation email is sent to the driver2.
3. The driver clicks on the link to validate the email3.
4. The driver logs in again4.
5. The driver registers name, address, and mobile phone5.
6. The driver registers the vehicles that they own6.
7. The driver registers a payment card to charge the fee7.
8. Logout of the portal8.

Postconditions: None

Exceptions In step 1, if the driver has already registered the user interface will say “unable to register” and send
an email to the owner telling them of the duplicate registration and guiding them to a reset of the
password.

Requirements: 1. The username will be checked to check if it looks like an email address.1.
2. The password will be checked to verify that it’s not trivial.2.

Each use case describes a set of activities with pre- and post-conditions. For non-
technical use cases, business analysts or consultants may define them for architects
and developers to implement.

A Use Case Description for System Interaction

We’ve used a textual use case description, but we may also use
sequence or collaboration diagrams to better describe the interac‐
tion between system actors and the system (or subsystem). We
include a discussion of these artifacts in Chapter 6.

There are many security use cases for definition in every system, from the end-user
application login to the reporting of a security incident. You must ensure the identifi‐
cation of the security-relevant actors and document their use cases.

Further UML Detail

For a more detailed description of use case diagrams, read Chap‐
ter 18 in the Unified Modeling Language User Guide (Addison-
Wesley Professional) by Grady Booch, James Rumbaugh, and Ivar
Jacobson.

104 | Chapter 4: Requirements and Constraints

https://oreil.ly/f-1aC

As we discussed, use cases are interactions with a system. It becomes difficult to
avoid considering a solution as part of the requirement definition. In Table 4-7,
the requirement has already defined the need for a username and password. What
about a passwordless system of identification and authentication? It would have been
better to require multi-factor authentication as a quality and leave the solution to the
architect.

As a result, in the past 20 years, there has been the development of techniques that
focus on the end user. We’re going to continue with a technique focused on the needs
of a user, the definition of a journey map.

Journey Maps
We discussed design thinking in Chapter 2. The focus is on a human-centered
approach to understanding personas (another term for actors) through their needs,
pain points, and goals. One technique to better understand personas is to draw up
a journey map to define their actions, thoughts, and feelings when engaging with a
service or product. It’s a more personal tool to place yourself in the position of a user
or customer to understand their thoughts and emotions.

The journey map is normally created in a workshop using stickies on a wall to
describe the phases, steps, feelings, and pain points. We’ve shown an example of a
journey map in Figure 4-3 for the case study.

Figure 4-3. Case study journey map

A journey map is also called a user journey or scenario map with slight differences
between different formats. We used the to-be scenario map format from the IBM
Enterprise Design Thinking method.

Specifying Functional Requirements | 105

https://oreil.ly/bp41I

This technique is good for showing the end-to-end journey and getting into the head
of the driver to understand their thoughts and feelings. However, a journey map
doesn’t offer enough detail to move into solution development and there is a need
for an additional technique to decompose the problem. We’ll now discuss using user
stories for the next stage of development.

User Stories
In Agile development, functional requirements are often specified as a user story.
It’s a concept that comes from the eXtreme Programming methodology as a way
to improve software quality and be more responsive to changing customer require‐
ments. Users express their requirements and values through user stories. The users
are those specified as human actors as a part of the system context diagram in
Chapter 5 and as personas in design thinking. It provides a mechanism to communi‐
cate between the development team and the customer about the specification of the
solution.

We develop user stories and put them into a catalog of stories called a product
backlog. Based on priority, for each sprint or iteration, we move the user stories into
the sprint backlog. The MoSCoW approach to prioritization, discussed earlier, is one
way to decide which stories join the sprint backlog.

A user story is normally written in a three-part form:

As a <role> I want <a feature/function> so that I <business reason/benefit>.

This covers three elements of the five Ws for making a requirement specific: who,
what, and why. Typically, you will add background information that provides context
to the requirement and tests that determine its completion.

Let’s give an example of a user story for a compliance report, as shown in Table 4-9.

Table 4-9. User story example
User story As a compliance specialist, I want to be able to obtain a compliance report containing trend graphs for

different perspectives so that I can identify the stakeholders I need to work with to close compliance gaps.

Context This comes from the compliance team who have been doing this manually with spreadsheets and need it
automated.

Acceptance
tests

• Test it with trend reports for a line of business, application, technology platform, and country.•
• Test it with trend reports for weekly, monthly, quarterly, and yearly.•

Not all users want to enter a username and password, and sometimes with security
requirements, it’s more appropriate to change the I want to I’m required, and then
remove the so that clause. The core principle to remember is that the user story must
be for a specific user role. Don’t start a user story with “As a user”; a specific user
needs identification.

106 | Chapter 4: Requirements and Constraints

We refer to larger user stories that may take more than one sprint as an epic. They
often need further refinement into many user stories and are a sign that there is a
need for further work to decompose the problem. As a result, some tooling defines
an epic as a group of user stories rather than a large user story. It’s worth agreeing on
what an epic means within the team you are working with.

A theme is a collection of related user stories and epics organized into a group. For
instance, a theme named “compliance reporting” could include stories and epics for
each individual report.

Developers can easily forget about the users responsible for security and compliance
when developing an application. This is why defining these actors (or users) is
important in the system context diagram we will discuss in Chapter 5, as it’s a good
reminder that the users aren’t just those for the primary business application. The
overall information system also has to meet the needs of many other users, such as
the “Compliance Team.” In this case, we should consider that one of the primary
functions of the application is to meet external regulatory requirements.

Further User Stories Detail

Further detail on applying user stories is in User Stories Applied:
For Agile Software Development (Addison-Wesley Professional) by
Mike Cohn.

At this point, we have a way of specifying the end-to-end user journey and functional
requirements through user stories. We’re missing a way of specifying the different
users, how they interact, and describing the separation of duties. We therefore come
back to a technique that has existed for much longer: a swimlane diagram.

Swimlane Diagrams
There are many different diagrams that describe a process flow or sequence of activi‐
ties performed by an actor or user. There are flowcharts and UML activity diagrams
that describe the steps in a process, but neither clearly shows roles without adding a
table describing the sequence of activities.

Therefore, we use swimlane diagrams to describe the steps in a process, with each
“swimlane” being a row or column representing the activities of an actor. The dia‐
gram enables you to show who performs what steps, the handover between actors,
and decision points. The diagram can also show how to maintain separation of
duties. Figure 4-4 shows an example of a swimlane diagram.

Specifying Functional Requirements | 107

https://oreil.ly/0_OQs
https://oreil.ly/0_OQs

Figure 4-4. Swimlane diagram

We’ve used a simple set of diagram parts; you will find more complex diagrams, but
you are likely to use these parts most of the time. Let’s discuss the parts:

Actor
These are the actors, personas, or users involved in the execution of the process.
There can be both human and system actors as part of a system.

Swimlane
A swimlane is a row or column holding the activities performed by an actor.
They look like swimlanes in a swimming pool where swimmers stay within their
own lane, which is where the name of the diagram comes from.

Terminator
A terminator is the start or end of the described process.

Process step
A process step is an activity performed by an actor.

Decision
A decision occurs when someone makes a choice in the process. It’s normally
a two-way decision, like a yes/no or OK/not OK decision, but you could draw

108 | Chapter 4: Requirements and Constraints

the diagram with more than two options. Where there is a policy decision, the
writing of an event record to a log will need to take place.

Subprocess
An individual process step may become too complex for a single diagram and a
separate subprocess (or swimlane diagram) will describe the step in more detail.

Step numbers
This numbers the steps and is a useful way of referencing the steps in the
process. It’s a convention that swimlane diagrams should always go left-to-right
or top-to-bottom, as they represent the execution of a process over time.

The swimlane diagram alone often doesn’t provide sufficient description, so we
require a text description in a table. Table 4-10 provides a short example with the first
two steps from Figure 4-4 filled out.

Table 4-10. Swimlane diagram description

Activity Actor Title Description
1. Request

privileged
access

Employee The employee starts by opening the web page for the IAM request tool and completes
a request for privileged access. The request includes the ID required and a business
justification for obtaining that level of access. This must be linked back to an incident,
problem, or change ticket.

2. Decision Manager The manager reviews the request from the employee and checks that there
is sufficient justification for the access and that the requested permissions are
appropriate to the activities.

n. etc. etc. etc.

Note that the table includes the number of the activity, the actor, and the title, with
the addition of a description. If you want to use a flowchart or UML activity diagram,
this table can record the actors rather than using swimlanes.

For the next stage, we must ensure that an actor doesn’t receive inappropriate rights
to perform a process step. We do this with a separation of duties matrix.

Separation of Duties Matrices
In Chapter 3, we discussed separation of duties as an important guiding principle.
There are many security-relevant processes where a user must not perform a combi‐
nation of activities and they need to follow the separation of duties principle.

For example, a user requesting privileged user access shouldn’t be able to approve
their access or have the ability to issue their own privileged access. We use a separa‐
tion of duties matrix to represent what they can and can’t do. Figure 4-5 is an example
for the swimlane diagram in Figure 4-4.

Specifying Functional Requirements | 109

Figure 4-5. Separation of duties matrix

The parts of the diagram are:

Process step
These are all the process steps in the swimlane diagram.

Role
This is the number of the role, as shown by the key, that performs a process step.

ID
The ID is the number of the process step used in the swimlane diagram. The ID
is both vertical and horizontal on the matrix.

110 | Chapter 4: Requirements and Constraints

Risk matrix
In the center of the table is a 7 × 7 matrix showing what process steps a role can/
cannot perform together. Where a combination of process steps is an elevated
risk, an “X” marks a combination of activities that a role must not perform
together. Where a “*” shows the combination is low risk, the role should avoid
the combination. It’s not a showstopper and the role could perform the combina‐
tion if there was no other choice. A tick marks a combination of activities that
can be performed by the same person.

So how do the functional requirements artifacts work with the case study we’re using?

Case Study: Process Definition
We created a journey map for a driver in Figure 4-3, but this is too high-level and
has no detail to provide functional requirements for the system. The first security-
relevant activity on the journey map is driver account registration.

We’ve used a swimlane diagram to describe the driver account registration process as
shown in Figure 4-6. We’re using a vertical form of the diagram so we can display all
the process steps on a portrait page without decomposing into additional swimlane
diagrams.

In this example, there is a single human actor and two system actors. We’ve identified
two technical components among the two system actors and started the architectural
thinking process. We don’t have multiple human actors, so we don’t need a detailed
separation of duties analysis.

The identity provider and email provider could be two different cloud services. We
may have a requirement that the identity provider make all identity-related decisions
and not the email provider. It could be that we’ve gained greater trust in the identity
provider and don’t want to spread the business logic for identity-related decisions
across multiple services. An architectural decision record should document that only
the identity provider will make these decisions. In this case, we can see in the swim‐
lane diagram that the email provider only sends emails andcperforms business-logic
decisions.

This is an example of a business process making security-impacting decisions. We
don’t have to create a swimlane diagram for every process. We suggest you document
any process involved in making a security decision using a swimlane diagram to
be clear about the sequence of activities and security decisions. We will show in
Chapter 11 further details on process decomposition and how to document the
writing of security events into an audit log.

Case Study: Process Definition | 111

Figure 4-6. Driver account registration swimlane diagram

112 | Chapter 4: Requirements and Constraints

Functional Requirements QA Checklist
• Use the system context diagram, discussed in Chapter 5, to identify use cases that•

require further specification.
• Review the business requirements discovery, such as the journey map and user•

stories, to identify activities or stories that have security controls included.
• Elaborate security enforcing activities using swimlane diagrams and separation of•

duties matrices.
• Ensure the business process owner retains ownership of business process defini‐•

tion (not the security architect).

Now let’s move on to the specification of non-functional requirements.

Specifying Non-Functional Requirements
We talked earlier about how non-functional requirements describe how the informa‐
tion system should deliver functionality. We then talked about some categories of
non-functional requirements, how to measure their quality, and how to prioritize
them. So where do these requirements come from, and what’s the best way to record
them?

Sources of Non-Functional Requirements
In Chapter 3, we talked about the external and internal sources for requirements.
External laws, regulations, and industry or expert organization best practices enable
an organization to develop its internal policies, standards, and guidelines. From these
documents, an architect needs to extract the relevant non-functional requirements.
These non-functional requirements are often constraints on your project, as they
can reduce the choice of security solution. Figure 4-7 shows how the external, inter‐
nal, and project contexts inform the solution architecture containing the security
controls.

We discussed the external and internal context in Chapter 3. Once there is a project,
we now have a project context that gives us additional requirements to work with,
including the project objectives and scope. Resources, skills, tools, standards, budget,
and timescale all have an influence on the solution we’re considering.

Specifying Non-Functional Requirements | 113

Figure 4-7. External, internal, and project context

The project context brings into consideration the project management triangle with
the balancing of cost and time with scope, quality, and risk, as shown in Figure 4-8.
However, the diagram shouldn’t only focus on scope and quality but also consider
balancing cost and time with qualities such as security, resilience, and availability.

Figure 4-8. Project management triangle

This balance is something you need to consider when specifying requirements, as
meeting all requirements may not be viable in terms of cost or time. You may
need to look for alternative security controls that are lower-cost and have faster
implementation.

Not all requirements are explicit, and so we derive implicit non-functional require‐
ments from other sources, such as the applications or workloads the security services

114 | Chapter 4: Requirements and Constraints

are securing. If an application has an RTO of eight hours, the security services may
need to be available in a much shorter time in the event of a widely impacting outage.
Or if an application needs to have 80% of the users log in within a short time, the
security service supporting the application will need to scale to meet the needs of
the application. This will result in a set of non-functional requirements for security
related to availability and resilience.

Depending on the delivery of the security capabilities, you may not be in control of
the security service functionality and architecture characteristics. They also become a
constraint you need to work with.

Non-Functional Requirement Dependencies
You may be in control of the implementation of the security requirements through
the project you control or you may have dependencies on security services delivered
elsewhere. For security services delivered outside your project, you will need to assess
whether those workloads can use the security services to meet the non-functional
requirements of the project.

For example, if the application uses a specific technology, does the security service
also support it? If not, will the workload need to change, or will you need to fill
the gap? A good starting point is to obtain a list of key software components, their
software versions, and the platforms they run on. The shared responsibility stack
diagram we discuss in Chapter 7 helps with the analysis, as you can use it to think
about the different layers of the solution for each platform.

Identifying Software Versions

In on-premises architectural thinking, the checking of software
versions may have been later in the process. We’ve found this hap‐
pens earlier in the process for hybrid cloud, with software versions
requiring major changes to the architecture and operations.
For instance, the solution might require a software version or fea‐
ture that the CSP doesn’t support, resulting in the need to replace
a cloud service with software on a virtual server. The cost is then
likely to increase and the viability of the project may be in doubt.
As a result, the project may decide to use an alternative service.
Even if the solution is already software rather than a service, it
could be that you need to change the security software from one
vendor to another. The earlier you perform a software version
check, the less likely there will be the surprise of a major change in
software components at a later stage.

Specifying Non-Functional Requirements | 115

You should work through each of the key software components, examining what
security services need integration and assessing their compatibility. Some questions
you might ask are:

• What are the operating systems, and are security tools like antivirus and end-•
point detection and response (EDR) supported?

• Does the messaging tool require payload encryption inside the encrypted net‐•
work session, and is there a security service to support it?

• Does the database need activity monitoring to detect misuse of the data by an•
employee or an external threat actor? Is there a supported solution?

There might be even more restrictions for cloud services regarding the services used
in workloads, such as databases, and the security services, such as access control, that
the cloud service provider is delivering.

Documenting Non-Functional Requirements
We’ve talked about where the non-functional requirements come from and the deri‐
vation of requirements from dependent technology. Earlier in this chapter, we also
talked about deriving and creating quality requirements using SMART. We now need
a list of requirements that we can use to demonstrate compliance with the policies
and any other requirements that come from different sources. It would be simple if
we could just have a single document with all the requirements listed, but that’s not
how it normally works.

We find the best way to approach this is to create a spreadsheet or table of all require‐
ments and initially ignore the quality of the source requirements. Then categorize
using the non-functional categories, and for security requirements, use the security
domains as discussed in “Technique: Enterprise Security Architecture” on page 48.
Then insert the original requirement with a reference to the source document, fol‐
lowed by the proposed solution and service owner of the requirement, as shown in
Table 4-11.

Table 4-11. Control implementation mapping example

NFR Domain Category Prio Requirement Ext. Ref. Solution Service
owner

SEC IAM PAM_003 MUST Rapid retrieval of
privileged
passwords is
needed.

EXT_REF_nn The hosting of the privileged access
management (PAM) service will
be on infrastructure components
that are independent of the core
infrastructure and will be available
during a DDoS attack via a break
glass remote VPN service.

Security
operations
manager

116 | Chapter 4: Requirements and Constraints

This gives you a format that’s good if you have a single project, but if you are running
a program with many projects or an organization with many projects, creating a list
of requirements from all the different sources will add up to lots of duplicated effort.
In this case, it’s worth improving the quality of the requirements catalog. Let’s review
some techniques for improving the requirements.

Improving Requirement Specification
You may end up pulling requirements from different sources, resulting in a variety of
different formats and qualities. If you review the control requirements from NIST SP
800-53r5 Security and Privacy Controls for Information Systems and Organizations,
the requirements are policy, technology, and sector neutral, which many people
would not understand, and there are parameters that need completing.

The requirements pulled together will often benefit from rewriting into a consistent
set that people can understand without resulting in inconsistent interpretation. You
are then able to use the high-quality requirements many times across projects or
contexts.

We’ve developed a useful set of approaches for the derivation of a consistent and
high-quality security requirements catalog for repeated use. Iteratively use each tech‐
nique to derive the necessary requirements and use them in the order that best works
for you.

While you are doing this, ensure you maintain a mapping between the new require‐
ment and the original requirement. As you make changes, recheck the mapping back
to the original requirement to ensure it still holds. If you reword, split, or merge
requirements, they could come out of sync with the original requirements.

Let’s start by sorting the requirements based on domain and then category to group
related requirements. Then process the requirements in the following ways:

Reorder
Although you have sorted the requirements into groups of common types of
requirements, often they only make sense in a certain sequence. For example, you
may have two requirements: the first requiring authentication using multi-factor
authentication, and the second requiring identification and authentication before
a user accesses a system. These two requirements need swapping so that one can
build on the next.

Split
You may find that you can split a requirement into multiple requirements. A
requirement with “and” in the sentence is an indication of a requirement that
you may need to split. For example, take the following requirement AC-2 a. from
NIST SP 800-53r5. The first part is a documentation requirement, and the second
part could be a requirement for a technical control enforced by tooling. Splitting

Specifying Non-Functional Requirements | 117

https://oreil.ly/wMrey
https://oreil.ly/wMrey

6 This is one example of why using accountability based on a control family within a control framework isn’t
effective. There are many other examples, but this is the most obvious example to use.

the requirement into two requirements enables allocation to different teams for
clear accountability, if needed:

AC-2 a. Define and document the types of accounts allowed and specifically
prohibited for use within the system.

Merge
Once you have reordered and decomposed, you may find two requirements that
are effectively the same requirement. At this point, you may be able to merge
them into a common requirement. Look for any subtle phrasing between the
two requirements before you merge them and check back against any source
requirements.

Recategorize
Sometimes a requirement may be mapped against the wrong category and need
remapping. For example, NIST SP 800-53r5 states that many control families
require the development of a policy, which is typically written independently of
the team responsible for implementing the requirement.6 You are likely to have a
team that’s accountable for all policy development. These requirements will need
recategorization to a different domain and category for improved alignment with
the accountable owner.

Subcategorize
You can end up with a long list of requirements that you have reordered, split,
and merged. You may notice requirements come together into common themes.
Grouping the requirements into further subcategories can make them easier to
manage.

Dimensions
Requirements should be as neutral as possible so that, as the context and tech‐
nology change, you can apply them to the appropriate scope without changing
the requirements. However, there is a need for some context. For example, take
the requirement SI-3 a. from NIST SP 800-53r5. It says to implement the code
protection mechanism at system entry and exit. You could take this to mean only
implementing a control on a server, but the implementation of this control is at
many control boundaries:

SI-3 a. Implement [Selection (one or more): signature based; non-signature based]
malicious code protection mechanisms at system entry and exit points to detect
and eradicate malicious code;

118 | Chapter 4: Requirements and Constraints

7 This has nothing to do with using the SMART approach to improving the quality of requirements.

In the discussion for the control, it says, “System entry and exit points include
firewalls, remote access servers, workstations, electronic mail servers, web
servers, proxy servers, notebook computers, and mobile devices.” This require‐
ment needs these multiple dimensions to be explicitly documented with the
requirement. Otherwise, people may misunderstand the expected scope.

As it applies to all requirements related to malicious code, we suggest you keep
the dimensions of the requirement in a list independent of the requirement for
referencing multiple requirements. As the dimensions change, you only need to
update them once.

Parameterize
Requirement SI-3 a. that we used in the previous example has parameters that
require filling out for the type of malicious code detection capability. As with the
dimensions, we suggest you keep this list external to the requirement so you can
apply the same parameters to more than one requirement if needed.

Non-align
The security industry creates lots of new terms for new capabilities and unfortu‐
nately, those terms can end up in requirements. For example, the term smart
protection7 used by multiple ISVs doesn’t tell us what the requirement is. Is it
AI-based brand protection or malware protection technology?

A requirement shouldn’t lock any organization into a single product. You will
need to spot these and replace them with a requirement that’s not aligned with
branded offerings. You may need to define your own terms and create a glossary
to provide a description of the terms in the context of your organization.

Let’s talk through an example to give you an idea of the improvements gained from
improving the specification of a requirements catalog for use across projects.

Case Study: Specifying a Requirements Catalog
We discussed the specification of the functional requirements using a process flow
and improving the quality of the requirements. In a project where the requirements
aren’t reused, justifying a significant effort to improve them is unlikely.

When there is a need to reuse the same set of requirements across multiple projects,
improving their quality reduces the time spent discussing the meaning of poor-
quality requirements. Furthermore, with requirements scattered across different secu‐
rity documents, it’s difficult, without a single list to work through, to demonstrate
compliance. In these cases, a single requirements catalog is valuable.

Case Study: Specifying a Requirements Catalog | 119

Technical Design Authority or Architecture Board
We talk about the creation of documents for use across an organization for many
projects. To do this, we need a Technical Design Authority (TDA) where techni‐
cal leaders from across the organization, with varying skills and experience, come
together to assess, advise, and agree on best practices. A requirements catalog is
one of those artifacts they will agree to use across the whole organization. The
TOGAF Standard from The Open Group is a good starting point for understanding
architecture governance and the roles and functions of an architecture board or TDA.

Identifying Security Requirements
The case study asks us to document the top 10 to 20 requirements for implementa‐
tion as a part of the MVP. It’s suggested we use the NIST Cybersecurity Framework
(CSF) as a starting point for the requirements. As an example, let’s start to build
the requirements for vulnerability management from the framework, as shown in
Table 4-12.

Table 4-12. NIST CSF—vulnerability management

Function Category Subcategory Information references
PROTECT
(PR)

Information Protection Processes and
Procedures (PR.IP): Security policies (that
address purpose, scope, roles, responsibilities,
management commitment, and coordination
among organizational entities), processes,
and procedures are maintained and used to
manage protection of information systems
and assets.

PR.IP-12: A
vulnerability
management plan is
developed and
implemented

CIS CSC 4, 18, 20
COBIT 5 BAI03.10, DSS05.01, DSS05.02
ISO/IEC 27001:2013 A.12.6.1, A.14.2.3,
A.16.1.3, A.18.2.2, A.18.2.3
NIST SP 800-53 Rev. 4 RA-3, RA-5, SI-2

DETECT
(DE)

Security Continuous Monitoring (DE.CM):
The information system and assets are
monitored to identify cybersecurity events
and verify the effectiveness of protective
measures.

DE.CM-8:
Vulnerability scans
are performed

CIS CSC 4, 20
COBIT 5 BAI03.10, DSS05.01
ISA 62443-2-1:2009 4.2.3.1, 4.2.3.7
ISO/IEC 27001:2013 A.12.6.1
NIST SP 800-53 Rev. 4 RA-5

Two subcategories within the NIST CSF, each serving different “functions,” lead to the
requirements. Organizations often integrate these requirements into a vulnerability
management service. Note there isn’t a one-to-one match between the security serv‐
ices and the NIST CSF functions, demonstrating you can’t use the CSF functions to
describe security services.

120 | Chapter 4: Requirements and Constraints

https://oreil.ly/6Sjhr
https://oreil.ly/W8asf
https://oreil.ly/W8asf

8 This could be a new software vulnerability reported in the CVE database or a threat intelligence about the
exploit of a vulnerability. Ideally, you should add a requirement for the automatic patching of a software
product.

The subcategories define the “building blocks” of security in the NIST CSF but
are insufficient as requirements, leaving many questions unanswered and open to
interpretation. They’re good for a high-level checklist but not for the specification of
security requirements needed for a demonstration of compliance. For example, they
say nothing about the dimensions we discussed previously. They have no parameters
specifying the frequency of vulnerability scanning or the time required to remove a
vulnerability.

Elaborating Security Requirements
Each of the subcategories has references to NIST SP 800-53r5, Security and Privacy
Controls for Information Systems and Organizations. It’s a control catalog that pro‐
vides a more comprehensive set of control requirements to work with.

In NIST SP 800-53r5, the first requirement for vulnerability monitoring and scanning
is RA-5 (a), as shown in Table 4-13.

Table 4-13. NIST SP 800-53r5 vulnerability monitoring and scanning

ID Requirement
RA-5 (a) Monitor and scan for vulnerabilities in the system and hosted applications [Assignment: organization-defined

frequency and/or randomly in accordance with organization-defined process] and when new vulnerabilities
potentially affecting the system are identified and reported;

While it’s more comprehensive, RA-5 (a) has many control requirements, dimen‐
sions, and parameters in the same sentence. Here is the list of what we found:

• A vulnerability scanning tool to identify vulnerabilities—DE.CM-8 in NIST CSF•
• A vulnerability management process—PR.IP-12 in NIST CSF•
• A parameter for the frequency of scanning according to policy•
• A dimension for scanning “system and hosted applications”•
• A new requirement for notifying the vulnerability management service when•

new intelligence has identified vulnerabilities or threats to vulnerabilities in the
system.8

We can’t leave RA-5 (a) as an integrated, multidimensional requirement to effectively
demonstrate compliance and need to rewrite it into separate components.

Case Study: Specifying a Requirements Catalog | 121

https://www.cve.org
https://oreil.ly/NNlaA
https://oreil.ly/NNlaA

Rewriting Security Requirements
Integrating multiple requirements, parameters, and dimensions into one control
requirement makes it difficult to assign accountability and measure compliance.
Decomposing the RA-5 (a) control requirement into discrete requirements, dimen‐
sions, and parameters, as shown in Table 4-14, is the best way to rewrite it.

Table 4-14. Rewritten vulnerability management requirements

Topic ID Description Control mapping
Control
Requirements

VM-01 Define and implement threat and vulnerability management
processes and procedures.

NIST SP 800-53 RA-5 (a)
NIST CSF PR.IP-12

VM-02 Vulnerability scanning MUST be performed at a frequency {VM-
P-01,02,03,04} for the system component types {VM-D-01}.

NIST SP 800-53 RA-5 (a)
NIST CSF DE.CM-8

TIM-01 Notify the Vulnerability Management service of a potential system
component vulnerability MUST be performed within {TIM-P-01}.

NIST SP 800-53 RA-5 (a)

Control
Dimensions

VM-D-01 Networking components, servers (physical and virtual), containers,
cloud platform, container platform, application

NIST SP 800-53 RA-5 (a)

Control
Parameters

VM-P-01 no less than weekly NIST SP 800-53 RA-5 (a)

VM-P-02 after a significant system component change NIST SP800-53 RA-5 (a)

VM-P-03 within 24 hours after notification of potential system component
vulnerability

NIST SP 800-53 RA-5 (a)

VM-P-04 during penetration testing NIST SP800-53 CA-8

TIM-P-01 within 24 hours NIST SP 800-53 RA-5 (a)

Key VM = Vulnerability Management
TIM = Threat Intelligence Monitoring
{} = Parameter/Dimension Substitution

We began by creating requirement VM-01 for processes and procedures, which is
a fundamental requirement necessary for all services and requested in the RA-5
(a) assignment. Then RA-5 (a) requires a control requirement, VM-02, for vulnera‐
bility scanning and then a derived requirement, TIM-01, for the threat intelligence
monitoring service to notify them of potential vulnerabilities. The TIM-01 control
requirement, which isn’t explicitly mentioned in any vulnerability management or
threat intelligence requirements, critically determines the successful delivery of the
VM-01 control requirement.

The dimensions or scope of the service are missing. RA-5 (a) talks about a “system
and hosted applications,” but that’s incomplete and depends on the technology com‐
ponents used in the environment. When we read RA-5 (a), we might think we just
need to perform a vulnerability scan of servers and applications, but this doesn’t
include the network, cloud platform, containers, and container platform vulnerabili‐
ties. Adding the dimension VM-D-01 improved the scope of vulnerability scanning.

122 | Chapter 4: Requirements and Constraints

Control Family/Domain Misalignment

You may have noticed the control families and domains in NIST
CSF and SP 800-53 don’t fully align with the resulting security
requirements, dimensions, and parameters. We derived a new
requirement for Threat Intelligence Monitoring and discovered a
new requirement for Vulnerability Management related to penetra‐
tion testing. The result is that you can’t assign accountability for
security processes and service delivery by simply allocating owner‐
ship of control families or domains to these frameworks.

The parameters for the service are missing. It doesn’t define how often the scans need
to run or how quickly the owners of the vulnerabilities need notification. What’s the
length of time for storing the vulnerability records? Many of these parameters could
come from a policy, but if they aren’t specified there, it’s not clear when we’ve met the
requirements. Adding the parameters VM-P-01, VM-P-02, VM-P-03, and TIM-P-01
has improved the understanding of the requirements.

We added a parameter VM-P-04 because we found the requirement CA-8 requires
the ability to perform vulnerability scanning for penetration testing. This require‐
ment needs documenting because it may change the number of supported human
actors and require an increase in the capacity of the security service.

Non-Functional Requirements QA Checklist
• Consider all sources: external context, internal context, and project context.•
• Identify dependent application and service components and use to determine the•

security integration requirements, including:
— Software version dependencies—
— Workload-specific security requirements—
— Capacity requirements—

• Assess the quality of each requirement using SMART•
• Assess the priority of each requirement using MoSCoW•
• Ensure requirement includes:•

— A label providing a unique identifier—
— A label identifying its source—
— Dimensions that define the scope—
— Parameters that define the variable aspects—

• Try to balance the cost, scope/quality/risk, and time in requirement specification.•

Case Study: Specifying a Requirements Catalog | 123

Up until now, we’ve discussed establishing a requirements catalog for a workload or
application. But how can we use this catalog to make sure the implementation and
operation of the security are in accordance with the requirements? We’ll talk about
that in the following section.

Requirements Traceability
Once we’ve documented the requirements and identified the solution, we need to
ensure the documentation of the solution at both a logical and prescribed level,
the completion of testing, and the availability of operational documentation. We do
this by creating a mapping from the requirements to the specific documentation, as
shown in Table 4-15.

Table 4-15. Requirements traceability matrix
ID Requirement HLDa LLDb Test plan Documentation

SEC_IAM_PAM_003 The system response
time at all stages of
retrieval for a privileged
credential MUST take
less than 5 seconds to
load a page even if the
core systems
infrastructure is under
extreme load.

4.2 Privileged
Access
Management
(PAM)

11.3 Privileged
Access
Management
(PAM)

6.5 Unit Test
7.8 Integration
Test
9.7 Resiliency
Test

Ops Manual—5.6
Emergency Break
Glass VPN Process

a High-level design
b Low-level design

The table has a column for each stage of the documentation for the solution architec‐
ture, including testing and operations. Your table may contain further columns for
your project but these are the minimum we would expect.

We can then be more confident about the documented solution architecture and the
implementation and operation of the capabilities to maintain security. We will talk
more about the development of the design and operational artifacts in the design
documentation within Chapters 6 and 8, the required testing in Chapter 10, and the
operations documentation in Chapter 11.

124 | Chapter 4: Requirements and Constraints

Indexing Requirement References

We’ve given each requirement a unique identity code to use as
a reference. A useful approach to validating the inclusion of all
requirements in a design document is to include the ID within a
sentence, such as [SEC_IAM_PAM_003], and then mark it as an entry
for an index. You can then find where the design specification doc‐
umented a requirement and ensure coverage of all requirements by
reviewing the index for completeness.

Let’s finish with a summary of this chapter.

Summary
Some authors have expressed the view that documenting requirements are no longer
needed in an Agile working environment. I hope we’ve demonstrated the value of
spending effort documenting both functional and non-functional processes. You can
scale the level of documentation to meet the size of the organization and project.
We’ve indicated how to do it for the largest of organizations and highlighted some
ways to scale down the work for smaller projects.

Security requirements aren’t just non-functional requirements but where they form
the primary function of the system, they become functional requirements.

Functional requirements often follow an iterative process that can start with a jour‐
ney map to identify user stories that may contain control decisions. User stories
provide the next level of decomposition in an Agile environment, but for some
processes, they’re insufficient, and that’s where the swimlane diagrams and separation
of duties matrix help.

Non-functional requirements need a clear definition, and we talked about the various
approaches to improving quality and prioritizing. We demonstrated the challenges
when integrating control frameworks and project requirements through a set of
improvements to the definition of requirements for the case study.

We’ve come to the end of discussing the documentation of requirements and con‐
straints but not the end of using the requirements to define the security for a solution
architecture. This should set you up for the following chapters, where we start with
defining the boundaries of the system, the actors that interact with the system, and
the data that requires protection.

Summary | 125

Exercises
1. A functional requirement ______. Select all that apply.1.

a. Describes the primary functionality of the solutiona.
b. Defines how the system should be deliveredb.
c. Defines what the system should deliverc.
d. Doesn’t define any security requirementsd.

2. What terms are used for requirements that describe how the information system2.
should deliver the required functionality? Select all that apply.
a. Non-functional requirementsa.
b. Architectural characteristicsb.
c. Non-functional characteristicsc.
d. Product quality propertiesd.

3. Which of the following is true about requirements for security services?3.
a. Applications should be recovered before security services during disastera.

recovery.
b. Moving from client-server to container workloads doesn’t require a change inb.

security services.
c. In moving to the cloud, there is no need to adjust the way security operationsc.

are delivered.
d. The loss of availability of security services can have an almost immediated.

impact on workload availability.
4. What does “locking your keys in the car” refer to? Select all that apply.4.

a. Your keys can get locked in your car accidentally if they are not detected bya.
key proximity inside the car.

b. The retrieval of keys may not be possible unless storage has already completedb.
decryption.

c. Encryption keys accidentally get locked inside a physical safe.c.
d. The reboot of the firewall can’t take place, as it enables communication withd.

the hardware security module (HSM) required to decrypt the boot disk of the
firewall.

126 | Chapter 4: Requirements and Constraints

5. What are the suggested qualities to look for in security requirements?5.
a. Who, What, When, Where, and Whya.
b. Must Have, Should Have, Could Have, and Won’t Haveb.
c. Specific, Measurable, Attainable, Relevant, and Time-boundc.
d. Traceable, Testable, and Timelyd.

6. What is the best functional requirements definition technique for identifying6.
end-user functional requirements? Select all that apply.
a. Use casesa.
b. A journey mapb.
c. Swimlane diagramsc.
d. User storiesd.

7. What is the best functional requirements definition technique for the formal7.
definition of the sequence of security-enforcing activities taking place between
different end users?
a. Use casesa.
b. Journey mapb.
c. Swimlane diagramsc.
d. User storiesd.

8. What factors does the project management triangle need to take into considera‐8.
tion when balancing scope, cost, and time? Select all that apply.
a. Skillsa.
b. Qualityb.
c. Viabilityc.
d. Riskd.

9. What are the primary reasons you perform a software version check early in the9.
requirements process for hybrid cloud? Select all that apply.
a. Version incompatibility may require a major architectural change.a.
b. A cloud service may not support the prerequisite software version.b.
c. The security information and event management (SIEM) solution may notc.

have been tested to process that specific software version.
d. The security product doesn’t support any version of the operating systemd.

being used.

Exercises | 127

10. In the process of improving requirement specifications, what steps are used to10.
consider the scope of requirements?
a. Splita.
b. Dimensionsb.
c. Mergec.
d. Parameterized.

128 | Chapter 4: Requirements and Constraints

PART III

Design

Now that we’ve gathered the requirements, we continue with the design phase, where
we discuss the design of the solution architecture, starting with establishing the
system context, identifying the information assets and their protection requirements.
We establish the functional viewpoint via the component architecture and discuss
the role of threat modeling in identifying risk-based security controls. Moving to the
deployed architecture, we elaborate on the shared responsibility model in a cloud
computing context and describe the approach to developing the infrastructure and
cloud architecture based on zero trust principles. The role of architecture patterns
and the importance of architectural decisions conclude this part.

CHAPTER 5

System Context

How often do you hear people say things like, “It’s all about the data!”? When it
comes to security, what matters is protecting the data from having its availability,
integrity, and confidentiality compromised in any way. Unfortunately, a lot of the
time, the emphasis shifts from protecting the data that an application is processing
to protecting the infrastructure that stores and processes the data. This lack of
awareness demonstrates the necessity of taking a data-centric approach to the design
of security controls, where an architect considers how to safeguard data.

This chapter begins our exploration into the process of designing security for infor‐
mation systems by emphasizing that data protection is central to information security
while the data is in transit, at rest, or in use. We explain the context for why security
is about safeguarding important information assets, not just IT systems. We will look
at how to categorize data assets based on asset classes and remind you that processing
data creates new assets, including metadata. The classification of the data is then
performed based on its sensitivity to loss of confidentiality, integrity, and availability.

By creating a system context diagram and then identifying the business transactions
that will handle the data flowing in and out of the system, this will be the start
of an information asset register listing the data flowing through the system. We
then classify the data based on sensitivity, together with the legal and regulatory
constraints that will apply. This helps design security controls that are appropriate to
the data’s sensitivity.

Chapter Artifacts
This chapter’s main goal is to set the stage for the development of a broader
architecture.

131

In each chapter, we will highlight, with white text in a black shaded box, the artifacts
in the artifact dependency diagram, shown in Figure 5-1, to show the journey we’re
taking while architecting security into a system. The system context diagram and
information asset register are two key artifacts created after examining the many
different artifacts in the enterprise context. Ensure you record the key requirements
and contextual information that influence the architecture. Record key assumptions
made in the RAID log, as discussed later on in Chapter 10.

Figure 5-1. System context chapter artifacts

132 | Chapter 5: System Context

Case Study Context

As a reminder, to help reinforce the learning, the case study in
Appendix A has information about the business context and cur‐
rent IT environment for this chapter.

We will continue this chapter with some context around data protection including a
discussion on the value of data, the lifecycle of data that requires consideration, and
the relationship with zero trust architecture.

Data Protection
Information security isn’t primarily concerned with the implementation of various
security capabilities. Rather, the purpose of information security is to protect the data
of both the organization and its customers, which in turn protects those aspects of the
organization that are valuable, such as its reputation and the firm’s compliance with
applicable laws and regulations.

By identifying the data flowing through the system boundary, classifying it based
on sensitivity, and defining the required security controls based on policy, we can
prioritize the protection of what truly matters to the business, with information
security becoming a strategic advantage rather than a liability.

Let’s have a discussion on some background concepts in data protection in the
following subsections:

• Value of Data•
• Data Security Lifecycle•
• Metadata•
• Zero Trust and Data Flows•

This will help us understand the context of the techniques in this book.

Value of Data
The value of data to an organization is the key factor in determining the security
controls requiring implementation.

The first step is to identify the data that’s critical to the organization and use cate‐
gories or asset classes that help identify the data that needs protection. The following
is an example set of asset classes:

Data Protection | 133

Crown jewels
Data that represents the most valuable information assets for the organization,
and if disclosed, modified, or made unavailable, it could cause the business to
fail. This isn’t just the original data but new data created from data processing.

Personal information (PI)
Data related to a person or identifiable individual that isn’t sensitive enough that
its disclosure could cause irrevocable harm to the person. An example would be
your name and address.

Sensitive personal information (SPI)
Data concerning a person or identifiable individual that’s so sensitive that its dis‐
closure could cause irrevocable harm to the person. This includes information on
racial or ethnic origin, sexual life, political opinions, criminal records, religious
beliefs, trade union activities, and physical or mental health.

Financial information
Data that relates to the financial records of a person or identifiable individual,
including bank records, tax records, and accounting records.

If you don’t have such a list of asset classes for an organization, you should create
your own list for the solution you are architecting to enable clear communication of
the data value within the project.

The common asset classes described in the NIST publication “NIST SP 800-160 Vol. 1
Engineering Trustworthy Secure Systems” may be another useful reference for you. It
provides a list that’s more focused on government systems but may give you ideas for
the development of your own asset classes for your organization.

Data Security Lifecycle
As a system processes data, it goes through a lifecycle from creation to processing
and, finally, destruction. By understanding the lifecycle of data in a system, we can
understand where the data flows and its stages of processing in a system and identify
the appropriate security controls at each stage of processing.

There are many examples of a data security lifecycle such as the lifecycle used in
Security Guidance for Critical Areas of Focus In Cloud Computing produced by the
Cloud Security Alliance (CSA). However, there is no consistent industry standard
to describe a lifecycle, so we put together our own data security lifecycle model, in
Figure 5-2, with eight stages to highlight important stages.

134 | Chapter 5: System Context

https://oreil.ly/AhLi9
https://oreil.ly/AhLi9
https://oreil.ly/7m8nU

Figure 5-2. Data security lifecycle

Creation
The initial creation of data, such as when a user enters information into a form,
or a sensor generates data.

Storage
Retention of data, either at rest or in processing, such as when disk storage or a
database contains data.

Aggregation
The integration of data from multiple sources into a single data set. This is
important as the aggregation may increase the sensitivity of the resulting infor‐
mation created.

Generation
The creation of new data through processing or analysis of existing data. Again,
the resulting data may increase the sensitivity of the resulting information cre‐
ated.

Transmission
The movement of data from one location to another. An example is when the
transport of data takes place over a public or private network. Also, keep in mind
that even when in transit, at some point in the journey, storage of the data may
take place.

Data Protection | 135

Access
The retrieval and use of data, such as when a user views a report, or a system
performs a computation.

Backup and archive
The medium and long-term retention of data for recovery, compliance, or histor‐
ical purposes.

Destruction
The removal of data from a system. An example is the deletion or secure erasure
of data from storage.

Use the data lifecycle model to think about the transport, storage, and processing
of data. Data needs security controls to protect it from unauthorized access, modifi‐
cation, or disclosure during all stages of the data lifecycle. The controls that need
design and implementation will depend on the sensitivity of the data and the assigned
classification.

Metadata
The processing of the data creates new data that records insights about the original
data. The new data is metadata and provides information about the data, including:

Descriptive metadata
Describes the content of the data by attaching labels such as title, artist, publisher.

Structural metadata
Describes the organizational structure of a chapter in a book or track on a music
album.

Technical metadata
Describes the technical characteristics of the data such as the dimensions of a
book or format of a video recording.

Administrative metadata
Used to support activities for the administration of the data. This includes meta‐
data such as the date of the last change to the record, the security classification of
the data, or data for a digital rights management system.

It’s important to remember that metadata is a valuable resource for giving insights,
improving search capabilities, and assisting with the management of the data. For
organizations that provide search capabilities or artificial intelligence (AI), this meta‐
data may be the foundation of their business.

Metadata may represent an existential risk to the organization if data about the orga‐
nization and its customers isn’t effectively protected, resulting in the loss of sensitive

136 | Chapter 5: System Context

information. It may be that this data is the “crown jewels” and more sensitive than the
original data, requiring additional security controls beyond those of the original data.

Zero Trust and Data Flows
To implement a solution using zero trust principles, it’s essential to examine data
flows, as zero trust is the foundation for stringent controls to protect the data,
together with ongoing security monitoring to detect unauthorized access to sensitive
data.

To reduce or eliminate implicit trust, every device, service, and user attempting to
access a resource must first authenticate and authorize access to the system in a zero
trust solution. We’ve found that one of the consequences of the “assume breach”
principle is that the security controls should be as close as possible to the data, as the
assumption is that other systems are potentially breached.

By examining data flows, an architect can better understand how users and devices
behave within their networks, and spot unusual activity that might point to a security
threat. This can reduce the risk that an attacker can cause harm by enabling security
teams to monitor data flows to detect threats, spot potential weaknesses, and take
proactive measures to fix them before they’re exploited.

Working with organizations, we’ve found that organizations are able to reduce the
number of zero trust solutions by thinking holistically across multiple business pro‐
cesses. Incorporating the data classification approach we discussed earlier helps guide
the extent of the security controls applied to a system. Both strategies can result
in reduced implementation costs, improved speed of delivery, and reduced ongoing
support issues.

Overall, looking at data flows is an important part of a zero trust architecture because
it lets architects identify effective security controls and make sure the data flows are
always monitored for threats.

Let’s continue this chapter with understanding the interactions at the boundary of
the system that will transport data in and out of the system. From this boundary
we’re able to define the scope of the system and start to identify the data requiring
protection.

System Context Diagram
We’ve discussed the importance of understanding the sensitivity of the data. A trans‐
action flow through a system transports data that’s then processed and stored.

When architecting a system, we start by identifying the boundary of the system and
how transactions flow across that boundary. Human or system actors trigger these
transaction flows.

System Context Diagram | 137

We showed an architecture decomposition diagram in Figure 1-6. The first layer is
the system context diagram, where we describe the system boundary and provide the
top layer of the architecture decomposition, as shown in Figure 5-3. At this stage,
we’re considering a system that human and system actors interact with, while keeping
its internal mechanisms hidden.

Figure 5-3. Architecture decomposition—top layer

Originating in the 1960s, the system context diagram is a widely used technique
in systems engineering and documented in the “International Council on Systems
Engineering (INCOSE) Systems Engineering Body of Knowledge (SEBok)”. It’s con‐
sidered one of the first steps in an architectural thinking process, and it’s described
in publications such as Practical Software Architecture (IBM Press) by Tilak Mitra and
C4 Model by Simon Brown.

We will examine the next two layers of the architecture in Chapters 6 and 8.

Use cases or user stories describe the activities performed by the actors that trigger
data flows in and out of the system, as we discussed in Chapter 4.

Before we start diving into the details, let’s look at who the owner of the system
context diagram would be.

System and Security Architect Roles
Application and infrastructure architects use the system context diagram to visually
describe the interaction between a solution and its surrounding environment. They
use it to specify a system’s boundaries, the actors engaging with it, and the use
cases for interaction. They then take a look at the use cases-driven transaction flows
through the system.

138 | Chapter 5: System Context

https://oreil.ly/PI6JO
https://www.sebokwiki.org
https://www.sebokwiki.org
https://oreil.ly/0oV7b
https://c4model.com

For security, we take this idea a step further by identifying the data flowing through
these transaction flows. This lets architects start making an information asset inven‐
tory for the system. To help find zero trust technology solutions, identify the known
interface types, such as an API, HTTPS, or MQTT. Then, based on the data classifica‐
tion, identify the right security controls. In later chapters, we’ll look at the processing
of the data within the system.

In situations where a security architect is collaborating with an application architect
to design an application, the security architect may augment the application archi‐
tect’s artifacts with additional security-related information. However, if the security
architect is solely responsible for the solution architecture, they will need to carry
out all the analysis. For instance, if the security architect is accountable for creating
a security service like an identity and access management system, they will have
complete responsibility for the solution architecture.

Now we can continue discussing the concepts.

System Context Concepts
A system context diagram is important when creating a solution architecture because
it provides a high-level view of the system, including the external actors and systems
with which it interacts. It helps define the boundaries of the system and clarifies the
scope of the architecture work.

By understanding the external context of the system, architects can identify the rele‐
vant use cases and data flows for consideration in designing the solution. It also helps
to identify any constraints or limitations imposed by the current IT environment for
consideration. Identification of potential security threats and other risks associated
with the external actor interactions can take place.

Overall, the system context diagram is a crucial tool for creating a solution architec‐
ture that meets the business requirements and aligns with the overall IT strategy of
the organization.

Let’s start with a simple example of a system context diagram to demonstrate the
concepts used for the creation of the diagram. Figure 5-4 shows a simple system
context diagram for an online store with some actors missing, and as we go through
the discussion, you will identify that there are many updates needed.

System Context Diagram | 139

Figure 5-4. Example system context

The diagram in Figure 5-4 has the following attributes:

Human actor
Human actors in a system context diagram refer to individuals or groups of
people that interact with the system through a set of processes or use cases where
data flows in and out of the system. This includes people both internal and
external to the organization that owns the system. An organization’s internal staff
may include accounting, developers, IT support staff, cybersecurity personnel,
customers, internal compliance, and any other people or groups who interact
with a system. Identify actors by roles rather than individuals.

In the diagram, we’ve included the role “Employee,” but this isn’t specific enough
to identify the role of the employee. A role such as “Sales Administrator”
could be an alternative. The “System Admin” role is more specific, but there
may be many types of administrative roles, and the role may require further
decomposition.

System actor
System actors in a system context diagram refer to information technology (IT),
operational technology (OT), and Internet of Things (IoT) systems that are
external to the system. They are integrated with the system through a set of
transactions, or use cases, where data flows in and out of the system. System
actors might include payment providers, externally managed security services,

140 | Chapter 5: System Context

or logistics systems. In the example in Figure 5-4 we have a threat management
managed security service provider (MSSP) integrated into the system.

When we say “external,” we mean external to the system and not external to the
organization. External systems include those that belong to another department
and aren’t part of the project’s system design. In this case, this includes the
internal accounting system.

Generally speaking, a system actor subject to a different secu‐
rity policy from the main system shouldn’t be present in the
system. If the system has its own policy, it’s likely that it’s a
SaaS service where the security governance is through a con‐
tractual relationship with the organization. However, since it’s
subject to a contract with a third party, such as a SWIFT pay‐
ment gateway, it’s possible that an internal system actor will
have to abide by a different policy. SWIFT requires the imple‐
mentation of specific controls as a condition of connection.

It’s also important not to get too detailed, but sometimes, you may find this gets
too complex when the diagram shows all the human and system actors. For one
project, we created two system context diagrams, one for human actors and one
for system actors.

Use case
For each actor, there is a set of use cases listed that will trigger a transaction flow
that transports and processes data. The transaction flow enables you to identify
the kinds of data flowing to and from the system. We discussed the definition of
use cases or user stories in Chapter 4.

We will give further examples and discuss the construction of a system context as
we go through this chapter, but if you want to learn more about creating a system
context diagram, you may find “Chapter 4: The System Context” in Practical Software
Architecture useful.

Technical Design Diagram Notation
A big part of an architect’s work is communicating complex topics, not only in words
but also in drawings and diagrams. As with all communication, it’s important to
agree on the language so that all parties can communicate in a format that’s clearly
understood. This is again valid for words, but equally relevant for design diagrams. A
common design language eases the understanding of what the viewer of the diagram
sees.

System Context Diagram | 141

https://www.swift.com
https://oreil.ly/TanKz
https://oreil.ly/TanKz

1 It’s fine if your organization uses a different notation, but it’s important that you use the same notation for all
diagrams to encourage more effective communication.

We have a situation where each CSP proposes a notation for drawing cloud archi‐
tecture diagrams that’s branded and implementation-specific, using color, which
can make them difficult to work with. We like to work with diagrams that are
CSP-independent and can support a hybrid cloud architecture.

We’ve chosen a technical design notation that’s independent of CSPs and supports
IBM’s Unified Method Framework for IBM Architects. The IBM Design Language
site has a section on technical diagrams.

Diagrams can have different levels of abstraction. A logical view shows a high-level
representation of a system that is not representative of the actual implementation.
Previously, architects would refer to a physical view of a system, but with the advent
of virtualization and containers, we now refer to a diagram as a prescribed view.

In this book, we use a subset of the technical design notation as outlined in Fig‐
ure 5-5.1 The notation has been adapted for the page size of a printed book and
publishing consistency. Selected original diagrams can be found on the book’s com‐
panion website.

Figure 5-5. Technical design diagram notation; see the original diagram

142 | Chapter 5: System Context

https://oreil.ly/EZXcj
https://oreil.ly/EZXcj
https://oreil.ly/Ts3s4
https://securityarchitecture.cloud
https://securityarchitecture.cloud
https://oreil.ly/SAHC

We use the following basic elements in our diagrams:

Actor
We’re illustrating actors as a circle. We distinguish between human actors and
system actors who are interacting with the solution. We’re introducing actors for
the first time in Chapter 5.

Target system
The target system is the system we’re designing, the system in the middle of the
system context diagram.

Deployment unit
We illustrate deployment units as rectangles with square corners. They represent
deployed instances of functionality on a node. For example, an application or
a database. You might face a situation where you have many deployment units
on one node. To prevent filling the diagram with many rectangles on one node,
you can also list the deployment units as a text list directly on the node stencil,
without a separate border.

Location
We’re illustrating locations as a rectangle with a thick black marker in the top
left corner. Rounded corners illustrate logical locations, while square corners
illustrate prescribed locations. Locations can be geographical and organizational
locations, which we first introduce in Chapter 8.

Component
We illustrate components as rectangles with two connectors and a framed
symbol in the top left corner. Rounded corners illustrate logical components,
while square corners illustrate prescribed components. Components represent
the functionality of the solution and are introduced in Chapter 6.

Logical group
We illustrate a logical group as a rectangle with square corners and a marker in
the top left corner. They logically group components, and in the very simplest
form, those grouped components share similar non-functional requirements or
other commonalities.

Nodes
To execute or run the functionality, we deploy (or place) functional components
on a node. For instance, we can deploy a functional component as an executable
program (deployment unit) onto a virtual server (node).

We illustrate nodes as rectangles with a framed symbol in the top left corner.
Rounded corners illustrate logical nodes, while square corners illustrate prescri‐
bed nodes. Components are deployed via deployment units on nodes. Nodes are
specified with the selected technology and size and can, for example, be virtual
servers.

System Context Diagram | 143

To simplify the diagrams and make more space on the page for printing of the
book, we’ve chosen to draw prescribed nodes without a box for cloud services or
resource instances.

Zone
To document a location with a common security policy and threats, use a net‐
work zone. We illustrate network zones as a frame with square corners and a
dashed border. Components and nodes are placed within zones. Zones can span
locations.

We opted to use the IBM Cloud icons that were released in
issue 3914 of the draw.io GitHub site that are clear when
published in black and white. Just before publication date, the
architecture icons were republished using colored boxes with
icons too small to be used in a published book. We’ll leave
you to set the standard for the icons you use for your own
diagrams.

To create a system context diagram, we need some context. Let’s discuss it before
applying it to the case study.

Business and IT Context
To develop the system context diagram, you need to understand the business context
of the system and the existing IT environment that will impose constraints on your
solution. The business objectives will determine the target solution architecture’s
business processes, which in turn will provide a foundation for identifying human
and system actors for the system context. Meanwhile, the current IT environment
will establish existing actors requiring integration into the system and, in certain
situations, may restrict the solution’s development.

In this book, we’ve provided a case study in Appendix A to provide information on
the business context and current IT environment to demonstrate how to apply the
information to the development of the artifacts. If you don’t have this information
for a project, it’s likely the project is at an early stage, and working with the key
stakeholders to develop a system context can help develop the business context.

We continue by applying the concepts to the development of a system context dia‐
gram using the case study in Appendix A.

144 | Chapter 5: System Context

https://oreil.ly/qUgp1
https://oreil.ly/sbgwf

Case Study: System Context Diagram
The first step to defining a system context is to identify the boundary of the system.
It will define what functional components of a system are within the system and what
human and system actors are external to the system.

We discussed the definition of human and system actors previously, and now we
need to identify actors from the case study. In the case study, we have an architecture
overview diagram to help, but you may not have that and must read some written text
or listen to a description during an interview. The marked-up section from the case
study highlights text with a solid box around potential system actors. We suggest that
you mark-up the case study yourself, as shown in the sidebar that follows.

Marked-up Case Study to Identify System Actors
• For those vehicle owners who don’t pay the fee at the end of the 48-hour period,•

a debt collection agency, Clean Air Debt , will receive information on the driver.
They will send out letters notifying the vehicle owner of the fine and, after a
period, pursue collection of the fine.

• The vehicle owners will be able to use their Google or Microsoft IDs to log•
in to the portal and register their car with the program so that, upon entering
Guildford, the payments are automatically made.

• The scheme uses the Guildford Service SaaS application in a service center to•
respond to queries by phone and take payments.

• An AI chatbot , provided as a cloud service by the public cloud provider, will•
handle driver queries more rapidly without waiting for telephone support via the
service center.

• Clean Threats , a threat management company, will manage all the security•
services from their Security Operations Center (SOC).

In Figure 5-6, the drawing of a system context shows a box in the middle and the
actors arranged around the system. There are no components identified inside the
box, as we’re focusing on the boundary of the system. Elaboration of the components
inside the box is discussed in Chapter 6.

Human actors use two types of person icons. The dark-shaded icon shows actors
associated with the business process operation, and the light icon shows actors
associated with the operations of the system. A building icon represents the system
actors. We will talk more about the differences in Chapter 6.

Case Study: System Context Diagram | 145

Figure 5-6. Case study system context; see the original diagram

Icons for Actors

The different icons used to illustrate the different types of actors
aren’t prescribed as part of the method. Your organization may
have its own style.

For some of the actors, we have shown some example use cases to show how events
can trigger transaction flows through the system. Think about what use cases are
missing and try to document them for the rest of the actors.

Let’s discuss the identification of human actors.

Identifying Human Actors
To draw the system context diagram from the case study in Appendix A, it’s necessary
to identify all the human actors mentioned. The case study only mentions one human
actor, but many more will be interacting with the system. Read the case study,
identifying roles that might need access to the system.

The case study mentions there is a service desk, which will have employees that run
the desk. In this case, the service desk employees are Clean Air Guildford employees

146 | Chapter 5: System Context

https://oreil.ly/SAHC

and are human actors. For an outsourced service desk application, draw a system
actor for a SaaS application named Guildford Service..

There will be distinct roles needed to operate the system that aren’t explicitly men‐
tioned in the case study. It’s your responsibility to identify these different roles. For
example, consider the Finance department, which needs to access financial capabili‐
ties related to payments. Add a human actor called Finance.

In this case, the Cloud Operations team is responsible for the infrastructure, the
Application Operations team is responsible for the application, and the Security
Operations team is responsible for the security. An outsourced team may change
from a human actor to a system actor if their access is via a system rather than
an interactive login. For example, system management activities may be automated
within a service management portal hosted in the data center of the outsourced team.
If their team is also using a jump host or bastion host for access, an icon for a human
actor will be needed. You might need both icons to represent both paths to access the
system.

Examine the Data Lifecycle

Think about the lifecycle of the data within the system. For exam‐
ple, data stored in the database may require backup, archive, and
cyber-recovery capabilities. If so, will there be human or system
actors needed to deal with cyber recovery, and will the system
components need to be internal or external to the system? You
could store this on a to-do list or perhaps as an issue in the RAID
log that we will talk about in Chapter 10. The critical thing is that
you must not lose sight of this required activity.

Have you noticed any human actors that are missing from the system context? We
could imagine creating a user for the system requires some form of approval, perhaps
from a line manager in each department. So, we suggest adding a new role, “Line
Manager,” just to make sure that the capabilities exist for that role.

We’ve talked about identifying many different actors, but you could end up identi‐
fying actors that have no impact on the architecture. For example, there will be
many different human actors for an email system run as a SaaS application. While
a manager and a generic employee may have different capabilities within the email
system, the architecture doesn’t change. You don’t need to identify them all; perhaps a
generic role like “Email User” would be appropriate.

Let’s continue with discussing the identification of system actors.

Case Study: System Context Diagram | 147

Identifying System Actors
While architecting the IT systems, you should start by focusing on the functional
components and not the underlying technology implementation. Once you have
identified the functional components, split the components into two groups: those
that are internal and those that are external to the system.

After identifying the functional components, it’s important to determine whether
your organization owns and operates them. If your organization has no control over
the design of the application, the service provider controls the cloud account, or the
security policy in place isn’t your own organization’s policy, then it’s likely that the
component is an external actor to the system being designed. This means that for
an external system, you would need a contract as an agreement for what security
controls need to be implemented by the supplier or what controls the supplier
requires from the system you are designing.

It’s also possible that other systems within an organization are external system actors
rather than internal components, especially if the systems reside in different parts of
the organization. In such cases, negotiating with the supplier of the other internal
system may be necessary. For example, the case study may not have identified the
accounting system but if it’s an internal system not in the scope of the project, it
should be an external system actor on the system context diagram. It may be that an
internal agreement, such as a document of understanding (DoU), is needed to agree
what security controls are required from both parties.

Interface Modification

An external system’s interface may be incompatible with a sys‐
tem actor’s, leaving a choice of which system needs modification.
The decision over which interface needs changing—the external
actor or the new system—may need an enterprise design authority
decision.

Can you see a system actor that’s missing? Have a look back at the architecture
overview diagram in the case study in Appendix A. How are the drivers going to
identify and authenticate with the application for the handling of payments? You
might have noticed already that integration with the identity providers from Google
and Microsoft is missing.

148 | Chapter 5: System Context

Would you suggest that a system actor is really a component within the system we’re
designing from the case study? In this case, we have an actor that’s a PaaS service
within the public cloud platform hosting the application and doesn’t already exist as a
fully customized service. The AI chatbot should probably be a component inside the
system, as it will need training as a part of the project.

Overall, to make the right diagram, you need to do a thorough analysis of all the
human and system actors mentioned in the case study. You also need to think about
who owns and runs the functional components, along with the internal and external
actors connected to the system.

Now let’s bring this information together by documenting the system context
diagram.

Documenting the System Context
While diagrams may be sufficient for some projects, others require a more compre‐
hensive description. The actors, along with their respective descriptions and inter‐
faces, are listed in Table 5-1. Initially, the interfaces may not be fully understood, but
the table will later have additional detail added.

Table 5-1. Actors and interfaces table

Actor Description Interface
Driver Driver of the vehicle entering and leaving the

clean air zone
A TLSa 1.2 session to the Clean Air Guildford web application.
A second interface is telephony to make calls to the Clean Air
Guildford service desk.

Service desk Employees of Clean Air Guildford who use
the application to support the drivers of the
vehicles

A TLS 1.2 session to the Clean Air Guildford web application.
A second interface is telephony to receive calls from the
drivers.

Camera zone Organization managing the cameras
providing Automatic Number Plate
Recognition (ANPR)

Provides a REST API to retrieve camera data within a TLS 1.3
session over a dedicated private network link.

… … …
a Transport layer security (TLS) session-level encryption requires at least 1.2, and preferably 1.3, as known vulnerabilities exist
in earlier implementations.

Note that there are two interfaces for the driver and service desk, with both a web
and telephony interface. Think about all the different interfaces—email and SMS
messaging may be additions.

We’ve provided a checklist to help you review the quality and potential follow-on
activities for the development of a system context diagram.

Case Study: System Context Diagram | 149

System Context QA Checklist
• Consider all the human actors that could interact with the system, including•

company employees and third parties contracted to provide a service. In this
example, there is the CISO team, but there might be a separate compliance or
audit team as well.

• Decompose the human actors to a level at which an identified role has associated•
use cases or user stories. In this example, there is a finance role where enforce‐
ment of separation of duties may require multiple roles.

• Consider the decomposition of a human actor based on location, such as one•
role for an office worker and one for a remote worker, to consider the different
transaction flows.

• Identify the system actors that interface with the system. In this system, there is•
no email gateway or text messaging service. In systems that transport a physical
item, there will be some sort of logistics or delivery service needed.

• Identify where the system actors are all outside your control and will need•
agreements in place to interface with the system.

• Consider timed or batch events that could trigger transaction flows. These flows•
may process different data and travel along a path not considered by just looking
at external events.

System Interface Implementation Perspective
The system context we described is conceptual, but there is a way of using the same
sort of diagram to think about the actual implementation of the system. Let’s have a
look at how it can help with describing the integration.

Use a variation of the system context diagram to describe the data flows for specific
network connections and define the network security controls. We’re skipping ahead
into implementation detail, but if you are a software engineer developing a software
appliance, this may be the form of system context you want to work with.

In the example in Figure 5-7, a single box shows connectivity to and from the system
that’s used to describe the data flows on specific network ports. The diagram shows
those connections that flow separately on the public and private network interfaces
of the software system. Network connections that come out of the top of the diagram
show those that use the public network interface, with those out of the bottom show‐
ing the private network. The ICMP connectivity out of the side requires connectivity
to exist for both the private and public networks.

150 | Chapter 5: System Context

Figure 5-7. System interface implementation diagram

Now that we’ve completed a system context diagram, the next step is to record the
identified data and classify it according to its sensitivity in an information asset
register. From this, we can determine the security controls required according to the
data classification.

Information Asset Register
An information asset register is an important part of creating a solution architecture
because it helps identify and classify the data that’s transported, processed, and
stored in the system. By identifying and classifying the data, it becomes possible to
determine the appropriate security measures needed to protect it.

In addition, an information asset register can help ensure the handling of data
is in compliance with legal and regulatory requirements. For example, if the data
processed includes personally identifiable information, then the information asset
register can help ensure that it’s handled in compliance with data privacy laws and
regulations.

Overall, the information asset register provides a comprehensive understanding of
the information assets within the system and allows for a more effective and targeted
approach to securing and managing those assets.

Before we get into recording an information asset register, let’s discuss the data classi‐
fication used to identify the controls required for data with different sensitivities.

Data Classification
When it comes to data security, organizations must take the necessary steps to classify
data based on its sensitivity to guide the controls used to protect it. This classification
is typically based on the CIA triad of confidentiality, integrity, and availability.

Information Asset Register | 151

The potential impact of data disclosure defines the confidentiality classification. A
typical classification scheme will generally start with publicly available data and
progress to the most sensitive data within an organization, with the greatest potential
impact if lost.

An example of what a classification scheme for loss of confidentiality within an
organization might include is in Table 5-2.

Table 5-2. Classification scheme for confidentiality

Category Description Control guidance
Public Information that’s available to the public and the loss of

which would not have an impact on the organization or its
customers.
An example of this would be any content that’s published
on a public website on the internet.

Security controls aren’t required.

Internal Information that’s available to all employees but not
published on a public website.
An example of this might be the menu in the restaurant
or information on the process to request a new laptop.
Disclosure would not have a significant impact, but it
shouldn’t be publicly available.

The hosting of the data must be
within the internal network of a
company and not require identification
or authentication for accountability.a

Confidential Information that could be damaging to the organization
but not in contravention of laws or regulations.
An example might include draft product information before
formal release or internal product roadmaps.

The data requires the identification
and authentication of an individual for
individual accountability and controlled
access based on a specific role. You must
encrypt all data in transit and at rest.

Highly
confidential

Information that if disclosed could be seriously damaging
to the organization and its customers, including legal and
regulatory consequences.
An example may include sensitive personal information
about customers that could result in a financial penalty due
to a breach of data protection laws and seriously damage
the reputation of the company.

In addition to previous controls, the data
requires wrapping or encryption of the
individual columns in a database so that
even privileged administrators aren’t able
to view the data.

a In this example, there is an assumption there is a control boundary to the organization and zero trust has not been adopted
for internal networks.

Note that the final column in the table provides some ideas for the different controls
to apply to the data depending on classification. You might come up with a longer list
of different security controls.

While data classification for loss of integrity isn’t as common as other forms of
classification, it’s no less important. A loss of integrity can have serious consequences,
such as a financial transaction altered without the knowledge of the participants or an
AI model that is changed to force an incorrect decision to be made.

An example of what a classification scheme for loss of integrity within an organiza‐
tion might include is in Table 5-3.

152 | Chapter 5: System Context

Table 5-3. Classification scheme for integrity

Category Description Control guidance
Low risk Data that has had its integrity compromised and has a minimal

impact on the organization.
This might include public information or non-critical historical data.
For example, this would include yesterday’s menu for the restaurant
or a poster for a free yoga class.

Moderate
risk

Data that has had its integrity compromised and has a moderate
impact on the organization.
This might include a customer’s telephone number or tomorrow’s
restaurant menu.

This data should include simple
controls such as checking that the
telephone number is valid or that the
menu items are part of a standard set
of items.

High risk Data that has had its integrity compromised and has a significant
impact on the organization.
Examples include sensitive personal information about customers,
legal documents, or trade secrets.

The data must have a hash to detect
modification.

Critical risk Data that has had its integrity compromised and has a critical
impact on the organization.
Examples include data that’s vital for the operation of the
organization, such as financial transactions, medical records, or
personal identification numbers.

This data must be cryptographically
signed to ensure detection of
modification, even by privileged
administrators.

In today’s hybrid cloud world, ensuring the availability of business processes is a criti‐
cal aspect of cybersecurity. The responsibility for this risk often falls on a resiliency
team, but it’s important to remember that some controls, such as DDoS protection,
fall under the remit of a security team.

A classification scheme for the availability of business processes within an organiza‐
tion should consider various factors, including the required uptime, recovery time,
and acceptable data loss. An example of what such a scheme might include is in
Table 5-4.

Table 5-4. Classification scheme for availability

Category Description Control guidance
Category A Business processes that have a critical impact on the operation

of the organization if they become unavailable. They’re
normally considered mission-critical processes.
Examples might include payment systems, air traffic control,
or nuclear power plant control systems.

These services require annual availability of
99.999% with a recovery time objective (RTO)
of 0 and recovery point objective (RPO) of near
0 with no loss of data.

Category B Business processes that have a high impact on the operation
of the organization if they become unavailable.
Examples might include warehouse inventory management
systems or overnight batch processes.

These services require annual availability of
99.99% with an RTO of 2 hours and RPO of
near 0 with no loss of data.

Information Asset Register | 153

Category Description Control guidance
Category C Business processes that have a moderate impact on the

operation of the organization if they become unavailable.
Examples might include customer service databases or weekly
financial process execution.

These services require annual availability of
99.9% with an RTO of 48 hours and RPO of 2
hours.

Category D Business processes that have a low impact on the operation of
the organization if they become unavailable.
Examples might include an employee recognition application
or employee support system.

These services require annual availability of
99% with an RTO of 72 hours and RPO of 24
hours.

The importance of availability in security services has grown with the need for tighter
integration and end-to-end automation with instant response times. In the past, a
password change might have occurred every 90 days, where the loss of an identity
and access management application would not have had an immediate impact. How‐
ever, as applications move to use cloud native services, credentials may change every
few minutes with each authentication, making the loss of security services an instant
and potentially severe issue, requiring a higher level of resilience than the applications
they support.

When architecting security, it’s crucial to understand the different availability require‐
ments for various systems and services. As security architects, we must be aware
of key concepts such as percentage availability, recovery time objective (RTO), and
recovery point objective (RPO).

Percentage availability, also known as “nines availability,” refers to the percentage of
time a service or system must be operational and available to users over a year. For
example, 99% availability means that a service or system can be down for a maximum
of 87.6 hours per year. Table 5-5 shows the various levels of availability and the
number of unavailable minutes.

Table 5-5. Availability bands

Availability Unavailable for less than
99% 87.6 hours

99.9% 8.76 hours

99.99% 52.45 minutes

99.999% 5.26 minutes

RTO, on the other hand, is the maximum amount of time a business process can be
down before it starts to have an impact on the organization. It’s the time required for
an organization to recover its systems and restore normal operations.

154 | Chapter 5: System Context

RPO is the maximum amount of data loss that an organization can tolerate. After an
incident, the organization must recover its data to this point to minimize the impact
on its operations.

As we delve deeper into the topic of infrastructure security, we’ll explore these
concepts in more detail and how they impact the design of secure systems. You might
also like to look at other schemes for categorization of data including NIST FIPS
199 Standards for Security Categorization of Federal Information and Information
Systems.

For now, let’s continue with documenting the actors, the use cases, and the data.

Actor Use Case and Data
As a next step, one approach is to identify the actors and their respective use cases
with associated data requirements. This practice enables a better understanding of
the data types involved by aligning them with the respective actors and use cases.
Table 5-6 shows an example of the use cases for the Driver actor and the data
processed.

Table 5-6. Actor use cases and data mapping

Actor Use cases Data type processed
Driver Authenticate driver Identification and authentication info

Register vehicle and payments Contact details
Vehicle details
Payment details

Amend/delete registration Contact details
Vehicle details
Payment details

Pay penalty Contact details
Payment details

… … …

After identifying the data types associated with the use cases, the next step is to
create an information asset inventory for the application. This inventory lists all the
data types and their associated confidentiality classifications, as well as any additional
categorization for data that may fall within data privacy legislation and PCI DSS.

Table 5-7 provides an example of an information asset inventory with the confiden‐
tiality classification provided earlier in Table 5-2. We haven’t included availability
classification, as that’s focused on process availability, or integrity classification, as
that will be focused on the individual transactions we should consider later.

Information Asset Register | 155

https://oreil.ly/GszLe
https://oreil.ly/GszLe
https://oreil.ly/GszLe

Table 5-7. Information asset inventory

Data type Data field Confidentiality
classification

Legal and regulatory

Identification and
authentication information

Username Confidential PI

Password Highly confidential PI

Contact details Name Confidential PI

Address Confidential PI

Phone Number Confidential PI

Payment details Car number plate Confidential

Car manufacturer Confidential

Car model Confidential

Color Confidential

Age of vehicle Confidential

Payment details Card name Confidential PI & PCI DSS

Credit card number Confidential PCI DSS

Expiry date Confidential PCI DSS

Security code Highly confidential PCI DSS

Billing address Confidential PI & PCI DSS

Payment transaction Payment log event Confidential PCI DSS

In Table 5-7, PI is personal information and PCI DSS is the Payment Card Industry
Data Security Standard. The last row of the table contains data derived from the
processing of payment transactions within the system.

From the classification of the data, we can then derive new requirements for the
solution and identify-specific security controls needed to meet legal and regulatory
requirements. Data that’s in transit, at rest, and in processing needs the specification
of security control requirements.

We’ve provided a checklist to help you review the quality of the information asset
register stage of the architectural thinking process.

Information Asset QA Checklist
• Identify data involved in each of the use cases for each human and system actor.•
• Add data triggered via a timed event or derived from transaction processing.•
• Classify the data based on the classification scheme of the organization and•

identify data that needs additional legal and regulatory controls.

156 | Chapter 5: System Context

Let’s close this chapter with a few thoughts about our experiences and tips for using
the techniques.

Summary
You may think the development of a system context is easy and you don’t need
to spend much time on it. Our experience has shown that without discussing, doc‐
umenting, and communicating this simple diagram, major misunderstandings can
result within a project. There will be different ideas about the scope of the project that
may cause problems later on if not resolved early on.

The diagram may also have external integration points or human actors missing. It
may miss how the management components of the system will integrate, requiring
additional IT and non-IT actors to interact with the system. Identification of addi‐
tional actors is likely to happen through reviews of the diagram with a broad range of
team members.

If you are a security architect developing a solution for a security service, you will
develop the system context. If you are a security architect assisting an application
architect, then you won’t own the system context diagram, but you will be providing
supplementary information. It may be that you need to ask for the addition of use
cases or user stories after reviews with key stakeholders.

When it comes to the information asset register, the security architect is more likely
to own the artifact. If the application architect has no security architect to help, then
they need to own the artifact. Like the system context diagram, you may think it’s
unnecessary, but again, it’s important for communication and alignment across the
team. For example, recording that the system is going to process payment data and
will require compliance with PCI DSS makes it a tracked requirement for the project.
Otherwise, it could get ignored until later in the project, causing changes in the
solution and resulting in delays.

Iterate with New Requirements

You should now understand the context of the system and have an
idea of the types of data processed. The artifacts created during the
first stage of the architectural thinking process will need updating
to reflect new requirements identified and new architectural deci‐
sions made. As you continue through the following chapters, you
will also come back to record new actors, data, and use cases.

If you can’t complete the artifacts because information is missing, insert placeholders
and record them in the risks, assumptions, issues, and dependencies (RAID) log. For
example, you could record an issue for missing information or record an assumption
for validation. We will discuss the use of the RAID log in Chapter 10.

Summary | 157

Communication, Communication, Communication

You may have noticed we talked about communication. Commu‐
nication is the primary purpose of documenting the artifacts to
ensure a project team is fully aligned. Don’t let what you write
become a document hidden in a folder that’s not read. Spend time
briefing the project team and wider stakeholders to gain their
agreement. A second purpose is to communicate the architecture
to operations and follow-on project teams after you have moved on
to another project. It enables them to understand the solution and
your thinking.

Now that we’ve looked at the boundary of the system and the external interactions
from actors, we will next look inside the system. The next chapter is going to discuss
the functional components of an application or workload and how they interact.

158 | Chapter 5: System Context

Exercises
1. You are architecting the security for a health insurance system that collects1.

data about physical and mental health. What category of information is being
collected?
a. Crown jewelsa.
b. Personal information (PI)b.
c. Sensitive personal information (SPI)c.
d. Financial informationd.

2. What steps in the data lifecycle could increase the sensitivity of the resulting2.
information being protected? Select all that apply.
a. Creationa.
b. Aggregationb.
c. Generationc.
d. Transmissiond.

3. What does a system context diagram describe? Select all that apply.3.
a. The system boundarya.
b. Human and system actorsb.
c. System functionalityc.
d. Data flowsd.

4. What type of human actor might be part of a system context diagram for an4.
online store? Select all that apply.
a. Cloud data center security guarda.
b. Database administratorb.
c. Finance systemc.
d. Service desk agentd.

5. What type of system actor might be part of a system context diagram for an5.
online store? Select all that apply.
a. A parcel logistics systema.
b. An HR systemb.
c. A card payment systemc.
d. An AI chatbot platform as a service (PaaS)d.

Exercises | 159

6. True or False: An employee accessing the system within office space and an6.
employee accessing the system using Internet remote access should be treated as
two separate human actors.
a. Truea.
b. Falseb.

7. A secrets manager service serves applications updated secrets every few minutes7.
24×7. It supports high-impact business processes, but they aren’t mission-critical
and don’t need cross-regional resilience. What should be the availability classifi‐
cation for the secrets manager service?
a. Category Aa.
b. Category Bb.
c. Category Cc.
d. Category Dd.

160 | Chapter 5: System Context

CHAPTER 6

Application Security

In the prior chapters, we talked about external elements that can influence and drive
required security controls, which form a baseline of security measures that our sys‐
tem needs to take into consideration. To strike a balance between the cost of security
measures and the actual business value, i.e., decreasing the risk to the organization,
we need to complement or change those baseline security measures with measures
that address specific risks that the exposed system faces. This will allow us to bring
the cost of security measures in line with the actual business benefit. Because of
this, we need to investigate the inner workings of the system to comprehend its
functioning.

In our role as security architects, we’re working closely with architects from other
domains to comprehend, construct, expand, and customize the system. The security
architecture evolves alongside the overall system architecture as it develops through‐
out the course of the system’s lifetime, turning into an iterative process. To begin the
architectural thought process, we must first establish the system’s functional building
blocks. In the first part of this chapter, we will decompose the system to understand
its functional building blocks, trust boundaries, data flows, and interactions. In the
second phase, we will examine the exposure of the system to threats, the inherent
vulnerabilities of the current system architecture, and the risks this poses to the
organization. This will assist us in identifying and prioritizing countermeasures for
the identified risks.

Chapter Artifacts
The component architecture artifact shown in Figure 6-1, with its dynamic variations
in the form of an interaction diagram and a collaboration diagram, is the main
artifact used to decompose the architecture into functional building blocks. These
diagrams are typically created by other domain architects, unless you are developing

161

a full security architecture yourself, but we require them for the development of the
security architecture. If other architects haven’t developed them, the security architect
must step in and develop them with feedback from those who understand the system
functionally.

Figure 6-1. Application security chapter artifacts

The data flow diagram complements the component architecture artifacts from a
data perspective and is an important input to the threat model artifact, which is
the main artifact of this chapter and documents threat actors, threats, assets, and
countermeasures.

162 | Chapter 6: Application Security

Functional Viewpoint
The system context diagram helped us to describe the external connections and
interactions, and with that, the boundaries and scope of the system we’re securing.
We’re now looking inside the system boundary to understand and document the
functionality of the system, as shown in Figure 6-2.

Figure 6-2. Architecture decomposition—component architecture

We describe the functionality of a system through the composition of components
and document the same in the component architecture. Within the software domain,
we define a component as an encapsulated part of a software system with a well-
defined interface that provides access to its services.

Components aren’t restricted to application components; they can also be technical
components, system software components, hardware components, SaaS components,
infrastructure as code (IaC) components, etc.

Component Decomposition

Components can also consist of additional components, such as
Server → Pods → Containers → Knative Functions.

In Chapter 8, we will discuss how we can place those components on nodes or
resource instances, which represent the infrastructure or the operational view, and
how we can document it in the deployment architecture.

Component Architecture
The component architecture is an abstraction of the system architecture that omits
most of the design complexities in order to present an overview of the functioning of
the system.

Component Architecture | 163

The component architecture aids in the definition of the system’s structure, compo‐
nent types, and recurring interactions and dependencies between sets of components.

We can break down the component architectures into two levels:

The logical level
Specifies the components, responsibilities, and qualities required to deliver tech‐
nology and meet product-neutral requirements.

The deployed level
Describes how to assemble the components together for them to meet the previ‐
ously established specifications. This might be a physical component as well as
a virtual component. When we talk about physical components, we also mean
virtual representations of physical components.

A subsystem is a collection of components that don’t have any inherent capabilities or
interfaces. It’s just a way to group a set of components with related functionality.

The component architecture assists the security architect in identifying the data that
the solution or system will process:

• Data in transit•
• Data at rest•
• Data generated by processing transactions (data in use)•
• Confidential data•
• Sensitive data•
• Classified or highly sensitive data•
• “Crown jewels”—often considered business-critical data or highly sensitive data•

We can identify components based on their responsibilities in achieving the intended
system behavior. Component interfaces represent a service agreement that outlines
component duties and data access through the interfaces.

We will now look at what different forms of visualization we can use to document a
component architecture and how these different forms provide the security architect
with relevant information. For many of the diagrams in this section we’re using
simplified versions of diagrams defined in UML as a basis. Use the diagrams aligned
to what your organization uses. We’ve documented a mapping showing the equivalent
diagrams for different methods in Appendix B.

164 | Chapter 6: Application Security

https://oreil.ly/894La

Component Architecture Diagram
Based on the UML component diagram, the component architecture diagram (static
model) displays the dependencies and relationships between static components. Fig‐
ure 6-3 illustrates a simplified version of the logical component architecture.

Figure 6-3. Example logical component architecture (simplified)

In many practical situations, a simplified version of the UML notation is sufficient
to gain the relevant insights for the security architect. We use the following diagram
elements:

Component name
We use rounded rectangles with the component names to depict the actual
components.

Subsystem
To illustrate subsystems, we draw rectangles around components with the sub‐
systems’ names. Lines and arrows between components specify the relationship
between two or more components. The direction of the arrow specifies the direc‐
tion of the interaction between the components. In the example in Figure 6-3, the
sales agent actor is using the customer registration user interface.

Actors
The actors in the component architecture should match up with the actors in the
system context diagram.

The component architecture diagram is one of the most used diagrams outlining the
components of a system.

Component Architecture | 165

https://oreil.ly/KDHS4

Sequence Diagram
A sequence diagram, on the other hand, shows the dynamic interactions between
individual components and how these components collaborate to realize a given
scenario. Sequence diagrams are mainly used for architecturally significant use cases,
and we document them using a UML sequence diagram. Sequence diagrams are
especially useful when it’s important to understand the order and timing of the
execution of methods and when data is flowing from one component to another.

Figure 6-4 illustrates an example of a sequence diagram. The example diagram
depicts a typical login routine for a website that uses an authentication provider such
as Microsoft or Google. The user enters the website’s address into the browser and
forwarding of the user takes place to the authentication provider, who subsequently
redirects back to the web app, which validates the authentication and displays the
protected resource.

Figure 6-4. Example sequence diagram

We use the following key diagram elements:

Lifeline elements
Boxes at the top of the diagram represent actors and components relevant to the
diagram.

166 | Chapter 6: Application Security

https://oreil.ly/z475G

Activation bars
Activation bars visualize the period of active processing of a method. In the
example in Figure 6-4, the activation bar for the user visualizes the period from
when the user enters the URL into the web browser until it displays the protected
resource.

Messages
Messages represent the interaction between the actors and components. Arrows
between the lifelines represent messages. A full line represents the call, and
a dotted line represents the reply message, if applicable. Return messages are
optional in the diagram; their usage depends on the level of required detail.

Self-messages
Self-messages illustrate that a return message depends on a method execution
before that return message. In the example in Figure 6-4, the authenticate user
self-message with the Microsoft/Google authentication illustrates that the user
first needs authentication with Microsoft/Google before the return of the redirec‐
tion response.

We draw messages from the top to the bottom and, with that, document the timely
sequence of the interactions.

Collaboration Diagram
A collaboration diagram is a different way of looking at the dynamic relationships
of components to describe how a system collaborates. Instead of showing the flow
of information, the collaboration diagram depicts the components residing in the
overall architecture of the system represented by the UML collaboration diagram.
Figure 6-5 illustrates an example of a component collaboration diagram.

Figure 6-5. Example collaboration diagram

Component Architecture | 167

We use the following key diagram elements:

Component name
We depict the actual components as rectangles with the component names.

Links
Links represent a relationship between the components represented by solid
lines.

Arrows
Arrows between the components represent messages. The associated numbers
indicate the order of the message flow.

Sequence diagrams and collaboration diagrams express similar information but visu‐
alize this in different ways. Collaboration diagrams are especially useful for illustrat‐
ing simpler interactions between a small number of objects and may be a better
representation for a business stakeholder. If the number of objects and interactions
increases, the diagram becomes increasingly hard to read. A sequence diagram might
then be a better choice.

Data Flow Diagram
The previous diagrams concentrated on the system’s decomposition into functional
components and how those components interact with one another. Another impor‐
tant aspect to consider is how data flows, where it’s processed, and where it’s stored,
because data is what we’re concerned about. The data flow diagram (DFD) is a
graphical representation of the data flow within a system or process. It depicts how
data moves from one component or entity to another within a system, emphasizing
inputs, outputs, processes, and data storage. Figure 6-6 illustrates an example of a
data flow diagram.

Figure 6-6. Example data flow diagram

168 | Chapter 6: Application Security

A data flow diagram typically includes the following elements:

Processes
Processes are activities or operations within the system that manipulate or trans‐
form data. These operations can take the form of computations, alterations to
data, or anything else that’s carried out inside the system. An ellipse represents
processes.

Data flows
Data flows show the movement of data between system components or processes.
They depict the paths along which data flows from a source to a destination.
They’re represented as an arrow pointing in the direction of data movement.
Keep in mind that the arrows are unidirectional. This is especially important
during threat modeling, where you want to understand what data is flowing in
what direction.

Data stores
Data stores are repositories or storage locations for data within the system, for
example, databases, files, or any other form of persistent data storage. They’re
drawn in the shape of a rectangle with parallel lines.

External entities
External entities are entities that interact with the system from outside of it. They
can be users, other systems, or any other external data source or destination.
They’re visualized as a box.

Because they depict the processing and sharing of data within a system, data flow
diagrams are helpful tools in system analysis and design. They help in identifying
potential bottlenecks, comprehending dependencies, and assessing information flow,
all of which are necessary for evaluating system functionality, recognizing possible
risks, and developing efficient processes.

Component Architectural Thinking Process
Now that we understand several ways of visualizing a component architecture in
order to acquire meaningful information from it, we must understand how we
actually construct the component architecture. We develop a component architecture
in three stages, increasing the level of detail as we go:

Plan: What are we building?
Determine the key components that comprise the system. We strongly encour‐
aged you to use applicable architecture patterns, reference architectures, and
reusable assets during this process to speed up the process and improve the
quality of the solution. More on this in Chapter 9. After identifying the major
components, divide them into subsystems and components, and then assign

Component Architecture | 169

functional responsibilities. Structure the components to ensure loose coupling,
high cohesion, and other desirable properties.

Design: How will it work?
Now that we know what components exist in the system, we must define their
interfaces, the data that’s transferred, pre- and post-conditions, and interaction
sequences.

Deploy: How do we build it?
We describe the realization of the components in this final stage of the modeling
process. We must outline the implementation strategy and identify internal and
third-party products, packages, and solutions. This is the stage at which you
will make important architectural decisions. We describe the significance of
architectural patterns and decisions in Chapter 9.

We continue by applying the concepts to the development of a component architec‐
ture using the case study in Appendix A.

Case Study: Component Architecture
To begin the definition of a component architecture, we start by looking at the system
context diagram (Figure 6-7) that we developed earlier to identify the actors that we
need to consider. Every actor somehow interacts with our system, so they need one or
another type of interface, be it a web UI or an API.

We have three types of actors in our system:

Functional human actors (illustrated as solid user icons)
Those actors will need a user interface to interact with the system.

Operational human actors (illustrated as outlined user icons)
Until we’ve established the operational view of the solution, we wait to include
those actors in the decomposition of the system.

System actors (illustrated as building icons)
Those actors require integration capability to either receive incoming functional
calls or establish outgoing functional calls.

The case study doesn’t provide enough information to determine if the Clean Threats
actor is a human or a system actor. It might be a human actor, such as SOC analysts
accessing a SIEM or security, orchestration, automation, and response (SOAR) capa‐
bility that’s part of our system, or it can be a system actor when the SIEM or SOAR
capability isn’t part of our system. This is an item that we need to clarify with relevant
stakeholders when we architect the operational solution. We could add this as an
issue to resolve in the RAID log we will discuss in Chapter 10.

170 | Chapter 6: Application Security

Figure 6-7. Case study system context diagram

Let’s have a look at the case study to understand what functional building blocks
our system requires. We’ve highlighted those parts of the case study that provide us
with information about the components and interfaces. A solid border highlights
databases, a dotted border highlights system integration; and a dashed border
highlights user interfaces. Have a read through the marked-up case study.

Marked-Up Case Study
The project has already started to build the new hybrid cloud solution, with the core
application hosted using PostgreSQL on a public cloud platform.

• With the Clean Air application containing:•
— Systems of engagement using Open Liberty running on OpenShift at the—

center
— Cached and state data stored in MongoDB and Redis cloud databases—

• Connected to on-premises systems•
— A payments gateway connecting to Clean Air Pay using Apache Kafka—

Streams

Case Study: Component Architecture | 171

— Integration into a debt facility using RabbitMQ—

• The installation of Automatic Number Plate Recognition (ANPR) cameras has•
taken place on the roads leading into the clean air zone. Camera Zone reads the
number plates of vehicles and sends information to Clean Air Guildford (CAG).
CAG checks the type of vehicle in the Driver and Vehicle Licensing Agency’s
(DVLA) database. Camera Zone provides an outsourced service for the running
of the ANPR cameras and does the same service for other clean air schemes,
police, and security services.

• Vehicle owners with higher emissions will pay a £10 fee to enter the clean air•
zone during peak hours of 07:00 to 19:00 Monday through Saturday. Within 48
hours of entering the clean air zone, they must pay this fee via a payment portal
that the scheme will provide. They have selected Clean Air Pay as their payment
provider. As this is a payment service, the design of the application must include
PCI DSS requirements.

• For those vehicle owners who don’t pay the fee at the end of the 48-hour period,•
a debt collection agency, Clean Air Debt, will receive information on the driver.
They will send out letters notifying the vehicle owner of the fine and, after a
period, pursue collection of the fine.

• The vehicle owners will be able to use their Google or Microsoft IDs to log in•
to the portal and register their car with the program so that, upon entering
Guildford, the payments are automatically made.

• The scheme uses the Guildford Service SaaS application in a service center to•
respond to queries by phone and take payments.

• An AI chatbot, provided as a cloud service by the public cloud provider, will•
handle driver queries more rapidly without waiting for telephone support via the
service center.

The program manager has no security solution but has identified one high-level
security requirement:

IAM_001 Integrate single sign-on by using the Staff LDAP Directory as an
Identity Provider for staff.

With the markup of the case study, we can now create a list of the functional building
blocks of the system.

172 | Chapter 6: Application Security

As you can see in Table 6-1, we’ve made a number of assumptions where the informa‐
tion wasn’t provided in the first place. We need to document these assumptions in the
RAID log so that we can validate them at a later point in time. We will introduce the
RAID log in Chapter 10.

Table 6-1. Identified functional building blocks

Type Purpose Technology Component
Databases
solid border

Main database PostgreSQL LC-DB-01

Cache, state data MongoDB LC-DB-02

Cache, state data Redis DB LC-DB-03

Integrations
dotted border

CAG → Clean Air Pay Kafka streams LC-INT-01

CAG → Clean Air Debt RabbitMQ LC-INT-04

Camera Zone → CAG Not defined—we assume REST API LC-INT-03

CAG → DVLA Not defined—we assume REST API LC-INT-05

CAG → Google/Microsoft OAuth 2.0, OpenID LC-UI-02

AI chatbot → CAG Not defined—we assume REST API LC-INT-02

CAG → Staff LDAP Directory SAML 2.0, OpenID Connect, OAuth 2.0, and WS-
Federation

LC-UI-01

User interfaces
dashed border

Driver and car registration Not defined—we assume web portal LC-UI-02

Payment portal Not defined—we assume web portal LC-UI-02

Application components Driver management Red Hat OpenShift LC-AP-01

Vehicle management Red Hat OpenShift LC-AP-02

Payment management Red Hat OpenShift LC-AP-03

Another observation that illustrates the iterative process we’re in is that we’ve identi‐
fied actors that we hadn’t identified in our initial version of the system context: the
DVLA for vehicle verification and Google or Microsoft ID for driver authentication.
Did you also recognize that the case study highlights the Guildford Service SaaS
application for the service desk? We’ve also included that in our system context
diagram. Though we assume that the only technical integration used in our system
is that Guildford Service SaaS is using Staff Lightweight Directory Access Protocol
(LDAP) for single sign-on for the service desk users. That means that we also need
a user interface for the service desk users as well as the finance users, which we
also identified when we developed the system context. We’re also making the first
architectural decisions, when we assume REST APIs and the authentication protocol
for some integrations. In Chapter 9 we will discuss the significance of the decision
and how we document the decision in architectural decision records.

Based on this information, we can now draw the initial version of the component
architecture for our system in Figure 6-8.

Case Study: Component Architecture | 173

Figure 6-8. Case study component architecture; see the original diagram

This component architecture forms the basis for the next step, when we’re going to
model threats and countermeasures for our system.

As mentioned earlier, we’ve not yet considered the operational actors in our compo‐
nent architecture, as they mainly represent non-functional aspects of the solution.
Once we’ve developed the deployment architecture of our system, we might need to
adapt the component architecture.

In the checklist, we provide you with important considerations to remember when
you develop the component architecture.

174 | Chapter 6: Application Security

https://oreil.ly/SAHC

Component Architecture QA Checklist
• Make sure that you represent all functional actors in the component architec‐•

ture and understand what interface they use to interact with the functional
components.

• Verify that you have defined components to satisfy all identified functional•
requirements.

• Verify that you have identified all interfaces between the components and that•
you understand whether the interface is passing or receiving the respective data.
Is the data that you identified during the development of the system context
diagram flowing correctly through the functional components?

• Because you don’t know everything yet, you’ve made several assumptions•
throughout the process. Make sure you have documented those assumptions
in the RAID log.

• Application architects who develop the component architecture will have to•
think about many more details, which aren’t that relevant for what we, as security
architects, are using the component architecture for. For example:
— Verify that you partitioned the components in a way that allows the develop‐—

ment work to be divided between developers.
— Verify that you loosely couple the components to allow for independent—

development work.

With the techniques of component architecture at hand, we will now use this infor‐
mation as a basis for building a threat model.

Security Concepts
Before we dive into threat modeling, we want to recap some fundamental security
concepts and relationships by extending the definitions from Common Criteria (CC)
ISO/IEC 15408-1:2022, as illustrated in Figure 6-9.

We’re considering information assets for storage, processing, and transmission by IT
systems and how they meet the requirements defined by the information’s owners.
Owners can realize the intended value of the information by performing processes
on it.

Owners of information demand the preservation of confidentiality, integrity, and
availability, and the reduction of risks to an acceptable level. Additional controls or
countermeasures are necessary to achieve this, with countermeasures mitigating the
vulnerabilities that threat actors might exploit.

Security Concepts | 175

https://oreil.ly/qVEkC

Figure 6-9. Fundamental security concepts and relationships

Let’s illustrate these fundamental concepts with an example:

We assume our solution has a SQL injection vulnerability, a weakness or flaw that
allows an attacker (threat actor) to inject malicious SQL code into a query. The
threat actor poses a threat or danger of unauthorized access to data (the assets) or
unauthorized manipulation of data assets through an exploit of the vulnerability. The
vulnerability leads to a risk, and the fact that the threat can exploit the vulnerability
increases the overall risk to the organization. The location of assets in the environment
determines the risk from threat actors, the exposure to threats, and the processes that
authorized actors use to operate on the assets. Implementing countermeasures, such as
input validation and the use of parameterized queries, can lower the risk by ensuring
that the application treats inputs as data rather than executable code.

For a more in-depth discussion of information risk management concepts, we suggest
you read Information Risk Management (BCS) by David Sutton.

176 | Chapter 6: Application Security

https://oreil.ly/PAdF_

Now that we’ve established the core security language and linkages, we’re ready to
dive into threat modeling.

Threat Modeling
We saw in “Component Architecture” on page 163 how we can compose and decom‐
pose a system into functional building blocks to meet its functional requirements.
Functional requirements are typically well specified because they define the primary
reason for the system’s existence. As you saw in Chapter 4, security requirements
derive from external rules, internal policies and standards, and, most importantly, the
actual threats exposing a system. So, basically, we need to figure out how to breach
the system to identify countermeasures to detect, correct, and prevent threats.

Threat modeling is a process to identify those threats to the system, the associated
risks, and the correct controls to produce effective countermeasures.

Threat modeling is the cornerstone of application security and the secure by design
discipline. When done correctly, threat models can help teams identify and mitigate
issues early in the solution lifecycle. Threat models also help feed downstream secu‐
rity processes like assurance processes (for example, QA testing, code scanning, and
penetration testing) as well as threat detection use cases, as illustrated in Figure 6-1.

There is a fundamental difficulty in developing threat models, as you never know
when you have reached the end. The level of creativity, expertise, and time available
limits the number of threats you are able to identify. There are many different threat
modeling techniques available that require different levels of expertise and effort with
varying numbers of layers. In Table 6-2, we’re listing some of the various techniques,
which you can apply individually or combined.

Table 6-2. Threat modeling techniques

Level of
expertise

Threat model layers Rooted in

Systems
engineering

System analysis Process engineering

High • CVE•
• CWE•
• Security controls•
• Persona non-grata•
• MITRE ATT&CK framework•

TARA • PASTA•
• Attack Trees•

Medium • Application components•
• Infrastructure components•
• Data flows•
• Threat actors•
• Threat vectors•

Trike OWASP Application Threat
Modeling

Microsoft Threat
Modeling Tool

Threat Modeling | 177

https://www.cve.org
https://cwe.mitre.org
https://oreil.ly/rJj29
https://oreil.ly/O62UY
https://oreil.ly/lHhz4
https://oreil.ly/iVaJn
https://www.octotrike.org
https://oreil.ly/TGq-V
https://oreil.ly/TGq-V
https://oreil.ly/dtEMP
https://oreil.ly/dtEMP

Level of
expertise

Threat model layers Rooted in

Low • Boundaries/zones of control•
• Assets•
• Threats•
• Threat actors•
• Controls/countermeasures•

STRIDE VAST

Our objective is to introduce threat modeling as a technique and explain how this
technique fits into the overall security architectural thinking process. You can find
more information and deeper insights into the topic in books like Threat Modeling:
Designing for Security and Threat Modeling (O’Reilly) by Izar Tarandach and Matthew
J. Coles.

We’re describing here a common approach for threat modeling that allows you to
apply different threat modeling techniques depending on the type of system you are
assessing and the level of expertise of the people involved in the threat modeling
process. Our description and the case study example assume a low level of expertise
in threat modeling.

For this approach, it’s required to have a visual of the solution design. A commonly
used artifact is a component architecture, which we’ve looked at in the previous sec‐
tion. Another option is to use a data flow diagram as a starting point. The described
steps are valid for both types of diagrams. We recommend selecting key use cases and
following the associated data through the solution.

For simple architectures, we can use tags within the visual to mark the elements of
the threat model. For more complex architectures, it’s good practice to use threat
modeling tools to support this process.

Documenting the Threat Modeling Process

For each step in the threat modeling process, we’re providing rec‐
ommendations in the form of documentation activities on how
to depict and document the information that we identified in the
respective step. With each step, you will add a layer of information
to the threat modeling diagram. Figure 6-13 shows the final version
of that diagram assembling all steps.

178 | Chapter 6: Application Security

https://oreil.ly/AYsI0
https://oreil.ly/7W1Fk
https://oreil.ly/dNLnk
https://oreil.ly/dNLnk
https://oreil.ly/PB1O5

We will now go through six steps to develop the threat model. In each step, we will
add a layer of information to the threat model diagram. To structure and focus your
efforts it’s also good practice to work through different use cases of your solution and
perform the following steps per use case. We identified a number of use cases when
we developed the system context diagram, and starting from there, you can trace the
data flow through the system.

Identify Boundaries
Boundaries are demarcations that separate one entity from another and where data
flows from one entity to another. That can, for example, be between deployment
components, between processes, between an application and a file system, between
an actor and an interface, between technology boundaries as described in Chapter 7,
security policies, etc. These boundaries represent the attack surface of the system, and
many threats will cluster around these boundaries. The trust boundaries are a point
of security enforcement where you place firewalls, enforce authentication, terminate
encryption, etc.

It’s therefore important to know where the trust boundaries are within the architec‐
ture (system, solution, product, etc.).

Often, a combination of the component architecture and the deployment architec‐
ture, which we’re introducing in Chapter 8, will provide the most comprehensive
basis to identify and draw the trust boundaries.

In the example in Figure 6-10, we’ve drawn trust boundaries into the diagram as
dashed lines around the network boundaries internet and public cloud as well as
system boundaries of the Kubernetes cluster and the database.

Identify the Trust Boundaries

To document the identified boundaries on the component diagram,
complete the following documentation activity:

• Draw in trust boundaries as dashed boxes into the diagram.•

Threat Modeling | 179

Figure 6-10. Example component architecture with trust boundaries; see the original
diagram

Identify Assets
We need to understand what assets we need to protect in the system. In Chapter 5, we
identified different types of data our system is transferring, processing, and storing.
We now need to identify the location of the assets in the system.

Storage of data takes place in different locations: data stores, credential stores, third-
party tools, solutions, and software.

180 | Chapter 6: Application Security

https://oreil.ly/SAHC
https://oreil.ly/SAHC

Document the Assets

To document the identified assets on the component diagram,
complete the following documentation activities:

• Draw a numbered, colored label A01 on the components•
where the storage of assets takes place. See Figure 6-13 for an
example.

• Document the type and volume of assets identified.•

Identify Threat Actors
Now that we know where the assets are and what threats they’re exposed to within
the system, we need to understand who the threat actors are. Information about the
threat actors helps us understand the likelihood of the exploitation of a threat by
threat actors in relation to the location of the threat in the system.

On a high level, we can distinguish between the following categories of threat actors:

External threat actors
External threat actors are external to the organization:

External authorized malicious actors
Individuals with legitimate access and malicious intent.

External unauthorized malicious actors
Individuals without legitimate access and with malicious intent. This can
also be further broken down into nation-state-sponsored, activists, criminal
organizations, etc.

Internal threat actors
Internal threat actors are internal to the organization. This can be an employee, a
contractor, etc.; someone who has legitimate insights about the organization:

Internal unauthorized malicious actors
Individuals without legitimate access and with malicious intent

Internal authorized, “honest but curious” actors
Individuals with legitimate access to the data, just not all the data

Inadvertent actors
Individuals who inadvertently compromise security through careless actions
or a lack of awareness

Threat Modeling | 181

Document the Threat Actors

To document the identified threat actors on the component dia‐
gram, complete the following documentation activities:

• Draw the numbered, colored label TA01 on the logical•
boundaries identified in step Identify Boundaries.

• Document the types of threat actors.•

We recommend finding a classification of threat actors that’s most relevant for your
organization. This is relevant for drawing the right conclusions and easing communi‐
cation within your organization.

Identify Threats
You can apply different, complementary techniques to identify threats. When you
perform manual threat modeling, you can start with high-level threats informed by
the OWASP Top Ten.

For a more structured approach to developing threats and mitigation techniques,
we recommend methods like STRIDE or attack trees. We’re briefly describing these
methods in the following sections. For a more exhaustive description we recommend
books like Threat Modeling: Designing for Security.

STRIDE
STRIDE is a threat modeling method that assists in the identification and categoriza‐
tion of potential threats in software systems. The STRIDE approach was developed in
1999 by Loren Kohnfelder and Praerit Garg at Microsoft. It offers a systematic way
to identify and mitigate security risks. Each letter of the word STRIDE represents a
different category of threats:

Spoofing
Spoofing threats are those in which an attacker impersonates another user, entity,
or system to gain unauthorized access or deceive the system.

Tampering
Tampering threats entail unauthorized changes or modifications to data, code,
or system components. Attackers may modify data, implant malicious code, or
change system settings.

Repudiation
Repudiation threats occur when an attacker performs an action and then denies
performing it. Modifying logs, interfering with audit trails, or fabricating records
are examples of such activities.

182 | Chapter 6: Application Security

https://oreil.ly/ok4VB
https://oreil.ly/dNLnk

Information disclosure
This category comprises threats in which sensitive or secret information is inad‐
vertently or maliciously given to unauthorized parties. It can happen due to
vulnerabilities that expose data during transmission, storage, or processing.

Denial of service
Denial of service (DoS) threats try to disrupt or prevent the normal operation of
a system or service. Attackers may flood the system with requests, drain system
resources, or exploit vulnerabilities to cause system failures or outages.

Elevation of privilege
Elevation of privilege threats include attackers gaining illegal access or privi‐
leges within a system. They may use vulnerabilities to increase their privileges,
circumvent access controls, or do operations that exceed their authorized degree
of access.

The purpose of a STRIDE analysis is to identify potential threats within each category
for the specific system under consideration. This entails examining the system’s
components, relationships, and capabilities to determine how each threat category
might materialize. Just to emphasize, the goal isn’t the categorization of threats, but
the identification of them. The STRIDE categories are a way to brainstorm threats.
Microsoft developed a card game Elevation of Privilege (EoP) to support the creative
process of identifying threats. This game helps teams to think about how to break the
solution.

Attack trees
Attack trees are graphical models used to represent and analyze potential attack paths
and scenarios in a system. They provide a structured way to understand the steps an
attacker might take to exploit vulnerabilities and achieve specific goals.

Attack trees serve as a visual representation and analysis tool for understanding the
potential attack vectors and sequences an adversary may follow. They help in priori‐
tizing security measures, identifying vulnerabilities, and designing effective defenses.
Figure 6-11 illustrates an attack tree based on a simple non-IT goal to break into
a house to illustrate the concept. Out of the diagram, we can derive controls; for
example, storage of the key shouldn’t be under the doormat, and installation of an
alarm should take place to detect a break-in.

Threat Modeling | 183

https://www.microsoft.com/en-gb/download/details.aspx?id=20303

Figure 6-11. Example attack tree

Here’s how attack trees work:

Goal-oriented
Attack trees start with a specific attacker’s goal, such as gaining unauthorized
access to a system, stealing sensitive data, or disrupting a service. The top node of
the attack tree represents this primary goal.

Decomposition
We break down the primary goal into subgoals or attack steps, forming a tree-like
structure. Each subgoal represents a specific objective that an attacker needs to
accomplish to progress toward the primary goal.

Attack techniques
For each subgoal, we identify different attack techniques or methods. These
techniques describe the specific actions an attacker may take to achieve the sub-
goal. Attack techniques can include exploiting vulnerabilities, social engineering,
brute-force attacks, or any other means of compromising the system.

Leaf nodes
The attack tree branches continue until they reach the leaf nodes, which repre‐
sent the lowest-level attack steps. These steps are typically simple and concrete
actions that an attacker can perform, such as executing a specific command,
bypassing an authentication mechanism, or exploiting a vulnerability.

184 | Chapter 6: Application Security

Dependencies
Attack trees can include dependencies between different attack steps. These
dependencies represent the conditions or prerequisites needed for a successful
attack. Dependencies can include factors like prior access, knowledge, or the
successful completion of another attack step.

Probability and impact
Attack trees can incorporate probability and impact assessments for each attack
step or subgoal. This involves assigning values or probabilities to estimate the
likelihood of success or failure for each step, as well as evaluating the potential
impact if the step is successful.

Analysis and mitigation
Attack trees enable the analysis of attack paths and provide insights into the
critical attack steps and potential vulnerabilities in a system. This analysis helps
us identify areas where we can apply security controls, countermeasures, or
mitigation strategies to disrupt or prevent the attack paths.

The MITRE ATT&CK framework provides a framework for a more low-level threat
analysis as well as for the identification of mitigation approaches. We recommend
you leverage threat modeling tools that feed information from MITRE, NIST, and
CERT databases and allow a more comprehensive way of documenting the different
elements of a threat model.

Document the Threats

To document the identified threats on the component diagram,
complete the following documentation activities:

• Draw a numbered, colored label T01 to the components or•
connections where you have identified the respective threat.

• Document the type of threat.•

LINDDUN
The previously mentioned techniques don’t specifically address privacy-related issues.
The LINDDUN Privacy Threat Modeling Framework developed by privacy experts
at KU Leuven closes that gap. LINDDUN provides a systematic approach to reason
about privacy concerns structured in seven privacy threat types that make up the
word LINDDUN:

Linking
Linking data items or user actions may have unintended privacy consequences,
even if it does not reveal one’s identity.

Threat Modeling | 185

https://attack.mitre.org
https://linddun.org

Identifying
Many systems require the identification of data subjects; identifying threats arise
when leaks, deduction, or inference reveal the identity, even if it is not intentional
or desired.

Nonrepudiation
Being able to assign a claim, i.e. knowing, doing, or saying something, to a
specific person. This results in the loss of plausible deniability, as seen with a
whistleblower who may face prosecution.

Detecting
Observing someone and determining their level of involvement. Detecting
threats does not require the ability to read the actual data; simply knowing that it
exists is enough to infer more (sensitive) information.

Data disclosure
Excessive collection, storage, processing, or sharing of personal data. Data disclo‐
sure threats are situations in which the disclosure of personal data to, within, and
from the system is considered problematic.

Unawareness and unintervenability
Inadequate information, involvement, or empowerment of individuals in the
processing of their personal data.

Noncompliance
The system deviates from best practices in security and data management, as
well as standards and legislation, resulting in incomplete risk management. The
emphasis is on the organizational and operational management context within
which a system or service operates.

The authors of LINDDUN have developed methods for a lean and a more exhaustive
approach to the topic. The method is equally supported by a card game, like STRIDE
is. The card game helps to facilitate brainstorming sessions. This concludes the
approaches to identifying threats; as a next step, we need to consider what we can do
about them.

Identify Controls
Now that we have a good understanding of the threats to which the system is vulner‐
able, we must define the controls that will most effectively mitigate the identified
threats. There are three types of security controls: detective, preventive, and correc‐
tive. Each category focuses on a different aspect of security and aims to mitigate risks
in distinct ways. Here are the definitions of each type of control:

186 | Chapter 6: Application Security

Detective security controls
Detective controls identify and detect security incidents, anomalies, or violations
that have already occurred within a system or network. They help in discovering
and investigating security breaches or unauthorized activities. Detective controls
include:

Intrusion detection systems (IDS)
These systems monitor network traffic, looking for patterns or signatures
that indicate potential security breaches or malicious activity.

Security information and event management (SIEM)
SIEM systems collect and analyze logs and events from various sources to
identify potential security incidents and provide real-time alerts.

Log monitoring and analysis
Regularly reviewing logs and analyzing them can help detect unauthorized
access attempts, system changes, or suspicious activities.

Security audits and assessments
Periodic assessments and audits of systems, networks, and applications can
identify vulnerabilities, weaknesses, or noncompliance with security policies.

Continuous compliance
Continuous compliance refers to the ongoing process of monitoring an
organization’s information technology assets to ensure that they’re in compli‐
ance with defined security standards.

Preventive security controls
Preventive controls are proactive measures implemented to reduce the likelihood
of security incidents or breaches. They focus on preventing threats from occur‐
ring or gaining access to sensitive information. Preventive controls include:

Access control systems
These controls enforce authentication and authorization mechanisms, ensur‐
ing that only authorized users can access systems, data, or resources.

Firewalls
Firewalls act as a barrier between internal and external networks, filtering
network traffic and blocking unauthorized access attempts.

Antivirus and anti-malware software
These tools scan for and prevent the execution of malicious software, viruses,
or other forms of malware.

Security awareness training
Educating employees or users about security best practices and policies helps
prevent social engineering attacks and improves overall security posture.

Threat Modeling | 187

Software development proactive controls
OWASP has defined a list of the top 10 security techniques in the OWASP
Proactive Controls, which should be included in every software development
project.

Corrective security controls
Corrective controls are measures taken after the identification of a security inci‐
dent or breach. They aim to mitigate the impact, recover from the incident, and
restore normal operations. Corrective controls include:

Incident response plans
These plans specify the actions and procedures that organizations must take
in the event of a security incident to ensure a coordinated and effective
response.

Backup and disaster recovery
Regularly backing up data and having a well-defined disaster recovery plan
helps recover from incidents and minimize data loss.

Patch management
Applying security patches and updates to systems and software helps address
vulnerabilities and protect against known exploits.

Forensic analysis
Conducting forensic analysis and investigation helps determine the cause,
extent, and impact of a security incident and gathers evidence for legal
purposes.

By combining detective, preventive, and corrective security controls, organizations
can establish a comprehensive and layered security approach that safeguards assets
and mitigates risks effectively.

How Many Controls Are Enough?
You can now ask, How many detective, preventive, and corrective controls do I need?
When deciding on the controls and the type of controls, you need to keep the goal in
mind. The objective of security architecture is to reduce the risk that the organization
faces to a level that is acceptable. Preventive controls have, in many cases, the biggest
effect as they stop bad things from happening, but they usually come with the highest
cost. Detective controls are the second choice, as they help to decrease the time to
respond to an incident and, with that, the impact on the organization. And the last
resort are corrective controls.

You might face situations where the cost of the protective control outweighs the bene‐
fit, and a detective control might be the better choice. Imagine an industrial company
that needs to secure their OT environment. Installing security updates might require

188 | Chapter 6: Application Security

https://oreil.ly/wtsnX
https://oreil.ly/wtsnX

service windows where the production systems need to be shut down by the com‐
pany; this makes this operation extremely expensive. With frequent security updates,
this would become a commercially unviable process. The decision might therefore
be to focus more on detective controls to quickly identify malicious activities, which
then enables fast response actions. In the next section, we will look into how we
prioritize controls in a structured way.

For the identification of relevant and effective controls, established reference frame‐
works can be useful, for example:

• Enterprise security architecture as described in Chapter 2•
• Reference architectures as described in Chapter 3•
• MITRE ATT&CK framework•
• Common Attack Pattern Enumeration and Classification (CAPEC)•
• The 18 CIS Critical Security Controls•

We determined the location of the assets as well as the placement of threat actors and
threats. In the end, we want to ensure the confidentiality, integrity, and availability of
the assets. The assets don’t only exist at rest in our solution but also in motion from
one component to another. This is important for us to consider not only when we
identify threats but also when we identify effective controls.

As we mentioned earlier, this threat modeling process can be based on either a
component architecture diagram or a data flow diagram. In Figure 6-12, we’ve visual‐
ized an example flow of customer information A02 from the customer through
the user interface on the webserver and the application on the application server to
the database. Threat T02 is about missing transport layer encryption. As customer
information is critical for this example solution, we decided for control C03 link
encryption consistently throughout the whole flow.

The arrows in the diagram visualize the direction of the respective data flows. For
the visualization of a whole solution with many different types of data, this might
become difficult to read; therefore, we started to look at key use cases. You can also
create different data flow diagrams for different use cases and assemble the collective
controls in a layered component architecture diagram, which we will continue with.

Threat Modeling | 189

https://attack.mitre.org
https://capec.mitre.org/
https://oreil.ly/0R-y2

Figure 6-12. Data flow considerations; see the original diagram

Document the Controls

To document the identified controls on the component diagram,
complete the following documentation activities:

• Draw the numbered, colored label C01 next to where you•
previously labeled threats. This indicates that the control is
addressing the respective threat.

• Document the control.•

As you can see in Figure 6-13, adding all the information from the last five steps into
one diagram as layers provides a very good overview and eases communication.

With each step of the iterative process we just went through, we were adding one
layer of information to the diagram. Many diagramming tools support layers. It’s a
good idea to create a layer for each step. By doing so, you can quickly adapt the
diagram to different audiences depending on the message you want to convey.

190 | Chapter 6: Application Security

https://oreil.ly/SAHC

Figure 6-13. Example threat model diagram; see the original diagram

Threat Modeling | 191

https://oreil.ly/SAHC

Prioritization of Controls
With the last step in the threat modeling process, we’ve now identified a list of
controls that are mitigating all the identified threats in the system. If those controls
aren’t implemented, they leave the system vulnerable to the identified threat.

Some identified controls might be complex and costly to implement and maintain.
As a security architect, you will without doubt come into a situation where you need
to justify why the investment in a security control that you are proposing makes
sense from a business perspective. If, for example, the cost of implementing a security
control is higher than the damage caused by exploiting the associated threat, then it
doesn’t make sense from a business perspective to invest in this control.

That means we need to understand the risk the threat is posing to the organization.

The common definition of risk is: Risk = Likelihood x Impact. Within cybersecurity,
qualitative risk analysis is the most commonly used approach to evaluating risk,
which we’re also applying in this book. However, the adoption of quantitative risk
evaluation methods like the FAIR method or Information Security Forum (ISF)
Quantitative Information Risk Assessment (QIRA) has increased in recent years. The
drawback of qualitative methods is that there is bias based on the experience of the
individual evaluating the risk. While it might be easier to identify the impact category
of a risk, it’s difficult to consistently identify the likelihood of a threat. To reduce
the impact of the experiences of individuals, OWASP and other organizations have
developed risk rating methods like the OWASP Risk Rating Methodology with its
associated calculator. Using this method removes a lot of bias and produces good
enough, reproducible results.

The OWASP Risk Rating Method divides likelihood into threat agent and vulnerabil‐
ity factors, and impact into technical and business impact factors. We can influence
all factors except the threat agent factor through the chosen risk treatment action.
Threat agents are external factors outside of our area of influence.

Risk treatment approaches, also referred to as risk response strategies, are methods or
strategies that organizations may implement to address identified risks and mitigate
the potential impact of those risks. There are typically four common risk treatment
approaches:

Avoidance
The avoidance strategy involves eliminating or avoiding the risk altogether by
changing business practices or avoiding certain activities or situations that pose
a significant risk. This approach is suitable when the potential risk outweighs the
benefits and the organization chooses not to engage in the activity or use the
resource associated with the risk.

192 | Chapter 6: Application Security

https://oreil.ly/DosKe
https://oreil.ly/6O44x
https://oreil.ly/6O44x
https://oreil.ly/61exW
https://oreil.ly/t948_

Mitigation
Risk mitigation focuses on reducing the likelihood or impact of a risk. This
approach involves implementing measures or controls to minimize the probabil‐
ity of the risk occurring or to decrease the potential consequences. Mitigation
strategies may include implementing security controls, conducting regular back‐
ups, applying software patches, and enforcing policies and procedures.

Transfer
Risk transfer involves shifting the responsibility for managing the risk to a third
party. This is often done through insurance policies or contracts, where the
organization transfers the financial burden or liability associated with the risk to
another party. By transferring the risk, the organization mitigates the potential
financial impact of the risk, should it materialize.

Acceptance
Sometimes, organizations may choose to accept certain risks when they’re
deemed acceptable or when the cost of implementing further risk mitigation
measures outweighs the potential impact. Acceptance can be passive, with no
specific actions taken to address the risk, or active, with the organization
acknowledging the risk but establishing contingency plans or mitigation meas‐
ures to minimize the impact if the risk occurs.

It’s important to note that the choice of risk treatment approach depends on various
factors, including the organization’s risk appetite, available resources, legal and reg‐
ulatory requirements, and the potential impact of the risk. A comprehensive risk
management approach typically involves a combination of these strategies, tailored to
the specific risks and context of the organization.

Documenting the risk treatment approach in a risk register, like the one in Fig‐
ure 6-14, allows one to understand the risk before (inherent risk) and after applying
the identified controls (residual risk). It also aids in determining which risk factors
the control addresses. In many cases the risk can’t be completely eliminated, it
remains a residual risk. It’s important for organizations to assess and manage residual
risks to ensure that they’re at an acceptable level and don’t pose a significant threat
to achieving objectives. Organizations may choose to accept certain residual risks if
they’re deemed low enough and the cost of further mitigation outweighs the potential
impact of the risk. Alternatively, organizations may implement additional mitigation
measures to further reduce residual risks if they’re deemed too high.

Threat Modeling | 193

Figure 6-14. Risk register

A risk matrix can help visualize the impact of the risk treatment actions. The risk
management approach of the organization usually provides risk categories and defi‐
nitions for impact and likelihood, as well as acceptable risk. In case this isn’t available,
we can use the risk matrix as outlined in Figure 6-15, with the acceptable risk
indicated as the bold black line.

Figure 6-15. Risk matrix

The residual risk should ideally be below the acceptable risk for the organization.
Arrows on individual risk items indicate how the risk treatment approach addressed
likelihood and impact, as well as whether the approach resulted in a risk that was
lower than the organization’s acceptable risk.

Threat Modeling Tools
In the previous sections, we went through the key steps of developing a threat model
in a manual way. This is good to develop a quick threat overview of the system and to
develop response use cases which we will look further into in Chapter 11. Though it’s

194 | Chapter 6: Application Security

also obvious that the more complex the system is and the deeper you go into the level
of detail in the model, the more difficult it is to document and maintain the model
in a manual way. That’s where threat modeling tools that offer structured frameworks,
automation, and visualization capabilities can improve this process. Using threat
modeling tools has multiple benefits, such as:

• A structured approach will help you systematically identify potential threats,•
vulnerabilities, and security risks. Threat modeling tools will lead you through
this process. This ensures you don’t forget about any important security features
of your system.

• Threat modeling tools enforce a consistent approach for risk assessment and•
threat identification throughout the organization, so that the threat modeler is
less likely to miss threats as a result of human error or inconsistent method use.

• Many tools automate the creation of threat models, the detection of potential•
threats, and the evaluation of related risks. They primarily help in detecting
low hanging fruit threats. This expedites the procedure and provides a more
thorough threat modeling exercise so that the security architect can focus on the
identification of more complex threats and abuse cases.

• Tools for threat modeling frequently offer visual representations of the system’s•
architecture, data flow, and potential threats. These visualizations facilitate com‐
munication and make it easier for stakeholders to understand the security pos‐
ture of the system.

• Facilitating collaboration between team members, including security experts,•
developers, architects, and business stakeholders, is a tool for threat modeling,
making it possible to assess security risks from a multidisciplinary perspective.

• The documentation that’s produced by threat modeling tools can help explain•
security risks to various stakeholders, such as developers, testers, and manage‐
ment. This documentation is useful for tracking the gradual reduction of identi‐
fied threats.

• Numerous tools offer ways to classify or prioritize risks for the identified threats.•
This assists the team in concentrating on fixing the most important vulnerabili‐
ties first.

• Some threat modeling tools can integrate with DevOps and development work‐•
flows, making it simpler to include security considerations in the software devel‐
opment lifecycle.

• Tools for threat modeling frequently encourage the use of premade templates,•
industry standards, and security patterns. Standardizing the threat modeling
process across projects encourages the reuse of tested threat models.

Threat Modeling | 195

• Manual threat modeling can be laborious as systems become more complex. Par‐•
ticularly for large-scale systems, tools assist in managing complexity and enable
more effective threat analysis and risk assessment with increased scalability.

• Threat modeling tools are useful in sectors with stringent security and compli‐•
ance standards and regulatory requirements to demonstrate the systematic evalua‐
tion and reduction of security risks.

There are open source as well as commercial threat modeling tools on the market, for
example:

• Open source•
— OWASP Threat Dragon—
— OWASP pytm—

• Commercial•
— Microsoft Threat Modeling Tool (no cost)—
— IriusRisk (licensed)—
— ThreatModeler (licensed)—

Overall, threat modeling tools streamline the process of identifying and addressing
security risks, driving the security of software applications and systems in a more
efficient, consistent, and effective manner.

Now that we’ve gone through the process of developing a threat model, we will apply
the methods and techniques to our case study in the following section.

Case Study: Threat Model
As we’ve not yet developed the deployment architecture of the system, which we
will introduce in Chapter 8, we also cannot yet identify all trust boundaries. With
the knowledge that we’ve gained, we can identify the internet, the public cloud
environment, the OpenShift platform, and the databases as obvious trust boundaries
because they represent system boundaries.

We developed an initial information asset register in Chapter 5. We’re now identify‐
ing in the threat model the location of those assets:

• A01—Contact details•
• A02—Vehicle details•
• A03—Payment detail•

196 | Chapter 6: Application Security

https://oreil.ly/Q5pLh
https://oreil.ly/5fm46
https://oreil.ly/qme5s
https://www.iriusrisk.com
https://threatmodeler.com

• A04—Identification and authentication information•
• A05—Payment transaction•

All four types of threat actors are present in our solution, and we can place them on
the model:

• TA01—External authorized•
• TA02—External unauthorized•
• TA03—Internal authorized•
• TA04—Internal unauthorized•

We use the STRIDE model to identify threats and mitigating controls. The list in
Table 6-3 isn’t comprehensive and should just illustrate the concept.

Table 6-3. Case study STRIDE threats and controls

STRIDE
category

Threat Control

Spoofing T01—Attackers utilize local credentials to access the
service by performing CSRF or other attacks on the
users’ browsers.

C01—Prevent local credential setup (preventive).

Tampering T02—Malicious user has direct access to a database
through a management interface.

C02—Implement separation of duties and
the least privilege principle when assigning
administrative privileges (preventive).

Repudiation T03—Not able to verify who created a transaction
during payment.

C03—Ensure all transactions are authenticated
(preventive).

Information
disclosure

T04—An attacker gains access to sensitive data
through a man-in-the-middle attack.
T05—An attacker exploits a vulnerability by
performing a mass data exfiltration of the database.

C04—Utilize modern encryption protocols
(Consider TLS1.3 and PFS ciphers) (preventive).
C05.1—Detect mass exfiltration of database
(detective).
C05.2—Implement separation of duties and
the least privilege principle for application
components authorized to query the database
(preventive).

Denial of
service

T06—Attackers perform a denial of service toward the
service, preventing legitimate users from consuming
the service.

C06—Configure appropriate public cloud-
provided DDoS protection (protective).

Elevation of
privileges

T07—An attacker exploits features that should be
reserved for privileged users.

C07—Implement the least privilege design
principle and design privileges for users
(protective).

We can now represent the specified boundaries, assets, threats, threat actors, and
controls in the threat model diagram in Figure 6-16.

Case Study: Threat Model | 197

Figure 6-16. Case study threat model; see the original diagram

The risk assessment demonstrated for the denial-of-service threat, T06, that external
unauthorized threat actors can perform the attack.

Applying the OWASP Risk Rating Methodology, we get an overall high-severity risk
rating, as shown in Table 6-4.

198 | Chapter 6: Application Security

https://oreil.ly/SAHC

Table 6-4. Case study: Risk evaluation before applying controls

Likelihood factors Impact factors
Threat agent factors Vulnerability factors Technical impact factors Business impact factors

Skill Level
5—Advanced computer
user

Ease of discovery
9—Automated tools
available

Loss of confidentiality
0—N/A

Financial damage
7—Significant effect on
annual profit

Motive
4—Possible reward

Ease of exploit
9—Automated tools
available

Loss of integrity
0—N/A

Reputation damage
5—Loss of goodwill

Opportunity
7—Some access or
resource required

Awareness
9—Public knowledge

Loss of availability
7—Extensive primary services
interrupted

Noncompliance
0—N/A

Size
9—Anonymous internet
user

Intrusion detection
9—Not logged

Loss of accountability
7—Possibly traceable

Privacy violation
0—N/A

Threat agent factor
HIGH

Vulnerability factor
HIGH

Technical impact factor
MEDIUM

Business impact factor
MEDIUM

Likelihood factor—HIGH Impact factor—MEDIUM

Overall risk severity—HIGH

If we do the same assessment with the recommended DDoS protection controls, we
get a significantly lower risk rating (see Table 6-5). The DDoS protection control
greatly reduces the technical and business impact as it diverts network traffic loads
away from the business application and allows the normal interactions with the
application. We can’t address the threat agent factor, as this is outside of our control.

Table 6-5. Case study risk evaluation after applying controls (residual risk)

Likelihood factors Impact factors
Threat agent factors Vulnerability factors Technical impact factors Business impact factors

Skill Level
5—Advanced computer user

Ease of discovery
3—Difficult

Loss of confidentiality
0—N/A

Financial damage
0—N/A

Motive
4—Possible reward

Ease of exploit
3—Difficult

Loss of integrity
0—N/A

Reputation damage
0—N/A

Opportunity
7—Some access or resource
required

Awareness
4—Hidden

Loss of Availability
1—Minimal secondary services
interrupted

Noncompliance
0—N/A

Size
9—Anonymous internet user

Intrusion detection
9—Not logged

Loss of accountability
7—Possibly traceable

Privacy violation
0—N/A

Threat agent factor
HIGH

Vulnerability factor
MEDIUM

Technical impact factor
LOW

Business impact factor
LOW

Likelihood factor—MEDIUM Impact factor—LOW

Overall risk severity—LOW

Case Study: Threat Model | 199

DDoS protection addresses to some extent the vulnerability factor, but mainly the
technical and business impact factors, leaving the organization at low risk, as illustra‐
ted in Figure 6-17.

Figure 6-17. Case study risk matrix

We can now also add this risk into the risk register in Figure 6-18 where we docu‐
ment the original inherent risk as well as the controls that reduce the initial risk to
the residual risk. In our example the residual risk is below the acceptable risk line
and therefore acceptable to the organization. So we have achieved the objective of
reducing the risk of a DDoS attack to an acceptable level by introducing preventive,
detective, and corrective controls.

Figure 6-18. Case study risk register

In the following checklist, we’ve collected the key considerations that should help you
develop a high-quality threat model.

200 | Chapter 6: Application Security

Threat Model QA Checklist
• It’s easy to identify the functional assets in a system. Also identify the metadata,•

logs, etc., which can contain data fragments of your functional assets.
• There are various methods available to identify threats. If you don’t know where•

to start, use the OWASP Top 10 and try STRIDE. Make sure you don’t overdo
the threat model; you can easily lose yourself in detail. Start with a high-level
view of key use cases and iterate through the different levels of detail over time,
depending on the location of the critical assets.

• Verify that you have defined controls for all the threats you identified.•
• Make sure that the identified controls reduce the likelihood and/or impact of the•

associated risk in the intended direction. If a control has no impact on either
likelihood or impact, it basically has no effect at all.

Let’s summarize what we went through in this chapter.

Summary
With the conclusion of this chapter, we’ve complemented security controls coming
from external and internal regulations, policies, and standards with threat- and risk-
based security controls that we developed after analyzing the functional layer of our
system. The threat model is essential to this analysis.

In order to develop the threat model, we discussed how we can compose or de-
compose the functionality of the system with components in a component archi‐
tecture and how different forms of component architecture diagrams can help to
visualize static and dynamic views of the architecture.

We then discussed how we can develop a threat model using various techniques with
the purpose of identifying those security controls that reduce the organization’s risk.

A key thing to remember is that the threat model not only defines preventive controls
but also detective and corrective controls. We will discuss in Chapter 11 how we
use those controls as input to threat detection use cases for continuous security
monitoring.

Remember, the threat model is a living artifact where you will need to update the
initial version with every change or modification to the system, be it a functionally or
non-functionally related change or modification.

While this chapter focused on the functional layer of the system, in Chapter 7, we’re
taking the first step toward a deployable architecture by discussing important aspects
that come with a hybrid cloud strategy.

Summary | 201

Exercises
1. Which of the following are objectives of documenting component architecture?1.

Select all that apply.
a. Provide detailed specifications of the components of the solution, such asa.

product names, versions, and IP addresses
b. Decompose the solution into functional building blocksb.
c. Provide an abstraction of the system architecture, omitting many of the com‐c.

plexities
d. Illustrate non-functional properties of the solution architectured.

2. When is the threat modeling process complete? Select all that apply.2.
a. Threat modeling should be done in iterations, increasing the level of detaila.

with each iteration.
b. After a one-hour workshop with relevant stakeholders.b.
c. It’s never complete.c.
d. When the last element of the spoofing, tampering, repudiation, informationd.

disclosure, denial of service, and elevation of privilege (STRIDE) model is
completed.

3. What are the key outcomes of a developed threat model? Select all that apply.3.
a. Security controls which mitigate identified threatsa.
b. A solution architecture without vulnerabilitiesb.
c. Security controls which reduce the risk to the organizationc.
d. Input to threat detection use casesd.

4. When do you need to develop or update a threat model? Select all that apply.4.
a. When you change one line of code.a.
b. When the solution architecture is initially developed.b.
c. Every time there is a significant change to the solution.c.
d. Before the solution goes into production.d.

202 | Chapter 6: Application Security

5. How do you justify the importance of identified security controls?5.
a. Security controls are important by default.a.
b. Complete a risk assessment to identify those security controls that reduce theb.

risk to an acceptable level.
c. Security controls that address risks with a very high impact have the highestc.

importance.
d. Critical security risks must be addressed first.d.

6. How do you identify controls at the most relevant places in the solution6.
architecture?
a. Every component requires at least one security control.a.
b. Every component which stores data requires security controls.b.
c. Follow the data flows through the system and assess every trust boundary forc.

threats, identifying relevant controls.
d. Focus on those components with an incoming connection.d.

Exercises | 203

CHAPTER 7

Shared Responsibilities

In the past, an application or workload might have resided on just one or two
technology platforms. The data might have resided in a relational database on a
mainframe and the application server on a mid-range server. With the move to a
hybrid cloud strategy by many organizations, the complexity has increased with the
freedom to use on-premises, many different cloud providers, cloud service models,
technology platforms, and cloud native compute options.

The simplified perimeter view with a hard boundary depicted in the system context
diagram in Figure 5-6 from Chapter 5 is no longer enough. When using zero trust
principles, there is no security boundary due to the removal of internal implicit
trust, and identity becomes the new perimeter. With the workload hosted on many
different technology platforms, we need a way of visually describing these different
platforms that makes it easy to discuss and communicate the different options.

Each technology platform can have a different set of shared responsibilities in a
hybrid cloud environment. The organization handling the data retains accountabil‐
ity even though the cloud service providers have the responsibility for securing
the platform. Without a clear set of responsibilities, there won’t be an owner
to provide security to the cloud platform. We need a clear way of representing
these shared responsibilities that enables decomposition down to detailed roles and
responsibilities.

Each platform also has different security policies and practices that apply, making it
complex to ensure security and compliance for the different platforms. The added
complexity also makes it more difficult to architect security to secure sensitive work‐
loads. We need a systematic way of analyzing the security controls that apply.

Before we discuss the approach to describing shared responsibilities, it’s important
to understand the different cloud computing terminology to effectively use the

205

techniques and artifacts described in this chapter. We therefore start by reviewing
cloud computing benefits, cloud service models, cloud computing platforms, shared
responsibilities, landing zones, and hybrid cloud. It also shows how the role of an
architect has changed with the many new challenges.

The second part of the chapter delves into techniques and shared responsibility
artifacts to describe technology platforms, shared responsibilities, and landing zones.
The artifacts help facilitate conversations about ownership of security in a hybrid
cloud environment where there are multiple landing zones and platforms.

You can use the techniques discussed in this chapter when you build a new applica‐
tion or migrate an existing application to the cloud. In both cases, they enable a
common understanding of the proposed compute platforms, the ownership of the
shared responsibilities, and the security policies that apply to each layer of a compute
platform. Let’s continue by reviewing the artifacts we’re working with in this chapter.

Chapter Artifacts
This chapter’s main goal is to define a systematic way of defining shared responsibili‐
ties, including security, for a hybrid cloud infrastructure.

Figure 7-1 highlights, with white text in a black shaded box, the shared responsibility
diagram artifact and many artifacts from the enterprise context used in the discussion
within this chapter. The large number of enterprise context artifacts shows there will
be a collection of information from a wide range of internal and external sources.

Enterprise Context

As a reminder, to help reinforce learning, the case study in Appen‐
dix A has information about the enterprise context for the worked
examples in this chapter.

We’re going to start with essential cloud computing concepts that will enable a
discussion of the shared responsibility diagram and techniques later in the chapter.

206 | Chapter 7: Shared Responsibilities

Figure 7-1. Shared responsibilities chapter artifacts

Chapter Artifacts | 207

Cloud Computing Concepts
This chapter discusses the need to document the shared responsibilities for the
workloads or applications running in a hybrid cloud environment. Before we do that,
it’s important to be clear on the cloud computing terminology that will form the basis
of the shared responsibility model discussed later in the chapter.

The following sections contain a discussion of key cloud concepts:

• Cloud Computing Benefits•
• Cloud Service Models•
• Cloud Computing Platforms•
• Cloud Security Responsibilities•
• Landing Zones•
• Hybrid Cloud Architecture•
• Using the Hybrid Cloud Architecture Diagram•

Cloud Computing Resources

The description of concepts that follow are brief. If this is your
first time working with cloud concepts, I suggest you read Cloud
Computing: Concepts, Technology, Security and Architecture (Pear‐
son) by Thomas Erl and Eric Barcelo Monroy for a more in-depth
description.

The sections will help provide a foundation for the discussion on describing shared
responsibilities.

Cloud Computing Benefits
In the past, many organizations built a computing capability with servers, local
storage, and networking in data centers to provide infrastructure for applications
and workloads. However, this infrastructure involved the purchase of underutilized
hardware and didn’t offer the rapid elasticity needed for their business workloads.

Cloud computing started with the delivery of computing services via the internet,
which enabled users to remotely access and use compute, network, storage, and cloud
services. Many organizations have adopted this approach to hosting applications as it
offers many benefits, including:

208 | Chapter 7: Shared Responsibilities

https://oreil.ly/GE4ii
https://oreil.ly/GE4ii

On-demand self-service
Provisioning of cloud resources happens on-demand via a console, command-
line interface, or APIs. There is no need to purchase hardware or software
because it’s included in the cloud service fees.

With on-demand services, architects need to think more about the provision
of virtual services, the different processing models available, and the need to
automate the deployment of services through infrastructure as code (IaC).

Rapid elasticity
Rapid provisioning of compute, storage, and networking resources for workloads
comes from a pool of cloud resources. It enables businesses to support peak
events like Black Friday sales.

For an architect, the design of a cloud platform with rapid elasticity needs to
optimize the use of resources by scaling up and down rapidly and efficiently. This
means they need to understand the processing models and automation, such as
infrastructure as code (IaC) that enable this elasticity.

Consumption-based pricing
Costs are only incurred for the resources used, as opposed to all the resources
in a traditional data center. For workloads that make use of rapid elasticity and
shared resources, this can result in lower overall costs. However, if you commit
large amounts of compute and storage resources over extended periods, an
on-premises platform may be more cost-effective.

For an architect, this becomes a critical quality attribute requiring an awareness
of the operational capabilities of the cloud services that may influence the archi‐
tecture. The cost of securing the services, monitoring performance, planning for
capacity, and tracking costs will be a core part of any cloud computing solution
for an architect.

Resource pooling
The sharing of the cloud platform’s resources is among many consumers, allow‐
ing for pooling of resources and lower costs.

For an architect, they need to be aware of the risks of using shared resources and
balance the benefits with operational risks. Often, there are varying options to
use dedicated resources that reduce this risk and give the user more control over
security and compliance. Shared services may require additional controls, such as
encryption of sensitive data.

Resiliency
The use of three availability zones within a region and multiple regions provides
levels of resilience that traditional pairs of data centers with disaster recovery

Cloud Computing Concepts | 209

models don’t. Three availability zones enable the deployment of 150% of capacity
instead of using the 200% capacity model in a dual data center model.

For an architect, this new data center model requires the architecting (or re-
architecting) of workloads for high availability, fault tolerance, disaster recovery,
and cyber recovery.

Security
The use of security built in to the cloud platform and cloud has enabled the
deployment of a more robust set of controls to protect workloads. It also includes
a broader set of controls in the platform’s ongoing operations.

For an architect, the increased risk from using shared services has placed a greater
focus on adopting best practices for security design and implementation. Security
services must meet the resilience levels of the workloads they support. Organizations
and regulators are looking for greater control transparency and compliance levels
through assurance activities.

Architect Responsibility

We’ve used the term “architect” rather than “security architect”
when describing the advantages and the impact on architectural
thinking. The lead architect for the solution is responsible for
security; it’s not “someone else’s problem.” Unless they’re the lead
architect for a security service, a security architect’s role is to assist
in designing the security controls (or security application).

Cloud Service Models
Cloud platforms can remove many of the responsibilities of operating a traditional
on-premises data center. The shared responsibilities vary depending on the service
model:

Infrastructure as a service (IaaS)
IaaS offers cloud services for infrastructure components, including compute, net‐
working, and storage capabilities. Dedicated physical devices or virtual instances
running on shared resources may offer these capabilities.

These capabilities form the foundation of all cloud services, leaving the consumer
to provision and operate all other capabilities running on the cloud infrastruc‐
ture. These responsibilities include provisioning the operating systems, setting up
the different environments to develop, test, and run an application, and securing
all workloads.

210 | Chapter 7: Shared Responsibilities

Platform as a service (PaaS)
PaaS builds on the infrastructure by running services operated and secured
by the cloud service provider. These services include middleware and database
capabilities, eliminating the need for a consumer to hire specialists to run this
software. It also includes packaged environments that enable the development,
testing, and lifecycle management of applications.

With PaaS, the cloud service provider manages a large portion of the provision‐
ing, operation, and security of a service, while the consumer performs the config‐
uration. While it eliminates a significant portion of security responsibilities for
the consumer, it does not eliminate them entirely.

Software as a service (SaaS)
SaaS provides a fully managed application that integrates individual cloud serv‐
ices without exposing them to the consumer. The consumer does not need to
understand the implementation details, but they will still have some responsibil‐
ity for configuring the application’s security.

Figure 7-2 depicts the responsibilities for the cloud service models through a series
of functional layers, shaded to indicate the respective responsibilities. In our example,
the cloud service provider owns the layers with light shading and black text, while the
consumer owns the layers with dark shading and white text.

Figure 7-2. Cloud shared responsibility model

Cloud Computing Concepts | 211

In some cases, there is a sharing of responsibilities, such as security, in the PaaS
service model. It’s important to note that responsibilities can change based on the
technology in use. For instance, the cloud service provider fully manages the virtual
private cloud (VPC) architecture in the IaaS-virtual service model, requiring signifi‐
cantly less support from the consumer. However, the IaaS-bare metal service using
OpenStack requires the consumer to operate the OpenStack software provisioned by
the cloud service provider.

Cloud Computing Platforms
We discussed a high-level model for cloud services, but we can further decompose
it into different cloud computing platforms. A cloud platform is a type of cloud
computing service that offers programmers the infrastructure and tools they need
to create, launch, and manage cloud-based applications. In addition to tools for
developing, deploying, and managing applications, a cloud platform typically offers
services like computing, storage, databases, networking, security, and safety.

The cloud computing platforms that a cloud service provider often includes are:

Bare metal servers
Bare metal servers provide dedicated hardware resources to a single user or
customer, combining the flexibility and scalability of cloud computing while
providing the performance and security benefits of dedicated hardware. Organi‐
zations can remotely provision, monitor, and manage their bare metal servers
using cloud-based tools and APIs.

They’re employed in sectors with stringent regulatory or compliance standards,
such as finance or healthcare, where security requires dedicated physical hard‐
ware. Applications requiring high-performance computing or specialized hard‐
ware, like big data analytics, AI, and research, can use the bare metal servers.

Bare metal servers are part of an IaaS cloud service.

Virtual server platform
Virtual server platforms are software environments that partition a physical
server into isolated virtual environments that cloud platform users can share,
enabling businesses to consolidate their IT infrastructure and optimize resource
use.

The virtual environments provide server, network, and storage virtualization and
can be rapidly provisioned using a cloud-based console, command-line interface,
or APIs. Since the virtual resources can be rapidly provisioned, moved, and
scaled up or down as needed, they offer flexibility, scalability, and agility.

212 | Chapter 7: Shared Responsibilities

The server virtualization technologies for virtual server platforms include
VMware, Microsoft Hyper-V, Kernel-based Virtual Machine (KVM), and Citrix
XenServer. The needs and requirements of the organization define the choice of
technology, with each technology having its own set of features, capabilities, and
management tools. Cloud service providers use these different technologies to
provide their virtual server platforms.

A virtual server platform is part of an IaaS cloud service.

Container platform
A container platform provides tools and services to create, deploy, scale, and
manage containerized applications. Developers can package applications with
their dependencies into portable, lightweight units that can operate consistently
across various environments using containers, a type of workload virtualization.

Container platforms usually come with a container orchestration system like
Kubernetes that makes it easy to deploy, scale, and manage containers. Container
platforms may also have extra features like automated builds, CI/CD pipelines,
container image registries, monitoring and logging tools, and security and com‐
pliance controls.

Popular container platforms include Kubernetes, Docker Swarm, Red Hat Open‐
Shift (which includes Kubernetes), Amazon Elastic Container Service (ECS),
Amazon Elastic Kubernetes Service (EKS), IBM Cloud Kubernetes Service (IKS),
and Google Kubernetes Engine (GKE).

A container platform is a PaaS cloud service.

Serverless platform
Serverless platforms are cloud computing platforms where programmers create
and deploy functions or applications as compact, independent units of code
in response to particular events. Developers can concentrate on writing and
deploying code without having to worry about managing servers or infrastruc‐
ture because the cloud provider manages the infrastructure and automatically
allocates and provisions compute resources as needed.

As a result, they’re frequently more cost-effective than traditional server-based
computing or a container platform. Cloud service providers typically charge for
the actual execution time of a function or application component.

AWS Lambda, Azure Functions, IBM Code Engine, Red Hat OpenShift Server‐
less, and Google Cloud Functions are a few examples of well-known serverless
platforms.

A serverless platform is a PaaS cloud service.

Cloud Computing Concepts | 213

Understanding the cloud computing platforms used is important, as applications
often host across these different platforms. Each has different characteristics that
result in different architectural decisions for an architect and shared responsibilities
for security.

Cloud Security Responsibilities
On cloud platforms, who is responsible for security depends on how much help the
cloud service provider provides as a part of the service. As we’ve already discussed,
cloud computing platforms offer different levels of service depending on their capa‐
bilities. This is particularly true for security capabilities, as shown in Figure 7-3.

At the low end of security support, the security of a bare metal server is mainly in
the hands of the consumer of the cloud service. Whereas, with a serverless platform,
much of the security is in the hands of the cloud service provider.

Figure 7-3. Security responsibility continuum

Even with SaaS applications, there is still security administration needed to configure
the platform to meet the requirements of the organization. For this reason, we suggest
you describe the running of the cloud platform as “security operations” and the
maintenance of the configuration as “security administration.” A discussion of the
cloud shared responsibility model is later in the chapter.

Landing Zones
A cloud computing platform gives you the building blocks and tools you need to
create and deploy applications, but it still needs more work before it can host produc‐
tion workloads. A landing zone, sometimes called a cloud foundation, is a collection
of best practices, guidelines, and automation used to design, deploy, and administer a
well-architected and secure cloud environment. Effectively, it’s a package of different
design elements for accelerating and ensuring consistent use of cloud resources.

The package enables an organization to use the cloud platforms and resources consis‐
tently. This serves as the foundation for cloud governance and management. The
package can contain the following elements:

214 | Chapter 7: Shared Responsibilities

Principles
Principles guide the decision-making process for the deployment of the solution
to a landing zone. They cover topics like resilience, performance, reliability, sus‐
tainability, operations, security, and compliance. We discuss principles in depth
in Chapter 3.

Policies
Policies define the rules that an organization follows. This isn’t just security
and compliance; it might also include other topics that impact the delivery of
workloads on the cloud, including social media, data privacy, and marketing.

Practices
Practices suggest the most effective and proven approach to architecting, build‐
ing, and operating a cloud environment. They cover topics like resilience, perfor‐
mance, reliability, sustainability, operations, security, and compliance.

Processes and procedures
Processes and processes ensure consistency of operations across an organization.
Definitions of processes are at the level of an organization, with procedures
defining and implementing the processes customized for a specific environment.
Further detail on processes, procedures, and work instructions is in Chapter 11.

Enterprise pattern
An enterprise pattern describes organization of the cloud for an enterprise with
many different lines of business, workloads, and projects. The topics include
cloud account management, identity and access management, network hubs and
spokes, scalability guidelines, and resilience guidelines. This guidance enables an
organization to support thousands of applications within the cloud.

Architecture patterns
An architecture pattern is a best practice for the construction of types of work‐
loads or single workloads of a particular type. Cloud service providers often
offer their own libraries of architecture patterns that organizations should cus‐
tomize and publish internally for their own use to ensure consistency. They
cover specific architectures such as event-driven applications or specific industry
solutions.

Practical Cloud Security (O’Reilly) by Chris Dotson and Hybrid Cloud Security
Patterns (Packt Publishing) by Sreekanth Iyer offer example security patterns for
adoption by an organization.

Resiliency patterns
To deliver the desired resiliency for workloads, resiliency patterns show how to
achieve the required service levels. They’re critical to ensuring the continued
availability of security services that will need to meet high levels of resilience.

Cloud Computing Concepts | 215

https://oreil.ly/-iqvp
https://oreil.ly/Id9yQ
https://oreil.ly/Id9yQ

Cloud service providers and solution providers offer recommended patterns for
an organization to follow to achieve high levels of resilience.

Deployment automation
It’s good to have documented architectures and practices to follow, but it’s even
better if these architectures have automation to deploy them. Cloud service pro‐
viders are now providing customizable automation to enable rapid deployment
of different architectures aligned to best practices. Deployment automation uses
IaC including solutions such as Jenkins, Tekton, and Terraform for building
deployment pipelines.

Together, a landing zone for a cloud computing platform makes up a cloud solution.
A landing zone can help make sure that cloud deployments are safe, legal, and
well-architected.

Cloud service providers, including AWS, Azure, Google Cloud, and IBM Cloud, offer
their own perspective on good architectural thinking practices in a well-architected
framework.

Hybrid Cloud Architecture
A hybrid cloud architecture unifies on-premises data centers with multiple public
and private cloud environments into a single integrated cloud infrastructure. In
this model, businesses can combine cloud platforms from multiple public cloud
providers with their own internal private cloud infrastructure to meet their specific
requirements. For simplicity, we will refer ongoing to hybrid cloud, but this will also
imply the use of a multicloud architecture.

The main goal of a hybrid cloud strategy is to give you the freedom to use the
best computing environment for each workload, cut costs, and take advantage of the
unique features and capabilities of each cloud platform. To take advantage of public
cloud scalability and cost-effectiveness, an organization might decide to use a public
cloud platform for some workloads while using a private cloud environment in an
on-premises data center for sensitive data that needs stronger levels of security and
compliance.

216 | Chapter 7: Shared Responsibilities

https://www.jenkins.io
https://tekton.dev
https://www.terraform.io
https://oreil.ly/xCDGJ
https://oreil.ly/mkWLL
https://oreil.ly/YS0rj
https://oreil.ly/paALD

1 Others argue that using the full cloud native capabilities provided by a CSP is a better approach to getting the
greatest value, even if it is a proprietary platform.

Public Cloud, Lower Cost?

Using a public cloud platform to host workloads doesn’t always
lower costs; it may work better for use cases where workloads
need to be flexible enough to handle burst workloads or for
the deployment of temporary testing infrastructures. Other work‐
loads may benefit from specialized on-premises infrastructure or
a co-location data center with data that can’t use a public cloud
infrastructure.
Conversely, an on-premises private cloud environment may not
have stronger security because the organization doesn’t have the
necessary skills to support security operations that run 24×7×365.
This could make the public cloud a better choice.

In a hybrid cloud environment, deployment and management across the different
IaaS and PaaS platforms often take place. Using a single common cloud computing
platform, like Red Hat OpenShift for container workloads or VMware for virtual
servers, can make it easier to move workloads between different cloud service
providers.

The diagram in Figure 7-4 shows multiple cloud platforms that are both on-premises
and in two public cloud service providers, each containing two cloud platforms.
Red Hat OpenShift promotes the idea of a common cloud platform that supports
workload portability across public and private clouds.1

Figure 7-4. Hybrid cloud architecture diagram

Cloud Computing Concepts | 217

https://oreil.ly/yanZY
https://www.vmware.com

The on-premises data center may continue hosting an application on IBM z/OS
because it’s not easy to migrate the workload off that platform. It may be the better
location anyway, as the platform has significantly better resilience and may be more
cost-effective as well.

We’ve included Office 365 and Salesforce on the right, as they can integrate into the
workloads running on the public and private cloud.

This flexibility provides many benefits, but maintaining a hybrid cloud environment,
on the other hand, can be more difficult and requiring specialized skills and experi‐
ence. Balancing the added complexity is necessary when considering the benefits of a
hybrid cloud strategy.

An architect must carefully plan to build and operate landing zones to ensure a
hybrid cloud strategy is secure, compliant, and cost-effective for organizations. Each
of these landing zones is likely to have a different set of shared responsibilities.

Using the Hybrid Cloud Architecture Diagram
Once you create the system context diagram, you should define the hybrid cloud
architecture diagram in Figure 7-4, based on the information you have so far. Addi‐
tional requirements and constraints influence the development of the diagram.

Often, when we start the architectural thinking process, we know the computing
platforms because the application owner has a predefined architecture. In this case,
it’s useful to validate what’s known in terms of the architecture layers and the respon‐
sibilities, as this may change the architected solution. For example, VMware vSphere
requires a different set of operational skills than a cloud native virtual private cloud
platform. If you are working on a cloud platform, the database provided as a PaaS
service may be a specific technology or version, introducing constraints on the target
architecture.

If it’s a new application, starting to document the target architecture will enable
agreement on the target computing platforms and define the environmental con‐
straints the application will have to handle. For example, if we identify that we’ll be
using a cloud Multi-Zone Region (MZR), we now know the low-latency synchronous
disk replication we can use on premises won’t be available in the cloud, and this may
change the characteristics of the application.

218 | Chapter 7: Shared Responsibilities

Think Operations from the Beginning

An organization was having a discussion about modernizing an
application for hosting on a public cloud infrastructure. The solu‐
tion architecture was complete, including the operational tooling
needed for ongoing operations of the application. At this point,
they decided to look at who would be performing the system inte‐
gration and running the operations.
Has this happened to you? A rearchitected solution resulted as
the shared responsibilities changed for the operations team. The
operational tooling selected for operations wasn’t supported by the
organization providing the operations service. Drive early discus‐
sions using the shared responsibility diagram.

We now move on to a discussion of how to describe the shared responsibilities
between the cloud service provider and the cloud consumer for each of the platforms
described in the hybrid cloud architecture model.

Shared Responsibilities Model
The ideas we’ve talked about so far are the foundation for describing how each
computing platform shares responsibilities. Each layer of a computing platform has
its own set of shared responsibilities and has a different set of layers depending on the
technology.

Describing shared responsibilities is important when creating a solution architecture
as it helps to identify and allocate responsibilities for different aspects of the system to
the various parties involved in its development, deployment, and maintenance. This
includes not just technical responsibilities, but also non-technical responsibilities
related to compliance, risk management, and other business considerations.

By discussing and documenting these shared responsibilities, it ensures that all par‐
ties understand their roles and obligations, and it reduces the risk of gaps or overlaps
in responsibility that could lead to confusion or errors. This is especially important
in complex systems, such as hybrid cloud, involving many platforms with multiple
stakeholders that change over the lifecycle of the system.

So how can we clearly describe shared responsibilities for hybrid cloud?

Shared Responsibilities Model | 219

Shared Responsibilities Stack Diagram
Let’s start by applying the concepts in Figures 7-2 and 7-4 by creating what we will
call a shared responsibilities stack diagram in Figure 7-5.

We will talk through the concepts and the techniques needed to develop this style of
diagram. On the left the layers are labeled and we will start to describe them starting
from the bottom:

Location
This shows where the primary, secondary, and disaster recovery (DR) locations
are for both on-premises and cloud locations. In this diagram, there are just
primary and secondary locations for the two on-premises data centers.

When a workload migrates to the cloud, you can upgrade the resiliency to sup‐
port three availability zones within a Multi-Zone Region (MZR) and designate a
second MZR as a DR location.

This brings new benefits in terms of resilience, but to deliver that, there is a
new challenge with the distance between locations, as they introduce latency and
bandwidth constraints for network communication that can have an impact on
security services.

Name of platform
Different kinds of computing platforms use different kinds of technology and
have different capabilities to handle different workloads. The name highlights
the different platforms. All the blocks above this row in the diagram are services
hosted on or in support of the named technology platform.

Physical location
Definition of shared responsibilities starts with the physical location. They’re
normally either on-premises data centers or cloud data centers.

The appropriate organization is responsible for operating the physical security
of on-premises data centers in accordance with its security requirements. A
co-location data center provider or an outsourcer may sometimes manage this on
behalf of the organization.

With the cloud data centers, they will follow the security requirements of the
cloud service provider. The CSP won’t normally allow physical access to a cloud
data center to protect all clients. The rationale being that if they let one client in,
they would have to let hundreds of clients in to review physical security, resulting
in additional risk and cost to every client.

220 | Chapter 7: Shared Responsibilities

Figure 7-5. Hybrid cloud shared responsibilities stack diagram

Shared Responsibilities Model | 221

Physical hardware
These are the physical compute, storage, networking, and hardware security
modules (HSMs) used to support the delivery of the virtual services running on
top. The CSP is responsible for providing the hardware in the cloud, while the
organization owning the workload provides it for an on-premises location.

Compressed Diagram

You could draw a compressed version of Figure 7-5. We separated
out the built-in cloud services and the built-on capabilities into
two layers to highlight the difference in responsibilities. If you have
access to color to show the differences, you can compress and
overlap the built-in services and built-on capabilities.

Foundation services
The cloud service provider needs a set of foundational services for the cloud’s
operation, including account management and identity and access management.
All cloud services use these services to control the delivery of the services
through APIs, a CLI, and a web-based console.

Built-in cloud services
The CSP runs these built-in cloud services on the physical hardware. It will be
a mix of IaaS capabilities such as network, storage, and compute services. There
will also be PaaS capabilities, such as databases, messaging, and security services.

With all these services, the CSP provides the service operations with an interface
to configure and administer the services through an API, CLI, and console. The
online documentation of the cloud provider will document the details of the
separation between cloud operations and the administrator of the service.

Built-on capabilities
These are capabilities built on to physical and virtual services. The built-in cloud
services host this in the cloud, while the physical hardware hosts this on prem‐
ises. The organization responsible for delivering the workloads installs, operates,
and administers these built-on capabilities.

Application components
These are the different components of an application. One or more platforms
host the application components.

222 | Chapter 7: Shared Responsibilities

Considering different sets of responsibilities enables us to separate and consider the
shared responsibilities of each compute platform. The responsibilities for running
VMware vSphere on bare metal are very different from those for running Red Hat
OpenShift on a virtual private cloud.

Each of the computing platforms may be further decomposed into separate comput‐
ing platforms based on the configuration, software versions, or operational teams
supporting the services or capabilities. For example, Red Hat OpenShift 3.11 may
serve as the foundation for the first generation of a Kubernetes platform, while Red
Hat OpenShift 4.10 with different DevSecOps operations teams may serve as the
foundation for the second generation. Or perhaps a team hosted one version on bare
metal and another team hosted the second version on a virtual private cloud.

So how does this impact the security policy that applies? All services in on-premises
locations shown on the right of Figure 7-5 are normally the responsibility of the
organization owning the workloads and will operate according to the policies and
practices of that organization. Sometimes, they may outsource or outtask the services
to an outsourcing or professional services organization to operate.

With the cloud services on the left side of the diagram, the cloud service provider and
the organization responsible for the application workload will share responsibilities.
The CSP has sole ownership of the responsibilities at the bottom of the diagram, and
as you move up, you start to share those responsibilities with other parties until the
organization in charge of the workloads has full ownership.

Diagrams are a useful tool to discuss shared responsibilities, but they don’t have
sufficient detail. We will go on to discuss using tables to delve deeper into the shared
responsibilities.

Cloud Service Provider Responsibilities
Once you know the layers of the target computing platform, you can further describe
the shared responsibilities of the CSP and the consumer of the cloud services. Fig‐
ure 7-6 shows a table describing the level of service delivered at each layer.

Shared Responsibilities Model | 223

Figure 7-6. CSP shared responsibilities table

The table shows the proportion of responsibilities that the CSP fulfills, resulting in
the consumer having the rest of the responsibilities. We created our own definitions,
which you may wish to change to meet your needs, and they are as follows:

Install
The responsibility is simply the installation of the capability, and all other
responsibilities reside with the consumer. In the CSP shared responsibilities
table, installation of the OpenStack software is with minimal configuration and
all other operations are down to the consumer.

224 | Chapter 7: Shared Responsibilities

Install and operate
The responsibility is both the installation and underlying operation of the ser‐
vice, with ongoing administration down to the consumer. In the CSP shared
responsibilities table, the CSP will install and operate the VPC networking,
but the configuration and ongoing administration are the responsibility of the
consumer. This is typical of most cloud services.

Physical install and operate
The CSP performs the installation and operation of the physical hardware, but
the consumer still has some control over the hardware. This includes bare metal
servers.

Full service
This is for components that are completely hidden from the consumers and they
have no control over the service.

It’s clear that the consumer of cloud services still has a significant amount of work
to perform. For the OpenStack on VPC bare metal platform, the CSP offers bare
metal servers (physical hosts) for the service consumer to configure. The OpenStack
infrastructure may have an initial automated deployment, and from then on, the CSP
hands over the operation to the user of the cloud services.

You may also wish to allocate responsibilities to more than one team. We continue
discussing how to do that.

Cloud User Responsibilities
The consumer of the cloud service requires a breakdown of the shared responsibili‐
ties. There may be multiple teams involved in the delivery, and the responsibilities
may change during the route to live (design, delivery, and run) for the delivery of the
application workload. In Figure 7-7, there is a table showing responsibilities as they
change for just the OpenStack on bare metal platform.

We’ve split the responsibilities into two categories using the terms “operations” and
“administration.” Operations is what the CSP configures or administers through its
own operations teams. For example, a cloud service provider provides the ability to
configure the security of the VPC network through the operations teams.

We then assigned responsibilities to the system integrator’s team that designed and
built the solution, followed by the outsourced operation teams that took over for
the operation of the solution. In this example, both the systems integrator’s adminis‐
tration team and the outsourced operation teams can configure the VPC network.
There will need to be processes to govern the configuration to ensure control of the
changes.

Shared Responsibilities Model | 225

Figure 7-7. Route-to-live shared responsibilities table

226 | Chapter 7: Shared Responsibilities

The system integrator team performs the design and build, and the system operations
team performs the system run, as shown in Figure 7-7 through the shaded cells in the
table. These teams may be two different teams within the user’s organization or two
different third-party organizations.

Figures 7-6 and 7-7 split out a single layer in Figure 7-5 into separate layers of
security services, database, and messaging/streaming. The layers suggested in the
diagrams and tables are examples, and you are likely to come up with a different set
of layers after discussions within your own team.

Figure 7-7 shows responsibilities for one platform, and it requires a table for each
computing platform, both on cloud and on premises. For example, replace “Design,”
“Build,” and “Run” with cloud platforms from Figure 7-6.

But how does this inform what security policy applies? Let’s continue with a discus‐
sion on that.

Cloud Security Policy Responsibility
The consumer who uses the service is accountable for the security of the data, no
matter where it’s stored—on premises or in the public cloud. However, the cloud
service provider is responsible for the security of the cloud platform “below the line”
from the users of the service. In other words, the security controls hidden from the
consumer of the cloud will use the policies and practices of the CSP to secure the
cloud platform.

The user of the cloud needs assurance about the effective implementation of the
security controls. CSPs provide a commitment to protecting users’ data, perform their
own compliance activities, and then engage organizations to perform independent
reviews and audits.

Often, people who use cloud services will map their control framework to the services
and controls that the CSP provides. The CSP doesn’t deliver everything in the control
framework, and the consumer of the cloud platform may need to build additional
security capabilities to run, either on the cloud or on premises, to fill those control
gaps. There may be the option to integrate third-party services provided as a SaaS
offering by other suppliers.

The CSP exposes some security controls to enable the user of the cloud service to
configure the cloud service to meet their specific needs. This is the administrative
role that the cloud consumer needs to perform using the API, CLI, or web console.

Any security measures that don’t fall “below the line” must adhere to the application
workload owner’s security policy. You can delegate the responsibility for providing
these security measures to one or more internal or external suppliers. Even though
those suppliers will have responsibility for the delivery of security, the owner of

Shared Responsibilities Model | 227

the application workload will still have the accountability to ensure the delivery of
controls.

Have you seen a news headline where a specific cloud provider
exposed object storage to the public internet? By default, nobody
has access to object storage. It’s not the cloud provider who
exposed the object storage but the organization that set the storage
to be public. Increasingly, cloud providers are having to add layers
of controls to prevent and detect these mistakes.

You may need to set up additional agreements to ensure clarity about the security
practices the suppliers need to follow. Use the diagrams and tables discussed in this
chapter in discussions to ensure all parties are clear through documented responsibil‐
ities and agreements. Internally, this may be a document of understanding (DoU) or,
externally, a contract. We discuss the use of a RACI, processes, and procedures to
further define shared responsibilities in Chapter 11.

Let’s continue by applying the techniques to the case study.

Case Study: Shared Responsibility Model
Review the case study in Appendix A and the information provided that can describe
the shared responsibilities. We suggest you start by reading through the text of
the case study and marking in different colors the different platforms you identify.
In “Marked-Up Case Study to Identify Platforms” on page 228, you will see items
marked up in two types of markup. The dashed box is for platform types, and the
solid box is for the different development environments.

Marked-Up Case Study to Identify Platforms
The local authority has hired Clean Air Guildford to design, construct, and manage
a system to charge polluting car drivers to enter the city. Cameras will monitor cars
entering the city to detect the number plate on the car. To enter the city, the car
drivers will need to pay a charge within 48 hours or receive a fine.

The project has already started to build the new hybrid cloud solution, with the
core application hosted using PostgreSQL on a public cloud platform. As a security
architect, you have received a request to urgently develop a security solution for the
system.

The project deployment approach agreed upon between the CIO, Business Sponsors,
and the Project Executive (PE) leading the integration is as follows:

228 | Chapter 7: Shared Responsibilities

• Start with a development environment using Red Hat OpenShift to build a•
cloud native container application using DevOps practices on a public cloud
platform.

• Then build a full route to live with preproduction and production environ‐•
ments in the public cloud.

• With the Clean Air Application containing:•
— Systems of engagement using Open Liberty running on OpenShift at the—

center

Let’s use the marked-up case study to document the components of the shared
responsibilities, starting with PaaS services.

Identifying PaaS Services
Look for the dashed box that identifies the different platform types. The case study
talks about PostgreSQL but is silent as to whether this will be a PaaS service or if it’s
a database run on a virtual server or within a container on the OpenShift platform. If
it’s not run as a PaaS service, it would require Clean Air Guildford to have the skills to
manage the database. One of the key benefits of using cloud is that you don’t need to
have the skills to run a database as a service; the CSP can do that for you. So we will
assume this will be a PaaS service run by the CSP. Additionally, you may notice that
Open Liberty runs on OpenShift, so we assume a container hosts the database.

By reviewing the rest of the case study, we can identify further PaaS services:

• PostgreSQL•
• MongoDB•
• Redis•
• Kafka•
• RabbitMQ•

Now we will move on to identifying SaaS services.

Identifying SaaS Services
Using the architecture overview diagram and description in the case study, we can
further identify integrated SaaS services used by the core application:

• Camera Zone provides the Automatic Number Plate Recognition (ANPR)•
system.

• Clean Air Pay provides the payment infrastructure.•

Case Study: Shared Responsibility Model | 229

• Clean Air Debt provides debt collection.•
• Guildford Service provides the service center.•
• Clean Threats provides threat detection and response services.•

With each of the identified services, Clean Air Guildford will have the opportunity to
negotiate contracts and potentially require additional security controls and assurance
activities, such as an independent third-party audit. There are other services, such
as identity providers and directories, where you have no opportunity to change the
contractual agreements and will have to trust the service provider. Listed following
are these sets of services:

• Microsoft identity provider for customer identification•
• Google identity provider for customer identification•
• Staff LDAP Directory for employee identification•
• Disclosure and Barring Service for employee vetting (note this isn’t on the archi‐•

tecture overview diagram, but it’s contained in the text)

Next, we will return to the core workload and identify the compute platforms.

Identifying the Compute Platforms
We can see that SaaS will provide virtually all components, and the Red Hat Open‐
Shift container platform is the only platform identified within the core Clean Air
Platform system. In more complex solutions, there will be multiple application
components that originate from different sources or suppliers, such as independent
software vendors (ISVs). Identify the dependent technology platforms for each of the
application components.

Then look to optimize the number of platforms used by looking for the sharing
of platform instances. If different components of the application use the same type
of technology platform, look to merge onto the same instance of the platform. For
example, an application of two components using containers could run on the same
instance of Red Hat OpenShift. However, if an ISV is managing an application
component, to enable the ISV to commit to service level agreements (SLAs), a
dedicated instance of Red Hat OpenShift would be a requirement implying a different
security policy may apply. Resilience and scalability requirements may then add to the
solution by requiring multiple instances.

We will need different environments to bring the application to a production service.
Let’s identify the environments in the case study.

230 | Chapter 7: Shared Responsibilities

Identifying Environments
An environment is an instance of a platform used for a specific purpose. For exam‐
ple, environments may include development, testing, preproduction staging, and
production. The environments may have specific security policies applied to them.
For example, development and test environments must not contain production data
that may contain sensitive personal information. Also, administrators with access to
production data must not have access to manage development environments.

Let’s look at the case study to see what it tells us. The solid box identifies the different
environments on the route to live. It has specified a preproduction environment
for final integration testing but is silent on testing before that. Therefore, we can
assume there should have been a test environment specified. Therefore, we have four
environments:

• Development•
• Test•
• Preproduction•
• Production•

You will use the list of environments when you get to Chapter 8.

Let’s continue with documenting what we’ve discovered from the case study.

Documenting a Shared Responsibilities Stack Diagram
So how can we draw a shared responsibilities stack diagram to represent this?

In Figure 7-8, we’ve drawn a shared responsibilities model for Clean Air Guildford
based on the information contained in the case study in Appendix A and the
component architecture diagram in Figure 6-16. The CSP’s services are those with
responsibility blocks in light gray shading with black text. The components run by
Clean Air Guildford’s IT operations team are those with dark gray shading and white
text in the responsibility blocks at the top.

You will see we’ve added a stack for the PaaS services from the same cloud service
provider as the compute platform. The dotted line around the left two stacks shows
the scope of the system context diagram.

Case Study: Shared Responsibility Model | 231

Figure 7-8. Case study shared responsibilities stack diagram

Adapt the Format

You will see the formatting of the shared responsibilities stack is
different from Figure 7-5. There is an overall format for these
diagrams, but not all will be the same, as they may need to show
different aspects of shared responsibilities in a diagram. Adapt
the format to meet your needs and best communicate shared
responsibilities.

232 | Chapter 7: Shared Responsibilities

At the top, in lighter gray with white text, are the application subsystems. If you
refer back to Figure 6-16, you will see the component architecture diagram has four
subsystems. The hosting of the application and user interface subsystems is on Red
Hat OpenShift, with the database and integration subsystems as PaaS services.

We didn’t create an individual stack for each PaaS or SaaS service but for each cate‐
gory of services to highlight the type of contractual agreement that will need to be in
place. Each contractual agreement may have a different set of controls and different
ways of demonstrating compliance. For the SaaS services, some are negotiable, and
others are contracts where you must accept the terms and conditions set. Depending
on the provider, you can negotiate the shared responsibilities stack of the Custom
SaaS.

A cloud service provider runs the responsibility blocks in light gray with black
text, and these services require configuration. For example, with PostgreSQL, the
consumer of the service needs to configure the access controls for security and
storage for backup. We’ve therefore added a block for PaaS and SaaS configuration
in the built-on category, as it will need skilled resources provided by Clean Air
Guildford to configure these services, including security.

Management of Cloud Infrastructure

We often speak to teams where they think there is no requirement
for infrastructure operations for cloud computing, and therefore
there is no allocation of skilled and experienced resources to tasks
like network and security configuration. The outcome is that secu‐
rity vulnerabilities result, and so this diagram provides a way of
having a discussion to identify an owner to secure the services.

We’ve made a lot of assumptions because the case study is unclear, and this is typical
of many projects. You start with some unclear specifications, make assumptions, and
then validate them with the other members of the project and stakeholders. Add your
assumptions to a RAID log to ensure you don’t miss validating those assumptions. A
more in-depth discussion of a RAID log is in Chapter 10.

We’ve provided a checklist to help you review the quality of the shared responsibili‐
ties model stage of the architectural thinking process.

Shared Responsibilities QA Checklist
• Determine the proposed cloud computing platforms that the application work‐•

load will use.
• Identify the SaaS platforms used outside of the application to identify the trans‐•

port and storage of sensitive business data.

Case Study: Shared Responsibility Model | 233

• Record the shared responsibilities of the cloud platform, infrastructure manage‐•
ment, security operations, and application management for each identified plat‐
form. This serves as a guide for the security policy that applies to each stack.

• Identify the main application components, the infrastructure platforms, and their•
locations.

• Determine the precise locations each infrastructure platforms will occupy to•
comprehend the connectivity and data locality restrictions that go along with
them. Don’t forget primary, secondary and DR locations.

Let’s continue with a few topics to think about.

Summary
This chapter has talked about three different ways to break down shared responsi‐
bility, but you might think that’s not enough. You would be correct in thinking
that the suggested diagram and tables are just the beginning. We discuss further in
Chapter 11 the follow-on steps to decompose the responsibilities into a detailed set of
responsibilities using a Responsible, Accountable, Consulted, and Informed (RACI)
table for inserting into a contract or document of understanding (DoU).

While many cloud service providers talk about the shared responsibilities of the
cloud, there is little discussion of the shared responsibilities required for the work‐
load that the cloud runs. We’ve seen many projects not deal with shared responsibili‐
ties because it can be a difficult subject to agree on, and others where it’s just ignored.
Don’t avoid agreeing on shared responsibilities.

Documenting shared responsibilities is an iterative process that requires discussions
with many stakeholders and members of the project. The responsibilities will change
over time as the shape of the project changes. Feel comfortable with that change, as
it’s the natural evolution of a project, and you have something documented rather
than incorrect project assumptions that will have a later impact on the security
design.

We now have a defined scope for the system with the system context diagram,
defined the subsystems and components for the workload or application, and doc‐
umented the target platforms for the workload with a high-level draft of shared
responsibilities. It’s now time to discuss the design of the infrastructure security in the
next chapter.

234 | Chapter 7: Shared Responsibilities

Exercises
1. What are seen as key benefits of cloud computing? Select all that apply.1.

a. On-demand self-servicea.
b. Rapid elasticityb.
c. Infrastructure as code (IaC)c.
d. Resource poolingd.

2. True or false: Software as a service (SaaS) doesn’t require the cloud consumer to2.
manage security.
a. Truea.
b. Falseb.

3. What security management responsibilities does a cloud service provider always3.
assume for infrastructure as a service (IaaS), platform as a service (PaaS), and
software as a service (SaaS)? Select all that apply.
a. Storage subsystem securitya.
b. Server operating system securityb.
c. Network device securityc.
d. Data center physical securityd.

4. What elements does a landing zone package contain? Select all that apply.4.
a. An enterprise patterna.
b. Architecture patternsb.
c. Resiliency patternsc.
d. Principlesd.

5. True or false: Public cloud always costs less than using an on-premises data5.
center.
a. Truea.
b. Falseb.

6. True or false: A hybrid cloud architecture includes one or more cloud services6.
and on-premises data centers.
a. Truea.
b. Falseb.

Exercises | 235

7. What characteristics does a hybrid cloud environment have? Select all that apply.7.
a. Varying shared responsibilitiesa.
b. Multiple security operations teamsb.
c. A common security policyc.
d. Built-in security servicesd.

8. True or false: Security services will be provided for the cloud platform, and they8.
need to be administered by the consumer to secure the workloads.
a. Truea.
b. Falseb.

9. How can you ensure that all parties within an organization understand their9.
shared responsibilities? Select all that apply.
a. Define a security policy.a.
b. Define a document of understanding (DoU).b.
c. Draw a shared responsibility diagram or table.c.
d. Define processes and procedures.d.

236 | Chapter 7: Shared Responsibilities

CHAPTER 8

Infrastructure Security

These days, the term “IT infrastructure” has a different meaning than fifteen years
ago. At that time, most of the infrastructure had the goal of running both applications
on physical or virtualized systems hosted in on-premises data centers. In a hybrid
cloud context, the infrastructure is a mixture of on-premises installed systems with
different types of cloud service models using different cloud computing platforms.

Another evolution also took place with industrial control systems (ICS) and opera‐
tional technology (OT), resulting in a tighter integration between the IT and OT
worlds. Together, these different technologies extended the scope of IT infrastructure.

Operational Technology

Operational technology is hardware and software used for moni‐
toring and controlling industrial equipment, assets, processes, and
events. In the past, OT devices weren’t connected to the IT envi‐
ronment but these days the systems monitoring and controlling
these OT devices are integrated with the IT environment. A simi‐
lar situation is taking place with Internet of Things (IoT) devices
connected to the internet. The IoT devices are sometimes part
of an OT environment, sometimes just an extension to the IT
environment (e.g., wearables as an extension to end-user devices).

The logical consequence of these evolutions at the infrastructure level is that security
had to evolve as well to cope with new threats. So, in this chapter, we refer to the
term “infrastructure security” as the sum of all security measures applied to the IT
components under the control of your organization that host functional application
or workload components. That could be, for example, how you should perform
security-relevant configuration on out-of-the-box installations. So even on a SaaS

237

solution, you can configure settings that are important from a security point of view,
but you don’t manage or control the underlying systems or infrastructure.

We will use the term “security architect” throughout the chapter; you might recall that
in Chapter 1 we summed up the possible security architect roles. The types of security
architects needed during the infrastructure design are: a solution security architect, a
product security architect, or a consulting security architect. Depending on the type
of project and its scope, there may be an involvement of all these roles. Hence, we use
the generic term security architect to represent these roles.

In this chapter, we’ll start by giving an overview of a deployment architecture diagram,
its security aspects, and the steps needed to construct it. This design activity isn’t only
about the technical architecture of the solution; it’s also one of the design steps where
you, as a security architect, will use the zero trust principles to drive the outcome
of the design. So to get you going, we’ll explain the zero trust principles, a possible
approach to implementing zero trust, and provide some examples.

An important foundational element of IT and OT architectures is network design,
and it also has a significant impact on security design as it’s still the first layer of
defense for many organizations. Network segmentation still plays a crucial role in the
layer of defense even when the zero trust principles reduce the role of the location
on the network as part of access management. These days, organizations typically
deploy new solutions in a hybrid cloud context, so in addition to the deployment
architecture diagram you will also need a specific cloud architecture diagram.

Chapter Artifacts
You’ll learn through the chapter how to create several artifacts as part of infrastruc‐
ture security design. You will use a deployment architecture diagram to describe the
deployment of the functional components onto compute nodes and services in a
hybrid cloud. As a security architect, you may not be the owner of this artifact, unless
it concerns the design of a security-specific solution. Yet the security architect should
play a highly active role in this design activity, as you must add all the required
security controls to the design. You will have to do this analysis from the network
layer up to the application layer and position the specific security components where
needed. If the solution is a cloud only solution, then a cloud architecture diagram
should be enough.

238 | Chapter 8: Infrastructure Security

Beside these two static views, it could also be useful to document the dynamic
interaction between the solution components. As you learned in Chapter 6 you can
create sequence diagrams and collaboration diagrams to document the interaction
between actors. You could use these types of diagrams both for functional design and
for security design aspects. For example, the authentication process for applications is
often documented within a sequence diagram to show the exact order of the different
steps and the kinds of interactions between the actors.

The artifacts required as input for this design activity are enterprise context, archi‐
tecture patterns, and guiding principles. In a cloud context, common architecture
patterns are available on the websites of the cloud service providers (CSPs). These
best practices will help you build your solution securely. Additionally, your organiza‐
tion could create or update patterns for the selected solution and store these patterns
in a dedicated repository. This continuous improvement also applies to another
important artifact, namely guiding principles. The zero trust principles are part of
the general guiding principles and define the outcome of the design. If there aren’t
any organization-wide guiding principles, then you may need to document guiding
principles for your project and perhaps trigger later an initiative for adoption by your
organization.

Lastly, a document that you will often update during infrastructure security design
is architectural decision records. As a security architect, you’ll have to document each
architectural decision made in relation to the security solution components and
validate them with the stakeholders. You’ll learn more about architectural decisions
in Chapter 9. We’ve highlighted each of the artifacts for this chapter in Figure 8-1.

Chapter Artifacts | 239

Figure 8-1. Infrastructure security chapter artifacts

Let’s move on to discuss some basic concepts for the design of infrastructure security.

Deployment Viewpoint
In Chapter 6, you learned how architects create a component architecture diagram to
identify the functional building blocks of a solution. We explained how you could use
the architecture to perform a first high-level threat modeling exercise. The next step
is to define the technical or infrastructure architecture, during which you will define

240 | Chapter 8: Infrastructure Security

where to deploy each functional component and on which type of node. A node
describes the infrastructure device or cloud service where the functional components
will be hosted. Figure 8-2 shows we’ve progressed to the bottom of our architecture
decomposition.

Figure 8-2. Architecture decomposition—deployment architecture

The deployment architecture activity is the last design step before you can initiate
the solution-building activities. The solution-building activity itself could result in
new additional insights, like not-yet-known technology constraints, that might lead
to an adaptation of the detailed design, including the related security aspects. When
you have completed the deployment architecture activity, you should have sufficient
information to continue with the implementation of the solution. As you progress
through each stage of the architectural thinking process and into implementation,
you will increasingly fill in more detail.

Operational or Deployment Architecture

Different architecture methods use different terms for what we call
a deployment architecture. Some use the term operational model
or architecture but this can get confused with the need for a sol‐
ution that supports the system operations or operational aspect
of the infrastructure. For this reason, we decided to use the term
“deployment architecture,” which describes the action of deploying
functional components onto infrastructure. The term “deployment
diagram” is also used in the C4 model.

Let’s use an example application to bring this stage of architectural thinking to life.

An application has a subsystem that performs the processing of a credit card pay‐
ment. The subsystem contains three functional components to perform the process‐
ing. We now need to decide how to implement these functional components. We
could place the components on the same compute platform or split them across

Deployment Viewpoint | 241

https://oreil.ly/s4BUe

multiple compute platforms. We could decide whether to implement them using
virtual servers, containers, or serverless functions. We say that placing the component
onto the chosen compute infrastructure is “deployment” of the functionality.

We then make further decisions about the location of the compute, storage, and
networking that define the architecture. We do that by thinking about transaction
flows through a set of infrastructure nodes for each of the use cases we identified
in the system context diagram and the components we identified in the component
architecture diagram.

Once we’ve met the functional requirements from the use cases, we can then consider
non-functional requirements such as security, availability, and performance. We will
work through architectural decisions such as the redundancy of the “nodes” and
services we may need to add for security or security operations.

We need a diagram to describe the deployment architecture.

Deployment Architecture
There are different diagrams that we can use to describe a deployment architecture.
Cloud service providers each have their own notation for describing their own cloud
resources. However, we also need a technology-agnostic approach to describing a
hybrid cloud environment where we have on-premises data centers and multiple
cloud providers.

Nodes and Resources

We talked about using the technology-agnostic term “node” to
describe the compute platform. In a cloud context, we refer to
“nodes” as resource instances.

In a hybrid cloud solution, you’ll need the following artifacts:

Deployment architecture diagram (DAD)
This diagram will be part of the infrastructure design document, or detailed
design. You should document the infrastructure elements in an integrated format
that’s cloud-agnostic for both on-premises and cloud environments.

Cloud architecture diagram (CAD)
Cloud service providers have their own specific way to design cloud-based solu‐
tions on their platforms, and so they also have specific infrastructure elements
with a corresponding symbol set. This diagram will define the CSP elements
needed, the placement, the connectivity requirements, and the metadata needed
for the deployment of the cloud components.

242 | Chapter 8: Infrastructure Security

You could draw the deployment architecture diagram first as a logical diagram in a
technology-agnostic way, without sizing specifications. This conceptual diagram has
its purpose in a high-level design document. For the solution’s build and deployment,
you’ll need a more detailed design with the specified technology and key sizing
attributes. Such a diagram and related configuration data are part of the detailed
design document.

Let’s continue by discussing a deployment architecture diagram in more depth.

Deployment Architecture Diagram
We use a deployment architecture diagram to describe the nodes used for the deploy‐
ment of the functional components contained in a component architecture diagram.
The diagram can describe both on-premises and public cloud locations.

In Figure 8-3, there is an example diagram containing different infrastructure ele‐
ments. For both on-premises and public clouds, use a dashed rectangle to represent
the network zones. The icons on black backgrounds represent the nodes with infor‐
mation on the selected technology and size indication. To simplify the diagram, cloud
services are icons without boxes; they’re still nodes, but without the box. The dashed
arrows illustrate connectivity paths between the nodes. For an extended description
of the notation, refer to “Technical Design Diagram Notation” on page 141.

Figure 8-3. Example deployment architecture diagram

Deployment Viewpoint | 243

C4 Model Format

In a deployment architecture like the C4 model, the software appli‐
cation is a rectangle in the hosting infrastructure node.

Let’s go deeper by discussing further the elements of a deployment architecture
diagram:

Infrastructure node location
The exact location of the nodes or infrastructure elements is key for a security
architecture. Already, with the analysis and creation of the system context, you’ve
started to position solution components and actors. A location could be physical
(a city) or logical (a VPC in a cloud instance).

In the deployment architecture diagram, the location isn’t only a driving factor in
how your diagram will look; for the security design, it will also help to determine
what kind of extra security controls you need. The possible threats to a node
could be different based on its location. Beside that, you’ll also learn that in a
zero trust-based approach, location on the network is no longer the only criteria
to allow network connectivity. In a zero trust view, every network, internal or
external, is a “hostile” environment.

The location could also be relevant for compliance with regulations if there are
data residency requirements. Lastly, even if systems are in the same physical
location, that doesn’t mean there is network connectivity possible between them.
So network connectivity will be the next design aspect of your diagram.

Network segmentation approach
For each physical or logical location, you have to define how you should segment
the network traffic. How many network segments do you need, and how do you
group the infrastructure elements on the same segment? We will elaborate on this
topic in more detail later in the chapter.

Infrastructure node description
If it concerns a virtual machine in an on-premises location, a physical network
appliance, or a PaaS database server, all these different types of infrastructure
elements do have sizing attributes and configuration attributes. The diagram
should indicate the most relevant ones, and the accompanying document should
contain more detailed information.

Network connectivity requirements
Once you have concluded the network segmentation design, you should double-
check the network connectivity requirements between the nodes that reside in
different segments. You can do this by returning to your system context and
tracing through the transaction flow through the system of each use case for

244 | Chapter 8: Infrastructure Security

each actor. This analysis might result in an update to the network design or the
reallocation of the nodes to a different network segment.

Technology choices per node type
The technology selection per type of infrastructure element is another key activ‐
ity during design. The choice will result in possibilities, but also constraints that
you have to consider. Possibly, you might choose different technologies for nodes
of the same type. A concrete example is the deployment of a web application
firewall (WAF). You could use a WAF appliance or a managed security service
hosted on the internet by a CSP or managed service.

Enterprise Technology Selection

A centralized enterprise architecture or security team often selects
technology products and services for an organization, conducting
due diligence to evaluate the proposed functionality and support.
There are many security products that may meet policy require‐
ments, but they may not meet the resiliency requirements of the
business application, or the supplier doesn’t have the resources to
respond to urgent support issues.
A project team will likely receive a mandate to use and align their
solution with the chosen enterprise products and services. How‐
ever, the project will also need to perform its own due diligence on
the product’s suitability to meet the overall solution requirements.
For instance, a mandated technology could potentially introduce
unacceptable additional risks or fail to support the specific business
technology under consideration. In that case, there may be a need
for an alternative product, but the due diligence required may have
an impact on the time and cost of the project.

Depending on the type of cloud delivery model, the effort for the definition of
a deployment architecture diagram will vary depending on whether the selected
solution is a third-party SaaS or if it concerns an application deployed in your own
data center. Where you are using physical or bare metal servers, you should define
the security controls for all components, starting from the physical server up to the
application layer. When you select SaaS or function as a service (FaaS) components
as part of the solution, there is still architecture work to perform, especially security
design work. For these types of cloud services, you should consider data protection,
identity and access management, and the protection of the API used for application
integration.

Now that we’ve considered the different parts of the deployment architecture dia‐
gram, let’s expand on the documentation that should accompany the diagram.

Deployment Viewpoint | 245

Deployment Architecture and Supporting Documentation
The type and quantity of documents required for the deployment architecture will
depend on the solution itself and the project’s overall needs. We suggest you com‐
plete or update the following content during the development of your deployment
architecture:

Deployment architecture diagram
This diagram visualizes the mapping of the functional components into the
infrastructure components. This mapping could be a one-to-one mapping or a
one-to-many mapping.

Detailed node description
In the diagram, you won’t be able to capture all the information that you need
to implement the solution. So in a detailed design document, you should record
detailed information for each node in the diagram. The detailed information will
be attributes like the version of the software components on the node or network
details.

Implementation approach
The solution you’re building could be a green field solution, an extension of
an existing application, or possibly the replacement of a complete solution. In
all scenarios, you need to document your implementation approach to ensure a
smooth transition from the current state to the next version. For larger projects
that could require intermediate steps from the current state to the target solution.

Security controls implementation
During the previous solution steps, there wasn’t much focus yet on the imple‐
mentation of the required security controls. For some of them, you can count on
existing shared services like anti-malware; for others, you might have to design
specific solutions.

Requirement traceability
An important aspect of a solution is requirement traceability. How can you
ensure you haven’t forgotten a key requirement? In the infrastructure design, the
focus will be on the non-functional requirements, including the security require‐
ments related to compliance, general cyber risk mitigation, and the mitigation
actions resulting from the threat modeling. See Chapter 4 for further discussion
on requirements traceability.

Test plan and test cases
For each requirement, you should define one or more test cases. The outcome
of the test will provide increased confidence that the implemented solution
addresses the requirements. In the test plan, you will document how and when

246 | Chapter 8: Infrastructure Security

you will perform the different types of tests. See Chapter 10 for more information
on developing a test strategy and plan.

Network design
The level of detail for the network design will vary per type of landing zone. In
this design, you need to define the required network connectivity, including the
related bandwidth, maximum allowed latency, type of network protocols, and so
forth.

Storage design
In a data center context, the storage design should be an integral part of the
overall solution, and as a security architect, you’ll immediately look after the
protection of the data at rest and the access control model for storage.

Systems operations and service management
Once the deployed solution is up and running (it’s “live”), the service manage‐
ment and systems operations teams will monitor the deployed application and
supporting infrastructure. To keep the service running, they will respond to
incidents, problems, and changes. Organizations are automating this type of
activity more and more thanks to cloud and AI-based functionality.

Security operations
When you take a high-level view of security-related operational activities, you
could state that there are at least three types of security operations. The first
one is threat management. This is everything related to the detection of anoma‐
lies and triggering security incident processes. The second type is security
infrastructure-specific. It includes activities like the secure configuration of the
infrastructure components and applications, the detection of possible deviations
from the secure configuration standards, or the detection of vulnerabilities and
their remediation. The third one is everything related to identity and access
management. Every day, the identity and access management (IAM) operations
team will make changes to the access entitlements of end users and entitlements
for a given role.

Similar to systems management operations, here, more and more security tools
perform these activities in an automated way. See Chapter 11 for more detail on
defining a solution for the management of security services.

Deployment Viewpoint | 247

Convergence of Network and Security Operations

You may have noticed that we haven’t listed network-specific
operations, even though the network operations team is essen‐
tial to the overall security approach. You could think of the
management of firewalls, network crypto devices, internet
proxies, and security devices as either part of the network‐
ing or security teams. The exact organization of security and
network teams depends on the company’s size and type. We
regularly see the first steps of convergence taking place at the
operational level between the network and security operations.

Architectural decision records
As the architectural thinking progresses, document all decisions in an architec‐
tural decision record and share them with those working on the solution. We’ll
talk more about this in Chapter 9.

We’ve talked a lot about the deployment architecture diagram and the associated
documentation; let’s continue with the process of architecting infrastructure security.

Architecting Infrastructure Security
The foundation for designing security for infrastructure is the deployment archi‐
tecture diagram, and we need a systematic way of including security. Figure 8-4
illustrates the overall architectural thinking process flow to infuse security into the
deployment architecture.

Figure 8-4. Architecting infrastructure security process flow

Let’s talk through the three steps in the architectural thinking process.

248 | Chapter 8: Infrastructure Security

1 Remember that security requirements are NFRs unless they specify the primary functionality of the
application.

Deploy functional components
Now we bring together all the previous architectural thinking to create a deployment
architecture for hybrid cloud. We start to identify the placement of the functional
components on the technology platforms identified in the shared responsibility dia‐
gram. Where possible, components will use PaaS services from the cloud platform to
remove the need to manage the services. Based on the technology strategy, you will
select the appropriate compute platforms for each functional component. The system
context will then identify the interfaces to add to the deployment architecture.

We use a component architecture diagram, such as Figure 6-8, to identify the logical
technical components (nodes) without selecting a specific product or technology
yet. Once you have identified all the nodes, you need to place them in the right
location. Location is both a geographical location and a network location. Latency,
data sovereignty, and resiliency requirements will help you decide on a geographic
location. The network location, latency, and network segmentation requirements
will guide you in the network design. Defining the network location will raise ques‐
tions about establishing network connectivity between the locations and ensuring
communication security. Later in this chapter, we will discuss the topic of network
segmentation in more detail.

Architect for compliance
Next, we start to bring in the non-functional requirements (NFRs), including secu‐
rity, to refine the deployment architecture. Meeting these requirements often requires
demonstrating compliance, as they originate from a security policy or control frame‐
work.1 The requirements are often easily mapped to standard security capabilities.

Integration with existing operational capabilities and the reuse of existing security
services often fulfill these security capabilities. There is normally no need to build
new services and this might include security-related operations like threat monitor‐
ing, vulnerability management, access management, and others. So the first step
is to identify what existing services can support the requirements and adjust the
deployment architecture to include points of integration.

Many organizations have security standards and practices documented that you will
need to adopt. That could be a specific solution building block, a complete pattern, or
even better, a security service that’s already operational. In case you need to add a new
security capability, you should also evaluate if this security capability is specific to the
solution you are building or whether it could support other applications in the future
as well. You may then need to work with your security operations team to create a
standard pattern or service.

Deployment Viewpoint | 249

2 It might be simpler to use a PaaS or SaaS service than design and run your own bespoke security service.

There will be a broad set of security requirement statements that impact the majority
of the solution components. A good example of such a requirement is the secure
configuration (also known as hardening) of the infrastructure components. Other
security requirements could be specific to a particular process or only applicable to
a limited number of elements. For example, data from the R&D department stored
in the cloud might need a data encryption solution based on a Bring Your Own Key
(BYOK) key management scheme.

If you can’t find existing services, review the enterprise security architecture from
Chapter 2 to help you identify missing security services. Add these services to the
deployment architecture and record an issue in the RAID log we will discuss in
Chapter 10.

Some requirements, such as those related to availability and scalability, may conflict
with security and require changes in the architecture of the security solution. If
they’re identified late, they can have a major impact on the solution cost and the
viability of the solution. Many workloads require support for challenging service
levels and rely on the high availability of security services, such as a privileged
access management solution. You’ll need to consider these requirements early on
in the design process and find the right balance between sometimes conflicting
requirements. At the same time, the chosen architecture could also be a good solution
to address other requirements, like scalability.2

Availability Service Level Objectives

In Chapter 5, we introduced the classification for the availability of
business processes and how to define the service level objectives for
availability, RTO, and RPO.

Now that we’ve met the key security requirements for compliance, we need to come
back to thinking about securing the data. We’ll consider it in two parts: the workload
or application and the underlying infrastructure.

Secure the data flows
It’s not only compliance with regulations or project-specific needs that will define
security requirements. These requirements don’t identify specific controls related to
the risk to data in transit, at rest, or in processing. We need to think about the data or
transaction flows through the system to identify the security controls to apply.

We need to return to the start of the architectural thinking process by taking each
of the use cases from the system context diagram and tracing each of the data

250 | Chapter 8: Infrastructure Security

flows through the system to identify threats. You should have done this first while
developing the component architecture diagram in Chapter 6. If you didn’t complete
threat modeling as part of your earlier design activities, now is a good time to do
it. It will help you determine whether the current infrastructure design has material
security flaws.

We’re going to think about it from four perspectives: human or system actor to
compute node, compute node to compute node, compute node to cloud service, and
cloud service to cloud service. We show these four foundational types of flow in
Figure 8-5.

Figure 8-5. Communication paths for zero trust use cases; see the original diagram

This continues using the first zero trust practice we identified, identity, data, and
transaction identification. The diagram shows the flow, marked as ①, where an
external human or system actor initiates a transaction or data flow with a compute
node that may be implemented via a server or container. This transaction continues,
marked as ②, with an interaction between two nodes. The node then uses a cloud
service, marked as ③, and that may cause an interaction between cloud services,
marked as ④. For many cloud service to cloud service transactions, they’re not in
your control as the CSP provides them, but for other services, you may have control
and require the correct configuration.

We’re going to discuss each of these flows in turn to make it clear what artifacts
we will use in the technique and what you need to consider. We’ll leave the added

Deployment Viewpoint | 251

https://oreil.ly/SAHC

complexity of additional zero trust practices for a further iteration in this chapter
after we’ve discussed these core principles.

1. Human or system actor to compute node. External human and system actors will ini‐
tiate transactions that transport data to a compute node. The system context diagram,
as we discussed in Chapter 5, will document each of the use cases that initiate
these transaction flows. This could be through a user interface or through system
communication such as APIs and messaging.

One key requirement to meet zero trust practices is to encrypt all sessions in transit
with mutual authentication. You should use a session-based encryption technology,
such as TLS, with mutual authentication for communication between functional com‐
ponents. Where legacy applications don’t support TLS, you will need to use link-based
encryption between compute nodes, such as IPSec. We’re going to discuss how to apply
zero trust principles in more depth later in this chapter.

IPSec Support in Cloud

TLS uses a TCP-based protocol as a transport. IPSec uses other
protocols for key management, such as IKE, and the CSP may not
support the protocol. Validate support with your cloud provider, as
you may need to look for an alternative solution.

Encryption at Rest
As each encrypted session terminates, the data may be stored, and at that point, you
need to consider how to secure the data when written to storage. While most service
providers now use a provider-managed key to encrypt data at rest, this may not
protect the data from service provider employees.

Your organization should control the encryption key you use to encrypt the data, and
this key should be specific to the data you’re storing. We refer to this type of key
management as Bring Your Own Key (BYOK). There are many different variations of
key management, including those that offer control over your own hardware security
module (HSM).

Processing of extremely sensitive data may occur using confidential computing in a
secure enclave where encrypted data is processed. As this is a rapidly developing area
of technology, we won’t delve into it. Just make sure that you consider how to protect
data while it’s at rest and processing.

These flows then continue through the system.

252 | Chapter 8: Infrastructure Security

https://oreil.ly/Uo9CG

2. Compute node to compute node. Processing takes place on a compute node and that
initiates a transaction (and data) flow to another compute node. In this case, we have
an application calling a database running as software on top of the cloud platform.
The transaction flow needs mutual authentication and session-level encryption to
secure the flow, as we discussed previously.

At either end of the flow, we have compute nodes that store data in file or block
storage. CSPs provide device-level encryption using an encryption key specific to
your storage; it’s designed to prevent disclosure of the data if threat actors steal
the physical storage devices or when the reallocation of storage to another cloud
user takes place. It doesn’t protect data from privileged users who have access to
the system and could disclose the data. Consider if you need additional levels of
encryption to protect against the threat of disclosure by privileged users.

Some solutions, such as storage, database, or messaging products, may provide inter‐
nal encryption at rest to protect data from privileged users, but the writing of an
unencrypted or obscured key to disk may be open to brute force attacks. You’ll need
to investigate the key protection mechanism used for data encryption and look for
products that retrieve keys from a key manager and HSM.

Architecturally Significant Transaction Flows

There is no need to examine every type of transaction flow through
the deployment architecture diagram. Pick those flows that have a
significant effect on the architectural decisions and aren’t repeats
of other flows already considered. This reduces repetitive architec‐
tural thinking.
Consider what transaction flows aren’t triggered by system or
human actors. There may be other events that trigger a transaction
flow, including incidents, errors, or timed batch transactions. Con‐
sider the architecturally significant flows triggered through system
events.
Additionally, consider the transaction flows that threat actors
might generate in their attempts to compromise the system. For
example, consider whether an SSH session occurring between
devices that should never occur could be a significant flow for
examination.

Data flows through a system aren’t only started by use cases linked to human actors.
Initiation of data flows can take place through components triggering events through
errors or timed events. For example, a security alert may trigger the passing of an
event record from a running workload to a threat management system. The tracing
of the data flow through the system identifies threats and any additional security

Deployment Viewpoint | 253

controls. Another example is a batch event triggered at a specific time or date. Add
these as use cases to your list of transaction (and data) flows to review.

These compute nodes then use cloud services.

3. Compute node to cloud service. Each compute node will use at least one and often
many IaaS and platform services, such as storage and key management. They may
also use PaaS services such as databases and messaging. Communication normally
takes place over mutually authenticated encrypted TLS sessions with the cloud ser‐
vice using protected APIs with identity and access management controls. The APIs
may also use private endpoints restricted to communication within a local network.

Some cloud services don’t only use APIs. For example, storage can use iSCSI or NFS,
which may not always provide encryption in transit. This means you need to validate
these underlying data flows to secure your data effectively. This isn’t just for cloud
services; there are many software solutions that manage storage, including virtual
storage and backup solutions. It may be a matter of configuring the security, but in
others, effective encryption doesn’t exist.

We also need to consider that services communicate with each other.

4. Cloud service to cloud service. Cloud services need to communicate between them‐
selves. Within a service, there is a need to share data for resilience within an MZR
and across regions. To maintain the security of the data, the same encryption in
transit principles we’ve discussed for the other communication paths apply. You’ll
need to assess the security of the data communication mechanism to ensure effective
security controls are in place.

Securing Cloud Services

The same principles apply to the development of cloud services,
with the services run on a compute node, such as a Kubernetes-
managed container, and communication taking place at another
compute node. The cloud service will still have a system con‐
text, component architecture, and deployment architecture. It’s the
responsibility of the cloud service architect to understand the secu‐
rity of the communication and storage, as they will require effective
configuration to secure the data.

We then move on to the final stage of the architecting infrastructure process from
Figure 8-4.

Iterate architectural thinking
You’ll need to perform this three-step process every time you make an update to the
solution architecture. The changes you make could include the deployment of new

254 | Chapter 8: Infrastructure Security

functional components, the inclusion of additional compliance requirements, and
identification of new threats when threat modeling is repeated.

Managing Production Change

Once the workload is in production, there will be many changes,
and each requested change will need an impact assessment to
determine the required depth of design review. You may need to
recheck compliance and update the threat modeling for changed
data flows. The outcome may be significant changes in the threat
landscape and then you should review the in-place security opera‐
tions and plan for the adaptations.
There should be a process to add new threat monitoring use
cases and detection rules. Another possible example is vulnera‐
bility management. When projects deploy new types of nodes,
both infrastructure and application nodes, you will have to adapt
the vulnerability scan rules and define node-specific remediation
actions. We will discuss the definition of processes and threat man‐
agement in Chapter 11.

As you may have noticed during the discussion on architectural thinking, you must
make a number of architectural decisions. It’s key that you document architectural
decision records as you go along. We’ll discuss documenting architectural decision
records in Chapter 9.

Before we discuss the application of the techniques to the case study, we’ll first
explore the network segmentation practice in more detail.

Network Segmentation
The reality today is that the “corporate network” is a fragmented collection of diverse
networks. The data, applications, and end users are no longer located in one place but
are widely distributed between your own data centers, office networks, IaaS solutions,
SaaS solutions, etc., and the change of their location is more dynamic than ever
before. At the same moment, the applications, which are part of a minimum viable
company, require high availability and, thus, redundant network connectivity.

In the following subsections, we’ll take a closer look at concepts related to network
segmentation in a hybrid cloud context. Even though slogans like “the perimeter
is gone” or “the internet is your corporate network” fill our inboxes, there is still
some work left for the security architect when shaping the network (security) design,
including network segmentation.

Deployment Viewpoint | 255

Public cloud network segmentation
When your organization is making use of public cloud IaaS and PaaS services, you’ll
have to configure network segments to manage traffic between the compute nodes,
cloud services, and external networks. The public cloud provides a significant benefit
by providing its own software-defined networking (SDN) capabilities to support a
network segmentation model. A consumer doesn’t need to worry about physical
networking devices, as the SDN provides a programmable overlay network that can
hide the underlying implementation.

Each CSP has a similar network segmentation model but each has its own names
for the networking resources, with a slightly different implementation for each of the
network security building blocks. All decompose the network into different segments
with the ability to apply network security access control lists (ACLs) based on source
and destination network addresses for specific ports. Network boundaries, service
interfaces, and compute resources can have ACLs applied. An ACL for a virtual
machine’s network interface provides you with a subset of capabilities provided by a
host-based firewall. A host-based firewall can apply to the processes within the host.

CSPs are also starting to use context-based access controls that support zero trust
principles. These controls use contextual information to constantly evaluate the secu‐
rity of the network connection, such as a restriction on the time of day or the location
of the source connection.

You should always make use of the out-of-the-box capabilities for controlling virtual
network security, as the cloud platform embeds integration with other security serv‐
ices such as identity and access management. We’ll explore further the different
network security building blocks later in this chapter when we discuss drawing the
cloud architecture diagram.

Microsegmentation
It’s no longer sufficient to protect an application by just separating the user interface,
application, and database with a firewall. Once malware or an attacker lands on a
node in a specific network segment, network access to all other systems in the same
segment may be a default. Microsegmentation is one of the zero trust practices that
solves this by creating application “bubbles,” where policies control both the traffic
within the bubble as well as the incoming and outgoing traffic.

When lateral movement by malware in your public cloud network is a huge con‐
cern, then consider adding microsegmentation capabilities on top of the cloud SDN
capabilities. You can overlay cloud native SDN security using an abstraction layer
independent of the CSP. Third-party microsegmentation solutions analyze the net‐
work traffic and suggest new policies based on the traffic flow, whereas cloud native
segmentation features won’t currently provide that kind of insight.

256 | Chapter 8: Infrastructure Security

The overlay network security can also provide policy-driven security to reduce man‐
agement overhead by having a single place to manage a policy change for all instances
of the same type of application. These solutions can support different CSPs and
on-premises platforms, providing the capability to hide the differences between the
networking security models through a common security model.

Network edge protection
There is usually still a need to separate internet traffic from corporate traffic. At most
organizations, this perimeter between “internal network” and “external network =
internet” still exists, and a firewall is managing the North-South traffic flowing in and
out of an organization.

In the cloud, you’re likely to also need a virtual firewall on the boundary between the
internet and other networks. Depending on the type of exposed interface (web user
interface, API, etc.), you will need a “NextGen” firewall that may include support for
a web application firewall for layer 7 network traffic and API protection, allowing you
to inspect the traffic and better protect the exposed applications. However, the web
application firewall capabilities of a “NextGen” firewall may not be as comprehensive
as those of a dedicated standalone web application firewall (WAF).

Between data centers and cloud instances, depending on the scenario, there could be
a site-to-site VPN with an extra firewall at both ends for additional traffic inspection
and packet filtering. Alternatively, SD-WAN connectivity could also provide such
security measures.

Architecture patterns
How you combine these different network security capabilities together is important,
and there exist architecture patterns based on security best practices. Traditionally,
we’ve used architecture patterns like the three-tier application. In such an approach,
the presentation, application, and data layers are in different network segments pro‐
tected by firewalls to establish the boundaries of the network segments and block
direct access between the layers.

Within the cloud, the three-tier model has evolved into an n-tier model with many
different layers providing defense in depth and preventing attackers from moving
laterally between cloud resources.

Another pattern is the hub-and-spoke model, which reduces complexity and shares
security services between workloads by routing all north-south traffic in and out of
the cloud through a shared network hub.

These are just three examples. We’ll be discussing more about architecture patterns
in an enterprise context in Chapter 9. Let’s move on by applying the techniques and
artifacts we’ve discussed to the case study.

Deployment Viewpoint | 257

Deployment Viewpoint QA Checklist
• Ensure all human and system actors from the system context diagram have•

communication in place on the deployment architecture diagram.
• Ensure the deployment of all the components in the component architecture•

model to the deployment architecture diagram.
• Review all architecturally significant data flows through the deployment architec‐•

ture diagram with security controls in place.

Case Study: Deployment Architecture Diagram
Looking at the Clean Air Guildford case study, we have enough to start the first draft
of the deployment architecture diagram. As we’re moving to the deployed solution,
the correct positioning of all the components is crucial. The system context diagram,
shared responsibility diagram, and the component architecture diagram can help you
determine the correct location. You need to define the different network connections
between the Clean Air Guildford (CAG) application and the other components.

As part of the infrastructure design, we listed a number of architectural decisions you
need to consider:

Table 8-1. Clean Air Guildford high-level decisions

ID Decision Rationale Implication
AD01 Consume

middleware
components as a
PaaS.

In the cloud, there is the choice of deploying the
middleware components either as software run on
a compute node or as a PaaS service. The project
will select PaaS services by default, unless there
are specific capabilities unavailable from the CSP.
It may be that the only way of delivering the
capability is by installing, configuring, and operating
the middleware component on a compute node
for management by the operations team for the
organization.

• PaaS services should be available to•
the CAG application components and
have to support the requirements.

• The PaaS services used by the•
components for payments need to
have a PCI DSS Attestation of
Compliance (AOC).

AD02 Use hub-and-
spoke
architecture for
the network
topology.

A hub-and-spoke architecture allows the
centralization of the security controls for controlling
the ingress and egress traffic at the Transit VPC.

• The hub and each spoke network use•
the cloud native VPC services.

• The hub will host security components•
similar to the DMZ of a data center.

AD03 One spoke VPC
required per
application.

To facilitate the deployment through CI/CD pipelines,
we will set up a pipeline of dedicated VPCs per
application for each stage of the deployment. This
should avoid possible conflicting access for the
DevOps teams.

• The cloud operations team will need•
to define an approach to automate the
assignment of the entitlements for the
DevOps teams.

258 | Chapter 8: Infrastructure Security

Long Form Architectural Decision Record

The examples of architectural decisions we’ve listed are in short
form, and for more complex decisions, we might list different
options with an extended rationale. We will discuss a longer form
of an architectural decision record in Chapter 9.

We’re going to start by reviewing the functional components we identified when
developing the component architecture diagram in Table 6-1. The shared responsibil‐
ity diagram, in Figure 7-8, will guide the deployment of the functional components
together with any architectural decisions made about placement. We’ll identify the
relevant compute, storage, and PaaS services required to host the Clean Air Guildford
application and summarize the mapping in Table 8-2. We’ve used AD01 to use PaaS
services wherever possible.

Table 8-2. Deploying functional building blocks

Type Purpose Technology Component Deployment Type
Databases Main database PostgreSQL LC-DB-01 PaaS

Cache, state data MongoDB LC-DB-02 PaaS

Cache, state data Redis DB LC-DB-03 PaaS

Integrations CAG → Clean Air Pay Kafka Streams LC-INT-01 PaaS

CAG → Clean Air Debt RabbitMQ LC-INT-04 PaaS

Camera Zone → CAG Not defined LC-INT-03 REST API

CAG → DVLA Not defined LC-INT-05 REST API

CAG → Google/Microsoft OAuth 2.0, OpenID LC-UI-02 REST API

AI Chatbot → CAG Not defined LC-INT-02 REST API

CAG → Staff LDAP Directory SAML 2.0, OpenID Connect, OAuth 2.0, and
WS-Federation

LC-UI-01 PaaS

User
interfaces

Driver and car registration Not defined LC-UI-02 Web portal

Payment portal Not defined LC-UI-02 Web portal

Application
components

Driver management Red Hat OpenShift LC-AP-01 Red Hat OpenShift

Vehicle management Red Hat OpenShift LC-AP-02 Red Hat OpenShift

Payment management Red Hat OpenShift LC-AP-03 Red Hat OpenShift

Case Study: Deployment Architecture Diagram | 259

Deploying Across Many Compute Platforms

In this deployment exercise, we’ve used one compute platform but
we’ve worked with solutions where deployment takes place across
five or more different compute platforms. This is when the archi‐
tectural thinking process of deploying components onto compute
platforms using the shared responsibility diagram becomes impor‐
tant. It ensures everyone in a team is clear on what the compute
solution is for the workload.

Before we move on to the full version of the deployment architecture diagram, let’s
use a cut-down version in Figure 8-6.

Figure 8-6. Deployment architecture diagram—two network segments; see the original
diagram

We’ll start with the network segments within the Clean Air Guildford cloud instance.
At the top, we have the transit VPC. This is a virtual network that’s private to an
organization and isn’t open to any network traffic by default. All traffic in and out of
the cloud and between other VPCs flows through the Transit VPC.

260 | Chapter 8: Infrastructure Security

https://oreil.ly/SAHC
https://oreil.ly/SAHC

3 We selected IBM Cloud as a CSP because of our familiarity and the new icons that make architecture
diagrams clearer, but the diagrams for other public cloud providers would be similar in format. We think the
color icons that are used to promote different CSPs make architecture diagrams more difficult to read and
work with.

We have a management VPC that contains any compute hosts that manage resources
on the other VPCs. Then there are three VPCs for the workload: CAG dev VPC for
application development, CAG test VPC for testing, and CAG prod VPC for running
the workload in production.

At the bottom, we have the collection of cloud services provided by the CSP. At the
top, we have two ways in and out of the cloud platform. The first is the internet,
which provides connectivity to human and system actors accessible via the internet.
The second is the point of presence (PoP), which is the networking provider hosting
private network connectivity to human and system actors.

We identified earlier in Table 6-1 the functional components and the technology
required for each and then made architectural decisions on the potential technol‐
ogy platforms in Figure 7-8, resulting in Figure 8-7.3 Figure 5-5, as we discussed,
describes the technical diagram notation used in the diagram.

Let’s describe the parts of the diagram by network segment:

Transit VPC
In the transit VPC, we have a NextGen firewall through which all traffic in
and out of the cloud platform flows. On the left, we have a VPN termination
point that could be a cloud service or a part of the NextGen firewall. Internet
connectivity using VPNs terminates at this point. On the right, we have an API
gateway that protects API access for the application. Just below the transit VPC is
a transit gateway that joins the VPC’s networks.

Management VPC
In the management VPC, we have a bastion host that provides support for remote
administration. Administrators must first log in to this server before accessing
any other resource in the cloud. The server automatically retrieves usernames
and passwords from the privileged access management server for login to the
hosted cloud resources. In this case, it’s a software solution and not a cloud
service. In the event of an investigation, the bastion host will record the activity
of a remote administrator.

CAG VPCs
We have three workload VPCs for the Clean Air Guildford (CAG) application,
with one for development, one for testing, and one for production. In each VPC,
there is an instance of Red Hat OpenShift for running the application.

Case Study: Deployment Architecture Diagram | 261

Figure 8-7. Deployment architecture diagram; see the original diagram

262 | Chapter 8: Infrastructure Security

https://oreil.ly/SAHC

4 You may be thinking we should use a VPN. You would be correct, but we wanted to make the point that a
diagram will evolve over time.

Platform services
On the left-hand side of the platform services, we’ve used the standard logging,
monitoring, and DNS services provided by the CSP. The solution required an
LDAP Directory for employees and so we’ve also used that as a cloud service
rather than running our own software.

Moving toward the right from the left-hand side, you will see two security serv‐
ices: the key manager for encryption and the SIEM service for threat detection.

Moving across again to the middle, there is block storage and object storage that
the compute nodes, hosted on the management and workload VPCs, will need.

Next, instead of running a container library in Red Hat OpenShift, we’ve used the
container registry provided by the cloud provider, as it’s more tightly integrated
with the cloud platform.

Finally, on the right is the set of required PaaS services to run the application,
including Postgres for a SQL database, Mongo for a no-SQL database, RabbitMQ
for messaging, Redis as an in-memory database, Kafka for streaming, and Chat‐
bot for the chatbot requirement.

The VPC network will have private endpoints for each of the cloud services,
ensuring there is no public network connectivity. This removes the possibility of
exposing the cloud services to the internet.

Internet connectivity
At the top left is the internet connectivity. The case study said the debt collection
app and the payment gateway are available via the internet using a VPN connec‐
tion to secure access. A third internet connection enables the drivers to access the
portal for the administration of the drivers, vehicles, and payments.

Point of presence connectivity
At the top right is private connectivity through the point of presence (PoP).
Third-party networking service providers typically manage the PoP, which ena‐
bles connectivity to other networks. The data doesn’t flow over the internet, and
in this case, we didn’t use a site-to-site VPN to protect the confidentiality of the
data.4

Case Study: Deployment Architecture Diagram | 263

5 The authors had a debate as to whether we would see ZTNA at the level of application components (and not
just an application) built into the cloud platform as default in the next few years. What do you think?

As you put together the diagram, you will identify additional cloud services needed
to support the application operations, and this diagram will evolve as you go through
design iterations. Let’s now move on to a further discussion on zero trust practices for
the next iteration of the deployment architecture diagram.

Zero Trust-Based Security Infrastructure
Chapter 1 already introduced the zero trust principles and practices, and we reviewed
zero trust architecture in Chapter 2. We’ll now build on that with an overview of the
most common zero trust architecture practices at the infrastructure layer and then
continue with a discussion on how to use some zero trust practices in developing a
deployment architecture diagram.

Network-Based Solutions
First, let’s start by discussing two zero trust networking solutions: zero trust network
access (ZTNA) and microsegmentation. ZTNA operates at the edge of the data center,
and microsegmentation is internal to the data center.

Zero trust network access (ZTNA)
ZTNA is typically used to control network traffic between an end user and
an enterprise application. An enterprise application is an application that’s only
accessible to employees and possibly some partners of an organization. ZTNA is
a brokered network connection that uses an encrypted micro-tunnel to connect a
device to the system hosting the application. It only permits network connectivity
to the port that has been explicitly defined by policies and blocks all other traffic.
For a more complete description, read the definition of ZTNA from Gartner:

Zero trust network access (ZTNA) is a product or service that creates an identity-
and context-based, logical access boundary around an application or set of appli‐
cations. The applications are hidden from discovery, and access is restricted via a
trust broker to a set of named entities. The broker verifies the identity, context and
policy adherence of the specified participants before allowing access and prohibits
lateral movement elsewhere in the network. This removes application assets from
public visibility and significantly reduces the surface area for attack.5

ZTNA is the most common implementation of the software-defined perimeter
(SDP) pattern and allows organizations to define logical perimeters to protect
private applications. While ZTNA could use both human and system actors, we
see in practice that organizations select ZTNA primarily to manage end-user
access. An important advantage of ZTNA is that it isolates the applications

264 | Chapter 8: Infrastructure Security

https://oreil.ly/itDc0

from the internet, thus reducing the attack surface of the organizations. The use
cases where ZTNA comes into the picture are: replacement of remote access
VPN, acceleration of cross-organization application access during a merger or
acquisition, and multi-cloud access.

Ever Changing Network Perimeter

Be aware that the “perimeter” of your corporate network
will become more and more dynamic, and for example, it
might contain applications exposed to the internet through the
public IP range of the cloud provider instead of your own
public IP address range. So, besides managing access to the
logical network perimeter, you should also monitor the exter‐
nal attack surface by performing automated external attack
surface scanning to detect possible vulnerabilities from the
outside.

Microsegmentation
Microsegmentation limits the communication between applications and related
systems within one or more network zones. It restricts the network to the TCP/IP
ports needed by the applications through explicitly defined policies, and it inhib‐
its all other traffic. There are several approaches possible to microsegmentation,
mostly by packet filters at the endpoint level or at the network level.

Both solutions share the characteristic that network communication is only possible
if an explicit policy permits such connectivity. Figure 8-8 positions both solutions
against a cloud hub and spoke network architecture. The ZTNA solutions will man‐
age network access to enterprise applications independent of the location of the
actors and the applications. ZTNA establishes a software-defined perimeter around
a set of applications and manages access by end users. Microsegmentation focuses
on system-to-system network connectivity. Even if computing nodes are on the
same network segment, microsegmentation can manage all point-to-point network
connections within that segment. There might be some overlapping use cases but,
in general, we see that ZTNA provides a logical perimeter for frontend applica‐
tions, and microsegmentation controls the communication between computing nodes
themselves.

Zero Trust-Based Security Infrastructure | 265

Figure 8-8. ZTNA versus microsegmentation; see the original diagram

A closer look at ZTNA implementation use cases shows us that the most recurring
use case concerns the replacement of client-side VPN access for the remote work‐
force. Saying that, it’s important to note that ZTNA-based solutions can provide the
same type of protection to the workforce at the office too. Such a comprehensive
approach ensures the enforcement of the same policies, independent of the location

266 | Chapter 8: Infrastructure Security

https://oreil.ly/SAHC

of the employee. There are three major differences between a VPN network connec‐
tion and a ZTNA-based network connection:

The policy enforcement point (PEP) location
Most solutions put the VPN concentrator in the DMZ in front of the internal
network. With ZTNA, the PEP is in a public cloud, which means that the PEP
takes access decisions outside of the organization perimeter and thus even before
establishing the network connection to the internal network.

The initiation of the network traffic
With VPN connectivity, the traffic is ingress; the flow is from outside to the
inside network, whereas with ZTNA, the traffic is egress. The ZTNA proxy
establishes an outgoing connection to the PEP. The net result is that the inter‐
nal network no longer gets exposed to computers outside the perimeter. The
PEP brokers the traffic from the user device to the ZTNA proxy (which, in
turn, establishes the network connection to the system hosting the application
frontend).

No more open network connectivity
With a remote access VPN, the user device typically has the same network
connectivity as at the office, and most of the time that’s quite open. Often, VPN
implementations have policies that allow many types of network protocols, and
from the VPN concentrator to the internal, there is no or little restriction on the
destination IP addresses. A lot of organizations also use remote access VPNs, not
only for their own employees but also for their business partners. It’s clear that a
remote access VPN for third parties brings an additional risk as the organization
potentially exposes too much of its internal infrastructure to them.

With ZTNA, an administrator or the tool itself will define a policy for every type of
network connectivity between the end-user device and the internal application. As
a result, possible malware on the end-user device can no longer propagate to other
systems using protocols like SSH, WinRM, or RDP.

Another advantage of ZTNA is that most vendors deliver the ZTNA solution as
part of secure access service edge (SASE), which provides extra security controls at
the policy enforcement point like traffic inspections, for example. This multifaceted
security check at the PEP reduces traffic redirection to different types of security
components.

Figure 8-9 clearly shows that with this type of ZTNA implementation, the ZTNA
proxy initiates the network session from within the corporate network to the PEP of
the ZTNA provider. When an end user establishes a connection with a PEP in the
same ZTNA solution, the PEP brokers the network traffic via the ZTNA network
components.

Zero Trust-Based Security Infrastructure | 267

Figure 8-9. ZTNA as replacement for VPN

ZTNA Manages Network Access

Keep in mind that, strictly speaking, ZTNA manages network
access, not application access. So ZTNA vendors typically also
provide single sign-on (SSO) capabilities to authenticate the user
at the application layer. If such a solution wasn’t in place, then
the end user would have to authenticate twice: first at the network
layer (ZTNA), and once there is network connectivity, a second
time at the application layer. Despite the SSO, you will continue
to maintain the authorization at both levels. ZTNA controls access
to the application, and the application will manage authorization
within the application.

There are some even more fine-grain solutions for container-based applications that
we should discuss.

Service Mesh Solutions
You’ll notice that there are even more fine-grained zero trust-based solutions. When
your organization develops container-based applications, they may use a service mesh
for secure communication. There are several solutions, and some of them have a
sidecar that acts as the PEP in front of the service. These sidecars will encrypt all the
traffic on the data plane and will also authorize access. A well-known implementation

268 | Chapter 8: Infrastructure Security

of such a sidecar is the Envoy Proxy, part of the Cloud Native Computing Foundation
(CNCF).

We’ve talked about the network, but what about endpoints? Let’s see how zero trust
applies.

Endpoint-Based Solutions
Looking back at Table 2-2 with some zero trust based solutions, you’ll see that for
the endpoint domain, there are security solutions listed that are already in place,
independent of zero trust based strategies. So the question is: how do these endpoint-
based solutions contribute to the zero trust principles?

Never trust, always verify
This applies first to the endpoint itself. Can you trust the device that connects
to your network? This verification uses multiple assessment criteria. First, there
is the security posture of the device itself. A solution can use a combination of
device-specific attributes for the posture check, like:

• Does it have a trusted platform module (TPM) chip?•
• Is the hard drive encrypted and does it store the keys in the TPM?•
• Is the endpoint managed by your organization?•
• Is it hardened in line with the security configuration specification from your•

organization?
• Is the operating system (and other software) up to date (are the latest patches•

installed)?
• Are there known severe vulnerabilities?•

Assume breach
Applying this principle to an endpoint is about the implementation of as many
layers of defense as possible on the endpoint itself. It starts with protective
controls like host-based firewalls, host-based intrusion prevention solutions, and
access control. Additionally, there should be detective controls, ideally combined
with a local response capability.

Here, endpoint detection and response (EDR) solutions come into play. Even
with all possible protective controls in place, the assume breach principle implies
not only the compromise of surrounding systems but also the endpoint itself.
Hence, a detection capability is key. First to initiate the necessary response
actions to restore the endpoint to its original state, but also to detect issues with
other solutions as contextual information. The EDR solution may deny other
resources to the end user or application running on a compromised endpoint.

Zero Trust-Based Security Infrastructure | 269

https://www.envoyproxy.io

Also, there are even more dynamic measurements possible of the security posture
based on EDR solutions. These security products calculate a risk score based on
both static and dynamic data. For example, if there is detection at the endpoint
of some suspicious behavior, the risk score will increase. Other zero trust based
solutions, like ZTNA, take this risk score as extra contextual information for the
evaluation of access policies. Denial of access to the network can take place if
devices have a risk score that’s too high.

Now that we’ve considered zero trust for endpoints, let’s move on to consider how
zero trust impacts identity and access management.

Identity and Access Management
Identity and access management (IAM) are capabilities you will need for each IT
layer in the organization. So beside the infrastructure layer, IAM plays a key role for
application and cloud security too. In the context of zero trust, it’s clear that identity
is a core element of many zero trust based solutions. All actors requiring access
will require a unique identity and many resources will have an identity too. The
verification of the identity is the recurring baseline for zero trust. An employee will
only get access to an internal application after validation of their identity, including
all contextual information. That might include historical data on both employee login
times and locations.

Privileged access management (PAM) provides strict control over administrator-
equivalent access to systems and applications. Applying zero trust to such types
of solutions is mostly based on additional conditions before granting access. For
example, before a system administrator can access a system via PAM, there should
be a service ticket in the service management tool. Additionally, the granted access
could have a limited duration. This is how least privilege reduces further the implicit
permissions.

Lastly, the recent development of identity threat detection and response (ITDR)
solutions is another layer in the IAM portfolio. In a hybrid cloud context with many
more identities to manage and the rise of threats to identity tools themselves, there
is a need for a detection capability similar to what EDR does for the endpoint. ITDR
will be another key zero trust solution to maintain trustworthy identities and detect
possible anomalies with them.

There is a lot of material available around zero trust. If you are considering using the
zero trust principles to further improve the security maturity of your organization,
take the time to read through the publications from NIST and others before diving
into the product data sheets and brochures.

270 | Chapter 8: Infrastructure Security

Focus on Identity and Access Management

In many organizations, a dedicated team outside the security archi‐
tects takes care of IAM solutions. We see IAM rather as another
foundational security element, so together with network security,
they realize most of the protective controls. Hence, independent of
whether there is a separate IAM team or not, you should focus on
IAM during design and build.

Architecting Zero Trust Practices
Now that you have had an overview of possible zero trust solutions, let’s build on
the architectural thinking approach we described in Figure 8-3 to see how zero trust
principles and practices could drive the outcome of the solution design. The typical
way to start with zero trust is to take a risk-driven approach and adopt the overall
principle to implement zero trust-based solutions for the use cases where there is the
highest impact on risk mitigation.

The zero trust implementation approach overlays the architectural thinking approach
we discussed in Figure 8-4 and integrates with the threat modeling from Chapter 6. It
also returns to the requirements and reflects any updates in the overall solution.

We suggest adding the following activities to the Secure the Data Flows process step in
Figure 8-4:

Review and update threat modeling
Return to the threat modeling you completed in Chapter 6 and perform an
update of the STRIDE threats and controls identified in Table 6-3. This time, look
at the data flow through the infrastructure and complete it for each use case, any
internally triggered flows, and the four types of flows identified in Figure 8-5.

Integrate relevant zero trust practices
Identify any zero trust practices for adding to the STRIDE threats and controls
table. Update and add any relevant risk evaluations.

Add controls to requirements
Take each of the identified controls and update the requirements, taking care to
define requirements that can help identify the technical and process solutions
needed to implement the controls.

Iterate the requirements mapping
Take the requirements and identify their implementation by updating require‐
ments mappings that document their implementation.

Zero Trust-Based Security Infrastructure | 271

Update architecture solution
Update architecture diagrams to reflect changes, starting with the system context
diagram with any new actors. Update the deployment architecture diagrams
as needed. If you have selected a ZTNA solution, there may be a need to
create a standalone solution architecture to provide sufficient detail. It’s likely
to require consideration of non-functional requirements such as availability and
performance.

Maintaining Architecture Documentation

One of the biggest challenges in the industry is maintaining archi‐
tecture documentation. Undocumented system changes, without a
re-assessment of system threats, can diminish the effectiveness of
security. Requiring updates as a part of the incident, problem, and
change processes will help, but that’s not the whole answer. Perhaps
AI will eventually help track, document, and assess the impact of
changes. We leave you with this dilemma to think about as you
bring architectural thinking for security into your organization.

Update operations solution
You might discover new security services that require management by a security
operations team, like ZTNA. Use the techniques to update and develop new
operations artifacts, including RACI, processes, procedures, and work instruc‐
tions, as described in Chapter 11.

This approach should be holistic and isn’t limited to the typical zero trust solutions
mentioned before. Think about the overall zero trust principles and practices. The
goal here is to mitigate the known risks to an acceptable level, and zero trust-based
solutions are just one way to mitigate cyber risks.

Review the design or solution and try to find cases where connectivity or access
would still rely on implicit trust. For example, system A has network connectivity to
system B because both systems reside on the same VLAN or network zone (for exam‐
ple, the production environment), while these two systems don’t require connectivity
between them. While implicit trust situations are most common at the network layer,
at other layers you may find such cases, be it at the operating system level or at the
application level. You should try to remove implicit trust where possible; you can
often do this without adding new technology.

272 | Chapter 8: Infrastructure Security

Starting with Zero Trust
Applying zero trust to one solution is a good start, but it should be part of a larger
strategy.

Zero trust-based solutions won’t protect an organization against all the possible
threats that it’s facing. As a security architect, it’s important that you understand the
limitations of zero trust-based solutions. A good example is a software vulnerability
in an internet-facing web application. That isn’t something you will solve with adap‐
tive access control or microsegmentation, just to name two common zero trust-based
solutions.

Start with the applications with the highest risk. You won’t have the budget or the
time to apply zero trust to the full extent on all applications. Identify where a zero
trust approach has the most impact on risk reduction.

To conclude, it’s important to keep in mind that zero trust is a set of principles that
drive the outcome of infrastructure design. Also, it’s a journey, so don’t expect that
you can apply all the principles and practices to their full extent with the first release.
Instead, it’s important to have zero trust as a continuous approach for both the new
projects and an improvement track for current operational solutions.

Now let’s apply the zero trust techniques we’ve discussed to the case study.

Zero Trust-Based Security Infrastructure QA Checklist
• Ensure solution includes network-based solutions using ZTNA and microseg‐•

mentation.
• Review and ensure the inclusion of endpoint-based solutions.•
• Review and ensure the inclusion of identity and access management solutions.•
• Use the list of zero trust practices to review the deployment architecture diagram.•

Zero Trust-Based Security Infrastructure | 273

Case Study: Zero Trust
As a security architect, you should review the deployment architecture diagram and
investigate where zero trust-based solutions could have a significant risk reduction.
From the threat modeling exercise, you’ve learned that unauthorized privilege access
is one of the identified risks. To mitigate the risk, you decided to take the following
actions:

Implement a ZTNA solution
There will be a ZTNA remote access SaaS service added for the Clear Air Guild‐
ford workforce and business partners, and the transit VPC will include a proxy to
support access to the cloud platform. We’ve decided to use a SaaS service as they
can provide a more flexible and available service than we could implement with
software.

Add privileged access management (PAM)
We’ve added a PAM solution to control all privileged access to the CAG systems
and applications. We’ve decided to run as software on the management VPC as
the software we require isn’t available from the CSP.

Implementing a PAM solution is part of an iterative approach to architecting security,
wherein you gradually add more capabilities to the solution. A possible step you
could take to reach even higher maturity could be through the integration of the
PAM solution with the service management solution. Starting from that moment,
an administrator will only be able to check out a privileged account from the PAM
system if there is an approved ticket in the service management solution. This just-in-
time approach is a more granular access control for privileged access as it establishes
a dependency between service management and administrative access to systems.

The deployment architecture diagram in Figure 8-10 highlights the additional secu‐
rity components with shading.

The changes included in the diagram are:

ZTNA service provider
We’ve added a ZTNA provider as an extra third party. As a result, we also
introduced a ZTNA proxy running on a compute node in the transit VPC. We
have not identified whether this will be a virtual server or a container-based
solution. The infrastructure deployment pipeline should deploy the ZTNA proxy
in the different availability zones of the hub VPC so the component can satisfy
high availability requirements (note that the availability zones aren’t shown on
this diagram).

274 | Chapter 8: Infrastructure Security

Figure 8-10. Zero trust based solutions added to the architecture; see the original
diagram

Case Study: Zero Trust | 275

https://oreil.ly/SAHC
https://oreil.ly/SAHC

Remote access connections via ZTNA proxy
The remote access connections are now established from the CAG Office, Guil‐
ford Service Desk, and the Clear Threat MSP to the ZTNA solution. The ZTNA
proxy also establishes a session with the ZTNA solution. The ZTNA PEP will
broker the end-user traffic to the ZTNA proxy on the target system.

Privileged access management (PAM)
We added to the management VPC a compute host for the core components of
the PAM solution. This will integrate with the bastion host we added on the first
iteration. Integration of the PAM and bastion host will take place for automated
login without knowledge of the privileged user credentials. CAG personnel and
partners will have to request to check out a privileged account from the PAM
system before they can access a target system with privileged access. Upon
completion of their administrative activities, they have to check in to the account
again.

Look out for updates to the deployment architecture diagram in Chapters 9 and 11.

Let’s move on to considering how to describe cloud architecture.

Cloud Architecture
We’ve discussed the deployment architecture diagram and demonstrated applying it
to the case study in a hybrid cloud context. However, it still doesn’t contain sufficient
detail to describe the architecture of the cloud platform. We normally use a cloud
architecture diagram in the format of the chosen cloud service provider.

Before getting there, we’ll first give an introduction to the topic of how to organize
cloud security, provide an outline of the activities of the security architect in a cloud
environment, and provide a concise overview of the different names that CSPs are
using for the same type of cloud components.

Organizing Cloud Security
We recommend considering cloud security in four different domains to help organize
architectural thinking:

Enterprise level
At this level, all the different environments get integrated, so you need to define
how secure this connectivity is, and you will have to define the security controls
that are applicable to all environments. In other words, what are the security
controls that benefit from a centralized and holistic approach?

276 | Chapter 8: Infrastructure Security

Before an organization can deploy applications in a cloud environment, the cloud
operations team of your organization will prepare and configure the public cloud
and define a governance model to manage it. Here are a few topics to consider at
an enterprise level:

• Adding a (new) IaaS cloud instance to an existing IT environment requires•
an integration design and related security measures.

• Decide ow to set up the interconnectivity between different landing zones•
(both cloud and data centers), and also how to secure this network path.

• Provide guidance on the network segmentation approach required for the•
given cloud instance.

• Make and document the decisions about when you should deploy which•
security controls at the enterprise level and the specific controls for a given
landing zone.

CSP/landing zone level
Each type of cloud environment or data center will require its own specific set of
security controls. These are in addition to the earlier mentioned enterprise-wide
security measures.

The second step in the cloud security design process will be the configuration of
the cloud instance itself, if it’s a total new instance. The onboarding of a cloud
instance from a new CSP will result in a lot of design activities for the security
architect. The discussion of a cloud security operating model in Chapter 10 will
provide some further concepts. Let’s give some examples in this context:

• The cloud comes with its own specific threats, so you should use a cloud•
security control framework to address these threats.

• Together with the other architects, you need to define how to configure•
the cloud resources in line with the security policies and make these pre-
configured resources available for the DevOps teams.

• Identify if the cloud native security tools are sufficient or if you would need•
third-party technologies. A recurring topic in this area is security monitor‐
ing. While this is typically organized at the enterprise level, it might make
sense to use specific security monitoring solutions per cloud provider and
only consolidate alerts at the enterprise level.

• Review the operational processes to keep the applications and workloads•
secure in the cloud. An example could be the setup of privileged access
management for the cloud instance. Use the artifacts and techniques from
Chapter 11.

Cloud Architecture | 277

Application and CI/CD level
You need specific security controls throughout the application lifecycle (design,
code development, testing, deployment, and run).

You can find the overall approach in Chapter 6. In the context of cloud security,
here are some activities that require the contribution of a security architect:

• What will be the level of freedom that the DevOps teams will get? For•
example, you must decide if they’re allowed to create new network subnets as
part of application deployments through a CI/CD pipeline.

• The selection of technologies to implement the CI/CD pipelines. As a cloud•
security architect, you’ll have to define the required permissions to integrate
the CD tool into the cloud instance(s).

• Also, for the detailed design of the CI/CD pipeline itself, there are security-•
related design decisions, like where to add security quality gates to the
CI/CD pipeline. The goal of these quality gates is to ensure that the auto‐
mated build and deployment of applications includes security checkpoints
before they can run in the cloud. Chapter 10 contains a discussion of the
quality gates.

Operations level
A cloud environment changes the way you need to consider security operations.
The existing security operations may not be ready to handle the changes in
security processes and service level demands placed on them. There will be
many additional technologies, increased service response demands, and hours
of support needed. Consider whether your organization can meet these new
demands. As an architect, you will need to consider the implications of security
operations in your solution.

A hybrid cloud environment will further stretch your organization with con‐
sideration of where to distribute the security tools needed to protect the
applications, data, and infrastructure. You will want to balance the benefits of
centralizing the security operations with the benefits of distributing capabilities
to optimize the non-functional requirements.

Chapter 11 will further discuss the needs of security operations.

It’s clear that a security architect will be very busy the first time a new IaaS cloud gets
onboarded. The four domains for organizing security we discussed previously are just
a small subset of what will end up on the desk of the security architect. Once a cloud
instance is onboarded and DevOps starts to deploy workloads in the cloud instance,
there are still other activities to fulfill. One of them typically comes from the CSP
itself. Every CSP updates the capabilities and functionalities of their technology and
services. This is true for the security functionalities as well. On a regular basis, the
CSP adds new features or deprecates some older capabilities. The security architect

278 | Chapter 8: Infrastructure Security

should follow these evolutions and adapt the current design if needed. A recent
technology update in the public cloud might be more beneficial for the organization
or even required to address new threats.

Another dynamic component in an IaaS context will be the network. Thanks to
SDN capability, the reality is that after one year, the number of subnets might have
tripled or more. As the network setup continues to evolve, it’s important that the
overall network design is coherent and remains consistent during expansion. The
organization must monitor to ensure that the growing complexity of the network
doesn’t create security flaws that might go unnoticed. Also, here, the security architect
should perform a continuous follow-up. Creating some architecture patterns that the
architects should adopt will help keep alignment. We will talk more about this in
Chapter 9.

Lastly, independent of the technology evolution and configuration changes, there
should be a scheduled review of the security architecture to ensure there are no
gaps or design updates needed. The table in Table 8-3 sums up some of the security
architect activities for the solution lifecycle stages (Day 0, 1, and 2) as well as per
scope (enterprise, cloud instance, DevOps).

Table 8-3. Security architect activities during solution lifecycle

Level Initial setup Changes and improvements Steady state
Enterprise
level

• Contribute to the overall•
design

• Update/define security•
policies

• Select enterprise-wide•
products and services

• Validate design changes• • Yearly quality assurance review•
• Revalidate selected enterprise-•

wide products and services

CSP level • Design for security-as-a-•
code

• Establish governance model•
• Create cloud architecture•

diagram

• Follow up CSP level updates and•
improvements

• Validate network changes•

• Synchronize with platform and•
product teams

• Follow up noncompliance and•
incidents (root cause)

CI/CD level • Cloud resource certification•
processes

• Review onboarding of new•
third-party components and
libraries

• Review “special” network•
connectivity requirements
(firewall policies)

Operations
level

• Perform a security•
operations gap analysis

• Update organization to handle•
enhanced response and hours of
service

• Deploy new cloud security•
tooling and processes

• Perform performance and capacity•
management

• Monitor service levels and perform•
continuous improvement

Now let’s continue with the description of cloud architecture using a cloud architec‐
ture diagram.

Cloud Architecture | 279

Cloud Architecture Diagram
When creating a cloud architecture diagram (CAD) for the different CSPs, you
will discover different terminology for the same type of building blocks or cloud
resources. That hasn’t been a big issue, but it’s important to use the right terms
when speaking to different teams and when selecting solution components. More
important than a different name are the exact capabilities of each component type.
The same type of component at different CSPs won’t have the exact same capabilities
or configuration parameters. It’s important to keep these differences in mind, as one
parameter can make a huge difference. In Table 8-4, we’ve listed some common
building blocks used in a CAD with their names per CSP.

Table 8-4. Public cloud resource naming conventions

Building block AWS Azure GCP IBM Cloud
Network segment
(VLAN)

Virtual Private Cloud
(VPC)

Virtual Networks (VNet) Google Virtual Private
Cloud (VPC)

Virtual Private Cloud
(VPC)

Direct connection AWS Direct Connect Azure ExpressRoute Google Cloud
Interconnect

Direct Link (Dedicated
or Connect)

Network peering
(between VLANs)

VPC Peering
Connections

Virtual Network Peering VPC Network Peering Transit Gateway

Network routes Route Tables Azure Virtual Network
Routing

Routes Route Tables

Private endpoint PrivateLink Private Endpoint Private Service Connect Virtual Private
Endpoint

Network ACL Security Group
(instance)

Network ACL (subnet) Network Security Group Firewall

Now there are, of course, more differences than just the resource names. Every CSP
has its own particularities and constraints. All publish best practices and reference
architectures that you should review in detail. We made a summary in Table 8-5 of
some best practices from the CSPs about network design as an example, but you can
also find information on other aspects of the solution on their websites. In Chapter 9
we provide more information on these best practices.

You’ll see that for the same use case, the CSPs might come with different approaches
and patterns. At the network level, there isn’t a one-size-fits-all approach. A standard‐
ized approach among different CSPs could be more easily achieved at the platform
level, for example, using Red Hat OpenShift as the compute platform in all the
different instances (cloud and data center).

280 | Chapter 8: Infrastructure Security

Table 8-5. Public cloud network design

Solution topic AWS Azure GCP IBM Cloud
Overall network
structure

Combined model
with a VPC per
group of workloads

Hub-spoke architecture VPC networks are
global resources
spanning multiple
regions

In a region where a VPC can
span an MZR, the attachment
of resources will take place on
one of the subnets in the VPC.

North-south
traffic and east-
west traffic

A central Ingress VPC
and a central Egress
VPC

All ingress and egress
internet traffic goes
through hub

Internet traffic via
dedicated VPC; east-
west traffic via a
shared VPC

The configuration of all ingress
and egress internet traffic will
take place to enforce the use of
the transit VPC.

Separation of
production and
non-production
environments

Most granular
segmentation:
Create an OU per
environment and an
account per
application

Most granular
segmentation is
achieved through
creation of a
subscription per
environment and per
application; a more
coarse-grained network
segmentation is, for
example, the set up of
a PRD subscription and
a non-PRD subscription

Environments are
represented as
Folders under an
organization.
Production resources
are separated from
non-production
resources in a
separate folder.

Multiple options for separation
including Cloud Accounts
within an Enterprise Account.
Resource groups can be used to
separate resources with Access
Groups or Trusted profiles to
grant access. VPCs can also be
used to separate workloads.

The development of the CAD may come from a different team, and as a security
architect, you will have contributed to it. You should keep in mind that realizing
an IT architecture in general consists of 50% technical activities and the other 50%
communication. The same applies to security architecture. If you create diagrams
like the examples used in this book, then these are the most important vehicles for
communication with other stakeholders. That’s true at the conceptual and logical
levels as well as at the technical level, for example, with this CAD. It will help you
explain the current solution, the future solution, the options for integration, and
other aspects of solution design. Without such diagrams, it will be difficult to have
an informed discussion with the different stakeholders. We’ll provide an example of a
CAD in the case study later in this chapter.

Now, thanks to the evolution of automation solutions, the CAD has another purpose
as well. Today, tools exist that can create deployment configuration files from this
diagram. That means that from the CAD, you could initiate the infrastructure setup,
configuration, and deployment of all the elements in the diagram. The prerequisite
is, of course, that the CAD has all the required configuration information and is
properly stored as metadata. The build process will take the information from the
CAD and adapt the configuration so the application complies with the company
standards and guidelines. Such a level of automation requires supporting processes
and governance to ensure all steps are clearly articulated with the required input and
expected output. Diagrams without additional metadata aren’t sufficiently detailed for

Cloud Architecture | 281

a fully automated deployment, but with the addition of sizing parameters, it’s still
enough for a SRE to configure the resources (or create the deployment files).

One of the benefits of using a cloud platform is the use of a multi-zone region
containing three or more zones to support high levels of availability. Let’s go on to
discuss how this affects the design of security.

High Availability
While availability is a critical aspect of a security solution, it’s, in many cases, not
addressed primarily by the security architects themselves. That doesn’t mean a secu‐
rity architect isn’t contributing to the high availability design, as the availability of
applications depends on the availability of security services. This is an important part
of the role of a security architect and requires continuous communication between all
solution architects. In this book, we won’t address this topic in a detailed way, but we
will provide a short overview of the possibilities in the public cloud.

Most public cloud service providers, if not all, provide, per region, three or more
availability zones. These zones are mostly in separate data centers in the same region
with high bandwidth and low-latency network connectivity. Figure 8-11 shows a
simplified view of a cloud architecture diagram to show the availability zones without
any compute nodes, appliances, or cloud services.

The cloud architecture diagram shows a hub-and-spoke solution with VPCs spread
over three zones in a multi-zone region. There needs to be the deployment of critical
components over the three zones for redundancy for both the hub and the spoke
VPCs.

Hub, Transit, and Edge Are Interchangeable

A hub is normally called a transit or edge VPC when it comes to
implementation.

282 | Chapter 8: Infrastructure Security

Figure 8-11. Simplified cloud architecture diagram; see the original diagram

If you need a web application firewall (WAF) appliance, you should deploy a WAF
instance in each of the three availability zones of the transit VPC. A load balancer
should then distribute the web traffic over the three WAF instances in the different
zones. In more sophisticated solutions, there will be multiple subnets per zone and
per VPC. Making use of the availability zones in a public cloud simplifies the avail‐
ability design, but it also requires good planning of the network zones and their
related IP address ranges.

Cloud Architecture | 283

https://oreil.ly/SAHC

We discussed in Chapter 5 the need for defining the availability of an application
through availability bands or “nines availability,” recovery time objective (RTO) and
recovery point objective (RPO). High availability is a design discipline on its own; the
higher the availability requirements, the more effort you will need during the design
and build phases to eliminate possible single points of failure. For example, with an
availability band of four nines, that’s something you could achieve within a single
region with three availability zones. To achieve five nines, you should deploy the full
application in a redundant way across two regions.

Consider All Availability Requirements

Keep in mind that the availability band is a key driver, but the final
solution will depend on the two other requirements related to high
availability: the RTO and the RPO that we discussed in Chapter 5.

For example, the process of restoring a database from object storage is slow, and if
you have a low RTO requirement, you will need a hot standby solution instead. An
RPO is difficult to achieve with just infrastructure, and the concerned application
may need to have rollback capabilities. These requirements also apply to the security
solutions you’re implementing to protect the application. Last but not least, if you’re
encrypting data, the loss of keys or other security-critical data could occur, so you
should design the solution to prevent such a situation.

Consider Solution Suitability for Cloud

Be careful in your product selection, as an on-premises security
solution may not be suitable to provide high levels of resilience in
a cloud context. For example, the solution may rely on underlying
networking capabilities not available in a public cloud. To validate
assumptions, get assurances from the product supplier on the spe‐
cific configuration and perform a proof of concept early.
Of course, the opposite is true. We have seen a solution that would
only boot on AWS and not in any other environment, as it relied on
the proprietary security features of the hypervisor.

The availability of the security services needs to meet or exceed the availability of
the protected workloads. Cloud-delivered security services can rely on availability
capabilities from the cloud, but when you are hosting your own security services on
premises, you also need to design the resilience characteristics.

284 | Chapter 8: Infrastructure Security

Another view on the required availability of an application is when it’s part of the
core business of the organization (so the application is part of a minimally viable
company). In such a case, you must review the cyber resilience capability of the
overall solution, including the supporting security solutions. How could it sustain
attacks like DDoS or ransomware? How can you protect it against these threats? How
will it recover from such a severe security incident where key infrastructure elements
are down or data gets lost?

The analysis of the cyber resilience capabilities for a given solution is sometimes part
of threat modeling, but more often this design aspect is a dedicated design activity
driven by the overall business continuity strategy plan and the related governance
execution.

Cyber Resilience Engineering

A great supporting tool for security architects is the Cyber Resil‐
iency Engineering Framework (CREF) Navigator, created by the
MITRE organization. It establishes a visual navigation between
CREF approaches and the mitigations from the MITRE ATT&CK
knowledge base. So the implementation of security controls could
serve two purposes: to mitigate threats and to improve cyber resil‐
ience.

Let’s continue with a look at developing a cloud architecture diagram with the case
study.

Case Study: Cloud Architecture Diagram
Let’s have a closer look at the cloud architecture diagram in Figure 8-12 for the case
study. A full cloud architecture diagram for the case study would be a very complex
diagram, so we selected just one aspect of the solution: zero trust network access
to the admin console of the Clean Air Guilford application for the staff and the
partners (for example, the Guilford Service Desk). This web-based admin application
isn’t accessible to the public, though it should be accessible from the internet in a
secure way.

Case Study: Cloud Architecture Diagram | 285

https://oreil.ly/mQl2d
https://oreil.ly/mQl2d

Figure 8-12. Case study cloud architecture diagram; see the original diagram

286 | Chapter 8: Infrastructure Security

https://oreil.ly/SAHC

The implementation of ZTNA implies the setup and configuration of three compo‐
nent types:

End-user device
Many ZTNA solutions require the installation of a specific agent on the end-user
devices. This is specifically for the staff of the organization, but agentless solu‐
tions do exist via a browser. The capabilities of agent-based versus agentless also
vary per product vendor, but they often provide a pre-authentication assessment
of the security posture of the device and user location.

ZTNA service provider
When the ZTNA vendor delivers their solution from the cloud, you will have to
make the necessary configuration changes so the service meets the needs of your
organization. It may also require opening the boundary security devices, such as
a firewall, to enable communication with the service provider.

Application landing zones
The landing zones where the private applications are running. That could be a
mix of on-premises and public cloud.

In the case study exercise, we only focus on securing public cloud. We assume that
the CAG application will run in a dedicated spoke, and the selected application
pattern is a typical three-tier approach:

1. A frontend web application running in a dedicated subnet for the administration1.
of the CAG application, only accessible by the staff and some partners.

2. A backend application in the second subnet that performs the critical data pro‐2.
cessing.

3. A data tier: the CAG application will access the databases available via the PaaS3.
capabilities from the CSP. The databases are accessible via private endpoints in
the spoke subnets.

In Figure 8-12 you’ll notice the following components to support the application:

ZTNA proxy
We planned the deployment of the ZNTA proxy, hosted on a virtual server, in a
redundant way over the three availability zones in the transit VPC. The ZTNA
proxy will establish an outgoing network connection to the ZTNA service for
the SASE provider, and the proxy will establish sessions to the CAG Admin web
application via a load balancer.

Load balancer
The load balancer manages the traffic between the ZNTA proxies and the CAG
Admin web application running in the CAG prod VPC in subnets 4, 5, and 6.

Case Study: Cloud Architecture Diagram | 287

CAG Admin web application
This administrator console is running on an OpenShift cluster in the CAG
prod VPC and deployed in a redundant way over the three availability zones in
subnets 4, 5, and 6.

The CAG backend application
The backend application is running on another OpenShift cluster in a dedicated
subnet in the CAG prod VPC in subnets 7, 8, and 9. In the same subnet as the
backend app are the private endpoints for a direct network connection to the
databases.

If you reflect back to the deployment architecture diagram in Figure 8-10, you will
see that trying to represent all the detail in a cloud architecture diagram would be
complex and would not fit onto a page. You could draw multiple viewpoints to show
a perspective of the application, or you could go directly to the specification of the
cloud architecture using automation.

Let’s move on to the conclusion of this chapter.

Cloud Deployment QA Checklist
• Review cloud services for their implementation of encryption in transit, mutual•

authentication, and automated rotation of certificates.
• Match the availability characteristics of the security solutions to those of the•

workload or application you are securing.
• Ensure the availability characteristics of the cloud services supporting security•

solutions.
• Check data flows for both primary and failover routes for protection.•
• Check all compute nodes have appropriate ZTNA agents and controls in place.•

Summary
In this chapter, we took you through the general steps of infrastructure design
and how the security architect plays a key role during this journey. A deployment
architecture takes the functional design as a starting point in a hybrid cloud context,
delivers the non-functional requirements, and makes technology choices based on
the blend of inputs. We also provided an overview of possible approaches to network
segmentation. The security architect will focus on the security-specific requirements,
leverage the outcome of the threat modeling activity, and apply the zero trust princi‐
ples where feasible and needed.

288 | Chapter 8: Infrastructure Security

We’ve seen the importance of spending a significant effort on zero trust, with an
overview of the most common solutions and a deep dive into ZTNA. We’ve extended
the technique we developed for the deployment architecture and integrated the threat
modeling we first performed for the component architecture. Research and develop‐
ment are ongoing for the integration of zero trust thinking into compute platforms,
both for on-premises data centers and in the cloud. As a security architect, you need
to monitor this emerging technology area.

A cloud architecture for the public cloud introduces many additional concepts that
add complexity, including the idea of an MZR to enable applications to be highly
available. Like in the other chapters, we used the Clean Air Guilford case study to
show you a possible approach based on the techniques from the chapter.

Building architectures from a blank sheet of paper isn’t the most effective way of
developing an architecture. There are many best practices and heuristics included
in standard architecture patterns that will be missed, leading to insecure solutions.
Building our solutions from architecture patterns enables us to accelerate the archi‐
tectural thinking process and improve confidence in the effectiveness of the solution.
In the next chapter, we will provide you with an overview of architecture patterns and
approaches that you can use as a starting point or benchmark for your solutions.

Summary | 289

Exercises
1. The architectural thinking technique of placing a functional component onto the1.

chosen compute node is called __.
a. Hostinga.
b. Deploymentb.
c. Identificationc.
d. Categorizationd.

2. What documentation would be an input to support the definition of a deploy‐2.
ment architecture diagram?
a. Storage designa.
b. A shared responsibility diagram or tableb.
c. Node descriptionc.
d. System contextd.

3. What documentation should be created to help further describe a deployment3.
architecture diagram?
a. Network designa.
b. Non-functional requirementsb.
c. Architectural decision recordsc.
d. Current IT environmentd.

4. Which key artifact is needed as an input when architecting for compliance?4.
a. Non-functional requirementsa.
b. A shared responsibility stack diagramb.
c. A threat modelc.
d. System contextd.

5. In compute node to compute node communication, what are the types of trans‐5.
action flow that need to be considered?
a. Transaction flows triggered by human and system actorsa.
b. Transaction flows triggered by system eventsb.
c. Transaction flows triggered by threat actorsc.
d. Transaction flows triggered by the cloud service providerd.

290 | Chapter 8: Infrastructure Security

6. Deployment across many compute platforms is assisted using what artifact?6.
a. A component interaction diagrama.
b. A shared responsibility diagram or tableb.
c. A component architecture diagramc.
d. System contextd.

7. A zero trust network access (ZTNA) solution is a more secure remote access7.
solution than a virtual private network (VPN) because _____. Select all that
apply.
a. It uses more advanced encryption algorithms.a.
b. Identity and access policy enforcement occurs before establishing the networkb.

connection.
c. It inhibits malware lateral movement between end-user devices and targetc.

systems.
d. It isolates internal enterprise applications from the internet.d.

8. What are the different domain levels that you should consider for cloud security?8.
Select all that apply.
a. Enterprise levela.
b. The cloud service provider (CSP)/landing zone levelb.
c. Application and continuous integration (CI)/Continuous deployment (CD)c.

level
d. Operations leveld.

9. True or false: An on-premises software solution architecture will always work in9.
a cloud environment.
a. Truea.
b. Falseb.

Exercises | 291

CHAPTER 9

Architecture Patterns and Decisions

As a security architect, you won’t create a security architecture from a blank page;
that would be a rather exceptional case. Luckily, there are a lot of sources of informa‐
tion you can reuse to create or update the security architecture you need. One of
the artifacts you would be looking for most are security-related architecture patterns.
These patterns will give you a kickstart when creating a security architecture. You
should save valuable time when making use of such patterns, and you’ll get the
assurance that the pattern will deliver the expected functionality because someone
has tested it before.

In this chapter, we first take a closer look at the term “pattern” itself. What do we
mean by the term pattern, and is there a definition for it? Next, we will review
what kinds of security pattern types exist and direct you to or show you some
examples. We’re then going to talk through layers of core security design patterns
that demonstrate the need for patterns written as code for automation of the solution
deployment using deployable architectures.

The next topic in this chapter is one that’s close to the authors’ hearts and fundamen‐
tal to architectural thinking: architectural decisions. In general, IT architecture is
created under time pressure. The shorter duration of development sprints for some
projects doesn’t leave much time for solution architects and security architects to
create detailed documentation. You’ll have to make some choices on which type of
artifacts you’ll work on and what their level of detail should be. No matter how little
time you have as a security architect, you should always prioritize the documentation
of architectural decision records. You should record the choices you make during
solution design. You’ll learn more in this chapter about why it’s the most important
artifact and how you should document your decisions.

293

Both patterns and architectural decisions will be key elements you’ll rely on during
the design of security architectures; hence, we grouped these two topics in this
chapter.

Chapter Artifacts
The artifacts described in this chapter are either inputs to your security architecture,
deliverables you’ll create, or both (see Figure 9-1).

Figure 9-1. Architecture patterns and decisions chapter artifacts

294 | Chapter 9: Architecture Patterns and Decisions

Let’s walk through the list highlighted in Figure 9-1:

• Architecture patterns are typically inputs that you’ll leverage with the goal of•
speeding up the design of your solution architecture as they enable you to apply
proven best practices. Sometimes, your final result might be a new pattern for
possible reuse in your organization and even something to share with a wider
audience.

• Based on the examples in this chapter, you’ll notice that there are patterns•
available for various artifact types. In the solution architecture domain, you’ll be
looking for the availability of both deployment architecture diagrams and cloud
architecture diagrams as possible patterns supporting your solution.

• A similar type of artifact is the deployable architecture. These artifacts are auto‐•
mation patterns derived from architecture patterns, which you can deploy with
minimal configuration changes. These types of patterns are common in a public
cloud context. Also here, a deployable architecture might be one of the artifacts
created as part of the project; hence, you’ll find it back on the artifact dependency
diagram as both input and output.

• Last but not least, there is the document or repository where you maintain the•
architectural decisions.

Before we start exploring the security-specific patterns, let us begin with a better
definition of a pattern in an architectural context.

Architecture Patterns
The best place to explore for the definition of an architecture pattern is the TOGAF®
Standard from The Open Group®. TOGAF® is the most prominent enterprise archi‐
tecture standard as it sets the standards, methods, and taxonomy. You can consult the
Standard’s chapter about architecture patterns.

The standard has the following description:

In the TOGAF Standard, patterns are considered to be a way of putting building blocks
into context; for example, to describe a re-usable solution to a problem. Building
blocks are what you use: patterns can tell you how you use them, when, why, and
what trade-offs you have to make in doing so. Patterns offer the promise of helping
the architect to identify combinations of Architecture and/or Solution Building Blocks
(ABBs/SBBs) that have been proven to deliver effective solutions in the past, and may
provide the basis for effective solutions in the future.

This description helps us to better understand what a pattern means in the context
of IT and enterprise architecture. You can easily find more definitions for patterns,
though the emphasis on certain pattern attributes will vary based on the context and
the goal of the pattern.

Architecture Patterns | 295

https://oreil.ly/EdVO5

Another viewpoint on patterns comes from The Hillside Group, who refer to an
introduction from Brad Appleton called “Patterns and Software: Essential Concepts
and Terminology” using Jim Coplien’s criteria for a good pattern:

It solves a problem.
Patterns capture solutions, not just abstract principles or strategies.

It is a proven concept.
Patterns capture solutions with a track record, not theories or speculation.

The solution isn’t obvious.
Many problem-solving techniques (such as software design paradigms or meth‐
ods) try to derive solutions from first principles. The best patterns generate a
solution to a problem indirectly—a necessary approach for the most difficult
problems of design.

It describes a relationship.
Patterns don’t just describe modules, but describe deeper system structures and
mechanisms.

The pattern has a significant human component.
All software serves human comfort or quality of life; the best patterns explicitly
appeal to aesthetics and utility.

You’ll notice the focus on the applicability and practicality of the pattern in the
context of software development.

Most of the patterns in IT focus on the functional aspect of a given solution architec‐
ture, like the functional components of an application to support a business process.
Such a pattern will probably have little content that describes the required security
solution, and you have two principal choices to include security:

Integrate
Integrate the security into the existing pattern for the workload so you can add
the security measures at the right place in the pattern. Also, you should add both
the descriptions for the security components integrated into the documentation
for the workload components and the security-specific ones that you’ve added.
The result could possibly become a new pattern or an improvement to the
original one once you have been able to deploy and test it.

Overlay
Overlay the security components on the existing pattern as an extra layer and
document the security-related information in a separate document. This may
happen if you don’t have enough time to update the pattern. While this might
work for one project, it probably won’t be something that’s ready for reuse
outside the project, and there is a risk that it’s not maintained to match the

296 | Chapter 9: Architecture Patterns and Decisions

https://oreil.ly/glDek
https://oreil.ly/TEHEY
https://oreil.ly/TEHEY

changes made to the underlying solution. This approach, where security still gets
handled as an afterthought, is clearly not the preferred solution, yet sometimes
it could be the most pragmatic one. We mention it here for the sake of complete‐
ness.

In Chapter 2, we described the different types of security-related architecture activi‐
ties, including enterprise architecture and solution architecture. We’re going to focus
on solution architecture patterns in this chapter.

Solution Architecture Patterns
This is the core topic of this chapter. When you review all the activities needed
to build a security architecture as part of the solution architecture process, you’ll
identify patterns that could accelerate the building of your security architecture. You
have probably also seen that there are many other sources of information besides
patterns. It’s your responsibility as a security architect to identify and select the
sources of information you need.

In an ideal situation, the most relevant security patterns for your organization are
already available from a repository maintained by an enterprise security architecture
team. For solution architecture teams, security patterns that contribute to a secure
design could be, for example:

• Authentication for customers accessing internet-facing web applications•
• Product implementation patterns from the vendors•
• Cloud deployment patterns from the CSPs•
• Secure configuration of a Kubernetes cluster set up in the data center•

So a pattern describes the solution for one specific security aspect, like authentication,
or addresses security in a more holistic way for a given context (a cluster, a landing
zone, etc.).

CSPs are an important source for security patterns. While these patterns are a very
good base to start with, you should adapt them to the needs of your organization. The
cloud governance model of your organization should include the necessary processes
to adapt the vendor patterns, and the cloud center of excellence team should publish
the updated patterns in repository for reuse by the DevOps teams. You’ll read more
about this in Chapter 10.

As the CSPs are updating these web pages continuously we can’t provide an up-to-
date list. The kind of sources for CSP patterns that you should look for are: their well-
architected framework, the related reference architectures, and the security-specific
patterns. Following are some examples from the CSPs; for the most recent versions,
you should consult their websites.

Architecture Patterns | 297

Well-architected framework
As a starting point, CSPs offer a set of principles, practices, and guidance for the
effective development of a cloud architecture to support workloads. CSPs usually
call this a well-architected framework, and it’s organized using domains aligned to
non-functional requirements such as:

• Security and compliance•
• Resiliency and availability•
• Operations and service management•
• Performance and scalability•
• Financial operations•
• Sustainability•

These may contain design patterns for adoption in the development of solution
architectures.

Reference architectures
CSP reference architectures are normally solution architecture patterns that sup‐
port specific cloud workloads based on a set of environmental assumptions with
specific architectural decisions. They may have options to support variations of
workloads.

Open Group TOGAF suggests that as a starting point, the table of contents of an
architecture pattern should include:

• Name•
• Problem statement•
• Context or applicability•
• Quality attributes•
• Solution description•
• Resulting context•
• Implementation examples•
• Rationale•
• Related patterns•
• Known use cases•

We suggest you supplement the information to meet your needs.

298 | Chapter 9: Architecture Patterns and Decisions

https://oreil.ly/k89DA

Deployable architectures
Deployable architectures are the next step in developing an architecture pattern
for cloud with automation to deploy a predefined reference architecture. Such
assets are available from CSPs, as well as from some security vendors. You get
the necessary scripts and templates to deploy the solution in your cloud environ‐
ment. It saves a lot of time and, even if you need to adapt it, it will be faster than
if you have to create the deployment scripts yourself. A deployable architecture
could be your starting point, as well as a deliverable of your project.

Each of the major CSPs host their own frameworks and architectures, as shown in
Table 9-1.

Table 9-1. CSP frameworks and architectures

CSP Well-architected framework Reference architectures or patterns
AWS https://oreil.ly/ttfDA https://oreil.ly/K6Z5t

Azure https://oreil.ly/XyzvX https://oreil.ly/8ah56

GCP https://oreil.ly/TkKQs https://oreil.ly/eLleA

IBM Cloud https://oreil.ly/XF7OK https://oreil.ly/ybbjL

We’ll talk more about deployable architectures later in this chapter. For now, let’s talk
about design patterns.

Solution Design Patterns
Solution architecture patterns describe a high-level view of a software system, show‐
ing the major components, whereas solution design patterns are lower-level for parts
of a system that aren’t a complete solution. Architecture patterns are often made up
of multiple solution design patterns that are the building blocks of an implementable
solution. You can implement architecture patterns by adding some context.

The development of architecture and design patterns has come from many years of
experience and provides best practices in the development of solution architectures.
We’re going to talk through some security solution design patterns and discuss some
architectural decisions that you will need to make as you develop your own solutions.

Each of these design patterns we discuss comes from a set of architectural decisions
shown in Table 9-2. Each of the decisions supports the separation of workloads for
risks relating to security and resilience.

Architecture Patterns | 299

https://oreil.ly/ttfDA
https://oreil.ly/K6Z5t
https://oreil.ly/XyzvX
https://oreil.ly/8ah56
https://oreil.ly/TkKQs
https://oreil.ly/eLleA
https://oreil.ly/XF7OK
https://oreil.ly/ybbjL

Table 9-2. Architectural decision records

ID Decision Rationale Implication
AD01 Segment the

application into as
many tiers as
components.

• Segmentation to the lowest level reduces the•
risk from lateral movement of attackers.

• The scaling of each network segment is•
independent and resources distributed.

Applications need to use
microsegmentation for separation
with access control lists at every
segment boundary to reduce attack
surface and reduce the risk of lateral
movement.

AD02 Separate each type of
development, test, and
production
environment.

• There is a reduction in the risk that one•
environment interferes with another, such as if a
component in development isn’t fully secured.

Create an environment for each
stage of the development, test,
and production stages with each
containing the n-tier application (as
needed).

AD03 Centralize external and
internal network inter-
connection.

• Reduces duplicate security components that•
would increase cost and complexity.

• Simplifies network security with centralized•
policy.

• Makes it easier to detect and respond to security•
incidents.

Create a network segment containing
a network security appliance to secure
all north-south traffic.

AD04 Separate operations
and management
workloads from
business workloads.

• Management workloads often have privileged•
access across many workloads and need
isolating and additional controls as they span
workloads.

• Ensures that system admins can only gain access•
to workloads via infrastructure that controls and
records all actions.

Create a network segment hosting
systems management components.

AD05 Use components for
test/dev environments
separate from
production
environment.

• Changes in the test/dev environments must not•
impact production environments.

• This reduces the risk of attackers jumping from•
dev/test to production environment.

• Separate dev/test and operations teams•
supports separation of duties.

Create dedicated transit and
management VPCs separating dev/
test and production workloads.

We’ll now talk through each of the design patterns derived from these architectural
decisions. These are decisions that you may wish to record for your organization.

300 | Chapter 9: Architecture Patterns and Decisions

N-tier applications
The 3-tier application architecture pattern has been around since the late 1980s as an
expansion of client/server architecture, splitting server functions into presentation,
application, and data tiers, as shown in Figure 9-2. Each of the tiers has its own
compute platform to scale independently, with the components separated by firewalls
to protect sensitive data from attackers.

Figure 9-2. 3-tier application

It worked for simple applications at the time, but the cloud has introduced additional
components such as global and local load balancers, streams for buffering data
and messaging, and many data sources. Each provides additional resilience and
performance benefits but with that comes added complexity. We ended up with
n-tier applications from architectural decision record AD01, resulting in the example
architecture shown in Figure 9-3.

Figure 9-3. N-tier application

The example n-tier design pattern is the foundation for many cloud applications or
workloads. It requires many interconnected network segments and cloud services, all
of which require security. The network segments and services are likely to be different
for each application. Each stage of development will require a copy of the n-tier
pattern.

Architecture Patterns | 301

Route to live environments
We don’t develop, test, and run production on one instance of an n-tier pattern; we
create a sequence of environments that have a different purpose and with isolation
from each other. It’s likely some earlier environments were insecure at some point
during their lifetime, as that’s the nature of development.

This sequence of environments has many different names, such as “Route to Live,”
“Route to Production,” or “Path to Production.” They all follow the same principle
with a sequence of environments with copies of the n-tier architecture in each
environment. We therefore made the architectural decision record AD02, resulting in
the architecture shown in Figure 9-4.

Figure 9-4. Route to live

Each of the environments will have an assigned purpose and include different tools
to support the stages of development, testing, and production. To ensure rapid build
and configuration of the environments, you’ll need to build the environments using
automation. We’ll talk more about the importance of automation later in this chapter.

We’ve now discussed the route to live and n-tier architecture used to host the primary
workload and need to add the supporting infrastructure into the picture.

Hub and spoke
So far, our workloads aren’t set up to support external communication or manage‐
ment of the workloads. This is where we come onto the hub and spoke architecture
from architectural decision records AD03 and AD04, resulting in Figure 9-5.

302 | Chapter 9: Architecture Patterns and Decisions

Figure 9-5. Hub and spoke

In this diagram, the hub is known as the edge or transit VPC and the spokes are the
workload VPCs. Let’s discuss each of the building blocks on the diagram:

Workload VPCs
The workload VPCs in this diagram represent both the route to live and n-tiers
of the application. It’s getting all too complex, which is why we simplify the
picture at this point for the workloads as our focus is on what supports the
workloads. The workloads need connectivity to external systems and operations
management.

Point of presence (PoP)
The PoP is a network data center that’s a concentration of different networks,
including public internet connectivity and private connectivity to SaaS providers
or other data centers, including cloud data centers. The network data centers
are normally owned by a third-party network provider who also owns global or
national backbone networks.

Edge/transit VPC
The edge, or transit, VPC provides the interface between the workload VPCs and
the external networks or other cloud accounts. North-south traffic contains the
network connections that pass in and out of the cloud account. This VPC will
contain a security appliance or firewall that controls the traffic in and out. For
in-bound application traffic this may be a web application firewall (WAF), and
for outbound traffic there may be data loss prevention (DLP) capability to detect

Architecture Patterns | 303

and block exfiltration of sensitive data. We’re not going to discuss the capabilities
in-depth but have discussed the architectural principles.

The hosting of the transit VPC may be in the cloud, but hosting may also
take place in a POP network data center or the on-premises data center of an
organization. These other locations enable the sharing of network protection
and monitoring of applications that may span CSPs and on-premises. Don’t just
assume hosting of the transit VPC in the cloud, as there are alternatives. Even if
the transit VPC is in the cloud, it’s worth recording an architectural decision to
validate the decision among the team.

Independent Security Appliance

Security appliances built into the cloud platform could potentially
use the same technology as the VPC. For this reason, some organi‐
zations prefer to use NextGen firewall technology from providers
independent of the cloud platform. This provides defense in depth
with a mix of cloud VPC and independent security technology. On
the other side of the argument, smaller organizations that don’t
have specialist security skills may be better off using cloud technol‐
ogy, as it’s easier to administer.

Management VPC
The management VPC hosts the set of development, testing, operations, service,
and security management tooling used to support the development and opera‐
tion of the cloud workloads. The management VPC is different from the work‐
load VPCs in that it connects to multiple workload VPCs and environments. It
needs careful design of the networking and management workloads to ensure
threat actors can’t use them to jump to other workloads. Given the diverse set of
tools, it’s likely that an organization will split the management VPC into multiple
VPCs, each managed by a dedicated team providing operations support.

IaaS/PaaS services
At the bottom of the diagram, we show the cloud native IaaS and PaaS services
for the workloads in the different VPCs to consume.

You should apply this pattern to all your workloads in the cloud, and you will have
seen we already used these design patterns in Figure 8-7.

However, there are still single points of failure.

Resilient hub and spoke
In the previous pattern, we saw the sharing of the transit VPC, PoP, and management
VPC between development, testing, and production. A change or failure in any
of those shared components for testing and development may cause a failure in

304 | Chapter 9: Architecture Patterns and Decisions

the production component. For a resilient infrastructure, we need to fully separate
development and testing from production, so we made the architectural decision
record AD05, resulting in the architecture shown in Figure 9-6.

Figure 9-6. Resilient hub and spoke setup

In this pattern, we’ve split the transit VPCs and management VPCs into two so
that changes made to the dev/test environment can’t impact production and there is
resilience with the POPs.

Changing Design Patterns

We chose this set of design patterns to show the challenges of
securing an enterprise at scale. The field is changing rapidly, and
we suggest you keep abreast of the latest practices. There are
many other books that discuss design patterns and architectural
decisions, such as Hybrid Cloud Security Patterns, which provides a
good starting point for hybrid cloud security patterns.

You’ll notice we’ve not included all dimensions in each diagram, only the perspectives
necessary to demonstrate a design pattern. How do we draw diagrams for a large-
scale enterprise environment?

Architecture Patterns | 305

https://oreil.ly/qbAn7

Scaling for the enterprise
We need to think about how architecture and design patterns scale in an enterprise,
as they can become unmanageable without some planning. At the lowest level, we
need to define multiple rules for each access control list (ACL).

Let’s start with a few calculations. If we have an organization with 100 applications
and they have eight tiers on average, they have four environments for their route to
live: development, testing, staging, and production. At each tier, there is one ACL and
the average number of rules is 20. Let’s calculate the number of ACL rules:

100 applications × 8 tiers × 4 environments × 20 rules = 64,000 individual ACL rules

This is a very simple calculation for a medium-sized business using the cloud, and
there will be many more rules needed in the firewall at the edge. Many of the
rules will be standard patterns, and when we change one rule in an ACL, we will
have many more to change. This is why we discussed the need for policy-based
management in Chapter 2, where a change to the policy would make a change to all
instances of the same ACL.

At this point, there are two challenges:

• A single diagram won’t scale to represent this complexity.•
• The security configuration can’t be effectively managed using manual processes.•

This is where an architect needs to bridge into being an engineer and use automation
to describe the architecture. Let’s move on to discussing deployable architectures.

Deployable Architecture
We always say that documentation is good but given the complexity, there is a need
for automation to describe the solution. Architecture diagrams aren’t able to describe
the complexity of the solution. This is where we move into the engineering of the
deployment architecture diagram using automation. This code that describes the
architecture is a deployable architecture, which is sometimes called a landing zone.

Automation for deployable architecture uses three main components:

• A distributed version control system (DVCS)•
• A continuous integration/continuous delivery (CI/CD) pipeline•
• An infrastructure as code (IaC) toolchain•

Let’s discuss each of these components.

306 | Chapter 9: Architecture Patterns and Decisions

A Distributed Version Control System
A DVCS is a tool for software development that manages the lifecycle of a repository,
which includes code, other text files, and images. Each developer receives a copy
of the code to work on, which is then version-controlled and merged into a single
codebase. This allows developers to work together to create code for projects. In this
case, the code will define the automation needed to deploy the specified deployment
architecture.

Git is a widely used DVCS tool providing a source code repository that’s used as the
single source of truth for the storage of infrastructure configuration and deployment
commands. The tooling enables collaboration while maintaining control over the
code. Git is often wrapped in a SaaS application, such as GitHub and GitLab, to
provide a user interface supporting collaboration.

Reading for Git

For Git, we suggest some further reading in Learning Git by Anna
Skoulikari and Head First Git by Raju Gandhi (both O’Reilly).

Continuous Integration/Continuous Delivery (CI/CD) Pipeline
A CI/CD pipeline provides the automation to build, test, and deploy code through
the different development, test, and production environments. One key responsibility
of the pipeline is to ensure the quality of the code, including scanning for misconfigu‐
rations and vulnerabilities that may impact the security of the code.

The pipeline begins with the CI process bringing code together from the different
developers using a DVCS tool, such as Git. This frequent integration by the different
developers reduces the divergence of code and makes integration easier. It goes on to
support testing the code through automation, enabling the rapid fixing of issues. The
CD stage of the pipeline then takes the validated code stored in the Git repository and
passes it on for deployment using the IaC toolchain.

There are a large number of tools to choose from to automate the CI/CD pipeline,
such as Jenkins, Tekton, and Travis CI.

Infrastructure as Code Toolchain
Infrastructure as code (IaC) is the process of managing and provisioning infrastruc‐
ture resources through code rather than a manual process. In effect, the code
describes the architecture of the solution you would like to deploy. The files are in a
text format that’s easy to edit, and they enable you to document a precise specification
of the solution architecture.

Deployable Architecture | 307

https://git-scm.com
https://github.com
https://oreil.ly/YyKWT
https://oreil.ly/da-za
https://oreil.ly/zsqrJ

The IaC deployment code is either declarative or imperative. Declarative code docu‐
ments what the end state of the deployable architecture should be. The tooling will
understand the current state of the infrastructure and automatically work out what
needs to change between the current and required states. Imperative code documents
how the provisioning of the deployment architecture to the infrastructure will take
place. The code contains a set of commands to perform the deployment. Tooling used
for automating infrastructure deployment will normally operate in both modes but
have a preference for one.

Popular IaC automation solutions include Chef, Puppet, Red Hat Ansible, Terraform,
and AWS CloudFormation.

Reading for IaC

For infrastructure as code, have a read of Infrastructure as Code by
Kief Morris, and for Terraform, look at Terraform: Up and Running
by Yevgeniy Brikman (both O’Reilly).

Using a Deployable Architecture
We’ve discussed the components used for automating deployable architectures, and
earlier we discussed the availability of reference architectures. Figure 9-7 shows how
this all comes together.

Figure 9-7. Deployable architecture components

The documentation of a deployable architecture in a catalog will include a reference
architecture with code for automated deployment. You will be able to clone code for
storing in your DVCS repository, where you can customize it to meet the needs of a
specific workload. A CI/CD pipeline can pull the automation for testing before pass‐
ing onto the IaC tooling for deployment. We’ve used GitHub, Tekton, and Terraform
tooling in this example.

308 | Chapter 9: Architecture Patterns and Decisions

https://oreil.ly/-67Qo
https://oreil.ly/cJFEF

Major CSPs provide deployable architecture or landing zone catalogs including AWS,
Azure, GCP, and IBM Cloud.

Book CI/CD Pipeline

We used the same automation principles for continuous integration
and continuous deployment of this book and the book companion
website, but we’re building a book and a website, not a cloud
infrastructure.
We wrote the book in AsciiDoc and it’s stored in a private GitLab
repository with automation to build the book into an EPUB and
PDF document.
We wrote the book companion website in Markdown, with exten‐
sions, and stored it in a private GitHub repository with automation
to generate a GitHub Pages site using Material for MkDocs.
If you haven’t used Git or Markdown before, have a go at building
a Material for MkDocs website using GitHub. It’s a great way to
learn the underlying principles of using Git to write architecture
documentation before you have a go at IaC.

Let’s move on to the core of architectural thinking, making architectural decisions.

Architectural Decisions
When developing an architecture, we make many architectural decisions about the
design of architecture components, such as high-availability approaches, authentica‐
tion mechanisms, protocols, etc. Those decisions can have significant immediate and
future consequences, for example, additional costs or constraints on the ability to
extend the solution in the future.

You should document all architectural decisions in architectural decision records
(ADRs) whenever a decision has an impact on a solution’s fundamental structures.
This is what we call a decision with architectural significance. Because of the signifi‐
cance of the decision, specifically its consequences, it’s important to have documented
traceability.

Architectural Decisions | 309

https://oreil.ly/QbHCA
https://oreil.ly/Sgcfr
https://oreil.ly/ViwaJ
https://oreil.ly/y4-7r
https://securityarchitecture.cloud
https://securityarchitecture.cloud
https://asciidoc.org
https://www.markdownguide.org
https://pages.github.com
https://oreil.ly/sfJWf

New team members might join the project or you might inherit a solution from
someone else, and you will find it beneficial to understand why someone made a
decision and the alternatives considered while making the decision. It can avoid
revisiting the decision many times over the duration of a project and result in better
decisions. This encourages improved stakeholder participation and helps remove
emotion from contentious decisions.

Removing Emotion from Decisions

Often, there will be a decision on a project where the arguments for
one side or the other can get heated. The decision-maker may be
a senior leader or a client, and you believe the decision should be
something else. Sometimes the emotion surrounding the decision
is due to the decision not being fully considered or communicated.
Writing the discussion down as an architectural decision can help
better communicate the options with benefits and drawbacks.
Even if the decision goes against what you believe, the person who
made the decision is now accountable for the outcome. Remember,
we all have to sometimes take a risk and make decisions based on
incomplete information. It’s our job to communicate effectively for
others to make those decisions.

Recall the definition from Grady Booch we discussed earlier in Chapter 2 that “archi‐
tecture represents the set of significant design decisions.” During the development of
the design documentation, we frequently make decisions that aren’t significant due to
their low change impact and don’t need detailed documentation.

Everyone involved in the architectural process can make or propose architectural
decisions. A design authority is a group where a domain architect will propose an
architectural decision for approval by leading architects in the organization. It’s good
practice to document who was part of the decision process and finally sign off on the
decision.

Documenting Architectural Decision Records
To enable a sound decision and to allow for enough traceability in the future, the
ADR should include relevant information when you document it. In Table 9-3 we’ve
listed the most important elements for an ADR.

310 | Chapter 9: Architecture Patterns and Decisions

Table 9-3. Architectural decision record
Subject area The area of concern

Decision title Overall title of the decision

Description State the to-be decision as a question

Problem statement A short description of the problem

Assumptions What’s believed to be true about the context of the problem, constraint on the
solution

Motivation Why this decision is important

Alternatives Description Description of this alternative

Advantages Advantages of this alternative

Disadvantages Disadvantages of this alternative

Expected effort/cost Qualitative expression of the expected effort and/or costs

Decision The decision taken

Justification Justification for the decision taken

Consequences What impact the decision will have

Derived requirements A list of requirements derived from this decision

Related decisions A list of related decisions

You are likely to add other fields specific to the overall governance, such as who
drafted the ADR, who the approver is, the status of the ADR, and the approval date.

Not all decisions need this level of detail as they’re important but easy to understand
decisions, and therefore we suggest you use a short-form architectural decision
record, made up of a decision, rationale, and implication, as shown in Table 9-4. The
earlier table Table 9-2 contains additional examples.

Table 9-4. Short-form architectural decision record

ID Decision Rationale Implication
AD01 Standalone

NextGen
firewall

• We want to follow the defense-in-depth principle by using vendor•
technology and built-in cloud technology.

• The security operations team will use the technology they have the•
skills and experience to maintain.

• We can maintain separation duties with the security operations team•
running the NextGen firewall and the cloud platform team running
the VPC network security configuration.

• Complete onboarding•
process for the
NextGen firewall to the
security operations
team.

Architectural Decisions | 311

Forms of Architectural Decision
Architectural decisions can have a different scope and therefore impact depending
on where they’re made, such as at the organization level, program level, or within an
individual project. We suggest layering different types of architectural decisions that
have a different scope and impact, as shown in Table 9-5.

Table 9-5. Architectural decision scope

Scope Type of
decision

Discussion Example

Enterprise Architecture
guiding
principle

Architecture guiding principles guide the decision-making
process; they don’t make specific changes to the architecture.
The CXO level in the organization documents these principles
within the business or information systems strategy.

Managed Service before
Open Source before
Licensed Product before
Bespoke Solution.

Program Architectural
decision

A decision that’s made for an overall program will apply to all
project work streams. A design authority will make a decision at
the level of the program and keep a program log of architectural
decision records.

There is a preference for
agentless technology over
the use of an executable
agent.

Project Design decisions These are significant design decisions where the impact of the
decision isn’t outside the scope of the project. You will make
decisions within the project for recording within the solution
architecture documentation.

The system will use
an integrated security
appliance.

This provides a hierarchy of decision making across an organization. Guiding princi‐
ples should guide architectural decisions. Architectural decisions then need to either
demonstrate compliance with the principles or justify why they deviate from them.
We introduced guiding principles in Chapter 3.

We’ve a format for the decisions, but where should we record the ADRs, together
with an audit trail of decisions?

Managing Architectural Decisions
It’s good practice to document the ADRs in a common repository, where everybody
involved in making decisions can access them. In the past, the approach was to
record them in a document owned by the design authority “gatekeepers.” This often
slowed the process of decision making, and now projects are adopting more Agile
practices with a strong audit trail of discussions and changes. Here are a few ideas for
documenting ADRs:

Document or spreadsheet
The traditional way of documenting ADRs has been to record them in spread‐
sheets or documents with meeting minutes and document sign-off regarding
the agreement. This records a static point in time and often loses the important

312 | Chapter 9: Architecture Patterns and Decisions

discussions that take place. The documents are under the control of the docu‐
ment owner or formal governance board, which doesn’t encourage collaboration.

Kanban board
In an Agile environment, the use of tooling, such as a kanban board, often tracks
the state of the program and project ADR. There are kanban boards available
on tooling platforms such as Zenhub with GitHub or Trello to manage them
in different states. They start in the new decisions column, move to the design
authority review, and when approved, move to the decisions agreed, as shown in
the wireframe example in Figure 9-8.

Figure 9-8. Architectural decision records kanban board

The cards can record a history of discussion, changes, and decisions that form
an audit trail. At the speed required by the project, these discussions can occur
without the restrictions of a design authority. There will be some decisions that
need discussion by a design authority, but it allows a dialog to take place before
the meeting for a fast decision when everyone does meet.

However, this isn’t the best place to store a catalog of approved decisions that
are easily read. You may go back to the document approach, but a more recent
approach is the use of GitHub Pages.

GitHub Pages
Using a GitHub Pages site, a project is able to build documentation with tracking
of change through issues and pull requests. We find that combining Zenhub
for a kanban board and a static website such as Material for MkDocs enables
professional documentation with full lifecycle management of the content.

Architectural Decisions | 313

https://www.zenhub.com
https://trello.com
https://oreil.ly/sfJWf

A great source of information about ADRs is the ADR GitHub organization website.
The site has information on what’s a good ADR, tools for capturing decisions, and
many other references to written work on the subject of ADRs.

So how does this work in practice? Let’s use the case study to discuss the creation of
an architectural decision record.

Case Study: Architectural Decision
The project has been through several iterations of the solution when someone notices
there is an API gateway for API protection but nothing for Layer 7 application
security, such as a WAF. The lead application architect has asked the security architect
and the lead infrastructure architect for options.

The infrastructure architect is suggesting it’s not a problem, as he has used WAF
services from a security-as-a-service provider before. It can be easily enabled without
delay for the project.

The security architect is saying CAG must run its own WAF as the organization can’t
allow a third party to decrypt the TLS sessions for inspection because CAG has a data
protection obligation. The CISO team will need additional resources for the security
operations team, and there will need to be a delay to the go-live date.

The program manager asks two architects to write an ADR for review at the design
authority tomorrow. They came up with the ADR in Table 9-6 after discussing the
overall business risk with the project sponsor.

Table 9-6. Case study architectural decision record
Subject area Application security

Decision title Web Application Firewall Solution

Description Implementation and operation of a web application firewall are a balance of risk, cost,
and timescales.

Problem statement A SaaS service is easier to support and lower cost, but the service terminates the TLS
session for inspection, and there is a risk the SaaS supplier can use the decrypted
data for purposes other than intended. Whereas a WAF appliance built into the transit
VPC enables only CAG security staff to manage the device and ensures data isn’t
intercepted by a third party, but it will take too long to implement and CAG couldn’t
supply the resources.

Assumptions • There is a SaaS supplier available to support the type of workload required to meet•
legal obligations to protect sensitive data in the required timescales.

Motivation Using an appliance may exceed the project timelines and be beyond the skills of CAG
to manage.

314 | Chapter 9: Architecture Patterns and Decisions

https://adr.github.io

Alternative #1 Description WAF Appliance in Transit VPC

Advantages • Termination of TLS sessions takes place in networks controlled by CAG, reducing the•
risk that third parties can intercept sensitive data.

Disadvantages • Requires a team of around six skilled SMEs available 24×7 to provide support.•
• Requires the installation and testing of highly available WAF appliances.•
• The installation will take longer than the go-live date required.•

Expected effort/
cost

• Would require up to six skilled and experienced WAF SMEs for 24×7 support•
(including vacation and sickness)

Alternative #2 Description WAF as SaaS

Advantages • A specialist security team with extensive skills and experience can manage the WAF.•
• Easily set up through configuration.•

Disadvantages • Risk of the supplier being able to intercept unencrypted sensitive data•

Expected effort/
cost

• Lower costs to deploy and run•

Alternative #3 Description MSSP WAF Appliance in Transit VPC

Advantages • Termination of TLS sessions takes place in networks controlled by CAG, reducing the•
risk that third parties can intercept sensitive data.

Disadvantages • Reduced effort than an in-house managed appliance but will still require•
solutioning and ongoing management.

• Requires the installation and testing of highly available WAF appliances.•
• The installation will take longer than the go-live date required.•

Expected effort/
cost

• Would require monitoring of MSSP, including access to the device, to detect•
changes

• Would need investment to install, purchase a license, monitor infrastructure, and•
manage MSSP

Decision WAF as SaaS

Justification CAG doesn’t have the skills to support a WAF appliance; the cost would be higher for
an appliance, and implementation timescales for an appliance would delay go-live. A
risk assessment has determined that the lack of skills and experienced SMEs is a risk far
higher than the risk of third-party interception.

Consequences We will need to evaluate and contract a WAF SaaS supplier.

Derived requirements Add responsibility for solution architecture and delivery to CISO architects, and Day-2
ops support to the Security Operations team.

Related decisions None

Case Study: Architectural Decision | 315

In the end, the project sponsor, who is accountable for the business risk, decided
maintaining a team of six skilled SMEs wasn’t viable. Even if they did have the
resources, the maintenance would be so infrequent that the SMEs wouldn’t be able
to maintain their skills with such a low frequency of change. If there was an emer‐
gency, the team would be unlikely to handle the response fast enough. They decided
that there was a need for a third-party managed service from a specialist security
company.

They also determined that a delay to the project was unacceptable because there are
penalty clauses associated with the project delivery, and that it needs to be a SaaS with
simple configuration and not a WAF appliance. The sponsor agreed that a review of
the decision could take place after 12 months of operating the service.

The scenario we’ve discussed is common, with the security team asking for something
that’s not viable and can become a bigger security risk to the business. This is some‐
thing you will need to consider when architecting security for a system. Documenting
an architectural decision record enables the consideration of options and allows the
business sponsor to make a decision with an audit trail.

You may think the SaaS solution is the right one, but it’s still useful to document the
options you have ruled out in the event the service provider does intercept the traffic.
You aren’t responsible for making business-risk decisions. Allow the owner of the
business to make significant decisions. The ADR is an important artifact in the “kit
bag” of an architect for aligning an organization.

The updated deployment architecture diagram in Figure 9-9 highlights the WAF with
shading for the public internet traffic.

Note that the connection between the driver and the firewall now has a WAF. It’s
placed on the internet rather than the transit VPC because we made the decision to
use SaaS rather than an appliance.

Look out for a further update to the deployment architecture diagram in Chapter 11.

316 | Chapter 9: Architecture Patterns and Decisions

Figure 9-9. Deployment architecture diagram with WAF; see the original diagram

Case Study: Architectural Decision | 317

https://oreil.ly/SAHC

Architectural Decision QA Checklist
• Is there an existing architectural decision record that should take precedence•

over the one you propose to document?
• If you have made a significant choice in architecture, have you documented it in•

your architectural decision record?
• If there are multiple options that some might not agree with, then use the•

long-form architectural decision record.
• Ensure the review and approval of all architectural decisions is recorded in either•

the solution architecture document or the overall program architectural decision
records log.

• Have you documented the impact of the decision and raised any appropriate•
risks, assumptions, issues, or dependencies for the program? We will discuss a
RAID log in Chapter 10.

Let’s wrap up this chapter with a closing discussion.

Summary
We’ve talked about developing component, deployment, and cloud architecture dia‐
grams in previous chapters, and we discussed in this chapter that you don’t have
to start from nothing each time. The use of architecture and design patterns will
accelerate your architectural thinking with associated diagrams and architectural
decisions.

With the increasing number of environments to support route to live, n-tier architec‐
tures, and the separation of different applications into isolated network segments,
a single diagram is insufficient. You will need multiple architecture patterns and
diagrams to describe the solution but even then, it’s not specific enough. To effectively
specify the solution, we need to make use of deployable architectures or landing
zones documented through automation. This further accelerates getting solutions
into a production environment. As an architect, it’s becoming increasingly likely that
you will need to understand the engineering aspects of deployment architectures to
create or validate the detailed specification.

You will make decisions about how the components integrate together as you develop
your architecture, and you need to document these decisions to gain wide agreement,
reduce rework, and create an audit trail. Documenting architectural decision records
is an architect’s core artifact and technique. If there is one artifact you must document
as an architect, then this is the one.

318 | Chapter 9: Architecture Patterns and Decisions

Now that we’ve gathered the requirements and documented the architecture, we
need to consider how this integrates into the development lifecycle and the essential
project governance for the delivery of a solution architecture, including security.
Read on to the next chapter for a discussion about these topics.

Summary | 319

Exercises
1. In the TOGAF Standard, patterns are considered to be a way of putting building1.

blocks into context, for example, to describe _____.
a. A solution architecture for a problema.
b. A reusable solution to a problemb.
c. Solution architecture meeting requirementsc.
d. A reusable solution to mitigate threatsd.

2. What are the characteristics of a deployable architecture? Select all that apply.2.
a. It is based on a reference architecture or architecture pattern.a.
b. It is automation for the deployment of an architecture pattern.b.
c. It uses a set of best practices, principles, and guidance.c.
d. It can be deployed without changes on any cloud platform.d.

3. True or false: A solution design pattern can be deployed as a complete, reusable3.
solution to a problem.
a. Truea.
b. Falseb.

4. True or false: A 3-tier architecture pattern is found in a cloud environment.4.
a. Truea.
b. Falseb.

5. What are likely locations for an edge or transit virtual private cloud (VPC) in a5.
hybrid cloud architecture? Select all that apply.
a. In a cloud environmenta.
b. In a point of presence (PoP) network data centerb.
c. In an on-premises environmentc.
d. In a co-lo data centerd.

6. What dimensions define the complexity of security rules for a cloud enterprise6.
architecture? Select all that apply.
a. The number of tiers in each applicationa.
b. The number of applicationsb.
c. The number of environments in the route to livec.
d. The number of security rules per hostd.

320 | Chapter 9: Architecture Patterns and Decisions

7. What are the essential parts of a simple architectural decision record? Select all7.
that apply.
a. Decisiona.
b. Rationale/motivationb.
c. Implication/consequencesc.
d. Assumptionsd.

Exercises | 321

PART IV

Build

Once we’ve designed a solution architecture, we continue with the build phase by
considering the development lifecycle from DevOps to DevSecOps and the impor‐
tance of security assurance in this process.

CHAPTER 10

Secure Development and Assurance

Throughout the course of this book, we’ve covered how to design a secure solution
based on the external and internal requirements of the solution as well as the threats
that it’s exposed to. With that we’ve addressed design with regard to the design-build-
run framework.

Automating major elements of the building process can significantly reduce the time
it takes development teams to go from design to production. In other words, we’re
getting newly developed functionality into production at a much quicker rate, which
is a pretty good outcome. Because these automated processes eliminate a significant
amount of manual gatekeeping, the likelihood of a vulnerable solution and the proba‐
bility of the introduction of insecure code into production increases.

In this chapter, we will discuss how we can overcome this challenge by incorporating
security measures into the development and building process.

Chapter Artifacts
We will discuss the development and assurance processes in order to determine what
kinds of security tests and assurance measures we ought to incorporate into the
process and whether or not it’s even possible to do so. We’re documenting the results
of this in the test strategy and plan artifact as outlined in Figure 10-1.

The risks, assumptions, issues, and dependencies (RAID) artifact is where we will dis‐
cuss how we can document and manage risks, assumptions, issues, and dependencies
not of the solution itself, but rather of the process or project that’s developing the
solution. But let’s first have a look at the software development lifecycle (SDLC).

325

Figure 10-1. Secure development and assurance chapter artifacts

The Software Development Lifecycle
Almost all information system architectures have components or elements that
require the development of code, be it the development of comprehensive applica‐
tions from scratch, the extension of existing software, developing automation scripts,
or infrastructure as code (IaC) configurations. In any case, we run through a set of
steps from the initial requirements until we have the intended functionality running
in production. These steps typically include analyzing the requirements, designing

326 | Chapter 10: Secure Development and Assurance

the solution architecture, coding and testing the functionality, and finally deploying
and operating the solution in a production environment. This is what we call the
software development lifecycle. The terms used for the different steps might differ in
your organization, but the idea behind it remains valid.

We’re, of course, interested in software that’s running in a production environment
with a broad range of vulnerabilities that have been reduced to an acceptable level
and remain at that level. Implementing a solution free from vulnerabilities is, in most
cases, not realistic.

We’ve worked with organizations that deploy and run solutions with vulnerabilities
with a low Common Vulnerability Scoring System (CVSS) score and without known
exploits supported by the Exploit Prediction Scoring System (EPSS). The traditional
approach to this is to have a security gate at deployment time where organizations
perform manual or automated security tests. These tests evaluate the solution’s vul‐
nerabilities and potential security gaps. However, this approach is time-consuming
and can lead to delays in the software release. Moreover, relying solely on a secu‐
rity gate at deployment time doesn’t ensure continuous monitoring and protection
against evolving threats. As a result, organizations are now turning toward integrat‐
ing security measures throughout the development process.

We also talk about a shift-left approach, as illustrated in Figure 10-2, with the objec‐
tive of identifying as many security issues as early as possible in the development
lifecycle.

Figure 10-2. Shift-left approach in the software development lifecycle

The later we detect security issues, the more costly and time-consuming they can
be to fix. By integrating security measures early on, organizations can identify and
address vulnerabilities before they become major risks. This shift-left approach not
only improves the overall security posture of the software but also saves resources
by reducing the need for extensive post-deployment security patches and updates. In
an ever-evolving threat landscape, it’s essential for organizations to prioritize security

The Software Development Lifecycle | 327

https://oreil.ly/mIB38
https://oreil.ly/jsgL4

from the beginning of the design and development process to ensure the protection
of sensitive data and the integrity of their systems.

This is the voice of a security professional, but in reality it’s easier said than done.
Security is often considered by the rest of the organization as friction in the system,
complicated, delaying, and difficult to understand; although everybody will acknowl‐
edge its necessity.

In Figure 10-3 we’re illustrating where the friction in the different software develop‐
ment practices occurs and what the impact of it is.

Figure 10-3. Waterfall versus Agile versus DevOps and the security friction

328 | Chapter 10: Secure Development and Assurance

Let’s go through each practice in more detail:

Waterfall
In the waterfall model, we operate with very siloed teams: developers, testers, and
operations. Each team has its own responsibilities, and there is often little collab‐
oration between them, making it difficult to address security concerns effectively.
As mentioned previously, security concerns are often first identified during the
testing phase. In addition, it takes many months to realign development that
has happened in a different context to operations. This can result in additional
development to add the operational hooks into the application to be ready for
production. The application may have been developed on a different build to
the one that’s supported. Either development needs to change or operations need
to change. Either way it takes significant time as the application needs to be
regression tested, increasing the friction.

Agile
The Agile model following the Agile Manifesto reduces friction by introducing
multidisciplinary teams that include developers, testers, and operations working
together throughout the entire development process. This allows for regular
communication and collaboration, which helps in identifying and addressing
security concerns early on. The development cycle is in the dimension of months
and weeks. Any remaining frictions will have a visible impact on the velocity of
the team.

DevOps
The DevOps model removes the remaining friction between development and
operational teams by introducing a high degree of automation. By automating
tasks like provisioning, configuration management, and deployment, the DevOps
model enables development and operational teams to work seamlessly together.
This automation not only saves time and effort but also reduces the chances of
human error. Additionally, the DevOps model promotes a culture of continuous
integration and continuous deployment, allowing for faster releases and quicker
feedback loops. Test-driven development is a common approach that focuses
on writing tests before writing the actual code, which helps to improve code
quality and results in faster development cycles and better collaboration between
developers and testers. As a result, the velocity of the team increases, and it can
identify and resolve issues more efficiently, leading to improved security and the
overall success of the project.

The Software Development Lifecycle | 329

https://oreil.ly/KmoyF

We recommend reading The Phoenix Project by Gene Kim,
Kevin Behr, and George Spafford, as well as The Unicorn
Project by Gene Kim (both IT Revolution Press), where the
authors describe the benefits of DevOps in an illustrative way.
The same authors have also released The DevOps Handbook
(IT Revolution Press).

We’ve now separately introduced the concepts of Waterfall, Agile, and DevOps. In
practice, teams often apply, for example, Agile and DevOps in a complementary way.

DevOps focuses on removing friction and automating the software development
process; integrating security throughout the process transforms DevOps into DevSec‐
Ops. In the next section we will discuss what makes up the Sec in DevSecOps.

From DevOps to DevSecOps
A DevSecOps approach ensures that security measures aren’t an afterthought but
rather an integral part of the software development lifecycle. This approach allows for
the early identification and mitigation of potential security vulnerabilities, reducing
the risk of security breaches. With DevSecOps, security becomes everyone’s responsi‐
bility, fostering a culture of collaboration and accountability among developers, oper‐
ations teams, and security professionals. DevSecOps is a collaboration of technologies
and different teams, as illustrated in Figure 10-4.

Often underestimated is the human side of the development process. Some might
think it’s the security team that’s responsible for the security of the developed code,
but we’ve worked with organizations with thousands of developers while the security
team has only a handful of team members. It’s pretty obvious that this doesn’t
scale. Every single developer, architect, product owner, etc. is responsible for security
though we also acknowledge that not everybody is a security expert. The concept of
security champions helps to address the scalability problem. In many development
teams, there will be someone with a security affinity. This person can become the
security champion in the development team, trained and supported by the central
security team.

330 | Chapter 10: Secure Development and Assurance

https://oreil.ly/g2sad
https://oreil.ly/Q8xm8
https://oreil.ly/Q8xm8
https://oreil.ly/QSNbX

Figure 10-4. DevSecOps reference model

Security Champion
A security champion is an individual who promotes and advocates for security
practices in DevOps teams. A security champion should ideally have experience in
security architecture and software development. The security champion’s goal is to
incorporate security practices into the development process and to give continuing
advice to help project teams to promote secure by design and secure by default
principles.

Security champions typically provide the following practices:

• Application security training to development teams•
• DevSecOps workshops and advisory as needed•
• DevSecOps framework design•
• Application security requirements analysis•
• Threat modeling and architectural analysis•
• Application security testing planning•
• Application vulnerability remediation guidance•

From DevOps to DevSecOps | 331

Technologies help to automate large parts of the security measures to decrease fric‐
tion and increase velocity. Let’s now have a look at the security activities in the phases
of the development lifecycle and discuss the different supporting technologies.

Design
During the design phase, business analysts, IT, and security architects are building
the backlog of functional and non-functional requirements. In Chapter 4 and “Threat
Modeling” on page 177 we’ve discussed how we develop and document those require‐
ments. This is also the phase where the development team prioritizes requirements
and defects from the backlog, and it’s here where we meet the first friction. The
pressure on the development team to deploy functionality frequently results in the
deprioritization of preventive work and security features or defects from the back‐
log. Functional requirements are frequently prioritized over security requirements
because their release is highly visible, whereas the realization of security requirements
may be less visible to the organization right away. In “Prioritization of Controls” on
page 192 we’ve discussed how we can prioritize security controls based on risk to the
organization. In The Phoenix Project, the authors describe how they have made the
development teams more efficient by spending 15% of the developers’ available time
on preventive work to solve the friction between the competition of function versus
preventive work.

In addition to the definition of functional and non-functional requirements, the
definition of abuse cases helps detect application business logic flaws during later
testing. The OWASP SAMM project defines misuse and abuse cases as:

Misuse and abuse cases describe unintended and malicious use scenarios of the appli‐
cation, describing how an attacker could do this.

Abuse cases define the abuse of functionality and are also called business logic attacks.
We define abuse cases based on functional requirements, which define important
business rules, by experimenting to see if the application properly enforces the busi‐
ness rules.

Ecommerce Shopping Cart Abuse Case
Let’s look at the scenario of an ecommerce shopping cart, where an attacker attempts
to acquire discounts by exploiting the business logic of an ecommerce website. We
can identify the following abuse cases:

Abuse of time-limited offers
If the website offers time-limited promotions or discounts, the attacker may
employ system clock manipulation or other techniques to extend the period of
the promotion, allowing them to profit from the lower rates beyond the specified
time frame.

332 | Chapter 10: Secure Development and Assurance

https://oreil.ly/g2sad
https://owaspsamm.org
https://oreil.ly/mQu6p

Manipulation of item prices
Consider an ecommerce website where consumers may add things to their
shopping baskets, examine the total price, and check out. The business logic
of the system is intended to correctly compute item pricing, apply discounts,
and manage the shopping cart. An attacker, on the other hand, may attempt
to manipulate the pricing in order to exploit program flaws. An attacker might
intercept and manipulate client-server communications to change the price of
products in their shopping cart. This may entail changing the amount or unit
pricing of things to pay less than the actual price.

Abuse of weak discount codes
Many websites offer discount codes for their customers. Some websites validate
only the code’s syntax, not the actual code itself. An attacker would only need to
understand the underlying syntax to gain discounts.

These are three possible abuse cases and you can very likely develop even more.
The better you understand the business logic, the easier it is to identify how you can
abuse it.

Abuse cases are ideally developed jointly by a business analyst and a security architect
after the business analyst has defined the functional requirements as they build on
them. The abuse case then triggers the definition of a countermeasure requirement.

Develop
In the development phase, developers are developing the actual code and require
education in secure coding practices. Establishing secure coding practice guides
specific to the programming language in use is a good practice. Developers can inte‐
grate many static application security testing (SAST) tools into their IDE to identify
potential vulnerabilities already at the development stage. Manual secure code or peer
reviews are an additional effective measure to identify potential security problems
during the development phase. Standards like the Payment Card Industry Data
Security Standard (PCI DSS) v4 are requiring code reviews of bespoke and custom
code. The OWASP Code Review Guide outlines a number of factors to consider when
developing a secure code review process:

Risk
As it’s not realistic to review 100% of the source code, the team should apply a
risk-based approach in selecting the components and methods for the manual
review.

Purpose and context
Another consideration as part of the risk-based approach is to understand the
purpose and context of the application. A payment service requires a higher
security standard than a canteen menu website.

From DevOps to DevSecOps | 333

https://oreil.ly/38sbi
https://oreil.ly/38sbi
https://oreil.ly/x4e0c

Lines of code
Define the effort required but also provide an indication of the number of
possible errors, as a program with many lines will also have many possibilities for
errors.

Programming language
Some programming languages (e.g., Java, C#) are less vulnerable to certain bugs
versus others like C or C++.

Resources, time, and deadlines
Time is, of course, critical to consider, as the required time for a manual review is
directly connected to the amount of code.

Use of Generative AI Tools During Development
Generative AI tools are becoming increasingly popular in the developer community,
as they can significantly increase the efficiency of developers. We might assume that
this approach actually improves code security, but multiple studies reveal that this
isn’t the case. AI generates code based on historic data and does not necessarily supply
best practices. Cornell University identified that participants who had access to an AI
assistant wrote significantly less secure code than those without access. Additionally,
participants with access to an AI assistant were more likely to believe they wrote
secure code than those without access to an AI assistant. Researchers at New York
University discovered that 40% of the generated code in a security-relevant context
had vulnerabilities. The ability of generative AI to generate code quickly can lead
developers to have a false sense of security; they tend to blindly accept what the
AI assistant is generating without applying a critical eye to the generated code and
context.

Next to secure coding practices, it’s also important to establish traceability of changes
to the code during the development phase. It’s common practice for small to large
development teams to use code repository tools such as Git to ensure traceability of
code changes and to enable collaboration across developers.

334 | Chapter 10: Secure Development and Assurance

https://oreil.ly/_CNbL
https://oreil.ly/ziShz
https://oreil.ly/ziShz

Build and Package
During the build and package phase, developers use various scripts and tools to auto‐
mate the compilation, testing, and packaging of the software. We employ technical,
automated security tests within the CI/CD pipeline. Those tests, listed next, focus on
the source code, container configuration, and images:

Static application security testing (SAST)
The source code of an application is analyzed to identify potential security
vulnerabilities. This type of testing can help detect common coding mistakes,
such as buffer overflows or SQL injection vulnerabilities, prior to the application’s
deployment. SAST tools scan the source code line by line, looking for patterns or
code snippets that could indicate a security issue. Once vulnerabilities have been
identified, developers can take appropriate actions to fix them.

Software composition analysis (SCA)
It’s rare you develop software without leveraging open source components. It’s
critical to have an overview of where you use those components and whether
those components have vulnerabilities that you incorporate into your application
by using them. SCA helps in identifying any vulnerable or outdated components
used in the software that may pose a security risk. Additionally, it also allows
for the detection of any licensing issues or compliance violations that may arise
from using certain software components. Ultimately, SCA plays a crucial role in
ensuring the security, reliability, and legality of the software you develop or use.

Software Bill of Materials
SCA tools can assist in the creation and maintenance of software bills of mate‐
rials (SBOMs), which contain information on every third-party component
utilized, including version and license information. SBOMs received a lot of
attention after the US government issued an executive order on improving the
nation’s cybersecurity, which requires firms that wish to do business with the
US government to produce a thorough inventory of all components that make
up an application to increase the level of security. The EU has also created a
requirement for SBOMs in the EU Cyber Resilience Act. Another example is the
critical vulnerability known as “Log4Shell,” which was discovered in the widely
used logging module Log4j in 2021. Log4j is used in many enterprise products
as well as open source software. Many businesses had significant difficulty deter‐
mining where the module was used. For more information about SBOM, see
CISA SBOM.

From DevOps to DevSecOps | 335

https://oreil.ly/aJ9j_
https://oreil.ly/Iv1cn
https://oreil.ly/mlMQh

Secrets scan
Secrets like passwords or API keys are often hard-coded by developers into the
source code. This creates vulnerabilities, which adversaries can exploit. Scanning
code repositories and other data sources for sensitive information like passwords
and access keys is known as secret scanning. This may be accomplished through
the use of a variety of tools and approaches, such as regular expressions, to
discover patterns that match certain categories of sensitive information. Secrets
can typically be found in source code, container images, configurations, and
infrastructure as code.

Secure configuration check
Once the code is compiled, it’s typically deployed in containers. The container
images and their configuration will be scanned for vulnerabilities, verifying the
integrity of the image and ensuring that it adheres to the organization’s security
policies and hardening guidelines. Many organizations use CIS Benchmarks as a
basis for their hardening guidelines.

The built artifacts produced in this phase are finally stored in an artifact repository
for later, automated deployment to testing, staging, and production environments.

Deploy, Test, and Release
We use the deploy phase to deploy the code in different environments in order to
perform different levels of testing to validate the software against the requirements.
To ensure the effectiveness of security controls, we must prepare for the completion
of security assurance efforts prior to service go-live as well as continuous Day-2
operations. We must plan for numerous cycles of security and compliance checks, as
well as time for corrective actions. As a security architect or security champion you
need to ensure the inclusion of security assurance activities in the overall test strategy
and plan, which we will discuss in the following:

Test strategy
The test strategy, as shown in Table 10-1, outlines in detail how a solution will
undergo testing to ensure its quality and functionality. It includes information
about the testing objectives, scope, as well as approach.

Table 10-1. Test strategy
Objectives and scope Clearly define the overall goals and objectives of the testing effort. Outline the scope of

testing, specifying what will and what won’t be tested.

Risk analysis Identify potential risks to the testing process and establish strategies for risk mitigation.
Prioritize risks based on their impact and likelihood.

Entry and exit criteria Define the prerequisites for testing (entry criteria). Specify the conditions under which
testing will be considered complete (exit criteria).

336 | Chapter 10: Secure Development and Assurance

https://oreil.ly/nqxKg

Test levels and types Identify different levels of testing (e.g., unit, integration, system, acceptance) and types of
testing (e.g., functional, non-functional). Specify the criteria for when each type of testing
will be conducted.

Test execution strategy Detail how test cases will be executed, including the order and frequency of test cycles.
Address any specific test execution considerations.

Test metrics and
measurement

Identify key metrics for measuring the effectiveness and progress of testing. Define how and
when these metrics will be collected and reported.

Approval and sign-off Specify the criteria for obtaining approval and sign-off at various stages of the testing
process.

Test plan
The testing plan specifies the resources and timelines required, the types of
testing to be conducted, such as functional testing, performance testing, and
security testing, and provides guidelines for defect tracking and reporting. The
information shown in Table 10-2 is typically included in a test plan.

Table 10-2. Test plan
Test resources Identify the roles and responsibilities of individuals involved in testing. Specify the skills and

expertise required for each role. Address any training needs for the testing team.

Test schedule Develop a detailed schedule that includes testing milestones, timelines, and dependencies. Align
the testing schedule with the overall project timeline.

Test automation
strategy

Define the approach to test automation, including which test cases will be automated and the tools
and frameworks to be used. Outline the criteria for selecting test cases for automation.

Defect tracking
and reporting

Specify how defects will be logged, tracked, and managed. Define the process for reporting and
communicating defects to relevant stakeholders.

Test environment Describe the test environment, including infrastructure, software, network configurations, and
other dependencies. Ensure that the test environment mirrors the production environment as
closely as possible.

Test data Define the test data requirements, including input data for various test scenarios. Specify how
test data will be generated, acquired, and managed. This is specifically important because the use
of production data for testing can introduce a significant risk. Strategies for test data generation
include careful scrambling of production data to meet the testing purpose, but without the risk of
exposing sensitive information. Another strategy is to use generative AI to generate synthetic test
data.

Test deliverables Enumerate the documents and artifacts that will be produced as part of the testing process (e.g.,
test plans, test cases, test reports). Define the format and frequency of test deliverables.

Tailor these components to the specific needs of your project, and keep the test
strategy and plan up-to-date as the project evolves. Regularly review and revise the
plan as necessary to adapt to changes in requirements, technology, or project scope.
Overall, a well-structured and comprehensive test strategy and plan are essential for
effectively identifying and resolving defects, ensuring a successful solution release.

From DevOps to DevSecOps | 337

Operate and Monitor
System maintenance, monitoring, and optimization are the primary goals of Day-2
operations. Day-2 operations continue throughout the product lifecycle since system
behavior must be regularly examined and fixed. In the following section, we’ll look
at critical processes that assure the solution’s security controls at the transition point
from deploy, test, and release to operate and monitor, as well as continuously through‐
out operate and monitor. In Chapter 11, we will discuss in more depth further security
operational aspects.

Security Assurance
We’ve discussed how we develop security requirements and how we build them as
security controls into our solution. Before we release the solution into production
we must ensure that the security controls are effective at the time of go-live, but we
also need to ensure that they stay effective during the lifetime of the solution. This is
what we call security assurance. In NIST SP 800-39: Managing Information Security
Risk, NIST defines security assurance as the “grounds for confidence that the security
functionality is effective in its application.”

Systems Operations Phasing

The terms Day-0, Day-1, and Day-2 operations are often used dur‐
ing the implementation of new systems, processes, or technologies:

Day-0 Operations
This phase includes the initial planning and preparation activ‐
ities prior to the implementation of a new system or technol‐
ogy. In Figure 10-4, this is the Plan phase.

Day-1 Operations
Day-1 operations begin on the day that the new system or
technology is activated or becomes operational. This phase
focuses on system deployment and activation. In Figure 10-4,
this is at the point of Release.

Day-2 Operations
Day-2 operations begin after the initial deployment, usually on
the second day following implementation. In Figure 10-4, this
is the Operate and Monitor phase.

These terms can vary slightly depending on the specific context
and organization.

338 | Chapter 10: Secure Development and Assurance

https://oreil.ly/_JRU-
https://oreil.ly/_JRU-

Only the combination of functionality and assurance in the end delivers effective
security controls with a high level of confidence. Assurance provides that extra layer
of confidence to the controls. It’s critical to plan for assurance activities early in the
project because they extend the timeline. You should also plan for multiple iterations
of these activities. During Day-2 operations, it’s essential to maintain all assurance
activities either when processing a change or at regular intervals.

We’ve already covered a number of assurance activities in this chapter, but we’d like to
emphasize the significance of these processes by documenting when they’re required
during Day-0, Day-1, and Day-2 operations. We consider the assurance processes
shown in Table 10-3 as foundational to ensure effective security controls.

Table 10-3. Assurance activities

Activity Description Day-0/1
operations

Day-2
operations

Documented and
approved
solution

All key stakeholders must review and approve formalized requirements,
high-level design, low-level design, and implementation standards.

Required At every
change

Documented
processes and
procedures

All key stakeholders review and approve formalized processes,
procedures, and work instructions.

Required At every
change

Requirements
traceability

Complete a traceability matrix from requirements to design,
implementation, and testing to ensure that all required controls are
in place and operational. We discussed requirements traceability at the
end of Chapter 4 and we’ll discuss threat traceability at the end of
Chapter 11.

Required At every
change

Functional and
non-functional
testing

In the previous section we’ve described different test types that test
functional as well as non-functional requirements and how they relate
to those requirements in the V-model. Test processes for functionality
and non-functionality to ensure they work properly. Perform non-
functional testing, such as checking the continued availability of security
services after a component failure.

Required At every
change

Supply chain risk
assessment

Examine the supply chain risks for software, hardware, and services.
Projects introduce new locations, suppliers, products, and technologies,
which necessitate a risk assessment: are organizational policies and
standards being followed; are new risks being introduced; are new
management controls required; and how do we assess, secure, and
mitigate open source supply chain risks?

Required In regular
intervals

Vulnerability
management

Conduct automated vulnerability scans with tooling to detect flaws
in the implemented solution, such as missing security patches. To
perform this process, you can use tools such as SAST, DAST, IAST, SCA,
as well as traditional infrastructure and container image vulnerability
scanning tools. Prioritize the identified vulnerabilities based on risk, plan
their remediation, and carry out the remediation by patching to an
agreed-upon timeframe.

Required In regular
intervals

Security Assurance | 339

Activity Description Day-0/1
operations

Day-2
operations

Ethical hacking Penetration tests or bug bounty programs that employ both manual
and automated attack strategies against the implemented solution
supplement automated testing tools. This measure may not be required
for all systems. The system’s criticality is an important deciding factor.

Required In regular
intervals

Continuous
configuration
monitoring

Continuous configuration monitoring, also called continuous compliance,
ensures that accidental or intended changes in the configuration of the
system or the underlying platform aren’t violating the organization’s
policies.

Required In regular
intervals

At the end of Chapter 4, we discussed the need for requirements traceability to ensure
the completeness of design, implementation, and testing. We will now look into a
model that implements this traceability.

In software testing, the V-model is a development and testing technique that focuses
on a phased approach to software development and testing. The model in Figure 10-5
gets its name from the visual depiction of the development and testing phases, which
create a “V” shape. The model depicts the link between each development step and its
associated testing phase.

Figure 10-5. V-model

340 | Chapter 10: Secure Development and Assurance

The V-model typically consists of the following phases, with each development phase
having a corresponding testing phase. The left side of the V represents what we
described in the design phase in this section:

• Business owners and business analysts define business requirements, which pro‐•
vide input to the acceptance testing planning.

• The system risk profile drives the required security controls into the system•
specifications.

• The threat model as well as abuse cases shape the system’s high- and low-level•
design. Testers are creating detailed test cases based on the design specifications.

• During coding the actual implementation of the software occurs.•
• Developers perform unit testing to ensure that each unit functions as intended.•

This is also the time where SAST scans will be executed during the build process.
• Integration testing verifies that the integrated components work together as•

expected. During integration testing, test automations typically perform dynamic
application security tests (DAST) and interactive application security tests
(IAST).
— DAST scanners evaluate an application’s security vulnerabilities in real time.—

DAST involves sending various types of input to the application and analyzing
its responses to determine whether any security flaws exist.

— IAST can identify security vulnerabilities by actively monitoring an applica‐—
tion during runtime. This involves analyzing the traffic and data inputs to
uncover potential vulnerabilities and exploit them. By actively scanning an
application while it’s running, IAST can capture vulnerabilities that are only
apparent in specific runtime conditions, improving the overall effectiveness of
security testing.

• System testing validates the entire system against the defined requirements. This•
is the phase where ethical hackers perform penetration tests. They use a combi‐
nation of different tools and their experience to try to break the system.

• The business users perform acceptance testing to verify whether the system•
meets their expectations. This includes the verification of regulatory compliance
requirements.

Security Assurance | 341

We just discussed how we incorporate security activities into the development pro‐
cess to ensure that we identify and address weaknesses as early as possible. The
application is running on a platform and is leveraging services from the platform. In
the next section, we discuss how a cloud security operating model helps to ensure
that the platform gets and stays in a secure state.

Cloud Security Operating Model
Adoption of cloud capabilities in many businesses began in one business area and
has gradually moved to more and more business areas. Sometimes teams want to
experiment with how they might exploit the cloud, and soon test configurations
become production setups, and business processes begin to rely on it. In other
cases, local IT was too slow to meet the demands of the business areas, and because
cloud computing is so simple, business areas could achieve their goals quicker than
relying on their IT teams. Both situations frequently occur without the engagement
of security procedures, and without taking into account an organization’s security
standards, which raises many risks for the organization including, but not limited to,
the following reasons:

• Organizations might accidentally expose sensitive data to the internet through•
misconfiguration.

• Teams might store data in cloud locations, which might violate regulatory•
requirements.

• Business areas might forget to remove access for users when they change job•
roles or leave the organization.

• Teams might be unfamiliar with security gaps in different cloud services.•

A structured approach considering people, processes, and technology in the form of
an operating model helps mature organizations leverage the cloud in an effective and
secure manner. A cloud security operating model is a framework that organizations
use to establish and maintain effective security practices in cloud environments. The
purpose of a cloud security operating model is to provide a structured approach to
managing and enhancing security in the cloud.

The cloud security operating model, outlined in Figure 10-6, is made up of five
key functions (dark shading): the CISO office, enterprise architecture, cloud center
of excellence (CCoE), the platform, and the DevOps teams. These functions may
be structured and referred to differently depending on the terminology and organi‐
zational structure used in your organization. These functions work with the cloud
marketplace and configuration, through the CI/CD pipeline with the cloud instances
(the lighter shaded technology).

342 | Chapter 10: Secure Development and Assurance

Figure 10-6. Cloud security operating model

Let’s look at each of these functions:

CISO office
In this context, the CISO office consists of one or more enterprise security teams
composed of strategy- and risk-focused teams as well as operational security
teams. Their purpose is to:

• Issue the organization’s security policies to ensure that security measures•
in the cloud align with the overall business objectives and goals of the
organization.

• Identify, assess, and manage risks associated with cloud services and infra‐•
structure to protect sensitive data and critical business operations.

• Align security investments with business priorities and manage security costs•
effectively. Optimize security measures to provide the necessary protection
without unnecessary expenses.

• Contribute to the enterprise architecture by developing the enterprise secu‐•
rity architecture.

Cloud Security Operating Model | 343

• Implement continued compliance monitoring in the cloud to ensure•
enforcement of technical security policies. This involves cloud security pos‐
ture management (CSPM) tools.

• Implement continuous monitoring of cloud environments to detect and•
respond to security threats in real time. This involves the use of security
information and event management (SIEM) tools and other monitoring
solutions.

• Provide staffing into the cloud center of excellence.•

Enterprise architecture
The purpose of the enterprise architecture team in this context is to validate that
the cloud reference architecture is in line with the enterprise architecture strat‐
egy. We also often see the enterprise architecture team reviewing and approving
application migration toward cloud.

Cloud center of excellence (CCoE)
The CCoE is a multidisciplinary team of experts who specialize in cloud com‐
puting. This team is responsible for driving the organization’s cloud strategy,
implementing best practices, and ensuring successful adoption and utilization of
cloud technologies. From a security perspective its purpose is to:

• Establish a cloud security control framework for compliance with relevant•
regulations, industry standards, and internal policies. Ensure that gover‐
nance structures are in place to maintain control over cloud resources.

• Achieve consistency in security practices and policies across multiple cloud•
service providers or environments, reducing the risk of misconfigurations
and vulnerabilities. Benchmarks and standards like the CIS Benchmarks can
form a valuable basis for the application and enforcement of best practices.

• Define and establish architecture patterns to speed up the creation of sol‐•
ution architectures and applying best practices. We discussed Architecture
Patterns and Decisions in Chapter 9.

• Establish criteria for selecting and managing cloud service providers based•
on their security practices. Ensure that third-party services meet the organi‐
zation’s security standards.

• Establish criteria for selecting and managing cloud products and capabilities•
and certify the same for inclusion in the cloud reference architecture.

344 | Chapter 10: Secure Development and Assurance

https://oreil.ly/RGR4B

• Enable security measures that are adaptable to the dynamic and scalable nature•
of cloud environments. Support the rapid deployment and scaling of applications
while maintaining security.

• Define and establish landing zones for the selected cloud providers to enable•
fast deployment of workloads by a defined set of infrastructure and security
capabilities.

• Ensure that teams responsible for managing cloud resources are well-trained in•
security best practices. Foster a security-aware culture within the organization.

• Foster a culture of continuous improvement in cloud security. Regularly assess•
and update the cloud security operating model to address emerging threats,
technologies, and organizational changes.

• Define processes and procedures for incident response and recovery in the cloud.•
Establish mechanisms for detecting and responding to security incidents effec‐
tively. We’ll discuss this in more detail in Chapter 11.

Platform team
The platform team consists of technical cloud SMEs whose purpose is to deliver
platform build services and in this context:

• Leverage automation and orchestration tools to implement and enforce•
security controls consistently. This helps in reducing manual errors and
improving efficiency.

• Make certified security products and configurations available in the cloud•
marketplace and the infrastructure pipeline.

Cloud marketplace and configurations
The different cloud providers typically provide a marketplace where organiza‐
tions make certified products and configurations available to implement the
actual cloud security architecture and security policies for use in the CI/CD
pipeline.

CI/CD pipeline
The pipeline, as illustrated in Figure 10-7, consumes the certified products and
configurations from the cloud marketplace and provisions them to the cloud
instances. Provisioning is only possible through automation to prevent manual
access to cloud instances.

Cloud Security Operating Model | 345

Figure 10-7. CI/CD pipeline

If we look a bit closer into the pipeline, we see that it’s not one pipeline, but
in reality a composition and collaboration of multiple pipelines. A solution bill
of material shows that the solution is based on out-of-the-box (OOTB) cloud
service provider (CSP) infrastructure resources, third-party resources, as well as
custom developed applications:

• Within the infrastructure CI pipeline, the platform team provides the hard‐•
ened and certified cloud and third-party resources.

• On the application CI pipeline DevOps teams are developing, building, and•
unit testing the custom application, including external code libraries.

• The combined infrastructure and custom application resources will be•
joined-up and deployed in a selected environment via the continuous
deployment (CD) pipeline.

Cloud instances
The solution is automatically deployed in the cloud instance without direct
manual intervention on the cloud instance itself.

DevOps teams
As we’ve described in the previous section, the DevOps teams are working with
the pipeline and consuming products and configurations from the marketplace
to implement their solution.

Implementing a cloud security operating model helps organizations navigate the
complexities of cloud security, mitigating risks, ensuring compliance, and allowing
for the secure and efficient utilization of cloud resources. It serves as a strategic guide
to achieve a well-architected and resilient security posture in cloud environments.

346 | Chapter 10: Secure Development and Assurance

In Chapter 11, we will discuss further aspects relevant to security operations. In the
next section, we will discuss a simple yet very powerful tool that we use during the
design, build, and handover to run phase of a project.

Risks, Assumptions, Issues, and Dependencies
A RAID log is a project management tool used to track risks, assumptions, issues,
and dependencies. It provides a systematic approach to managing these elements
throughout the project lifecycle. By updating and reviewing the RAID log on a
regular basis, project teams can identify potential roadblocks, take proactive risk-
mitigation measures, and ensure that all necessary dependencies are included. This
helps in improving project efficiency, reducing surprises, and increasing overall
project success.

It’s good practice for project teams to maintain a RAID log and document each RAID
item as outlined in Table 10-4. The emphasis here is on team, as not only the project
manager should document RAID items but everybody in the project team should
contribute RAID items throughout the project.

Table 10-4. RAID log

RAID item Description Action
Risk There is a risk that <risk>, caused as a result of <cause>, which may

result in <impact>.
Avoid or reduce or transfer or
accept or share

Assumptions There is an assumption that <assumption>. If assumption is not
validated or turns out to be invalid, there is a risk that <risk>, which may
result in <impact>.

Validated or owned

Issues There is an issue that <issue>, which has resulted in <impact>. This
has been caused because <cause>.

Solution or plan changed
(e.g., to avoid)

Dependencies There is a dependency on <name> to <action>. If not delivered against
and/or in the required timeframe, there is a risk that <risk>, which may
result in <impact>.

Communicated, agreed, and
tracked

The RAID log provides a central place to document these items. Documenting RAID
items creates transparency; next to that it’s important that the responsible owners
action the documented RAID items:

Risks
Risks in a RAID log are project-related risks, not solution-related risks. In Fig‐
ure 6-13, we covered solution-related risks and how to record them. Risks are
anything out of the ordinary, unforeseeable, or unexpected that might have a
negative influence on the project if they occur. The assigned owners are responsi‐
ble for the treatment of the identified risks. Table 10-5 shows an example of how
we propose to document a risk item.

Risks, Assumptions, Issues, and Dependencies | 347

Table 10-5. Risk example
Date raised 01. Feb. 2024

Raised by Mark

Risk description There is a risk that existing IT support staff may leave before knowledge transfer
is complete, caused as a result of the outsourcing agreement, which may result in
reduced delivery quality.

Risk severity Medium

Risk mitigation strategy Reduce

Mitigation owner Carsten

Risk mitigation plan Increase team that’s shadowing existing IT support staff to be able to document
activities in high quality.

Status Open

Financial impact when occurs Cost of 5 extra FTE

Date closed Open

Assumptions
An assumption is anything that hasn’t yet been confirmed, but is relevant for the
success of the project. The action owner should validate and remove the assump‐
tion as soon as possible. The client or the project sponsor should ideally own it.
Table 10-6 shows an example of how we propose to document an assumption
item.

Table 10-6. Assumption example
Date raised 01. Mar. 2024

Raised by Stefaan

Assumption description There is an assumption that no sensitive personal information is processed by the system. If
assumption is not validated or turns out to be invalid, there is a risk that important security
controls are not considered in the solution, which may result in regulatory compliance
violations.

Action owner Mark

Action to validate
assumption

Validate with the business owner of the system that no sensitive personal information is
processed by the system.

Status Closed

Date closed 24. Apr. 2024

Issues
An issue documents conditions that exist, such as when something has gone
wrong on the project and needs management or escalation. Issues can occur
at any moment and may need adjustments to the solution or plans. Table 10-7
shows an example of how we propose to document an issue item.

348 | Chapter 10: Secure Development and Assurance

Table 10-7. Issue example
Date raised 01. Apr. 2024

Raised by Carsten

Issue description There is an issue that many developers don’t have access to the source code repository, which has
resulted in significant delays in developing the new solution. This has been caused because the
business owner who needs to approve the access got sick.

Action owner Stefaan

Action plan Identify a stand-in to perform the access request approvals.

Status Closed

Date closed 07. Apr. 2024

Dependencies
A dependency is a link in the plan to an external factor that needs to be managed
for a successful project result. It might be a third party’s property or links
between projects. Table 10-8 shows an example of how we propose to document
dependency items.

Table 10-8. Dependency example
Date raised 15. May 2024

Raised by Carsten

Dependency
description

There is a dependency on a third party vendor to configure required firewall changes. If not
delivered against and/or in the required timeframe, there is a risk that integration tests can’t
be performed, which may result in delay of the overall schedule.

Solution description Seek early confirmation from the third party vendor that they’re available to perform the
firewall changes at the required time.

Action owner Mark

Status Open

Date Closed Open

You have seen that a RAID log is a relatively simple but powerful tool. The difficulty
is in the daily practice. We’re making a lot of assumptions and identifying risks and
dependencies throughout our daily work. It requires a lot of discipline from us to get
them documented in the RAID log so that we can properly treat them. Let’s have a
look at how we can use the RAID log in our case study.

Case Study: RAID Log
Within the case study you are a security architect with the ask to develop a security
solution in an already running project. As you are now part of the project team and
are understanding the ask to you, the overall solution ideas, as well as the project

Case Study: RAID Log | 349

setup and progress, you are naturally identifying RAID items that you enter into the
simplified RAID log in Table 10-9.

Let’s have a look at the case study to identify obvious RAID items. We’ve highlighted
those parts of the case study that provide us with that information.

Marked-Up Case Study
The project deployment approach agreed upon between the CIO, Business Sponsors,
and the Project Executive (PE) leading the integration is as follows:

• Start with a development environment using Red Hat OpenShift to build a cloud•
native container application using DevOps practices on a public cloud platform.

• Then build a full route to live with preproduction and production environments•
in the public cloud.

• Clean Threats, a threat management company, will manage all the security•
services from their security operations center (SOC).

• The solution will be fully hosted in the cloud and will need to be resilient to•
availability zone failures.

The program manager would like a high-level solution architecture that provides a
minimum viable product (MVP) solution based on the preceding information.

The project is already installing the IT infrastructure, and the staff will be joining in
six weeks’ time.

We can now translate the highlighted parts into RAID items, as illustrated in
Table 10-9. Throughout the discussion of the architectural thinking process, as well as
the discussion of the case study within this book, we’ve referred to typical steps where
you commonly identify RAID items.

Table 10-9. Case study RAID log

RAID Statement Action
R.1 There is a risk that the critical security controls are not reflected in the

overall solution, caused as a result of the MVP approach of the project,
which may result in exposure of sensitive information.

Prioritize security features in the
development backlog based on risk.

A.1 There is an assumption that the already started DevOps practices already
include security practices. If assumption is not validated or turns out to be
invalid there is a risk that security issues are not identified and addressed
early in the development process, which may result in additional costs to
the project.

Verify with the development team that
the development process is addressing
security practices as described in “The
Software Development Lifecycle” on
page 326.

350 | Chapter 10: Secure Development and Assurance

RAID Statement Action
I.1 There is an issue that IT infrastructure is already installed, which has

resulted in a solution without segmentation and the right level of security
controls. This has been caused because no security solution was defined
before the installation.

Define the infrastructure security
solution, assess the gap to the current
installation, and adjust the installation.

D.1 There is a dependency on Clean Threats to manage all security services. If
not delivered against and/or in the required timeframe, there is a risk that
the security solution is unmanaged, which may result in undetected threats.

Confirm with Clean Threats that they
agree to the timeline and the scope
of services that they’re expected to
deliver.

It’s never too late to start a RAID log. When you get into a project and no RAID
log exists, create one and work with your team so that it becomes a daily routine
to use and maintain it. A RAID log is also very useful when you hand over a
solution to another team, as it provides a solid documentation about the risk, issues,
assumptions, and dependencies that went through the project lifecycle.

RAID QA Checklist
Use this checklist to improve the quality of your RAID entries.

General
• Does a risk, assumption, or issue depend on a third party with whom you will•

have a contract or internal agreement? If so, this should be a dependency, as it will
depend on an agreement. This ensures everything that needs an agreement is on
one list.

• Ensure every RAID entry has actions with owners and dates for completion.•
• Check that the recorded actions will close out the RAID item.•

Risk
• Has this risk already happened? If so, it should be an issue.•
• Ensure there is an owner for the overall risk according to the process of your•

organization.
• Document at what stage in the project the mitigation needs to be in place, ensure•

it’s in place before proceeding, and record the agreement of the risk owner.

Assumption
• Ensure validation of all assumptions before signing off on a solution or docu‐•

ment that it depends on.
• If validation of an assumption can’t happen before the appropriate phase of the•

project, identify the risk of not validating the assumption and raise it as a risk for
sign-off.

Case Study: RAID Log | 351

Issue
• Has this issue not happened yet, or have you phrased the issue as something that•

might happen? If so, change the issue to a risk.
• If remediation of an issue can’t happen before the appropriate phase of the•

project, identify the risk of not remediating the issue and raise it as a risk for
sign-off.

Dependencies
• Ensure every dependency has an action to ensure written responsibilities are in a•

contract or internal agreement.
• Before the project goes live, check that there is coverage for all dependencies in•

a contract or agreement. If not, identify the risk of not having the agreement and
raise it as a risk for sign-off.

Summary
With the completion of this chapter, we’ve concluded the transition from solution
architecture and design to Day-2 operations. We investigated how to include security
activities into a highly automated development process without adding frictions.

The staged assurance strategy not only assists us in identifying and resolving secu‐
rity issues early in the development process, but it also assures that the entire
solution that you will hand over to the business owner fulfills all functional and
non-functional requirements.

You’ve learned about the RAID log as a powerful tool for managing risks, assump‐
tions, issues, and dependencies throughout the project lifecycle. No project should
run without a RAID log, it provides you with control and structure and is one of the
key tools to enable a successful project.

In the next chapter, we will dive deeper into the security aspects of the Day-2
operations. We will investigate the best ways to ensure that we’re able to identify and
counteract any potential threats that may arise during run.

352 | Chapter 10: Secure Development and Assurance

Exercises
1. What’s the objective of the shift-left approach?1.

a. Implement DevOps, as shift left is only possible with a DevOps approach.a.
b. Identify and address security issues as early as possible in the software devel‐b.

opment lifecycle.
c. Perform penetration tests as early as possible in the development lifecycle.c.
d. Make the development team responsible for security.d.

2. Who is responsible for security in practicing DevSecOps? Select all that apply.2.
a. The security teama.
b. The Chief Information Security Officer (CISO)b.
c. The developerc.
d. Everybody involved in the development processd.

3. When are security assurance activities required? Select all that apply.3.
a. At the start of the development processa.
b. At the transition from development to operationsb.
c. Throughout the development processc.
d. In regular intervals during Day-2 operationsd.

4. What’s a valid risk to document in a risk, assumptions, issues, and dependencies4.
(RAID) log? Select all that apply.
a. There is a risk of unauthorized access by customers, caused by improper inputa.

validation, which may result in exposure of sensitive data.
b. There is a risk that the project team is not available in time, caused by ab.

delayed project start, which may result in project timelines not being met.
c. There is a risk that network traffic can be sniffed as a result of unencryptedc.

traffic flows, which may result in sensitive data exposure.
d. There is a risk that the security appliance does not fully meet requirements,d.

caused by a lack of time to perform a comprehensive evaluation, which
may result in missing functionality or delays due to a new solution being
identified.

Exercises | 353

5. Why does security introduce less friction in the DevOps approach compared to5.
the waterfall model?
a. The waterfall model is applying less efficient security testing tools.a.
b. In DevOps, all team members are physically located in the same place,b.

increasing collaboration between team members.
c. In DevOps, a separate testing team ensures that all security tests are executedc.

in a very efficient way.
d. DevOps employs a high degree of automation between development andd.

operational teams.
6. Which of the following security testing activities can be automated? Select all that6.

apply.
a. SAST (static application security testing)a.
b. SCA (software composition analysis)b.
c. Secret scanc.
d. Ethical hackingd.

7. True or false: Security assurance activities are only required during Day-0 and7.
Day-1 operations.
a. Truea.
b. Falseb.

8. The technique for defining business logic attacks is called _____.8.
a. Threat modelinga.
b. Abuse caseb.
c. Business use casec.
d. User storyd.

9. What is the role of the cloud center of excellence (CCoE) from a security per‐9.
spective? Select all that apply.
a. Certify products for inclusion in the cloud reference architecture.a.
b. Achieve consistency in security practices and policies across cloud serviceb.

providers.
c. Implement continuous compliance monitoring in the cloud.c.
d. Make certified security products and configurations available in the cloudd.

marketplace.

354 | Chapter 10: Secure Development and Assurance

PART V

Run

Finally, we need the system to remain secure after it’s live, so we discuss the opera‐
tional aspects of the system as shown in the run phase. We are discussing operational
processes and procedures and how the outcome of the threat modeling process in
the design phase helps to produce threat detection use cases and incident response
procedures that build threat traceability.

CHAPTER 11

Security Operations

Now we need to consider how to securely operate the solution in production, also
known as Day-2 operations. It’s the stage where an operations team maintains, moni‐
tors, and optimizes the system for continued operation. Effective Day-2 operations
need clarity around the operational responsibilities for the security controls to ensure
continued protection of the information assets, detection and response to threats,
and recovery from any outages that might occur. We can start to achieve that by
defining responsibilities and the required processes for the successful operation of the
controls.

The chapter starts by discussing the definition of responsibilities together with the
documentation of processes, procedures, and work instructions. For effective opera‐
tion of the controls, we enhance the swimlane diagram, discussed in Chapter 4, by
discussing decomposition and providing additional detail for recording audit trails.

The chapter continues with exploring two specific processes that utilize threat model‐
ing, from Chapter 6, to identify threats that may require threat detection. We use the
identified threats to define how the detection of threats and the response to incidents
should take place. As architects, we need to be able to support the definition of
threat detection use cases and incident response runbooks. We need our solution
architecture to describe how we provide information for protection and automation
for response activities.

As you consider the techniques discussed in this chapter, you may start to identify
new requirements that will result in new updates to the architecture to support the
operational aspects we’re now examining. Completion of these activities must take
place before you sign off your solution architecture as complete.

357

Chapter Artifacts
This chapter’s main goal is to discuss the definition and documentation of security
processes. At the top right of Figure 11-1, we have the enterprise processes that apply
across an organization. We use enterprise processes to develop processes, procedures,
and work instructions that support the operations of the solution, as shown in
the operations domain on the right. A Responsible, Accountable, Consulted, and
Informed (RACI) table supports the definition of responsibilities for processes with
a separation of duties matrix to enable the avoidance of high-risk combinations of
activities.

To support the detection and response to threats, the top left of Figure 11-1 shows the
threat landscape and cybersecurity vulnerabilities that feed the threat model down at
the bottom. The threat model then feeds the development of the threat detection use
case and the incident response runbook.

We’re going to start with defining the shared responsibilities required for the secure
operation of security services.

358 | Chapter 11: Security Operations

Figure 11-1. Security operations chapter artifacts

Shared Responsibilities
We started building up to this chapter in Chapter 7, where we discussed the func‐
tional layers of the cloud platform, including a layer for security services. Using the
enterprise security architecture we discussed in Chapter 2, we decomposed the secu‐
rity services layer into domains, categories, and then security services. The diagram
in Figure 11-2 illustrates the connection between the shared responsibilities diagram
and the enterprise security architecture.

Shared Responsibilities | 359

Figure 11-2. Shared responsibilities to security services

On the left side of the diagram we’ve included part of the shared responsibilities dia‐
gram from Figure 7-8. It shows the shared responsibilities stacks within the boundary
of the system context. On the righthand side we show a slice of the enterprise security
architecture diagram from Figure 2-6.

The arrow from the security layer in the shared responsibilities diagram to the
threat and vulnerability management category of the enterprise security architecture

360 | Chapter 11: Security Operations

diagram shows the decomposition of the security layer. Within that category is a ser‐
vice called vulnerability management, which is the service we discussed in Chapter 4,
when building a set of requirements for a vulnerability management service.

A New Requirement: Vulnerability Management

By this point, you may have noticed there is no requirement for
vulnerability management in the case study, but it’s essential to
managing the continuing security of the running system. That’s
where the enterprise security architecture in Figure 2-6 becomes a
useful checklist. Especially when it is also filled out to contain a list
of security processes or services, as in Figure 2-7.

In Figure 11-3, we show another way of looking at the decomposition from the
security layer to vulnerability management. It shows the decomposition from security
services to the detect and respond domain, to the threat and vulnerability manage‐
ment category, and then to the vulnerability management service. This approach to
consistent decomposition enables clear communication of security services and easier
identification of gaps in controls.

Figure 11-3. Decomposition example for vulnerability management

We’ve gotten to the point where we have a high-level name for a security service.
It needs a description of the security service defining what security capabilities the
workloads can consume and the share of responsibilities between the provider (the
security service) and the consumer (the workload). We describe these responsibili‐
ties using a RACI table to describe who is responsible, accountable, consulted, or
informed for each activity related to the service.

Shared Responsibilities | 361

1 You may be asking why we split the tables in this chapter. We did this so the book can be searchable and
available in print, EPUB, and online. In practice, the header and content will be combined into one table.

2 This is an example and isn’t a complete set of responsibilities. As an exercise, perhaps you would like to
extend this list of responsibilities.

We’ve split the RACI table into two parts, starting with a header for the RACI in
Table 11-1, including a title and short summary.1

Table 11-1. RACI table—header

2. Vulnerability management
Summary A service to identify vulnerabilities in an information system and track their lifecycle to closure or risk acceptance.

The RACI continues with the numbered responsibilities in Table 11-2, with a split
between the provider and consumer of the service.2

Table 11-2. RACI table—content

ID Responsibility Provider Consumer
3.1 Provide vulnerability scanning for networking, hosts, containers, and applications. R/A I

3.2 Provide API, CLI, and web console interface to configure and use the vulnerability scanning
capabilities.

R/A I

3.3 Provide vulnerability management capability to track and manage risk lifecycle for the results
from the vulnerability scanning.

R/A I

3.4 Keep all records from the vulnerability scanning and management for a period of at least 90
days.

R/A I

3.5 Update vulnerability scanning to detect new vulnerabilities, weaknesses, and threats. R/A I

3.6 Provide notification within 24 hours of updated vulnerability scanning capabilities. R/A I/C

3.7 Provide a capability to create and schedule customer vulnerability scans. R/A I

3.8 Create and schedule regular vulnerability scanning. I R/A

3.9 Create and schedule custom or ad hoc scans. I R/A

3.10 Manage lifecycle of vulnerability scanning results. I R/A

Key R=Responsible, A=Accountable, C=Consulted, I=Informed

R, A, C, or I denotes the type of responsibility for each of the responsibilities listed in
the table. They represent:

Responsible
Defines who is responsible for performing an activity or task

Accountable
Defines who is accountable for delivering, but not performing, an activity or task

362 | Chapter 11: Security Operations

Consulted
Defines who to consult on the performance of the activities or tasks

Informed
Defines who to inform about the activities or tasks

In our table, we’ve shown just two owners, the provider and the consumer, but often
there is a need to show the sharing of responsibilities between multiple teams on the
consumer side for one activity. This could leave us with multiple teams marked as
responsible, without clarity on who takes the lead for the delivery of a responsibility.
For example, for 3.9, either the vulnerability scanning team or the penetration testing
team could perform this activity.

In this case, we can define a RASCI by splitting the responsibility for performing a
service into those that are responsible for leading and supporting:

Responsible
Defines who is responsible for leading the performance of an activity or task

Supporting
Defines who is responsible for supporting the performance of an activity or task

Table 11-3 shows an example of a RASCI activity split between vulnerability manage‐
ment and penetration testing teams.

Table 11-3. Example RASCI table activity

ID Responsibility Provider Vuln Mgt Pen testing
3.9 Create and schedule custom or ad hoc scans. I R/A S

This implies the team responsible will need to specify the solution and lead the
activity, while the supporting team will perform some parts of the activity. Both teams
will need to provide the resources required to deliver their activity.

Another way of dealing with this is by splitting a responsibility into different respon‐
sibilities so there is only one team responsible. If there are quite a few roles support‐
ing and performing the same activity, the use of a RASCI may be the best approach.

At the end of developing the RACI or RASCI, you will have a clearer idea of the
split of responsibilities. Otherwise, there is a risk that the delivery of the activities
won’t happen or be correctly resourced, as the responsibilities are unclear. In this
case, the penetration testing team knows they have to schedule their scans and the
vulnerability management team doesn’t need to provide the resources to perform this
activity.

A RACI also helps communicate responsibilities so that teams requiring a security
service know who to work with. If there is a need for an activity, it’s now clear who

Shared Responsibilities | 363

to request the service from. For example, the project team should engage the penetra‐
tion testing team to perform ad hoc scans and not the vulnerability management
team.

You will see cloud or managed security service providers using similar RACIs. For
security services delivered internally via a security operations team or via a custom
managed security service, convert this RACI into an internal agreement or a contract
for an external service.

One-Sided Shared Responsibilities

Beware of one-sided shared responsibility agreements with only
one party having documented responsibilities and the other assum‐
ing anything not described is their responsibility.
Take the case where an organization hires a service provider to
design, develop, and run a workload on the cloud. However, the
organization retains the core security services as they want control
and full transparency for security and compliance. The resilience
of the workload now relies on the service levels, functionality,
scalability, and resilience of the retained security services.
With a one-sided agreement, there is no formal way of communi‐
cating and agreeing on the requirements for the security services
before the signing of the contract. We’ve seen this result in misun‐
derstandings, service failures, and contractual disputes.

Considering the responsibilities of each of the security services will make you con‐
sider how the operations are to take place and may result in architecture changes.
Completing the definition of a RACI allows you to move on to the next stage of defi‐
nition: defining the processes, procedures, and work instructions for the operation of
each service.

Shared Responsibilities RACI QA Checklist
• Identify from the requirements and existing security services the set of security•

services required to support the operation of the workload.
• Where a security service RACI doesn’t exist, develop a new RACI for each•

security service.
• Where a security service RACI does exist, if required, split the consumer into•

multiple owners.
• Embed the RACI into contracts for external security services and an internal•

agreement for internal security services.

364 | Chapter 11: Security Operations

Defining Processes, Procedures, and Work Instructions
To establish auditable controls for consistent application across an enterprise, there
is a need for processes to define the implementation of the security policy. Without
processes, it’s not clear who performs the individual activities. Processes are necessary
to define the order of activities, the control points or decisions, and the records that
require storage.

For instance, the policy might state that authorization is necessary before accessing
a system, but it might not specify that the line manager and application owner are
the next two people to give authorization. Writing the order of activities and control
points into policies and standards isn’t the most effective approach, which is why
there is a requirement for documented processes.

ISO 9001:2015 Quality Management Systems

We’ve used a documentation structure that will enable an organiza‐
tion to meet the requirements of ISO 9001:2015 Quality Manage‐
ment Systems. Using processes, procedures, and work instructions
can be the basis of a Quality Management System (QMS) for an
organization.

For enterprise-wide consistency with different layers of abstraction, the top layer
will be a written process that’s independent of technology and application-specific
rules. We write the mandatory control requirements for a whole organization into
the top-level process. For security processes, the Chief Information Security Officer
(CISO) team may document them to ensure consistent execution of the security
controls across an organization.

At the next layer, the written procedures will define the execution of a process that’s
specific to a line of business or application. Perhaps it adds additional detail to the
process. For example, the IT systems operations team may have a process where the
line manager and technology platform manager are the approvers, with an additional
application approver required for access to sensitive data. For security procedures,
the Business Information Security Officer (BISO) team may document them to
include the line of business-specific control requirements.

This procedure may then have an impact on automation. An organization-wide
identity lifecycle management system may control the execution of this process. The
approval of the line manager and technology manager is in the standard management
system, with a custom approval mechanism built into the application that manages
the approval of the application approver. The procedure, but not the process, would
include information on the additional approval and the use of tooling.

Defining Processes, Procedures, and Work Instructions | 365

https://oreil.ly/obr3o
https://oreil.ly/obr3o

CISO and BISO

Larger organizations split the role of a CISO by assigning line
of business, division, geography, or subsidiary responsibilities to
a BISO. They may take the policies, processes, and practices devel‐
oped at an organization and translate them into documentation
specific to that part of the organization. If a BISO isn’t necessary,
it might be an indicator that the organization could consolidate its
processes and procedures into a single set of documentation.

We still don’t have the step-by-step keystrokes documented. This final level of docu‐
mentation is in a work instruction. For work instructions, the technology or applica‐
tions operations team may document them as they understand the specific technical
implementation.

We’ve summarized the process, procedure, and work instruction artifact layers with
organization scope, definition, description, and examples in Table 11-4.

Table 11-4. Processes, procedures, and work instructions

Artifact Organization
scope

Definition Description Example

Process Enterprise—
whole
organization

A process states
what needs to be
performed and
why.

This is a high-level process flow, using
a swimlane diagram or flowchart, that
defines the roles, activities, control points,
and separation of duties that’s described
independent of technology.

Process to request a
user ID

Procedure Line of business
or business
application

A procedure states
how a process is to
be performed.

This is a set of step-by-step activities that
specify the steps specific to a business and
may include additional activities needed for
the business. They’re insufficient to use as they
don’t have details of the specific commands or
steps for entering at a keyboard.

User ID request
procedure for the
payments line of
business

Work
instruction

Specific
technology or
application

A work instruction
explains how to
carry out a
procedure.

This is a set of step-by-step instructions
that specify the specific commands and
parameters used to execute the activities.
It will include configurations specific to the
environment, such as IP addresses and security
configurations.

User ID request
work instruction for
the payment
application in the
user ID request
portal

While there is likely to be a need for all three layers in large global enterprises, it may
be sufficient to merge layers for smaller organizations where there are few lines of
business and where there is a small range of technologies with little variation.

Clearly defining documentation ensures consistent execution of the control process
across an enterprise, with automation of control points, compliance checks, and
successful recording of audit events.

366 | Chapter 11: Security Operations

But how does this work in practice? Let’s show an example of how to document the
vulnerability management processes we discussed earlier in the RACI.

Case Study: Vulnerability Management Service
Earlier in this chapter we identified a new derived requirement for a vulnerability
management service for the case study. We documented, in Table 11-2, a RACI for
a vulnerability management service to describe the provider and consumer responsi‐
bilities. Within the responsibilities, there is responsibility 3.3, which says the security
service provider must:

Provide vulnerability management capability to track and manage risk lifecycle for the
results from the vulnerability scanning.

We’ll now continue by discussing the description of the process, procedure, and
work instructions for the risk management lifecycle to support this vulnerability
management capability.

Process Definition
We begin to think about the steps a vulnerability needs to go through when managing
the risk, from the identification of a new vulnerability to the confirmation of its
removal or risk acceptance. The statechart diagram in Figure 11-4 illustrates the
vulnerability’s various state changes. Every state change entails a process that may
involve human intervention or complete automation.

Figure 11-4. Statechart diagram

Case Study: Vulnerability Management Service | 367

We started with the state change VM-1, where a vulnerability scan identifies a new
vulnerability or an import of vulnerabilities takes place in the state change VM-2.
This moves the vulnerability record to the first state of a new vulnerability. The
import could be from external tooling or manual checking that identifies a vulnera‐
bility. At this point, the vulnerability is new and a review hasn’t taken place.

The completion of a vulnerability review automatically moves the vulnerability to
state 2, where either there will be a re-run of the scan (VM-1), an assignment of
a remediation action (VM-4), or the risk is accepted (VM-7). Where there is an
acceptance of a risk (VM-7), the renewal of the risk (VM-8) will be at an interval
defined by a security standard. We’ve included a timer graphic with a renewal period
of 12 months on the diagram. The statechart lifecycle continues with state changes
until the vulnerability reaches state 4, where the removal of a vulnerability has taken
place.

Each of these state changes happens through a process that’s a mix of automated and
manual activities performed by one or more actors. We need a way to describe the
processes and we suggest using the swimlane diagram that we discussed in Chapter 4.
However, many of the processes we’re now describing are a sequence of processes
with multiple layers of process description. We suggest starting with a simple layer
1 process flow, as shown in Figure 11-5 for the VM-7 accept risk process (or state
change).

Figure 11-5. Level 1 process flow

The level 1 process flow shows three subprocesses to complete the VM-7 state
change. This starts with the documentation of the risk acceptance, performing a
risk review, and then the risk acceptance sign-off. In this case, we haven’t drawn
swimlanes, as we’re showing a simple chaining of one subprocess to another. The
double bar at the left and right of the subprocess box indicates that the description of
the subprocess is in the further process flow or swimlane diagram.

368 | Chapter 11: Security Operations

Figure 11-6 shows the subprocess VM-7.1 as a swimlane diagram.

Figure 11-6. Level 2 process flow—VM-7.1 Document risk acceptance

The process shows the different roles involved in its execution. The implementation
of the process, VM-7.1, isn’t fully defined until the documentation of the two sub‐
processes, VM-7.1.2 and VM-7.1.3. Decision VM-7.1.6 doesn’t generate any audit
records because it’s not an important control decision.

When VM-7.1 is complete, the overall process will move on to VM-7.2, as shown in
Figure 11-7.

Case Study: Vulnerability Management Service | 369

Figure 11-7. Level 2 process flow—VM-7.2 Perform risk review

Here you will see the risk raiser role in the swimlane for VM-7.2 with a different
set of supporting roles from those in the process VM-7.1. The risk review stage is
an auditable process, with the generation of an audit trail for the auditable activities.
There is no information on the implementation of the audit record at this stage.

When VM-7.2 is complete, the overall process will move on to VM-7.3, as shown in
Figure 11-8.

In this subprocess, VM-7.3, we have the risk raiser role with another new set of roles.
Splitting the overall process into stages removes the need to have all the different
roles in one process flow and makes each stage easier to comprehend.

370 | Chapter 11: Security Operations

Figure 11-8. Level 2 process flow—VM-7.3 Sign-off risk acceptance

With each of the swimlane diagrams or process flows, we need a more detailed
description to explain each of the steps. We’re going to use the VM-7.3 swimlane
diagram as an example for a process description.

We’ve split the description into two parts, starting with the header in Table 11-5.

Table 11-5. VM-7.3 Sign-off risk acceptance process—header

Process definition: VM-7.3 Sign-off risk acceptance description
Description Sign-off of a risk acceptance for continued risk from a vulnerability with compensating controls by the line of

business risk managers and the business risk owner.

Inputs Risk acceptance form—proposed

Outputs Risk acceptance form—approved

Case Study: Vulnerability Management Service | 371

The description continues with the process activities in Table 11-6.

Table 11-6. VM-7.3 Sign-off risk acceptance process—activities

Activity Title Role Description
VM-7.3.1 Submit for

sign-off
Risk raiser The completion of the preparation and risk board review for the risk acceptance has

allowed submission of the risk for formal sign-off. The submission of the risk takes
place to the risk manager for approval. The request must include mitigation for the
vulnerability.
Record in Audit Trail: Date and time of sign-off requested, name of approver, risk ID,
risk details, and free text message given to approvers.

VM-7.3.2 Risk manager
review

Risk
manager

The risk manager reviews the risk to confirm the inclusion of all details, that
there is sufficient information to assess the risk, and that there is a proposal for
appropriate risk mitigation.

VM-7.3.3 Risk manager
sign-off

Risk
manager

After reviewing the submission, the risk manager either approves or rejects the
submission.
If rejected, return to activity VM-7.3.1 with the reasons for rejection.
If approved, record the approval and move on to activity VM-7.3.4 for the business
risk owner review.
Record in Audit Trail: Date and time of approval or rejection, name of approver, risk
ID, and free text comment on the approval or rejection.

VM-7.3.4 Business risk
owner review

Business
risk owner

The business risk owner reviews the risk to assess whether this is a risk they’re
willing to accept.

VM-7.3.5 Business risk
owner sign-
off

Business
risk owner

After reviewing the submission, the business risk owner either approves or rejects
the submission.
If rejected, return to activity VM-7.3.1 with the reasons for rejection.
If approved, record the approval, and the VM-7 process moves on to completion.
Record in Audit Trail: Date and time of approval or rejection, name of approver, risk
ID, and free text comment on the approval or rejection.

The process description provides additional details about the decision criteria and the
content of the audit records because the swimlane has insufficient space to record
this information. This example is simple and the description may be more detailed in
reality.

Some detail is still missing, as we haven’t determined which combination of activities
each role can and can’t perform. We created a separation of duties matrix to show this
in Figure 11-9.

372 | Chapter 11: Security Operations

Figure 11-9. Separation of duties—VM-7.3 Sign-off risk acceptance

The activity steps are numbers to the right and below the ID label. Avoid combina‐
tions marked with a cross, as they pose an elevated risk. For example, the person
who submits the risk for approval must not be the risk manager or the business risk
owner. Where there is a star, this is low-risk and ideally shouldn’t be the same person.
If the business risk owner is the risk manager, this combination can take place only
if there are no other suitable options. Lastly, the combination of activities with a tick
can take place.

We’ve been through the architectural thinking and core artifacts used to describe a
process flow, including:

• A statechart diagram•
• A level 1 process flow•
• A level 2 process flow using a swimlane diagram•
• A process description•
• A separation of duties matrix•

Case Study: Vulnerability Management Service | 373

The process still has no detail specific to a line of business, application, or technol‐
ogy. We therefore need to continue with the development of procedures and work
instructions.

Procedures and Work Instructions Definition
Now we need to expand the process into a procedure by defining content specific
to an application or line of business. There may be little change from the process to
the procedure. The business leader might just sign off on a controlled document that
records the specific names of the approvers in the business. The document may also
record the delegates for the application owner in the event they’re not available, such
as on vacation.

Sometimes, there is a need to rewrite the statechart diagram, swimlane diagrams,
and process descriptions for that line of business. If the line of business uses its own
specific tooling or adds to the overall enterprise process, it will enhance the process
into a line of business procedure.

The procedure will still include the different roles in the swimlane diagrams, but
when you get to work instructions, you may split them into documents that specify
the individual instructions or commands for a particular role. For example, each of
the three roles in process VM-7.3 has a dedicated work instruction.

At this level of detail, documenting a process flow or swimlane diagram is unnec‐
essary due to the presence of separate work instructions for each role. You may
record the work instructions in a user manual or online help portal with a series of
numbered activities.

Practical Quality Management Systems

As we discussed earlier, these layers of documentation can make
sense in a large enterprise environment that’s in a regulated indus‐
try, but for smaller organizations, it would be impractical to require
all this documentation. If you are going down the route of imple‐
menting a Quality Management System, we suggest you take some
time to read guidance such as Implementing ISO:9001:2015 (IT
Governance Publishing) by Andrew W. Nichols.

In the first half of the chapter, we used the vulnerability management requirements
we talked about in Chapter 4 to document who is responsible for what activities in
a RACI. We then went on to create processes, procedures, and work instructions, as
seen in Figure 11-10. Clear traceability is shown from one step to the next helping to
ensure there are no gaps in the solution.

374 | Chapter 11: Security Operations

https://oreil.ly/dRDNM

Figure 11-10. From a security service to work instructions

Process, Procedure, and Work Instructions QA Checklist
• From the identified security services and RACI, identify the lifecycle for the•

management of information and the process transitions through documenting a
statechart diagram.

• Identify what processes exist already and what new processes need development.•
• Where processes already exist, add the development of procedures and work•

instructions to the project, where they require development.
• Where there is a need for new processes, add the development of processes,•

procedures, and work instructions to the project.

Before we move on to the next section, the vulnerability management supplier pro‐
vided a new requirement that needs discussion.

Case Study: Vulnerability Management Service | 375

Case Study: Deployment Architecture Update
While developing the process swimlane diagrams and separation of duties matrix, the
supplier of the vulnerability management services adds a new requirement for locat‐
ing a vulnerability scanning proxy in a VPC that has access to all the workload VPCs.
We then documented a short architectural decision record, as shown in Table 11-7, to
place the proxy in the management VPC.

Table 11-7. Vulnerability scanning architectural decision record

ID Decision Rationale Implication
AD15 Vulnerability scanning

proxy in management
VPC

• The management VPC is designed to hold all•
operational tooling that needs access to all
workload VPCs.

• Update the deployment•
architecture diagram and assess the
impact on the project.

The update to the deployment architecture diagram includes the vulnerability scan‐
ning proxy and communication highlighted with shading in the management VPC,
as shown in Figure 11-11.

This is typical of the architectural thinking process, where considering operational
aspects of a solution introduces new components into the deployment architecture.
Have a think about other operational aspects we might have missed from this solu‐
tion that will require an update to the architecture.

Now we’re going to move on and focus on the development of documentation to
support threat detection and response. We will use the threat modeling discussed in
Chapter 6 to further define the threat detection and incident response requirements.

376 | Chapter 11: Security Operations

Figure 11-11. Vulnerability scanning proxy update; see the original diagram

Case Study: Deployment Architecture Update | 377

https://oreil.ly/SAHC

Threat Detection Use Case
We earlier performed threat modeling on a component architecture diagram and a
cloud architecture diagram, identifying threats to sensitive data while in transit, at
rest, and in processing. The identified threats helped to specify the countermeasures,
but not all risks will be fully mitigated, and the identification of a new vulnerability
may take place that can expose the workload. We can also use the identified threats to
select threats that require detection. You may require detection because it’s impossible
to mitigate a threat, you want to be aware when a threat actor is trying to exploit a
potential vulnerability, or because there is a significant risk from the identification of
a new vulnerability.

Limited Threat Detection Scope

We’re limiting our discussion to identification of threat detection
use cases during the design and delivery of a workload. There are
many other ways in which the identification of threats for detection
takes place.

Perform identification, prioritization, and implementation of detection use cases for
the setup of a threat detection service to support your workload. When a threat is
detected, there is a need for an incident response runbook to respond to the threat
and mitigate the risk. We will continue by using the threats that we identified earlier
to define use cases for threat detection and incident response runbooks, as shown in
Figure 11-12.

Figure 11-12. Threat modeling to incident response traceability

Threats will be traceable from the threat modeling to the threat detection use case
and through to the incident response runbook. We will discuss using a traceability
matrix to help ensure the completeness of the detection and response for the system
later in this chapter.

Automation of the threat detection use case can take place in a tool such as a
security information and event management (SIEM) system, and incident response
runbook automation can take place in a security orchestration, automation, and

378 | Chapter 11: Security Operations

response (SOAR) system. As this automation is specific to the technology, we won’t
be discussing that in this book.

A threat detection use case communicates what the threat is and how the detection
is to take place. As an architect, you may create or support the creation of a use case
that’s specific to your workload. The use case will need to include:

Title
Give the use case a short title to convey the threat detection capability.

Description
A description of the use case discusses what threat detection needs to take place
and how the detection of the threat may take place. The level of detail in the
description will depend on who is completing the use case and their level of
understanding of the potential detection mechanisms. It could be high-level,
expressing the use case in a non-technical way or very technical if the author
understands the specific details of the threat detection approach.

Rationale
The rationale helps to understand the context behind the use case and the
detail behind the detection mechanism. We suggest that, as a start, you should
include information about the application, the sensitivity of the processed data,
and the impacted business processes in the event that a threat actor exploits a
vulnerability or weakness. This will enable the request for a detection mechanism
to be better prioritized.

Some additional background on the threat is important, such as that obtained
from threat intelligence sources. If the use case is to detect a specific threat actor
that’s particularly active or seen as a significant threat, this again helps give an
idea of the priority and the effort needed. Include links to open source informa‐
tion containing more detailed descriptions of the threat and how to implement
detection. The external information may change over time, so don’t just copy the
content and not include a link.

Requester
The name of the requester provides the source of the request. It’s likely there will
be a need for additional clarification on the development. Once the implementa‐
tion of the detection mechanism is complete, it will need integration and testing
with the requester to ensure its effectiveness.

A use case may consist of one or more detection rules that may need integration and
tuning to an appropriate level of sensitivity. For each detection rule, we suggest the
following content:

Detection rule
Give the detection rule a short name that summarizes the purpose.

Threat Detection Use Case | 379

Description
Provide a longer description of the detection rule that gives more detail.

Event sources
The triggering of an event may come from a recorded log event or an alert.
Record the source of this event.

Event fields
Record the required information from the event source needed to detect a threat.

Exceptions
To reduce false positives, you should limit the detection rule’s scope. Make a note
of what you don’t want the rule to apply to.

Dimensions
Define what the focus is so that you only include resources that are at the highest
risk.

Notes
Include additional information, such as prerequisites for preparation.

Let’s continue by applying the concepts we’ve discussed to the case study we’ve been
using in Appendix A.

Case Study: Threat Detection Use Case
In the case study, we’ve used a number of different databases that contain sensitive
information related to the driver and vehicle. The data needs protection from threat
actors, including controls for protection, detection, and response. Let’s think about
a threat detection use case to detect the attempted exfiltration of data from the
database.

EasyPark Incident

In December 2023, the Swedish parking firm EasyPark had data
stolen from its parking systems, including names, mobile numbers,
addresses, emails, and parts of credit card numbers. Its US-focused
app, ParkMobile, was previously compromised in 2021. This exam‐
ple reinforces the need for you as an architect to identify threat
detection use cases specific to your application or workload and
it’s the role of the threat detection engineering team to design the
detection. Don’t think that it won’t happen to your application.

In developing security for a solution architecture, you will come across threat detec‐
tion use cases in two contexts:

380 | Chapter 11: Security Operations

Generic use case
These are widely applied use cases that need a simple setup or configuration to
apply to an infrastructure or workload. For example, a use case for detecting
a change to a file just needs configuration to include new files related to your
workload.

Using a generic use case may require updates to your solution to enable support
for threat detection. For example, it may require the installation of additional
code within your servers or containers.

Before spending time developing your own unique new use cases, think about
how your solution should support generic threat detection use cases from the
threat detection engineering team’s existing catalog.

Workload-specific use case
These are use cases that are specific to the development of a workload or applica‐
tion solution architecture. They’re not generic use cases that are widely applied
and may require new development to deliver automation.

A solution architecture for a security service may need new use cases, such as
identity lifecycle management, as they’re domain-specific security applications.

We will focus on the development of a threat detection use case for the case study by
using threat T05, which we identified earlier in Table 6-3 and is shown in Table 11-8.

Table 11-8. Case study threat

STRIDE category Threat Control
Information
disclosure

T05—An attacker exploits a
vulnerability by performing a mass data
exfiltration of the database.

C05.1—Detect mass exfiltration of database (detective).
C05.2—Implement separation of duties and the least
privilege principle for application components authorized to
query the database (preventive).

Using the threat T05 and the guidance discussed earlier, we’ve split the threat detec‐
tion use case into two parts, starting with the header in Table 11-9.

Table 11-9. Threat detection use case: Mass database exfiltration detection—header

Threat detection use case: Mass database exfiltration detection
Description Detect the mass extraction of data from a database.

Rationale If a threat agent were to extract data from a database, the characteristics of the queries and processes
performing the queries would suggest a potential exfiltration of data, indicating a system compromise. The
extraction of personal information would be a notifiable incident and could result in reputational damage, loss
of customers, and a substantial fine.

Requester Project X—security architect

Case Study: Threat Detection Use Case | 381

We set the context of the threat to the organization. Note that it still has a major
impact, even if you think the recovery or destruction of the stolen data is possible.
The duplication of data has likely already taken place and spread among the hacker
community.

The use case continues with a description of the suggested threat detection rules in
Table 11-10.

Table 11-10. Threat detection use case: C05.1—Database exfiltration detection—Rules

Rule Description Event sources Event fields Exceptions Dimensions Notes
Extensive query Detect

database
queries that are
pulling a
substantial
number of
records

Database event
log

Query source,
query
performed

None—will
detect both
trusted and
untrusted
processes

All databases The baseline
configuration
for the number
of records to
trigger an
event will take
place after
monitoring
database
queries.

Unauthorized
process

Monitor for
processes that
try to open
database and
fail

Database event
log

Query source,
query
performed

None—will
detect even if
untrusted
processes

All databases The database
will only be
open to trusted
processes, but
detection
should detect a
query that fails.

A Detailed Threat Detection Use Case

We gave a simple example of a threat detection use case. With a
complete set of rules, you should provide as much detail as possible
so that the threat detection team understands how to detect a threat
with as little research as possible. This makes it easier to get your
threat detection rules implemented faster.

We proposed two rules, but there could be many others, such as detecting new files
with privileged execution permissions or new processes. The threat detection team
would look for a combination of these events and other existing generic use cases to
indicate a potential threat to the system.

The rules may require the installation of a software agent or script on systems to
detect ransomware or other malicious code. This is information you should record in
your solution architecture.

382 | Chapter 11: Security Operations

Once the threat detection team has received the use case, they will enrich the
information with the detection of other weaknesses, vulnerabilities, tactics, and tech‐
niques. Sources for this information include:

Weaknesses
Software developers may include weaknesses in the development of their prod‐
ucts, and it’s not something that can be completely tested for in advance when
you don’t have access to the code. You should assess your workload for these
weaknesses to develop use cases to monitor for an attempt to exploit those
weaknesses.

The Open Web Application Security Project (OWASP®) Foundation Top Ten is
a useful list for developers to watch out for in their development. The threat
detection engineering team may use these as a starting point for developing some
threat detection use cases.

MITRE has made a more comprehensive and specific list of weaknesses avail‐
able in their Common Weakness Enumeration (CWE) list, including the top
10 Known Exploited Vulnerabilities (KEV) Catalog. Threat detection for these
vulnerabilities is something to consider in the development of the workload.

Vulnerabilities
Over time, the identification of vulnerabilities takes place and is often fixed
with patches or configuration changes. The fixing of vulnerabilities isn’t always
possible and an attempted exploit will need blocking. The attempted exploit may
also indicate a threat actor has taken an interest in your system and further threat
detection use cases may require development.

There are several databases that track vulnerabilities. The NIST National Vulner‐
ability Database (NVD) is a repository of vulnerabilities for the US government
stored in the security content automation protocol (SCAP) format. The MITRE
Corporation also hosts the Common Vulnerabilities and Exposures (CVE) list.
Both of these lists may contain vulnerabilities that you can mitigate by a change
in architecture and are therefore worth reviewing as part of your architectural
thinking.

Tactics and techniques
Threat actors have a set of tactics and techniques they use to exploit weaknesses
and vulnerabilities. A list of these is available at the MITRE ATT&CK knowledge
base of adversary tactics and techniques. Review this list to see how you can
architect your system to be resistant to these tactics and techniques used by
threat actors.

Case Study: Threat Detection Use Case | 383

https://oreil.ly/y6X4Z
https://oreil.ly/pu_sj
https://nvd.nist.gov
https://nvd.nist.gov
https://www.cve.org
https://attack.mitre.org
https://attack.mitre.org

Threat Detection Engineering in Depth

The purpose of the threat detection use case is to enable an
architect to help document requirements for a threat detection
engineering team. Megan Roddie, Jason Deyalsingh, and Gary J.
Katz give a far more comprehensive description of threat detection
engineering in Practical Threat Detection Engineering (Packt Pub‐
lishing).

We suggest you review these data sources to help identify potential use cases needed
for your solution. For example, the threat detection engineering team may not know
about every software component you have and what their weaknesses are. This is for
you to help identify and build protection mechanisms to remove the weakness.

Threat Detection Use Case QA Checklist
• Review the existing threat detection use case catalog to identify any use cases that•

need updating to include workload-specific rules.
• Review existing threat detection use cases that apply and need detection capabili‐•

ties added to the solution.
• From threat modeling, identify the need for any new threat detection use cases•

and send an outline use case to the threat detection engineering team for their
consideration.

• Review external data sources for weaknesses, vulnerabilities, tactics, and tech‐•
niques that you could remove from your system or detect as threats.

Incident Response Runbook
Now that we’ve developed a threat detection use case, we need a process for respond‐
ing to an alert from the threat detection service about a potential security incident.
The process used by the industry normally aligns to the Incident Response Lifecycle
proposed in NIST SP800-61r2 Computer Security Incident Handling Guide and
shown in Figure 11-13.

Figure 11-13. NIST SP800-61r2 Incident Response Lifecycle (detection and analysis)

384 | Chapter 11: Security Operations

https://oreil.ly/MGLNU
https://oreil.ly/y_DF2

The response to an incident follows these steps:

Preparation
The preparation stage includes the development of a solution architecture,
including security controls to protect the workload. The hardening of the
deployed solution is next, using baseline standards. Security testing follows to
ensure the controls have been effectively deployed.

The work also includes the deployment of threat detection and incident response
services, as well as the processes and education needed to respond to a security
incident. There should be testing of the incident response processes to provide
assurance that they’re effective.

Identification (detection and analysis)
The threat detection service will automatically raise alerts when the detection
of a potential threat occurs. The alert needs investigation to validate whether
the threat is a false positive or if it needs further investigation. This stage often
involves collecting together the details, including the source of the threat, and
entering them into an incident record for the next stage.

Containment
Once the identification of a threat has taken place, it may need containment
to stop the impact. Malicious code, such as ransomware, will need rapid contain‐
ment, but other threats may need further monitoring. Containment may tip off
sophisticated threat actors who may take more aggressive action to destroy data
and the environment, making things worse, and moving on to eradication may
be the better approach.

Eradication
At this stage, the objective is to not only contain but also remove the threat.
Removal of vulnerabilities and weaknesses will be a priority by updating software
to remove vulnerabilities, undoing changes to the security configuration, and
removing malicious code across the environment. In addition, there will need to
be a change of all secrets, encryption keys, and passwords.

Recovery
Actions taken during eradication may have reduced service levels across the
whole environment. Those services need recovery through actions like refreshing
server operating systems. In a cloud environment, it may mean running automa‐
tion to deploy the infrastructure from the ground up again. There may be a need
for emergency improvements to the security controls before the closure of the
incident.

Incident Response Runbook | 385

Post-incident activity (including lessons learned)
After completion of the service recovery, the organization can learn many lessons
to improve the detection capabilities, incident response process, and security of
the information systems. There may be a need for some long-term projects for
improvements that require significant investment as their completion can’t take
place during the recovery activities.

For incident response, we use the identification, containment, eradication, recovery,
and post-incident activity stages in the development of an incident response runbook.
The development of a runbook will include a wide range of different stakeholders, as
it may need to include incident response, security operations, service management,
operations teams, legal, communications, and the CXO team.

The organization’s incident response department typically oversees the incident
response process and distributes responsibility among different teams in accordance
with their qualifications, experience, and responsibilities. The division of incident
response depends on the approach an organization uses. Following is a description of
the incident response teams that one organization uses:

Tier 1: First responders
These are the first responders who perform the initial review of security alerts
and decide whether an alert is something that requires further investigation.
They might collect extra information together and record it in an incident record
for further investigation. Many of the activities at Tier 1 are increasingly automa‐
ted and assisted by AI to identify patterns to match against known threats.

The next activities of containment, eradication, and recovery get passed on to
teams with more skills and experience. It also enables Tier 1 to continue looking
for new threats and not get distracted by ongoing incidents.

Tier 2: Incident responders
The Tier 2 incident responders perform further investigation and start to contain
the threat. They have further experience and are able to work on incidents that
haven’t had a wide impact across the organization.

Tier 3: Major incident responders
The Tier 3 team handles major incidents that could have a wide impact across
the organization. They lead and coordinate the incident across the different
operations teams supporting the information systems.

They take on more long-running incidents that may involve automating the
investigation and remediation of a wide number of on-premises and cloud
resources. They may also perform forensic activities as a part of their investiga‐
tion for use in later legal actions.

386 | Chapter 11: Security Operations

3 Called Detection and Analysis in NIST SP800-61r2.

Tier 4: Computer Security Incident Response Team (CSIRT)
The CSIRT team provides more of a leadership and coordination function,
including review and approval of major changes. They coordinate with other
business functions, including legal, communications, and data privacy teams.

Let’s continue by applying the concepts we’ve discussed to the case study from
Appendix A.

Case Study: Incident Response Runbook
Earlier in this chapter, we discussed a threat detection use case derived from a
threat T05 mass data exfiltration that was identified during threat modeling of the
component architecture diagram in Chapter 6. If we detect a threat related to this use
case, we would need an incident response runbook.

We will now discuss an example runbook created specifically for the threat of mass
data exfiltration. We’ve split the incident response runbook into two parts, starting
with the header in Table 11-11.

Table 11-11. Incident response runbook: IR10—Database exfiltration incident response—
header

Incident response runbook: Database exfiltration incident response
Description Respond to suspected mass exfiltration of database.

Detection use case Database exfiltration detection

The header includes a title and description, followed by a link back to the threat
detection use case that will trigger this incident response runbook.

Your organization may already have templates for incident
response runbooks for you to use as a starting point. They’re likely
to be more detailed, including details on specific tooling and com‐
mands to follow within your organization.

The incident response runbook continues with a description of incident response
stages in Table 11-12. It’s split into five sections:

• Identification3•
• Containment•
• Eradication•

Case Study: Incident Response Runbook | 387

4 This section is often called Lessons Learned, but it’s much more than that.

• Recovery•
• Post-incident activity4•

Table 11-12. Incident response runbook: IR10—Database exfiltration incident response—
Stages

Activity Description Tier
1

Tier
2

Tier
3

CSIRT

Identification 1. 1. Review results from event records associated with the raised1.
incident record.

2. Review network traffic monitoring for increased data export and2.
record screen shots in the incident record.

3. Identify the external network destination and record it in the3.
incident record.

4. Research network destinations and record information in the4.
incident record.

5. Review other recorded events and tag potentially relevant records5.
against the incident record.

6. Retrieve additional database logs from the database analyst and6.
get them to validate whether they expect the database query.

7. Assess whether a false positive exists: either cancel the incident7.
record or forward it to Tier 2 for continued investigation.

✔

2. 1. Review the record passed from Tier 1 and validate the external1.
network address.

2. Confirm the network address doesn’t match any known trusted2.
external service for the specific workload or generic list of services.

3. Complete the Tactics, Techniques, and Adversary Research3.
runbook.

4. Send a request to the CSIRT team notifying them of a potential4.
data protection breach.

5. Decide whether to use containment or eradication, then move on5.
to the next stage.

✔

388 | Chapter 11: Security Operations

Activity Description Tier
1

Tier
2

Tier
3

CSIRT

Containment 1. 1. Create a request for a network block for the CSIRT team to review1.
and approve.

2. Continue monitoring while waiting for confirmation.2.

✔

2. 1. Review the network block request and ask for further information1.
if needed.

2. Approve the network block.2.

✔

3. 1. Implement network block.1.
2. Review related network and workload monitoring for any impact2.

on services.
3. Confirm network traffic monitoring shows a reduction in network3.

traffic.
4. Review to see if the attack switched to an alternate network4.

address.
5. Pass to Tier 3 for further investigation.5.

✔

4. 1. If the threat actor is now using an alternate IP address, perform1.
further investigation and response using the Adaptive IP Threat
runbook.

2. Move to eradication phase.2.

✔

Eradication 1. 1. Review database logs to establish the extent of data exfiltration.1.
2. Identify vulnerabilities that enabled exploits using the Extended2.

Exploit Investigation runbook.
3. Notify the press office, legal department, and Chief Privacy Officer3.

of the ongoing incident.
4. Build threat eradication plan.4.
5. Request CSIRT team review and agree to threat eradication plan.5.

✔

2. 1. Review the threat eradication plan and ask for further information1.
if needed.

2. Approve threat eradication plan.2.

✔

3. 1. Raise change tickets for the implementation of fixes for the1.
remediation of vulnerabilities.

2. Raise change tickets for the changing of all secrets, encryption2.
keys, and passwords.

✔

Recovery 1. 1. Develop recovery plan.1.
2. Propose a recovery plan and send it to CSIRT for agreement.2.

✔

2. 1. Review the recovery plan and ask for further information if1.
needed.

2. Approve recovery plan.2.

✔

3. 1. Raise problem or change tickets for the implementation of the1.
recovery plan.

✔

Case Study: Incident Response Runbook | 389

Activity Description Tier
1

Tier
2

Tier
3

CSIRT

Post-incident
activity

1. 1. Review incident response records.1.

a. Effective threat detection use case?a.
b. Effective identification, containment, and eradication?b.
c. What was effective?c.
d. What needs improvement?d.
e. Any future consequences?e.

2. Record incident response investigation.2.
3. Raise problem tickets for post-incident improvements.3.
4. Handover incident report including scope of data breach to Chief4.

Privacy Officer and legal.
5. Track post-incident improvements.5.

✔

Table 11-12 includes a simple form of a RACI matrix to show the handover between
different members of the incident management team who will own different stages
of the incident. It could be extended to include the full RACI or RASCI designation.
Many others could assist in supporting the incident.

During the identification stage, data is collected from sources immediately available
to the Tier 1 incident handler, but the extraction and examination of additional logs
may need to take place with the help of the database analyst, who will have full
privileged access. The database analyst may also be useful to validate that the query is
an unexpected activity for the application.

The incident progresses between different tiers of incident management teams,
depending on the stage of the incident and the level of skill needed. Depending on the
type of threat, for example, if the threat is widely embedded across the environment,
the incident response team may skip over the containment stage and proceed with
eradication.

Outside the incident management team, the incident response team will involve a
wide variety of stakeholders. The team won’t have full privileged access or the skills
for every technology and will therefore need operations teams, including security,
to support the incident. In this case, it’s a potential data protection incident with
personal data extracted by the threat actor. The Chief Privacy Officer and legal team
will likely have to notify the authorities of the data breach, and the press office will
need to communicate with those affected.

This runbook is a foundation for a workload-specific set of instructions. Throughout
the runbook, there will be call-outs to other runbooks that are more generic and
detailed in their approach to the investigation, containment, and recovery.

390 | Chapter 11: Security Operations

Incident Response in Depth

To find a more detailed description of incident response, consult
Intelligence-Driven Incident Response (O’Reilly) by Rebekah Brown
and Scott J. Roberts.

The incident response runbook that we describe is an illustration of a runbook
template that a security operations center (SOC) uses. It gives you an idea of the
required information needed while responding to an incident. You may have access
to many other existing runbooks for consideration when developing your solution
architecture.

As an architect, you may need to add capabilities to the solution to enable effective
incident response. For example, are logs available to the incident response team from
the database and other components in your solution? Ensure the documentation of
the required logs within your solution, along with any automation required during an
incident.

Incident Response Runbook QA Checklist
• Review the existing incident response runbook catalog to see if any runbooks•

need updating to include workload-specific activities.
• Review existing incident response runbooks that apply and require data collec‐•

tion capabilities that need adding to the solution.
• From the threat detection use cases, identify the need for any new incident•

response runbooks and raise a request for their development.
• Identify event logs that need forwarding to support the incident and ensure•

integration with the threat detection system.
• Identify automation for use in a security incident and integrate it with the threat•

detection and response systems.

Threat Traceability Matrix
At the end of Chapter 4, we discussed the use of a traceability matrix to ensure
the completeness of design, implementation, and testing. At the beginning of our
discussion on the threat detection use case, we also suggested the use of a traceability
matrix to ensure coverage for threats. We propose that you create a table in a spread‐
sheet, such as shown in Table 11-13, to demonstrate full coverage with the detection,
response, and testing of all threats.

Threat Traceability Matrix | 391

https://oreil.ly/pxwt7

Table 11-13. Threat detection and response traceability matrix

Threat ID Threat Detect ID Detection use case IR ID Incident response
runbook

IR test ID

T05 Mass data
exfiltration

C05.1 Database exfiltration
detection

IR10 Database exfiltration
incident response

Test_IR_003

There is unlikely to be a one-to-one mapping of threats to detection in the incident
response runbook, and you may need to extend the table to support multiple map‐
pings. Separating the identifiers from the titles makes it easier to filter and find
mappings.

Summary
This chapter starts by examining how a RACI table, processes, procedures, and work
instructions can describe security services. This is an activity that an architect will
get involved with and is extremely important to ensure the continued operation of
security and compliance for a system. You may get help but as a technical leader,
you are accountable for ensuring their development and that teams accept ongoing
ownership before handover to operations teams.

We continued by looking at the development of a threat detection use case and
incident response runbook. As an architect, you should identify workload-specific
use cases for development and identify generic use cases that need integration with
your solution architecture. They may result in changes to your solution to ensure
effective threat detection and incident investigation. The threat detection engineering
team will develop the automation and is likely to need your help to develop or
adapt the automation. You will need to ensure there is effective integration and the
completion of testing.

When the threat detection team identifies a potential threat, the incident response
team will follow the corresponding incident response runbook. The incident response
team will likely lead the development of the runbook, with your support limited
to the inclusion of workload-specific activities. The runbook discussed provides an
example to give you an idea of what an architect needs to deliver. As the technical
leader for the workload, you will have the responsibility to ensure this runbook is
in place. Supporting activities such as the development of automation to collect data
and reconfiguration of parts of the system to contain threats are yours to ensure
implementation and testing.

392 | Chapter 11: Security Operations

Consider Operations Early

Don’t leave the discussion of operational processes until the end of
the architecture. The documentation of human and system actors
and their use cases should start with the documentation of the
system context diagram. They’re likely to require consideration
of additional components and integration throughout the archi‐
tectural thinking process. Applications or workloads may require
additional work to add instrumentation to support the operational
processes.

We’ve now been through the requirements definition, architecture development,
secure development practices, and operational thinking for the solution architecture.
We’re now moving on to the closing chapter of the book to provide some reminders
about some basic principles you need to consider, perspectives about the overall
development lifecycle, including control maturity, and a few thoughts on using AI in
the development of a security architecture.

Summary | 393

Exercises
1. Why might a Responsible, Accountable, Supporting, Consulted, and Informed1.

(RASCI) matrix be used rather than a Responsible, Accountable, Consulted, and
Informed (RACI) matrix? Select all that apply.
a. A RASCI matrix ensures there is only one owner responsible for leading thea.

delivery of the activity by splitting those Responsible and those Supporting.
b. Rather than decomposing into multiple activities, the activity is split intob.

those that lead the delivery activity and those that support delivery by per‐
forming part of the activity.

c. A RASCI matrix ensures there is only one owner responsible for leading thec.
delivery of the activity by splitting those Responsible and those Supervising.

d. The S defines who is responsible for summarizing the activity.d.
2. True or false: A Responsible, Accountable, Consulted, and Informed (RACI)2.

matrix that only defines the responsibilities for one party in an agreement is the
best form of responsibility definition.
a. Truea.
b. Falseb.

3. True or false: A process states how to complete a set of activities.3.
a. Truea.
b. Falseb.

4. A statechart diagram is useful to identify _____ needed to perform state changes4.
of data.
a. Processesa.
b. Requirementsb.
c. Architectural decisionsc.
d. Work instructionsd.

5. What artifact is used to ensure that activities in a process that are high-risk5.
cannot be performed without another party agreeing to the activity?
a. Statechart diagrama.
b. Processb.
c. Separation of duties matrixc.
d. Shared responsibility tabled.

394 | Chapter 11: Security Operations

6. True or False: Threat modeling is used to identify security countermeasures and6.
what threats should be detected.
a. Truea.
b. Falseb.

7. Why is a threat traceability matrix required? Select all that apply.7.
a. To ensure there is a use case for detection of a threata.
b. To ensure there is a response runbook for responding to a threatb.
c. To ensure detection and response are tested for a threatc.
d. To ensure a threat actor is identified for a threatd.

Exercises | 395

PART VI

Close

What more? To conclude, we will provide a refresher on the basics of security.
Following that, we will offer some final thoughts on the emerging issues around AI in
security and securing AI.

CHAPTER 12

Closing Thoughts

We’ve discussed a range of architectural thinking techniques and artifacts to use dur‐
ing the development of a hybrid cloud solution architecture. With a focus on artifacts
rather than documents, the principles we went through apply to both traditional
waterfall and Agile approaches to solution delivery.

There are other good practices that will help you on your journey to become pro‐
ficient in architecting security into your solution architecture. We will take you
through some of these guidelines as well as some thoughts around AI as our closing
thoughts for the book. Let’s start with the basics.

Getting Started
You may be thinking this is all a bit overwhelming, and where do I start with
something simple? We’ll discuss a few different perspectives to start with, including
starting with some basic security controls, starting with a minimum set of artifacts,
iterating to improve maturity, and getting the balance of risk right.

Don’t Forget the Basics
We talk about performing a comprehensive analysis with control compliance and
threat modeling with assurance to provide confidence in your solution, but you can
remove a large proportion of the risk rapidly by performing the basics, including:

Use supported software
Using supported software ensures the availability of security patches. This
includes open source software that requires regression testing with all the differ‐
ent integrated components. Open source software isn’t free; it still needs support.

399

Patch vulnerabilities
Software isn’t free of vulnerabilities, and software suppliers release regular secu‐
rity patches to their supported software. Understand what software you have
in your organization and ensure that patching takes place within a timeframe
appropriate to the risk.

Harden software
Disabling services that aren’t required, changing default passwords, enforcing
strong passwords, and enabling encryption in-transit and at-rest are fundamental
secure configuration practices that significantly reduce the threat surface.

Use multi-factor authentication
Multi-factor authentication reduces the risk of a compromised password for
a user account. The mechanism is broadly available and relatively simple to
implement, increasing the level of protection significantly.

Restrict administrative privileges
Users with administrative privileges pose a significant risk, as they usually have a
wide range of access and the ability to make significant changes to the configura‐
tions or bypass critical security controls. Don’t use privileged accounts for daily
business. Limit the privileged account’s access rights to the bare minimum, and
ensure that only users with a clear business need can access a privileged account.

Back up your data
Should a disastrous event happen and your data becomes the victim of a ransom‐
ware attack or is otherwise made unavailable, it’s crucial to have backups avail‐
able to recover your business. We’ve seen businesses severely impacted because
there were missing, outdated, untested, or inappropriately stored backups.

Maintain employee hygiene
Raising awareness about avoiding phishing emails, practicing safe browsing hab‐
its, and recognizing social engineering tactics can significantly reduce the risk of
falling victim to cyber threats within your organization or household.

Once the basics are in place, what next?

Minimum Viable Artifacts
We often get asked—there are many artifacts but what’s the minimum we can get
away with? We suggest you start with two artifacts:

Architectural decision records (ADRs)
As we discussed earlier in Chapter 1, architecture represents a set of significant
design decisions. If you don’t make architectural decisions, you aren’t perform‐
ing architectural thinking. All the other artifacts are just a way of describing

400 | Chapter 12: Closing Thoughts

requirements and the architectural decisions you make. You should record your
decisions in an ADR.

A threat model
As we’re talking about security and risk, we need to identify the threats and
corresponding countermeasures. We do this by looking at the data flows and
performing threat modeling. Without threat modeling, we’re not looking at
appropriate countermeasures for inclusion in a solution architecture.

You will soon discover that this isn’t enough, as you will use other artifacts to describe
architectural decisions and countermeasures. You might be doing this free-form and
not separating the system context, functional components, and deployment layers.
This is why having standard formats for the system context diagram, component
architecture diagram, and deployment architecture diagram becomes useful.

You will then want to have a way to track important items about the project, which is
when a RAID log becomes useful as well.

As you start to describe different aspects of the requirements, architecture, and
operations, you now have a “kit bag” of different artifacts and techniques to support
your architectural thinking. Use these artifacts, as you find them useful, to support
your thinking and communicate different aspects of your solution.

What you may find is that you start with a small set of artifacts and iterate with
increasing numbers of artifacts as the maturity of the solution increases.

Increasing maturity also applies to the number and strength of the security controls.

Iterate for Maturity
Once the basic controls are in place, that’s not the end. You’ll need additional layers to
provide defense in depth so you aren’t relying on a single layer of controls. Capability
maturity models help you to assess, measure, and structure the process of iteratively
improving the maturity of your solution. The following activities help you use the
maturity approach to improve your security:

Select the reference framework
Reference frameworks provide you with a structure for the capabilities that
represent good security practices. We’ve discussed a number of common frame‐
works in Chapter 2. For most frameworks, the authors will have defined matur‐
ity models as part of the framework or they may have been created by other
organizations.

A maturity model consists of a definition of levels and a description of the
capabilities associated with those levels. Many maturity models use the Capability
Maturity Model Integration (CMMI) definition of maturity levels: Level 1: Initial,

Getting Started | 401

https://oreil.ly/GcitD
https://oreil.ly/GcitD

Level 2: Managed, Level 3: Defined, Level 4: Quantitatively Managed, and Level 5:
Optimizing to define the steps on the maturity staircase.

In Rational Cybersecurity for Business (Apress), Dan Blum describes a generic
cybersecurity maturity model that establishes high-level maturity levels for the
capabilities of people, processes, and technology, as illustrated in Figure 12-1.

Figure 12-1. The rational cybersecurity maturity model

This simple model illustrates the foundation of most security maturity models.

Define target maturity
We need to define the target maturity level for each capability, as the target isn’t
to achieve the highest maturity level in all capabilities. The size, industry, and
level of acceptable risk of your organization influence the target maturity level
you should strive for. Often, a comparison to similar organizations’ maturity
levels via industry benchmarks can also help you define the target maturity level.

If your organization is a member of the Information Security Forum (ISF), you
have access to the ISF Benchmark, which provides a framework with the Stan‐
dard of Good Practice for Information Security and corresponding benchmark
data.

402 | Chapter 12: Closing Thoughts

https://oreil.ly/lxXNn
https://oreil.ly/Cfpam
https://oreil.ly/UrNVl
https://oreil.ly/UrNVl

Assess current state
Through document reviews, interviews, or system assessments, you can capture
the current state and identify the current level of maturity. You can do this as a
self-assessment, or if you want a more independent result, you can ask another
team or organization to do the assessment for you.

Plan the activities
You now have the current and target maturity. This provides you with a gap, and
this gap drives the definition of activities to close the gap and, with that, achieve
the target maturity level. If your current maturity is on Level 1 and your target
maturity is on Level 4, then it’s good practice to define some interim activities to
achieve incremental improvements, as you will typically not be able to raise the
maturity level in one go by more than one level.

As you focus on security, there are many other factors to consider, and you need to
get the balance right.

Get the Balance Right
In previous chapters, we’ve discussed that the foundation for implementing security
controls is to reduce risk for the organization. We’ve also discussed that, in cases
where a security control is more expensive than the benefit, i.e., the risk reduction
it provides, it’s either not an appropriate security control or the implementation
approach of the control isn’t ideal. In other words, we need to balance security (risk)
and cost. But these aren’t the only elements that we need to consider, as security can
have an impact on non-functional requirements.

Usability is another important element we must take into consideration. As humans,
we have a tendency to take the path of least resistance, and we become creative
in achieving this. We all know the examples of too-complex password rules and
short password change intervals, which make it very difficult for us to remember
passwords. As a result, we choose passwords where we only rotate some numbers
or use sticky notes to remember them. Luckily, the security industry is adopting
password-less technologies, which increase usability and, in fact, security. As a secu‐
rity architect, you need to keep usability in mind, as it can affect the effectiveness of
the security controls you are designing.

Irrespective of the controls that we design to protect our assets, we need to assume
that compromise of our solution will occur. This is one of the principles that we
also discussed in the context of zero trust. A fast detection of a compromise allows
the organization to initiate actions to contain the incident and stop the compromise.
Once we contain the compromise, it becomes important to return to normal opera‐
tions as fast as possible. This is what we collectively call cyber resilience.

Getting Started | 403

Cyber Resilience KPIs

Often used key performance indicators (KPIs) in this context are:

Mean time to detect (MTTD)
MTTD is a key metric to measure the average time it takes
your security operations team to detect a potential security
incident.

Mean time to contain (MTTC)
MTTC measures the average time it takes for your organi‐
zation to contain the identified attack vectors across all end‐
points and systems from the time of initial detection.

Mean time to resolve (MTTR)
MTTR represents the average time it takes your organization
to fully resolve and recover from a security incident after its
initial detection.

Throughout this book, we’ve discussed all these elements in detail. As a security
architect, it’s your responsibility to balance security, cost, resilience, and usability. So
how can you get the balance right?

You need to keep the goal in mind. The objective of security architecture is to reduce
the risk that the organization faces. Because of this, you can’t make compromises
on the controls that decrease the risk. You must carefully evaluate the control imple‐
mentation by working with other stakeholders in technology and service selection to
ensure the most cost-effective solution possible. One of the most important factors
that determines the implementation and ongoing costs is the selection of the technol‐
ogy and the services that will support it.

From the point of view of usability, you should strive to achieve the minimum
objective, which is that the implementation of security shouldn’t result in a decrease
in the user experience. The effectiveness of your resilience solution often depends
not only on which detection, response, and recovery elements you are designing
but also on what capabilities your organization provides for you to integrate those
solution-specific elements.

As an example, you will likely not design a security monitoring service only for your
solution, but you will integrate it with the existing service in your organization. If this
service doesn’t provide effective detection and triage capabilities or the organization
isn’t prepared to respond to and recover from security incidents, it will directly affect
the time to detect, respond, and recover.

The design, build, and operation of effective security can’t be done in silos but require
integration and coordination across technical and organizational boundaries.

404 | Chapter 12: Closing Thoughts

Security Silos
Security has been and is often still an afterthought. As security professionals, we’re
working to integrate security as much as we can into relevant activities. This book
and the method we’re describing are an approach to achieving this. We suggest that
not only security professionals should apply architectural thinking to security, but
every IT professional should.

We’ve often faced organizations and teams where application and infrastructure
architects are doing their architecture work and, independent of that, a security
architect is developing their own solution. Security often becomes disconnected with
this approach. Integration of security into the architectural thinking process must be
done from the start to the end to ensure the best possible risk reduction and the most
cost-effective way of achieving this.

Even within security teams, we’ve seen silos, where the vulnerability management
team doesn’t talk to threat management teams, etc., and often security only comes
together in the SIEM tool when logs aggregate and correlate from different sources.
You won’t get the most out of your security solutions with this approach. In Chap‐
ter 2, we’ve described how an enterprise security architecture can help ensure the
tight integration of all security capabilities.

Security can get handled in silos with security from different delivery teams. Security
services require tight integration. Even if someone else is responsible for a service,
think about how your solution integrates with other services and start with develop‐
ing a RACI as discussed in Chapter 11.

Artificial Intelligence in Security Architecture
We couldn’t finish the book without some thoughts on the impact of AI. First, we will
discuss the role AI plays in security controls, how we can use AI for the development
of a security architecture, and some current limitations. We will then follow on with a
discussion on securing AI.

AI for Security
Since the 1950s, researchers have been working on artificial intelligence (AI), a tech‐
nique that allows machines to simulate cognitive functions associated with human
minds. Foundational models materialized in the late 2010s. The release of ChatGPT
democratized this technology and generated a wide interest in foundational models
in the form of a Large Language Model (LLM). The use of LLMs in generative AI
(GenAI) has lead to a revolution in the generation of content.

We can use AI to assist in the process of designing security and to enhance the
implementation of security controls. Let’s start with AI in architectural thinking.

Artificial Intelligence in Security Architecture | 405

https://chat.openai.com

AI in architectural thinking
The use of GenAI will become part of the architectural thinking process to accelerate
the development of a solution architecture. However, as we show, it still relies on the
architect to ask for the right information, rephrase the content, and add context.

We had a go at using several different GenAI systems with the objective to increase
efficiency in the architectural thinking process. We used two different approaches,
starting with asking a broad question:

Could you provide me with a list of actors for a system context diagram for a system to
charge polluting cars to enter a city?

The system generated a list of system actors but didn’t have enough context to include
the cameras to detect vehicles. It also didn’t include human actors other than vehicle
owners, such as the staff to manage the IT infrastructure.

The second approach was to enter part of the case study to identify actors.

From the following text, identify the list of actors for a system context diagram: <<
insert case study text>>

It did well at extracting actors but also included Clean Air Guildford, which is part
of the system and not an actor. As with the first request, it was missing human actors
and so we asked a follow-up question:

Can you add to that the human actors needed for managing and supporting the
system?

This generated a comprehensive list of human actors to add to the system context
diagram. We then wanted a list of use cases for each of the actors, so we asked for
them:

For all the actors previously suggested for the system context diagram, can you identify
the use cases that are required for each actor?

It did suggest some use cases, but they weren’t specific enough to be useful.

Overall, AI gave us a more complete list of actors, but you will notice it relied on
us asking the right questions and spotting gaps in the response before asking for
more detail. Actors will be missing and the use cases need further definition. You will
need to add more context and organize the information into something that’s useful.
Architectural thinking skills and experience are still needed.

406 | Chapter 12: Closing Thoughts

Generative AI Is a Significant Risk

The use of GenAI is a risk to your organization, as often everything
you enter into the system for processing is now reused to generate
further content, with the risk that confidential data can leak from
your organization. Ideally, you need to work with a provider that
enables the protection of your confidential data during processing.
Consult with your CISO or cybersecurity team before using gener‐
ative AI.

AI in security controls
The application of AI technologies can provide efficiency gains in a variety of use
cases and open up previously unavailable capabilities. Businesses are realizing these
benefits and adopting AI at a rapid pace. Meanwhile, adversaries are realizing the
possibilities that AI offers them. In addition to the conventional threats that apply
to all solutions, AI introduces a series of new threats and alters the characteristics of
some conventional threats.

We can use AI to become more efficient at detecting and responding to threats. This
is, for example, used in SIEM and SOAR solutions:

• In SIEM solutions, the ability for an AI system to learn is used to improve•
detection quality by reducing the number of false positives. Some SIEM solutions
use LLMs based on a broad body of knowledge about adversary techniques, tac‐
tics, and procedures, which enhance the automated event analysis with external
context information. The same approach can also help threat analysts quickly get
contextual information during the triage of an incident.

• SOAR solutions use AI to summarize the incident for security analysts, provide•
remediation and protection recommendations, and automate decision-making in
certain use cases, with the objective of increasing the response time.

There are many more use cases, where AI can enable and enhance security controls.
In addition to the efficiency gains that we can achieve from using AI, we need to
be aware that AI introduces a set of new threats that we haven’t faced so far. These
threats are very difficult to detect and respond to. We want to illustrate this with the
following examples of AI-specific threats:

Voice deepfakes
With only a very short voice sample, GenAI is capable of generating a speech of
any text in any language using that voice. It’s almost impossible for a human to
distinguish the artificially generated voice from the original.

Artificial Intelligence in Security Architecture | 407

Image or video deepfakes
You can apply a similar technique to images or videos. A few sample pictures
are enough to generate an artificial image of a person, or, combined with a voice
that’s a deepfake, an artificial video.

Misuse of these deepfakes can have a significant impact, ranging from breaking
into banking accounts that use voice authentication to political influence through
social media to offending people with fake nude videos.

Traditional techniques aren’t sufficient to detect these types of threats. This is
where we can benefit from using AI to analyze image and video data for artifi‐
cially generated content. But not only for artificially generated content; AI also
allows, for example, the police to find sequences in a huge amount of surveillance
video data where a certain event is happening.

Prompt injections
The adversary crafts malicious prompts to induce unintended behavior in the
model, enabling it to comply with their instructions and circumvent the system’s
safeguards. This is essentially a semantic attack, using words in the knowledge
itself to bias the output.

Traditional input validation is one of the OWASP Top 10 Proactive Controls,
which we apply in conventional application development and is basically based
on pattern matching. In order to defend against a prompt injection attack, we
need to understand the intent of the prompt; this isn’t possible with pattern
matching. Technologies available today are using specific LLMs to analyze the
prompt for malicious intent and, by doing so, defend against prompt injection
attacks.

With the preceding examples, we want to illustrate that, in addition to traditional
security controls, we need to apply AI-based security controls to defend against
AI threats. The security industry is actively working on developing and releasing
AI-based security technologies.

Securing AI
In the previous section, we discussed how we can use GenAI to support the security
architectural thinking process (AI for security). GenAI solutions in themselves pro‐
vide a new set of threats, which we also need to address (security for AI).

We will take a brief look at how you can apply the methods and techniques that
we’ve described throughout this book to secure a GenAI solution. For that purpose,
we need to understand the high-level building blocks of a retrieval-augmented gener‐
ation (RAG) GenAI solution. RAG is an AI framework that enhances the accuracy
of responses generated by a LLM by incorporating external knowledge sources to
complement the LLM’s internal representation of information. In Figure 12-2, we’ve

408 | Chapter 12: Closing Thoughts

https://oreil.ly/Br0r7

illustrated the conceptual architecture of a RAG solution, which we’ve seen imple‐
mented. We’ve kept this at a very high level, as the development in this space is
rapidly progressing.

Figure 12-2. Conceptual RAG architecture

Let’s have a look at the building blocks of a GenAI solution and what security
considerations we need to make. This is by no means a comprehensive description,
but it should give you enough starting points when you face a GenAI solution.

Data processing/embedding/vector DB
These functional components, at the top of Figure 12-2, are about transforming
enterprise data (unstructured and structured) to train and tune the model for later
retrieval. AI engineers, together with supporting technology, break data sets down
into chunks, which are then passed through an embedding model before they’re
stored in a specialized database, known as a vector database.

Some of the GenAI-specific threats we need to consider to secure the design for this
part of the solution are:

Data poisoning
Poisoning of data sets by modifying data sets or labels with the objective that the
model later produces bad or unintended results.

Exfiltration
An adversary breaks into the system and exfiltrates data. A characteristic of
GenAI solutions is that large amounts of data, which are otherwise distributed
throughout the enterprise, are now concentrated in one place to train and tune

Artificial Intelligence in Security Architecture | 409

the model to make it more accurate. The data sets might contain large amounts
of sensitive data, which makes them a very interesting target for adversaries.

We establish key countermeasures by understanding and classifying data based on the
data collected, its origin, and how it was secured before consolidation. The classifica‐
tion will allow us to derive the required controls, e.g., access controls, multi-factor
authentication, and encryption. Including monitoring allows us to rapidly identify
and respond if exfiltration occurs.

Application/orchestration/LLMs
The AI application provides the interface to the end user of the GenAI solution.
The user enters queries and receives the responses via the application. When the
user has entered the query, the application formulates the prompts for the LLM. The
orchestration component retrieves contextual data from the vector database to enrich
the already-formulated prompts and execute the final prompts against the LLM.

LLMs play a central role in a GenAI solution and perform tasks related to language
understanding, generation, and interaction across various applications and domains.
There are various models with different capabilities for use with different objectives.
Be it text, image, or speech generation; programming code conversion or generation;
or many more. The model, specifically the trained model, is one of the key valuable
assets in a GenAI solution. It takes a lot of time, processing power, and investment to
build and train these models.

Some GenAI-specific threats we need to consider when we secure the design of this
part of the solution are:

AI supply chain attack
Compromise of components of the AI supply chain, e.g., GPU hardware, data,
the ML software stack, or the model itself. Few organizations will develop their
own models, as this is computationally expensive. Most organizations are relying
on existing models, either open source or commercial. Understanding where you
get the models from makes a huge difference, as in the end, you need to trust
the model that you are using. Adversaries might create copies of existing models,
manipulated for their malicious intent, to introduce bad data or malware. You
need to manage the supply chain of the sources you are using for your solution.

Prompt injection
Crafting malicious prompts to make the model behave in an unintended way so
that the model follows the adversary’s instructions, bypassing the guardrails of
the system. This attack type can lead to:

Data leak
Crafting of prompts that make the model leak sensitive information.

410 | Chapter 12: Closing Thoughts

Model theft
Gaining full access to the model, its architecture, parameters, and class
ontology by crafting queries that generate results for mining the model. This
might allow an adversary to build their own version of the model.

Model evasion
Crafting of data that prevents the model from correctly identifying the con‐
tent and data, for example, evading a ML-based malware detection solution.

Denial of service
Where the adversary is crafting prompts that overwhelm the system so that it
can’t keep up anymore.

To address these threats, you need to monitor the inputs to the solution and put
so-called guardrails, or AI firewalls, in place, which are typically implemented in the
orchestration component. Current AI firewalls analyze the intent of a prompt and can
apply input and output controls, like blocking prompts or masking data. It will be
very difficult to address all kinds of semantic attacks. This is an area where a lot of
development is happening in the market.

Different vendors are emerging that develop and provide controls to counter these
threats. They use similar controls as traditional software development, such as input
validation and output encoding. Pattern matching alone isn’t enough when the input
and the output aren’t predictable. Vendors use other LLMs to verify whether the
input prompts and the output result are in line with the organization’s policy.

Infrastructure
Every IT solution runs on one or another form of infrastructure; this is no different
with a GenAI solution, which can be running on a cloud, on premises, or in a hybrid
mode. All the practices we’ve described in this book apply here as well. This includes
at least hardening of the infrastructure and application, role-based access controls,
strong authentication mechanisms, vulnerability scans, and continuous monitoring.

Operations and governance
We use traditional continuous monitoring solutions like SIEM combined with a
SOAR solution to automate response processes. Those kinds of solutions are, of
course, also recommended for a GenAI solution to identify and respond to tradi‐
tional threats. In addition, a new type of technology is evolving: Machine Learning
Detection and Response (MLDR). The objective of this technology is to detect spe‐
cific ML threats we’ve mentioned previously, for example, model theft, denial of
service, supply chain, data poisoning, etc.

Finally, we need a governance function to ensure functional operation and the correct
results of the solution. We need to ensure that the solution acts fairly, isn’t biased,

Artificial Intelligence in Security Architecture | 411

and that the model doesn’t drift over time because someone has introduced some
incorrect information. In addition, we must make sure that the solution complies
with ethical standards and regulations and that we stay up to date on any issues.

Summary
You can apply the architectural thinking methods and techniques we’ve described in
this book to GenAI solutions, as they’re just applications running on infrastructure
that stores and processes data. So all traditional approaches and considerations also
apply to GenAI solutions.

In addition, GenAI solutions introduce new types of threats, different types of assets
that we need to secure, and new types of countermeasures, as we described previ‐
ously. OWASP has created the OWASP AI Exchange, where they collect guidance
and professional alignment on how to protect AI against security threats. MITRE has
established MITRE ATLAS, where you can find more details about adversary tactics
and techniques toward AI. We recommend following at least these two initiatives, as
there is a lot of development ongoing in this space.

The examples we’ve given here are around GenAI, but there are certainly many
different other AI and ML solutions where we also need to apply security practices.
As these are emerging technologies, the industry, governments, and organizations are
still in the early phases of maturing good practices and frameworks. It’s a good idea
to follow organizations such as ENISA, which has published “Multilayer Framework
for Good Cybersecurity Practices for AI” and the UK NCSC, which has released
“Machine Learning Principles”.

That concludes our exploration of security GenAI solutions. As we said, this is still
a relatively immature space from a security perspective. We expect that a number of
new companies will pop up that will provide advanced technologies to address many
of the new threats.

Go Learn, Practice, and Share
Without good architecture, security is difficult, if not impossible.

—Unknown

We asked a team member to analyze and define the security aspects of a solution
that should enable collaboration between different organizations. The solution should
enable use cases for remote access, source code exchange, etc. We received a list
of security technologies associated with the use cases. We didn’t expect this, as the
response didn’t consider the solution’s scope, functional components, actors, and
data, or what the rationale behind certain security control decisions was.

412 | Chapter 12: Closing Thoughts

https://owaspai.org
https://atlas.mitre.org
https://oreil.ly/1AwKB
https://oreil.ly/1AwKB
https://oreil.ly/goVwv

We sat together and started drawing diagrams, understanding what components
are relevant in the solution context, identifying the type of data involved, in which
directions it’s flowing, and in which locations the components and data reside. This
visual representation helped us then develop alternatives and appropriate security
controls. We also used this diagram for the dialog with the customer to finally make
a joint architectural decision about which alternatives were the best fits in the overall
context.

Designing a solution is a collaborative effort that requires communication. Pictures
say more than a thousand words; this is especially true in architecture. This sim‐
ple example should demonstrate that you can’t design good security without going
through the architectural thinking process we described in this book. Now it’s your
turn to get started. Whatever level or proficiency of the techniques and artifacts you
have, only through practice will you be able to build up experience. We recommend
you get involved not only in Plan and Design but also in Build and Run, as only there
will you see whether whatever you architect is actually effective and working.

As you develop your skills and experience in using the method for the development
of your products, projects, and programs, you can make your organization more
effective at architecting security by sharing your experiences with your colleagues. We
encourage you to set up or join a security architecture community to build on what
you have learned by sharing experiences and learning from others. We’ll be adding
content to the book companion website to help you on your journey.

Go learn, practice, and share.

Exercises
No quiz questions included. Further, summative questions and answers can be found
on the companion website.

Exercises | 413

https://securityarchitecture.cloud
https://securityarchitecture.cloud

APPENDIX A

Case Study

The book uses a case study to enable you to see how to apply the tools and techniques
discussed. The case study may use terms you are unfamiliar with, but a quick search
on the internet will give further details about a clean air scheme.

To get the most out of the book, read and think about the security implications
behind the case study. Some descriptions may be unclear and have inaccuracies, but
that’s standard with every project. The architectural decision records and RAID log
become useful in managing this uncertainty and project risk.

Clean Air Guildford Case Study
The local authority has hired Clean Air Guildford to design, construct, and manage
a system to charge polluting car drivers to enter the city. Cameras will monitor cars
entering the city to detect the number plate on the car. To enter the city, the car
drivers will need to pay a charge within 48 hours or receive a fine.

The project has already started to build the new hybrid cloud solution, with the
core application hosted using PostgreSQL on a public cloud platform. As a security
architect, you have received a request to urgently develop a security solution for the
system.

The project deployment approach agreed upon between the CIO, Business Sponsors,
and the Project Executive (PE) leading the integration is as follows:

• Start with a development environment using Red Hat OpenShift to build a cloud•
native container application using DevOps practices on a public cloud platform.

• Then build a full route-to-live with preproduction and production environments•
in the public cloud.

415

• With the Clean Air Application containing:•
— Systems of engagement using Open Liberty running on OpenShift at the—

center
— Cached and state data stored in MongoDB and Redis cloud databases—

• Connected to on-premises systems:•
— A payments gateway connecting to Clean Air Pay using Apache Kafka Streams—
— Integration to a debt facility using RabbitMQ—

• The solution should use a hub-and-spoke architecture.•
• Future developments will be in the public cloud infrastructure.•
• github.com stores the code, and trello.com helps manage the project.•

The program manager has sketched an architecture overview, as shown in Fig‐
ure A-1, and talked you through the solution, but you haven’t received the documen‐
tation yet.

Figure A-1. Architecture overview

416 | Appendix A: Case Study

After talking to the program manager, you have determined that:

• The installation of Automatic Number Plate Recognition (ANPR) cameras has•
taken place on the roads leading into the clean air zone. Camera Zone reads the
number plates of vehicles and sends information to Clean Air Guildford (CAG).
CAG checks the type of vehicle in the Driver and Vehicle Licensing Agency’s
(DVLA) database. Camera Zone provides an outsourced service for the running
of the ANPR cameras and does the same service for other clean air schemes,
police, and security services.

• Vehicle owners with higher emissions will pay a £10 fee to enter the clean air•
zone during peak hours of 07:00 to 19:00 Monday through Saturday. Within 48
hours of entering the clean air zone, they must pay this fee via a payment portal
that the scheme will provide. They have selected Clean Air Pay as their payment
provider. As this is a payment service, the design of the application must include
PCI DSS requirements.

• For those vehicle owners who don’t pay the fee at the end of the 48-hour period,•
a debt collection agency, Clean Air Debt, will receive information on the driver.
They will send out letters notifying the vehicle owner of the fine and, after a
period, pursue collection of the fine.

• The vehicle owners will be able to use their Google or Microsoft IDs to log•
into the portal and register their car with the program so that, upon entering
Guildford, the payments are automatically made.

• The scheme uses the Guildford Service SaaS application in a service center to•
respond to queries by phone and take payments.

• An AI chatbot, provided as a cloud service by the public cloud provider, will•
handle driver queries more rapidly without waiting for telephone support via the
service center.

• Clean Threats, a threat management company, will manage all the security serv‐•
ices from their security operations center (SOC).

• The solution will be fully hosted in the cloud and will need to be resilient to•
availability zone failures.

The program manager would like a high-level solution architecture that provides a
minimum viable product (MVP) solution based on the preceding information.

The program manager has no security solution but has identified one high-level
security requirement:

IAM_001 Integrate single sign-on by using the Staff LDAP Directory as an Identity
Provider for staff.

Case Study | 417

He would like you to document 10–20 high-level requirements (in the preceding
format) that he can focus on with his team within the next six weeks and would like
the requirements traced back to the NIST Cybersecurity Framework that the local
council uses for compliance.

He has confirmed that Clean Threats has a comprehensive threat management
system in place to detect and respond to intrusions. Clean Air Guildford will be
responsible for securing the core system, and he wants assurance the company can
detect if there is a compromise in the application. By creating a detection use case and
response playbook that are applicable to Clean Threats’ threat management service,
the program manager hopes to gain some assurance.

The project is already installing the IT infrastructure, and the staff will be joining
in six weeks’ time. There is a need for the service center employees to complete a
background check by an external company and obtain HR approvals for access to the
core application.

418 | Appendix A: Case Study

APPENDIX B

Artifact Mapping

You’re probably already using another method that contains its own artifacts, and the
artifact names in this book don’t exactly align with the names you are using. We’ve
tried to use a generic set of names that are easily mapped to different methods. In
the following tables, we’ve mapped our artifact names to methods that are publicly
available either as open source or in published books.

The methods we’ve used are:

1. Unified Modeling Language (UML) 2.5.1 from the Object Management Group1.
2. C4 Model from Simon Brown2.
3. arc423.
4. Practical Software Architecture from Tilak Mitra4.

This should help you map to any methods you may be using. Feel free to adapt our
artifacts to your method.

Table B-1. Requirements artifact mapping

Artifact name Unified Modeling
Language (UML)
2.5.1

C4 Model arc42 Practical Software
Architecture

Use case Use case diagram - - Use case diagram

Journey map - - - -

User story - - - -

Swimlane diagram Activity diagram - - -

Separation of duties
matrix

- - - -

419

https://oreil.ly/OMaKB
https://c4model.com
https://arc42.org
https://oreil.ly/tXa3J

Artifact name Unified Modeling
Language (UML)
2.5.1

C4 Model arc42 Practical Software
Architecture

Non-functional
requirementsa

Non-functional
requirements

Non-functional
requirements

Quality goals/quality
requirements

Non-functional
requirements

Information asset
register

- - - -

a Also sometimes called quality attributes or architectural characteristics

Table B-2. Architecture artifact mapping

Artifact name Unified Modeling
Language (UML)
2.5.1

C4 Model arc42 Practical Software
Architecture

Architecture overview - - - Architecture overview

System context - System context Context and scope System context &
system landscape

Shared responsibility
diagram

- - - -

Component
architecture diagram

Component diagram Container diagram &
component diagram

Building block view
level 1/2/3

Component model

Data flow diagram - - - -

Deployment
architecture diagram

Deployment diagram Deployment diagram Deployment view Operational model

Cloud architecture
diagram

- - - -

Sequence diagram Sequence diagram - Runtime view Component interaction
diagram

Collaboration diagram Communication
diagram

Dynamic diagram Communication
diagram

Collaboration diagram

Threat model - - - -

Deployable
architecture

- - - -

Table B-3. Operations artifact mapping

Artifact name Unified Modeling
Language (UML)
2.5.1

C4 Model arc42 Practical Software
Architecture

Shared responsibility
RACI/RASCI

- - - -

Separation of duties
matrix

- - - -

Process - - - -

Procedure - - - -

420 | Appendix B: Artifact Mapping

Artifact name Unified Modeling
Language (UML)
2.5.1

C4 Model arc42 Practical Software
Architecture

Work instruction - - - -

Statechart diagram State machine diagram - - -

Threat detection use
case

- - - -

Incident response
runbook

- - - -

Table B-4. Governance artifact mapping

Artifact name Unified Modeling
Language (UML)
2.5.1

C4 Model arc42 Practical Software
Architecture

Risks, assumptions,
issues, and
dependencies (RAID)
log

- - Risks and technical
debt

-

Architectural decision
record

- - Architecture decision
record

Architecture decision

Table B-5. Assurance artifact mapping

Artifact name Unified Modeling
Language (UML)
2.5.1

C4 Model arc42 Practical Software
Architecture

Requirements
traceability matrix

- - - -

Threat traceability
matrix

- - - -

Test strategy - - - -

Test plan - - - -

Artifact Mapping | 421

APPENDIX C

Exercise Solutions

Here are the answers for the exercises at the end of each chapter:

Chapter 1. Introduction
1. A, B, D, and E. We talk about four foundational security techniques used within1.

the book: data-centric security, secure by design with threat modeling, zero trust
architecture, and compliance management. Data-centric security involves tracing
data throughout its journey in transit, at rest, and in processing. Secure by design
with threat modeling takes a risk-based perspective on developing a solution
architecture. Zero trust architecture assumes implicit trust is removed from an
internal network and a breach has already occurred, so data is fully protected
through all stages of its journey. Compliance management is included, as compli‐
ance with legal and regulatory requirements is required for all organizations.

2. A and C. Two characteristics of secure by design include: i) threat modeling2.
to identify the risk to data; and ii) being primarily targeted at the design of
technology products.

3. A and C. Zero trust architecture follows a number of principles, including “Never3.
trust, always verify.” The zero trust model assumes that all business transactions
and data flows, whether originating from inside or outside the network, are
potentially malicious. Every interaction in a business transaction or data flow
must be continuously validated to ensure that only authorized users and devices
can access sensitive business data. In effect, it moves the perimeter from the
system boundary to the point at which identification, authentication, and author‐
ization take place, resulting in identity becoming the new perimeter.

4. C. Only a security champion role is specific to an Agile or DevOps development4.
environment.

423

5. D. The governance section in the artifact dependency diagram covers all stages of5.
development with recording of the risks, assumptions, issues, and dependencies
(RAID) log and architectural decision records.

6. A, C, and D. Diagrams, automation, and tables are all types of artifacts. There are6.
many diagrams, including system context diagram, the swimlane diagram, the
deployment architecture diagram, and the statechart diagram. The deployable
architecture artifact is automation. Tables include the information asset register
and incident response runbook.

7. C. A solution architecture decomposition diagram contains the system context,7.
component architecture, and deployment architecture.

Chapter 2. Architecture Concepts
1. A, B, and D. Design thinking is an empathetic, human-centered process that is1.

iterative, using experimentation to build a solution in steps while refining the
requirements.

2. False. Architectural characteristics or non-functional requirements need to be2.
included in the scope to ensure the system being considered is ready to scale,
resilient, and secure for a production service. This would be a proof of concept,
not an MVP.

3. A, B, and C. In a tweet from 2021, Grady Booch says, “All architecture is design,3.
but not all design is architecture. Architecture represents the set of significant
design decisions that shape the form and the function of a system, where signifi‐
cant is measured by cost of change.”

4. True. A consultant would need to use architectural thinking, including making4.
architectural decisions about non-functional requirements, to ensure a system is
resilient, scalable, available, adaptable, secure, and compliant.

5. False. Architectural thinking is about making significant design decisions,5.
whereas specifying firewall configuration is an engineering activity that doesn’t
make significant design decisions.

6. False. A security champion supporting DevOps performs a mix of architecture6.
and engineering activities as decisions are made to integrate security services. If
architectural thinking is missing from DevOps, no significant design decisions
are made, which is unlikely during the development of all but the simplest
information systems.

7. A and C. An enterprise architecture is aligned with business objectives and goals.7.
It provides a holistic view of architecture for an organization and doesn’t describe
a specific solution.

424 | Appendix C: Exercise Solutions

8. A, C, and D. A solution architecture solves a specific business problem using an8.
information system that includes technology, processes, and people. It specifies
how technologies will deliver the required capabilities of the system. An architect
will use architecture patterns, enterprise architecture, and enterprise processes to
guide the development of a solution architecture.

9. C. A policy engine (PE) makes security policy decisions and passes the results9.
to the PEP to enforce the connection between the subject and the enterprise
resource.

10. A and C. The term service should be used for security capabilities rather than10.
alignment to a process or control framework because: i) a service consists of
technology, processes, and people, not just a process and ii) a service needs a ser‐
vice design to ensure quality of delivery, including hours of service, availability
requirements, etc.

11. False. As we demonstrated with the Cloud Security Alliance (CSA) Cloud Con‐11.
trols Matrix (CCM), the list of required security services may be incomplete even
for a basic set of controls. In addition, the specific risks for each workload need
to be assessed to identify additional controls.

Chapter 3. Enterprise Context
1. A, C, and D. Laws and regulations are a minimum baseline that organizations1.

need to add to based on their risk environment and tolerance. They provide
high-level guidance to be interpreted. Justification is needed if the guidance
isn’t followed. Laws and regulations can apply globally, but also to each region,
country, or state.

2. D. NIST SP 800-53 is a detailed catalog of security control requirements.2.
3. A and C. A business strategy should contain a vision and mission, along with a3.

value proposition for the organization.
4. B and D. A network PoP data center or a co-location data center could be4.

considered an independent location, provided that they’re not co-located with
the cloud data center being used for workloads.

5. A, B, and D. Separation of duties is used in financial transactions where one5.
person requests a transaction and another person approves it for prevention of
fraud. The control is used for critical security controls configuration, such as a
request and then approval of a firewall change, reducing the risk of introducing
a vulnerability that compromises the system. Separation of duties is also used
for activities such as development of code, where one person performs the
development and another person performs quality assurance checking, including
looking for security vulnerabilities.

Exercise Solutions | 425

6. C. Secure by default is the principle that the default configuration of a system or6.
piece of software should provide a high level of security without requiring the
user or administrator to make additional modifications or settings.

7. B, C, and D. A process is independent of technology; the next level of pro‐7.
cedures and work instructions will introduce technology. A process should
remain unmodified even after implementation changes, which is what the audit
and compliance processes should test. Each of the process activities should be
assigned to roles, not specific people, so that they remain valid even if the
organization changes and should record what control points should be measured
when it comes to an audit or compliance test.

Chapter 4. Requirements and Constraints
1. A and C. A functional requirement defines the primary functionality, or what a1.

system should deliver, of a workload or application.
2. A, B, and D. The term non-functional requirements represents those require‐2.

ments that are not functional. However, the term architectural characteristics
is sometimes used to represent those requirements that are not functional. For
instance, Mark Richards and Neil Ford use it in their book, Fundamentals of
Software Architecture (O’Reilly). ISO/IEC 25010:2023 on systems and software
engineering uses the term product quality properties.

3. D. The loss of availability for cloud services like secrets or certificate manage‐3.
ment can result in almost immediate failure of workloads, so security services
often need to be more resilient than the workloads they support.

4. B and D. This refers to a circular dependency that cannot be resolved unless4.
there is an alternative way to retrieve the encryption keys. If there aren’t multiple
routes to retrieve the encryption keys, we can’t resolve a circular dependency.

5. C. Specific, measurable, attainable, relevant, and time-bound (SMART) is the set5.
of qualities used to measure how good a requirement is.

6. B and D. The best functional requirements definition techniques for identifying6.
end-user functional requirements are a journey map and user story. A journey
map originates from design thinking and is a human-centered approach to
understanding the needs, pain points, and goals of personas. It’s a good starting
place, with user stories further detailing the activities. User stories originate
from the extreme programming (XP) methodology as a way to improve software
quality and be more responsive to changing customer requirements. A journey
map might serve as their guide.

7. C. The best functional requirements definition technique for the formal defini‐7.
tion of the sequence of security-enforcing activities taking place between differ‐
ent end users is a swimlane diagram. A swimlane diagram provides a formal

426 | Appendix C: Exercise Solutions

approach to documenting a sequence of activities for security-enforcing activities
as it shows the relationship between activities, and a separation of duties matrix is
available.

8. B and D. Quality is a factor that is balanced against time and cost of a project.8.
The risk of loss of confidentiality, integrity, and availability is balanced against
the cost and time of the project.

9. A, B, and D. It might be necessary to rearchitect around a different component9.
with a higher cost of change later in the design and development process if other
components of the solutions do not support particular versions of products and
services.

10. B. Dimensions are used to externalize the scope and get you to think about a list10.
of different types to include in a scope.

Chapter 5. System Context
1. C. SPI relates to data concerning a person or identifiable individual that’s so1.

sensitive that its disclosure could cause irrevocable harm. This includes informa‐
tion on racial or ethnic origin, sexual life, political opinions, criminal records,
religious beliefs, trade union activities, and physical or mental health.

2. B and C. Aggregation is the integration of data from multiple sources into a sin‐2.
gle dataset. Aggregation may increase the sensitivity of the resulting information.
Generation is the creation of new data through processing or analysis of existing
data, which may increase the sensitivity of the resulting information.

3. A, B, and D. A system context diagram shows the boundary of the system,3.
the human and system actors interacting with the boundary of the system, and
interactions of the actors show where the data flows in and out of the system.

4. B and D. A database administrator is responsible for the administration of the4.
database used in the online store, whether it is software running on a compute
host or a cloud service. The service desk agent would need to access the online
store to provide support.

5. A and C. A parcel logistics system would be run by the parcel delivery company,5.
which would provide an external system used to schedule parcel collection and
delivery. A card payment system would be external and accessed via a payment
gateway by the online store.

6. True. An employee with internal access and an employee with remote access6.
reside in different threat environments, may use different security controls, and
may have different access restrictions to the data being accessed. Consider them
separate to identify the differences.

Exercise Solutions | 427

7. B. A service that requires single-zone resilience has an annual availability of7.
99.99% and falls in Category B.

Chapter 6. Application Security
1. B and C. The component architecture is the first iteration of identifying building1.

blocks that represent the functionality the solution should implement and creat‐
ing an abstraction of the system architecture, omitting details.

2. A and C. Threat modeling is an iterative process that changes at each iteration2.
of the solution, and into Day-2 operations, where the threats continually change.
The level of detail and the areas of the solution where you perform threat model‐
ing can often be expanded. At some point, you will have reached a satisfactory
level of detail for the first major iteration based on the joint agreement of the
threat modeling team. As threats and vulnerabilities change, further threat mod‐
eling will be needed for Day-2 operations, where the threats continually change.
Therefore, the process is never really complete.

3. A, B, and D. Through the threat modeling process, you define controls that3.
mitigate threats. Only identified security controls that reduce the risk to the
organization are useful and relevant. Identified threats will then feed into threat
detection use cases, as further described in Chapter 11.

4. B and C. An initial threat model should certainly be developed as part of the4.
shift-left approach to identify security issues as soon as possible in the develop‐
ment lifecycle. Significant changes to the solution can drive further changes to
the threat model.

5. B. Justification of the importance of identified security controls, which reduce5.
the risk to the organization, receives high priority because they have a positive
business impact.

6. C. Following the flow of the data through the system will help you identify places6.
with threats and a need for corresponding controls.

Chapter 7. Shared Responsibilities
1. A, B, and D. Key benefits of cloud computing include provisioning of cloud1.

resources on demand, rapid deployment of resources to support peak business
events and sharing of resources, and enabling pooling of resources with lower
costs.

2. False. SaaS service security still requires some consumer involvement, such as2.
configuring access to data and role-based activities. You need to assume someone
will need to manage the SaaS service and include them as a system or human
actor.

428 | Appendix C: Exercise Solutions

3. A, B, and D. A cloud service provider is responsible for all things physical in3.
a cloud data center, including a cloud data center’s physical security, storage
subsystem security, and network device security.

4. A, B, C, and D. A landing zone package will contain all of these elements. An4.
enterprise pattern describes the organization of the cloud environments for an
enterprise with many different lines of business, workloads, and projects. An
architecture pattern is best practice for the construction of types of workloads
or single workloads of a particular type. A resiliency pattern shows how to
achieve the required service levels to deliver the desired resiliency for workloads.
Principles guide the decision-making process for the deployment of the solution
to the landing zone. They cover topics like resilience, performance, reliability,
sustainability, operations, security, and compliance.

5. False. Cloud services aren’t necessarily more cost-effective than on-premises5.
services. It depends on the type of workload and how they use resources. If cloud
resources are not required much of the time, you have the opportunity to turn
them off and not be charged for their use. Cloud computing provides flexibility
for workloads that have spikes in resource utilization, and the rate card will
include a share of the cost to maintain unused resources.

6. True. A hybrid cloud architecture can combine one or more cloud services and6.
on-premises data centers to support workloads that span on-premises and cloud.

7. A, B, and D. A hybrid cloud environment will consist of multiple compute7.
platforms with varying shared responsibilities for each technology architecture
and cloud service provider. Security services will be built into the cloud platform,
with each of the cloud providers having a different security operations team, and
the consumers of the services will also perform security operations.

8. True. Although the cloud service provider is responsible for some of the underly‐8.
ing security, the user must administer the security services offered by the cloud
platform.

9. B, C, and D. You ensure that all parties within an organization understand their9.
shared responsibilities by defining a document of understanding (DoU) as it
defines who is responsible for each activity; a shared responsibility diagram or
table as they define who is responsible for each major service; and documenting
processes and procedures as they define who is responsible for each activity.

Chapter 8. Infrastructure Security
1. B. The architectural thinking technique of placing a functional component onto1.

the chosen compute node is called deployment. Deployment refers to identifying
the appropriate compute characteristics for the functional component and plac‐
ing it on the compute node.

Exercise Solutions | 429

2. B and D. An input to the definition of a deployment architecture diagram is a2.
system context diagram and a shared responsibility diagram or table. A system
context diagram describes the boundary of the system with the actors and inter‐
faces to help define the deployment architecture diagram. A shared responsibility
diagram or table is an input that describes the technology stacks needed for the
deployment architecture diagram.

3. A and C. Documentation that should be created to help further describe a3.
deployment architecture diagram includes network design and architectural
decision records. Network design documentation describes the detailed network
solution for a deployment architecture diagram. Architectural decision records
would be recorded as part of the architectural thinking to further describe the
deployment architecture diagram.

4. A. Compliance needs to be demonstrated using a catalog of non-functional4.
requirements. If security requirements are part of the primary functionality, there
may be some functional requirements that need to be considered as well.

5. A, B, and C. In compute node to compute node communication, the types of5.
transaction flows that need to be considered are those triggered by human and
system actors, system events, and threat actors. Transaction flows triggered by
system events are a secondary set of flows that frequently go unnoticed because
they may be the result of incidents, mistakes, or timed batch transactions.
Transaction flows triggered by threat actors that should never occur need to
be considered.

6. B. A shared responsibility diagram or table is used to describe the compute6.
platforms and is used when deploying functional components onto compute
nodes.

7. B, C and D. A zero trust network architecture (ZTNA) solution is a more secure7.
remote access solution than a virtual private network (VPN) because identity and
access policy enforcement occurs before establishing the network connection, it
inhibits malware lateral movement between end-user devices and target systems,
and it isolates internal enterprise applications from the internet.

8. A, B, C, and D. The enterprise level considers how all the different environments8.
are integrated together to secure the whole cloud environment. CSP/landing zone
level considers the controls related to a specific data center or cloud environment.
The application and CI/CD levels consider the controls needed in the application
development environment. The operations level considers the requirements for
the security operations needed to support the cloud environment.

9. False. An on-premises software solution may use an architecture that relies9.
on capabilities only available in an on-premises environment, such as network
latency and underlying storage capabilities. Due to such dependencies on the

430 | Appendix C: Exercise Solutions

on-premises environment, an on-premises software solution might not be able to
deliver as a cloud solution.

Chapter 9. Architecture Patterns and Decisions
1. B. A pattern is considered to be a reusable solution that solves a specific problem.1.
2. A, B, and C. A deployable architecture is automation based on a reference archi‐2.

tecture or architecture pattern that’s reusable and uses best practices, principles,
and guidance.

3. False. A solution design pattern solves an individual problem but is insufficient3.
to provide a complete solution. Many solution design patterns, each solving an
individual problem, must combine together into an architectural pattern to solve
a problem, providing an implementable solution.

4. False. A 3-tier architecture pattern is a pattern used previously on-premises, but4.
normally cloud applications are n-tier architectures.

5. A, B, and C. In a hybrid cloud architecture, an edge or transit VPC is normally5.
located within a cloud environment but may be in a point of presence (PoP)
network or on-premises data center to remove the need to manage multiple loca‐
tions for network protection and monitoring. Using a co-lo data center would
add complexity to the architecture with the support of a new location.

6. A, B, C, and D. There are many applications, each with a number of tiers,6.
hosted in multiple environments, that each require security rules per host to be
configured, adding complexity.

7. A, B and C. An architectural decision record needs a decision to be recorded7.
(otherwise there is not a decision). The rationale documents why the decision
was made and the implication documents how the decision changes the solution
and how it is delivered.

Chapter 10. Secure Development and Assurance
1. B. The earlier in the development lifecycle that security issues are identified, the1.

cheaper it is to address them.
2. A, C, and D. The security team might provide a security champion to the devel‐2.

opment team, which takes on some responsibilities for security activities, but not
all and not alone. Developers take on responsibilities including the application
of secure coding practices, code reviews, and static application security testing
(SAST) scans during unit testing. The different roles of a development team have
mostly a security responsibility in the development process.

Exercise Solutions | 431

3. A, C, and D. Secure assurance activities are required throughout the development3.
process, from plan to release, including the start, to ensure that requirements
are documented and approved. Then, during Day-2 operations, certain assurance
activities need to be repeated at regular intervals.

4. B and D. They are project risks and should be a proper RAID item. The others4.
are solution risks that are addressed in the solution risk register or during threat
modeling.

5. D. Automation and the culture of continuous integration and development are5.
the foundations for an efficient development process.

6. A, B, and C. SAST, SCA, and secret scanning tools are integrated into the build6.
process. SAST tools scan the source code for vulnerabilities based on defined pol‐
icies. SCA tools scan the components for vulnerable and outdated components.
Secret scans scan the source code for hardcoded secrets.

7. False. Assurance activities are required during Day-0 and Day-1 operations but7.
are also required with every change during Day-2 operations.

8. B. Abuse cases define flaws in the business logic and lead to respective counter‐8.
measures and tests.

9. A and B. A Cloud Center of Excellence (CCoE) certifies products for inclusion in9.
the cloud reference architecture and drives consistency in security practices and
policies across cloud service providers.

Chapter 11. Security Operations
1. A and B. A Responsible, Accountable, Supporting, Consulted, and Informed1.

(RASCI) matrix splits the responsibility for an activity into the person who is
responsible for leading and one or more people responsible for supporting the
activity. The delivery of some activities may be performed by multiple people, but
the operations team don’t want to add complexity by decomposing further into
multiple activities, so one person leads and the others support the activity.

2. False. The best form of RACI for two parties is an agreement where both parties2.
have their responsibilities explicitly described; otherwise, it can lead to confusion
and disputes.

3. False. A process defines what needs to be performed and why. It is the procedures3.
and work instructions that define how activities are completed.

4. A. A statechart diagram is useful to identify processes, not work instructions,4.
needed to perform state changes of data.

5. C. A separation of duties matrix identifies risks associated with a party perform‐5.
ing an activity without the approval of another party.

432 | Appendix C: Exercise Solutions

6. True. Threat modeling is not just for identifying countermeasures; it is also used6.
to identify threats that should be detected as part of the threat detection and
response system.

7. A, B, and C. A threat traceability matrix is to ensure there is a use case for7.
detection of a threat and a response runbook for responding to a threat, then
ensure detection and response are tested for a threat.

Chapter 12. Closing Thoughts
No quiz questions included. Further, summative questions and answers can be found
on the companion website.

Exercise Solutions | 433

https://securityarchitecture.cloud

Index

A
ABBs (architecture building blocks), 40, 295
acceptance testing, 341
access control, 7, 187
access stage, data security lifecycle, 136
accountability, 227
ACLs (access control lists), 256
ACSC (Australian Cyber Security Centre), 73
activation bars, sequence diagrams, 167
actors, 108

(see also human actors; system actors)
case study system context diagram, 170
component architecture diagrams, 165
information asset registers, 155-157
swimlane diagrams, 108
system context diagrams, 149
threat modeling, 181
use case, 103-105

adaptive-based access control, 43, 45
administration section, route-to-live responsi‐

bilities tables, 225
administrative metadata, 136
administrative privileges, restricting, 400
ADRs (architectural decision records), 21, 239,

248, 259, 299, 309-310, 376, 400
advisory security architects, 11
aggregation stage, data security lifecycle, 135
Agile delivery, 37, 106
agile model, software development, 329
AI (see artificial intelligence)
AI supply chain attack, 410
Amazon Elastic Container Service (ECS), 213
Amazon Elastic Kubernetes Service (EKS), 213
Amazon Web Services (AWS), 73, 280, 299, 309

analysis and mitigation strategies, attack trees,
185

Anderson, George W., 32
anti-malware software, 187
antivirus software, 187
API gateway, 261
API version control, 97
Appleton, Brad, 296
application access requests, 53
Application and CI/CD level, cloud security,

278
application components layer, shared responsi‐

bilities stack diagrams, 222
Application domain, enterprise security archi‐

tecture, 51
application security, 20, 161-201

artifacts, 161
component architecture, 163-175
functional viewpoint, 163
security concepts, 175-177
threat modeling, 177-201

architects, 9-12
consultants versus, 34
defined, 34
infrastructure and application architects, 12
security architects, 10-12
security champions, 12
security responsibility, 210
technical leadership, 76

architectural characteristics, 92
(see also non-functional requirements)

architectural decision records (ADRs), 21, 239,
248, 259, 299, 309-310, 376, 400

architectural thinking

435

artificial intelligence, 406
continuous architecture approach, 38
end-to-end design process, 32-34
infrastructure security, 248-255
zero trust architecture, 44-47

architecture building blocks (ABBs), 40, 295
architecture concepts, 29-60

end-to-end design process, 30-39
Agile delivery, 37-38
architectural thinking, 32-34
compliance, 36
design thinking, 31-32
engineering, 35
enterprise context, 36
operational thinking, 35-36

enterprise architecture, 39-40, 48-60
solution architecture, 40
zero trust architecture, 41-48

architecture decisions, 293, 309-318
(see also architectural decision records)
artifacts, 294
case study, 314-318
forms of, 312
managing, 312
QA checklist, 318

architecture patterns, 21, 293-309
artifacts, 294
automation of, 85
deployable architectures, 306-309
guiding principles, 85
infrastructure security, 239
landing zones, 215
network segmentation, 257
solution architecture patterns, 297-299
solution design patterns, 299-306

architecture section, artifact framework, 13
arrows, collaboration diagrams, 168
Art of Systems Architecting, The (Maier and

Rechtin), 35
artifact dependency diagrams, 14-15

application security, 162
architecture patterns and decisions, 294
case study, 16
enterprise context, 66
infrastructure security, 240
requirements and constraints, 89
secure development and assurance, 325
security operations, 358
shared responsibilities, 206

system context, 132
artifacts, 13-16

application security, 161
architecture patterns and decisions, 294
artifact dependency diagrams, 14-15
enterprise context, 66
framework for, 13
infrastructure security, 238
integration with other methods, 16
mapping, 419
minimum viable, 400-401
requirements, 89
secure development and assurance, 325
security operations, 358
shared responsibilities, 206
system context, 131

artificial intelligence (AI), 405-412
securing, 408-412

application, 410
data processing, 409
embedding, 409
infrastructure, 411
LLMs, 410
operations and governance, 411
orchestration, 410
vector database, 409

for security, 405-408
architectural thinking, 406
LLMs, 405
security controls, 407-408

asset classes, 133
“assume breach” principle, 5, 7, 44, 47-48, 269
assumptions, RAID log, 173, 233, 325, 347, 348
assurance activities, 339
assurance section, artifact framework, 14
attack trees, 183-185
attainable criteria, SMART framework, 98
Australian Cyber Security Centre (ACSC), 73
automation of architecture patterns, 85
availability

classification scheme for, 153
cloud architecture and infrastructure secu‐

rity, 282-285
non-functional requirements, 94
percentage availability, 154, 284

AWS (Amazon Web Services), 73, 280, 299, 309
AWS Lambda, 213
Azure, 73, 280, 299, 309
Azure Functions, 213

436 | Index

B
backing up data, 400
backup and archive stage, data security lifecy‐

cle, 136
backup and disaster recovery plans, 188
bare metal servers, 212
bastion host, 261, 276
Behr, Kevin, 330
best practices, 399-405

backing up data, 400
balance, 403-404
employee hygiene, 400
hardening software, 400
industry and expert organizations, 70-73
iterating for maturity, 401-403
minimum viable artifacts, 400-401
multi-factor authentication, 400
patching vulnerabilities, 400
restricting administrative privileges, 400
security silos, 405
supported software, 399

BISOs (Business Information Security Offi‐
cers), 365, 366

Blum, Dan, 402
Booch, Grady, 32, 310
breach notification legislation, 68
Brikman, Yevgeniy, 308
Bring Your Own Key (BYOK) key management,

252
Brown, Rebekah, 391
Brown, Simon, 25, 138
Build phase, 21, 325-352
built-in cloud services layer, shared responsibil‐

ities stack diagrams, 222
built-on capabilities layer, shared responsibili‐

ties stack diagrams, 222
business and information systems strategy,

76-78
business goal alignment, 77
Business Information Security Officers

(BISOs), 365, 366
business logic attacks, 332
BYOK (Bring Your Own Key) key management,

252

C
C4 Model (Brown), 25, 138
CADs (cloud architecture diagrams), 21, 238,

242, 280-282, 285-288

CAG Admin web application, 288
CAG backend application, 288
CAG VPCs, 261
California Consumer Privacy Act (CCPA), 68
Capability Maturity Model Integration

(CMMI), 401
capability maturity models (see maturity mod‐

els)
“castle and moat” security model, 5
CC (Common Criteria), 175
CCM (Cloud Controls Matrix), 56, 71
CCoE (cloud center of excellence), 344
CCPA (California Consumer Privacy Act), 68
CDM (continuous diagnostics and mitigations)

system, 43
Center for Internet Security (CIS), 71
CFAA (Computer Fraud and Abuse Act), 69
ChatGPT, 405
Chief Data Officers (CDOs), 78
Chief Information Security Officers (CISOs),

70, 365, 366
CI/CD (continuous integration/continuous

delivery) pipeline, 307, 345
CIP (Critical Infrastructure Protection) Stand‐

ards, 69
CIS (Center for Internet Security), 71
CISO office, cloud security operating model,

343
CISOs (Chief Information Security Officers),

70, 79, 365, 366
Citrix XenServer, 213
Clark, Andrew, 26, 49
Clean Air Guildford case study, 16-18, 415-418

architectural techniques, 23
architecture decisions, 314-318
architecture overview diagram, 18
artifact dependency diagram, 16
cloud computing and infrastructure secu‐

rity, 285-288
component architecture, 170-175
deployment architecture diagrams, 258-264,

376
functional requirements, 111-113
identifying platforms, 228
incident response runbooks, 387-391
journey map, 105
non-functional requirements, 119-124

elaborating, 121
identifying, 120

Index | 437

rewriting, 122-124
processes, procedures, and work instruc‐

tions, 367-374
RAID log, 349-351
shared responsibilities, 228-234

documenting stack diagrams, 231-234
identifying compute platforms, 230
identifying environments, 231
identifying PaaS services, 229
identifying SaaS services, 229

system context diagrams, 145-151
documenting system context, 149
identifying human actors, 146
identifying system actors, 145, 148

threat detection, 380-384
threat modeling, 196-201
use case diagram, 103
zero trust-based security infrastructure,

274-276
cloud architecture diagrams (CADs), 21, 238,

242, 280-282, 285-288
cloud center of excellence (CCoE), 344
cloud computing, 208-219

benefits of, 208-210
cloud security operating model, 342-347
hybrid cloud architecture diagrams, 216-219
infrastructure security, 276-288

case study, 285-288
cloud architecture diagrams, 280-282
high availability, 282-285
organizing, 276-279

landing zones, 214-216
platforms, 212-214
public cloud network segmentation, 256
securing data flows

cloud service to cloud service, 254
compute node to cloud service, 254

security policy responsibility, 227-228
security responsibilities, 214
service models, 210
service provider responsibilities, 223-225
user responsibilities, 225-227

Cloud Controls Matrix (CCM), 56, 71
cloud foundations (see landing zones)
cloud instances, cloud security operating

model, 346
cloud marketplace, cloud security operating

model, 345

Cloud Native Computing Foundation (CNCF),
269

Cloud Security Alliance (CSA)
Cloud Controls Matrix, 56, 71
Security Guidance, 134

cloud security posture management (CSPM)
tools, 344

cloud service providers (CSPs)
architecture patterns, 239
best practices, 280
cloud architecture diagrams, 242
naming conventions, 280

Cloud Service Providers (CSPs)
deployable architectures, 299
reference architectures, 298
well-architected frameworks, 298

CMMI (Capability Maturity Model Integra‐
tion), 401

CNCF (Cloud Native Computing Foundation),
269

Coles, Matthew J., 178
collaboration diagrams, 167-168, 239
commercial threat modeling tools, 196
Common Criteria (CC), 175
Common Vulnerabilities and Exposures (CVE)

database, 75, 383
Common Vulnerability Scoring System (CVSS),

327
Common Weakness Enumeration (CWE) list,

383
communication

importance of, 158
paths for zero trust use cases, 251

(see also data flows)
compliance, 7-8

deployment architecture, 249
end-to-end design process, 36
security versus, 8
users of, 9

component architecture, 163-175
case study, 170-175
collaboration diagrams, 167
data flow diagrams, 168-169
development stages, 169
QA checklist, 175
sequence diagrams, 166-167

component architecture diagrams, 20, 165-165
component element

collaboration diagrams, 168

438 | Index

component architecture diagrams, 165
technical design diagram notation, 143

Computer Fraud and Abuse Act (CFAA), 69
Computer Security Incident Response Team

(CSIRT), 69, 387
confidentiality

classification scheme for, 152
information asset inventories, 155

constraints, 96-98
consulting security architects, 11, 34
consumer expectations, 74
container platforms, 213
containment stage, incident response lifecycle,

385
context-based access controls, 256
continuous architecture approach, 38
Continuous Architecture in Practice (Erder,

Pureur, and Woods, 38
continuous authentication, 45
continuous compliance, 187
continuous diagnostics and mitigations (CDM)

system, 43
continuous integration/continuous delivery

(CI/CD) pipeline, 307, 345
continuous monitoring, 7
control family and domain misalignment, 123
control plane, 43
Coplien, Jim, 296
corporate expectations, 73
corrective security controls, 188
create, modify and delete ID service, 53
creation stage, data security lifecycle, 135
CREF (Cyber Resiliency Engineering Frame‐

work) Navigator, 285
Critical Infrastructure Protection (CIP) Stand‐

ards, 69
critical risk data, 152
crown jewel asset class, 134
CSA (see Cloud Security Alliance)
CSIRT (Computer Security Incident Response

Team), 69, 387
CSP/landing zone level, cloud security, 277
CSPM (cloud security posture management)

tools, 344
CSPs (see cloud service providers)
CVE (Common Vulnerabilities and Exposures)

database, 75, 383
CVSS (Common Vulnerability Scoring System),

327

CWE (Common Weakness Enumeration) list,
383

Cyber Essentials scheme, 73-74
cyber resilience, 403
Cyber Resiliency Engineering Framework

(CREF) Navigator, 285
cybercrime legislation, 69
cybersecurity vulnerabilities, 75

D
DADs (deployment architecture diagrams), 21,

238, 242-246, 258-264, 316, 376
DASTs (dynamic application security tests), 341
Data domain, enterprise security architecture,

51
data flow diagrams, 168-169, 189
data flows

infrastructure security, 250-254
actor to compute node, 252
cloud service to cloud service, 254
compute node to cloud service, 254
compute node to compute node, 253

zero trust and, 137
data loss prevention (DLP), 56, 303
data plane, 43
data poisoning, 409
data protection, 133-137

data security lifecycle, 134-136
legislation, 68
metadata, 136-137
value of data, 133-134
zero trust and data flows, 137

data protection everywhere, 7, 44, 47
data security lifecycle, 134-136
data stores, data flow diagrams, 169
data strategy, 78
data-centric security, 3-4, 7

identity, data, and transaction identification,
44

users of, 8
Day-0 operations, 338
Day-1 operations, 338
Day-2 operations, 338
DE.CM (Detect Continuous Monitoring), 120
decisions, swimlane diagrams, 108
declarative IaC deployment code, 308
decomposition layers, solution architecture, 22
defense in depth principle, 80, 311
Define stage, design thinking, 31

Index | 439

denial of service (DoS) threats, 183, 199, 411
dependencies

attack trees, 185
RAID log, 349

deployable architectures, 306-309
CI/CD pipeline, 307
distributed version control systems, 307
infrastructure as code toolchain, 307
using, 308

deployed level, component architecture, 164
deployment architecture, 240-264

case study, 376
compliance, 249
deploying functional components, 249
deployment architecture diagrams, 243-245
iterating architectural thinking, 254
network segmentation, 255-257
QA checklist, 258
securing data flows, 250-254
supporting documentation, 246-248

deployment architecture diagrams (DADs), 21,
238, 242-246, 258-264, 316, 376

deployment automation, landing zones, 216
deployment stage, component architecture, 170
deployment units, technical design diagram

notation, 143
descriptive metadata, 136
Design phase, 20

application security, 20, 161-201
architecture patterns and decisions, 21,

293-319
infrastructure security, 21, 237-289
shared responsibilities, 21, 205-234
system context, 20, 131-157

design stage, component architecture, 170
design thinking, 31-32, 105, 106
Design Thinking for Tech (Anderson), 32
destruction stage, data security lifecycle, 136
Detect and Respond domain, enterprise secu‐

rity architecture, 51
Detect Continuous Monitoring (DE.CM), 120
detection rules, use cases, 379
detective security controls, 187
DevOps, 36, 330-338, 346
DevSecOps, 330-338
Deyalsingh, Jason, 384
Digital Operational Resilience Act (DORA), 70
dimensions of requirements, 118
Disclosure and Barring Service, 230

distributed version control systems (DVCSs),
307

DLP (data loss prevention), 56, 303
Docker Swarm, 213
documents of understanding (DoUs), 228
DORA (Digital Operational Resilience Act), 70
DoS (denial of service) threats, 183, 199, 411
Dotson, Chris, 25, 215
DVCSs (distributed version control systems),

307
dynamic application security tests (DASTs), 341

E
EA (see enterprise architecture)
EasyPark parking firm, 380
ecommerce abuse cases, 332
ECS (Amazon Elastic Container Service), 213
Edge VPC, 282, 303
EDR (endpoint detection and response), 269
EDR (enterprise detection and response), 98
EKS (Amazon Elastic Kubernetes Service), 213
elasticity, cloud computing, 209
Elevation of Privilege (EoP) game, 183
elevation of privilege threats, 183
Empathize stage, design thinking, 31
employee hygiene, 400
encryption, 47, 252
end-to-end architectural thinking process, 12
end-user devices, cloud architecture diagrams,

287
endpoint detection and response (EDR), 269
Endpoint domain, enterprise security architec‐

ture, 51
engineering, 35
ENISA (European Union Agency for Cyberse‐

curity), 74, 412
enterprise architecture (EA), 39-40, 48

business goal alignment, 80
Cloud Controls mapping, 56
cloud security operating model, 344
decomposition, 49-54
security service responsibilities, 54-56
service designs, 58-60
services versus processes, 49

enterprise context, 20, 36, 65-86
artifacts, 13, 66
external context, 67-75

consumer expectations, 74
corporate expectations, 73

440 | Index

cybersecurity vulnerabilities, 75
organization best practices, 70-73
threat landscape, 74

infrastructure security, 239
internal context, 75-85

architecture patterns and automation, 85
business and information systems strat‐

egy, 76-78
current IT environment and security

control plane, 78
enterprise architecture, 80
enterprise processes, 85
guiding principles, 80-85
policies, practices, and standards, 79
risk management, 79

laws and regulations, 67-70
enterprise detection and response (EDR), 98
Enterprise level, cloud security, 276
enterprise pattern, landing zones, 215
enterprise processes, 85
enterprise security architects, 10
Enterprise Security Architecture (Sherwood,

Clark, Lynas), 26, 49
enterprise techniques, 23
Envoy Proxy, 269
EoP (Elevation of Privilege) game, 183
epics, 107
EPSS (Exploit Prediction Scoring System), 327
eradication stage, incident response lifecycle,

385
Erder, Murat, 38
Essential Eight scheme, 73
European Union Agency for Cybersecurity

(ENISA), 74
exfiltration, 409
expert organization best practices, standards,

and benchmarks, 71
Exploit Prediction Scoring System (EPSS), 327
external context, 67-75

consumer expectations, 74
corporate expectations, 73
cybersecurity vulnerabilities, 75
laws and regulations, 67-70
non-functional requirements, 113
organization best practices, 70-73
threat landscape, 74

external entities, data flow diagrams, 169
external threat actors, 181
eXtreme Programming, 106

F
FAIR method risk evaluation, 192
FFIEC (Federal Financial Institutions Examina‐

tion Council) IT Examination Handbook,
72

financial information asset class, 134
firewalls, 187
first responders, incident response, 386
flexibility

hybrid cloud environment, 218
of requirements, 119

forensic analysis, 188
foundation services layer, shared responsibili‐

ties stack diagrams, 222
fraud prevention, separation of duties, 82
full service responsibility, 225
functional requirements, 91, 102-113

case study, 111-113
design thinking, 30-32, 105, 106
journey maps, 105
QA checklist, 113
separation of duties matrices, 109-111
swimlane diagrams, 107-109
use cases, 103-105
user stories, 106-107

Fundamentals of Software Architecture
(Richards), 25

G
Gandhi, Raju, 307
GCP (Google Cloud Platform), 73, 280, 299,

309
GDPR (General Data Protection Regulation),

68
GenAI (generative AI), 405

AI supply chain attack, 410
in architectural thinking, 406
deepfakes, 407
denial of service threats, 411
prompt injections, 410
retrieval-augmented generation, 408
risks associated with, 407
tools, 334

General Data Protection Regulation (GDPR),
68

generation stage, data security lifecycle, 135
generic use cases, threat detection, 381
GIT tool, 307
GitHub Pages, 313

Index | 441

goals, attack trees, 184
Google Cloud Functions, 213
Google Cloud Platform (GCP), 73, 280, 299,

309
Google Identity Provider, 230
Google Kubernetes Engine (GKE), 213
governance section, artifact framework, 13
guiding principles, internal context, 80-85

H
hardening

infrastructure components, 250
software, 400

hardware security modules (HSMs), 222, 252
Head First Git (Gandhi), 307
heat maps, 52
high risk data, 152
highly confidential classification, 152
Hillside Group, The, 296
Hohpe, Gregor, 76
host-based firewalls, 256
HSMs (hardware security modules), 222, 252
hub-and-spoke architecture pattern, 257,

302-305
hubs, 282
human actors

case study system context diagrams, 170
securing data flows, 252
system context diagrams, 140, 145-146
technical design diagram notation, 143

hybrid cloud architecture diagrams, 216-219
Hybrid Cloud Security Patterns (Iyer), 215

I
IaaS (infrastructure as a service), 210, 212
IaC (infrastructure as code), 209, 216, 307
IAM (identity and access management), 45,

247, 270
IAST (interactive application security tests),

341
IBM Cloud, 73, 280, 299, 309
IBM Cloud Kubernetes Service (IKS), 213
IBM Code Engine, 213
IBM Design Language, 142
IBM Enterprise Design Thinking Method, 105
IBM Unified Method Framework, 142
IBM zOS, 218
ICS (industrial control systems), 237
Ideate stage, design thinking, 31

identification stage, incident response lifecycle,
385

Identity and Access domain, enterprise security
architecture, 50

identity and access management (IAM), 45,
247, 270

identity lifecycle management, 53
identity threat detection and response (ITDR)

solutions, 270
identity verification, 7
identity, data, and transaction identification, 44
IDSs (intrusion detection systems), 187
IKS (IBM Cloud Kubernetes Service), 213
image deepfakes, 408
imperative IaC deployment code, 308
implementation approach, deployment archi‐

tecture, 246
Implementing ISO:9001:2015 (Nichols), 374
incident responders, 386
incident response plans, 188
incident response runbooks, 384-391

case study, 387-391
QA checklist, 391

incident, problem, and change (IPC) processes,
78

INCOSE (International Council on Systems
Engineering, 138

independent software vendors (ISVs), 230
industrial control systems (ICS), 237
industry standards, 72
information asset inventories, 155
information asset registers, 20, 151-157

actor use cases and data, 155-157
data classification, 151-155
QA checklist, 156

information disclosure threats, 183
Information Risk Management (Sutton), 176
Information Security Forum (ISF), 192, 402
information system architecture, defined, 33
information technology (see IT)
infrastructure and application architects, 12
infrastructure as a service (IaaS), 210, 212
infrastructure as code (IaC), 209, 216, 307
Infrastructure as Code (Morris), 308
infrastructure security, 21, 237-289

artifacts, 238
cloud architecture, 276-288

case study, 285-288
cloud architecture diagrams, 280, 282

442 | Index

high availability, 282-285
organizing cloud security, 276-279

deployment architecture, 240-264
case study, 258-264
compliance, 249
deploying functional components, 249
deployment architecture diagrams,

243-245
iterating architectural thinking, 254
network segmentation, 255-257
securing data flows, 250-254
supporting documentation, 246-248

zero trust-based infrastructure, 264-276
architecting, 271-273
case study, 274-276
endpoint-based solutions, 269
identity and access management, 270
network-based solutions, 264-268
service mesh solutions, 268

install and operate responsibility, 225
install responsibility, 224
integration testing, 341
integrity of data, classification scheme for, 152
Intelligence-Driven Incident Response (Brown

and Roberts), 391
interactive application security tests (IAST),

341
interfaces, system context diagrams, 149
internal classification, 152
internal context, 75-85

architecture patterns and automation, 85
business and information systems strategy,

76-78
current IT environment and security control

plane, 78
enterprise architecture, 80
enterprise processes, 85
guiding principles, 80-85
non-functional requirements, 113
policies, practices, and standards, 79
risk management, 79

internal threat actors, 181
International Council on Systems Engineering

(INCOSE), 138
internet connectivity, 263
Internet of Things (IoT)

OT devices, 237
as system actor, 140

intrusion detection systems (IDSs), 187

IPC (incident, problem, and change) processes,
78

IPsec (Internet Protocol Security), 97, 252
ISF (Information Security Forum), 192, 402
ISF Benchmark, 402
ISO 9001:2015 Quality Management System,

85, 365
ISO/IEC 27001 standard, 72
issues, RAID log, 348
ISVs (independent software vendors), 230
IT environment and security control plane, 78
IT operations and service management pro‐

cesses, 78
IT systems operations team, 365
ITDR (identity threat detection and response)

solutions, 270
Iyer, Sreekanth, 215

J
Jacobson, Ivar, 103
Jericho Forum, 5
joiners, movers, leavers (JML), 53
journey maps (user journeys; scenario maps),

105

K
kanban boards, 313
Katz, Gary J., 384
Kelley, David, 31
Kelley, Diana, 25
Kernel-based Virtual Machine (KVM), 213
KEV (Know Exploited Vulnerabilities) Catalog,

383
key management, encryption, 252
key performance indicators (KPIs), cyber resil‐

ience, 404
keys locked in the car scenario, 95
Kim, Gene, 330
Kindervag, John, 5
KISS principle, 84
Known Exploited Vulnerabilities (KEV) Cata‐

log, 383
KPIs (key performance indicators), cyber resil‐

ience, 404
Kubernetes, 213
KVM (Kernel-based Virtual Machine), 213

Index | 443

L
landing zones, 214-216, 287, 306

(see also deployable architectures)
Large Language Models (LLMs), 405, 410
laws and regulations, 67-70
leaf nodes, attack trees, 184
Learning Git (Skoulikari), 307
least privilege principle, 7, 46, 81
Leifer, Larry, 31
lifeline elements, sequence diagrams, 166
LINDDUN Privacy Threat Modelling Frame‐

work, 185
links, collaboration diagrams, 168
LLMs (Large Language Models), 405, 410
load balancer, cloud architecture diagrams, 287
location layer, shared responsibilities stack dia‐

grams, 220
locations, technical design diagram notation,

143
log monitoring and analysis, 187
Log4Shell vulnerability, 335
logical groups, technical design diagram nota‐

tion, 143
logical level, component architecture, 164
low risk data, 152
Lynas, David, 26, 49

M
Machine Learning Detection and Response

(MLDR), 411
Maier, Mark W., 35
major incident responders, 386
management VPC, 261
Management VPC, 304
market analysis, 77
maturity models, 401-403

activity planning, 403
assessing current state, 403
defining target maturity, 402
reference frameworks, 401

mean time to contain (MTTC), 404
mean time to detect (MTTD), 404
mean time to resolve (MTTR), 404
measurable criteria, SMART framework, 98
merging requirements, 118
messages, sequence diagrams, 167
metadata, 136-137
microsegmentation, 7, 47, 83, 256, 265
Microsoft Hyper-V, 213

Microsoft Identity Provider, 230
Miller's Law, 50
minimize attack surface principle, 81
minimum viable artifacts, 400-401
minimum viable product/project (MVP), 30,

33, 101
misuse and abuse cases, 332
Mitra, Tilak, 25, 138
MITRE ATLAS, 412
MITRE ATT&CK, 185, 383
MLDR (Machine Learning Detection and

Response), 411
moderate risk data, 152
modularity, 54
Morris, Kief, 308
MoSCoW method, 101, 106
Moyle, Ed, 25
MTTC (mean time to contain), 404
MTTD (mean time to detect), 404
MTTR (mean time to resolve), 404
multi-factor authentication, 400
Multi-Zone Regions (MZRs), 218, 220
MVP (minimum viable product/project), 30,

33, 101

N
n-tier architecture pattern, 257, 301
naming conventions, CSPs, 280
National Institute of Standards and Technology

(see NIST)
national standards organizations, 71
NCSC (see UK National Cyber Security Centre)
network connectivity, deployment architecture

diagrams, 244
network design, 238, 247
Network domain, enterprise security architec‐

ture, 50
network edge protection, 257
network segmentation, 81, 238, 255-257

architecture patterns, 257
deployment architecture diagrams, 244
microsegmentation, 256
network edge protection, 257
public cloud network segmentation, 256

network zones, technical design diagram nota‐
tion, 144

“never trust, always verify” principle, 5-7,
43-48, 269

NextGen firewalls, 257, 261, 304

444 | Index

NFRs (see non-functional requirements)
Nichols, Andrew W., 374
nines availability (percentage availability), 154,

284
NIS2 Directive, 69
NIST (National Institute of Standards and

Technology)
Cybersecurity Framework, 51, 71, 120
National Checklist Program repository, 71
National Vulnerability Database (NVD), 383
SP 800-53r5 Security and Privacy Controls

for Information Systems and Organiza‐
tions, 72, 117

SP 800-61r2 Computer Security Incident
Handling Guide, 384

SP 800-160 Vol. 1 Engineering Trustworthy
Secure Systems, 134

SP 800-207 Zero Trust Architecture docu‐
ment, 6, 7, 41

Special Publication 800-53r5, 121
node description, deployment architecture dia‐

grams, 244, 246
node location, deployment architecture dia‐

grams, 244
nodes, technical design diagram notation, 143
non-functional requirements, 91-96, 113-124,

113
(see also architectural characteristics)
case study, 119-124
dependencies, 115-116
documenting, 116
improving requirement specification,

117-119
QA checklist, 123
refining deployment architecture with, 249
sources of, 113-115

NVD (NIST National Vulnerability Database),
383

O
on-demand services, cloud computing, 209
one-sided shared responsibility agreements,

364
online courses, design thinking, 32
open design principle, 84
Open Group, The, 39-40, 120, 295, 298
Open Security Controls Assessment Language

(OSCAL), 72
open source threat modeling tools, 196

operational architecture (see deployment archi‐
tecture)

operational resiliency, 69
operational technology (OT), 140, 237
operational thinking, 35-36
Operations level, cloud security, 278
operations section

artifact framework, 13
route-to-live responsibilities tables, 225
updating operation solutions, 272

order of techniques, 24
organization best practices, 70-73
OSCAL (Open Security Controls Assessment

Language), 72
OT (operational technology), 140, 237
OWASP AI Exchange, 412
OWASP Code Review Guide, 333
OWASP Foundation Top Ten, 383
OWASP Risk Rating Method, 192, 198
OWASP SAMM project, 332
OWASP Top 10 Proactive Controls, 408

P
PaaS (platform as a service), 211, 213, 229
PAM (privileged access management), 116, 270,

274, 276
parameterizing requirements, 119
ParkMobile app, 380
patching

patch management, 188
software, 81
vulnerabilities, 400

Patterns and Software (Appleton), 296
PCI DSS (Payment Card Industry Data Security

Standard), 72, 333
PDP (policy decision point), 42
PE (policy engine), 42
PEP (policy enforcement point), 42, 47, 267
percentage availability (nines availability), 154,

284
personal information (PI) asset class, 134
Phoenix Project, The (Kim, Behr, and Spaf‐

ford), 330, 332
physical hardware layer, shared responsibilities

stack diagrams, 222
physical install and operate responsibility, 225
physical location layer, shared responsibilities

stack diagrams, 220
physical view, 142

Index | 445

PI (personal information) asset class, 134
Plan phase, 20

enterprise context, 20, 65-86
requirements, 20, 89-125

planning stage, component architecture, 169
platform as a service (PaaS), 211, 213, 229
platform layer, shared responsibilities stack dia‐

grams, 220
platform services, 263
platform team, cloud security operating model,

345
PoC (proof of concept), 30, 33
point of presence (PoP), 79, 261, 263, 303
policies, landing zones, 215
policies, practices, and standards, 79
policy decision point (PDP), 42
policy enforcement point (PEP), 42, 47, 267
policy engine (PE), 42
PoP (point of presence), 79, 261, 263, 303
post-incident activity stage, incident response

lifecycle, 386
PostgreSQL, 233
PR.IP (Protection Processes and Procedures),

120
Practical Cloud Security (Dotson), 25, 215
Practical Cybersecurity Architecture (Moyle

and Kelley), 25
Practical Software Architecture (Mitra), 25, 138
Practical Threat Detection Engineering (Rod‐

die, Deyalsingh, Katz), 384
practices, landing zones, 215
preparation stage, incident response lifecycle,

385
prescribed view, 142
preventive security controls, 187
pricing, cloud computing, 209
principles, landing zones, 215
privacy

legislation, 68
non-functional requirements, 93
privacy threats, 185

privileged access management (PAM), 116, 270,
274, 276

privileged access management server, 261
probability and impact assessments, attack

trees, 185
process steps, swimlane diagrams, 108
processes, data flow diagrams, 169
processes, procedures, and work instructions

landing zones, 215
security operations, 365-374

product backlog, user stories, 106
product quality properties, 92

(see also non-functional requirements)
product security architects, 11
project context, non-functional requirements,

113
project management triangle, 114
prompt injections, 408, 410
proof of concept (PoC), 30, 33
Protection Processes and Procedures (PR.IP),

120
Prototype stage, design thinking, 31
public classification, 152
public cloud network segmentation, 256
public versus on-premises cloud platforms, 217
Pureur, Pierre, 38

Q
qualitative risk analysis, 192
quality assurance, separation of duties, 82
Quality Management Systems (QMS), 365, 374
Quantitative Information Risk Assessment

(QIRA), 192
quantitative risk analysis, 192

R
RA-5 (a) vulnerability scanning

control requirements, 121
rewriting, 122

RACI (Responsible, Accountable, Consulted,
and Informed) tables, 21, 358, 361

RAID (Risks, Assumptions, Issues, and Depen‐
dencies) log, 325, 347-351
case study, 349-351

RAID (Risks, Assumptions, Issues, and Depen‐
dencies) logs, 157
QA checklist, 351

RASCI (Responsible, Accountable, Supporting,
Consulted, and Informed) table, 363-364

Rational Cybersecurity for Business (Blum),
402

recategorizing requirements, 118
Rechtin, Eberhardt, 35
recoverability, non-functional requirements, 94
recovery point objective (RPO), 95, 155, 284
recovery stage, incident response lifecycle, 385

446 | Index

recovery time objective (RTO), 49, 95, 101, 154,
284

Red Hat OpenShift, 213, 217
reference frameworks, 401
relevant (reasonable) criteria, SMART frame‐

work, 99
reordering requirements, 117
repudiation threats, 182
requirements, 20, 89-125

adding controls to, 271
artifacts, 89
constraints, 96-98
functional, 91, 102-113
mapping, 271
non-functional, 91-96, 113-124
prioritizing, 101-102
specifying quality requirements, 98-100
traceability, 124-125, 246

requirements section, artifact framework, 13
resiliency patterns, landing zones, 215
resiliency, cloud computing, 209
resilient hub-and-spoke architecture, 304
resource pooling, cloud computing, 209
Responsible, Accountable, Consulted, and

Informed (RACI) tables, 21, 358, 361
Responsible, Accountable, Supporting, Consul‐

ted, and Informed (RASCI) tables, 363-364
retrieval-augmented generation (RAG) GenAI

solution, 408
Richards, Mark, 25
risk

acceptance of, 79, 367-373
avoidance of, 192
management of, 79
mitigation of, 193
transfer of, 193

risk registers, 193, 200
risk treatment approaches (risk response strate‐

gies), 192
Risks, Assumptions, Issues, and Dependencies

log (see RAID log)
risks, RAID log, 347
Roberts, Scott J., 391
Roddie, Megan, 384
route to live environments, 302
route-to-live shared responsibilities tables, 225
RPO (recovery point objective), 95, 155, 284
RTO (recovery time objective), 49, 95, 101, 154,

284

Run phase, security operations, 21, 357-393

S
SaaS (software as a service), 211, 229
SABSA (Sherwood Applied Business Security

Architecture), 26
Sarbanes Oxley Act of 2002, 68
SASE (secure access service edge), 267
SAST (Static Application Security Testing)

tools, 333, 335
SBBs (solution building blocks), 295
SBOMs (software bills of materials), 335
SCA (software composition analysis), 335
scalability requirement, 32, 94
SCAP (Security Content Automation Protocol),

71, 383
SDN (software-defined networking), 256, 279
SDP (software-defined perimeter) pattern, 264
SEBok (Systems Engineering Body of Knowl‐

edge), 138
secret scanning, 336
secure access service edge (SASE), 267
secure by default principle, 83
secure by design principle, 4, 8, 84
secure configuration checks, 336
secure configuration, infrastructure compo‐

nents, 250
secure development and assurance, 21, 325-352

artifacts, 325
cloud security operating model, 342-347
RAID log, 347-351
security assurance, 338-342
software development lifecycle, 326-330
transforming DevOps into DevSecOps,

330-338
build and package phase, 335
deploy phase, 336-337
design phase, 332
development phase, 333
operate and monitor phase, 338

security architects, 10-12, 34, 138, 238
activities during solution lifecycle, 279
advisory or consulting security architects,

11
enterprise security architects, 10
operational thinking, 36
product security architects, 11
solution security architects, 10

security audits and assessments, 187

Index | 447

security awareness training, 187
security by obscurity principle, 84
security categories, 52
security champions, 9, 12, 331
Security Content Automation Protocol (SCAP),

71, 383
security controls compromise, separation of

duties, 82
security controls implementation, deployment

architecture, 246
security domains, 50
security information and event management

(SIEM), 43, 187, 344, 378, 407
security operations, 21, 357-393

artifacts, 358
case study, 367-376, 380-384, 387-391
deployment architecture, 247
incident response runbooks, 384-391
processes, procedures, and work instruc‐

tions, 365-374
shared responsibilities, 359-364
threat detection, 378-384
threat traceability matrices, 391

Security Orchestration, Automation, and
Response (SOAR) system, 379, 407

security services, 53
designs, 58-60
processes versus, 49
responsibilities, 54-56
security service management, 53

security silos, 405
Security Technical Implementation Guides

(STIGs), 71
security techniques, 2-8

compliance management, 7-8
data-centric security, 3-4
secure by design with threat modeling, 4
users of, 8-9
zero trust architecture, 5-7

self-messages, sequence diagrams, 167
sensitive personal information (SPI) asset class,

134
separation of duties principle and matrices, 82,

109-111
sequence diagrams, 166-167, 239
server virtualization technologies, 213
serverless platforms, 213
service availability, security service design, 59
service catalogs, security service design, 58

service continuity, security service design, 59
service level management, security service

design, 58
service level objectives (SLOs), 59
service performance and capacity, security ser‐

vice design, 59
shared responsibilities, 21, 205-234

artifacts, 206
case study, 228-234
cloud computing, 208-219
cloud security policy responsibility, 227-228
cloud service provider responsibilities,

223-225
cloud user responsibilities, 225-227
one-sided shared responsibility agreements,

364
QA checklist, 234
security operations, 359-364

shared responsibilities stack diagrams, 220-223,
231-234

Sherwood Applied Business Security Architec‐
ture (SABSA), 26

Sherwood, John, 26, 49
shift-left approach, software development life‐

cycle, 327
Shifting the Balance of Cybersecurity Risk

(CISA, et al.), 5
short-form ADRs, 311
Shostack, Adam, 8
SIEM (security information and event manage‐

ment), 43, 187, 344, 378, 407
single capability non-functional requirements,

92
Skoulikari, Anna, 307
SLOs (service level objectives), 59
SMART framework, 98
SOAR (Security Orchestration, Automation,

and Response) system, 379, 407
Software Architect Elevator, The (Hohpe), 76
software as a service (SaaS), 211, 229
software bills of materials (SBOMs), 335
software composition analysis (SCA), 335
software development lifecycle, 326-330
software development proactive controls, 188
software versions

dependencies, 97
identifying, 115

software-defined networking (SDN), 256, 279
software-defined perimeter (SDP) pattern, 264

448 | Index

solution architecture, 18-23, 40, 297-299
Build phase, 21
decomposition, 22-23
Design phase, 20
Plan phase, 20
Run phase, 21

solution building blocks (SBBs), 295
solution design patterns, 299-306

hub-and-spoke architecture, 302-305
n-tier applications, 301
resilient hub-and-spoke architecture, 304
route to live environments, 302
scaling for enterprise, 306

solution lifecycle phases, 18
solution security architects, 10
Spafford, George, 330
specific criteria, SMART framework, 98
SPI (sensitive personal information) asset class,

134
splitting requirements, 117
spoofing threats, 182
sprint backlog, user stories, 106
sprints, Agile development, 37
SREs (system reliability engineers), 35
Staff LDAP Directory, 230
Stanford Center for Design Research, 31
statechart diagram, vulnerability management,

367
Static Application Security Testing (SAST)

tools, 333, 335
step numbers, swimlane diagrams, 109
STIGs (Security Technical Implementation

Guides), 71
storage design, deployment architecture, 247
storage stage, data security lifecycle, 135
strategic goals and initiatives, 77
STRIDE threat modeling method, 182-183, 197
structural metadata, 136
subcategorizing requirements, 118
subprocesses, swimlane diagrams, 109
subsystems, component architecture diagrams,

165
supported software, 399
Sutton, David, 176
SWIFT payment gateway, 141
swimlane diagrams, 107-109, 368-371
system actors

securing data flows, 252
system context diagrams, 140, 145, 148, 170

technical design diagram notation, 143
system architects, 138
system context, 20, 131-157

artifacts, 131
case study, 145-151
data protection, 133-137
information asset registers, 151-157
system context diagrams, 137-151

system context diagrams, 44, 137-151
business and IT context, 144
case study, 145-151
examining data lifecycle, 147
QA checklist, 150
system and security architect roles, 138
system context concepts, 139-141

system integrator teams, 225
system interface implementation, 150
system operations teams, 227
system reliability engineers (SREs), 35
system testing, 341
system-wide non-functional requirements, 92
Systems Engineering Body of Knowledge

(SEBok), 138
systems operations and service management,

deployment architecture, 247

T
tampering threats, 182
Tarandach, Izar, 178
target maturity, defining, 402
target system, technical design diagram nota‐

tion, 143
Technical Design Authorities (TDAs), 120
technical design diagram notation, 141-144
technical metadata, 136
technology choices per node type, deployment

architecture diagrams, 245
technology vision, 77
terminators, swimlane diagrams, 108
Terraform (Brikman), 308
test cases, deployment architecture, 246
Test stage, design thinking, 31
test strategy, software development, 336
themes, defined, 107
threat detection and response, 47, 378-384
threat landscape, 74
threat modeling, 4, 177-201, 401

case study, 196-201
identifying assets, 180

Index | 449

identifying boundaries, 179
identifying controls, 186-190
identifying threat actors, 181
identifying threats, 182-186
incident response traceability, 378
prioritization of controls, 192-194
QA checklist, 201
reviewing and updating, 271
tools for, 194-196
users of, 8

Threat Modeling (Coles and Tarandach), 178
Threat Modeling (Shostack), 8
threat traceability matrices, 391
three-tier architecture pattern, 257
time-bound (traceability) criteria, SMART

framework, 99
TLS (transport layer security), 93, 97
TOGAF (The Open Group Architecture

Framework) Standard, 39-40, 120, 295, 298
traceability

compliance, 8, 36
requirements, 99, 124, 246, 339
threats, 378, 391

transaction flows
architecturally significant, 253
data-centric security, 4

transferring risk, 193
transit gateway, 261
Transit VPC, 260, 303
transit VPC, 261, 282
transmission stage, data security lifecycle, 135
transport layer security (TLS), 93, 97
trust boundaries, component architecture, 179

U
UK National Cyber Security Centre (NCSC),

412
Cyber Essentials scheme, 73-74
zero trust architecture design principles, 6-7

UML (Unified Modeling Language), 103
Unicorn Project, The (Kim), 330
unit testing, 341
updating software, 81
usability and security, 403
usability of non-functional requirements, 95
use cases

functional requirements, 103-105
system context diagrams, 141
threat detection, 379-384

user stories, 106-107

V
V-model, software testing, 340
value of data, 133-134
value propositions, 77
video deepfakes, 408
virtual private clouds (VPCs), 55, 260, 261
virtual private networks (VPNs), 49, 97, 267
virtual server platforms, 212
vision and mission, 76
VMware, 213, 217-218
voice deepfakes, 407
VPCs (virtual private clouds), 55, 260, 261
VPNs (virtual private networks), 49, 97, 267
vulnerability management, 255, 361

W
WAFs (web application firewalls), 245, 257, 283,

303, 314
waterfall development approach, 37, 329
Woods, Eoin, 38
work instructions, 366, 374
workload VPCs, 303
workload-specific use cases, threat detection,

381

Z
zero trust architecture, 5-7, 41-48

basics of, 6
core components of, 41-43
data flows and, 137
infrastructure security, 264-276

architecting zero trust practices, 271-273
case study, 274-276
endpoint-based solutions, 269
identity and access management, 270
network-based solutions, 264-268
service mesh solutions, 268

integration with architectural thinking,
44-47

principles of, 6
solutions based on, 48
users of, 9

zero trust principles, 83
ZTA (see zero trust architecture)
ZTNA (zero trust network access), 46-47,

264-268, 274, 287

450 | Index

About the Authors
Mark Buckwell is a cloud security architect, thought leader, speaker, and trainer
with 30 years of experience architecting and delivering security solutions. He is
known for leading the successful delivery of global security solutions to protect
business-critical enterprise workloads. With an emphasis on regulated environments,
he has worked with organizations to develop their security strategies, enterprise
architectures, and solution architectures across a variety of industries. He has also
been using his extensive experience to help develop the next generation of security
architects through training security professionals globally and students through an
assessed cyber security master’s degree module at two UK universities.

Stefaan Van daele is CTO at IBM Cybersecurity Services in the northern, central,
and eastern Europe region and he is a trusted advisor to CISOs and their teams. He
is also IBM architect profession leader for the Benelux region. In that role he guides
IBM architects with their architect certification journey. As a senior certified security
architect, he led several security transformation projects at organizations in Europe.
He is also an instructor in security architecture classes, both internally at IBM and
externally. In his current role he is the lead architect on a multiyear security project.

Carsten Horst is an associate partner and Open Group certified senior security
architect. In his more than 25 years of experience, he has helped organizations across
a variety of industries to develop and implement their security strategies and security
architectures. In his role, he has been leading security transformation projects across
Europe. He is also an instructor and coauthor of security architecture classes at IBM.
In his current role as associate partner with IBM Security, he is helping clients with
the design, implementation, and management of security solutions within a hybrid
cloud context.

Colophon
The animal on the cover of Security Architecture for Hybrid Cloud is a crested eagle
(Morphnus guianensis), a neotropical eagle living throughout Central and South
America.

The crested eagle has a large head, enhanced by the crest of feathers that gives it
its name, a long tail, and short wings. Its small wingspan allows it to move through
forest environments. The birds’ plumage varies from a light brownish-gray to mostly
black.

The crested eagle eats mostly small mammals, rodents, snakes, and smaller birds. Like
most raptors, they are solitary birds. They build relatively large nests and typically
produce two eggs; however, only one eaglet hatches. Juveniles remain dependent

upon their parents for up to thirty months, which indicates that parents do not breed
every year.

Crested eagles have a large distribution, but the population of breeding adults is
estimated to be only 1,000 to 10,000 birds. The IUCN lists their status as Near
Threatened. Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Iconographia Zoologica. The series design is by Edie Freedman, Ellie Volckhau‐
sen, and Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Audience
	Contents of This Book
	Conventions Used in This Book
	Using Figure and Table Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Acknowledgments from Mark Buckwell
	Acknowledgments from Stefaan Van daele
	Acknowledgments from Carsten Horst

	Part I. Concepts
	Chapter 1. Introduction
	Foundational Security Techniques
	Data-Centric Security
	Secure by Design with Threat Modeling
	Zero Trust Architecture
	Compliance Management
	Users of the Security Techniques

	Architect Roles for Security
	Security Architect
	Infrastructure and Application Architect
	Security Champion

	Book Structure
	Artifact Framework
	Artifact Dependency Diagram
	Case Study
	Book Organization
	Solution Architecture Decomposition
	Method Techniques

	Summary
	Further Reading
	Exercises

	Chapter 2. Architecture Concepts
	From Design Thinking to Compliance
	Design Thinking and Consulting Practices
	Transitioning to Architectural Thinking
	Transitioning to Engineering
	Operational Thinking
	Enterprise Context
	Compliance
	Waterfall to Agile Delivery
	Security Architecture in Agile

	Enterprise and Solution Architecture
	Enterprise Architecture
	Solution Architecture

	Zero Trust Architecture
	Core Architecture Components
	Architectural Thinking Integration
	Zero Trust Solutions

	Technique: Enterprise Security Architecture
	Security Processes or Services?
	Enterprise Architecture Decomposition
	Security Services Responsibilities
	Cloud Controls Mapping
	Security Service Design

	Summary
	Exercises

	Part II. Plan
	Chapter 3. Enterprise Context
	Chapter Artifacts
	External Context
	Laws and Regulations
	Industry or Expert Organization Best Practices
	Corporate Expectations
	Consumer Expectations
	Threat Landscape
	Cybersecurity Vulnerabilities

	Internal Context
	Business and Information Systems Strategy
	Current IT Environment and Security Control Plane
	Policies, Practices, and Standards
	Risk Management
	Enterprise Architecture
	Guiding Principles
	Architecture Patterns and Automation
	Enterprise Processes

	Summary
	Exercises

	Chapter 4. Requirements and Constraints
	Chapter Artifacts
	Requirements Concepts
	Functional Requirements
	Non-Functional Requirements
	Constraints
	Specifying Quality Requirements
	Prioritizing Requirements

	Specifying Functional Requirements
	Use Cases
	Journey Maps
	User Stories
	Swimlane Diagrams
	Separation of Duties Matrices

	Case Study: Process Definition
	Specifying Non-Functional Requirements
	Sources of Non-Functional Requirements
	Non-Functional Requirement Dependencies
	Documenting Non-Functional Requirements
	Improving Requirement Specification

	Case Study: Specifying a Requirements Catalog
	Identifying Security Requirements
	Elaborating Security Requirements
	Rewriting Security Requirements

	Requirements Traceability
	Summary
	Exercises

	Part III. Design
	Chapter 5. System Context
	Chapter Artifacts
	Data Protection
	Value of Data
	Data Security Lifecycle
	Metadata
	Zero Trust and Data Flows

	System Context Diagram
	System and Security Architect Roles
	System Context Concepts
	Business and IT Context

	Case Study: System Context Diagram
	Identifying Human Actors
	Identifying System Actors
	Documenting the System Context

	Information Asset Register
	Data Classification
	Actor Use Case and Data

	Summary
	Exercises

	Chapter 6. Application Security
	Chapter Artifacts
	Functional Viewpoint
	Component Architecture
	Component Architecture Diagram
	Sequence Diagram
	Collaboration Diagram
	Data Flow Diagram
	Component Architectural Thinking Process

	Case Study: Component Architecture
	Security Concepts
	Threat Modeling
	Identify Boundaries
	Identify Assets
	Identify Threat Actors
	Identify Threats
	Identify Controls
	Prioritization of Controls
	Threat Modeling Tools

	Case Study: Threat Model
	Summary
	Exercises

	Chapter 7. Shared Responsibilities
	Chapter Artifacts
	Cloud Computing Concepts
	Cloud Computing Benefits
	Cloud Service Models
	Cloud Computing Platforms
	Cloud Security Responsibilities
	Landing Zones
	Hybrid Cloud Architecture
	Using the Hybrid Cloud Architecture Diagram

	Shared Responsibilities Model
	Shared Responsibilities Stack Diagram
	Cloud Service Provider Responsibilities
	Cloud User Responsibilities
	Cloud Security Policy Responsibility

	Case Study: Shared Responsibility Model
	Identifying PaaS Services
	Identifying SaaS Services
	Identifying the Compute Platforms
	Identifying Environments
	Documenting a Shared Responsibilities Stack Diagram

	Summary
	Exercises

	Chapter 8. Infrastructure Security
	Chapter Artifacts
	Deployment Viewpoint
	Deployment Architecture
	Deployment Architecture Diagram
	Deployment Architecture and Supporting Documentation
	Architecting Infrastructure Security
	Network Segmentation

	Case Study: Deployment Architecture Diagram
	Zero Trust-Based Security Infrastructure
	Network-Based Solutions
	Service Mesh Solutions
	Endpoint-Based Solutions
	Identity and Access Management
	Architecting Zero Trust Practices

	Case Study: Zero Trust
	Cloud Architecture
	Organizing Cloud Security
	Cloud Architecture Diagram
	High Availability

	Case Study: Cloud Architecture Diagram
	Summary
	Exercises

	Chapter 9. Architecture Patterns and Decisions
	Chapter Artifacts
	Architecture Patterns
	Solution Architecture Patterns
	Solution Design Patterns

	Deployable Architecture
	A Distributed Version Control System
	Continuous Integration/Continuous Delivery (CI/CD) Pipeline
	Infrastructure as Code Toolchain
	Using a Deployable Architecture

	Architectural Decisions
	Documenting Architectural Decision Records
	Forms of Architectural Decision
	Managing Architectural Decisions

	Case Study: Architectural Decision
	Summary
	Exercises

	Part IV. Build
	Chapter 10. Secure Development and Assurance
	Chapter Artifacts
	The Software Development Lifecycle
	From DevOps to DevSecOps
	Design
	Develop
	Build and Package
	Deploy, Test, and Release
	Operate and Monitor

	Security Assurance
	Cloud Security Operating Model
	Risks, Assumptions, Issues, and Dependencies
	Case Study: RAID Log
	Summary
	Exercises

	Part V. Run
	Chapter 11. Security Operations
	Chapter Artifacts
	Shared Responsibilities
	Defining Processes, Procedures, and Work Instructions
	Case Study: Vulnerability Management Service
	Process Definition
	Procedures and Work Instructions Definition

	Case Study: Deployment Architecture Update
	Threat Detection Use Case
	Case Study: Threat Detection Use Case
	Incident Response Runbook
	Case Study: Incident Response Runbook
	Threat Traceability Matrix
	Summary
	Exercises

	Part VI. Close
	Chapter 12. Closing Thoughts
	Getting Started
	Don’t Forget the Basics
	Minimum Viable Artifacts
	Iterate for Maturity
	Get the Balance Right
	Security Silos

	Artificial Intelligence in Security Architecture
	AI for Security
	Securing AI

	Summary
	Go Learn, Practice, and Share
	Exercises

	Appendix A. Case Study
	Clean Air Guildford Case Study

	Appendix B. Artifact Mapping
	Appendix C. Exercise Solutions
	Chapter 1. Introduction
	Chapter 2. Architecture Concepts
	Chapter 3. Enterprise Context
	Chapter 4. Requirements and Constraints
	Chapter 5. System Context
	Chapter 6. Application Security
	Chapter 7. Shared Responsibilities
	Chapter 8. Infrastructure Security
	Chapter 9. Architecture Patterns and Decisions
	Chapter 10. Secure Development and Assurance
	Chapter 11. Security Operations
	Chapter 12. Closing Thoughts

	Index
	About the Authors
	Colophon

